Science.gov

Sample records for mir-17-5p promotes migration

  1. MiR-17-5p modulates osteoblastic differentiation and cell proliferation by targeting SMAD7 in non-traumatic osteonecrosis

    PubMed Central

    Jia, Jie; Feng, Xiaobo; Xu, Weihua; Yang, Shuhua; Zhang, Qing; Liu, Xianzhe; Feng, Yong; Dai, Zhipeng

    2014-01-01

    MicroRNAs (miRNAs) have recently been recognized to have a role in human orthopedic disorders. The objective of our study was to explore the expression profile and biological function of miRNA-17-5p (miR-17-5p), which is well known to be related to cancer cell proliferation and invasion, in osteoblastic differentiation and in cell proliferation. The expression levels of miR-17-5p in the femoral head mesenchymal stem cells of 20 patients with non-traumatic osteonecrosis (ON) and 10 patients with osteoarthritis (OA) were examined by quantitative reverse transcription-PCR (qRT–PCR). Furthermore, the interaction between miR-17-5p and SMAD7 was observed. We found that in non-traumatic ON samples the level of mature miR-17-5p was significantly lower than that of OA samples (P=0.0002). By targeting SMAD7, miR-17-5p promoted nuclear translocation of β-catenin, enhanced expression of COL1A1 and finally facilitated the proliferation and differentiation of HMSC-bm cells. We also demonstrated that restoring expression of SMAD7 in HMSC-bm cells partially reversed the function of miR-17-5p. Together, our data suggested a theory that dysfunction of a network containing miR-17-5p, SMAD7 and β-catenin could contribute to ON pathogenesis. The present study prompts the potential clinical value of miR-17-5p in non-traumatic ON. PMID:25060766

  2. Repression of miR-17-5p with elevated expression of E2F-1 and c-MYC in non-metastatic hepatocellular carcinoma and enhancement of cell growth upon reversing this expression pattern

    SciTech Connect

    El Tayebi, H.M.; Omar, K.; Hegy, S.; El Maghrabi, M.; El Brolosy, M.; Hosny, K.A.; Esmat, G.; Abdelaziz, A.I.

    2013-05-10

    Highlights: •The oncogenic miR-17-5p is downregulated in non-metastatic hepatocellular carcinoma patients. •E2F-1 and c-MYC transcripts are upregulated in non-metastatic HCC patients. •miR-17-5p forced overexpression inhibited E2F-1 and c-MYC expression in HuH-7 cells. •miR-17-5p mimicking increased HuH-7 cell growth, proliferation, migration and colony formation. •miR-17-5p is responsible for HCC progression among the c-MYC/E2F-1/miR-17-5p triad members. -- Abstract: E2F-1, c-MYC, and miR-17-5p is a triad of two regulatory loops: a negative and a positive loop, where c-MYC induces the expression of E2F-1 that induces the expression of miR-17-5p which in turn reverses the expression of E2F-1 to close the loop. In this study, we investigated this triad for the first time in hepatocellular carcinoma (HCC), where miR-17-5p showed a significant down-regulation in 23 non-metastatic HCC biopsies compared to 10 healthy tissues; however, E2F-1 and c-MYC transcripts were markedly elevated. Forced over-expression of miR-17-5p in HuH-7 cells resulted in enhanced cell proliferation, growth, migration and clonogenicity with concomitant inhibition of E2F-1 and c-MYC transcripts expressions, while antagomirs of miR-17-5p reversed these events. In conclusion, this study revealed a unique pattern of expression for miR-17-5p in non-metastatic HCC patients in contrast to metastatic HCC patients. In addition we show that miR-17-5p is the key player among the triad that tumor growth and spread.

  3. miR-31 and miR-17-5p levels change during transformation of follicular lymphoma.

    PubMed

    Thompson, Mary Ann; Edmonds, Mick D; Liang, Shan; McClintock-Treep, Sara; Wang, Xuan; Li, Shaoying; Eischen, Christine M

    2016-04-01

    The 30% of patients whose indolent follicular lymphoma transforms to aggressive diffuse large B-cell lymphoma (DLBCL) have poor survival. Reliable predictors of follicular B-cell lymphoma transformation to DLBCL are lacking, and diagnosis of those that will progress is challenging. MicroRNA, which regulates gene expression, has critical functions in the growth and progression of many cancers and contributes to the pathogenesis of lymphoma. Using 5 paired samples from patients who presented with follicular lymphoma and progressed to DLBCL, we identified specific microRNA differentially expressed between the two. Specifically, miR-17-5p levels were low in follicular lymphoma and increased as the disease transformed. In contrast, miR-31 expression was high in follicular lymphoma and decreased as the lymphoma progressed. These results were confirmed in additional unpaired cases of low-grade follicular lymphoma (n = 13) and high-grade follicular lymphoma grade 3 or DLBCL (n = 17). Loss of miR-31 expression in DLBCL was not due to deletion of the locus. Changes in miR-17-5p and miR-31 were not correlated with immunophenotype, genetics, or status of the MYC oncogene. However, increased miR-17-5p expression did significantly correlate with increased expression of p53 protein, which is indicative of mutant TP53. Two pro-proliferative genes, E2F2 and PI3KC2A, were identified as direct messenger RNA targets of miR-31, suggesting that these may contribute to follicular lymphoma transformation. Our results indicate that changes in miR-31 and miR-17-5p reflect the transformation of follicular lymphoma to an aggressive large B-cell lymphoma and may, along with their targets, be viable markers for this process. PMID:26997445

  4. MiR-17-5p Impairs Trafficking of H-ERG K+ Channel Protein by Targeting Multiple ER Stress-Related Chaperones during Chronic Oxidative Stress

    PubMed Central

    Wang, Qi; Hu, Weina; Lei, Mingming; Wang, Yong; Yan, Bing; Liu, Jun; Zhang, Ren; Jin, Yuanzhe

    2013-01-01

    Background To investigate if microRNAs (miRNAs) play a role in regulating h-ERG trafficking in the setting of chronic oxidative stress as a common deleterious factor for many cardiac disorders. Methods We treated neonatal rat ventricular myocytes and HEK293 cells with stable expression of h-ERG with H2O2 for 12 h and 48 h. Expression of miR-17-5p seed miRNAs was quantified by real-time RT-PCR. Protein levels of chaperones and h-ERG trafficking were measured by Western blot analysis. Luciferase reporter gene assay was used to study miRNA and target interactions. Whole-cell patch-clamp techniques were employed to record h-ERG K+ current. Results H-ERG trafficking was impaired by H2O2 after 48 h treatment, accompanied by reciprocal changes of expression between miR-17-5p seed miRNAs and several chaperones (Hsp70, Hsc70, CANX, and Golga2), with the former upregulated and the latter downregulated. We established these chaperones as targets for miR-17-5p. Application miR-17-5p inhibitor rescued H2O2-induced impairment of h-ERG trafficking. Upregulation of endogenous by H2O2 or forced miR-17-5p expression either reduced h-ERG current. Sequestration of AP1 by its decoy molecule eliminated the upregulation of miR-17-5p, and ameliorated impairment of h-ERG trafficking. Conclusions Collectively, deregulation of the miR-17-5p seed family miRNAs can cause severe impairment of h-ERG trafficking through targeting multiple ER stress-related chaperones, and activation of AP1 likely accounts for the deleterious upregulation of these miRNAs, in the setting of prolonged duration of oxidative stress. These findings revealed the role of miRNAs in h-ERG trafficking, which may contribute to the cardiac electrical disturbances associated with oxidative stress. PMID:24386440

  5. Non-Specific Blocking of miR-17-5p Guide Strand in Triple Negative Breast Cancer Cells by Amplifying Passenger Strand Activity

    PubMed Central

    Jin, Yuan-Yuan; Andrade, Jade; Wickstrom, Eric

    2015-01-01

    Conventional wisdom holds that only one of the two strands in a micro ribonucleic acid (miRNA) precursor duplex is selected as the active miRNA guide strand. The complementary miRNA passenger strand, however, is thought to be inactive. High levels of the oncogenic miRNA (oncomiR) guide strand called miR-17-5p is overexpressed in triple negative breast cancer (TNBC) and can inhibit ribosomal translation of tumor suppressor gene mRNAs, such as programmed cell death 4 (PDCD4) or phosphatase and tensin homolog (PTEN). We hypothesized that knocking down the oncogenic microRNA (oncomiR) miR-17-5p might restore the expression levels of PDCD4 and PTEN tumor suppressor proteins, illustrating a route to oligonucleotide therapy of TNBC. Contrary to conventional wisdom, antisense knockdown of oncomiR miR-17-5p guide strand reduced PDCD4 and PTEN proteins by 1.8±0.3 fold in human TNBC cells instead of raising them. Bioinformatics analysis and folding energy calculations revealed that mRNA targets of miR-17-5p guide strand, such as PDCD4 and PTEN, could also be regulated by miR-17-3p passenger strand. Due to high sequence homology between the antisense molecules and miR-17-3p passenger strand, as well as the excess binding sites for the passenger strand on the 3’UTR of PDCD4 and PTEN mRNAs, introducing a miR-17-3p DNA-LNA mimic to knock down miR-17-5p reduced PDCD4 and PTEN protein expression instead of raising them. Our results imply that therapeutic antisense sequences against miRNAs should be designed to target the miRNA strand with the greatest number of putative binding sites in the target mRNAs, while minimizing affinity for the minor strand. PMID:26629823

  6. GFRα2 prompts cell growth and chemoresistance through down-regulating tumor suppressor gene PTEN via Mir-17-5p in pancreatic cancer.

    PubMed

    Gu, Jiangning; Wang, Di; Zhang, Jiaqiang; Zhu, Yi; Li, Ying; Chen, Hao; Shi, Minmin; Wang, Xuelong; Shen, Baiyong; Deng, Xiaxing; Zhan, Qian; Wei, Gang; Peng, Chenghong

    2016-10-01

    Nerve growth factors and their receptors have received an increasing attention in certain cancers since they play an important role in regulating tumorigenesis, biological process and metastasis. Here we aimed at characterizing a new function of one of the subtypes of growth factor receptors (GFR), GFRα2, in pancreatic cancer. In this study, we showed that GFRα2 was up-regulated in pancreatic adenocarcinoma and was positively correlated with tumor size and perineural invasion, which indicated that it may be associated with cell growth and apoptosis. Mechanically, we discovered that high GFRα2 expression level leads to PTEN inactivation via enhancing Mir-17-5p level. PMID:27400681

  7. Systematic analysis of metastasis-associated genes identifies miR- 17-5p as a metastatic suppressor of basal-like breast cancer

    PubMed Central

    Sethuraman, Aarti; Brown, Martin; Sun, Wenlin; Pfeffer, Lawrence M.

    2014-01-01

    The purpose of this study is to identify metastasis- associated genes/signaling pathways in basal-like breast tumors. Kaplan–Meier analysis of two public meta-datasets and functional classification was used to identify genes/signaling pathways significantly associated with distant metastasis free survival. Integrated analysis of expression correlation and interaction between mRNAs and miRNAs was used to identify miRNAs that potentially regulate the expression of metastasis-associated genes. The novel metastatic suppressive role of miR-17-5p was examined by in vitro and in vivo experiments. Over 4,000 genes previously linked to breast tumor progression were examined, leading to identification of 61 and 69 genes significantly associated with shorter and longer DMFS intervals of patients with basal-like tumors, respectively. Functional annotation linked most of the pro-metastatic genes to epithelial mesenchymal transition (EMT) process and three intertwining EMT-driving pathways (hypoxia, TGFB and Wnt), whereas most of the anti-metastatic genes to interferon signaling pathway. Members of three miRNA families (i.e., miR-17, miR-200 and miR-96) were identified as potential regulators of the pro-metastatic genes. The novel anti-metastatic function of miR-17-5p was confirmed by in vitro and in vivo experiments. We demonstrated that miR-17-5p inhibition in breast cancer cells enhanced expression of multiple pro-metastatic genes, rendered cells metastatic properties, and accelerated lung metastasis from orthotopic xenografts. In contrast, intratumoral administration of miR-17-5p mimic significantly reduced lung metastasis. These results provide evidence supporting that EMT activation and IFN pathway inactivation are markers of metastatic progression of basal-like tumors, and members of miR-17, miR-200, and miR-96 families play a role in suppressing EMT and metastasis. The metastasis-associated genes identified in this study have potential prognostic values and functional implications, thus, can be exploited as therapeutic targets to prevent metastasis of basal-like breast tumors. PMID:25001613

  8. Serum microRNAs; miR-30c-5p, miR-223-3p, miR-302c-3p and miR-17-5p could be used as novel non-invasive biomarkers for HCV-positive cirrhosis and hepatocellular carcinoma.

    PubMed

    Oksuz, Zehra; Serin, Mehmet Sami; Kaplan, Engin; Dogen, Aylin; Tezcan, Seda; Aslan, Gonul; Emekdas, Gurol; Sezgin, Orhan; Altintas, Engin; Tiftik, Eyup Naci

    2015-03-01

    Recently, serum miRNAs have been evolved as possible biomarkers for different diseases including hepatocellular carcinoma and other types of cancers. Investigating certain serum miRNAs as novel non-invasive markers for early detection of HCV-positive cirrhosis and hepatocellular carcinoma (HCC). The expression profiles of 58 miRNA were analyzed in patient's plasma of chronic hepatitis C (CHC), HCV-positive cirrhosis and HCV-positive HCC and compared with control group samples. Totally 94 plasma samples; 64 patient plasma (26 CHC, 30 HCV-positive cirrhosis, 8 HCV-positive HCC) and 28 control group plasma, were included. The expression profiles of 58 miRNAs were detected for all patient and control group plasma samples by qRT-PCR using BioMarkTM 96.96 Dynamic Array (Fluidigm Corporation) system. In CHC group, expression profiles of miR-30a-5p, miR-30c-5p, miR-206 and miR-302c-3p were found significantly deregulated (p < 0.05) when compared versus control group. In HCV-positive cirrhosis group, expression profiles of miR-30c-5p, miR-223-3p, miR-302c-3p, miR-17-5p, miR-130a-3p, miR-93-5p, miR-302c-5p and miR-223-3p were found significantly deregulated (p < 0.05). In HCV-positive HCC group, expression profiles of miR-17-5p, miR-223-3p and miR-24-3p were found significant (p < 0.05). When all groups were compared versus control, miR-30c-5p, miR-223-3p, miR-302c-3p and miR-17-5p were found significantly deregulated for cirrhosis and HCC. These results imply that miR-30c-5p, miR-223-3p, miR-302c-3p and miR-17-5p could be used as novel non-invasive biomarkers of HCV-positive HCC in very early, even at cirrhosis stage of liver disease. PMID:25391771

  9. Osteoactivin Promotes Migration of Oral Squamous Cell Carcinomas.

    PubMed

    Arosarena, Oneida A; Dela Cadena, Raul A; Denny, Michael F; Bryant, Evan; Barr, Eric W; Thorpe, Ryan; Safadi, Fayez F

    2016-08-01

    Nearly 50% of patients with oral squamous cell carcinoma (OSCC) die of metastases or locoregional recurrence. Metastasis is mediated by cancer cell adhesion, migration, and invasion. Osteoactivin (OA) overexpression plays a role in metastases in several malignancies. The aims were to determine how integrin interactions modulate OA-induced OSCC cell migration; and to investigate OA effects on cell survival and proliferation. We confirmed OA mRNA and protein overexpression in OSCC cell lines. We assessed OA's interactions with integrins using adhesion inhibition assays, fluorescent immunocytochemistry and co-immunoprecipitation. We investigated OA-mediated activation of mitogen-activated protein kinases (MAPKs) and cell survival. Integrin inhibition effects on OA-mediated cell migration were determined. We assessed effects of OA knock-down on cell migration and proliferation. OA is overexpressed in OSCC cell lines, and serves as a migration-promoting adhesion molecule. OA co-localized with integrin subunits, and co-immunoprecipitated with the subunits. Integrin blocking antibodies, especially those directed against the β1 subunit, inhibited cell adhesion (P = 0.03 for SCC15 cells). Adhesion to OA activated MAPKs in UMSCC14a cells and OA treatment promoted survival of SCC15 cells. Integrin-neutralizing antibodies enhanced cell migration with OA in the extracellular matrix. OA knock-down resulted in decreased proliferation of SCC15 and SCC25 cells, but did not inhibit cell migration. OA in the extracellular matrix promotes OSCC cell adhesion and migration, and may be a novel target in the prevention of HNSCC spread. J. Cell. Physiol. 231: 1761-1770, 2016. © 2015 Wiley Periodicals, Inc. PMID:26636434

  10. Promotion of cooperation by payoff-driven migration

    NASA Astrophysics Data System (ADS)

    Chen, Ya-Shan; Yang, Han-Xin; Guo, Wen-Zhong

    2016-05-01

    Migration plays an important role in the evolution of cooperation. Previous studies concerning mobile population often assumed that all agents move with the identical velocity. In this paper, we propose a payoff-driven migration in which the velocity of an agent depends on his/her payoff. A parameter α is introduced to adjust the influence of payoff, when α = 0 means that agents all move with the identical velocity while α > 0 means that the lower the payoff is, the faster the moving speed is, and vice versa. For the prisoner's dilemma game, we find that in comparison with the case that agents all move with the same speed, cooperation could be promoted strongly when payoff-dependent velocity is considered. Remarkably, the cooperation level is not a monotonic function of α, and there exists an optimal value of α which can lead to the maximum cooperation level. For the snowdrift game, the cooperation level increases with α.

  11. How inhibitory cues can both constrain and promote cell migration.

    PubMed

    Bronner, Marianne E

    2016-06-01

    Collective cell migration is a common feature in both embryogenesis and metastasis. By coupling studies of neural crest migration in vivo and in vitro with mathematical modeling, Szabó et al. (2016, J. Cell Biol., http://dx.doi.org/10.1083/jcb.201602083) demonstrate that the proteoglycan versican forms a physical boundary that constrains neural crest cells to discrete streams, in turn facilitating their migration. PMID:27269064

  12. Reduction in gap junction intercellular communication promotes glioma migration.

    PubMed

    Aftab, Qurratulain; Sin, Wun-Chey; Naus, Christian C

    2015-05-10

    Glioblastoma Multiforme (GBM), an aggressive form of adult brain tumor, is difficult to treat due to its invasive nature. One of the molecular changes observed in GBM is a decrease in the expression of the gap junction protein Connexin43 (Cx43); however, how a reduction in Cx43 expression contributes to glioma malignancy is still unclear. In this study we examine whether a decrease in Cx43 protein expression has a role in enhanced cell migration, a key feature associated with increased tumorigenicity. We used a 3D spheroid migration model that mimics the in vivo architecture of tumor cells to quantify migration changes. We found that down-regulation of Cx43 expression in the U118 human glioma cell line increased migration by reducing cell-ECM adhesion, and changed the migration pattern from collective to single cell. In addition gap junction intercellular communication (GJIC) played a more prominent role in mediating migration than the cytoplasmic interactions of the C-terminal tail. Live imaging revealed that reducing Cx43 expression enhanced relative migration by increasing the cell speed and affecting the direction of migration. Taken together our findings reveal an unexplored role of GJIC in facilitating collective migration. PMID:25926558

  13. Bradykinin promotes migration and invasion of human immortalized trophoblasts

    PubMed Central

    2011-01-01

    Having demonstrated that the bradykinin B2 receptor (B2R) is expressed in cells that participate in trophoblast invasion in humans and guinea-pigs, we investigated the role of bradykinin (BK) on cell migration and invasion in the HTR-8/SVneo trophoblast cell line using wound healing and invasion assays. First, we documented that HTR-8/SVneo cells expressed kallikrein, B2R, B1R, MMP-2 and MMP-9 using immunocytochemistry. Incubation with BK (10.0 microMol/L) for 18 hours increased the migration index 3-fold in comparison to controls or to cells preincubated with the B2R antagonist HOE-140. BK (10.0 microMol/L) incubation yielded a similar number of proliferating and viable cells as controls, therefore the enhanced closure of the wound cannot be attributed to proliferating cells. Incubation with BK (10.0 microMol/L) for 18 hours increased the invasion index 2-fold in comparison to controls or to cells preincubated with the antagonist of the B2R. Neither the B1R ligand Lys-des-Arg9 BK, nor its antagonist Lys-(des-Arg9-Leu8), modified migration and invasion. Further support for the stimulatory effect of B2R activation on migration and invasion is provided by the 3-fold increase in the number of filopodia per cell versus controls or cells preincubated with the B2R antagonist. Bradykinin had no effect on the cellular protein content of the B2R, nor the MMP-9 and MMP-2 gelatinase activity in the culture media varied after incubation with BK. This study adds bradykinin-acting on the B2R-to the stimuli of trophoblast migration and invasion, an effect that should be integrated to other modifications of the kallikrein-kinin system in normal and pathological pregnancies. PMID:21729302

  14. Fascin1 promotes cell migration of mature dendritic cells.

    PubMed

    Yamakita, Yoshihiko; Matsumura, Fumio; Lipscomb, Michael W; Chou, Po-chien; Werlen, Guy; Burkhardt, Janis K; Yamashiro, Shigeko

    2011-03-01

    Dendritic cells (DCs) play central roles in innate and adaptive immunity. Upon maturation, DCs assemble numerous veil-like membrane protrusions, disassemble podosomes, and travel from the peripheral tissues to lymph nodes to present Ags to T cells. These alterations in morphology and motility are closely linked to the primary function of DCs, Ag presentation. However, it is unclear how and what cytoskeletal proteins control maturation-associated alterations, in particular, the change in cell migration. Fascin1, an actin-bundling protein, is specifically and greatly induced upon maturation, suggesting a unique role for fascin1 in mature DCs. To determine the physiological roles of fascin1, we characterized bone marrow-derived, mature DCs from fascin1 knockout mice. We found that fascin1 is critical for cell migration: fascin1-null DCs exhibit severely decreased membrane protrusive activity. Importantly, fascin1-null DCs have lower chemotactic activity toward CCL19 (a chemokine for mature DCs) in vitro, and in vivo, Langerhans cells show reduced emigration into draining lymph nodes. Morphologically, fascin1-null mature DCs are flatter and fail to disassemble podosomes, a specialized structure for cell-matrix adhesion. Expression of exogenous fascin1 in fascin1-null DCs rescues the defects in membrane protrusive activity, as well as in podosome disassembly. These results indicate that fascin1 positively regulates migration of mature DCs into lymph nodes, most likely by increasing dynamics of membrane protrusions, as well as by disassembling podosomes. PMID:21263068

  15. Expectation-driven migration promotes cooperation by group interactions

    NASA Astrophysics Data System (ADS)

    Wu, Te; Fu, Feng; Zhang, Yanling; Wang, Long

    2012-06-01

    “Voting with feet” describes the prominent social phenomenon that people tend to move away from deteriorating neighborhoods and search for and join prosperous groups. To quantify the role this kind of expectation-driven migration plays in the evolution of cooperation, here we study a simple yet effective model of cooperation based on spatial public goods games. The population structure is characterized by a square lattice with some nodes being left empty. Individuals have expectations toward their current habitats. Dissatisfied players, whose expectation is not met after interacting with all directly connected neighbors, tend to abstain from the groups of low quality by moving away and explore the physical niches of avail. How fast interaction happens relatively to selection is regulated by the time-scale ratio of game interaction to natural selection. Under strong selection, simulation results show that cooperation is greatly improved for either low, moderate, or high expectations compared to whenever the expectation-driven migration is absent. Further explorations reveal that neither too high nor too low but rather a combination of moderate expectations and rapid interaction establishes cooperation for a moderate public goods enhancement factor. There exists an optimal interval of expectation level most favoring the evolution of cooperation as the required time-scale ratio is minimized.

  16. RLIM interacts with Smurf2 and promotes TGF-{beta} induced U2OS cell migration

    SciTech Connect

    Huang, Yongsheng; Yang, Yang; Gao, Rui; Yang, Xianmei; Yan, Xiaohua; Wang, Chenji; Jiang, Sirui; Yu, Long

    2011-10-14

    Highlights: {yields} RLIM directly binds to Smurf2. {yields} RLIM enhances TGF-{beta} responsiveness in U2OS cells. {yields} RLIM promotes TGF-{beta} driven migration of osteosarcoma U2OS cells. -- Abstract: TGF-{beta} (transforming growth factor-{beta}), a pleiotropic cytokine that regulates diverse cellular processes, has been suggested to play critical roles in cell proliferation, migration, and carcinogenesis. Here we found a novel E3 ubiquitin ligase RLIM which can directly bind to Smurf2, enhancing TGF-{beta} responsiveness in osteosarcoma U2OS cells. We constructed a U2OS cell line stably over-expressing RLIM and demonstrated that RLIM promoted TGF-{beta}-driven migration of U2OS cells as tested by wound healing assay. Our results indicated that RLIM is an important positive regulator in TGF-{beta} signaling pathway and cell migration.

  17. Cinnamtannin B-1 Promotes Migration of Mesenchymal Stem Cells and Accelerates Wound Healing in Mice.

    PubMed

    Fujita, Kosuke; Kuge, Katsunori; Ozawa, Noriyasu; Sahara, Shunya; Zaiki, Kaori; Nakaoji, Koichi; Hamada, Kazuhiko; Takenaka, Yukiko; Tanahashi, Takao; Tamai, Katsuto; Kaneda, Yasufumi; Maeda, Akito

    2015-01-01

    Substances that enhance the migration of mesenchymal stem cells to damaged sites have the potential to improve the effectiveness of tissue repair. We previously found that ethanol extracts of Mallotus philippinensis bark promoted migration of mesenchymal stem cells and improved wound healing in a mouse model. We also demonstrated that bark extracts contain cinnamtannin B-1, a flavonoid with in vitro migratory activity against mesenchymal stem cells. However, the in vivo effects of cinnamtannin B-1 on the migration of mesenchymal stem cells and underlying mechanism of this action remain unknown. Therefore, we examined the effects of cinnamtannin B-1 on in vivo migration of mesenchymal stem cells and wound healing in mice. In addition, we characterized cinnamtannin B-1-induced migration of mesenchymal stem cells pharmacologically and structurally. The mobilization of endogenous mesenchymal stem cells into the blood circulation was enhanced in cinnamtannin B-1-treated mice as shown by flow cytometric analysis of peripheral blood cells. Whole animal imaging analysis using luciferase-expressing mesenchymal stem cells as a tracer revealed that cinnamtannin B-1 increased the homing of mesenchymal stem cells to wounds and accelerated healing in a diabetic mouse model. Additionally, the cinnamtannin B-1-induced migration of mesenchymal stem cells was pharmacologically susceptible to inhibitors of phosphatidylinositol 3-kinase, phospholipase C, lipoxygenase, and purines. Furthermore, biflavonoids with similar structural features to cinnamtannin B-1 also augmented the migration of mesenchymal stem cells by similar pharmacological mechanisms. These results demonstrate that cinnamtannin B-1 promoted mesenchymal stem cell migration in vivo and improved wound healing in mice. Furthermore, the results reveal that cinnamtannin B-1-induced migration of mesenchymal stem cells may be mediated by specific signaling pathways, and the flavonoid skeleton may be relevant to its effects on

  18. Cinnamtannin B-1 Promotes Migration of Mesenchymal Stem Cells and Accelerates Wound Healing in Mice

    PubMed Central

    Fujita, Kosuke; Kuge, Katsunori; Ozawa, Noriyasu; Sahara, Shunya; Zaiki, Kaori; Nakaoji, Koichi; Hamada, Kazuhiko; Takenaka, Yukiko; Tanahashi, Takao; Tamai, Katsuto; Kaneda, Yasufumi; Maeda, Akito

    2015-01-01

    Substances that enhance the migration of mesenchymal stem cells to damaged sites have the potential to improve the effectiveness of tissue repair. We previously found that ethanol extracts of Mallotus philippinensis bark promoted migration of mesenchymal stem cells and improved wound healing in a mouse model. We also demonstrated that bark extracts contain cinnamtannin B-1, a flavonoid with in vitro migratory activity against mesenchymal stem cells. However, the in vivo effects of cinnamtannin B-1 on the migration of mesenchymal stem cells and underlying mechanism of this action remain unknown. Therefore, we examined the effects of cinnamtannin B-1 on in vivo migration of mesenchymal stem cells and wound healing in mice. In addition, we characterized cinnamtannin B-1-induced migration of mesenchymal stem cells pharmacologically and structurally. The mobilization of endogenous mesenchymal stem cells into the blood circulation was enhanced in cinnamtannin B-1-treated mice as shown by flow cytometric analysis of peripheral blood cells. Whole animal imaging analysis using luciferase-expressing mesenchymal stem cells as a tracer revealed that cinnamtannin B-1 increased the homing of mesenchymal stem cells to wounds and accelerated healing in a diabetic mouse model. Additionally, the cinnamtannin B-1-induced migration of mesenchymal stem cells was pharmacologically susceptible to inhibitors of phosphatidylinositol 3-kinase, phospholipase C, lipoxygenase, and purines. Furthermore, biflavonoids with similar structural features to cinnamtannin B-1 also augmented the migration of mesenchymal stem cells by similar pharmacological mechanisms. These results demonstrate that cinnamtannin B-1 promoted mesenchymal stem cell migration in vivo and improved wound healing in mice. Furthermore, the results reveal that cinnamtannin B-1-induced migration of mesenchymal stem cells may be mediated by specific signaling pathways, and the flavonoid skeleton may be relevant to its effects on

  19. Histidine provides long-term neuroprotection after cerebral ischemia through promoting astrocyte migration.

    PubMed

    Liao, Ru-jia; Jiang, Lei; Wang, Rong-rong; Zhao, Hua-wei; Chen, Ying; Li, Ya; Wang, Lu; Jie, Li-Yong; Zhou, Yu-dong; Zhang, Xiang-nan; Chen, Zhong; Hu, Wei-wei

    2015-01-01

    The formation of glial scar impedes the neurogenesis and neural functional recovery following cerebral ischemia. Histamine showed neuroprotection at early stage after cerebral ischemia, however, its long-term effect, especially on glial scar formation, hasn't been characterized. With various administration regimens constructed for histidine, a precursor of histamine, we found that histidine treatment at a high dose at early stage and a low dose at late stage demonstrated the most remarkable long-term neuroprotection with decreased infarct volume and improved neurological function. Notably, this treatment regimen also robustly reduced the glial scar area and facilitated the astrocyte migration towards the infarct core. In wound-healing assay and transwell test, histamine significantly promoted astrocyte migration. H2 receptor antagonists reversed the promotion of astrocyte migration and the neuroprotection provided by histidine. Moreover, histamine upregulated the GTP-bound small GTPase Rac1, while a Rac1 inhibitor, NSC23766, abrogated the neuroprotection of histidine and its promotion of astrocyte migration. Our data indicated that a dose/stage-dependent histidine treatment, mediated by H2 receptor, promoted astrocyte migration towards the infarct core, which benefited long-term post-cerebral ischemia neurological recovery. Therefore, targeting histaminergic system may be an effective therapeutic strategy for long-term cerebral ischemia injury through its actions on astrocytes. PMID:26481857

  20. Histidine provides long-term neuroprotection after cerebral ischemia through promoting astrocyte migration

    PubMed Central

    Liao, Ru-jia; Jiang, Lei; Wang, Rong-rong; Zhao, Hua-wei; Chen, Ying; Li, Ya; Wang, Lu; Jie, Li-Yong; Zhou, Yu-dong; Zhang, Xiang-nan; Chen, Zhong; Hu, Wei-wei

    2015-01-01

    The formation of glial scar impedes the neurogenesis and neural functional recovery following cerebral ischemia. Histamine showed neuroprotection at early stage after cerebral ischemia, however, its long-term effect, especially on glial scar formation, hasn’t been characterized. With various administration regimens constructed for histidine, a precursor of histamine, we found that histidine treatment at a high dose at early stage and a low dose at late stage demonstrated the most remarkable long-term neuroprotection with decreased infarct volume and improved neurological function. Notably, this treatment regimen also robustly reduced the glial scar area and facilitated the astrocyte migration towards the infarct core. In wound-healing assay and transwell test, histamine significantly promoted astrocyte migration. H2 receptor antagonists reversed the promotion of astrocyte migration and the neuroprotection provided by histidine. Moreover, histamine upregulated the GTP-bound small GTPase Rac1, while a Rac1 inhibitor, NSC23766, abrogated the neuroprotection of histidine and its promotion of astrocyte migration. Our data indicated that a dose/stage-dependent histidine treatment, mediated by H2 receptor, promoted astrocyte migration towards the infarct core, which benefited long-term post-cerebral ischemia neurological recovery. Therefore, targeting histaminergic system may be an effective therapeutic strategy for long-term cerebral ischemia injury through its actions on astrocytes. PMID:26481857

  1. Modeling keratinocyte wound healing dynamics: Cell-cell adhesion promotes sustained collective migration.

    PubMed

    Nardini, John T; Chapnick, Douglas A; Liu, Xuedong; Bortz, David M

    2016-07-01

    The in vitro migration of keratinocyte cell sheets displays behavioral and biochemical similarities to the in vivo wound healing response of keratinocytes in animal model systems. In both cases, ligand-dependent Epidermal Growth Factor Receptor (EGFR) activation is sufficient to elicit collective cell migration into the wound. Previous mathematical modeling studies of in vitro wound healing assays assume that physical connections between cells have a hindering effect on cell migration, but biological literature suggests a more complicated story. By combining mathematical modeling and experimental observations of collectively migrating sheets of keratinocytes, we investigate the role of cell-cell adhesion during in vitro keratinocyte wound healing assays. We develop and compare two nonlinear diffusion models of the wound healing process in which cell-cell adhesion either hinders or promotes migration. Both models can accurately fit the leading edge propagation of cell sheets during wound healing when using a time-dependent rate of cell-cell adhesion strength. The model that assumes a positive role of cell-cell adhesion on migration, however, is robust to changes in the leading edge definition and yields a qualitatively accurate density profile. Using RNAi for the critical adherens junction protein, α-catenin, we demonstrate that cell sheets with wild type cell-cell adhesion expression maintain migration into the wound longer than cell sheets with decreased cell-cell adhesion expression, which fails to exhibit collective migration. Our modeling and experimental data thus suggest that cell-cell adhesion promotes sustained migration as cells pull neighboring cells into the wound during wound healing. PMID:27105673

  2. Integrin-mediated cell surface recruitment of autotaxin promotes persistent directional cell migration

    PubMed Central

    Wu, Tao; Kooi, Craig Vander; Shah, Pritom; Charnigo, Richard; Huang, Cai; Smyth, Susan S.; Morris, Andrew J.

    2014-01-01

    Autotaxin (ATX) is a secreted lysophospholipase D (lysoPLD) that binds to integrin adhesion receptors. We dissected the roles of integrin binding and lysoPLD activity in stimulation of human breast cancer and mouse aortic vascular smooth muscle cell migration by ATX. We compared effects of wild-type human ATX, catalytically inactive ATX, an integrin binding-defective ATX variant with wild-type lysoPLD activity, the isolated ATX integrin binding N-terminal domain, and a potent ATX selective lysoPLD inhibitor on cell migration using transwell and single-cell tracking assays. Stimulation of transwell migration was reduced (18 or 27% of control, respectively) but not ablated by inactivation of integrin binding or inhibition of lysoPLD activity. The N-terminal domain increased transwell migration (30% of control). ATX lysoPLD activity and integrin binding were necessary for a 3.8-fold increase in the fraction of migrating breast cancer cell step velocities >0.7 μm/min. ATX increased the persistent directionality of single-cell migration 2-fold. This effect was lysoPLD activity independent and recapitulated by the integrin binding N-terminal domain. Integrin binding enables uptake and intracellular sequestration of ATX, which redistributes to the front of migrating cells. ATX binding to integrins and lysoPLD activity therefore cooperate to promote rapid persistent directional cell migration.—Wu, T., Kooi, C. V., Shah, P., Charnigo, R., Huang, C., Smyth, S. S., Morris, A. J. Integrin-mediated cell surface recruitment of autotaxin promotes persistent directional cell migration. PMID:24277575

  3. GMF promotes leading edge dynamics and collective cell migration in vivo

    PubMed Central

    Poukkula, Minna; Hakala, Markku; Pentinmikko, Nalle; Sweeney, Meredith O.; Jansen, Silvia; Mattila, Jaakko; Hietakangas, Ville; Goode, Bruce L.; Lappalainen, Pekka

    2014-01-01

    SUMMARY Lamellipodia are dynamic actin-rich cellular extensions, which drive advancement of the leading edge during cell migration [1–3]. Lamellipodia undergo periodic extension/retraction cycles [4–8], but the molecular mechanisms underlying these dynamics and their role in cell migration have remained obscure. We show that gliamaturation factor (GMF), which is an Arp2/3 complex inhibitor and actin filament debranching factor [9, 10], regulates lamellipodial protrusion dynamics in living cells. In cultured S2R+ cells, GMF silencing resulted in an increase in the width of lamellipodial actin filament arrays. Importantly, live-imaging of mutant Drosophila egg chambers revealed that the dynamics of actin-rich protrusions in migrating border cells are diminished in the absence of GMF. Consequently, velocity of border cell clusters undergoing guided migration was reduced in GMF mutant flies. Furthermore, genetic studies demonstrated that GMF cooperates with the Drosophila homologue of Aip1 (flare) in promoting disassembly of Arp2/3-nucleated actin filament networks and driving border cell migration. These data suggest that GMF functions in vivo to promote the disassembly of Arp2/3-nucleated actin filament arrays, making an important contribution to cell migration within a three-dimensional tissue environment. PMID:25308079

  4. A synthetic isoflavone, DCMF, promotes human keratinocyte migration by activating Src/FAK signaling pathway.

    PubMed

    Sophors, Phorl; Kim, Young Mee; Seo, Ga Young; Huh, Jung-Sik; Lim, Yoongho; Koh, Dong Soo; Cho, Moonjae

    2016-04-01

    Flavonoids are plant secondary compounds with various pharmacological properties. We previously showed that one flavonoid, trimethoxyisoflavone (TMF), could promote wound healing by inducing keratinocyte migration. Here, we screened TMF derivatives for enhanced activity and identified one compound, 2',6 Dichloro-7-methoxyisoflavone (DCMF), as most effective at promoting migration in a scratch wound assay. Using the HaCaT keratinocyte cell line, we found DCMF treatment induced phosphorylation of both FAK and Src, and increased keratinocyte migration. DCMF-induced Src kinase could promote activation of ERK, AKT, and p38 signaling pathways, and DCMF-induced secretion of matrix metalloproteinase (MMP)-2 and MMP-9 and partial epithelial-mesenchymal transition (EMT), whereas Src inhibition abolished DCMF-induced EMT. Using an in vivo excisional wound model, we observed improved wound closure and re-epithelialization in DCMF-treated mice, as compared to controls. Collectively, our data demonstrate that DCMF induces cell migration and promotes wound healing through activation of Src/FAK, ERK, AKT, and p38 MAPK signaling. PMID:26923073

  5. Microgrooved Polymer Substrates Promote Collective Cell Migration To Accelerate Fracture Healing in an in Vitro Model.

    PubMed

    Zhang, Qing; Dong, Hua; Li, Yuli; Zhu, Ye; Zeng, Lei; Gao, Huichang; Yuan, Bo; Chen, Xiaofeng; Mao, Chuanbin

    2015-10-21

    Surface topography can affect cell adhesion, morphology, polarity, cytoskeleton organization, and osteogenesis. However, little is known about the effect of topography on the fracture healing in repairing nonunion and large bone defects. Microgrooved topography on the surface of bone implants may promote cell migration into the fracture gap to accelerate fracture healing. To prove this hypothesis, we used an in vitro fracture (wound) healing assay on the microgrooved polycaprolactone substrates to study the effect of microgroove widths and depths on the osteoblast-like cell (MG-63) migration and the subsequent healing. We found that the microgrooved substrates promoted MG-63 cells to migrate collectively into the wound gap, which serves as a fracture model, along the grooves and ridges as compared with the flat substrates. Moreover, the groove widths did not show obvious influence on the wound healing whereas the smaller groove depths tended to favor the collective cell migration and thus subsequent healing. The microgrooved substrates accelerated the wound healing by facilitating the collective cell migration into the wound gaps but not by promoting the cell proliferation. Furthermore, microgrooves were also found to promote the migration of human mesenchymal stem cells (hMSCs) to heal the fracture model. Though osteogenic differentiation of hMSCs was not improved on the microgrooved substrate, collagen I and minerals deposited by hMSCs were organized in a way similar to those in the extracellular matrix of natural bone. These findings suggest the necessity in using microgrooved implants in enhancing fracture healing in bone repair. PMID:26457873

  6. Ephrin-as cooperate with EphA4 to promote trunk neural crest migration.

    PubMed

    McLennan, R; Krull, C E

    2002-01-01

    Trunk neural crest cells delaminate from the dorsal neural tube and migrate on two distinct pathways: a dorsolateral route, between the ectoderm and somites,and a ventromedial route, through the somitic mesoderm. Neural crest cells that migrate ventromedially travel in a segmental manner through rostral half-somites, avoiding caudal halves. Recent studies demonstrate that various molecular cues guide the migration of neural crest cells, primarily by serving as inhibitors to premature pathway entry orby preventing neural crest from entering inappropriate territories. Trajectories of migrating trunk neural crest are well organized and generally linear in nature, suggesting that positive, migration-promoting factors may be responsible for this organized cell behavior. However, the identity of these factors and their function are not well understood. Here we examine the expression of members of the EphA subclass of receptor tyrosine kinases and ephrins using RT-PCR and immunocytochemistry. Neural crest cells express ephrins and EphA4 at distinct stages during their migration. In functional analyses, addition of ephrin-A2-, ephrin-A5-, and EphA4-Fc disrupted the segmental organization of trunk neural crest migration in explants: neural crest cells entered rostral and caudal halves of somites. Finally, to test the specific effects of these factors on cell behavior, neural crest cells were exposed in vitro to substrate-bound EphA and ephrin-As. Surprisingly, neural crest cells avoided ephrin-A2 or ephrin-A5 substrates; this avoidance was abolished by the addition of EphA4. Together, these data suggest that ephrin-As and EphA4 cooperate to positively promote the migration of neural crest cells through rostral half somites in vivo. PMID:12450221

  7. ADAM13 cleavage of cadherin-11 promotes CNC migration independently of the homophilic binding site.

    PubMed

    Abbruzzese, Genevieve; Becker, Sarah F; Kashef, Jubin; Alfandari, Dominique

    2016-07-15

    The cranial neural crest (CNC) is a highly motile population of cells that is responsible for forming the face and jaw in all vertebrates and perturbing their migration can lead to craniofacial birth defects. Cell motility requires a dynamic modification of cell-cell and cell-matrix adhesion. In the CNC, cleavage of the cell adhesion molecule cadherin-11 by ADAM13 is essential for cell migration. This cleavage generates a shed extracellular fragment of cadherin-11 (EC1-3) that possesses pro-migratory activity via an unknown mechanism. Cadherin-11 plays an important role in modulating contact inhibition of locomotion (CIL) in the CNC to regulate directional cell migration. Here, we show that while the integral cadherin-11 requires the homophilic binding site to promote CNC migration in vivo, the EC1-3 fragment does not. In addition, we show that increased ADAM13 activity or expression of the EC1-3 fragment increases CNC invasiveness in vitro and blocks the repulsive CIL response in colliding cells. This activity requires the presence of an intact homophilic binding site on the EC1-3 suggesting that the cleavage fragment may function as a competitive inhibitor of cadherin-11 adhesion in CIL but not to promote cell migration in vivo. PMID:26206614

  8. ADAM13 cleavage of cadherin-11 promotes CNC migration independently of the homophilic binding site

    PubMed Central

    Kashef, Jubin; Alfandari, Dominique

    2015-01-01

    The cranial neural crest (CNC) is a highly motile population of cells that is responsible for forming the face and jaw in all vertebrates and perturbing their migration can lead to craniofacial birth defects. Cell motility requires a dynamic modification of cell–cell and cell-matrix adhesion. In the CNC, cleavage of the cell adhesion molecule cadherin-11 by ADAM13 is essential for cell migration. This cleavage generates a shed extracellular fragment of cadherin-11 (EC1-3) that possesses pro-migratory activity via an unknown mechanism. Cadherin-11 plays an important role in modulating contact inhibition of locomotion (CIL) in the CNC to regulate directional cell migration. Here, we show that while the integral cadherin-11 requires the homophilic binding site to promote CNC migration in vivo, the EC1-3 fragment does not. In addition, we show that increased ADAM13 activity or expression of the EC1-3 fragment increases CNC invasiveness in vitro and blocks the repulsive CIL response in colliding cells. This activity requires the presence of an intact homophilic binding site on the EC1-3 suggesting that the cleavage fragment may function as a competitive inhibitor of cadherin-11 adhesion in CIL but not to promote cell migration in vivo. PMID:26206614

  9. SDN-1/Syndecan Acts in Parallel to the Transmembrane Molecule MIG-13 to Promote Anterior Neuroblast Migration

    PubMed Central

    Sundararajan, Lakshmi; Norris, Megan L.; Lundquist, Erik A.

