Science.gov

Sample records for minimal supersymmetric higgs

  1. The Minimal Supersymmetric Fat Higgs Model

    SciTech Connect

    Harnik, Roni; Kribs, Graham D.; Larson, Daniel T.; Murayama, Hitoshi

    2003-11-26

    We present a calculable supersymmetric theory of a composite"fat'" Higgs boson. Electroweak symmetry is broken dynamically through a new gauge interaction that becomes strong at an intermediate scale. The Higgs mass can easily be 200-450 GeV along with the superpartner masses, solving the supersymmetric little hierarchy problem. We explicitly verify that the model is consistent with precision electroweak data without fine-tuning. Gauge coupling unification can be maintained despite the inherently strong dynamics involved in electroweak symmetry breaking. Supersymmetrizing the Standard Model therefore does not imply a light Higgs mass, contrary to the lore in the literature. The Higgs sector of the minimal Fat Higgs model has a mass spectrum that is distinctly different from the Minimal Supersymmetric Standard Model.

  2. Higgs data constraints on the minimal supersymmetric standard model

    NASA Astrophysics Data System (ADS)

    Cheung, Kingman; Lee, Jae Sik; Tseng, Po-Yan

    2015-11-01

    We perform global fits to the most recent data (after summer 2014) on Higgs boson signal strengths in the framework of the minimal supersymmetric standard model. We further impose the existing limits on the masses of charginos, staus, stops, and sbottoms together with the current Higgs mass constraint |MH1-125.5 GeV |<6 GeV . The heavy supersymmetric (SUSY) particles such as squarks enter into the loop factors of the H g g and H γ γ vertices, while other SUSY particles such as sleptons and charginos also enter into that of the H γ γ vertex. We also take into account the possibility of other light particles, such as other Higgs bosons and neutralinos, into which the 125.5 GeV Higgs boson can decay. We use the data from the ATLAS, CMS, and the Tevatron, with existing limits on SUSY particles, to constrain on the relevant SUSY parameters. We obtain allowed regions in the SUSY parameter space of squark, slepton and chargino masses, and the μ parameter. We find that |Δ Sγ/SSMγ|≲0.1 at 68% confidence level when Mχ˜1 ±>300 GeV and Mτ˜1>300 GeV , irrespective of the squarks masses. Furthermore, |Δ Sγ/SSMγ|≲0.03 when Mχ˜1 ±,τ˜1>500 GeV and Mt˜1,b˜ 1≳600 GeV .

  3. Neutralinos and Higgs Bosons in the Next-To-Minimal Supersymmetric Standard Model

    NASA Astrophysics Data System (ADS)

    Franke, F.

    The purpose of this paper is to present a complete and consistent list of the Feynman rules for the vertices of neutralinos and Higgs bosons in the Next-To-Minimal Supersymmetric Standard Model (NMSSM), which does not yet exist in the literature. The Feynman rules are derived from the full expression for the Lagrangian and the mass matrices of the neutralinos and Higgs bosons in the NMSSM. Some crucial differences between the vertex functions of the NMSSM and the Minimal Supersymmetric Standard Model (MSSM) are discussed.

  4. Mass bounds for the neutral Higgs bosons in the Next-To-Minimal Supersymmetric Standard Model

    NASA Astrophysics Data System (ADS)

    Franke, F.; Fraas, H.

    1995-02-01

    In the Next-To-Minimal Supersymmetric Standard Model (NMSSM), the Higgs and neutralino/chargino sectors are strongly correlated by four common parameters at tree level. Therefore we analyze the experimental data from both the search for Higgs bosons as well as for neutralinos and charginos at LEP 100 in order to constrain the parameter space and the masses of the neutral Higgs particles in the NMSSM. We find that small singlet vacuum expectation values are ruled out, but a massless neutral Higgs scalar and pseudoscalar is not excluded for most of the parameter space of the NMSSM. Improved limits from the neutralino/chargino search at LEP 200, however, may lead to nonvanishing lower Higgs mass bounds.

  5. Supersymmetric Higgs Bosons and Beyond

    SciTech Connect

    Carena, Marcela; Kong, Kyoungchul; Ponton, Eduardo; Zurita, Jose; /Fermilab /Buenos Aires U.

    2010-08-26

    We consider supersymmetric models that include particles beyond the Minimal Supersymmetric Standard Model (MSSM) with masses in the TeV range, and that couple significantly to the MSSM Higgs sector. We perform a model-independent analysis of the spectrum and couplings of the MSSM Higgs fields, based on an effective theory of the MSSM degrees of freedom. The tree-level mass of the lightest CP-even state can easily be above the LEP bound of 114 GeV, thus allowing for a relatively light spectrum of superpartners, restricted only by direct searches. The Higgs spectrum and couplings can be significantly modified compared to the MSSM ones, often allowing for interesting new decay modes. We also observe that the gluon fusion production cross section of the SM-like Higgs can be enhanced with respect to both the Standard Model and the MSSM.

  6. High-Precision Predictions for the Light CP-Even Higgs Boson Mass of the Minimal Supersymmetric Standard Model

    NASA Astrophysics Data System (ADS)

    Hahn, T.; Heinemeyer, S.; Hollik, W.; Rzehak, H.; Weiglein, G.

    2014-04-01

    For the interpretation of the signal discovered in the Higgs searches at the LHC it will be crucial in particular to discriminate between the minimal Higgs sector realized in the standard model (SM) and its most commonly studied extension, the minimal supersymmetric standard model (MSSM). The measured mass value, having already reached the level of a precision observable with an experimental accuracy of about 500 MeV, plays an important role in this context. In the MSSM the mass of the light CP-even Higgs boson, Mh, can directly be predicted from the other parameters of the model. The accuracy of this prediction should at least match the one of the experimental result. The relatively high mass value of about 126 GeV has led to many investigations where the scalar top quarks are in the multi-TeV range. We improve the prediction for Mh in the MSSM by combining the existing fixed-order result, comprising the full one-loop and leading and subleading two-loop corrections, with a resummation of the leading and subleading logarithmic contributions from the scalar top sector to all orders. In this way for the first time a high-precision prediction for the mass of the light CP-even Higgs boson in the MSSM is possible all the way up to the multi-TeV region of the relevant supersymmetric particles. The results are included in the code FeynHiggs.

  7. Higgs Physics in Supersymmetric Models

    NASA Astrophysics Data System (ADS)

    Jaiswal, Prerit

    Standard Model (SM) successfully describes the particle spectrum in nature and the interaction between these particles using gauge symmetries. However, in order to give masses to these particles, the electroweak gauge symmetry must be broken. In the SM, this is achieved through the Higgs mechanism where a scalar Higgs field acquires a vacuum expectation value. It is well known that the presence of a scalar field in the SM leads to a hierarchy problem, and therefore the SM by itself can not be the fundamental theory of nature. A well-motivated extension of the SM which addresses this problem is the Minimal Supersymmetric Standard Model (MSSM). The Higgs sector in the MSSM has a rich phenomenology and its predictions can be tested at colliders. In this thesis, I will describe three examples in supersymmetric models where the Higgs phenomenology is significantly different from that in SM. The first example is the MSSM with large tan β where the Higgs coupling to the bottom quarks receives large radiative supersymmetric QCD corrections. As a consequence, bg bh can be a dominant Higgs production mode in certain parameter spaces of the MSSM. A second example is an extension of the MSSM wherein a fourth generation of chiral fermions and their super-partners are added. I will show that the Higgs boson in such models can be as heavy as ˜ 500 GeV. Finally, as a third example, the MSSM with one of the stops lighter than the top quark is considered. Such a scenario is required to generate sufficient baryon asymmetry in the universe through the process of electroweak baryogenesis. By using the correlations between the Higgs production and decay rates, it will be shown that the electroweak baryogenesis in the MSSM is highly constrained.

  8. High-precision predictions for the light CP-even Higgs boson mass of the minimal supersymmetric standard model.

    PubMed

    Hahn, T; Heinemeyer, S; Hollik, W; Rzehak, H; Weiglein, G

    2014-04-11

    For the interpretation of the signal discovered in the Higgs searches at the LHC it will be crucial in particular to discriminate between the minimal Higgs sector realized in the standard model (SM) and its most commonly studied extension, the minimal supersymmetric standard model (MSSM). The measured mass value, having already reached the level of a precision observable with an experimental accuracy of about 500 MeV, plays an important role in this context. In the MSSM the mass of the light CP-even Higgs boson, Mh, can directly be predicted from the other parameters of the model. The accuracy of this prediction should at least match the one of the experimental result. The relatively high mass value of about 126 GeV has led to many investigations where the scalar top quarks are in the multi-TeV range. We improve the prediction for Mh in the MSSM by combining the existing fixed-order result, comprising the full one-loop and leading and subleading two-loop corrections, with a resummation of the leading and subleading logarithmic contributions from the scalar top sector to all orders. In this way for the first time a high-precision prediction for the mass of the light CP-even Higgs boson in the MSSM is possible all the way up to the multi-TeV region of the relevant supersymmetric particles. The results are included in the code FEYNHIGGS. PMID:24765944

  9. Measuring the trilinear neutral Higgs boson couplings in the minimal supersymmetric standard model at e+e‑ colliders in the light of the discovery of a Higgs boson

    NASA Astrophysics Data System (ADS)

    Khosa, Charanjit K.; Pandita, P. N.

    2016-06-01

    We consider the measurement of the trilinear couplings of the neutral Higgs bosons in the minimal supersymmetric standard model (MSSM) at a high energy e+e‑ linear collider in the light of the discovery of a Higgs boson at the CERN Large Hadron Collider (LHC). We identify the state observed at the LHC with the lightest Higgs boson (h0) of the MSSM, and impose the constraints following from this identification, as well as other experimental constraints on the MSSM parameter space. In order to measure trilinear neutral Higgs couplings, we consider different processes where the heavier Higgs boson (H0) of the MSSM is produced in electron-positron collisions, which subsequently decays into a pair of lighter Higgs boson. We identify the regions of the MSSM parameter space where it may be possible to measure the trilinear couplings of the Higgs boson at a future electron-positron collider. A measurement of the trilinear Higgs couplings is a crucial step in the construction of the Higgs potential, and hence in establishing the phenomena of spontaneous symmetry breaking in gauge theories.

  10. Higgs bosons in a minimal R-parity conserving left-right supersymmetric model

    SciTech Connect

    Frank, Mariana; Korutlu, Beste

    2011-04-01

    We revisit the Higgs sector of the left-right supersymmetric model. We study the scalar potential in a version of the model in which the minimum is the charge-conserving vacuum state, without R-parity violation or additional nonrenormalizable terms in the Lagrangian. We analyze the dependence of the potential and of the Higgs mass spectrum on the various parameters of the model, pinpointing the most sensitive ones. We also show that the model can predict light neutral flavor-conserving Higgs bosons, while the flavor-violating ones are heavy and within the limits from K{sup 0}-K{sup 0}, D{sup 0}-D{sup 0}, and B{sub d,s}{sup 0}-B{sub d,s}{sup 0} mixings. We study variants of the model in which at least one doubly charged Higgs boson is light and show that the parameter space for such Higgs masses and mixings is very restrictive, thus making the model more predictive.

  11. Dark matter direct detection constraints on the minimal supersymmetric standard model and implications for LHC Higgs boson searches

    SciTech Connect

    Cao, Junjie; Hikasa, Ken-ichi; Wang, Wenyu; Yang, Jin Min; Yu, Li-Xin

    2010-09-01

    Assuming the lightest neutralino solely composes the cosmic dark matter, we examine the constraints of the CDMS-II and XENON100 dark matter direct searches on the parameter space of the minimal supersymmetric standard model (MSSM) Higgs sector. We find that the current CDMS-II/XENON100 limits can exclude some of the parameter space which survive the constraints from the dark matter relic density and various collider experiments. We also find that in the currently allowed parameter space, the charged Higgs boson is hardly accessible at the LHC for an integrated luminosity of 30 fb{sup -1}, while the neutral non-SM (standard model) Higgs bosons (H,A) may be accessible in some allowed region characterized by a large {mu}. The future XENON100 (6000 kg-days exposure) will significantly tighten the parameter space in case of nonobservation of dark matter.

  12. The Supersymmetric Fat Higgs

    SciTech Connect

    Harnik, Roni

    2004-10-27

    Supersymmetric models have traditionally been assumed to be perturbative up to high scales due to the requirement of calculable unification. In this note I review the recently proposed `Fat Higgs' model which relaxes the requirement of perturbativity. In this framework, an NMSSM-like trilinear coupling becomes strong at some intermediate scale. The NMSSM Higgses are meson composites of an asymptotically-free gauge theory. This allows us to raise the mass of the Higgs, thus alleviating the MSSM of its fine tuning problem. Despite the strong coupling at an intermediate scale, the UV completion allows us to maintain gauge coupling unification.

  13. Will at least one of the Higgs bosons of the next-to-minimal supersymmetric extension of the standard model be observable at LEP2 or the LHC?

    SciTech Connect

    Gunion, John F.; Haber, Howard E.; Moroi, Takeo

    1996-06-24

    We demonstrate that there are regions of parameter space in the next-to-minimal (i.e. two-Higgs-doublet, one-Higgs-singlet superfield) supersymmetric extension of the SM for which none of the Higgs bosons are observable either at LEP2 with $\\sqrt{s}=192 GeV$ and an integrated luminosity of $L=1000inverse pb$ or at the LHC with $L=600 inverse fb$.

  14. Natural supersymmetric minimal dark matter

    NASA Astrophysics Data System (ADS)

    Fabbrichesi, Marco; Urbano, Alfredo

    2016-03-01

    We show how the Higgs boson mass is protected from the potentially large corrections due to the introduction of minimal dark matter if the new physics sector is made supersymmetric. The fermionic dark matter candidate (a 5-plet of S U (2 )L) is accompanied by a scalar state. The weak gauge sector is made supersymmetric, and the Higgs boson is embedded in a supersymmetric multiplet. The remaining standard model states are nonsupersymmetric. Nonvanishing corrections to the Higgs boson mass only appear at three-loop level, and the model is natural for dark matter masses up to 15 TeV—a value larger than the one required by the cosmological relic density. The construction presented stands as an example of a general approach to naturalness that solves the little hierarchy problem which arises when new physics is added beyond the standard model at an energy scale around 10 TeV.

  15. Non-standard charged Higgs decay at the LHC in Next-to-Minimal Supersymmetric Standard Model

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Priyotosh; Huitu, Katri; Niyogi, Saurabh

    2016-07-01

    We consider next-to-minimal supersymmetric standard model (NMSSM) which has a gauge singlet superfield. In the scale invariant superpotential we do not have the mass terms and the whole Lagrangian has an additional Z 3 symmetry. This model can have light scalar and/or pseudoscalar allowed by the recent data from LHC and the old data from LEP. We investigate the situation where a relatively light charged Higgs can decay to such a singlet-like pseudoscalar and a W ± boson giving rise to a final state containing τ and/or b-jets and lepton(s). Such decays evade the recent bounds on charged Higgs from the LHC, and according to our PYTHIA-FastJet based simulation can be probed with 10 fb-1 at the LHC center of mass energy of 13 and 14 TeV.

  16. Search for Higgs bosons of the minimal supersymmetric standard model in p(p)over-bar collisions at root s=1.96 TeV

    SciTech Connect

    Abazov V. M.; Abbott B.; Acharya B. S.; Adams M.; Adams T.; Alexeev G. D.; Alkhazov G.; Alton A.; Alverson G.; Aoki M.; Askew A.; Asman B.; Atkins S.; Atramentov O.; Augsten K.; Avila C.; BackusMayes J.; Badaud F.; Bagby L.; Baldin B.; Bandurin D. V.; Banerjee S.; Barberis E.; Baringer P.; Barreto J.; Bartlett J. F.; Bassler U.; Bazterra V.; Bean A.; Begalli M.; Belanger-Champagne C.; Bellantoni L.; Beri S. B.; Bernardi G.; Bernhard R.; Bertram I.; Besancon M.; Beuselinck R.; Bezzubov V. A.; Bhat P. C.; Bhatia S.; Bhatnagar V.; Blazey G.; Blessing S.; Bloom K.; Boehnlein A.; Boline D.; Boos E. E.; Borissov G.; Bose T.; Brandt A.; Brandt O.; Brock R.; Brooijmans G.; Bross A.; Brown D.; Brown J.; Bu X. B.; Buehler M.; Buescher V.; Bunichev V.; Burdin S.; Burnett T. H.; Buszello C. P.; Calpas B.; Camacho-Perez E.; Carrasco-Lizarraga M. A.; Casey B. C. K.; Castilla-Valdez H.; Chakrabarti S.; Chakraborty D.; Chan K. M.; Chandra A.; Chapon E.; Chen G.; Chevalier-Thery S.; Cho D. K.; Cho S. W.; Choi S.; Choudhary B.; Cihangir S.; Claes D.; Clutter J.; Cooke M.; Cooper W. E.; Corcoran M.; Couderc F.; Cousinou M. -C.; Croc A.; Cutts D.; Das A.; Davies G.; de Jong S. J.; De La Cruz-Burelo E.; Deliot F.; Demina R.; Denisov D.; Denisov S. P.; Desai S.; Deterre C.; DeVaughan K.; Diehl H. T.; Diesburg M.; Ding P. F.; Dominguez A.; Dorland T.; Dubey A.; Dudko L. V.; Duggan D.; Duperrin A.; Dutt S.; Dyshkant A.; Eads M.; Edmunds D.; Ellison J.; Elvira V. D.; Enari Y.; Evans H.; Evdokimov A.; Evdokimov V. N.; Facini G.; Ferbel T.; Fiedler F.; Filthaut F.; Fisher W.; Fisk H. E.; Fortner M.; Fox H.; Fuess S.; Garcia-Bellido A.; Garcia-Guerra G. A.; Gavrilov V.; Gay P.; Geng W.; Gerbaudo D.; Gerber C. E.; Gershtein Y.; Ginther G.; Golovanov G.; Goussiou A.; Grannis P. D.; Greder S.; Greenlee H.; Greenwood Z. D.; Gregores E. M.; Grenier G.; Gris Ph.; Grivaz J. -F.; Grohsjean A.; Gruenendahl S.; Gruenewald M. W.; Guillemin T.; Gutierrez G.; Gutierrez P.; Haas A.; Hagopian S.; Haley J.; Han L.; Harder K.; Harel A.; Hauptman J. M.; Hays J.; Head T.; Hebbeker T.; Hedin D.; Hegab H.; Heinson A. P.; Heintz U.; Hensel C.; Heredia-De La Cruz I.; Herner K.; Hesketh G.; Hildreth M. D.; Hirosky R.; Hoang T.; Hobbs J. D.; Hoeneisen B.; Hohlfeld M.; Hubacek Z.; Hynek V.; Iashvili I.; Ilchenko Y.; Illingworth R.; Ito A. S.; Jabeen S.; Jaffre M.; Jaminn D.; Jayasinghe A.; Jesik R.; Johns K.; Johnson M.; Jonckheere A.; Jonsson P.; Joshi J.; Jung A. W.; Juste A.; Kaadze K.; Kajfasz E.; Karmanov D.; Kasper P. A.; Katsanos I.; Kehoe R.; Kermiche S.; Khalatyan N.; Khanov A.; Kharchilava A.; Kharzheev Y. N.; Kohli J. M.; Kozelov A. V.; Kraus J.; Kulikov S.; Kumar A.; Kupco A.; Kurca T.; Kuzmin V. A.; Lammers S.; Landsberg G.; Lebrun P.; Lee H. S.; Lee S. W.; Lee W. M.; Lellouch J.; Li H.; Li L.; Li Q. Z.; Lietti S. M.; Lim J. K.; Lincoln D.; Linnemann J.; Lipaev V. V.; Lipton R.; Liu Y.; Lobodenko A.; Lokajicek M.; Lopes de Sa R.; Lubatti H. J.; Luna-Garcia R.; Lyon A. L.; Maciel A. K. A.; Mackin D.; Madar R.; Magana-Villalba R.; Malik S.; Malyshev V. L.; Maravin Y.; Martinez-Ortega J.; McCarthy R.; McGivern C. L.; Meijer M. M.; Melnitchouk A.; Menezes D.; Mercadante P. G.; Merkin M.; et al.

    2012-04-20

    We report results from searches for neutral Higgs bosons produced in p{bar p} collisions recorded by the D0 experiment at the Fermilab Tevatron Collider. We study the production of inclusive neutral Higgs boson in the {tau}{tau} final state and in association with a b quark in the b{tau}{tau} and bbb final states. These results are combined to improve the sensitivity to the production of neutral Higgs bosons in the context of the minimal supersymmetric standard model (MSSM). The data are found to be consistent with expectation from background processes. Upper limits on MSSM Higgs boson production are set for Higgs boson masses ranging from 90 to 300 GeV. We exclude tan {beta} > 20-30 for Higgs boson masses below 180 GeV. These are the most stringent constraints on MSSM Higgs boson production in p{bar p} collisions.

  17. Constraints on B and Higgs physics in minimal low energy supersymmetric models

    SciTech Connect

    Carena, Marcela; Menon, A.; Noriega-Papaqui, R.; Szynkman, A.; Wagner, C.E.M.; /Argonne /Chicago U., EFI

    2006-03-01

    We study the implications of minimal flavor violating low energy supersymmetry scenarios for the search of new physics in the B and Higgs sectors at the Tevatron collider and the LHC. We show that the already stringent Tevatron bound on the decay rate B{sub s} {yields} {mu}{sup +}{mu}{sup -} sets strong constraints on the possibility of generating large corrections to the mass difference {Delta} M{sub s} of the B{sub s} eigenstates. We also show that the B{sub s} {yields} {mu}{sup +}{mu}{sup -} bound together with the constraint on the branching ratio of the rare decay b {yields} s{gamma} has strong implications for the search of light, non-standard Higgs bosons at hadron colliders. In doing this, we demonstrate that the former expressions derived for the analysis of the double penguin contributions in the Kaon sector need to be corrected by additional terms for a realistic analysis of these effects. We also study a specific non-minimal flavor violating scenario, where there are flavor changing gluino-squark-quark interactions, governed by the CKM matrix elements, and show that the B and Higgs physics constraints are similar to the ones in the minimal flavor violating case. Finally we show that, in scenarios like electroweak baryogenesis which have light stops and charginos, there may be enhanced effects on the B and K mixing parameters, without any significant effect on the rate of B{sub s} {yields} {mu}{sup +}{mu}{sup -}.

  18. Constrained next-to-minimal supersymmetric standard model with a 126 GeV Higgs boson: A global analysis

    NASA Astrophysics Data System (ADS)

    Kowalska, Kamila; Munir, Shoaib; Roszkowski, Leszek; Sessolo, Enrico Maria; Trojanowski, Sebastian; Tsai, Yue-Lin Sming

    2013-06-01

    We present the first global analysis of the constrained next-to-minimal supersymmetric standard model that investigates the impact of the recent discovery of a 126 GeV Higgs-like boson, of the observation of a signal for branching ratio BR(Bs→μ+μ-), and of constraints on supersymmetry from ˜5/fb of data accumulated at the LHC, as well as of other relevant constraints from colliders, flavor physics and dark matter. We consider three possible cases, assuming in turn that the discovered Higgs boson is (i) the lightest Higgs boson of the model; (ii) the next-to-lightest Higgs boson; and (iii) a combination of both roughly degenerate in mass. The likelihood function for the Higgs signal uses signal rates in the γγ and ZZ→4l channels, while that for the Higgs exclusion limits assumes decay through the γγ, ττ, ZZ and W+W- channels. In all cases considered we identify the 68% and 95% credible posterior probability regions in a Bayesian approach. We find that, when the constraints are applied with their respective uncertainties, the first case shows strong CMSSM-like behavior, with the stau coannihilation region featuring highest posterior probability, the best-fit point, a correct mass of the lightest Higgs boson and the lighter top squark mass in the ballpark of 1 TeV. We also expose in this region a linear relationship between the trilinear couplings of the stau and the top squark, with both of them being strongly negative as enforced by the Higgs mass and the relic density, which outside of the stau coannihilation region show some tension. The second and the third case, on the other hand, while allowed are disfavored by the constraints from direct detection of dark matter and from BR(Bs→μ+μ-). Without the anomalous magnetic moment of the muon the fit improves considerably, especially for negative effective μ parameter. We discuss how the considered scenarios could be tested further at the LHC and in dark matter searches.

  19. B meson dileptonic decays in the next-to-minimal supersymmetric model with a light CP-odd Higgs boson

    SciTech Connect

    Heng Zhaoxia; Oakes, Robert J.; Wang Wenyu; Yang Jinmin; Xiong Zhaohua

    2008-05-01

    In the next-to-minimal supersymmetric model (NMSSM) a light CP-odd Higgs boson is so far allowed by current experiments, which, together with a large tan{beta}, may greatly enhance the rare dileptonic decays B{yields}X{sub s}l{sup +}l{sup -} and B{sub s}{yields}l{sup +}l{sup -}{gamma}. We examine these decays paying special attention to the new operator allowed by the light CP-odd Higgs boson. We find that in the parameter space allowed by current experiments like CERN LEP II and b{yields}s{gamma}, the branching ratios of these rare decays can be greatly enhanced, and thus the existing experimental data on B{yields}X{sub s}{mu}{sup +}{mu}{sup -} can further stringently constrain the parameter space (especially the region with a superlight CP-odd Higgs boson and large tan{beta}). In the surviving parameter space we give the predictions for other dileptonic decay branching ratios and also show the results for the forward-backward asymmetry.

  20. Neutral Supersymmetric Higgs Boson Searches

    SciTech Connect

    Robinson, Stephen Luke

    2008-07-01

    In some Supersymmetric extensions of the Standard Model, including the Minimal Supersymmetric Standard Model (MSSM), the coupling of Higgs bosons to b-quarks is enhanced. This enhancement makes the associated production of the Higgs with b-quarks an interesting search channel for the Higgs and Supersymmetry at D0. The identification of b-quarks, both online and offline, is essential to this search effort. This thesis describes the author's involvement in the development of both types of b-tagging and in the application of these techniques to the MSSM Higgs search. Work was carried out on the Level-3 trigger b-tagging algorithms. The impact parameter (IP) b-tagger was retuned and the effects of increased instantaneous luminosity on the tagger were studied. An extension of the IP-tagger to use the z-tracking information was developed. A new b-tagger using secondary vertices was developed and commissioned. A tool was developed to allow the use of large multi-run samples for trigger studies involving b-quarks. Offline, a neural network (NN) b-tagger was trained combining the existing offline lifetime based b-tagging tools. The efficiency and fake rate of the NN b-tagger were measured in data and MC. This b-tagger was internally reviewed and certified by the Collaboration and now provides the official b-tagging for all analyses using the Run IIa dataset at D0. A search was performed for neutral MSSM Higgs bosons decaying to a b{bar b} pair and produced in association with one or more b-quarks. Limits are set on the cross-section times the branching ratio for such a process. The limits were interpreted in various MSSM scenarios. This analysis uses the NN b-tagger and was the first to use this tool. The analysis also relies on triggers using the Level-3 IP b-tagging tool described previously. A likelihood discriminant was used to improve the analysis and a neural network was developed to cross-check this technique. The result of the analysis has been submitted to PRL and

  1. Higgs boson masses in supersymmetric models

    SciTech Connect

    Berger, M.S.

    1991-04-01

    Imposing supersymmetry on a Higgs potential constrains the parameters that define the potential. In supersymmetric extensions to the stranded model containing only Higgs SU(2){sub L} doublets there exist Higgs boson mass sum rules and bounds on the Higgs masses at tree level. The prescription for renormalizing these sum rules is derived. An explicit calculation is performed in the minimal supersymmetric extension to the standard model (MSSM). In this model at tree level the mass sum rule is M{sub H}{sup 2} + M{sub h}{sup 2} = M{sub A}{sup 2} + M{sub Z}{sup 2}. The results indicate that large corrections to the sum rules may arise from heavy matter fields, e.g. a heavy top quark. Squarks significantly heavier than their fermionic partners contribute large contributions when mixing occurs in the squark sector. These large corrections result from squark-Higgs couplings that become large in this limit. Contributions to individual Higgs boson masses that are quadratic in the squark masses cancel in the sum rule. Thus the naturalness constraint on Higgs boson masses is hidden in the combination of Higgs boson masses that comprise the sum rule. 39 refs., 13 figs.

  2. Search for neutral minimal supersymmetric standard model Higgs bosons decaying to tau pairs in pp collisions at √s=7 TeV.

    PubMed

    Chatrchyan, S; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kiesenhofer, W; Krammer, M; Liko, D; Mikulec, I; Pernicka, M; Rohringer, H; Schöfbeck, R; Strauss, J; Teischinger, F; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Benucci, L; De Wolf, E A; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Blekman, F; Blyweert, S; D'Hondt, J; Devroede, O; Gonzalez Suarez, R; Kalogeropoulos, A; Maes, J; Maes, M; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Gay, A P R; Hammad, G H; Hreus, T; Marage, P E; Thomas, L; Vander Velde, C; Vanlaer, P; Adler, V; Cimmino, A; Costantini, S; Grunewald, M; Klein, B; Lellouch, J; Marinov, A; McCartin, J; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Walsh, S; Zaganidis, N; Basegmez, S; Bruno, G; Caudron, J; Ceard, L; Cortina Gil, E; De Favereau De Jeneret, J; Delaere, C; Favart, D; Giammanco, A; Grégoire, G; Hollar, J; Lemaitre, V; Liao, J; Militaru, O; Ovyn, S; Pagano, D; Pin, A; Piotrzkowski, K; Schul, N; Beliy, N; Caebergs, T; Daubie, E; Alves, G A; Damiao, D De Jesus; Pol, M E; Souza, M H G; Carvalho, W; Da Costa, E M; Martins, C De Oliveira; De Souza, S Fonseca; Mundim, L; Nogima, H; Oguri, V; Da Silva, W L Prado; Santoro, A; Do Amaral, S M Silva; Sznajder, A; De Araujo, F Torres Da Silva; Dias, F A; Tomei, T R Fernandez Perez; Gregores, E M; Lagana, C; Marinho, F; Mercadante, P G; Novaes, S F; Padula, Sandra S; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Tcholakov, V; Trayanov, R; Vankov, I; Dimitrov, A; Hadjiiska, R; Karadzhinova, A; Kozhuharov, V; Litov, L; Mateev, M; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Jiang, C H; Liang, D; Liang, S; Meng, X; Tao, J; Wang, J; Wang, J; Wang, X; Wang, Z; Xiao, H; Xu, M; Zang, J; Zhang, Z; Ban, Y; Guo, S; Guo, Y; Li, W; Mao, Y; Qian, S J; Teng, H; Zhang, L; Zhu, B; Zou, W; Cabrera, A; Moreno, B Gomez; Rios, A A Ocampo; Oliveros, A F Osorio; Sanabria, J C; Godinovic, N; Lelas, D; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Attikis, A; Galanti, M; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Finger, M; Finger, M; Assran, Y; Khalil, S; Mahmoud, M A; Hektor, A; Kadastik, M; Müntel, M; Raidal, M; Rebane, L; Azzolini, V; Eerola, P; Fedi, G; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Sillou, D; Besancon, M; Choudhury, S; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; de Monchenault, G Hamel; Jarry, P; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Shreyber, I; Titov, M; Verrecchia, P; Baffioni, S; Beaudette, F; Benhabib, L; Bianchini, L; Bluj, M; Broutin, C; Busson, P; Charlot, C; Dahms, T; Dobrzynski, L; Elgammal, S; de Cassagnac, R Granier; Haguenauer, M; Miné, P; Mironov, C; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sirois, Y; Thiebaux, C; Wyslouch, B; Zabi, A; Agram, J-L; Andrea, J; Bloch, D; Bodin, D; Brom, J-M; Cardaci, M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Ferro, C; Fontaine, J-C; Gelé, D; Goerlach, U; Greder, S; Juillot, P; Karim, M; Le Bihan, A-C; Mikami, Y; Van Hove, P; Fassi, F; Mercier, D; Baty, C; Beauceron, S; Beaupere, N; Bedjidian, M; Bondu, O; Boudoul, G; Boumediene, D; Brun, H; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Mirabito, L; Perries, S; Sordini, V; Tosi, S; Tschudi, Y; Verdier, P; Lomidze, D; Anagnostou, G; Edelhoff, M; Feld, L; Heracleous, N; Hindrichs, O; Jussen, R; Klein, K; Merz, J; Mohr, N; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Weber, M; Wittmer, B; Ata, M; Bender, W; Dietz-Laursonn, E; Erdmann, M; Frangenheim, J; Hebbeker, T; Hinzmann, A; Hoepfner, K; Klimkovich, T; Klingebiel, D; Kreuzer, P; Lanske, D; Magass, C; Merschmeyer, M; Meyer, A; Papacz, P; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Steggemann, J; Teyssier, D; Tonutti, M; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Ahmad, W Haj; Heydhausen, D; Kress, T; Kuessel, Y; Linn, A; Nowack, A; Perchalla, L; Pooth, O; Rennefeld, J; Sauerland, P; Stahl, A; Thomas, M; Tornier, D; Zoeller, M H

    2011-06-10

    A search for neutral minimal supersymmetric standard model (MSSM) Higgs bosons in pp collisions at the LHC at a center-of-mass energy of 7 TeV is presented. The results are based on a data sample corresponding to an integrated luminosity of 36  pb(-1) recorded by the CMS experiment. The search uses decays of the Higgs bosons to tau pairs. No excess is observed in the tau-pair invariant-mass spectrum. The resulting upper limits on the Higgs boson production cross section times branching fraction to tau pairs, as a function of the pseudoscalar Higgs boson mass, yield stringent new bounds in the MSSM parameter space. PMID:21770497

  3. Supersymmetric Higgs singlet effects on FCNC observables

    SciTech Connect

    Hodgkinson, Robert N.

    2008-11-23

    Higgs singlet superflelds, usually present in extensions of the Minimal Supersymmetric Standard Model (MSSM) which address the {mu}-problem, such as the Next-to-Minimal Supersymmetric Standard Model (NMSSM) and the Minimal Nonminimal Supersymmetric Standard Model (mnSSM), can have significant contributions to B-meson flavour-changing neutral current observables for large values of tan{beta} > or approx. 50. Illustrative results are presented including effects on the B{sub s} and on the rare decay B{sub s}{yields}{mu}{sup +}{mu}{sup -}. In particular, we find that in the NMSSM, the branching ratio for B{sub s}{yields}{mu}{sup +}{mu}{sup -} can be enhanced or even suppressed with respect to the Standard Model prediction by more than one order of magnitude.

  4. Challenging the minimal supersymmetric SU(5) model

    SciTech Connect

    Bajc, Borut; Lavignac, Stéphane; Mede, Timon

    2014-06-24

    We review the main constraints on the parameter space of the minimal renormalizable supersymmetric SU(5) grand unified theory. They consist of the Higgs mass, proton decay, electroweak symmetry breaking and fermion masses. Superpartner masses are constrained both from below and from above, giving hope for confirming or definitely ruling out the theory in the future. This contribution is based on Ref. [1].

  5. Invisible Decays of Supersymmetric Higgs Bosons

    SciTech Connect

    Aparicio Mendez, M. del R; Guevara, J. E. Barradas; Beltran, O. Felix

    2009-04-20

    We study the detection of the complete spectrum of Higgs bosons of the minimal supersymmetric standard model, through their decays into chargino ({chi}-tilde{sub i}{sup {+-}}) and neutralinos ({chi}-tilde{sub i}{sup o}), for several parametric scenarios. In the minimal supersymmetric model there are two charginos and four neutralinos, and the Higgs boson spectrum contains three neutral scalars, two CP-even (h{sup 0} and H{sup 0} with m{sub H{sup 0}}>m{sub h{sup 0}}) and one CP-odd (A{sup 0}, with m{sub A{sup 0}} as a free parameter); as well as a charged pair (H{sup {+-}}). An interesting signal comes from the decays of the Higgs bosons into invisible SUSY modes (h{sup 0}, H{sup 0},A{sup 0}{yields}{chi}-tilde{sub 1}{sup o}{chi}-tilde{sub 1}{sup o}), which could be detected at present and future high energy machines.

  6. Production of supersymmetric Higgs bosons at LEP ⊗ LHC

    NASA Astrophysics Data System (ADS)

    Franke, F.; Wöhrmann, T.

    1995-02-01

    Within the Minimal Supersymmetric Standard Model (MSSM), we study the production of the neutral scalar and pseudoscalar as well as the charged Higgs bosons together with fermions or sfermions in deep inelastic ep scattering at s=1.6 TeV. We focus on the parameter space where a Higgs particle is likely to be invisible at LEP2 and LHC. Although we choose gaugino/higgsino mixing scenarios that maximize the corresponding production rates we find only for the production of the scalar Higgs bosons in the non-supersymmetric channels non-negligible cross sections of the order of 10 2 fb.

  7. Supersymmetric Higgs Bosons in Weak Boson Fusion

    SciTech Connect

    Hollik, Wolfgang; Plehn, Tilman; Rauch, Michael; Rzehak, Heidi

    2009-03-06

    We compute the complete supersymmetric next-to-leading-order corrections to the production of a light Higgs boson in weak-boson fusion. The size of the electroweak corrections is of similar order as the next-to-leading-order corrections in the standard model. The supersymmetric QCD corrections turn out to be significantly smaller than expected and than their electroweak counterparts. These corrections are an important ingredient to a precision analysis of the (supersymmetric) Higgs sector at the LHC, either as a known correction factor or as a contribution to the theory error.

  8. Search for neutral minimal supersymmetric standard model Higgs bosons decaying to tau pairs produced in association with b quarks in pp collisions at √s = 1.96 TeV.

    PubMed

    Abazov, V M; Abbott, B; Acharya, B S; Adams, M; Adams, T; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Aoki, M; Arov, M; Askew, A; Åsman, B; Atramentov, O; Avila, C; BackusMayes, J; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bazterra, V; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brandt, O; Brock, R; Brooijmans, G; Bross, A; Brown, D; Brown, J; Bu, X B; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Calpas, B; Camacho-Pérez, E; Carrasco-Lizarraga, M A; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chen, G; Chevalier-Théry, S; Cho, D K; Cho, S W; Choi, S; Choudhary, B; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Croc, A; Cutts, D; Das, A; Davies, G; De, K; de Jong, S J; De La Cruz-Burelo, E; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Deterre, C; DeVaughan, K; Diehl, H T; Diesburg, M; Ding, P F; Dominguez, A; Dorland, T; Dubey, A; Dudko, L V; Duggan, D; Duperrin, A; Dutt, S; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Evans, H; Evdokimov, A; Evdokimov, V N; Facini, G; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fuess, S; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geng, W; Gerbaudo, D; Gerber, C E; Gershtein, Y; Ginther, G; Golovanov, G; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guillemin, T; Guo, F; Gutierrez, G; Gutierrez, P; Haas, A; Hagopian, S; Haley, J; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Head, T; Hebbeker, T; Hedin, D; Hegab, H; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hubacek, Z; Huske, N; Hynek, V; Iashvili, I; Ilchenko, Y; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jamin, D; Jayasinghe, A; Jesik, R; Johns, K; Johnson, M; Johnston, D; Jonckheere, A; Jonsson, P; Joshi, J; Jung, A W; Juste, A; Kaadze, K; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Kirby, M H; Kohli, J M; Kozelov, A V; Kraus, J; Kulikov, S; Kumar, A; Kupco, A; Kurča, T; Kuzmin, V A; Kvita, J; Lammers, S; Landsberg, G; Lebrun, P; Lee, H S; Lee, S W; Lee, W M; Lellouch, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Lopes de Sa, R; Lubatti, H J; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Mackin, D; Madar, R; Magaña-Villalba, R; Malik, S; Malyshev, V L; Maravin, Y; Martínez-Ortega, J; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Meyer, A; Meyer, J; Miconi, F; Mondal, N K; Muanza, G S; Mulhearn, M; Nagy, E; Naimuddin, M; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Neustroev, P; Novaes, S F; Nunnemann, T; Obrant, G; Orduna, J; Osman, N; Osta, J; Otero y Garzón, G J; Padilla, M; Pal, A; Parashar, N; Parihar, V; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Penning, B; Perfilov, M; Peters, K; Peters, Y; Petridis, K; Petrillo, G; Pétroff, P; Piegaia, R; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Polozov, P; Popov, A V; Prewitt, M; Price, D; Prokopenko, N; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rangel, M S; Ranjan, K; Ratoff, P N; Razumov, I; Renkel, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Rominsky, M; Ross, A; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Salcido, P; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Santos, A S; Savage, G; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shary, V; Shchukin, A A; Shivpuri, R K; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Smith, K J; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Soustruznik, K; Stark, J; Stolin, V; Stoyanova, D A; Strauss, M; Strom, D; Stutte, L; Suter, L; Svoisky, P; Takahashi, M; Tanasijczuk, A; Taylor, W; Titov, M; Tokmenin, V V; Tsai, Y-T; Tschann-Grimm, K; Tsybychev, D; Tuchming, B; Tully, C; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verdier, P; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vilanova, D; Vokac, P; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, M; Welty-Rieger, L; White, A; Wicke, D; Williams, M R J; Wilson, G W; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Xu, C; Yacoob, S; Yamada, R; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Ye, Z; Yin, H; Yip, K; Youn, S W; Yu, J; Zelitch, S; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L

    2011-09-16

    We report results from a search for neutral Higgs bosons produced in association with b quarks using data recorded by the D0 experiment at the Fermilab Tevatron Collider and corresponding to an integrated luminosity of 7.3 fb(-1). This production mode can be enhanced in several extensions of the standard model (SM) such as in its minimal supersymmetric extension (MSSM) at high tanβ. We search for Higgs bosons decaying to tau pairs with one tau decaying to a muon and neutrinos and the other to hadrons. The data are found to be consistent with SM expectations, and we set upper limits on the cross section times branching ratio in the Higgs boson mass range from 90 to 320 GeV/c(2). We interpret our result in the MSSM parameter space, excluding tanβ values down to 25 for Higgs boson masses below 170 GeV/c(2). PMID:22026764

  9. Minimal Higgs inflation

    NASA Astrophysics Data System (ADS)

    Hamada, Yuta; Kawai, Hikaru; Oda, Kin-ya

    2014-02-01

    We consider a possibility that the Higgs field in the Standard Model (SM) serves as an inflaton when its value is around the Planck scale. We assume that the SM is valid up to an ultraviolet cutoff scale Λ , which is slightly below the Planck scale, and that the Higgs potential becomes almost flat above Λ . Contrary to the ordinary Higgs inflation scenario, we do not assume the huge non-minimal coupling, of O(10^4), of the Higgs field to the Ricci scalar. We find that Λ must be less than 5× 10^{17} {GeV} in order to explain the observed fluctuation of the cosmic microwave background, no matter how we extrapolate the Higgs potential above Λ . The scale 10^{17} {GeV} coincides with the perturbative string scale, which suggests that the SM is directly connected with string theory. For this to be true, the top quark mass is restricted to around 171 GeV, with which Λ can exceed 10^{17} {GeV}. As a concrete example of the potential above Λ , we propose a simple log-type potential. The predictions of this specific model for the e-foldings N_*=50-60 are consistent with the current observation, namely, the scalar spectral index is n_s=0.977hbox {-}0.983 and the tensor to scalar ratio 0

  10. The minimal and the new minimal supersymmetric Grand Unified Theories on noncommutative space-time

    NASA Astrophysics Data System (ADS)

    Martín, C. P.

    2013-08-01

    We construct noncommutative versions of both the minimal and the new minimal supersymmetric Grand Unified Theories (GUTs). The enveloping-algebra formalism is used to carry out such constructions. The beautiful formulation of the Higgs sector of these noncommutative theories is a consequence of the fact that, in the GUTs at hand, the ordinary Higgs fields can be realized as elements of the Clifford algebra {C}{l}_{10}( {C}). In the noncommutative supersymmetric GUTs we formulate, supersymmetry is linearly realized by the noncommutative fields; but it is not realized by the ordinary fields that define those noncommutative fields via the Seiberg-Witten map.

  11. Supersymmetric Higgs boson pair production at hadron colliders

    SciTech Connect

    Belyaev, A.; Drees, M.; Eboli, O.J.; Novaes, S.F.; Belyaev, A.; Mizukoshi, J.K.

    1999-10-01

    We study the pair production of neutral Higgs bosons through gluon fusion at hadron colliders in the framework of the minimal supersymmetric standard model. We present analytical expressions for the relevant amplitudes, including both quark and squark loop contributions, and allowing for mixing between the superpartners of left- and right-handed quarks. Squark loop contributions can increase the cross section for the production of two CP-even Higgs bosons by more than two orders of magnitude, if the relevant trilinear soft breaking parameter is large and the mass of the lighter squark eigenstate is not too far above its current lower bound. In the region of large tan&hthinsp;{beta}, neutral Higgs boson pair production might even be observable in the 4b final state during the next run of the Fermilab Tevatron collider. {copyright} {ital 1999} {ital The American Physical Society}

  12. A review of Higgs mass calculations in supersymmetric models

    NASA Astrophysics Data System (ADS)

    Draper, Patrick; Rzehak, Heidi

    2016-03-01

    The discovery of the Higgs boson is both a milestone achievement for the Standard Model and an exciting probe of new physics beyond the SM. One of the most important properties of the Higgs is its mass, a number that has proven to be highly constraining for models of new physics, particularly those related to the electroweak hierarchy problem. Perhaps the most extensively studied examples are supersymmetric models, which, while capable of producing a 125 GeV Higgs boson with SM-like properties, do so in non-generic parts of their parameter spaces. We review the computation of the Higgs mass in the Minimal Supersymmetric Standard Model, in particular the large radiative corrections required to lift mh to 125 GeV and their calculation via Feynman-diagrammatic and effective field theory techniques. This review is intended as an entry point for readers new to the field, and as a summary of the current status, including the existing analytic calculations and publicly-available computer codes.

  13. Less minimal supersymmetric standard model

    SciTech Connect

    de Gouvea, Andre; Friedland, Alexander; Murayama, Hitoshi

    1998-03-28

    Most of the phenomenological studies of supersymmetry have been carried out using the so-called minimal supergravity scenario, where one assumes a universal scalar mass, gaugino mass, and trilinear coupling at M{sub GUT}. Even though this is a useful simplifying assumption for phenomenological analyses, it is rather too restrictive to accommodate a large variety of phenomenological possibilities. It predicts, among other things, that the lightest supersymmetric particle (LSP) is an almost pure B-ino, and that the {mu}-parameter is larger than the masses of the SU(2){sub L} and U(1){sub Y} gauginos. We extend the minimal supergravity framework by introducing one extra parameter: the Fayet'Iliopoulos D-term for the hypercharge U(1), D{sub Y}. Allowing for this extra parameter, we find a much more diverse phenomenology, where the LSP is {tilde {nu}}{sub {tau}}, {tilde {tau}} or a neutralino with a large higgsino content. We discuss the relevance of the different possibilities to collider signatures. The same type of extension can be done to models with the gauge mediation of supersymmetry breaking. We argue that it is not wise to impose cosmological constraints on the parameter space.

  14. Production and decays of supersymmetric Higgs bosons in spontaneously broken R parity

    SciTech Connect

    Hirsch, M.; Valle, J.W.F.; Villanova del Moral, A.

    2006-03-01

    We study the mass spectra, production, and decay properties of the lightest supersymmetric CP-even and CP-odd Higgs bosons in models with spontaneously broken R parity. We compare the resulting mass spectra with expectations of the minimal supersymmetric standard model (MSSM), stressing that the model obeys the upper bound on the lightest CP-even Higgs boson mass. We discuss how the presence of the additional scalar singlet states affects the Higgs production cross sections, both for the Bjorken process and the ''associated production.'' The main phenomenological novelty with respect to the MSSM comes from the fact that the spontaneous breaking of lepton number leads to the existence of the majoron, denoted J, which opens new decay channels for supersymmetric Higgs bosons. We find that the invisible decays of CP-even Higgses can be dominant, while those of the CP-odd bosons may also be sizable.

  15. A Search for Neutral Supersymmetric Higgs Bosons at DØ

    SciTech Connect

    Osman, Nicolas Ahmed

    2010-09-01

    A search for Higgs bosons in multijet data from the DØ detector is reported in this thesis. The Higgs boson is the only remaining undiscovered particle in the Standard Model of particle physics, and plays an integral role in this model. It is known that this model is not a complete description of fundamental physics (it does not describe gravity, for example), and so searches for physics beyond the Standard Model are an important part of particle physics. One extension of the Standard Model, the Minimal Supersymmetric Standard Model (MSSM), predicts the existence of five Higgs bosons, two of which can show an enhanced coupling to bottom quarks. For this reason, a search in the bbb (multijet) channel is a sensitive test of Higgs boson physics. The analysis described in this thesis was conducted over 6.6 fb-1 of data. At the time of writing, the best limits on tan β (a key parameter of the MSSM) in the multijet channel were set by DØ. The new analysis described in this thesis included more data than the previous analysis in the channel, and made use of a new trigger and event-based analysis method. An improved Multivariate Analysis technique was used to separate signal and background events and produce a final discriminant for the limit setting process. These changes increased the expected sensitivity of this measurement by roughly 50% more than would be expected from the increase in the size of data sample alone.

  16. A minimal little Higgs model

    NASA Astrophysics Data System (ADS)

    Barceló, Roberto; Masip, Manuel

    2008-11-01

    We discuss a little Higgs scenario that introduces below the TeV scale just the two minimal ingredients of these models, a vectorlike T quark and a singlet component (implying anomalous couplings) in the Higgs field, together with a pseudoscalar singlet η. In the model, which is a variation of Schmaltz’s simplest little Higgs model, all the extra vector bosons are much heavier than the T quark. In the Yukawa sector the global symmetry is approximate, implying a single large coupling per flavor, whereas in the scalar sector it is only broken at the loop level. We obtain the one-loop effective potential and show that it provides acceptable masses for the Higgs h and for the singlet η with no need for an extra μ term. We find that mη can be larger than mh/2, which would forbid the (otherwise dominant) decay mode h→ηη.

  17. Heavy-lepton production in the minimal supersymmetric standard model

    SciTech Connect

    Cieza Montalvo, J.E. ); Eboli, O.J.P.; Novaes, S.F. )

    1992-07-01

    We study the production of a charged-heavy-lepton pair considering the minimal supersymmetric standard model. We show that the cross section for the process {ital pp}{r arrow}{ital gg}{r arrow}{ital l}{sup +}{ital l{minus}} is enhanced for large values of the ratio between the two-Higgs-doublet vacuum expectation values, in comparison with the standard model result. The gluon fusion mechansim is the most important contribution to the lepton pair production for {ital M}{sub {ital l}}{gt}50 GeV.

  18. Search for Neutral Minimal Supersymmetric Standard Model Higgs Bosons Decaying to Tau Pairs in pp Collisions at sqrt[s]=7 TeV

    SciTech Connect

    Chatrchyan, Serguei; et al.

    2011-06-01

    A search for neutral MSSM Higgs bosons in pp collisions at the LHC at a center-of-mass energy of 7 TeV is presented. The results are based on a data sample corresponding to an integrated luminosity of 36 inverse picobarns recorded by the CMS experiment. The search uses decays of the Higgs bosons to tau pairs. No excess is observed in the tau-pair invariant-mass spectrum. The resulting upper limits on the Higgs boson production cross section times branching fraction to tau pairs, as a function of the pseudoscalar Higgs boson mass, yield stringent new bounds in the MSSM parameter space.

  19. The minimal composite Higgs model

    NASA Astrophysics Data System (ADS)

    Agashe, Kaustubh; Contino, Roberto; Pomarol, Alex

    2005-07-01

    We study the idea of a composite Higgs in the framework of a five-dimensional AdS theory. We present the minimal model of the Higgs as a pseudo-Goldstone boson in which electroweak symmetry is broken dynamically via top loop effects, all flavour problems are solved, and contributions to electroweak precision observables are below experimental bounds. Since the 5D theory is weakly coupled, we are able to fully determine the Higgs potential and other physical quantities. The lightest resonances are expected to have a mass around 2 TeV and should be discovered at the LHC. The top sector is mostly composite and deviations from Standard Model couplings are expected.

  20. NMSDECAY: A Fortran code for supersymmetric particle decays in the Next-to-Minimal Supersymmetric Standard Model

    NASA Astrophysics Data System (ADS)

    Das, Debottam; Ellwanger, Ulrich; Teixeira, Ana M.

    2012-03-01

    The code NMSDECAY allows to compute widths and branching ratios of sparticle decays in the Next-to-Minimal Supersymmetric Standard Model. It is based on a generalization of SDECAY, to include the extended Higgs and neutralino sectors of the NMSSM. Slepton 3-body decays, possibly relevant in the case of a singlino-like lightest supersymmetric particle, have been added. NMSDECAY will be part of the NMSSMTools package, which computes Higgs, sparticle masses and Higgs decays in the NMSSM. Program summaryProgram title: NMSDECAY Catalogue identifier: AELC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 188 177 No. of bytes in distributed program, including test data, etc.: 1 896 478 Distribution format: tar.gz Programming language: FORTRAN77 Computer: All supporting g77, gfortran, ifort Operating system: All supporting g77, gfortran, ifort Classification: 11.1 External routines: Routines in the NMSSMTools package: At least one of the routines in the directory main (e.g. nmhdecay.f), all routines in the directory sources. (All software is included in the distribution package.) Nature of problem: Calculation of all decay widths and decay branching fractions of all particles in the Next-to-Minimal Supersymmetric Standard Model. Solution method: Suitable generalization of the code SDECAY [1] including the extended Higgs and neutralino sector of the Next-to-Minimal Supersymmetric Standard Model, and slepton 3-body decays. Additional comments: NMSDECAY is interfaced with NMSSMTools, available on the web page http://www.th.u-psud.fr/NMHDECAY/nmssmtools.html. Running time: On an Intel Core i7 with 2.8 GHZ: about 2 seconds per point in parameter space, if all flags flagqcd, flagmulti and flagloop are switched on.

  1. Status of the minimal supersymmetric SO(10)

    SciTech Connect

    Dorsner, Ilja

    2010-02-10

    We discuss status of the minimal supersymmetric SO(10) in both low and split supersymmetry regime. To demonstrate viability of the model we present a good fit of the fermion masses and their mixings. The solution needs a strongly split supersymmetry with gauginos and higgsinos around 10{sup 2} TeV, sfermions close to 10{sup 14} GeV and a GUT scale of around 6x10{sup 15} GeV. It predicts fast proton decay rates, hierarchical neutrino masses and large leptonic mixing angle sin{theta}{sub 13}{approx_equal}0.1.

  2. Higgs boson decays into γ γ and Z γ in the MSSM and the B -L supersymmetric SM

    NASA Astrophysics Data System (ADS)

    Hammad, A.; Khalil, S.; Moretti, S.

    2015-11-01

    We calculate Higgs decay rates into γ γ and Z γ in the minimal supersymmetric Standard Model and (B -L ) supersymmetric Standard Model by allowing for contributions from light staus (τ ˜ s ) and charginos (χ˜ ±s ). We show that sizable departures are possible from the Standard Model predictions for the 125 GeV state and that they are testable during Run 2 at the Large Hadron Collider. Furthermore, we illustrate how a second light scalar Higgs signal in either or both of these decay modes can be accessed at the CERN machine rather promptly within the (B -L ) supersymmetric Standard Model, a possibility instead precluded to the minimal supersymmetric Standard Model, owing to the much larger mass of its heavy scalar state.

  3. Production and decay of neutralinos in the Next-to-Minimal Supersymmetric Standard Model

    NASA Astrophysics Data System (ADS)

    Franke, F.; Fraas, H.

    1996-06-01

    Within the framework of the Next-to-Minimal Supersymmetric Standard Model (NMSSM) we study neutralino productione^ + e^ - to tilde χ _i^0 tilde χ _j^0 (i,j=1, …, 5) at center-of-mass energies between 100 and 600 GeV and the decays of the heavier neutralinos into the LSP plus a fermion pair, a photon or a Higgs boson. For representative gaugino/higgsino mixing scenarios, where the light neutralinos have significant singlet components, we find some striking differences between the NMSSM and the minimal supersymmetric model. Since in the NMSSM neutralino and Higgs sector are strongly correlated, the decay of the second lightest neutralino into a Higgs boson and the LSP often is kinematically possible and even dominant in a large parameter region of typical NMSSM scenarios. Also, the decay rates into final states with a photon may be enhanced.

  4. Higgs boson spectra in supersymmetric left-right models

    NASA Astrophysics Data System (ADS)

    Babu, K. S.; Patra, Ayon

    2016-03-01

    We present a comprehensive analysis of the Higgs boson spectra in several versions of the supersymmetric left-right model based on the gauge symmetry S U (3 )c×S U (2 )L×S U (2 )R×U (1 )B-L. A variety of symmetry breaking sectors are studied, with a focus on the constraints placed on model parameters by the lightest neutral C P even Higgs boson mass Mh. The breaking of S U (2 )R symmetry is achieved by Higgs fields transforming either as triplets or doublets, and the electroweak symmetry breaking is triggered by either bi-doublets or doublets. The Higgs potential is analyzed with or without a gauge singlet Higgs field present. Seesaw models of Type I and Type II, inverse seesaw models, universal seesaw models and an E6 inspired alternate left-right model are included in our analysis. Several of these models lead to the tree-level relation Mh≤√{2 }mW (rather than Mh≤mZ that arises in the MSSM), realized when the S U (2 )R symmetry breaking scale is of order TeV. With such an enhanced upper limit, it becomes possible to accommodate a Higgs boson of mass 126 GeV with relatively light stops that mix negligibly. In models with Higgs triplets, a doubly charged scalar remains light below a TeV with its mass arising entirely from radiative corrections. We carry out the complete one-loop calculation for its mass induced by the Majorana Yukawa couplings and show the consistency of the framework. We argue that these models prefer a low S U (2 )R breaking scale. Other theoretical and phenomenological implications of these models are briefly discussed.

  5. Two-photon decay of the Higgs bosons in a supersymmetric model with a C P -violating potential

    NASA Astrophysics Data System (ADS)

    Oshimo, Noriyuki

    2016-05-01

    In the supersymmetric standard model which is not minimal, the Higgs potential does not conserve C P symmetry generally. Assuming that there exists an SU(2)-triplet Higgs field, we discuss resultant C P -violating effects on the Higgs bosons. The experimentally observed Higgs boson, which should be C P even in the standard model, could decay into two photons of C P -odd polarization state non-negligibly. For the second lightest Higgs boson, in a sizable region of parameter space, the dominant decay modes are different from those expected by the standard model. The two-photon decay could yield both even and odd C P final states at a ratio of the order of unity.

  6. The HIGGS Boson Mass at 2 Loops in the Finely Tuned Split Supersymmetric Standard Model

    SciTech Connect

    Binger, M

    2004-09-08

    The mass of the Higgs boson in the finely tuned Split Supersymmetric Standard Model is calculated. All 1 loop threshold effects are included, in addition to the full RG running of the Higgs quartic coupling through 2 loops. The 2 loop corrections are very small, typically less than 1GeV. The 1 loop threshold corrections to the top yukawa coupling and the Higgs mass generally push the Higgs mass down a few GeV.

  7. Probing the non-minimal Higgs sector at the SSC

    SciTech Connect

    Gunion, J.F.; Haber, H.E.; Komamiya, S.; Yamamoto, H.; Barbaro-Galtieri, A.

    1987-11-01

    Non-minimal Higgs sectors occur in the Standard Model with more than one Higgs doublet, as well as in theories that go beyond the Standard Model. In this report, we discuss how Higgs search strategies must be altered, with respect to the Standard Model approaches, in order to probe the non-minimal Higgs sectors at the SSC.

  8. Search for neutral supersymmetric Higgs Bosons in multijet events at sqrt[s]=1.96 TeV.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Agelou, M; Agram, J-L; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Andeen, T; Anderson, S; Andrieu, B; Arnoud, Y; Askew, A; Asman, B; Assis Jesus, A C S; Atramentov, O; Autermann, C; Avila, C; Badaud, F; Baden, A; Baldin, B; Balm, P W; Banerjee, S; Barberis, E; Bargassa, P; Baringer, P; Barnes, C; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Bean, A; Beauceron, S; Begel, M; Bellavance, A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Binder, M; Biscarat, C; Black, K M; Blackler, I; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Blumenschein, U; Boehnlein, A; Boeriu, O; Bolton, T A; Borcherding, F; Borissov, G; Bos, K; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Burdin, S; Burnett, T H; Busato, E; Buszello, C P; Butler, J M; Cammin, J; Caron, S; Carvalho, W; Casey, B C K; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chapin, D; Charles, F; Cheu, E; Cho, D K; Choi, S; Choudhary, B; Christiansen, T; Christofek, L; Claes, D; Clément, B; Clément, C; Coadou, Y; Cooke, M; Cooper, W E; Coppage, D; Corcoran, M; Cothenet, A; Cousinou, M-C; Cox, B; Crépé-Renaudin, S; Cutts, D; da Motta, H; Davies, B; Davies, G; Davis, G A; De, K; de Jong, P; de Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Dean, S; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Demine, P; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doidge, M; Dong, H; Doulas, S; Dudko, L V; Duflot, L; Dugad, S R; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Edwards, T; Ellison, J; Elmsheuser, J; Elvira, V D; Eno, S; Ermolov, P; Eroshin, O V; Estrada, J; Evans, H; Evdokimov, A; Evdokimov, V N; Fast, J; Fatakia, S N; Feligioni, L; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fleck, I; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; Garcia, C; Garcia-Bellido, A; Gardner, J; Gavrilov, V; Gay, P; Gelé, D; Gelhaus, R; Genser, K; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Golling, T; Gollub, N; Gómez, B; Gounder, K; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Gris, Ph; Grivaz, J-F; Groer, L; Grünendahl, S; Grünewald, M W; Gurzhiev, S N; Gutierrez, G; Gutierrez, P; Haas, A; Hadley, N J; Hagopian, S; Hall, I; Hall, R E; Han, C; Han, L; Hanagaki, K; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hong, S J; Hooper, R; Houben, P; Hu, Y; Huang, J; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jain, V; Jakobs, K; Jenkins, A; Jesik, R; Johns, K; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Käfer, D; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J; Karmanov, D; Kasper, J; Kau, D; Kaur, R; Kehoe, R; Kermiche, S; Kesisoglou, S; Khanov, A; Kharchilava, A; Kharzheev, Y M; Kim, H; Kim, T J; Klima, B; Kohli, J M; Kopal, M; Korablev, V M; Kotcher, J; Kothari, B; Koubarovsky, A; Kozelov, A V; Kozminski, J; Kryemadhi, A; Krzywdzinski, S; Kulik, Y; Kumar, A; Kunori, S; Kupco, A; Kurca, T; Kvita, J; Lager, S; Lahrichi, N; Landsberg, G; Lazoflores, J; Le Bihan, A-C; Lebrun, P; Lee, W M; Leflat, A; Lehner, F; Leonidopoulos, C; Leveque, J; Lewis, P; Li, J; Li, Q Z; Lima, J G R; Lincoln, D; Linn, S L; Linnemann, J; Lipaev, V V; Lipton, R; Lobo, L; Lobodenko, A; Lokajicek, M; Lounis, A; Love, P; Lubatti, H J; Lueking, L; Lynker, M; Lyon, A L; Maciel, A K A; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Magnan, A-M; Makovec, N; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martens, M; Mattingly, S E K; Mayorov, A A; McCarthy, R; McCroskey, R; Meder, D; Melnitchouk, A; Mendes, A; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Michaut, M; Miettinen, H; Mitrevski, J; Molina, J; Mondal, N K; Moore, R W; Muanza, G S; Mulders, M; Mutaf, Y D; Nagy, E; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Nelson, S; Neustroev, P; Noeding, C; Nomerotski, A; Novaes, S F; Nunnemann, T; Nurse, E; O'dell, V; O'neil, D C; Oguri, V; Oliveira, N; Oshima, N; Otero Y Garzón, G J; Padley, P; Parashar, N; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Perea, P M; Perez, E; Pétroff, P; Petteni, M; Piegaia, R; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pompos, A; Pope, B G; Prado da Silva, W L; Prosper, H B; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rani, K J; Ranjan, K; Rapidis, P A; Ratoff, P N; Reucroft, S; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Royon, C; Rubinov, P; Ruchti, R; Rud, V I; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Schellman, H; Schieferdecker, P; Schmitt, C; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sengupta, S; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shephard, W D; Shivpuri, R K; Shpakov, D; Sidwell, R A; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smith, R P; Smolek, K; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Song, X; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Souza, M; Spurlock, B; Stanton, N R; Stark, J; Steele, J; Stevenson, K; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strang, M A; Strauss, M; Ströhmer, R; Strom, D; Strovink, M; Stutte, L; Sumowidagdo, S; Sznajder, A; Talby, M; Tamburello, P; Taylor, W; Telford, P; Temple, J; Tomoto, M; Toole, T; Torborg, J; Towers, S; Trefzger, T; Trincaz-Duvoid, S; Tuchming, B; Tully, C; Turcot, A S; Tuts, P M; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vartapetian, A; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Seguier, F; Vlimant, J-R; Von Toerne, E; Vreeswijk, M; Vu Anh, T; Wahl, H D; Wang, L; Warchol, J; Watts, G; Wayne, M; Weber, M; Weerts, H; Wegner, M; Wermes, N; White, A; White, V; Wicke, D; Wijngaarden, D A; Wilson, G W; Wimpenny, S J; Wittlin, J; Wobisch, M; Womersley, J; Wood, D R; Wyatt, T R; Xu, Q; Xuan, N; Yacoob, S; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yen, Y; Yip, K; Yoo, H D; Youn, S W; Yu, J; Yurkewicz, A; Zabi, A; Zatserklyaniy, A; Zdrazil, M; Zeitnitz, C; Zhang, D; Zhang, X; Zhao, T; Zhao, Z; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zitoun, R; Zutshi, V; Zverev, E G

    2005-10-01

    We have performed a search for neutral Higgs bosons produced in association with bottom quarks in pp collisions, using 260 pb-1 of data collected with the D0 detector in Run II of the Fermilab Tevatron Collider. The cross sections for these processes are enhanced in many extensions of the standard model (SM), such as in its minimal supersymmetric extension at large tanbeta. The results of our analysis agree with expectations from the SM, and we use our measurements to set upper limits on the production of neutral Higgs bosons in the mass range of 90 to 150 GeV. PMID:16241714

  9. Search for neutral supersymmetric Higgs bosons in multijet events at s**(1/2) = 1.96-TeV

    SciTech Connect

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G.A.; Anastasoaie, M.; Andeen, T.; Anderson, S.; Andrieu, B.; Arnoud, Y.; Askew, A.; /Buenos Aires U. /Rio de Janeiro, CBPF /Rio de Janeiro State U. /Sao Paulo, IFT /Alberta U. /Simon Fraser U. /York U., Canada /McGill U. /Beijing, Inst. High Energy Phys. /Hefei, CUST /Andes U., Bogota /Charles U. /Prague, Tech. U. /Prague, Inst. Phys. /San Francisco de Quito U. /Clermont-Ferrand U. /LPSC, Grenoble /Marseille, CPPM /Orsay, LAL /Paris U., VI-VII /DAPNIA, Saclay

    2005-04-01

    We have performed a search for neutral Higgs bosons produced in association with bottom quarks in p{bar p} collisions, using 260 pb{sup -1} of data collected with the D0 detector in Run II of the Fermilab Tevatron Collider. The cross sections for these processes are enhanced in many extensions of the standard model (SM), such as in its minimal supersymmetric extension at large tan {beta}. The results of our analysis agree with expectations from the SM, and we use our measurements to set upper limits on the production of neutral Higgs bosons in the mass range of 90 to 150 GeV.

  10. Indirect detection of light neutralino dark matter in the next-to-minimal supersymmetric standard model

    SciTech Connect

    Ferrer, Francesc; Krauss, Lawrence M.; Profumo, Stefano

    2006-12-01

    We explore the prospects for indirect detection of neutralino dark matter in supersymmetric models with an extended Higgs sector (next-to-minimal supersymmetric standard model, or NMSSM). We compute, for the first time, one-loop amplitudes for NMSSM neutralino pair annihilation into two photons and two gluons, and point out that extra diagrams (with respect to the minimal supersymmetric standard model, or MSSM), featuring a potentially light CP-odd Higgs boson exchange, can strongly enhance these radiative modes. Expected signals in neutrino telescopes due to the annihilation of relic neutralinos in the Sun and in the Earth are evaluated, as well as the prospects of detection of a neutralino annihilation signal in space-based gamma-ray, antiproton and positron search experiments, and at low-energy antideuteron searches. We find that in the low mass regime the signals from capture in the Earth are enhanced compared to the MSSM, and that NMSSM neutralinos have a remote possibility of affecting solar dynamics. Also, antimatter experiments are an excellent probe of galactic NMSSM dark matter. We also find enhanced two-photon decay modes that make the possibility of the detection of a monochromatic gamma-ray line within the NMSSM more promising than in the MSSM, although likely below the sensitivity of next generation gamma-ray telescopes.

  11. The Higgs mass and natural supersymmetric spectrum from the landscape

    NASA Astrophysics Data System (ADS)

    Baer, Howard; Barger, Vernon; Savoy, Michael; Serce, Hasan

    2016-07-01

    In supersymmetric models where the superpotential μ term is generated with μ ≪msoft (e.g. from radiative Peccei-Quinn symmetry breaking or compactified string models with sequestration and stabilized moduli), and where the string landscape 1. favors soft supersymmetry (SUSY) breaking terms as large as possible and 2. where the anthropic condition that electroweak symmetry is properly broken with a weak scale m W , Z , h ∼ 100 GeV (i.e. not too weak of weak interactions), then these combined landscape/anthropic requirements act as an attractor pulling the soft SUSY breaking terms towards values required by models with radiatively-driven naturalness: near the line of criticality where electroweak symmetry is barely broken and the Higgs mass is ∼ 125 GeV. The pull on the soft terms serves to ameliorate the SUSY flavor and CP problems. The resulting sparticle mass spectrum may barely be accessible at high-luminosity LHC while the required light higgsinos should be visible at a linear e+e- collider with √{ s} > 2 m (higgsino).