    2015-01-01

    The Q neuroblasts in Caenorhabditis elegans display left-right asymmetry in their migration, with QR and descendants on the right migrating anteriorly, and QL and descendants on the left migrating posteriorly. Initial QR and QL migration is controlled by the transmembrane receptors UNC-40/DCC, PTP-3/LAR, and the Fat-like cadherin CDH-4. After initial migration, QL responds to an EGL-20/Wnt signal that drives continued posterior migration by activating MAB-5/Hox activity in QL but not QR. QR expresses the transmembrane protein MIG-13, which is repressed by MAB-5 in QL and which drives anterior migration of QR descendants. A screen for new Q descendant AQR and PQR migration mutations identified mig-13 as well as hse-5, the gene encoding the glucuronyl C5-epimerase enzyme, which catalyzes epimerization of glucuronic acid to iduronic acid in the heparan sulfate side chains of heparan sulfate proteoglycans (HSPGs). Of five C. elegans HSPGs, we found that only SDN-1/Syndecan affected Q migrations. sdn-1 mutants showed QR descendant AQR anterior migration defects, and weaker QL descendant PQR migration defects. hse-5 affected initial Q migration, whereas sdn-1 did not. sdn-1 and hse-5 acted redundantly in AQR and PQR migration, but not initial Q migration, suggesting the involvement of other HSPGs in Q migration. Cell-specific expression studies indicated that SDN-1 can act in QR to promote anterior migration. Genetic interactions between sdn-1, mig-13, and mab-5 suggest that MIG-13 and SDN-1 act in parallel to promote anterior AQR migration and that SDN-1 also controls posterior migration. Together, our results indicate previously unappreciated complexity in the role of multiple signaling pathways and inherent left-right asymmetry in the control of Q neuroblast descendant migration. PMID:26022293

  10. PDGFBB promotes PDGFR{alpha}-positive cell migration into artificial bone in vivo

    SciTech Connect

    Yoshida, Shigeyuki; Iwasaki, Ryotaro; Kawana, Hiromasa; Miyauchi, Yoshiteru; Hoshi, Hiroko; Miyamoto, Hiroya; Mori, Tomoaki; Kanagawa, Hiroya; Katsuyama, Eri; Fujie, Atsuhiro; Hao, Wu; and others

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer We examined effects of PDGFBB in PDGFR{alpha} positive cell migration in artificial bones. Black-Right-Pointing-Pointer PDGFBB was not expressed in osteoblastic cells but was expressed in peripheral blood cells. Black-Right-Pointing-Pointer PDGFBB promoted PDGFR{alpha} positive cell migration into artificial bones but not osteoblast proliferation. Black-Right-Pointing-Pointer PDGFBB did not inhibit osteoblastogenesis. -- Abstract: Bone defects caused by traumatic bone loss or tumor dissection are now treated with auto- or allo-bone graft, and also occasionally by artificial bone transplantation, particularly in the case of large bone defects. However, artificial bones often exhibit poor affinity to host bones followed by bony union failure. Thus therapies combining artificial bones with growth factors have been sought. Here we report that platelet derived growth factor bb (PDGFBB) promotes a significant increase in migration of PDGF receptor {alpha} (PDGFR{alpha})-positive mesenchymal stem cells/pre-osteoblastic cells into artificial bone in vivo. Growth factors such as transforming growth factor beta (TGF{beta}) and hepatocyte growth factor (HGF) reportedly inhibit osteoblast differentiation; however, PDGFBB did not exhibit such inhibitory effects and in fact stimulated osteoblast differentiation in vitro, suggesting that combining artificial bones with PDGFBB treatment could promote host cell migration into artificial bones without inhibiting osteoblastogenesis.

  11. Dlx transcription factors promote migration through repression of axon and dendrite growth

    PubMed Central

    Cobos, Inma; Borello, Ugo; Rubenstein, John L.R.

    2016-01-01

    In the mouse telencephalon, Dlx homeobox transcription factors are essential for the tangential migration of subpallial-derived GABAergic interneurons to neocortex. However, the mechanisms underlying this process are poorly understood. Here, we demonstrate that Dlx1&2 have a central role in restraining neurite growth of subpallial-derived immature interneurons at a stage when they migrate tangentially to cortex. In Dlx1−/−;Dlx2−/− mutants, neurite length is increased and cells fail to migrate. In Dlx1−/−;Dlx2+/− mutants, while the tangential migration of immature interneurons appears normal, they develop dendritic and axonal processes with increased length and decreased branching, and have deficits in the their neocortical laminar positions. Thus, Dlx1&2 are required for coordinating programs of neurite maturation and migration. In this regard, we provide genetic evidence that in immature interneurons Dlx1&2 repression of the p21-activated kinase PAK3, a downstream effector of the Rho-family of GTPases, is critical in restraining neurite growth and promoting tangential migration. PMID:17582329

  12. Nitric oxide promotes epidermal stem cell migration via cGMP-Rho GTPase signalling

    PubMed Central

    Zhan, Rixing; He, Weifeng; Wang, Fan; Yao, Zhihui; Tan, Jianglin; Xu, Rui; Zhou, Junyi; Wang, Yuzhen; Li, Haisheng; Wu, Jun; LUO, Gaoxing

    2016-01-01

    The migration and reepithelization of epidermal stem cells (ESCs) are the most critical processes in wound healing. The gaseous messenger nitric oxide (NO) has multiple biological effects, but its actions on ESCs are poorly understood. In this study, an NO donor, S-nitroso-N-acetylpenicillamine (SNAP), was found to facilitate the in vitro migration of human ESCs (huESCs) in both live-imaging and scratch models. In addition, pull-down assays demonstrated that SNAP could activate the small GTPases RhoA and Rac1 of the Rho family, but not Cdc42. Moreover, the effects of SNAP on the migration and F-actin polymerization of ESCs could be blocked by inhibitors of cGMP, PKG, RhoA or Rac1, and by a specific siRNA of RhoA or Rac1, but not by a Cdc42 inhibitor or siRNA. Furthermore, the roles of NO in ESC migration via cGMP-Rho GTPase signalling in vivo were confirmed by tracing 5-bromo-2-deoxyuridine (BrdU)-labelled cells in a superficial, partial-thickness scald mouse model. Thus, the present study demonstrated that the NO donor SNAP could promote huESC migration in vitro. Furthermore, NO was found to induce ESC migration via cGMP-Rho GTPase RhoA and Rac1 signalling, but not Cdc42 signalling, both in vivo and in vitro. PMID:27469024

  13. [Macrophages promote the migration of neural stem cells into mouse spinal cord injury site].

    PubMed

    Cheng, Zhijian; Zhu, Wen; Li, Haopeng; He, Xijing

    2016-09-01

    Objective To explore the role of macrophages in the migration of neural stem cells (NSCs) in vivo and in vitro . Methods NSCs with green fluorescent protein (GFP) were isolated from GFP transgenic mice and the immunofluorescence cytochemical staining of nestin was used to identify NSCs. After spinal cord injury was induced, the tissue level of macrophage chemotactic protein-1 (MCP-1) mRNA was detected using quantitative real time PCR. The migration of GFP-NSCs was investigated 1 week after GFP-NSCs were injected into both sides of the damaged area. The effect of macrophage on the migration of NSCs in vitro was tested by Transwell(TM) system and the content of MCP-1 was detected by ELISA. Results NSCs highly expressed nestin. Compared with the control group, the level of MCP-1 mRNA significantly increased in the spinal cord injury group. The NSCs which were injected into the spinal cord migrated into the center of the injured site where F4/80 was highly expressed. Macrophages significantly increased the number of migrating NSCs in vitro and the secretion of MCP-1. Conclusion Macrophages induce NSC migrating into the spinal cord injury site possibly through promoting the secretion of MCP-1. PMID:27609570

  14. Dlx transcription factors promote migration through repression of axon and dendrite growth.

    PubMed

    Cobos, Inma; Borello, Ugo; Rubenstein, John L R

    2007-06-21

    In the mouse telencephalon, Dlx homeobox transcription factors are essential for the tangential migration of subpallial-derived GABAergic interneurons to neocortex. However, the mechanisms underlying this process are poorly understood. Here, we demonstrate that Dlx1/2 has a central role in restraining neurite growth of subpallial-derived immature interneurons at a stage when they migrate tangentially to cortex. In Dlx1-/-;Dlx2-/- mutants, neurite length is increased and cells fail to migrate. In Dlx1-/-;Dlx2+/- mutants, while the tangential migration of immature interneurons appears normal, they develop dendritic and axonal processes with increased length and decreased branching, and have deficits in their neocortical laminar positions. Thus, Dlx1/2 is required for coordinating programs of neurite maturation and migration. In this regard, we provide genetic evidence that in immature interneurons Dlx1/2 repression of the p21-activated serine/threonine kinase PAK3, a downstream effector of the Rho family of GTPases, is critical in restraining neurite growth and promoting tangential migration. PMID:17582329

  15. Dock4 is regulated by RhoG and promotes Rac-dependent cell migration.

    PubMed

    Hiramoto, Kiyo; Negishi, Manabu; Katoh, Hironori

    2006-12-10

    Cell migration is essential for normal development and many pathological processes including tumor metastasis. Rho family GTPases play important roles in this event. In particular, Rac is required for lamellipodia formation at the leading edge during migration. Dock4 is a member of the Dock180 family proteins, and Dock4 mutations are present in a subset of human cancer cell lines. However, the function and the regulatory mechanism of Dock4 remain unclear. Here we show that Dock4 is regulated by the small GTPase RhoG and its effector ELMO and promotes cell migration by activating Rac1. Dock4 formed a complex with ELMO, and expression of active RhoG induced translocation of the Dock4-ELMO complex from the cytoplasm to the plasma membrane and enhanced the Dock4- and ELMO-dependent Rac1 activation and cell migration. On the other hand, RNA interference-mediated knockdown of Dock4 in NIH3T3 cells reduced cell migration. Taken together, these results suggest that Dock4 plays an important role in the regulation of cell migration through activation of Rac1, and that RhoG is a key upstream regulator for Dock4. PMID:17027967

  16. Bm-TFF2, a toad trefoil factor, promotes cell migration, survival and wound healing

    SciTech Connect

    Zhang, Yong; Yu, Guoyu; Xiang, Yang; Wu, Jianbo; Jiang, Ping; Lee, Wenhui; Zhang, Yun

    2010-07-30

    Research highlights: {yields} Bm-TFF2 binds to epithelial cells and induces cell migration and wound healing. {yields} Bm-TFF2 suppresses cell apoptosis. {yields} Bm-TFF2 has no effect on cell proliferation. -- Abstract: Toad skin is naked and continually confronted by various injurious factors. Constant skin renewal and repairs occur frequently. However, the mechanisms of the renewal and repair have not clearly elucidated. In our previous work, a trefoil factor (TFF), Bm-TFF2, has been purified from the Bombina maxima skin and characterized as a platelet agonist. The mRNA of TFFs in toad skin was up-regulated greatly during the metamorphosis, indicating a pivotal role of TFFs in amphibian skin. Here, we presented the effects of Bm-TFF2 on the cell migration, apoptosis and proliferation. Bm-TFF2 bound to epithelial cells and showed strong cell motility activity. At the concentrations of 1-100 nM, Bm-TFF2-induced migration of human epithelial AGS and HT-29 cells, and rat intestinal epithelial IEC-6 cell lines. The in vitro wound healing assay also verified the activity of Bm-TFF2. Bm-TFF2 could also inhibit cell apoptosis induced by ceramide and sodium butyrate. The cell migration-promoting activity was abolished by MEK1 inhibitors, U0126 and PD98059, suggesting that ERK1/2 activation is crucial for Bm-TFF2 to stimulate cell migration. Taken together, Bm-TFF2 promoted wound healing by stimulating cell migration via MAPK pathway and preventing cell apoptosis. The potent biological activity of Bm-TFF2 makes it a useful molecular tool for further studies of structure-function relationship of the related human TFFs.

  17. Co-culture with Sertoli cells promotes proliferation and migration of umbilical cord mesenchymal stem cells

    SciTech Connect

    Zhang, Fenxi; Hong, Yan; Liang, Wenmei; Ren, Tongming; Jing, Suhua; Lin, Juntang

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). Black-Right-Pointing-Pointer Presence of SCs dramatically increased proliferation and migration of UCMSCs. Black-Right-Pointing-Pointer Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of 'nurse' cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neural stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.

  18. Long form collapsin response mediator protein-1 promotes the migration and invasion of osteosarcoma cells

    PubMed Central

    HOU, HUIGE; CHEN, LIN; ZHA, ZHENGANG; CAI, SHAOHUI; TAN, MINGHUI; GUO, GUOQING; LIU, NING; SHE, GUORONG; XUN, SONGWEI

    2016-01-01

    It has been reported that long form collapsin response mediator protein-1 (LCRMP-1) promotes the metastasis of non-small cell lung cancer. Osteosarcoma (OS) is a human cancer with a high potential for metastasis. The present study aimed to investigate the role of LCRMP-1 in OS metastasis. The expression of LCRMP-1 in OS specimens and cell lines was evaluated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. Furthermore, the migration and invasion of OS cells with LCRMP-1-knockdown was investigated to examine the role of LCRMP-1 in OS metastasis. In addition, the expression of N-cadherin and matrix metalloproteinases (MMPs), which are involved in cell migration, was evaluated using RT-qPCR. Increased expression of LCRMP-1 was observed in the OS tissues and cell lines, accompanied by the enhanced migration and invasion of the OS cells. LCRMP-1-knockdown resulted in a significant decrease in the expression of N-cadherin and MMPs, as well as inhibition of the migration and invasion of the OS cells. Overexpression of LCRMP-1 promoted OS metastasis. Therefore, LCRMP-1 may be a promising target for the effective treatment of OS. PMID:27347094

  19. SRPK2 promotes the growth and migration of the colon cancer cells.

    PubMed

    Wang, Jian; Wu, Hai-Feng; Shen, Wei; Xu, Dong-Yan; Ruan, Ting-Yan; Tao, Guo-Qing; Lu, Pei-Hua

    2016-07-15

    Colon cancer is one of the major causes of cancer-related death in the world. Understanding the molecular mechanism underlying this malignancy will facilitate the diagnosis and treatment. Serine-arginine protein kinase 2 (SRPK2) has been reported to be upregulated in several cancer types. However, its expression and functions in colon cancer remains unknown. In this study, it was found that the expression of SRPK2 was up-regulated in the clinical colon cancer samples. Overexpression of SRPK2 promoted the growth and migration of colon cancer cells, while knocking down the expression of SRPK2 inhibited the growth, migration and tumorigenecity of colon cancer cells. Molecular mechanism studies revealed that SRPK2 activated ERK signaling in colon cancer cells. Taken together, our study demonstrated the tumor promoting roles of SRPK2 in colon cancer cells and SRPK2 might be a promising therapeutic target for colon cancer. PMID:27041240

  20. The LIM-homeodomain transcription factor Islet2a promotes angioblast migration.

    PubMed

    Lamont, Ryan E; Wu, Chang-Yi; Ryu, Jae-Ryeon; Vu, Wendy; Davari, Paniz; Sobering, Ryan E; Kennedy, Regan M; Munsie, Nicole M; Childs, Sarah J

    2016-06-15

    Angioblasts of the developing vascular system require many signaling inputs to initiate their migration, proliferation and differentiation into endothelial cells. What is less studied is which intrinsic cell factors interpret these extrinsic signals. Here, we show the Lim homeodomain transcription factor islet2a (isl2a) is expressed in the lateral posterior mesoderm prior to angioblast migration. isl2a deficient angioblasts show disorganized migration to the midline to form axial vessels and fail to spread around the tailbud of the embryo. Isl2a morphants have fewer vein cells and decreased vein marker expression. We demonstrate that isl2a is required cell autonomously in angioblasts to promote their incorporation into the vein, and is permissive for vein identity. Knockout of isl2a results in decreased migration and proliferation of angioblasts during intersegmental artery growth. Since Notch signaling controls both artery-vein identity and tip-stalk cell formation, we explored the interaction of isl2a and Notch. We find that isl2a expression is negatively regulated by Notch activity, and that isl2a positively regulates flt4, a VEGF-C receptor repressed by Notch during angiogenesis. Thus Isl2a may act as an intermediate between Notch signaling and genetic programs controlling angioblast number and migration, placing it as a novel transcriptional regulator of early angiogenesis. PMID:27126199

  1. Tcf3 promotes cell migration and wound repair through regulation of lipocalin 2

    PubMed Central

    Miao, Qi; Ku, Amy T.; Nishino, Yudai; Howard, Jeffrey M.; Rao, Ajay S.; Shaver, Timothy M.; Garcia, Gloria E.; Le, Diep N.; Karlin, Kristen L.; Westbrook, Thomas F.; Poli, Valeria; Nguyen, Hoang

    2014-01-01

    Cell migration is an integral part of re-epithelialization during skin wound healing, a complex process involving molecular controls that are still largely unknown. Here we identify a novel role for Tcf3, an essential transcription factor regulating embryonic and adult skin stem cell functions, as a key effector of epidermal wound repair. We show that Tcf3 is upregulated in skin wounds and that Tcf3 overexpression accelerates keratinocyte migration and skin wound healing. We also identify Stat3 as an upstream regulator of Tcf3. We show that the pro-migration effects of Tcf3 are non-cell autonomous and occur independently of its ability to interact with β-catenin. Finally, we identify lipocalin-2 as the key secreted factor downstream of Tcf3 that promotes cell migration in vitro and wound healing in vivo. Our findings provide new insights into the molecular controls of wound-associated cell migration and identify potential therapeutic targets for the treatment of defective wound repair. PMID:24909826

  2. SLUG promotes prostate cancer cell migration and invasion via CXCR4/CXCL12 axis

    PubMed Central

    2011-01-01

    Background SLUG is a zinc-finger transcription factor of the Snail/Slug zinc-finger family that plays a role in migration and invasion of tumor cells. Mechanisms by which SLUG promotes migration and invasion in prostate cancers remain elusive. Methods Expression level of CXCR4 and CXCL12 was examined by Western blot, RT-PCR, and qPCR analyses. Forced expression of SLUG was mediated by retroviruses, and SLUG and CXCL12 was downregulated by shRNAs-expressing lentiviruses. Migration and invasion of prostate cancer were measured by scratch-wound assay and invasion assay, respectively. Research We demonstrated that forced expression of SLUG elevated CXCR4 and CXCL12 expression in human prostate cancer cell lines PC3, DU145, 22RV1, and LNCaP; conversely, reduced expression of SLUG by shRNA downregulated CXCR4 and CXCL12 expression at RNA and protein levels in prostate cancer cells. Furthermore, ectopic expression of SLUG increased MMP9 expression and activity in PC3, 22RV1, and DU-145 cells, and SLUG knockdown by shRNA downregulated MMP9 expression. We showed that CXCL12 is required for SLUG-mediated MMP9 expression in prostate cancer cells. Moreover, we found that migration and invasion of prostate cancer cells was increased by ectopic expression of SLUG and decreased by SLUG knockdown. Notably, knockdown of CXCL12 by shRNA impaired SLUG-mediated migration and invasion in prostate cancer cells. Lastly, our data suggest that CXCL12 and SLUG regulate migration and invasion of prostate cancer cells independent of cell growth. Conclusion We provide the first compelling evidence that upregulation of autocrine CXCL12 is a major mechanism underlying SLUG-mediated migration and invasion of prostate cancer cells. Our findings suggest that CXCL12 is a therapeutic target for prostate cancer metastasis. PMID:22074556

  3. Extravillous trophoblast cells-derived exosomes promote vascular smooth muscle cell migration

    PubMed Central

    Salomon, Carlos; Yee, Sarah; Scholz-Romero, Katherin; Kobayashi, Miharu; Vaswani, Kanchan; Kvaskoff, David; Illanes, Sebastian E.; Mitchell, Murray D.; Rice, Gregory E.

    2014-01-01

    Background: Vascular smooth muscle cells (VSMCs) migration is a critical process during human uterine spiral artery (SpA) remodeling and a successful pregnancy. Extravillous trophoblast cells (EVT) interact with VSMC and enhance their migration, however, the mechanisms by which EVT remodel SpA remain to be fully elucidated. We hypothesize that exosomes released from EVT promote VSMC migration. Methods: JEG-3 and HTR-8/SVneo cell lines were used as models for EVT. Cells were cultured at 37°C and humidified under an atmosphere of 5% CO2-balanced N2 to obtain 8% O2. Cell-conditioned media were collected, and exosomes (exo-JEG-3 and exo- HTR-8/SVneo) isolated by differential and buoyant density centrifugation. The effects of exo-EVT on VSMC migration were established using a real-time, live-cell imaging system (Incucyte™). Exosomal proteins where identified by mass spectrometry and submitted to bioinformatic pathway analysis (Ingenuity software). Results: HTR-8/SVneo cells were significantly more (~30%) invasive than JEG-3 cells. HTR-8/SVneo cells released 2.6-fold more exosomes (6.39 × 108 ± 2.5 × 108 particles/106 cells) compared to JEG-3 (2.86 × 108 ± 0.78 × 108 particles/106 cells). VSMC migration was significantly increased in the presence of exo-JEG-3 and exo-HTR-8/SVneo compared to control (−exosomes) (21.83 ± 0.49 h and 15.57 ± 0.32, respectively, vs. control 25.09 ± 0.58 h, p < 0.05). Sonication completely abolished the effect of exosomes on VSMC migration. Finally, mass spectrometry analysis identified unique exosomal proteins for each EVT cell line-derived exosomes. Conclusion: The data obtained in this study are consistent with the hypothesis that the release, content, and bioactivity of exosomes derived from EVT-like cell lines is cell origin-dependent and differentially regulates VSMC migration. Thus, an EVT exosomal signaling pathway may contribute to SpA remodeling by promoting the migration of VSMC out of the vessel walls. PMID:25157233

  4. Adiponectin Reduces Hepatic Stellate Cell Migration by Promoting Tissue Inhibitor of Metalloproteinase-1 (TIMP-1) Secretion*

    PubMed Central

    Ramezani-Moghadam, Mehdi; Wang, Jianhua; Ho, Vikki; Iseli, Tristan J.; Alzahrani, Badr; Xu, Aimin; Van der Poorten, David; Qiao, Liang; George, Jacob; Hebbard, Lionel

    2015-01-01

    Hepatic stellate cells (HSC) are central players in liver fibrosis that when activated, proliferate, migrate to sites of liver injury, and secrete extracellular matrix. Obesity, a known risk factor for liver fibrosis is associated with reduced levels of adiponectin, a protein that inhibits liver fibrosis in vivo and limits HSC proliferation and migration in vitro. Adiponectin-mediated activation of adenosine monophosphate-activated kinase (AMPK) inhibits HSC proliferation, but the mechanism by which it limits HSC migration to sites of injury is unknown. Here we sought to elucidate how adiponectin regulates HSC motility. Primary rat HSCs were isolated and treated with adiponectin in migration assays. The in vivo actions of adiponectin were examined by treating mice with carbon tetrachloride for 12 weeks and then injecting them with adiponectin. Cell and tissue samples were collected and analyzed for gene expression, signaling, and histology. Serum from patients with liver fibrosis was examined for adiponectin and tissue inhibitor of metalloproteinase-1 (TIMP-1) protein. Adiponectin administration into mice increased TIMP-1 gene and protein expression. In cultured HSCs, adiponectin promoted TIMP-1 expression and through binding of TIMP-1 to the CD63/β1-integrin complex reduced phosphorylation of focal adhesion kinase to limit HSC migration. In mice with liver fibrosis, adiponectin had similar effects and limited focal adhesion kinase phosphorylation. Finally, in patients with advanced fibrosis, there was a positive correlation between serum adiponectin and TIMP-1 levels. In sum, these data show that adiponectin stimulates TIMP-1 secretion by HSCs to retard their migration and contributes to the anti-fibrotic effects of adiponectin. PMID:25575598

  5. Downregulation of SOK1 promotes the migration of MCF-7 cells

    SciTech Connect

    Chen, Xu-Dong; Cho, Chien-Yu

    2011-04-08

    Highlights: {yields} SOK1 is a member of GCK-III subfamily. It is activated by oxidative stress or chemical anoxia. {yields} Barr's group have found that autophosphorylation of SOK1 is triggered by binding to the Golgi matrix protein GM130 and made the cells migration through dimeric adaptor protein 14-3-3. {yields} But what we found is that downregulation of SOK1 promotes cell migration and leads to the upregulation of GM130 and Tyr861 of FAK in MCF-7 cells. -- Abstract: SOK1 is a member of the germinal center kinase (GCK-III) subfamily but little is known about it, particularly with respect to its role in signal transduction pathways relative to tumor metastasis. By stably transfecting SOK1 siRNA into the MCF-7 breast cancer cell line we found that SOK1 promotes the migration of MCF-7 cells, as determined using wound-healing and Boyden chamber assays. However, cell proliferation assays revealed that silencing SOK1 had no effect on cell growth relative to the normal cells. Silencing SOK1 also had an effect on the expression and phosphorylation status of a number of proteins in MCF-7 cells, including FAK and GM130, whereby a decrease in SOK1 led to an increase in the expression of these proteins.

  6. Depletion of kinesin-12, a myosin-IIB-interacting protein, promotes migration of cortical astrocytes.

    PubMed

    Feng, Jie; Hu, Zunlu; Chen, Haijiao; Hua, Juan; Wu, Ronghua; Dong, Zhangji; Qiang, Liang; Liu, Yan; Baas, Peter W; Liu, Mei

    2016-06-15

    Kinesin-12 (also named Kif15) participates in important events during neuronal development, such as cell division of neuronal precursors, migration of young neurons and establishment of axons and dendritic arbors, by regulating microtubule organization. Little is known about the molecular mechanisms behind the functions of kinesin-12, and even less is known about its roles in other cell types of the nervous system. Here, we show that kinesin-12 depletion from cultured rat cortical astrocytes decreases cell proliferation but increases migration. Co-immunoprecipitation, GST pulldown and small interfering RNA (siRNA) experiments indicated that kinesin-12 directly interacts with myosin-IIB through their tail domains. Immunofluorescence analyses indicated that kinesin-12 and myosin-IIB colocalize in the lamellar region of astrocytes, and fluorescence resonance energy transfer analyses revealed an interaction between the two. The phosphorylation at Thr1142 of kinesin-12 was vital for their interaction. Loss of their interaction through expression of a phosphorylation mutant of kinesin-12 promoted astrocyte migration. We suggest that kinesin-12 and myosin-IIB can form a hetero-oligomer that generates force to integrate microtubules and actin filaments in certain regions of cells, and in the case of astrocytes, that this interaction can modulate their migration. PMID:27170353

  7. COPD promotes migration of A549 lung cancer cells: the role of chemokine CCL21.

    PubMed

    Kuźnar-Kamińska, Barbara; Mikuła-Pietrasik, Justyna; Sosińska, Patrycja; Książek, Krzysztof; Batura-Gabryel, Halina

    2016-01-01

    Patients with COPD develop lung cancer more frequently than healthy smokers. At the same time, molecular mediators promoting various aspects of cancer cell progression are still elusive. In this report, we examined whether COPD can be coupled with increased migration of non-small-cell lung cancer cells A549 and, if so, whether this effect may be related to altered production and activity of chemokines CCL21, CXCL5, and CXCL12. The study showed that the migration of A549 cells through the polycarbonate membrane and basement membrane extract toward a chemotactic gradient elicited by serum from patients with COPD was markedly higher as compared with serum from healthy donors. The concentration of CCL21 and CXCL12, but not CXCL5, in serum from patients with COPD was also increased. Experiments in which CCL21- and CXCL12-dependent signaling was blocked revealed that increased migration of the cancer cells upon treatment with serum from patients with COPD was mediated exclusively by CCL21. Collectively, our results indicate that COPD may contribute to the progression of lung cancer via CCL21-dependent intensification of cancer cell migration. PMID:27307721

  8. Lactobacillus rhamnosus GG Lysate Increases Re-Epithelialization of Keratinocyte Scratch Assays by Promoting Migration

    PubMed Central

    Mohammedsaeed, Walaa; Cruickshank, Sheena; McBain, Andrew J.; O’Neill, Catherine A.

    2015-01-01

    A limited number of studies have investigated the potential of probiotics to promote wound healing in the digestive tract. The aim of the current investigation was to determine whether probiotic bacteria or their extracts could be beneficial in cutaneous wound healing. A keratinocyte monolayer scratch assay was used to assess re-epithelialization; which comprises keratinocyte proliferation and migration. Primary human keratinocyte monolayers were scratched then exposed to lysates of Lactobacillus (L) rhamnosus GG, L. reuteri, L. plantarum or L. fermentum. Re-epithelialization of treated monolayers was compared to that of untreated controls. Lysates of L. rhamnosus GG and L. reuteri significantly increased the rate of re-epithelialization, with L. rhamnosus GG being the most efficacious. L. reuteri increased keratinocyte proliferation while L. rhamnosus GG lysate significantly increased proliferation and migration. Microarray analysis of L. rhamnosus GG treated scratches showed increased expression of multiple genes including the chemokine CXCL2 and its receptor CXCR2. These are involved in normal wound healing where they stimulate keratinocyte proliferation and/or migration. Increased protein expression of both CXCL2 and CXCR2 were confirmed by ELISA and immunoblotting. These data demonstrate that L. rhamnosus GG lysate accelerates re-epithelialization of keratinocyte scratch assays, potentially via chemokine receptor pairs that induce keratinocyte migration. PMID:26537246

  9. Dynamic myosin activation promotes collective morphology and migration by locally balancing oppositional forces from surrounding tissue

    PubMed Central

    Aranjuez, George; Burtscher, Ashley; Sawant, Ketki; Majumder, Pralay; McDonald, Jocelyn A.

    2016-01-01

    Migrating cells need to overcome physical constraints from the local microenvironment to navigate their way through tissues. Cells that move collectively have the additional challenge of negotiating complex environments in vivo while maintaining cohesion of the group as a whole. The mechanisms by which collectives maintain a migratory morphology while resisting physical constraints from the surrounding tissue are poorly understood. Drosophila border cells represent a genetic model of collective migration within a cell-dense tissue. Border cells move as a cohesive group of 6−10 cells, traversing a network of large germ line–derived nurse cells within the ovary. Here we show that the border cell cluster is compact and round throughout their entire migration, a shape that is maintained despite the mechanical pressure imposed by the surrounding nurse cells. Nonmuscle myosin II (Myo-II) activity at the cluster periphery becomes elevated in response to increased constriction by nurse cells. Furthermore, the distinctive border cell collective morphology requires highly dynamic and localized enrichment of Myo-II. Thus, activated Myo-II promotes cortical tension at the outer edge of the migrating border cell cluster to resist compressive forces from nurse cells. We propose that dynamic actomyosin tension at the periphery of collectives facilitates their movement through restrictive tissues. PMID:27122602

  10. Lactobacillus rhamnosus GG Lysate Increases Re-Epithelialization of Keratinocyte Scratch Assays by Promoting Migration.

    PubMed

    Mohammedsaeed, Walaa; Cruickshank, Sheena; McBain, Andrew J; O'Neill, Catherine A

    2015-01-01

    A limited number of studies have investigated the potential of probiotics to promote wound healing in the digestive tract. The aim of the current investigation was to determine whether probiotic bacteria or their extracts could be beneficial in cutaneous wound healing. A keratinocyte monolayer scratch assay was used to assess re-epithelialization; which comprises keratinocyte proliferation and migration. Primary human keratinocyte monolayers were scratched then exposed to lysates of Lactobacillus (L) rhamnosus GG, L. reuteri, L. plantarum or L. fermentum. Re-epithelialization of treated monolayers was compared to that of untreated controls. Lysates of L. rhamnosus GG and L. reuteri significantly increased the rate of re-epithelialization, with L. rhamnosus GG being the most efficacious. L. reuteri increased keratinocyte proliferation while L. rhamnosus GG lysate significantly increased proliferation and migration. Microarray analysis of L. rhamnosus GG treated scratches showed increased expression of multiple genes including the chemokine CXCL2 and its receptor CXCR2. These are involved in normal wound healing where they stimulate keratinocyte proliferation and/or migration. Increased protein expression of both CXCL2 and CXCR2 were confirmed by ELISA and immunoblotting. These data demonstrate that L. rhamnosus GG lysate accelerates re-epithelialization of keratinocyte scratch assays, potentially via chemokine receptor pairs that induce keratinocyte migration. PMID:26537246

  11. Dynamic myosin activation promotes collective morphology and migration by locally balancing oppositional forces from surrounding tissue.

    PubMed

    Aranjuez, George; Burtscher, Ashley; Sawant, Ketki; Majumder, Pralay; McDonald, Jocelyn A

    2016-06-15

    Migrating cells need to overcome physical constraints from the local microenvironment to navigate their way through tissues. Cells that move collectively have the additional challenge of negotiating complex environments in vivo while maintaining cohesion of the group as a whole. The mechanisms by which collectives maintain a migratory morphology while resisting physical constraints from the surrounding tissue are poorly understood. Drosophila border cells represent a genetic model of collective migration within a cell-dense tissue. Border cells move as a cohesive group of 6-10 cells, traversing a network of large germ line-derived nurse cells within the ovary. Here we show that the border cell cluster is compact and round throughout their entire migration, a shape that is maintained despite the mechanical pressure imposed by the surrounding nurse cells. Nonmuscle myosin II (Myo-II) activity at the cluster periphery becomes elevated in response to increased constriction by nurse cells. Furthermore, the distinctive border cell collective morphology requires highly dynamic and localized enrichment of Myo-II. Thus, activated Myo-II promotes cortical tension at the outer edge of the migrating border cell cluster to resist compressive forces from nurse cells. We propose that dynamic actomyosin tension at the periphery of collectives facilitates their movement through restrictive tissues. PMID:27122602

  12. Low-intensity pulsed ultrasound promotes chondrogenic progenitor cell migration via focal adhesion kinase pathway.

    PubMed

    Jang, Kee W; Ding, Lei; Seol, Dongrim; Lim, Tae-Hong; Buckwalter, Joseph A; Martin, James A

    2014-06-01

    Low-intensity pulsed ultrasound (LIPUS) has been studied frequently for its beneficial effects on the repair of injured articular cartilage. We hypothesized that these effects are due to stimulation of chondrogenic progenitor cell (CPC) migration toward injured areas of cartilage through focal adhesion kinase (FAK) activation. CPC chemotaxis in bluntly injured osteochondral explants was examined by confocal microscopy, and migratory activity of cultured CPCs was measured in transwell and monolayer scratch assays. FAK activation by LIPUS was analyzed in cultured CPCs by Western blot. LIPUS effects were compared with the effects of two known chemotactic factors: N-formyl-methionyl-leucyl-phenylalanine (fMLF) and high-mobility group box 1 (HMGB1) protein. LIPUS significantly enhanced CPC migration on explants and in cell culture assays. Phosphorylation of FAK at the kinase domain (Tyr 576/577) was maximized by 5 min of exposure to LIPUS at a dose of 27.5 mW/cm(2) and frequency of 3.5 MHz. Treatment with fMLF, but not HMBG1, enhanced FAK activation to a degree similar to that of LIPUS, but neither fMLF nor HMGB1 enhanced the LIPUS effect. LIPUS-induced CPC migration was blocked by suppressing FAK phosphorylation with a Src family kinase inhibitor that blocks FAK phosphorylation. Our results imply that LIPUS might be used to promote cartilage healing by inducing the migration of CPCs to injured sites, which could delay or prevent the onset of post-traumatic osteoarthritis. PMID:24612644

  13. Formylpeptide Receptors Promote the Migration and Differentiation of Rat Neural Stem Cells

    PubMed Central

    Wang, Guan; Zhang, Liang; Chen, Xingxing; Xue, Xin; Guo, Qiaonan; Liu, Mingyong; Zhao, Jianhua

    2016-01-01

    Neural stem cells (NSCs) bear characteristics for proliferation, migration and differentiation into three main neural cell type(s): neurons, astrocytes and/or oligodendrocytes. Formylpeptide receptors (Fprs), belonging to the family of G protein-coupled chemoattractant receptors, have been detected on neurons in the central nervous system (CNS). Here, we report that Fpr1 and Fpr2 are expressed on NSCs as detected with immunohistochemistry, RT-PCR and WB assays. In addition, Fpr1 and Fpr2 promoted NSC migration through F-actin polymerization and skewed NSC differentiation to neurons. Our study demonstrates a unique role of Fpr1 and Fpr2 in NSCs and opens a novel window for cell replacement therapies for brain and spinal cord injury. PMID:27173446

  14. Securin promotes migration and invasion via matrix metalloproteinases in glioma cells

    PubMed Central

    YAN, HAICHENG; WANG, WEI; DOU, CHANGWU; TIAN, FUMING; QI, SONGTAO

    2015-01-01

    Human securin, encoded by pituitary tumor transforming gene 1, is implicated in several oncogenic processes in the pathogenesis of brain tumors, including glioma. The aim of the present study was to examine the effect of securin on the migration and invasion of glioma cells. The results revealed that the overexpression of securin in glioma LN-229 cells significantly increased the invasion and transmigration abilities. By contrast, these abilities were significantly reduced by the downregulation of securin in glioma U373 cells. Furthermore, the results demonstrated that securin overexpression and downregulation significantly increased and decreased the levels of matrix metalloproteinase 2 and 9, respectively. These findings indicate a promotive role for securin in glioma migration and invasion, which may involve the action of matrix metalloproteinases. PMID:26137166

  15. Formylpeptide Receptors Promote the Migration and Differentiation of Rat Neural Stem Cells.

    PubMed

    Wang, Guan; Zhang, Liang; Chen, Xingxing; Xue, Xin; Guo, Qiaonan; Liu, Mingyong; Zhao, Jianhua

    2016-01-01

    Neural stem cells (NSCs) bear characteristics for proliferation, migration and differentiation into three main neural cell type(s): neurons, astrocytes and/or oligodendrocytes. Formylpeptide receptors (Fprs), belonging to the family of G protein-coupled chemoattractant receptors, have been detected on neurons in the central nervous system (CNS). Here, we report that Fpr1 and Fpr2 are expressed on NSCs as detected with immunohistochemistry, RT-PCR and WB assays. In addition, Fpr1 and Fpr2 promoted NSC migration through F-actin polymerization and skewed NSC differentiation to neurons. Our study demonstrates a unique role of Fpr1 and Fpr2 in NSCs and opens a novel window for cell replacement therapies for brain and spinal cord injury. PMID:27173446

  16. Membrane-Type 1 Matrix Metalloproteinase Cleaves Cd44 and Promotes Cell Migration

    PubMed Central

    Kajita, Masahiro; Itoh, Yoshifumi; Chiba, Tadashige; Mori, Hidetoshi; Okada, Akiko; Kinoh, Hiroaki; Seiki, Motoharu

    2001-01-01

    Migratory cells including invasive tumor cells frequently express CD44, a major receptor for hyaluronan and membrane-type 1 matrix metalloproteinase (MT1-MMP) that degrades extracellular matrix at the pericellular region. In this study, we demonstrate that MT1-MMP acts as a processing enzyme for CD44H, releasing it into the medium as a soluble 70-kD fragment. Furthermore, this processing event stimulates cell motility; however, expression of either CD44H or MT1-MMP alone did not stimulate cell motility. Coexpression of MT1-MMP and mutant CD44H lacking the MT1-MMP–processing site did not result in shedding and did not promote cell migration, suggesting that the processing of CD44H by MT1-MMP is critical in the migratory stimulation. Moreover, expression of the mutant CD44H inhibited the cell migration promoted by CD44H and MT1-MMP in a dominant-negative manner. The pancreatic tumor cell line, MIA PaCa-2, was found to shed the 70-kD CD44H fragment in a MT1-MMP–dependent manner. Expression of the mutant CD44H in the cells as well as MMP inhibitor treatment effectively inhibited the migration, suggesting that MIA PaCa-2 cells indeed use the CD44H and MT1-MMP as migratory devices. These findings revealed a novel interaction of the two molecules that have each been implicated in tumor cell migration and invasion. PMID:11381077

  17. [Overexpression of IL-8 promotes migration of BT549 breast cancer cells].

    PubMed

    Deng, Fang; Wang, Jing; Fan, Mengtian; Guo, Yangliu; Li, Ya; Shi, Qiong

    2016-05-01

    Objective To construct a recombinant adenovirus vector containing IL-8 gene and observe its effect on the proliferation, cell cycle and migration of BT549 breast cancer cells. Methods IL-8 gene was amplified by PCR using the cDNA from 143B bone sarcoma cells and inserted into shuttle plasmid pAdTrack-TO4. The recombinant shuttle plasmid pAdTrack-TO4-IL-8 was digested by PmeI and then transformed to AdEasier competent cells. The obtained recombinant adenovirus plasmid pAdIL-8 was digested by PacI, and then transfected to HEK293 cells for package and amplification by Lipofectamine(TM) 2000. The titer was tested by dilution assay. The expression of IL-8 mRNA and protein in BT549 cells was detected by reverse transcription PCR and ELISA, respectively. Effect of IL-8 overexpression on proliferation, cell cycle and migration in BT549 cells was respectively investigated by MTT assay, flow cytometry and wound-healing test. Results PCR and DNA sequence analysis verified the recombinant shuttle plasmid pAdTrack-TO4-IL-8. Restriction enzymes PacI confirmed the recombinant adenovirus plasmid pAdIL-8. IL-8 was overexpressed in BT549 cells after AdIL-8 infection. Overexpression of IL-8 promoted BT549 cell migration and arrested the cell cycle in the S phase, but it made no significant difference in the proliferation of BT549 cells. Conclusion IL-8 overexpression can promote migration of BT549 breast cancer cells. PMID:27126933

  18. Dentin Matrix Protein-1 Isoforms Promote Differential Cell Attachment and Migration*S⃞

    PubMed Central

    von Marschall, Zofia; Fisher, Larry W.

    2008-01-01

    Dentin matrix protein-1 (DMP1), bone sialoprotein (BSP), and osteopontin (OPN) are three SIBLINGs (small integrin-binding ligand, N-linked glycoproteins) co-expressed/secreted by skeletal and active ductal epithelial cells. Although etiological mechanisms remain unclear, DMP1 is the only one of these three genes currently known to have mutations resulting in human disease, and yet it remains the least studied. All three contain the highly conserved integrin-binding tripeptide, RGD, and experiments comparing the cell attachment and haptotactic migration-enhancing properties of DMP1 to BSP and OPN were performed using human skeletal (MG63 and primary dental pulp cells) and salivary gland (HSG) cells. Mutation of any SIBLING's RGD destroyed all attachment and migration activity. Using itsαVβ5 integrin, HSG cells attached to BSP but not to DMP1 or OPN. However, HSG cells could not migrate onto BSP in a modified Boyden chamber assay. Expression of αVβ3 integrin enhanced HSG attachment to DMP1 and OPN and promoted haptotactic migration onto all three proteins. Interchanging the first four coding exons or the conserved amino acids adjacent to the RGD of DMP1 with corresponding sequences of BSP did not enhance the ability of DMP1 to bindαVβ5. For αVβ3-expressing cells, intact DMP1, its BMP1-cleaved C-terminal fragment, and exon six lacking all post-translational modifications worked equally well but the proteoglycan isoform of DMP1 had greatly reduced ability for cell attachment and migration. The sequence specificity of the proposed BMP1-cleavage site of DMP1 was verified by mutation analysis. Direct comparison of the three proteins showed that cells discriminate among these SIBLINGs and among DMP1 isoforms. PMID:18819913

  19. CD44 promotes the migration of bone marrow-derived mesenchymal stem cells toward glioma

    PubMed Central

    YIN, QIANG; ZHOU, YANG-YANG; WANG, PENG; MA, LI; LI, PENG; WANG, XIAO-GUANG; SHE, CHUN-HUA; LI, WEN-LIANG

    2016-01-01

    Previous in vivo and in vitro studies have shown that human mesenchymal stem cells (MSCs) exhibit tropism for gliomas. However, the mechanism underlying this directed migration remains unclear. The aim of the present study was to investigate the possible mechanism underlying platelet-derived growth factor-BB (PDGF-BB)-induced chemotactic migration of bone marrow-derived MSCs (BMSCs) toward glioma. Rat glioma C6 cell-conditioned medium was utilized to evaluate the chemotactic response of BMSCs toward glioma using an in vitro migration assay. Recombinant rat PDGF-BB was added to C6 cell-conditioned medium to assess its effect on the tropism of BMSCs. The effect of PDGF-BB on the expression levels of cluster of differentiation (CD)44 in BMSCs was evaluated by reverse transcription-polymerase chain reaction (RT-PCR) and immunofluorescence assays. The results revealed that chemotactic migration was induced in BMSCs by rat glioma C6 cell-conditioned medium, which was enhanced by PDGF-BB treatment in a dose-dependent manner. Furthermore, RT-PCR and immunofluorescence assays showed that CD44 expression was upregulated in BMSCs following treatment with 40 ng/ml PDGF-BB for 12 h. Additionally, 3-h pretreatment with the anti-CD44 neutralizing antibody OX-50 was observed to attenuate the tropism of BMSCs toward glioma in the presence or absence of PDGF-BB. The results of the present study indicate that CD44 mediates the tropism of BMSCs toward glioma, and PDGF-BB promotes the migration of BMSCs toward glioma via the upregulation of CD44 expression in BMSCs. These findings suggest CD44 inhibition may be a potential therapeutic target for the treatment of glioma. PMID:27073479

  20. A novel role of microRNA 17-5p in the modulation of circadian rhythm.

    PubMed

    Gao, Qian; Zhou, Lan; Yang, Su-Yu; Cao, Ji-Min

    2016-01-01

    The circadian clock helps living organisms to adjust their physiology and behaviour to adapt environmental day-night cycles. The period length of circadian rhythm reflects the endogenous cycle transition rate and is modulated by environmental cues or internal molecules, and the latter are of substantial importance but remain poorly revealed. Here, we demonstrated that microRNA 17-5p (miR-17-5p), which has been associated with tumours, was an important factor in controlling the circadian period. MiR-17-5p was rhythmically expressed in synchronised fibroblasts and mouse master clock suprachiasmatic nuclei (SCN). MiR-17-5p and the gene Clock exhibited a reciprocal regulation: miR-17-5p inhibited the translation of Clock by targeting the 3'UTR (untranslated region) of Clock mRNA, whereas the CLOCK protein directly bound to the promoter of miR-17 and enhanced its transcription and production of miR-17-5p. In addition, miR-17-5p suppressed the expression of Npas2. At the cellular level, bidirectional changes in miR-17-5p or CLOCK resulted in CRY1 elevation. Accordingly, in vivo, both increase and decrease of miR-17-5p in the mouse SCN led to an increase in CRY1 level and shortening of the free-running period. We conclude that miR-17-5p has an important role in the inspection and stabilisation of the circadian-clock period by interacting with Clock and Npas2 and potentially via the output of CRY1. PMID:27440219

  1. A novel role of microRNA 17-5p in the modulation of circadian rhythm

    PubMed Central

    Gao, Qian; Zhou, Lan; Yang, Su-Yu; Cao, Ji-Min

    2016-01-01

    The circadian clock helps living organisms to adjust their physiology and behaviour to adapt environmental day-night cycles. The period length of circadian rhythm reflects the endogenous cycle transition rate and is modulated by environmental cues or internal molecules, and the latter are of substantial importance but remain poorly revealed. Here, we demonstrated that microRNA 17-5p (miR-17-5p), which has been associated with tumours, was an important factor in controlling the circadian period. MiR-17-5p was rhythmically expressed in synchronised fibroblasts and mouse master clock suprachiasmatic nuclei (SCN). MiR-17-5p and the gene Clock exhibited a reciprocal regulation: miR-17-5p inhibited the translation of Clock by targeting the 3′UTR (untranslated region) of Clock mRNA, whereas the CLOCK protein directly bound to the promoter of miR-17 and enhanced its transcription and production of miR-17-5p. In addition, miR-17-5p suppressed the expression of Npas2. At the cellular level, bidirectional changes in miR-17-5p or CLOCK resulted in CRY1 elevation. Accordingly, in vivo, both increase and decrease of miR-17-5p in the mouse SCN led to an increase in CRY1 level and shortening of the free-running period. We conclude that miR-17-5p has an important role in the inspection and stabilisation of the circadian-clock period by interacting with Clock and Npas2 and potentially via the output of CRY1. PMID:27440219

  2. [Migration].