  12. Higher order corrections and unification in the minimal supersymmetric standard model: SOFTSUSY3.5

    NASA Astrophysics Data System (ADS)

    Allanach, B. C.; Bednyakov, A.; Ruiz de Austri, R.

    2015-04-01

    We explore the effects of three-loop minimal supersymmetric standard model renormalisation group equation terms and some leading two-loop threshold corrections on gauge and Yukawa unification: each being one loop higher order than current public spectrum calculators. We also explore the effect of the higher order terms (often 2-3 GeV) on the lightest CP even Higgs mass prediction. We illustrate our results in the constrained minimal supersymmetric standard model. Neglecting threshold corrections at the grand unified scale, the discrepancy between the unification scale αs and the other two unified gauge couplings changes by 0.1% due to the higher order corrections and the difference between unification scale bottom-tau Yukawa couplings neglecting unification scale threshold corrections changes by up to 1%. The difference between unification scale bottom and top Yukawa couplings changes by a few percent. Differences due to the higher order corrections also give an estimate of the size of theoretical uncertainties in the minimal supersymmetric standard model spectrum. We use these to provide estimates of theoretical uncertainties in predictions of the dark matter relic density (which can be of order one due to its strong dependence on sparticle masses) and the LHC sparticle production cross-section (often around 30%). The additional higher order corrections have been incorporated into SOFTSUSY, and we provide details on how to compile and use the program. We also provide a summary of the approximations used in the higher order corrections.

  13. The minimal curvaton-higgs model

    SciTech Connect

    Enqvist, Kari; Lerner, Rose N.; Takahashi, Tomo E-mail: rose.lerner@desy.de

    2014-01-01

    We present the first full study of the minimal curvaton-higgs (MCH) model, which is a minimal interpretation of the curvaton scenario with one real scalar coupled to the standard model Higgs boson. The standard model coupling allows the dynamics of the model to be determined in detail, including effects from the thermal background and from radiative corrections to the potential. The relevant mechanisms for curvaton decay are incomplete non-perturbative decay (delayed by thermal blocking), followed by decay via a dimension-5 non-renormalisable operator. To avoid spoiling the predictions of big bang nucleosynthesis, we find the ''bare'' curvaton mass to be m{sub σ} ≥ 8 × 10{sup 4}GeV. To match observational data from Planck there is an upper limit on the curvaton-higgs coupling g, between 10{sup −3} and 10{sup −2}, depending on the mass. This is due to interactions with the thermal background. We find that typically non-Gaussianities are small but that if f{sub NL} is observed in the near future then m{sub σ}∼<5 × 10{sup 9}GeV, depending on Hubble scale during inflation. In a thermal dark matter model, the lower bound on m{sub σ} can increase substantially. The parameter space may also be affected once the baryogenesis mechanism is specified.

  14. Probing the hidden Higgs bosons of the Y = 0 triplet- and singlet-extended Supersymmetric Standard Model at the LHC

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Priyotosh; Corianò, Claudio; Costantini, Antonio

    2015-12-01

    We investigate the scalar sector in an extension of the Minimal Supersymmetric Standard Model (MSSM) containing a SU(2) Higgs triplet of zero hypercharge and a gauge singlet beside the SU(2) scalar doublets. In particular, we focus on a scenario of this model which allows a light pseudoscalar and/or a scalar below 100 GeV, consistent with the most recent data from the LHC and the earlier data from the LEP experiments. We analyze the exotic decay of the discovered Higgs ( h 125) into two light (hidden) Higgs bosons present in the extension. The latter are allowed by the uncertainties in the Higgs decay h 125 → WW ∗, h 125 → ZZ ∗ and h 125 → γγ. The study of the parameter space for such additional scalars/pseudoscalars decay of the Higgs is performed in the gluon fusion channel. The extra hidden Higgs bosons of the enlarged scalar sector, if they exist, will then decay into lighter fermion paris, i.e., boverline{b} , τ overline{τ} and μ overline{μ} via the mixing with the doublets. A detailed simulation using PYTHIA of the 2 b + 2 τ , ≥ 3 τ , 2 b + 2 μ and 2 τ + 2 μ final states is presented. From our analysis we conclude that, depending on the selected benchmark points, such decay modes can be explored with an integrated luminosity of 25 fb-1 at the LHC at a center of mass energy of 13 TeV.

  15. Multifield dynamics of supersymmetric Higgs inflation in S U (5 ) GUT

    NASA Astrophysics Data System (ADS)

    Kawai, Shinsuke; Kim, Jinsu

    2016-03-01

    We study the Higgs inflation model realized in the supersymmetric S U (5 ) grand unified theory (GUT), focusing on its multifield dynamics and prediction of cosmological observables. The requirement for GUT symmetry breaking during inflation imposes tight constraints on the model parameters. We find, nevertheless, that with an appropriately chosen noncanonical Kähler potential the model is in excellent agreement with the present cosmological observations. The effects from multifield dynamics are found to be minor and thus, unlike other similar supersymmetric implementations of nonminimally coupled Higgs inflation, the prediction of this model is robust against multifield ambiguities.

  16. A Singlet Extension of the Minimal Supersymmetric Standard Model: Towards a More Natural Solution to the Little Hierarchy Problem

    SciTech Connect

    de la Puente, Alejandro

    2012-05-01

    In this work, I present a generalization of the Next-to-Minimal Supersymmetric Standard Model (NMSSM), with an explicit μ-term and a supersymmetric mass for the singlet superfield, as a route to alleviating the little hierarchy problem of the Minimal Supersymmetric Standard Model (MSSM). I analyze two limiting cases of the model, characterized by the size of the supersymmetric mass for the singlet superfield. The small and large limits of this mass parameter are studied, and I find that I can generate masses for the lightest neutral Higgs boson up to 140 GeV with top squarks below the TeV scale, all couplings perturbative up to the gauge unification scale, and with no need to fine tune parameters in the scalar potential. This model, which I call the S-MSSM is also embedded in a gauge-mediated supersymmetry breaking scheme. I find that even with a minimal embedding of the S-MSSM into a gauge mediated scheme, the mass for the lightest Higgs boson can easily be above 114 GeV, while keeping the top squarks below the TeV scale. Furthermore, I also study the forward-backward asymmetry in the t¯t system within the framework of the S-MSSM. For this purpose, non-renormalizable couplings between the first and third generation of quarks to scalars are introduced. The two limiting cases of the S-MSSM, characterized by the size of the supersymmetric mass for the singlet superfield is analyzed, and I find that in the region of small singlet supersymmetric mass a large asymmetry can be obtained while being consistent with constraints arising from flavor physics, quark masses and top quark decays.

  17. Collider Detector at Fermilab (CDF): Data from Standard Model and Supersymmetric Higgs Bosons Research of the Higgs Group

    DOE Data Explorer

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The Higgs group searches for Standard Model and Supersymmetric Higgs bosons. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  18. Heavy Higgs boson with a light sneutrino next-to-lightest supersymmetric particle in the MSSM with enhanced SU(2) D-terms.

    SciTech Connect

    Medina, A. D.; Shah, N. R.; Wagner, C. E. M.; High Energy Physics; Univ. of California at Davis; Univ. of Chicago

    2009-01-01

    The minimal supersymmetric extension of the standard model provides a solution to the hierarchy problem and leads to the presence of a light Higgs. A Higgs boson with mass above the present experimental bound may only be obtained for relatively heavy third generation squarks, requiring a precise, somewhat unnatural balance between different contributions to the effective Higgs mass parameter. It was recently noticed that somewhat heavier Higgs bosons, which are naturally beyond the CERN LEP bound, may be obtained by enhanced weak SU(2) D-terms. Such contributions appear in models with an enhanced electroweak gauge symmetry, provided the supersymmetry breaking masses associated with the scalars responsible for the breakdown of the enhanced gauge symmetry group to the standard model one are larger than the enhanced symmetry breaking scale. In this article we emphasize that the enhanced SU(2) D-terms will not only raise the Higgs boson mass but also affect the spectrum of the nonstandard Higgs bosons, sleptons, and squarks, which therefore provide a natural contribution to the T parameter, compensating for the negative one coming from the heavy Higgs boson. The sleptons and nonstandard Higgs bosons of these models, in particular, may act in a way similar to the so-called inert Higgs doublet. The phenomenological properties of these models are emphasized, and possible cosmological implications as well as collider signatures are described.

  19. Higgs bosons of a supersymmetric U(1)' model

    SciTech Connect

    Ham, Seung Woo; Oh, Sun Kun

    2008-11-23

    The lightest scalar Higgs boson is predicted to be smaller than 162 GeV in the leptophobic {eta}-model, at the one-loop level, for a reasonable region of parameter space. In the NMSSM, the sum of the square of the normalized scalar Higgs coupling coefficients to a pair of Z bosons is unity, whereas the corresponding quantity in the leptophobic {eta}-model is less than unity. Thus, by measuring the scalar Higgs coupling coefficients at the ILC, the leptophobic {eta}-model might be distinguished from the NMSSM.

  20. Discovering the Higgs bosons of minimal supersymmetry with muons and a bottom quark.

    PubMed

    Dawson, Sally; Dicus, Duane; Kao, Chung; Malhotra, Rahul

    2004-06-18

    We investigate the prospects for the discovery at the CERN Large Hadron Collider (LHC) of a neutral Higgs boson produced with one bottom quark followed by Higgs decay into a muon pair. We work within the framework of the minimal supersymmetric model. The dominant physics background from the production of b mu(+)mu(-), j mu(+)mu(-), j=g,u,d,s,c, and bbW+W- is calculated with realistic acceptance cuts. Promising results are found for the CP-odd pseudoscalar (A0) and the heavier CP-even scalar (H0) Higgs bosons with masses up to 600 GeV. This discovery channel with one energetic bottom quark greatly improves the discovery potential of the LHC beyond the inclusive channel pp-->phi(0)-->mu(+)mu(-)+X. PMID:15245075

  1. Neutrino fluxes from constrained minimal supersymmetric standard model lightest supersymmetric particle annihilations in the Sun

    SciTech Connect

    Ellis, John; Olive, Keith A.; Savage, Christopher; Spanos, Vassilis C.

    2010-04-15

    We evaluate the neutrino fluxes to be expected from neutralino lightest supersymmetric particle (LSP) annihilations inside the Sun, within the minimal supersymmetric extension of the standard model with supersymmetry-breaking scalar and gaugino masses constrained to be universal at the grand unified theory scale [the constrained minimal supersymmetric standard model (CMSSM)]. We find that there are large regions of typical CMSSM (m{sub 1/2},m{sub 0}) planes where the LSP density inside the Sun is not in equilibrium, so that the annihilation rate may be far below the capture rate. We show that neutrino fluxes are dependent on the solar model at the 20% level, and adopt the AGSS09 model of Serenelli et al. for our detailed studies. We find that there are large regions of the CMSSM (m{sub 1/2},m{sub 0}) planes where the capture rate is not dominated by spin-dependent LSP-proton scattering, e.g., at large m{sub 1/2} along the CMSSM coannihilation strip. We calculate neutrino fluxes above various threshold energies for points along the coannihilation/rapid-annihilation and focus-point strips where the CMSSM yields the correct cosmological relic density for tan{beta}=10 and 55 for {mu}>0, exploring their sensitivities to uncertainties in the spin-dependent and -independent scattering matrix elements. We also present detailed neutrino spectra for four benchmark models that illustrate generic possibilities within the CMSSM. Scanning the cosmologically favored parts of the parameter space of the CMSSM, we find that the IceCube/DeepCore detector can probe at best only parts of this parameter space, notably the focus-point region and possibly also at the low-mass tip of the coannihilation strip.

  2. Statistical analysis of supersymmetric dark matter in the minimal supersymmetric standard model after WMAP

    SciTech Connect

    Profumo, S.; Yaguna, C.E.

    2004-11-01

    We study supersymmetric dark matter in the general flavor diagonal minimal supersymmetric standard model by means of an extensive random scan of its parameter space. We find that, in contrast with the standard minimal supergravity lore, the large majority of viable models features either a Higgsino or a winolike lightest neutralino, and yields a relic abundance well below the Wilkinson Microwave Anisotropy Probe (WMAP) bound. Among the models with neutralino relic density within the WMAP range, Higgsinolike neutralinos are still dominant, though a sizable fraction of binos is also present. In this latter case, coannihilations are shown to be essential in order to obtain the correct neutralino abundance. We then carry out a statistical analysis and a general discussion of neutralino dark matter direct detection and of indirect neutralino detection at neutrino telescopes and at antimatter search experiments. We point out that current data exclude only a marginal portion of the viable parameter space, and that models whose thermal relic abundance lies in the WMAP range will be significantly probed only at future direct detection experiments. Finally, we emphasize the importance of relic density enhancement mechanisms for indirect detection perspectives, in particular, at future antimatter search experiments.

  3. Extra matters decree the relatively heavy Higgs of mass about 125 GeV in the supersymmetric model

    NASA Astrophysics Data System (ADS)

    Moroi, Takeo; Sato, Ryosuke; Yanagida, Tsutomu T.

    2012-03-01

    We show that the Higgs mass about 125 GeV is easily realized in supersymmetric model with extra matters, simultaneously explaining the anomaly in the muon anomalous magnetic moment and the dark matter density.

  4. Two-loop Higgs mass calculations in supersymmetric models beyond the MSSM with SARAH and SPheno

    NASA Astrophysics Data System (ADS)

    Goodsell, Mark D.; Nickel, Kilian; Staub, Florian

    2015-01-01

    We present an extension to the Mathematica package SARAH which allows for Higgs mass calculations at the two-loop level in a wide range of supersymmetric (SUSY) models beyond the MSSM. These calculations are based on the effective potential approach and include all two-loop corrections which are independent of electroweak gauge couplings. For the numerical evaluation Fortran code for SPheno is generated by SARAH. This allows the prediction of the Higgs mass in more complicated SUSY models with the same precision that most state-of-the-art spectrum generators provide for the MSSM.

  5. Consistent cosmology with Higgs thermal inflation in a minimal extension of the MSSM

    NASA Astrophysics Data System (ADS)

    Hindmarsh, Mark; Jones, D. R. Timothy

    2013-03-01

    We consider a class of supersymmetric inflation models, in which minimal gauged F-term hybrid inflation is coupled renormalisably to the minimal supersymmetric standard model (MSSM), with no extra ingredients; we call this class the ``minimal hybrid inflationary supersymmetric standard model'' (MHISSM). The singlet inflaton couples to the Higgs as well as the waterfall fields, supplying the Higgs μ-term. We show how such models can exit inflation to a vacuum characterised by large Higgs vevs, whose vacuum energy is controlled by supersymmetry-breaking. The true ground state is reached after an intervening period of thermal inflation along the Higgs flat direction, which has important consequences for the cosmology of the F-term inflation scenario. The scalar spectral index is reduced, with a value of approximately 0.976 in the case where the inflaton potential is dominated by the 1-loop radiative corrections. The reheat temperature following thermal inflation is about 109 GeV, which solves the gravitino overclosure problem. A Higgs condensate reduces the cosmic string mass per unit length, rendering it compatible with the Cosmic Microwave Background constraints without tuning the inflaton coupling. With the minimal U(1)' gauge symmetry in the inflation sector, where one of the waterfall fields generates a right-handed neutrino mass, we investigate the Higgs thermal inflation scenario in three popular supersymmetry-breaking schemes: AMSB, GMSB and the CMSSM, focusing on the implications for the gravitino bound. In AMSB enough gravitinos can be produced to account for the observed dark matter abundance through decays into neutralinos. In GMSB we find an upper bound on the gravitino mass of about a TeV, while in the CMSSM the thermally generated gravitinos are sub-dominant. When Big Bang Nucleosynthesis constraints are taken into account, the unstable gravitinos of AMSB and the CMSSM must have a mass O(10) TeV or greater, while in GMSB we find an upper bound on the

  6. Consistent cosmology with Higgs thermal inflation in a minimal extension of the MSSM

    SciTech Connect

    Hindmarsh, Mark; Jones, D.R. Timothy E-mail: drtj@liv.ac.uk

    2013-03-01

    We consider a class of supersymmetric inflation models, in which minimal gauged F-term hybrid inflation is coupled renormalisably to the minimal supersymmetric standard model (MSSM), with no extra ingredients; we call this class the ''minimal hybrid inflationary supersymmetric standard model'' (MHISSM). The singlet inflaton couples to the Higgs as well as the waterfall fields, supplying the Higgs μ-term. We show how such models can exit inflation to a vacuum characterised by large Higgs vevs, whose vacuum energy is controlled by supersymmetry-breaking. The true ground state is reached after an intervening period of thermal inflation along the Higgs flat direction, which has important consequences for the cosmology of the F-term inflation scenario. The scalar spectral index is reduced, with a value of approximately 0.976 in the case where the inflaton potential is dominated by the 1-loop radiative corrections. The reheat temperature following thermal inflation is about 10{sup 9} GeV, which solves the gravitino overclosure problem. A Higgs condensate reduces the cosmic string mass per unit length, rendering it compatible with the Cosmic Microwave Background constraints without tuning the inflaton coupling. With the minimal U(1)' gauge symmetry in the inflation sector, where one of the waterfall fields generates a right-handed neutrino mass, we investigate the Higgs thermal inflation scenario in three popular supersymmetry-breaking schemes: AMSB, GMSB and the CMSSM, focusing on the implications for the gravitino bound. In AMSB enough gravitinos can be produced to account for the observed dark matter abundance through decays into neutralinos. In GMSB we find an upper bound on the gravitino mass of about a TeV, while in the CMSSM the thermally generated gravitinos are sub-dominant. When Big Bang Nucleosynthesis constraints are taken into account, the unstable gravitinos of AMSB and the CMSSM must have a mass O(10) TeV or greater, while in GMSB we find an upper bound on

  7. Minimal Composite Higgs Models at the LHC

    SciTech Connect

    Carena, Marcela; Da Rold, Leandro; Pontón, Eduardo

    2014-06-26

    We consider composite Higgs models where the Higgs is a pseudo-Nambu Goldstone boson arising from the spontaneous breaking of an approximate global symmetry by some underlying strong dynamics. We focus on the SO(5) → SO(4) symmetry breaking pattern, assuming the “partial compositeness” paradigm. We study the consequences on Higgs physics of the fermionic representations produced by the strong dynamics, that mix with the Standard Model (SM) degrees of freedom. We consider models based on the lowest-dimensional representations of SO(5) that allow for the custodial protection of the Z b ¯ b coupling, i.e. the 5, 10 and 14. We find a generic suppression of the gluon fusion process, while the Higgs branching fractions can be enhanced or suppressed compared to the SM. Interestingly, a precise measurement of the Higgs boson couplings can distinguish between different realizations in the fermionic sector, thus providing crucial information about the nature of the UV dynamics.

  8. Search for supersymmetric neutral Higgs bosons at the Tevatron

    SciTech Connect

    Scanlon, Tim; /Imperial Coll., London

    2007-10-01

    Recent preliminary results obtained by the CDF and D0 Collaborations on searches for Higgs bosons beyond the Standard Model at Run II of the Tevatron are discussed. The data, corresponding to integrated luminosities of up to 1 fb{sup -1}, are compared to theoretical expectations. No significant excess of signal above the expected background is observed in any of the various final states examined, and so limits at 95% Confidence Level (CL) are presented.

  9. Charged-Higgs-boson production at the LHC: Next-to-leading-order supersymmetric QCD corrections

    SciTech Connect

    Dittmaier, Stefan; Kraemer, Michael; Spira, Michael; Walser, Manuel

    2011-03-01

    The dominant production process for heavy charged-Higgs bosons at the LHC is the associated production with heavy quarks. We have calculated the next-to-leading-order supersymmetric QCD corrections to charged-Higgs production through the parton processes qq,gg{yields}tbH{sup {+-}} and present results for total cross sections and differential distributions. The QCD corrections reduce the renormalization and factorization scale dependence and thus stabilize the theoretical predictions. We present a comparison of the next-to-leading-order results for the inclusive cross section with a calculation based on bottom-gluon fusion gb{yields}tH{sup {+-}} and discuss the impact of the next-to-leading-order corrections on charged-Higgs searches at the LHC.

  10. B-tagging and the search for neutral supersymmetric Higgs bosons at D0

    SciTech Connect

    Scanlon, Tim; /Imperial Coll., London

    2006-10-01

    A search for neutral supersymmetric Higgs bosons and work relating to the improvement of the b-tagging and trigger capabilities at the D0 detector during Run II of the Fermilab Tevatron collider is presented. The search for evidence of the Higgs sector in the Standard Model (SM) and supersymmetric extensions of the SM are a high priority for the D0 collaboration, and b-tagging and good triggers are a vital component of these searches. The development and commissioning of the first triggers at D0 which use b-tagging is outlined, along with the development of a new secondary vertex b-tagging tool for use in the Level 3 trigger. Upgrades to the Level 3 trigger hit finding code, which have led to significant improvements in the quality and efficiency of the tracking code, and by extension the b-tagging tools, are also presented. An offline Neural Network (NN) b-tagging tool was developed, trained on Monte Carlo and extensively tested and measured on data. The new b-tagging tool significantly improves the b-tagging performance at D0, for a fixed fake rate relative improvements in signal efficiency range from {approx} 40% to {approx} 15%. Fake rates, for a fixed signal efficiency, are typically reduced to between a quarter and a third of their value. Finally, three versions of the search for neutral supersymmetric Higgs bosons are presented. The latest version of the analysis makes use of almost 1 fb{sup -1} of data, the new NN b-tagger and the new b-tagging triggers, and has set one of the world's best limits on the supersymmetric parameter tan{beta} in the mass range 90 to 150 GeV.

  11. Minimal Composite Higgs Models at the LHC

    DOE PAGESBeta

    Carena, Marcela; Da Rold, Leandro; Pontón, Eduardo

    2014-06-26

    We consider composite Higgs models where the Higgs is a pseudo-Nambu Goldstone boson arising from the spontaneous breaking of an approximate global symmetry by some underlying strong dynamics. We focus on the SO(5) → SO(4) symmetry breaking pattern, assuming the “partial compositeness” paradigm. We study the consequences on Higgs physics of the fermionic representations produced by the strong dynamics, that mix with the Standard Model (SM) degrees of freedom. We consider models based on the lowest-dimensional representations of SO(5) that allow for the custodial protection of the Z b ¯ b coupling, i.e. the 5, 10 and 14. We findmore » a generic suppression of the gluon fusion process, while the Higgs branching fractions can be enhanced or suppressed compared to the SM. Interestingly, a precise measurement of the Higgs boson couplings can distinguish between different realizations in the fermionic sector, thus providing crucial information about the nature of the UV dynamics.« less

  12. LHC signals of a B -L supersymmetric standard model C P -even Higgs boson

    NASA Astrophysics Data System (ADS)

    Hammad, A.; Khalil, S.; Moretti, S.

    2016-06-01

    We study the scope of the Large Hadron Collider in accessing a neutral Higgs boson of the B -L supersymmetric standard model. After assessing the surviving parameter space configurations following the Run 1 data taking, we investigate the possibilities of detecting this object during Run 2. For the model configurations in which the mixing between such a state and the discovered standard-model-like Higgs boson is non-negligible, there exist several channels enabling its discovery over a mass range spanning from ≈140 to ≈500 GeV . For a heavier Higgs state, with mass above 250 GeV (i.e., twice the mass of the Higgs state discovered in 2012), the hallmark signature is its decay in two such 125 GeV scalars, h'→h h , where h h →b b ¯ γ γ . For a lighter Higgs state, with mass of order 140 GeV, three channels are accessible: γ γ , Z γ , and Z Z , wherein the Z boson decays leptonically. In all such cases, significances above discovery can occur for already planned luminosities at the CERN machine.

  13. Discovering the Higgs bosons of minimal supersymmetry with tau leptons and a bottom quark

    SciTech Connect

    Kao, Chung; Dicus, Duane A.; Malhotra, Rahul; Wang Yili

    2008-05-01

    We investigate the prospects for the discovery at the CERN Large Hadron Collider or at the Fermilab Tevatron of neutral Higgs bosons through the channel where the Higgs are produced together with a single bottom quark and the Higgs decays into a pair of tau leptons, bg{yields}b{phi}{sup 0}{yields}b{tau}{sup +}{tau}{sup -}, {phi}{sup 0}=h{sup 0}, H{sup 0}, A{sup 0}. We work within the framework of the minimal supersymmetric model. The dominant physics background from the production of b{tau}{sup +}{tau}{sup -}, j{tau}{sup +}{tau}{sup -} (j=g,u,d,s,c), bbW{sup +}W{sup -}, W+2j, and Wbj is calculated with realistic acceptance cuts and efficiencies. Promising results are found for the CP-odd pseudoscalar (A{sup 0}) and the heavier CP-even scalar (H{sup 0}) Higgs bosons with masses up to one TeV.

  14. Two-Higgs-doublet models with Minimal Flavour Violation

    SciTech Connect

    Carlucci, Maria Valentina

    2010-12-22

    The tree-level flavour-changing neutral currents in the two-Higgs-doublet models can be suppressed by protecting the breaking of either flavour or flavour-blind symmetries, but only the first choice, implemented by the application of the Minimal Flavour Violation hypothesis, is stable under quantum corrections. Moreover, a two-Higgs-doublet model with Minimal Flavour Violation enriched with flavour-blind phases can explain the anomalies recently found in the {Delta}F = 2 transitions, namely the large CP-violating phase in B{sub s} mixing and the tension between {epsilon}{sub K} and S{sub {psi}KS}.

  15. Charge and color breaking constraints in the Minimal Supersymmetric Standard Model associated with the bottom Yukawa coupling

    NASA Astrophysics Data System (ADS)

    Hollik, Wolfgang Gregor

    2016-01-01

    Testing the stability of the electroweak vacuum in any extension of the Standard Model Higgs sector is of great importance to verify the consistency of the theory. Multi-scalar extensions as the Minimal Supersymmetric Standard Model generically lead to unstable configurations in certain regions of parameter space. An exact minimization of the scalar potential is rather an impossible analytic task. To give handy analytic constraints, a specific direction in field space has to be considered which is a simplification that tends to miss excluded regions, however good to quickly check parameter points. We describe a yet undescribed class of charge and color breaking minima as they appear in the Minimal Supersymmetric Standard Model, exemplarily for the case of non-vanishing bottom squark vacuum expectation values constraining the combination μYb in a non-trivial way. Contrary to famous A-parameter bounds, we relate the bottom Yukawa coupling with the supersymmetry breaking masses. Another bound can be found relating soft breaking masses and μ only. The exclusions follow from the tree-level minimization and can change dramatically using the one-loop potential. Estimates of the lifetime of unstable configurations show that they are either extremely short- or long-lived.

  16. Neutralino mass bounds in the Next-To-Minimal Supersymmetric Standard Model

    NASA Astrophysics Data System (ADS)

    Franke, F.; Fraas, H.; Bartl, A.

    1994-09-01

    We analyze the experimental data from the search for new particles at LEP 100 and obtain mass bounds for the neutralinos of the Next-To-Minimal Supersymmetric Standard Model (NMSSM). We find that for tan β ≳ 5.5 a massless neutralino is still possible, while the lower mass bound for the second lightest neutralino corresponds approximately to that for the lightest neutralino in the Minimal Supersymmetric Standard Model (MSSM).

  17. Particle spectroscopy of supersymmetric SU(5) in light of the 125 GeV Higgs boson and muon g -2 data

    NASA Astrophysics Data System (ADS)

    Okada, Nobuchika; Raza, Shabbar; Shafi, Qaisar

    2014-07-01

    The discovery of the Higgs boson at the Large Hadron Collider (LHC) has a great impact on the minimal supersymmetric extension of the Standard Model (MSSM). In the context of the constrained MSSM (CMSSM) and its extension with nonuniversal masses for the MSSM Higgs doublets, sparticles with masses >1 TeV are necessary to reproduce the observed Higgs boson mass of 125-126 GeV. On the other hand, there appears to be a significant amount of discrepancy between the measured muon g-2 and the Standard Model prediction. A successful explanation of this discrepancy in the MSSM requires new contributions involving relatively light sparticles with masses <1 TeV. In this paper, we attempt to accommodate the two conflicting requirements in a SU(5) inspired extension of the CMSSM. We assign nonuniversal but flavor blind soft supersymmetry breaking masses to the scalar components in 5 ¯ and 10 matter supermultiplets. The two MSSM Higgs doublets in the 5, 5 ¯ representations of SU(5) are also assigned unequal soft mass2 at MGUT. We identify parameter regions which can simultaneously accommodate the observed Higgs boson mass and the muon g -2 data, and which are compatible with other phenomenological constraints such as neutralino dark matter relic abundance and rare B-meson decays. Some regions of the allowed parameter space will be explored at the upgraded LHC and by dark matter direct detection experiments.

  18. Non-minimal Higgs inflation and frame dependence in cosmology

    SciTech Connect

    Steinwachs, Christian F.; Kamenshchik, Alexander Yu.

    2013-02-21

    We investigate a very general class of cosmological models with scalar fields non-minimally coupled to gravity. A particular representative in this class is given by the non-minimal Higgs inflation model in which the Standard Model Higgs boson and the inflaton are described by one and the same scalar particle. While the predictions of the non-minimal Higgs inflation scenario come numerically remarkably close to the recently discovered mass of the Higgs boson, there remains a conceptual problem in this model that is associated with the choice of the cosmological frame. While the classical theory is independent of this choice, we find by an explicit calculation that already the first quantum corrections induce a frame dependence. We give a geometrical explanation of this frame dependence by embedding it into a more general field theoretical context. From this analysis, some conceptional points in the long lasting cosmological debate: 'Jordan frame vs. Einstein frame' become more transparent and in principle can be resolved in a natural way.

  19. Higgs inflation, reheating and gravitino production in no-scale Supersymmetric GUTs

    NASA Astrophysics Data System (ADS)

    Ellis, John; He, Hong-Jian; Xianyu, Zhong-Zhi

    2016-08-01

    We extend our previous study of supersymmetric Higgs inflation in the context of no-scale supergravity and grand unification, to include models based on the flipped SU(5) and the Pati-Salam group. Like the previous SU(5) GUT model, these yield a class of inflation models whose inflation predictions interpolate between those of the quadratic chaotic inflation and Starobinsky-like inflation, while avoiding tension with proton decay limits. We further analyse the reheating process in these models, and derive the number of e-folds, which is independent of the reheating temperature. We derive the corresponding predictions for the scalar tilt and the tensor-to-scalar ratio in cosmic microwave background perturbations, as well as discussing the gravitino production following inflation.

  20. Prospects for MSSM Higgs searches at the Fermilab Tevatron.

    SciTech Connect

    Draper, P.; Liu, T.; Wagner, C. E. M.; High Energy Physics; Univ. of Chicago

    2009-01-01

    We analyze the Tevatron reach for neutral Higgs bosons in the minimal supersymmetric standard model, using current exclusion limits on the standard model Higgs. We study four common benchmark scenarios for the soft supersymmetry-breaking parameters of the minimal supersymmetric standard model, including cases where the Higgs decays differ significantly from the standard model, and provide projections for the improvements in luminosity and efficiency required for the Tevatron to probe sizeable regions of the (m{sub A},tan-{beta}) plane.

  1. Prospects for MSSM Higgs boson searches at the Fermilab Tevatron

    SciTech Connect

    Draper, Patrick; Liu, Tao; Wagner, Carlos E. M.

    2009-08-01

    We analyze the Tevatron reach for neutral Higgs bosons in the minimal supersymmetric standard model, using current exclusion limits on the standard model Higgs. We study four common benchmark scenarios for the soft supersymmetry-breaking parameters of the minimal supersymmetric standard model, including cases where the Higgs decays differ significantly from the standard model, and provide projections for the improvements in luminosity and efficiency required for the Tevatron to probe sizeable regions of the (m{sub A},tan{beta}) plane.

  2. One-loop Einstein-Hilbert term in minimally supersymmetric type IIB orientifolds

    NASA Astrophysics Data System (ADS)

    Haack, Michael; Kang, Jin U.

    2016-02-01

    We evaluate string one-loop contributions to the Einstein-Hilbert term in toroidal minimally supersymmetric type IIB orientifolds with D-branes. These have potential applications to the determination of quantum corrections to the moduli Kähler metric in these models.

  3. Bubble wall velocity in the minimal supersymmetric light stop scenario

    NASA Astrophysics Data System (ADS)

    Huber, Stephan J.; Sopena, Miguel

    2012-05-01

    We build on existing calculations of the wall velocity of the expanding bubbles of the broken symmetry phase in a first-order electroweak phase transition within the light stop scenario (LSS) of the MSSM. We carry out the analysis using the 2-loop thermal potential for values of the Higgs mass consistent with present experimental bounds. Our approach relies on describing the interaction between the bubble and the hot plasma by a single friction parameter, which we fix by matching to an existing 1-loop computation and extrapolate to our regime of interest. For a sufficiently strong phase transition (in which washout of the newly created baryon asymmetry is prevented) we obtain values of the wall velocity, vw≈0.05, far below the speed of sound in the medium, and not very much deviating from the previous 1-loop calculation. We find that the phase transition is about 10% stronger than suggested by simply evaluating the thermal potential at the critical temperature. We also comment on the relevance of our results to extended models, such as the NMSSM.

  4. Radiative breaking of the minimal supersymmetric left-right model

    NASA Astrophysics Data System (ADS)

    Okada, Nobuchika; Papapietro, Nathan

    2016-05-01

    We study a variation to the SUSY Left-Right symmetric model based on the gauge group SU (3)c × SU (2)L × SU (2)R × U(1)BL. Beyond the quark and lepton superfields we only introduce a second Higgs bidoublet to produce realistic fermion mass matrices. This model does not include any SU (2)R triplets. We calculate renormalization group evolutions of soft SUSY parameters at the one-loop level down to low energy. We find that an SU (2)R slepton doublet acquires a negative mass squared at low energies, so that the breaking of SU (2)R × U(1)BL → U(1)Y is realized by a non-zero vacuum expectation value of a right-handed sneutrino. Small neutrino masses are produced through neutrino mixings with gauginos. Mass limits on the SU (2)R × U(1)BL sector are obtained by direct search results at the LHC as well as lepton-gaugino mixing bounds from the LEP precision data.

  5. Predictions for m{sub t} and M{sub W} in minimal supersymmetric models

    SciTech Connect

    Buchmueller, O.; Cavanaugh, R.; De Roeck, A.; Ellis, J. R.; Flaecher, H.; Heinemeyer, S.; Isidori, G.; Olive, Keith A.; Ronga, F. J.; Weiglein, G.

    2010-02-01

    Using a frequentist analysis of experimental constraints within two versions of the minimal supersymmetric extension of the standard model, we derive the predictions for the top quark mass, m{sub t}, and the W boson mass, M{sub W}. We find that the supersymmetric predictions for both m{sub t} and M{sub W}, obtained by incorporating all the relevant experimental information and state-of-the-art theoretical predictions, are highly compatible with the experimental values with small remaining uncertainties, yielding an improvement compared to the case of the standard model.

  6. Lepton Flavor and Nonuniversality from Minimal Composite Higgs Setups.

    PubMed

    Carmona, Adrián; Goertz, Florian

    2016-06-24

    We present a new class of models of lepton flavor in the composite Higgs framework. Following the concept of minimality, they lead to a rich phenomenology in good agreement with the current experimental picture. Because of a unification of the right-handed leptons, our scenario is very predictive and can naturally lead to a violation of lepton-flavor universality in neutral current interactions. We will show that, in particular, the anomaly in R_{K}=B(B→Kμ^{+}μ^{-})/B(B→Ke^{+}e^{-}), found by LHCb, can be addressed, while other constraints from quark- and lepton-flavor physics are met. In fact, the minimal structure of the setup allows for the implementation of a very powerful flavor protection, which avoids the appearance of new sources of flavor-changing neutral currents to very good approximation. Finally, the new lepton sector provides a parametrically enhanced correction to the Higgs mass, such that the need for ultralight top partners is weakened considerably, linking the mass of the latter with the size of the neutrino masses. PMID:27391714

  7. Lepton Flavor and Nonuniversality from Minimal Composite Higgs Setups

    NASA Astrophysics Data System (ADS)

    Carmona, Adrián; Goertz, Florian

    2016-06-01

    We present a new class of models of lepton flavor in the composite Higgs framework. Following the concept of minimality, they lead to a rich phenomenology in good agreement with the current experimental picture. Because of a unification of the right-handed leptons, our scenario is very predictive and can naturally lead to a violation of lepton-flavor universality in neutral current interactions. We will show that, in particular, the anomaly in RK=B (B →K μ+μ-)/B (B →K e+e-), found by LHCb, can be addressed, while other constraints from quark- and lepton-flavor physics are met. In fact, the minimal structure of the setup allows for the implementation of a very powerful flavor protection, which avoids the appearance of new sources of flavor-changing neutral currents to very good approximation. Finally, the new lepton sector provides a parametrically enhanced correction to the Higgs mass, such that the need for ultralight top partners is weakened considerably, linking the mass of the latter with the size of the neutrino masses.

  8. The minimal composite Higgs model and electroweak precision tests

    NASA Astrophysics Data System (ADS)

    Agashe, Kaustubh; Contino, Roberto

    2006-05-01

    A complete analysis of the electroweak precision observables is performed within a recently proposed minimal composite Higgs model, realized as a 5-dimensional warped compactification. In particular, we compute Z→bb¯ and the one-loop correction to the ρ parameter. We find that oblique data can be easily reproduced without a significant amount of tuning in the parameters of the model, while Z→bb¯ imposes a stronger constraint. As a consequence of the latter, some of the new fermionic resonances must have mass around 4 TeV, which corresponds to an electroweak fine tuning of a few percent. Other resonances, such as Z, can be lighter in sizeable portions of the parameter space. We discuss in detail the origin of the Z→bb¯ constraint and we suggest several possible avenues beyond the minimal model for weakening it.

  9. Search for Higgs Bosons and Supersymmetric Particles in Tau Final States

    SciTech Connect

    Torchiani, Ingo

    2008-09-01

    Elementary particle physics tries to find an answer to no minor question: What is our universe made of? To our current knowledge, the elementary constituents of matter are quarks and leptons, which interact via four elementary forces: electromagnetism, strong force, weak force and gravity. All forces, except gravity, can be described in one framework, the Standard Model of particle physics. The model's name reflects its exceptional success in describing all available experimental high energy physics data to high precision up to energies of about 100 GeV. An exception is given by the neutrino masses but even these can be integrated into the model. The Standard Model is based on the requirement of invariance of all physics processes under certain fundamental symmetry transformations. The consideration of these symmetries leads naturally to the correct description of the electromagnetic, weak and strong forces as the exchange of interaction particles, the gauge bosons. However, this formalism has the weakness that it only allows for massless particles. In order to obey the symmetries, a way to introduce the particle masses is given by the Higgs mechanism, which predicts the existence of the only particle of the Standard Model which has yet to be observed: the Higgs boson. In spite of the success of the Standard Model, it has to be considered as a low energy approximation of a more profound theory for various reasons. For example, the underlying theory is expected to allow for an integration of gravity into the framework and to provide a valid particle candidate for the dark matter in our universe. Furthermore, a solution has to be found to the problem that the Higgs boson as a fundamental scalar is sensitive to large radiative corrections driving its mass to the Planck scale of 1019 GeV. Several models have been proposed to address the remaining open questions of the Standard Model. Currently, the most promising extension of the Standard Model is

  10. A minimal non-supersymmetric S O(10) model: Gauge coupling unification, proton decay and fermion masses

    NASA Astrophysics Data System (ADS)

    Khan, Saki

    2016-06-01

    We present a minimal renormalizable non-supersymmetric S O(10) grand unified model with a symmetry breaking sector consisting of Higgs fields in the 54H + 126H + 10H representations. This model admits a single intermediate scale associated with Pati-Salam symmetry along with a discrete parity. Spontaneous symmetry breaking, the unification of gauge couplings and proton lifetime estimates are studied in detail in this framework. Including threshold corrections self-consistently, obtained from a full analysis of the Higgs potential, we show that the model is compatible with the current experimental bound on proton lifetime. The model generally predicts an upper bound of few times 1035 yrs for proton lifetime, which is not too far from the present Super-Kamiokande limit of τp ≳ 1.29 × 1034 yrs. With the help of a Pecci-Quinn symmetry and the resulting axion, the model provides a suitable dark matter candidate while also solving the strong CP problem. The intermediate scale, MI ≈ (1013 - 1014) GeV which is also the B - L scale, is of the right order for the right-handed neutrino mass which enables a successful description of light neutrino masses and oscillations. The Yukawa sector of the model consists of only two matrices in family space and leads to a predictive scenario for quark and lepton masses and mixings. The branching ratios for proton decay are calculable with the leading modes being p → e+π0 and p →v ¯π+ . Even though the model predicts no new physics within the reach of LHC, the next generation proton decay detectors and axion search experiments have the capability to pass verdict on this minimal scenario.

  11. Implications of Higgs boson to diphoton decay rate in the bilinear R-parity violating supersymmetric model

    NASA Astrophysics Data System (ADS)

    Hundi, Raghavendra Srikanth

    2013-06-01

    The Large Hadron Collider has recently discovered a Higgs-like particle having a mass around 125 GeV and also indicated that there is an enhancement in the Higgs to diphoton decay rate as compared to that in the standard model. We have studied implications of these discoveries in the bilinear R-parity violating supersymmetric model, whose main motivation is to explain the nonzero masses for neutrinos. The R-parity violating parameters in this model are ɛ and bɛ, and these parameters determine the scale of neutrino masses. If the enhancement in the Higgs to diphoton decay rate is true, then we have found ɛ≳0.01GeV and bɛ˜1GeV2 in order to be compatible with the neutrino oscillation data. Also, in the above mentioned analysis, we can determine the soft masses of sleptons (mL) and CP-odd Higgs boson mass (mA). We have estimated that mL≳300GeV and mA≳700GeV. We have also commented on the allowed values of ɛ and bɛ, in case there is no enhancement in the Higgs to diphoton decay rate. Finally, we present a model to explain the smallness of ɛ and bɛ.

  12. Comments on supersymmetric solutions of minimal gauged supergravity in five dimensions

    NASA Astrophysics Data System (ADS)

    Cassani, Davide; Lorenzen, Jakob; Martelli, Dario

    2016-06-01

    We investigate supersymmetric solutions of minimal gauged supergravity in five dimensions, in the timelike class. We propose an ansatz based on a four-dimensional local orthotoric Kähler metric and reduce the problem to a single sixth-order equation for two functions, each of one variable. We find an analytic, asymptotically locally AdS solution comprising five parameters. For a conformally flat boundary, this reduces to a previously known solution with three parameters, representing the most general solution of this type known in the minimal theory. We discuss the possible relevance of certain topological solitons contained in the latter to account for the supersymmetric Casimir energy of dual superconformal field theories on {S}3× {{R}}. Although we obtain a negative response, our analysis clarifies several aspects of these solutions. In particular, we show that there exists a unique regular topological soliton in this family.

  13. Manifestations of CP Violation in the MSSM Higgs Sector

    SciTech Connect

    Lee, Jae Sik

    2008-11-23

    We demonstrate how CP violation manifests itself in the Higgs sector of the minimal supersymmetric extension of the Standard Model (MSSM). Starting with a brief introduction to CP violation in the MSSM and its effects on the Higgs sector, we discuss some phenomenological aspects of the Higgs sector CP violation based on the two scenarios called CPX and Trimixing.

  14. Diphoton resonances in a U (1 )B -L extension of the minimal supersymmetric standard model

    NASA Astrophysics Data System (ADS)

    Lazarides, G.; Shafi, Q.

    2016-06-01

    Inspired by the 750 GeV diphoton state recently reported by ATLAS and CMS, we propose a U (1 )B-L extension of the MSSM which predicts the existence of four spin zero resonance states that are degenerate in mass in the supersymmetric limit. Vectorlike fields, a gauge singlet field, as well as the MSSM Higgsinos are prevented from acquiring arbitrary large masses by a U (1 ) R symmetry. Indeed, these masses can be considerably lighter than the Z' gauge boson mass. Depending on kinematics, the resonance states could decay into right-handed neutrinos and sneutrinos, and/or MSSM Higgs fields and Higgsinos with total decay widths in the multi-GeV range.

  15. Single and double production of the Higgs boson at hadron and lepton colliders in minimal composite Higgs models

    NASA Astrophysics Data System (ADS)

    Kanemura, Shinya; Kaneta, Kunio; Machida, Naoki; Odori, Shinya; Shindou, Tetsuo

    2016-07-01

    In the composite Higgs models, originally proposed by Georgi and Kaplan, the Higgs boson is a pseudo Nambu-Goldstone boson (pNGB) of spontaneous breaking of a global symmetry. In the minimal version of such models, global SO(5) symmetry is spontaneously broken to SO(4), and the pNGBs form an isospin doublet field, which corresponds to the Higgs doublet in the Standard Model (SM). Predicted coupling constants of the Higgs boson can in general deviate from the SM predictions, depending on the compositeness parameter. The deviation pattern is determined also by the detail of the matter sector. We comprehensively study how the model can be tested via measuring single and double production processes of the Higgs boson at the LHC and future electron-positron colliders. The possibility to distinguish the matter sector among the minimal composite Higgs models is also discussed. In addition, we point out differences in the cross section of double Higgs boson production from the prediction in other new physics models.

  16. Gravitational waves from domain walls in the next-to-minimal supersymmetric standard model

    SciTech Connect

    Kadota, Kenji; Kawasaki, Masahiro; Saikawa, Ken’ichi

    2015-10-16

    The next-to-minimal supersymmetric standard model predicts the formation of domain walls due to the spontaneous breaking of the discrete Z{sub 3}-symmetry at the electroweak phase transition, and they collapse before the epoch of big bang nucleosynthesis if there exists a small bias term in the potential which explicitly breaks the discrete symmetry. Signatures of gravitational waves produced from these unstable domain walls are estimated and their parameter dependence is investigated. It is shown that the amplitude of gravitational waves becomes generically large in the decoupling limit, and that their frequency is low enough to be probed in future pulsar timing observations.

  17. A UV-complete Composite Higgs model for Electroweak Symmetry Breaking: Minimal Conformal Technicolor

    NASA Astrophysics Data System (ADS)

    Tacchi, Ruggero Altair

    The Large Hadron Collider is currently collecting data. One of the main goals of the experiment is to find evidence of the mechanism responsible for the breaking of the electroweak symmetry. There are many different models attempting to explain this breaking and traditionally most of them involve the use of supersymmetry near the scale of the breaking. This work is focused on exploring a viable model that is not based on a weakly coupled low scale supersymmetry sector to explain the electroweak symmetry breaking. We build a model based on a new strong interaction, in the fashion of theories commonly called "technicolor", name that is reminiscent of one of the first attempts of explaining the electroweak symmetry breaking using a strong interaction similar to the one whose charges are called colors. We explicitly study the minimal model of conformal technicolor, an SU(2) gauge theory near a strongly coupled conformal fixed point, with conformal symmetry softly broken by technifermion mass terms. Conformal symmetry breaking triggers chiral symmetry breaking in the pattern SU(4) → Sp (4), which gives rise to a pseudo-Nambu-Goldstone boson that can act as a composite Higgs boson. There is an additional composite pseudoscalar A with mass larger than mh and suppressed direct production at LHC. We discuss the electroweak fit in this model in detail. A good fit requires fine tuning at the 10% level. We construct a complete, realistic, and natural UV completion of the model, that explains the origin of quark and lepton masses and mixing angles. We embed conformal technicolor in a supersymmetric theory, with supersymmetry broken at a high scale. The effective theory below the supersymmetry breaking scale is minimal conformal technicolor with an additional light technicolor gaugino that might give rise to an additional pseudo Nambu-Goldstone boson that is observable at the LHC.

  18. Higgs Bosons in the NMSSM and its U(1) Extensions

    SciTech Connect

    Gunion, John F.

    2008-11-23

    I specify the characteristics of a Higgs boson that would be 'ideal' in the light of current data and theoretical attractiveness. I then review why it is that the Higgs bosons of the Standard Model and the Minimal Supersymmetric Model cannot be ideal whereas the lightest Higgs boson of the Next to Minimal Supersymmetric Model can be ideal. Experimental consequences for Higgs and supersymmetry discovery are then reviewed. I then examine the alternatives to the NMSSM in which the MSSM is extended via an extra U(1) symmetry.

  19. Consistency of LEP event excesses with an h{yields}aa decay scenario and low-fine-tuning next-to-minimal supersymmetric standard models

    SciTech Connect

    Dermisek, Radovan; Gunion, John F.

    2006-06-01

    We examine the LEP limits for the Zh{yields}Z+b's final state and find that the excess of observed events for m{sub h}{approx}100 GeV correlates well with there being an m{sub h}{approx}100 GeV Higgs boson with SM-like ZZh coupling that decays partly via h{yields}bb+{tau}{sup +}{tau}{sup -} [with B(h{yields}bb){approx}0.08] but dominantly via h{yields}aa [with B(h{yields}aa){approx}0.9], where m{sub a}<2m{sub b} so that a{yields}{tau}{sup +}{tau}{sup -} (or light quarks and gluons) decays are dominant. This type of scenario is precisely that predicted in the Next-to-Minimal Supersymmetric Model for parameter choices yielding the lowest possible fine-tuning.

  20. Next-to-minimal two Higgs Doublet Model

    SciTech Connect

    Chen, Chien -Yi; Freid, Michael; Sher, Marc

    2014-04-07

    The simplest extension of the Two Higgs Doublet Model is the addition of a real scalar singlet, S. The effects of mixing between the singlet and the doublets can be manifested in two ways. It can modify the couplings of the 126 GeV Higgs boson, h, and it can lead to direct detection of the heavy Higgs at the LHC. In this paper, we show that in the type-I Model, for heavy Higgs masses in the 200-600 GeV range, the latter effect will be detected earlier than the former for most of parameter space. Should no such Higgs be discovered in this mass range, then the upper limit on the mixing will be sufficiently strong such that there will be no significant effects on the couplings of the h for most of parameter space. Thus, the reverse is true in the type-II model, the limits from measurements of the couplings of the h will dominate over the limits from non-observation of the heavy Higgs.

  1. Next-to-minimal two Higgs Doublet Model

    DOE PAGESBeta

    Chen, Chien -Yi; Freid, Michael; Sher, Marc

    2014-04-07

    The simplest extension of the Two Higgs Doublet Model is the addition of a real scalar singlet, S. The effects of mixing between the singlet and the doublets can be manifested in two ways. It can modify the couplings of the 126 GeV Higgs boson, h, and it can lead to direct detection of the heavy Higgs at the LHC. In this paper, we show that in the type-I Model, for heavy Higgs masses in the 200-600 GeV range, the latter effect will be detected earlier than the former for most of parameter space. Should no such Higgs be discoveredmore » in this mass range, then the upper limit on the mixing will be sufficiently strong such that there will be no significant effects on the couplings of the h for most of parameter space. Thus, the reverse is true in the type-II model, the limits from measurements of the couplings of the h will dominate over the limits from non-observation of the heavy Higgs.« less

  2. New fat Higgs: Increasing the MSSM Higgs mass with natural gauge unification

    SciTech Connect

    Chang, Spencer; Kilic, Can; Mahbubani, Rakhi

    2005-01-01

    In this paper we increase the minimal supersymmetric standard model tree level Higgs mass bound to a value that is naturally larger than the LEP-II search constraint by adding to the superpotential a {lambda}SH{sub u}H{sub d} term, as in the next to minimal supersymmetric standard model, and UV completing with new strong dynamics before {lambda} becomes nonperturbative. Unlike other models of this type, the Higgs fields remain elementary, alleviating the supersymmetric fine-tuning problem while maintaining unification in a natural way.

  3. Next-to-minimal R-symmetric model: Dirac gaugino, Higgs mass and invisible width

    NASA Astrophysics Data System (ADS)

    Nakano, Hiroaki; Yoshikawa, Masaki

    2016-03-01

    We study a singlet extension of the minimal {U(1)}_R symmetric model, which shares the nice properties of Dirac gauginos and the R-symmetric Higgs sector. At the same time, a superpotential coupling of an R-charged singlet to the Higgs doublets can make a substantial contribution to the Higgs boson mass. We show that the 125 GeV Higgs boson is consistent with perturbative unification, even if the SUSY scale is as low as 1 TeV and if the D-term Higgs potential is suppressed, as is often the case in Dirac gauginos. The model also contains a light scalar and fermion, a pseudo-modulus and pseudo-goldstino: The former gets its mass mainly from SUSY-breaking soft terms, in addition to a small explicit R-symmetry breaking for the latter. We examine how the Higgs mass and width are affected by these light degrees of freedom. Specifically, we find that, depending on the parameters of R-charged Higgses, a pseudo-moduli lighter than half of the Standard Model Higgs boson mass is still allowed by the constraints from invisible decays of the Z and Higgs bosons. We also find that such a light scalar can reduce the Higgs boson mass, at most by a few percents.

  4. Higgs branching ratios in constrained minimal and next-to-minimal supersymmetry scenarios surveyed

    NASA Astrophysics Data System (ADS)

    Beskidt, C.; de Boer, W.; Kazakov, D. I.; Wayand, S.

    2016-08-01

    In the CMSSM the heaviest scalar and pseudo-scalar Higgs bosons decay largely into b-quarks and tau-leptons because of the large tan ⁡ β values favored by the relic density. In the NMSSM the number of possible decay modes is much richer. In addition to the CMSSM-like scenarios, the decay of the heavy Higgs bosons is preferentially into top quark pairs (if kinematically allowed), lighter Higgs bosons or neutralinos, leading to invisible decays. We provide a scan over the NMSSM parameter space to project the 6D parameter space of the Higgs sector on the 3D space of the Higgs masses to determine the range of branching ratios as function of the Higgs boson mass for all Higgs bosons. Specific LHC benchmark points are proposed, which represent the salient NMSSM features.

  5. Higgs phenomenology in the minimal S U (3 )L×U (1 )X model

    NASA Astrophysics Data System (ADS)

    Okada, Hiroshi; Okada, Nobuchika; Orikasa, Yuta; Yagyu, Kei

    2016-07-01

    We investigate the phenomenology of a model based on the S U (3 )c×S U (3 )L×U (1 )X gauge theory, the so-called 331 model. In particular, we focus on the Higgs sector of the model which is composed of three S U (3 )L triplet Higgs fields and is the minimal form for realizing a phenomenologically acceptable scenario. After the spontaneous symmetry breaking S U (3 )L×U (1 )X→S U (2 )L×U (1 )Y , our Higgs sector effectively becomes that with two S U (2 )L doublet scalar fields, in which the first- and the second-generation quarks couple to a different Higgs doublet from that which couples to the third-generation quarks. This structure causes the flavor-changing neutral current mediated by Higgs bosons at the tree level. By taking an alignment limit of the mass matrix for the C P -even Higgs bosons, which is naturally realized in the case with the breaking scale of S U (3 )L×U (1 )X much larger than that of S U (2 )L×U (1 )Y, we can avoid current constraints from flavor experiments such as the B0-B¯ 0 mixing even for the Higgs bosons masses that are O (100 ) GeV . In this allowed parameter space, we clarify that a characteristic deviation in quark Yukawa couplings of the Standard Model-like Higgs boson is predicted, which has a different pattern from that seen in two Higgs doublet models with a softly broken Z2 symmetry. We also find that the flavor-violating decay modes of the extra Higgs boson, e.g., H /A →t c and H±→t s , can be dominant, and they yield the important signature to distinguish our model from the two Higgs doublet models.

  6. Impact of future lepton flavor violation measurements in the minimal supersymmetric standard model

    NASA Astrophysics Data System (ADS)

    Ellis, Sebastian A. R.; Pierce, Aaron

    2016-07-01

    Working within the context of the minimal supersymmetric standard model, we compare current bounds from quark flavor changing processes with current and upcoming bounds on lepton flavor violation. We assume supersymmetry breaking approximately respects C P invariance. Under the further assumption that flavor violating insertions in the quark and lepton scalar masses are comparable, we explore when lepton flavor violation provides the strongest probe of new physics. We quote results both for spectra with all superpartners near the TeV scale and where scalars are multi-TeV. Constraints from quark flavor changing neutral currents are in many cases already stronger than those expected from future lepton flavor violation bounds, but large regions of parameter space remain where the latter could provide a discovery mode for supersymmetry.

  7. Natural Higgs mass in supersymmetry from nondecoupling effects.

    PubMed

    Lu, Xiaochuan; Murayama, Hitoshi; Ruderman, Joshua T; Tobioka, Kohsaku

    2014-05-16

    The Higgs mass implies fine-tuning for minimal theories of weak-scale supersymmetry (SUSY). Nondecoupling effects can boost the Higgs mass when new states interact with the Higgs boson, but new sources of SUSY breaking that accompany such extensions threaten naturalness. We show that two singlets with a Dirac mass can increase the Higgs mass while maintaining naturalness in the presence of large SUSY breaking in the singlet sector. We explore the modified Higgs phenomenology of this scenario, which we call the "Dirac next-to-minimal supersymmetric standard model." PMID:24877931

  8. Search for the minimal standard model Higgs boson in e +e - collisions at LEP

    NASA Astrophysics Data System (ADS)

    Akrawy, M. Z.; Alexander, G.; Allison, J.; Allport, P. P.; Anderson, K. J.; Armitage, J. C.; Arnison, G. T. J.; Ashton, P.; Azuelos, G.; Baines, J. T. M.; Ball, A. H.; Banks, J.; Barker, G. J.; Barlow, R. J.; Batley, J. R.; Beck, A.; Becker, J.; Behnke, T.; Bell, K. W.; Bella, G.; Bethke, S.; Biebel, O.; Binder, U.; Bloodworth, I. J.; Bock, P.; Breuker, H.; Brown, R. M.; Brun, R.; Buijs, A.; Burckhart, H. J.; Capiluppi, P.; Carnegie, R. K.; Carter, A. A.; Carter, J. R.; Chang, C. Y.; Charlton, D. G.; Chrin, J. T. M.; Clarke, P. E. L.; Cohen, I.; Collins, W. J.; Conboy, J. E.; Couch, M.; Coupland, M.; Cuffiani, M.; Dado, S.; Dallavalle, G. M.; Debu, P.; Deninno, M. M.; Dieckman, A.; Dittmar, M.; Dixit, M. S.; Duchovni, E.; Duerdoth, I. P.; Dumas, D. J. P.; Elcombe, P. A.; Estabrooks, P. G.; Etzion, E.; Fabbri, F.; Farthouat, P.; Fischer, H. M.; Fong, D. G.; French, M. T.; Fukunaga, C.; Gaidot, A.; Ganel, O.; Gary, J. W.; Gascon, J.; Geddes, N. I.; Gee, C. N. P.; Geich-Gimbel, C.; Gensler, S. W.; Gentit, F. X.; Giacomelli, G.; Gibson, V.; Gibson, W. R.; Gillies, J. D.; Goldberg, J.; Goodrick, M. J.; Gorn, W.; Granite, D.; Gross, E.; Grunhaus, J.; Hagedorn, H.; Hagemann, J.; Hansroul, M.; Hargrove, C. K.; Harrus, I.; Hart, J.; Hattersley, P. M.; Hauschild, M.; Hawkes, C. M.; Heflin, E.; Hemingway, R. J.; Heuer, R. D.; Hill, J. C.; Hillier, S. J.; Ho, C.; Hobbs, J. D.; Hobson, P. R.; Hochman, D.; Holl, B.; Homer, R. J.; Hou, S. R.; Howarth, C. P.; Hughes-Jones, R. E.; Humbert, R.; Igo-Kemenes, P.; Ihssen, H.; Imrie, D. C.; Janissen, L.; Jawahery, A.; Jeffreys, P. W.; Jeremie, H.; Jimack, M.; Jobes, M.; Jones, R. W. L.; Jovanovic, P.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Kellogg, R. G.; Kennedy, B. W.; Kleinwort, C.; Klem, D. E.; Knop, G.; Kobayashi, T.; Kokott, T. P.; Köpke, L.; Kowalewski, R.; Kreutzmann, H.; Kroll, J.; Kuwano, M.; Kyberd, P.; Lafferty, G. D.; Lamarche, F.; Larson, W. J.; Layter, J. G.; Le Du, P.; Leblanc, P.; Lee, A. M.; Lehto, M. H.; Lellouch, D.; Lennert, P.; Lessard, L.; Levinson, L.; Lloyd, S. L.; Loebinger, F. K.; Lorah, J. M.; Lorazo, B.; Losty, M. J.; Ludwig, J.; Ma, J.; Macbeth, A. A.; Mannelli, M.; Marcellini, S.; Maringer, G.; Martin, A. J.; Martin, J. P.; Mashimo, T.; Mättig, P.; Maur, U.; McMahon, T. J.; McNutt, J. R.; Meijers, F.; Menszner, D.; Merritt, F. S.; Mes, H.; Michelini, A.; Middleton, R. P.; Mikenberg, G.; Mildenberger, J.; Miller, D. J.; Milstene, C.; Minowa, M.; Mohr, W.; Montanari, A.; Mori, T.; Moss, M. W.; Murphy, P. G.; Murray, W. J.; Nellen, B.; Nguyen, H. H.; Nozaki, M.; O'Dowd, A. J. P.; O'Neale, S. W.; O'Neill, B. P.; Oakham, F. G.; Odorici, F.; Ogg, M.; Oh, H.; Oreglia, M. J.; Orito, S.; Pansart, J. P.; Patrick, G. N.; Pawley, S. J.; Pfister, P.; Pilcher, J. E.; Pinfold, J. L.; Plane, D. E.; Poli, B.; Pouladdej, A.; Prebys, E.; Pritchard, T. W.; Quast, G.; Raab, J.; Redmond, M. W.; Rees, D. L.; Regimbald, M.; Riles, K.; Roach, C. M.; Robins, S. A.; Rollnik, A.; Roney, J. M.; Rossberg, S.; Rossi, A. M.; Routenburg, P.; Runge, K.; Runolfsson, O.; Sanghera, S.; Sansum, R. A.; Sasaki, M.; Saunders, B. J.; Schaile, A. D.; Schaile, O.; Schappert, W.; Scharff-Hansen, P.; Schreiber, S.; Schwarz, J.; Shapira, A.; Shen, B. C.; Sherwood, P.; Simon, A.; Singh, P.; Siroli, G. P.; Skuja, A.; Smith, A. M.; Smith, T. J.; Snow, G. A.; Springer, R. W.; Sproston, M.; Stephens, K.; Stier, H. E.; Stroehmer, R.; Strom, D.; Takeda, H.; Takeshita, T.; Taras, P.; Thackray, N. J.; Tsukamoto, T.; Turner, M. F.; Tysarczyk-Niemeyer, G.; Van den plas, D.; VanDalen, G. J.; Van Kooten, R.; Vasseur, G.; Virtue, C. J.; von der Schmitt, H.; von Krogh, J.; Wagner, A.; Wahl, C.; Walker, J. P.; Ward, C. P.; Ward, D. R.; Watkins, P. M.; Watson, A. T.; Watson, N. K.; Weber, M.; Weisz, S.; Wells, P. S.; Wermes, N.; Weymann, M.; Wilson, G. W.; Wilson, J. A.; Wingerter, I.; Winterer, V.-H.; Wood, N. C.; Wotton, S.; Wuensch, B.; Wyatt, T. R.; Yaari, R.; Yang, Y.; Yekutieli, G.; Yoshida, T.; Zeuner, W.; Zorn, G. T.; OPAL Collaboration

    1991-01-01

    A search for the minimal standard model Higgs boson (H 0) has been performed with data from e +e - collisions in the OPAL detector at LEP. The analysis is based on approximately 8 pb -1 of data taken at centre-of-mass energies between 88.2 and 95.0 GeV. The search concentrated on the reaction e+e-→( e+e-, μ +μ -, voverlinevor τ +τ -) H0, H0→( qoverlineqor τ +τ -) for Higgs boson masses above 25 GeV/ c2. No Higgs boson candidates have been observed. The present study, combined with previous OPAL publications, excludes the existence of a standard model Higgs boson with mass in the range 3< mH 0<44GeV/ c2 at the 95% confidence level.

  9. Scalar-tensor gravity with a non-minimally coupled Higgs field and accelerating universe

    NASA Astrophysics Data System (ADS)

    Sim, Jonghyun; Lee, Tae Hoon

    2016-03-01

    We consider general couplings, including non-minimal derivative coupling, of a Higgs boson field to scalar-tensor gravity and calculate their contributions to the energy density and pressure in Friedmann-Robertson-Walker spacetime. In a special case where the kinetic term of the Higgs field is non-minimally coupled to the Einstein tensor, we seek de Sitter solutions for the cosmic scale factor and discuss the possibility that the late-time acceleration and the inflationary era of our universe can be described by means of scalar fields with self-interactions and the Yukawa potential.

  10. The Abelian Higgs model and a minimal length in an un-particle scenario

    NASA Astrophysics Data System (ADS)

    Gaete, Patricio; Spallucci, Euro

    2014-01-01

    We consider both the Abelian Higgs model and the impact of a minimal length in the un-particle sector. It is shown that even if the Higgs field takes a non-vanishing vacuum expectation value (v.e.v.), gauge interaction keeps its long-range character leading to an effective gauge symmetry restoration. The effect of a quantum-gravity-induced minimal length on a physical observable is then estimated by using a physically based alternative to the usual Wilson loop approach. Interestingly, we obtain an ultraviolet finite interaction energy described by a confluent hypergeometric function, which shows a remarkable richness of behavior.

  11. A fat Higgs with a magnetic personality

    NASA Astrophysics Data System (ADS)

    Craig, Nathaniel; Stolarski, Daniel; Thaler, Jesse

    2011-11-01

    We introduce a novel composite Higgs theory based on confining supersymmetric QCD. Supersymmetric duality plays a key role in this construction, with a "fat" Higgs boson emerging as a dual magnetic degree of freedom charged under the dual magnetic gauge group. Due to spontaneous color-flavor locking in the infrared, the electroweak gauge symmetry is aligned with the dual magnetic gauge group, allowing large Yukawa couplings between elementary matter fields and the composite Higgs. At the same time, this theory exhibits metastable supersymmetry breaking, leading to low-scale gauge mediation via composite messengers. The Higgs boson is heavier than in minimal supersymmetric theories, due to a large F -term quartic coupling as well as small non-decoupling D-terms. This theory predicts quasi-stable TeV-scale pseudo-modulini, some of which are charged under standard model color, possibly giving rise to long-lived R-hadrons at the LHC.

  12. Vanishing Higgs potential in minimal dark matter models

    NASA Astrophysics Data System (ADS)

    Hamada, Yuta; Kawana, Kiyoharu

    2015-12-01

    We consider the Standard Model with a new particle which is charged under SU (2)L with the hypercharge being zero. Such a particle is known as one of the dark matter (DM) candidates. We examine the realization of the multiple point criticality principle (MPP) in this class of models. Namely, we investigate whether the one-loop effective Higgs potential Veff (ϕ) and its derivative dVeff (ϕ) / dϕ can become simultaneously zero at around the string/Planck scale, based on the one/two-loop renormalization group equations. As a result, we find that only the SU (2)L triplet extensions can realize the MPP. More concretely, in the case of the triplet Majorana fermion, the MPP is realized at the scale ϕ = O (1016 GeV) if the top mass Mt is around 172 GeV. On the other hand, for the real triplet scalar, the MPP can be satisfied for 1016 GeV ≲ ϕ ≲1017 GeV and 172 GeV ≳Mt ≳ 171 GeV, depending on the coupling between the Higgs and DM.

  13. Large loop effects of extra supersymmetric Higgs doublets to CP violation in B{sup 0} mixing

    SciTech Connect

    Kubo, Jisuke; Lenz, Alexander

    2010-10-01

    We consider more than one pair of SU(2){sub L} doublet Higgs supermultiplets in a generic supersymmetric extension of the standard model, and calculate their one-loop contributions to the soft mass insertions {delta}{sub LL} etc. We find that, if large supersymmetry breaking in this sector is realized, the loop effects can give rise to large contributions to the soft mass insertions, meaning that they can generate large flavor-changing neutral currents and CP violations. We apply our result to a recently proposed model based on the discrete Q{sub 6} family group, and calculate the nondiagonal matrix element M{sub 12} of the neutral meson systems. We focus our attention on the extra phases {phi}{sub d,s}{sup {Delta}}in B{sub d,s} mixing and flavor-specific CP asymmetries a{sub sl}{sup d,s} in neutral B decays and obtain values that can be about 1 order of magnitude larger than the standard model predictions. Our final results are comparable with the recent experimental observations at D0 and CDF, but they are still about a factor of 5 smaller than the recently measured dimuon asymmetry from D0.

  14. Low scale nonuniversal, nonanomalous U(1)F' in a minimal supersymmetric standard model

    NASA Astrophysics Data System (ADS)

    Chen, Mu-Chun; Huang, Jinrui

    2010-10-01

    We propose a nonuniversal U(1)F' symmetry combined with the minimal supersymmetric standard model. All anomaly cancellation conditions are satisfied without exotic fields other than three right-handed neutrinos. Because our model allows all three generations of chiral superfields to have different U(1)F' charges, upon the breaking of the U(1)F' symmetry at a low scale, realistic masses and mixing angles in both the quark and lepton sectors are obtained. In our model, neutrinos are predicted to be Dirac fermions and their mass ordering is of the inverted hierarchy type. The U(1)F' charges of the chiral superfields also naturally suppress the μ-term and automatically forbid baryon number and lepton number violating operators. While all flavor-changing neutral current constraints in the down quark and charged-lepton sectors can be satisfied, we find that the constraint from D0-D¯0 turns out to be much more stringent than the constraints from the precision electroweak data.

  15. A description of the Galactic Center excess in the Minimal Supersymmetric Standard Model

    NASA Astrophysics Data System (ADS)

    Achterberg, Abraham; Amoroso, Simone; Caron, Sascha; Hendriks, Luc; Ruiz de Austri, Roberto; Weniger, Christoph

    2015-08-01

    Observations with the Fermi Large Area Telescope (LAT) indicate an excess in gamma rays originating from the center of our Galaxy. A possible explanation for this excess is the annihilation of Dark Matter particles. We have investigated the annihilation of neutralinos as Dark Matter candidates within the phenomenological Minimal Supersymmetric Standard Model (pMSSM) . An iterative particle filter approach was used to search for solutions within the pMSSM . We found solutions that are consistent with astroparticle physics and collider experiments, and provide a fit to the energy spectrum of the excess. The neutralino is a Bino/Higgsino or Bino/Wino/Higgsino mixture with a mass in the range 84-92 GeV or 87-97 GeV annihilating into W bosons. A third solutions is found for a neutralino of mass 174-187 GeV annihilating into top quarks. The best solutions yield a Dark Matter relic density 0.06 < Ω h2 <0.13. These pMSSM solutions make clear forecasts for LHC, direct and indirect DM detection experiments. If the pMSSM explanation of the excess seen by Fermi-LAT is correct, a DM signal might be discovered soon.

  16. Top quark electric dipole moment in a minimal supersymmetric standard model extension with vectorlike multiplets

    SciTech Connect

    Ibrahim, Tarek; Nath, Pran

    2010-09-01

    The electric dipole moment (EDM) of the top quark is calculated in a model with a vector like multiplet which mixes with the third generation in an extension of the minimal supersymmetric standard model. Such mixings allow for new CP violating phases. Including these new CP phases, the EDM of the top in this class of models is computed. The top EDM arises from loops involving the exchange of the W, the Z as well as from the exchange involving the charginos, the neutralinos, the gluino, and the vector like multiplet and their superpartners. The analysis of the EDM of the top is more complicated than for the light quarks because the mass of the external fermion, in this case the top quark mass cannot be ignored relative to the masses inside the loops. A numerical analysis is presented and it is shown that the top EDM could be close to 10{sup -19} ecm consistent with the current limits on the EDM of the electron, the neutron and on atomic EDMs. A top EDM of size 10{sup -19} ecm could be accessible in collider experiments such as the International Linear Collider.

  17. A description of the Galactic Center excess in the Minimal Supersymmetric Standard Model

    SciTech Connect

    Achterberg, Abraham; Amoroso, Simone; Caron, Sascha; Hendriks, Luc; Austri, Roberto Ruiz de

    2015-08-03

    Observations with the Fermi Large Area Telescope (LAT) indicate an excess in gamma rays originating from the center of our Galaxy. A possible explanation for this excess is the annihilation of Dark Matter particles. We have investigated the annihilation of neutralinos as Dark Matter candidates within the phenomenological Minimal Supersymmetric Standard Model (pMSSM). An iterative particle filter approach was used to search for solutions within the pMSSM. We found solutions that are consistent with astroparticle physics and collider experiments, and provide a fit to the energy spectrum of the excess. The neutralino is a Bino/Higgsino or Bino/Wino/Higgsino mixture with a mass in the range 84–92 GeV or 87–97 GeV annihilating into W bosons. A third solutions is found for a neutralino of mass 174–187 GeV annihilating into top quarks. The best solutions yield a Dark Matter relic density 0.06<Ωh{sup 2}<0.13. These pMSSM solutions make clear forecasts for LHC, direct and indirect DM detection experiments. If the pMSSM explanation of the excess seen by Fermi-LAT is correct, a DM signal might be discovered soon.

  18. Inflation driven by scalar field with non-minimal kinetic coupling with Higgs and quadratic potentials

    SciTech Connect

    Granda, L.N.

    2011-04-01

    We study a scalar field with non-minimal kinetic coupling to itself and to the curvature. The slow rolling conditions allowing an inflationary background have been found. The quadratic and Higgs type potentials have been considered, and the corresponding values for the scalar fields at the end of inflation allows to recover the connection with particle physics.

  19. High density preheating effects on Q-ball decays and inflation in the minimal supersymmetric standard model.

    PubMed

    Berkooz, Micha; Chung, Daniel J H; Volansky, Tomer

    2006-01-27

    Nonperturbative preheating decay of postinflationary condensates often results in a high density, low momenta, nonthermal gas. In the case where the nonperturbative classical evolution also leads to Q balls, this effect shields them from instant dissociation, and may radically change the thermal history of the Universe. For example, in a large class of inflationary scenarios, motivated by the minimal supersymmetric standard model and its embedding in string theory, the reheat temperature changes by a multiplicative factor of 10(12). PMID:16486682

  20. Higgs portal dark matter in the minimal gauged U(1){sub B-L} model

    SciTech Connect

    Okada, Nobuchika; Seto, Osamu

    2010-07-15

    We propose a scenario of the right-handed neutrino dark matter in the context of the minimal gauged U(1){sub B-L} model by introducing an additional parity which ensures the stability of dark matter particle. The annihilation of this right-handed neutrino takes place dominantly through the s-channel Higgs boson exchange, so that this model can be called the Higgs portal dark matter model. We show that the thermal relic abundance of the right-handed neutrino dark matter with the help of Higgs resonance can match the observed dark matter abundance. In addition, we estimate the cross section with nucleon and show that the next generation direct dark matter search experiments can explore this model.

  1. THE HIGGS WORKING GROUP: SUMMARY REPORT.

    SciTech Connect

    DAWSON, S.; ET AL.

    2005-08-01

    This working group has investigated Higgs boson searches at the Tevatron and the LHC. Once Higgs bosons are found their properties have to be determined. The prospects of Higgs coupling measurements at the LHC and a high-energy linear e{sup +}e{sup -} collider are discussed in detail within the Standard Model and its minimal supersymmetric extension (MSSM). Recent improvements in the theoretical knowledge of the signal and background processes are presented and taken into account. The residual uncertainties are analyzed in detail. Theoretical progress is discussed in particular for the gluon-fusion processes gg {yields} H(+j), Higgs-bremsstrahlung off bottom quarks and the weak vector-boson-fusion (VBF) processes. Following the list of open questions of the last Les Houches workshop in 2001 several background processes have been calculated at next-to-leading order, resulting in a significant reduction of the theoretical uncertainties. Further improvements have been achieved for the Higgs sectors of the MSSM and NMSSM. This report summarizes our work performed before and after the workshop in Les Houches. Part A describes the theoretical developments for signal and background processes. Part B presents recent progress in Higgs boson searches at the Tevatron collider. Part C addresses the determination of Higgs boson couplings, part D the measurement of tan {beta} and part E Higgs boson searches in the VBF processes at the LHC. Part F summarizes Higgs searches in supersymmetric Higgs decays, part G photonic Higgs decays in Higgs-strahlung processes at the LHC, while part H concentrates on MSSM Higgs bosons in the intense-coupling regime at the LHC. Part I presents progress in charged Higgs studies and part J the Higgs discovery potential in the NMSSM at the LHC. The last part K describes Higgs coupling measurements at a 1 TeV linear e{sup +}e{sup -} collider.

  2. Perspectives for Higgs and new physics

    NASA Astrophysics Data System (ADS)

    Djouadi, Abdelhak

    2016-07-01

    The implications of the discovery of a Higgs boson at the LHC with a mass of 125GeV are summarised in the context of the Standard Model of particle physics and in new physics scenarios beyond it, taking the example of the minimal supersymmetric Standard Model extension, the MSSM. The perspectives for Higgs and new physics searches at the next LHC upgrades as well as at future hadron and lepton colliders are then briefly summarized.

  3. Prospects for higgs at the Tevatron

    SciTech Connect

    Womersley, J.

    1998-02-01

    The current status of simulation studies for the observation of a standard-model or lightest supersymmetric Higgs boson at TeV33 are reviewed. Latest studies indicate that the mass range 60 < m{sub H} {approx_lt} 130 GeV can be covered at the 5-standard-deviation level with 30 fb{sup -1}, using the WH and ZH channels. This is the full allowed mass range for the lightest Higgs h of minimal supersymmetry.

  4. QCD corrections in two-Higgs-doublet extensions of the standard model with minimal flavor violation

    NASA Astrophysics Data System (ADS)

    Degrassi, G.; Slavich, P.

    2010-04-01

    We present the QCD corrections to Rb and to the ΔB=1 effective Hamiltonian in models with a second Higgs field that couples to the quarks respecting the criterion of minimal flavor violation, thus belonging either to the (1,2)1/2 or to the (8,2)1/2 representation of SU(3)×SU(2)×U(1). After the inclusion of the QCD corrections, the prediction for Rb becomes practically insensitive to the choice of renormalization scheme for the top mass, which for the type-I and type-II models translates in a more robust lower bound on tan⁡β. The QCD-corrected determinations of Rb and BR(B→Xsγ) are used to discuss the constraints on the couplings of a (colored) charged Higgs boson to top and bottom quarks.

  5. CP violation in heavy MSSM Higgs scenarios

    DOE PAGESBeta

    Carena, M.; Ellis, J.; Lee, J. S.; Pilaftsis, A.; Wagner, C. E. M.

    2016-02-18

    We introduce and explore new heavy Higgs scenarios in the Minimal Supersymmetric Standard Model (MSSM) with explicit CP violation, which have important phenomenological implications that may be testable at the LHC. For soft supersymmetry-breaking scales MS above a few TeV and a charged Higgs boson mass MH+ above a few hundred GeV, new physics effects including those from explicit CP violation decouple from the light Higgs boson sector. However, such effects can significantly alter the phenomenology of the heavy Higgs bosons while still being consistent with constraints from low-energy observables, for instance electric dipole moments. To consider scenarios with amore » charged Higgs boson much heavier than the Standard Model (SM) particles but much lighter than the supersymmetric particles, we revisit previous calculations of the MSSM Higgs sector. We compute the Higgs boson masses in the presence of CP violating phases, implementing improved matching and renormalization-group (RG) effects, as well as two-loop RG effects from the effective two-Higgs Doublet Model (2HDM) scale MH± to the scale MS. Here, we illustrate the possibility of non-decoupling CP-violating effects in the heavy Higgs sector using new benchmark scenarios named.« less

  6. Shifted focus point of the Higgs mass parameter from the minimal mixed mediation of supersymmetry breaking

    NASA Astrophysics Data System (ADS)

    Kyae, Bumseok

    2015-07-01

    We employ both the minimal gravity- and the minimal gauge mediations of supersymmetry breaking at the grand unified theory (GUT) scale in a single supergravity framework, assuming the gaugino masses are generated dominantly by the minimal gauge mediation effects. In such a "minimal mixed mediation model," a "focus point" of the soft Higgs mass parameter, mhu 2 emerges at 3-4 TeV energy scale, which is exactly the stop mass scale needed for explaining the 126 GeV Higgs boson mass without the "A -term" at the three-loop level. As a result, mhu2 can be quite insensitive to various trial stop masses at low energy, reducing the fine-tuning measures to be much smaller than 100 even for a 3-4 TeV low energy stop mass and -0.5

  7. Discussing direct search of dark matter particles in the minimal supersymmetric extension of the standard model with light neutralinos

    SciTech Connect

    Fornengo, N.; Scopel, S.; Bottino, A.

    2011-01-01

    We examine the status of light neutralinos in an effective minimal supersymmetric extension of the standard model at the electroweak scale which was considered in the past and discussed in terms of the available data of direct searches for dark matter particles. Our reanalysis is prompted by new measurements at the Tevatron and B factories which might potentially provide significant constraints on the minimal supersymmetric extension of the standard model. Here we examine in detail all these new data and show that the present published results from the Tevatron and B factories have only a mild effect on the original light-neutralino population. This population, which fits quite well the DAMA/LIBRA annual modulation data, would also agree with the preliminary results of CDMS, CoGeNT, and CRESST, should these data, which are at present only hints of excesses of events over the expected backgrounds, be interpreted as authentic signals of dark matter. For the neutralino mass we find a lower bound of 7-8 GeV. Our results differ from some recent conclusions by other authors because of a few crucial points which we try to single out and elucidate.

  8. Supersymmetric unification requires extra dimensions

    SciTech Connect

    Chen, Mu-Chun; Fallbacher, Maximilian; Ratz, Michael

    2013-05-23

    We discuss settings that predict precision gauge unification in the minimal supersymmetric standard model. We show that, if one requires anomaly freedom and fermion masses while demanding that unification is not an accident, only R symmetries can forbid the supersymmetric Higgs mass term {mu}. We then review the proof that R symmetries are not available in conventional grand unified theories (GUTs) and argue that this prevents natural solutions to the doublet-triplet splitting problem in four dimensions. On the other hand, higher-dimensional GUTs do not suffer from this problem. We briefly comment on an explicit string-derived model in which the {mu} and dimension five proton decay problems are solved by an order four discrete R symmetry, and comment on the higher-dimensional origin of this symmetry.

  9. Searches for non-standard-model Higgs bosons at the Tevatron

    SciTech Connect

    Landsberg, Greg L.; /Brown U.

    2007-05-01

    Search for non-Standard-Model Higgs bosons is one of the major goals of the ongoing Fermilab Tevatron run. Large data sets accumulated by the CDF and D{O} experiments break new grounds in sensitivity. We review recent Tevatron results on searches for Higgs bosons in Minimal Supersymmetric Model in the multi b-jet and {tau}{tau} final states, as well as a search for fermiophobic Higgs in the multiphoton final state.

  10. Including R-parity violation in the numerical computation of the spectrum of the minimal supersymmetric standard model: SOFTSUSY3.0

    NASA Astrophysics Data System (ADS)

    Allanach, B. C.; Bernhard, M. A.

    2010-01-01

    Current publicly available computer programs calculate the spectrum and couplings of the minimal supersymmetric standard model under the assumption of R-parity conservation. Here, we describe an extension to the SOFTSUSY program which includes R-parity violating effects. The user provides a theoretical boundary condition upon the high-scale supersymmetry breaking R-parity violating couplings. Successful radiative electroweak symmetry breaking, electroweak and CKM matrix data are used as weak-scale boundary conditions. The renormalisation group equations are solved numerically between the weak scale and a high energy scale using a nested iterative algorithm. This paper serves as a manual to the R-parity violating mode of the program, detailing the approximations and conventions used. Program summaryProgram title:SOFTSUSY v3.0 Catalogue identifier: ADPM_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADPM_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 75 927 No. of bytes in distributed program, including test data, etc.: 570 916 Distribution format: tar.gz Programming language: C++, Fortran Computer: Personal computer Operating system: Tested on Linux 4.x Word size: 32 bits Classification: 11.6 Catalogue identifier of previous version: ADPM_v1_0 Journal reference of previous version: Comput. Phys. Comm. 143 (2002) 305 Does the new version supersede the previous version?: Yes Nature of problem: Calculating supersymmetric particle spectrum and mixing parameters in the R-parity violating minimal supersymmetric standard model. The solution to the renormalisation group equations must be consistent with a high-scale boundary condition on supersymmetry breaking parameters and R parameters, as well as a weak-scale boundary condition on gauge couplings, Yukawa

  11. Effective metrics in the non-minimal Einstein-Yang-Mills-Higgs theory

    SciTech Connect

    Balakin, A.B. Dehnen, H. Zayats, A.E.

    2008-09-15

    We formulate a self-consistent non-minimal five-parameter Einstein-Yang-Mills-Higgs (EYMH) model and analyse it in terms of effective (associated, color and color-acoustic) metrics. We use a formalism of constitutive tensors in order to reformulate master equations for the gauge, scalar and gravitational fields and reconstruct in the algebraic manner the so-called associated metrics for the Yang-Mills field. Using WKB-approximation we find color metrics for the Yang-Mills field and color-acoustic metric for the Higgs field in the framework of five-parameter EYMH model. Based on explicit representation of these effective metrics for the EYMH system with uniaxial symmetry, we consider cosmological applications for Bianchi-I, FLRW and de Sitter models. We focus on the analysis of the obtained expressions for velocities of propagation of longitudinal and transversal color and color-acoustic waves in a (quasi)vacuum interacting with curvature; we show that curvature coupling results in time variations of these velocities. We show, that the effective metrics can be regular or can possess singularities depending on the choice of the parameters of non-minimal coupling in the cosmological models under discussion. We consider a physical interpretation of such singularities in terms of phase velocities of color and color-acoustic waves, using the terms 'wave stopping' and 'trapped surface'.

  12. A Search for Supersymmetric Higgs Bosons in the Di-tau Decay Mode in Proton - Anti-proton Collisions at 1.8 TeV

    SciTech Connect

    Connolly, Amy Lynn

    2003-09-01

    A search for directly produced Supersymmetric Higgs Bosons has been performed in the di-tau decay channel in 86.3 {+-} 3.5 pb{sup -1} of data collected by CDF during Run1b at the Tevatron. They search for events where one tau decays to an electron and the other tau decays hadronically. They perform a counting experiment and set limits on the cross section for Higgs production in the high tan {beta} region of the m{sub A}-tan {beta} plane. For a benchmark parameter space point where m{sub A} = 100 and tan {beta} = 50, they set a 95% confidence level upper limit at 891 pb compared to the theoretically predicted cross section of 122 pb. For events where the tau candidates are not back-to-back, they utilize a di-tau mass reconstruction technique for the first time on hadron collider data. Limits based on a likelihood binned in di-tau mass from non-back-to-back events alone are weaker than the limits obtained from the counting experiment using the full di-tau sample.

  13. Search for a non-minimal Higgs boson produced in the reaction e+e- → hZ∗

    NASA Astrophysics Data System (ADS)

    Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Pietrzyk, B.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Mattison, T.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Blucher, E.; Bonvicini, G.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Hagelberg, R.; Harvey, J.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Lohse, T.; Maggi, M.; Markou, C.; Martinez, M.; Mato, P.; Meinhard, H.; Minten, A.; Miotto, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Pater, J. R.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Tomalin, I. R.; Veenhof, R.; Wachsmuth, H.; Wasserbaech, S.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Prulhière, F.; Saadi, F.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Kyriakis, A.; Simopoulo, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Focardi, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Levinthal, D.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Moutoussi, A.; Nash, J.; Patton, S.; Payne, D. G.; Phillips, M. J.; San Martin, G.; Sedgbeer, J. K.; Wright, A. G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Vogl, R.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wanke, R.; Wolf, B.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Nicod, D.; Papalexiou, S.; Payre, P.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Jakobs, K.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; Denis, R. St.; Wolf, G.; Alemany, R.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jaffe, D. E.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Gao, Y.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Cartwright, S.; Combley, F.; Dawson, I.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Rivera, F.; Schäfer, U.; Smolik, L.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Conway, J. S.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Hayes, O. J.; Nachtman, J. M.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I.; Sharma, V.; Shi, Z. H.; Turk, J. D.; Walsh, A. M.; Weber, F. V.; Sau Lan Wu; Wu, X.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1993-08-01

    A data sample corresponding to 1.23 million hadronic Z decays collected by the ALEPH detector at LEP has been searched for signals of the production of a non-minimal CP-even Higgs boson h in the reaction e+e- → hZ∗. The h decay modes considered were: those of the minimal standard model Higgs boson, with modified branching ratios; decays into a pair of CP-odd Higgs bosons A; and decays into invisible final states. Only one event was found, a very acoplanar e +e - pair which could originate from the standard model background process e+e- → e+e-v v¯. Upper limits for the cross-section of the reaction e+e- → hZ∗ have been derived as a function of mh, the mass of the Higgs boson h. In the case of invisible decays, the 95% CL lower limit on mh is 65 GeV/ c2 for a production cross-section equal to that of a minimal standard model Higgs boson. When combined with previous ALEPH results on the reaction e +e - → hA, these cross-section upper limits exclude a domain in the ( mhmA) plane of the MSSM such that if invisible h and A decays can be neglected, 95% CL lower limits of 44 and 21 GeV/ c2 result for mh and mA, respectively, independent of the other parameters of the model.

  14. The upside of minimal left-right supersymmetric seesaw in deflected anomaly mediation

    NASA Astrophysics Data System (ADS)

    Spinner, Sogee

    The state of the standard model of particle physics is reviewed focusing on two of it's major issues: the hierarchy problem and its inconsistency with observed neutrino masses. Supersymmetry, an elegant solution to the former, and the seesaw mechanism in left-right models, a natural solution to the latter, are then introduced. The work then focuses on a specific supersymmetric left-right models, which has an additional discrete symmetry allowing a prediction of the seesaw scale at around 1011 GeV---consistent with neutrino oscillation data. It also solves the micro problem and guarantees automatic R-parity conservation and a pair of light doubly-charged Higgses which can be searched for at the LHC. This model has interesting properties in the context of anomaly mediated supersymmetry breaking (AMSB). After a brief introduction to this topic, it is shown that this model is an instance of the Pomarol Rattazzi model of deflected AMSB. The tachyonic slepton problem of AMSB is solved in a combination of two ways: the right-handed sleptons are saved by their couplings to the low energy doubly-charged fields while the left-handed sleptons receive positive contributions from the partially decoupled D-terms. The resulting phenomenology is similar to that of mimimal AMSB due to the gaugino spectrum; however, same generation mass differences in the sfermion sector are much larger than that of mAMSB and the right-handed selectron can be as massive as the squarks. Finally, this model also contains a mechanism for solving the EWSB problem of AMSB and a dark matter candidate.

  15. Natural SM-like 126 GeV Higgs boson via nondecoupling D terms

    NASA Astrophysics Data System (ADS)

    Bertuzzo, Enrico; Frugiuele, Claudia

    2016-02-01

    Accommodating both a 126 GeV mass and standard model (SM)-like couplings for the Higgs has a fine-tuning price in supersymmetric models. Examples are the minimal supersymmetric standard model, in which SM-like couplings are natural, but raising the Higgs mass to 126 GeV requires a considerable tuning, and the nonminimal supersymmetric standard model, in which the situation is reversed: the Higgs is naturally heavier, but being SM-like requires some tuning. We show that models with nondecoupling D terms alleviate this tension—a 126 GeV SM-like Higgs comes out basically with no fine-tuning cost. In addition, the analysis of the fine-tuning of the extended gauge sector shows that naturalness requires the heavy gauge bosons to likely be within the reach of LHC run II.

  16. Natural SM-like 126 GeV Higgs boson via nondecoupling D terms

    DOE PAGESBeta

    Bertuzzo, Enrico; Frugiuele, Claudia

    2016-02-16

    Accommodating both a 126 GeV mass and standard model (SM)-like couplings for the Higgs has a fine-tuning price in supersymmetric models. Examples are the minimal supersymmetric standard model, in which SM-like couplings are natural, but raising the Higgs mass to 126 GeV requires a considerable tuning, and the nonminimal supersymmetric standard model, in which the situation is reversed: the Higgs is naturally heavier, but being SM-like requires some tuning. Finally, we show that models with nondecoupling D terms alleviate this tension—a 126 GeV SM-like Higgs comes out basically with no fine-tuning cost. In addition, the analysis of the fine-tuning of the extended gaugemore » sector shows that naturalness requires the heavy gauge bosons to likely be within the reach of LHC run II.« less

  17. Predictions of the Higgs Mass and the Weak Mixing Angle in the 6D Gauge-Higgs Unification

    NASA Astrophysics Data System (ADS)

    Hasegawa, Kouhei; Lim, Chong-Sa; Maru, Nobuhito

    2016-07-01

    In the gauge-Higgs unification with multiple extra spaces, the Higgs self-coupling is on the order of g2 and the Higgs boson is predicted to be light, being consistent with the LHC results. When the gauge group is simple, the weak mixing angle is also predictable. We address a question on whether there exists a model of gauge-Higgs unification in six-dimensional space-time, which successfully predicts the mass ratios of the Higgs boson and weak gauge bosons. First, using a useful formula, we give a general argument on the condition for obtaining a realistic prediction of the weak mixing angle sin2θW = 1/4, and find that triplet and sextet representations of the minimal SU(3) gauge group lead to the realistic prediction. Concerning the Higgs mass, we notice that, in the models with one Higgs doublet, the predicted Higgs mass is always the same: MH = 2MW. However, by extending our discussion to the models with two Higgs doublets, the situation changes: we obtain an interesting prediction MH ≤ 2MW at the leading order of the perturbation. Thus, it is possible to recover the observed Higgs mass, 125 GeV, for a suitable choice of the parameter. The situation is in clear contrast to the case of the minimal supersymmetric standard model, where MH ≤ MZ at the classical level and the predicted Higgs mass cannot recover the observed value.

  18. The Higgs Working Group: Summary report

    SciTech Connect

    D. Cavalli et al.

    2004-03-18

    In this working group we have investigated the prospects for Higgs boson searches at the Tevatron and LHC and, in particular, the potential of these colliders to determine the Higgs properties once these particles have been found. The analyses were done in the framework of the Standard Model (SM) and its supersymmetric extensions as the minimal (MSSM) and next-to-minimal (NMSSM) supersymmetric extensions. The work for the discovery potential of the LHC mainly concentrated on the difficult regions of previous analyses as those which are plagued by invisible Higgs decays and Higgs decays into supersymmetric particles. Moreover, the additional signatures provided by the weak vector-boson fusion process (WBF) have been addressed and found to confirm the results of previous analyses. A major experimental effort has been put onto charged Higgs boson analyses. The final outcome was a significant improvement of the discovery potential at the Tevatron and LHC than previous analyses suggested. For an accurate determination of Higgs boson couplings, the theoretical predictions for the signal and background processes have to be improved. A lot of progress has been made during and after this workshop for the gluon-fusion gg {yields} H + (0, 1, 2jets) and the associated t{bar t}H production process. A thorough study of the present theoretical uncertainties of signal and background processes has been initialized, culminating in a list of open theoretical problems. A problem of major experimental interest is the proper treatment of processes involving bottom quark densities, which is crucial for some important signal and background processes. Further theoretical improvements have been achieved for the MSSM Higgs boson masses and Higgs bosons in the NMSSM. This report summarizes our work. The first part deals with theoretical developments for the signal and background processes. The second part gives an overview of the present status of Higgs boson searches at the Tevatron. The

  19. Prospects for Higgs- and Z -resonant neutralino dark matter

    NASA Astrophysics Data System (ADS)

    Hamaguchi, Koichi; Ishikawa, Kazuya

    2016-03-01

    In the minimal supersymmetric standard models, neutralino dark matter with mass of mχ˜mZ/2 ˜45 GeV and mχ˜mh/2 ˜62 GeV can have the thermal relic abundance Ωχ 1h2≃0.120 via the Z - and Higgs-resonant annihilations, respectively, while avoiding all the current constraints. Phenomenology of such scenarios is determined only by three parameters, bino mass M1, Higgsino mass μ , and tan β , in the limit that all other supersymmetric particles and heavy Higgs bosons are decoupled. In this paper, we comprehensively study the constraints and future prospects of the search for such Higgs- and Z -resonant neutralino dark matter. It is shown that almost all the parameter space of the scenario will be probed complementarily by the LHC search for the chargino and neutralinos, the direct detection experiments, and the Higgs invisible decay search at the ILC.

  20. Electroweak Baryogenesis and Higgs Properties

    SciTech Connect

    Cohen, Timothy; Morrissey, David E.; Pierce, Aaron; /Michigan U., MCTP

    2012-03-13

    We explore the connection between the strength of the electroweak phase transition and the properties of the Higgs boson. Our interest is in regions of parameter space that can realize electroweak baryogenesis. We do so in a simplified framework in which a single Higgs field couples to new scalar fields charged under SU(3){sub c} by way of the Higgs portal. Such new scalars can make the electroweak phase transition more strongly first-order, while contributing to the effective Higgs boson couplings to gluons and photons through loop effects. For Higgs boson masses in the range 115 {approx}< m{sub h} {approx}< 130 GeV, whenever the phase transition becomes strong enough for successful electroweak baryogenesis, we find that Higgs boson properties are modified by an amount observable by the LHC. We also discuss the baryogenesis window of the minimal supersymmetric standard model (MSSM), which appears to be under tension. Furthermore, we argue that the discovery of a Higgs boson with standard model-like couplings to gluons and photons will rule out electroweak baryogenesis in the MSSM.

  1. Nonuniversal scalar mass scenario with Higgs funnel region of supersymmetric dark matter: A signal-based analysis for the Large Hadron Collider

    SciTech Connect

    Bhattacharya, Subhaditya; Mukhopadhyaya, Biswarup; Chattopadhyay, Utpal; Das, Debottam; Choudhury, Debajyoti

    2010-04-01

    We perform a multilepton channel analysis in the context of the Large Hadron Collider (LHC) for Wilkinson Microwave Anisotropy Probe compatible points in a model with nonuniversal scalar masses, which admits a Higgs funnel region of supersymmetry dark matter even for a small tan{beta}. In addition to two- and three-lepton final states, four-lepton events, too, are shown to be useful for this purpose. We also compare the collider signatures in similar channels for Wilkinson Microwave Anisotropy Probe compatible points in the minimal supergravity (mSUGRA) framework with similar gluino masses. Some definite features of such nonuniversal scenario emerge from the analysis.

  2. Dark light Higgs bosons.

    SciTech Connect

    Draper, P.; Liu, T.; Wagner, C. E. M.; Wang, L.-T.; Zhang, H.

    2011-03-24

    We study a limit of the nearly Peccei-Quinn-symmetric next-to-minimal supersymmetric standard model possessing novel Higgs and dark matter (DM) properties. In this scenario, there naturally coexist three light singletlike particles: a scalar, a pseudoscalar, and a singlinolike DM candidate, all with masses of order 0.1-10 GeV. The decay of a standard model-like Higgs boson to pairs of the light scalars or pseudoscalars is generically suppressed, avoiding constraints from collider searches for these channels. For a certain parameter window annihilation into the light pseudoscalar and exchange of the light scalar with nucleons allow the singlino to achieve the correct relic density and a large direct-detection cross section consistent with the DM direct-detection experiments, CoGeNT and DAMA/LIBRA, preferred region simultaneously. This parameter space is consistent with experimental constraints from LEP, the Tevatron, ?, and flavor physics.

  3. Non-thermal Higgsino dark matter, heavy gravitino and 125 GeV Higgs boson in modulus/anomaly-mediated supersymmetric models

    NASA Astrophysics Data System (ADS)

    Allahverdi, Rouzbeh; Dutta, Bhaskar; Sinha, Kuver

    2012-11-01

    If the lightest supersymmetric particle (LSP) is Higgsino-like, the thermal relic density is lower than the observed dark matter content for a LSP mass in the sub-TeV region. We outline constraints arising from the Fermi Gamma-ray Telescope data and LSP production from gravitino decay that must be satisfied by a successful nonthermal Higgsino scenario. We show that in a generic class of models where anomaly- and modulus-mediated contributions to supersymmetry breaking are of comparable size, Higgsino arises as the only viable sub-TeV dark matter candidate if gravitinos are heavy enough to decay before the onset of big bang nucleosynthesis. The correct relic density can be obtained via modulus decay in these models. As an explicit example, we consider a modulus sector in effective field theory (D=4, N=1 supergravitiy arising from type IIB Kachru-Kallosh-Linde-Trivedi compactification). Within this class of mirage mediation models, heaviness of the gravitino forces a sub-TeV Higgsino LSP and gives a Higgs mass around 125 GeV. In this example, the constraints from direct detection experiments are also satisfied.

  4. Radiative neutralino production in low energy supersymmetric models

    SciTech Connect

    Basu, Rahul; Sharma, Chandradew; Pandita, P. N.

    2008-06-01

    We study the production of the lightest neutralinos in the radiative process e{sup +}e{sup -}{yields}{chi}-tilde{sub 1}{sup 0}{chi}-tilde{sub 1}{sup 0}{gamma} in low energy supersymmetric models for the International Linear Collider energies. This includes the minimal supersymmetric standard model as well as its extension with an additional chiral Higgs singlet superfield, the nonminimal supersymmetric standard model. We compare and contrast the dependence of the signal cross section on the parameters of the neutralino sector of the minimal and nonminimal supersymmetric standard model. We also consider the background to this process coming from the standard model process e{sup +}e{sup -}{yields}{nu}{nu}{gamma}, as well as from the radiative production of the scalar partners of the neutrinos (sneutrinos) e{sup +}e{sup -}{yields}{nu}-tilde{nu}-tilde*{gamma}, which can be a background to the radiative neutralino production when the sneutrinos decay invisibly. In low energy supersymmetric models radiative production of the lightest neutralinos may be the only channel to study supersymmetric partners of the standard model particles at the first stage of a linear collider, since heavier neutralinos, charginos, and sleptons may be too heavy to be pair produced at a e{sup +}e{sup -} machine with {radical}(s)=500 GeV.

  5. An analysis of B -L =-2 operators from matter-Higgs interactions in a class of supersymmetric SO(10 ) models

    NASA Astrophysics Data System (ADS)

    Nath, Pran; Syed, Raza M.

    2016-03-01

    Recently interest in grand unification scale baryogenesis has been resurrected due to the observation that B -violating dimension seven operators that arise in grand unified theories that also violate B -L produce baryon asymmetry that cannot be wiped out by sphaleron processes. While a general analysis of such higher dimensional operators from a bottom up approach exists in the literature, a full analysis of them derived from grand unification does not exist. In this paper we present a complete analysis of B -L =-2 operators within a realistic S O (10 ) grand unification where the doublet-triplet splitting is automatic via a missing partner mechanism. Specifically we compute all allowed dimension five, dimension seven and dimension nine operators arising from matter-Higgs interactions. The relative strength of all the allowed B -L =-2 operators is given. Such interactions are useful in the study of neutrino masses, baryogenesis, proton decay and n -n ¯ oscillations within a common realistic grand unification framework.

  6. Lepton masses in a minimal model with triplet Higgs bosons and S{sub 3} flavor symmetry

    SciTech Connect

    Mitra, Manimala; Choubey, Sandhya

    2008-12-01

    Viable neutrino and charged lepton masses and mixings are obtained by imposing a S{sub 3}xZ{sub 4}xZ{sub 3} flavor symmetry in a model with a few additional Higgs. We use two SU(2){sub L} triplet Higgs which are arranged as a doublet of S{sub 3}, and standard model singlet Higgs which are also put as doublets of S{sub 3}. We break the S{sub 3} symmetry in this minimal model by giving vacuum expectation values (VEV) to the additional Higgs fields. Dictated by the minimum condition for the scalar potential, we obtain certain VEV alignments which allow us to maintain {mu}-{tau} symmetry in the neutrino sector, while breaking it maximally for the charged leptons. This helps us to simultaneously explain the hierarchical charged lepton masses, and the neutrino masses and mixings. In particular, we obtain maximal {theta}{sub 23} and zero {theta}{sub 13}. We allow for a mild breaking of the {mu}-{tau} symmetry for the neutrinos and study the phenomenology. We give predictions for {theta}{sub 13} and the CP violating Jarlskog invariant J{sub CP}, as a function of the {mu}-{tau} symmetry breaking parameter. We also discuss possible collider signatures and phenomenology associated with lepton flavor violating processes.

  7. Non-minimal inflation and SUSY GUTs

    SciTech Connect

    Okada, Nobuchika

    2012-07-27

    The Standard Model Higgs boson with the nonminimal coupling to the gravitational curvature can drive cosmological inflation. We study this type of inflationary scenario in the context of supergravity. We first point out that it is naturally implemented in the minimal supersymmetric SU(5) model, and hence virtually in any GUT models. Next we propose another scenario based on the Minimal Supersymmetric Standard Model supplemented by the right-handed neutrinos. These models can be tested by new observational data from the Planck satellite experiments within a few years.

  8. IceCube, DeepCore, PINGU and the indirect search for supersymmetric dark matter

    SciTech Connect

    Bergeron, Paul; Profumo, Stefano E-mail: profumo@ucsc.edu

    2014-01-01

    The discovery of a particle that could be the lightest CP-even Higgs of the minimal supersymmetric extension of the Standard Model (MSSM) and the lack of evidence so far for supersymmetry at the LHC have many profound implications, including for the phenomenology of supersymmetric dark matter. In this study, we re-evaluate and give an update on the prospects for detecting supersymmetric neutralinos with neutrino telescopes, focussing in particular on the IceCube/DeepCore Telescope as well as on its proposed extension, PINGU. Searches for high-energy neutrinos from the Sun with IceCube probe MSSM neutralino dark matter models with the correct Higgs mass in a significant way. This is especially the case for neutralino dark matter models producing hard neutrino spectra, across a wide range of masses, while PINGU is anticipated to improve the detector sensitivity especially for models in the low neutralino mass range.

  9. Small numbers in supersymmetric theories of nature

    SciTech Connect

    Graesser, Michael L.

    1999-05-01

    The Standard Model of particle interactions is a successful theory for describing the interactions of quarks, leptons and gauge bosons at microscopic distance scales. Despite these successes, the theory contains many unsatisfactory features. The origin of particle masses is a central mystery that has eluded experimental elucidation. In the Standard Model the known particles obtain their mass from the condensate of the so-called Higgs particle. Quantum corrections to the Higgs mass require an unnatural fine tuning in the Higgs mass of one part in 10{sup {minus}32} to obtain the correct mass scale of electroweak physics. In addition, the origin of the vast hierarchy between the mass scales of the electroweak and quantum gravity physics is not explained in the current theory. Supersymmetric extensions to the Standard Model are not plagued by this fine tuning issue and may therefore be relevant in Nature. In the minimal supersymmetric Standard Model there is also a natural explanation for electroweak symmetry breaking. Supersymmetric Grand Unified Theories also correctly predict a parameter of the Standard Model. This provides non-trivial indirect evidence for these theories. The most general supersymmetric extension to the Standard Model however, is excluded by many physical processes, such as rare flavor changing processes, and the non-observation of the instability of the proton. These processes provide important information about the possible structure such a theory. In particular, certain parameters in this theory must be rather small. A physics explanation for why this is the case would be desirable. It is striking that the gauge couplings of the Standard Model unify if there is supersymmetry close to the weak scale. This suggests that at high energies Nature is described by a supersymmetric Grand Unified Theory. But the mass scale of unification must be introduced into the theory since it does not coincide with the probable mass scale of strong quantum gravity

  10. The collider phenomenology of supersymmetric models

    NASA Astrophysics Data System (ADS)

    Muller, David J.

    Scope and method of study. The purpose of this study is to investigate the phenomenology of various supersymmetric models. First, the Minimal Supersymmetric Standard Model (MSSM) is investigated. This model contains an extended Higgs sector that includes a charged boson. The effect that this charged Higgs boson has on the signatures for top quark pair production at the Tevatron is investigated. The rest of the work is devoted to the phenomenology of models with gauge mediated supersymmetry breaking (GMSB). In GMSB models, the lighter stau can be the next to lightest supersymmetric particle. The signals at hadronic colliders for GMSB models with minimal visible sector content are explored for this case. A GMSB model with non-minimal visible sector content is also explored. This is the left-right symmetric GMSB model which contains doubly charged bosons and fermions that could be light enough in mass to be produced at Run II of the Tevatron. Findings and conclusions. The presence of a charged Higgs boson that is lighter than the top quark is found to have a significant impact on the expected signatures for top quark pair production at the Tevatron. This is marked by an overall decrease in high pT electrons and muons in the final states. In addition, for tan beta less than about one, the three-body decay H+→bbW leads to final states that are not present in the Standard Model. For GMSB models with the lighter stau as the next to lightest supersymmetric particle, the signature at the Tevatron typically involves two or three tau-jets plus large missing transverse energy. This tau-jet signature can be even more pronounced in left-right symmetric GMSB models due to the production of light doubly charged fermions that may couple preferentially to the third generation of leptons. The left-right models can be distinguished from GMSB models with minimal visible sector content by the distribution in angle between the highest ET tau-jets when they come from same sign tau

  11. Complementarity between nonstandard Higgs boson searches and precision Higgs boson measurements in the MSSM

    SciTech Connect

    Carena, Marcela; Haber, Howard E.; Low, Ian; Shah, Nausheen R.; Wagner, Carlos E. M.

    2015-02-03

    Precision measurements of the Higgs boson properties at the LHC provide relevant constraints on possible weak-scale extensions of the Standard Model (SM). In the context of the minimal supersymmetric Standard Model (MSSM) these constraints seem to suggest that all the additional, non-SM-like Higgs bosons should be heavy, with masses larger than about 400 GeV. This article shows that such results do not hold when the theory approaches the conditions for “alignment independent of decoupling,” where the lightest CP-even Higgs boson has SM-like tree-level couplings to fermions and gauge bosons, independently of the nonstandard Higgs boson masses. In addition, the combination of current bounds from direct Higgs boson searches at the LHC, along with the alignment conditions, have a significant impact on the allowed MSSM parameter space yielding light additional Higgs bosons. In particular, after ensuring the correct mass for the lightest CP-even Higgs boson, we find that precision measurements and direct searches are complementary and may soon be able to probe the region of non-SM-like Higgs boson with masses below the top quark pair mass threshold of 350 GeV and low to moderate values of tanβ.

  12. HiggsBounds: Confronting arbitrary Higgs sectors with exclusion bounds from LEP and the Tevatron

    NASA Astrophysics Data System (ADS)

    Bechtle, P.; Brein, O.; Heinemeyer, S.; Weiglein, G.; Williams, K. E.

    2010-01-01

    HiggsBounds is a computer code that tests theoretical predictions of models with arbitrary Higgs sectors against the exclusion bounds obtained from the Higgs searches at LEP and the Tevatron. The included experimental information comprises exclusion bounds at 95% C.L. on topological cross sections. In order to determine which search topology has the highest exclusion power, the program also includes, for each topology, information from the experiments on the expected exclusion bound, which would have been observed in case of a pure background distribution. Using the predictions of the desired model provided by the user as input, HiggsBounds determines the most sensitive channel and tests whether the considered parameter point is excluded at the 95% C.L. HiggsBounds is available as a Fortran 77 and Fortran 90 code. The code can be invoked as a command line version, a subroutine version and an online version. Examples of exclusion bounds obtained with HiggsBounds are discussed for the Standard Model, for a model with a fourth generation of quarks and leptons and for the Minimal Supersymmetric Standard Model with and without CP-violation. The experimental information on the exclusion bounds currently implemented in HiggsBounds will be updated as new results from the Higgs searches become available.

  13. Complementarity between nonstandard Higgs boson searches and precision Higgs boson measurements in the MSSM

    DOE PAGESBeta

    Carena, Marcela; Haber, Howard E.; Low, Ian; Shah, Nausheen R.; Wagner, Carlos E. M.

    2015-02-03

    Precision measurements of the Higgs boson properties at the LHC provide relevant constraints on possible weak-scale extensions of the Standard Model (SM). In the context of the minimal supersymmetric Standard Model (MSSM) these constraints seem to suggest that all the additional, non-SM-like Higgs bosons should be heavy, with masses larger than about 400 GeV. This article shows that such results do not hold when the theory approaches the conditions for “alignment independent of decoupling,” where the lightest CP-even Higgs boson has SM-like tree-level couplings to fermions and gauge bosons, independently of the nonstandard Higgs boson masses. In addition, the combinationmore » of current bounds from direct Higgs boson searches at the LHC, along with the alignment conditions, have a significant impact on the allowed MSSM parameter space yielding light additional Higgs bosons. In particular, after ensuring the correct mass for the lightest CP-even Higgs boson, we find that precision measurements and direct searches are complementary and may soon be able to probe the region of non-SM-like Higgs boson with masses below the top quark pair mass threshold of 350 GeV and low to moderate values of tanβ.« less

  14. Supersymmetric origin of matter

    SciTech Connect

    Balazs, C.; Carena, M.; Menon, A.; Morrissey, D.E.; Wagner, C.E.M.

    2005-04-01

    The minimal supersymmetric extension of the standard model (MSSM) can provide the correct neutralino relic abundance and baryon number asymmetry of the universe. Both may be efficiently generated in the presence of CP violating phases, light charginos and neutralinos, and a light top squark. Because of the coannihilation of the neutralino with the light stop, we find a large region of parameter space in which the neutralino relic density is consistent with WMAP and SDSS data. We perform a detailed study of the additional constraints induced when CP violating phases, consistent with the ones required for baryogenesis, are included. We explore the possible tests of this scenario from present and future electron electric dipole moment (EDM) measurements, direct neutralino detection experiments, collider searches and the b{yields}s{gamma} decay rate. We find that the EDM constraints are quite severe and that electron EDM experiments, together with stop searches at the Tevatron and Higgs searches at the LHC, will provide a definite test of our scenario of electroweak baryogenesis in the next few years.

  15. Implication of Higgs mediated Flavour Changing Neutral Currents with Minimal Flavour Violation

    NASA Astrophysics Data System (ADS)

    Rebelo, M. N.

    2015-07-01

    We analise phenomenological implications of two Higgs doublet models with Higgs flavour changing neutral currents suppressed in the quark sector by small entries of the Cabibbo- Kokayashi-Maskawa matrix. This suppression occurs in a natural way since it is the result of a symmetry applied to the Lagrangian. These type of models were proposed some time ago by Branco Grimus and Lavoura. Our results clearly show that these class of models allow for new physical scalars, with masses which are reachable at the LHC. The imposed symmetry severely reduces the number of free parameters and allows for predictions. Therefore these models can eventually be proved right or eliminated experimentally.

  16. NMSSM interpretations of the observed Higgs signal

    NASA Astrophysics Data System (ADS)

    Domingo, Florian; Weiglein, Georg

    2016-04-01

    While the properties of the signal that was discovered in the Higgs searches at the LHC are consistent so far with the Higgs boson of the Standard Model (SM), it is crucial to investigate to what extent other interpretations that may correspond to very different underlying physics are compatible with the current results. We use the Next-to-Minimal Supersymmetric Standard Model (NMSSM) as a well-motivated theoretical framework with a sufficiently rich Higgs phenomenology to address this question, making use of the public tools HiggsBounds and HiggsSignals in order to take into account comprehensive experimental information on both the observed signal and on the existing limits from Higgs searches at LEP, the TeVatron and the LHC. We find that besides the decoupling limit resulting in a single light state with SM-like properties, several other configurations involving states lighter or quasi-degenerate with the one at about 125 GeV turn out to give a competitive fit to the Higgs data and other existing constraints. We discuss the phenomenology and possible future experimental tests of those scenarios, and compare the features of specific scenarios chosen as examples with those arising from a more global fit.

  17. Basis-independent methods for the two-Higgs-doublet model

    SciTech Connect

    Davidson, Sacha; Haber, Howard E.

    2005-08-01

    In the most general two-Higgs-doublet model (2HDM), unitary transformations between the two Higgs fields do not change the functional form of the Lagrangian. All physical observables of the model must therefore be independent of such transformations (i.e., independent of the Lagrangian basis choice for the Higgs fields). We exhibit a set of basis-independent quantities that determine all tree-level Higgs couplings and masses. Some examples of the basis-independent treatment of 2HDM discrete symmetries are presented. We also note that the ratio of the neutral Higgs field vacuum expectation values, tan{beta}, is not a meaningful parameter in general, as it is basis dependent. Implications for the more specialized 2HDMs (e.g., the Higgs sector of the minimal supersymmetric extension of the standard model and the so-called type-I and type-II 2HDMs) are explored.

  18. Neutral Higgs production at proton colliders in the CP-conserving NMSSM

    NASA Astrophysics Data System (ADS)

    Liebler, Stefan

    2015-05-01

    We discuss neutral Higgs boson production through gluon fusion and bottom-quark annihilation in the CP-conserving -invariant Next-to-Minimal Supersymmetric Standard Model at proton colliders. For gluon fusion we adapt well-known asymptotic expansions in supersymmetric particles for the inclusion of next-to-leading order contributions of squarks and gluinos from the Minimal Supersymmetric Standard Model (MSSM) and include electroweak corrections involving light quarks. Together with the resummation of higher-order sbottom contributions in the bottom-quark Yukawa coupling for both production processes we thus present accurate cross section predictions implemented in a new release of the code SusHi. We elaborate on the new features of an additional SU singlet in the production of CP-even and -odd Higgs bosons with respect to the MSSM and include a short discussion of theoretical uncertainties.

  19. Search for CP Violating Neutral Higgs Bosons in the MSSM at LEP

    SciTech Connect

    Bechtle, Philip; /SLAC

    2006-03-13

    The LEP collaborations ALEPH, DELPHI, L3 and OPAL have searched for the neutral Higgs bosons which are predicted within the framework of the Minimal Supersymmetric Standard Model (MSSM). The data of the four collaborations are statistically combined and show no significant excess of events which would indicate the production of Higgs bosons. The search results are thus used to set upper bounds on the cross sections of various Higgs-like event topologies and limits on MSSM benchmark models, including CP-conserving and CP-violating scenarios. Here, the limits on the model parameters of the CP-violating benchmark scenario CPX and derivates of this scenario are shown.

  20. Higgs boson production via gluon fusion: Soft-gluon resummation including mass effects

    NASA Astrophysics Data System (ADS)

    Schmidt, Timo; Spira, Michael

    2016-01-01

    We analyze soft and collinear gluon resummation effects at the N3LL level for Standard Model Higgs boson production via gluon fusion g g →H and the neutral scalar and pseudoscalar Higgs bosons of the minimal supersymmetric extension at the next-to-next-to-next-to-leading-log (N3LL ) and next-to-next-to-leading-log (NNLL) level, respectively. We introduce refinements in the treatment of quark mass effects and subleading collinear gluon effects within the resummation. Soft and collinear gluon resummation effects amount to up to about 5% beyond the fixed-order results for scalar and pseudoscalar Higgs boson production.

  1. Dark Light-Higgs Bosons

    SciTech Connect

    Draper, Patrick; Liu Tao; Wagner, Carlos E. M.; Wang, Lian-Tao; Zhang Hao

    2011-03-25

    We study a limit of the nearly Peccei-Quinn-symmetric next-to-minimal supersymmetric standard model possessing novel Higgs and dark matter (DM) properties. In this scenario, there naturally coexist three light singletlike particles: a scalar, a pseudoscalar, and a singlinolike DM candidate, all with masses of order 0.1-10 GeV. The decay of a standard model-like Higgs boson to pairs of the light scalars or pseudoscalars is generically suppressed, avoiding constraints from collider searches for these channels. For a certain parameter window annihilation into the light pseudoscalar and exchange of the light scalar with nucleons allow the singlino to achieve the correct relic density and a large direct-detection cross section consistent with the DM direct-detection experiments, CoGeNT and DAMA/LIBRA, preferred region simultaneously. This parameter space is consistent with experimental constraints from LEP, the Tevatron, {Upsilon}, and flavor physics.

  2. A composite Higgs model with minimal fine-tuning: The large-N and weak-technicolor limit

    NASA Astrophysics Data System (ADS)

    Lane, Kenneth

    2014-11-01

    We suggest a criterion to minimize the amount of fine-tuning in a composite Higgs model. The paradigm of this type of model is the top-condensate model of Bardeen-Hill-Lindner. Although "minimally fine-tuned," this model fails to account correctly for the masses of the top quark and the 125 GeV Higgs boson. We propose a generalization of the Bardeen-Hill-Lindner model that employs finely tuned extended technicolor plus technicolor (TC) interactions. The additional freedom of this model may accommodate both mt(173 ) and MH(125 ). This paper studies the large-NTC and -NC limit of this model in which technicolor is weak and does not contribute to electroweak symmetry breaking. Refinements including walking-TC dynamics and a renormalization-group analysis of mt and MH will appear in a subsequent paper. A likely generic signal of this model is enhanced production of longitudinally polarized weak bosons, alone and in association with H (125 ).

  3. Electroweak symmetry breaking: Higgs/whatever

    SciTech Connect

    Chanowitz, M.S.

    1989-10-16

    In the first of these two lectures the Higgs mechanism is reviewed in its most general form, which does not necessarily require the existence of Higgs bosons. The general consequences of the hypothesis that electroweak symmetry breaking is due to the Higgs mechanism are deduced just from gauge invariance and unitarity. In the second lecture the general properties are illustrated with three specific models: the Weinberg-Salam model, its minimal supersymmetric extension, and technicolor. The second lecture concludes with a discussion of the experiment signals for strong WW scattering, whose presence or absence will allow us to determine whether the symmetry breaking sector lies above or below 1 TeV. 57 refs.

  4. The Higgs mass in the MSSM at two-loop order beyond minimal flavour violation

    NASA Astrophysics Data System (ADS)

    Goodsell, Mark D.; Nickel, Kilian; Staub, Florian

    2016-07-01

    Soft supersymmetry-breaking terms provide a wealth of new potential sources of flavour violation, which are tightly constrained by precision experiments. This has posed a challenge to construct flavour models which both explain the structure of the Standard Model Yukawa couplings and also predict soft-breaking patterns that are compatible with these constraints. While such models have been studied in great detail, the impact of flavour violating soft terms on the Higgs mass at the two-loop level has been assumed to be small or negligible. In this letter, we show that large flavour violation in the up-squark sector can give a positive or negative mass shift to the SM-like Higgs of several GeV, without being in conflict with other observations. We investigate in which regions of the parameter space these effects can be expected.

  5. A Search for supersymmetric Higgs bosons in the di-tau decay mode in p anti-p collisions at s**(1/2) = 1.8-TeV

    SciTech Connect

    Acosta, D.; Affolder, Anthony A.; Albrow, M.G.; Ambrose, D.; Amidei, D.; Anikeev, K.; Antos, J.; Apollinari, G.; Arisawa, T.; Artikov, A.; Ashmanskas, W.; Azfar, F.; Azzi-Bacchetta, P.; Bacchetta, N.; Bachacou, H.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V.E.; Barnett, B.A.; Baroiant, S.; Barone, M.; /Taiwan, Inst. Phys. /Argonne, PHY /INFN, Bologna /Brandeis U. /UC, Davis /UCLA /UC, Santa Barbara /Cantabria Inst. of Phys. /Cantabria U., Santander /Carnegie Mellon U. /Chicago U., EFI /Chicago U. /Dubna, JINR /Duke U. /Fermilab /Florida U. /Frascati /Geneva U. /Glasgow U. /Harvard U. /Hiroshima U.

    2005-06-01

    A search for direct production of Higgs bosons in the di-tau decay mode is performed with 86.3 {+-} 3.5 pb{sup -1} of data collected with the Collider Detector at Fermilab during the 1994-1995 data taking period of the Tevatron. We search for events where one tau decays to an electron plus neutrinos and the other tau decays hadronically. We perform a counting experiment and set limits on the cross section for supersymmetric Higgs boson production where tan {beta} is large and m{sub A} is small. For a benchmark parameter space point where m{sub A{sup 0}} = 100 GeV/c{sup 2} and tan {beta} = 50, we limit the production cross section multiplied by the branching ratio to be less than 77.9 pb at the 95% confidence level compared to theoretically predicted value of 11.0 pb. This is the first search for Higgs bosons decaying to tau pairs at a hadron collider.

  6. Mass spectrum and Higgs profile in B -L symmetric SSM

    NASA Astrophysics Data System (ADS)

    Ün, Cem Salih; Özdal, Özer

    2016-03-01

    We investigate the predictions on the mass spectrum and Higgs boson decays in the supersymmetric standard model extended by U (1 )B-L symmetry (BLSSM). The model requires two singlet Higgs fields, which are responsible for the radiative breaking of U (1 )B-L symmetry. It predicts degenerate right-handed neutrino masses (1.7-2.2 TeV) as well as the right-handed sneutrinos of mass ≲4 TeV . The presence of right-handed neutrinos and sneutrinos triggers the baryon and lepton number violation processes, until they decouple from the standard model particles. Besides, the model predicts rather heavy colored particles; mt ˜ , mb ˜≳1.5 TeV , while mτ ˜≳100 GeV and mχ˜1±≳600 GeV . Even though the implications are similar to the minimal supersymmetric standard model, BLSSM can predict another Higgs boson lighter than 150 GeV. We find that the second Higgs boson can be degenerate with the lightest charge parity (C P )-even Higgs boson of mass about 125 GeV and contribute to the Higgs decay into two photons. In addition, it can provide an explanation for the excess in h →4 l at the mass scale ˜145 GeV .

  7. Probing the Higgs portal at the LHC through resonant di-Higgs production

    NASA Astrophysics Data System (ADS)

    No, Jose M.; Ramsey-Musolf, Michael

    2014-05-01

    We investigate resonant di-Higgs production as a means of probing extended scalar sectors that include a 125 GeV Standard Model-like Higgs boson. For concreteness, we consider a gauge singlet Higgs portal scenario leading to two mixed doublet-singlet states, h1,2. For mh_2>2mh_1, the resonant di-Higgs production process pp→h2→h1h1 will lead to final states associated with the decaying pair of Standard Model-like Higgs scalars. We focus on h2 production via gluon fusion and on the bb¯τ+τ- final state. We find that discovery of the h2 at the LHC may be achieved with ≲100 fb-1 of integrated luminosity for benchmark parameter choices relevant to cosmology. Our analysis directly maps onto the decoupling limit of the next-to-minimal supersymmetric Standard Model and more generically onto extensions of the Standard Model Higgs sector in which a heavy scalar produced through gluon-fusion decays to a pair of Standard Model-like Higgs bosons.

  8. Updated calculations of the reach of Fermilab Tevatron upgrades for Higgs Bosons in the MSSM, mSUGRA, and mGMSB models

    SciTech Connect

    Baer, H.; Harris, B. W.; Tata, X.

    1999-04-23

    One of the crucial predictions of supersymmetric models that reduce to the Minimal Supersymmetric Standard Model (MSSM) at the weak scale is that the lightest Higgs scalar should have mass m{sub h} {approx_lt} 125-130 GeV[1]. Recent results on the reach of Fermilab Tevatron upgrades for Standard Model (SM) Higgs bosons show that masses of order 120-180 GeV may be probed [2, 3, 4, 5], depending on integrated luminosity, detector performance and signal and background modeling. Thus, the discovery of a Higgs boson (or a new limit of around 120-130 GeV on its mass) will severely constrain supersymmetric models as well. In this report, we update previous calculations made by our group [6] pertaining to the reach of Fermilab Tevatron upgrades for Higgs bosons in supersymmetric models. We present reach results for SUSY Higgs bosons within the MSSM, the minimal Supergravity model (mSUGRA) and in the minimal Gauge Mediated SUSY Breaking model (mGMSB). In this update, 95% CL exclusion contours and 5{sigma} discovery contours are presented for integrated luminosity values of 2, 5 and 20 fb{sup {minus}1}.

  9. Alignment limit of the NMSSM Higgs sector

    NASA Astrophysics Data System (ADS)

    Carena, Marcela; Haber, Howard E.; Low, Ian; Shah, Nausheen R.; Wagner, Carlos E. M.

    2016-02-01

    The next-to-minimal supersymmetric extension of the Standard Model (NMSSM) with a Higgs boson of mass 125 GeV can be compatible with stop masses of order of the electroweak scale, thereby reducing the degree of fine-tuning necessary to achieve electroweak symmetry breaking. Moreover, in an attractive region of the NMSSM parameter space, corresponding to the "alignment limit" in which one of the neutral Higgs fields lies approximately in the same direction in field space as the doublet Higgs vacuum expectation value, the observed Higgs boson is predicted to have Standard-Model-like properties. We derive analytical expressions for the alignment conditions and show that they point toward a more natural region of parameter space for electroweak symmetry breaking, while allowing for perturbativity of the theory up to the Planck scale. Moreover, the alignment limit in the NMSSM leads to a well-defined spectrum in the Higgs and Higgsino sectors and yields a rich and interesting Higgs boson phenomenology that can be tested at the LHC. We discuss the most promising channels for discovery and present several benchmark points for further study.

  10. Alignment limit of the NMSSM Higgs sector

    DOE PAGESBeta

    Carena, Marcela; Haber, Howard E.; Low, Ian; Shah, Nausheen R.; Wagner, Carlos E. M.

    2016-02-17

    The Next-to-Minimal Supersymmetric extension of the Standard Model (NMSSM) with a Higgs boson of mass 125 GeV can be compatible with stop masses of order of the electroweak scale, thereby reducing the degree of fine-tuning necessary to achieve electroweak symmetry breaking. Moreover, in an attractive region of the NMSSM parameter space, corresponding to the \\alignment limit" in which one of the neutral Higgs fields lies approximately in the same direction in field space as the doublet Higgs vacuum expectation value, the observed Higgs boson is predicted to have Standard- Model-like properties. We derive analytical expressions for the alignment conditions andmore » show that they point toward a more natural region of parameter space for electroweak symmetry breaking, while allowing for perturbativity of the theory up to the Planck scale. Additionally, the alignment limit in the NMSSM leads to a well defined spectrum in the Higgs and Higgsino sectors, and yields a rich and interesting Higgs boson phenomenology that can be tested at the LHC. Here, we discuss the most promising channels for discovery and present several benchmark points for further study.« less

  11. Quark-lepton mass relation and CKM mixing in an A4 extension of the minimal supersymmetric standard model

    NASA Astrophysics Data System (ADS)

    Morisi, S.; Nebot, M.; Patel, Ketan M.; Peinado, E.; Valle, J. W. F.

    2013-08-01

    An interesting mass relation between down-type quarks and charged leptons has been recently predicted within a supersymmetric SU(3)c⊗SU(2)L⊗U(1)Y model based on the A4 flavor symmetry. Here we propose a simple extension which provides an adequate full description of the quark sector. By adding a pair of vectorlike up quarks, we show how the CKM entries Vub, Vcb, Vtd and Vts arise from deviations of the unitarity. We perform an analysis including the most relevant observables in the quark sector, such as oscillations and rare decays of kaons, Bd and Bs mesons. In the lepton sector, the model predicts an inverted hierarchy for the neutrino masses, leading to a potentially observable rate of neutrinoless double beta decay.

  12. Applying exclusion likelihoods from LHC searches to extended Higgs sectors

    NASA Astrophysics Data System (ADS)

    Bechtle, Philip; Heinemeyer, Sven; Stål, Oscar; Stefaniak, Tim; Weiglein, Georg

    2015-09-01

    LHC searches for non-standard Higgs bosons decaying into tau lepton pairs constitute a sensitive experimental probe for physics beyond the Standard Model (BSM), such as supersymmetry (SUSY). Recently, the limits obtained from these searches have been presented by the CMS collaboration in a nearly model-independent fashion - as a narrow resonance model - based on the full dataset. In addition to publishing a exclusion limit, the full likelihood information for the narrow resonance model has been released. This provides valuable information that can be incorporated into global BSM fits. We present a simple algorithm that maps an arbitrary model with multiple neutral Higgs bosons onto the narrow resonance model and derives the corresponding value for the exclusion likelihood from the CMS search. This procedure has been implemented into the public computer code HiggsBounds (version 4.2.0 and higher). We validate our implementation by cross-checking against the official CMS exclusion contours in three Higgs benchmark scenarios in the Minimal Supersymmetric Standard Model (MSSM), and find very good agreement. Going beyond validation, we discuss the combined constraints of the search and the rate measurements of the SM-like Higgs at in a recently proposed MSSM benchmark scenario, where the lightest Higgs boson obtains SM-like couplings independently of the decoupling of the heavier Higgs states. Technical details for how to access the likelihood information within HiggsBounds are given in the appendix. The program is available at http://higgsbounds.hepforge.org.

  13. Light Higgs bosons in NMSSM at the LHC

    NASA Astrophysics Data System (ADS)

    Guchait, Monoranjan; Kumar, Jacky

    2016-04-01

    The next-to-minimal supersymmetric Standard Model (NMSSM) with an extended Higgs sector offers at least one Higgs boson as the Standard Model (SM)-like Higgs with a mass around 125 GeV. In this work, we revisit the mass spectrum and couplings of non-SM-like Higgs bosons taking into consideration most relevant constraints and identify the relevant parameter space. The discovery potential of these non-SM-like Higgs bosons, apart from their masses, is guided by their couplings with gauge bosons and fermions which are very much parameter space sensitive. We evaluate the rates of productions of these non-SM-like Higgs bosons at the LHC for a variety of decay channels in the allowed region of the parameter space. Although bb¯, ττ modes appear to be the most promising decay channels, but for a substantial region of parameter space the two-photon decay mode has a remarkably large rate. In this study we emphasize that this diphoton mode can be exploited to find the non-SM-like Higgs bosons of the NMSSM and can also be a potential avenue to distinguish the NMSSM from the MSSM. In addition, we discuss briefly the various detectable signals of these non-SM Higgs bosons at the LHC.

  14. MSSM Higgs Boson Searches at the LHC: Benchmark Scenarios after the Discovery of a Higgs-like Particle

    SciTech Connect

    Carena, M.; Heinemeyer, S.; Stål, O.; Wagner, C.E.M.; Weiglein, G.

    2013-09-01

    A Higgs-like particle with a mass of about 125.5 GeV has been discovered at the LHC. Within the current experimental uncertainties, this new state is compatible with both the predictions for the Standard Model (SM) Higgs boson and with the Higgs sector in the Minimal Supersymmetric Standard Model (MSSM). We propose new low-energy MSSM benchmark scenarios that, over a wide parameter range, are compatible with the mass and production rates of the observed signal. These scenarios also exhibit interesting phenomenology for the MSSM Higgs sector. We propose a slightly updated version of the well-known mh-max scenario, and a modified scenario (mh-mod), where the light CP-even Higgs boson can be interpreted as the LHC signal in large parts of the MA-tan \\beta\\ plane. Furthermore, we define a light stop scenario that leads to a suppression of the lightest CP-even Higgs gluon fusion rate, and a light stau scenario with an enhanced decay rate of h to \\gamma\\gamma\\ at large tan \\beta. We also suggest a \\tau-phobic Higgs scenario in which the lightest Higgs can have suppressed couplings to down-type fermions. We propose to supplement the specified value of the \\mu\\ parameter in some of these scenarios with additional values of both signs. This has a significant impact on the interpretation of searches for the non SM-like MSSM Higgs bosons. We also discuss the sensitivity of the searches to heavy Higgs decays into light charginos and neutralinos, and to decays of the form H to hh. Finally, in addition to all the other scenarios where the lightest CP-even Higgs is interpreted as the LHC signal, we propose a low-MH scenario, where instead the heavy CP-even Higgs boson corresponds to the new state around 125.5 GeV.

  15. Bosonic condensates in realistic supersymmetric GUT cosmic strings

    NASA Astrophysics Data System (ADS)

    Allys, Erwan

    2016-04-01

    We study the realistic structure of F-term Nambu-Goto cosmic strings forming in a general supersymmetric Grand Unified Theory implementation, assuming standard hybrid inflation. Examining the symmetry breaking of the unification gauge group down to the Standard Model, we discuss the minimal field content necessary to describe abelian cosmic strings appearing at the end of inflation. We find that several fields will condense in most theories, questioning the plausible occurrence of associated currents (bosonic and fermionic). We perturbatively evaluate the modification of their energy per unit length due to the condensates. We provide a criterion for comparing the usual abelian Higgs approximation used in cosmology to realistic situations.

  16. Ditau jets in Higgs searches

    SciTech Connect

    Englert, Christoph; Roy, Tuhin S.; Spannowsky, Michael

    2011-10-01

    Understanding and identifying ditau jets--jets consisting of pairs of tau particles--can be of crucial importance and may even turn out to be a necessity if the Higgs boson decays dominantly to new light scalars which, on the other hand, decay to tau pairs. As often seen in various models beyond the standard model such as in the next-to-minimal supersymmetric standard model, Higgs portals, etc., the lightness of these new states ensures their large transverse momenta and, as a consequence, the collinearity of their decay products. We show that the nonstandard signatures of these objects, which can easily be missed by standard analysis techniques, can be superbly exploited in an analysis based on subjet observables. When combined with additional selection strategies, this analysis can even facilitate an early discovery of the Higgs boson. To be specific, a light Higgs can be found with S/{radical}(B) > or approx. 5 from L{approx_equal}12 fb{sup -1} of data. We combine all these observables into a single discriminating likelihood that can be employed toward the construction of a realistic and standalone ditau tagger.

  17. Production of singlino dominated neutralinos in extended supersymmetric models

    NASA Astrophysics Data System (ADS)

    Franke, F.; Hesselbach, S.

    2002-02-01

    Neutralinos with a large singlino component may appear in extended supersymmetric models with additional singlet Higgs fields. Since singlinos do not couple to (s)fermions and gauge bosons, the cross sections for the production of singlino dominated neutralinos are generally small. Within the framework of the Next-to-Minimal Supersymmetric Standard Model (NMSSM) and an E6 inspired model we study neutralino production e+e-→χ˜01χ˜02 (χ˜01,2χ˜03) with a singlino dominated χ˜02 (χ˜03). It is shown that neutralinos with a singlino contribution up to 99% can be produced with a cross section larger than 1 fb and may therefore be detected at a high luminosity e+e- linear collider even if they are not the LSP.

  18. R -parity conserving supersymmetric extension of the Zee model

    NASA Astrophysics Data System (ADS)

    Kanemura, Shinya; Shindou, Tetsuo; Sugiyama, Hiroaki

    2015-12-01

    We extend the Zee model, where tiny neutrino masses are generated at the one-loop level, to a supersymmetric model with R -parity conservation. It is found that the neutrino mass matrix can be consistent with the neutrino oscillation data thanks to the nonholomorphic Yukawa interaction generated via one-loop diagrams of sleptons. We find a parameter set of the model, where in addition to the neutrino oscillation data, experimental constraints from the lepton flavor violating decays of charged leptons and current LHC data are also satisfied. In the parameter set, an additional C P -even neutral Higgs boson other than the standard-model-like one, a C P -odd neutral Higgs boson, and two charged scalar bosons are light enough to be produced at the LHC and future lepton colliders. If the lightest charged scalar bosons are mainly composed of the SU (2 )L-singlet scalar boson in the model, they would decay into e ν and μ ν with 50% of a branching ratio for each. In such a case, the relation among the masses of the charged scalar bosons and the C P -odd Higgs in the minimal supersymmetric standard model approximately holds with a radiative correction. Our model can be tested by measuring the specific decay patterns of charged scalar bosons and the discriminative mass spectrum of additional scalar bosons.