    PubMed

    Maccotta, W; Perotti, A; Thebaut, F; Cristofanelli, L; Pittau, F; Sergi, N; Pittau, L; Morelli, A; Morsella, M; Grinover, A P

    1990-01-01

    This is a collection of 11 individual articles on aspects of current migration problems affecting developed countries. The geographical focus is on immigration in Europe, with particular reference to Italy, although one paper is concerned with Quebec. The topical focus is on the social problems associated with immigration. The articles are in Italian, with one exception, which is in French. PMID:12343393

  3. PFTK1 Promotes Gastric Cancer Progression by Regulating Proliferation, Migration and Invasion.

    PubMed

    Yang, Lei; Zhu, Jia; Huang, Hua; Yang, Qichang; Cai, Jing; Wang, Qiuhong; Zhu, Junya; Shao, Mengting; Xiao, Jinzhang; Cao, Jie; Gu, Xiaodan; Zhang, Shusen; Wang, Yingying

    2015-01-01

    PFTK1, also known as PFTAIRE1, CDK14, is a novel member of Cdc2-related serine/threonine protein kinases. Recent studies show that PFTK1 is highly expressed in several malignant tumors such as hepatocellular carcinoma, esophageal cancer, breast cancer, and involved in regulation of cell cycle, tumors proliferation, migration, and invasion that further influence the prognosis of tumors. However, the expression and physiological significance of PFTK1 in gastric cancer remain unclear. In this study, we analyzed the expression and clinical significance of PFTK1 by Western blot in 8 paired fresh gastric cancer tissues, nontumorous gastric mucosal tissues and immunohistochemistry on 161 paraffinembedded slices. High PFTK1 expression was correlated with the tumor grade, lymph node invasion as well as Ki-67. Through Cell Counting Kit (CCK)-8 assay, flow cytometry, colony formation, wound healing and transwell assays, the vitro studies demonstrated that PFTK1 overexpression promoted proliferation, migration and invasion of gastric cancer cells, while PFTK1 knockdown led to the opposite results. Our findings for the first time supported that PFTK1 might play an important role in the regulation of gastric cancer proliferation, migration and would provide a novel promising therapeutic strategy against human gastric cancer. PMID:26488471

  4. Tenascin-C promotes migration of hepatic stellate cells and production of type I collagen.

    PubMed

    Ma, Jian-Cang; Huang, Xin; Shen, Ya-Wei; Zheng, Chen; Su, Qing-Hua; Xu, Jin-Kai; Zhao, Jun

    2016-08-01

    Tenascin-C (TN-C) is an extracellular matrix glycoprotein markedly upregulated during liver fibrosis. The study is performed to explore the role of TN-C during the growth and activation of hepatic stellate cells (HSCs). We found that TN-C was accumulated accompanying with the HSC activation. Our data on cell migration assay revealed that the rTN-C treatment enhanced HSC migration in a dose- and time-dependent manner, but did not influence their proliferation. HSCs transfected with pTARGET-TN-C overexpression vector displayed increased the type I collagen (Col I) production. TN-C overexpression enhanced the process of HSC activation through TGF-β1 signaling. Moreover, the anti-α9β1 integrin antibody treatment blocked the TN-C-driven Col I increase in rat HSCs. Collectively, TN-C had a positive role in activation of HSCs mediated by TGF-β1 and α9β1 integrin, manifesting elevation of Col I production and promotion of cell migration. Our results provide a potential insight for the therapy of hepatic fibrosis. PMID:27031437

  5. PFTK1 Promotes Gastric Cancer Progression by Regulating Proliferation, Migration and Invasion

    PubMed Central

    Huang, Hua; Yang, Qichang; Cai, Jing; Wang, Qiuhong; Zhu, Junya; Shao, Mengting; Xiao, Jinzhang; Cao, Jie; Gu, Xiaodan; Zhang, Shusen; Wang, Yingying

    2015-01-01

    PFTK1, also known as PFTAIRE1, CDK14, is a novel member of Cdc2-related serine/threonine protein kinases. Recent studies show that PFTK1 is highly expressed in several malignant tumors such as hepatocellular carcinoma, esophageal cancer, breast cancer, and involved in regulation of cell cycle, tumors proliferation, migration, and invasion that further influence the prognosis of tumors. However, the expression and physiological significance of PFTK1 in gastric cancer remain unclear. In this study, we analyzed the expression and clinical significance of PFTK1 by Western blot in 8 paired fresh gastric cancer tissues, nontumorous gastric mucosal tissues and immunohistochemistry on 161 paraffinembedded slices. High PFTK1 expression was correlated with the tumor grade, lymph node invasion as well as Ki-67. Through Cell Counting Kit (CCK)-8 assay, flow cytometry, colony formation, wound healing and transwell assays, the vitro studies demonstrated that PFTK1 overexpression promoted proliferation, migration and invasion of gastric cancer cells, while PFTK1 knockdown led to the opposite results. Our findings for the first time supported that PFTK1 might play an important role in the regulation of gastric cancer proliferation, migration and would provide a novel promising therapeutic strategy against human gastric cancer. PMID:26488471

  6. TRIM59 is upregulated and promotes cell proliferation and migration in human osteosarcoma.

    PubMed

    Liang, Jinqian; Xing, Dan; Li, Zheng; Shen, Jianxiong; Zhao, Hong; Li, Shugang

    2016-06-01

    Osteosarcoma is a prevalent type of cancer and has a high metastatic ability, particularly for metastasis to the lungs. Effective treatment strategies have improved, however, the detailed molecular mechanism underlying the onset of this malignancy remains to be fully elucidated. The current study investigated the role of the tripartite motif (TRIM) family protein TRIM59 in osteosarcoma growth and metastasis. It was identified that TRIM59 was overexpressed in clinical osteosarcoma tissues and cultured osteosarcoma cell lines. In addition, the MTT assay demonstrated that in U2OS and MG63 cells, knockdown of TRIM59 by specific siRNA inhibited proliferation, whereas overexpression of TRIM59 promoted cell proliferation. Furthermore, overexpression of TRIM59 significantly increased the U2OS cell migrative and invasive abilities in a Transwell chamber assay. In addition, TRIM59 was able to negatively regulate the protein levels of P53 without significantly affecting the mRNA levels in U2OS and MG63 cells. These data suggest the oncogenic abilities of TRIM59 in osteosarcoma, which promote osteosarcoma cell proliferation, migration and invasion. PMID:27121462

  7. Sympathetic stimulation facilitates thrombopoiesis by promoting megakaryocyte adhesion, migration, and proplatelet formation.

    PubMed

    Chen, Shilei; Du, Changhong; Shen, Mingqiang; Zhao, Gaomei; Xu, Yang; Yang, Ke; Wang, Xinmiao; Li, Fengju; Zeng, Dongfeng; Chen, Fang; Wang, Song; Chen, Mo; Wang, Cheng; He, Ting; Wang, Fengchao; Wang, Aiping; Cheng, Tianmin; Su, Yongping; Zhao, Jinghong; Wang, Junping

    2016-02-25

    The effect of sympathetic stimulation on thrombopoiesis is not well understood. Here, we demonstrate that both continual noise and exhaustive exercise elevate peripheral platelet levels in normal and splenectomized mice, but not in dopamine β-hydroxylase-deficient (Dbh(-/-)) mice that lack norepinephrine (NE) and epinephrine (EPI). Further investigation demonstrates that sympathetic stimulation via NE or EPI injection markedly promotes platelet recovery in mice with thrombocytopenia induced by 6.0 Gy of total-body irradiation and in mice that received bone marrow transplants after 10.0 Gy of lethal irradiation. Unfavorably, sympathetic stress-stimulated thrombopoiesis may also contribute to the pathogenesis of atherosclerosis by increasing both the amount and activity of platelets in apolipoprotein E-deficient (ApoE(-/-)) mice. In vitro studies reveal that both NE and EPI promote megakaryocyte adhesion, migration, and proplatelet formation (PPF) in addition to the expansion of CD34(+) cells, thereby facilitating platelet production. It is found that α2-adrenoceptor-mediated extracellular signal-regulated kinase 1/2 (ERK1/2) activation is involved in NE- and EPI-induced megakaryocyte adhesion and migration, and PPF is regulated by ERK1/2 activation-mediated RhoA GTPase signaling. Our data deeply characterize the role of sympathetic stimulation in the regulation of thrombopoiesis and reevaluate its physiopathological implications. PMID:26644453

  8. MAGE-A1 promotes melanoma proliferation and migration through C-JUN activation.

    PubMed

    Wang, Dong; Wang, Junyun; Ding, Nan; Li, Yongjun; Yang, Yaran; Fang, Xiangdong; Zhao, Hua

    2016-05-13

    MAGE-A1 belongs to the chromosome X-clustered genes of cancer-testis antigen family and is normally expressed in the human germ line but is also overexpressed in various tumors. Previous studies of MAGE-A1 in melanoma mainly focused on methylation changes or its role in immunotherapy, however, its biological functions in melanoma have remained unknown. In order to determine the role of MAGE-A1 in melanoma growth and metastasis, we manipulated melanoma cell lines with overexpression and knockdown of MAGE-A1. Integration of cell proliferation assays, transwell migration and invasion assays, and RNA-Seq analysis revealed that up-regulation of MAGE-A1 dramatically promoted proliferation, migration, and invasion of human melanoma cell lines in vitro, while down-regulation of MAGE-A1 inhibited those characteristics associated with tumor cells. Furthermore, transcriptome sequencing revealed that MAGE-A1 exerts its tumor promoting activity by activating p-C-JUN directly or through ERK-MAPK signaling pathways. Based on our findings, we propose that MAGE-A1 may be a potential therapeutic target for melanoma patients. PMID:27045082

  9. High mobility group box 1 promotes tumor cell migration through epigenetic silencing of semaphorin 3A.

    PubMed

    Nehil, M; Paquette, J; Tokuyasu, T; McCormick, F

    2014-10-30

    High mobility group box 1 (HMGB1) is a 25-kDa chromatin-associated protein that aids in transcription and DNA repair by directly binding to DNA and altering its conformation. Additionally, HMGB1 can act as an extracellular ligand. When released from dying or stressed cells, HMGB1 binds to the RAGE receptor and activates the p42/44 MAP kinase (MAPK) cascade. HMGB1 is overexpressed in many types of cancer and frequently associated with tumor stage and metastasis. This has predominantly been attributed to an autocrine function that drives MAPK pathway activity. However, by using tumor cells with activating MAPK pathway mutations, we have identified a role for HMGB1 in promoting metastasis and tumor growth that is independent of this pathway. In the absence of HMGB1, these tumor cells show defective in vitro migration as well as reduced metastasis and tumor growth in vivo despite high p42/44 phosphorylation. We found that semaphorin 3A (SEMA3A), previously shown to act as a suppressor of angiogenesis and migration, was highly increased during expression in the absence of HMGB1. SEMA3A/HMGB1 double knockdown rescued the migration defect in HMGB1 single knockdown cells. HMGB1 bound at the semaphorin 3A genomic locus, promoted hetrochromatin formation, and decreased occupancy of acetylated histones. Based on human tumor gene expression databases, HMGB1 was significantly inversely correlated with SEMA3A, suggesting that this mechanism may be more widely relevant in different cancer types. PMID:24213571

  10. Pin1 promotes transforming growth factor-beta-induced migration and invasion.

    PubMed

    Matsuura, Isao; Chiang, Keng-Nan; Lai, Chen-Yu; He, Dongming; Wang, Guannan; Ramkumar, Romila; Uchida, Takafumi; Ryo, Akihide; Lu, Kunping; Liu, Fang

    2010-01-15

    Transforming growth factor-beta (TGF-beta) regulates a wide variety of biological activities. It induces potent growth-inhibitory responses in normal cells but promotes migration and invasion of cancer cells. Smads mediate the TGF-beta responses. TGF-beta binding to the cell surface receptors leads to the phosphorylation of Smad2/3 in their C terminus as well as in the proline-rich linker region. The serine/threonine phosphorylation sites in the linker region are followed by the proline residue. Pin1, a peptidyl-prolyl cis/trans isomerase, recognizes phosphorylated serine/threonine-proline motifs. Here we show that Smad2/3 interacts with Pin1 in a TGF-beta-dependent manner. We further show that the phosphorylated threonine 179-proline motif in the Smad3 linker region is the major binding site for Pin1. Although epidermal growth factor also induces phosphorylation of threonine 179 and other residues in the Smad3 linker region the same as TGF-beta, Pin1 is unable to bind to the epidermal growth factor-stimulated Smad3. Further analysis suggests that phosphorylation of Smad3 in the C terminus is necessary for the interaction with Pin1. Depletion of Pin1 by small hairpin RNA does not significantly affect TGF-beta-induced growth-inhibitory responses and a number of TGF-beta/Smad target genes analyzed. In contrast, knockdown of Pin1 in human PC3 prostate cancer cells strongly inhibited TGF-beta-mediated migration and invasion. Accordingly, TGF-beta induction of N-cadherin, which plays an important role in migration and invasion, is markedly reduced when Pin1 is depleted in PC3 cells. Because Pin1 is overexpressed in many cancers, our findings highlight the importance of Pin1 in TGF-beta-induced migration and invasion of cancer cells. PMID:19920136

  11. LOW-INTENSITY PULSED ULTRASOUND PROMOTES CHONDROGENIC PROGENITOR CELL MIGRATION VIA FOCAL ADHESION KINASE PATHWAY

    PubMed Central

    Jang, Kee W.; Ding, Lei; Seol, Dongrim; Lim, Tae-hong; Buckwalter, Joseph A.; Martin, James A.

    2014-01-01

    Low-intensity pulsed ultrasound (LIPUS) has been frequently studied for its beneficial effects on the repair of injured articular cartilage. Here, we hypothesized that these effects are due to stimulation of chondrogenic progenitor cell (CPC) migration toward injured areas in cartilage through focal adhesion kinase (FAK) activation. CPC chemotaxis in bluntly impacted osteochondral explants was examined by confocal microscopy and migratory activity of cultured CPCs was measured in trans-well and monolayer scratch assays. FAK activation by LIPUS was analyzed in cultured CPCs by western blot. LIPUS effects were compared with the effects of two known chemotactic factors; formylated-methionine peptides (fMLF), and high-mobility group box 1 (HMGB1) protein. LIPUS significantly enhanced CPC migration on explants and in cell culture assays. Phosphorylation of FAK at the kinase domain (Tyr 576/577) was maximized by 5 minute exposure to LIPUS at a dose of 27.5 mW/cm2 and at a frequency of 3.5 MHz. Treatment with fMLF, but not HMBG1 enhanced FAK activation to a degree similar to LIPUS, but neither fMLF nor HMGB1 enhanced the LIPUS effect. LIPUS-induced CPC migration was blocked by suppressing FAK phosphorylation with a Src family kinases (SFKs) inhibitor that blocks FAK phosphorylation. Our results imply that LIPUS might be utilized to promote cartilage healing by inducing the migration of CPCs to injured sites, which could delay or prevent the onset of post-traumatic osteoarthritis (PTOA). PMID:24612644

  12. HEF1, a Novel Target of Wnt Signaling, Promotes Colonic Cell Migration and Cancer Progression

    PubMed Central

    Li, Yingchun; Bavarva, Jasmin H.; Wang, Zemin; Guo, Jianhui; Qian, Chiping; Thibodeau, Stephen N.; Golemis, Erica A.; Liu, Wanguo

    2011-01-01

    Misregulation of the canonical Wnt/β-catenin pathway and aberrant activation of Wnt signaling target genes are common in colorectal cancer and contribute to cancer progression. Altered expression of HEF1 (Human Enhancer of Filamentation 1, also known as NEDD9 or Cas-L) has been implicated in progression of melanoma, breast, and colorectal cancer. However, the regulation of HEF1 and the role of HEF1 in colorectal cancer tumorigenesis are not fully understood. We here identify HEF1 as a novel Wnt signaling target. The expression of HEF1 was up-regulated by Wnt3a, β-catenin, and Dvl2 in a dose-dependent fashion, and was suppressed following β-catenin down-regulation by shRNA. In addition, elevated HEF1 mRNA and protein levels were observed in colorectal cancer cell lines and primary tumor tissues, as well as in the colon and adenoma polyps of Apcmin/+ mice. Moreover, HEF1 levels in human colorectal tumor tissues increased with the tumor grade. Chromatin immunoprecipitation (ChIP) assays and HEF1 promoter analyses revealed three functional TCF-binding sites in the promoter of HEF1 responsible for HEF1 induction by Wnt signaling. Ectopic expression of HEF1 increased cell proliferation and colony formation, while down-regulation of HEF1 in SW480 cells by shRNA had the opposite effects and inhibited the xenograft tumor growth. Furthermore, overexpression of HEF1 in SW480 cells promoted cell migration and invasion. Together, our results determined a novel role of HEF1 as a mediator of the canonical Wnt/β-catenin signaling pathway for cell proliferation, migration, and tumorigenesis, as well as an important player in colorectal tumorigenesis and progression. HEF1 may represent an attractive candidate for drug targeting in colorectal cancer. PMID:21317929

  13. Mycoplasma hyorhinis Activates the NLRP3 Inflammasome and Promotes Migration and Invasion of Gastric Cancer Cells

    PubMed Central

    Yao, Xiaomin; Xing, Yue; Wang, Xun; Zhong, Jin; Meng, Guangxun

    2013-01-01

    Background Mycoplasma hyorhinis (M.hyorhinis, M.hy) is associated with development of gastric and prostate cancers. The NLRP3 inflammasome, a protein complex controlling maturation of important pro-inflammatory cytokines interleukin (IL)-1β and IL-18, is also involved in tumorigenesis and metastasis of various cancers. Methodology/Principal Findings To clarify whether M.hy promoted tumor development via inflammasome activation, we analyzed monocytes for IL-1β and IL-18 production upon M.hy challenge. When exposed to M.hy, human monocytes exhibited rapid and robust IL-1β and IL-18 secretion. We further identified that lipid-associated membrane protein (LAMP) from M.hy was responsible for IL-1β induction. Applying competitive inhibitors, gene specific shRNA and gene targeted mice, we verified that M.hy induced IL-1β secretion was NLRP3-dependent in vitro and in vivo. Cathepsin B activity, K+ efflux, Ca2+ influx and ROS production were all required for the NLRP3 inflammasome activation by M.hy. Importantly, it is IL-1β but not IL-18 produced from macrophages challenged with M.hy promoted gastric cancer cell migration and invasion. Conclusions Our data suggest that activation of the NLRP3 inflammasome by M.hy may be associated with its promotion of gastric cancer metastasis, and anti-M.hy therapy or limiting NLRP3 signaling could be effective approach for control of gastric cancer progress. PMID:24223129

  14. NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression

    SciTech Connect

    Guo, Kai; Jin, Faguang

    2015-09-25

    The osmoregulated transcription factor nuclear factor of activated T-cells 5(NFAT5), has been found to play important roles in the development of many kinds of human cancers, including breast cancer, colon carcinoma, renal cell carcinoma and melanoma. The aim of the present study was to determine whether NFAT5 is involved in the proliferation and migration of lung adenocarcinoma cells. We found that NFAT5 was upregulated in lung adenocarcinoma cells and knockdown of NFAT5 decreased proliferation and migration of the cells, accompanied by a significant reduction in the expression of AQP5. AQP5 was upregulated in lung adenocarcinoma cells and knockdown of AQP5 also inhibited proliferation and migration of the cells as knockdown of NFAT5 did. Moreover, overexpression of NFAT5 promoted proliferation and migration of lung adenocarcinoma cells, accompanied by a significant increase in the expression of AQP5. These results indicate that NFAT5 plays important roles in proliferation and migration of human lung adenocarcinoma cells through regulating AQP5 expression, providing a new therapeutic option for lung adenocarcinoma therapy. - Highlights: • NFAT5 expression is higher in lung adenocarcinoma cells compared with normal cells. • NFAT5 knockdown decreases proliferation and migration of lung adenocarcinoma cells. • Knockdown of NFAT5 reduces AQP5 expression in human lung adenocarcinoma cells. • Overexpression of NFAT5 promotes proliferation and migration of lung adenocarcinoma cells. • Overexpression of NFAT5 increases AQP5 expression in human lung adenocarcinoma cells.

  15. ARMc8 indicates aggressive colon cancers and promotes invasiveness and migration of colon cancer cells.

    PubMed

    Jiang, Guiyang; Zhang, Yong; Zhang, Xiupeng; Fan, Chuifeng; Wang, Liang; Xu, Hongtao; Yu, Juanhan; Wang, Enhua

    2015-11-01

    Recent studies have implicated ARMc8 in promoting tumor formation in non-small cell lung cancer and breast cancer; however, so far, no studies have revealed the expression pattern or cellular function of ARMc8 in colon cancer. In this study, we used immunohistochemical staining to measure ARMc8 expression in 206 cases of colon cancer and matched adjacent normal colon tissue. Clinically important behaviors of cells, including invasiveness and migration, were evaluated after upregulation of ARMc8 expression in HT29 cells through gene transfection or downregulation of expression in LoVo cells using RNAi. We found that ARMc8 was primarily located in the membrane and cytoplasm of tumor cells, and its expression level was significantly higher in colon cancer in comparison to that in the adjacent normal colon tissues (p < 0.001). ARMc8 expression was closely related to TNM stage (p = 0.006), lymph node metastasis (p = 0.001), and poor prognosis (p = 0.002) of colon cancer. The invasiveness and migration capacity of HT29 cells transfected with ARMc8 were significantly greater than those of control cells (p < 0.001), while ARMc8 siRNA treatment significantly reduced cell invasion and migration in LoVo cells (p < 0.001). Furthermore, we demonstrated that ARMc8 could upregulate the expression of MMP7 and snail and downregulate the expression of p120ctn and α-catenin. Therefore, ARMc8 probably enhanced invasiveness and metastatic capacity by affecting these tumor-associated factors, thereby playing a role in enhancing the tumorigenicity of colon cancer cells. ARMc8 is likely to become a potential therapeutic target for colon cancer. PMID:26081621

  16. MicroRNA-92a Promotes Colorectal Cancer Cell Growth and Migration by Inhibiting KLF4.

    PubMed

    Lv, Huiqing; Zhang, Zhongmin; Wang, Yaoxia; Li, Chenglin; Gong, Weihong; Wang, Xin

    2016-01-01

    Colorectal cancer (CRC) is the third most common malignancy with high mortality around the world. However, the biological mechanism of CRC carcinogenesis is not completely known. In the present study, we determined the role of miR-92a in the regulation of CRC cell motility. Expression of miR-92a is aberrantly upregulated in human CRC tissues and cultured cells, as shown by RT-PCR analysis. The effects of miR-92a on the proliferation and migration of human CRC SW620 and LoVo cells were measured by CCK-8 and Transwell assay, respectively. Results showed that the proliferation and migration capacity of both SW620 and LoVo cells were significantly increased by miR-92a mimic transfection but reduced by miR-92a inhibition. Additionally, KLF4 was identified as a direct target of miR-92a in CRC cells through bioinformatics and luciferase reporter analysis. KLF4 overexpression attenuated the effects of miR-92a on the regulation of CRC cell motility. Further studies suggested that the cell cycle inhibitor p21 was aberrantly downregulated in CRC cells, whereas this inhibition was reversed by miR-92a inhibitor. In conclusion, our data demonstrated that miR-92a may play a positive role in the colorectal carcinogenesis by promoting the proliferation and migration of CRC cells through targeting KLF4 as well as downstream p21. This could be an alternative therapeutic target for CRC. PMID:27131314

  17. Overexpression of TAZ promotes cell proliferation, migration and epithelial-mesenchymal transition in ovarian cancer

    PubMed Central

    Chen, Guangyuan; Xie, Jiabin; Huang, Ping; Yang, Zhihong

    2016-01-01

    The Hippo pathway is dysregulated in multiple types of human cancer, including ovarian cancer. Nuclear expression of yes-associated protein 1 (YAP1), a downstream transcription coactivator of the Hippo pathway, has been demonstrated to promote tumorigenesis in ovarian cancer and may serve as a poor prognostic indicator. However, transcriptional coactivator with PDZ binding motif (TAZ), a downstream target of the Hippo pathway and paralog of YAP in mammalian cells, has not been fully investigated in ovarian cancer. The present study aimed to investigate the dysregulation and biological function of TAZ in ovarian cancer. Reverse transcription-quantitative polymerase chain reaction and western blotting revealed that TAZ mRNA and protein levels, respectively, were upregulated in ovarian cancer, and a meta-analysis of ovarian cancer microarray datasets identified that increased expression of TAZ mRNA is correlated with poor prognosis in patients with ovarian cancer. In addition, TAZ-knockdown in ovarian cancer cells demonstrated that TAZ regulates the migration, proliferation and epithelial-mesenchymal transition of ovarian cancer cells. Furthermore, pharmacological disruption of the YAP/TAZ/TEA domain protein complex resulted in a decrease in ovarian cancer cell migration, proliferation and vimentin expression. The results of the present study indicate that the overexpression of TAZ is important in the development and progression of ovarian cancer, and may function as a potential drug target for treatment of this disease entity.

  18. Lewisy Promotes Migration of Oral Cancer Cells by Glycosylation of Epidermal Growth Factor Receptor

    PubMed Central

    Lin, Wei-Ling; Lin, Yi-Shiuan; Shi, Guey-Yueh; Chang, Chuan-Fa; Wu, Hua-Lin

    2015-01-01

    Aberrant glycosylation changes normal cellular functions and represents a specific hallmark of cancer. Lewisy (Ley) carbohydrate upregulation has been reported in a variety of cancers, including oral squamous cell carcinoma (OSCC). A high level of Ley expression is related to poor prognosis of patients with oral cancer. However, it is unclear how Ley mediates oral cancer progression. In this study, the role of Ley in OSCC was explored. Our data showed that Ley was upregulated in HSC-3 and OC-2 OSCC cell lines. Particularly, glycosylation of epidermal growth factor receptor (EGFR) with Ley was found in OC-2 cells, and this modification was absent upon inhibition of Ley synthesis. The absence of Ley glycosylation of EGFR weakened phosphorylation of AKT and ERK in response to epidermal growth factor (EGF). Additionally, EGF-triggered cell migration was reduced, but cell proliferation was not affected. Ley modification stabilized EGFR upon ligand activation. Conversely, absence of Ley glycosylation accelerated EGFR degradation. In summary, these results indicate that increased expression of Ley in OSCC cells is able to promote cell migration by modifying EGFR which in turn stabilizes EGFR expression and downstream signaling. Targeting Ley on EGFR could have a potential therapeutic effect on oral cancer. PMID:25799278

  19. Hypoxia-induced mitogenic factor enhances angiogenesis by promoting proliferation and migration of endothelial cells

    SciTech Connect

    Tong Qiangsong; Zheng Liduan; Li Bo; Wang Danming; Huang Chuanshu; Matuschak, George M.; Li Dechun . E-mail: dli2@slu.edu

    2006-11-01

    Our previous studies have indicated that hypoxia-induced mitogenic factor (HIMF) has angiogenic properties in an in vivo matrigel plug model and HIMF upregulates expression of vascular endothelial growth factor (VEGF) in mouse lungs and cultured lung epithelial cells. However, whether HIMF exerts angiogenic effects through modulating endothelial cell function remains unknown. In this study, mouse aortic rings cultured with recombinant HIMF protein resulted in enhanced vascular sprouting and increased endothelial cell spreading as confirmed by Dil-Ac-LDL uptake, von Willebrand factor and CD31 staining. In cultured mouse endothelial cell line SVEC 4-10, HIMF dose-dependently enhanced cell proliferation, in vitro migration and tubulogenesis, which was not attenuated by SU1498, a VEGFR2/Flk-1 receptor tyrosine kinase inhibitor. Moreover, HIMF stimulation resulted in phosphorylation of Akt, p38 and ERK1/2 kinases in SVEC 4-10 cells. Treatment of mouse aortic rings and SVEC 4-10 cells with LY294002, but not SB203580, PD098059 or U0126, abolished HIMF-induced vascular sprouting and angiogenic responses. In addition, transfection of a dominant-negative mutant of phosphatidylinositol 3-kinase (PI-3K), {delta}p85, blocked HIMF-induced phosphorylation of Akt, endothelial activation and tubulogenesis. These results indicate that HIMF enhances angiogenesis by promoting proliferation and migration of endothelial cells via activation of the PI-3K/Akt pathways.

  20. IL-6 Secreted from Senescent Mesenchymal Stem Cells Promotes Proliferation and Migration of Breast Cancer Cells

    PubMed Central

    Di, Guo-hu; Liu, Yang; Lu, Ying; Liu, Jin; Wu, Chutse; Duan, Hai-Feng

    2014-01-01

    Human mesenchymal stem cells (hMSCs) are currently investigated for a variety of therapeutic applications. However, MSCs isolated from primary tissue cannot meet clinical grade needs and should be expanded in vitro for several passages. Although hMSCs show low possibility for undergoing oncogenic transformation, they do, similar to other somatic cells, undergo cellular senescence and their therapeutic potential is diminished when cultured in vitro. However, the role of senescent MSCs in tumor progression remains largely elusive. In the current study, by establishing senescent human umbilical cord mesenchymal stem cells (s-UCMSCs) through the replicative senescence model and genotoxic stress induced premature senescence model, we show that s-UCMSCs significantly stimulate proliferation and migration of breast cancer cells in vitro and tumor progression in a co-transplant xenograft mouse model compared with ‘young’ counterparts (defined as MSCs at passage 5, in contrast to senescent MSCs at passage 45). In addition, we identified IL-6, a known pleiotropic cytokine, as a principal mediator for the tumor-promoting activity of s-UCMSCs by induction of STAT3 phosphorylation. Depletion of IL-6 from s-UCMSCs conditioned medium partially abrogated the stimulatory effect of s-UCMSCs on the proliferation and migration of breast tumor cells. PMID:25419563

  1. P-cadherin promotes collective cell migration via a Cdc42-mediated increase in mechanical forces.

    PubMed

    Plutoni, Cédric; Bazellieres, Elsa; Le Borgne-Rochet, Maïlys; Comunale, Franck; Brugues, Agusti; Séveno, Martial; Planchon, Damien; Thuault, Sylvie; Morin, Nathalie; Bodin, Stéphane; Trepat, Xavier; Gauthier-Rouvière, Cécile

    2016-01-18

    Collective cell migration (CCM) is essential for organism development, wound healing, and metastatic transition, the primary cause of cancer-related death, and it involves cell-cell adhesion molecules of the cadherin family. Increased P-cadherin expression levels are correlated with tumor aggressiveness in carcinoma and aggressive sarcoma; however, how P-cadherin promotes tumor malignancy remains unknown. Here, using integrated cell biology and biophysical approaches, we determined that P-cadherin specifically induces polarization and CCM through an increase in the strength and anisotropy of mechanical forces. We show that this mechanical regulation is mediated by the P-cadherin/β-PIX/Cdc42 axis; P-cadherin specifically activates Cdc42 through β-PIX, which is specifically recruited at cell-cell contacts upon CCM. This mechanism of cell polarization and migration is absent in cells expressing E- or R-cadherin. Thus, we identify a specific role of P-cadherin through β-PIX-mediated Cdc42 activation in the regulation of cell polarity and force anisotropy that drives CCM. PMID:26783302

  2. Silencing of HMGA2 promotes apoptosis and inhibits migration and invasion of prostate cancer cells.

    PubMed

    Shi, Zhan; Wu, Ding; Tang, Run; Li, Xiang; Chen, Renfu; Xue, Song; Zhang, Chengjing; Sun, Xiaoqing

    2016-06-01

    The high mobility group protein A2 (HMGA2) has been demonstrated as an architectural transcription factor that is associated with pathogenesis of many malignant cancers; however, its role in prostate cancer cells remains largely unknown. To explore whether HMGA2 participates in the development and progression of prostate cancer, small interfering RNA (siRNA) targeted on human HMGA2 was transfected to suppress the HMGA2 expression in prostate cancer PC3 and DU145 cells, and then the cellular biology changes after decreased the expression of HMGA2 was examined. Our results showed that knockdown of HMGA2 markedly inhibited cell proliferation; this reduced cell proliferation was due to the promotion of cell apoptosis as the Bcl-xl was decreased, whereas Bax was up-regulated. In addition, we found that HMGA2 knockdown resulted in reduction of cell migration and invasion, as well as repressed the expression of matrix metalloproteinases (MMPs) and affected the occurrence of epithelial-mesenchymal transition (EMT) in both cell types. We further found that decreased HMGA2 expression inhibited the transforming growth factor-beta (TGF-beta)/Smad signalling pathway in cancer cells. In conclusion, our data indicated that HMGA2 was associated with apoptosis, migration and invasion of prostate cancer, which might be a promising therapeutic target for prostate cancer. PMID:27240983

  3. P-cadherin promotes collective cell migration via a Cdc42-mediated increase in mechanical forces

    PubMed Central

    Plutoni, Cédric; Bazellieres, Elsa; Le Borgne-Rochet, Maïlys; Comunale, Franck; Brugues, Agusti; Séveno, Martial; Planchon, Damien; Thuault, Sylvie; Morin, Nathalie; Bodin, Stéphane; Trepat, Xavier

    2016-01-01

    Collective cell migration (CCM) is essential for organism development, wound healing, and metastatic transition, the primary cause of cancer-related death, and it involves cell–cell adhesion molecules of the cadherin family. Increased P-cadherin expression levels are correlated with tumor aggressiveness in carcinoma and aggressive sarcoma; however, how P-cadherin promotes tumor malignancy remains unknown. Here, using integrated cell biology and biophysical approaches, we determined that P-cadherin specifically induces polarization and CCM through an increase in the strength and anisotropy of mechanical forces. We show that this mechanical regulation is mediated by the P-cadherin/β-PIX/Cdc42 axis; P-cadherin specifically activates Cdc42 through β-PIX, which is specifically recruited at cell–cell contacts upon CCM. This mechanism of cell polarization and migration is absent in cells expressing E- or R-cadherin. Thus, we identify a specific role of P-cadherin through β-PIX–mediated Cdc42 activation in the regulation of cell polarity and force anisotropy that drives CCM. PMID:26783302

  4. Nitric oxide-releasing nanoparticles accelerate wound healing by promoting fibroblast migration and collagen deposition.

    PubMed

    Han, George; Nguyen, Long N; Macherla, Chitralekha; Chi, Yuling; Friedman, Joel M; Nosanchuk, Joshua D; Martinez, Luis R

    2012-04-01

    Wound healing is a complex process that involves coordinated interactions between diverse immunological and biological systems. Long-term wounds remain a challenging clinical problem, affecting approximately 6 million patients per year, with a high economic impact. To exacerbate the problem, these wounds render the individual susceptible to life-threatening microbial infections. Because current therapeutic strategies have proved suboptimal, it is imperative to focus on new therapeutic approaches and the development of technologies for both short- and long-term wound management. In recent years, nitric oxide (NO) has emerged as a critical molecule in wound healing, with NO levels increasing rapidly after skin damage and gradually decreasing as the healing process progresses. In this study, we examined the effects of a novel NO-releasing nanoparticle technology on wound healing in mice. The results show that the NO nanoparticles (NO-np) significantly accelerated wound healing. NO-np modified leukocyte migration and increased tumor growth factor-β production in the wound area, which subsequently promoted angiogenesis to enhance the healing process. By using human dermal fibroblasts, we demonstrate that NO-np increased fibroblast migration and collagen deposition in wounded tissue. Together, these data show that NO-releasing nanoparticles have the ability to modulate and accelerate wound healing in a pleiotropic manner. PMID:22306734

  5. Transferrin Promotes Endothelial Cell Migration and Invasion: Implication in Cartilage Neovascularization

    PubMed Central

    Carlevaro, Mariella F.; Albini, Adriana; Ribatti, Domenico; Gentili, Chiara; Benelli, Roberto; Cermelli, Silvia; Cancedda, Ranieri; Cancedda, Fiorella Descalzi

    1997-01-01

    During endochondral bone formation, avascular cartilage differentiates to hypertrophic cartilage that then undergoes erosion and vascularization leading to bone deposition. Resting cartilage produces inhibitors of angiogenesis, shifting to production of angiogenic stimulators in hypertrophic cartilage. A major protein synthesized by hypertrophic cartilage both in vivo and in vitro is transferrin. Here we show that transferrin is a major angiogenic molecule released by hypertrophic cartilage. Endothelial cell migration and invasion is stimulated by transferrins from a number of different sources, including hypertrophic cartilage. Checkerboard analysis demonstrates that transferrin is a chemotactic and chemokinetic molecule. Chondrocyte-conditioned media show similar properties. Polyclonal anti-transferrin antibodies completely block endothelial cell migration and invasion induced by purified transferrin and inhibit the activity produced by hypertrophic chondrocytes by 50–70% as compared with controls. Function-blocking mAbs directed against the transferrin receptor similarly reduce the endothelial migratory response. Chondrocytes differentiating in the presence of serum produce transferrin, whereas those that differentiate in the absence of serum do not. Conditioned media from differentiated chondrocytes not producing transferrin have only 30% of the endothelial cell migratory activity of parallel cultures that synthesize transferrin. The angiogenic activity of transferrins was confirmed by in vivo assays on chicken egg chorioallantoic membrane, showing promotion of neovascularization by transferrins purified from different sources including conditioned culture medium. Based on the above results, we suggest that transferrin is a major angiogenic molecule produced by hypertrophic chondrocytes during endochondral bone formation. PMID:9087450

  6. CCL25/CCR9 Signal Promotes Migration and Invasion in Hepatocellular and Breast Cancer Cell Lines.

    PubMed

    Zhang, Ziqi; Sun, Tong; Chen, Yuxi; Gong, Shu; Sun, Xiye; Zou, Fangdong; Peng, Rui

    2016-07-01

    Cancer is one of the most lethal diseases worldwide, and metastasis is the most common cause of patients' deaths. Identification and inhibition of markers involved in metastasis process in cancer cells are promising works to block metastasis and improve prognoses of patients. Chemokines are a superfamily of small, chemotactic cytokines, whose functions are based on interaction with corresponding receptors. It has been found that one of the functions of chemokines is to regulate migration and invasion abilities of lymphocytes, as well as cancer cells. Chemokine receptor 9 (CCR9) regulates trafficking of lymphocytes and cancer cell lines when interacting with its exclusive ligand chemokine 25 (CCL25). However, the mechanisms of CCL25/CCR9 signal that regulates metastasis of cancer cells are not completely known yet. In this study, we stimulated or inhibited CCL25/CCR9 signal in breast cancer cell line (MDA-MB-231) and hepatocellular cancer cell lines (HepG2 and HUH7), and found that CCL25/CCR9 signal resulted in different promotion of migration and invasion in different cell lines. These phenomena could be explained by selective regulation of several markers of epithelial-mesenchymal transition (EMT). Our findings suggested that CCL25/CCR9 signal may provide cancer cells with chemotactic abilities through influencing several EMT markers. PMID:27008282

  7. Rap2b promotes proliferation, migration, and invasion of lung cancer cells.

    PubMed

    Peng, Yi-Gen; Zhang, Zheng-Qun; Chen, Yan-Bin; Huang, Jian-An

    2016-10-01

    Rap2b, a member of the guanosine triphosphate-binding proteins, is widely up-regulated in many types of tumors. However, the functional role of Rap2b in tumorigenesis of lung cancer remains to be fully elucidated. In this study, we investigated the effect of Rap2b on the lung cancer malignant phenotype, such as cell proliferation and metastasis. We found that Rap2b could promote the abilities of lung cancer cell wound healing, migration, and invasion via increasing matrix metalloproteinase-2 enzyme activity. Furthermore, Rap2b overexpression could increase the phosphorylation level of extracellular signal-regulated protein kinases 1/2. In conclusion, our results suggested that Rap2b may be a potential therapeutic target for lung cancer. PMID:26671640

  8. FGF19 Contributes to Tumor Progression in Gastric Cancer by Promoting Migration and Invasion.

    PubMed

    Wang, Shuang; Zhao, Daqi; Tian, Ruihua; Shi, Hailong; Chen, Xiangming; Liu, Wenzhi; Wei, Lin

    2016-01-01

    Gastric cancer is the fourth most common type of cancer and second leading cause of cancer-related death in the world. Since patients are often diagnosed at a late stage, very few effective therapies are left in the arsenal. FGF19, as a hormone, has been reported to promote tumor growth in various types of cancer; however, its function in gastric cancer remains unknown. In the current study, we showed that FGF19 is overexpressed in gastric cancer and is associated with depth of invasion, lymph node metastasis, and TNM stage. In addition, in vitro experiments demonstrated that FGF19 is able to enhance migration and invasion abilities of gastric cancer cells. Given its great potency in gastric cancer progression, FGF19 may be an effective target of treatment for advanced gastric cancer patients. PMID:27053348

  9. ALX1 promotes migration and invasion of lung cancer cells through increasing snail expression

    PubMed Central

    Yao, Wei; Liu, Yong; Zhang, Zhuo; Li, Guoquan; Xu, Xiaoying; Zou, Kun; Xu, Yinghui; Zou, Lijuan

    2015-01-01

    Lung cancer is one of the main causes in cancer-related death. Here we reported a novel functional role of Aristaless-like homeobox1 (ALX1) in lung carcinogenesis. Analysis of ALX1 in lung cancer specimens confirms upregulation of ALX1 in lung cancer, especially these with distant metastasis. Moreover, higher level of ALX1 expression is associated with poorer prognosis of lung cancer patients. Ectopic expression of ALX1 significantly promotes lung cancer cell proliferation, migration and invasion, while ALX1 silencing by siRNA significantly inhibits these abilities of lung cancer cells. The functional role of ALX1 is dependent on increasing Snail expression and knockdown of Snail could restrain the role of ALX1. Collectively, we identify critical roles of ALX1 in lung cancer development and progression. These findings may serve as a framework for future investigations designed to more comprehensive determination of ALX1 as a potential therapeutic target. PMID:26722397

  10. Pim Kinases Promote Migration and Metastatic Growth of Prostate Cancer Xenografts

    PubMed Central

    Santio, Niina M.; Eerola, Sini K.; Paatero, Ilkka; Yli-Kauhaluoma, Jari; Anizon, Fabrice; Moreau, Pascale; Tuomela, Johanna; Härkönen, Pirkko; Koskinen, Päivi J.

    2015-01-01

    Background and methods Pim family proteins are oncogenic kinases implicated in several types of cancer and involved in regulation of cell proliferation, survival as well as motility. Here we have investigated the ability of Pim kinases to promote metastatic growth of prostate cancer cells in two xenograft models for human prostate cancer. We have also evaluated the efficacy of Pim-selective inhibitors to antagonize these effects. Results We show here that tumorigenic growth of both subcutaneously and orthotopically inoculated prostate cancer xenografts is enhanced by stable overexpression of either Pim-1 or Pim-3. Moreover, Pim-overexpressing orthotopic prostate tumors are highly invasive and able to migrate not only to the nearby prostate-draining lymph nodes, but also into the lungs to form metastases. When the xenografted mice are daily treated with the Pim-selective inhibitor DHPCC-9, both the volumes as well as the metastatic capacity of the tumors are drastically decreased. Interestingly, the Pim-promoted metastatic growth of the orthotopic xenografts is associated with enhanced angiogenesis and lymphangiogenesis. Furthermore, forced Pim expression also increases phosphorylation of the CXCR4 chemokine receptor, which may enable the tumor cells to migrate towards tissues such as the lungs that express the CXCL12 chemokine ligand. Conclusions Our results indicate that Pim overexpression enhances the invasive properties of prostate cancer cells in vivo. These effects can be reduced by the Pim-selective inhibitor DHPCC-9, which can reach tumor tissues without serious side effects. Thus, Pim-targeting therapies with DHPCC-9-like compounds may help to prevent progression of local prostate carcinomas to fatally metastatic malignancies. PMID:26075720

  11. Leishmania-encoded orthologs of macrophage migration inhibitory factor regulate host immunity to promote parasite persistence.

    PubMed

    Holowka, Thomas; Castilho, Tiago M; Garcia, Alvaro Baeza; Sun, Tiffany; McMahon-Pratt, Diane; Bucala, Richard

    2016-06-01

    Leishmania major encodes 2 orthologs of the cytokine macrophage migration inhibitory factor (MIF), whose functions in parasite growth or in the host-parasite interaction are unknown. To determine the importance of Leishmania-encoded MIF, both LmMIF genes were removed to produce an mif(-/-) strain of L. major This mutant strain replicated normally in vitro but had a 2-fold increased susceptibility to clearance by macrophages. Mice infected with mif(-/-) L. major, when compared to the wild-type strain, also showed a 3-fold reduction in parasite burden. Microarray and functional analyses revealed a reduced ability of mif(-/-) L. major to activate antigen-presenting cells, resulting in a 2-fold reduction in T-cell priming. In addition, there was a reduction in inflammation and effector CD4 T-cell formation in mif(-/-) L. major-infected mice when compared to mice infected with wild-type L. major Notably, effector CD4 T cells that developed during infection with mif(-/-) L. major demonstrated statistically significant differences in markers of functional exhaustion, including increased expression of IFN-γ and IL-7R, reduced expression of programmed death-1, and decreased apoptosis. These data support a role for LmMIF in promoting parasite persistence by manipulating the host response to increase the exhaustion and depletion of protective CD4 T cells.-Holowka, T., Castilho, T. M., Baeza Garcia, A., Sun, T., McMahon-Pratt, D., Bucala, R. Leishmania-encoded orthologs of macrophage migration inhibitory factor regulate host immunity to promote parasite persistence. PMID:26956417

  12. High extracellular pressure promotes gastric cancer cell adhesion, invasion, migration and suppresses gastric cancer cell differentiation.

    PubMed

    Su, Changlei; Zhang, Bomiao; Liu, Wenzhi; Zheng, Hongqun; Sun, Lingyu; Tong, Jinxue; Wang, Tian; Jiang, Xiaofeng; Liang, Hongyan; Xue, Li; Zhang, Qifan

    2016-08-01

    Slightly increased pressure stimulates tumor cell adhesion and proliferation. In the present study, we aimed to evaluate the effects of high pressure on gene expression and the biological behavior of gastric cancer cells. After incubation for 30 min at 37˚C under ambient and increased pressure, one portion of SGC7901 cells was used for cell proliferation and apoptosis assays, cell cycle analysis, adhesion invasion or migration assays. The other portion of cells was harvested for detection of matrix metalloproteinase-2 (MMP-2), inhibitor of DNA binding-1 (ID1), sonic Hedgehog (SHH) and E-cadherin expression by western blotting or RT-PCR. In addition, we investigated the effects of high pressure on SGC7901 cell ultrastructure by transmission electron microscopy. We found that the adhesion fold under increased pressure of 760 and 1,520 mmHg was 2.39±1.05 (P<0.05) and 2.47±0.85 (P<0.01) as compared with the control, respectively. The invasion fold was 3.42±2.06 (P<0.05) and 5.13±2.49 (P<0.01) as compared with the control, respectively. The migration was 1.65±0.20 (P<0.001) and 2.53±0.50 (P<0.001) as compared with the control, respectively. At increased pressure, MMP-2 and ID1 expression increased significantly, while the expression of SHH decreased significantly. However, we did not find significant change in proliferation, apoptosis, cell cycle or ultrastructure of the SGC7901 cells under high pressure. In conclusion, high pressure promoted the adhesion, invasion and migration of SGC7901 cells. Moreover, the present study suggests that the pressure-augmented invasion and migration may be related to the increase in MMP-2 expression. Moreover, high pressure may suppress SGC7901 cell differentiation, which may result from the change in SHH and ID1 expression. PMID:27278077

  13. Cyclophilin A promotes cell migration via the Abl-Crk signaling pathway

    PubMed Central

    Saleh, Tamjeed; Jankowski, Wojciech; Sriram, Ganapathy; Rossi, Paolo; Shah, Shreyas; Lee, Ki-Bum; Cruz, Lissette Alicia; Rodriguez, Alexis J.; Birge, Raymond B.

    2015-01-01

    Summary Cyclophilin A (CypA) is over-expressed in a number of human cancer types, but the mechanisms by which CypA promotes oncogenic properties of cells are not understood. Here we demonstrate that CypA binds to and prevents the CrkII adaptor protein from switching to the inhibited state. CrkII is involved in cell motility and invasion by mediating signaling through its SH2 and SH3 domains. CrkII Tyr221 phosphorylation by the Abl or EGFR kinases induces an inhibited state of CrkII, by means of an intramolecular SH2-pTyr221 interaction, causing signaling interruption. We show that the CrkII phosphorylation site constitutes a binging site for CypA. Recruitment of CypA sterically restricts the accessibility of Tyr221 to kinases, thereby suppressing CrkII phosphorylation and promoting the active state. Structural, biophysical, and in vivo data show that CypA augments CrkII-mediated signaling. A strong stimulation of cell migration is observed in cancer cells wherein both CypA and CrkII are greatly up-regulated. PMID:26656091

  14. Grb2-associated binder-2 gene promotes migration of non-small cell lung cancer cells via Akt signaling pathway

    PubMed Central

    Xu, Li Jun; Wang, Yu Chang; Lan, Hong Wen; Li, Jun; Xia, Tian

    2016-01-01

    Early stages of non-small cell lung cancer (NSCLC) can be successfully treated by surgical resection of the tumor, but there is still no effective treatment once it is progressed to metastatic phases. Investigation of NSCLC cancer cell migration, metastasis and development of strategies to block this process is essential to improve the disease prognosis. In the present study, we found that GRB2-associated-binding protein 2 (Gab2) is involved in the migration of NSCLC cells and demonstrated that Gab2 disruption impairs NSCLC cells migration. The requirement of Gab2 in the migration of NSCLC was further confirmed by gene silencing in vitro. In corresponding to this result, over-expression of Gab2 significantly promoted the migratory of NSCLC cells. Finally, we found that Gab2 promotes NSCLC migration through the protein kinase B (Akt) signaling pathway and up-regulation the activity of matrix metallopeptidase (MMP)-2/9. To conclude, our findings suggest a novel mechanism underlying the migration of NSCLC cells which might serve as a new intervention target for the treatment of NSCLC. PMID:27158407

  15. Leptin promotes breast cancer cell migration and invasion via IL-18 expression and secretion.

    PubMed

    Li, Kuangfa; Wei, Lan; Huang, Yunxiu; Wu, Yang; Su, Min; Pang, Xueli; Wang, Nian; Ji, Feihu; Zhong, Changli; Chen, Tingmei

    2016-06-01

    In recent years, crosstalk between tumor microenvironment and cancer cells have received increasing attention. Accumulating research data suggests that leptin, a key adipokine secreted from adipocytes, plays important roles in breast cancer development. In our study, the effects of leptin on polarization of tumor-associated macrophages (TAMs) and promotion of the invasiveness of tumor cells were investigated. THP1 cells were used to differentiate M2 polarization macrophages. After stimulated by leptin, we established a co-culture system of tumor cells and macrophages to evaluate the function of leptin-induced macrophages in the migration and invasion of breast cancer cells. The gene and protein expressions were analyzed and the underlying mechanisms were evaluated. Moreover, pathological human specimens, and xenografts in nude mice, were detected to strengthen the in vitro results. Leptin elevated the expression of an array of cytokines in TAMs, IL-18 was the most increased, with an activation of the NF-κB/NF-κB1 signalling pathway. Additionally, after treated with leptin, TAMs significantly promoted the migration and invasion of breast cancer cells. However, these effects of leptin were abolished by the co-incubation of Bay11‑7082, a pharmacological NF-κB inhibitor. Leptin also directly stimulated IL-18 expression in breast cancer cells, which, differently, was via the PI3K/AKT-ATF-2 signaling pathway. In vivo studies showed that malignant breast carcinoma exhibited strong higher expression of Leptin, IL-8, and TAMs markers. Xenograft tumor-bearing mouse models showed that leptin significantly increased tumor volume, enhanced lung metastases, and increased expression of IL-8 and TAM markers, which were abolished by depletion of macrophages by clophosome-clodronate liposomes (CCL). Leptin could induce IL-18 expression both in TAMs and breast cancer cells. Leptin-induced IL-18 expression was regulated via NF-κB/NF-κB1 signaling in TAMs, while via PI3K

  16. 1-integrin and MT1-MMP promote tumor cell migration in 2D but not in 3D fibronectin microenvironments

    NASA Astrophysics Data System (ADS)

    Corall, Silke; Haraszti, Tamas; Bartoschik, Tanja; Spatz, Joachim Pius; Ludwig, Thomas; Cavalcanti-Adam, Elisabetta Ada

    2014-03-01

    Cell migration is a crucial event for physiological processes, such as embryonic development and wound healing, as well as for pathological processes, such as cancer dissemination and metastasis formation. Cancer cell migration is a result of the concerted action of matrix metalloproteinases (MMPs), expressed by cancer cells to degrade the surrounding matrix, and integrins, the transmembrane receptors responsible for cell binding to matrix proteins. While it is known that cell-microenvironment interactions are essential for migration, the role of the physical state of such interactions remains still unclear. In this study we investigated human fibrosarcoma cell migration in two-dimensional (2D) and three-dimensional (3D) fibronectin (FN) microenvironments. By using antibody blocking approach and cell-binding site mutation, we determined that -integrin is the main mediator of fibrosarcoma cell migration in 2D FN, whereas in 3D fibrillar FN, the binding of - and -integrins is not necessary for cell movement in the fibrillar network. Furthermore, while the general inhibition of MMPs with GM6001 has no effect on cell migration in both 2D and 3D FN matrices, we observed opposing effect after targeted silencing of a membrane-bound MMP, namely MT1-MMP. In 2D fibronectin, silencing of MT1-MMP results in decreased migration speed and loss of directionality, whereas in 3D FN matrices, cell migration speed is increased and integrin-mediated signaling for actin dynamics is promoted. Our results suggest that the fibrillar nature of the matrix governs the migratory behavior of fibrosarcoma cells. Therefore, to hinder migration and dissemination of diseased cells, matrix molecules should be directly targeted, rather than specific subtypes of receptors at the cell membrane.

  17. HMGCR is up-regulated in gastric cancer and promotes the growth and migration of the cancer cells.

    PubMed

    Chushi, Li; Wei, Wu; Kangkang, Xie; Yongzeng, Feng; Ning, Xie; Xiaolei, Chen

    2016-08-01

    Alteration of metabolic profile is one of the hallmarks of cancer cells. Statin, the inhibitors for synthesis of cholesterol, has shown anti-cancer effects on the gastric cancer cells. However, the functions of its target, HMGCR, in the progression of gastric cancer remain unknown. In the present study, we investigated the expression profile and the biological functions of HMGCR in gastric cancer. It was found that the expression of HMGCR was increased in gastric cancer tissues. Over-expression of HMGCR promoted the growth and migration of gastric cancer cells, while knocking down the expression of HMGCR inhibited the growth, migration and tumorigenesis of gastric cancer cells. In the further molecular mechanism study, HMGCR was shown to activate Hedgehog/Gli1 signaling and promoted the expression of Gli1 target genes. Taken together, this study demonstrated the tumor-promoting effects of HMGCR in gastric cancer and suggested HMGCR as a promising therapeutic target. PMID:27085483

  18. Nuclear Kaiso Indicates Aggressive Prostate Cancers and Promotes Migration and Invasiveness of Prostate Cancer Cells

    PubMed Central

    Jones, Jacqueline; Wang, Honghe; Zhou, Jianjun; Hardy, Shana; Turner, Timothy; Austin, David; He, Qinghua; Wells, Alan; Grizzle, William E.; Yates, Clayton

    2013-01-01

    Kaiso, a p120 catenin-binding protein, is expressed in the cytoplasmic and nuclear compartments of cells; however, the biological consequences and clinical implications of a shift between these compartments have yet to be established. Herein, we report an enrichment of nuclear Kaiso expression in cells of primary and metastatic prostate tumors relative to the normal prostate epithelium. Nuclear expression of Kaiso correlates with Gleason score (P < 0.001) and tumor grade (P < 0.001). There is higher nuclear expression of Kaiso in primary tumor/normal matched samples and in primary tumors from African American men (P < 0.0001). We further found that epidermal growth factor (EGF) receptor up-regulates Kaiso at the RNA and protein levels in prostate cancer cell lines, but more interestingly causes a shift of cytoplasmic Kaiso to the nucleus that is reversed by the EGF receptor–specific kinase inhibitor, PD153035. In both DU-145 and PC-3 prostate cancer cell lines, Kaiso inhibition (short hairpin RNA-Kaiso) decreased cell migration and invasion even in the presence of EGF. Further, Kaiso directly binds to the E-cadherin promoter, and inhibition of Kaiso in PC-3 cells results in increased E-cadherin expression, as well as re-establishment of cell–cell contacts. In addition, Kaiso-depleted cells show more epithelial morphology and a reversal of the mesenchymal markers N-cadherin and fibronectin. Our findings establish a defined oncogenic role of Kaiso in promoting the progression of prostate cancer. PMID:22974583

  19. XCR1 promotes cell growth and migration and is correlated with bone metastasis in non-small cell lung cancer

    SciTech Connect

    Wang, Ting; Han, Shuai; Wu, Zhipeng; Han, Zhitao; Yan, Wangjun; Liu, Tielong; Wei, Haifeng; Song, Dianwen; Zhou, Wang Yang, Xinghai Xiao, Jianru

    2015-08-21

    Bone metastasis occurs in approximately 30–40% patients with advanced non-small cell lung cancer (NSCLC), but the mechanism underlying this bone metastasis remains poorly understood. The chemokine super family is believed to play an important role in tumor metastasis in lung cancer. The chemokine receptor XCR1 has been identified to promote cell proliferation and migration in oral cancer and ovarian carcinoma, but the role of XCR1 in lung cancer has not been reported. In this study, we demonstrated for the first time that XCR1 was overexpressed in lung cancer bone metastasis as compared with that in patients with primary lung cancer. In addition, the XCR1 ligand XCL1 promoted the proliferation and migration of lung cancer cells markedly, and knockdown of XCR1 by siRNA abolished the effect of XCL1 in cell proliferation and migration. Furthermore, we identified JAK2/STAT3 as a novel downstream pathway of XCR1, while XCL1/XCR1 increased the mRNA level of the downstream of JAK2/STAT3 including PIM1, JunB, TTP, MMP2 and MMP9. These results indicate that XCR1 is a new potential therapeutic target for the treatment of lung cancer bone metastasis. - Highlights: • XCR1 is overexpressed in bone metastasis compared with primary NSCLC. • XCR1 activation by XCL1 promotes lung cancer cell proliferation and migration. • JAK2/STAT3 is a novel potential downstream pathway of XCR1.

  20. Aberrant expression of pim-3 promotes proliferation and migration of ovarian cancer cells.

    PubMed

    Zhuang, Hao; Zhao, Man-Yin; Hei, Kai-Wen; Yang, Bai-Cai; Sun, Li; Du, Xue; Li, Yong-Mei

    2015-01-01

    Pim kinase-3(Pim-3), a member of serine/threonine protein kinases, has been implicated in multiple human cancers and involved in Myc-induced tumorigenesis. However, little is known regarding its expression and biological function in human ovarian cancer. In this study we showed that the clinical significance and biological functions of Pim-3 in ovarian cancer and found that higher Pim-3 mRNA level are detected in ovarian cancer tissues than those in normal ovarian tissues. There are significant correlations between higher Pim-3 expression levels with the FIGO stage, histopathological subtypes, and distant metastasis in ovarian cancer patients. Lentivirus-mediated gene overexpression of Pim-3 significantly promotes the proliferation and migration of SKOV3 cell lines. Furthermore, MACC1 and Pim-3 expression were significantly correlated in human ovarian cancer cells, and overexpression of Pim-3 in ovary cancer cells increased MACC1 mRNA and protein expression. The data indicate that Pim-3 acts as a putative oncogene in ovary cancer and could be a viable diagnostic and therapeutic target for ovarian cancer. PMID:25921139

  1. Fetuin-A promotes primary keratinocyte migration: independent of epidermal growth factor receptor signalling.

    PubMed

    Wang, Xue-Qing; Hung, Betsy S; Kempf, Margit; Liu, Pei-Yun; Dalley, Andrew J; Saunders, Nicholas A; Kimble, Roy M

    2010-08-01

    Previously, we reported that fetuin-A is a major component of ovine foetal skin and significantly enhances 'wound closure' in primary keratinocyte cultures. In this study, we found that in human newborn foreskin, a high level of fetuin-A protein is detected throughout the dermis. However, in adult skin a low level of fetuin-A is observed throughout the epidermal and dermal layers, except at regions surrounding hair follicles and at the epidermal-dermal junction where the level of fetuin-A is relatively high. Fetuin-A significantly induces actin-rich protrusions in human primary keratinocytes. Interestingly, blockade of epidermal growth factor (EGF) receptor signalling has a limited effect on fetuin-A promoted 'wound closure' on primary human keratinocytes, but significantly inhibits fetuin-A's effect on HaCaT cells. These results indicate that high levels of fetuin-A may partially contribute to less scar formation in newborn foreskin and that the effect of fetuin-A on primary keratinocyte migration is independent of EGF receptor signalling. PMID:19758338

  2. hTERT promotes cell adhesion and migration independent of telomerase activity.

    PubMed

    Liu, Haiying; Liu, Qianqian; Ge, Yuanlong; Zhao, Qi; Zheng, Xiaohui; Zhao, Yong

    2016-01-01

    hTERT, a catalytic component of human telomerase, is undetectable in normal somatic cells but up-regulated in cancer and stem cells where telomere length is maintained by telomerase. Accumulated evidence indicates that hTERT may have noncanonical functions beyond telomerase by regulating the expression of particular genes. However, comprehensive identification of the genes regulated by hTERT is unavailable. In this report, we expressed WT hTERT and hTERTmut which displays dysfunctional catalytic activity, in human U2OS cancer cells and VA-13 immortalized fibroblast cells, both of which lack endogenous hTERT and hTR expression. Changes in gene expression induced by hTERT and hTERT-mut expression were determined by genome-wide RNA-seq and verified by qPCR. Our results showed that hTERT affects different genes in two cell lines, implying that the regulation of gene expression by hTERT is indirect and cell type dependent. Moreover, functional analysis identifies cell adhesion-related genes that have been changed by hTERT in both cell lines. Adhesion experiments revealed that hTERT expression significantly increases cell adhesion. Monolayer wound healing and transwell assays demonstrated increased cell migration upon hTERT expression. These results provide new evidence to support a noncanonical function for hTERT in promoting tumorigenesis. PMID:26971878

  3. hTERT promotes cell adhesion and migration independent of telomerase activity

    PubMed Central

    Liu, Haiying; Liu, Qianqian; Ge, Yuanlong; Zhao, Qi; Zheng, Xiaohui; Zhao, Yong

    2016-01-01

    hTERT, a catalytic component of human telomerase, is undetectable in normal somatic cells but up-regulated in cancer and stem cells where telomere length is maintained by telomerase. Accumulated evidence indicates that hTERT may have noncanonical functions beyond telomerase by regulating the expression of particular genes. However, comprehensive identification of the genes regulated by hTERT is unavailable. In this report, we expressed WT hTERT and hTERTmut which displays dysfunctional catalytic activity, in human U2OS cancer cells and VA-13 immortalized fibroblast cells, both of which lack endogenous hTERT and hTR expression. Changes in gene expression induced by hTERT and hTERT-mut expression were determined by genome-wide RNA-seq and verified by qPCR. Our results showed that hTERT affects different genes in two cell lines, implying that the regulation of gene expression by hTERT is indirect and cell type dependent. Moreover, functional analysis identifies cell adhesion-related genes that have been changed by hTERT in both cell lines. Adhesion experiments revealed that hTERT expression significantly increases cell adhesion. Monolayer wound healing and transwell assays demonstrated increased cell migration upon hTERT expression. These results provide new evidence to support a noncanonical function for hTERT in promoting tumorigenesis. PMID:26971878

  4. Cell-permeable p38 MAP kinase promotes migration of adult neural stem/progenitor cells

    PubMed Central

    Hamanoue, Makoto; Morioka, Kazuhito; Ohsawa, Ikuroh; Ohsawa, Keiko; Kobayashi, Masaaki; Tsuburaya, Kayo; Akasaka, Yoshikiyo; Mikami, Tetsuo; Ogata, Toru; Takamatsu, Ken

    2016-01-01

    Endogenous neural stem/progenitor cells (NPCs) can migrate toward sites of injury, but the migration activity of NPCs is insufficient to regenerate damaged brain tissue. In this study, we showed that p38 MAP kinase (p38) is expressed in doublecortin-positive adult NPCs. Experiments using the p38 inhibitor SB203580 revealed that endogenous p38 participates in NPC migration. To enhance NPC migration, we generated a cell-permeable wild-type p38 protein (PTD-p38WT) in which the HIV protein transduction domain (PTD) was fused to the N-terminus of p38. Treatment with PTD-p38WT significantly promoted the random migration of adult NPCs without affecting cell survival or differentiation; this effect depended on the cell permeability and kinase activity of the fusion protein. These findings indicate that PTD-p38WT is a novel and useful tool for unraveling the roles of p38, and that this protein provides a reasonable approach for regenerating the injured brain by enhancing NPC migration. PMID:27067799

  5. ADAM2 promotes migration of neuroblasts in the rostral migratory stream to the olfactory bulb

    PubMed Central

    Murase, Shin-ichi; Cho, Chunghee; White, Judith M.; Horwitz, Alan F.

    2009-01-01

    Neuroblasts migrate from the subventricular zone along the rostral migratory stream (RMS) to the olfactory bulb (OB). While the migration occurs by movement over other cells, the molecular mechanisms are poorly understood. We have found that ADAM2 (a disintegrin and metalloprotease 2) is expressed in migrating RMS neuroblasts and functions in their migration. The brains from ADAM2 knockout (KO) mice showed a smaller OB than that seen in wild-type (WT) mice at postnatal day 0. In addition, the RMS in ADAM2 KO mice appeared thinner and less voluminous in its rostral part and thicker in its caudal part. Estimates of migration in vivo using bromodeoxyuridine labeling revealed that neuroblasts from KO mice show a decreased migration rate compared with those from WT mice. Direct assays of migration by imaging living slices also showed a decreased migration speed and loss of directionality in the KO mice. This phenotype was similar to that seen in RMS containing slices from WT mice exposed to a peptide that mimicked the disintegrin loop of ADAM2. Finally, RMS explants from KO or WT mice that were cultured in Matrigel also revealed striking differences. The cells migrating out of explants from WT mice showed robust cell—cell interactions. In contrast, fewer cells migrated out of explants from ADAM2 KO mice, and those that did were largely dispersed and their migration inhibited. These experiments suggest that ADAM2 contributes to RMS migration, possibly through cell—cell interactions that mediate the rapid migration of the neuroblasts to their endpoint. PMID:18380661

  6. Pulsed ultrasound promotes melanoblast migration through upregulation of macrophage colony-stimulating factor/focal adhesion kinase autocrine signaling and paracrine mechanisms.

    PubMed

    Liao, Yi-Hua; Huang, Yu-Ting; Deng, Jhu-Yun; Chen, Wen-Shiang; Jee, Shiou-Hwa

    2013-09-01

    Repigmentation of vitiliginous lesions relies on the proliferation and migration of melanoblasts from hair follicles to the epidermis. Pulsed ultrasound has been demonstrated to have stimulatory effects on cell proliferation and migration and has been applied clinically to enhance tissue repair. To clarify the biologic effects and signaling mechanisms of pulsed ultrasound on melanoblast proliferation and migration, two melanoblast cell lines, the undifferentiated NCCmelb4 cells and the differentiated NCCmelan5 cells, were examined. We demonstrated that pulsed ultrasound increased cell migration in a dose-dependent manner without altering cell proliferation. Pulsed ultrasound enhanced autocrine secretion of macrophage colony-stimulating factor (M-CSF), which subsequently activated the focal adhesion kinase (FAK) pathway to promote melanoblast migration. Furthermore, conditioned medium from mouse embryonic fibroblasts NIH 3T3 and primary human keratinocytes treated with pulsed ultrasound could stimulate melanoblast migration through a paracrine effect. Our results provide a novel mechanism to promote migration of melanoblasts by pulsed ultrasound stimulation. PMID:23725022

  7. Soluble tissue factor has unique angiogenic activities that selectively promote migration and differentiation but not proliferation of endothelial cells

    SciTech Connect

    He Yingbo; Chang Guodong; Zhan Shunli; Song Xiaomin; Wang Xiaofeng; Luo Yongzhang

    2008-06-06

    The level of circulating tissue factor (TF) is up-regulated in human angiogenesis-related malignancies. However, whether circulating TF has angiogenic activities has not been determined. Soluble TF (sTF) is the main domain of circulating TF. Here, using cell migration, wound healing, and tubule formation assays, human recombinant sTF was found to significantly promote the migration and differentiation of endothelial cells. The stress fiber formation and rearrangement induced by sTF observed through immunofluorescence microscope may be responsible for the stimulatory migration effect of sTF. Nevertheless, sTF had no effects on endothelial cell proliferation. Interestingly, sTF can be internalized by endothelial cells, which implies a novel mechanism for sTF in angiogenesis. These results suggest that sTF has unique angiogenic activities and may serve as a potential therapeutic target to treat diseases associated with angiogenesis such as cancer and rheumatoid arthritis.

  8. CAPN 7 promotes the migration and invasion of human endometrial stromal cell by regulating matrix metalloproteinase 2 activity

    PubMed Central

    2013-01-01

    Background Matrix metalloproteinase 2 (MMP-2) has been reported to be an important regulator of cell migration and invasion through degradation of the extracellular matrix (ECM) in many diseases, such as cancer and endometriosis. Here, we found calcium-activated neutral protease 7 (CAPN 7) expression was markedly upregulated in the eutopic endometrium and endometrial stromal cells of women diagnosed with endometriosis. Our studies were carried out to detect the effects of CAPN 7 on human endometrial stromal cell (hESC) migration and invasion. Methods Western blotting and quantitative real-time PCR were used to detect the expression of CAPN 7 in endometriosis patients and normal fertile women. Scratch-wound-healing and invasion chamber assay were used to investigate the role of CAPN 7 in hESC migration and invasion. Western blotting, quantitative real-time PCR and zymography were carried out to detect the effect of CAPN 7 on the expressions and activity of MMP-2. Results CAPN 7 was markedly up-regulated in endometriosis, thereby promoting the migration and invasion of hESC. CAPN 7 overexpression led to increased expression of MMP-2 and tissue inhibitor of metalloproteinases 2 (TIMP-2); CAPN 7 knockdown reversed these changes. CAPN 7 increased MMP-2 activity by increasing the ratio of MMP-2 to TIMP-2. We also found that OA-Hy (an MMP-2 inhibitor) decreased the effects of CAPN 7 overexpression on hESC migration and invasion by approximately 50% and 55%, respectively. Additionally, a coimmunoprecipitation assay demonstrated that CAPN 7 interacted with activator protein 2α (AP-2α): an important transcription factor of MMP-2. Conclusions CAPN 7 promotes hESC migration and invasion by increasing the activity of MMP-2 via an increased ratio of MMP-2 to TIMP-2. PMID:23855590

  9. TGF-α/HA complex promotes tympanic membrane keratinocyte migration and proliferation via ErbB1 receptor

    SciTech Connect

    Mei Teh, Bing; Redmond, Sharon L.; Shen, Yi; Atlas, Marcus D.; Marano, Robert J.; Dilley, Rodney J.

    2013-04-01

    Tympanic membrane perforations are common and represent a management challenge to clinicians. Current treatments for chronic perforations involve a graft surgery and require general anaesthesia, including associated costs and morbidities. Bioactive molecules (e.g. growth factors, cytokines) play an important role in promoting TM wound healing following perforation and the use of growth factors as a topical treatment for tympanic membrane perforations has been suggested as an alternative to surgery. However, the choice of bioactive molecules best suited to promote wound healing has yet to be identified. We investigated the effects of hyaluronic acid, vitronectin, TGF-α, IL-24 and their combinations on migration, proliferation and adhesion of cultured human tympanic membrane-derived keratinocytes (hTM), in addition to their possible mechanisms of action. We found that TGF-α, TGF-α/HA and TGF-α/IL-24 promoted wound healing by significantly increasing both migration and proliferation. TGF-α and/or HA treated cells showed comparable cell–cell adhesion whilst maintaining an epithelial cell phenotype. With the use of receptor binding inhibitors for ErbB1 (AG1478) and CD44 (BRIC235), we revealed that the activation of ErbB1 is required for TGF-α/HA-mediated migration and proliferation. These results suggest factors that may be incorporated into a tissue-engineered membrane or directly as topical treatment for tympanic membrane perforations and hence reduce the need for a surgery. - Highlights: ► TGF-α, TGF-α/HA and TGF-α/IL-24 improved hTM keratinocyte migration and proliferation. ► TGF-α and/or HA maintained epithelial cell phenotype. ► TGF-α/HA-mediated migration and proliferation requires activation of ErbB1 receptor.

  10. SCFβ-TRCP suppresses angiogenesis and thyroid cancer cell migration by promoting ubiquitination and destruction of VEGF receptor 2

    PubMed Central

    Shaik, Shavali; Nucera, Carmelo; Inuzuka, Hiroyuki; Gao, Daming; Garnaas, Maija; Frechette, Gregory; Harris, Lauren; Wan, Lixin; Fukushima, Hidefumi; Husain, Amjad; Nose, Vania; Fadda, Guido; Sadow, Peter M.; Goessling, Wolfram; North, Trista; Lawler, Jack

    2012-01-01

    The incidence of human papillary thyroid cancer (PTC) is increasing and an aggressive subtype of this disease is resistant to treatment with vascular endothelial growth factor receptor 2 (VEGFR2) inhibitor. VEGFR2 promotes angiogenesis by triggering endothelial cell proliferation and migration. However, the molecular mechanisms governing VEGFR2 stability in vivo remain unknown. Additionally, whether VEGFR2 influences PTC cell migration is not clear. We show that the ubiquitin E3 ligase SCFβ-TRCP promotes ubiquitination and destruction of VEGFR2 in a casein kinase I (CKI)–dependent manner. β-TRCP knockdown or CKI inhibition causes accumulation of VEGFR2, resulting in increased activity of signaling pathways downstream of VEGFR2. β-TRCP–depleted endothelial cells exhibit enhanced migration and angiogenesis in vitro. Furthermore, β-TRCP knockdown increased angiogenesis and vessel branching in zebrafish. Importantly, we found an inverse correlation between β-TRCP protein levels and angiogenesis in PTC. We also show that β-TRCP inhibits cell migration and decreases sensitivity to the VEGFR2 inhibitor sorafenib in poorly differentiated PTC cells. These results provide a new biomarker that may aid a rational use of tyrosine kinase inhibitors to treat refractory PTC. PMID:22711876

  11. Laminins 411 and 421 differentially promote tumor cell migration via α6β1 integrin and MCAM (CD146).

    PubMed

    Ishikawa, Taichi; Wondimu, Zenebech; Oikawa, Yuko; Gentilcore, Giusy; Kiessling, Rolf; Egyhazi Brage, Suzanne; Hansson, Johan; Patarroyo, Manuel

    2014-09-01

    α4-laminins, such as laminins 411 and 421, are mesenchymal laminins expressed by blood and lymphatic vessels and some tumor cells. Laminin-411 promotes migration of leukocytes and endothelial cells, but the effect of this laminin and laminin-421 on tumor cells is poorly understood. In the present study, we demonstrate that laminin-411 and, to a greater extent, laminin-421 significantly promote migration of tumor cells originated from melanomas, gliomas and different carcinomas via α6β1 integrin. In solid-phase binding assays, both laminins similarly bound α6β1 integrin but only laminin-421, among several laminin isoforms, readily bound MCAM (CD146), a cell-surface adhesion molecule strongly associated with tumor progression. Accordingly, a function-blocking mAb to MCAM inhibited tumor cell migration on laminin-421 but not on laminins 411 or 521. In tumor tissues, melanoma cells co-expressed MCAM, laminin α4, β1, β2 and γ1 chains, and integrin α6 and β1 chains. The present data highlight the novel role of α4-laminins in tumor cell migration and identify laminin-421 as a primary ligand for MCAM and a putative mediator of tumor invasion and metastasis. PMID:24951930

  12. Erk regulation of actin capping and bundling by Eps8 promotes cortex tension and leader bleb-based migration

    PubMed Central

    Logue, Jeremy S; Cartagena-Rivera, Alexander X; Baird, Michelle A; Davidson, Michael W; Chadwick, Richard S; Waterman, Clare M

    2015-01-01

    Within the confines of tissues, cancer cells can use blebs to migrate. Eps8 is an actin bundling and capping protein whose capping activity is inhibited by Erk, a key MAP kinase that is activated by oncogenic signaling. We tested the hypothesis that Eps8 acts as an Erk effector to modulate actin cortex mechanics and thereby mediate bleb-based migration of cancer cells. Cells confined in a non-adhesive environment migrate in the direction of a very large ‘leader bleb.’ Eps8 bundling activity promotes cortex tension and intracellular pressure to drive leader bleb formation. Eps8 capping and bundling activities act antagonistically to organize actin within leader blebs, and Erk mediates this effect. An Erk biosensor reveals concentrated kinase activity within leader blebs. Bleb contents are trapped by the narrow neck that separates the leader bleb from the cell body. Thus, Erk activity promotes actin bundling by Eps8 to enhance cortex tension and drive the bleb-based migration of cancer cells under non-adhesive confinement. DOI: http://dx.doi.org/10.7554/eLife.08314.001 PMID:26163656

  13. Erk regulation of actin capping and bundling by Eps8 promotes cortex tension and leader bleb-based migration.

    PubMed

    Logue, Jeremy S; Cartagena-Rivera, Alexander X; Baird, Michelle A; Davidson, Michael W; Chadwick, Richard S; Waterman, Clare M

    2015-01-01

    Within the confines of tissues, cancer cells can use blebs to migrate. Eps8 is an actin bundling and capping protein whose capping activity is inhibited by Erk, a key MAP kinase that is activated by oncogenic signaling. We tested the hypothesis that Eps8 acts as an Erk effector to modulate actin cortex mechanics and thereby mediate bleb-based migration of cancer cells. Cells confined in a non-adhesive environment migrate in the direction of a very large 'leader bleb.' Eps8 bundling activity promotes cortex tension and intracellular pressure to drive leader bleb formation. Eps8 capping and bundling activities act antagonistically to organize actin within leader blebs, and Erk mediates this effect. An Erk biosensor reveals concentrated kinase activity within leader blebs. Bleb contents are trapped by the narrow neck that separates the leader bleb from the cell body. Thus, Erk activity promotes actin bundling by Eps8 to enhance cortex tension and drive the bleb-based migration of cancer cells under non-adhesive confinement. PMID:26163656

  14. Tamarind Seed Xyloglucans Promote Proliferation and Migration of Human Skin Cells through Internalization via Stimulation of Proproliferative Signal Transduction Pathways

    PubMed Central

    Nie, W.; Deters, A. M.

    2013-01-01

    Xyloglucans (XGs) of Tamarindus indica L. Fabaceae are used as drug vehicles or as ingredients of cosmetics. Two xyloglucans were extracted from T. indica seed with cold water (TSw) and copper complex precipitation (TSc). Both were analyzed in regard to composition and influence on cell viability, proliferation, cell cycle progression, migration, MAPK phosphorylation, and gene expression of human skin keratinocytes (NHEK and HaCaT) and fibroblasts (NHDF) in vitro. TSw and TSc differed in molecular weight, rhamnose content, and ratios of xylose, arabinose, galactose, and glucose. Both XGs improved keratinocytes and fibroblast proliferation, promoted the cell cycle, and stimulated migration and intracellular enzyme activity of NHDF after endosomal uptake. Only TSw significantly enhanced HaCaT migration and extracellular enzyme activity of NHDF and HaCaT. TSw and TSc predominantly enhanced the phosphorylation of molecules that referred to Erk signaling in NHEK. In NHDF parts of the integrin signaling and SAPK/JNK pathway were affected. Independent of cell type TSw marginally regulated the expression of genes, which referred to membrane proteins, cytoskeleton, cytokine signaling, and ECM as well as to processes of metabolism and transcription. Results show that T. indica xyloglucans promote skin regeneration by a direct influence on cell proliferation and migration. PMID:24106497

  15. Tamarind Seed Xyloglucans Promote Proliferation and Migration of Human Skin Cells through Internalization via Stimulation of Proproliferative Signal Transduction Pathways.

    PubMed

    Nie, W; Deters, A M

    2013-01-01

    Xyloglucans (XGs) of Tamarindus indica L. Fabaceae are used as drug vehicles or as ingredients of cosmetics. Two xyloglucans were extracted from T. indica seed with cold water (TSw) and copper complex precipitation (TSc). Both were analyzed in regard to composition and influence on cell viability, proliferation, cell cycle progression, migration, MAPK phosphorylation, and gene expression of human skin keratinocytes (NHEK and HaCaT) and fibroblasts (NHDF) in vitro. TSw and TSc differed in molecular weight, rhamnose content, and ratios of xylose, arabinose, galactose, and glucose. Both XGs improved keratinocytes and fibroblast proliferation, promoted the cell cycle, and stimulated migration and intracellular enzyme activity of NHDF after endosomal uptake. Only TSw significantly enhanced HaCaT migration and extracellular enzyme activity of NHDF and HaCaT. TSw and TSc predominantly enhanced the phosphorylation of molecules that referred to Erk signaling in NHEK. In NHDF parts of the integrin signaling and SAPK/JNK pathway were affected. Independent of cell type TSw marginally regulated the expression of genes, which referred to membrane proteins, cytoskeleton, cytokine signaling, and ECM as well as to processes of metabolism and transcription. Results show that T. indica xyloglucans promote skin regeneration by a direct influence on cell proliferation and migration. PMID:24106497

  16. IL-17A promotes migration and tumor killing capability of B cells in esophageal squamous cell carcinoma

    PubMed Central

    Lu, Lin; Weng, Chengyin; Mao, Haibo; Fang, Xisheng; Liu, Xia; Wu, Yong; Cao, Xiaofei; Li, Baoxiu; Chen, Xiaojun; Gan, Qinquan; Xia, Jianchuan; Liu, Guolong

    2016-01-01

    We have previously reported that the accumulation of IL-17-producing cells could mediate tumor protective immunity by promoting the migration of NK cells, T cells and dendritic cells in esophageal squamous cell carcinoma (ESCC) patients. However, there were no reports concerning the effect of IL-17A on tumor infiltrating B cells. In this study, we investigated the accumulation of CD20+ B cells in the ESCC tumor nests and further addressed the effect of IL-17A on the migration and cytotoxicity of B cells. There was positive correlation between the levels of CD20+ B cells and IL-17+ cells. IL-17A could promote the ESCC tumor cells to produce more chemokines CCL2, CCL20 and CXCL13, which were associated with the migration of B cells. In addition, IL-17A enhanced the IgG-mediated antibody and complement mediated cytotoxicity of B cells against tumor cells. IL-17A-stimulated B cells gained more effective direct killing capability through enhanced expression of Granzyme B and FasL. The effect of IL-17A on the migration and cytotoxicity of B cells was IL-17A pathway dependent, which could be inhibited by IL-17A inhibitor. This study provides further understanding of the roles of IL-17A in humoral response, which may contribute to the development of novel tumor immunotherapy strategy. PMID:26942702

  17. Focal MMP-2 and MMP-9 activity at the blood-brain barrier promotes chemokine-induced leukocyte migration.

    PubMed

    Song, Jian; Wu, Chuan; Korpos, Eva; Zhang, Xueli; Agrawal, Smriti M; Wang, Ying; Faber, Cornelius; Schäfers, Michael; Körner, Heinrich; Opdenakker, Ghislain; Hallmann, Rupert; Sorokin, Lydia

    2015-02-24

    Although chemokines are sufficient for chemotaxis of various cells, increasing evidence exists for their fine-tuning by selective proteolytic processing. Using a model of immune cell chemotaxis into the CNS (experimental autoimmune encephalomyelitis [EAE]) that permits precise localization of immigrating leukocytes at the blood-brain barrier, we show that, whereas chemokines are required for leukocyte migration into the CNS, additional MMP-2/9 activities specifically at the border of the CNS parenchyma strongly enhance this transmigration process. Cytokines derived from infiltrating leukocytes regulate MMP-2/9 activity at the parenchymal border, which in turn promotes astrocyte secretion of chemokines and differentially modulates the activity of different chemokines at the CNS border, thereby promoting leukocyte migration out of the cuff. Hence, cytokines, chemokines, and cytokine-induced MMP-2/9 activity specifically at the inflammatory border collectively act to accelerate leukocyte chemotaxis across the parenchymal border. PMID:25704809

  18. Optimization of electrospun TSF nanofiber alignment and diameter to promote growth and migration of mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Qu, Jing; Zhou, Dandan; Xu, Xiaojing; Zhang, Feng; He, Lihong; Ye, Rong; Zhu, Ziyu; Zuo, Baoqi; Zhang, Huanxiang

    2012-11-01

    Silk fibroin scaffolds are a naturally derived biocompatible matrix with the potential for reconstructive surgical applications. In this study, tussah silk fibroin (TSF) nanofiber with different diameters (400 nm, 800 nm and 1200 nm) and alignment (random and aligned) were prepared by electrospinning, then the growth and migration of mesenchymal stem cells (MSCs) on these materials were further evaluated. CD90 immunofluorescence staining showed that fiber alignment exhibited a strong influence on the morphology of MSCs, indicating that the alignment of the scaffolds could determine the distribution of cells. Moreover, smaller diameter and aligned TSF scaffolds are more favorable to the growth of MSCs as compared with 800 nm and 1200 nm random TSF scaffolds. In addition, the increased migration speed and efficiency of MSCs induced by three-D TSF were verified, highlighting the guiding roles of TSF to the migrated MSCs. More importantly, 400 nm aligned TSF scaffolds dramatically improved cell migratory speed and further induced the most efficient migration of MSCs as compared with larger diameter TSF scaffolds. In conclusion, the data demonstrate that smaller diameter and aligned electrospun TSF represent valuable scaffolds for supporting and promoting MSCs growth and migration, thus raising the possibility of manipulating TSF scaffolds to enhance homing and therapeutic potential of MSCs in cellular therapy.

  19. PBX3 promotes migration and invasion of colorectal cancer cells via activation of MAPK/ERK signaling pathway

    PubMed Central

    Han, Hai-Bo; Gu, Jin; Ji, Deng-Bo; Li, Zhao-Wei; Zhang, Yuan; Zhao, Wei; Wang, Li-Min; Zhang, Zhi-Qian

    2014-01-01

    AIM: To investigate the role of pre-B-cell leukemia homeobox (PBX)3 in migration and invasion of colorectal cancer (CRC) cells. METHODS: We detected PBX3 expression in five cell lines and surgical specimens from 111 patients with CRC using real-time reverse transcription-polymerase chain reaction. We forced expression of PBX3 in low metastatic HT-29 and SW480 cells and knocked down expression of PBX3 in highly metastatic LOVO and HCT-8 cells. Wound healing and Boyden chamber assays were used to detect cell migration and invasion after altered expression of PBX3. Western blot was performed to detect the change of signaling molecule ERK1/2 following PBX3 overexpression. RESULTS: High level of PBX3 expression was correlated with the invasive potential of CRC cells, and significantly associated with lymph node invasion (P = 0.02), distant metastasis (P = 0.04), advanced TNM stage (P = 0.03) and poor overall survival of patients (P < 0.05). Ectopic expression of PBX3 in low metastatic cells was shown to promote migration and invasion, while inhibited PBX3 expression in highly metastatic cells suppressed migration and invasion. Furthermore, upregulation of phosphorylated extracellular signal-regulated kinase (ERK)1/2 was found to be one of the targeted molecules responsible for PBX3-induced CRC cell migration and invasion. CONCLUSION: PBX3 induces invasion and metastasis of CRC cells partially through activation of the MAPK/ERK signaling pathway. PMID:25561793

  20. RhoA activation promotes transendothelial migration of monocytes via ROCK.

    PubMed

    Honing, Henk; van den Berg, Timo K; van der Pol, Susanne M A; Dijkstra, Christine D; van der Kammen, Rob A; Collard, John G; de Vries, Helga E

    2004-03-01

    Monocyte infiltration into inflamed tissue requires the initial arrest of the cells on the endothelium followed by firm adhesion and their subsequent migration. Migration of monocytes and other leukocytes is believed to involve a coordinated remodeling of the actin cytoskeleton. The small GTPases RhoA, Rac1, and Cdc42 are critical regulators of actin reorganization. In this study, we have investigated the role of Rho-like GTPases RhoA, Rac1, and Cdc42 in the adhesion and migration of monocytes across brain endothelial cells by expressing their constitutively active or dominant-negative constructs in NR8383 rat monocytic cells. Monocytes expressing the active form of Cdc42 show a reduced migration, whereas Rac1 expression did not affect adhesion or migration. In contrast, expression of the active form of RhoA in monocytes leads to a dramatic increase in their adhesion and migration across endothelial cells. The effect of RhoA was found to be mediated by its down-stream effector Rho kinase (ROCK), as pretreatment with the selective ROCK inhibitor Y-27632 prevented this enhanced adhesion and migration. These results demonstrate that RhoA activation in monocytes is sufficient to enhance adhesion and migration across monolayers of endothelial cells. PMID:14634067

  1. Lamellipodin and the Scar/WAVE complex cooperate to promote cell migration in vivo

    PubMed Central

    Law, Ah-Lai; Vehlow, Anne; Kotini, Maria; Dodgson, Lauren; Soong, Daniel; Theveneau, Eric; Bodo, Cristian; Taylor, Eleanor; Navarro, Christel; Perera, Upamali; Michael, Magdalene; Dunn, Graham A.; Bennett, Daimark; Mayor, Roberto

    2013-01-01

    Cell migration is essential for development, but its deregulation causes metastasis. The Scar/WAVE complex is absolutely required for lamellipodia and is a key effector in cell migration, but its regulation in vivo is enigmatic. Lamellipodin (Lpd) controls lamellipodium formation through an unknown mechanism. Here, we report that Lpd directly binds active Rac, which regulates a direct interaction between Lpd and the Scar/WAVE complex via Abi. Consequently, Lpd controls lamellipodium size, cell migration speed, and persistence via Scar/WAVE in vitro. Moreover, Lpd knockout mice display defective pigmentation because fewer migrating neural crest-derived melanoblasts reach their target during development. Consistently, Lpd regulates mesenchymal neural crest cell migration cell autonomously in Xenopus laevis via the Scar/WAVE complex. Further, Lpd’s Drosophila melanogaster orthologue Pico binds Scar, and both regulate collective epithelial border cell migration. Pico also controls directed cell protrusions of border cell clusters in a Scar-dependent manner. Taken together, Lpd is an essential, evolutionary conserved regulator of the Scar/WAVE complex during cell migration in vivo. PMID:24247431

  2. Platelet‑rich plasma promotes the migration and invasion of synovial fibroblasts in patients with rheumatoid arthritis.

    PubMed

    Yan, Shanshan; Yang, Binzhou; Shang, Chen; Ma, Zhongshuang; Tang, Zizheng; Liu, Guiping; Shen, Weigan; Zhang, Yu

    2016-09-01

    Platelet-rich plasma (PRP) is blood plasma that has been enriched with platelets, and the number of platelets is correlated with rheumatoid activity. PRP is a concentrated source of autologous platelets, and contains several different growth factors and cytokines, including platelet‑derived growth factor, transforming growth factor‑β and insulin‑like growth factor‑1, which stimulate healing of bone and soft tissue. Rheumatoid arthritis (RA) is characterized by synovial hyperplasia, cell activation, articular inflammation and invasion of the synovium into the adjacent bone and cartilage. The adhesion of fibroblast‑like synoviocytes (FLSs) onto the extracellular matrix (ECM), migration and invasion are important for the erosion and destruction of the articular cartilage of patients with RA. The aim of the present study was to investigate the effects of PRP on the adhesion, migration and invasion of RA‑FLSs. Scratch and Transwell migration assays determined that PRP at a concentration of 2 and 5% significantly enhanced the migration ability of RA‑FLSs. Treatment of RA‑FLSs with 2 and 5% PRP promoted the adhesion and invasion of the cells. Additionally, the immunofluorescence assay revealed that PRP induced a decrease in the number of centrally located stress fibers and led to an increase in the formation of filopodia and lamellipodia in the detectable leading edge protrusions in RA‑FLSs. In addition, reverse transcription‑quantitative polymerase chain reaction and western blot analysis determined that PRP upregulated the protein and mRNA expression levels of matrix metalloproteinase‑1 (MMP‑1). In conclusion, the promotion of RA‑FLS cell migration, invasion and adhesion on the ECM by PRP may be modulated through the upregulation of MMP‑1 expression and the induction of actin cytoskeletal reorganization. PMID:27431382

  3. SIRT 1 Overexpression is Associated with Metastasis of Pancreatic Ductal Adenocarcinoma (PDAC) and Promotes Migration and Growth of PDAC Cells.