  19. Dirac gauginos, R symmetry and the 125 GeV Higgs

    SciTech Connect

    Bertuzzo, Enrico; Frugiuele, Claudia; Gregoire, Thomas; Ponton, Eduardo

    2015-04-20

    We study a supersymmetric scenario with a quasi exact R-symmetry in light of the discovery of a Higgs resonance with a mass of 125 GeV. In such a framework, the additional adjoint superfields, needed to give Dirac masses to the gauginos, contribute both to the Higgs mass and to electroweak precision observables. We then analyze the interplay between the two aspects, finding regions in parameter space in which the contributions to the precision observables are under control and a 125 GeV Higgs boson can be accommodated. Furthermore, we estimate the fine-tuning of the model finding regions of the parameter space still unexplored by the LHC with a fine-tuning considerably improved with respect to the minimal supersymmetric scenario. In particular, sizable non-holomorphic (non-supersoft) adjoints masses are required to reduce the fine-tuning.

  20. Dirac gauginos, R symmetry and the 125 GeV Higgs

    DOE PAGESBeta

    Bertuzzo, Enrico; Frugiuele, Claudia; Gregoire, Thomas; Ponton, Eduardo

    2015-04-20

    We study a supersymmetric scenario with a quasi exact R-symmetry in light of the discovery of a Higgs resonance with a mass of 125 GeV. In such a framework, the additional adjoint superfields, needed to give Dirac masses to the gauginos, contribute both to the Higgs mass and to electroweak precision observables. We then analyze the interplay between the two aspects, finding regions in parameter space in which the contributions to the precision observables are under control and a 125 GeV Higgs boson can be accommodated. Furthermore, we estimate the fine-tuning of the model finding regions of the parameter spacemore » still unexplored by the LHC with a fine-tuning considerably improved with respect to the minimal supersymmetric scenario. In particular, sizable non-holomorphic (non-supersoft) adjoints masses are required to reduce the fine-tuning.« less

  1. MSSM Higgs bosons at the LHC

    NASA Astrophysics Data System (ADS)

    Christensen, Neil; Han, Tao; Su, Shufang

    2012-06-01

    The recent results on Higgs boson searches from LHC experiments provide significant guidance in exploring the minimal supersymmetric (SUSY) standard model (MSSM) Higgs sector. If we accept the existence of a SM-like Higgs boson in the mass window of 123 GeV-127 GeV as indicated by the observed γγ events, there are two distinct mass regions (in mA) left in the MSSM Higgs sector: (a) the lighter CP-even Higgs boson being SM-like and the non-SM-like Higgs bosons all heavy and nearly degenerate above 300 GeV (an extended decoupling region); (b) the heavier CP-even Higgs boson being SM-like and the neutral non-SM-like Higgs bosons all nearly degenerate around 100 GeV (a small non-decoupling region). On the other hand, due to the strong correlation between the Higgs decays to W+W- and to γγ predicted in the MSSM, the apparent absence of a W+W- final state signal is in direct conflict with the γγ peak. If we consider the W+W- channel on its own, the absence of the W+W- signal would imply that the SM-like Higgs boson has reduced coupling to W±, and that the other non-SM-like Higgs bosons should not be too heavy and do not decouple. If both the γγ excess and the absence of a W+W- signal continue, new physics beyond the MSSM will be required. A similar correlation exists between the W+W- and τ+τ- channels: a reduced W+W- channel would force the τ+τ- channel to be larger. Future searches for the SM-like Higgs boson at the LHC will provide critical tests for the MSSM prediction. We also study the signals predicted for the non-SM-like Higgs bosons and emphasize the potential importance of the electroweak processes pp→H+H-, H±A0, which are independent of the SUSY parameters except for their masses. In addition, there may be sizable contributions from pp→H±h0, A0h0 and W±H0, ZH0 in the low-mass non-decoupling region, which may serve to discriminate the model parameters. We allow variations of the relevant SUSY parameters in a broad range and demonstrate the

  2. FeynHiggs: A program for the calculation of MSSM Higgs-boson observables - Version 2.6.5

    NASA Astrophysics Data System (ADS)

    Hahn, T.; Heinemeyer, S.; Hollik, W.; Rzehak, H.; Weiglein, G.

    2009-08-01

    FeynHiggs is a Fortran code for the calculation of physical observables in the field of high-energy physics. FeynHiggs calculates various observables in the Higgs sector of the Minimal Supersymmetric Standard Model (MSSM) for real or complex parameters. These observables comprise Higgs-boson masses, mixing angles, couplings, Tevatron/LHC production cross-sections, branching ratios, as well as some additional observables such as Δ ρ, M, the effective leptonic weak mixing angle, (, BR( b→sγ), electric dipole moments. New version program summaryProgram title: FeynHiggs v2.6.5 Catalogue identifier: ADKT_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADKT_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL No. of lines in distributed program, including test data, etc.: 156 455 No. of bytes in distributed program, including test data, etc.: 1 058 758 Distribution format: tar.gz Programming language: Fortran 77, C, Mathematica Computer: Intel/AMD, PowerPC, Alpha Operating system: Linux, Windows (Cygwin), Mac OS, Tru64 Unix RAM: insignificant (typically a few MB) Classification: 11.5 Catalogue identifier of previous version: ADKT_v1_0 Journal reference of previous version: Comput. Phys. Comm. 124 (2000) 76 Does the new version supersede the previous version?: Yes Nature of problem: The experimental searches for Higgs bosons have to be compared with theory predictions at a high level of accuracy. Radiative corrections are especially important in the Minimal Supersymmetric Standard Model (MSSM). Solution method: High-precision calculations (mostly based on the Feynman-diagrammatic approach) for various Higgs-boson observables in the MSSM are implemented. The program takes the basic model parameters as input and evaluates many MSSM Higgs-boson observables relevant for experimental Higgs-boson physics. Reasons for new version: Existing calculations have been refined (e.g., by the inclusion

  3. The Higgs Puzzle: What can we Learn from LEP2, Lhc, Nlc, and Fmc? - Proceedings of the 1996 Ringberg Workshop

    NASA Astrophysics Data System (ADS)

    Kniehl, B. A.

    1997-07-01

    The Table of Contents for the full book PDF is as follows: * Foreword * Higgs Physics at LEP1 * Higgs Resonance: Gauge Invariance and CP Violation * Higgs Physics at LEP2 * Higgs Physics at LHC * Higgs Physics at NLC and FMC * Supersymmetric Higgs Bosons * Higgs Physics Beyond One Loop * Strongly Interacting Higgs Sector * Compositeness and Grand Unification * Electroweak Phase Transition * Higgs Mechanism to All Orders, in Noncommutative Geometry, and on the Lattice * Future directions * List of Participants

  4. Light Stops, Light Staus and the 125 GeV Higgs

    SciTech Connect

    Carena, Marcela; Gori, Stefania; Shah, Nausheen R.; Wagner, Carlos E.M.; Wang, Lian-Tao

    2013-08-01

    The ATLAS and CMS experiments have recently announced the discovery of a Higgs-like resonance with mass close to 125 GeV. Overall, the data is consistent with a Standard Model (SM)-like Higgs boson. Such a particle may arise in the minimal supersymmetric extension of the SM with average stop masses of the order of the TeV scale and a sizable stop mixing parameter. In this article we discuss properties of the SM-like Higgs production and decay rates induced by the possible presence of light staus and light stops. Light staus can affect the decay rate of the Higgs into di-photons and, in the case of sizable left-right mixing, induce an enhancement in this production channel up to $\\sim$ 50% of the Standard Model rate. Light stops may induce sizable modifications of the Higgs gluon fusion production rate and correlated modifications to the Higgs diphoton decay. Departures from SM values of the bottom-quark and tau-lepton couplings to the Higgs can be obtained due to Higgs mixing effects triggered by light third generation scalar superpartners. We describe the phenomenological implications of light staus on searches for light stops and non-standard Higgs bosons. Finally, we discuss the current status of the search for light staus produced in association with sneutrinos, in final states containing a $W$ gauge boson and a pair of $\\tau$s.

  5. Search for MSSM Heavy Higgs Bosons with Decays to 125 GeV Higgs Bosons with τ Final States in CMS

    NASA Astrophysics Data System (ADS)

    Dodd, Laura

    2015-04-01

    A search for heavy higgs bosons decaying to higgs bosons is presented in the context of the Two Higgs Doublet Model, which can be extended to the Minimal Supersymmetric extension to the Standard Model. Heavy scalar higgs H and pseudo-scalar A decays are examined with the final states H --> hh --> ττb b and A --> Zh --> llττ , with mh = 125 GeV and mH = 260 - 350 GeV and mA = 220 - 350 GeV. Hadronic τ decays and leptonic τ decays are considered. Limits are computed from mass distributions produced with data-driven background methods and kinematic fitting. The search includes 19 . 7 fb-1 of data taken with the CMS experiment at the LHC with center of mass energy √{ s} = 8 TeV. Compact Muon Solenoid.

  6. The order O({α}_t{α}_s) corrections to the trilinear Higgs self-couplings in the complex NMSSM

    NASA Astrophysics Data System (ADS)

    Mühlleitner, Margarete; Nhung, Dao Thi; Ziesche, Hanna

    2015-12-01

    A consistent interpretation of the Higgs data requires the same precision in the Higgs boson masses and in the trilinear Higgs self-couplings, which are related through their common origin from the Higgs potential. In this work we provide the two-loop corrections at O({α}_t{α}_s) in the approximation of vanishing external momenta to the trilinear Higgs self-couplings in the CP-violating Next-to-Minimal Supersymmetric extension of the Standard Model (NMSSM). In the top/stop sector two different renormalization schemes have been implemented, the OS and the overline{DR} scheme. The two-loop corrections to the self-couplings are of the order of 10% in the investigated scenarios. The theoretical error, estimated both from the variation of the renormalization scale and from the change of the top/stop sector renormalization scheme, has been shown to be reduced due to the inclusion of the two-loop corrections.

  7. The Supersymmetric origin of matter

    SciTech Connect

    Balazs, C.; Carena, M.; Menon, A.; Morrissey, D.E.; Wagner, C.E.M.; /Argonne /Chicago U., EFI

    2004-12-01

    The Minimal Supersymmetric extension of the Standard Model (MSSM) can provide the correct neutralino relic abundance and baryon number asymmetry of the universe. Both may be efficiently generated in the presence of CP violating phases, light charginos and neutralinos, and a light top squark. Due to the coannihilation of the neutralino with the light stop, we find a large region of parameter space in which the neutralino relic density is consistent with WMAP and SDSS data. We perform a detailed study of the additional constraints induced when CP violating phases, consistent with the ones required for baryogenesis, are included. We explore the possible tests of this scenario from present and future electron Electric Dipole Moment (EDM) measurements, direct neutralino detection experiments, collider searches and the b {yields} s{gamma} decay rate. We find that the EDM constraints are quite severe and that electron EDM experiments, together with stop searches at the Tevatron and Higgs searches at the LHC, will provide a definite test of our scenario of electroweak baryogenesis in the next few years.

  8. Constraints on new phenomena via Higgs boson couplings and invisible decays with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansil, H. S.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bieniek, S. P.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bruscino, N.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Cardillo, F.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Colasurdo, L.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Fitzgerald, E. A.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; French, S. T.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Grahn, K.-J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henkelmann, S.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Mapelli, L.; March, L.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mazzaferro, L.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Monden, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morton, A.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O'Brien, B. J.; O'grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olivares Pino, S. A.; Oliveira Damazio, D.; Oliver Garcia, E.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Pan, Y. B.; Panagiotopoulou, E.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pralavorio, P.; Pranko, A.; Prasad, S.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Saddique, A.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazar Loyola, J. E.; Saleem, M.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosa, D.; Sosebee, M.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Spearman, W. R.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Spreitzer, T.; Denis, R. D. St.; Stabile, A.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thun, R. P.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloce, L. M.; Veloso, F.; Velz, T.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yao, W.-M.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zwalinski, L.

    2015-11-01

    The ATLAS experiment at the LHC has measured the Higgs boson couplings and mass, and searched for invisible Higgs boson decays, using multiple production and decay channels with up to 4.7 fb-1 of pp collision data at √{s}=7 TeV and 20.3 fb-1 at √{s}=8 TeV. In the current study, the measured production and decay rates of the observed Higgs boson in the γγ, ZZ, W W , Zγ, bb, τ τ , and μμ decay channels, along with results from the associated production of a Higgs boson with a top-quark pair, are used to probe the scaling of the couplings with mass. Limits are set on parameters in extensions of the Standard Model including a composite Higgs boson, an additional electroweak singlet, and two-Higgs-doublet models. Together with the measured mass of the scalar Higgs boson in the γγ and ZZ decay modes, a lower limit is set on the pseudoscalar Higgs boson mass of m A > 370 GeV in the "hMSSM" simplified Minimal Supersymmetric Standard Model. Results from direct searches for heavy Higgs bosons are also interpreted in the hMSSM. Direct searches for invisible Higgs boson decays in the vector-boson fusion and associated production of a Higgs boson with W/Z ( Z → ℓℓ, W/Z → jj) modes are statistically combined to set an upper limit on the Higgs boson invisible branching ratio of 0.25. The use of the measured visible decay rates in a more general coupling fit improves the upper limit to 0.23, constraining a Higgs portal model of dark matter. [Figure not available: see fulltext.

  9. Constraints on new phenomena via Higgs boson couplings and invisible decays with the ATLAS detector

    SciTech Connect

    Aad, G.

    2015-11-30

    The ATLAS experiment at the LHC has measured the Higgs boson couplings and mass, and searched for invisible Higgs boson decays, using multiple production and decay channels with up to 4.7 fb-1 of pp collision data at √s=7 TeV and 20.3 fb-1 at √s=8 TeV. In the current study, the measured production and decay rates of the observed Higgs boson in the γγ, ZZ, W W , Zγ, bb, τ τ , and μμ decay channels, along with results from the associated production of a Higgs boson with a top-quark pair, are used to probe the scaling of the couplings with mass. The limits are set on parameters in extensions of the Standard Model including a composite Higgs boson, an additional electroweak singlet, and two-Higgs-doublet models. Together with the measured mass of the scalar Higgs boson in the γγ and ZZ decay modes, a lower limit is set on the pseudoscalar Higgs boson mass of mA > 370 GeV in the “hMSSM” simplified Minimal Supersymmetric Standard Model. Results from direct searches for heavy Higgs bosons are also interpreted in the hMSSM. Finally, direct searches for invisible Higgs boson decays in the vector-boson fusion and associated production of a Higgs boson with W/Z (Z → ℓℓ, W/Z → jj) modes are statistically combined to set an upper limit on the Higgs boson invisible branching ratio of 0.25. As a result, the use of the measured visible decay rates in a more general coupling fit improves the upper limit to 0.23, constraining a Higgs portal model of dark matter.

  10. Constraints on new phenomena via Higgs boson couplings and invisible decays with the ATLAS detector

    DOE PAGESBeta

    Aad, G.

    2015-11-30

    The ATLAS experiment at the LHC has measured the Higgs boson couplings and mass, and searched for invisible Higgs boson decays, using multiple production and decay channels with up to 4.7 fb-1 of pp collision data at √s=7 TeV and 20.3 fb-1 at √s=8 TeV. In the current study, the measured production and decay rates of the observed Higgs boson in the γγ, ZZ, W W , Zγ, bb, τ τ , and μμ decay channels, along with results from the associated production of a Higgs boson with a top-quark pair, are used to probe the scaling of the couplingsmore » with mass. The limits are set on parameters in extensions of the Standard Model including a composite Higgs boson, an additional electroweak singlet, and two-Higgs-doublet models. Together with the measured mass of the scalar Higgs boson in the γγ and ZZ decay modes, a lower limit is set on the pseudoscalar Higgs boson mass of mA > 370 GeV in the “hMSSM” simplified Minimal Supersymmetric Standard Model. Results from direct searches for heavy Higgs bosons are also interpreted in the hMSSM. Finally, direct searches for invisible Higgs boson decays in the vector-boson fusion and associated production of a Higgs boson with W/Z (Z → ℓℓ, W/Z → jj) modes are statistically combined to set an upper limit on the Higgs boson invisible branching ratio of 0.25. As a result, the use of the measured visible decay rates in a more general coupling fit improves the upper limit to 0.23, constraining a Higgs portal model of dark matter.« less

  11. Impact of the recent results by the CMS and ATLAS collaborations at the CERN Large Hadron Collider on an effective minimal supersymmetric extension of the standard model

    SciTech Connect

    Scopel, S.; Choi, Suyong; Fornengo, N.; Bottino, A.

    2011-05-01

    We discuss the impact for light neutralinos in an effective minimal supersymmetric extension of the standard model of the recent results presented by the CMS and ATLAS Collaborations at the CERN Large Hadron Collider for a search of supersymmetry in proton-proton collisions at a center-of-mass energy of 7 TeV with an integrated luminosity of 35 pb{sup -1}. We find that, in the specific case of light neutralinos, efficiencies for the specific signature searched by ATLAS (jets+ missing transverse energy and an isolated lepton) imply a lower sensitivity compared to CMS (which searches for jets+ missing transverse energy). Focusing on the CMS bound, if squark soft masses of the three families are assumed to be degenerate, the combination of the ensuing constraint on squark and gluino masses with the experimental limit on the b{yields}s+{gamma} decay imply a lower bound on the neutralino mass m{sub {chi}} that can reach the value of 11.9 GeV, depending on the gluino mass. On the other hand, when the universality condition among squark soft parameters is relaxed, the lower bound on m{sub {chi}} is not constrained by the CMS measurement and then remains at the value 7.5 GeV derived in previous papers.

  12. Invisible Higgs boson decays in spontaneously broken R parity

    SciTech Connect

    Hirsch, M.; Valle, J.W.F.; Villanova del Moral, A.

    2004-10-01

    The Higgs boson may decay mainly to an invisible mode characterized by missing energy, instead of the standard model channels. This is a generic feature of many models where neutrino masses arise from the spontaneous breaking of ungauged lepton number at relatively low scales, such as spontaneously broken R-parity models. Taking these models as framework, we reanalyze this striking suggestion in view of the recent data on neutrino oscillations that indicate nonzero neutrino masses. We show that, despite the smallness of neutrino masses, the Higgs boson can decay mainly to the invisible Goldstone boson associated to the spontaneous breaking of lepton number. This requires a gauge singlet superfield coupling to the electroweak doublet Higgses, as in the next to minimal supersymmetric standard model scenario for solving the {mu} problem. The search for invisibly decaying Higgs bosons should be taken into account in the planning of future accelerators, such as the Large Hadron Collider and the Next Linear Collider.

  13. Peccei-Quinn NMSSM in the light of 125 GeV Higgs

    NASA Astrophysics Data System (ADS)

    Bae, Kyu Jung; Choi, Kiwoon; Chun, Eung Jin; Im, Sang Hui; Park, Chan Beom; Shin, Chang Sub

    2012-11-01

    We study the phenomenology of the Peccei-Quinn invariant extension of the next-to-minimal supersymmetric standard model (NMSSM) in view of the recent discovery of a 125 GeV Higgs boson. The minimal model having no quadratic and cubic terms of the NMSSM singlet field predicts a light singlino-like lightest supersymmetric particle (LSP). The model is strongly constrained by the Higgs invisible decay and the dark matter characteristic of the LSP, while some constraints can be relaxed by assuming that the saxion, the CP-even companion of the axion in the Peccei-Quinn sector, causes a late-time entropy production diluting the thermal LSP density. The collider signal of the model contains multi-jet and h/W/Z plus missing energy, which can be discovered in the early stage of the 14 TeV LHC running.

  14. Supersymmetry with a heavy lightest supersymmetric particle

    NASA Astrophysics Data System (ADS)

    Cheng, Taoli; Li, Jinmian; Li, Tianjun

    2015-06-01

    To escape the current LHC supersymmetry (SUSY) search constraints while preserving the naturalness condition, we propose the heavy lightest supersymmetric particle (LSP) SUSY. According to the different dependencies on the LSP mass, we systematically classify the discriminating variables into three categories. We find that the strong dependence of all current SUSY searches on variables in the first category render weak sensitivity for the heavy LSP SUSY. In particular, all the current LHC SUSY search constraints can be evaded if the LSP mass is around 600 GeV or higher. In the minimal supersymmetric standard model (MSSM), we find that the heavy LSP SUSY does not induce more fine-tuning than the Higgs boson mass. Moreover, the muon anomalous magnetic moment can be satisfied within the 3-σ level. We systematically study the viable parameter space for the heavy LSP SUSY and present four benchmark points that realize our proposal concretely. An improved collider search for those benchmark points, which mainly relies on the variable in the second category, is discussed in detail.

  15. Radiative corrections to the lightest neutral Higgs mass in warped supersymmetry

    SciTech Connect

    Bhattacharyya, Gautam; Ray, Tirtha Sankar

    2008-10-01

    We compute radiative correction to the lightest neutral Higgs mass (m{sub h}) induced by the Kaluza-Klein (KK) towers of fermions and sfermions in a minimal supersymmetric scenario embeded in a 5-dimensional warped space. The Higgs is confined to the TeV brane. The KK spectra of matter supermultiplets is tied to the explanation of the fermion mass hierarchy problem. We demonstrate that for a reasonable choice of extra-dimensional parameters, the KK-induced radiative correction can enhance the upper limit on m{sub h} by as much as 100 GeV beyond the 4d limit of 135 GeV.

  16. Displaced vertices in extended supersymmetric models

    NASA Astrophysics Data System (ADS)

    Hesselbach, S.; Franke, F.; Fraas, H.

    2000-10-01

    In extended supersymmetric models with additional singlet Higgs fields displaced vertices could be observed if the decay width of the next-to-lightest supersymmetric particle becomes very small due to a singlino dominated LSP. We study the supersymmetric parameter space where displaced vertices of the second lightest neutralino exist in the NMSSM and an E6 inspired model. For a mass difference between LSP and NLSP of more than 10 GeV the singlet vacuum expectation value has to be at least of the order of /100 TeV in order to obtain a lightest neutralino with a singlino component large enough for displaced vertices.

  17. Challenges for MSSM Higgs searches at hadron colliders

    SciTech Connect

    Carena, Marcela S.; Menon, A.; Wagner, C.E.M.; /Argonne /Chicago U., EFI /KICP, Chicago /Chicago U.

    2007-04-01

    In this article we analyze the impact of B-physics and Higgs physics at LEP on standard and non-standard Higgs bosons searches at the Tevatron and the LHC, within the framework of minimal flavor violating supersymmetric models. The B-physics constraints we consider come from the experimental measurements of the rare B-decays b {yields} s{gamma} and B{sub u} {yields} {tau}{nu} and the experimental limit on the B{sub s} {yields} {mu}{sup +}{mu}{sup -} branching ratio. We show that these constraints are severe for large values of the trilinear soft breaking parameter A{sub t}, rendering the non-standard Higgs searches at hadron colliders less promising. On the contrary these bounds are relaxed for small values of A{sub t} and large values of the Higgsino mass parameter {mu}, enhancing the prospects for the direct detection of non-standard Higgs bosons at both colliders. We also consider the available ATLAS and CMS projected sensitivities in the standard model Higgs search channels, and we discuss the LHC's ability in probing the whole MSSM parameter space. In addition we also consider the expected Tevatron collider sensitivities in the standard model Higgs h {yields} b{bar b} channel to show that it may be able to find 3 {sigma} evidence in the B-physics allowed regions for small or moderate values of the stop mixing parameter.

  18. Higgs phenomenology in the standard model and beyond

    NASA Astrophysics Data System (ADS)

    Field, Bryan Jonathan

    2005-07-01

    The way in which the electroweak symmetry is broken in nature is currently unknown. The electroweak symmetry is theoretically broken in the Standard Model by the Higgs mechanism which generates masses for the particle content and introduces a single scalar to the particle spectrum, the Higgs boson. This particle has not yet been observed and the value of it mass is a free parameter in the Standard Model. The observation of one (or more) Higgs bosons would confirm our understanding of the Standard Model. In this thesis, we study the phenomenology of the Standard Model Higgs boson and compare its production observables to those of the Pseudoscalar Higgs boson and the lightest scalar Higgs boson of the Minimally Supersymmetric Standard Model. We study the production at both the Fermilab Tevatron and the future CERN Large Hadron Collider (LHC). In the first part of the thesis, we present the results of our calculations in the framework of perturbative QCD. In the second part, we present our resummed calculations.

  19. On the Alignment Limit of the NMSSM Higgs Sector

    SciTech Connect

    Carena, Marcela; Haber, Howard E.; Low, Ian; Shah, Nausheen R.; Wagner, Carlos E. M.

    2015-10-30

    The Next-to-Minimal Supersymmetric extension of the Standard Model (NMSSM) with a Higgs boson of mass 125 GeV can be compatible with stop masses of order of the electroweak scale, thereby reducing the degree of fine-tuning necessary to achieve electroweak symmetry breaking. Moreover, in an attractive region of the NMSSM parameter space, corresponding to the \\alignment limit" in which one of the neutral Higgs fields lies approximately in the same direction in field space as the doublet Higgs vacuum expectation value, the observed Higgs boson is predicted to have Standard- Model-like properties. We derive analytical expressions for the alignment conditions and show that they point toward a more natural region of parameter space for electroweak symmetry breaking, while allowing for perturbativity of the theory up to the Planck scale. Additionally, the alignment limit in the NMSSM leads to a well defined spectrum in the Higgs and Higgsino sectors, and yields a rich and interesting Higgs boson phenomenology that can be tested at the LHC. We discuss the most promising channels for discovery and present several benchmark points for further study.

  20. Search for MSSM Higgs Bosons in Tau Final States with the D0 Detector

    SciTech Connect

    Yang, Wan-Ching

    2010-01-01

    The cross-section times branching ratio of the Higgs boson decaying to τ+τ- final state in the Standard Model (SM) is too small to play any role in the SM Higgs boson searches. This, however, is different in the Minimal Supersymmetric Standard Model (MSSM), which predicts two Higgs doublets leading to five Higgs bosons: a pair of charged Higgs boson (H±); two neutral CP-even Higgs bosons (h,H) and a CP-odd Higgs boson (A). A search for the production of neutral Higgs bosons decaying into τ+τ- final states in p{bar p} collisions at a centre-of-mass energy of √s = 1.96 TeV is presented in this thesis. One of the two τ leptons is required to decay into a muon while the other decays hadronically. The integrated luminosity is L = 1.0-5.36 fb -1, collected by the D0 experiment at the Fermilab Tevatron Collider from 2002 to 2009 in the Run II.

  1. Update on the direct detection of supersymmetric dark matter

    SciTech Connect

    Ellis, John; Olive, Keith A.; Spanos, Vassilis C.; Santoso, Yudi

    2005-05-01

    We compare updated predictions for the elastic scattering of supersymmetric neutralino dark matter with the improved experimental upper limit recently published by Cryogenic Dark Matter Search (CDMS) II. We take into account the possibility that the {pi}-nucleon {sigma} term may be somewhat larger than was previously considered plausible, as may be supported by the masses of exotic baryons reported recently. We also incorporate the new central value of m{sub t}, which affects indirectly constraints on the supersymmetric parameter space, for example, via calculations of the relic density. Even if a large value of {sigma} is assumed, the CDMS II data currently exclude only small parts of the parameter space in the constrained minimal standard model (CMSSM) with universal soft supersymmetry-breaking Higgs, squark, and slepton masses. None of the previously proposed CMSSM benchmark scenarios is excluded for any value of {sigma}, and the CDMS II data do not impinge on the domains of the CMSSM parameter space favored at the 90% confidence level in a recent likelihood analysis. However, some models with nonuniversal Higgs, squark, and slepton masses and neutralino masses < or approx. 700 GeV are excluded by the CDMS II data.

  2. Search for Charged Higgs in CDF

    NASA Astrophysics Data System (ADS)

    CDF Collaboration

    1996-05-01

    We present results of a search for charged Higgs production from pbarp collisions at √s=1.8 TeV at Fermilab's Tevatron collider using the CDF detector. An expanded Higgs sector containing charged Higgs bosons is a persistent feature of candidate theories to replace the Standard Model. The minimal supersymmetric extention of the Standard Model, for example, predicts that the dominant decay mode of the top quark is tarrow H+barrow τ+ν b for large values of tanβ. We use the hadronic decays of the tau lepton in this channel to set a new limit on charged Higgs production. *We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Science and Culture of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; and the A. P. Sloan Foundation. Supported by U.S. NSF NSF-94-17820.

  3. SO(10) from supersymmetric E6

    NASA Astrophysics Data System (ADS)

    Buccella, F.; Miele, G.

    1987-04-01

    We show that the only supersymmetric vacuum invariant under the standard gauge group has a larger symmetry given by SO(10), if one takes the Higgs in the 78⊺27⊺27 representations and the superpotential contains a term linear in the three representation.

  4. Higgs phenomenology and new physics beyond the standard model

    NASA Astrophysics Data System (ADS)

    He, Bin

    The existence of the Higgs boson was predicted in the 1960's. The discovery of the Higgs boson in 2012 at the Large Hadron Collider (LHC) has been a remarkable triumph of the Standard Model (SM) and particle physics. However, there are still fundamental questions that cannot be answered by the SM. A variety of extensions to the SM have been proposed to explain these mysteries. In this thesis we explore the Higgs boson mass in several extensions to the SM. We first study the impact of vectorlike fermions on the SM Higgs mass bounds. The presence of these fermions significantly modifies the vacuum stability and perturbativity bounds on the mass of the SM Higgs boson. The new vacuum stability bound in this extended SM is estimated to be 117 GeV, to be compared with the SM prediction of about 129 GeV. The non-minimal gravitational coupling xi H †HR between the SM Higgs doublet H and the curvature scalar R opens up a very intriguing scenario for inflationary cosmology. In the presence of this coupling, the effective ultraviolet cutoff scale is given by Lambda ≈ mP/xi, where mP is the reduced Planck mass, and xi > 1 is a dimensionless coupling constant. In type I and type III seesaw extended SM, we investigate the implications of this non-minimal gravitational coupling for the SM Higgs boson mass bounds based on vacuum stability and perturbativity arguments. A lower bound on the Higgs boson mass close to 120 GeV is realized with type III seesaw and xi ˜ 10 - 103. Supersymmetry is by far the most compelling extension of the SM. We consider extensions of the Next-to-Minimal Supersymmetric Standard Model (NMSSM) in which the observed neutrino masses are generated through a TeV scale inverse seesaw mechanism. The new particles associated with this mechanism can have sizable couplings to the Higgs field which can yield a large contribution to the mass of the lightest CP-even Higgs boson. With this new contribution, a 126 GeV Higgs is possible along with order of 200 Ge

  5. Wilson loops in supersymmetric gauge theories

    NASA Astrophysics Data System (ADS)

    Pestun, Vasily

    This thesis is devoted to several exact computations in four-dimensional supersymmetric gauge field theories. In the first part of the thesis we prove conjecture due to Erickson-Semenoff-Zarembo and Drukker-Gross which relates supersymmetric circular Wilson loop operators in the N = 4 supersymmetric Yang-Mills theory with a Gaussian matrix model. We also compute the partition function and give a new matrix model formula for the expectation value of a supersymmetric circular Wilson loop operator for the pure N = 2 and the N* = 2 supersymmetric Yang-Mills theory on a four-sphere. Circular supersymmetric Wilson loops in four-dimensional N = 2 superconformal gauge theory are treated similarly. In the second part we consider supersymmetric Wilson loops of arbitrary shape restricted to a two-dimensional sphere in the four-dimensional N = 4 supersymmetric Yang-Mills theory. We show that expectation value for these Wilson loops can be exactly computed using a two-dimensional theory closely related to the topological two-dimensional Higgs-Yang-Mills theory, or two-dimensional Yang-Mills theory for the complexified gauge group.

  6. Upper bound on the gluino mass in supersymmetric models with extra matters

    NASA Astrophysics Data System (ADS)

    Moroi, Takeo; Yanagida, Tsutomu T.; Yokozaki, Norimi

    2016-09-01

    We discuss the upper bound on the gluino mass in supersymmetric models with vector-like extra matters. In order to realize the observed Higgs mass of 125 GeV, the gluino mass is bounded from above in supersymmetric models. With the existence of the vector-like extra matters at around TeV, we show that such an upper bound on the gluino mass is significantly reduced compared to the case of minimal supersymmetric standard model. This is due to the fact that radiatively generated stop masses as well the stop trilinear coupling are enhanced in the presence of the vector-like multiplets. In a wide range of parameter space of the model with extra matters, particularly with sizable tan ⁡ β (which is the ratio of the vacuum expectation values of the two Higgs bosons), the gluino is required to be lighter than ∼ 3 TeV, which is likely to be within the reach of forthcoming LHC experiment.

  7. Supersymmetric QCD corrections to e{sup +}e{sup -}{yields}tbH{sup -} and the Bernstein-Tkachov method of loop integration

    SciTech Connect

    Kniehl, B. A.; Maniatis, M.; Weber, M. M.

    2011-01-01

    The discovery of charged Higgs bosons is of particular importance, since their existence is predicted by supersymmetry and they are absent in the standard model (SM). If the charged Higgs bosons are too heavy to be produced in pairs at future linear colliders, single production associated with a top and a bottom quark is enhanced in parts of the parameter space. We present the next-to-leading-order calculation in supersymmetric QCD within the minimal supersymmetric SM, completing a previous calculation of the SM-QCD corrections. In addition to the usual approach to perform the loop integration analytically, we apply a numerical approach based on the Bernstein-Tkachov theorem. In this framework, we avoid some of the generic problems connected with the analytical method.

  8. Heavy Higgs decays into sfermions in the complex MSSM: a full one-loop analysis

    NASA Astrophysics Data System (ADS)

    Heinemeyer, S.; Schappacher, C.

    2015-05-01

    For the search for additional Higgs bosons in the Minimal Supersymmetric Standard Model (MSSM) as well as for future precision analyses in the Higgs sector a precise knowledge of their decay properties is mandatory. We evaluate all two-body decay modes of the heavy Higgs bosons into sfermions in the MSSM with complex parameters (cMSSM). The evaluation is based on a full one-loop calculation of all decay channels, also including hard QED and QCD radiation. The dependence of the heavy Higgs bosons on the relevant cMSSM parameters is analyzed numerically. We find sizable contributions to many partial decay widths. They are roughly of of the tree-level results, but can go up to or higher. The size of the electroweak one-loop corrections can be as large as the QCD corrections. The full one-loop contributions are important for the correct interpretation of heavy Higgs-boson search results at the LHC and, if kinematically allowed, at a future linear collider. The evaluation of the branching ratios of the heavy Higgs bosons will be implemented into the Fortran code FeynHiggs.

  9. Higgs decays into charginos and neutralinos in the complex MSSM: a full one-loop analysis

    NASA Astrophysics Data System (ADS)

    Heinemeyer, S.; Schappacher, C.

    2015-05-01

    For the search for additional Higgs bosons in the minimal supersymmetric standard model (MSSM) as well as for future precision analyses in the Higgs sector a precise knowledge of their decay properties is mandatory. We evaluate all two-body decay modes of the Higgs bosons into charginos and neutralinos in the MSSM with complex parameters (cMSSM). The evaluation is based on a full one-loop calculation of all decay channels, also including hard QED radiation. We restricted ourselves to a version of our renormalization scheme which is valid for and to simplify the analysis, even though we are able to switch to other parameter regions. The dependence of the Higgs boson predictions on the relevant cMSSM parameters is analyzed numerically. We find sizable contributions to many partial decay widths. They are roughly of 10 % of the tree-level results, but they can go up to 20 % or higher. The full one-loop contributions are important for the correct interpretation of heavy Higgs boson search results at the LHC and, if kinematically allowed, at a future linear collider. There are plans to implement the evaluation of the branching ratios of the Higgs bosons into the Fortran code FeynHiggs, together with an automated choice of the renormalization scheme valid for the full cMSSM parameter space.

  10. Models of Yukawa interaction in the two Higgs doublet model, and their collider phenomenology

    SciTech Connect

    Aoki, Mayumi; Kanemura, Shinya; Yagyu, Kei; Tsumura, Koji

    2009-07-01

    Possible models of Yukawa interaction are discussed in the two Higgs doublet model (THDM) under the discrete symmetry imposed to avoid the flavor changing neutral current at the leading order. It is known that there are four types of such models corresponding to the possible different assignment of charges for the discrete symmetry on quarks and leptons. We first examine the decay properties of Higgs bosons in each type model, and summarize constraints on the models from current experimental data. We then shed light on the differences among these models in collider phenomenology. In particular, we mainly discuss the so-called type-II THDM and type-X THDM. The type-II THDM corresponds to the model with the same Yukawa interaction as the minimal supersymmetric standard model. On the other hand, in the type-X THDM, additional Higgs bosons can predominantly decay into leptons. This scenario may be interesting because of the motivation for a light charged Higgs boson scenario such as in the TeV-scale model of neutrinos, dark matter, and baryogenesis. We study how we can distinguish the type-X THDM from the minimal supersymmetric standard model at the Large Hadron Collider and the International Linear Collider.

  11. (SUSY) Higgs Search at the LHC

    SciTech Connect

    Muehlleitner, M. Margarete

    2008-11-23

    The discovery of the Standard Model (SM) or supersymmetric (SUSY) Higgs bosons belongs to the main endeavors of the Large Hadron Collider (LHC). In this article the status of the signal and background calculations for Higgs boson production at the LHC is reviewed.

  12. Supersymmetric Galileons

    SciTech Connect

    Khoury, Justin; Lehners, Jean -Luc

    2011-08-15

    Galileon theories are of considerable interest since they allow for stable violations of the null energy condition. Since such violations could have occurred during a high-energy regime in the history of our universe, we are motivated to study supersymmetric extensions of these theories. This is carried out in this paper, where we construct generic classes of N = 1 supersymmetric Galileon Lagrangians. They are shown to admit non-equivalent stress-energy tensors and, hence, vacua manifesting differing conditions for violating the null energy condition. The temporal and spatial fluctuations of all component fields of the supermultiplet are analyzed and shown to be stable on a large number of such backgrounds. In the process, we uncover a surprising connection between conformal Galileon and ghost condensate theories, allowing for a deeper understanding of both types of theories.

  13. Supersymmetric Galileons

    DOE PAGESBeta

    Khoury, Justin; Lehners, Jean -Luc; Ovrut, Burt A.

    2011-08-15

    Galileon theories are of considerable interest since they allow for stable violations of the null energy condition. Since such violations could have occurred during a high-energy regime in the history of our universe, we are motivated to study supersymmetric extensions of these theories. This is carried out in this paper, where we construct generic classes of N = 1 supersymmetric Galileon Lagrangians. They are shown to admit non-equivalent stress-energy tensors and, hence, vacua manifesting differing conditions for violating the null energy condition. The temporal and spatial fluctuations of all component fields of the supermultiplet are analyzed and shown to bemore » stable on a large number of such backgrounds. In the process, we uncover a surprising connection between conformal Galileon and ghost condensate theories, allowing for a deeper understanding of both types of theories.« less

  14. Top Quark Phenomenology in CP-Violating Supersymmetric Models

    NASA Astrophysics Data System (ADS)

    Moreno Briceno, Alexander

    The Standard Model (SM) of particle physics so far has successfully described all measurements of phenomena at the subatomic level of ordinary matter at very high precision. The theoretical developments and experimental observations during the last 50 years, including the long sought and recently observed SM Higgs-like boson at the Large Hadron Collider (LHC), have provided us with a framework to understand the strong and the electroweak interactions between fermions, gauge bosons and the scalar boson, the Higgs boson, which is called the SM. However, the SM is considered to be incomplete. It does not provide a framework to include gravity and it does not provide an explanation for a number of observations such as the baryon asymmetry of the Universe (BAU), neutrino oscillations and dark matter. One possible extension of the SM is Supersymmetry, which provides for instance a dark matter candidate. No direct or indirect evidence of Supersymmetry has been observed so far. Searches for supersymmetric particles at high energy collider experiments, for instance, have set limits on parameters of the minimal supersymmetric extension of the SM (MSSM). Supersymmetry may also affect the properties of SM particles through their virtual presence in higher order corrections in perturbation theory. Here we study indirect, i.e. virtual effects, of Supersymmetry in the production of top quark pairs at the LHC. In particular, we investigate possible CP violating effects due to one loop corrections to top-quark pair production at the Large Hadron Collider (LHC) in the context of the complex (MSSM) with minimal flavor violation (MFV). We include the complete supersymmetric QCD as well as supersymmetric electroweak contributions to the two main top-quark pair production mechanisms at the LHC, namely quark-antiquark annihilation, qq → tt, and gluon fusion, gg → tt. At the level of the top quarks, we study in detail spin-spin correlating observables that are sensitive to CP

  15. Interpreting the 750 GeV diphoton excess in minimal extensions of Two-Higgs-Doublet models

    NASA Astrophysics Data System (ADS)

    Badziak, Marcin

    2016-08-01

    It is shown that the 750 GeV diphoton excess can be explained in extensions of Two-Higgs-Doublet Models that do not involve large multiplicities of new electromagnetically charged states. The key observation is that at moderate and large tan ⁡ β the total decay width of the 750 GeV Higgs is strongly reduced as compared to the Standard Model. This allows for much more economical choices of new states that enhance the diphoton signal to fit the data. In particular, it is shown that one family of vector-like quarks and leptons with SM charges is enough to explain the 750 GeV diphoton excess. Moreover, such charge assignment can keep the 125 GeV Higgs signal rates exactly at the SM values. The scenario can interpret the diphoton excess provided that the total decay width of a hypothetical resonance that would be measured at the LHC turns out to not exceed few GeV.

  16. Minimal natural supersymmetry after the LHC8

    NASA Astrophysics Data System (ADS)

    Drees, Manuel; Kim, Jong Soo

    2016-05-01

    In this work, we present limits on natural supersymmetry scenarios based on searches in data taken during run 1 of the LHC. We consider a set of 22 000 model points in a six dimensional parameter space. These scenarios are minimal in the sense of only keeping those superparticles relatively light that are required to cancel the leading quadratically divergent quantum corrections (from the top and QCD sector) to the Higgs mass in the Standard Model. The resulting mass spectra feature Higgsinos as the lightest supersymmetric particle, as well as relatively light third generation S U (2 ) doublet squarks and S U (2 ) singlet stops and gluinos while assuming a Standard-Model-like Higgs boson. All remaining supersymmetric particles and Higgs bosons are assumed to be decoupled. We check each parameter set against a large number of LHC searches as implemented in the public code CheckMATE. These searches show a considerable degree of complementarity, i.e., in general, many searches have to be considered in order to check whether a given scenario is allowed. We delineate allowed and excluded regions in parameter space. For example, we find that all scenarios where either mt˜1<230GeV or mg ˜<440 GeV are clearly excluded, while all model points where mt ˜1>660 GeV and mg ˜>1180 GeV remain allowed.

  17. Higgs Starobinsky inflation

    NASA Astrophysics Data System (ADS)

    Calmet, Xavier; Kuntz, Iberê

    2016-05-01

    In this paper we point out that Starobinsky inflation could be induced by quantum effects due to a large non-minimal coupling of the Higgs boson to the Ricci scalar. The Higgs Starobinsky mechanism provides a solution to issues attached to large Higgs field values in the early universe which in a metastable universe would not be a viable option. We verify explicitly that these large quantum corrections do not destabilize Starobinsky's potential.

  18. Prospects for Higgs searches at the Tevatron and LHC in the MSSM with explicit CP violation.

    SciTech Connect

    Draper, P.; Liu, T.; Wagner, C. E. M.; High Energy Physics; Univ. of Chicago

    2010-01-01

    We analyze the Tevatron and Large Hadron Collider (LHC) reach for the Higgs sector of the minimal supersymmetric standard model (MSSM) in the presence of explicit CP violation. Using the most recent studies from the Tevatron and LHC collaborations, we examine the CPX benchmark scenario for a range of CP-violating phases in the soft trilinear and gluino mass terms and compute the exclusion/discovery potentials for each collider on the (MH+,tan{beta}) plane. Projected results from standard model (SM)-like, nonstandard, and charged Higgs searches are combined to maximize the statistical significance. We exhibit complementarity between the SM-like Higgs searches at the LHC with low luminosity and the Tevatron, and estimate the combined reach of the two colliders in the early phase of LHC running.

  19. Supersymmetric dark matter above the W mass

    NASA Technical Reports Server (NTRS)

    Griest, Kim; Kamionkowski, Marc; Turner, Michael S.

    1989-01-01

    The cosmological consequences are studied for the minimal supersymmetric extension of the standard model in the case that the neutralino is heavier than W. The cross section was calculated for annihilation of heavy neutralinos into final states containing gauge and Higgs bosons (XX yields WW, ZZ, HH, HW, HZ), where X is the lightest, nth neutralino and the results are compared with the results with those previously obtained for annihilation into fermions to find the relic cosmological abundance for the most general neutralino. The new channels are particularly important for the Higgsino-like and mixed-state neutralinos, but are sub-dominant (to the fermion-antifermion annihilation channels) in the case that the neutralino is mostly a gaugino. The effect of the top quark mass is also considered. Using these cross sections and the cosmological constraint omega(sub X)h squared is less than or approximately 1, the entire range of cosmologically acceptable supersymmetric parameter space is mapped and a very general bound on the neutralino mass is discovered. For a top quark mass of less than 180 GeV, neutralinos heavier than 3200 GeV are cosmologically inconsistent, and if the top quark mass is less than 120 GeV, the bound is lowered to 2600 GeV. Neutralino states that are mostly gaugino are constrained to be lighter than 550 GeV. It is found that a heavy neutralino that contributes omega(sub X) is approximately 1 arises for a very wide range of model parameters and makes, therefore, a very natural and attractive dark matter candidate.

  20. An Integrated Higgs Force Theory

    NASA Astrophysics Data System (ADS)

    Colella, Antonio

    2016-03-01

    An Integrated Higgs force theory (IHFT) was based on 2 key requirement amplifications: a matter particle/Higgs force was one and inseparable; a matter particle/Higgs force bidirectionally condensed/evaporated from/to super force. These were basis of 5 theories: particle creation, baryogenesis, superpartner/quark decays, spontaneous symmetry breaking, and stellar black holes. Our universe's 129 matter/force particles contained 64 supersymmetric Higgs particles; 9 transient matter particles/Higgs forces decayed to 8 permanent matter particles/Higgs forces; mass was given to a matter particle by its Higgs force and gravitons; and sum of 8 Higgs force energies of 8 permanent matter particles was dark energy. An IHFT's essence is the intimate physical relationships between 8 theories. These theories are independent because physicists in one theory worked independently of physicists in the other seven. An IHFT's premise is without sacrificing their integrities, 8 independent existing theories are replaced by 8 interrelated amplified theories. Requirement amplifications provide interfaces between the 8 theories. Intimate relationships between 8 theories including the above 5 and string, Higgs forces, and Super Universe are described. The sorting category selected was F. PARTICLES AND FIELDS (e.g., F1 Higgs Physics, F10 Alternative Beyond the Standard Model Physics, F11 Dark Sector Theories and Searches, and F12 Particle Cosmology).

  1. RESEARCH NOTE FROM COLLABORATION: Light charged Higgs discovery potential of CMS in the H± → τντ decay with single lepton trigger

    NASA Astrophysics Data System (ADS)

    Baarmand, M.; Hashemi, M.; Nikitenko, A.

    2006-08-01

    In this note the CMS discovery potential for the light charged Higgs boson in the minimal supersymmetric standard model framework is presented. Different Higgs boson production mechanisms were studied to cover the mass range 125 < m_{H^{\\pm}} < 170\\, GeV/c^2 . The analysis is based on the CMS full simulation and reconstruction. Systematic uncertainties on the background determination are included. It is shown that the systematic uncertainties reduce the observability of H± mainly at low tan β. Finally the 5σ discovery contour for an integrated luminosity of 30 fb-1 is presented.

  2. Search for MSSM Higgs decaying to tau pairs in ppbar collision at s**(1/2) = 1.96 TeV at CDF

    SciTech Connect

    Jang, Dongwook

    2006-05-01

    This thesis presents the search for neutral Minimal Supersymmetric extension of Standard Model (MSSM) Higgs bosons decaying to tau pairs where one of the taus decays leptonically, and the other one hadronically. CDF Run II data with L{sub int} = 310 pb{sup -1} are used. There is no evidence of MSSM Higgs existence, which results in the upper limits on {sigma}(p{bar p} {yields} {phi}) x BR({phi} {yields} {tau}{tau}) in m{sub A} range between 115 and 250 GeV. These limits exclude some area in tan {beta} vs m{sub A} parameter space.

  3. Search for MSSM Higgs decaying to tau pairs in proton-antiproton collision at center of mass energy = 1.96 TeV at CDF

    NASA Astrophysics Data System (ADS)

    Jang, Dongwook

    This thesis presents the search for neutral Minimal Supersymmetric extension of Standard Model(MSSM) Higgs bosons decaying to tau pairs where one of the taus decays leptonically, and the other one hadronically. CDF Run II data with L int = 310 pb-1 are used. There is no evidence of MSSM Higgs existance, which results in the upper limits on sigma(pp¯ → φ) x BR(φ → tautau) in mA range between 115 and 250 GeV. These limits exclude some area in tan beta vs. mA parameter space.

  4. Partially composite Higgs in supersymmetry

    NASA Astrophysics Data System (ADS)

    Kitano, Ryuichiro; Luty, Markus A.; Nakai, Yuichiro

    2012-08-01

    We propose a framework for natural breaking of electroweak symmetry in supersymmetric models, where elementary Higgs fields are semi-perturbatively coupled to a strong superconformal sector. The Higgs VEVs break conformal symmetry in the strong sector at the TeV scale, and the strong sector in turn gives important contributions to the Higgs potential, giving rise to a kind of Higgs bootstrap. A Higgs with mass 125 GeV can be accommodated without any fine tuning. A Higgsino mass of order the Higgs mass is also dynamically generated in these models. The masses in the strong sector generically violate custodial symmetry, and a good precision electroweak fit requires tuning of order ~ 10%. The strong sector has an approximately supersymmetric spectrum of hadrons at the TeV scale that can be observed by looking for a peak in the WZ invariant mass distribution, as well as final states containing multiple W, Z, and Higgs bosons. The models also generically predict large corrections (either enhancement or suppression) to the h → γγ width.

  5. Probing a slepton Higgs on all frontiers

    NASA Astrophysics Data System (ADS)

    Biggio, Carla; Dror, Jeff Asaf; Grossman, Yuval; Ng, Wee Hao

    2016-04-01

    We study several aspects of supersymmetric models with a U(1) R symmetry where the Higgs doublet is identified with the superpartner of a lepton. We derive new, stronger bounds on the gaugino masses based on current measurements, and also propose ways to probe the model up to scales of O (10 TeV) at future e + e - colliders. Since the U(1) R symmetry cannot be exact, we analyze the effects of R-symmetry breaking on neutrino masses and proton decay. In particular, we find that getting the neutrino mixing angles to agree with experiments in a minimal model requires a UV cutoff for the theory at around 10 TeV.

  6. Probing the Higgs sector of high-scale supersymmetry-breaking models at the Tevatron.

    SciTech Connect

    Carena, M.; Draper, P.; Heinemeyer, S.; Liu, T.; Wagner, C. E. M.; Weiglein, G.

    2011-03-07

    A canonical signature of the minimal supersymmetric standard model (MSSM) is the presence of a neutral Higgs boson with mass bounded from above by about 135 GeV and standard model (SM)-like couplings to the electroweak gauge bosons. In this paper we investigate the reach of the Tevatron collider for the MSSM Higgs sector parameter space associated with a variety of high-scale minimal models of supersymmetry (SUSY) breaking, including the constrained MSSM, minimal gauge-mediated SUSY breaking, and minimal anomaly-mediated SUSY breaking. We find that the Tevatron can provide strong constraints on these models via Higgs boson searches. Considering a simple projection for the efficiency improvements in the Tevatron analyses, we find that with an integrated luminosity of 16 fb{sup -1} per detector and an efficiency improvement of 20% compared to the present situation, these models could be probed essentially over their entire ranges of validity. With 40% analysis improvements and 16 fb{sup -1}, our projection shows that evidence at the 3{sigma} level for the light Higgs boson could be expected in extended regions of parameter space.

  7. Probing the Higgs sector of high-scale supersymmetry-breaking models at the Tevatron

    SciTech Connect

    Carena, Marcela; Draper, Patrick; Heinemeyer, Sven; Liu, Tao; Wagner, Carlos E. M.; Weiglein, Georg

    2011-03-01

    A canonical signature of the minimal supersymmetric standard model (MSSM) is the presence of a neutral Higgs boson with mass bounded from above by about 135 GeV and standard model (SM)-like couplings to the electroweak gauge bosons. In this paper we investigate the reach of the Tevatron collider for the MSSM Higgs sector parameter space associated with a variety of high-scale minimal models of supersymmetry (SUSY) breaking, including the constrained MSSM, minimal gauge-mediated SUSY breaking, and minimal anomaly-mediated SUSY breaking. We find that the Tevatron can provide strong constraints on these models via Higgs boson searches. Considering a simple projection for the efficiency improvements in the Tevatron analyses, we find that with an integrated luminosity of 16 fb{sup -1} per detector and an efficiency improvement of 20% compared to the present situation, these models could be probed essentially over their entire ranges of validity. With 40% analysis improvements and 16 fb{sup -1}, our projection shows that evidence at the 3{sigma} level for the light Higgs boson could be expected in extended regions of parameter space.

  8. Asymptotically safe Higgs inflation

    SciTech Connect

    Xianyu, Zhong-Zhi; He, Hong-Jian E-mail: hjhe@tsinghua.edu.cn

    2014-10-01

    We construct a new inflation model in which the standard model Higgs boson couples minimally to gravity and acts as the inflaton. Our construction of Higgs inflation incorporates the standard model with Einstein gravity which exhibits asymptotic safety in the ultraviolet region. The slow roll condition is satisfied at large field value due to the asymptotically safe behavior of Higgs self-coupling at high energies. We find that this minimal construction is highly predictive, and is consistent with both cosmological observations and collider experiments.

  9. Patterns of flavor signals in supersymmetric models

    SciTech Connect

    Goto, Toru; Okada, Yasuhiro; Shindou, Tetsuo

    2008-05-01

    Quark and lepton flavor signals are studied in four supersymmetric models, namely, the minimal supergravity model, the minimal supersymmetric standard model with right-handed neutrinos, SU(5) supersymmetric grand unified theory with right-handed neutrinos, and the minimal supersymmetric standard model with U(2) flavor symmetry. We calculate b{yields}s(d) transition observables in B{sub d} and B{sub s} decays, taking the constraint from the B{sub s}-B{sub s} mixing recently observed at the Tevatron into account. We also calculate lepton flavor violating processes {mu}{yields}e{gamma}, {tau}{yields}{mu}{gamma}, and {tau}{yields}e{gamma} for the models with right-handed neutrinos. We investigate possibilities to distinguish the flavor structure of the supersymmetry breaking sector with use of patterns of various flavor signals which are expected to be measured in experiments such as MEG, LHCb, and a future Super B factory.

  10. Associated Production of the Charged and Neutral Higgs Bosons at the ILC within the Higgs Triplet Model

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Ju; Cao, Jun; Zhang, Wen-Qing

    2016-05-01

    The Higgs Triplet Model (HTM) predicts the existences of the extra neutral scalars H i (H i = H, A) and the charged Higgs bosons (H ± and H ±±). In this work, we make a systematic investigation for the associated production of the singly-charged and neutral Higgs bosons via the processes: e+e-→ H+W-H and e+e-→ H+W-A. From the numerical evaluations for the production cross sections and relevant phenomenological analysis we find that (i) the production rates of these processes can reach the level of several fb with reasonable parameter values; (ii) due to the large production rates and small backgrounds, the signals of these scalars might be detected via these processes at the future ILC experiments; and (iii) for the case of m_{Hi}> m_{H^{± }}> m_{H^{± ± }}, the cascade decay modes Hito H^{± }W^{∓ ast } with H^{± }to H^{± ± }W^{∓ ast } would lead to production of H ++ H - accompanied by several virtual W bosons. Such characteristic feature can help us to distinguish the HTM from the Two-Higgs-Doublet Model (2HDM) and the Minimal Supersymmetric Model (MSSM).

  11. Associated Production of the Charged and Neutral Higgs Bosons at the ILC within the Higgs Triplet Model

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Ju; Cao, Jun; Zhang, Wen-Qing

    2016-09-01

    The Higgs Triplet Model (HTM) predicts the existences of the extra neutral scalars H i ( H i = H, A) and the charged Higgs bosons ( H ± and H ±±). In this work, we make a systematic investigation for the associated production of the singly-charged and neutral Higgs bosons via the processes: e+e-→ H+W-H and e+e-→ H+W-A. From the numerical evaluations for the production cross sections and relevant phenomenological analysis we find that (i) the production rates of these processes can reach the level of several fb with reasonable parameter values; (ii) due to the large production rates and small backgrounds, the signals of these scalars might be detected via these processes at the future ILC experiments; and (iii) for the case of m_{Hi}> m_{H^{± }}> m_{H^{± ± }}, the cascade decay modes Hito H^{± }W^{∓ ast } with H^{± }to H^{± ± }W^{∓ ast } would lead to production of H ++ H - accompanied by several virtual W bosons. Such characteristic feature can help us to distinguish the HTM from the Two-Higgs-Doublet Model (2HDM) and the Minimal Supersymmetric Model (MSSM).

  12. Next-to-minimal SOFTSUSY

    NASA Astrophysics Data System (ADS)

    Allanach, B. C.; Athron, P.; Tunstall, Lewis C.; Voigt, A.; Williams, A. G.

    2014-09-01

    renormalisation group equations must be consistent with boundary conditions on supersymmetry breaking parameters, as well as on the weak-scale boundary condition on gauge couplings, Yukawa couplings and the Higgs potential parameters. Solution method: Nested iterative algorithm and numerical minimisation of the Higgs potential. Reasons for new version: Major extension to include the next-to-minimal supersymmetric standard model. Summary of revisions: Added additional supersymmetric and supersymmetry breaking parameters associated with the additional gauge singlet. Electroweak symmetry breaking conditions are significantly changed in the next-to-minimal mode, and some sparticle mixing changes. An interface to NMSSMTools has also been included. Some of the object structure has also changed, and the command line interface has been made more user friendly. Restrictions: SOFTSUSY will provide a solution only in the perturbative regime and it assumes that all couplings of the model are real (i.e. CP-conserving). If the parameter point under investigation is non-physical for some reason (for example because the electroweak potential does not have an acceptable minimum), SOFTSUSY returns an error message. Running time: A few seconds per parameter point.

  13. The Higgs-boson decay H\\;\\to \\;{gg} up to {\\alpha }_{s}^{5}-order under the minimal momentum space subtraction scheme

    NASA Astrophysics Data System (ADS)

    Zeng, Dai-Min; Wang, Sheng-Quan; Wu, Xing-Gang; Shen, Jian-Ming

    2016-07-01

    We study the Higgs-boson decay width {{Γ }}(H\\to {gg}) up to {α }s5 order under the minimal momentum space subtraction (mMOM) scheme. A major uncertainty of a finite-order perturbative quantum chromodymaics (pQCD) prediction is the perceived ambiguity in setting the renormalization scale. In the present paper, to achieve a precise pQCD prediction without renormalization scale uncertainty, we adopt the principle of maximum conformality (PMC) to set the renormalization scale of the process. The PMC has a solid theoretical foundation, which is based on renormalization group invariance and utilizes the renormalization group equation to fix the renormalization scale of the process. The key point of the application of the PMC is how to correctly set the {β i } terms of the process to achieve the correct α s -running behavior at each perturbative order. It is found that the ambiguities in dealing with the {β i } terms of the decay width {{Γ }}(H\\to {gg}) under the \\bar{{{MS}}} scheme can be avoided by using the physical mMOM scheme. For this purpose, for the first time we provide the PMC scale-setting formulas within the mMOM scheme up to a four-loop level. By using the PMC, it is found that a more reliable pQCD prediction on {{Γ }}(H\\to {gg}) can indeed be achieved under the mMOM scheme. As a byproduct, the convergence of the resultant pQCD series has been greatly improved due to the elimination of renormalon terms. By taking the newly measured Higgs mass, M H = 125.09 ± 0.21 ± 0.11 GeV, our PMC prediction of the decay width is, {{Γ }}(H\\to {gg}){| }{{mMOM,}{{PMC}}}=339.3+/- {1.7}-2.4+3.7 keV, in which the first error is from the Higgs mass uncertainty and the second error is the residual renormalization scale dependence by varying the initial renormalization scale {μ }r\\in [{M}H/2,4{M}H].

  14. The 7 TeV LHC reach for MSSM Higgs bosons

    SciTech Connect

    Carena, Marcela; Draper, Patrick; Liu Tao; Wagner, Carlos E. M.

    2011-11-01

    The search for the Higgs boson is entering a decisive phase. The Large Hadron Collider experiments have collected more than 1 fb{sup -1} of data and are now capable of efficiently probing the high Higgs mass region, m{sub H}>140 GeV. The low mass region is more challenging at the LHC, but if the Higgs has standard model-like properties, the LHC should find evidence for it by the end of next year. In low energy supersymmetric extensions of the standard model, the situation is similar for large values of the CP-odd Higgs mass m{sub A}, but more interesting for lower values of m{sub A}. The ({radical}(s)=7 TeV) LHC searches for a low mass standard model Higgs boson predominantly in the h{yields}{gamma}{gamma}, WW decay modes, which may be suppressed by an increase in the h{yields}bb, {tau}{sup +}{tau}{sup -} partial widths (and thus the total h width) for m{sub A} < or approx. 500 GeV. Although h{yields}bb, {tau}{sup +}{tau}{sup -} are sought at the LHC, these channels are not powerful enough to fully counter this suppression in the first year of running. We consider two alternative possibilities for probing the low m{sub A} region: nonstandard Higgs boson searches at the LHC, and a statistical combination with the Tevatron, where Vh{yields}bb is the primary search channel for light h. We also study a minimal supersymmetric standard model scenario in which the h{yields}{gamma}{gamma} rate is enhanced at low m{sub A} to the point where discovery is possible in the near future.

  15. Scenarii for interpretations of the LHC diphoton excess: Two Higgs doublets and vector-like quarks and leptons

    NASA Astrophysics Data System (ADS)

    Angelescu, Andrei; Djouadi, Abdelhak; Moreau, Grégory

    2016-05-01

    An evidence for a diphoton resonance at a mass of 750 GeV has been observed in the data collected at the LHC run at a center of mass energy of 13 TeV. We explore several interpretations of this signal in terms of Higgs-like resonances in a two-Higgs doublet model and its supersymmetric incarnation, in which the heavier CP-even and CP-odd states present in the model are produced in gluon fusion and decay into two photons through top quark loops. We show that one cannot accommodate the observed signal in the minimal versions of these models and that an additional particle content is necessary. We then consider the possibility that vector-like quarks or leptons strongly enhance the heavy Higgs couplings to photons and eventually gluons, without altering those of the already observed 125 GeV state.

  16. Prospects for Higgs boson searches at the Tevatron and LHC in the MSSM with explicit CP violation

    SciTech Connect

    Draper, Patrick; Liu Tao; Wagner, Carlos E. M.

    2010-01-01

    We analyze the Tevatron and Large Hadron Collider (LHC) reach for the Higgs sector of the minimal supersymmetric standard model (MSSM) in the presence of explicit CP violation. Using the most recent studies from the Tevatron and LHC collaborations, we examine the CPX benchmark scenario for a range of CP-violating phases in the soft trilinear and gluino mass terms and compute the exclusion/discovery potentials for each collider on the (M{sub H}{sup +},tan{beta}) plane. Projected results from standard model (SM)-like, nonstandard, and charged Higgs searches are combined to maximize the statistical significance. We exhibit complementarity between the SM-like Higgs searches at the LHC with low luminosity and the Tevatron, and estimate the combined reach of the two colliders in the early phase of LHC running.

  17. Little Higgs Theories

    NASA Astrophysics Data System (ADS)

    Schmaltz, Martin; Tucker-Smith, David

    2005-12-01

    Recently there has been renewed interest in the possibility that the Higgs particle of the Standard Model is a pseudo-Nambu-Goldstone boson. This development was spurred by the observation that if certain global symmetries are broken only by the interplay between two or more coupling constants, then the Higgs mass-squared is free from quadratic divergences at one loop. This collective symmetry breaking is the essential ingredient in little Higgs theories, which are weakly coupled extensions of the Standard Model with little or no fine tuning, describing physics up to an energy scale 10 TeV. Here we give a pedagogical introduction to little Higgs theories. We review their structure and phenomenology, focusing mainly on the SU(3) theory, the Minimal Moose, and the littlest Higgs as concrete examples.

  18. Search for neutral Higgs bosons in the multi-$b$-jet topology in 5.2fb$^{-1}$ of $p\\bar{p}$ collisions at $\\sqrt{s} = 1.96$ TeV

    SciTech Connect

    Abazov, Victor Mukhamedovich; Abbott, Braden Keim; Acharya, Bannanje Sripath; Adams, Mark Raymond; Adams, Todd; Alexeev, Guennadi D.; Alkhazov, Georgiy D.; Alton, Andrew K.; Alverson, George O.; Alves, Gilvan Augusto; Ancu, Lucian Stefan; /Nijmegen U. /Fermilab

    2010-11-01

    Data recorded by the D0 experiment at the Fermilab Tevatron Collider are analyzed to search for neutral Higgs bosons produced in association with b quarks. The search is performed in the three-b-quark channel using multijet-triggered events corresponding to an integrated luminosity of 5.2 fb{sup -1}. In the absence of any significant excess above background, limits are set on the cross section multiplied by the branching ratio in the Higgs boson mass range 90 to 300 GeV, extending the excluded regions in the parameter space of the minimal supersymmetric standard model.

  19. Search for neutral Higgs bosons decaying to tau pairs produced in association with b quarks in $p\\bar{p}$ collisions at $\\sqrt{s} = 1.96$ TeV

    SciTech Connect

    Abazov, Victor Mukhamedovich

    2011-09-12

    We report results from a search for neutral Higgs bosons produced in association with b quarks using data recorded by the D0 experiment at the Fermilab Tevatron Collider and corresponding to an integrated luminosity of 7.3 fb-1. This production mode can be enhanced in several extensions of the standard model (SM) such as in its minimal supersymmetric extension (MSSM) at high tanß. We search for Higgs bosons decaying to tau pairs with one tau decaying to a muon and neutrinos and the other to hadrons. The data are found to be consistent with SM expectations, and we set upper limits on the cross section times branching ratio in the Higgs boson mass range from 90 to 320 GeV/c2. We interpret our result in the MSSM parameter space, excluding tanß values down to 25 for Higgs boson masses below 170 GeV/c2.

  20. Search for neutral Higgs bosons decaying to tau pairs produced in association with b quarks in $$p\\bar{p}$$ collisions at $$\\sqrt{s} = 1.96$$ TeV

    DOE PAGESBeta

    Abazov, Victor Mukhamedovich

    2011-09-12

    We report results from a search for neutral Higgs bosons produced in association with b quarks using data recorded by the D0 experiment at the Fermilab Tevatron Collider and corresponding to an integrated luminosity of 7.3 fb-1. This production mode can be enhanced in several extensions of the standard model (SM) such as in its minimal supersymmetric extension (MSSM) at high tanß. We search for Higgs bosons decaying to tau pairs with one tau decaying to a muon and neutrinos and the other to hadrons. The data are found to be consistent with SM expectations, and we set upper limitsmore » on the cross section times branching ratio in the Higgs boson mass range from 90 to 320 GeV/c2. We interpret our result in the MSSM parameter space, excluding tanß values down to 25 for Higgs boson masses below 170 GeV/c2.« less

  1. Neutral Higgs boson production at e^+e^- colliders in the complex MSSM: a full one-loop analysis

    NASA Astrophysics Data System (ADS)

    Heinemeyer, S.; Schappacher, C.

    2016-04-01

    For the search for additional Higgs bosons in the Minimal Supersymmetric Standard Model (MSSM) as well as for future precision analyses in the Higgs sector precise knowledge of their production properties is mandatory. We evaluate the cross sections for the neutral Higgs boson production at e^+e^- colliders in the MSSM with complex parameters (cMSSM). The evaluation is based on a full one-loop calculation of the production mechanism e^+e^- → h_i Z, h_i γ , h_i h_j (i,j = 1,2,3), including soft and hard QED radiation. The dependence of the Higgs boson production cross sections on the relevant cMSSM parameters is analyzed numerically. We find sizable contributions to many cross sections. They are, depending on the production channel, roughly of 10-20 % of the tree-level results, but can go up to 50 % or higher. The full one-loop contributions are important for a future linear e^+e^- collider such as the ILC or CLIC. There are plans to implement the evaluation of the Higgs boson production cross sections into the code FeynHiggs.

  2. General composite Higgs models

    NASA Astrophysics Data System (ADS)

    Marzocca, David; Serone, Marco; Shu, Jing

    2012-08-01

    We construct a general class of pseudo-Goldstone composite Higgs models, within the minimal SO(5)/SO(4) coset structure, that are not necessarily of moose-type. We characterize the main properties these models should have in order to give rise to a Higgs mass around 125 GeV. We assume the existence of relatively light and weakly coupled spin 1 and 1/2 resonances. In absence of a symmetry principle, we introduce the Minimal Higgs Potential (MHP) hypothesis: the Higgs potential is assumed to be one-loop dominated by the SM fields and the above resonances, with a contribution that is made calculable by imposing suitable generalizations of the first and second Weinberg sum rules. We show that a 125 GeV Higgs requires light, often sub-TeV, fermion resonances. Their presence can also be important for the models to successfully pass the electroweak precision tests. Interestingly enough, the latter can also be passed by models with a heavy Higgs around 320 GeV. The composite Higgs models of the moose-type considered in the literature can be seen as particular limits of our class of models.