    PubMed

    Li, Siqin; Hong, Hua; Lv, Huicheng; Wu, Guozhu; Wang, Zhigang

    2016-01-01

    BACKGROUND SIRT 1, as a class III histone deacetylase (HDAC), is implicated in the initiation and progression of malignancies. However, the association of SIRT 1 with tumorigenesis or progression of pancreatic ductal adenocarcinoma (PDAC) is not clear. MATERIAL AND METHODS In our study we investigated SIRT 1 expression in PDAC samples and evaluated the association of SIRT 1 level with the clinical and pathological characteristics of PDAC patients. We investigated the role of SIRT 1 in the migration and growth of PDAC PANC-1 or BxPC-3 cells using gain-of-function and loss-of-function approach. RESULTS We demonstrated that SIRT 1 mRNA level was significantly promoted in intra-tumor tissues compared to peri-tumor tissues of PDAC; and SIRT 1 overexpression was markedly associated with distant or lymph node (LN) metastasis of these PDAC tissues. Moreover, the in vitro wound healing assay demonstrated that SIRT 1 overexpression with lentivirus vector markedly promoted the migration of PANC-1 or BxPC-3 cells, whereas SIRT 1 knockdown using SIRT 1 specific siRNA transfection significantly inhibited the migration of PDAC cells. The colony forming assay confirmed SIRT 1 promotion of the growth of PANC-1 or BxPC-3 cells. CONCLUSIONS In summary, SIRT 1 overexpression is significantly associated with metastasis of PDAC, and overexpressed SIRT 1 plays an important role in pancreatic cancer cell migration and growth. Our data warrants further studies on SIRT 1 as a novel chemotherapeutic target in PDAC. PMID:27170223

  4. Interaction between p68 RNA helicase and Ca2+-calmodulin promotes cell migration and metastasis

    PubMed Central

    Wang, Haizhen; Gao, Xueliang; Yang, Jenny J.; Liu, Zhi-Ren

    2012-01-01

    Summary p68 RNA helicase is a prototypical RNA helicase. Here we present evidence to show that, by interacting with Ca-calmodulin (CaM), p68 plays a role in cancer metastasis and cell migration. A peptide fragment that spans the IQ motif of p68 strongly inhibits cancer metastasis in two different animal models. The peptide interrupts p68 and CaM interaction and inhibits cell migration. Our results demonstrate that the p68-CaM interaction is essential for the formation of lamellipodia and filopodia in migrating cells. p68 interacts with microtubules in the presence of CaM. Our experiments show that interaction with microtubules stimulates p68 ATPase activity. Further, microtubule gliding assays demonstrate that p68, in the presence of CaM, can function as a microtubule motor. This motor activity may allow p68 to transport CaM to the leading edge of migrating cells. PMID:23322042

  5. A truncated splice variant of human lysyl oxidase-like 2 promotes migration and invasion in esophageal squamous cell carcinoma.

    PubMed

    Zou, Hai-Ying; Lv, Guo-Qing; Dai, Li-Hua; Zhan, Xiu-Hui; Jiao, Ji-Wei; Liao, Lian-Di; Zhou, Tai-Mei; Li, Chun-Quan; Wu, Bing-Li; Xu, Li-Yan; Li, En-Min

    2016-06-01

    Lysyl oxidase-like 2 (LOXL2) is a member of the lysyl oxidase family, which plays an important role in extracellular matrix protein biosynthesis and tumor progression. In the present study, we identified a novel splice variant, LOXL2Δ72, which encodes a peptide having the same N- and C-termini as wild-type LOXL2 (LOXL2WT), but lacks 72 nucleotides encoding 24 amino acids. LOXL2Δ72 had dramatically reduced enzymatic activity, and was no longer secreted. However, LOXL2Δ72 promoted greater cell migration and invasion than LOXL2WT. Furthermore, a dual luciferase reporter assay indicated that LOXL2Δ72 activates distinct signal transduction pathways compared to LOXL2WT, consistent with cDNA microarray data showing different expression levels of cell migration- and invasion-related genes induced following over-expression of each LOXL2 isoform. In particular, LOXL2Δ72 distinctly promoted esophageal squamous cell carcinoma (ESCC) cell migration via up-regulating the C-C motif chemokine ligand 28 (CCL28). Our results suggest that the new LOXL2 splice variant contributes to tumor progression by novel molecular mechanisms different from LOXL2WT. PMID:27063404

  6. M2 polarized macrophages induced by CSE promote proliferation, migration, and invasion of alveolar basal epithelial cells.

    PubMed

    Fu, Xiao; Shi, Hengfei; Qi, Yue; Zhang, Weiyun; Dong, Ping

    2015-09-01

    Cigarette smoking plays an important role in the genesis of lung cancer, and tumor-associated macrophages (TAMs) are believed to accelerate the process. We therefore sought to clarify the relationship between cigarette smoking, TAMs and tumorigenesis. We treated macrophages (THP-1) with cigarette smoke extract (CSE) and found that the mRNA levels of IL-6, IL-10, IL-12 and TNF-α decreased, while TGF-β mRNA levels increased. CSE significantly inhibited the phagocytic ability of macrophages, as assessed by flow cytometric analysis of FITC-dextran internalization. JAK2/STAT3 was significantly activated by CSE, as determined by Western blot analysis. When the scavenger receptor CD163, a specific marker of M2 macrophages, was analyzed by flow cytometry, its expression was significantly increased. After inducing M2 polarization of THP-1 cells, we co-cultured macrophages and alveolar basal epithelial cells (A549). The proliferation of A549 cells was detected by the MTT assay and cell cycle analysis, while their migration and invasion were detected by scratch wound assay and transwell assay. The results showed that the proliferation, migration and invasion of A549 cells were significantly promoted by M2 macrophages but were slightly inhibited by CSE. In conclusion, we demonstrated that macrophage M2 polarization induced by CSE promotes proliferation, migration, and invasion of alveolar basal epithelial cells. PMID:26253658

  7. Wnt5a promotes migration of human osteosarcoma cells by triggering a phosphatidylinositol-3 kinase/Akt signals

    PubMed Central

    2014-01-01

    Wnt5a is classified as a non-transforming Wnt family member and plays complicated roles in oncogenesis and cancer metastasis. However, Wnt5a signaling in osteosarcoma progression remains poorly defined. In this study, we found that Wnt5a stimulated the migration of human osteosarcoma cells (MG-63), with the maximal effect at 100 ng/ml, via enhancing phosphorylation of phosphatidylinositol-3 kinase (PI3K)/Akt. PI3K and Akt showed visible signs of basal phosphorylation and elevated phosphorylation at 15 min after stimulation with Wnt5a. Pharmaceutical inhibition of PI3K with LY294002 significantly blocked the Wnt5a-induced activation of Akt (p-Ser473) and decreased Wnt5a-induced cell migration. Akt siRNA remarkably inhibited Wnt5a-induced cell migration. Additionally, Wnt5a does not alter the total expression and phosphorylation of β-catenin in MG-63 cells. Taken together, we demonstrated for the first time that Wnt5a promoted osteosarcoma cell migration via the PI3K/Akt signaling pathway. These findings could provide a rationale for designing new therapy targeting osteosarcoma metastasis. PMID:24524196

  8. COX-2 Promotes Migration and Invasion by the Side Population of Cancer Stem Cell-Like Hepatocellular Carcinoma Cells

    PubMed Central

    Guo, Zhe; Jiang, Jing-Hang; Zhang, Jun; Yang, Hao-Jie; Yang, Fu-Quan; Qi, Ya-Peng; Zhong, Yan-Ping; Su, Jie; Yang, Ri-Rong; Li, Le-Qun; Xiang, Bang-De

    2015-01-01

    Abstract Cancer stem cells (CSCs) are thought to be responsible for tumor relapse and metastasis due to their abilities to self-renew, differentiate, and give rise to new tumors. Cyclooxygenase-2 (COX-2) is highly expressed in several kinds of CSCs, and it helps promote stem cell renewal, proliferation, and radioresistance. Whether and how COX-2 contributes to CSC migration and invasion is unclear. In this study, COX-2 was overexpressed in the CSC-like side population (SP) of the human hepatocellular carcinoma (HCC) cell line HCCLM3. COX-2 overexpression significantly enhanced migration and invasion of SP cells, while reducing expression of metastasis-related proteins PDCD4 and PTEN. Treating SP cells with the selective COX-2 inhibitor celecoxib down-regulated COX-2 and caused a dose-dependent reduction in cell migration and invasion, which was associated with up-regulation of PDCD4 and PTEN. These results suggest that COX-2 exerts pro-metastatic effects on SP cells, and that these effects are mediated at least partly through regulation of PDCD4 and PTEN expression. These results further suggest that celecoxib may be a promising anti-metastatic agent to reduce migration and invasion by hepatic CSCs. PMID:26554780

  9. Multiple promoters and targeted microRNAs direct the expressions of HMGB3 gene transcripts in dairy cattle.

    PubMed

    Li, Liming; Huang, Jinming; Ju, Zhihua; Li, Qiuling; Wang, Changfa; Qi, Chao; Zhang, Yan; Hou, Qinlei; Hang, Suqin; Zhong, Jifeng

    2013-06-01

    HMGB3 (high-mobility group box 3) is an X-linked member of a family of sequence-independent chromatin-binding proteins and functions as a universal sentinel for nucleic acid-mediated innate immune responses. The splice variant expression, promoter characterization and targeted microRNAs of the bovine HMGB3 gene were investigated to explore its expression pattern and possible regulatory mechanism. The results revealed that the expression of HMGB3 transcript variants 1 and 2 (HMGB3-TV1 and HMGB3-TV2) mRNA in the mastitis-infected mammary gland tissues was up-regulated by 8.46- and 5.31-fold respectively compared with that in healthy tissues (P < 0.05). HMGB3-TV1 was highly expressed in the mammary gland tissues, whereas HMGB3-TV2 was expressed primarily in liver. Functional analyses indicated that HMGB3 transcription is regulated by three distinct promoters - promoters 1, 2 and 3 (P1, P2 and P3) - resulting in two alternative transcripts with the same 3'-untranslated region. Promoter luciferase activity analysis suggested that the core sequences of P1 and P2 were mapped in the region of g.1535 to ~g.2076 and g.2074 to ~g.2491 respectively. The g.5880C>T SNP in P3 affected its base promoter activity, and different genotypes were associated with the bovine somatic count score. The expression of targets bovine miR-17-5p, miR-20b and miR-93 of the HMGB3 gene was down-regulated 1.56-, 1.72- and 2.94-fold respectively in mammary gland tissues as compared with that in healthy tissues (P < 0.05). The findings suggest that HMGB3 expression is under complex transcriptional and post-transcriptional control by alternate promoter usage, alternative splicing mechanism and microRNAs in dairy cattle. PMID:23206268

  10. CD133 promotes gallbladder carcinoma cell migration through activating Akt phosphorylation

    PubMed Central

    Zhen, Jiaojiao; Ai, Zhilong

    2016-01-01

    Gallbladder carcinoma (GBC) is the fifth most common malignancy of gastrointestinal tract. The prognosis of gallbladder carcinoma is extremely terrible partially due to metastasis. However, the mechanisms underlying gallbladder carcinoma metastasis remain largely unknown. CD133 is a widely used cancer stem cell marker including in gallbladder carcinoma. Here, we found that CD133 was highly expressed in gallbladder carcinoma as compared to normal tissues. CD133 was located in the invasive areas in gallbladder carcinoma. Down-regulation expression of CD133 inhibited migration and invasion of gallbladder carcinoma cell without obviously reducing cell proliferation. Mechanism analysis revealed that down-regulation expression of CD133 inhibited Akt phosphorylation and increased PTEN protein level. The inhibitory effect of CD133 down-regulation on gallbladder carcinoma cell migration could be rescued by Akt activation. Consistent with this, addition of Akt inhibitor Wortmannin markedly inhibited the migration ability of CD133-overexpressing cells. Thus, down-regulation of CD133 inhibits migration of gallbladder carcinoma cells through reducing Akt phosphorylation. These findings explore the fundamental biological aspect of CD133 in gallbladder carcinoma progression, providing insights into gallbladder carcinoma cell migration. PMID:26910892

  11. Flight orientation behaviors promote optimal migration trajectories in high-flying insects.

    PubMed

    Chapman, Jason W; Nesbit, Rebecca L; Burgin, Laura E; Reynolds, Don R; Smith, Alan D; Middleton, Douglas R; Hill, Jane K

    2010-02-01

    Many insects undertake long-range seasonal migrations to exploit temporary breeding sites hundreds or thousands of kilometers apart, but the behavioral adaptations that facilitate these movements remain largely unknown. Using entomological radar, we showed that the ability to select seasonally favorable, high-altitude winds is widespread in large day- and night-flying migrants and that insects adopt optimal flight headings that partially correct for crosswind drift, thus maximizing distances traveled. Trajectory analyses show that these behaviors increase migration distances by 40% and decrease the degree of drift from seasonally optimal directions. These flight behaviors match the sophistication of those seen in migrant birds and help explain how high-flying insects migrate successfully between seasonal habitats. PMID:20133570

  12. Chase-and-run between adjacent cell populations promotes directional collective migration

    PubMed Central

    Theveneau, Eric; Steventon, Benjamin; Scarpa, Elena; Garcia, Simon; Trepat, Xavier; Streit, Andrea; Mayor, Roberto

    2016-01-01

    Collective cell migration in morphogenesis and cancer progression often involves the coordination of multiple cell types. How reciprocal interactions between adjacent cell populations lead to new emergent behaviours remains unknown. Here we studied the interaction between Neural Crest (NC) cells, a highly migratory cell population, and placodal cells, an epithelial tissue that contributes to sensory organs. We found that NC cells “chase” placodal cells by chemotaxis, while placodal cells “run” when contacted by NC. Chemotaxis to Sdf1 underlies the chase, while repulsion involving PCP and N-Cadherin signalling is responsible for the run. This “chase-and-run” requires the generation of asymmetric forces, which depend on local inhibition of focal adhesions. The cell interactions described here are essential for correct NC migration and for segregation of placodes in vivo and are likely to represent a general mechanism of coordinated migration. PMID:23770678

  13. Overexpression of engulfment and cell motility 1 promotes cell invasion and migration of hepatocellular carcinoma.

    PubMed

    Jiang, Jiarui; Liu, Guoqing; Miao, Xiongying; Hua, Songwen; Zhong, Dewu

    2011-05-01

    Engulfment and cell motility 1 (Elmo1) has been linked to the invasive phenotype of glioma cells. The use of Elmo1 inhibitors is currently being evaluated in hepato-cellular carcinoma (HCC), but the molecular mechanisms of their therapeutic effect have yet to be determined. Elmo1 expression in HCC tissue samples from 131 cases and in 5 HCC cell lines was determined by immunohistochemistry, quantitative RT-PCR and Western blotting. To functionally characterize Elmo1 in HCC, Elmo1 expression in the HCCLM3 cell line was blocked by siRNA. Cell migration was measured by wound healing and transwell migration assays in vitro. Elmo1 overexpression was significantly correlated with cell invasion and the poor prognosis of HCC. Elmo1-siRNA-treated HCCLM3 cells demonstrated a reduction in cell migration. The present study demonstrated for the first time that the suppression of Elmo1 expression inhibits cell invasion in HCC. PMID:22977532

  14. Oncogene ATAD2 promotes cell proliferation, invasion and migration in cervical cancer.

    PubMed

    Zheng, Le; Li, Tianren; Zhang, Yi; Guo, Yi; Yao, Jihang; Dou, Lei; Guo, Kejun

    2015-05-01

    The ATPase family AAA domain-containing protein 2 (ATAD2) is associated with many cellular processes, such as cell proliferation, invasion and migration. However, the molecular biological function of the ATAD2 gene in cervical cancer is unclear. The purpose of this study was to explore ATAD2 expression in cervical cancer, evaluate the relationship between the development of cervical cancer, metastasis and clinicopathological characteristics, and discuss the implications for its use in clinical treatment. Protein and mRNA expression of ATAD2 was examined in tissues and cell lines. Tumor tissues from 135 cases of cervical cancer were collected for evaluation of ATAD2 expression by immunohistochemistry and western blotting. Prognostic significance was evaluated by the Cox hazards model and Kaplan-Meier survival method. HeLa and SiHa cells were transfected with two siRNAs targeting ATAD2. ATAD2 knockdown was used to analyze cell proliferation, invasion and migration. Cell viability was evaluated with the Cell Counting Κit-8 (CCK-8) assay, cell invasion by a Transwell assay and cell migration by a wound healing/scratch migration assay. ATAD2 was shown to be highly expressed in cervical cancer tissues, both at the transcriptional and protein levels, and was correlated with poor patient survival (P<0.05). Knockdown of ATAD2 in the HeLa and SiHa cells was found to reduce the capacity for invasion and migration (P<0.05), and inhibited the growth and clonogenic potential of the HeLa and SiHa cell lines. Our results suggest that cervical cancer tissues may have highly expressed ATAD2, which is associated with tumor stage and lymph node status (P<0.05). Oncogene ATAD2 may play an important role in cervical cancer proliferation, invasion and migration. It could serve as a prognostic marker and a therapeutic target for cervical cancer. PMID:25813398

  15. Cortactin involvement in the keratinocyte growth factor and fibroblast growth factor 10 promotion of migration and cortical actin assembly in human keratinocytes

    SciTech Connect

    Ceccarelli, Simona; Cardinali, Giorgia; Aspite, Nicaela; Picardo, Mauro; Marchese, Cinzia; Torrisi, Maria Rosaria; Mancini, Patrizia . E-mail: patrizia.mancini@uniroma1.it

    2007-05-15

    Keratinocyte growth factor (KGF/FGF7) and fibroblast growth factor 10 (FGF10/KGF2) regulate keratinocyte proliferation and differentiation by binding to the tyrosine kinase KGF receptor (KGFR). KGF induces keratinocyte motility and cytoskeletal rearrangement, whereas a direct role of FGF10 on keratinocyte migration is not clearly established. Here we analyzed the motogenic activity of FGF10 and KGF on human keratinocytes. Migration assays and immunofluorescence of actin cytoskeleton revealed that FGF10 is less efficient than KGF in promoting migration and exerts a delayed effect in inducing lamellipodia and ruffles formation. Both growth factors promoted phosphorylation and subsequent membrane translocation of cortactin, an F-actin binding protein involved in cell migration; however, FGF10-induced cortactin phosphorylation was reduced, more transient and delayed with respect to that promoted by KGF. Cortactin phosphorylation induced by both growth factors was Src-dependent, while its membrane translocation and cell migration were blocked by either Src and PI3K inhibitors, suggesting that both pathways are involved in KGF- and FGF10-dependent motility. Furthermore, siRNA-mediated downregulation of cortactin inhibited KGF- and FGF10-induced migration. These results indicate that cortactin is involved in keratinocyte migration promoted by both KGF and FGF10.

  16. FAK competes for Src to promote migration against invasion in melanoma cells

    PubMed Central

    Kolli-Bouhafs, K; Sick, E; Noulet, F; Gies, J-P; De Mey, J; Rondé, P

    2014-01-01

    Melanoma is one of the most deadly cancers because of its high propensity to metastasis, a process that requires migration and invasion of tumor cells driven by the regulated formation of adhesives structures like focal adhesions (FAs) and invasive structures like invadopodia. FAK, the major kinase of FAs, has been implicated in many cellular processes, including migration and invasion. In this study, we investigated the role of FAK in the regulation of invasion. We report that suppression of FAK in B16F10 melanoma cells led to increased invadopodia formation and invasion through Matrigel, but impaired migration. These effects are rescued by FAK WT but not by FAKY397F reexpression. Invadopodia formation requires local Src activation downstream of FAK and in a FAK phosphorylation-dependant manner. FAK deletion correlates with increased phosphorylation of Tks-5 (tyrosine kinase substrate with five SH3 domain) and reactive oxygen species production. In conclusion, our data show that FAK is able to mediate opposite effects on cell migration and invasion. Accordingly, beneficial effects of FAK inhibition are context dependent and may depend on the cell response to environmental cues and/or on the primary or secondary changes that melanoma experienced through the invasion cycle. PMID:25118939

  17. Paradoxes of Sahrawi Refugees' Educational Migration: Promoting Self-Sufficiency or Renewing Dependency?

    ERIC Educational Resources Information Center

    Fiddian-Qasmiyeh, Elena

    2011-01-01

    Education is often prioritised by refugee children and families, as well as by their political representatives and international actors alike. This article explores the specificities of the Sahrawi refugee education system, focusing in particular on the nature, motivations and implications of Sahrawi refugee youths' educational migration to Cuba…

  18. PTK6 Promotes Cancer Migration and Invasion in Pancreatic Cancer Cells Dependent on ERK Signaling

    PubMed Central

    Ono, Hiroaki; Basson, Marc D.; Ito, Hiromichi

    2014-01-01

    Protein Tyrosine Kinase 6 (PTK6) is a non-receptor type tyrosine kinase that may be involved in some cancers. However, the biological role and expression status of PTK6 in pancreatic cancer is unknown. Therefore in this study, we evaluated the functional role of PTK6 on pancreatic cancer invasion. Five pancreatic cancer cell lines expressed PTK6 at varying levels. PTK6 expression was also observed in human pancreatic adenocarcinomas. PTK6 suppression by siRNA significantly reduced both cellular migration and invasion (0.59/0.49 fold for BxPC3, 0.61/0.62 for Panc1, 0.42/0.39 for MIAPaCa2, respectively, p<0.05 for each). In contrast, forced overexpression of PTK6 by transfection of a PTK6 expression vector in Panc1 and MIAPaCa2 cells increased cellular migration and invasion (1.57/1.67 fold for Panc1, 1.44/1.57 for MIAPaCa2, respectively, p<0.05). Silencing PTK6 reduced ERK1/2 activation, but not AKT or STAT3 activation, while PTK6 overexpression increased ERK1/2 activation. U0126, a specific inhibitor of ERK1/2, completely abolished the effect of PTK6 overexpression on cellular migration and invasion. These results suggest that PTK6 regulates cellular migration and invasion in pancreatic cancer via ERK signaling. PTK6 may be a novel therapeutic target for pancreatic cancer. PMID:24788754

  19. Thymosin {beta}4 promotes the migration of endothelial cells without intracellular Ca{sup 2+} elevation

    SciTech Connect

    Selmi, Anna; Malinowski, Mariusz; Brutkowski, Wojciech; Bednarek, Radoslaw; Cierniewski, Czeslaw S.

    2012-08-15

    Numerous studies have demonstrated the effects of T{beta}4 on cell migration, proliferation, apoptosis and inflammation after exogenous treatment, but the mechanism by which T{beta}4 functions is still unclear. Previously, we demonstrated that incubation of endothelial cells with T{beta}4 induced synthesis and secretion of various proteins, including plasminogen activator inhibitor type 1 and matrix metaloproteinases. We also showed that T{beta}4 interacts with Ku80, which may operate as a novel receptor for T{beta}4 and mediates its intracellular activity. In this paper, we provide evidence that T{beta}4 induces cellular processes without changes in the intracellular Ca{sup 2+} concentration. External treatment of HUVECs with T{beta}4 and its mutants deprived of the N-terminal tetrapeptide AcSDKP (T{beta}4{sub AcSDKPT/4A}) or the actin-binding sequence KLKKTET (T{beta}4{sub KLKKTET/7A}) resulted in enhanced cell migration and formation of tubular structures in Matrigel. Surprisingly, the increased cell motility caused by T{beta}4 was not associated with the intracellular Ca{sup 2+} elevation monitored with Fluo-4 NW or Fura-2 AM. Therefore, it is unlikely that externally added T{beta}4 induces HUVEC migration via the surface membrane receptors known to generate Ca{sup 2+} influx. Our data confirm the concept that externally added T{beta}4 must be internalized to induce intracellular mechanisms supporting endothelial cell migration.

  20. The epsin family of endocytic adaptors promotes fibrosarcoma migration and invasion.

    PubMed

    Coon, Brian G; Burgner, John; Camonis, Jacques H; Aguilar, R Claudio

    2010-10-22

    Abnormalities in the process of endocytosis are classically linked to malignant transformation through the deficient down-regulation of signaling receptors. The present study describes a non-classical mechanism that does not require internalization by which endocytic proteins affect cell migration and basement membrane invasion. Specifically, we found that the endocytic adaptor epsin binds and regulates the biological properties of the signaling molecule RalBP1 (Ral-binding protein 1). Epsin interacted with the N terminus of RalBP1 via its characteristic epsin N-terminal homology (ENTH) domain. A combination of siRNA-mediated knock-down and transfection of siRNA-resistant constructs in fibrosarcoma cells demonstrated that impairment of the epsin-RalBP1 interaction led to cell migration and basement membrane invasion defects. We found the ENTH domain was necessary and sufficient to sustain normal cell migration and invasion. Because all the epsin endocytic motifs reside in the C-terminal part of the molecule, these results suggest that this novel regulatory circuit does not require endocytosis. In addition, cells depleted of epsin-RalBP1 complex displayed deficient activation of Rac1 and Arf6 suggesting a signaling function for this novel interaction. Further, overexpression of either epsin or RalBP1 enhanced migration and invasion of fibrosarcoma cells. Collectively, our results indicate that epsin regulates RalBP1 function in Rac1- and Arf6-dependent pathways to ultimately affect cell migration and invasion. We propose that the observed up-regulation of both epsin and RalBP1 in certain cancers contributes to their invasive characteristics. PMID:20709745

  1. The Epsin Family of Endocytic Adaptors Promotes Fibrosarcoma Migration and Invasion*

    PubMed Central

    Coon, Brian G.; Burgner, John; Camonis, Jacques H.; Aguilar, R. Claudio

    2010-01-01

    Abnormalities in the process of endocytosis are classically linked to malignant transformation through the deficient down-regulation of signaling receptors. The present study describes a non-classical mechanism that does not require internalization by which endocytic proteins affect cell migration and basement membrane invasion. Specifically, we found that the endocytic adaptor epsin binds and regulates the biological properties of the signaling molecule RalBP1 (Ral-binding protein 1). Epsin interacted with the N terminus of RalBP1 via its characteristic epsin N-terminal homology (ENTH) domain. A combination of siRNA-mediated knock-down and transfection of siRNA-resistant constructs in fibrosarcoma cells demonstrated that impairment of the epsin-RalBP1 interaction led to cell migration and basement membrane invasion defects. We found the ENTH domain was necessary and sufficient to sustain normal cell migration and invasion. Because all the epsin endocytic motifs reside in the C-terminal part of the molecule, these results suggest that this novel regulatory circuit does not require endocytosis. In addition, cells depleted of epsin-RalBP1 complex displayed deficient activation of Rac1 and Arf6 suggesting a signaling function for this novel interaction. Further, overexpression of either epsin or RalBP1 enhanced migration and invasion of fibrosarcoma cells. Collectively, our results indicate that epsin regulates RalBP1 function in Rac1- and Arf6-dependent pathways to ultimately affect cell migration and invasion. We propose that the observed up-regulation of both epsin and RalBP1 in certain cancers contributes to their invasive characteristics. PMID:20709745

  2. Impaired SIRT1 promotes the migration of vascular smooth muscle cell-derived foam cells.

    PubMed

    Zhang, Ming-Jie; Zhou, Yi; Chen, Lei; Wang, Xu; Pi, Yan; Long, Chun-Yan; Sun, Meng-Jiao; Chen, Xue; Gao, Chang-Yue; Li, Jing-Cheng; Zhang, Li-Li

    2016-07-01

    The formation of fat-laden foam cells, contributing to the fatty streaks of the plaques of atheroma, is the critical early process in atherosclerosis. The previous study demonstrated that vascular smooth muscle cells (VSMCs) contain a much larger burden of the excess cholesterol in comparison with monocyte-derived macrophages in human coronary atherosclerosis, as the main origin of foam cells. It is noteworthy that VSMC-derived foam cells are deposited in subintima but not media, where VSMCs normally deposit in. Therefore, migration from media to intima is an indispensable step for a VSMC to accrue neutral lipids and form foam cell. Whether this migration occurs paralleled with or prior to the formation of foam cell is still unclear. Herein, the present study was designed to test the VSMC migratory capability in the process of foam cell formation induced by oxidized low-density lipoprotein (oxLDL). In conclusion, we provide evidence that oxLDL induces the VSMC-derived foam cells formation with increased migration ability and MMP-9 expression, which were partly attributed to the impaired SIRT1 and enhanced nuclear factor-kappa B (NF-κB) activity. As activation of transient receptor potential vanilloid type 1 (TRPV1) has been reported to have anti-atherosclerotic effects, we investigated its role in oxLDL-treated VSMC migration. It is found that activating TRPV1 by capsaicin inhibits VSMC foam cell formation and the accompanied migration through rescuing the SIRT1 and suppressing NF-κB signaling. The present study provides evidence that SIRT1 may be a promising intervention target of atherosclerosis, and raises the prospect of TRPV1 in prevention and treatment of atherosclerosis. PMID:26883442

  3. The Interaction between Cancer Stem Cell Marker CD133 and Src Protein Promotes Focal Adhesion Kinase (FAK) Phosphorylation and Cell Migration.

    PubMed

    Liu, Chanjuan; Li, Yinan; Xing, Yang; Cao, Benjin; Yang, Fan; Yang, Tianxiao; Ai, Zhilong; Wei, Yuanyan; Jiang, Jianhai

    2016-07-22

    CD133, a widely known cancer stem cell marker, has been proved to promote tumor metastasis. However, the mechanism by which CD133 regulates metastasis remains largely unknown. Here, we report that CD133 knockdown inhibits cancer cell migration, and CD133 overexpression promotes cell migration. CD133 expression is beneficial to activate the Src-focal adhesion kinase (FAK) signaling pathway. Further studies show that CD133 could interact with Src, and the region between amino acids 845 and 857 in the CD133 C-terminal domain is indispensable for its interaction with Src. The interaction activates Src to phosphorylate its substrate FAK and to promote cell migration. Likewise, a Src binding-deficient CD133 mutant loses the abilities to increase Src and FAK phosphorylation and to promote cell migration. Inhibition of Src activity by PP2, a known Src activity inhibitor, could block the activation of FAK phosphorylation and cell migration induced by CD133. In summary, our data suggest that activation of FAK by the interaction between CD133 and Src promotes cell migration, providing clues to understand the migratory mechanism of CD133(+) tumor cells. PMID:27226554

  4. Synthetic antimicrobial and LPS-neutralising peptides suppress inflammatory and immune responses in skin cells and promote keratinocyte migration.

    PubMed

    Pfalzgraff, Anja; Heinbockel, Lena; Su, Qi; Gutsmann, Thomas; Brandenburg, Klaus; Weindl, Günther

    2016-01-01

    The stagnation in the development of new antibiotics and the concomitant high increase of resistant bacteria emphasize the urgent need for new therapeutic options. Antimicrobial peptides are promising agents for the treatment of bacterial infections and recent studies indicate that Pep19-2.5, a synthetic anti-lipopolysaccharide (LPS) peptide (SALP), efficiently neutralises pathogenicity factors of Gram-negative (LPS) and Gram-positive (lipoprotein/-peptide, LP) bacteria and protects against sepsis. Here, we investigated the potential of Pep19-2.5 and the structurally related compound Pep19-4LF for their therapeutic application in bacterial skin infections. SALPs inhibited LP-induced phosphorylation of NF-κB p65 and p38 MAPK and reduced cytokine release and gene expression in primary human keratinocytes and dermal fibroblasts. In LPS-stimulated human monocyte-derived dendritic cells and Langerhans-like cells, the peptides blocked IL-6 secretion, downregulated expression of maturation markers and inhibited dendritic cell migration. Both SALPs showed a low cytotoxicity in all investigated cell types. Furthermore, SALPs markedly promoted cell migration via EGFR transactivation and ERK1/2 phosphorylation and accelerated artificial wound closure in keratinocytes. Peptide-induced keratinocyte migration was mediated by purinergic receptors and metalloproteases. In contrast, SALPs did not affect proliferation of keratinocytes. Conclusively, our data suggest a novel therapeutic target for the treatment of patients with acute and chronic skin infections. PMID:27509895

  5. Promotion of Cell Migration by Neural Cell Adhesion Molecule (NCAM) Is Enhanced by PSA in a Polysialyltransferase-Specific Manner

    PubMed Central

    Guan, Feng; Wang, Xin; He, Fa

    2015-01-01

    Neural cell adhesion molecule 140 (NCAM-140) is a glycoprotein and always highly polysialylated in cancer. Functions of polysialic acid (PSA) that binds to N-glycan termini on NCAM remain unclear. ldlD-14 cells, a CHO cell mutant deficient in UDP-Gal 4-epimerase, are useful for structural and functional studies of Gal-containing glycoproteins because their abnormal glycosylation can be converted to normal status by exogenous addition of galactose (Gal). We cloned the genes for NCAM-140 and for polysialyltransferases STX and PST (responsible for PSA synthesis) from normal murine mammary gland epithelial (NMuMG) cells and transfected them into ldlD-14 and human breast cancer cells MCF-7. The effect of PSA on NCAM-mediated cell proliferation, motility, migration and adhesion was studied. We found that NCAM-140 significantly promoted cell proliferation, motility and migration, while polysialylation of NCAM-140 catalyzed by STX, but not by PST, enhanced NCAM-mediated cell migration, but not cell proliferation or motility. In addition, PSA catalyzed by different polysialyltransferases affected the adhesion of NCAM to different extracellular matrix (ECM) components. PMID:25885924

  6. Synthetic antimicrobial and LPS-neutralising peptides suppress inflammatory and immune responses in skin cells and promote keratinocyte migration

    PubMed Central

    Pfalzgraff, Anja; Heinbockel, Lena; Su, Qi; Gutsmann, Thomas; Brandenburg, Klaus; Weindl, Günther

    2016-01-01

    The stagnation in the development of new antibiotics and the concomitant high increase of resistant bacteria emphasize the urgent need for new therapeutic options. Antimicrobial peptides are promising agents for the treatment of bacterial infections and recent studies indicate that Pep19-2.5, a synthetic anti-lipopolysaccharide (LPS) peptide (SALP), efficiently neutralises pathogenicity factors of Gram-negative (LPS) and Gram-positive (lipoprotein/-peptide, LP) bacteria and protects against sepsis. Here, we investigated the potential of Pep19-2.5 and the structurally related compound Pep19-4LF for their therapeutic application in bacterial skin infections. SALPs inhibited LP-induced phosphorylation of NF-κB p65 and p38 MAPK and reduced cytokine release and gene expression in primary human keratinocytes and dermal fibroblasts. In LPS-stimulated human monocyte-derived dendritic cells and Langerhans-like cells, the peptides blocked IL-6 secretion, downregulated expression of maturation markers and inhibited dendritic cell migration. Both SALPs showed a low cytotoxicity in all investigated cell types. Furthermore, SALPs markedly promoted cell migration via EGFR transactivation and ERK1/2 phosphorylation and accelerated artificial wound closure in keratinocytes. Peptide-induced keratinocyte migration was mediated by purinergic receptors and metalloproteases. In contrast, SALPs did not affect proliferation of keratinocytes. Conclusively, our data suggest a novel therapeutic target for the treatment of patients with acute and chronic skin infections. PMID:27509895

  7. The matrix protein CCN1 (CYR61) promotes proliferation, migration and tube formation of endothelial progenitor cells

    SciTech Connect

    Yu Yang; Gao Yu; Wang, Hong; Huang Lan Qin Jun; Guo Ruiwei; Song Mingbao; Yu Shiyong; Chen Jianfei; Cui Bin; Gao Pan

    2008-10-15

    Neovascularization and re-endothelialization relies on circulating endothelial progenitor cells (EPCs), but their recruitment and angiogenic roles are subjected to regulation by the vascular microenvironment, which remains largely unknown. The present study was designed to investigate the effects of mature ECs and matrix protein CCN1 on the properties of EPCs. In a coculture system, effects of ECs on proliferation, migration and participation in tube-like formation of EPCs were evaluated, and functional assays were employed to identify the exact role of CCN1 in EPCs vitality and function. We demonstrated that ECs, as an indispensable part of the cellular milieu, significantly promoted the proliferation, migration and tube formation activities of EPCs, and more importantly, CCN1 was potentially involved in such effects of ECs. Expression of CCN1 in EPCs was significantly increased by serum, VEGF, ECs-cocultivation and ECs conditioned medium. Moreover, Ad-CCN1-mediated overexpression of CCN1 directly enhanced migration and tube formation of EPCs, whereas silencing of endogenous CCN1 in EPCs inhibits cell functions. Furthermore, CCN1 induced the expressions of chemokines and growth factors, such as MCP-1 and VEGF, suggesting a complex interaction between those proangiogenic factors. Our data suggest that matrix protein CCN1 may play an important role in microenvironment-mediated biological properties of EPCs.

  8. Promotion of cell migration by neural cell adhesion molecule (NCAM) is enhanced by PSA in a polysialyltransferase-specific manner.

    PubMed

    Guan, Feng; Wang, Xin; He, Fa

    2015-01-01

    Neural cell adhesion molecule 140 (NCAM-140) is a glycoprotein and always highly polysialylated in cancer. Functions of polysialic acid (PSA) that binds to N-glycan termini on NCAM remain unclear. ldlD-14 cells, a CHO cell mutant deficient in UDP-Gal 4-epimerase, are useful for structural and functional studies of Gal-containing glycoproteins because their abnormal glycosylation can be converted to normal status by exogenous addition of galactose (Gal). We cloned the genes for NCAM-140 and for polysialyltransferases STX and PST (responsible for PSA synthesis) from normal murine mammary gland epithelial (NMuMG) cells and transfected them into ldlD-14 and human breast cancer cells MCF-7. The effect of PSA on NCAM-mediated cell proliferation, motility, migration and adhesion was studied. We found that NCAM-140 significantly promoted cell proliferation, motility and migration, while polysialylation of NCAM-140 catalyzed by STX, but not by PST, enhanced NCAM-mediated cell migration, but not cell proliferation or motility. In addition, PSA catalyzed by different polysialyltransferases affected the adhesion of NCAM to different extracellular matrix (ECM) components. PMID:25885924

  9. Response Gene to Complement 32 Promotes Vascular Lesion Formation through Stimulation of Smooth Muscle Cell Proliferation and Migration

    PubMed Central

    Wang, Jia-Ning; Shi, Ning; Xie, Wei-bing; Guo, Xia; Chen, Shi-You

    2011-01-01

    Objective The objectives of this study are to determine the role of response gene to complement 32 (RGC-32) in vascular lesion formation after experimental angioplasty and to explore the underlying mechanisms. Methods and Results Using a rat carotid artery balloon-injury model, we documented for the first time that neointima formation was closely associated with a significantly increased expression of RGC-32 protein. shRNA Knockdown of RGC-32 via adenovirus (Ad)-mediated gene delivery dramatically inhibited the lesion formation by 62% as compared to control groups 14 days after injury. Conversely, RGC-32 overexpression significantly promoted the neointima formation by 33%. Gain and loss of function studies in primary culture of rat aortic smooth muscle cells (RASMCs) indicated that RGC-32 is essential for both the proliferation and migration of RASMCs. RGC-32 induced RASMC proliferation by enhancing p34CDC2 activity. RGC-32 stimulated the migration of RASMC via inducing focal adhesion contact and stress fiber formation. These effects were caused by the enhanced ROKα activity due to RGC-32-induced downregulation of Rad GTPase. Conclusions RGC-32 plays an important role in vascular lesion formation following vascular injury. Increased RGC-32 expression in vascular injury appears to be a novel mechanism underlying the migration and proliferation of vascular SMCs. Therefore, targeting RGC-32 is a potential therapeutic strategy for the prevention of vascular remodeling in proliferative vascular diseases. PMID:21636805

  10. MiR-21 promoted proliferation and migration in hepatocellular carcinoma through negative regulation of Navigator-3

    SciTech Connect

    Wang, Zhipeng; Yang, Huan; Ren, Lei

    2015-09-04

    MicroRNA-21 (miR-21) has been well-established and found to be over-expressed in various human cancers and has been associated with hepatocellular carcinoma (HCC) progression. However, the underlying mechanism of miR-21 involvement in the development and progression of HCC remains to be understood. In the present study, we firstly identified that the Navigator-3 (NAV-3) gene as a novel direct target of miR-21. Knock-down of NAV-3 using shRNA can rescue the effects of anti-miR-21 inhibitor in HCC cell lines, whereas re-expression of miR-21 using transfection with miR-21 mimics phenocopied the NAV-3 knock-down model. Additionally, miR-21 levels inversely correlated with NAV-3 both in HCC cells and tissues. Knock-down of NAV-3 promoted both the proliferation and migration in HCC cells. Together, our findings suggest an important role for miR-21 in the progression of HCC, which negatively regulated Navigator-3 in the migration of HCC. - Highlights: • Navigator-3 (NAV-3) suppresses proliferation, migration and tumorigenesis of HCC cells. • NAV-3 was a novel target of miR-21. • MiR-21 negatively regulates NAV-3 in HCC.

  11. Capture of microtubule plus-ends at the actin cortex promotes axophilic neuronal migration by enhancing microtubule tension in the leading process

    PubMed Central

    Hutchins, B. Ian; Wray, Susan

    2014-01-01

    Microtubules are a critical part of neuronal polarity and leading process extension, thus microtubule movement plays an important role in neuronal migration. However, the dynamics of microtubules during the forward movement of the nucleus into the leading process (nucleokinesis) is unclear and may be dependent on the cell type and mode of migration used. In particular, little is known about cytoskeletal changes during axophilic migration, commonly used in anteroposterior neuronal migration. We recently showed that leading process actin flow in migrating GnRH neurons is controlled by a signaling cascade involving IP3 receptors, CaMKK, AMPK, and RhoA. In the present study, microtubule dynamics were examined in GnRH neurons. Failure of the migration of these cells leads to the neuroendocrine disorder Kallmann Syndrome. Microtubules translocated forward along the leading process shaft during migration, but reversed direction and moved toward the nucleus when migration stalled. Blocking calcium release through IP3 receptors halted migration and induced the same reversal of microtubule translocation, while blocking cortical actin flow prevented microtubules from translocating toward the distal leading process. Super-resolution imaging revealed that microtubule plus-end tips are captured at the actin cortex through calcium-dependent mechanisms. This work shows that cortical actin flow draws the microtubule network forward through calcium-dependent capture in order to promote nucleokinesis, revealing a novel mechanism engaged by migrating neurons to facilitate movement. PMID:25505874

  12. Migrate small, sound big: functional constraints on body size promote tracheal elongation in cranes.

    PubMed

    Jones, M R; Witt, C C

    2014-06-01

    Organismal traits often represent the outcome of opposing selection pressures. Although social or sexual selection can cause the evolution of traits that constrain function or survival (e.g. ornamental feathers), it is unclear how the strength and direction of selection respond to ecological shifts that increase the severity of the constraint. For example, reduced body size might evolve by natural selection to enhance flight performance in migratory birds, but social or sexual selection favouring large body size may provide a countervailing force. Tracheal elongation is a potential outcome of these opposing pressures because it allows birds to convey an auditory signal of exaggerated body size. We predicted that the evolution of migration in cranes has coincided with a reduction in body size and a concomitant intensification of social or sexual selection for apparent large body size via tracheal elongation. We used a phylogenetic comparative approach to examine the relationships among migration distance, body mass and trachea length in cranes. As predicted, we found that migration distance correlated negatively with body size and positively with proportional trachea length. This result was consistent with our hypothesis that evolutionary reductions in body size led to intensified selection for trachea length. The most likely ultimate causes of intensified positive selection on trachea length are the direct benefits of conveying a large body size in intraspecific contests for mates and territories. We conclude that the strength of social or sexual selection on crane body size is linked to the degree of functional constraint. PMID:24800977

  13. Anterior gradient protein 2 promotes survival, migration and invasion of papillary thyroid carcinoma cells

    PubMed Central

    2014-01-01

    Background Through a transcriptome microarray analysis, we have isolated Anterior gradient protein 2 (AGR2) as a gene up-regulated in papillary thyroid carcinoma (PTC). AGR2 is a disulfide isomerase over-expressed in several human carcinomas and recently linked to endoplasmic reticulum (ER) stress. Here, we analyzed the expression of AGR2 in PTC and its functional role. Methods Expression of AGR2 was studied by immunohistochemistry and real time PCR in normal thyroids and in PTC samples. The function of AGR2 was studied by knockdown in PTC cells and by ectopic expression in non-transformed thyroid cells. The role of AGR2 in the ER stress was analyzed upon treatment of cells, expressing or not AGR2, with Bortezomib and analyzing by Western blot the expression levels of GADD153. Results PTC over-expressed AGR2 at mRNA and protein levels. Knockdown of AGR2 in PTC cells induced apoptosis and decreased migration and invasion. Ectopic expression of AGR2 in non-transformed human thyroid cells increased migration and invasion and protected cells from ER stress induced by Bortezomib. Conclusions AGR2 is a novel marker of PTC and plays a role in thyroid cancer cell survival, migration, invasion and protection from ER stress. PMID:24976026

  14. Stress-induced CXCR4 Promotes Migration and Invasion of Ewing Sarcoma

    PubMed Central

    Krook, Melanie A.; Nicholls, Lauren A.; Scannell, Christopher A.; Chugh, Rashmi; Thomas, Dafydd G.

    2014-01-01

    Ewing sarcoma is the second most common bone cancer in pediatric patients. Although the primary cause of death in Ewing sarcoma is metastasis, the mechanism underlying tumor spread needs to be elucidated. To this end, the role of the CXCR4/SDF-1a chemokine axis as a mediator of Ewing sarcoma metastasis was investigated. CXCR4 expression status was measured in primary tumor specimens by immunohistochemical (IHC) staining and in multiple cell lines by quantitative RT-PCR and flow cytometry. Migration and invasion of CXCR4-positive Ewing sarcoma cells towards CXCL12/SDF-1a were also determined. Interestingly, while CXCR4 status was disparate among Ewing sarcoma cells, ranging from absent to high-level expression; its expression was found to be highly dynamic and responsive to changes in the microenvironment. In particular, up-regulation of CXCR4 occurred in cells that were subjected to growth factor deprivation, hypoxia, and space constraints. This up-regulation of CXCR4 was rapidly reversed upon removal of the offending cellular stress conditions. Functionally, CXCR4-positive cells migrated and invaded towards an SDF-1a gradient and these aggressive properties were impeded by both the CXCR4 small molecule inhibitor AMD3100, and by knockdown of CXCR4. In addition, CXCR4-dependent migration and invasion were inhibited by small molecule inhibitors of Cdc42 and Rac1, mechanistically implicating these Rho-GTPases as downstream mediators of the CXCR4-dependent phenotype. PMID:24651452

  15. Mesenchymal Stem Cells promote mammary cancer cell migration in vitro via the CXCR2 receptor

    PubMed Central

    Halpern, Jennifer L.; Kilbarger, Amy; Lynch, Conor C.