  3. POTENTIAL FOR HIGGS PHYSICS AT THE LHC AND SUPER-LHC.

    SciTech Connect

    CRANMER, K.S.

    2005-12-12

    The expected sensitivity of the LHC experiments to the discovery of the Higgs boson and the measurement of its properties is presented in the context of both the standard model and the its minimal supersymmetric extension. Prospects for a luminosity-upgraded ''Super-LHC'' are also presented. If it exists, the LHC should discover standard model Higgs boson, measure its mass accurately, and make various measurements of its couplings, spin and CP properties. In the context of the CP-conserving MSSM, the LHC should be able to discover one or more Higgs bosons over the entire m{sub A}-tan {beta} plane, with two or more observable in many cases. The large number of channels available insure a robust discovery and offer many opportunities for additional measurements. Observation of H {yields} {mu}{mu}, measurement of the tri-linear Higgs self-coupling, and various search channels are statistics-limited, and only possible with a luminosity upgrade. A luminosity upgrade would substantially improve some of the coupling measurements and generally extend the sensitivity in the MSSM Higgs plane. Efforts are ongoing to understand the upgrade of the LHC to the Super-LHC.

  4. Probing CP-violating Higgs contributions in {gamma}{gamma}{yields}ff through fermion polarization

    SciTech Connect

    Godbole, Rohini M.; Kraml, Sabine; Rindani, Saurabh D.; Singh, Ritesh K.

    2006-11-01

    We discuss the use of fermion polarization for studying neutral Higgs bosons at a photon collider. To this aim we construct polarization asymmetries which can isolate the contribution of a Higgs boson {phi} in {gamma}{gamma}{yields}ff, f={tau}/t, from that of the QED continuum. This can help in getting information on the {gamma}{gamma}{phi} coupling in case {phi} is a CP eigenstate. We also construct CP-violating asymmetries which can probe CP mixing in case {phi} has indeterminate CP. Furthermore, we take the minimal supersymmetric standard model (MSSM) with CP violation as an example to demonstrate the potential of these asymmetries in a numerical analysis. We find that these asymmetries are sensitive to the presence of a Higgs boson as well as its CP properties over a wide range of MSSM parameters. In particular, the method suggested can cover the region where a light Higgs boson may have been missed by LEP due to CP violation in the Higgs sector, and may be missed as well at the LHC.

  5. New production mechanism of neutral Higgs bosons with right scalar tau neutrino as the LSP

    NASA Astrophysics Data System (ADS)

    Chou, C.-L.; Lai, H.-L.; Yuan1, C.-P.

    2000-09-01

    Inspired by the neutrino oscillation data, we consider the lightest tau sneutrino ν~τ1 (which is mostly the right tau sneutrino) to be the lightest supersymmetric particle (LSP) in the framework of the minimal supersymmetric Standard Model. Both the standard and the non-standard trilinear scalar coupling terms are included for the right tau sneutrino interactions. The decay branching ratio of ν~τ2-- >ν~τ1+h0 can become so large that the production rate of the lightest neutral Higgs boson (h0) can be largely enhanced at electron or hadron colliders, either from the direct production of ν~τ2 or from the decay of charginos, neutralinos, sleptons, and the cascade decay of squarks and gluinos, etc. Furthermore, because of the small LSP annihilation rate, ν~τ1 can be a good candidate for cold dark matter.

  6. Uncovering light scalars with exotic Higgs decays to

    NASA Astrophysics Data System (ADS)

    Curtin, David; Essig, Rouven; Zhong, Yi-Ming

    2015-06-01

    The search for exotic Higgs decays are an essential probe of new physics. In particular, the small width of the Higgs boson makes its decay uniquely sensitive to the existence of light hidden sectors. Here we assess the potential of an exotic Higgs decay search for h → 2 X → to constrain theories with light CP-even ( X = s) and CP-odd ( X = a) singlet scalars in the mass range of 15 to 60 GeV. This decay channel arises naturally in many scenarios, such as the Standard Model augmented with a singlet, the two-Higgs-doublet model with a singlet (2HDM + S) — which includes the Next-to-Minimal Supersymmetric Standard Model (NMSSM) — and in hidden valley models. The 2 b2 μ channel may represent the best discovery avenue for many models. It has competitive reach, and is less reliant on low- p T b- and τ-reconstruction compared to other channels like 4 b, 4 τ, and 2 τ2 μ. We analyze the sensitivity of a 2 b2 μ search for the 8 and 14 TeV LHC, including the HL-LHC. We consider three types of analyses, employing conventional resolved b-jets with a clustering radius of R ˜ 0 .4, thin b-jets with R = 0 .2, and jet substructure techniques, respectively. The latter two analyses improve the reach for m X ˜ 15 GeV, for which the two b-jets are boosted and often merged. We find that Br( h → 2 X → 2 b2 μ) can be constrained at the few × 10-5 level across the entire considered mass range of X at the HL-LHC. This corresponds to a 1 - 10% reach in Br( h → 2 X) in 2HDM + S models, including the NMSSM, depending on the type of Higgs Yukawa couplings.

  7. Exceptional point and degeneracy of the neutral Higgs boson system H-A

    SciTech Connect

    Felix-Beltran, O.; Gomez-Bock, M.; Hernandez, E.; Mondragon, A.; Mondragon, M.

    2009-04-20

    We analyze the masses and mixings of the isolated neutral and heavy Higgs fields H and A of the Minimal Supersymmetric Standard Model (MSSM) with CP violation, which have opposite CP parities and nearly degenerate masses. At the degeneracy point, the hypersurfaces that represent the physical masses as functions of the system parameters have a rank one algebraic branch point, and the real and imaginary parts have branch cuts, both starting at the same exceptional point but extending in opposite directions in parameter space. Associated with this singularity, the propagator for the mixed neutral Higgs system H-A has a double pole in the non-physical sheet of the squared energy complex plane s. The continuity of the transition amplitude matrix at the exact degeneracy of the masses is examined.

  8. Hadronic Higgs production through NLO PS in the SM, the 2HDM and the MSSM

    NASA Astrophysics Data System (ADS)

    Mantler, Hendrik; Wiesemann, Marius

    2015-06-01

    The next-to-leading order (NLO) cross section of the gluon fusion process is matched to parton showers in the MC@NLO approach. We work in the framework of MadGraph5_aMC@NLO and document the inclusion of the full quark-mass dependence in the Standard Model (SM) as well as the state-of-the-art squark and gluino effects within the Minimal Supersymmetric SM embodied in the program SusHi. The combination of the two programs is realized by a script which is publicly available and whose usage is detailed. We discuss the input cards and the relevant parameter switches. One of our focuses is on the shower scale which is specifically important for gluon-induced Higgs production, particularly in models with enhanced Higgs-bottom Yukawa coupling.

  9. Two-loop QCD corrections to the MSSM Higgs masses beyond the effective-potential approximation

    NASA Astrophysics Data System (ADS)

    Degrassi, G.; Di Vita, S.; Slavich, P.

    2015-02-01

    We compute the two-loop QCD corrections to the neutral Higgs-boson masses in the Minimal Supersymmetric Standard Model, including the effect of non-vanishing external momenta in the self-energies. We obtain corrections of and , i.e., all two-loop corrections that involve the strong gauge coupling when the only non-vanishing Yukawa coupling is the top one. We adopt either the renormalization scheme or a mixed on-shell (OS)- scheme where the top/stop parameters are renormalized on-shell. We compare our results with those of earlier calculations, pointing out an inconsistency in a recent result obtained in the mixed OS- scheme. The numerical impact of the new corrections on the prediction for the lightest-scalar mass is moderate, but already comparable to the accuracy of the Higgs-mass measurement at the Large Hadron Collider.

  10. Search for neutral MSSM Higgs bosons decaying to tau(+)tau(-) pairs in proton-proton collisions root s=7 TeV with the ATLAS detector

    SciTech Connect

    Aad, G.; Abbott, B; Abdallah, J; Abdelalim, AA; Abdesselam, A; Abdinov, O; Abi, B; Abolins, M; Abramowicz, H; Abreu, H; Acerbi, E; Acharya, BS; Adams, DL; Addy, TN; Adelman, J; Aderholz, M; Adomeit, S; Adragna, P; Adye, T; Aefsky, S; Aguilar-Saavedra, JA

    2011-11-11

    A search for neutral Higgs bosons decaying to pairs of {tau} leptons with the ATLAS detector at the LHC is presented. The analysis is based on proton-proton collisions at a center-of-mass energy of 7 TeV, recorded in 2010 and corresponding to an integrated luminosity of 36 pb{sup -1}. After signal selection, 276 events are observed in this data sample. The observed number of events is consistent with the total expected background of 269 {+-} 36 events. Exclusion limits at the 95% confidence level are derived for the production cross section of a generic Higgs boson {phi} as a function of the Higgs boson mass and for A/H/h production in the Minimal Supersymmetric Standard Model (MSSM) as a function of the parameters m{sub A} and tan {beta}.

  11. Constraining natural SUSY via the Higgs coupling and the muon anomalous magnetic moment measurements

    NASA Astrophysics Data System (ADS)

    Li, Tianjun; Raza, Shabbar; Wang, Kechen

    2016-03-01

    We use the Higgs coupling and the muon anomalous magnetic moment measurements to constrain the parameter space of the natural supersymmetry in the generalized minimal supergravity (GmSUGRA) model. We scan the parameter space of the GmSUGRA model with small electroweak fine-tuning measure (ΔEW≤100 ). The parameter space after applying various sparticle mass bounds; Higgs mass bounds; B-physics bounds; the muon magnetic moment constraint; and the Higgs coupling constraint from measurements at HL-LHC, ILC, and CEPC is shown in the planes of various interesting model parameters and sparticle masses. Our study indicates that the Higgs coupling and muon anomalous magnetic moment measurements can constrain the parameter space effectively. It is shown that ΔEW˜30 , consistent with all constraints, and having supersymmetric contributions to the muon anomalous magnetic moment within 1 σ can be achieved. The precision of kb and kτ measurements at CEPC can bound mA to be above 1.2 TeV and 1.1 TeV respectively. The combination of the Higgs coupling measurement and muon anomalous magnetic moment measurement constrain the e˜R mass to be in the range from 0.6 TeV to 2 TeV. The range of both e˜L and ν˜e masses is 0.4 TeV-1.2 TeV. In all cases, the χ˜10 mass needs to be small (mostly ≤400 GeV ). The comparison of bounds in the tan β -mA plane shows that the Higgs coupling measurement is complementary to the direct collider searches for heavy Higgs when constraining the natural SUSY. A few mass spectra in the typical region of parameter space after applying all constraints are shown as well.

  12. Alchemical inflation: inflaton turns into Higgs

    NASA Astrophysics Data System (ADS)

    Nakayama, Kazunori; Takahashi, Fuminobu

    2012-11-01

    We propose a new inflation model in which a gauge singlet inflaton turns into the Higgs condensate after inflation. The inflationary path is characterized by a moduli space of supersymmetric vacua spanned by the inflaton and Higgs field. The inflation energy scale is related to the soft supersymmetry breaking, and the Hubble parameter during inflation is smaller than the gravitino mass. The initial condition for the successful inflation is naturally realized by the pre-inflation in which the Higgs plays a role of the waterfall field.

  13. A light Higgs boson would invite supersymmetry

    NASA Astrophysics Data System (ADS)

    Ellis, J.; Ross, D.

    2001-05-01

    If the Higgs boson weighs about 115 GeV, the effective potential of the Standard Model becomes unstable above a scale of about 106 GeV. This instability may be rectified only by new bosonic particles such as stop squarks. However, avoiding the instability requires fine-tuning of the model couplings, in particular if the theory is not to become non-perturbative before the Planck scale. Such fine-tuning is automatic in a supersymmetric model, but is lost if there are no higgsinos. A light Higgs boson would be prima facie evidence for supersymmetry in the top-quark and Higgs sectors.

  14. CMS supersymmetry and exotic Higgs results

    NASA Astrophysics Data System (ADS)

    Yohay, R.; CMS Collaboration

    2016-07-01

    A selection of results covering searches for supersymmetric particles and exotic decays of the Higgs boson are presented. These results are based on 8 TeV proton-proton collision data collected by the Compact Muon Solenoid experiment at the Large Hadron Collider.

  15. Particle spectroscopy of supersymmetric SO(10) with nonuniversal gaugino masses

    SciTech Connect

    Okada, Nobuchika; Raza, Shabbar; Shafi, Qaisar

    2011-11-01

    We examine the low scale particle spectroscopy of an SO(10) [or equivalently SU(5)] inspired supersymmetric model with nonuniversal gaugino masses. The model assumes minimal supergravity and contains the same number of fundamental parameters as the constrained minimal supersymmetric standard model. Realistic solutions compatible with dark matter and other applicable experimental constraints are shown to exist for both positive and negative signs of the minimal supersymmetric standard model parameter {mu}. We present several benchmark points which will be tested at the LHC and by the ongoing direct and indirect dark matter detection experiments.

  16. TeV scale mirage mediation and natural little supersymmetric hierarchy

    SciTech Connect

    Choi, Kiwoon; Jeong, Kwang Sik; Kobayashi, Tatsuo; Okumura, Ken-ichi

    2007-05-01

    TeV scale mirage mediation has been proposed as a supersymmetry-breaking scheme reducing the fine-tuning for electroweak symmetry breaking in the minimal supersymmetric extension of the standard model. We discuss a moduli stabilization setup for TeV scale mirage mediation which allows an extradimensional interpretation for the origin of supersymmetry breaking and naturally gives a weak-scale size of the Higgs B parameter. The setup utilizes the holomorphic gauge kinetic functions depending on both the heavy dilaton and the light volume modulus whose axion partners are assumed to be periodic fields. We also examine the low-energy phenomenology of TeV scale mirage mediation, particularly the constraints from electroweak symmetry breaking and flavor changing neutral current processes.

  17. Realizing the supersymmetric inverse seesaw model in the framework of R-parity violation

    NASA Astrophysics Data System (ADS)

    de S. Pires, C. A.; Rodrigues, J. G.; Rodrigues da Silva, P. S.

    2016-08-01

    If, on one hand, the inverse seesaw is the paradigm of TeV scale seesaw mechanism, on the other it is a challenge to find scenarios capable of realizing it. In this work we propose a scenario, based on the framework of R-parity violation, that realizes minimally the supersymmetric inverse seesaw mechanism. In it the energy scale parameters involved in the mechanism are recognized as the vacuum expectation values of the scalars that compose the singlet superfields NˆC and S ˆ . We develop also the scalar sector of the model and show that the Higgs mass receives a new tree-level contribution that, when combined with the standard contribution plus loop correction, is capable of attaining 125 GeV without resort to heavy stops.

  18. Phenomenology of the utilitarian supersymmetric standard model

    NASA Astrophysics Data System (ADS)

    Fraser, Sean; Kownacki, Corey; Ma, Ernest; Pollard, Nicholas; Popov, Oleg; Zakeri, Mohammadreza

    2016-08-01

    We study the 2010 specific version of the 2002 proposed U(1)X extension of the supersymmetric standard model, which has no μ term and conserves baryon number and lepton number separately and automatically. We consider in detail the scalar sector as well as the extra ZX gauge boson, and their interactions with the necessary extra color-triplet particles of this model, which behave as leptoquarks. We show how the diphoton excess at 750 GeV, recently observed at the LHC, may be explained within this context. We identify a new fermion dark-matter candidate and discuss its properties. An important byproduct of this study is the discovery of relaxed supersymmetric constraints on the Higgs boson's mass of 125 GeV.

  19. A constrained supersymmetric left-right model

    NASA Astrophysics Data System (ADS)

    Hirsch, Martin; Krauss, Manuel E.; Opferkuch, Toby; Porod, Werner; Staub, Florian

    2016-03-01

    We present a supersymmetric left-right model which predicts gauge coupling unification close to the string scale and extra vector bosons at the TeV scale. The subtleties in constructing a model which is in agreement with the measured quark masses and mixing for such a low left-right breaking scale are discussed. It is shown that in the constrained version of this model radiative breaking of the gauge symmetries is possible and a SM-like Higgs is obtained. Additional CP-even scalars of a similar mass or even much lighter are possible. The expected mass hierarchies for the supersymmetric states differ clearly from those of the constrained MSSM. In particular, the lightest down-type squark, which is a mixture of the sbottom and extra vector-like states, is always lighter than the stop. We also comment on the model's capability to explain current anomalies observed at the LHC.

  20. Supersymmetric standard model from the heterotic string.

    PubMed

    Buchmüller, Wilfried; Hamaguchi, Koichi; Lebedev, Oleg; Ratz, Michael

    2006-03-31

    We present a [FORMULA: SEE TEXT] orbifold compactification of the E8xE8 heterotic string which leads to the (supersymmetric) standard model gauge group and matter content. The quarks and leptons appear as three 16-plets of SO(10), whereas the Higgs fields do not form complete SO(10) multiplets. The model has large vacuum degeneracy. For generic vacua, no exotic states appear at low energies and the model is consistent with gauge coupling unification. The top quark Yukawa coupling arises from gauge interactions and is of the order of the gauge couplings, whereas the other Yukawa couplings are suppressed. PMID:16605895

  1. Supersymmetric Standard Model from the Heterotic String

    SciTech Connect

    Buchmueller, Wilfried; Hamaguchi, Koichi; Lebedev, Oleg; Ratz, Michael

    2006-03-31

    We present a Z{sub 6} orbifold compactification of the E{sub 8}xE{sub 8} heterotic string which leads to the (supersymmetric) standard model gauge group and matter content. The quarks and leptons appear as three 16-plets of SO(10), whereas the Higgs fields do not form complete SO(10) multiplets. The model has large vacuum degeneracy. For generic vacua, no exotic states appear at low energies and the model is consistent with gauge coupling unification. The top quark Yukawa coupling arises from gauge interactions and is of the order of the gauge couplings, whereas the other Yukawa couplings are suppressed.

  2. A realistic renormalizable supersymmetric E₆ model

    SciTech Connect

    Bajc, Borut; Susič, Vasja

    2014-01-01

    A complete realistic model based on the supersymmetric version of E₆ is presented. It consists of three copies of matter 27, and a Higgs sector made of 2×(27+27⁻)+351´+351´⁻ representations. An analytic solution to the equations of motion is found which spontaneously breaks the gauge group into the Standard Model. The light fermion mass matrices are written down explicitly as non-linear functions of three Yukawa matrices. This contribution is based on Ref. [1].

  3. Status of the 98-125 GeV Higgs bosons scenario with updated LHC-8 data

    NASA Astrophysics Data System (ADS)

    Bhattacherjee, Biplob; Chakraborti, Manimala; Chakraborty, Amit; Chattopadhyay, Utpal; Ghosh, Dilip Kumar

    2016-04-01

    In the context of the minimal supersymmetric standard model (MSSM), we discuss the possibility of the lightest Higgs boson with mass Mh=98 GeV to be consistent with the 2.3 σ excess observed at the LEP in the decay mode e+e-→Z h , with h →b b ¯. In the same region of the MSSM parameter space, the heavier Higgs boson (H ) with mass MH˜125 GeV is required to be consistent with the latest data on Higgs coupling measurements at the end of the 7 +8 TeV LHC run with 25 fb-1 of data. While scanning the MSSM parameter space, we impose constraints coming from flavor physics, relic density of the cold dark matter as well as direct dark matter searches. We study the possibility of observing this light Higgs boson in vector boson fusion process and associated production with W /Z -boson at the high luminosity (3000 fb-1 ) run of the 14 TeV LHC. Our analysis shows that this scenario can hardly be ruled out even at the high luminosity run of the LHC. However, the precise measurement of the Higgs signal strength ratios can play a major role to distinguish this scenario from the canonical MSSM one.

  4. Light stop mass limits from Higgs rate measurements in the MSSM: is MSSM electroweak baryogenesis still alive after all?

    NASA Astrophysics Data System (ADS)

    Liebler, Stefan; Profumo, Stefano; Stefaniak, Tim

    2016-04-01

    We investigate the implications of the Higgs rate measurements from Run 1 of the LHC for the mass of the light scalar top partner (stop) in the Minimal Supersymmetric Standard Model (MSSM). We focus on light stop masses, and we decouple the second, heavy stop and the gluino to the multi-TeV range in order to obtain a Higgs mass of ˜ 125 GeV. We derive lower mass limits for the light stop within various scenarios, taking into account the effects of a possibly light scalar tau partner (stau) or chargino on the Higgs rates, of additional Higgs decays to undetectable "new physics", as well as of non-decoupling of the heavy Higgs sector. Under conservative assumptions, the stop can be as light as 123 GeV. Relaxing certain theoretical and experimental constraints, such as vacuum stability and model-dependent bounds on sparticle masses from LEP, we find that the light stop mass can be as light as 116 GeV. Our indirect limits are complementary to direct limits on the light stop mass from collider searches and have important implications for electroweak baryogenesis in the MSSM as a possible explanation for the observed matter-antimatter asymmetry of the Universe.

  5. On Higgs inflation and naturalness

    NASA Astrophysics Data System (ADS)

    Burgess, C. P.; Lee, H. M.; Trott, Michael

    2010-07-01

    We reexamine recent claims that Einstein-frame scattering in the Higgs inflation model is unitary above the cut-off energy Λ ≃ M p /ξ. We show explicitly how unitarity problems arise in both the Einstein and Jordan frames of the theory. In a covariant gauge they arise from non-minimal Higgs self-couplings, which cannot be removed by field redefinitions because the target space is not flat. In unitary gauge, where there is only a single scalar which can be redefined to achieve canonical kinetic terms, the unitarity problems arise through non-minimal Higgs-gauge couplings.

  6. The Higgs transverse momentum distribution in gluon fusion as a multiscale problem

    NASA Astrophysics Data System (ADS)

    Bagnaschi, E.; Vicini, A.

    2016-01-01

    We consider Higgs production in gluon fusion and in particular the prediction of the Higgs transverse momentum distribution. We discuss the ambiguities affecting the matching procedure between fixed order matrix elements and the resummation to all orders of the terms enhanced by log( p T H / m H ) factors. Following a recent proposal [1], we argue that the gluon fusion process, computed considering two active quark flavors, is a multiscale problem from the point of view of the resummation of the collinear singular terms. We perform an analysis at parton level of the collinear behavior of the O({α}_s) real emission amplitudes; relying on the collinear singularities structure of the latter, we derive an upper limit to the range of transverse momenta where the collinear approximation is valid. This scale is then used as the value of the resummation scale in the analytic resummation framework or as the value of the h parameter in the POWHEG-BOX code. A variation of this scale can be used to generate an uncertainty band associated to the matching procedure. Finally, we provide a phenomenological analysis in the Standard Model, in the Two Higgs Doublet Model and in the Minimal Supersymmetric Standard Model. In the two latter cases, we provide an ansatz for the central value of the matching parameters not only for a Standard Model-like Higgs boson, but also for heavy scalars and in scenarios where the bottom quark may play the dominant role.

  7. Search for neutral MSSM Higgs bosons decaying to a pair of tau leptons in pp collisions

    DOE PAGESBeta

    Khachatryan, Vardan

    2014-10-28

    Our search for neutral Higgs bosons in the minimal supersymmetric extension of the standard model (MSSM) decaying to tau-lepton pairs in pp collisions is performed, using events recorded by the CMS experiment at the LHC. The dataset corresponds to an integrated luminosity of 24.6 fb-1, with 4.9 fb-1 at 7 TeV and 19.7 fb-1 at 8 TeV. To enhance the sensitivity to neutral MSSM Higgs bosons, the search includes the case where the Higgs boson is produced in association with a b-quark jet. No excess is observed in the tau-lepton-pair invariant mass spectrum. Exclusion limits are presented in the MSSMmore » parameter space for different benchmark scenarios, m h max , m h mod + , m hmod - , light-stop, light-stau, τ-phobic, and low-m H. Lastly, upper limits on the cross section times branching fraction for gluon fusion and b-quark associated Higgs boson production are also given.« less

  8. Search for neutral MSSM Higgs bosons decaying to a pair of tau leptons in pp collisions

    SciTech Connect

    Khachatryan, Vardan

    2014-10-28

    Our search for neutral Higgs bosons in the minimal supersymmetric extension of the standard model (MSSM) decaying to tau-lepton pairs in pp collisions is performed, using events recorded by the CMS experiment at the LHC. The dataset corresponds to an integrated luminosity of 24.6 fb-1, with 4.9 fb-1 at 7 TeV and 19.7 fb-1 at 8 TeV. To enhance the sensitivity to neutral MSSM Higgs bosons, the search includes the case where the Higgs boson is produced in association with a b-quark jet. No excess is observed in the tau-lepton-pair invariant mass spectrum. Exclusion limits are presented in the MSSM parameter space for different benchmark scenarios, m h max , m h mod + , m hmod - , light-stop, light-stau, τ-phobic, and low-m H. Lastly, upper limits on the cross section times branching fraction for gluon fusion and b-quark associated Higgs boson production are also given.

  9. Minimal SUSY SO(10) and Yukawa unification

    SciTech Connect

    Okada, Nobuchika

    2013-05-23

    The minimal supersymmetric (SUSY) SO(10) model, where only two Higgs multiplets {l_brace}10 Circled-Plus 126-bar{r_brace} are utilized for Yukawa couplings with matter fields, can nicely fit the neutrino oscillation parameters as well as charged fermion masses and mixing angles. In the fitting of the fermion mass matrix data, the largest element in the Yukawa coupling with the 126-bar -plet Higgs (Y{sup 126}) is found to be of order one, so that the right see-saw scale should be provided by Higgs vacuum expectation values (VEVs) of {beta}(10{sup 14}GeV). This fact causes a serious problem, namely, the gauge coupling unification is spoiled because of the presence of many exotic Higgs multiples emerging at the see-saw scale. In order to solve this problem, we consider a unification between bottom-quark and tau Yukawa couplings (b - {tau} Yukawa coupling unification) at the grand unified theory (GUT) scale, due to threshold corrections of superpartners to the Yukawa couplings at the 1 TeV scale. When the b - {tau} Yukawa coupling unification is very accurate, the largest element in Y{sub 126} can become {beta}(0.01), so that the right see-saw scale is realized by the GUT scale VEV and the usual gauge coupling unification is maintained. Since the b - {tau} Yukawa unification alters the Yukawa coupling data at the GUT scale, we re-analyze the fitting of the fermion mass matrix data by taking all the relevant free parameters into account. Unfortunately, we find that no parameter region shows up to give a nice fit for the current neutrino oscillation data and therefore, the usual picture of the gauge coupling unification cannot accommodate the fermion mass matrix data fitting in our procedure.

  10. RESEARCH NOTE FROM COLLABORATION: Observability of the heavy neutral SUSY Higgs bosons decaying into neutralinos at the LHC

    NASA Astrophysics Data System (ADS)

    Charlot, C.; Salerno, R.; Sirois, Y.

    2007-01-01

    A prospective study for the observability of heavy neutral Higgs bosons decaying into supersymmetric particles at the Large Hadron Collider with the CMS detector is presented. The analysis focuses on the decay of the Higgs bosons into a pair of next-to-lightest neutralinos χ02, followed by the cascade down to the lightest neutralino, χ02 → l+l-χ01. The final state is characterized by the presence of four isolated leptons and missing transverse energy. The parameter space of the minimal supergravity model is explored and favourable regions for the observation of the A0/H0 bosons are identified. The A0/H0 bosons could be discovered in the 2e2μ channel in the mass region 250 lesssim mA/H lesssim 400 GeV/c2 with an integrated luminosity of 30 fb-1.

  11. Natural supersymmetric spectrum in mirage mediation

    NASA Astrophysics Data System (ADS)

    Asano, Masaki; Higaki, Tetsutaro

    2012-08-01

    The current results of LHC experiments exclude a large area of the light new particle region, namely, natural parameter space, in supersymmetric extension models. One of the possibilities for achieving the correct electroweak symmetry breaking naturally is the low-scale messenger scenario. Actually, the next-to-minimal supersymmetric standard model with TeV scale mirage mediation realizes the natural electroweak symmetry breaking with various mass spectra. In this paper, we show the possible mass spectrum in the scenario, e.g., the degenerate and/or hierarchical mass spectrum, and discuss these features.

  12. Supersymmetric oscillator in optics

    NASA Technical Reports Server (NTRS)

    Chumakov, Sergey M.; Wolf, Kurt Bernardo

    1995-01-01

    We show that the supersymmetric structure (in the sense of supersymmetric quantum mechanics) appears in Helmholtz optics describing light propagation in waveguides. For the case of elliptical waveguides, with the accuracy of paraxial approximation it admits a simple physical interpretation. The supersymmetry connects light beams of different colors. The difference in light frequencies for the supersymmetric beams is determined by the transverse gradient of the refractive index. These beams have the save wavelength in the propagation direction and can form a stable interference pattern.

  13. Supersymmetric leptogenesis with a light hidden sector

    SciTech Connect

    De Simone, Andrea; Garny, Mathias; Ibarra, Alejandro; Weniger, Christoph E-mail: mathias.garny@ph.tum.de E-mail: christoph.weniger@desy.de

    2010-07-01

    Supersymmetric scenarios incorporating thermal leptogenesis as the origin of the observed matter-antimatter asymmetry generically predict abundances of the primordial elements which are in conflict with observations. In this paper we propose a simple way to circumvent this tension and accommodate naturally thermal leptogenesis and primordial nucleosynthesis. We postulate the existence of a light hidden sector, coupled very weakly to the Minimal Supersymmetric Standard Model, which opens up new decay channels for the next-to-lightest supersymmetric particle, thus diluting its abundance during nucleosynthesis. We present a general model-independent analysis of this mechanism as well as two concrete realizations, and describe the relevant cosmological and astrophysical bounds and implications for this dark matter scenario. Possible experimental signatures at colliders and in cosmic-ray observations are also discussed.

  14. Higgs CAT

    NASA Astrophysics Data System (ADS)

    Passarino, Giampiero

    2014-05-01

    Higgs Computed Axial Tomography, an excerpt. The Higgs boson lineshape ( and the devil hath power to assume a pleasing shape, Hamlet, Act II, scene 2) is analyzed for the process, with special emphasis on the off-shell tail which shows up for large values of the Higgs virtuality. The effect of including background and interference is also discussed. The main focus of this work is on residual theoretical uncertainties, discussing how much-improved constraint on the Higgs intrinsic width can be revealed by an improved approach to analysis.

  15. Supersymmetric Quantum Field Theories

    NASA Astrophysics Data System (ADS)

    Grigore, D. R.

    2005-03-01

    We consider some supersymmetric multiplets in a purely quantum framework. A crucial point is to ensure the positivity of the scalar product in the Hilbert space of the quantum system. For the vector multiplet we obtain some discrepancies with respect to the literature in the expression of the super-propagator and we prove that the model is consistent only for positive mass. The gauge structure is constructed purely deductive and leads to the necessity of introducing scalar ghost superfields, in analogy to the usual gauge theories. Then we consider a supersymmetric extension of quantum gauge theory based on a vector multiplet containing supersymmetric partners of spin 3/2 for the vector fields. As an application we consider the supersymmetric electroweak theory. The resulting self-couplings of the gauge bosons agree with the standard model up to a divergence.

  16. Supersymmetric sigma models

    SciTech Connect

    Bagger, J.A.

    1984-09-01

    We begin to construct the most general supersymmetric Lagrangians in one, two and four dimensions. We find that the matter couplings have a natural interpretation in the language of the nonlinear sigma model.

  17. Spinning supersymmetric Q balls

    SciTech Connect

    Campanelli, L.; Ruggieri, M.

    2009-08-01

    We construct nontopological solitonic solutions in (3+1)-dimensional Minkowski spacetime carrying a conserved global U(1) charge and nonvanishing angular momentum in a supersymmetric extension of the standard model with low-energy, gauge-mediated symmetry breaking.

  18. Leptonic g -2 moments, C P phases, and the Higgs boson mass constraint

    NASA Astrophysics Data System (ADS)

    Aboubrahim, Amin; Ibrahim, Tarek; Nath, Pran

    2016-07-01

    Higgs boson mass measurement at ˜125 GeV points to a high scale for supersymmetry (SUSY) specifically the scalar masses. If all the scalars are heavy, the supersymmetric contribution to the leptonic g -2 moments will be significantly reduced. On the other hand, the Brookhaven experiment indicates a ˜3 σ deviation from the standard model prediction. Here we analyze the leptonic g -2 moments in an extended minimal supersymmetric standard model (MSSM) with inclusion of a vectorlike leptonic generation which brings in new sources of C P violation. In this work we consider the contributions to the leptonic g -2 moments arising from the exchange of charginos and neutralinos, sleptons and mirror sleptons, and from the exchange of W and Z bosons and of leptons and mirror leptons. We focus specifically on the g -2 moments for the muon and the electron where sensitive measurements exist. Here it is shown that one can get consistency with the current data on g -2 under the Higgs boson mass constraint. Dependence of the moments on C P phases from the extended sector are analyzed and it is shown that they are sensitively dependent on the phases from the new sector. It is shown that the corrections to the leptonic moments arising from the extended MSSM sector will be nonvanishing even if the SUSY scale extends into the PeV region.

  19. New class of supersymmetric signatures in the processes gg{yields}HH', VH

    SciTech Connect

    Gounaris, G. J.; Layssac, J.; Renard, F. M.

    2009-07-01

    Within the minimal supersymmetric model (MSSM) and standard model (SM) frameworks, we analyze the 1loop electroweak predictions for the helicity amplitudes describing the 17 processes gg{yields}HH', and the 9 processes gg{yields}VH; where H, H{sup '} denote Higgs or Goldstone bosons, while V=Z, W{sup {+-}}. Concentrating on MSSM, we then investigate how the asymptotic helicity conservation (HCns) property of supersymmetry (SUSY) affects the amplitudes at the LHC energy range and what is the corresponding situation in the SM, where no HCns theorem exists. HCns is subsequently used to construct many relations among the cross sections of the above MSSM processes, depending only on the standard MSSM angles {alpha} and {beta} characterizing the two Higgs doublets. These relations should be asymptotically exact but as the energy decreases toward the LHC range, mass-depending deviations should start appearing. Provided the SUSY scale is not too high, these relations may remain roughly correct, even at the LHC energy range.

  20. Search for Charged Higgs in ttbar Decay Products from Proton-Antiproton Collisions at s**(1/2) = 1.96 TeV

    SciTech Connect

    Eusebi, Ricardo

    2005-10-01

    This dissertation reports the results of a search for charged Higgs bosons in the decays of t{bar t} pairs produced in p{bar p} collisions at a center-of-mass energy of 1.96 TeV. The search is performed on a data sample recorded by the upgraded Collider Detector at Fermilab and corresponding to an integrated luminosity of 193 pb{sup -1}. The search is based on the relative rates of events in the different t{bar t} decay channels. Results are obtained in the context of different models. In the context of the minimal supersymmetric extension of the Standard Model (MSSM), for which they fully account for radiative and Yukawa coupling corrections, regions in the (m{sub H{sup {+-}}}, tan ({beta})) plane are excluded. In the Tauonic Higgs Model in which the charged Higgs is assumed to decay exclusively to {bar {tau}}, the BR(t {yields} H{sup +}b) is constrained to be less than 0.4 at 95% C.L. If no assumption is made on the charged Higgs decay, the BR(t {yields} H{sup +}b) is constrained to be less than 0.90 at 95% C.L. No evidence for charged Higgs production is found.

  1. RESEARCH NOTE FROM COLLABORATION: Search for a neutral Higgs boson with WH/ZH, H → γγ channel with the CMS detector at the LHC

    NASA Astrophysics Data System (ADS)

    Lethuillier, M.; Ravat, O.; Agram, J.-L.; Baty, C.; Gascon-Shotkin, S.; Perriès, S.

    2007-04-01

    A prospective analysis for the discovery of a light Higgs boson in the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) is presented. The associated production channels WH and ZH of a Higgs boson decaying into a photon pair are studied using a full detector simulation. The method of analysis here employed should permit the utilization of real data once they become available in order to optimize the analysis performance and to estimate background rates. Minimizing in this way reliance on simulated data should allow a significant reduction in systematic errors. One year of LHC running at high luminosity (integrated luminosity of 100 fb-1) should allow an observation at 3σ of the Standard Model Higgs boson from the LEP lower limit of 114.4 GeV/c2 up to 146 GeV/c2. Three years of running at high luminosity should allow a 5σ discovery from the LEP lower limit up to 148 GeV/c2. In the context of supersymmetric models, the dominant gluon fusion Higgs boson production process could be strongly suppressed. This light Higgs gluophobic scenario could occur when the mixing in the stop sector is maximal. In such a case, the associated production channels WH and ZH may be recovery channels.

  2. Dark side of the Higgs boson.

    SciTech Connect

    Low, I.; Schwaller, P.; Shaughnessy, G.; Wagner, C. E. M.

    2012-01-01

    Current limits from the Large Hadron Collider exclude a standard model-like Higgs mass above 150 GeV, by placing an upper bound on the Higgs production rate. We emphasize that, alternatively, the limit could be interpreted as a lower bound on the total decay width of the Higgs boson. If the invisible decay width of the Higgs is of the same order as the visible decay width, a heavy Higgs boson could be consistent with null results from current searches. We propose a method to infer the invisible decay of the Higgs by using the width of the measured h {yields} ZZ {yields} 4 {ell} line shape, and study the effect on the width extraction due to a reduced signal strength. Assuming the invisible decay product is the dark matter, we show that minimal models are tightly constrained by limits from Higgs searches at the LHC and direct detection experiments of dark matter, unless the relic density constraint is relaxed.

  3. An Intimate Relationship between Higgs Forces, Dark Matter, and Dark Energy

    NASA Astrophysics Data System (ADS)

    Colella, Antonio

    2015-04-01

    Our universe's 8 permanent matter particles were: up quark, down quark, electron, electron-neutrino, muon-neutrino, tau-neutrino, zino, and photino. Zino and photino were dark matter particles. Each permanent matter particle had an associated supersymmetric Higgs force. Sum of the 8 Higgs force energies was dark energy. Amplifications of Higgs theory included: 16 SM matter/force particles, 16 superpartners, 32 anti-particles, and 64 associated supersymmetric Higgs particles; 17 Higgs forces and 15 Higgsinos; Higgs force was a residual super force; Matter particles and associated Higgs forces were one and inseparable and modeled as underweight porcupine with overgrown spines; Mass given to a matter particle via associated Higgs force and gravitational force messenger particles; Super force condensed into 17 matter/Higgs forces at 17 extremely high temperatures; 9 transient matter particles/Higgs forces evaporated to super force and condensed to 8 permanent matter particles/Higgs forces (decay); Spontaneous symmetry breaking was bidirectional; Matter/Higgs force creation was time synchronous with inflation and one to seven Planck cubes energy to matter expansion; 128 matter/force particles required for Conservation of Energy/Mass accountability at t = 100s.

  4. Higgs Boson Mass in Yukawa Unified SUSY SO(10)

    NASA Astrophysics Data System (ADS)

    Shafi, Qaisar

    2012-09-01

    We employ third family Yukawa unification, predicted by simple supersymmetric SO(10) models, to estimate the lightest MSSM Higgs boson mass. For μ > 0 (or μ < 0) and mt = 173.1 GeV, the Higgs mass is estimated to lie close to 123-124 GeV. The theoretical uncertainty in this estimate is ±3 GeV. We highlight some LHC testable benchmark points which also display the presence of neutralino-stau coannihilation channel.

  5. Higgs inflation and naturalness

    NASA Astrophysics Data System (ADS)

    Lerner, Rose N.; McDonald, John

    2010-04-01

    Inflation based on scalar fields which are non-minimally coupled to gravity has been proposed as a way to unify inflation with weak-scale physics, with the inflaton being identified with the Higgs boson or other weak-scale scalar particle. These models require a large non-minimal coupling ξ ~ 104 to have agreement with the observed density perturbations. However, it has been suggested that such models are unnatural, due to an apparent breakdown of the calculation of Higgs-Higgs scattering via graviton exchange in the Jordan frame. Here we argue that Higgs inflation models are in fact natural and that the breakdown does not imply new physics due to strong-coupling effects or unitarity breakdown, but simply a failure of perturbation theory in the Jordan frame as a calculational method. This can be understood by noting that the model is completely consistent when analysed in the Einstein frame and that scattering rates in the two frames are equal by the Equivalence Theorem for non-linear field redefinitions.

  6. A Solution to the Supersymmetric Fine-Tuning Problem within the MSSM

    SciTech Connect

    Kitano, Ryuichiro; Nomura, Yasunori; /UC, Berkeley /LBL, Berkeley

    2005-09-08

    Weak scale supersymmetry has a generic problem of fine-tuning in reproducing the correct scale for electroweak symmetry breaking. The problem is particularly severe in the minimal supersymmetric extension of the standard model (MSSM). We present a solution to this problem that does not require an extension of the MSSM at the weak scale. Superparticle masses are generated by a comparable mixture of moduli and anomaly mediated contributions, and the messenger scale of supersymmetry breaking is effectively lowered to the TeV region. Crucial elements for the solution are a large A term for the top squarks and a small B term for the Higgs doublets. Requiring no fine-tuning worse than 20%, we obtain rather sharp predictions on the spectrum. The gaugino masses are almost universal at the weak scale with the mass between 450 and 900 GeV. The squark and slepton masses are also nearly universal at the weak scale with the mass a factor of {radical}2 smaller than that of the gauginos. The only exception is the top squarks whose masses split from the other squark masses by about m{sub t}/{radical}2. The lightest Higgs boson mass is smaller than 120 GeV, while the ratio of the vacuum expectation values for the two Higgs doublets, tan {beta}, is larger than about 5. The lightest superparticle is the neutral Higgsino of the mass below 190 GeV, which can be dark matter of the universe. The mass of the lighter top squark can be smaller than 300 GeV, which may be relevant for Run II at the Tevatron.

  7. Search for Higgs bosons decaying to tau(+)tau(-) pairs in p(p)over-bar collisions at root s=1.96 TeV

    SciTech Connect

    Abazov, V.M.; Abazov, V. M.; Abbott, B.; Achary, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.; Aoki, M.; Arov, M.; Askew, A.; Asman, B.; Atramentov, O.; Avila, C.; BackusMayes, J.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Beale, S.; Bean, A.; Begalli, M.; Begel, M.; Belanger-Champagne, C.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besancon, M.; Beuselinck, R.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Bose, T.; Brandt, A.; Brandt, O.; Brock, R.; Brooijmans, G.; Bross, A.; Brown, D.; Brown, J.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Burnett, T. H.; Buszello, C. P.; Calpas, B.; Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Casey, B. C. K.; Castilla-Valdez, H.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chen, G.; Chevalier-Thery, S.; Cho, D. K.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M. -C.; Croc, A.; Cutts, D.; Das, A.; Davies, G.; De, K.; de Jong, S. J.; De La Cruz-Burelo, E.; Deliot, F.; Demarteau, M.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dorland, T.; Dubey, A.; Dudko, L. V.; Duggan, D.; Duperrin, A.; Dutt, S.; Dyshkant, A.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Facini, G.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garcia-Bellido, A.; Gavrilov, V.; Gay, P.; Geng, W.; Gerbaudo, D.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Golovanov, G.; Goussiou, A.; Grannis, P. D.; Greder, S.; Greenlee, H.; Greenwood, Z. D.; Gregores, E. M.; Grenier, G.; Gris, Ph.; Grivaz, J. -F.; Grohsjea, A.; Gruenendahl, S.; Gruenewald, M. W.; Guillemin, T.; Guo, F.; Gutierrez, G.; Gutierrez, P.; Haas, A.; Hagopia, S.; Haley, J.; Hang, L.; Harder, K.; Harein, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoangau, T.; Hobbs, J. D.; Hoeneisen, B.; Hohlfeld, M.; Hubacek, Z.; Huske, N.; Hynek, V.; Lashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffre, M.; Jamin, D.; Jayasinghe, A.; Jesik, R.; Johns, K.; Johnson, M.; Johnston, D.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kaadze, K.; Kajfasz, E.; Karmanov, D.; Kasper, P. A.; Katsanos, I. I.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kirby, M. H.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kulikov, S.; Kumar, A.; Kupco, A.; Kurca, T.; Kuzmin, V. A.; Kvita, J.; Lammers, S.; Landsberg, G.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lellouch, J.; Li, L.; Li, Q. Z.; Lietti, S. M.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, Y.; Liu, Z.; Lobodenko, A.; Lokajicek, M.; de Sa, R. Lopes; Lubatti, H. J.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Mackin, D.; Madar, R.; Magana-Villalba, R.; Malik, S.; Malyshev, V. L.; Maravin, Y.; Martinez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; et al.

    2012-02-01

    We present a search for the production of neutral Higgs bosons decaying into {tau}{sup +}{tau}{sup -} pairs in p{bar p} collisions at a center-of-mass energy of 1.96 TeV. The data, corresponding to an integrated luminosity of 5.4 fb{sup -1}, were collected by the D0 experiment at the Fermilab Tevatron Collider. We set upper limits at the 95% C.L. on the product of production cross section and branching ratio for a scalar resonance decaying into {tau}{sup +}{tau}{sup -} pairs, and we interpret these limits as limits on the production of Higgs bosons in the minimal supersymmetric standard model (MSSM) and as constraints in the MSSM parameter space.

  8. Supersymmetric k-defects

    NASA Astrophysics Data System (ADS)

    Koehn, Michael; Trodden, Mark

    2016-04-01

    In supersymmetric theories, topological defects can have nontrivial behaviors determined purely by whether or not supersymmetry is restored in the defect core. A well-known example of this is that some supersymmetric cosmic strings are automatically superconducting, leading to important cosmological effects and constraints. We investigate the impact of nontrivial kinetic interactions, present in a number of particle physics models of interest in cosmology, on the relationship between supersymmetry and supercurrents on strings. We find that in some cases it is possible for superconductivity to be disrupted by the extra interactions.

  9. Search for Higgs bosons decaying into tau pairs in ppbar collisions at D0

    SciTech Connect

    Owen, Mark A.; /Manchester U.

    2008-08-01

    A search for neutral Higgs bosons decaying into tau pairs is presented using data in p{bar p} collisions at {radical}s = 1.96 TeV. One of the tau leptons is identified via its decay into an electron or muon and the other via its decay into a hadronic final state. The data, corresponding to an integrated luminosity of around 1.0 fb{sup -1}, were collected with the D0 detector at the Fermilab Tevatron collider between April 2002 and February 2006. No significant excess of events above the background expectation is observed and limits on the cross section times branching ratio for neutral Higgs bosons decaying into tau pairs, p{bar p} {yields} {phi} {yields} {tau}{sup +}{tau}{sup -}, are set. The cross section limits are interpreted as exclusions in the parameter space of the minimal supersymmetric Standard Model, resulting in exclusions in the range 40 < tan{beta} < 70 for M{sub A} < 200 GeV. Finally, the effect of Higgs bosons with a large total width is considered and the first model independent correction to the cross section limits for the width effect is presented.

  10. Search for neutral MSSM Higgs bosons decaying into a pair of bottom quarks

    SciTech Connect

    Khachatryan, Vardan

    2015-11-11

    A search for neutral Higgs bosons decaying into a bb¯ quark pair and produced in association with at least one additional b quark is presented. This signature is sensitive to the Higgs sector of the minimal supersymmetric standard model (MSSM) with large values of the parameter tan β. The analysis is based on data from proton-proton collisions at a center-of-mass energy of 8 TeV collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 19.7 fb–1. The results are combined with a previous analysis based on 7 TeV data. No signal is observed. Stringent upper limits on the cross section times branching fraction are derived for Higgs bosons with masses up to 900 GeV, and the results are interpreted within different MSSM benchmark scenarios, mhmax, mhmod+, mhmod–, light-stau and light-stop. Observed 95% confidence level upper limits on tan β, ranging from 14 to 50, are obtained in the mhmod+ benchmark scenario.

  11. Search for neutral MSSM Higgs bosons decaying into a pair of bottom quarks

    DOE PAGESBeta

    Khachatryan, Vardan

    2015-11-11

    A search for neutral Higgs bosons decaying into a bb¯ quark pair and produced in association with at least one additional b quark is presented. This signature is sensitive to the Higgs sector of the minimal supersymmetric standard model (MSSM) with large values of the parameter tan β. The analysis is based on data from proton-proton collisions at a center-of-mass energy of 8 TeV collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 19.7 fb–1. The results are combined with a previous analysis based on 7 TeV data. No signal is observed. Stringent upper limitsmore » on the cross section times branching fraction are derived for Higgs bosons with masses up to 900 GeV, and the results are interpreted within different MSSM benchmark scenarios, mhmax, mhmod+, mhmod–, light-stau and light-stop. Observed 95% confidence level upper limits on tan β, ranging from 14 to 50, are obtained in the mhmod+ benchmark scenario.« less

  12. Search for neutral MSSM Higgs bosons decaying into a pair of bottom quarks

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; de Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; van Parijs, I.; Barria, P.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Delannoy, H.; Dobur, D.; Fasanella, G.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-Conde, A.; Reis, T.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Fagot, A.; Garcia, G.; Gul, M.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; da Costa, E. M.; de Jesus Damiao, D.; de Oliveira Martins, C.; Fonseca de Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; de Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Aly, R.; El-Khateeb, E.; Elkafrawy, T.; Lotfy, A.; Mohamed, A.; Radi, A.; Salama, E.; Sayed, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.

    2015-11-01

    A search for neutral Higgs bosons decaying into a boverline{b} quark pair and produced in association with at least one additional b quark is presented. This signature is sensitive to the Higgs sector of the minimal supersymmetric standard model (MSSM) with large values of the parameter tan β. The analysis is based on data from proton-proton collisions at a center-of-mass energy of 8 TeV collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 19.7 fb-1. The results are combined with a previous analysis based on 7 TeV data. No signal is observed. Stringent upper limits on the cross section times branching fraction are derived for Higgs bosons with masses up to 900 GeV, and the results are interpreted within different MSSM benchmark scenarios, m h max , m h mod + , m h mod - , light-stau and light-stop. Observed 95% confidence level upper limits on tan β, ranging from 14 to 50, are obtained in the m h mod + benchmark scenario. [Figure not available: see fulltext.

  13. Search for a Low-Mass Higgs Boson (A0) at BaBar

    SciTech Connect

    Mokhtar, Arafat Gabareen; /SLAC

    2012-04-05

    The BABAR Collaboration has performed three searches for a light Higgs boson, A{sup 0}, in radiative Upsilon ({Upsilon}) decays: {Upsilon}(3S) {yields} {gamma}A{sup 0}, A{sup 0} {yields} {tau}{sup +}{tau}{sup -}; {Upsilon}(nS) {yields} {gamma}A{sup 0}, A{sup 0} {yields} {mu}{sup +}{mu}{sup -} (n = 2,3); and {Upsilon}(3S) {yields} {gamma}A{sup 0}, A{sup 0} {yields} invisible. Such a Higgs boson (A{sup 0}) appears in the Next-to-Minimal Supersymmetric extensions of the Standard Model, where a light CP-odd Higgs boson couples strongly to b-quarks. The searches are based on data samples that consist of 122 x 10{sup 6} {Upsilon}(3S) and 99 x 10{sup 6} {Upsilon}(2S) decays, collected by the BABAR detector at the SLAC National Accelerator Laboratory. The searches reveal no evidence for an A{sup 0}, and product of branching fractions upper limits, at 90% C.L., of (1.5-16) x 10{sup -5}, (0.44-44) x 10{sup -6}, and (0.7-31) x 10{sup -6} were obtained for these searches, respectively. Also, we set the upper limits {Beta}({eta}{sub b} {yields} {tau}{sup +}{tau}{sup -}) < 8% and {Beta}({eta}{sub b} {yields} {mu}{sup +}{mu}{sup -}) < 0.9%.

  14. Varying the universality of supersymmetry-breaking contributions to MSSM Higgs boson masses

    SciTech Connect

    Ellis, John; Olive, Keith A.; Sandick, Pearl

    2008-10-01

    We consider the minimal supersymmetric extension of the standard model (MSSM) with varying amounts of nonuniversality in the soft supersymmetry-breaking contributions to the Higgs scalar masses. In addition to the constrained MSSM (CMSSM) in which these are universal with the soft supersymmetry-breaking contributions to the squark and slepton masses at the input GUT scale, we consider scenarios in which both the Higgs scalar masses are nonuniversal by the same amount (NUHM1), and scenarios in which they are independently nonuniversal (NUHM2). We show how the NUHM1 scenarios generalize the (m{sub 1/2},m{sub 0}) planes of the CMSSM by allowing either {mu} or m{sub A} to take different (fixed) values and we also show how the NUHM1 scenarios are embedded as special cases of the more general NUHM2 scenarios. Generalizing from the CMSSM, we find regions of the NUHM1 parameter space that are excluded because the lightest supersymmetric particle (LSP) is a selectron. We also find new regions where the neutralino relic density falls within the range preferred by astrophysical and cosmological measurements, thanks to rapid annihilation through direct-channel Higgs poles, or coannihilation with selectrons, or because the LSP composition crosses over from being mainly bino to mainly Higgsino. Generalizing further to the NUHM2, we find regions of its parameter space where a sneutrino is the LSP, and others where neutralino coannihilation with sneutrinos is important for the relic density. In both the NUHM1 and the NUHM2, there are slivers of parameter space where the LHC has fewer prospects for discovering sparticles than in the CMSSM, because either m{sub 1/2} and/or m{sub 0} may be considerably larger than in the CMSSM.

  15. Inflation in supersymmetric SU(5)

    SciTech Connect

    Khalil, S.; Rehman, M. U.; Shafi, Q.; Zaakouk, E. A.

    2011-03-15

    We analyze the adjoint field inflation in supersymmetric (SUSY) SU(5) model. In minimal SUSY SU(5) hybrid inflation monopoles are produced at the end of inflation. We therefore explore the nonminimal model of inflation based on SUSY SU(5), like shifted hybrid inflation, which provides a natural solution for the monopole problem. We find that the supergravity corrections with nonminimal Kaehler potential are crucial to realize the central value of the scalar spectral index n{sub s{approx_equal}}0.96 consistent with the 7 yr WMAP data. The tensor to scalar ratio r is quite small, taking on values r < or approx. 10{sup -5}. Because of R symmetry massless SU(3) octet and SU(2) triplet supermultiplets are present and could spoil gauge coupling unification. To keep gauge coupling unification intact, light vectorlike particles are added which are expected to be observed at LHC.

  16. A tool box for implementing supersymmetric models

    NASA Astrophysics Data System (ADS)

    Staub, Florian; Ohl, Thorsten; Porod, Werner; Speckner, Christian

    2012-10-01

    We present a framework for performing a comprehensive analysis of a large class of supersymmetric models, including spectrum calculation, dark matter studies and collider phenomenology. To this end, the respective model is defined in an easy and straightforward way using the Mathematica package SARAH. SARAH then generates model files for CalcHep which can be used with micrOMEGAs as well as model files for WHIZARD and O'Mega. In addition, Fortran source code for SPheno is created which facilitates the determination of the particle spectrum using two-loop renormalization group equations and one-loop corrections to the masses. As an additional feature, the generated SPheno code can write out input files suitable for use with HiggsBounds to apply bounds coming from the Higgs searches to the model. Combining all programs provides a closed chain from model building to phenomenology. Program summary Program title: SUSY Phenomenology toolbox. Catalog identifier: AEMN_v1_0. Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEMN_v1_0.html. Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland. Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html. No. of lines in distributed program, including test data, etc.: 140206. No. of bytes in distributed program, including test data, etc.: 1319681. Distribution format: tar.gz. Programming language: Autoconf, Mathematica. Computer: PC running Linux, Mac. Operating system: Linux, Mac OS. Classification: 11.6. Nature of problem: Comprehensive studies of supersymmetric models beyond the MSSM is considerably complicated by the number of different tasks that have to be accomplished, including the calculation of the mass spectrum and the implementation of the model into tools for performing collider studies, calculating the dark matter density and checking the compatibility with existing collider bounds (in particular, from the Higgs searches). Solution method: The

  17. Searching for stoponium along with the Higgs boson.

    PubMed

    Barger, Vernon; Ishida, Muneyuki; Keung, Wai-Yee

    2012-02-24

    Stoponium, a bound state of the top squark and its antiparticle in a supersymmetric model, may be found in the ongoing Higgs searches at the LHC. Its WW and ZZ detection ratios relative to the standard model Higgs boson can be more than unity from the WW* threshold to the two Higgs threshold. The γγ channel is equally promising. Some regions of the stoponium mass below 150 GeV are already being probed by the ATLAS and CMS experiments. PMID:22463520

  18. Supersymmetric DBI inflation

    NASA Astrophysics Data System (ADS)

    Sasaki, Shin; Yamaguchi, Masahide; Yokoyama, Daisuke

    2012-11-01

    We discuss a supersymmetric version of DBI (Dirac-Born-Infeld) inflation, which is a typical inflation model in string cosmology. The supersymmetric DBI action together with a superpotential always leads to correction terms associated with the potential into the kinetic term, which drastically change the dynamics of DBI inflation. We find two significant features of supersymmetric DBI inflation. The first one is that ultra-relativistic motion is prohibited to cause inflation, which leads to order of unity sound velocity squared and hence small non-Gaussianities of primordial curvature perturbations. The second one is that the relation between the tensor-to-scalar ratio and the field variation is modified. Then, significant tensor-to-scalar ratio r≳0.01 is possible because the variation of the canonically normalized inflaton can be beyond the reduced Planck scale. These new features are in sharp contrast with those of the standard non-supersymmetric DBI inflation and hence have a lot of interest implications on upcoming observations of cosmic microwave background (CMB) anisotropies by the Planck satellite as well as direct detection experiments of gravitational waves like DECIGO and BBO.

  19. Naturalness-guided gluino mass bound from the minimal mixed mediation of SUSY breaking

    NASA Astrophysics Data System (ADS)

    Kim, Doyoun; Kyae, Bumseok

    2015-10-01

    In order to significantly reduce the fine-tuning associated with the electroweak symmetry breaking in the minimal supersymmetric standard model (MSSM), we consider not only the minimal gravity mediation effects but also the minimal gauge mediation ones for a common supersymmetry breaking source at a hidden sector. In this "minimal mixed mediation model," the minimal forms for the Kähler potential and the gauge kinetic function are employed at tree level. The MSSM gaugino masses are radiatively generated through the gauge mediation. Since a "focus point" of the soft Higgs mass parameter, mhu2 appears around 3-4 TeV energy scale in this case, mhu2 is quite insensitive to top squark masses. Instead, the naturalness of the small mhu2 is more closely associated with the gluino mass rather than the top squark mass, unlike the conventional scenario. As a result, even a 3-4 TeV top squark mass, which is known to explain the 125 GeV Higgs mass at three-loop level, can still be compatible with the naturalness of the electroweak scale. On the other hand, the requirements of various fine-tuning measures much smaller than 100 and |μ |<600 GeV constrain the gluino mass to be 1.6 TeV ≲mg ˜≲2.2 TeV , which is well inside the discovery potential range of LHC Run II.

  20. Testing the minimal direct gauge mediation at the LHC

    NASA Astrophysics Data System (ADS)

    Hamaguchi, Koichi; Ibe, Masahiro; Yanagida, Tsutomu T.; Yokozaki, Norimi

    2014-07-01

    We reexamine the models with gauge mediation in view of the minimality and the Higgs boson mass. As a result, we arrive at a very simple model of direct gauge mediation which does not suffer from the flavor problems nor the CP problems. The minimal supersymmetric Standard Model spectrum is determined by only three parameters, the size of the effective supersymmetry breaking, the messenger scale, and the messenger number. Surprisingly, such a very simple model is not only consistent with all the current constraints but also is testable at the upgraded LHC experiments. In particular, we show that the parameter space which is consistent with the Higgs boson mass at around 126 GeV can be tested through the stable stau searches at the 14 TeV run of the LHC. The gravitino is a viable candidate for a dark matter. We also give a short discussion on a possible connection of our model to the recently discovered x-ray line signal at 3.5 keV in the X-ray Multi-Mirror Mission Newton x-ray observatory data.

  1. Supersymmetric standard models with a pseudo-Dirac gluino from hybrid F - and D -term supersymmetry breaking

    NASA Astrophysics Data System (ADS)

    Ding, Ran; Li, Tianjun; Staub, Florian; Tian, Chi; Zhu, Bin

    2015-07-01

    We propose the supersymmetric Standard Models (SSMs) with a pseudo-Dirac gluino from hybrid F - and D -term supersymmetry (SUSY) breaking. Similar to the SSMs before the LHC, all the supersymmetric particles in the minimal SSM obtain the SUSY breaking soft terms from the traditional gravity mediation and have masses within about 1 TeV except gluino. To evade the LHC SUSY search constraints, the gluino also has a heavy Dirac mass above 3 TeV from D -term SUSY breaking. Interestingly, such a heavy Dirac gluino mass will not induce the electroweak fine-tuning problem. We realize such SUSY breaking via an anomalous U (1 )X gauge symmetry inspired from string models. To maintain the gauge coupling unification and increase the Higgs boson mass, we introduce extra vectorlike particles. We study the viable parameter space which satisfies all the current experimental constraints and present a concrete benchmark point. This kind of model not only preserves the merits of pre-LHC SSMs such as naturalness, dark matter, etc., but also solves the possible problems in the SSMs with Dirac gauginos due to the F -term gravity mediation.

  2. Supersymmetric standard model spectra from RCFT orientifolds

    NASA Astrophysics Data System (ADS)

    Dijkstra, T. P. T.; Huiszoon, L. R.; Schellekens, A. N.

    2005-03-01

    We present supersymmetric, tadpole-free d=4,N=1 orientifold vacua with a three family chiral fermion spectrum that is identical to that of the standard model. Starting with all simple current orientifolds of all Gepner models we perform a systematic search for such spectra. We consider several variations of the standard four-stack intersecting brane realization of the standard model, with all quarks and leptons realized as bifundamentals and perturbatively exact baryon and lepton number symmetries, and with a U(1 vector boson that does not acquire a mass from Green-Schwarz terms. The number of supersymmetric Higgs pairs H+H is left free. In order to cancel all tadpoles, we allow a "hidden" gauge group, which must be chirally decoupled from the standard model. We also allow for non-chiral mirror-pairs of quarks and leptons, non-chiral exotics and (possibly chiral) hidden, standard model singlet matter, as well as a massless B-L vector boson. All of these less desirable features are absent in some cases, although not simultaneously. In particular, we found cases with massless Chan-Paton gauge bosons generating nothing more than SU(3)×SU(2)×U(1). We obtain almost 180 000 rationally distinct solutions (not counting hidden sector degrees of freedom), and present distributions of various quantities. We analyse the tree level gauge couplings, and find a large range of values, remarkably centered around the unification point.

  3. Determining Supersymmetric Parameters With Dark Matter Experiments

    SciTech Connect

    Hooper, Dan; Taylor, Andrew M.; /Oxford U.

    2006-07-01

    In this article, we explore the ability of direct and indirect dark matter experiments to not only detect neutralino dark matter, but to constrain and measure the parameters of supersymmetry. In particular, we explore the relationship between the phenomenological quantities relevant to dark matter experiments, such as the neutralino annihilation and elastic scattering cross sections, and the underlying characteristics of the supersymmetric model, such as the values of {mu} (and the composition of the lightest neutralino), m{sub A} and tan {beta}. We explore a broad range of supersymmetric models and then focus on a smaller set of benchmark models. We find that by combining astrophysical observations with collider measurements, {mu} can often be constrained far more tightly than it can be from LHC data alone. In models in the A-funnel region of parameter space, we find that dark matter experiments can potentially determine m{sub A} to roughly {+-}100 GeV, even when heavy neutral MSSM Higgs bosons (A, H{sub 1}) cannot be observed at the LHC. The information provided by astrophysical experiments is often highly complementary to the information most easily ascertained at colliders.

  4. The minimum supersymmetric standard model on noncommutative geometry

    NASA Astrophysics Data System (ADS)

    Shimojo, Masafumi; Ishihara, Satoshi; Kataoka, Hironobu; Matsukawa, Atsuko; Sato, Hikaru

    2015-01-01

    We have obtained the supersymmetric extension of a spectral triple that specifies a noncommutative geometry. We assume that the functional space H consists of wave functions of matter fields and their superpartners included in the minimum supersymmetric standard model (MSSM). We introduce the internal fluctuations of the Dirac operator on the finite space as well as on the manifold by elements of the algebra A in the triple. So, we obtain not only the vector supermultiplets that mediate SU(3)⊗ SU(2)⊗ U(1)_Y gauge degrees of freedom but also Higgs supermultiplets that appear in the MSSM from the same standpoint. According to the supersymmetric version of the spectral action principle, we calculate the square of the fluctuated total Dirac operator and verify that the Seeley-DeWitt coefficients give the correct action of the vector and Higgs supermultiplets. We also verify that the relation between the coupling constants of SU(3), SU(2), and U(1)_Y is same as that of SU(5) unification theory.

  5. Supersymmetric flavor models and the B→φKS anomaly

    NASA Astrophysics Data System (ADS)

    Agashe, Kaustubh; Carone, Christopher D.

    2003-08-01

    We consider the flavor structure of supersymmetric theories that can account for the deviation of the observed time-dependent CP asymmetry in B→φKS from the standard model prediction. Assuming simple flavor symmetries and effective field theory, we investigate possible correlations between sizable supersymmetric contributions to b→s transitions and to flavor changing processes that are more tightly constrained. With relatively few assumptions, we determine the properties of minimal Yukawa and soft mass textures that are compatible with the desired supersymmetric flavor-changing effect and constraints. We then present explicit models that are designed (at least approximately) to realize these textures. In particular, we present an Abelian model based on a single U(1) factor and a non-trivial extra-dimensional topography that can explain the CP asymmetry in B→φKS, while suppressing other supersymmetric flavor changing effects through a high degree of squark-quark alignment.

  6. Supersymmetric signatures at an eγ collider

    NASA Astrophysics Data System (ADS)

    Kiers, Ken; Ng, John N.; Wu, Guohong

    1996-02-01

    High energy electron-photon colliders provide unique opportunities for probing physics beyond the standard model. We have studied the experimental signatures for two supersymmetric scenarios, with the lightest supersymmetric particle (LSP) being either the lightest neutralino or the gravitino. In the “neutralino LSP” scenario favored by the minimal supersymmetric standard model (MSSM), it is found that some basic parameters of the model, μ, tan β, M1 and M2, may be uniquely determined from the outgoing electron energy spectrum without assuming high scale unification of the masses or couplings. In the “gravitino LSP” scenario which occurs naturally in models of low energy dynamical supersymmetry breaking, it is possible to have background-free signatures if the next-to-lightest supersymmetric particle (NLSP) has a long decay length. In cases that the NLSP decays quickly, ways to distinguish among the experimental signatures of the two scenarios and of the standard model (SM) background are discussed.

  7. "Super"--Dilatation Symmetry of the Top-Higgs System

    NASA Astrophysics Data System (ADS)

    Hill, Christopher T.

    The top-Higgs system, consisting of top quark (LH doublet, RH singlet) and Higgs boson kinetic terms, with gauge fields set to zero, has an exact symmetry where both fermion and Higgs fields are shifted and mixed in a supersymmetric fashion. The full Higgs-Yukawa interaction and Higgs-potential, including additional ˜1/Λ2 NJL-like interactions, also has this symmetry to \\ {O} (1/{Λ ^4}), up to null-operators. Thus the interaction Lagrangian can be viewed as a power series in 1/Λ2. The symmetry involves interplay of the Higgs quartic interaction with the Higgs-Yukawa interaction and implies the relationship, λ = {1 over 2}{g^2} between the top-Yukawa coupling, g, and Higgs quartic coupling, λ, at a high energy scale Λ ˜ few TeV. We interpret this to be a new physics scale. The top quark is massless in the symmetric phase, satisfying the Nambu-Goldstone theorem. The fermionic shift part of the current is ∝(1-H†H/v2), owing to the interplay of λ and g, and vanishes in the broken phase. Hence the Nambu-Goldstone theorem is trivially evaded in the broken phase and the top quark becomes heavy (it is not a Goldstino). We have mt = mh, subject to radiative corrections that can in principle pull the Higgs into concordance with experiment.

  8. Nearly Supersymmetric Dark Atoms

    DOE PAGESBeta

    Behbahani, Siavosh R.; Jankowiak, Martin; Rube, Tomas; Wacker, Jay G.

    2011-01-01

    Theories of dark matter that support bound states are an intriguing possibility for the identity of the missing mass of the Universe. This article proposes a class of models of supersymmetric composite dark matter where the interactions with the Standard Model communicate supersymmetry breaking to the dark sector. In these models, supersymmetry breaking can be treated as a perturbation on the spectrum of bound states. Using a general formalism, the spectrum with leading supersymmetry effects is computed without specifying the details of the binding dynamics. The interactions of the composite states with the Standard Model are computed, and several benchmarkmore » models are described. General features of nonrelativistic supersymmetric bound states are emphasized.« less

  9. Nearly Supersymmetric Dark Atoms

    SciTech Connect

    Behbahani, Siavosh R.; Jankowiak, Martin; Rube, Tomas; Wacker, Jay G.; /SLAC /Stanford U., ITP

    2011-08-12

    Theories of dark matter that support bound states are an intriguing possibility for the identity of the missing mass of the Universe. This article proposes a class of models of supersymmetric composite dark matter where the interactions with the Standard Model communicate supersymmetry breaking to the dark sector. In these models supersymmetry breaking can be treated as a perturbation on the spectrum of bound states. Using a general formalism, the spectrum with leading supersymmetry effects is computed without specifying the details of the binding dynamics. The interactions of the composite states with the Standard Model are computed and several benchmark models are described. General features of non-relativistic supersymmetric bound states are emphasized.

  10. Semiclassical Supersymmetric Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Kiefer, Claus; Lück, Tobias; Vargas Moniz, Paulo

    2008-09-01

    We develop a semiclassical approximation scheme for the constraint equations of supersymmetric canonical quantum gravity. This is achieved by a Born-Oppenheimer type of expansion, in analogy to the case of the usual Wheeler-DeWitt equation. We recover at consecutive orders the Hamilton-Jacobi equation, the functional Schrödinger equation, and quantum gravitational correction terms to this Schrödinger equation. In particular, our work has the following implications: (i) the Hamilton-Jacobi equation and therefore the background spacetime must involve the gravitino, (ii) a (many fingered) local time parameter has to be present on Super Riem Σ (the space of all possible tetrad and gravitino fields), (iii) quantum supersymmetric gravitational corrections affect the evolution of the very early universe.

  11. Supersymmetric biorthogonal quantum systems

    SciTech Connect

    Curtright, Thomas; Mezincescu, Luca; Schuster, David

    2007-09-15

    We discuss supersymmetric biorthogonal systems, with emphasis given to the periodic solutions that occur at spectral singularities of PT symmetric models. For these periodic solutions, the dual functions are associated polynomials that obey inhomogeneous equations. We construct in detail some explicit examples for the supersymmetric pairs of potentials V{sub {+-}}(z)=-U(z){sup 2}{+-}z(d/dz)U(z) where U(z){identical_to}{sigma}{sub k>0}{upsilon}{sub k}z{sup k}. In particular, we consider the cases generated by U(z)=z and z/(1-z). We also briefly consider the effects of magnetic vector potentials on the partition functions of these systems.

  12. Dynamical supersymmetric Dirac Hamiltonians

    SciTech Connect

    Ginocchio, J.N.

    1986-01-01

    Using the language of quantum electrodynamics, the Dirac Hamiltonian of a neutral fermion interacting with a tensor field is examined. A supersymmetry found for a general Dirac Hamiltonian of this type is discussed, followed by consideration of the special case of a harmonic electric potential. The square of the Dirac Hamiltonian of a neutral fermion interacting via an anomalous magnetic moment in an electric potential is shown to be equivalent to a three-dimensional supersymmetric Schroedinger equation. It is found that for a potential that grows as a power of r, the lowest energy of the Hamiltonian equals the rest mass of the fermion, and the Dirac eigenfunction has only an upper component which is normalizable. It is also found that the higher energy states have upper and lower components which form a supersymmetric doublet. 15 refs. (LEW)

  13. Softly Broken Supersymmetric Desert from Orbifold Compactification

    SciTech Connect

    Barbieri, Riccardo; Hall, Lawrence J.; Nomura, Yasunori

    2001-06-18

    A new viewpoint for the gauge hierarchy problem is proposed: compactification at a large scale, 1/R, leads to a low energy effective theory with supersymmetry softly broken at a much lower scale, \\alpha/R. The hierarchy is induced by an extremely small angle \\alpha which appears in the orbifold compactification boundary conditions. The same orbifold boundary conditions break Peccei-Quinn symmetry, leading to a new solution to the \\mu problem. Explicit 5d theories are constructed with gauge groups SU(3) \\times SU(2) \\times U(1) and SU(5), with matter in the bulk or on the brane, which lead to the (next-to) minimal supersymmetric standard model below the compactification scale. In all cases the soft supersymmetry-breaking and \\mu parameters originate from bulk kinetic energy terms, and are highly constrained. The supersymmetric flavor and CP problems are solved.

  14. Beyond Higgs

    SciTech Connect

    Bardeen, William A.; /Fermilab

    2008-05-01

    I discuss the Standard Model of Elementary Particle Physics and potential for discoveries of the physics responsible for electroweak symmetry breaking. I review the ideas leading to development of the Brout-Englert-Higgs mechanism that now forms the basis for the conventional Standard Model. I discuss various issues that challenge application of the Standard Model to the known physics of elementary particles. I examine alternatives to the Standard Model that address these issues and may lead to new discoveries at the LHC that go Beyond Higgs.

  15. Minimal gauged U(1) B-L model with spontaneous R parity violation.

    PubMed

    Barger, Vernon; Pérez, Pavel Fileviez; Spinner, Sogee

    2009-05-01

    We study the minimal gauged U(1) B-L supersymmetric model and show that it provides an attractive theory for spontaneous R-parity violation. Both U(1) B-L and R parity are broken by the vacuum expectation value of the right-handed sneutrino (proportional to the soft supersymmetry masses), thereby linking the B-L and soft SUSY scales. In this context we find a consistent mechanism for generating neutrino masses and a realistic mass spectrum, all without extending the Higgs sector of the minimal supersymmetry standard model. We discuss the most relevant collider signals and the connection between the Z' gauge boson and R-parity violation. PMID:19518859

  16. Signals of CP violation beyond the MSSM in Higgs and flavor physics

    SciTech Connect

    Altmannshofer, Wolfgang; Carena, Marcela; Gori, Stefania; Puente, Alejandro de la

    2011-11-01

    We study an extension of the Higgs sector of the minimal supersymmetric standard model (MSSM), considering the effects of new degrees of freedom at the TeV scale and allowing for sources of CP violation beyond the MSSM. We analyze the impact of the beyond-the-MSSM sources of CP violation on the Higgs collider phenomenology and on low energy flavor and CP-violating observables. We identify distinct Higgs collider signatures that cannot be realized, either in the case without CP-violating phases or in the CP-violating MSSM, and investigate the prospects to probe them at the Tevatron and the LHC. The most striking benchmark scenario has three neutral Higgs bosons that all decay dominantly into W boson pairs and that are well within the reach of the 7 TeV LHC run. On the other hand, we also present scenarios with three Higgs bosons that have masses M{sub H{sub i}} > or approx. 150 GeV and decay dominantly into bb. Such scenarios are much more challenging to probe and can even lie completely outside the reach of the 7 TeV LHC run. We explore complementary scenarios with standard MSSM Higgs signals that allow us to accommodate a nonstandard B{sub s} mixing phase as indicated by D0, as well as the excess in B{sub s}{yields}{mu}{sup +}{mu}{sup -} candidates recently reported by CDF. We find that, in contrast to the MSSM, a minimal flavor-violating soft sector is sufficient to generate significant corrections to CP-violating observables in meson mixing, compatible with Electric Dipole Moment constraints. In particular, a B{sub s} mixing phase S{sub {psi}{phi}} < or approx. 0.15 can be achieved for specific regions of parameter space, compatible with all the presently available experimental constraints on flavor observables. Such a nonstandard B{sub s} mixing phase would unambiguously imply a sizable suppression of S{sub {psi}}K{sub S} with respect to the standard model prediction and a BR(B{sub s}{yields}{mu}{sup +}{mu}{sup -}) close to its 95% C.L. upper bound of 1.1x10

  17. Renormalisation group analysis of supersymmetric particle interactions

    NASA Astrophysics Data System (ADS)

    Box, Andrew D.

    In the Minimal Supersymmetric Standard Model (MSSM), there are numerous sources of flavour-violation in addition to the usual Kobayashi-Maskawa mixing matrix of the Standard Model. We reexamine the renormalisation group equations (RGEs) with a view to investigating flavour effects in a supersymmetric theory with an arbitrary flavour structure at some high scale. To incorporate (two-loop sized) threshold effects in the one-loop RGEs, we calculate the beta-functions using a sequence of (non-supersymmetric) effective theories with heavy particles decoupled at the scale of their mass, keeping track of the fact that many couplings (such as gauge and gaugino couplings) which are equal in an exact supersymmetric theory may no longer be equal once the supersymmetry (SUSY) is broken. We find that this splitting, which is ignored in the literature, may be larger than two-loop terms that are included. In addition, gaugino couplings develop flavour structure that is absent without including decoupling effects. A program (to be incorporated into ISAJET) has been developed, which includes flavour-violating couplings of superparticles and solves the two-loop threshold RGEs subject to specified high scale inputs. The weak scale flavour structure derived in this way can be applied to the study of flavour-changing decays of SUSY particles. As an illustration, we revisit the branching ratio of the flavour-violating decay of the top squark. We find that, in the minimal supergravity (mSUGRA) class of models, previous estimates for the width of this decay have been too large by a factor 10 -- 25. However, this decay rate is sensitive to the flavour structure of the high scale boundary conditions. We analyse the consequences of introducing non-universality in the high scale soft SUSY-breaking mass matrices and find that under these conditions the partial width can be altered by a large amount.

  18. Stable Non-Supersymmetric Throats in String Theory

    SciTech Connect

    Kachru, Shamit; Simic, Dusan; Trivedi, Sandip P.; /Tata Inst. /Stanford U., ITP /SLAC

    2011-06-28

    We construct a large class of non-supersymmetric AdS-like throat geometries in string theory by taking non-supersymmetric orbifolds of supersymmetric backgrounds. The scale of SUSY breaking is the AdS radius, and the dual field theory has explicitly broken supersymmetry. The large hierarchy of energy scales in these geometries is stable. We establish this by showing that the dual gauge theories do not have any relevant operators which are singlets under the global symmetries. When the geometries are embedded in a compact internal space, a large enough discrete subgroup of the global symmetries can still survive to prevent any singlet relevant operators from arising. We illustrate this by embedding one case in a non-supersymmetric orbifold of a Calabi-Yau manifold. These examples can serve as a starting point for obtaining Randall-Sundrum models in string theory, and more generally for constructing composite Higgs or technicolor-like models where strongly coupled dynamics leads to the breaking of electro-weak symmetry. Towards the end of the paper, we briefly discuss how bulk gauge fields can be incorporated by introducing D7-branes in the bulk, and also show how the strongly coupled dynamics can lead to an emergent weakly coupled gauge theory in the IR with matter fields including scalars.

  19. Supersymmetric fifth order evolution equations

    SciTech Connect

    Tian, K.; Liu, Q. P.

    2010-03-08

    This paper considers supersymmetric fifth order evolution equations. Within the framework of symmetry approach, we give a list containing six equations, which are (potentially) integrable systems. Among these equations, the most interesting ones include a supersymmetric Sawada-Kotera equation and a novel supersymmetric fifth order KdV equation. For the latter, we supply some properties such as a Hamiltonian structures and a possible recursion operator.

  20. Strong electroweak phase transition from Supersymmetric Custodial Triplets

    NASA Astrophysics Data System (ADS)

    Garcia-Pepin, Mateo; Quiros, Mariano

    2016-05-01

    The Supersymmetric Custodial Triplet Model, a supersymmetric generalization of the Georgi-Machacek model, has proven to be an interesting modification of the MSSM. It extends the MSSM Higgs sector by three extra SU(2) L triplets in such a way that approximate custodial invariance is preserved and ρ-parameter deviations are kept under control. By means of a sizeable triplet contribution to electroweak breaking the model is able to generate a barrier at tree level between the false vacuum and the electroweak one. This will result in a strong first order phase transition for an important region of the parameter space. We also look at the gravitational waves that could be generated as a result of the phase transition and show how future interferometers could be used as a probe of the model.

  1. Neutralinos in E 6 inspired supersymmetric U(1)' models

    NASA Astrophysics Data System (ADS)

    Hesselbach, S.; Franke, F.; Fraas, H.

    2002-03-01

    The neutralino sector in E_6 inspired supersymmetric models with extra neutral gauge bosons and singlet Higgs fields contains additional gaugino and singlino states compared to the MSSM. We discuss the neutralino mixing in rank-5 and rank-6 models and analyze the supersymmetric parameter space where the light neutralinos have mainly singlino or MSSM character. The neutralino character, resonance effects of the new gauge bosons and, assuming mSUGRA-type RGEs, different selectron masses lead to significant differences between the MSSM and the extended models in neutralino production at an e^+e^- linear collider. Beam polarization may improve the signatures to distinguish between the models. In an appendix, we present the mass terms of the gauge bosons, charginos and sfermions which show a significant different mass spectrum than in the MSSM and give all relevant neutralino couplings.

  2. Dyonic non-Abelian vortex strings in supersymmetric and non-supersymmetric theories — tensions and higher derivative corrections

    NASA Astrophysics Data System (ADS)

    Eto, Minoru; Murakami, Yoshihide

    2015-03-01

    Dyonic non-Abelian local/semi-global vortex strings are studied in detail in supersymmetric/non-supersymmetric Yang-Mills-Higgs theories. While the BPS tension formula is known to be the same as that for the BPS dyonic instanton, we find that the non-BPS tension formula is approximated very well by the well-known tension formula of the BPS dyon. We show that this mysterious tension formula for the dyonic non-BPS vortex stings can be understood from the perspective of a low energy effective field theory. Furthermore, we propose an efficient method to obtain an effective theory of a single vortex string, which includes not only lower derivative terms but also all order derivative corrections by making use of the tension formula. We also find a novel dyonic vortex string whose internal orientation vectors rotate in time and spiral along the string axis.

  3. Electroweak baryogenesis in the exceptional supersymmetric standard model

    SciTech Connect

    Chao, Wei

    2015-08-28

    We study electroweak baryogenesis in the E{sub 6} inspired exceptional supersymmetric standard model (E{sub 6}SSM). The relaxation coefficients driven by singlinos and the new gaugino as well as the transport equation of the Higgs supermultiplet number density in the E{sub 6}SSM are calculated. Our numerical simulation shows that both CP-violating source terms from singlinos and the new gaugino can solely give rise to a correct baryon asymmetry of the Universe via the electroweak baryogenesis mechanism.

  4. The Higgs Boson.

    ERIC Educational Resources Information Center

    Veltman, Martinus J. G.

    1986-01-01

    Reports recent findings related to the particle Higgs boson and examines its possible contribution to the standard mode of elementary processes. Critically explores the strengths and uncertainties of the Higgs boson and proposed Higgs field. (ML)

  5. Light stops in a minimal U (1 )x extension of the MSSM

    NASA Astrophysics Data System (ADS)

    Capdevilla, R. M.; Delgado, A.; Martin, A.

    2015-12-01

    In order to reproduce the measured mass of the Higgs boson mh=125 GeV in the minimal supersymmetric standard model, one usually has to rely on heavy stops. By introducing a new gauge sector, the Higgs mass gets a tree-level contribution via a nondecoupling D -term, and mh=125 GeV can be obtained with lighter stops. In this paper, we study the values of the stops masses needed to achieve the correct Higgs mass in a setup where the gauge group is extended by a single U (1 )x interaction. We derive the experimental limits on the mass of the Z' gauge boson in this setup, then discuss how the stops masses vary as a function of the free parameters introduced by the new sector. We find that the correct Higgs mass can be reproduced with stops in a region between 700-800 GeV and a Z' resonance close to the 2.5 TeV bound from the run I of the LHC, or in a higher region 800-900 GeV if the Z' resonance is heavier (3.1 TeV). This region of parameter space will be quickly accessible at run II of the LHC, and we discuss the impact of the projected run-II bounds on the U (1 )x parameter space. We also discuss the phenomenology of the Higgs-like particles introduced to break U (1 )x and conclude their effects are too small to be detected at current colliders.

  6. Review of Physics Results from the Tevatron: Higgs Boson Physics

    DOE PAGESBeta

    Junk, Thomas R.; Juste, Aurelio

    2015-02-17

    We review the techniques and results of the searches for the Higgs boson performed by the two Tevatron collaborations, CDF and DØ. The Higgs boson predicted by the Standard Model was sought in the mass range 90 GeV < mH < 200 GeV in all main production modes at the Tevatron: gluon–gluon fusion, WH and ZH associated production, vector boson fusion, and tt- H production, and in five main decay modes: H→ bb-, H→τ+τ-, H→WW(*), H→ZZ(*) and H→γγ. An excess of events was seen in the H→ bb- searches consistent with a Standard Model Higgs boson with a mass inmore » the range 115 GeV < mH < 135 GeV. We assume a Higgs boson mass of mH = 125 GeV, studies of Higgs boson properties were performed, including measurements of the product of the cross section times the branching ratio in various production and decay modes, constraints on Higgs boson couplings to fermions and vector bosons, and tests of spin and parity. We also summarize the results of searches for supersymmetric Higgs bosons, and Higgs bosons in other extensions of the Standard Model.« less

  7. Impersonating the Standard Model Higgs boson: Alignment without decoupling

    SciTech Connect

    Carena, Marcela; Low, Ian; Shah, Nausheen R.; Wagner, Carlos E. M.

    2014-04-03

    In models with an extended Higgs sector there exists an alignment limit, in which the lightest CP-even Higgs boson mimics the Standard Model Higgs. The alignment limit is commonly associated with the decoupling limit, where all non-standard scalars are significantly heavier than the Z boson. However, alignment can occur irrespective of the mass scale of the rest of the Higgs sector. In this work we discuss the general conditions that lead to “alignment without decoupling”, therefore allowing for the existence of additional non-standard Higgs bosons at the weak scale. The values of tan β for which this happens are derived in terms of the effective Higgs quartic couplings in general two-Higgs-doublet models as well as in supersymmetric theories, including the MSSM and the NMSSM. In addition, we study the information encoded in the variations of the SM Higgs-fermion couplings to explore regions in the mA – tan β parameter space.

  8. Impersonating the Standard Model Higgs boson: Alignment without decoupling

    DOE PAGESBeta

    Carena, Marcela; Low, Ian; Shah, Nausheen R.; Wagner, Carlos E. M.

    2014-04-03

    In models with an extended Higgs sector there exists an alignment limit, in which the lightest CP-even Higgs boson mimics the Standard Model Higgs. The alignment limit is commonly associated with the decoupling limit, where all non-standard scalars are significantly heavier than the Z boson. However, alignment can occur irrespective of the mass scale of the rest of the Higgs sector. In this work we discuss the general conditions that lead to “alignment without decoupling”, therefore allowing for the existence of additional non-standard Higgs bosons at the weak scale. The values of tan β for which this happens are derivedmore » in terms of the effective Higgs quartic couplings in general two-Higgs-doublet models as well as in supersymmetric theories, including the MSSM and the NMSSM. In addition, we study the information encoded in the variations of the SM Higgs-fermion couplings to explore regions in the mA – tan β parameter space.« less

  9. Review of Physics Results from the Tevatron: Higgs Boson Physics

    SciTech Connect

    Junk, Thomas R.; Juste, Aurelio

    2015-02-17

    We review the techniques and results of the searches for the Higgs boson performed by the two Tevatron collaborations, CDF and DØ. The Higgs boson predicted by the Standard Model was sought in the mass range 90 GeV < mH < 200 GeV in all main production modes at the Tevatron: gluon–gluon fusion, WH and ZH associated production, vector boson fusion, and tt- H production, and in five main decay modes: H→ bb-, H→τ+τ-, H→WW(*), H→ZZ(*) and H→γγ. An excess of events was seen in the H→ bb- searches consistent with a Standard Model Higgs boson with a mass in the range 115 GeV < mH < 135 GeV. We assume a Higgs boson mass of mH = 125 GeV, studies of Higgs boson properties were performed, including measurements of the product of the cross section times the branching ratio in various production and decay modes, constraints on Higgs boson couplings to fermions and vector bosons, and tests of spin and parity. We also summarize the results of searches for supersymmetric Higgs bosons, and Higgs bosons in other extensions of the Standard Model.

  10. Review of physics results from the Tevatron: Higgs boson physics

    NASA Astrophysics Data System (ADS)

    Junk, Thomas R.; Juste, Aurelio

    2015-02-01

    We review the techniques and results of the searches for the Higgs boson performed by the two Tevatron collaborations, CDF and DØ. The Higgs boson predicted by the Standard Model was sought in the mass range 90 GeV < mH < 200 GeV in all main production modes at the Tevatron: gluon-gluon fusion, WH and ZH associated production, vector boson fusion, and t\\bar {t}H production, and in five main decay modes: H-> b{\\bar {b}}, H→τ+τ-, H→WW(*), H→ZZ(*) and H→γγ. An excess of events was seen in the H-> b{\\bar b} searches consistent with a Standard Model Higgs boson with a mass in the range 115 GeV < mH < 135 GeV. Assuming a Higgs boson mass of mH = 125 GeV, studies of Higgs boson properties were performed, including measurements of the product of the cross section times the branching ratio in various production and decay modes, constraints on Higgs boson couplings to fermions and vector bosons, and tests of spin and parity. We also summarize the results of searches for supersymmetric Higgs bosons, and Higgs bosons in other extensions of the Standard Model.

  11. The problem with false vacuum Higgs inflation

    SciTech Connect

    Fairbairn, Malcolm; Grothaus, Philipp; Hogan, Robert E-mail: philipp.grothaus@kcl.ac.uk

    2014-06-01

    We investigate the possibility of using the only known fundamental scalar, the Higgs, as an inflaton with minimal coupling to gravity. The peculiar appearance of a plateau or a false vacuum in the renormalised effective scalar potential suggests that the Higgs might drive inflation. For the case of a false vacuum we use an additional singlet scalar field, motivated by the strong CP problem, and its coupling to the Higgs to lift the barrier allowing for a graceful exit from inflation by mimicking hybrid inflation. We find that this scenario is incompatible with current measurements of the Higgs mass and the QCD coupling constant and conclude that the Higgs can only be the inflaton in more complicated scenarios.

  12. Gravitino decays and the cosmological lithium problem in light of the LHC Higgs and supersymmetry searches

    SciTech Connect

    Cyburt, Richard H.; Ellis, John; Luo, Feng; Fields, Brian D.; Olive, Keith A.; Spanos, Vassilis C. E-mail: John.Ellis@cern.ch E-mail: fluo@physics.umn.edu E-mail: spanos@inp.demokritos.gr

    2013-05-01

    We studied previously the impact on light-element abundances of gravitinos decaying during or after Big-Bang nucleosynthesis (BBN). We found regions of the gravitino mass m{sub 3/2} and abundance ζ{sub 3/2} plane where its decays could reconcile the calculated abundance of {sup 7}Li with observation without perturbing the other light-element abundances unacceptably. Here we revisit this issue in light of LHC measurements of the Higgs mass and constraints on supersymmetric model parameters, as well as updates in the astrophysical measurements of light-element abundances. In addition to the constrained minimal supersymmetric extension of the Standard Model with universal soft supersymmetry-breaking masses at the GUT scale (the CMSSM) studied previously, we also study models with universality imposed below the GUT scale and models with non-universal Higgs masses (NUHM1). We calculate the total likelihood function for the light-element abundances, taking into account the observational uncertainties. We find that gravitino decays provide a robust solution to the cosmological {sup 7}Li problem along strips in the (m{sub 3/2},ζ{sub 3/2}) plane along which the abundances of deuterium, {sup 4}He and {sup 7}Li may be fit with χ{sup 2}{sub min}∼<3, compared with χ{sup 2} ∼ 34 if the effects of gravitino decays are unimportant. The minimum of the likelihood function is reduced to χ{sup 2} < 2 when the uncertainty on D/H is relaxed and < 1 when the lithium abundance is taken from globular cluster data.

  13. The vector-like twin Higgs

    NASA Astrophysics Data System (ADS)

    Craig, Nathaniel; Knapen, Simon; Longhi, Pietro; Strassler, Matthew

    2016-07-01

    We present a version of the twin Higgs mechanism with vector-like top partners. In this setup all gauge anomalies automatically cancel, even without twin leptons. The matter content of the most minimal twin sector is therefore just two twin tops and one twin bottom. The LHC phenomenology, illustrated with two example models, is dominated by twin glueball decays, possibly in association with Higgs bosons. We further construct an explicit four-dimensional UV completion and discuss a variety of UV completions relevant for both vector-like and fraternal twin Higgs models.

  14. Dirac neutrinos from a second Higgs doublet

    NASA Astrophysics Data System (ADS)

    Davidson, Shainen M.; Logan, Heather E.

    2009-11-01

    We propose a minimal extension of the standard model in which neutrinos are Dirac particles and their tiny masses are explained without requiring tiny Yukawa couplings. A second Higgs doublet with a tiny vacuum expectation value provides neutrino masses while simultaneously improving the naturalness of the model by allowing a heavier standard-model-like Higgs boson consistent with electroweak precision data. The model predicts a μ→eγ rate potentially detectable in the current round of experiments, as well as distinctive signatures in the production and decay of the charged Higgs H+ of the second doublet which can be tested at future colliders. Neutrinoless double beta decay is absent.

  15. Spacetime Curvature and Higgs Stability after Inflation.

    PubMed

    Herranen, M; Markkanen, T; Nurmi, S; Rajantie, A

    2015-12-11

    We investigate the dynamics of the Higgs field at the end of inflation in the minimal scenario consisting of an inflaton field coupled to the standard model only through the nonminimal gravitational coupling ξ of the Higgs field. Such a coupling is required by renormalization of the standard model in curved space, and in the current scenario also by vacuum stability during high-scale inflation. We find that for ξ≳1, rapidly changing spacetime curvature at the end of inflation leads to significant production of Higgs particles, potentially triggering a transition to a negative-energy Planck scale vacuum state and causing an immediate collapse of the Universe. PMID:26705621

  16. Baryogenesis via elementary Goldstone Higgs relaxation

    NASA Astrophysics Data System (ADS)

    Gertov, Helene; Pearce, Lauren; Sannino, Francesco; Yang, Louis

    2016-06-01

    We extend the relaxation mechanism to the elementary Goldstone Higgs framework. Besides studying the allowed parameter space of the theory, we add the minimal ingredients needed for the framework to be phenomenologically viable. The very nature of the extended Higgs sector allows to consider very flat scalar potential directions along which the relaxation mechanism can be implemented. This fact translates into wider regions of applicability of the relaxation mechanism when compared to the Standard Model Higgs case. Our results show that if the electroweak scale is not fundamental but radiatively generated it is possible to generate the observed matter-antimatter asymmetry via the relaxation mechanism.

  17. Supersymmetrizing massive gravity

    NASA Astrophysics Data System (ADS)

    Malaeb, O.

    2013-07-01

    When four scalar fields with global Lorentz symmetry are coupled to gravity and take a vacuum expectation value, breaking diffeomorphism invariance spontaneously, the graviton becomes massive. This model is supersymmetrized by considering four N=1 chiral superfields with global Lorentz symmetry. The global supersymmetry is promoted to a local one using the rules of tensor calculus of coupling the N=1 supergravity Lagrangian to the four chiral multiplets. When the scalar components of the chiral multiplets zA acquire a vacuum expectation value, both diffeomorphism invariance and local supersymmetry are broken spontaneously. The global Lorentz index A becomes identified with the space-time Lorentz index, making the scalar fields zA vectors and the chiral spinors ψA spin-3/2 Rarita-Schwinger fields. We show that the spectrum of the model in the broken phase consists of a massive spin-2 field, two massive spin-3/2 fields with different mass and a massive vector.

  18. Supersymmetric string waves

    SciTech Connect

    Bergshoeff, E.A. ); Kallosh, R.; Ortin, T. )

    1993-06-15

    We present plane-wave-type solutions of the lowest-order superstring effective action which have unbroken space-time supersymmetries. They are given by a stringy generalization of the Brinkmann metric, dialton, axion, and gauge fields. Some conspiracy between the metric and the axion field is required. The [alpha][prime] stringy corrections to the effective on-shell action, to the equations of motion (and therefore to the solutions themselves), and to the supersymmetry transformations are shown to vanish for a special class of these solutions that we call supersymmetric string waves (SSW's). In the SSW solutions, there exists a conspiracy not only between the metric and the axion field, but also between the gauge fields and the metric, since the embedding of the spin connection in the gauge group is required.

  19. Three-family supersymmetric standardlike models from intersecting brane worlds.

    PubMed

    Cvetic, M; Shiu, G; Uranga, A M

    2001-11-12

    We construct the first three family N = 1 supersymmetric string model with standard model gauge group SU(3)(C) x SU(2)(L) x U(1)(Y) from an orientifold of type IIA theory on T(6)/(Z(2) x Z(2)) and D6-branes intersecting at angles. In addition to the minimal supersymmetric standard model particles, the model contains right-handed neutrinos, a chiral (but anomaly-free) set of exotic multiplets, and extra vectorlike multiplets. We discuss some phenomenological features of this model. PMID:11690462

  20. Higgs boson mass and sparticle spectroscopy in Yukawa unified SUSY SO(10)

    NASA Astrophysics Data System (ADS)

    Shafi, Qaisar

    2012-07-01

    We employ third family Yukawa unification, predicted by simple supersymmetric SO(10) models, to estimate the lightest MSSM Higgs boson mass. For μ > 0 (or μ < 0) and mt = 173.1GeV, the Higgs mass is estimated to lie close to 123-124 GeV. The theoretical uncertainty in this estimate is ±3 GeV. We highlight some LHC testable benchmark points which also display the presence of neutralino-stau coannihilation channel.

  1. The Classification of Highly Supersymmetric Supergravity Solutions

    SciTech Connect

    Gran, U.; Gutowski, J.; Papadopoulos, G.; Roest, D.

    2009-02-02

    The spinorial geometry method is an effective method for constructing systematic classifications of supersymmetric supergravity solutions. Recent work on analysing highly supersymmetric solutions in type IIB supergravity using this method is reviewed. It is shown that all supersymmetric solutions of IIB supergravity with more than 28 Killing spinors are locally maximally supersymmetric.

  2. Supersymmetric mode converters

    NASA Astrophysics Data System (ADS)

    Heinrich, Matthias; Miri, Mohammad-Ali; Stützer, Simon; Nolte, Stefan; Szameit, Alexander; Christodoulides, Demetrios N.

    2015-08-01

    In recent years, the ever-increasing demand for high-capacity transmission systems has driven remarkable advances in technologies that encode information on an optical signal. Mode-division multiplexing makes use of individual modes supported by an optical waveguide as mutually orthogonal channels. The key requirement in this approach is the capability to selectively populate and extract specific modes. Optical supersymmetry (SUSY) has recently been proposed as a particularly elegant way to resolve this design challenge in a manner that is inherently scalable, and at the same time maintains compatibility with existing multiplexing strategies. Supersymmetric partners of multimode waveguides are characterized by the fact that they share all of their effective indices with the original waveguide. The crucial exception is the fundamental mode, which is absent from the spectrum of the partner waveguide. Here, we demonstrate experimentally how this global phase-matching property can be exploited for efficient mode conversion. Multimode structures and their superpartners are experimentally realized in coupled networks of femtosecond laser-written waveguides, and the corresponding light dynamics are directly observed by means of fluorescence microscopy. We show that SUSY transformations can readily facilitate the removal of the fundamental mode from multimode optical structures. In turn, hierarchical sequences of such SUSY partners naturally implement the conversion between modes of adjacent order. Our experiments illustrate just one of the many possibilities of how SUSY may serve as a building block for integrated mode-division multiplexing arrangements. Supersymmetric notions may enrich and expand integrated photonics by versatile optical components and desirable, yet previously unattainable, functionalities.

  3. Natural NMSSM with a light Singlet Higgs and Singlino LSP

    NASA Astrophysics Data System (ADS)

    Potter, C. T.

    2016-01-01

    Supersymmetry (SUSY) is an attractive extension of the Standard Model (SM) of particle physics which solves the SM hierarchy problem. Motivated by the theoretical μ -term problem of the Minimal Supersymmetric Model (MSSM), the Next-to MSSM (NMSSM) can also account for experimental deviations from the SM like the anomalous muon magnetic moment and the dark matter relic density. Natural SUSY, motivated by naturalness considerations, exhibits small fine tuning and a characteristic phenomenology with light higgsinos, stops, and gluinos. We describe a scan in NMSSM parameter space motivated by Natural SUSY and guided by the phenomenology of an NMSSM with a slightly broken Peccei-Quinn symmetry and a lightly coupled singlet. We identify a scenario which survives experimental constraints with a light singlet Higgs and a singlino lightest SUSY particle. We then discuss how the scenario is not presently excluded by searches at the Large Hadron Collider (LHC) and which channels are promising for discovery at the LHC and International Linear Collider.

  4. Baryon stability on the Higgs dissolution edge: threshold corrections and suppression of baryon violation in the NMSGUT

    NASA Astrophysics Data System (ADS)

    Aulakh, Charanjit S.; Garg, Ila; Khosa, Charanjit K.

    2014-05-01

    Superheavy threshold corrections to the matching condition between matter Yukawa couplings of the effective Minimal Supersymmetric Standard Model (MSSM) and the New Minimal Supersymmetric (SO(10)) GUT (NMSGUT) provide a novel and generic mechanism for reducing the long standing and generically problematic operator dimension 5 baryon decay rates. In suitable regions of the parameter space strong wave function renormalization of the effective MSSM Higgs doublets due to the large number of heavy fields can take the wave function renormalization of the MSSM Higgs field close to the dissolution value (ZH,Hbar=0). Rescaling to canonical kinetic terms lowers the SO(10) Yukawas required to match the MSSM fermion data. Since the same Yukawas determine the dimension 5 B violation operator coefficients, the associated rates can be suppressed to levels compatible with current limits. Including these threshold effects also relaxes the constraint yb-yτ≃ys-yμ operative between 10-120-plet generated tree level MSSM matter fermion Yukawas yf. We exhibit accurate fits of the MSSM fermion mass-mixing data in terms of NMSGUT superpotential couplings and 5 independent soft Susy breaking parameters specified at 1016.25 GeV with the claimed suppression of baryon decay rates. As before, our s-spectra are of the mini split supersymmetry type with large |A0|,μ,mH,Hbar>100 TeV, light gauginos and normal s-hierarchy. Large A0,μ and soft masses allow significant deviation from the canonical GUT gaugino mass ratios and ensure vacuum safety. Even without optimization, prominent candidates for BSM discovery such as the muon magnetic anomaly, b→sγ and leptogenesis CP violation emerge in the preferred ball park.

  5. Supersymmetric dark matter after LHC run 1

    NASA Astrophysics Data System (ADS)

    Bagnaschi, E. A.; Buchmueller, O.; Cavanaugh, R.; Citron, M.; De Roeck, A.; Dolan, M. J.; Ellis, J. R.; Flächer, H.; Heinemeyer, S.; Isidori, G.; Malik, S.; Martínez Santos, D.; Olive, K. A.; Sakurai, K.; de Vries, K. J.; Weiglein, G.

    2015-10-01

    Different mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, tilde{χ }^01, assumed here to be the lightest SUSY particle (LSP) and thus the dark matter (DM) particle, into the range allowed by astrophysics and cosmology. These mechanisms include coannihilation with some nearly degenerate next-to-lightest supersymmetric particle such as the lighter stau tilde{τ }1, stop tilde{t}1 or chargino tilde{χ }^± 1, resonant annihilation via direct-channel heavy Higgs bosons H / A, the light Higgs boson h or the Z boson, and enhanced annihilation via a larger Higgsino component of the LSP in the focus-point region. These mechanisms typically select lower-dimensional subspaces in MSSM scenarios such as the CMSSM, NUHM1, NUHM2, and pMSSM10. We analyze how future LHC and direct DM searches can complement each other in the exploration of the different DM mechanisms within these scenarios. We find that the {tilde{τ }_1} coannihilation regions of the CMSSM, NUHM1, NUHM2 can largely be explored at the LHC via searches for / E_T events and long-lived charged particles, whereas their H / A funnel, focus-point and tilde{χ }^± 1 coannihilation regions can largely be explored by the LZ and Darwin DM direct detection experiments. We find that the dominant DM mechanism in our pMSSM10 analysis is tilde{χ }^± 1 coannihilation: parts of its parameter space can be explored by the LHC, and a larger portion by future direct DM searches.

  6. Supersymmetric Dark Matter after LHC Run 1

    SciTech Connect

    Bagnaschi, E. A.; Buchmueller, O.; Cavanaugh, R.; Citron, M.; De Roeck, A.; Dolan, M. J.; Ellis, J. R.; Flacher, H.; Heinemeyer, S.; Isidori, G.; Malik, S.; Santos, D. Martinez; Olive, K. A.; Sakurai, K.; de Vries, K. J.; Weiglein, G.

    2015-10-23

    Different mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, χ~01, assumed here to be the lightest SUSY particle (LSP) and thus the dark matter (DM) particle, into the range allowed by astrophysics and cosmology. These mechanisms include coannihilation with some nearly degenerate next-to-lightest supersymmetric particle such as the lighter stau τ~1, stop t~1 or chargino χ1, resonant annihilation via direct-channel heavy Higgs bosons H / A, the light Higgs boson h or the Z boson, and enhanced annihilation via a larger Higgsino component of the LSP in the focus-point region. These mechanisms typically select lower-dimensional subspaces in MSSM scenarios such as the CMSSM, NUHM1, NUHM2, and pMSSM10. We analyze how future LHC and direct DM searches can complement each other in the exploration of the different DM mechanisms within these scenarios. We find that the τ~1 coannihilation regions of the CMSSM, NUHM1, NUHM2 can largely be explored at the LHC via searches for /ET events and long-lived charged particles, whereas theirH / A funnel, focus-point and χ1 coannihilation regions can largely be explored by the LZ and Darwin DM direct detection experiments. Furthermore, we find that the dominant DM mechanism in our pMSSM10 analysis is χ~±1 coannihilation: parts of its parameter space can be explored by the LHC, and a larger portion by future direct DM searches.

  7. Supersymmetric Dark Matter after LHC Run 1

    DOE PAGESBeta

    Bagnaschi, E. A.; Buchmueller, O.; Cavanaugh, R.; Citron, M.; De Roeck, A.; Dolan, M. J.; Ellis, J. R.; Flacher, H.; Heinemeyer, S.; Isidori, G.; et al

    2015-10-23

    Different mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, χ~01, assumed here to be the lightest SUSY particle (LSP) and thus the dark matter (DM) particle, into the range allowed by astrophysics and cosmology. These mechanisms include coannihilation with some nearly degenerate next-to-lightest supersymmetric particle such as the lighter stau τ~1, stop t~1 or chargino χ~±1, resonant annihilation via direct-channel heavy Higgs bosons H / A, the light Higgs boson h or the Z boson, and enhanced annihilation via a larger Higgsino component of the LSP in the focus-pointmore » region. These mechanisms typically select lower-dimensional subspaces in MSSM scenarios such as the CMSSM, NUHM1, NUHM2, and pMSSM10. We analyze how future LHC and direct DM searches can complement each other in the exploration of the different DM mechanisms within these scenarios. We find that the τ~1 coannihilation regions of the CMSSM, NUHM1, NUHM2 can largely be explored at the LHC via searches for /ET events and long-lived charged particles, whereas theirH / A funnel, focus-point and χ~±1 coannihilation regions can largely be explored by the LZ and Darwin DM direct detection experiments. Furthermore, we find that the dominant DM mechanism in our pMSSM10 analysis is χ~±1 coannihilation: parts of its parameter space can be explored by the LHC, and a larger portion by future direct DM searches.« less

  8. Radiative natural supersymmetry: Reconciling electroweak fine-tuning and the Higgs boson mass

    NASA Astrophysics Data System (ADS)

    Baer, Howard; Barger, Vernon; Huang, Peisi; Mickelson, Dan; Mustafayev, Azar; Tata, Xerxes

    2013-06-01

    Models of natural supersymmetry seek to solve the little hierarchy problem by positing a spectrum of light Higgsinos ≲200-300GeV and light top squarks ≲600GeV along with very heavy squarks and TeV-scale gluinos. Such models have low electroweak fine-tuning and satisfy the LHC constraints. However, in the context of the minimal supersymmetric standard model, they predict too low a value of mh, are frequently in conflict with the measured b→sγ branching fraction, and the relic density of thermally produced Higgsino-like weakly interacting massive particles (WIMPs) falls well below dark matter measurements. We propose a framework dubbed radiative natural supersymmetry (RNS), which can be realized within the minimal supersymmetric standard model (avoiding the addition of extra exotic matter) and which maintains features such as gauge coupling unification and radiative electroweak symmetry breaking. The RNS model can be generated from supersymmetry (SUSY) grand unified theory type models with nonuniversal Higgs masses. Allowing for high-scale soft SUSY breaking Higgs mass mHu>m0 leads to automatic cancellations during renormalization group running and to radiatively-induced low fine-tuning at the electroweak scale. Coupled with large mixing in the top-squark sector, RNS allows for fine-tuning at the 3%-10% level with TeV-scale top squarks and a 125 GeV light Higgs scalar h. The model allows for at least a partial solution to the SUSY flavor, CP, and gravitino problems since first-/second-generation scalars (and the gravitino) may exist in the 10-30 TeV regime. We outline some possible signatures for RNS at the LHC, such as the appearance of low invariant mass opposite-sign isolated dileptons from gluino cascade decays. The smoking gun signature for RNS is the appearance of light Higgsinos at a linear e+e- collider. If the strong CP problem is solved by the Peccei-Quinn mechanism, then RNS naturally accommodates mixed axion-Higgsino cold dark matter, where the

  9. Results on SUSY and Higgs searches at CMS

    ScienceCinema

    None

    2011-04-25

    We present the results of searches for Supersymmetry and the Higgs boson performed using data collected in 2010 by the CMS experiment at the LHC in pp-collisions at a centre-of-mass energy of 7 TeV. Searches for Supersymmetry are performed in all-hadronic final states with jets and missing transverse energy and in final states including one or more isolated leptons or photons. No evidence for new physics is observed and limits are set on the predictions of a range of Supersymmetric scenarios. The results of searches for the Higgs boson are presented and limits set.

  10. Results on SUSY and Higgs searches at CMS

    SciTech Connect

    2011-03-16

    We present the results of searches for Supersymmetry and the Higgs boson performed using data collected in 2010 by the CMS experiment at the LHC in pp-collisions at a centre-of-mass energy of 7 TeV. Searches for Supersymmetry are performed in all-hadronic final states with jets and missing transverse energy and in final states including one or more isolated leptons or photons. No evidence for new physics is observed and limits are set on the predictions of a range of Supersymmetric scenarios. The results of searches for the Higgs boson are presented and limits set.

  11. Search for higgs, leptoquarks, and exotics at Tevatron

    SciTech Connect

    Song Ming Wang

    2004-06-22

    This paper reviews some of the most recent results from the CDF and D0 experiments on the searches for Standard Model and Non-Standard Model Higgs bosons, and other new phenomena at the Tevatron. Both experiments examine data from proton anti-proton collision at {radical}s = 1.96 TeV, of integrated luminosity {approx} 200 pb{sup -1} (per experiment), to search for Higgs predicted in the Standard Model and beyond Standard Model, supersymmetric particles in the Gauge Mediated Symmetry Breaking scenario, leptoquarks, and excited electrons. No signal was observed, and limits on the signatures and models are derived.

  12. Towards a supersymmetric description of the Fermi Galactic center excess

    SciTech Connect

    Cahill-Rowley, M.; Gainer, J. S.; Hewett, J. L.; Rizzo, T. G.

    2015-02-10

    We attempt to build a model that describes the Fermi galactic gamma-ray excess (FGCE) within a UV-complete Supersymmetric framework; we find this to be highly non-trivial. At the very least a successful Supersymmetric explanation must have several important ingredients in order to fit the data and satisfy other theoretical and experimental constraints. Under the assumption that a single annihilation mediator is responsible for both the observed relic density as well as the FGCE, we show that the requirements are not easily satisfied in many TeV-scale SUSY models, but can be met with some model building effort in the general NMSSM with ~ 10 parameters beyond the MSSM. We find that the data selects a particular region of the parameter space with a mostly singlino lightest Supersymmetric particle and a relatively light CP-odd Higgs boson that acts as the mediator for dark matter annihilation. We study the predictions for various observables within this parameter space, and find that searches for this light CP-odd state at the LHC, as well as searches for the direct detection of dark matter, are likely to be quite challenging. It is possible that a signature could be observed in the flavor sector; however, indirect detection remains the best probe of this scenario.

  13. Towards a supersymmetric description of the Fermi Galactic center excess

    DOE PAGESBeta

    Cahill-Rowley, M.; Gainer, J. S.; Hewett, J. L.; Rizzo, T. G.

    2015-02-10

    We attempt to build a model that describes the Fermi galactic gamma-ray excess (FGCE) within a UV-complete Supersymmetric framework; we find this to be highly non-trivial. At the very least a successful Supersymmetric explanation must have several important ingredients in order to fit the data and satisfy other theoretical and experimental constraints. Under the assumption that a single annihilation mediator is responsible for both the observed relic density as well as the FGCE, we show that the requirements are not easily satisfied in many TeV-scale SUSY models, but can be met with some model building effort in the general NMSSMmore » with ~ 10 parameters beyond the MSSM. We find that the data selects a particular region of the parameter space with a mostly singlino lightest Supersymmetric particle and a relatively light CP-odd Higgs boson that acts as the mediator for dark matter annihilation. We study the predictions for various observables within this parameter space, and find that searches for this light CP-odd state at the LHC, as well as searches for the direct detection of dark matter, are likely to be quite challenging. It is possible that a signature could be observed in the flavor sector; however, indirect detection remains the best probe of this scenario.« less

  14. Aspects of supersymmetric BRST cohomology

    NASA Astrophysics Data System (ADS)

    Brandt, Friedemann

    2013-10-01

    The application and extension of well-known BRST cohomological methods to supersymmetric field theories are discussed. The focus is on the emergence and particular features of supersymmetry algebra cohomology in this context. In particular it is discussed and demonstrated that supersymmetry algebra cohomology emerges within the cohomological analysis of standard supersymmetric field theories whether or not the commutator algebra of the symmetry transformations closes off-shell.

  15. Cosmic strings from supersymmetric flat directions

    SciTech Connect

    Cui Yanou; Morrissey, David E.; Martin, Stephen P.; Wells, James D.

    2008-02-15

    Flat directions are a generic feature of the scalar potential in supersymmetric gauge field theories. They can arise, for example, from D-terms associated with an extra Abelian gauge symmetry. Even when supersymmetry is broken softly, there often remain directions in the scalar field space along which the potential is almost flat. Upon breaking a gauge symmetry along one of these almost-flat directions, cosmic strings may form. Relative to the standard cosmic string picture based on the Abelian Higgs model, these flat-direction cosmic strings have the extreme type-I properties of a thin gauge core surrounded by a much wider scalar field profile. We perform a comprehensive study of the microscopic, macroscopic, and observational characteristics of this class of strings. We find many differences from the standard string scenario, including stable higher winding-mode strings, the dynamical formation of higher mode strings from lower ones, and a resultant multitension scaling string network in the early universe. These strings are only moderately constrained by current observations, and their gravitational wave signatures may be detectable at future gravity wave detectors. Furthermore, there is the interesting but speculative prospect that the decays of cosmic string loops in the early universe could be a source of ultrahigh-energy cosmic rays or nonthermal dark matter. We also compare the observational signatures of flat-direction cosmic strings with those of ordinary cosmic strings as well as (p,q) cosmic strings motivated by superstring theory.

  16. SUSY SO(10) GUT with Higgs mass prediction

    SciTech Connect

    Gogoladze, Ilia

    2014-06-24

    We identify a class of supersymmetric SO(10) model in which imposing essentially perfect t-b-τ Yukawa coupling unification at the grand unification scale yields lightest CP-even (SM-like) Higgs boson mass around 125 GeV. The squark and gluino masses in these models exceed 3 TeV. The model predicts only neutralino-stau coannihilation scenario in order to obtain the desired relic dark matter density.

  17. Supercharges, quantum states and angular momentum for N=4 supersymmetric monopoles

    NASA Astrophysics Data System (ADS)

    de Vries, Erik Jan; Schroers, Bernd J.

    2010-11-01

    We revisit the moduli space approximation to the quantum mechanics of monopoles in N=4 supersymmetric Yang-Mills-Higgs theory with maximal symmetry breaking. Starting with the observation that the set of fermionic zero-modes in N=4 supersymmetric Yang-Mills-Higgs theory can be viewed as two copies of the set of fermionic zero-modes in the N=2 version, we build a model to describe the quantum mechanics of N=4 supersymmetric monopoles, based on our previous paper (de Vries and Schroers, 2009) [1] on the N=2 case, in which this doubling of fermionic zero-modes is manifest throughout. Our final picture extends the familiar result that quantum states are described by differential forms on the moduli space and that the Hamiltonian operator is the Laplacian acting on forms. In particular, we derive a general expression for the total angular momentum operator on the moduli space which differs from the naive candidate by the adjoint action of the complex structures. We also express all the supercharges in terms of (twisted) Dolbeault operators and illustrate our results by discussing, in some detail, the N=4 supersymmetric quantum dynamics of monopoles in a theory with gauge group SU(3) broken to U(1)×U(1).

  18. Retrofitted supersymmetric models

    NASA Astrophysics Data System (ADS)

    Bose, Manatosh

    This thesis explores several models of metastable dynamic supersymmetry breaking (MDSB) and a supersymmetric model of hybrid inflation. All of these models possess discrete R-symmetries. We specially focus on the retrofitted models for supersymmetry breaking models. At first we construct retrofitted models of gravity mediation. In these models we explore the genericity of the so-called "split supersymmetry." We show that with the simplest models, where the goldstino multiplet is neutral under the discrete R-symmetry, a split spectrum is not generic. However if the goldstino superfield is charged under some symmetry other than the R-symmetry, then a split spectrum is achievable but not generic. We also present a gravity mediated model where the fine tuning of the Z-boson mass is dictated by a discrete choice rather than a continuous tuning. Then we construct retrofitted models of gauge mediated SUSY breaking. We show that, in these models, if the approximate R-symmetry of the theory is spontaneously broken, the messenger scale is fixed; if explicitly broken by retrofitted couplings, a very small dimensionless number is required; if supergravity corrections are responsible for the symmetry breaking, at least two moderately small couplings are required, and that there is a large range of possible messenger scales. Finally we switch our attention to small field hybrid inflation. We construct a model that yields a spectral index ns = 0.96. Here, we also briefly discuss the possibility of relating the scale of inflation with the dynamics responsible for supersymmetry breaking.

  19. Twin Higgs WIMP dark matter

    NASA Astrophysics Data System (ADS)

    García García, Isabel; Lasenby, Robert; March-Russell, John

    2015-09-01

    Dark matter (DM) without a matter asymmetry is studied in the context of twin Higgs (TH) theories in which the LHC naturalness problem is addressed. These possess a twin sector related to the Standard Model (SM) by a (broken) Z2 symmetry, and interacting with the SM via a specific Higgs portal. We focus on the minimal realization of the TH mechanism, the fraternal twin Higgs, with only a single generation of twin quarks and leptons, and the S U (3 )'×S U (2 )' gauge group. We show that a variety of natural twin-WIMP DM candidates are present (directly linked to the weak scale by naturalness), the simplest and most attractive being the τ' lepton with a mass mτ'>mHiggs/2 , although spin-1 W'± DM and multicomponent DM are also possible (twin baryons are strongly disfavored by tuning). We consider in detail the dynamics of the possibly (meta)stable glueballs in the twin sector, the nature of the twin QCD phase transition, and possible new contributions to the number of relativistic degrees of freedom, Δ Neff . Direct detection signals are below current bounds but accessible in near-future experiments. Indirect detection phenomenology is rich and requires detailed studies of twin hadronization and fragmentation to twin glueballs and quarkonia and their subsequent decay to SM, and possible light twin sector states.

  20. Charged-Higgs collider signals with or without flavor

    SciTech Connect

    Dittmaier, Stefan; Hiller, Gudrun; Plehn, Tilman; Spannowsky, Michael

    2008-06-01

    A charged Higgs boson is a clear signal for an extended Higgs sector, as, for example, predicted by supersymmetry. Squark mixing can significantly change the pattern of charged-Higgs production and most notably circumvent the chiral suppression for single Higgs production. We evaluate the CERN LHC discovery potential in the light of flavor physics, in the single-Higgs production channel and in association with a hard jet for small and moderate values of tan{beta}. Thoroughly examining current flavor constraints we find that nonminimal flavor structures can have a sizable impact but tend to predict moderate production rates. Nevertheless, charged-Higgs searches will probe flavor structures not accessible to rare kaon, bottom, or charm experiments and can invalidate the assumption of minimal flavor violation.

  1. Restrictions on two Higgs doublet models and CP violation at the unification scale

    SciTech Connect

    Athanasiu, G.G.

    1987-04-01

    Bounds on charged Higgs masses and couplings in models with two Higgs doublets are examined that came from CP violation in the neutral K system. Bounds on charged Higgs masses and couplings in two Higgs doublet models are also obtained from their effects on neutral-B-meson mixing. The bounds are found to be comparable to those obtained with additional assumptions from the neutral K system. The three generation phase invariant measure of CP violation is shown to satisfy a simple and solvable renormalization group equation. Its value is seen to fall by four to eight orders of magnitude between the weak and grand unification scales in the standard model, as well as in its two Higgs and supersymmetric extensions. (LEW)

  2. Massive supersymmetric quantum gauge theory

    NASA Astrophysics Data System (ADS)

    Grigore, D. R.; Gut, M.; Scharf, G.

    2005-08-01

    We continue the study of the supersymmetric vector multiplet in a purely quantum framework. We obtain some new results which make the connection with the standard literature. First we construct the one-particle physical Hilbert space taking into account the (quantum) gauge structure of the model. Then we impose the condition of positivity for the scalar product only on the physical Hilbert space. Finally we obtain a full supersymmetric coupling which is gauge invariant in the supersymmetric sense in the first order of perturbation theory. By integrating out the Grassmann variables we get an interacting Lagrangian for a massive Yang-Mills theory related to ordinary gauge theory; however the number of ghost fields is doubled so we do not obtain the same ghost couplings as in the standard model Lagrangian.

  3. Beyond Higgs couplings: probing the Higgs with angular observables at future e + e - colliders

    NASA Astrophysics Data System (ADS)

    Craig, Nathaniel; Gu, Jiayin; Liu, Zhen; Wang, Kechen

    2016-03-01

    We study angular observables in the {e}+{e}-to ZHto {ell}+{ell}-boverline{b} channel at future circular e + e - colliders such as CEPC and FCC-ee. Taking into account the impact of realistic cut acceptance and detector effects, we forecast the precision of six angular asymmetries at CEPC (FCC-ee) with center-of-mass energy sqrt{s}=240 GeV and 5 (30) ab-1 integrated luminosity. We then determine the projected sensitivity to a range of operators relevant for he Higgs-strahlung process in the dimension-6 Higgs EFT. Our results show that angular observables provide complementary sensitivity to rate measurements when constraining various tensor structures arising from new physics. We further find that angular asymmetries provide a novel means of both probing BSM corrections to the HZγ coupling and constraining the "blind spot" in indirect limits on supersymmetric scalar top partners.

  4. Search for a light pseudoscalar Higgs boson in the dimuon decay channel in pp collisions at √s = 7 TeV.

    PubMed

    Chatrchyan, S; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hörmann, N; Hrubec, J; Jeitler, M; Kiesenhofer, W; Knünz, V; Krammer, M; Liko, D; Mikulec, I; Pernicka, M; Rahbaran, B; Rohringer, C; Rohringer, H; Schöfbeck, R; Strauss, J; Taurok, A; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Bansal, S; Cornelis, T; De Wolf, E A; Janssen, X; Luyckx, S; Maes, T; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Selvaggi, M; Staykova, Z; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Blekman, F; Blyweert, S; D'Hondt, J; Gonzalez Suarez, R; Kalogeropoulos, A; Maes, M; Olbrechts, A; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Clerbaux, B; De Lentdecker, G; Dero, V; Gay, A P R; Hreus, T; Léonard, A; Marage, P E; Reis, T; Thomas, L; Van der Velde, C; Vanlaer, P; Wang, J; Adler, V; Beernaert, K; Cimmino, A; Costantini, S; Garcia, G; Grunewald, M; Klein, B; Lellouch, J; Marinov, A; McCartin, J; Ocampo Rios, A A; Ryckbosch, D; Strobbe, N; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Walsh, S; Yazgan, E; Zaganidis, N; Basegmez, S; Bruno, G; Castello, R; Caudron, A; Ceard, L; Delaere, C; du Pree, T; Favart, D; Forthomme, L; Giammanco, A; Hollar, J; Lemaitre, V; Liao, J; Militaru, O; Nuttens, C; Pagano, D; Perrini, L; Pin, A; Piotrzkowski, K; Schul, N; Vizan Garcia, J M; Beliy, N; Caebergs, T; Daubie, E; Hammad, G H; Alves, G A; Correa Martins Junior, M; De Jesus Damiao, D; Martins, T; Pol, M E; Souza, M H G; Aldá Júnior, W L; Carvalho, W; Custódio, A; Da Costa, E M; De Oliveira Martins, C; Fonseca De Souza, S; Matos Figueiredo, D; Mundim, L; Nogima, H; Oguri, V; Prado Da Silva, W L; Santoro, A; Soares Jorge, L; Sznajder, A; Bernardes, C A; Dias, F A; Fernandez Perez Tomei, T R; Gregores, E M; Lagana, C; Marinho, F; Mercadante, P G; Novaes, S F; Padula, Sandra S; Genchev, V; Iaydjiev, P; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Tcholakov, V; Trayanov, R; Vutova, M; Dimitrov, A; Hadjiiska, R; Kozhuharov, V; Litov, L; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Jiang, C H; Liang, D; Liang, S; Meng, X; Tao, J; Wang, J; Wang, X; Wang, Z; Xiao, H; Xu, M; Zang, J; Zhang, Z; Asawatangtrakuldee, C; Ban, Y; Guo, S; Guo, Y; Li, W; Liu, S; Mao, Y; Qian, S J; Teng, H; Wang, S; Zhu, B; Zou, W; Avila, C; Gomez, J P; Gomez Moreno, B; Osorio Oliveros, A F; Sanabria, J C; Godinovic, N; Lelas, D; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Kovac, M; Brigljevic, V; Duric, S; Kadija, K; Luetic, J; Morovic, S; Attikis, A; Galanti, M; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Finger, M; Finger, M; Assran, Y; Elgammal, S; Ellithi Kamel, A; Khalil, S; Mahmoud, M A; Radi, A; Kadastik, M; Müntel, M; Raidal, M; Rebane, L; Tiko, A; Azzolini, V; Eerola, P; Fedi, G; Voutilainen, M; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Peltola, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Ungaro, D; Wendland, L; Banzuzi, K; Karjalainen, A; Korpela, A; Tuuva, T; Besancon, M; Choudhury, S; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Millischer, L; Nayak, A; Rander, J; Rosowsky, A; Shreyber, I; Titov, M; Baffioni, S; Beaudette, F; Benhabib, L; Bianchini, L; Bluj, M; Broutin, C; Busson, P; Charlot, C; Daci, N; Dahms, T; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Mironov, C; Nguyen, M; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sirois, Y; Veelken, C; Zabi, A; Agram, J-L; Andrea, J; Bloch, D; Bodin, D; Brom, J-M; Cardaci, M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Ferro, C; Fontaine, J-C; Gelé, D; Goerlach, U; Juillot, P; Le Bihan, A-C; Van Hove, P; Fassi, F; Mercier, D; Beauceron, S; Beaupere, N; Bondu, O; Boudoul, G; Chasserat, J; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Kurca, T; Lethuillier, M; Mirabito, L; Perries, S; Sordini, V; Tosi, S; Tschudi, Y; Verdier, P; Viret, S; Tsamalaidze, Z; Anagnostou, G; Beranek, S; Edelhoff, M; Feld, L; Heracleous, N; Hindrichs, O; Jussen, R; Klein, K; Merz, J; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Wittmer, B; Zhukov, V; Ata, M; Caudron, J; Dietz-Laursonn, E; Duchardt, D; Erdmann, M; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Klingebiel, D; Kreuzer, P; Lingemann, J; Magass, C; Merschmeyer, M; Meyer, A; Olschewski, M; Papacz, P; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Steggemann, J; Teyssier, D; Weber, M; Bontenackels, M; Cherepanov, V; Flügge, G; Geenen, H

    2012-09-21

    The dimuon invariant mass spectrum is searched in the range between 5.5 and 14 GeV for a light pseudoscalar Higgs boson a, predicted in a number of new physics models, including the next-to-minimal supersymmetric standard model. The data sample used in the search corresponds to an integrated luminosity of 1.3 fb(-1) collected in pp collisions at √s = 7 TeV with the CMS detector at the LHC. No excess is observed above the background predictions and upper limits are set on the cross section times branching fraction σ × B(pp→a→μ(+)μ(-)) in the range of 1.5-7.5 pb. These results improve on existing bounds on the abb coupling for m(a) < m(Υ(1S)) and are the first significant limits for m(a) > m(Υ(3S)). Constraints on the supersymmetric parameter space are presented in the context of the next-to-minimal model. PMID:23005937

  5. Search for a light Higgs boson decaying to two gluons or ss̄ in the radiative decays of Υ(1S)

    DOE PAGESBeta

    Lees, J. P.; Poireau, V.; Tisserand, V.; Grauges, E.; Palano, A.; Eigen, G.; Stugu, B.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; et al

    2013-08-06

    We search for the decay Υ(1S)→γA⁰, A⁰→gg or ss̄, where A⁰ is the pseudoscalar light Higgs boson predicted by the next-to-minimal supersymmetric Standard Model. We use a sample of (17.6±0.3)×10⁶ Υ(1S) mesons produced in the BABAR experiment via e⁺e⁻→Υ(2S)→π⁺π⁻Υ(1S). We see no significant signal and set 90%-confidence-level upper limits on the product branching fraction B(Υ(1S)→γA⁰)·B(A⁰→gg or ss̄) ranging from 10⁻⁶ to 10⁻² for A⁰ masses in the range 0.5–9.0 GeV/c².

  6. Search for neutral Higgs bosons decaying to tau pairs in pp[over ] collisions at sqrt[s]=1.96 TeV.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Agelou, M; Agram, J-L; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Andeen, T; Anderson, S; Andrieu, B; Anzelc, M S; Arnoud, Y; Arov, M; Askew, A; Asman, B; Assis Jesus, A C S; Atramentov, O; Autermann, C; Avila, C; Ay, C; Badaud, F; Baden, A; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, P; Banerjee, S; Barberis, E; Bargassa, P; Baringer, P; Barnes, C; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Berntzon, L; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Binder, M; Biscarat, C; Black, K M; Blackler, I; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Bloom, K; Blumenschein, U; Boehnlein, A; Boeriu, O; Bolton, T A; Borcherding, F; Borissov, G; Bos, K; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Burdin, S; Burke, S; Burnett, T H; Busato, E; Buszello, C P; Butler, J M; Calfayan, P; Calvet, S; Cammin, J; Caron, S; Carvalho, W; Casey, B C K; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chapin, D; Charles, F; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Claes, D; Clément, B; Clément, C; Coadou, Y; Cooke, M; Cooper, W E; Coppage, D; Corcoran, M; Cousinou, M-C; Cox, B; Crépé-Renaudin, S; Cutts, D; Cwiok, M; da Motta, H; Das, A; Das, M; Davies, B; Davies, G; Davis, G A; De, K; de Jong, P; de Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Demine, P; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doidge, M; Dominguez, A; Dong, H; Dudko, L V; Duflot, L; Dugad, S R; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Edwards, T; Ellison, J; Elmsheuser, J; Elvira, V D; Eno, S; Ermolov, P; Estrada, J; Evans, H; Evdokimov, A; Evdokimov, V N; Fatakia, S N; Feligioni, L; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fleck, I; Ford, M; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; Garcia, C; Garcia-Bellido, A; Gardner, J; Gavrilov, V; Gay, A; Gay, P; Gelé, D; Gelhaus, R; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gollub, N; Gómez, B; Gounder, K; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Hanagaki, K; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Hong, S J; Hooper, R; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jenkins, A; Jesik, R; Johns, K; Johnson, C; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Käfer, D; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J M; Kalk, J R; Kappler, S; Karmanov, D; Kasper, J; Kasper, P; Katsanos, I; Kau, D; Kaur, R; Kehoe, R; Kermiche, S; Kesisoglou, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y M; Khatidze, D; Kim, H; Kim, T J; Kirby, M H; Klima, B; Kohli, J M; Konrath, J-P; Kopal, M; Korablev, V M; Kotcher, J; Kothari, B; Koubarovsky, A; Kozelov, A V; Kozminski, J; Kryemadhi, A; Krzywdzinski, S; Kuhl, T; Kumar, A; Kunori, S; Kupco, A; Kurca, T; Kvita, J; Lager, S; Lammers, S; Landsberg, G; Lazoflores, J; Le Bihan, A-C; Lebrun, P; Lee, W M; Leflat, A; Lehner, F; Lesne, V; Leveque, J; Lewis, P; Li, J; Li, Q Z; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Z; Lobo, L; Lobodenko, A; Lokajicek, M; Lounis, A; Love, P; Lubatti, H J; Lynker, M; Lyon, A L; Maciel, A K A; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Magnan, A-M; Makovec, N; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martens, M; Mattingly, S E K; McCarthy, R; McCroskey, R; Meder, D; Melnitchouk, A; Mendes, A; Mendoza, L; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Michaut, M; Miettinen, H; Millet, T; Mitrevski, J; Molina, J; Mondal, N K; Monk, J; Moore, R W; Moulik, T; Muanza, G S; Mulders, M; Mulhearn, M; Mundim, L; Mutaf, Y D; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Nelson, S; Neustroev, P; Noeding, C; Nomerotski, A; Novaes, S F; Nunnemann, T; O'Dell, V; O'Neil, D C; Obrant, G; Oguri, V; Oliveira, N; Oshima, N; Otec, R; Otero y Garzón, G J; Owen, M; Padley, P; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Perea, P M; Perez, E; Peters, K; Pétroff, P; Petteni, M; Piegaia, R; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Pompos, A; Pope, B G; Popov, A V; Prado da Silva, W L; Prosper, H B; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rani, K J; Ranjan, K; Rapidis, P A; Ratoff, P N; Renkel, P; Reucroft, S; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Royon, C; Rubinov, P; Ruchti, R; Rud, V I; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schieferdecker, P; Schmitt, C; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sengupta, S; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shephard, W D; Shivpuri, R K; Shpakov, D; Siccardi, V; Sidwell, R A; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smith, R P; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Song, X; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Souza, M; Spurlock, B; Stark, J; Steele, J; Stevenson, K; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strang, M A; Strauss, M; Ströhmer, R; Strom, D; Strovink, M; Stutte, L; Sumowidagdo, S; Sznajder, A; Talby, M; Tamburello, P; Taylor, W; Telford, P; Temple, J; Tiller, B; Titov, M; Tokmenin, V V; Tomoto, M; Toole, T; Torchiani, I; Towers, S; Trefzger, T; Trincaz-Duvoid, S; Tsybychev, D; Tuchming, B; Tully, C; Turcot, A S; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; van den Berg, P J; Kooten, R Van; van Leeuwen, W M; Varelas, N; Varnes, E W; Vartapetian, A; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Seguier, F; Vint, P; Vlimant, J-R; Von Toerne, E; Voutilainen, M; Vreeswijk, M; Wahl, H D; Wang, L; Warchol, J; Watts, G; Wayne, M; Weber, M; Weerts, H; Wermes, N; Wetstein, M; White, A; Wicke, D; Wilson, G W; Wimpenny, S J; Wobisch, M; Womersley, J; Wood, D R; Wyatt, T R; Xie, Y; Xuan, N; Yacoob, S; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yip, K; Yoo, H D; Youn, S W; Yu, C; Yu, J; Yurkewicz, A; Zatserklyaniy, A; Zeitnitz, C; Zhang, D; Zhao, T; Zhao, Z; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zutshi, V; Zverev, E G

    2006-09-22

    A search for the production of neutral Higgs bosons Phi decaying into tau(+)tau(-) final states in pp[over ] collisions at a center-of-mass energy of 1.96 TeV is presented. The data, corresponding to an integrated luminosity of approximately 325 pb(-1), were collected by the D0 experiment at the Fermilab Tevatron Collider. Since no excess compared to the expectation from standard model processes is found, limits on the production cross section times branching ratio are set. The results are combined with those obtained from the D0 search for Phib(b[over ])-->bb[over ]b(b[over ]) and are interpreted in the minimal supersymmetric standard model. PMID:17025951

  7. Search for di-muon decays of a light CP-odd Higgs boson produced in radiative decays of the υ(1S) at BABAR

    NASA Astrophysics Data System (ADS)

    Prasad, Vindhyawasini

    2012-03-01

    We search for di-muon decays of a light CP-odd Higgs boson (A^0) in the radiative decays of υ(1S) mesons. The A^0 appears in the next-to-minimal supersymmetric extension of the Standard Model. The data sample contains (92.8 ±0.8) million υ(2S) and (116.8 ±1.0) million υ(3S) events collected by the BaBar detector at the PEP-II asymmetric B Factory at the SLAC National Accelerator Laboratory. An υ(1S) sample is selected by tagging the pion pair in the υ(2S, 3S) ->+circ;-circ;υ(1S) transitions.