    2011-01-01

    Bone metastasis is a common event during breast cancer progression. Recently, mesenchymal stem cells (MSCs) have been implicated in the metastasis of primary mammary cancer. Given that bone is the native environment for MSCs, we hypothesized MSCs facilitate the homing of circulating mammary cancer cells to the bone. To test this hypothesis, we examined in vitro whether bone derived MSCs from FVB mice could influence the migration of syngeneic murine mammary cancer cell lines derived from the polyoma virus middle-T (PyMT) model of mammary gland tumorigenesis. Our data show that conditioned media derived from MSCs significantly enhanced the migration of PyMT mammary cancer cell lines. Analysis of conditioned media using a cytokine array revealed the presence of numerous cytokines in the MSC conditioned media, most notably, the murine orthologs of CXCL1 and CXCL5 that are cognate ligands of the CXCR2 receptor. Further investigation identified that; 1) CXCL1, CXCL5 and CXCR2 mRNA and protein were expressed by the MSCs and PyMT cell lines and; 2) neutralizing antibodies to CXCL1, CXCL5 and CXCR2 or a CXCR2 small molecule inhibitor (SB265610) significantly abrogated the migratory effect of the MSC conditioned media on the PyMT cells. Therefore, in vitro evidence demonstrates that bone derived MSCs play a role in the migration of mammary cancer cells, a conclusion that has potential implications for breast to bone metastasis in vivo. PMID:21601983

  16. Rap2B promotes cell proliferation, migration and invasion in prostate cancer.

    PubMed

    Di, Jiehui; Cao, Huan; Tang, Juangjuan; Lu, Zheng; Gao, Keyu; Zhu, Zhesi; Zheng, Junnian

    2016-06-01

    Rap2B, a member of the Ras family of small GTP-binding proteins, reportedly presents a high level of expression in various human tumors and plays a significant role in the development of tumor. However, the function of Rap2B in prostate cancer (PCa) remains unclear. We elucidated the stimulative role of Rap2B in PCa cell proliferation, migration and invasion by means of the CCK-8 cell proliferation assay, cell cycle analysis and transwell migration assay. Western blot analysis uncovered that elevated Rap2B leads to increased phosphorylation levels of FAK, suggesting that FAK-dependent pathway might be responsible for the effect of Rap2B on PCa cells migration and invasion. Inversely, FAK-specific inhibitor (PF-573228) can abort Rap2B-induced FAK phosphorylation. In vivo experiment confirmed that Rap2B positively regulated PCa growth and metastasis, as well as the expression of phosphorylated FAK. Collectively, these findings shed light on Rap2B as a potential therapeutic target for PCa. PMID:27154636

  17. SRPX2 promotes cell migration and invasion via FAK dependent pathway in pancreatic cancer.

    PubMed

    Gao, Zhenyuan; Zhang, Jingjing; Bi, Minghong; Han, Xiao; Han, Zhengquan; Wang, Hongya; Ou, Yimei

    2015-01-01

    Sushi repeat-containing protein, X-linked 2, abbreviated as SRPX2, is a candidate downstream target protein for E2A-HLF and involved in disorders of language cortex and cognition. Recent studies have demonstrated that elevated SRPX2 exhibits crucial roles in gastric cancer, however, underlying clinical significance and biological function of SRPX2 in pancreatic ductal adenocarcinoma (PDAC), remains unclear. Data from Oncomine database showed that higher SRPX2 expression is more commonly observed in PDAC compared with normal pancreatic duct, similar results were also found in 12 matched PDAC tissue samples, 7 PDAC cell lines and a tissue microarray containing 81 PDAC specimens as demonstrated by real-time quantitative PCR and immunohistochemistry, respectively. Besides, higher SRPX2 expression was closely correlated with advanced TNM stage. Silencing of endogenous SRPX2 expression reduced abilities of cell migration and invasion of PDAC cells. Further studies revealed that SRPX2 expression in PDAC tissues significantly correlated with the phosphorylation levels of FAK, indicating that FAK dependent pathway may be account for the effect of SRPX2 on cell migration and invasion in PDAC. Collectively, this study reveals that frequently elevated SRPX2 contributes to cell migration and invasion in PDAC and SRPX2-related pathways might be a potential therapeutic target for PDAC. PMID:26191169

  18. TMPyP4 promotes cancer cell migration at low doses, but induces cell death at high doses

    PubMed Central

    Zheng, Xiao-Hui; Nie, Xin; Liu, Hai-Ying; Fang, Yi-Ming; Zhao, Yong; Xia, Li-Xin

    2016-01-01

    TMPyP4 is widely considered as a potential photosensitizer in photodynamic therapy and a G-quadruplex stabilizer for telomerase-based cancer therapeutics. However, its biological effects including a possible adverse-effect are poorly understood. In this study, whole genome RNA-seq analysis was used to explore the alteration in gene expression induced by TMPyP4. Unexpectedly, we find that 27.67% of changed genes were functionally related to cell adhesion. Experimental evidences from cell adhesion assay, scratch-wound and transwell assay indicate that TMPyP4 at conventional doses (≤0.5 μM) increases cell-matrix adhesion and promotes the migration of tumor cells. In contrast, a high dose of TMPyP4 (≥2 μM) inhibits cell proliferation and induces cell death. The unintended “side-effect” of TMPyP4 on promoting cell migration suggests that a relative high dose of TMPyP4 is preferred for therapeutic purpose. These findings contribute to better understanding of biological effects induced by TMPyP4 and provide a new insight into the complexity and implication for TMPyP4 based cancer therapy. PMID:27221067

  19. TMPyP4 promotes cancer cell migration at low doses, but induces cell death at high doses.

    PubMed

    Zheng, Xiao-Hui; Nie, Xin; Liu, Hai-Ying; Fang, Yi-Ming; Zhao, Yong; Xia, Li-Xin

    2016-01-01

    TMPyP4 is widely considered as a potential photosensitizer in photodynamic therapy and a G-quadruplex stabilizer for telomerase-based cancer therapeutics. However, its biological effects including a possible adverse-effect are poorly understood. In this study, whole genome RNA-seq analysis was used to explore the alteration in gene expression induced by TMPyP4. Unexpectedly, we find that 27.67% of changed genes were functionally related to cell adhesion. Experimental evidences from cell adhesion assay, scratch-wound and transwell assay indicate that TMPyP4 at conventional doses (≤0.5 μM) increases cell-matrix adhesion and promotes the migration of tumor cells. In contrast, a high dose of TMPyP4 (≥2 μM) inhibits cell proliferation and induces cell death. The unintended "side-effect" of TMPyP4 on promoting cell migration suggests that a relative high dose of TMPyP4 is preferred for therapeutic purpose. These findings contribute to better understanding of biological effects induced by TMPyP4 and provide a new insight into the complexity and implication for TMPyP4 based cancer therapy. PMID:27221067

  20. Migration-promoting role of VEGF-C and VEGF-C binding receptors in human breast cancer cells

    PubMed Central

    Timoshenko, A V; Rastogi, S; Lala, P K

    2007-01-01

    Vascular endothelial growth factor C (VEGF-C) is a lymphangiogenic factor over-expressed in highly metastatic, cyclooxygenase (COX)-2 expressing breast cancer cells. We tested the hypothesis that tumour-derived VEGF-C may play an autocrine role in metastasis by promoting cellular motility through one or more VEGF-C-binding receptors VEGFR-2, VEGFR-3, neuropilin (NRP)-1, NRP-2, and integrin α9β1. We investigated the expression of these receptors in several breast cancer cell lines (MDA-MB-231, Hs578T, SK-BR-3, T-47D, and MCF7) and their possible requirement in migration of two VEGF-C-secreting, highly metastatic lines MDA-MB-231 and Hs578T. While cell lines varied significantly in their expression of above VEGF-C receptors, migratory activity of MDA-MB-231 and Hs578T cells was linked to one or more of these receptors. Depletion of endogenous VEGF-C by treatments with a neutralising antibody, VEGF-C siRNA or inhibitors of Src, EGFR/Her2/neu and p38 MAP kinases which inhibited VEGF-C production, inhibited cellular migration, indicating the requirement of VEGF-C for migratory function. Migration was differentially attenuated by blocking or downregulation of different VEGF-C receptors, for example treatment with a VEGFR-2 tyrosine kinase inhibitor, NRP-1 and NRP-2 siRNA or α9β1 integrin antibody, indicating the participation of one or more of the receptors in cell motility. This novel role of tumour-derived VEGF-C indicates that breast cancer metastasis can be promoted by coordinated stimulation of lymphangiogenesis and enhanced migratory activity of breast cancer cells. PMID:17912247

  1. TGF-β1 promotes the migration and invasion of bladder carcinoma cells by increasing fascin1 expression.

    PubMed

    Zhang, Naiwen; Bi, Xiaojun; Zeng, Yu; Zhu, Yuyan; Zhang, Zhe; Liu, Yang; Wang, Jianfeng; Li, Xuejie; Bi, Jianbin; Kong, Chuize

    2016-08-01

    Transforming growth factor-β1 (TGF-β1) is a multifunctional cytokine that is reported to regulate cellular motility and invasive capability during tumor progression. Fascin1, an actin-bundling protein, increases cell motility, migration and adhesion. To investigate the function of TGF-β1 and test whether fascin1 is an important mediator of the tumor response to TGF-β1 in bladder carcinoma cells, real-time RT-PCR and western blot analysis were used to test changes in fascin1 expression after TGF-β1 (10 ng/ml) treatment in T24 and BIU87 cells. Small interfering RNA (siRNA) technique was performed to silence fascin1. Cell viability and biological behavior changes were evaluated by cell growth (MTT), wound-healing and Matrigel invasion assays. In the present study, we found that the mRNA and protein levels of fascin1 in the T24 and BIU87 cells were significantly increased after 10 ng/ml TGF-β1 treatment (p<0.05). The proliferation of T24 cells (p=0.005) was also significantly increased, while no significant change was observed in BIU87 cells (p=0.318). In addition, the migratory and invasive potential of the two cell lines were promoted. Furthermore, we successfully silenced fascin1, and observed that fascin1 siRNA significantly attenuated the migration and invasiveness induced by TGF-β1. The findings suggested that TGF-β1 can promote invasion and migration of T24 and BIU87 bladder carcinoma cells, and the increase in fascin1 expression may be the key point of this impact of TGF-β1. PMID:27350089

  2. SPOCK1 promotes the proliferation, migration and invasion of glioma cells through PI3K/AKT and Wnt/β-catenin signaling pathways.

    PubMed

    Yang, Jinghui; Yang, Qiwei; Yu, Jing; Li, Ximeng; Yu, Shan; Zhang, Xuewen

    2016-06-01

    Sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican) 1 (SPOCK1) has been reported to promote the growth and progression of various tumors. In this study, we focus on assessing the effect of SPOCK1 on proliferation, migration and invasion in glioma cells and elucidating its related mechanisms. The results of our present study demonstrated that overexpression of SPOCK1 promoted the proliferation and inhibited apoptosis in glioma cells. Additionally, overexpression of SPOCK1 promoted the migration and invasion potential of glioma cells. Moreover, we demonstrated that PI3K/AKT and Wnt/β-catenin signaling pathways were activated by SPOCK1 over-expression. SPOCK1 silencing has precisely the opposite effect. In conclusion, our study suggests that SPOCK1 promotes proliferation, migration and invasion in glioma cells by activating PI3K/AKT and Wnt/β-catenin pathways, which provides a potential theoretical basis for clinical treatment of glioma. PMID:27108836

  3. LIF upregulates poFUT1 expression and promotes trophoblast cell migration and invasion at the fetal–maternal interface

    PubMed Central

    Liu, S; Wang, J; Qin, H-M; Yan, X-M; Yang, X-S; Liu, C; Yan, Q

    2014-01-01

    Trophoblast cell migration and invasion are crucial for the establishment of a successful pregnancy. Protein O-fucosyltransferases, such as poFUT1 and poFUT2, catalyze the O-fucosylation of proteins and have important roles in embryonic development. Leukemia inhibitory factor (LIF) is a critical cytokine in the regulation of embryonic development and implantation. However, the exact roles of poFUTs in embryo migration and invasion and the effects of LIF on the expression of poFUTs have not been studied in detail. In the current study, we showed that poFUT1 and LIF were highly expressed in human trophoblast cells and in the serum of women during the first trimester of a normal pregnancy. However, in patients with threatened abortion, poFUT1 and LIF levels were found to be reduced. There were no significant differences in the expression levels of poFUT2 between the two groups. The migration and invasion potential of trophoblasts in an explant culture and in an in vitro implantation model was decreased or increased upon altering poFUT1 expression levels by siRNA or cDNA transfection. Our results also revealed that LIF upregulated the expression of poFUT1. The upregulation of poFUT1 by LIF promoted trophoblast cell migration and invasion at the fetal–maternal interface by activating the PI3K/Akt signaling pathway. Taken together, these study findings suggest that poFUT1 may be used as a marker of embryo implantation. PMID:25165882

  4. HOTAIR Promotes Proliferation, Migration, and Invasion of Ovarian Cancer SKOV3 Cells Through Regulating PIK3R3

    PubMed Central

    Dong, Lijun; Hu, Lina

    2016-01-01

    Background The aim of this study was to determine the effect on proliferation, migration, and invasion after silencing HOTAIR in ovarian cancer SKOV3 cells, and to elucidate the potential mechanism. Material/Methods We analyzed the mRNA expression level of HOTAIR and PIK3R3 in ovarian cancer SKOV3, OVCAR3, and A2780 cell lines. We analyzed the mRNA expression level of HOTAIR and PIK3R3 in ovarian SKOV3 after transection with miR-214 or miR-217. We analyzed the mRNA and protein expression level of PIK3R3 when silencing HOTAIR. We analyzed the expression of HOTAIR when silencing PIK3R3. We analyzed the proliferation, migration and invasion in ovarian cancer SKOV3 after silencing HOTAIR or PIK3R3. Results The expression of HOTAIR and PIK3R3 in ovarian SKOV3 and OVCAR3 was increased compared with A2780 cells (P<0.05). The mRNA level of HOTAIR and PIK3R3 in ovarian cancer SKOV3 cells was decreased when transected with miR-214 or miR-217 compared to negative control (p<0.05). The mRNA and protein level of PIK3R3 was decreased when HOTAIR was silenced and the mRNA level of HOTAIR was decreased when PIK3R3 was silenced (p<0.05). The proliferation, migration and invasion was decreased in ovarian SKOV3 when HOTAIR or PIK3R3 was silenced (p<0.05). Conclusions HOTAIR can promote proliferation, migration, and invasion in ovarian SKOV3 cells as a competing endogenous RNA. PMID:26826873

  5. Downregulation of VEGFA inhibits proliferation, promotes apoptosis, and suppresses migration and invasion of renal clear cell carcinoma

    PubMed Central

    Zeng, Fan-Chang; Zeng, Ming-Qiang; Huang, Liang; Li, Yong-Lin; Gao, Ben-Min; Chen, Jun-Jie; Xue, Rui-Zhi; Tang, Zheng-Yan

    2016-01-01

    Objective The aim of this study was to investigate the effects of vascular endothelial growth factor A (VEGFA) on cell proliferation, apoptosis, migration, and invasion in renal clear cell carcinoma (RCCC). Methods Between June 2012 and June 2015, RCCC tissues were obtained for the experimental group, and RCCC adjacent tumor-free kidney parenchyma tissues were obtained for the control group. VEGFA mRNA and protein expressions and phosphoinositide 3-kinase, serine/threonine-specific protein kinase (AKT), and phosphorylated-AKT protein expressions were detected. The chemically synthesized specific siRNA using RNA interference technology was used to inhibit VEGFA gene expression in human RCCC 786-O cells. The negative control (NC) group was transfected with NC sequence, and the blank group was transfected with no sequence. Flow cytometry, scratch test, and cell-penetrating experiment were used to detect cell proliferation, apoptosis, migration, and invasion of 786-O cells. Results Positive expression of VEGFA protein was 60.62% in RCCC tissue and 18.34% in adjacent tissue with statistically significant difference (P<0.001). VEGFA protein and mRNA expressions were higher in RCCC tissue than those in adjacent tissue (both P<0.01). VEGF expression in RCCC tissue was associated with Fuhrman grading and American Joint Committee on Cancer staging (both P<0.05). After RCCC 786-O cells transfecting the VEGFA siRNA, the VEGFA mRNA and protein expressions and phosphoinositide 3-kinase and phosphorylated-AKT protein expressions were significantly decreased, cell proliferation was remarkably inhibited, cell apoptotic ratio was obviously increased, and migration distance and invasive cell number were markedly decreased compared to those in the NC group and the blank group (all P<0.05). Conclusion Inhibition of VEGFA inhibited proliferation, promoted apoptosis, and suppressed migration and invasion of RCCC 786-O cells. VEGF has a potential role in diagnosis and therapy of RCCC

  6. SCF promotes dental pulp progenitor migration, neovascularization, and collagen remodeling - potential applications as a homing factor in dental pulp regeneration.

    PubMed

    Pan, Shuang; Dangaria, Smit; Gopinathan, Gokul; Yan, Xiulin; Lu, Xuanyu; Kolokythas, Antonia; Niu, Yumei; Luan, Xianghong

    2013-10-01

    Stem cell factor (SCF) is a powerful chemokine that binds to the c-Kit receptor CD117 and has shown promise as a homing agent capable of progenitor cell recruitment. In the present study we have documented high levels of both SCF and its receptor c-Kit in differentiating dental pulp (DP) cells and in the sub-odontoblastic layer of Höhl. In vitro studies using human DP progenitors revealed a significant increase in cell proliferation after100 nM SCF application, explained by a 2-fold upregulation in cyclin D3 and FGF2 cell cycle regulators, and a 7-fold increase in CDK4 expression. DP cell migration in the presence of SCF was up-regulated 2.7-fold after a 24 h culture period, and this effect was accompanied by cytoskeletal rearrangement, a 1.5-fold increase in polymeric F-actin over G-actin, and a 1.8-fold increase in RhoA expression. Explaining the signaling effect of SCF on DP migration, PI3K/Akt and MEK/ERK pathway inhibitors were demonstrated to significantly reduce DP cell migration, while SCF alone doubled the number of migrated cells. ERK and AKT phosphorylation were dramatically upregulated already 3-5 min after SCF addition to the culture medium and declined thereafter, classifying SCF as a fast acting chemokine. When applied as an agent to promote tissue regeneration in subcutaneously implanted collagen sponges, SCF resulted in a 7-fold increase in the cell number in the implanted tissue construct, a more than 9-fold increase in capillaries, as well as collagen sponge remodeling and collagen fiber neogenesis. Together, these studies demonstrate the suitability of SCF as a potent aid in the regeneration of dental pulp and other mesenchymal tissues, capable of inducing cell homing, angiogenesis, and tissue remodeling. PMID:23703692

  7. Bisphenol a exposure promotes the migration of NCM460 cells via estrogen receptor-mediated integrin β1/MMP-9 pathway.

    PubMed

    Shi, Tonglin; Zhao, Chao; Li, Zhuoyu; Zhang, Quanbin; Jin, Xiaoting

    2016-07-01

    Bisphenol A (BPA) is a widely used industrial chemical and also an environmental endocrine disruptor (EED), which serves as a monomer in the manufacture of polycarbonate plastics. BPA enters human body mainly through oral intake, and has been reported as being linked to oncogenesis in many tissues. However, the association of BPA intake with gastrointestinal cancer, such as colon cancer, has received less attention. The present study was conducted to investigate the effects of BPA on the migration of normal colon epithelial cells (NCM460 cells) and further elucidate the underlying mechanisms. Our data showed that 1 × 10(-8) M (equivalent to environmental concentration) of BPA potently promoted the migration of NCM460 cells. Interestingly, BPA treatment induced an increase of integrin β1 expression, and the functional blocking of integrin β1 abolished the migration-promoting effects of BPA. Moreover, the results showed that it was estrogen receptor β but not estrogen receptor α that was involved in this migration promotion. In addition, cellular exposure of BPA stimulated the expression and activity of MMP-9, a well-known factor of cell migration. Taken together, these results indicate that environmental concentration of BPA exposure promotes cell migration through activating ERβ-mediated integrin β1/MMP-9 pathway, suggesting exposure to BPA in the colon may present a potential cancer risk. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 799-807, 2016. PMID:25534675

  8. MiR-200c promotes bladder cancer cell migration and invasion by directly targeting RECK

    PubMed Central

    Cheng, Yidong; Zhang, Xiaolei; Li, Peng; Yang, Chengdi; Tang, Jinyuan; Deng, Xiaheng; Yang, Xiao; Tao, Jun; Lu, Qiang; Li, Pengchao

    2016-01-01

    Background Increasing evidence suggests that the dysregulation of certain microRNAs plays an important role in tumorigenesis and metastasis. MiR-200c exhibits a disordered expression in many tumors and presents dual roles in bladder cancer (BC). Therefore, the definite role of miR-200c in BC needs to be investigated further. Materials and methods Quantitative reverse transcription polymerase chain reaction was used to assess miR-200c expression. Cell invasion and migration were evaluated using wound healing and transwell assays. The luciferase reporter assay was used to identify the direct target of miR-200c. The expression of reversion-inducing cysteine-rich protein with kazal motifs (RECK) in BC tissues and adjacent nontumor tissues, as well as in BC cell lines, was detected through quantitative reverse transcription polymerase chain reaction, Western blot assay, and immunohistochemistry. Results The miR-200c expression was significantly upregulated in the BC tissues compared with the adjacent nontumor tissues. The downregulation of miR-200c significantly inhibited cell migration and invasion in the BC cell lines. The luciferase reporter assay showed that RECK was a direct target of miR-200c. The knockdown of RECK in the BC cell lines treated with anti-miR-200c elevated the previously attenuated cell migration and invasion. Conclusion Our findings indicated that miR-200c functions as oncogenes in BC and may provide a novel therapeutic strategy for the treatment of BC. PMID:27574450

  9. Galectin-3 regulates intracellular trafficking of epidermal growth factor receptor through Alix and promotes keratinocyte migration

    PubMed Central

    Liu, Wei; Hsu, Daniel K.; Chen, Huan-Yuan; Yang, Ri-Yao; Carraway, Kermit L.; Isseroff, Roslyn R.; Liu, Fu-Tong

    2012-01-01

    The epidermal growth factor receptor (EGFR)-mediated signaling pathways are important in a variety of cellular processes, including cell migration and wound re-epithelialization. Intracellular trafficking of EGFR is critical for maintaining EGFR surface expression. Galectin-3, a member of an animal lectin family, has been implicated in a number of physiological and pathological processes. Through studies of galectin-3-deficient mice and cells isolated from these mice, we demonstrated that absence of galectin-3 impairs keratinocyte migration and skin wound re-epithelialization. We have linked this pro-migratory function to a crucial role of cytosolic galectin-3 in controlling intracellular trafficking and cell surface expression of EGFR after EGF stimulation. Without galectin-3, the surface levels of EGFR are dramatically reduced and the receptor accumulates diffusely in the cytoplasm. This is associated with reduced rates of both endocytosis and recycling of the receptor. We have provided evidence that this novel function of galectin-3 may be mediated through interaction with its binding partner Alix, which is a protein component of the endosomal sorting complex required for transport (ESCRT) machinery. Our results suggest that galectin-3 is potentially a critical regulator of a number of important cellular responses through its intracellular control of trafficking of cell surface receptors. PMID:22785133

  10. Vegfa signaling promotes zebrafish intestinal vasculature development through endothelial cell migration from the posterior cardinal vein.

    PubMed

    Koenig, Andrew L; Baltrunaite, Kristina; Bower, Neil I; Rossi, Andrea; Stainier, Didier Y R; Hogan, Benjamin M; Sumanas, Saulius

    2016-03-01

    The mechanisms underlying organ vascularization are not well understood. The zebrafish intestinal vasculature forms early, is easily imaged using transgenic lines and in-situ hybridization, and develops in a stereotypical pattern thus making it an excellent model for investigating mechanisms of organ specific vascularization. Here, we demonstrate that the sub-intestinal vein (SIV) and supra-intestinal artery (SIA) form by a novel mechanism from angioblasts that migrate out of the posterior cardinal vein and coalesce to form the intestinal vasculature in an anterior to posterior wave with the SIA forming after the SIV. We show that vascular endothelial growth factor aa (vegfaa) is expressed in the endoderm at the site where intestinal vessels form and therefore likely provides a guidance signal. Vegfa/Vegfr2 signaling is required for early intestinal vasculature development with mutation in vegfaa or loss of Vegfr2 homologs causing nearly complete inhibition of the formation of the intestinal vasculature. Vegfc and Vegfr3 function, however, are dispensable for intestinal vascularization. Interestingly, ubiquitous overexpression of Vegfc resulted in an overgrowth of the SIV, suggesting that Vegfc is sufficient to induce SIV development. These results argue that Vegfa signaling directs endothelial cells to migrate out of existing vasculature and coalesce to form the intestinal vessels. It is likely that a similar mechanism is utilized during vascularization of other organs. PMID:26769101

  11. Loss of the oligosaccharyl transferase subunit TUSC3 promotes proliferation and migration of ovarian cancer cells.

    PubMed

    Vaňhara, Petr; Horak, Peter; Pils, Dietmar; Anees, Mariam; Petz, Michaela; Gregor, Wolfgang; Zeillinger, Robert; Krainer, Michael

    2013-04-01

    Consequences of deregulated protein N-glycosylation on cancer pathogenesis are poorly understood. TUSC3 is a gene with a putative function in N-glycosylation, located on the short arm of chromosome 8. This is a chromosomal region of frequent genetic loss in ovarian cancer. We established recently that the expression of TUSC3 is epigenetically decreased in epithelial ovarian cancer compared to benign controls and provides prognostic information on patient survival. Therefore, we analyzed the consequences of silenced TUSC3 expression on proliferation, invasion and migration of ovarian cell lines. In addition, we performed subcellular fractionation, co-immunofluorescence and co-immunoprecipitation experiments to establish the molecular localization of TUSC3 in ovarian cancer cells. We demonstrated that TUSC3 is localized in the endoplasmic reticulum as a subunit of the oligosaccharyltransferase complex and is capable of modulation of glycosylation patterning of ovarian cancer cells. Most importantly, silencing of TUSC3 enhances proliferation and migration of ovarian cancer cells in vitro. Our observations suggest a role for N-glycosylating events in ovarian cancer pathogenesis in general, and identify TUSC3 as a tumor suppressor gene in ovarian cancer in particular. PMID:23404293

  12. Activated protein C promotes breast cancer cell migration through interactions with EPCR and PAR-1

    SciTech Connect

    Beaulieu, Lea M.; Church, Frank C. . E-mail: fchurch@email.unc.edu

    2007-02-15

    Activated protein C (APC) is a serine protease that regulates thrombin (IIa) production through inactivation of blood coagulation factors Va and VIIIa. APC also has non-hemostatic functions related to inflammation, proliferation, and apoptosis through various mechanisms. Using two breast cancer cell lines, MDA-MB-231 and MDA-MB-435, we investigated the role of APC in cell chemotaxis and invasion. Treatment of cells with increasing APC concentrations (1-50 {mu}g/ml) increased invasion and chemotaxis in a concentration-dependent manner. Only the active form of APC increased invasion and chemotaxis of the MDA-MB-231 cells when compared to 3 inactive APC derivatives. Using a modified 'checkerboard' analysis, APC was shown to only affect migration when plated with the cells; therefore, APC is not a chemoattractant. Blocking antibodies to endothelial protein C receptor (EPCR) and protease-activated receptor-1 (PAR-1) attenuated the effects of APC on chemotaxis in the MDA-MB-231 cells. Finally, treatment of the MDA-MB-231 cells with the proliferation inhibitor, Na butyrate, showed that APC did not increase migration by increasing cell number. Therefore, APC increases invasion and chemotaxis of cells by binding to the cell surface and activating specific signaling pathways through EPCR and PAR-1.

  13. Micropattern printing of adhesion, spreading, and migration peptides on poly(tetrafluoroethylene) films to promote endothelialization.

    PubMed

    Gauvreau, Virginie; Laroche, Gaétan

    2005-01-01

    We report here the development of an original multistep micropatterning technique for printing peptides on surfaces, based on the ink-jet printer technology. Contrary to most micropatterning methods used nowadays, this technique is advantageous because it allows displaying 2D-arrays of multiple biomolecules. Moreover, this low cost procedure allies the advantages of computer-aided design with high flexibility and reproducibility. A Hewlett-Packard printer was modified to print peptide solutions, and Adobe Illustrator was used as the graphic-editing software to design high-resolution checkerboard-like micropatterns. In a first step, PTFE films were treated with ammonia plasma to introduce amino groups on the surface. These chemical functionalities were reacted with heterobifunctional cross-linker sulfo-succinimidyl 4-(N-maleimidomethyl)cycloexane-1-carboxylate (S-SMCC) to allow the subsequent surface covalent conjugation of various cysteine-modified peptides to the polymer substrate. These peptidic molecules containing RGD and WQPPRARI sequences were selected for their adhesive, spreading, and migrational properties toward endothelial cells. On one hand, our data demonstrated that the initial cell adhesion does not depend on the chemical structure and combination of the peptides covalently bonded either through conventional conjugation or micropatterning. On the other hand, spreading and migration of endothelial cells is clearly enhanced while coconjugating the GRGDS peptide in conjunction with WQPPRARI. This behavior is further improved by micropatterning these peptides on specific areas of the polymer surface. PMID:16173784

  14. Promotion of Dental Pulp Cell Migration and Pulp Repair by a Bioceramic Putty Involving FGFR-mediated Signaling Pathways.

    PubMed

    Zhang, J; Zhu, L X; Cheng, X; Lin, Y; Yan, P; Peng, B

    2015-06-01

    Mineral trioxide aggregate is the currently recommended material of choice for clinical pulp repair despite several disadvantages, including handling inconvenience. Little is known about the signaling mechanisms involved in bioceramic-mediated dental pulp repair-particularly, dental pulp cell (DPC) migration. This study evaluated the effects of iRoot BP Plus, a novel ready-to-use nanoparticulate bioceramic putty, on DPC migration in vitro and pulp repair in vivo, focusing on possible involvement of fibroblast growth factor receptor (FGFR)-related signaling, including mitogen-activated protein kinase and Akt pathways. Treatment with iRoot BP Plus extracts enhanced horizontal and vertical migration of DPCs, which was comparable with the effects induced by mineral trioxide aggregate extracts. The DPCs exposed to iRoot BP Plus extracts demonstrated no evident apoptosis. Importantly, treatment with iRoot BP Plus extracts resulted in rapid activation of FGFR, p38 mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK) 1/2, c-Jun-N-terminal kinase (JNK), and Akt signaling in DPCs. Confocal immunofluorescence staining revealed that iRoot BP Plus stimulated focal adhesion formation and stress fiber assembly in DPCs, in addition to upregulating the expression of focal adhesion molecules, including p-focal adhesion kinase, p-paxillin, and vinculin. Moreover, activation of FGFR, ERK, JNK, and Akt were found to mediate the upregulated expression of focal adhesion molecules, stress fiber assembly, and enhanced DPC migration induced by iRoot BP Plus. Consistent with the in vitro results, we observed induction of homogeneous dentin bridge formation and expression of p-focal adhesion kinase, p-FGFR, p-ERK 1/2, p-JNK, and p-Akt near injury sites by iRoot BP Plus in an in vivo pulp repair model. These data demonstrate that iRoot BP Plus can promote DPC migration and pulp repair involving the FGFR-mediated ERK 1/2, JNK, and Akt pathways. These findings provide

  15. Concentrated growth factor promotes Schwann cell migration partly through the integrin β1-mediated activation of the focal adhesion kinase pathway.

    PubMed

    Qin, Jie; Wang, Lin; Zheng, Ling; Zhou, Xiaoyan; Zhang, Yidi; Yang, Tingting; Zhou, Yanmin

    2016-05-01

    Nerve injury is a serious complication associated with dental implant surgery. Following nerve injury, the migration of Schwann cells (SCs) supports nerve regeneration. Concentrated growth factor (CGF) belongs to a new generation of biomaterials that contain fibrin matrix, as well as a number of growth factors that affect the migration of various types of cells, including endothelial cells and cancer cells. To the very best of our knowledge, there are no available studies to date on the promoting effect of CGF on the migration of SCs. Thus, the aim of the present study was to characterize the structure of CGF and growth factor release, examine the effects of CGF on the migration of SCs, and to examine the role of integrin β1 and the focal adhesion kinase (FAK) pathway in the CGF-induced migration of SCs. For this purpose, CGF was prepared by centrifuging rat venous blood, which produced a fiber-like matrix capable of releasing transforming growth factor-β1 (TGF-β1) over a sustained period of time (at least 13 days). The soluble component of CGF was used to produce conditioned media to treat the SC cells in culture. The results demonstrated that CGF promoted the migration of SCs and increased the expression of integrin β1. These effects appeared to involve FAK phosphorylation, which occurred downstream of integrin β1 activation. The short-interfering RNA (siRNA)-mediated downregulation of integrin β1 expression did not block the ability of CGF to promote the migration of SCs. These data suggest that CGF promotes the migration of SCs partly through the integrin β1-mediated activation of the FAK pathway. PMID:26986804

  16. Rebalancing brain drain: exploring resource reallocation to address health worker migration and promote global health.

    PubMed

    Mackey, Timothy Ken; Liang, Bryan Albert

    2012-09-01

    Global public health is threatened by an imbalance in health worker migration from resource-poor countries to developed countries. This "brain drain" results in health workforce shortages, health system weakening, and economic loss and waste, threatening the well-being of vulnerable populations and effectiveness of global health interventions. Current structural imbalances in resource allocation and global incentive structures have resulted in 57 countries identified by WHO as having a "critical shortage" of health workers. Yet current efforts to strengthen domestic health systems have fallen short in addressing this issue. Instead, global solutions should focus on sustainable forms of equitable resource sharing. This can be accomplished by adoption of mandatory global resource and staff-sharing programs in conjunction with implementation of state-based health services corps. PMID:22572198

  17. BlyS is up-regulated by hypoxia and promotes migration of human breast cancer cells

    PubMed Central

    2012-01-01

    Background The role of B Lymphocyte Stimulator (BLyS) in the survival of malignant B cells and the maintenance of normal B cell development and homeostasis has been intensively studied in the literature. However, the influence of BLyS on breast cancer progression remains unclear. The study aimed to investigate the effect of hypoxia on BLyS regulation, cell migratory response to BLyS and the possible molecular mechanisms. Methods In this study, we examined the role of BLyS in the migration of human breast cancer cells by transwell assay. We also explored whether BLyS and its receptors expressed in human breast cancer cell lines by immunofluorescence and Western Blotting. Then we detected the expression level of BLyS in both normoxic and hypoxic conditions by real time-PCR and Western Blotting. Pathways involved were confirmed by Western Blotting, immunofluorescence, transwell assay and luciferase assay. Results According to our study, the expression level of BlyS was increased in human breast cancer cell lines in hypoxic conditions. Up-regulation of this protein led to activation and nuclear translocation of NF-kappa B p65. We also found that the number of migrated cells was increased in the presence of BLyS and inhibition of phosphorylation of Akt attenuated the enhanced migratory response. Conclusions It suggested that better understanding of BLyS, an immunopotentiator, may offer a potential therapeutic target for the treatment of human breast cancers. In addition, BLyS promoted breast cancer cells migration, underscoring the necessity of appropriate applications of immunopotentiators to cancer treatment. PMID:22463935

  18. PREX2 promotes the proliferation, invasion and migration of pancreatic cancer cells by modulating the PI3K signaling pathway

    PubMed Central

    Yang, Jianyi; Gong, Xuejun; Ouyang, Lu; He, Wen; Xiao, Rou; Tan, Li

    2016-01-01

    Phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchanger factor 2 (PREX2) is a novel regulator of the small guanosine triphosphatase Rac, and has been observed to be implicated in human cancer by inhibiting the activity of phosphatase and tensin homolog (PTEN), thus upregulating the activity of the phosphoinositide 3-kinase (PI3K) signaling pathway. However, the exact role of PREX2 in pancreatic cancer has not been reported to date. In the present study, the expression levels of PREX2 were observed to be frequently increased in pancreatic cancer specimens compared with those in their matched adjacent normal tissues. In addition, PREX2 expression was also frequently upregulated in several pancreatic cancer cell lines, including AsPC-1, BxPC-3, PANC-1 and CFAPC-1, compared with that in the normal pancreatic epithelial cell line HPC-Y5. Overexpression of PREX2 significantly promoted the proliferation, invasion and migration of pancreatic cancer PANC-1 cells, while small interfering RNA-induced knockdown of PREX2 expression significantly inhibited the proliferation, invasion and migration of these cells. Investigation of the molecular mechanism revealed that the overexpression of PREX2 upregulated the phosphorylation levels of PTEN, indicating that the activity of PTEN was reduced, which further increased the phosphorylation levels of AKT, which indicated that the activity of the PI3K signaling pathway was upregulated. By contrast, knockdown of PREX2 upregulated the activity of PTEN and inhibited the activity of the PI3K signaling pathway. In conclusion, the present study demonstrated that PREX2 regulates the proliferation, invasion and migration of pancreatic cancer cells, probably at least via modulation of the activity of PTEN and the PI3K signaling pathway. PMID:27446408

  19. High glucose promotes the migration of retinal pigment epithelial cells through increased oxidative stress and PEDF expression.

    PubMed

    Farnoodian, Mitra; Halbach, Caroline; Slinger, Cassidy; Pattnaik, Bikash R; Sorenson, Christine M; Sheibani, Nader

    2016-09-01

    Defects in the outer blood-retinal barrier have significant impact on the pathogenesis of diabetic retinopathy and macular edema. However, the detailed mechanisms involved remain largely unknown. This is, in part, attributed to the lack of suitable animal and cell culture models, including those of mouse origin. We recently reported a method for the culture of retinal pigment epithelial (RPE) cells from wild-type and transgenic mice. The RPE cells are responsible for maintaining the integrity of the outer blood-retinal barrier whose dysfunction during diabetes has a significant impact on vision. Here we determined the impact of high glucose on the function of RPE cells. We showed that high glucose conditions resulted in enhanced migration and increased the level of oxidative stress in RPE cells, but minimally impacted their rate of proliferation and apoptosis. High glucose also minimally affected the cell-matrix and cell-cell interactions of RPE cells. However, the expression of integrins and extracellular matrix proteins including pigment epithelium-derived factor (PEDF) were altered under high glucose conditions. Incubation of RPE cells with the antioxidant N-acetylcysteine under high glucose conditions restored normal migration and PEDF expression. These cells also exhibited increased nuclear localization of the antioxidant transcription factor Nrf2 and ZO-1, reduced levels of β-catenin and phagocytic activity, and minimal effect on production of vascular endothelial growth factor, inflammatory cytokines, and Akt, MAPK, and Src signaling pathways. Thus high glucose conditions promote RPE cell migration through increased oxidative stress and expression of PEDF without a significant effect on the rate of proliferation and apoptosis. PMID:27440660

  20. The promoting effect of pentadecapeptide BPC 157 on tendon healing involves tendon outgrowth, cell survival, and cell migration.

    PubMed

    Chang, Chung-Hsun; Tsai, Wen-Chung; Lin, Miao-Sui; Hsu, Ya-Hui; Pang, Jong-Hwei Su

    2011-03-01

    Pentadecapeptide BPC 157, composed of 15 amino acids, is a partial sequence of body protection compound (BPC) that is discovered in and isolated from human gastric juice. Experimentally it has been demonstrated to accelerate the healing of many different wounds, including transected rat Achilles tendon. This study was designed to investigate the potential mechanism of BPC 157 to enhance healing of injured tendon. The outgrowth of tendon fibroblasts from tendon explants cultured with or without BPC 157 was examined. Results showed that BPC 157 significantly accelerated the outgrowth of tendon explants. Cell proliferation of cultured tendon fibroblasts derived from rat Achilles tendon was not directly affected by BPC 157 as evaluated by MTT assay. However, the survival of BPC 157-treated cells was significantly increased under the H(2)O(2) stress. BPC 157 markedly increased the in vitro migration of tendon fibroblasts in a dose-dependent manner as revealed by transwell filter migration assay. BPC 157 also dose dependently accelerated the spreading of tendon fibroblasts on culture dishes. The F-actin formation as detected by FITC-phalloidin staining was induced in BPC 157-treated fibroblasts. The protein expression and activation of FAK and paxillin were determined by Western blot analysis, and the phosphorylation levels of both FAK and paxillin were dose dependently increased by BPC 157 while the total amounts of protein was unaltered. In conclusion, BPC 157 promotes the ex vivo outgrowth of tendon fibroblasts from tendon explants, cell survival under stress, and the in vitro migration of tendon fibroblasts, which is likely mediated by the activation of the FAK-paxillin pathway. PMID:21030672

  1. Low miR-145 silenced by DNA methylation promotes NSCLC cell proliferation, migration and invasion by targeting mucin 1

    PubMed Central

    Ye, Zhiqiang; Shen, Ning; Weng, Yimin; Li, Kai; Hu, Liu; Liao, Hongyin; An, Jun; Liu, Libao; Lao, Sen; Cai, Songwang

    2015-01-01

    MiR-145 has been implicated in the progression of non-small cell lung cancer (NSCLC); however, its exact mechanism is not well established. Here, we report that miR-145 expression is decreased in NSCLC cell lines and tumor tissues and that this low level of expression is associated with DNA methylation. MiR-145 methylation in NSCLC was correlated with a more aggressive tumor phenotype and was associated with poor survival time, as shown by Kaplan-Meier analysis. Additional multivariate Cox regression analysis indicated that miR-145 methylation was an independent prognostic factor for poor survival in patients with NSCLC. Furthermore, we found that restoration of miR-145 expression inhibited proliferation, migration and invasion of NSCLC by the direct targeting of mucin 1 by miR-145. Our results indicate that low miR-145 expression, due to methylation, promotes NSCLC cell proliferation, migration and invasion by targeting mucin 1. Therefore, miR-145 may be a valuable therapeutic target for NSCLC. PMID:25961369

  2. Pregnancy associated plasma protein-A links pregnancy and melanoma progression by promoting cellular migration and invasion.

    PubMed

    Prithviraj, Prashanth; Anaka, Matthew; McKeown, Sonja J; Permezel, Michael; Walkiewicz, Marzena; Cebon, Jonathan; Behren, Andreas; Jayachandran, Aparna

    2015-06-30

    Melanoma is the most common cancer diagnosed in pregnant women and an aggressive course with poorer outcomes is commonly described during pregnancy or shortly after childbirth. The underlying mechanisms for this are not understood. Here, we report that melanoma migration, invasiveness and progression are promoted by Pregnancy-Associated Plasma Protein-A (PAPPA), a pregnancy-associated metalloproteinase produced by the placenta that increases the bioavailability of IGF1 by cleaving it from a circulating complex formed with IGFBP4. We show that PAPPA is widely expressed by metastatic melanoma tumors and is elevated in melanoma cells exhibiting mesenchymal, invasive and label-retaining phenotypes. Notably, inhibition of PAPPA significantly reduced invasion and migration of melanoma cells in vitro and in vivo within the embryonic chicken neural tube. PAPPA-enriched pregnancy serum treatment enhanced melanoma motility in vitro. Furthermore, we report that IGF1 can induce the phenotypic and functional effects of epithelial-to-mesenchymal transition (EMT) in melanoma cells. In this study, we establish a clear relationship between a pregnancy-associated protein PAPPA, melanoma and functional effects mediated through IGF1 that provides a plausible mechanism for accelerated melanoma progression during pregnancy. This opens the possibility of targeting the PAPPA/IGF1 axis therapeutically. PMID:25940796

  3. IGK with conserved IGKV/IGKJ repertoire is expressed in acute myeloid leukemia and promotes leukemic cell migration

    PubMed Central

    Sun, Xiaoping; He, Zhiqiao; Hu, Fanlei; Chen, Lei; Bueso-Ramos, Carlos E.

    2015-01-01

    We have previously reported that immunoglobulin heavy chain genes were expressed in myeloblasts and mature myeloid cells. In this study, we further demonstrated that rearranged Ig κ light chain was also frequently expressed in acute myeloid leukemia cell lines (6/6), primary myeloblasts from patients with acute myeloid leukemia (17/18), and mature monocytes (11/12) and neutrophils (3/12) from patients with non-hematopoietic neoplasms, but not or only rarely expressed in mature neutrophils (0/8) or monocytes (1/8) from healthy individuals. Interestingly, myeloblasts and mature monocytes/neutrophils shared several restricted IGKV and IGKJ gene usages but with different expression frequency. Surprisingly, almost all of the acute myeloid leukemia-derived IGKV showed somatic hypermutation; in contrast, mature myeloid cells-derived IGKV rarely had somatic hypermutation. More importantly, although IGK expression appeared not to affect cell proliferation, reduced IGK expression led to a decrease in cell migration in acute myeloid leukemia cell lines HL-60 and NB4, whereas increased IGK expression promoted their motility. In summary, IGK is expressed in myeloblasts and mature myeloid cells from patients with non-hematopoietic neoplasms, and is involved in cell migration. These results suggest that myeloid cells-derived IgK may have a role in leukemogenesis and may serve as a novel tumor marker for monitoring minimal residual disease and developing target therapy. PMID:26429876

  4. Macrophage migration inhibitory factor promotes breast cancer metastasis via activation of HMGB1/TLR4/NF kappa B axis.

    PubMed

    Lv, Wei; Chen, Na; Lin, Yanliang; Ma, Hongyan; Ruan, Yongwei; Li, Zhiwei; Li, Xungeng; Pan, Xiaohua; Tian, Xingsong

    2016-06-01

    Macrophage migration inhibitory factor (MIF) is up-regulated in diverse solid tumors and acts as the critical link between immune response and tumorigenesis. In this study, we demonstrated that MIF overexpression promoted migration of breast cancer cells by elevating TLR4 expression. Further investigation evidenced that MIF induced ROS generation. MIF-induced ROS led to ERK phosphorylation, which facilitated HMGB1 release from the nucleus to the cytoplasm. MIF overexpression also induced caveolin-1 phosphorylation. Caveolin-1 phosphorylation contributed to HMGB1 secretion from the cytoplasm to the extracellular matrix. The extracellular HMGB1 activated TLR4 signaling including NF-κB phosphorylation, which was responsible for the transcription of Snail and Twist as well as MMP2 activation. Furthermore, MIF-induced caveolin-1-dependent HMGB1 secretion might control the recruitment of CD11b+ immune cells. Our data suggested that MIF affected the intrinsic properties of tumors and the host immune response in tumor microenvironment by regulating the TLR4/HMGB1 axis, leading to metastasis of breast cancer. PMID:26952810

  5. Health-promotion in the context of ageing and migration: a call for person-centred integrated practice

    PubMed Central

    Lood, Qarin; Ivanoff, Synneve Dahlin; Dellenborg, Lisen; Mårtensson, Lena

    2014-01-01

    Objective For the aim of improving the implementation of a health-promoting intervention for older persons who are born abroad, this study aimed to explore health care professionals' experiences of facilitators and barriers for their possibilities to support a healthy ageing in the context of migration. Methods Qualitative data were collected from four focus groups with health professionals who all had experience of working with older persons who are born abroad. Data were analysed with the guidance from the method developed by Krueger and Casey, progressing from an empirical to an abstract level. Results Five different conditions were found to influence supporting healthy ageing in the context of migration: Sense of belonging through significant others, Emotional bonds to a place called home, Expectations on health and support during the ageing process, Mutual understanding as a means for communication and Heterogeneity as a point of departure. The one comprehensive theme complexity describes how those aspects are interrelated in a complex and unpredictable way. Conclusions The results point at the need for focusing on each person's experiences and health expectations, and the study provides a foundation for future research on the integration of whole-system and person-centred practice. PMID:24605072

  6. Down-regulation of MUC1 in cancer cells inhibits cell migration by promoting E-cadherin/catenin complex formation

    SciTech Connect

    Yuan Zhenglong; Wong, Sandy; Borrelli, Alexander; Chung, Maureen A.

    2007-10-26

    MUC1, a tumor associated glycoprotein, is over-expressed in most cancers and can promote proliferation and metastasis. The objective of this research was to study the role of MUC1 in cancer metastasis and its potential mechanism. Pancreatic (PANC1) and breast (MCF-7) cancer cells with stable 'knockdown' of MUC1 expression were created using RNA interference. {beta}-Catenin and E-cadherin protein expression were upregulated in PANC1 and MCF-7 cells with decreased MUC1 expression. Downregulation of MUC1 expression also induced {beta}-catenin relocation from the nucleus to the cytoplasm, increased E-cadherin/{beta}-catenin complex formation and E-cadherin membrane localization in PANC1 cells. PANC1 cells with 'knockdown' MUC1 expression had decreased in vitro cell invasion. This study suggested that MUC1 may affect cancer cell migration by increasing E-cadherin/{beta}-catenin complex formation and restoring E-cadherin membrane localization.

  7. BRK Targets Dok1 for Ubiquitin-Mediated Proteasomal Degradation to Promote Cell Proliferation and Migration

    PubMed Central

    Miah, Sayem; Goel, Raghuveera Kumar; Dai, Chenlu; Kalra, Natasha; Beaton-Brown, Erika; Bagu, Edward T.; Bonham, Keith; Lukong, Kiven E.

    2014-01-01

    Breast tumor kinase (BRK), also known as protein tyrosine kinase 6 (PTK6), is a non-receptor tyrosine kinase overexpressed in more that 60% of human breast carcinomas. The overexpression of BRK has been shown to sensitize mammary epithelial cells to mitogenic signaling and to promote cell proliferation and tumor formation. The molecular mechanisms of BRK have been unveiled by the identification and characterization of BRK target proteins. Downstream of tyrosine kinases 1 or Dok1 is a scaffolding protein and a substrate of several tyrosine kinases. Herein we show that BRK interacts with and phosphorylates Dok1 specifically on Y362. We demonstrate that this phosphorylation by BRK significantly downregulates Dok1 in a ubiquitin-proteasome-mediated mechanism. Together, these results suggest a novel mechanism of action of BRK in the promotion of tumor formation, which involves the targeting of tumor suppressor Dok1 for degradation through the ubiquitin proteasomal pathway. PMID:24523872

  8. The NMDA receptor functions independently and as an LRP1 co-receptor to promote Schwann cell survival and migration.

    PubMed

    Mantuano, Elisabetta; Lam, Michael S; Shibayama, Masataka; Campana, W Marie; Gonias, Steven L

    2015-09-15

    NMDA receptors (NMDA-Rs) are ionotropic glutamate receptors, which associate with LDL-receptor-related protein-1 (LRP1) to trigger cell signaling in response to protein ligands in neurons. Here, we demonstrate for the first time that the NMDA-R is expressed by rat Schwann cells and functions independently and with LRP1 to regulate Schwann cell physiology. The NR1 (encoded by GRIN1) and NR2b (encoded by GRIN2B) NMDA-R subunits were expressed by cultured Schwann cells and upregulated in sciatic nerves following crush injury. The ability of LRP1 ligands to activate ERK1/2 (also known as MAPK3 and MAPK1, respectively) and promote Schwann cell migration required the NMDA-R. NR1 gene silencing compromised Schwann cell survival. Injection of the LRP1 ligands tissue-type plasminogen activator (tPA, also known as PLAT) or MMP9-PEX into crush-injured sciatic nerves activated ERK1/2 in Schwann cells in vivo, and the response was blocked by systemic treatment with the NMDA-R inhibitor MK801. tPA was unique among the LRP1 ligands examined because tPA activated cell signaling and promoted Schwann cell migration by interacting with the NMDA-R independently of LRP1, albeit with delayed kinetics. These results define the NMDA-R as a Schwann cell signaling receptor for protein ligands and a major regulator of Schwann cell physiology, which may be particularly important in peripheral nervous system (PNS) injury. PMID:26272917

  9. Body protective compound-157 enhances alkali-burn wound healing in vivo and promotes proliferation, migration, and angiogenesis in vitro

    PubMed Central

    Huang, Tonglie; Zhang, Kuo; Sun, Lijuan; Xue, Xiaochang; Zhang, Cun; Shu, Zhen; Mu, Nan; Gu, Jintao; Zhang, Wangqian; Wang, Yukun; Zhang, Yingqi; Zhang, Wei

    2015-01-01

    Chemical burns take up a high proportion of burns admissions and can penetrate deep into tissues. Various reagents have been applied in the treatment of skin chemical burns; however, no optimal reagent for skin chemical burns currently exists. The present study investigated the effect of topical body protective compound (BPC)-157 treatment on skin wound healing, using an alkali burn rat model. Topical treatment with BPC-157 was shown to accelerate wound closure following an alkali burn. Histological examination of skin sections with hematoxylin–eosin and Masson staining showed better granulation tissue formation, reepithelialization, dermal remodeling, and a higher extent of collagen deposition when compared to the model control group on the 18th day postwounding. BPC-157 could promote vascular endothelial growth factor expression in wounded skin tissues. Furthermore, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and cell cycle analysis demonstrated that BPC-157 enhanced the proliferation of human umbilical vein endothelial cells (HUVECs). Transwell assay and wound healing assay showed that BPC-157 significantly promoted migration of HUVECs. We also observed that BPC-157 upregulated the expression of VEGF-a and accelerated vascular tube formation in vitro. Moreover, further studies suggested that BPC-157 regulated the phosphorylation level of extracellular signal-regulated kinases 1 and 2 (ERK1/2) as well as its downstream targets, including c-Fos, c-Jun, and Egr-1, which are key molecules involved in cell growth, migration, and angiogenesis. Altogether, our results indicated that BPC-157 treatment may accelerate wound healing in a model of alkali burn-induced skin injury. The therapeutic mechanism may be associated with accelerated granulation tissue formation, reepithelialization, dermal remodeling, and collagen deposition through ERK1/2 signaling pathway. PMID:25995620

  10. Body protective compound-157 enhances alkali-burn wound healing in vivo and promotes proliferation, migration, and angiogenesis in vitro.

    PubMed

    Huang, Tonglie; Zhang, Kuo; Sun, Lijuan; Xue, Xiaochang; Zhang, Cun; Shu, Zhen; Mu, Nan; Gu, Jintao; Zhang, Wangqian; Wang, Yukun; Zhang, Yingqi; Zhang, Wei

    2015-01-01

    Chemical burns take up a high proportion of burns admissions and can penetrate deep into tissues. Various reagents have been applied in the treatment of skin chemical burns; however, no optimal reagent for skin chemical burns currently exists. The present study investigated the effect of topical body protective compound (BPC)-157 treatment on skin wound healing, using an alkali burn rat model. Topical treatment with BPC-157 was shown to accelerate wound closure following an alkali burn. Histological examination of skin sections with hematoxylin-eosin and Masson staining showed better granulation tissue formation, reepithelialization, dermal remodeling, and a higher extent of collagen deposition when compared to the model control group on the 18th day postwounding. BPC-157 could promote vascular endothelial growth factor expression in wounded skin tissues. Furthermore, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and cell cycle analysis demonstrated that BPC-157 enhanced the proliferation of human umbilical vein endothelial cells (HUVECs). Transwell assay and wound healing assay showed that BPC-157 significantly promoted migration of HUVECs. We also observed that BPC-157 upregulated the expression of VEGF-a and accelerated vascular tube formation in vitro. Moreover, further studies suggested that BPC-157 regulated the phosphorylation level of extracellular signal-regulated kinases 1 and 2 (ERK1/2) as well as its downstream targets, including c-Fos, c-Jun, and Egr-1, which are key molecules involved in cell growth, migration, and angiogenesis. Altogether, our results indicated that BPC-157 treatment may accelerate wound healing in a model of alkali burn-induced skin injury. The therapeutic mechanism may be associated with accelerated granulation tissue formation, reepithelialization, dermal remodeling, and collagen deposition through ERK1/2 signaling pathway. PMID:25995620

  11. A novel signaling pathway of tissue kallikrein in promoting keratinocyte migration: Activation of proteinase-activated receptor 1 and epidermal growth factor receptor

    SciTech Connect

    Gao, Lin; Chao, Lee; Chao, Julie

    2010-02-01

    Biological functions of tissue kallikrein (TK, KLK1) are mainly mediated by kinin generation and subsequent kinin B2 receptor activation. In this study, we investigated the potential role of TK and its signaling pathways in cultured human keratinocyte migration and in a rat skin wound healing model. Herein, we show that TK promoted cell migration and proliferation in a concentration- and time-dependent manner. Inactive TK or kinin had no significant effect on cell migration. Interestingly, cell migration induced by active TK was not blocked by icatibant or L-NAME, indicating an event independent of kinin B2 receptor and nitric oxide formation. TK's stimulatory effect on cell migration was inhibited by small interfering RNA for proteinase-activated receptor 1 (PAR{sub 1}), and by PAR{sub 1} inhibitor. TK-induced migration was associated with increased phosphorylation of epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinase (ERK), which was blocked by inhibition of protein kinase C (PKC), Src, EGFR and ERK. TK-induced cell migration and EGFR phosphorylation were blocked by metalloproteinase (MMP) inhibitor, heparin, and antibodies against EGFR external domain, heparin-binding EGF-like growth factor (HB-EGF) and amphiregulin (AR). Local application of TK promoted skin wound healing in rats, whereas icatibant and EGFR inhibitor blocked TK's effect. Skin wound healing was further delayed by aprotinin and neutralizing TK antibody. This study demonstrates a novel role of TK in skin wound healing and uncovers new signaling pathways mediated by TK in promoting keratinocyte migration through activation of the PAR{sub 1}-PKC-Src-MMP pathway and HB-EGF/AR shedding-dependent EGFR transactivation.

  12. TNFα promotes CAR-dependent migration of leukocytes across epithelial monolayers.

    PubMed

    Morton, Penny E; Hicks, Alexander; Ortiz-Zapater, Elena; Raghavan, Swetavalli; Pike, Rosemary; Noble, Alistair; Woodfin, Abigail; Jenkins, Gisli; Rayner, Emma; Santis, George; Parsons, Maddy

    2016-01-01

    Trans-epithelial migration (TEpM) of leukocytes during inflammation requires engagement with receptors expressed on the basolateral surface of the epithelium. One such receptor is Coxsackie and Adenovirus Receptor (CAR) that binds to Junctional Adhesion Molecule-like (JAM-L) expressed on leukocytes. Here we provide the first evidence that efficient TEpM of monocyte-derived THP-1 cells requires and is controlled by phosphorylation of CAR. We show that TNFα acts in a paracrine manner on epithelial cells via a TNFR1-PI3K-PKCδ pathway leading to CAR phosphorylation and subsequent transmigration across cell junctions. Moreover, we show that CAR is hyper-phosphorylated in vivo in acute and chronic lung inflammation models and this response is required to facilitate immune cell recruitment. This represents a novel mechanism of feedback between leukocytes and epithelial cells during TEpM and may be important in controlling responses to pro-inflammatory cytokines in pathological settings. PMID:27193388

  13. TNFα promotes CAR-dependent migration of leukocytes across epithelial monolayers

    PubMed Central

    Morton, Penny E.; Hicks, Alexander; Ortiz-Zapater, Elena; Raghavan, Swetavalli; Pike, Rosemary; Noble, Alistair; Woodfin, Abigail; Jenkins, Gisli; Rayner, Emma; Santis, George; Parsons, Maddy

    2016-01-01

    Trans-epithelial migration (TEpM) of leukocytes during inflammation requires engagement with receptors expressed on the basolateral surface of the epithelium. One such receptor is Coxsackie and Adenovirus Receptor (CAR) that binds to Junctional Adhesion Molecule-like (JAM-L) expressed on leukocytes. Here we provide the first evidence that efficient TEpM of monocyte-derived THP-1 cells requires and is controlled by phosphorylation of CAR. We show that TNFα acts in a paracrine manner on epithelial cells via a TNFR1-PI3K-PKCδ pathway leading to CAR phosphorylation and subsequent transmigration across cell junctions. Moreover, we show that CAR is hyper-phosphorylated in vivo in acute and chronic lung inflammation models and this response is required to facilitate immune cell recruitment. This represents a novel mechanism of feedback between leukocytes and epithelial cells during TEpM and may be important in controlling responses to pro-inflammatory cytokines in pathological settings. PMID:27193388

  14. The Proprotein Convertase Furin Contributes to Rhabdomyosarcoma Malignancy by Promoting Vascularization, Migration and Invasion

    PubMed Central

    Jaaks, Patricia; D’Alessandro, Valentina; Grob, Nicole; Büel, Sina; Hajdin, Katarina; Schäfer, Beat W.; Bernasconi, Michele

    2016-01-01

    The proprotein convertase (PC) furin cleaves precursor proteins, an important step in the activation of many cancer-associated proteins. Substrates of furin and furin-like PCs play a role in proliferation, metastasis and invasion. Some of them are involved in the progression of the pediatric soft tissue sarcoma rhabdomyosarcoma (RMS). In this study, we show that PCs, and in particular furin, are expressed in RMS cell lines. To investigate the functional role of furin, we generated RMS cell lines with modulated furin activity. Silencing or stable inhibition of furin delayed tumor growth in Rh30 and RD xenografts in vivo, and was correlated with lower microvessel density. Reduced furin activity also decreased migration and invasion abilities in vitro, and inhibition of furin in RMS cells diminished processing of IGF1R, VEGF-C, PDGF-B and MT1-MMP, leading to lower levels of mature proteins. Furthermore, we found that furin activity is required for proper IGF signaling in RMS cells, as furin silencing resulted in reduced phosphorylation of Akt upon IGF1 stimulation. Taken together, our results suggest that furin plays an important role in the malignant phenotype of RMS cells by activating proteins involved in tumor growth and vascularization, metastasis and invasion. PMID:27548722

  15. SphK1 promotes tumor cell migration and invasion in colorectal cancer.

    PubMed

    Long, Jianting; Xie, Ying; Yin, Junmei; Lu, Wei; Fang, Shi

    2016-05-01

    Colorectal cancer (CRC) is one of the most common cancers worldwide. Sphingosine kinase 1 (SphK1), which phosphorylates sphingosine to sphingosine-1-phosphate (S1P), is overexpressed in various types of cancers and may act as an oncogene in tumorigenesis. However, little is known about the role of SphK1 in CRC patients. We studied the expression of SphK1 in 85 cases of CRC tissues by immunohistochemistry, qRT-PCR, and western blot. We also evaluated the effect of SphK1 on cell proliferation and invasion by MTT and transwell invasion assay. SphK1 is overexpressed in CRC tissues and cell lines, and upregulation of SphK1 correlated significantly with the following parameters: lymph node metastasis, liver metastasis, and advanced TNM stage. SphK1 knockdown results in inhibition of cancer cell proliferation. Inhibition of CRC cell migration and invasion is also evident through reversal of EMT by increases in E-cadherin expression and decreases in vimentin expression. In conclusion, SphK1 is associated with the proliferation and invasiveness of CRC cells and the SphK1 gene may contribute to a novel therapeutic approach against CRC. PMID:26662312

  16. Pif1 helicase and Polδ promote recombination-coupled DNA synthesis via bubble migration

    PubMed Central

    Wilson, Marenda A.; Kwon, YoungHo; Xu, Yuanyuan; Chung, Woo-Hyun; Chi, Peter; Niu, Hengyao; Mayle, Ryan; Chen, Xuefeng; Malkova, Anna; Sung, Patrick; Ira, Grzegorz

    2013-01-01

    During DNA repair by homologous recombination (HR), DNA synthesis copies information from a template DNA molecule. Multiple DNA polymerases have been implicated in repair-specific DNA synthesis1–3, but it has remained unclear whether a DNA helicase is involved in this reaction. A good candidate is Pif1, an evolutionarily conserved helicase in S. cerevisiae important for break-induced replication (BIR)4 as well as HR-dependent telomere maintenance in the absence of telomerase5 found in 10–15% of all cancers6. Pif1 plays a role in DNA synthesis across hard-to-replicate sites7, 8 and in lagging strand synthesis with Polδ9–11. Here we provide evidence that Pif1 stimulates DNA synthesis during BIR and crossover recombination. The initial steps of BIR occur normally in Pif1-deficient cells, but Polδ recruitment and DNA synthesis are decreased, resulting in premature resolution of DNA intermediates into half crossovers. Purified Pif1 protein strongly stimulates Polδ-mediated DNA synthesis from a D-loop made by the Rad51 recombinase. Importantly, Pif1 liberates the newly synthesized strand to prevent the accumulation of topological constraint and to facilitate extensive DNA synthesis via the establishment of a migrating D-loop structure. Our results uncover a novel function of Pif1 and provide insights into the mechanism of HR. PMID:24025768

  17. The widely expressed extracellular matrix protein SMOC-2 promotes keratinocyte attachment and migration

    SciTech Connect

    Maier, Silke; Paulsson, Mats; Hartmann, Ursula

    2008-08-01

    SMOC-2 is a recently discovered member of the BM-40/SPARC/osteonectin family of extracellular multidomain proteins of so far unknown function. While we have shown earlier that the homologous protein SMOC-1 is associated with basement membranes, in this study we demonstrate that, in the mouse, SMOC-2 could be detected in a large number of non-basement membrane localizations, often showing a diffuse tissue distribution. A more distinct expression pattern was seen in skin where SMOC-2 is mainly present in the basal layers of the epidermis. Functionally, recombinant SMOC-2 stimulated attachment of primary epidermal cells as well as several epidermal-derived cell lines but had no effect on the attachment of non-epidermal cells. Inhibition experiments using blocking antibodies against individual integrin subunits allowed the identification of {alpha}v{beta}6 and {alpha}v{beta}1 integrins as important cellular receptors for SMOC-2. Cell attachment as well as the formation of focal adhesions could be attributed to the extracellular calcium-binding domain. The calcium-binding domain also stimulated migration, but not proliferation of keratinocyte-like HaCaT cells. We conclude that SMOC-2, like other members of the BM40/SPARC family, acts as a regulator of cell-matrix interactions.

  18. KIF1B promotes glioma migration and invasion via cell surface localization of MT1-MMP.

    PubMed

    Chen, Songyu; Han, Mingzhi; Chen, Weiliang; He, Ying; Huang, Bin; Zhao, Peng; Huang, Qibing; Gao, Liang; Qu, Xun; Li, Xingang

    2016-02-01

    Malignant glioma is notorious for its aggressiveness and poor prognosis, and the invasiveness of glioma cells is the major obstacle. Accumulating evidence indicates that kinesin superfamily proteins (KIFs) may play key roles in tumor invasiveness, but the mechanisms remained unresolved. Our previous study demonstrated that membrane type 1-matrix metalloproteinase (MT1-MMP) was involved in Kinesin family member 1B (KIF1B)-modulated invasion of gastric cancer cells. Therefore, the role of KIF1B in glioma cell invasion and its relationship with MT1-MMP were explored in the present study. We found that aberrantly increased expression of KIF1B was associated with worse WHO pathological classification and Karnofsky performance status (KPS), which also showed a trend towards worse prognosis. In the transwell assay, knockdown of KIF1B using siRNA repressed U87MG and A172 glioma cell migration and invasion. Silencing KIF1B inhibited expression of membranal MT1-MMP; however, the amount of MT1-MMP in the whole cell lysate was not affected. In conclusion, targeting KIF1B may be an option for anti-invasive therapies targeting glioma. PMID:26576027

  19. HB-EGF-Promoted Airway Smooth Muscle Cells and Their Progenitor Migration Contribute to Airway Smooth Muscle Remodeling in Asthmatic Mouse.

    PubMed

    Wang, Qing; Li, Hequan; Yao, Yinan; Lu, Guohua; Wang, Yuehong; Xia, Dajing; Zhou, Jianying

    2016-03-01

    The airway smooth muscle (ASM) cells' proliferation, migration, and their progenitor's migration are currently regarded as causative factors for ASM remodeling in asthma. Heparin-binding epidermal growth factor (HB-EGF), a potent mitogen and chemotactic factor, could promote ASM cell proliferation through MAPK pathways. In this study, we obtained primary ASM cells and their progenitors from C57BL/6 mice and went on to explore the role of HB-EGF in these cells migration and the underlying mechanisms. We found that recombinant HB-EGF (rHB-EGF) intratracheal instillation accelerated ASM layer thickening in an OVA-induced asthmatic mouse. Modified Boyden chamber assay revealed that rHB-EGF facilitate ASM cell migration in a dose-dependent manner and ASM cells from asthmatic mice had a greater migration ability than that from normal counterparts. rHB-EGF could stimulate the phosphorylation of ERK1/2 and p38 in ASM cells but further migration assay showed that only epidermal growth factor receptor inhibitor (AG1478) or p38 inhibitor (SB203580), but not ERK1/2 inhibitor (PD98059), could inhibit rHB-EGF-mediated ASM cells migration. Actin cytoskeleton experiments exhibited that rHB-EGF could cause actin stress fibers disassembly and focal adhesions formation of ASM cells through the activation of p38. Finally, airway instillation of rHB-EGF promoted the recruitment of bone marrow-derived smooth muscle progenitor cells, which were transferred via caudal vein, migrating into the airway from the circulation. These observations demonstrated that ASM remodeling in asthma might have resulted from HB-EGF-mediated ASM cells and their progenitor cells migration, via p38 MAPK-dependent actin cytoskeleton remodeling. PMID:26826248

  20. TNF-{alpha} promotes human retinal pigment epithelial (RPE) cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression through activation of Akt/mTORC1 signaling

    SciTech Connect

    Wang, Cheng-hu; Cao, Guo-Fan; Jiang, Qin; Yao, Jin

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer TNF-{alpha} induces MMP-9 expression and secretion to promote RPE cell migration. Black-Right-Pointing-Pointer MAPK activation is not critical for TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer Akt and mTORC1 signaling mediate TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer SIN1 knockdown showed no significant effect on MMP-9 expression by TNF-{alpha}. -- Abstract: Tumor necrosis factor-alpha (TNF-{alpha}) promotes in vitro retinal pigment epithelial (RPE) cell migration to initiate proliferative vitreoretinopathy (PVR). Here we report that TNF-{alpha} promotes human RPE cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression. Inhibition of MMP-9 by its inhibitor or its neutralizing antibody inhibited TNF-{alpha}-induced in vitro RPE cell migration. Reversely, exogenously-added active MMP-9 promoted RPE cell migration. Suppression Akt/mTOR complex 1(mTORC1) activation by LY 294002 and rapamycin inhibited TNF-{alpha}-mediated MMP-9 expression. To introduce a constitutively active Akt (CA-Akt) in cultured RPE cells increased MMP-9 expression, and to block mTORC1 activation by rapamycin inhibited its effect. RNA interference (RNAi)-mediated silencing of SIN1, a key component of mTOR complex 2 (mTORC2), had no effect on MMP-9 expression or secretion. In conclusion, this study suggest that TNF-{alpha} promotes RPE cell migration by inducing MMP-9 expression through activation of Akt/ mTORC1, but not mTORC2 signaling.

  1. Phosphatidic acid-mediated activation and translocation to the cell surface of sialidase NEU3, promoting signaling for cell migration.

    PubMed

    Shiozaki, Kazuhiro; Takahashi, Kohta; Hosono, Masahiro; Yamaguchi, Kazunori; Hata, Keiko; Shiozaki, Momo; Bassi, Rosaria; Prinetti, Alessandro; Sonnino, Sandro; Nitta, Kazuo; Miyagi, Taeko

    2015-05-01

    The plasma membrane-associated sialidase NEU3 plays crucial roles in regulation of transmembrane signaling, and its aberrant up-regulation in various cancers contributes to malignancy. However, it remains uncertain how NEU3 is naturally activated and locates to plasma membranes, because of its Triton X-100 requirement for the sialidase activity in vitro and its often changing subcellular location. Among phospholipids examined, we demonstrate that phosphatidic acid (PA) elevates its sialidase activity 4 to 5 times at 50 μM in vitro at neutral pH and promotes translocation to the cell surface and cell migration through Ras-signaling in HeLa and COS-1 cells. NEU3 was found to interact selectively with PA as assessed by phospholipid array, liposome coprecipitation, and ELISA assays and to colocalize with phospholipase D (PLD) 1 in response to epidermal growth factor (EGF) or serum stimulation. Studies using tagged NEU3 fragments with point mutations identified PA- and calmodulin (CaM)-binding sites around the N terminus and confirmed its participation in translocation and catalytic activity. EGF induced PLD1 activation concomitantly with enhanced NEU3 translocation to the cell surface, as assessed by confocal microscopy. These results suggest that interactions of NEU3 with PA produced by PLD1 are important for regulation of transmembrane signaling, this aberrant acceleration probably promoting malignancy in cancers. PMID:25678627

  2. Promotion of tumour proliferation, migration and invasion by miR-92b in targeting RECK in osteosarcoma.

    PubMed

    Zhou, Zhenhua; Wang, Zhiwei; Wei, Haifeng; Wu, Sujia; Wang, Xudong; Xiao, Jianru

    2016-06-01

    MicroRNAs play important roles in the development of cancers. Although miR-92b has been reported to promote the tumorigenesis of some cancers, its role in osteosarcoma remains unknown. In the present study, we focused on the expression, function and mechanisms of miR-92b in osteosarcoma development. The miRNA miR-92b was up-regulated in osteosarcoma cell lines and tissues; miR-92b up-regulation correlated with poor prognosis in osteosarcoma. Overexpression of miR-92b promoted osteosarcoma cell proliferation, migration and invasion, which was abrogated by miR-92b inhibition. Reversion-inducing, cysteine-rich protein with kazal motifs (RECK) was identified as the direct and functional target of miR-92b in osteosarcoma. Importantly, restoring RECK expression abrogated increases in cell growth, motility and invasiveness induced by miR-92b RECK was down-regulated in osteosarcoma tissues, and its expression level negatively correlated with miR-92b Collectively, our results indicate that miR-92b acts as an oncogenic miRNA and may be a therapeutic target in osteosarcoma. PMID:26993249

  3. TNF-alpha released by comigrating monocytes promotes transendothelial migration of activated lymphocytes.

    PubMed

    Green, D M; Trial, J; Birdsall, H H

    1998-09-01

    We investigated mechanisms that increase motility and transendothelial trafficking of activated lymphocytes. Freshly isolated lymphocytes stimulated with immobilized anti-CD3 for 2 h migrate into polymerized collagen in 1.99+/-0.25-fold greater numbers and across confluent endothelial monolayers in 4.8+/-0.5-fold greater numbers compared with leukocytes incubated with non-specific IgG. Activated lymphocytes form clusters with monocytes, and their increased motility was dependent on the presence of comigrating monocytes. Five lines of evidence support the idea that monocytes modulate lymphocyte motility through the release of TNF-alpha: 1) flow-cytometric analyses, using highly specific and avid mAbs to probe permeabilized whole blood leukocytes, showed that >80% of circulating monocytes contain intracellular TNF-alpha, whereas <5% contain IL-1 and none contain IL-6; 2) stimulation with immobilized anti-CD3 that was intended to activate lymphocytes also induced monocytes to release increased quantities of TNF-alpha; 3) rTNF-alpha, added in doses of 1 to 20 pg/ml to purified anti-CD3-stimulated lymphocytes, reproduced, in a dose-dependent manner, the motility-enhancing effect of adding monocytes; 4) the transient increase in the expression of TNF R-I on CD3-activated T lymphocytes parallels their transiently increased motility; and 5) addition of anti-TNF-alpha, anti-TNF R-I, anti-TNF R-II, or soluble TNF R-I decreased the motility of stimulated lymphocytes. These results suggest that T lymphocyte stimulation via the CD3-TCR complex signals nearby monocytes to release TNF-alpha, which feeds back on the lymphocytes to increase their locomotor activity. PMID:9725247

  4. Tissue Transglutaminase contributes to experimental multiple sclerosis pathogenesis and clinical outcome by promoting macrophage migration.

    PubMed

    van Strien, Miriam E; de Vries, Helga E; Chrobok, Navina L; Bol, John G J M; Breve, John J P; van der Pol, Susanne M P; Kooij, Gijs; van Buul, Jaap D; Karpuj, Marcela; Steinman, Lawrence; Wilhelmus, Micha M; Sestito, Claudia; Drukarch, Benjamin; Van Dam, Anne-Marie

    2015-11-01

    Multiple sclerosis is a serious neurological disorder, resulting in e.g., sensory, motor and cognitive deficits. A critical pathological aspect of multiple sclerosis (MS) is the influx of immunomodulatory cells into the central nervous system (CNS). Identification of key players that regulate cellular trafficking into the CNS may lead to the development of more selective treatment to halt this process. The multifunctional enzyme tissue Transglutaminase (TG2) can participate in various inflammation-related processes, and is known to be expressed in the CNS. In the present study, we question whether TG2 activity contributes to the pathogenesis of experimental MS, and could be a novel therapeutic target. In human post-mortem material, we showed the appearance of TG2 immunoreactivity in leukocytes in MS lesions, and particular in macrophages in rat chronic-relapsing experimental autoimmune encephalomyelitis (cr-EAE), an experimental MS model. Clinical deficits as observed in mouse EAE were reduced in TG2 knock-out mice compared to littermate wild-type mice, supporting a role of TG2 in EAE pathogenesis. To establish if the enzyme TG2 represents an attractive therapeutic target, cr-EAE rats were treated with TG2 activity inhibitors during ongoing disease. Reduction of TG2 activity in cr-EAE animals dramatically attenuated clinical deficits and demyelination. The mechanism underlying these beneficial effects pointed toward a reduction in macrophage migration into the CNS due to attenuated cytoskeletal flexibility and RhoA GTPase activity. Moreover, iNOS and TNFα levels were selectively reduced in the CNS of cr-EAE rats treated with a TG2 activity inhibitor, whereas other relevant inflammatory mediators were not affected in CNS or spleen by reducing TG2 activity. We conclude that modulating TG2 activity opens new avenues for therapeutic intervention in MS which does not affect peripheral levels of inflammatory mediators. PMID:26133787

  5. Increased cellular apoptosis susceptibility (CSE1L/CAS) protein expression promotes protrusion extension and enhances migration of MCF-7 breast cancer cells

    SciTech Connect

    Tai, Cheng-Jeng; Shen, Shing-Chuan; Lee, Woan-Ruoh; Liao, Ching-Fong; Deng, Win-Ping; Chiou, Hung-Yi; Hsieh, Cheng-I; Tung, Jai-Nien; Chen, Ching-Shyang; Chiou, Jeng-Fong; Li, Li-Tzu; Lin, Chuang-Yu; Hsu, Chung-Huei; Jiang, Ming-Chung

    2010-10-15

    Microtubules are part of cell structures that play a role in regulating the migration of cancer cells. The cellular apoptosis susceptibility (CSE1L/CAS) protein is a microtubule-associated protein that is highly expressed in cancer. We report here that CSE1L regulates the association of {alpha}-tubulin with {beta}-tubulin and promotes the migration of MCF-7 breast cancer cells. CSE1L was associated with {alpha}-tubulin and {beta}-tubulin in GST (glutathione S-transferase) pull-down and immunoprecipitation assays. CSE1L-GFP (green fluorescence protein) fusion protein experiments showed that the N-terminal of CSE1L interacted with microtubules. Increased CSE1L expression resulted in decreased tyrosine phosphorylation of {alpha}-tubulin and {beta}-tubulin, increased {alpha}-tubulin and {beta}-tubulin association, and enhanced assembly of microtubules. Cell protrusions or pseudopodia are temporary extensions of the plasma membrane and are implicated in cancer cell migration and invasion. Increased CSE1L expression increased the extension of MCF-7 cell protrusions. In vitro migration assay showed that enhanced CSE1L expression increased the migration of MCF-7 cells. Our results indicate that CSE1L plays a role in regulating the extension of cell protrusions and promotes the migration of cancer cells.

  6. miR-148b-3p promotes migration of Schwann cells by targeting cullin-associated and neddylation-dissociated 1

    PubMed Central

    Qian, Tian-mei; Zhao, Li-li; Wang, Jing; Li, Ping; Qin, Jing; Liu, Yi-sheng; Yu, Bin; Ding, Fei; Gu, Xiao-song; Zhou, Song-lin

    2016-01-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that negatively adjust gene expression in multifarious biological processes. However, the regulatory effects of miRNAs on Schwann cells remain poorly understood. Previous microarray analysis results have shown that miRNA expression is altered following sciatic nerve transaction, thereby affecting proliferation and migration of Schwann cells. This study investigated whether miR-148b-3p could regulate migration of Schwann cells by directly targeting cullin-associated and neddylation-dissociated 1 (Cand1). Up-regulated expression of miR-148b-3p promoted Schwann cell migration, whereas silencing of miR-148b-3p inhibited Schwann cell migration in vitro. Further experiments confirmed that Cand1 was a direct target of miR-148b-3p, and Cand1 knockdown reversed suppression of the miR-148b-3p inhibitor on Schwann cell migration. These results suggested that miR-148b-3p promoted migration of Schwann cells by directly targeting Cand1 in vitro. PMID:27482232

  7. The Wnt pathway destabilizes adherens junctions and promotes cell migration via β-catenin and its target gene cyclin D1.

    PubMed

    Vlad-Fiegen, Annica; Langerak, Anette; Eberth, Sonja; Müller, Oliver

    2012-01-01

    The Wnt pathway regulates cell proliferation, mobility and differentiation. Among the many Wnt target genes is CCND1 which codes for cyclin D1. Cyclin D1, in complex with cdk4 and cdk6, regulates G1/S phase transition during cell cycle. Independently of CDK, cyclin D1 also regulates the migration of macrophages. Here we analyzed the effects of cyclin D1 on the migration of cancer cell lines using the transwell migration and scratch assays. We also tested the effect of cyclin D1 and β-catenin on E-cadherin-mediated cell-cell contacts. Our results show that the Wnt pathway promotes cellular migration via its target gene cyclin D1. Moreover we show that cyclin D1 influences the actin cytoskeleton and destabilizes adherens junctions. PMID:23650577

  8. The Wnt pathway destabilizes adherens junctions and promotes cell migration via β-catenin and its target gene cyclin D1

    PubMed Central

    Vlad-Fiegen, Annica; Langerak, Anette; Eberth, Sonja; Müller, Oliver

    2012-01-01

    The Wnt pathway regulates cell proliferation, mobility and differentiation. Among the many Wnt target genes is CCND1 which codes for cyclin D1. Cyclin D1, in complex with cdk4 and cdk6, regulates G1/S phase transition during cell cycle. Independently of CDK, cyclin D1 also regulates the migration of macrophages. Here we analyzed the effects of cyclin D1 on the migration of cancer cell lines using the transwell migration and scratch assays. We also tested the effect of cyclin D1 and β-catenin on E-cadherin-mediated cell–cell contacts. Our results show that the Wnt pathway promotes cellular migration via its target gene cyclin D1. Moreover we show that cyclin D1 influences the actin cytoskeleton and destabilizes adherens junctions. PMID:23650577

  9. Rac1-mediated indentation of resting neurons promotes the chain migration of new neurons in the rostral migratory stream of post-natal mouse brain.

    PubMed

    Hikita, Takao; Ohno, Akihisa; Sawada, Masato; Ota, Haruko; Sawamoto, Kazunobu

    2014-03-01

    New neurons generated in the ventricular-subventricular zone in the post-natal brain travel toward the olfactory bulb by using a collective cell migration process called 'chain migration.' These new neurons show a saltatory movement of their soma, suggesting that each neuron cycles through periods of 'rest' during migration. Here, we investigated the role of the resting neurons in chain migration using post-natal mouse brain, and found that they undergo a dynamic morphological change, in which a deep indentation forms in the cell body. Inhibition of Rac1 activity resulted in less indentation of the new neurons in vivo. Live cell imaging using a Förster resonance energy transfer biosensor revealed that Rac1 was activated at the sites of contact between actively migrating and resting new neurons. On the cell surface of resting neurons, Rac1 activation coincided with the formation of the indentation. Furthermore, Rac1 knockdown prevented the indentation from forming and impaired migration along the resting neurons. These results suggest that Rac1 regulates a morphological change in the resting neurons, which allows them to serve as a migratory scaffold, and thereby non-cell-autonomously promotes chain migration. PMID:24188721

  10. MiR-625-3p promotes cell migration and invasion via inhibition of SCAI in colorectal carcinoma cells.

    PubMed

    Zheng, Hailun; Ma, Renqiang; Wang, Qizhi; Zhang, Pei; Li, Dapeng; Wang, Qiangwu; Wang, Jianchao; Li, Huabin; Liu, Hao; Wang, Zhiwei

    2015-09-29

    MicroRNAs (miRNAs) play a critical role in controlling tumor invasion and metastasis via regulating the expression of a variety of targets, which act as oncogenes or tumor suppressor genes. Abnormally expressed miR-625-3p has been observed in several types of human cancers. However, the molecular mechanisms of miR-625-3p-mediated tumorigenesis are largely elusive. Therefore, the aim of this study was to evaluate the biological function and molecular insight on miR-625-3p-induced oncogenesis in colorectal carcinoma (CRC). The effects of miR-625-3p in cell migration and invasion were analyzed by wound healing assay and transwell assay, respectively. In addition, the expression of miR-625-3p and its targets was detected in five human CRC cell lines. In the present study, we found that overexpression of miR-625-3p promoted migration and invasion in SW480 cells, whereas downregulation of miR-625-3p inhibited cell motility in SW620 cells. More importantly, we observed potential binding sites for miR-625-3p in the 3'-untranslated region of suppressor of cancer cell invasion (SCAI). Notably, we identified that overexpression of miR-625-3p inhibited the expression of SCAI, while depletion of miR-625-3p increased SCAI level, suggesting that SCAI could be a target of miR-625-3p. Additionally, we revealed that miR-625-3p exerts its oncogenic functions through regulation of SCAI/E-cadherin/MMP-9 pathways. Our findings indicate the pivotal role of miR-625-3p in invasion that warrants further exploration whether targeting miR-625-3p could be a promising approach for the treatment of CRC. PMID:26314959

  11. MiR-625-3p promotes cell migration and invasion via inhibition of SCAI in colorectal carcinoma cells

    PubMed Central

    Wang, Qizhi; Zhang, Pei; Li, Dapeng; Wang, Qiangwu; Wang, Jianchao; Li, Huabin; Liu, Hao; Wang, Zhiwei

    2015-01-01

    MicroRNAs (miRNAs) play a critical role in controlling tumor invasion and metastasis via regulating the expression of a variety of targets, which act as oncogenes or tumor suppressor genes. Abnormally expressed miR-625-3p has been observed in several types of human cancers. However, the molecular mechanisms of miR-625-3p-mediated tumorigenesis are largely elusive. Therefore, the aim of this study was to evaluate the biological function and molecular insight on miR-625-3p-induced oncogenesis in colorectal carcinoma (CRC). The effects of miR-625-3p in cell migration and invasion were analyzed by wound healing assay and transwell assay, respectively. In addition, the expression of miR-625-3p and its targets was detected in five human CRC cell lines. In the present study, we found that overexpression of miR-625-3p promoted migration and invasion in SW480 cells, whereas downregulation of miR-625-3p inhibited cell motility in SW620 cells. More importantly, we observed potential binding sites for miR-625-3p in the 3′-untranslated region of suppressor of cancer cell invasion (SCAI). Notably, we identified that overexpression of miR-625-3p inhibited the expression of SCAI, while depletion of miR-625-3p increased SCAI level, suggesting that SCAI could be a target of miR-625-3p. Additionally, we revealed that miR-625-3p exerts its oncogenic functions through regulation of SCAI/E-cadherin/MMP-9 pathways. Our findings indicate the pivotal role of miR-625-3p in invasion that warrants further exploration whether targeting miR-625-3p could be a promising approach for the treatment of CRC. PMID:26314959

  12. Modulation of E-cadherin expression promotes migration ability of esophageal cancer cells

    PubMed Central

    Li, Shujun; Qin, Xuebo; Chai, Song; Qu, Changbao; Wang, Xiaolu; Zhang, Helin

    2016-01-01

    Losing the E-cadherin plays an important role in the metastasis of cancer. The regulation of the expression of E-cadherin is unclear. Circadian rhythm alteration is associated with the pathogenesis of a number of cancers. This study aims to investigate the role of one of the circadian proteins, period-2 (Per2) in repressing the expression of E-cadherin in esophageal cancer (esophageal cancer). We observed that the levels of circadian protein Per2 were significantly increased and E-cadherin was significantly decreased in the tissue of human esophageal cancer with metastasis as compared with non-metastatic esophageal cancer. Overexpression of Per2 in the esophageal cancer cells markedly repressed the expression of E-cadherin. The pHDAC1 was detected in human esophageal cancer with metastasis, which was much less in the esophageal cancer tissue without metastasis. Overexpression of Per2 increased the levels of pHDAC1 as well as the E-cadherin repressors at the E-cadherin promoter locus. Overexpression of Per2 markedly increased the migratory capacity of esophageal cancer cells, which was abolished by the inhibition of HDAC1. We conclude that Per-2 plays an important role in the esophageal cancer cell metastasis, which may be a novel therapeutic target for the treatment of esophageal cancer. PMID:26898709

  13. Ectopic expression of polysialylated neural cell adhesion molecule in adult macaque Schwann cells promotes their migration and remyelination potential in the central nervous system

    PubMed Central

    Bachelin, C.; Zujovic, V.; Buchet, D.; Mallet, J.

    2010-01-01

    Recent findings suggested that inducing neural cell adhesion molecule polysialylation in rodents is a promising strategy for promoting tissue repair in the injured central nervous system. Since autologous grafting of Schwann cells is one potential strategy to promote central nervous system remyelination, it is essential to show that such a strategy can be translated to adult primate Schwann cells and is of interest for myelin diseases. Adult macaque Schwann cells were transduced with a lentiviral vector encoding sialyltransferase, an enzyme responsible for neural cell adhesion molecule polysialylation. In vitro, we found that ectopic expression of polysialylate promoted adult macaque Schwann cell migration and improved their integration among astrocytes in vitro without modifying their antigenic properties as either non-myelinating or pro-myelinating. In addition, forced expression of polysialylate in adult macaque Schwann cells decreased their adhesion with sister cells. To investigate the ability of adult macaque Schwann cells to integrate and migrate in vivo, focally induced demyelination was targeted to the spinal cord dorsal funiculus of nude mice, and both control and sialyltransferase expressing Schwann cells overexpressing green fluorescein protein were grafted remotely from the lesion site. Analysis of the spatio-temporal distribution of the grafted Schwann cells performed in toto and in situ, showed that in both groups, Schwann cells migrated towards the lesion site. However, migration of sialyltransferase expressing Schwann cells was more efficient than that of control Schwann cells, leading to their accelerated recruitment by the lesion. Moreover, ectopic expression of polysialylated neural cell adhesion molecule promoted adult macaque Schwann cell interaction with reactive astrocytes when exiting the graft, and their ‘chain-like’ migration along the dorsal midline. The accelerated migration of sialyltransferase expressing Schwann cells to the

  14. Mucin1 promotes the migration and invasion of hepatocellular carcinoma cells via JNK-mediated phosphorylation of Smad2 at the C-terminal and linker regions

    PubMed Central

    Wang, Juan; Liu, Guomu; Li, Qiongshu; Wang, Fang; Xie, Fei; Zhai, Ruiping; Guo, Yingying; Chen, Tanxiu; Zhang, Nannan; Ni, Weihua; Yuan, Hongyan; Tai, Guixiang

    2015-01-01

    Mucin1 (MUC1), as an oncogene, plays a key role in the progression and tumorigenesis of many human adenocarcinomas. In this study, wound-healing, transwell migration and matrigel invasion assays showed that MUC1 promotes human hepatocellular carcinoma (HCC) cell migration and invasion by MUC1 gene silencing and overexpressing. Treatment with exogenous transforming growth factor beta (TGF-β)1, TGF-β type I receptor (TβRI) inhibitor, TGF-β1 siRNAs, or activator protein 1 (AP-1) inhibitor to MUC1-overexpressing HCC cells revealed that MUC1-induced autocrine TGF-β via JNK/AP-1 pathway promotes the cell migration and invasion. In addition, the migration and invasion of HCC cells were more significantly inhibited by JNK inhibitor compared with that by TβRI inhibitor or TGF-β1 siRNAs. Further studies demonstrated that MUC1-mediated JNK activation not only enhances the phosphorylation of Smad2 C-terminal at Ser-465/467 site (Smad2C) through TGF-β/TβRI, but also directly enhances the phosphorylation of Smad2 linker region at Ser-245/250/255 site (Smad2L), and then both of them collaborate to upregulate matrix metalloproteinase (MMP)-9-mediated cell migration and invasion of HCC. These results indicate that MUC1 is an attractive target in liver cancer therapy. PMID:26057631

  15. Ciliary Neurotrophic Factor Promotes the Migration of Corneal Epithelial Stem/progenitor Cells by Up-regulation of MMPs through the Phosphorylation of Akt

    PubMed Central

    Chen, Jialin; Chen, Peng; Backman, Ludvig J.; Zhou, Qingjun; Danielson, Patrik

    2016-01-01

    The migration of limbal epithelial stem cells is important for the homeostasis and regeneration of corneal epithelium. Ciliary neurotrophic factor (CNTF) has been found to promote corneal epithelial wound healing by activating corneal epithelial stem/progenitor cells. However, the possible effect of CNTF on the migration of corneal epithelial stem/progenitor cells is not clear. This study found the expression of CNTF in mouse corneal epithelial stem/progenitor cells (TKE2) to be up-regulated after injury, on both gene and protein level. CNTF promoted migration of TKE2 in a dose-dependent manner and the peak was seen at 10 ng/ml. The phosphorylation level of Akt (p-Akt), and the expression of MMP3 and MMP14, were up-regulated after CNTF treatment both in vitro and in vivo. Akt and MMP3 inhibitor treatment delayed the migration effect by CNTF. Finally, a decreased expression of MMP3 and MMP14 was observed when Akt inhibitor was applied both in vitro and in vivo. This study provides new insights into the role of CNTF on the migration of corneal epithelial stem/progenitor cells and its inherent mechanism of Up-regulation of matrix metalloproteinases through the Akt signalling pathway. PMID:27174608

  16. Ciliary Neurotrophic Factor Promotes the Migration of Corneal Epithelial Stem/progenitor Cells by Up-regulation of MMPs through the Phosphorylation of Akt.