  8. Search for the neutral Higgs bosons of the MSSM in e+e- collisions at sqrt(s) from 130 to 172 GeV

    NASA Astrophysics Data System (ADS)

    ALEPH Collaboration; Barate, R.; Buskulic, D.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Nief, J.-Y.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Comas, P.; Crespo, J. M.; Delfino,, M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Merino, G.; Miquel, R.; Mir, Ll. M.; Padilla, C.; Park, I. C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Alemany, R.; Bazarko, A. O.; Becker, U.; Bright-Thomas, P.; Cattaneo, M.; Cerutti, F.; Dissertori, G.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Hansen, J. B.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Lutters, G.; Mato, P.; Minten, A.; Moneta, L.; Pacheco, A.; Pusztaszeri, J.-F.; Ranjard, F.; Rizzo, G.; Rolandi, L.; Rousseau, D.; Schlatter, D.; Schmitt, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Blondel, A.; Brient, J. C.; Machefert, F.; Rougé, A.; Rumpf, M.; Valassi, A.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Cavanaugh, R.; Corden, M.; Georgiopoulos, C.; Huehn, T.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Scarr, J. M.; Smith, K.; Teixeira-Dias, P.; Thompson, A. S.; Thomson, E.; Thomson, F.; Turnbull, R. M.; Buchmüller, O.; Dhamotharan, S.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Girone, M.; Goodsir, S.; Martin, E. B.; Morawitz, P.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Spagnolo, P.; Stacey, A. M.; Williams, M. D.; Ghete, V. M.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Jones, R. W.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Carr, J.; Coyle, P.; Diaconu, C.; Ealet, A.; Fouchez, D.; Konstantinidis, N.; Leroy, O.; Motsch, F.; Payre, P.; Talby, M.; Sadouki, A.; Thulasidas, M.; Tilquin, A.; Trabelsi, K.; Aleppo, M.; Antonelli, M.; Ragusa, F.; Berlich, R.; Blum, W.; Büscher, V.; Dietl, H.; Ganis, G.; Gotzhein, C.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; St. Denis, R.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Chen, S.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacholkowska, A.; Jacquet, M.; Kado, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Schune, M.-H.; Serin, L.; Simion, S.; Tournefier, E.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Ciulli, V.; dell'Orso, R.; Fantechi, R.; Ferrante, I.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciabà, A.; Steinberger, J.; Tenchini, R.; Vannini, C.; Venturi, A.; Verdini, P. G.; Blair, G. A.; Bryant, L. M.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Fabbro, B.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Kelly, M. S.; Lehto, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Affholderbach, K.; Böhrer, A.; Brandt, S.; Cowan, G.; Foss, J.; Grupen, C.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Williams, R. W.; Armstrong, S. R.; Charles, E.; Elmer, P.; Ferguson, D. P. S.; González, S.; Greening, T. C.; Hayes, O. J.; Hu, H.; Jin, S.; McNamara, P. A., III; Nachtman, J. M.; Nielsen, J.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, J.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zobernig, G.

    1997-10-01

    The process e+e--->hA is used to search for the Higgs bosons of the Minimal Supersymmetric Standard Model (MSSM), in the bboverlinebboverline and τ+τ-bboverline final states. The search is performed in the data collected by the ALEPH experiment at LEP, at centre-of-mass energies between 130 and 172 GeV and with a total luminosity of 27.2 pb-1. No candidate events are found in either of the final states, in agreement with the expected background of 0.91 events from all Standard Model processes. Combined with searches for e+e--->hZ, this results in a 95% C.L. lower limit on the masses of both h and A of 62.5 GeV/c2, for tan β>1.

  9. Charged Higgs-boson production in association with an electron and a neutrino at electron-positron colliders

    SciTech Connect

    Brein, Oliver; Figy, Terrance

    2008-03-01

    We present results of a calculation of the cross section for the production of a charged Higgs boson in association with an electron and a neutrino at electron-positron colliders (e{sup +}e{sup -}{yields}H{sup +}e{sup -}{nu}{sub e}, H{sup -}e{sup +}{nu}{sub e}). We study predictions for the cross section in the minimal supersymmetric standard model (MSSM) and the two Higgs doublet model (THDM), highlighting possible differences. The process is effectively loop-induced in both models. Hence, the cross section is expected to be strongly model-dependent. Most notably, due to the presence of superpartners, the MSSM amplitude contains Feynman graphs of pentagon-type, which are not present in the THDM. This is the first complete one-loop calculation of the cross section for this process in the THDM and the MSSM. For both models, so far, only approximate results with limited ranges of validity were available. Our main aim here is to clarify several open questions in the existing literature on this process. Specifically, we will discuss the validity of the heavy fermion loop approximation in both models, and of the fermion/sfermion loop approximation in the MSSM.

  10. Supersymmetric inversion of effective-range expansions

    NASA Astrophysics Data System (ADS)

    Midya, Bikashkali; Evrard, Jérémie; Abramowicz, Sylvain; Ramírez Suárez, O. L.; Sparenberg, Jean-Marc

    2015-05-01

    A complete and consistent inversion technique is proposed to derive an accurate interaction potential from an effective-range function for a given partial wave in the neutral case. First, the effective-range function is Taylor or Padé expanded, which allows high precision fitting of the experimental scattering phase shifts with a minimal number of parameters on a large energy range. Second, the corresponding poles of the scattering matrix are extracted in the complex wave-number plane. Third, the interaction potential is constructed with supersymmetric transformations of the radial Schrödinger equation. As an illustration, the method is applied to the experimental phase shifts of the neutron-proton elastic scattering in the 1S0 and 1D2 channels on the [0 -350 ] MeV laboratory energy interval.

  11. Tsirelson's bound and supersymmetric entangled states

    PubMed Central

    Borsten, L.; Brádler, K.; Duff, M. J.

    2014-01-01

    A superqubit, belonging to a (2|1)-dimensional super-Hilbert space, constitutes the minimal supersymmetric extension of the conventional qubit. In order to see whether superqubits are more non-local than ordinary qubits, we construct a class of two-superqubit entangled states as a non-local resource in the CHSH game. Since super Hilbert space amplitudes are Grassmann numbers, the result depends on how we extract real probabilities and we examine three choices of map: (1) DeWitt (2) Trigonometric and (3) Modified Rogers. In cases (1) and (2), the winning probability reaches the Tsirelson bound pwin=cos2π/8≃0.8536 of standard quantum mechanics. Case (3) crosses Tsirelson's bound with pwin≃0.9265. Although all states used in the game involve probabilities lying between 0 and 1, case (3) permits other changes of basis inducing negative transition probabilities. PMID:25294964

  12. Tsirelson's bound and supersymmetric entangled states.

    PubMed

    Borsten, L; Brádler, K; Duff, M J

    2014-10-01

    A superqubit, belonging to a (2|1)-dimensional super-Hilbert space, constitutes the minimal supersymmetric extension of the conventional qubit. In order to see whether superqubits are more non-local than ordinary qubits, we construct a class of two-superqubit entangled states as a non-local resource in the CHSH game. Since super Hilbert space amplitudes are Grassmann numbers, the result depends on how we extract real probabilities and we examine three choices of map: (1) DeWitt (2) Trigonometric and (3) Modified Rogers. In cases (1) and (2), the winning probability reaches the Tsirelson bound [Formula: see text] of standard quantum mechanics. Case (3) crosses Tsirelson's bound with p win≃0.9265. Although all states used in the game involve probabilities lying between 0 and 1, case (3) permits other changes of basis inducing negative transition probabilities. PMID:25294964

  13. Supersymmetric backgrounds and generalised special holonomy

    NASA Astrophysics Data System (ADS)

    Coimbra, André; Strickland-Constable, Charles; Waldram, Daniel

    2016-06-01

    We define intrinsic torsion in generalised geometry and use it to introduce a new notion of generalised special holonomy. We then consider generic warped supersymmetric flux compactifications of M theory and Type II of the form {{{R}}}D-{1,1}× M. Using the language of {E}d(d)× {{{R}}}+ generalised geometry, we show that, for D≥slant 4, preserving minimal supersymmetry is equivalent to the manifold M having generalised special holonomy and list the relevant holonomy groups. We conjecture that this result extends to backgrounds preserving any number of supersymmetries. As a prime example, we consider { N }=1 in D = 4. The corresponding generalised special holonomy group is {SU}(7), giving the natural M theory extension to the notion of a G 2 manifold, and, for Type II backgrounds, reformulating the pure spinor {SU}(3)× {SU}(3) conditions as an integrable structure.

  14. Electroweak and Higgs Measurements Using Tau Final States with the LHCb Detector

    NASA Astrophysics Data System (ADS)

    Ilten, Philip

    neutral Higgs bosons decaying into tau leptons is set and ranges between 8.6 pb for a Higgs boson mass of 90 GeV to 0.7 pb for a Higgs boson mass of 250 GeV. This limit is compared to the expected standard model cross-section. An upper limit on tan-beta in the CP-odd Higgs mass and tan-beta plane is set for the mh-max scenario of the minimal supersymmetric model and varies from 34 for a CP-odd Higgs boson mass of 90 GeV to 70 for a CP-odd Higgs boson mass of 140 GeV.

  15. Holographic twin Higgs model.

    PubMed

    Geller, Michael; Telem, Ofri

    2015-05-15

    We present the first realization of a "twin Higgs" model as a holographic composite Higgs model. Uniquely among composite Higgs models, the Higgs potential is protected by a new standard model (SM) singlet elementary "mirror" sector at the sigma model scale f and not by the composite states at m_{KK}, naturally allowing for m_{KK} beyond the LHC reach. As a result, naturalness in our model cannot be constrained by the LHC, but may be probed by precision Higgs measurements at future lepton colliders, and by direct searches for Kaluza-Klein excitations at a 100 TeV collider. PMID:26024160

  16. Photon collider Higgs factories

    NASA Astrophysics Data System (ADS)

    Telnov, V. I.

    2014-09-01

    The discovery of the Higgs boson (and still nothing else) have triggered appearance of many proposals of Higgs factories for precision measurement of the Higgs properties. Among them there are several projects of photon colliders (PC) without e+e- in addition to PLC based on e+e- linear colliders ILC and CLIC. In this paper, following a brief discussion of Higgs factories physics program I give an overview of photon colliders based on linear colliders ILC and CLIC, and of the recently proposed photon-collider Higgs factories with no e+e- collision option based on recirculation linacs in ring tunnels.

  17. Towards Noncommutative Supersymmetric Quantum Cosmology

    NASA Astrophysics Data System (ADS)

    Sabido, M.; Guzmán, W.; Socorro, J.

    2010-12-01

    In this work a construction of supersymmetric noncommutative cosmology is presented. We start with a ``noncommutative'' deformation of the minisuperspace variables, and by using the time reparametrization invariance of the noncommutative bosonic model we proceed to construct a super field description of the model.

  18. Supersymmetric Ruijsenaars-Schneider Model

    NASA Astrophysics Data System (ADS)

    Blondeau-Fournier, O.; Desrosiers, P.; Mathieu, P.

    2015-03-01

    An integrable supersymmetric generalization of the trigonometric Ruijsenaars-Schneider model is presented whose symmetry algebra includes the super Poincaré algebra. Moreover, its Hamiltonian is shown to be diagonalized by the recently introduced Macdonald superpolynomials. Somewhat surprisingly, the consistency of the scalar product forces the discreteness of the Hilbert space.

  19. A search for neutral Higgs bosons in the MSSM and models with two scalar field doublets

    NASA Astrophysics Data System (ADS)

    Ackerstaff, K.; Alexander, G.; Allison, J.; Altekamp, N.; Anderson, K. J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S. F.; Axen, D.; Azuelos, G.; Ball, A. H.; Barberio, E.; Barlow, R. J.; Bartoldus, R.; Batley, J. R.; Baumann, S.; Bechtluft, J.; Behnke, T.; Bell, K. W.; Bella, G.; Bentvelsen, S.; Bethke, S.; Betts, S.; Biebel, O.; Biguzzi, A.; Bird, S. D.; Blobel, V.; Bloodworth, I. J.; Bobinski, M.; Bock, P.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, R. M.; Burckhart, H. J.; Burgard, C.; Bürgin, R.; Capiluppi, P.; Carnegie, R. K.; Carter, A. A.; Carter, J. R.; Chang, C. Y.; Charlton, D. G.; Chrisman, D.; Clarke, P. E. L.; Cohen, I.; Conboy, J. E.; Cooke, O. C.; Couyoumtzelis, C.; Coxe, R. L.; Cuffiani, M.; Dado, S.; Dallapiccola, C.; Dallavalle, G. M.; Davis, R.; de Jong, S.; Del Pozo, L. A.; de Roeck, A.; Desch, K.; Dienes, B.; Dixit, M. S.; Doucet, M.; Dnchovni, E.; Duckeck, G.; Duerdoth, I. P.; Eatough, D.; Estabrooks, P. G.; Etzion, E.; Evans, H. G.; Evans, M.; Fabbri, F.; Fanfani, A.; Fanti, M.; Faust, A. A.; Feld, L.; Fiedler, F.; Fierro, M.; Fischer, H. M.; Fleck, I.; Folman, R.; Fong, D. G.; Foucher, M.; Fiirtjes, A.; Futyan, D. I.; Gagnon, P.; Gary, J. W.; Gascon, J.; Gascon-Shotkin, S. M.; Geddes, N. I.; Geich-Gimbel, C.; Geralis, T.; Giacomelli, G.; Giacomelli, P.; Giacomelli, R.; Gibson, V.; Gibson, W. R.; Gingrich, D. M.; Glenzinski, D.; Goldberg, J.; Goodrick, M. J.; Gorn, W.; Grandi, C.; Gross, E.; Grunhaus, J.; Gruwé, M.; Hajdu, C.; Hanson, G. G.; Hansroul, M.; Hapke, M.; Hargrove, C. K.; Hart, P. A.; Hartmann, C.; Hauschild, M.; Hawkes, C. M.; Hawkings, R.; Hemingway, R. J.; Hcrndon, M.; Herten, G.; Heuer, R. D.; Hildreth, M. D.; Hill, J. C.; Hillier, S. J.; Hobson, P. R.; Hocker, A.; Homer, R. J.; Honma, A. K.; Horvath, D.; Hossain, K. R.; Howard, R.; Hüntemeyer, P.; Hutchcroft, D. E.; Igo-Kemenes, P.; Imrie, D. C.; Ishii, K.; Jawahery, A.; Jeffreys, P. W.; Jeremie, H.; Jimack, M.; Joly, A.; Jones, C. R.; Jones, M.; Jost, U.; Jovanovic, P.; Junk, T. R.; Kanzaki, J.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P. I.; Keeler, R. K.; Kellogg, R. G.; Kennedy, B. W.; Kirk, J.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Koetke, D. S.; Kokott, T. P.; Kolrep, M.; Komamiya, S.; Kowalewski, R. V.; Kress, T.; Krieger, P.; von Krogh, J.; Kyberd, P.; Lafferty, G. D.; Lahmann, R.; Lai, W. P.; Lanske, D.; Lauber, J.; Lautenschlager, S. R.; Lawson, I.; Layter, J. G.; Lazic, D.; Lee, A. M.; Lefebvre, E.; Lellouch, D.; Letts, J.; Levinson, L.; List, B.; Lloyd, S. L.; Loebinger, F. K.; Long, G. D.; Losty, M. J.; Ludwig, J.; Lui, D.; Maechiolo, A.; MacPherson, A.; Mannelli, M.; Marcellini, S.; Markopoulos, C.; Markus, C.; Martin, A. J.; Martin, J. P.; Martinez, G.; Mashimo, T.; Mättig, P.; McDonald, W. J.; McKenna, J.; McKigney, E. A.; McMahon, T. J.; McPherson, R. A.; Meijers, F.; Menke, S.; Merritt, F. S.; Mes, H.; Meyer, J.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D. J.; Mincer, A.; Mir, R.; Mohr, W.; Montanari, A.; Mori, T.; Mihara, S.; Nagai, K.; Nakaumra, I.; Neal, H. A.; Nellen, B.; Nisius, R.; O'Neale, S. W.; Oakham, F. G.; Odorici, F.; Ogren, H. O.; Oh, A.; Oldershaw, N. J.; Oreglia, M. J.; Orito, S.; Pálinkás, J.; Pásztor, G.; Pater, J. R.; Patrick, G. N.; Patt, J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J. E.; Pinfold, J.; Plane, D. E.; Poffenberger, P.; Poli, B.; Posthaus, A.; Rembser, C.; Robertson, S.; Robins, S. A.; Rodning, N.; Roney, J. M.; Rooke, A.; Rossi, A. M.; Routenburg, P.; Rozen, Y.; Runge, K.; Runolfsson, O.; Ruppel, U.; Rust, D. R.; Sachs, K.; Saeki, T.; Sahr, O.; M. Sang, W.; Sarkisyan, E. K. G.; Sbarra, C.; Schalle, A. D.; Schaile, O.; Scharf, F.; Scharff-Hansen, P.; Schieck, J.; Schleper, P.; Schmitt, B.; Schmitt, S.; Schöning, A.; Schröder, M.; Schumacher, M.; Schwick, C.; Scott, W. G.; Shears, T. G.; Shen, B. C.; Shepherd-Themistocleous, C. H.; Sherwood, P.; Siroli, G. P.; Sittler, A.; Skillman, A.; Skuja, A.; Smith, A. M.; Snow, G. A.; Sobie, R.; Söldner-Rembold, S.; Springer, R. W.; Sproston, M.; Stephens, K.; Steuerer, J.; Stockhausen, B.; Stoll, K.; Strom, D.; Ströhmer, R.; Szymanski, P.; Tafirout, R.; Talbot, S. D.; Taras, P.; Tarera, S.; Teuscher, R.; Thiergen, M.; Thomson, M. A.; von Törne, E.; Torrence, E.; Towers, S.; Trigger, I.; Trocsányi, Z.; Tsur, E.; Turcot, A. S.; Turner-Watson, M. F.; Ueda, I.; Utzat, P.; van Koten, R.; Vannerem, P.; Verzocchi, M.; Vikas, P.; Vokurka, E. H.; Voss, H.; Wäckerle, F.; Wagner, A.; Ward, C. P.; Ward, D. R.; Watkins, P. M.; Watson, A. T.; Watson, N. K.; Wells, P. S.; Wermes, N.; White, J. S.; Wilson, G. W.; Wilson, J. A.; Wyatt, T. R.; Yamashita, S.; Yekutieli, G.; Zacek, V.; Zer-Zion, D.

    1998-08-01

    A search is described for the neutral Higgs bosons h0 and A0 predicted by models with two scalar field doublets and, in particular, the Minimal Supersymmetric Standard Model (MSSM). The search in the Z0h0 and h0A0 production channels is based on data corresponding to an integrated luminosity of 25 pb-1 from e+e- collisions at centre-of-mass energies between 130 and 172 GeV collected with the OPAL detector at LEP. The observation of a number of candidates consistent with Standard Model background expectations is used in combination with earlier results from data collected at the Z0 resonance to set limits on mh and ma in general models with two scalar field doublets and in the MSSM. For example, in the MSSM, for tan β > 1, minimal and maximal scalar top quark mixing and soft SUSY-breaking masses of 1 TeV, the 95% confidence level limits mh > 59.0 GeV and ma > 59.5 GeV are obtained. For the first time, the MSSM parameter space is explored in a detailed scan.

  20. Dynamics of N = 2 Supersymmetric Gauge Theories in Three Dimensions

    SciTech Connect

    de Boer, J.; Hori, K.; Oz, Y.

    1997-03-21

    We study the structure of the moduli spaces of vacua and superpotentials of N = 2 supersymmetric gauge theories in three dimensions. By analyzing the instanton corrections, we compute the exact superpotentials and determine the quantum Coulomb and Higgs branches of the theories in the weak coupling regions. We find candidates for non-trivial N = 2 superconformal field theories at the singularities of the moduli spaces. The analysis is carried out explicitly for gauge groups U(N{sub c}) and SU(N{sub c}) with N{sub f} flavors. We show that the field theory results are in complete agreement with the intersecting branes picture. We also compute the exact superpotentials for arbitrary gauge groups and arbitrary matter content.

  1. Search for charged Higgs bosons decaying via H ± → τ± ν in fully hadronic final states using pp collision data at √s = 8 TeV with the ATLAS detector

    DOE PAGESBeta

    Aad, G.

    2015-03-17

    The results of a search for charged Higgs bosons decaying to a τ lepton and a neutrino, H ± → τ± ν, are presented. The analysis is based on 19.5 fb–1 of proton-proton collision data at √s = 8 TeV collected by the ATLAS experiment at the Large Hadron Collider. Charged Higgs bosons are searched for in events consistent with top-quark pair production or in associated production with a top quark, depending on the considered H± mass. The final state is characterized by the presence of a hadronic τ decay, missing transverse momentum, b-tagged jets, a hadronically decaying W boson,more » and the absence of any isolated electrons or muons with high transverse momenta. The data are consistent with the expected background from Standard Model processes. A statistical analysis leads to 95% confidence-level upper limits on the product of branching ratios Β(t → bH±) × Β(H± → τ± ν), between 0.23% and 1.3% for charged Higgs boson masses in the range 80-160GeV. It also leads to 95% confidence-level upper limits on the production cross section times branching ratio, σ(pp → tH±+ X) × Β(H± → τ± ν), between 0.76 pb and 4.5 fb, for charged Higgs boson masses ranging from 180 GeV to 1000 GeV. In the context of different scenarios of the Minimal Supersymmetric Standard Model, these results exclude nearly all values of tan β above one for charged Higgs boson masses between 80 GeV and 160 GeV, and exclude a region of parameter space with high tan β for H± masses between 200 GeV and 250 GeV.« less

  2. Observational consequences of the standard model Higgs inflation variants

    SciTech Connect

    Popa, L.A.

    2011-10-01

    We consider the possibility to observationally differentiate the Standard Model (SM) Higgs driven inflation with non-minimal coupling to gravity from other variants of SM Higgs inflation based on the scalar field theories with non-canonical kinetic term such as Galileon-like kinetic term and kinetic term with non-minimal derivative coupling to the Einstein tensor. In order to ensure consistent results, we study the SM Higgs inflation variants by using the same method, computing the full dynamics of the background and perturbations of the Higgs field during inflation at quantum level. Assuming that all the SM Higgs inflation variants are consistent theories, we use the MCMC technique to derive constraints on the inflationary parameters and the Higgs boson mass from their fit to WMAP7+SN+BAO data set. We conclude that a combination of the SM Higgs mass measurement by the LHC and accurate determination by the PLANCK satellite of the spectral index of curvature perturbations and tensor-to-scalar ratio will enable to distinguish among these models. We also show that the consistency relations of the SM Higgs inflation variants are distinct enough to differentiate among them.

  3. Naturalness, Dark Matter, and Unification with a 125 GeV Higgs

    NASA Astrophysics Data System (ADS)

    Pinner, David

    The naturalness of a Higgs boson with a mass near 125 GeV is explored in a variety of weak-scale supersymmetric models. If supersymmetry is realized in nature, then a Higgs mass of this size strongly points towards a non-minimal implementation. The Minimal Supersymmetric Standard Model now requires large A-terms to avoid multi-TeV stops. The fine-tuning is at least 1% for low messenger scales, and an order of magnitude worse for high messenger scales. Naturalness is significantly improved in theories with a singlet superfield S coupled to the Higgs superfields via lambda S Hu Hd. If lambda is perturbative up to unified scales, a fine-tuning of about 10% is possible with a low mediation scale. Larger values of lambda, implying new strong interactions below unified scales, allow for a highly natural 125 GeV Higgs boson over a wide range of parameters. Even for lambda as large as 2, where a heavier Higgs might be expected, a light Higgs boson naturally results from singlet-doublet scalar mixing. Although the Higgs is light, naturalness allows for stops as heavy as 1.5 TeV and a gluino as heavy as 3 TeV. Using a simplified model framework, we assess observational limits and discovery prospects for neutralino dark matter, taken here to be a general admixture of bino, wino, and Higgsino. Experimental constraints can be weakened or even nullified in regions of parameter space near 1) purity limits, where the dark matter is mostly bino, wino, or Higgsino, or 2) blind spots, where the relevant couplings of dark matter to the Z or Higgs bosons vanish identically. We analytically identify all blind spots relevant to spin-independent and spin-dependent scattering and show that they arise for diverse choices of relative signs among M1, M 2, and mu. At present, XENON100 and IceCube still permit large swaths of viable parameter space, including the well-tempered neutralino. On the other hand, upcoming experiments should have sufficient reach to discover dark matter in much of the

  4. Searches for Higgs boson pair production in the h h →b b τ τ , γ γ W W* , γ γ b b , b b b b channels with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; Abouzeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bieniek, S. P.; Biesuz, N. V.; Biglietti, M.; Bilbao de Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bruscino, N.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Colasurdo, L.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; de, K.; de Asmundis, R.; de Benedetti, A.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Ciaccio, A.; di Ciaccio, L.; di Domenico, A.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Mattia, A.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, G.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; French, S. T.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fuchi, R.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, L.; González de La Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henkelmann, S.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javå¯Rek, T.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; MacDonald, C. M.; Maček, B.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Mapelli, L.; March, L.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Monden, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morton, A.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O'Brien, B. J.; O'Grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Pan, Y. B.; Panagiotopoulou, E. St.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pralavorio, P.; Pranko, A.; Prasad, S.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Ryzhov, A.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Saddique, A.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazar Loyola, J. E.; Saleem, M.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosa, D.; Sosebee, M.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Spearman, W. R.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tannoury, N.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thun, R. P.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Vallecorsa, S.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloce, L. M.; Veloso, F.; Velz, T.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zurzolo, G.; Zwalinski, L.; Atlas Collaboration

    2015-11-01

    Searches for both resonant and nonresonant Higgs boson pair production are performed in the h h →b b τ τ , γ γ W W* final states using 20.3 fb-1 of p p collision data at a center-of-mass energy of 8 TeV recorded with the ATLAS detector at the Large Hadron Collider. No evidence of their production is observed and 95% confidence-level upper limits on the production cross sections are set. These results are then combined with the published results of the h h →γ γ b b , b b b b analyses. An upper limit of 0.69 (0.47) pb on the nonresonant h h production is observed (expected), corresponding to 70 (48) times the SM g g →h h cross section. For production via narrow resonances, cross-section limits of h h production from a heavy Higgs boson decay are set as a function of the heavy Higgs boson mass. The observed (expected) limits range from 2.1 (1.1) pb at 260 GeV to 0.011 (0.018) pb at 1000 GeV. These results are interpreted in the context of two simplified scenarios of the Minimal Supersymmetric Standard Model.

  5. Global fits of the cMSSM and NUHM including the LHC Higgs discovery and new XENON100 constraints

    NASA Astrophysics Data System (ADS)

    Strege, C.; Bertone, G.; Feroz, F.; Fornasa, M.; Ruiz de Austri, R.; Trotta, R.

    2013-04-01

    We present global fits of the constrained Minimal Supersymmetric Standard Model (cMSSM) and the Non-Universal Higgs Model (NUHM), including the most recent CMS constraint on the Higgs boson mass, 5.8 fb-1 integrated luminosity null Supersymmetry searches by ATLAS, the new LHCb measurement of BR(bar Bs → μ+μ-) and the 7-year WMAP dark matter relic abundance determination. We include the latest dark matter constraints from the XENON100 experiment, marginalising over astrophysical and particle physics uncertainties. We present Bayesian posterior and profile likelihood maps of the highest resolution available today, obtained from up to 350M points. We find that the new constraint on the Higgs boson mass has a dramatic impact, ruling out large regions of previously favoured cMSSM and NUHM parameter space. In the cMSSM, light sparticles and predominantly gaugino-like dark matter with a mass of a few hundred GeV are favoured. The NUHM exhibits a strong preference for heavier sparticle masses and a Higgsino-like neutralino with a mass of 1 TeV. The future ton-scale XENON1T direct detection experiment will probe large portions of the currently favoured cMSSM and NUHM parameter space. The LHC operating at 14 TeV collision energy will explore the favoured regions in the cMSSM, while most of the regions favoured in the NUHM will remain inaccessible. Our best-fit points achieve a satisfactory quality-of-fit, with p-values ranging from 0.21 to 0.35, so that none of the two models studied can be presently excluded at any meaningful significance level.

  6. Weakly-interacting massive particles in non-supersymmetric SO(10) grand unified models

    NASA Astrophysics Data System (ADS)

    Nagata, Natsumi; Olive, Keith A.; Zheng, Jiaming

    2015-10-01

    Non-supersymmetric SO(10) grand unified theories provide a framework in which the stability of dark matter is explained while gauge coupling unification is realized. In this work, we systematically study this possibility by classifying weakly interacting dark matter candidates in terms of their quantum numbers of SU(2) L ⊗ U(1) Y , B - L, and SU(2) R . We consider both scalar and fermion candidates. We show that the requirement of a sufficiently high unification scale to ensure a proton lifetime compatible with experimental constraints plays a strong role in selecting viable candidates. Among the scalar candidates originating from either a 16 or 144 of SO(10), only SU(2) L singlets with zero hypercharge or doublets with Y = 1 /2 satisfy all constraints for SU(4) C ⊗ SU(2) L ⊗ SU(2) R and SU(3) C ⊗ SU(2) L ⊗ SU(2) R ⊗ U(1) B- L intermediate scale gauge groups. Among fermion triplets with zero hypercharge, only a triplet in the 45 with intermediate group SU(4) C ⊗ SU(2) L ⊗ SU(2) R leads to solutions with M GUT > M int and a long proton lifetime. We find three models with weak doublets and Y = 1 /2 as dark matter candidates for the SU(4) C ⊗ SU(2) L ⊗ SU(2) R and SU(4) C ⊗ SU(2) L ⊗ U(1) R intermediate scale gauge groups assuming a minimal Higgs content. We also discuss how these models may be tested at accelerators and in dark matter detection experiments.

  7. Scalar mass relations and flavor violations in supersymmetric theories

    SciTech Connect

    Cheng, Hsin-Chia |

    1996-05-09

    Supersymmetry provides the most promising solution to the gauge hierarchy problem. For supersymmetry to stablize the hierarchy, it must be broken at the weak scale. The combination of weak scale supersymmetry and grand unification leads to a successful prediction of the weak mixing angle to within 1{percent} accuracy. If supersymmetry is a symmetry of nature, the mass spectrum and the flavor mixing pattern of the scalar superpartners of all the quarks and leptons will provide important information about a more fundamental theory at higher energies. We studied the scalar mass relations which follow from the assumption that at high energies there is a grand unified theory which leads to a significant prediction of the weak mixing angle; these will serve as important tests of grand unified theories. Two intragenerational mass relations for each of the light generations are derived. A third relation is also found which relates the Higgs masses and the masses of all three generation scalars. In a realistic supersymmetric grand unified theory, nontrivial flavor mixings are expected to exist at all gaugino vertices. This could lead to important contributions to the neutron electric dipole moment, the decay mode p {r_arrow} K{sup 0}{mu}{sup +}, weak scale radiative corrections to the up-type quark masses, and lepton flavor violating signals such as {mu} {r_arrow} e{gamma}. These also provide important probes of physics at high energy scales. Supersymmetric theories involving a spontaneously broken flavor symmetry can provide a solution to the supersymmetric flavor-changing problem and an understanding of the fermion masses and mixings. We studied the possibilities and the general conditions under which some fermion masses and mixings can be obtained radiatively. We also constructed theories of flavor in which the first generation fermion masses arise from radiative corrections while flavor-changing constraints are satisfied. 69 refs., 19 figs., 9 tabs.

  8. Exploring holographic Composite Higgs models

    NASA Astrophysics Data System (ADS)

    Croon, Djuna; Dillon, Barry M.; Huber, Stephan J.; Sanz, Veronica

    2016-07-01

    Simple Composite Higgs models predict new vector-like fermions not too far from the electroweak scale, yet LHC limits are now sensitive to the TeV scale. Motivated by this tension, we explore the holographic dual of the minimal model, MCHM5, to try and alleviate this tension without increasing the fine-tuning in the Higgs potential. Interestingly, we find that lowering the UV cutoff in the 5D picture allows for heavier top partners and less fine-tuning. In the 4D dual this corresponds to increasing the number of "colours" N , thus increasing the decay constant of the Goldstone Higgs. This is essentially a `Little Randall-Sundrum Model', which are known to reduce some flavour and electroweak constraints. Furthermore, in anticipation of the ongoing efforts at the LHC to put bounds on the top Yukawa, we demonstrate that deviations from the SM can be suppressed or enhanced with respect to what is expected from mere symmetry arguments in 4D. We conclude that the 5D holographic realisation of the MCHM5 with a small UV cutoff is not in tension with the current experimental data.

  9. Holographic bounds and Higgs inflation

    NASA Astrophysics Data System (ADS)

    Horvat, R.

    2011-05-01

    In a recently proposed scenario for primordial inflation, where the Standard Model (SM) Higgs boson plays a role of the inflation field, an effective field theory (EFT) approach is the most convenient for working out the consequences of breaking of perturbative unitarity, caused by the strong coupling of the Higgs field to the Ricci scalar. The domain of validity of the EFT approach is given by the ultraviolet (UV) cutoff, which, roughly speaking, should always exceed the Hubble parameter in the course of inflation. On the other hand, applying the trusted principles of quantum gravity to a local EFT demands that it should only be used to describe states in a region larger than their corresponding Schwarschild radius, manifesting thus a sort of UV/IR correspondence. We consider both constraints on EFT, to ascertain which models of the SM Higgs inflation are able to simultaneously comply with them. We also show that if the gravitational coupling evolves with the scale factor, the holographic constraint can be alleviated significantly with minimal set of canonical assumptions, by forcing the said coupling to be asymptotically free.

  10. Phenomenology of nonuniversal gaugino masses in supersymmetric grand unified theories

    SciTech Connect

    Huitu, Katri; Laamanen, Jari; Pandita, Pran N.; Roy, Sourov

    2005-09-01

    Grand unified theories can lead to nonuniversal boundary conditions for the gaugino masses at the unification scale. We consider the implications of such nonuniversal boundary conditions for the composition of the lightest neutralino as well as for the upper bound on its mass in the simplest supersymmetric grand unified theory based on the SU(5) gauge group. We derive sum rules for neutralino and chargino masses in different representations of SU(5) which lead to different nonuniversal boundary conditions for the gaugino masses at the unification scale. We also consider the phenomenological implications of the nonuniversal gaugino masses arising from a grand unified theory in the context of large hadron collider. In particular we investigate the detection of heavy neutral Higgs bosons H{sup 0}, A{sup 0}from H{sup 0}, A{sup 0}{yields}{chi}-tilde{sub 2}{sup 0}{chi}-tilde{sub 2}{sup 0}{yields}4l and study the possibilities of detecting the neutral Higgs bosons in cascade decays, including the decays {chi}-tilde{sub 2}{sup 0}{yields}h{sup 0}(H{sup 0},A{sup 0}){chi}-tilde{sub 1}{sup 0}{yields}bb{chi}-tilde{sub 1}{sup 0}.

  11. Hyperbolic supersymmetric quantum Hall effect

    SciTech Connect

    Hasebe, Kazuki

    2008-12-15

    Developing a noncompact version of the supersymmetric Hopf map, we formulate the quantum Hall effect on a superhyperboloid. Based on OSp(1|2) group theoretical methods, we first analyze the one-particle Landau problem, and successively explore the many-body problem where the Laughlin wave function, hard-core pseudopotential Hamiltonian, and topological excitations are derived. It is also shown that the fuzzy superhyperboloid emerges at the lowest Landau level.

  12. Exotic quarks in Twin Higgs models

    DOE PAGESBeta

    Cheng, Hsin -Chia; Jung, Sunghoon; Salvioni, Ennio; Tsai, Yuhsin

    2016-03-14

    The Twin Higgs model provides a natural theory for the electroweak symmetry breaking without the need of new particles carrying the standard model gauge charges below a few TeV. In the low energy theory, the only probe comes from the mixing of the Higgs fields in the standard model and twin sectors. However, an ultraviolet completion is required below ~ 10 TeV to remove residual logarithmic divergences. In non-supersymmetric completions, new exotic fermions charged under both the standard model and twin gauge symmetries have to be present to accompany the top quark, thus providing a high energy probe of themore » model. Some of them carry standard model color, and may therefore be copiously produced at current or future hadron colliders. Once produced, these exotic quarks can decay into a top together with twin sector particles. If the twin sector particles escape the detection, we have the irreducible stop-like signals. On the other hand, some twin sector particles may decay back into the standard model particles with long lifetimes, giving spectacular displaced vertex signals in combination with the prompt top quarks. This happens in the Fraternal Twin Higgs scenario with typical parameters, and sometimes is even necessary for cosmological reasons. We study the potential displaced vertex signals from the decays of the twin bottomonia, twin glueballs, and twin leptons in the Fraternal Twin Higgs scenario. As a result, depending on the details of the twin sector, the exotic quarks may be probed up to ~ 2.5 TeV at the LHC and beyond 10 TeV at a future 100 TeV collider, providing a strong test of this class of ultraviolet completions.« less

  13. Exotic quarks in Twin Higgs models

    NASA Astrophysics Data System (ADS)

    Cheng, Hsin-Chia; Jung, Sunghoon; Salvioni, Ennio; Tsai, Yuhsin

    2016-03-01

    The Twin Higgs model provides a natural theory for the electroweak symmetry breaking without the need of new particles carrying the standard model gauge charges below a few TeV. In the low energy theory, the only probe comes from the mixing of the Higgs fields in the standard model and twin sectors. However, an ultraviolet completion is required below ˜ 10 TeV to remove residual logarithmic divergences. In non-supersymmetric completions, new exotic fermions charged under both the standard model and twin gauge symmetries have to be present to accompany the top quark, thus providing a high energy probe of the model. Some of them carry standard model color, and may therefore be copiously produced at current or future hadron colliders. Once produced, these exotic quarks can decay into a top together with twin sector particles. If the twin sector particles escape the detection, we have the irreducible stop-like signals. On the other hand, some twin sector particles may decay back into the standard model particles with long lifetimes, giving spectacular displaced vertex signals in combination with the prompt top quarks. This happens in the Fraternal Twin Higgs scenario with typical parameters, and sometimes is even necessary for cosmological reasons. We study the potential displaced vertex signals from the decays of the twin bottomonia, twin glueballs, and twin leptons in the Fraternal Twin Higgs scenario. Depending on the details of the twin sector, the exotic quarks may be probed up to ˜ 2.5TeV at the LHC and beyond 10TeV at a future 100TeV collider, providing a strong test of this class of ultraviolet completions.

  14. Higgs central exclusive production

    NASA Astrophysics Data System (ADS)

    Cudell, J. R.; Dechambre, A.; Hernández, O. F.

    2012-01-01

    Using the CHIDe model, we tune the calculation of central exclusive Higgs production to the recent CDF central exclusive dijet data, and predict the cross section for the exclusive production of Higgs boson at the LHC. In this model, due to different choices of the scale in the Sudakov form factor for dijet and Higgs production, it is always below 1 fb, and below 0.3 fb after experimental cuts.

  15. Discrimination of supersymmetric grand unified models in gaugino mediation

    SciTech Connect

    Okada, Nobuchika; Hieu Minh Tran

    2011-03-01

    We consider supersymmetric grand unified theory (GUT) with the gaugino mediated supersymmetry breaking and investigate a possibility to discriminate different GUT models in terms of predicted sparticle mass spectra. Taking two example GUT models, the minimal SU(5) and simple SO(10) models, and imposing a variety of theoretical and experimental constraints, we calculate sparticle masses. Fixing parameters of each model so as to result in the same mass of neutralino as the lightest supersymmetric particle (LSP), giving the observed dark matter relic density, we find sizable mass differences in the left-handed slepton and right-handed down-type squark sectors in two models, which can be a probe to discriminate the GUT models realized at the GUT scale far beyond the reach of collider experiments.

  16. Higgs boson hunting

    SciTech Connect

    Dawson, S.; Haber, H.E.; Rindani, S.D.

    1989-05-01

    This is the summary report of the Higgs Boson Working Group. We discuss a variety of search techniques for a Higgs boson which is lighter than the Z. The processes K /yields/ /pi/H, /eta//prime/ /yields/ /eta/H,/Upsilon/ /yields/ H/gamma/ and e/sup +/e/sup /minus// /yields/ ZH are examined with particular attention paid to theoretical uncertainties in the calculations. We also briefly examine new features of Higgs phenomenology in a model which contains Higgs triplets as well as the usual doublet of scalar fields. 33 refs., 6 figs., 1 tab.

  17. Precision measurements of Higgs-chargino couplings in chargino pair production at a muon collider

    NASA Astrophysics Data System (ADS)

    Fraas, H.; Franke, F.; Moortgat-Pick, G.; von der Pahlen, F.; Wagner, A.

    2003-08-01

    We study chargino pair production on the heavy Higgs resonances at a muon collider in the MSSM. At sqrt{s} ≈ 350 GeV cross sections up to 2 pb are reached depending on the supersymmetric scenario and the beam energy spread. The resonances of the scalar and pseudoscalar Higgs bosons may be separated for tanβ < 8. Our aim is to determine the ratio of the chargino couplings to the heavy scalar and pseudoscalar Higgs boson independently of the specific chargino decay characteristics. The precision of the measurement depends on the energy resolution of the muon collider and on the error in the measurement of the cross sections of the non-Higgs channels including an irreducible standard model background. With a high energy resolution the systematic error can be reduced to the order of a few percent.

  18. Neutrino fluxes from nonuniversal Higgs mass LSP annihilations in the Sun

    SciTech Connect

    Ellis, John; Olive, Keith A.; Savage, Christopher; Spanos, Vassilis C.

    2011-04-15

    We extend our previous studies of the neutrino fluxes expected from neutralino LSP annihilations inside the Sun to include variants of the minimal supersymmetric extension of the Standard Model (MSSM) with squark, slepton and gaugino masses constrained to be universal at the GUT scale, but allowing one or two nonuniversal supersymmetry breaking parameters contributing to the Higgs masses (NUHM1,2). As in the constrained MSSM (CMSSM) with universal Higgs masses, there are large regions of the NUHM parameter space where the LSP density inside the Sun is not in equilibrium, so that the annihilation rate may be far below the capture rate, and there are also large regions where the capture rate is not dominated by spin-dependent LSP-proton scattering. The spectra possible in the NUHM are qualitatively similar to those in the CMSSM. We calculate neutrino-induced muon fluxes above a threshold energy of 10 GeV, appropriate for the IceCube/DeepCore detector, for points where the NUHM yields the correct cosmological relic density for representative choices of the NUHM parameters. We find that the IceCube/DeepCore detector can probe regions of the NUHM parameter space in addition to analogues of the focus point strip and the tip of the coannihilation strip familiar from the CMSSM. These include regions with enhanced Higgsino-gaugino mixing in the LSP composition, that occurs where neutralino mass eigenstates cross over. On the other hand, rapid-annihilation funnel regions in general yield neutrino fluxes that are unobservably small.

  19. A supersymmetric extension of quantum gauge theory

    NASA Astrophysics Data System (ADS)

    Grigore, D. R.; Scharf, G.

    2003-01-01

    We consider a supersymmetric extension of quantum gauge theory based on a vector multiplet containing supersymmetric partners of spin 3/2 for the vector fields. The constructions of the model follows closely the usual construction of gauge models in the Epstein-Glaser framework for perturbative field theory. Accordingly, all the arguments are completely of quantum nature without reference to a classical supersymmetric theory. As an application we consider the supersymmetric electroweak theory. The resulting self-couplings of the gauge bosons agree with the standard model up to a divergence.

  20. Duality in supersymmetric Yang-Mills theory

    SciTech Connect

    Peskin, M.E.

    1997-02-01

    These lectures provide an introduction to the behavior of strongly-coupled supersymmetric gauge theories. After a discussion of the effective Lagrangian in nonsupersymmetric and supersymmetric field theories, the author analyzes the qualitative behavior of the simplest illustrative models. These include supersymmetric QCD for N{sub f} < N{sub c}, in which the superpotential is generated nonperturbatively, N = 2 SU(2) Yang-Mills theory (the Seiberg-Witten model), in which the nonperturbative behavior of the effect coupling is described geometrically, and supersymmetric QCD for N{sub f} large, in which the theory illustrates a non-Abelian generalization of electric-magnetic duality. 75 refs., 12 figs.

  1. CDF Run II Discovery reach for neutral MSSM higgs bosons via p pbar {right arrow}b b-bar {phi}{right arrow}b b-bar b b-bar

    SciTech Connect

    J.A. Valls

    1999-07-20

    In this paper we examine the CDF Run II discovery reach for neutral Higgs bosons via the process p{anti p} {yields} b {anti b} {phi} {yields} b {anti b}b {anti b}. The signature is a four jet final state with at least three b-tagged jets. Signal and background acceptances are estimated using the CDF Run I detector performance. b tagging efficiencies and fake tag rates are evaluated with new Run II increased detector geometrical acceptances. Total rates are estimated from present Run I data and from Monte Carlo. The results are interpreted within the framework of the minimal supersymmetric extension of the standard model (MSSM) and generalized in terms of a model independent enhancement factor.

  2. Kinetically modified nonminimal Higgs inflation in supergravity

    NASA Astrophysics Data System (ADS)

    Pallis, Constantinos

    2015-12-01

    We consider models of chaotic inflation driven by the real parts of a conjugate pair of Higgs superfields involved in the spontaneous breaking of a grand unification symmetry at a scale assuming its supersymmetric value. We combine a superpotential, which is uniquely determined by applying a continuous R symmetry, with a class of logarithmic or semilogarithmic Kähler potentials which exhibit a prominent shift symmetry with a tiny violation, whose strengths are quantified by c- and c+. The inflationary observables provide an excellent match to the recent BICEP2/Keck Array and Planck results, setting 3.5 ×10-3≲r±=c+/c-≲1 /N , where N =3 or 2 is the prefactor of the logarithm. Inflation can be attained for sub-Planckian inflaton values, with the corresponding effective theories retaining the perturbative unitarity up to the Planck scale.

  3. LHC diphoton Higgs signal predicted by little Higgs models

    SciTech Connect

    Wang Lei; Yang Jinmin

    2011-10-01

    Little Higgs theory naturally predicts a light Higgs boson whose most important discovery channel at the LHC is the diphoton signal pp{yields}h{yields}{gamma}{gamma}. In this work, we perform a comparative study for this signal in some typical little Higgs models, namely, the littlest Higgs model, two littlest Higgs models with T-parity (named LHT-I and LHT-II), and the simplest little Higgs models. We find that compared with the standard model prediction, the diphoton signal rate is always suppressed and the suppression extent can be quite different for different models. The suppression is mild (< or approx. 10%) in the littlest Higgs model but can be quite severe ({approx_equal}90%) in other three models. This means that discovering the light Higgs boson predicted by the little Higgs theory through the diphoton channel at the LHC will be more difficult than discovering the standard model Higgs boson.

  4. Search for neutral MSSM Higgs bosons decaying to μ+μ- in pp collisions at √{ s} = 7 and 8 TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Van Parijs, I.; Barria, P.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Dobur, D.; Fasanella, G.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Mohammadi, A.; Perniè, L.; Randle-conde, A.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Caebergs, T.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; De Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Aly, R.; Aly, S.; El-khateeb, E.; Elkafrawy, T.; Lotfy, A.; Mohamed, A.; Radi, A.; Salama, E.; Sayed, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Pekkanen, J.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.

    2016-01-01

    A search for neutral Higgs bosons predicted in the minimal supersymmetric standard model (MSSM) for μ+μ- decay channels is presented. The analysis uses data collected by the CMS experiment at the LHC in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV, corresponding to integrated luminosities of 5.1 and 19.3 fb-1, respectively. The search is sensitive to Higgs bosons produced either through the gluon fusion process or in association with a b b ‾ quark pair. No statistically significant excess is observed in the μ+μ- mass spectrum. Results are interpreted in the framework of several benchmark scenarios, and the data are used to set an upper limit on the MSSM parameter tan ⁡ β as a function of the mass of the pseudoscalar A boson in the range from 115 to 300 GeV. Model independent upper limits are given for the product of the cross section and branching fraction for gluon fusion and b quark associated production at √{ s} = 8 TeV. They are the most stringent limits obtained to date in this channel.

  5. Next generation Higgs bosons: Theory, constraints, and discovery prospects at the Large Hadron Collider

    SciTech Connect

    Gupta, Rick S.; Wells, James D.

    2010-03-01

    Particle physics model building within the context of string theory suggests that further copies of the Higgs boson sector may be expected. Concerns regarding tree-level flavor-changing neutral currents are easiest to allay if little or no couplings of next generation Higgs bosons to standard model fermions are allowed. We detail the resulting general Higgs potential and mass spectroscopy in both a standard model extension and a supersymmetric extension. We present the important experimental constraints from meson-meson mixing, loop-induced b{yields}s{gamma} decays, and LEP2 direct production limits. We investigate the energy range of the valid perturbation theory of these ideas. In the supersymmetric context we present a class of examples that marginally aids the fine-tuning problem for parameter space where the lightest Higgs boson mass is greater than the standard model limit of 114 GeV. Finally, we study collider physics signatures generic to next generation Higgs bosons, with special emphasis on Ah{yields}hhZ{yields}4b+2l signal events, and describe the capability of discovery at the Large Hadron Collider.

  6. Non-supersymmetric string theory

    NASA Astrophysics Data System (ADS)

    Martinec, Emil J.; Robbins, Daniel; Sethi, Savdeep

    2011-10-01

    A class of non-supersymmetric string backgrounds can be constructed using twists that involve space-time fermion parity. We propose a non-perturbative definition of string theory in these backgrounds via gauge theories with supersymmetry softly broken by twisted boundary conditions. The perturbative string spectrum is reproduced, and qualitative effects of the interactions are discussed. Along the way, we find an interesting mechanism for inflation. The end state of closed string tachyon condensation is a highly excited state in the gauge theory which, in all likelihood, does not have a geometric interpretation.

  7. Ultraviolet divergences and supersymmetric theories

    SciTech Connect

    Sagnotti, A.

    1984-09-01

    This article is closely related to the one by Ferrara in these same Proceedings. It deals with what is perhaps the most fascinating property of supersymmetric theories, their improved ultraviolet behavior. My aim here is to present a survey of the state of the art as of August, 1984, and a somewhat more detailed discussion of the breakdown of the superspace power-counting beyond N = 2 superfields. A method is also described for simplifying divergence calculations that uses the locality of subtracted Feynman integrals. 74 references.

  8. Lepton flavor-violating decays of the Higgs boson from sgoldstino mixing

    NASA Astrophysics Data System (ADS)

    Demidov, S. V.; Sobolev, I. V.

    2016-08-01

    We study lepton flavor violation in a class of supersymmetric models with light sgoldstino — scalar superpartner of Goldstone fermions responsible for spontaneous supersymmetry breaking. Sgoldstino couplings to the Standard Model (SM) fermions are determined by the MSSM soft terms and, in general, provide with flavor violation in this sector. Sgoldstino admixture to the lightest Higgs boson results in changes of its coupling constants and, in particular, leads to lepton flavor-violating decay h → τ μ of the Higgs resonance. We discuss viability and phenomenological consequences of this scenario.

  9. Multiple solutions in supersymmetry and the Higgs

    PubMed Central

    Allanach, Ben C.

    2015-01-01

    Weak-scale supersymmetry is a well-motivated, if speculative, theory beyond the Standard Model of particle physics. It solves the thorny issue of the Higgs mass, namely: how can it be stable to quantum corrections, when they are expected to be 1015 times bigger than its mass? The experimental signal of the theory is the production and measurement of supersymmetric particles in the Large Hadron Collider (LHC) experiments. No such particles have been seen to date, but hopes are high for the impending run in 2015. Searches for supersymmetric particles can be difficult to interpret. Here, we shall discuss the fact that, even given a well-defined model of supersymmetry breaking with few parameters, there can be multiple solutions. These multiple solutions are physically different and could potentially mean that points in parameter space have been ruled out by interpretations of LHC data when they should not have been. We shall review the multiple solutions and illustrate their existence in a universal model of supersymmetry breaking.

  10. Warped Supersymmetric Unification with Non-Unified Superparticle Spectrum

    SciTech Connect

    Nomura, Yasunori; Tucker-Smith, David; Tweedie, Brock

    2004-03-16

    We present a new supersymmetric extension of the standard model. The model is constructed in warped space, with a unified bulk symmetry broken by boundary conditions on both the Planck and TeV branes. In the supersymmetric limit, the massless spectrum contains exotic colored particles along with the particle content of the minimal supersymmetric standard model (MSSM). Nevertheless, the model still reproduces the MSSM prediction for gauge coupling unification and does not suffer from a proton decay problem. The exotic states acquire masses from supersymmetry breaking, making the model completely viable, but thereis still the possibility that these states will be detected at the LHC. The lightest of these states is most likely A_5^XY, the fifth component of the gauge field associated with the broken unified symmetry. Because supersymmetry is broken on the SU(5)-violating TeV brane, the gaugino masses generated at the TeV scale are completely independent of one another. We explore some of the unusual features that the superparticle spectrum might have as a consequence.

  11. Production of pseudoscalar Higgs-bosons in e {gamma} collisions

    SciTech Connect

    Dicus, D.A.; Repko, W.W.

    1995-08-21

    We investigate the production of a pseudoscalar Higgs-boson A{sup 0} using the reaction e{gamma} {yields} e A{sup 0} at an e{bar e} collider with center of mass energy of 500 GeV. Supersymmetric contributions are included and provide a substantial enhancement to the cross section for most values of the symmetry breaking parameters. We find that, despite the penalty incurred in converting one of the beams into a source of backscattered photons, the e{gamma} process is a promising channel for the detection of the A{sup 0}.

  12. Quark flavor violating Higgs boson decay h →b ¯s +b s ¯ in the MSSM

    NASA Astrophysics Data System (ADS)

    Gómez, M. E.; Heinemeyer, S.; Rehman, M.

    2016-05-01

    We study the quark flavor violating Higgs boson decay h →b ¯s +b s ¯ in the minimal supersymmetric standard model (MSSM). The decay is analyzed first in a model-independent approach and second in the minimal flavor violating (MFV) constrained MSSM. The experimental constraints from B -physics observables (BPO) and electroweak precision observables (EWPO) are also calculated and imposed on the parameter space. It is shown that, in some cases, the EWPO restrict the flavor violating parameter space more than the BPO. In the model-independent analysis, values of O (1 0-4 ) can be found for BR (h →b ¯s +b s ¯ ). In the MFV constrained MSSM (CMSSM), such results can only be obtained in very restricted parts of the parameter space. The results show that observation of the decay h →b ¯s +b s ¯ in the MSSM at future e+e- colliders is not excluded.

  13. Spinon bases in supersymmetric CFTs

    NASA Astrophysics Data System (ADS)

    Fokkema, Thessa; Schoutens, Kareljan

    2016-07-01

    We present a novel way to organise the finite size spectra of a class of conformal field theories (CFT) with { N }=2 or (nonlinear) { N }=4 superconformal symmetry. Generalising the spinon basis of the {SU}{(n)}1 WZW theories, we introduce supersymmetric spinons ({φ }-,{φ }+), which form a representation of the supersymmetry algebra. In each case, we show how to construct a multi-spinon basis of the chiral CFT spectra. The multi-spinon states are labelled by a collection \\{{n}j\\} of (discrete) momenta. The state-content for given choice of \\{{n}j\\} is determined through a generalised exclusion principle, similar to Haldane's ‘motif’ rules for the {SU}{(n)}1 theories. In the simplest case, which is the { N }=2 superconformal theory with central charge c = 1, we develop an algebraic framework similar to the Yangian symmetry of the {SU}{(2)}1 theory. It includes an operator H 2, akin to a CFT Haldane–Shastry Hamiltonian, which is diagonalised by multi-spinon states. In all cases studied, we obtain finite partition sums by capping the spinon-momenta to some finite value. For the { N }=2 superconformal CFTs, this finitisation precisely leads to the so-called M k supersymmetric lattice models with characteristic order-k exclusion rules on the lattice. Finitising the c = 2 CFT with nonlinear { N }=4 superconformal symmetry similarly gives lattice model partition sums for spin-full Fermions with on-site and nearest neighbour exclusion.

  14. A Maximally Supersymmetric Kondo Model

    SciTech Connect

    Harrison, Sarah; Kachru, Shamit; Torroba, Gonzalo; /Stanford U., Phys. Dept. /SLAC

    2012-02-17

    We study the maximally supersymmetric Kondo model obtained by adding a fermionic impurity to N = 4 supersymmetric Yang-Mills theory. While the original Kondo problem describes a defect interacting with a free Fermi liquid of itinerant electrons, here the ambient theory is an interacting CFT, and this introduces qualitatively new features into the system. The model arises in string theory by considering the intersection of a stack of M D5-branes with a stack of N D3-branes, at a point in the D3 worldvolume. We analyze the theory holographically, and propose a dictionary between the Kondo problem and antisymmetric Wilson loops in N = 4 SYM. We perform an explicit calculation of the D5 fluctuations in the D3 geometry and determine the spectrum of defect operators. This establishes the stability of the Kondo fixed point together with its basic thermodynamic properties. Known supergravity solutions for Wilson loops allow us to go beyond the probe approximation: the D5s disappear and are replaced by three-form flux piercing a new topologically non-trivial S3 in the corrected geometry. This describes the Kondo model in terms of a geometric transition. A dual matrix model reflects the basic properties of the corrected gravity solution in its eigenvalue distribution.

  15. Higgs Results from CMS

    NASA Astrophysics Data System (ADS)

    Bornheim, Adolf

    2014-03-01

    The Nobel Prize in physics 2013 has been awarded to François Englert and Peter W. Higgs for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles which plays a crucial role in our understanding of electro-weak symmetry breaking. I will review the experimental results manifesting the discovery of the so called Higgs boson from the perspective of the Compact Muon Solenoid (CMS) collaboration. The review is based on the final results from the proton-proton collision data at 7 TeV and 8 TeV center-of-mass energy, collected in 2011 and 2012 in the initial run of the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN). Results on the properties of the new particle with a mass around 125 GeV, all in agreement with the expectations for the Standard Model (SM) Higgs boson, are highlighted. Latest results on the couplings between the Higgs and fermionic fields, in particular the final results of searches for a Higgs boson decaying into a b-quark or a tau-lepton pair, are presented. Non-SM Higgs searches are briefly summarized. Future perspectives for Higgs physics with CMS at LHC for the next data taking period starting in 2015 and beyond are discussed. CMS Collaboration.

  16. Precision Higgs Physics

    NASA Astrophysics Data System (ADS)

    Boughezal, Radja

    2015-04-01

    The future of the high energy physics program will increasingly rely upon precision studies looking for deviations from the Standard Model. Run I of the Large Hadron Collider (LHC) triumphantly discovered the long-awaited Higgs boson, and there is great hope in the particle physics community that this new state will open a portal onto a new theory of Nature at the smallest scales. A precision study of Higgs boson properties is needed in order to test whether this belief is true. New theoretical ideas and high-precision QCD tools are crucial to fulfill this goal. They become even more important as larger data sets from LHC Run II further reduce the experimental errors and theoretical uncertainties begin to dominate. In this talk, I will review recent progress in understanding Higgs properties,including the calculation of precision predictions needed to identify possible physics beyond the Standard Model in the Higgs sector. New ideas for measuring the Higgs couplings to light quarks as well as bounding the Higgs width in a model-independent way will be discussed. Precision predictions for Higgs production in association with jets and ongoing efforts to calculate the inclusive N3LO cross section will be reviewed.

  17. The goldstone and goldstino of supersymmetric inflation

    NASA Astrophysics Data System (ADS)

    Kahn, Yonatan; Roberts, Daniel A.; Thaler, Jesse

    2015-10-01

    We construct the minimal effective field theory (EFT) of supersymmetric inflation, whose field content is a real scalar, the goldstone for time-translation breaking, and a Weyl fermion, the goldstino for supersymmetry (SUSY) breaking. The inflating background can be viewed as a single SUSY-breaking sector, and the degrees of freedom can be efficiently parameterized using constrained superfields. Our EFT is comprised of a chiral superfield X NL containing the goldstino and satisfying X NL 2 = 0, and a real superfield B NL containing both the goldstino and the goldstone, satisfying X NL B NL = B NL 3 = 0. We match results from our EFT formalism to existing results for SUSY broken by a fluid background, showing that the goldstino propagates with subluminal velocities. The same effect can also be derived from the unitary gauge gravitino action after embedding our EFT in supergravity. If the gravitino mass is comparable to the Hubble scale during inflation, we identify a new parameter in the EFT related to a time-dependent phase of the gravitino mass parameter. We briefly comment on the leading contributions of goldstino loops to inflationary observables.

  18. The goldstone and goldstino of supersymmetric inflation

    SciTech Connect

    Kahn, Yonatan; Roberts, Daniel A.; Thaler, Jesse

    2015-10-01

    Here, we construct the minimal effective field theory (EFT) of supersymmetric inflation, whose field content is a real scalar, the goldstone for time-translation breaking, and a Weyl fermion, the goldstino for supersymmetry (SUSY) breaking. The inflating background can be viewed as a single SUSY-breaking sector, and the degrees of freedom can be efficiently parameterized using constrained superfields. Our EFT is comprised of a chiral superfield XNL containing the goldstino and satisfying X2NL = 0, and a real superfield BNL containing both the goldstino and the goldstone, satisfying XNL BNL = B3NL = 0. We match results from our EFT formalism to existing results for SUSY broken by a fluid background, showing that the goldstino propagates with subluminal velocities. The same effect can also be derived from the unitary gauge gravitino action after embedding our EFT in supergravity. If the gravitino mass is comparable to the Hubble scale during inflation, we identify a new parameter in the EFT related to a time-dependent phase of the gravitino mass parameter. We briefly comment on the leading contributions of goldstino loops to inflationary observables.

  19. The goldstone and goldstino of supersymmetric inflation

    DOE PAGESBeta

    Kahn, Yonatan; Roberts, Daniel A.; Thaler, Jesse

    2015-10-01

    Here, we construct the minimal effective field theory (EFT) of supersymmetric inflation, whose field content is a real scalar, the goldstone for time-translation breaking, and a Weyl fermion, the goldstino for supersymmetry (SUSY) breaking. The inflating background can be viewed as a single SUSY-breaking sector, and the degrees of freedom can be efficiently parameterized using constrained superfields. Our EFT is comprised of a chiral superfield XNL containing the goldstino and satisfying X2NL = 0, and a real superfield BNL containing both the goldstino and the goldstone, satisfying XNL BNL = B3NL = 0. We match results from our EFT formalismmore » to existing results for SUSY broken by a fluid background, showing that the goldstino propagates with subluminal velocities. The same effect can also be derived from the unitary gauge gravitino action after embedding our EFT in supergravity. If the gravitino mass is comparable to the Hubble scale during inflation, we identify a new parameter in the EFT related to a time-dependent phase of the gravitino mass parameter. We briefly comment on the leading contributions of goldstino loops to inflationary observables.« less

  20. Supersymmetric F-theory GUT models

    NASA Astrophysics Data System (ADS)

    Chung, Yu-Chieh

    F-theory is a twelve-dimensional geometric version of string theory and is believed to be a natural framework for GUT model building. The aim of this dissertation is to study how gauge theories realized by F-theory can accommodate GUT models. In this dissertation, we focus on local and semi-local GUT model building in F-theory. For local GUT models, we build SU(5) GUTs by using abelian U(1) fluxes via theSU6) gauge group. Doing so, we obtain non-minimal spectra of the MSSM with doublet-triplet splitting by switching on abelian U(1)2 fluxes. We also classify all supersymmetric U(1)2 fluxes by requiring an exotic-free bulk spectrum. For semi-local GUT models, we start with an E8 singularity and obtain lower rank gauge groups by unfolding the singularity governed by spectral covers. In this framework, the spectra can be calculated by the intersection numbers of spectral covers and matter curves. In particular, we useSU4) spectral covers and abelian U(1)X fluxes to build flippedSU5) models. We show that three-generation spectra of flippedSU5) models can be achieved by turning on suitable fluxes. To construct E6 GUTs, we consider SU3) spectral covers breaking E8 down to E6. Also three-generation extended MSSM can be obtained by using non-abelian SU2) x U(1)2 fluxes.

  1. A separate Higgs?

    SciTech Connect

    Barger, V.; Deshpande, N.G.; Hewett, J.L. |; Rizzo, T.G. |

    1992-11-01

    We investigate the possibility of a multi-Higgs doublet model where the lightest neutral Higgs boson (h{sup o}) decouples from the fermion sector. We are partially motivated by the four {ell}{sup +}{ell}{sup {minus}} events with M{gamma}{gamma} {approx_equal} 60 GeV recently observed by the L3 collaboration, which could be a signal for Z {yields} (Z{sup *} {yields} {ell}{sup +}{ell}{sup {minus}}) + (h{sup o} {yields} {gamma}{gamma}). Collider signatures for the additional physical Higgs bosons present in such models are discussed.

  2. Three-loop corrections to the lightest Higgs boson mass within SQCD

    SciTech Connect

    Mihaila, L.

    2008-11-23

    In this talk we report on the computation of the light CP-even Higgs boson mass with three-loop accuracy, taking into account the next-to-next-to-leading order effects from supersymmetric Quantum Chromodynamics. We find that the numerical results amount to corrections of the same order of magnitude as the experimental accuracy expected at the CERN Large Hadron Collider (LHC)

  3. Natural Higgs-Flavor-Democracy Solution of the μ Problem of Supersymmetry and the QCD Axion

    NASA Astrophysics Data System (ADS)

    Kim, Jihn E.

    2013-07-01

    We show that the hierarchically small μ term in supersymmetric theories is a consequence of two identical pairs of Higgs doublets taking a democratic form for their mass matrix. We briefly discuss the discrete symmetry S2×S2 toward the democratic mass matrix. Then, we show that there results an approximate Peccei-Quinn symmetry and hence the value μ is related to the axion decay constant.

  4. Unitarity-violation in generalized Higgs inflation models

    SciTech Connect

    Lerner, Rose N.; McDonald, John E-mail: j.mcdonald@lancaster.ac.uk

    2012-11-01

    Unitarity-violation presents a challenge for non-minimally coupled models of inflation based on weak-scale particle physics. We examine the energy scale of tree-level unitarity-violation in scattering processes for generalized models with multiple scalar fields where the inflaton is either a singlet scalar or the Higgs. In the limit that the non-minimal couplings are all equal (e.g. in the case of Higgs or other complex inflaton), the scale of tree-level unitarity-violation matches the existing result. However if the inflaton is a singlet, and if it has a larger non-minimal coupling than other scalars in the model, then this hierarchy increases the scale of tree-level unitarity-violation. A sufficiently strong hierarchy pushes the scale of tree-level unitarity-violation above the Planck scale. We also discuss models which attempt to resolve the issue of unitarity-violation in Higgs Inflation.

  5. Status of the MSSM Higgs sector using global analysis and direct search bounds, and future prospects at the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Bhattacherjee, Biplob; Chakraborty, Amit; Choudhury, Arghya

    2015-11-01

    In this paper, we search for the regions of the phenomenological minimal supersymmetric standard model (pMSSM) parameter space where one can expect to have moderate Higgs mixing angle (α ) with relatively light (up to 600 GeV) additional Higgses after satisfying the current LHC data. We perform a global fit analysis using most updated data (till December 2014) from the LHC and Tevatron experiments. The constraints coming from the precision measurements of the rare b-decays Bs→μ+μ- and b →s γ are also considered. We find that low MA(≲350 ) and high tan β (≳25 ) regions are disfavored by the combined effect of the global analysis and flavor data. However, regions with Higgs mixing angle α ˜0.1 - 0.8 are still allowed by the current data. We then study the existing direct search bounds on the heavy scalar/pseudoscalar (H /A ) and charged Higgs boson (H±) masses and branchings at the LHC. It has been found that regions with low to moderate values of tan β with light additional Higgses (mass ≤600 GeV ) are unconstrained by the data, while the regions with tan β >20 are excluded considering the direct search bounds by the LHC-8 data. The possibility to probe the region with tan β ≤20 at the high luminosity run of LHC are also discussed, giving special attention to the H →hh , H /A →t t ¯ and H /A →τ+τ- decay modes.

  6. Nonstandard Yukawa couplings and Higgs portal dark matter

    NASA Astrophysics Data System (ADS)

    Bishara, Fady; Brod, Joachim; Uttarayat, Patipan; Zupan, Jure

    2016-01-01

    We study the implications of non-standard Higgs Yukawa couplings to light quarks on Higgs-portal dark matter phenomenology. Saturating the present experimental bounds on up-quark, down-quark, or strange-quark Yukawa couplings, the predicted direct dark matter detection scattering rate can increase by up to four orders of magnitude. The effect on the dark matter annihilation cross-section, on the other hand, is subleading unless the dark matter is very light — a scenario that is already excluded by measurements of the Higgs invisible decay width. We investigate the expected size of corrections in multi-Higgs-doublet models with natural flavor conservation, the type-II two-Higgs-doublet model, the Giudice-Lebedev model of light quark masses, minimal flavor violation new physics models, Randall-Sundrum, and composite Higgs models. We find that an enhancement in the dark matter scattering rate of an order of magnitude is possible. Finally, we point out that a discovery of Higgs-portal dark matter could lead to interesting bounds on the light-quark Yukawa couplings.

  7. Nonstandard Yukawa couplings and Higgs portal dark matter

    DOE PAGESBeta

    Bishara, Fady; Brod, Joachim; Uttayarat, Patipan; Zupan, Jure

    2016-01-04

    We study the implications of non-standard Higgs Yukawa couplings to light quarks on Higgs-portal dark matter phenomenology. Saturating the present experimental bounds on up-quark, down-quark, or strange-quark Yukawa couplings, the predicted direct dark matter detection scattering rate can increase by up to four orders of magnitude. The effect on the dark matter annihilation cross-section, on the other hand, is subleading unless the dark matter is very light — a scenario that is already excluded by measurements of the Higgs invisible decay width. We investigate the expected size of corrections in multi-Higgs-doublet models with natural flavor conservation, the type-II two-Higgs-doublet model,more » the Giudice-Lebedev model of light quark masses, minimal flavor violation new physics models, Randall-Sundrum, and composite Higgs models. We find that an enhancement in the dark matter scattering rate of an order of magnitude is possible. In conclusion, we point out that a discovery of Higgs-portal dark matter could lead to interesting bounds on the light-quark Yukawa couplings.« less

  8. Supersymmetric cubic Galileons have ghosts

    NASA Astrophysics Data System (ADS)

    Koehn, Michael; Lehners, Jean-Luc; Ovrut, Burt A.

    2013-07-01

    Galileons are higher-derivative theories of a real scalar which nevertheless admit second-order equations of motion. They have interesting applications as dark energy models and in early universe cosmology, and have been conjectured to arise as descriptions of brane dynamics in string theory. In the present paper, we study the bosonic sector of globally N=1 supersymmetric extensions of the cubic Galileon Lagrangian in detail. Supersymmetry requires that the Galileon scalar now becomes paired with a second real scalar field. We prove that the presence of this second scalar causes the equations of motion to become higher than second order, thus leading to the appearance of ghosts. We also analyze the energy scales up to which, in an effective field theory description, the ghosts can be tamed.

  9. Mass and mixing angle patterns in the Standard Model and its material Supersymmetric Extension

    SciTech Connect

    Ramond, P.

    1992-01-01

    Using renormalization group techniques, we examine several interesting relations among masses and mixing angles of quarks and lepton in the Standard Model of Elementary Particle Interactions as a functionof scale. We extend the analysis to the minimal Supersymmetric Extension to determine its effect on these mass relations. For a heavy to quark, and minimal supersymmetry, most of these relations, can be made to agree at one unification scale.

  10. Examining the identity of Yukawa with gauge couplings in supersymmetric QCD at LHC

    SciTech Connect

    Freitas, Ayres; Skands, Peter Z.; Spira, M.; Zerwas, P.M.; /DESY

    2007-03-01

    The identity of the quark-squark-gluino Yukawa coupling with the corresponding quark-quark-gluon QCD coupling in supersymmetric theories can be examined experimentally at the Large Hadron Collider (LHC). Extending earlier investigations of like-sign di-lepton final states, we include jets in the analysis of the minimal supersymmetric standard model, adding squark-gluino and gluino-pair production to squark-pair production. Moreover we expand the method towards model-independent analyses which cover more general scenarios. In all cases, squark decays to light charginos and neutralinos persist to play a dominant role.

  11. The private Higgs

    NASA Astrophysics Data System (ADS)

    Porto, Rafael A.; Zee, A.

    2008-09-01

    We introduce Higgs democracy in the Yukawa sector by constructing a model with a private Higgs and a dark scalar for each fermion thus addressing the large hierarchy among fermion masses. The model has interesting implications for the LHC, while the Standard Model phenomenology is recovered at low energies. We discuss some phenomenological implications such as FCNC, new Higgses at the TeV scale and dark matter candidates.

  12. Twin Higgs Asymmetric Dark Matter

    NASA Astrophysics Data System (ADS)

    García García, Isabel; Lasenby, Robert; March-Russell, John

    2015-09-01

    We study asymmetric dark matter (ADM) in the context of the minimal (fraternal) twin Higgs solution to the little hierarchy problem, with a twin sector with gauged SU(3)'×SU(2)', atwin Higgs doublet, and only third-generation twin fermions. Naturalness requires the QCD' scale ΛQCD'≃0.5 - 20 GeV , and that t' is heavy. We focus on the light b' quark regime, mb'≲ΛQCD', where QCD' is characterized by a single scale ΛQCD' with no light pions. A twin baryon number asymmetry leads to a successful dark matter (DM) candidate: the spin-3 /2 twin baryon, Δ'˜b'b'b', with a dynamically determined mass (˜5 ΛQCD') in the preferred range for the DM-to-baryon ratio ΩDM/Ωbaryon≃5 . Gauging the U (1 )' group leads to twin atoms (Δ'-τ' ¯ bound states) that are successful ADM candidates in significant regions of parameter space, sometimes with observable changes to DM halo properties. Direct detection signatures satisfy current bounds, at times modified by dark form factors.

  13. Twin Higgs Asymmetric Dark Matter.

    PubMed

    García García, Isabel; Lasenby, Robert; March-Russell, John

    2015-09-18

    We study asymmetric dark matter (ADM) in the context of the minimal (fraternal) twin Higgs solution to the little hierarchy problem, with a twin sector with gauged SU(3)^{'}×SU(2)^{'}, a twin Higgs doublet, and only third-generation twin fermions. Naturalness requires the QCD^{'} scale Λ_{QCD}^{'}≃0.5-20  GeV, and that t^{'} is heavy. We focus on the light b^{'} quark regime, m_{b^{'}}≲Λ_{QCD}^{'}, where QCD^{'} is characterized by a single scale Λ_{QCD}^{'} with no light pions. A twin baryon number asymmetry leads to a successful dark matter (DM) candidate: the spin-3/2 twin baryon, Δ^{'}∼b^{'}b^{'}b^{'}, with a dynamically determined mass (∼5Λ_{QCD}^{'}) in the preferred range for the DM-to-baryon ratio Ω_{DM}/Ω_{baryon}≃5. Gauging the U(1)^{'} group leads to twin atoms (Δ^{'}-τ^{'}[over ¯] bound states) that are successful ADM candidates in significant regions of parameter space, sometimes with observable changes to DM halo properties. Direct detection signatures satisfy current bounds, at times modified by dark form factors. PMID:26430985

  14. Class of supersymmetric solitons with naked singularities

    SciTech Connect

    Cvetic, M.; Youm, D. )

    1995-02-15

    We study vacuum domain walls in a class of four-dimensional [ital N]=1 supergravity theories where along with the matter field, forming the wall, there is more than one dilaton,'' each respecting SU(1,1) symmetry in their subsector. We find [ital supersymmetric] (planar, static) walls, interpolating between a Minkowski vacuum and a new class of supersymmetric vacua which have a naked (planar) singularity. Although such walls correspond to idealized configurations, i.e., they correspond to planar configurations of infinite extent, they provide the first example of supersymmetric classical solitons with naked singularities.

  15. Higgs ultraviolet softening

    NASA Astrophysics Data System (ADS)

    Brivio, I.; Éboli, O. J. P.; Gavela, M. B.; Gonzalez-García, M. C.; Merlo, L.; Rigolin, S.

    2014-12-01

    We analyze the leading effective operators which induce a quartic momentum dependence in the Higgs propagator, for a linear and for a non-linear realization of electroweak symmetry breaking. Their specific study is relevant for the understanding of the ultraviolet sensitivity to new physics. Two methods of analysis are applied, trading the Lagrangian coupling by: i) a "ghost" scalar, after the Lee-Wick procedure; ii) other effective operators via the equations of motion. The two paths are shown to lead to the same effective Lagrangian at first order in the operator coefficients. It follows a modification of the Higgs potential and of the fermionic couplings in the linear realization, while in the non-linear one anomalous quartic gauge couplings, Higgs-gauge couplings and gauge-fermion interactions are induced in addition. Finally, all LHC Higgs and other data presently available are used to constrain the operator coefficients; the future impact of pp → 4 leptons data via off-shell Higgs exchange and of vector boson fusion data is considered as well. For completeness, a summary of pure-gauge and gauge-Higgs signals exclusive to non-linear dynamics at leading-order is included.

  16. Higgs dynamics during inflation

    SciTech Connect

    Enqvist, Kari; Meriniemi, Tuukka; Nurmi, Sami E-mail: tuukka.meriniemi@helsinki.fi

    2014-07-01

    We investigate inflationary Higgs dynamics and constraints on the Standard Model parameters assuming the Higgs potential, computed to next-to-next leading order precision, is not significantly affected by new physics. For a high inflationary scale H ∼ 10{sup 14} GeV suggested by BICEP2, we show that the Higgs is a light field subject to fluctuations which affect its dynamics in a stochastic way. Starting from its inflationary value the Higgs must be able to relax to the Standard Model vacuum well before the electroweak scale. We find that this is consistent with the high inflationary scale only if the top mass m{sub t} is significantly below the best fit value. The region within 2σ errors of the measured m{sub t}, the Higgs mass m{sub h} and the strong coupling α{sub s} and consistent with inflation covers approximately the interval m{sub t}∼<171.8 GeV+0.538(m{sub h}−125.5 GeV) with 125.4 GeV∼Higgs potential below the inflationary scale.

  17. Semisimple group unification in the supersymmetric brane world

    NASA Astrophysics Data System (ADS)

    Imamura, Y.; Watari, T.; Yanagida, T.

    2001-09-01

    The conventional supersymmetric grand unified theories suffer from two serious problems: the large mass splitting between doublet and triplet Higgs multiplets, and the too long lifetime of the proton. A unification model based on a semisimple group SU(5)GUT×U(3)H has been proposed to solve both of the problems simultaneously. Although the proposed model is perfectly consistent with observations, there are various mysteries. In this paper we show that such mysterious features in the original model are naturally explained by embedding the model into the brane world in a higher-dimensional space-time. In particular, the relatively small gauge coupling constant of the SU(5)GUT at the unification energy scale is a consequence of a relatively large volume of extra dimensions. Here, we put the SU(5)GUT gauge multiplet in a six-dimensional bulk and assume all fields in the U(3)H sector to reside on a three-dimensional brane located in the bulk. On the other hand, all chiral multiplets of quarks, leptons, and Higgs bosons are assumed to reside on a 3-brane at a T2/Z4 orbifold fixed point. The quasi-N=2 supersymmetry in the hypercolor U(3)H sector is understood as a low-energy remnant of the N=4 supersymmetry in a six-dimensional space-time. We further extend the six-dimensional model to a ten-dimensional theory. Possible frameworks of string theories are also investigated to accommodate the present brane-world model. We find that the type-IIB string theory with a D3-D7 brane structure is an interesting candidate.

  18. Topological vortices in generalized Born-Infeld-Higgs electrodynamics

    NASA Astrophysics Data System (ADS)

    Casana, R.; Hora, E. da; Rubiera-Garcia, D.; Santos, C. dos

    2015-08-01

    A consistent BPS formalism to study the existence of topological axially symmetric vortices in generalized versions of the Born-Infeld-Higgs electrodynamics is implemented. Such a generalization modifies the field dynamics via the introduction of three nonnegative functions depending only in the Higgs field, namely, , , and . A set of first-order differential equations is attained when these functions satisfy a constraint related to the Ampère law. Such a constraint allows one to minimize the system's energy in such way that it becomes proportional to the magnetic flux. Our results provides an enhancement of the role of topological vortex solutions in Born-Infeld-Higgs electrodynamics. Finally, we analyze a set of models entailing the recovery of a generalized version of Maxwell-Higgs electrodynamics in a certain limit of the theory.

  19. Supersymmetric type-III seesaw mechanism: Lepton flavor violating decays and dark matter

    SciTech Connect

    Esteves, J. N.; Romao, J. C.; Hirsch, M.

    2011-01-01

    We study a supersymmetric version of the seesaw mechanism type III. The model consists of the minimal supersymmetric extension of the standard model particle content plus three copies of 24 superfields. The fermionic part of the SU(2) triplet contained in the 24 is responsible for the type-III seesaw, which is used to explain the observed neutrino masses and mixings. Complete copies of 24 are introduced to maintain gauge coupling unification. These additional states change the beta functions of the gauge couplings above the seesaw scale. Using minimal Supergravity boundary conditions, we calculate the resulting supersymmetric mass spectra at the electroweak scale using full 2-loop renormalization group equations. We show that the resulting spectrum can be quite different compared to the usual minimal Supergravity spectrum. We discuss how this might be used to obtain information on the seesaw scale from mass measurements. Constraints on the model space due to limits on lepton flavour violating decays are discussed. The main constraints come from the bounds on {mu}{yields}e{gamma} but there are also regions where the decay {tau}{yields}{mu}{gamma} gives stronger constraints. We also calculate the regions allowed by the dark matter constraint. For the sake of completeness, we compare our results with those for the supersymmetric seesaw type II and, to some extent, with type I.

  20. Supersymmetric QCD and high energy cosmic rays: Fragmentation functions of supersymmetric QCD

    NASA Astrophysics Data System (ADS)

    Corianò, Claudio; Faraggi, Alon E.

    2002-04-01

    The supersymmetric evolution of the fragmentation functions (or timelike evolution) within N=1 QCD is discussed and predictions for the fragmentation functions of the theory (into final protons) are given. We use a backward running of the supersymmetric DGLAP equations, using a method developed in previous works. We start from the usual QCD parametrizations at low energy and run the DGLAP back, up to an intermediate scale-assumed to be supersymmetric-where we switch-on supersymmetry. From there on we assume the applicability of an N=1 supersymmetric evolution (ESAP). We elaborate on the possible application of these results to high energy cosmic rays near the GZK cutoff.

  1. Self-unitarization of New Higgs Inflation and compatibility with Planck and BICEP2 data

    SciTech Connect

    Germani, Cristiano; Wintergerst, Nico; Watanabe, Yuki E-mail: watanabe@resceu.s.u-tokyo.ac.jp

    2014-12-01

    In this paper we show that the Germani-Kehagias model of Higgs inflation (or New Higgs Inflation), where the Higgs boson is kinetically non-minimally coupled to the Einstein tensor is in perfect compatibility with the latest Planck and BICEP2 data. Moreover, we show that the tension between the Planck and BICEP2 data can be relieved within the New Higgs inflation scenario by a negative running of the spectral index. Regarding the unitarity of the model, we argue that it is unitary throughout the evolution of the Universe. Weak couplings in the Higgs-Higgs and Higgs-graviton sectors are provided by a large background dependent cut-off scale during inflation. In the same regime, the W and Z gauge bosons acquire a very large mass, thus decouple. On the other hand, if they are also non-minimally coupled to the Higgs boson, their effective masses can be enormously reduced. In this case, the W and Z bosons are no longer decoupled. After inflation, the New Higgs model is well approximated by a quartic Galileon with a renormalizable potential. We argue that this can unitarily create the right conditions for inflation to eventually start.

  2. Origins of inert Higgs doublets

    NASA Astrophysics Data System (ADS)

    Kephart, Thomas W.; Yuan, Tzu-Chiang

    2016-05-01

    We consider beyond the standard model embedding of inert Higgs doublet fields. We argue that inert Higgs doublets can arise naturally in grand unified theories where the necessary associated Z2 symmetry can occur automatically. Several examples are discussed.

  3. Natural Little Hierarchy from Partially Goldstone Twin Higgs

    SciTech Connect

    Chacko, Z.; Nomura, Yasunori; Papucci, Michele; Perez, Gilad

    2005-10-20

    We construct a simple theory in which the fine-tuning of the standard model is significantly reduced. Radiative corrections to the quadratic part of the scalar potential are constrained to be symmetric under a global U(4) x U(4){prime} symmetry due to a discrete Z{sub 2} 'twin' parity, while the quartic part does not possess this symmetry. As a consequence, when the global symmetry is broken the Higgs fields emerge as light pseudo-Goldstone bosons, but with sizable quartic self-interactions. This structure allows the cutoff scale, {Lambda}, to be raised to the multi-TeV region without significant fine-tuning. In the minimal version of the theory, the amount of fine-tuning is about 15% for {Lambda} = 5 TeV, while it is about 30% in an extended model. This provides a solution to the little hierarchy problem. In the minimal model, the 'visible' particle content is exactly that of the two Higgs doublet standard model, while the extended model also contains extra vector-like fermions with masses {approx} (1 {approx} 2) TeV. At the LHC, our minimal model may appear exactly as the two Higgs doublet standard model, and new physics responsible for cutting off the divergences of the Higgs mass-squared parameter may not be discovered. Several possible processes that may be used to discriminate our model from the simple two Higgs doublet model are discussed for the LHC and for a linear collider.

  4. Search for Higgs Bosons Produced in Association with b-Quarks

    SciTech Connect

    Aaltonen, T

    2012-02-22

    We present a search for neutral Higgs bosons φ decaying into bb¯, produced in association with b quarks in ppb¯ collisions. This process could be observable in supersymmetric models with high values of tan β. The event sample corresponds to 2.6 fb-1 of integrated luminosity collected with the CDF II detector at the Fermilab Tevatron collider. We search for an enhancement in the mass of the two leading jets in events with three jets identified as coming from b quarks using a displaced vertex algorithm. A data-driven procedure is used to estimate the dijet mass spectrum of the nonresonant multijet background. The contributions of backgrounds and a possible Higgs boson signal are determined by a two-dimensional fit of the data, using the dijet mass together with an additional variable which is sensitive to the flavor composition of the three tagged jets. We set mass-dependent limits on σ(ppb¯ = φb) x Β(φ= bb¯) which are applicable for a narrow scalar particle φ produced in association with b quarks. We also set limits on tan β in supersymmetric Higgs models including the effects of the Higgs boson width.

  5. Search for Higgs Bosons Produced in Association with b-Quarks

    DOE PAGESBeta

    Aaltonen, T

    2012-02-22

    We present a search for neutral Higgs bosons φ decaying into bb¯, produced in association with b quarks in ppb¯ collisions. This process could be observable in supersymmetric models with high values of tan β. The event sample corresponds to 2.6 fb-1 of integrated luminosity collected with the CDF II detector at the Fermilab Tevatron collider. We search for an enhancement in the mass of the two leading jets in events with three jets identified as coming from b quarks using a displaced vertex algorithm. A data-driven procedure is used to estimate the dijet mass spectrum of the nonresonant multijetmore » background. The contributions of backgrounds and a possible Higgs boson signal are determined by a two-dimensional fit of the data, using the dijet mass together with an additional variable which is sensitive to the flavor composition of the three tagged jets. We set mass-dependent limits on σ(ppb¯ = φb) x Β(φ= bb¯) which are applicable for a narrow scalar particle φ produced in association with b quarks. We also set limits on tan β in supersymmetric Higgs models including the effects of the Higgs boson width.« less

  6. Higgs boson production with heavy quarks at hadron colliders

    NASA Astrophysics Data System (ADS)

    Jackson, Christopher B.

    2005-11-01

    One of the remaining puzzles in particle physics is the origin of electroweak symmetry breaking. In the Standard Model (SM), a single doublet of complex scalar fields is responsible for breaking the SU(2) L x U(1)Y gauge symmetry thus giving mass to the electroweak gauge bosons via the Higgs mechanism and to the fermions via Yukawa couplings. The remnant of the process is a vet to he discovered scalar particle, the Higgs boson (h). However, current and future experiments at hadron colliders hold great promise. Of particular interest at hadron colliders is the production of a Higgs boson in association with a pair of heavy quarks, pp¯(pp) → QQ¯h, where Q can be either a top or a bottom quark. Indeed, the production of a Higgs boson with a pair of top quarks provides a very distinctive signal in hadronic collisions where background processes are formidable, and it will be instrumental in the discovery of a Higgs boson below about 130 GeV at the LHC. On the other hand, the production of a Higgs boson with bottom quarks can be strongly enhanced in models of new physics beyond the SM, e.g. supersymmetric models. If this is the case, bb¯h production will play a crucial role at the Tevatron where it could provide the first signal of new physics. Given the prominent role that Higgs production with heavy quarks can play at hadron colliders, it becomes imperative to have precise theoretical predictions for total and differential cross sections. In this dissertation, we outline and present detailed results for the next-to-leading order (NLO) calculation of the Quantum Chromodynamic (QCD) corrections to QQ¯h production at both the Tevatron and the LHC. This calculation involves several difficult issues due to the three massive particles in the final state, a situation which is at the frontier of radiative correction calculations in quantum field theory. We detail the novel techniques developed to deal with these challenges. The calculation of pp¯(pp) → bb¯h at NLO in

  7. New Physics Opportunities in the Boosted Di-Higgs-Boson Plus Missing Transverse Energy Signature

    NASA Astrophysics Data System (ADS)

    Kang, Zhaofeng; Ko, P.; Li, Jinmian

    2016-04-01

    The Higgs field in the standard model may couple to new physics sectors related to dark matter and/or massive neutrinos. In this Letter we propose a novel signature, the boosted di-Higgs-boson plus ET (which is either a dark matter or neutrino), to probe those new physics sectors. In a large class of models, in particular, the supersymmetric standard models and low scale seesaw mechanisms, this signature can play a key role. The signature has a clear background, and at the √{s }=14 TeV high luminosity LHC, we can probe it with a production rate as low as ˜0.1 fb . We apply it to benchmark models, supersymmetry in the bino-Higgsino limit, the canonical seesaw model, and the little Higgs model, finding that the masses of the Higgsino, right-handed neutrino, and heavy vector boson can be probed up to ˜500 , 650, and 900 GeV, respectively.

  8. Flavor-phenomenology of two-Higgs-doublet models with generic Yukawa structure

    NASA Astrophysics Data System (ADS)

    Crivellin, Andreas; Greub, Christoph; Kokulu, Ahmet

    2013-05-01

    In this article, we perform an extensive study of flavor observables in a two-Higgs-doublet model with generic Yukawa structure (of type III). This model is interesting not only because it is the decoupling limit of the minimal supersymmetric standard model but also because of its rich flavor phenomenology which also allows for sizable effects not only in flavor-changing neutral-current (FCNC) processes but also in tauonic B decays. We examine the possible effects in flavor physics and constrain the model both from tree-level processes and from loop observables. The free parameters of the model are the heavy Higgs mass, tan⁡β (the ratio of vacuum expectation values) and the “nonholomorphic” Yukawa couplings ɛijf(f=u,d,ℓ). In our analysis we constrain the elements ɛijf in various ways: In a first step we give order of magnitude constraints on ɛijf from ’t Hooft’s naturalness criterion, finding that all ɛijf must be rather small unless the third generation is involved. In a second step, we constrain the Yukawa structure of the type-III two-Higgs-doublet model from tree-level FCNC processes (Bs,d→μ+μ-, KL→μ+μ-, D¯0→μ+μ-, ΔF=2 processes, τ-→μ-μ+μ-, τ-→e-μ+μ- and μ-→e-e+e-) and observe that all flavor off-diagonal elements of these couplings, except ɛ32,31u and ɛ23,13u, must be very small in order to satisfy the current experimental bounds. In a third step, we consider Higgs mediated loop contributions to FCNC processes [b→s(d)γ, Bs,d mixing, K-K¯ mixing and μ→eγ] finding that also ɛ13u and ɛ23u must be very small, while the bounds on ɛ31u and ɛ32u are especially weak. Furthermore, considering the constraints from electric dipole moments we obtain constrains on some parameters ɛiju,ℓ. Taking into account the constraints from FCNC processes we study the size of possible effects in the tauonic B decays (B→τν, B→Dτν and B→D*τν) as well as in D(s)→τν, D(s)→μν, K(π)→eν, K(π)→μν and

  9. Discriminating between SUSY and non-SUSY Higgs sectors through the ratio H → b bar{b} / H → τ ^+ τ ^- with a 125 GeV Higgs boson

    NASA Astrophysics Data System (ADS)

    Arganda, E.; Guasch, J.; Hollik, W.; Peñaranda, S.

    2016-05-01

    It is still an open question whether the new scalar particle discovered at the LHC with a mass of 125 GeV is the SM Higgs boson or belongs to models of new physics with an extended Higgs sector, as the MSSM or 2HDM. The ratio of branching fractions R = BR(H → b bar{b})/BR(H → τ ^+ τ ^-) of Higgs-boson decays is a powerful tool in distinguishing the MSSM Higgs sector from the SM or non-supersymmetric 2HDM. This ratio receives large renormalization-scheme independent radiative corrections in supersymmetric models at large tan β , which are insensitive to the SUSY mass scale and absent in the SM or 2HDM. Making use of the current LHC data and the upcoming new results on Higgs couplings to be reported by ATLAS and CMS collaborations and in a future linear collider, we develop a detailed and updated study of this ratio R which improves previous analyses and sets the level of accuracy needed to discriminate between models.

  10. Beyond Higgs couplings: Probing the Higgs with angular observables at future e$$^{+}$$e$$^{-}$$ colliders

    DOE PAGESBeta

    Craig, Nathaniel; Gu, Jiayin; Liu, Zhen; Wang, Kechen

    2016-03-09

    Here, we study angular observables in themore » $$ {e}^{+}{e}^{-}\\to ZH\\to {\\ell}^{+}{\\ell}^{-}b\\overline{b} $$ channel at future circular e$$^{+}$$ e$$^{-}$$ colliders such as CEPC and FCC-ee. Taking into account the impact of realistic cut acceptance and detector effects, we forecast the precision of six angular asymmetries at CEPC (FCC-ee) with center-of-mass energy $$ \\sqrt{s}=240 $$ GeV and 5 (30) ab$$^{-1}$$ integrated luminosity. We then determine the projected sensitivity to a range of operators relevant for he Higgs-strahlung process in the dimension-6 Higgs EFT. Our results show that angular observables provide complementary sensitivity to rate measurements when constraining various tensor structures arising from new physics. We further find that angular asymmetries provide a novel means of both probing BSM corrections to the HZγ coupling and constraining the “blind spot” in indirect limits on supersymmetric scalar top partners.« less

  11. Search for a very light NMSSM Higgs boson produced in decays of the 125 GeV scalar boson and decaying into τ leptons in pp collisions at √{s}=8 TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Rougny, R.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; de Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Fasanella, G.; Favart, L.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-Conde, A.; Reis, T.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; da Costa, E. M.; de Jesus Damiao, D.; de Oliveira Martins, C.; Fonseca de Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; de Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Abdelalim, A. A.; Awad, A.; Mahrous, A.; Radi, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; van Hove, P.; Gadrat, S.

    2016-01-01

    A search for a very light Higgs boson decaying into a pair of τ leptons is presented within the framework of the next-to-minimal supersymmetric standard model. This search is based on a data set corresponding to an integrated luminosity of 19.7 fb-1 of proton-proton collisions collected by the CMS experiment at a centre-of-mass energy of 8 TeV. The signal is defined by the production of either of the two lightest scalars, h1 or h2, via gluon-gluon fusion and subsequent decay into a pair of the lightest Higgs bosons, a1 or h1. The h1 or h2 boson is identified with the observed state at a mass of 125 GeV. The analysis searches for decays of the a1 (h1) states into pairs of τ leptons and covers a mass range for the a1 (h1) boson of 4 to 8 GeV. The search reveals no significant excess in data above standard model background expectations, and an upper limit is set on the signal production cross section times branching fraction as a function of the a1 (h1) boson mass. The 95% confidence level limit ranges from 4.5 pb at {m}_{{a}_1} ({m}_{{h}_1})=8 GeV to 10.3 pb at {m}_{{a}_1} ({m}_{{h}_1})=5 GeV. [Figure not available: see fulltext.

  12. Search for a very light NMSSM Higgs boson produced in decays of the 125 GeV scalar boson and decaying into $$\\tau$$ leptons in pp collisions at $$\\sqrt{s} =$$ 8 TeV

    DOE PAGESBeta

    Khachatryan, Vardan

    2016-01-13

    Our search for a very light Higgs boson decaying into a pair of t leptons is presented within the framework of the next-to-minimal supersymmetric standard model. This search is based on a data set corresponding to an integrated luminosity of 19.7 fb-1 of proton-proton collisions collected by the CMS experiment at a centre-of-mass energy of 8 TeV. The signal is defined by the production of either of the two lightest scalars, h1 or h2, via gluon-gluon fusion and subsequent decay into a pair of the lightest Higgs bosons, a1 or h1. The h1 or h2 boson is identified with themore » observed state at a mass of 125 GeV. The analysis searches for decays of the a1 (h1) states into pairs of t leptons and covers a mass range for the a1 (h1) boson of 4 to 8 GeV. Furthermore, the search reveals no significant excess in data above standard model background expectations, and an upper limit is set on the signal production cross section times branching fraction as a function of the a1 (h1) boson mass. The 95% confidence level limit ranges from 4.5 pb at ma1 (mh1 ) = 8 GeV to 10.3 pb at ma1 (mh1 ) = 5 GeV.« less

  13. Bethe Ansatz and supersymmetric vacua

    SciTech Connect

    Nekrasov, Nikita; Shatashvili, Samson

    2009-05-14

    Supersymmetric vacua of two dimensional N = 4 gauge theories with matter, softly broken by the twisted masses down to N = 2, are shown to be in one-to-one correspondence with the eigenstates of integrable spin chain Hamiltonians. Examples include: the Heisenberg SU(2)XXX spin chain which is mapped to the two dimensional U(N) theory with fundamental hypermultiplets, the XXZ spin chain which is mapped to the analogous three dimensional super-Yang-Mills theory compactified on a circle, the XYZ spin chain and eight-vertex model which are related to the four dimensional theory compactified on T{sup 2}. A consequence of our correspondence is the isomorphism of the quantum cohomology ring of various quiver varieties, such as cotangent bundles to (partial) flag varieties and the ring of quantum integrals of motion of various spin chains. The correspondence extends to any spin group, representations, boundary conditions, and inhomogeneity, it includes Sinh-Gordon and non-linear Schroedinger models as well as the dynamical spin chains like Hubbard model. Compactifications of four dimensional N = 2 theories on a two-sphere lead to the instanton-corrected Bethe equations.

  14. Trilepton+top signal from chargino-neutralino decays of MSSM charged Higgs bosons at the LHC

    NASA Astrophysics Data System (ADS)

    Bisset, M.; Moortgat, F.; Moretti, S.

    2003-10-01

    We perform for the Large Hadron Collider (LHC) a detailed study of charged Higgs boson production via the top-bottom quark associated mode followed by decays into a chargino and a neutralino, with masses and couplings as given by the general minimal supersymmetric standard model (MSSM). We focus our attention on the region of parameter space with m_{H^{±}} > m_t and intermediate values of tanβ, where identification of H^{±} via decays into standard model (SM) particles has proven to be ineffective. Modelling the CMS detector, we find that a signature consisting of three hard leptons accompanied by a hadronically reconstructed top quark plus substantial missing transverse energy, which may result from H^{±} rightarrow {{widetildeχ}}_{1,2}^{±} {{widetildeχ}}_{1,2,3,4}^0 decays, can be made viable over a large variety of initially overwhelming SM and MSSM backgrounds, provided MSSM input parameters are favourable: notably, small \\vert μ \\vert and light sleptons are important prerequisites. We quantify these statements by performing a fairly extensive scan of the parameter space, including realistic hadron-level simulations, and delineate some potential discovery regions.

  15. Extending Higgs inflation with TeV scale new physics

    SciTech Connect

    He, Hong-Jian; Xianyu, Zhong-Zhi E-mail: xianyuzhongzhi@gmail.com

    2014-10-01

    Higgs inflation is among the most economical and predictive inflation models, although the original Higgs inflation requires tuning the Higgs or top mass away from its current experimental value by more than 2σ deviations, and generally gives a negligible tensor-to-scalar ratio r ∼ 10{sup -3} (if away from the vicinity of critical point). In this work, we construct a minimal extension of Higgs inflation, by adding only two new weak-singlet particles at TeV scale, a vector-quark T and a real scalar S. The presence of singlets (T, S) significantly impact the renormalization group running of the Higgs boson self-coupling. With this, our model provides a wider range of the tensor-to-scalar ratio r=O(0.1)-O(10{sup -3}), consistent with the favored r values by either BICEP2 or Planck data, while keeping the successful prediction of the spectral index n{sub s} ≅ 0.96. It allows the Higgs and top masses to fully fit the collider measurements. We also discuss implications for searching the predicted TeV-scale vector-quark T and scalar S at the LHC and future high energy pp colliders.

  16. Extending Higgs inflation with TeV scale new physics

    SciTech Connect

    He, Hong-Jian; Xianyu, Zhong-Zhi

    2014-10-10

    Higgs inflation is among the most economical and predictive inflation models, although the original Higgs inflation requires tuning the Higgs or top mass away from its current experimental value by more than 2σ deviations, and generally gives a negligible tensor-to-scalar ratio r∼10{sup −3} (if away from the vicinity of critical point). In this work, we construct a minimal extension of Higgs inflation, by adding only two new weak-singlet particles at TeV scale, a vector-quark T and a real scalar S . The presence of singlets (T, S) significantly impact the renormalization group running of the Higgs boson self-coupling. With this, our model provides a wider range of the tensor-to-scalar ratio r=O(0.1)−O(10{sup −3}) , consistent with the favored r values by either BICEP2 or Planck data, while keeping the successful prediction of the spectral index n{sub s}≃0.96 . It allows the Higgs and top masses to fully fit the collider measurements. We also discuss implications for searching the predicted TeV-scale vector-quark T and scalar S at the LHC and future high energy pp colliders.

  17. Generation of the Higgs condensate and its decay after inflation

    SciTech Connect

    Enqvist, Kari; Meriniemi, Tuukka; Nurmi, Sami E-mail: tuukka.meriniemi@helsinki.fi

    2013-10-01

    We investigate the dynamics of the Standard Model higgs with a minimal coupling to gravity during and after inflation. In the regime where the Standard Model vacuum is stable, we find that the higgs becomes a light spectator field after about 30 efolds of inflation, irrespectively of its initial value. Once the higgs has become light, its root-mean-square value h{sub *} relaxes to equilibrium in about 85 efolds for the inflationary scale of H{sub *} = 10{sup 4} GeV and in 20 efolds for H{sub *} = 10{sup 10} GeV. The equilibrium value is given by h{sub *} ∼ 0.36λ{sub *}{sup −1/4}H{sub *}, where λ{sub *} = 0.09...0.0005 is the higgs self coupling at the scales H{sub *} = 10{sup 4}...10{sup 10} GeV. We show that the main decay channel of the higgs condensate after inflation is the resonant production of Standard Model gauge bosons. For a set of parameters we find that a significant part of the condensate has decayed in between 340 and 630 Hubble times after the onset of higgs oscillations, depending on H{sub *} in a non-trivial way. The higgs perturbations correspond to isocurvature modes during inflation but they could generate significant adiabatic perturbations at a later stage for example through a modulation of the reheating stage. However, this requires that the inflaton(s) decay no later than a few hundred Hubble times after the onset of higgs oscillations.

  18. HIGGS BOSON PRODUCTION IN ASSOCIATION WITH BOTTOM QUARKS.

    SciTech Connect

    DAWSON, S.; CAMPBELL, J.; DITTMAIER, S.; JACKSON, C.; KRAMER, M.; MALTONI, F.; ET AL.

    2003-05-26

    In the Standard Model, the coupling of the Higgs boson to b quarks is weak, leading to small cross sections for producing a Higgs boson in association with b quarks. However, Higgs bosons with enhanced couplings to b quarks, such as occur in supersymmetric models for large values of tan {beta}, will be copiously produced at both the Tevatron and the LHC in association with b quarks which will be an important discovery channel. We investigate the connections between the production channels, bg {yields} bh and gg {yields} b{bar b}h, at next-to-leading order (NLO) in perturbative QCD and present results for the case with two high-p{sub T} b jets and with one high-p{sub T} b jet at both the Tevatron and the LHC. Finally, the total cross sections without cuts are compared between gg {yields} b{bar b}h at NLO and b{bar b} {yields} h at NNLO.

  19. Exact supersymmetric massive and massless white holes

    NASA Astrophysics Data System (ADS)

    Kallosh, Renata; Linde, Andrei

    1995-12-01

    We study special points in the moduli space of vacua at which supersymmetric electric solutions of the heterotic string theory become massless. We concentrate on configurations for which the supersymmetric nonrenormalization theorem is valid. These are ten-dimensional supersymmetric string waves and generalized fundamental strings with SO(8) holonomy group. From these we find the four-dimensional spherically symmetric configurations which saturate the BPS bound, in particular, near the points of the vanishing ADM mass. The nontrivial massless supersymmetric states in this class exist only in the presence of non-Abelian vector fields. We also find a new class of supersymmetric massive solutions, closely related to the massless ones. A distinctive property of all these objects, either massless or massive, is the existence of gravitational repulsion. They reflect all particles with nonvanishing mass and/or angular momentum, and therefore they can be called white holes (repulsons), in contrast with black holes which tend to absorb particles of all kinds. If such objects can exist we will have the first realization of the universal gravitational force which repels all particles with the strength proportional to their mass and therefore can be associated with antigravity.

  20. Fate of supersymmetric flat directions and their role in reheating

    SciTech Connect

    Olive, Keith A.; Peloso, Marco

    2006-11-15

    We consider the role of supersymmetric flat directions in reheating the Universe after inflation. One or more flat directions can develop large vevs during inflation, which can potentially affect reheating by slowing down scattering processes among inflaton decay products or by coming to dominate the energy density of the Universe. Both effects occur only if flat directions are sufficiently long-lived. The computation of their perturbative decay rate, and a simple estimate of their nonperturbative decay have led to the conclusion that this is indeed the case. In contrast, we show that flat directions can decay quickly through nonperturbative channels in realistic models. The mass matrix for minimal supersymmetric standard model (MSSM) excitations around flat directions has nondiagonal entries, which vary with the phase of the (complex) flat directions. The quasiperiodic motion of the flat directions results in a strong parametric resonance, leading to the rapid depletion of the flat direction within its first few rotations. This may preclude any significant role for the flat directions in reheating the Universe after inflation in models in which the inflaton decays perturbatively.

  1. CDF's Higgs sensitivity status

    SciTech Connect

    Junk, Tom; /Illinois U., Urbana

    2005-10-01

    The combined sensitivity of CDF's current Standard Model Higgs boson searches is presented. The expected 95% CL limits on the production cross section times the relevant Higgs boson branching ratios are computed for the W{sup {+-}}H {yields} {ell}{sup {+-}}{nu}b{bar b}, ZH {yields} {nu}{bar {nu}}b{bar b}, gg {yields} H {yields} W{sup +}W{sup -} W{sup {+-}}H {yields} W{sup {+-}}W{sup +}W{sup -} channels as they stand as of the October 2005, using results which were prepared for Summer 2005 conferences and a newer result form the gg {yields} H {yields} W{sup +}W{sup -} channel. Correlated and uncorrelated systematic uncertainties are taken into account, and the luminosity requirements for 95% CL exclusion, 3{sigma} evidence, and 5{sigma} discovery are computed for median experimental outcomes. A list of improvements required to achieve the sensitivity to a SM Higgs boson as quantified in the Higgs Sensitivity Working Group's report is provided.

  2. Detection of heavy Higgs

    SciTech Connect

    Gordon, H.A.

    1984-01-01

    The prospects for detecting heavy Higgs are discussed. In particular a general procedure is developed which includes studying first the characteristics of producing the signal, estimating the most important background, simulating both types of events via Monte Carlo techniques in an appropriate detector and concluding with the prospects for detection. 20 references.

  3. Beyond the supersymmetric standard model

    SciTech Connect

    Hall, L.J.

    1988-02-01

    The possibility of baryon number violation at the weak scale and an alternative primordial nucleosynthesis scheme arising from the decay of gravitations are discussed. The minimal low energy supergravity model is defined and a few of its features are described. Renormalization group scaling and flavor physics are mentioned.

  4. Quantum supersymmetric Bianchi IX cosmology

    NASA Astrophysics Data System (ADS)

    Damour, Thibault; Spindel, Philippe

    2014-11-01

    We study the quantum dynamics of a supersymmetric squashed three-sphere by dimensionally reducing (to one timelike dimension) the action of D =4 simple supergravity for a S U (2 ) -homogeneous (Bianchi IX) cosmological model. The quantization of the homogeneous gravitino field leads to a 64-dimensional fermionic Hilbert space. After imposition of the diffeomorphism constraints, the wave function of the Universe becomes a 64-component spinor of spin(8,4) depending on the three squashing parameters, which satisfies Dirac-like, and Klein-Gordon-like, wave equations describing the propagation of a "quantum spinning particle" reflecting off spin-dependent potential walls. The algebra of the supersymmetry constraints and of the Hamiltonian one is found to close. One finds that the quantum Hamiltonian is built from operators that generate a 64-dimensional representation of the (infinite-dimensional) maximally compact subalgebra of the rank-3 hyperbolic Kac-Moody algebra A E3 . The (quartic-in-fermions) squared-mass term μ^ 2 entering the Klein-Gordon-like equation has several remarkable properties: (i) it commutes with all the other (Kac-Moody-related) building blocks of the Hamiltonian; (ii) it is a quadratic function of the fermion number NF; and (iii) it is negative in most of the Hilbert space. The latter property leads to a possible quantum avoidance of the singularity ("cosmological bounce"), and suggests imposing the boundary condition that the wave function of the Universe vanish when the volume of space tends to zero (a type of boundary condition which looks like a final-state condition when considering the big crunch inside a black hole). The space of solutions is a mixture of "discrete-spectrum states" (parametrized by a few constant parameters, and known in explicit form) and of continuous-spectrum states (parametrized by arbitrary functions entering some initial-value problem). The predominantly negative values of the squared-mass term lead to a "bottle

  5. Supersymmetric Kerr-anti-de Sitter solutions

    SciTech Connect

    Cvetic, Mirjam; Gao Peng; Simon, Joan

    2005-07-15

    We prove the existence of one quarter supersymmetric type IIB configurations that arise as nontrivial scaling solutions of the standard five-dimensional Kerr-anti-de Sitter black holes by the explicit construction of its Killing spinors. This neutral, spinning solution is asymptotic to the static anti-de Sitter space-time with cosmological constant -(1/l{sup 2}), it has two finite equal angular momenta J{sub 1}={+-}J{sub 2}, mass M=(1/l)(|J{sub 1}|+|J{sub 2}|) and a naked singularity. We also address the scaling limit associated with one-half supersymmetric solution with only one angular momentum.

  6. Supersymmetric Liouville theory: A statistical mechanical approach

    SciTech Connect

    Barrozo, M.C.; Belvedere, L.V.

    1996-02-01

    The statistical mechanical system associated with the two-dimensional supersymmetric Liouville theory is obtained through an infrared-finite perturbation expansion. Considering the system confined in a finite volume and in the presence of a uniform neutralizing background, we show that the grand-partition function of this system describes a one-component gas, in which the Boltzmann factor is weighted by an integration over the Grassmann variables. This weight function introduces the dimensional reduction phenomenon. After performing the thermodynamic limit, the resulting supersymmetric quantum theory is translationally invariant. {copyright} {ital 1996 The American Physical Society.}

  7. Supersymmetric quantum mechanics and its applications

    SciTech Connect

    Sukumar, C.V.

    2004-12-23

    The Hamiltonian in Supersymmetric Quantum Mechanics is defined in terms of charges that obey the same algebra as that of the generators of supersymmetry in field theory. The consequences of this symmetry for the spectra of the component parts that constitute the supersymmetric system are explored. The implications of supersymmetry for the solutions of the Schroedinger equation, the Dirac equation, the inverse scattering theory and the multi-soliton solutions of the KdV equation are examined. Applications to scattering problems in Nuclear Physics with specific reference to singular potentials which arise from considerations of supersymmetry will be discussed.

  8. Supersymmetric Casimir energy and the anomaly polynomial

    NASA Astrophysics Data System (ADS)

    Bobev, Nikolay; Bullimore, Mathew; Kim, Hee-Cheol

    2015-09-01

    We conjecture that for superconformal field theories in even dimensions, the supersymmetric Casimir energy on a space with topology S 1 × S D-1 is equal to an equivariant integral of the anomaly polynomial. The equivariant integration is defined with respect to the Cartan subalgebra of the global symmetry algebra that commutes with a given supercharge. We test our proposal extensively by computing the supersymmetric Casimir energy for large classes of superconformal field theories, with and without known Lagrangian descriptions, in two, four and six dimensions.

  9. Renormalizability of supersymmetric group field cosmology

    NASA Astrophysics Data System (ADS)

    Upadhyay, Sudhaker

    2014-03-01

    In this paper we consider the gauge invariant third quantized model of supersymmetric group field cosmology. The supersymmetric BRST invariance for such theory in non-linear gauge is also analysed. The path integral formulation to the case of a multiverse made up of homogeneous and isotropic spacetimes filled with a perfect fluid is presented. The renormalizability for the scattering of universes in multiverse are established with suitably constructed master equations for connected diagrams and proper vertices. The Slavnov-Taylor identities for this theory hold to all orders of radiative corrections.

  10. Supersymmetric QCD vacua and geometrical engineering

    SciTech Connect

    Tatar, Radu; Wetenhall, Ben

    2008-02-15

    We consider the geometrical engineering constructions for the N=1 supersymmetric QCD vacua recently proposed by Giveon and Kutasov. After 1 T-duality, the geometries with wrapped D5 branes become N=1 brane configurations with NS branes and D4 branes. The field theories encoded by the geometries contain extra massive adjoint fields for the flavor group. After performing a flop, the geometries contain branes, antibranes and branes wrapped on nonholomorphic cycles. The various tachyon condensations between pairs of wrapped D5 branes and anti-D5 branes together with deformations of the cycles give rise to a variety of supersymmetric and metastable nonsupersymmetric vacua.

  11. Supersymmetric asymptotic safety is not guaranteed

    NASA Astrophysics Data System (ADS)

    Intriligator, Kenneth; Sannino, Francesco

    2015-11-01

    It was recently shown that certain perturbatively accessible, non-supersymmetric gauge-Yukawa theories have UV asymptotic safety, without asymptotic freedom: the UV theory is an interacting RG fixed point, and the IR theory is free. We here investigate the possibility of asymptotic safety in supersymmetric theories, and use unitarity bounds, and the a-theorem, to rule it out in broad classes of theories. The arguments apply without assuming perturbation theory. Therefore, the UV completion of a non-asymptotically free susy theory must have additional, non-obvious degrees of freedom, such as those of an asymptotically free (perhaps magnetic dual) extension.

  12. Higgs boson decays in the littlest Higgs model

    SciTech Connect

    Gonzalez-Sprinberg, G.A.; Martinez, R.; Rodriguez, J.-Alexis

    2005-02-01

    We calculate the two body Higgs boson decays in the framework of the littlest Higgs model. The decay H{yields}{gamma}Z is computed at one-loop-level and, using previous results, we evaluate the branching fractions in the framework of the littlest Higgs model. A wide range of the space parameter of the model is considered and possible deviations from the standard model are explored.

  13. Natural leptogenesis and neutrino masses with two Higgs doublets

    NASA Astrophysics Data System (ADS)

    Clarke, Jackson D.; Foot, Robert; Volkas, Raymond R.

    2015-08-01

    The minimal Type I seesaw model cannot explain the observed neutrino masses and the baryon asymmetry of the Universe via hierarchical thermal leptogenesis without ceding naturalness. We show that this conclusion can be avoided by adding a second Higgs doublet with tan β ≳4 . The models considered naturally accommodate a standard model-like Higgs boson and predict TeV-scale scalar states and low- to intermediate-scale hierarchical leptogenesis with 103 GeV ≲MN1≲108 GeV .

  14. Minimal SUSY SU(5) with extra vectorlike matter

    SciTech Connect

    Bajc, Borut

    2013-05-23

    It is shown that the minimal renormalizable supersymmetric SU(5) grand unified theory can be made realistic by the inclusion of a single vectorlike 5 +5-bar pair. Such a modification can at the same time correct the usual bad mass relations for the first two generations and safely increase the nucleon lifetime. The model predicts the lifetime of at least some decay rate to be less than approximately 10{sup 34} yrs, provided that all the superpartners of the minimal supersymmetric standard model lie below 3 TeV. The two statements will be tested by the next proton decay measurements and LHC, respectively.

  15. Two-loop level rainbowlike supersymmetric contribution to the fermion electric dipole moment

    NASA Astrophysics Data System (ADS)

    Yamanaka, Nodoka

    2013-01-01

    We calculate the two-loop level electric and chromoelectric dipole moments of the fermion involving the fermion-sfermion inner loop, gaugino, and Higgsino in the minimal supersymmetric standard model, and analyze the chromoelectric dipole moment with the top-stop inner loop. It is found that this contribution is comparable with, and even dominates, in some situations over the Barr-Zee type diagram generated from the CP violation of the top squark sector in TeV scale supersymmetry breaking.

  16. Probing neutrino oscillations in supersymmetric models at the Large Hadron Collider

    SciTech Connect

    Campos, F. de; Eboli, O. J. P.; Hirsch, M.; Valle, J. W. F.; Porod, W.

    2010-10-01

    The lightest supersymmetric particle may decay with branching ratios that correlate with neutrino oscillation parameters. In this case the CERN Large Hadron Collider (LHC) has the potential to probe the atmospheric neutrino mixing angle with sensitivity competitive to its low-energy determination by underground experiments. Under realistic detection assumptions, we identify the necessary conditions for the experiments at CERN's LHC to probe the simplest scenario for neutrino masses induced by minimal supergravity with bilinear R parity violation.

  17. Supersymmetric multicritical point in a model of lattice fermions

    NASA Astrophysics Data System (ADS)

    Bauer, Bela; Huijse, Liza; Berg, Erez; Troyer, Matthias; Schoutens, Kareljan

    2013-04-01

    We study a model of spinless fermions with infinite nearest-neighbor repulsion on the square ladder, which has microscopic supersymmetry. It has been conjectured that in the continuum, the model is described by the superconformal minimal model with central charge c=3/2. Thus far, it has not been possible to confirm this conjecture due to strong finite-size corrections in numerical data. We trace the origin of these corrections to the presence of unusual marginal operators that break Lorentz invariance but preserve part of the supersymmetry. By relying mostly on entanglement entropy calculations with the density-matrix renormalization group, we are able to reduce finite-size effects significantly. This allows us to unambiguously determine the continuum theory of the model. We also study perturbations of the model and establish that the supersymmetric model is a multicritical point. Our work underlines the power of entanglement entropy as a probe of the phases of quantum many-body systems.

  18. HIGGS PHYSICS WITH A GAMMA GAMMA COLLIDER BASED ON CLIC 1*.

    SciTech Connect

    ASNER,D.; BURKHARDT,H.; DE ROECK,A.; ELLIS,J.; GRONBERG,J.; HEINEMEYER,S.; SCHMITT,M.; SCHULTE,D.; VELASCO,M.; ZIMMERMAN,F.

    2001-11-01

    We present the machine parameters and physics capabilities of the CLIC Higgs Experiment (CLICHE), a low-energy {gamma}{gamma} collider based on CLIC 1, the demonstration project for the higher-energy two-beam accelerator CLIC. CLICHE is conceived as a factory capable of producing around 20,000 light Higgs bosons per year. We discuss the requirements for the CLIC 1 beams and a laser backscattering system capable of producing a {gamma}{gamma} total (peak) luminosity of 2.0 (0.36) x 10{sup 34} cm{sup -2} s{sup -1} with E{sub CM}({gamma}{gamma}) 115 GeV. We show how CLICHE could be used to measure accurately the mass, {bar b}b, WW and {gamma}{gamma} decays of a light Higgs boson. We illustrate how these measurements may distinguish between the Standard Model Higgs boson and those in supersymmetric and more general two-Higgs-doublet models, complementing the measurements to be made with other accelerators. We also comment on other prospects in {gamma}{gamma} and e{sup -}{gamma} physics with CLICHE.

  19. Finding the Higgs boson through supersymmetry

    SciTech Connect

    Campos, F. de; Eboli, O. J. P.; Magro, M. B.; Restrepo, D.; Valle, J. W. F.

    2009-07-01

    The study of displaced vertices containing two b-jets may provide a double discovery at the Large Hadron Collider (LHC): we show how it may not only reveal evidence for supersymmetry, but also provide a way to uncover the Higgs boson necessary in the formulation of the electroweak theory in a large region of the parameter space. We quantify this explicitly using the simplest minimal supergravity model with bilinear breaking of R-parity, which accounts for the observed pattern of neutrino masses and mixings seen in neutrino oscillation experiments.

  20. A Little Twin Higgs Model

    SciTech Connect

    Goh, Hock-Seng; Goh, Hock-Seng; Krenke, Christopher A.

    2007-07-25

    We present a twin Higgs model based on left-right symmetry with a tree level quartic. This is made possible by extending the symmetry of the model to include two Z_2 parities, each of which is sufficient to protect the Higgs from getting a quadratically divergent mass squared. Although both parities are brokenexplicitly, the symmetries that protect the Higgs from getting a quadratically divergent mass are broken only collectively. The quadratic divergences of the Higgs mass are thus still protected at one loop. We find that the fine-tuning in this model is reduced substantially compared to the original left-right twin Higgs model. This mechanism can also be applied to the mirror twin Higgs model to get a significant reduction of the fine-tuning, while keeping the mirror photon massless.

  1. The Higgs portal above threshold

    NASA Astrophysics Data System (ADS)

    Craig, Nathaniel; Lou, Hou Keong; McCullough, Matthew; Thalapillil, Arun

    2016-02-01

    The discovery of the Higgs boson opens the door to new physics interacting via the Higgs Portal, including motivated scenarios relating to baryogenesis, dark matter, and electroweak naturalness. We systematically explore the collider signatures of singlet scalars produced via the Higgs Portal at the 14 TeV LHC and a prospective 100 TeV hadron collider. We focus on the challenging regime where the scalars are too heavy to be produced in the decays of an on-shell Higgs boson, and instead are produced primarily via an off-shell Higgs. Assuming these scalars escape the detector, promising channels include missing energy in association with vector boson fusion, monojets, and top pairs. We forecast the sensitivity of searches in these channels at √{s}=14 & 100 TeV and compare collider reach to the motivated parameter space of singlet-assisted electroweak baryogenesis, Higgs Portal dark matter, and neutral naturalness.

  2. Higgs boson production in the U(1)B‑L model at the ILC

    NASA Astrophysics Data System (ADS)

    Han, Jinzhong; Yang, Bingfang; Liu, Ning; Li, Jitao

    2016-06-01

    In the framework of the minimal U(1)B‑L extension of the Standard Model, we investigate the Higgs boson production processes e+e‑→ ZH, e+e‑→ ν eν¯eH, e+e‑→ tt¯H, e+e‑→ ZHH and e+e‑→ ν eν¯eHH at the International Linear Collider (ILC). We present the production cross-sections, the relative corrections and compare our results with the expected experimental accuracies for Higgs decay channel H → bb¯. In the allowed parameter space, we find that the effects of the three single Higgs boson production processes might approach the observable threshold of the ILC. But the Higgs signal strengths μbb¯ of the two double Higgs boson production processes are all out of the observable threshold so that these effects will be difficult to be observed at the ILC.

  3. Supersymmetric instanton calculus (gauge theories with matter)

    SciTech Connect

    Vainshtein, A.I.; Zakharov, V.I.; Novikov, V.A.; Shifman, M.A.

    1985-12-01

    We consider instantons in supersymmetric gauge theories with matter. We show that if the vacuum average of the scalar field is different from zero, the number of collective coordinates necessary for describing the matter superfields associated with an instanton changes. We obtain explicit expressions for these superfields. We introduce the concept of an instanton dimension which is invariant with respect to supertransformations.

  4. Quantum Supersymmetric Models in the Causal Approach

    NASA Astrophysics Data System (ADS)

    Grigore, Dan-Radu

    2007-04-01

    We consider the massless supersymmetric vector multiplet in a purely quantum framework. First order gauge invariance determines uniquely the interaction Lagrangian as in the case of Yang-Mills models. Going to the second order of perturbation theory produces an anomaly which cannot be eliminated. We make the analysis of the model working only with the component fields.

  5. Supersymmetric Model Builing (and Sweet Spot Supersymmetry)

    SciTech Connect

    Ibe, Masahiro; Kitano, Ryuichiro; /Los Alamos

    2008-01-08

    It has been more than twenty years since theorists started discussing supersymmetric model building/phenomenology. We review mechanisms of supersymmetry breaking/mediation and problems in each scenario. We propose a simple model to address those problems and discuss its phenomenology.

  6. Exact Adler Function in Supersymmetric QCD

    NASA Astrophysics Data System (ADS)

    Shifman, M.; Stepanyantz, K.

    2015-02-01

    The Adler function D is found exactly in supersymmetric QCD. Our exact formula relates D (Q2) to the anomalous dimension of the matter superfields γ (αs(Q2)) . En route we prove another theorem: the absence of the so-called singlet contribution to D . While such singlet contributions are present in individual supergraphs, they cancel in the sum.

  7. New supersymmetric localizations from topological gravity

    NASA Astrophysics Data System (ADS)

    Bae, Jinbeom; Imbimbo, Camillo; Rey, Soo-Jong; Rosa, Dario

    2016-03-01

    Supersymmetric field theories can be studied exactly on off-shell "localizing" supergravity backgrounds. We show that these supergravity configurations can be identified with BRST invariant configurations of background topological gravity coupled to background topological gauge multiplets. We apply this topological point of view to two-dimensional {N}=left(2,2right) supersymmetric matter theories to obtain, in a simple and straightforward way, a complete classification of localizing supersymmetric backgrounds in two dimensions. We recover all known localizing backgrounds and (infinitely) many more that have not been explored so far. The newly found localizing backgrounds are characterized by quantized fluxes for both graviphotons of the {N}=left(2,2right) supergravity multiplet. The BRST invariant topological backgrounds are parametrized by both Killing vectors and {{S}}^1 -equivariant cohomology of the two-dimensional spacetime. We completely reconstruct the supergravity backgrounds from the topological data: some of the supergravity fields are twisted versions of the topological backgrounds, but others are composite, in that they are nonlinear functionals of topological fields. Moreover, we show that the supersymmetric Ω-deformation is nothing but the background value of the ghost-for-ghost of topological gravity, a result which holds for higher dimensions too.

  8. The graviton Higgs mechanism

    NASA Astrophysics Data System (ADS)

    Arraut, Ivan

    2015-09-01

    The Higgs mechanism at the graviton level formulated as a Vainshtein mechanism in time domains implies that the extra-degrees of freedom become relevant depending on the direction of time (frame of reference) with respect to the preferred time direction (preferred frame) defined by the Stückelberg function T_0(r,t) which contains the information of the extra-degrees of freedom of the theory. In this manuscript, I make the general definition of the Higgs mechanism by analyzing the gauge symmetries of the action and the general form of the vacuum solutions for the graviton field. In general, the symmetry generators depending explicitly on the Stückelberg fields are broken at the vacuum level. These broken generators, define the number of Nambu-Goldstone bosons which will be eating up by the dynamical metric in order to become massive.

  9. Higgs inflation and quantum gravity: an exact renormalisation group approach

    NASA Astrophysics Data System (ADS)

    Saltas, Ippocratis D.

    2016-02-01

    We use the Wilsonian functional Renormalisation Group (RG) to study quantum corrections for the Higgs inflationary action including the effect of gravitons, and analyse the leading-order quantum gravitational corrections to the Higgs' quartic coupling, as well as its non-minimal coupling to gravity and Newton's constant, at the inflationary regime and beyond. We explain how within this framework the effect of Higgs and graviton loops can be sufficiently suppressed during inflation, and we also place a bound on the corresponding value of the infrared RG cut-off scale during inflation. Finally, we briefly discuss the potential embedding of the model within the scenario of Asymptotic Safety, while all main equations are explicitly presented.

  10. Combined preheating on the lattice with applications to Higgs inflation

    NASA Astrophysics Data System (ADS)

    Repond, Joël; Rubio, Javier

    2016-07-01

    We use classical lattice simulations in 3+1 dimensions to study the interplay between the resonant production of particles during preheating and the subsequent decay of these into a set of secondary species. We choose to work in a simplified version of Higgs inflation in which the Higgs field non-minimally coupled to gravity plays the role of the inflaton. Our numerical results extend the analytical estimates in the literature beyond the linear regime and shed some light on the limitations of the analytical techniques. The inclusion of fast and inefficient decays postpones the onset of parametric resonance by depleting the particles produced at the bottom of the potential. In spite of this delay, fermions are shown to play an important role on the destruction of the inflaton field. The limitations of our approach and its applications to a realistic Higgs inflation scenario are also discussed.

  11. Enhancement of Br (Bd→μ+μ- )/Br (Bs→μ+μ-) in supersymmetric unified models

    NASA Astrophysics Data System (ADS)

    Dutta, Bhaskar; Mimura, Yukihiro

    2015-05-01

    We explain the 2.3 σ deviation in the recent measurements of the neutral B meson decays into muon pairs from the standard model prediction in the framework of supersymmetric grand unified models using antisymmetric coupling as a new source of flavor violation. We show a correlation between the Bd→μ+μ- decay and the C P phase in the Bd→J /ψ K decay and that their deviations from the standard model predictions can be explained after satisfying constraints arising from various hadronic and leptonic rare decay processes, B -B ¯ , K -K ¯ oscillation data, and electric dipole moments of electron and neutron. The allowed parameter space is typically represented by pseudoscalar Higgs mass mA≤1 TeV and tan βH(≡vu/vd)≲20 for squark and gluino masses around 2 TeV.

  12. Minimal Basis for Gauge Theory Amplitudes

    SciTech Connect

    Bjerrum-Bohr, N. E. J.; Damgaard, Poul H.; Vanhove, Pierre

    2009-10-16

    Identities based on monodromy for integrations in string theory are used to derive relations between different color-ordered tree-level amplitudes in both bosonic and supersymmetric string theory. These relations imply that the color-ordered tree-level n-point gauge theory amplitudes can be expanded in a minimal basis of (n-3)exclamation amplitudes. This result holds for any choice of polarizations of the external states and in any number of dimensions.

  13. Precision Higgs Boson Physics and Implications for Beyond the Standard Model Physics Theories

    SciTech Connect

    Wells, James

    2015-06-10

    The discovery of the Higgs boson is one of science's most impressive recent achievements. We have taken a leap forward in understanding what is at the heart of elementary particle mass generation. We now have a significant opportunity to develop even deeper understanding of how the fundamental laws of nature are constructed. As such, we need intense focus from the scientific community to put this discovery in its proper context, to realign and narrow our understanding of viable theory based on this positive discovery, and to detail the implications the discovery has for theories that attempt to answer questions beyond what the Standard Model can explain. This project's first main object is to develop a state-of-the-art analysis of precision Higgs boson physics. This is to be done in the tradition of the electroweak precision measurements of the LEP/SLC era. Indeed, the electroweak precision studies of the past are necessary inputs to the full precision Higgs program. Calculations will be presented to the community of Higgs boson observables that detail just how well various couplings of the Higgs boson can be measured, and more. These will be carried out using state-of-the-art theory computations coupled with the new experimental results coming in from the LHC. The project's second main objective is to utilize the results obtained from LHC Higgs boson experiments and the precision analysis, along with the direct search studies at LHC, and discern viable theories of physics beyond the Standard Model that unify physics to a deeper level. Studies will be performed on supersymmetric theories, theories of extra spatial dimensions (and related theories, such as compositeness), and theories that contain hidden sector states uniquely accessible to the Higgs boson. In addition, if data becomes incompatible with the Standard Model's low-energy effective lagrangian, new physics theories will be developed that explain the anomaly and put it into a more unified framework beyond

  14. A Hybrid Higgs

    SciTech Connect

    Schafer-Nameki, Sakura; Tamarit, Carlos; Torroba, Gonzalo; /SLAC /Santa Barbara, KITP

    2010-08-26

    We construct composite Higgs models admitting a weakly coupled Seiberg dual description. We focus on the possibility that only the up-type Higgs is an elementary field, while the down-type Higgs arises as a composite hadron. The model, based on a confining SQCD theory, breaks supersymmetry and electroweak symmetry dynamically and calculably. This simultaneously solves the {mu}/B{sub {mu}} problem and explains the smallness of the bottom and tau masses compared to the top mass. The proposal is then applied to a class of models where the same confining dynamics is used to generate the Standard Model flavor hierarchy by quark and lepton compositeness. This provides a unified framework for flavor, supersymmetry breaking and electroweak physics. The weakly coupled dual is used to explicitly compute the MSSM parameters in terms of a few microscopic couplings, giving interesting relations between the electroweak and soft parameters. The RG evolution down to the TeV scale is obtained and salient phenomenological predictions of this class of 'single-sector' models are discussed.

  15. Quantum dissipative Higgs model

    SciTech Connect

    Amooghorban, Ehsan Mahdifar, Ali

    2015-09-15

    By using a continuum of oscillators as a reservoir, we present a classical and a quantum-mechanical treatment for the Higgs model in the presence of dissipation. In this base, a fully canonical approach is used to quantize the damped particle on a spherical surface under the action of a conservative central force, the conjugate momentum is defined and the Hamiltonian is derived. The equations of motion for the canonical variables and in turn the Langevin equation are obtained. It is shown that the dynamics of the dissipative Higgs model is not only determined by a projected susceptibility tensor that obeys the Kramers–Kronig relations and a noise operator but also the curvature of the spherical space. Due to the gnomonic projection from the spherical space to the tangent plane, the projected susceptibility displays anisotropic character in the tangent plane. To illuminate the effect of dissipation on the Higgs model, the transition rate between energy levels of the particle on the sphere is calculated. It is seen that appreciable probabilities for transition are possible only if the transition and reservoir’s oscillators frequencies to be nearly on resonance.

  16. LHC accessible second Higgs boson in the left-right model

    NASA Astrophysics Data System (ADS)

    Mohapatra, Rabindra N.; Zhang, Yongchao

    2014-03-01

    A second Higgs doublet arises naturally as a parity partner of the standard model (SM) Higgs, once the SM is extended to its left-right symmetric version (LRSM) to understand the origin of parity violation in weak interactions, as well as to accommodate small neutrino masses via the seesaw mechanism. The flavor-changing neutral Higgs (FCNH) effects in the minimal version of this model (LRSM), however, push the second Higgs mass to more than 15 TeV, making it inaccessible at the LHC. Furthermore, since the second Higgs mass is directly linked to the WR mass, discovery of a "low" mass WR (MWR≤5-6 TeV) at the LHC would require values for some Higgs self-couplings larger than 1. In this paper we present an extension of LRSM by adding a vectorlike SU(2)R quark doublet which weakens the FCNH constraints, allowing the second Higgs mass to be near or below the TeV range and a third neutral Higgs below 3 TeV for a WR mass below 5 TeV. It is then possible to search for these heavier Higgs bosons at the LHC without conflicting with FCNH constraints. A right-handed WR mass in the few TeV range is quite natural in this class of models without having to resort to large scalar coupling parameters. The CKM mixings are intimately linked to the vectorlike quark mixings with the known quarks, which is the main reason why the constraints on the second Higgs mass are relaxed. We present a detailed theoretical and phenomenological analysis of this extended left-right model and point out some tests as well as its potential for discovery of a second Higgs at the LHC. Two additional features of the model are a 5/3-charged quark and a fermionic top partner with masses in the TeV range.

  17. CPsuperH2.O : an improved computational tool for Higgs physics in the MSSM with explicit CP violation.

    SciTech Connect

    Lee, J. S.; Carena, M.; Ellis, J.; Pilafsis, A.; Wagner, C.E.M.; High Energy Physics; FNAL; KEK; National Central Univ.; CERN; Univ. Manchester

    2009-02-01

    We describe the Fortran code CPsuperH2.0, which contains several improvements and extensions of its predecessor CPsuperH. It implements improved calculations of the Higgs-boson pole masses, notably a full treatment of the 4 x 4 neutral Higgs propagator matrix including the Goldstone boson and a more complete treatment of threshold effects in self-energies and Yukawa couplings, improved treatments of two-body Higgs decays, some important three-body decays, and two-loop Higgs-mediated contributions to electric dipole moments. CPsuperH2.0 also implements an integrated treatment of several B-meson observables, including the branching ratios of B{sub s} {yields} {mu}{sup +}{mu}{sup -}, B{sub d} {yields} {tau}{sup +}{tau}{sup -}, B{sub u} {yields} IV, B {yields} X{sub s}Y and the latter's CP-violating asymmetry A{sub CP}, and the supersymmetric contributions to the B{sub s,d}{sup 0} - {bar B}{sub s,d}{sup 0} mass differences. These additions make CPsuperH2.0 an attractive integrated tool for analyzing supersymmetric CP and flavour physics as well as searches for new physics at high-energy colliders such as the Tevatron, LHC and linear colliders.

  18. Possibility of early Higgs boson discovery in nonminimal Higgs sectors

    SciTech Connect

    Chang, Spencer; Evans, Jared A.; Luty, Markus A.

    2011-11-01

    Particle physics models with more than one Higgs boson occur in many frameworks for physics beyond the standard model, including supersymmetry, technicolor, composite Higgs, and ''little Higgs'' models. If the Higgs sector contains couplings stronger than electroweak gauge couplings, there will be heavy Higgs particles that decay to lighter Higgs particles plus heavy particles such as W, Z, and t. This motivates searches for final states involving multiple W, Z, t, and bb pairs. A two Higgs doublet model with custodial symmetry is a useful simplified model to describe many of these signals. The model can be parameterized by the physical Higgs masses and the mixing angles {alpha} and {beta}, so discovery or exclusion in this parameter space has a straightforward physical interpretation. We illustrate this with a detailed analysis of the process gg{yields}A followed by A{yields}hZ and h{yields}WW. For m{sub A}{approx_equal}330 GeV, m{sub h}{approx_equal}200 GeV we can get a 4.5{sigma} signal with 1 fb{sup -1} of integrated luminosity at the Large Hadron Collider.

  19. Two-Higgs-doublet model in terms of observable quantities

    NASA Astrophysics Data System (ADS)

    Ginzburg, I. F.; Kanishev, K. A.

    2015-07-01

    We found a minimal and a comprehensive set of directly measurable quantities defining the most general two-Higgs-doublet model (2HDM); we call these quantities observables. The potential parameters of the model are expressed explicitly via these observables (plus nonphysical parameters which are similar to gauge parameters). The model with arbitrary values of these observables can, in principle, be realized (up to general enough limitations). Our results open the door for the study of Higgs models in terms of measurable quantities only. The experimental limitations can be implemented here directly, without complex, often model-dependent, analysis of the Lagrangian coefficients. The principal opportunity to determine all parameters of the 2HDM from the (future) data meets strong practical limitation. It is the problem for a very long time. Apart from this construction per se, we also obtain some by-products. Among them are the following: a simple criterium for charge parity symmetry (C P ) conservation in the 2HDM, a new sum rules for Higgs couplings, a clear possibility of the coexistence of relatively light Higgses with the strong interaction in the Higgs sector, and a simple expression for the triple Higgs vertex g (hahaha) , useful for the analysis of future h h h coupling measurements.

  20. Higgs critical exponents and conformal bootstrap in four dimensions

    NASA Astrophysics Data System (ADS)

    Antipin, Oleg; Mølgaard, Esben; Sannino, Francesco

    2015-06-01

    We investigate relevant properties of composite operators emerging in non-supersymmetric, four-dimensional gauge-Yukawa theories with interacting conformal fixed points within a precise framework. The theories investigated in this work are structurally similar to the standard model of particle interactions, but differ by developing perturbative interacting fixed points. We investigate the physical properties of the singlet and the adjoint composite operators quadratic in the Higgs field, and discover, via a direct computation, that the singlet anomalous dimension is substantially larger than the adjoint one. The numerical bootstrap results are, when possible, compared to our precise findings associated to the four dimensional conformal field theoretical results. To accomplish this, it was necessary to calculate explicitly the crossing symmetry relations for the global symmetry group SU( N ) × SU( N ).