    PubMed

    Chen, Jialin; Chen, Peng; Backman, Ludvig J; Zhou, Qingjun; Danielson, Patrik

    2016-01-01

    The migration of limbal epithelial stem cells is important for the homeostasis and regeneration of corneal epithelium. Ciliary neurotrophic factor (CNTF) has been found to promote corneal epithelial wound healing by activating corneal epithelial stem/progenitor cells. However, the possible effect of CNTF on the migration of corneal epithelial stem/progenitor cells is not clear. This study found the expression of CNTF in mouse corneal epithelial stem/progenitor cells (TKE2) to be up-regulated after injury, on both gene and protein level. CNTF promoted migration of TKE2 in a dose-dependent manner and the peak was seen at 10 ng/ml. The phosphorylation level of Akt (p-Akt), and the expression of MMP3 and MMP14, were up-regulated after CNTF treatment both in vitro and in vivo. Akt and MMP3 inhibitor treatment delayed the migration effect by CNTF. Finally, a decreased expression of MMP3 and MMP14 was observed when Akt inhibitor was applied both in vitro and in vivo. This study provides new insights into the role of CNTF on the migration of corneal epithelial stem/progenitor cells and its inherent mechanism of Up-regulation of matrix metalloproteinases through the Akt signalling pathway. PMID:27174608

  17. Filamin A interacts with the coactivator MKL1 to promote the activity of the transcription factor SRF and cell migration.

    PubMed

    Kircher, Philipp; Hermanns, Constanze; Nossek, Maximilian; Drexler, Maria Katharina; Grosse, Robert; Fischer, Maximilian; Sarikas, Antonio; Penkava, Josef; Lewis, Thera; Prywes, Ron; Gudermann, Thomas; Muehlich, Susanne

    2015-11-10

    Megakaryoblastic leukemia 1 (MKL1) is a coactivator of serum response factor (SRF) that promotes the expression of genes associated with cell proliferation, motility, adhesion, and differentiation-processes that also involve dynamic cytoskeletal changes in the cell. MKL1 is inactive when bound to monomeric globular actin (G-actin), but signals that activate the small guanosine triphosphatase RhoA cause actin polymerization and MKL1 dissociation from G-actin. We found a new mechanism of MKL1 activation that is mediated through its binding to filamin A (FLNA), a protein that binds filamentous actin (F-actin). The interaction of FLNA and MKL1 was required for the expression of MKL1 target genes in primary fibroblasts, melanoma, mammary and hepatocellular carcinoma cells. We identified the regions of interaction between MKL1 and FLNA, and cells expressing an MKL1 mutant that was unable to bind FLNA exhibited impaired cell migration and reduced expression of MKL1-SRF target genes. Induction and repression of MKL1-SRF target genes correlated with increased or decreased MKL1-FLNA interaction, respectively. Lysophosphatidic acid-induced RhoA activation in primary human fibroblasts promoted the association of endogenous MKL1 with FLNA, whereas exposure to an actin polymerization inhibitor dissociated MKL1 from FLNA and decreased MKL1-SRF target gene expression in melanoma cells. Thus, FLNA functions as a positive cellular transducer linking actin polymerization to MKL1-SRF activity, counteracting the known repressive complex of MKL1 and monomeric G-actin. PMID:26554816

  18. Boron promotes streptozotocin-induced diabetic wound healing: roles in cell proliferation and migration, growth factor expression, and inflammation.

    PubMed

    Demirci, Selami; Doğan, Ayşegül; Aydın, Safa; Dülger, Esra Çikler; Şahin, Fikrettin

    2016-06-01

    Acute wounds do not generally require professional treatment modalities and heal in a predictable fashion, but chronic wounds are mainly accompanied with infection and prolonged inflammation, leading to healing impairments and continuous tissue degradation. Although a vast amount of products have been introduced in the market, claiming to provide a better optimization of local and systemic conditions of patients, they do not meet the expectations due to being expensive and not easily accessible, requiring wound care facilities, having patient-specific response, low efficiency, and severe side-effects. In this sense, developing new, safe, self-applicable, effective, and cheap wound care products with broad-range antimicrobial activity is still an attractive area of international research. In the present work, boron derivatives [boric acid and sodium pentaborate pentahydrate (NaB)] were evaluated for their antimicrobial activity, proliferation, migratory, angiogenesis, gene, and growth factor expression promoting effects on dermal cells in vitro. In addition, boron-containing hydrogel formulation was examined for its wound healing promoting potential using full-thickness wound model in streptozotocin-induced diabetic rats. The results revealed that while both boron compounds significantly increased proliferation, migration, vital growth factor, and gene expression levels of dermal cells along with displaying remarkable antimicrobial effects against bacteria, yeast, and fungi, NaB displayed greater antimicrobial properties as well as gene and growth factor expression inductive effects. Animal studies proved that NaB-containing gel formulation enhanced wound healing rate of diabetic animals and histopathological scores. Overall data suggest a potential promising therapeutic option for the management of chronic wounds but further studies are highly warranted to determine signaling pathways and target metabolisms in which boron is involved to elucidate the limitations

  19. Slit2-Robo1 signaling promotes the adhesion, invasion and migration of tongue carcinoma cells via upregulating matrix metalloproteinases 2 and 9, and downregulating E-cadherin

    PubMed Central

    Zhao, Yuan; Zhou, Feng-Li; Li, Wei-Ping; Wang, Jing; Wang, Li-Jing

    2016-01-01

    Whether Slit homologue 2 (Slit2) inhibits or promotes tumor cell migration remains controversial, and the role of Slit2-Roundabout 1 (Robo1) signaling in oral cancer remains to be fully elucidated. The aim of the present study was to investigate the role of Slit2-Robo1 signaling in the adhesion, invasion and migration of tongue carcinoma cells, and the mechanism by which Slit2-Robo1 signaling inhibits or promotes tumor cell migration. Tca8113 tongue carcinoma cells were treated with the monoclonal anti-human Robo1 antibody, R5, to inhibit the Slit2-Robo1 signaling pathway, with immunoglobulin (Ig)G2b treatment as a negative control. The expression levels of Slit2 and Robo1 were determined using flow cytometry. The effects of R5 on the adhesion, invasion and migration of Tca8113 tongue carcinoma cells were investigated. Gelatin zymography was used to investigate the activity of matrix metalloproteinase 2 (MMP2) and MMP9. Western blot analysis was used to evaluate the expression levels of E-cadherin in Tca8113 cells treated with 10 µg/ml of either R5 or IgG2b. Slit2 and Robo1 proteins were found to be expressed in the Tca8113 cells. R5 significantly inhibited the adhesion, invasion and migration of Tca8113 cells in vitro. R5 also inhibited the activities of MMP2 and MMP9, and increased the expression of E-cadherin in the Tca8113 cells. These results suggested that Slit2-Robo1 signaling promoted the adhesion, invasion and migration of tongue carcinoma cells by upregulating the expression levels of MMP2 and MMP9 and, downregulating the expression of E-cadherin. PMID:27431199

  20. TGF-β1-induced EMT promotes targeted migration of breast cancer cells through the lymphatic system by the activation of CCR7/CCL21-mediated chemotaxis.

    PubMed

    Pang, M-F; Georgoudaki, A-M; Lambut, L; Johansson, J; Tabor, V; Hagikura, K; Jin, Y; Jansson, M; Alexander, J S; Nelson, C M; Jakobsson, L; Betsholtz, C; Sund, M; Karlsson, M C I; Fuxe, J

    2016-02-11

    Tumor cells frequently disseminate through the lymphatic system during metastatic spread of breast cancer and many other types of cancer. Yet it is not clear how tumor cells make their way into the lymphatic system and how they choose between lymphatic and blood vessels for migration. Here we report that mammary tumor cells undergoing epithelial-mesenchymal transition (EMT) in response to transforming growth factor-β (TGF-β1) become activated for targeted migration through the lymphatic system, similar to dendritic cells (DCs) during inflammation. EMT cells preferentially migrated toward lymphatic vessels compared with blood vessels, both in vivo and in 3D cultures. A mechanism of this targeted migration was traced to the capacity of TGF-β1 to promote CCR7/CCL21-mediated crosstalk between tumor cells and lymphatic endothelial cells. On one hand, TGF-β1 promoted CCR7 expression in EMT cells through p38 MAP kinase-mediated activation of the JunB transcription factor. Blockade of CCR7, or treatment with a p38 MAP kinase inhibitor, reduced lymphatic dissemination of EMT cells in syngeneic mice. On the other hand, TGF-β1 promoted CCL21 expression in lymphatic endothelial cells. CCL21 acted in a paracrine fashion to mediate chemotactic migration of EMT cells toward lymphatic endothelial cells. The results identify TGF-β1-induced EMT as a mechanism, which activates tumor cells for targeted, DC-like migration through the lymphatic system. Furthermore, it suggests that p38 MAP kinase inhibition may be a useful strategy to inhibit EMT and lymphogenic spread of tumor cells. PMID:25961925

  1. Migration-inducing gene 7 promotes tumorigenesis and angiogenesis and independently predicts poor prognosis of epithelial ovarian cancer.

    PubMed

    Huang, Bihui; Yin, Mingzhu; Li, Xia; Cao, Guosheng; Qi, Jin; Lou, Ge; Sheng, Shijie; Kou, Junping; Chen, Kang; Yu, Boyang

    2016-05-10

    Epithelial ovarian carcinomas (EOC) cause more mortality than any other cancer of the female reproductive system. New therapeutic approaches to reduce EOC mortality have been largely unsuccessful due to the poor understanding of the mechanisms underlying EOC proliferation and metastasis. Progress in EOC treatment is further hampered by a lack of reliable prognostic biomarkers for early risk assessment. In this study, we identify that Migration-Inducting Gene 7 (MIG-7) is specifically induced in human EOC tissues but not normal ovaries or ovarian cyst. Ovarian MIG-7 expression strongly correlated with EOC progression. Elevated MIG-7 level at the time of primary cytoreductive surgery was a strong and independent predictor of poor survival of EOC patients. Cell and murine xenograft models showed that MIG-7 was required for EOC proliferation and invasion, and MIG-7 enhanced EOC-associated angiogenesis by promoting the expression of vascular endothelial growth factor. Inhibiting MIG-7 by RNA interference in grafted EOC cells retarded tumor growth, angiogenesis and improved host survival, and suppressing MIG-7 expression with a small molecule inhibitor D-39 identified from the medicinal plant Liriope muscari mitigated EOC growth and invasion and specifically abrogated the expression of vascular endothelial growth factor. Our data not only reveal a critical function of MIG-7 in EOC growth and metastasis and support MIG-7 as an independent prognostic biomarker for EOC, but also demonstrate that therapeutic targeting of MIG-7 is likely beneficial in the treatment of EOC. PMID:27050277

  2. Liver fatty acid-binding protein (L-FABP) promotes cellular angiogenesis and migration in hepatocellular carcinoma.

    PubMed

    Ku, Chung-Yu; Liu, Yu-Huei; Lin, Hsuan-Yuan; Lu, Shao-Chun; Lin, Jung-Yaw

    2016-04-01

    Liver fatty acid-binding protein (L-FABP) is abundant in hepatocytes and known to be involved in lipid metabolism. Overexpression of L-FABP has been reported in various cancers; however, its role in hepatocellular carcinoma (HCC) remains unclear. In this study, we investigated L-FABP and its association with vascular endothelial growth factors (VEGFs) in 90 HCC patients. We found that L-FABP was highly expressed in their HCC tissues, and that this expression was positively correlated with that of VEGF-A. Additionally, L-FABP significantly promoted tumor growth and metastasis in a xenograft mouse model. We also assessed the mechanisms of L-FABP activity in tumorigenesis; L-FABP was found to associate with VEGFR2 on membrane rafts and subsequently activate the Akt/mTOR/P70S6K/4EBP1 and Src/FAK/cdc42 pathways, which resulted in up-regulation of VEGF-A accompanied by an increase in both angiogenic potential and migration activity. Our results thus suggest that L-FABP could be a potential target for HCC chemotherapy. PMID:26919097

  3. Liver fatty acid-binding protein (L-FABP) promotes cellular angiogenesis and migration in hepatocellular carcinoma

    PubMed Central

    Ku, Chung-Yu; Liu, Yu-Huei; Lin, Hsuan-Yuan; Lu, Shao-Chun; Lin, Jung-Yaw

    2016-01-01

    Liver fatty acid-binding protein (L-FABP) is abundant in hepatocytes and known to be involved in lipid metabolism. Overexpression of L-FABP has been reported in various cancers; however, its role in hepatocellular carcinoma (HCC) remains unclear. In this study, we investigated L-FABP and its association with vascular endothelial growth factors (VEGFs) in 90 HCC patients. We found that L-FABP was highly expressed in their HCC tissues, and that this expression was positively correlated with that of VEGF-A. Additionally, L-FABP significantly promoted tumor growth and metastasis in a xenograft mouse model. We also assessed the mechanisms of L-FABP activity in tumorigenesis; L-FABP was found to associate with VEGFR2 on membrane rafts and subsequently activate the Akt/mTOR/P70S6K/4EBP1 and Src/FAK/cdc42 pathways, which resulted in up-regulation of VEGF-A accompanied by an increase in both angiogenic potential and migration activity. Our results thus suggest that L-FABP could be a potential target for HCC chemotherapy. PMID:26919097

  4. Exosome-shuttling microRNA-21 promotes cell migration and invasion-targeting PDCD4 in esophageal cancer.

    PubMed

    Liao, Juan; Liu, Ran; Shi, Ya-Juan; Yin, Li-Hong; Pu, Yue-Pu

    2016-06-01

    Recent evidence indicates that exosomes can mediate certain microRNAs (miRNAs) involved in a series of biological functions in tumor occurrence and development. Our previous studies showed that microRNA-21 (miR-21) was abundant in both esophageal cancer cells and their corresponding exosomes. The present study explored the function of exosome-shuttling miR-21 involved in esophageal cancer progression. We found that exosomes could be internalized from the extracellular space to the cytoplasm. The exosome-derived Cy3-labeled miR-21 mimics could be transported into recipient cells in a neutral sphingomyelinase 2 (nSMase2)-dependent manner. miR-21 overexpression from donor cells significantly promoted the migration and invasion of recipient cells by targeting programmed cell death 4 (PDCD4) and activating its downstream c-Jun N-terminal kinase (JNK) signaling pathway after co-cultivation. Our population plasma sample analysis indicated that miR-21 was upregulated significantly in plasma from esophageal cancer patients and showed a significant risk association for esophageal cancer. Our data demonstrated that a close correlation existed between exosome-shuttling miR-21 and esophageal cancer recurrence and distant metastasis. Thus, exosome-shuttling miR-21 may become a potential biomarker for prognosis among esophageal cancer patients. PMID:27035745

  5. Reduced expression of fumarate hydratase in clear cell renal cancer mediates HIF-2α accumulation and promotes migration and invasion.

    PubMed

    Sudarshan, Sunil; Shanmugasundaram, Karthigayan; Naylor, Susan L; Lin, Shu; Livi, Carolina B; O'Neill, Christine F; Parekh, Dipen J; Yeh, I-Tien; Sun, Lu-Zhe; Block, Karen

    2011-01-01

    Germline mutations of FH, the gene that encodes for the tricarboxylic acid TCA (TCA) cycle enzyme fumarate hydratase, are associated with an inherited form of cancer referred to as Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC). Individuals with HLRCC are predisposed to the development of highly malignant and lethal renal cell carcinoma (RCC). The mechanisms of tumorigenesis proposed have largely focused on the biochemical consequences of loss of FH enzymatic activity. While loss of the tumor suppressor gene von Hippel Lindau (VHL) is thought to be an initiating event for the majority of RCCs, a role for FH in sporadic renal cancer has not been explored. Here we report that FH mRNA and protein expression are reduced in clear cell renal cancer, the most common histologic variant of kidney cancer. Moreover, we demonstrate that reduced FH leads to the accumulation of hypoxia inducible factor- 2α (HIF-2α), a transcription factor known to promote renal carcinogenesis. Finally, we demonstrate that overexpression of FH in renal cancer cells inhibits cellular migration and invasion. These data provide novel insights into the tumor suppressor functions of FH in sporadic kidney cancer. PMID:21695080

  6. Photobiomodulation with low-level diode laser promotes osteoblast migration in an in vitro micro wound model

    NASA Astrophysics Data System (ADS)

    Tschon, Matilde; Incerti-Parenti, Serena; Cepollaro, Simona; Checchi, Luigi; Fini, Milena

    2015-07-01

    Laser photobiomodulation can improve bone healing, but well-defined treatment parameters are lacking. Saos-2 human osteoblast-like cells were subjected to an in vitro scratch-wound healing assay and irradiated by a 915-nm gallium-aluminum-arsenide diode laser for 0, 48, 96, and 144 s using doses of, respectively, 0, 5, 10, and 15 J/cm2. Wound area was measured after 4, 24, 48, and 72 h. Cell viability, DNA content, gene expression, and release of bone-related proteins were evaluated after 24, 48, and 72 h. Laser significantly improved wound healing compared with nonirradiated controls. Cells treated with laser doses of 5 and 10 J/cm2 reached wound closure after 72 h, followed by 15 J/cm2 after 96 h. With the cell proliferation inhibitor Mitomycin C, the doses of 10 and 15 J/cm2 maintained an improved wound healing compared with controls. Laser increased collagen type 1 gene expression with higher doses inducing a longer-lasting effect, whereas transforming growth factor-beta 1 showed comparable or decreased levels in irradiated versus nonirradiated groups, with no effect on protein release. This study demonstrated that laser photobiomodulation at 915 nm promoted wound healing mainly through stimulation of cell migration and collagen deposition by osteoblasts.

  7. Helicobacter pylori-infected MSCs acquire a pro-inflammatory phenotype and induce human gastric cancer migration by promoting EMT in gastric cancer cells

    PubMed Central

    ZHANG, QIANG; DING, JUAN; LIU, JINJUN; WANG, WEI; ZHANG, FENG; WANG, JUNHE; LI, YUYUN

    2016-01-01

    Accumulating clinical and experimental evidence has suggested that Helicobacter pylori (H. pylori) infection-associated gastric cancer (GC) is associated with high rates of mortality and serious health effects. The majority of patients succumb to H. pylori infection-associated GC due to metastasis. Mesenchymal stem cells (MSCs), which have multipotent differentiation potential, may be recruited into the tumor-associated stroma. MSCs are crucial components of the H. pylori infection-associated GC microenvironment, and may be critical for GC cell migration. In this study, an MSCs/H. pylori co-culture model was designed, and the effect of H. pylori-infected MSCs on the migration of GC cells was evaluated using a Transwell migration assay. H. pylori-infected MSC cytokine expression was evaluated using Luminex/ELISA. The expression of epithelial-mesenchymal transition (EMT) markers in the GC cells treated with supernatants from H. pylori-infected MSCs were detected by western blot analysis. The results demonstrated that the interaction between MSCs and H. pylori may induce GC cell migration, through secretion of a combination of cytokines that promote EMT in GC cells. The expression of phosphorylated forms of nuclear factor-κB (NF-κB) was observed to be increased in MSCs by H. pylori. Inhibition of NF-κB activation by pyrrolidine dithiocarbamate blocked the effects of H. pylori-infected MSCs on SGC-7901 human stomach adenocarcinoma cell migration. Overall, the results of the present study suggest that H. pylori-infected MSCs acquire a pro-inflammatory phenotype through secretion of a combination of multiple cytokines, a number of which are NF-κB-dependent. These cytokines enhance H. pylori infection-associated GC cell migration by promoting EMT in GC cells. The results of the present study provide novel evidence for the modulatory effect of MSCs in the tumor microenvironment and provide insight into the significance of stromal cell involvement in GC progression

  8. P130Cas Src-Binding and Substrate Domains Have Distinct Roles in Sustaining Focal Adhesion Disassembly and Promoting Cell Migration

    PubMed Central

    Meenderink, Leslie M.; Ryzhova, Larisa M.; Donato, Dominique M.; Gochberg, Daniel F.; Kaverina, Irina; Hanks, Steven K.

    2010-01-01

    The docking protein p130Cas is a prominent Src substrate found in focal adhesions (FAs) and is implicated in regulating critical aspects of cell motility including FA disassembly and protrusion of the leading edge plasma membrane. To better understand how p130Cas acts to promote these events we examined requirements for established p130Cas signaling motifs including the SH3-binding site of the Src binding domain (SBD) and the tyrosine phosphorylation sites within the substrate domain (SD). Expression of wild type p130Cas in Cas −/− mouse embryo fibroblasts resulted in enhanced cell migration associated with increased leading-edge actin flux, increased rates of FA assembly/disassembly, and uninterrupted FA turnover. Variants lacking either the SD phosphorylation sites or the SBD SH3-binding motif were able to partially restore the migration response, while only a variant lacking both signaling functions was fully defective. Notably, the migration defects associated with p130Cas signaling-deficient variants correlated with longer FA lifetimes resulting from aborted FA disassembly attempts. However the SD mutational variant was fully defective in increasing actin assembly at the protruding leading edge and FA assembly/disassembly rates, indicating that SD phosphorylation is the sole p130Cas signaling function in regulating these processes. Our results provide the first quantitative evidence supporting roles for p130Cas SD tyrosine phosphorylation in promoting both leading edge actin flux and FA turnover during cell migration, while further revealing that the p130Cas SBD has a function in cell migration and sustained FA disassembly that is distinct from its known role of promoting SD tyrosine phosphorylation. PMID:20976150

  9. Synaptopodin-2 induces assembly of peripheral actin bundles and immature focal adhesions to promote lamellipodia formation and prostate cancer cell migration.

    PubMed

    Kai, FuiBoon; Fawcett, James P; Duncan, Roy

    2015-05-10

    Synaptopodin-2 (Synpo2), an actin-binding protein and invasive cancer biomarker, induces formation of complex stress fiber networks in the cell body and promotes PC3 prostate cancer cell migration in response to serum stimulation. The role of these actin networks in enhanced cancer cell migration is unknown. Using time-course analysis and live cell imaging of mock- and Synpo2-transduced PC3 cells, we now show that Synpo2 induces assembly of actin fibers near the cell periphery and Arp2/3-dependent lamellipodia formation. Lamellipodia formed in a non-directional manner or repeatedly changed direction, explaining the enhanced chemokinetic activity of PC3 cells in response to serum stimulation. Myosin contraction promotes retrograde flow of the Synpo2-associated actin filaments at the leading edge and their merger with actin networks in the cell body. Enhanced PC3 cell migration correlates with Synpo2-induced formation of lamellipodia and immature focal adhesions (FAs), but is not dependent on myosin contraction or FA maturation. The previously reported correlation between Synpo2-induced stress fiber assembly and enhanced PC3 cell migration therefore reflects the role of Synpo2 as a newly identified regulator of actin bundle formation and nascent FA assembly near the leading cell edge. PMID:25883213

  10. Collagen and calcium-binding EGF domains 1 is frequently inactivated in ovarian cancer by aberrant promoter hypermethylation and modulates cell migration and survival

    PubMed Central

    Barton, C A; Gloss, B S; Qu, W; Statham, A L; Hacker, N F; Sutherland, R L; Clark, S J; O'Brien, P M

    2009-01-01

    Background: Collagen and calcium-binding EGF domains 1 (CCBE1) is an uncharacterised gene that has down-regulated expression in breast cancer. As CCBE1 maps to 18q21.32, a region frequently exhibiting loss of heterozygosity in ovarian cancer, the aim of this study was to determine the expression and function of CCBE1 in ovarian cancer. Methods: Expression and methylation patterns of CCBE1 were determined in ovarian cancer cell lines and primary tumours. CCBE1 contains collagen repeats and an aspartic acid/asparagine hydroxylation/EGF-like domain, suggesting a function in extracellular matrix remodelling and migration, which was determined using small-interfering RNA (siRNA)-mediated knockdown and over-expression of CCBE1 in cell lines. Results: CCBE1 is expressed in normal ovary, but is reduced in ovarian cancer cell lines and primary carcinomas. Pharmacological demethylation/deacetylation in ovarian cancer cell lines re-induced CCBE1 expression, indicating that epigenetic mechanisms contribute to its silencing in cancer. CCBE1 promoter hypermethylation was detected in 6/11 (55%) ovarian cancer cell lines and 38/81 (41%) ovarian carcinomas. siRNA-mediated knockdown of CCBE1 in ovarian cancer cell lines enhanced their migration; conversely, re-expression of CCBE1 reduced migration and survival. Hence, loss of CCBE1 expression may promote ovarian carcinogenesis by enhancing migration and cell survival. Conclusions: These data suggest that CCBE1 is a new candidate tumour suppressor in ovarian cancer. PMID:19935792

  11. CC-chemokine receptor 7 and its ligand CCL19 promote mitral valve interstitial cell migration and repair

    PubMed Central

    Wang, Xiaozhi; Wang, Liang; Miao, Liping; Zhao, Rong; Wu, Yanhu; Kong, Xiangqing

    2015-01-01

    Abstract The effect of CC-chemokine receptor 7 (CCR7) and CC-chemokine ligand 19 (CCL19) on rheumatic mitral stenosis is unknown. This study aimed to explore the roles of CCR7 and CCL19 in rheumatic mitral stenosis by measuring the expression of CCR7 and CCL19 in human mitral valves from rheumatic mitral stenosis patients. Additionally, we examined their effects on human mitral valve interstitial cells (hMVICs) proliferation, apoptosis and wound repair. CCR7 and CCL19 expression was measured in the mitral valves from rheumatic mitral stenosis patients (n = 10) and compared to normal mitral valves (n = 5). CCR7 was measured in cultured hMVICs from rheumatic mitral stenosis patients and normal donors by RT-PCR and immunofluorescence. The cells were also treated with exogenous CCL19, and the effects on wound healing, proliferation and apoptosis were assayed. In the rheumatic mitral valves, valve interstitial cells expressed CCR7, while mononuclear cells and the endothelium expressed CCL19. Healthy mitral valves did not stain positive for CCR7 or CCL19. CCR7 was also detected in cultured rheumatic hMVICs or in normal hMVICs treated with CCL19. In a wound healing experiment, wound closure rates of both rheumatic and normal hMVICs were significantly accelerated by CCL19. These effects were abrogated by a CCR7 neutralizing antibody. The CCR7/CCL19 axis did not influence the proliferation or apoptosis of hMVICs, indicating that wound healing was due to increased migration rates rather than increased proliferation. In conclusion, CCR7 and CCL19 were expressed in rheumatic mitral valves. The CCR7/CCL19 axis may regulate remodeling of rheumatic valve injury through promoting migratory ability of hMVICs. PMID:26668580

  12. IL-33 promotes the migration and proliferation of circulating fibrocytes from patients with allergen-exacerbated asthma

    SciTech Connect

    Bianchetti, Lorenza; Marini, Maurizio A.; Isgro, Mirko; Bellini, Alberto; Schmidt, Matthias; Mattoli, Sabrina

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer IL-33 is considered a new therapeutic target for reducing inflammation in asthma. Black-Right-Pointing-Pointer This study shows that IL-33 is a potent chemoattractant for fibrocytes in asthma. Black-Right-Pointing-Pointer IL-33 also promotes fibrocyte proliferation without reducing collagen production. Black-Right-Pointing-Pointer The study uncovers a novel non-inflammatory, profibrotic function of IL-33. -- Abstract: The release of IL-33 increases in the bronchial mucosa of asthmatic patients in relation to disease severity and several studies have demonstrated that IL-33 may enhance airway inflammation in asthma. This study tested the hypothesis that IL-33 may also contribute to the development of irreversible structural changes in asthma by favoring the airway recruitment and profibrotic function of circulating fibrocytes during episodes of allergen-induced asthma exacerbation. The circulating fibrocytes from patients with allergen-exacerbated asthma (PwAA) showed increased expression of the specific IL-33 receptor component ST2L in comparison with the cells from non-asthmatic individuals (NAI). Recombinant IL-33 induced the migration of circulating fibrocytes from PwAA at clinically relevant concentrations and stimulated their proliferation in a concentration-dependent manner between 0.1 and 10 ng/ml, without affecting the constitutive release of type I collagen. The recombinant protein did not induce similar responses in circulating fibrocytes from NAI. This study uncovers an important mechanism through which fibrocytes may accumulate in the airways of allergic asthmatics when their disease is not adequately controlled by current treatment and provides novel information on the function of IL-33 in asthma.

  13. Loss of CAR promotes migration and proliferation of HaCaT cells, and accelerates wound healing in rats via Src-p38 MAPK pathway

    PubMed Central

    Su, Linlin; Fu, Lanqing; Li, Xiaodong; Zhang, Yue; Li, Zhenzhen; Wu, Xue; Li, Yan; Bai, Xiaozhi; Hu, Dahai

    2016-01-01

    The coxsackie and adenovirus receptor (CAR) is a cell adhesion molecule mostly localized to cell-cell contacts in epithelial and endothelial cells. CAR is known to regulate tumor progression, however, its physiological role in keratinocyte migration and proliferation, two essential steps in re-epithelialization during wound healing, has less been investigated. Here we showed that CAR was predominantly expressed in the epidermis of human skin, CAR knockdown by RNAi significantly accelerated HaCaT cell migration and proliferation. In addition, knockdown of CAR in vitro increased p-Src, p-p38, and p-JNK protein levels; however, Src inhibitor PP2 prevented the increase of p-Src and p-p38 induced by CAR RNAi, but not p-JNK, and decelerated cell migration and proliferation. More intriguingly, in vivo CAR RNAi on the skin area surrounding the wounds on rat back visually accelerated wound healing and re-epithelialization process, while treatment with PP2 or p38 inhibitor SB203580 obviously inhibited these effects. By contrast, overexpressing CAR in HaCaT cells significantly decelerated cell migration and proliferation. Above results demonstrate that suppression of CAR could accelerate HaCaT cell migration and proliferation, and promote wound healing in rat skin, probably via Src-p38 MAPK pathway. CAR thus might serve as a novel therapeutic target for facilitating wound healing. PMID:26804208

  14. Extracellular matrix protein ITGBL1 promotes ovarian cancer cell migration and adhesion through Wnt/PCP signaling and FAK/SRC pathway.

    PubMed

    Sun, Li; Wang, Defeng; Li, Xiaotian; Zhang, Lingling; Zhang, Hui; Zhang, Yingjie

    2016-07-01

    Despite the advances in cancer treatment and the progresses in tumor biological, ovarian cancer remains a bad situation. In current study, we found a novel extracellular matrix protein, ITGBL1, which is highly expressed in ovarian cancer tissues by immunohistochemistry examination. The expression pattern of ITGBL1 in malignant tissues inspired us to investigate its role in ovarian cancer progression. Both loss- and gain-function assays revealed that ITGBL1 could promote ovarian cancer cell migration and adhesion. As it's a secreted protein, we further used recombinant ITGBL1 protein treated cancer cells and found that ITGBL1 promotes cell migration and adhesion in a concentration dependent manner. Furthermore, we found that ITGBL1 not only influences the activity of Wnt/PCP signaling but also affects FAK/src pathway in vitro. Taken together, our results suggest that highly expressed ITGBL1 could promotes cancer cell migration and adhesion in ovarian cancer and as a secreted protein, ITGBL1 might be a novel biomarker for ovarian cancer diagnosis. PMID:27261588

  15. Stearoyl-CoA desaturase 1 and paracrine diffusible signals have a major role in the promotion of breast cancer cell migration induced by cancer-associated fibroblasts

    PubMed Central

    Angelucci, C; Maulucci, G; Colabianchi, A; Iacopino, F; D'Alessio, A; Maiorana, A; Palmieri, V; Papi, M; De Spirito, M; Di Leone, A; Masetti, R; Sica, G

    2015-01-01

    Background: Despite the recognised contribution of the stroma to breast cancer development and progression, the effective targeting of the tumor microenvironment remains a challenge to be addressed. We previously reported that normal fibroblasts (NFs) and, notably, breast cancer-associated fibroblasts (CAFs) induced epithelial-to-mesenchymal transition and increases in cell membrane fluidity and migration in well- (MCF-7) and poorly-differentiated (MDA-MB-231) breast cancer cells. This study was designed to better define the role played, especially by CAFs, in promoting breast tumor cell migration. Methods: Fibroblast/breast cancer cell co-cultures were set up to investigate the influence of NFs and CAFs on gene and protein expression of Stearoyl-CoA desaturase 1 (SCD1), the main enzyme regulating membrane fluidity, as well as on the protein level and activity of its transcription factor, the sterol regulatory element-binding protein 1 (SREBP1), in MCF-7 and MDA-MB-231 cells. To assess the role of SREBP1 in the regulation of SCD1 expression, the desaturase levels were also determined in tumor cells treated with an SREBP1 inhibitor. Migration was evaluated by wound-healing assay in SCD1-inhibited (by small-interfering RNA (siRNA) or pharmacologically) cancer cells and the effect of CAF-conditioned medium was also assessed. To define the role of stroma-derived signals in cancer cell migration speed, cell-tracking analysis was performed in the presence of neutralising antibodies to hepatocyte growth factor, transforming growth factor-β or basic fibroblast growth factor. Results: A two to three fold increase in SCD1 mRNA and protein expression has been induced, particularly by CAFs, in the two cancer cell lines that appear to be dependent on SREBP1 activity in MCF-7 but not in MDA-MB-231 cells. Both siRNA-mediated and pharmacological inhibition of SCD1 impaired tumor cells migration, also when promoted by CAF-released soluble factors. Fibroblast-triggered increase in

  16. Migration-stimulating factor (MSF) is over-expressed in non-small cell lung cancer and promotes cell migration and invasion in A549 cells over-expressing MSF

    SciTech Connect

    Deng, Xuefeng; Ma, Qunfeng; Zhang, Bo; Jiang, Hong; Zhang, Zhipei; Wang, Yunjie

    2013-10-15

    Migration-stimulating factor (MSF), an oncofetal truncated isoform of fibronectin, is a potent stimulator of cell invasion. However, its distribution and motogenic role in non-small cell lung cancer (NSCLC) have never been identified. In this study, real-time PCR and immunohistochemical staining (IHC) were performed to detect MSF mRNA and protein levels in tumor tissues and matched adjacent tumor-free tissues. Furthermore, to examine the effect of MSF on invasiveness, MSF was upregulated in A549 cells. The invasiveness and viability of A549 cells were then determined using a transwell migration assay and the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assays, respectively. The expression level of MSF in NSCLC tissue was markedly higher than in matched adjacent tumor-free tissue. Additionally, the level of MSF protein expression in stage III and IV NSCLC samples was higher than in stage I and II NSCLC samples. More importantly, we also demonstrated that migration and invasion of A549 cells increased substantially after upregulating MSF, although proliferation remained unchanged. Meanwhile, we found no correlation between increasing motility and invasiveness of MSF-overexpressing cells and expression levels and activities of matrix metalloprotease MMP-2 and MMP-9. Our current study shows that MSF plays a role in migration and invasion of A549 cells and suggests that MSF may be a potential biomarker of NSCLC progression. - Highlights: • MSF expression was upregulated in NSCLC and correlated with TNM stages. • MSF may be a new biomarker for NSCLC progression. • MSF promoted migration and invasion in A549 cells, independent of MMP-2/MMP-9 expression.

  17. CIZ/NMP4 is expressed in B16 melanoma and forms a positive feedback loop with RANKL to promote migration of the melanoma cells.

    PubMed

    Sakuma, Tomomi; Nakamoto, Tetsuya; Hemmi, Hiroaki; Kitazawa, Sohei; Kitazawa, Riko; Notomi, Takuya; Hayata, Tadayoshi; Ezura, Yoichi; Amagasa, Teruo; Noda, Masaki

    2012-07-01

    Tumor metastasis to bone is a serious pathological situation that causes severe pain, and deterioration in locomoter function. However, the mechanisms underlying tumor metastasis is still incompletely understood. CIZ/NMP4 is a nucleocytoplasmic shuttling protein and its roles in tumor cells have not been known. We, therefore, hypothesized the role of CIZ/NMP4 in B16 melanoma cells that metastasize to bone. CIZ/NMP4 is expressed in B16 cells. The CIZ/NMP4 expression levels are correlated to the metastatic activity in divergent types of melanoma cells. Overexpression of CIZ/NMP4 increased B16 cell migration in Trans-well assay. Conversely, siRNA-based knockdown of CIZ/NMP4 suppressed migratory activity of these cells. As RANKL promotes metastasis of tumor cells in bone, we tested its effect on CIZ in melanoma cells. RANKL treatment enhanced CIZ/NMP4 expression. This increase of CIZ by RANKL promoted migration. Conversely, we identified CIZ/NMP4 binding site in the promoter of RANKL. Furthermore, luciferase assay indicated that CIZ/NMP4 overexpression enhanced RANKL promoter activities, revealing a positive feedback loop of CIZ/NMP4 and RANKL in melanoma. These observations indicate that CIZ/NMP4 is critical regulator of metastasis of melanoma cells. PMID:22307584

  18. Identification of pregnancy-associated plasma protein A as a migration-promoting gene in malignant pleural mesothelioma cells: a potential therapeutic target

    PubMed Central

    Huang, Jun; Tabata, Sho; Kakiuchi, Soji; The Van, Trung; Goto, Hisatsugu; Hanibuchi, Masaki; Nishioka, Yasuhiko

    2013-01-01

    Despite recent advances in treatment, malignant pleural mesothelioma (MPM) remains a deadly disease. Targeted therapy generated broad interests and is highly expected for the treatment of MPM, yet promising preclinical results have not been translated into substantial clinical benefits for the patients. In this study, we tried to identify the genes which play functional roles in cell migration as well as to test whether they can be used as novel targets for molecular targeted therapy for MPM in preclinical model. In our study, pregnancy-associated plasma protein A (PAPPA) was identified as a gene whose expression level is correlated with MPM cell migration by correlation analysis combining MPM cell migration ability and their gene expression profiles. Highly migratory cells were selected from MPM cell lines, MSTO-211H, NCI-H290 and EHMES-1 in vitro and up-regulation of PAPPA in these cells were confirmed. In vitro, PAPPA was demonstrated to stimulate the MPM cell migration via cleavage of insulin-like growth factor-binding protein-4 and subsequent release of IGF-1. Gene silencing of PAPPA in MPM cells led to reduced migration, invasion and proliferation. Furthermore, PAPPA shRNA transfected NCI-H290 when orthotopically inoculated into pleural cavity of severe combined immunodeficiency recipient mice, failed to develop tumors and produce bloody pleural effusion as control shRNA transfected cells did. Our study suggests that PAPPA plays a functional role in promoting MPM cell migration and it might serve as a potential therapeutic target for the treatment of MPM. PMID:23896451

  19. Understanding the "black box" of a health-promotion program: Keys to enable health among older persons aging in the context of migration.

    PubMed

    Barenfeld, Emmelie; Gustafsson, Susanne; Wallin, Lars; Dahlin-Ivanoff, Synneve

    2015-01-01

    Although the need to make health services more accessible to persons who have migrated has been identified, knowledge about health-promotion programs (HPPs) from the perspective of older persons born abroad is lacking. This study explores the design experiences and content implemented in an adapted version of a group-based HPP developed in a researcher-community partnership. Fourteen persons aged 70-83 years or older who had migrated to Sweden from Finland or the Balkan Peninsula were included. A grounded theory approach guided the data collection and analysis. The findings showed how participants and personnel jointly helped raise awareness. The participants experienced three key processes that could open doors to awareness: enabling community, providing opportunities to understand and be understood, and confirming human values and abilities. Depending on how the HPP content and design are being shaped by the group, the key processes could both inhibit or encourage opening doors to awareness. Therefore, this study provides key insights into how to enable health by deepening the understanding of how the exchange of health-promoting messages is experienced to be facilitated or hindered. This study adds to the scientific knowledge base of how the design and content of HPP may support and recognize the capabilities of persons aging in the context of migration. PMID:26654636

  20. Understanding the “black box” of a health-promotion program: Keys to enable health among older persons aging in the context of migration

    PubMed Central

    Barenfeld, Emmelie; Gustafsson, Susanne; Wallin, Lars; Dahlin-Ivanoff, Synneve

    2015-01-01

    Although the need to make health services more accessible to persons who have migrated has been identified, knowledge about health-promotion programs (HPPs) from the perspective of older persons born abroad is lacking. This study explores the design experiences and content implemented in an adapted version of a group-based HPP developed in a researcher–community partnership. Fourteen persons aged 70–83 years or older who had migrated to Sweden from Finland or the Balkan Peninsula were included. A grounded theory approach guided the data collection and analysis. The findings showed how participants and personnel jointly helped raise awareness. The participants experienced three key processes that could open doors to awareness: enabling community, providing opportunities to understand and be understood, and confirming human values and abilities. Depending on how the HPP content and design are being shaped by the group, the key processes could both inhibit or encourage opening doors to awareness. Therefore, this study provides key insights into how to enable health by deepening the understanding of how the exchange of health-promoting messages is experienced to be facilitated or hindered. This study adds to the scientific knowledge base of how the design and content of HPP may support and recognize the capabilities of persons aging in the context of migration. PMID:26654636

  1. Promotion

    PubMed Central

    Alam, Hasan B.

    2013-01-01

    This article gives an overview of the promotion process in an academic medical center. A description of different promotional tracks, tenure and endowed chairs, and the process of submitting an application is provided. Finally, some practical advice about developing skills and attributes that can help with academic growth and promotion is dispensed. PMID:24436683

  2. Diminished expression of h2-calponin in prostate cancer cells promotes cell proliferation, migration and the dependence of cell adhesion on substrate stiffness.

    PubMed

    Moazzem Hossain, M; Wang, Xin; Bergan, Raymond C; Jin, J-P

    2014-01-01

    Calponin is an actin filament-associated protein and its h2 isoform inhibits cell motility. Here we report significant expression of h2-calponin in prostate epithelial cells, which is diminished in cancerous cells. Comparison between a prostate cancer cell line PC3 and its metastatic derivative PC3-M showed lower levels of h2-calponin in PC3-M, corresponding to faster rates of cell proliferation and migration. Substrate adhesion of PC3 and PC3-M cells was positively correlated to the level of h2-calponin and the adhesion of PC3-M exhibited a higher dependence on substrate stiffness. Such effects of h2-calponin on cell proliferation, migration and substrate adhesion were also seen in normal versus cancerous primary prostate cells. Further supporting the role of h2-calponin in inhibiting cell motility, fibroblasts isolated from h2-calponin knockout mice proliferated and migrated faster than that of wild type fibroblasts. Transfective over-expression of h2-calponin in PC3-M cells effectively inhibited cell proliferation and migration. The results suggest that the diminished expression of h2-calponin in prostate cancer cells increases cell motility, decreases substrate adhesion, and promotes adhesion on high stiffness substrates. PMID:25161871

  3. Diminished expression of h2-calponin in prostate cancer cells promotes cell proliferation, migration and the dependence of cell adhesion on substrate stiffness

    PubMed Central

    Moazzem Hossain, M.; Wang, Xin; Bergan, Raymond C.; Jin, J.-P.

    2014-01-01

    Calponin is an actin filament-associated protein and its h2 isoform inhibits cell motility. Here we report significant expression of h2-calponin in prostate epithelial cells, which is diminished in cancerous cells. Comparison between a prostate cancer cell line PC3 and its metastatic derivative PC3-M showed lower levels of h2-calponin in PC3-M, corresponding to faster rates of cell proliferation and migration. Substrate adhesion of PC3 and PC3-M cells was positively correlated to the level of h2-calponin and the adhesion of PC3-M exhibited a higher dependence on substrate stiffness. Such effects of h2-calponin on cell proliferation, migration and substrate adhesion were also seen in normal versus cancerous primary prostate cells. Further supporting the role of h2-calponin in inhibiting cell motility, fibroblasts isolated from h2-calponin knockout mice proliferated and migrated faster than that of wild type fibroblasts. Transfective over-expression of h2-calponin in PC3-M cells effectively inhibited cell proliferation and migration. The results suggest that the diminished expression of h2-calponin in prostate cancer cells increases cell motility, decreases substrate adhesion, and promotes adhesion on high stiffness substrates. PMID:25161871

  4. [Knockdown of dachshund homolog 1 (DACH1) promotes cell apoptosis and inhibits the invasion and migration abilities of Capan-1 pancreatic cancer cells].

    PubMed

    Bu, Xiaona; Wang, Chuan; Jiang, Zheng

    2016-09-01

    Objective To investigate the impact of the decreased expression of dachshund homolog 1 (DACH1) on cell cycle, apoptosis, invasion and migration of Capan-1 pancreatic cancer cells. Methods After four pairs of DACH1 siRNA were designed and synthesized, double-stranded short hairpin RNA (shRNA) were annealed and inserted into pGenesil-1 vector. The product was then confirmed by enzyme digestion and sequencing analysis. The recombinant plasmids were transfected into Capan-1 cells via Lipofectamine(TM) 2000. Fluorescence microscopy, reverse transcription PCR (RT-PCR) and Western blotting were used to detect the transfection efficiency. Cell apoptosis and cell cycle were tested by flow cytometry. Transwell(TM) assay was used to monitor the invasion and migration abilities of Capan-1 cells. Results Recombinant plasmid pshRNA-DACH1 was successfully constructed and transfected into Capan-1 cells. After transfection, the expression of DACH1 was reduced to some extent. Flow cytometry revealed that cell apoptosis was promoted in the pshRNA-DACH1 transfected group compared with control groups, whereas cell cycle had no significant differences among the groups. Transwell(TM) assay validated that the abilities of migration and invasion were inhibited in the pshRNA-DACH1 transfected group. Conclusion Knockdown of DACH1 expression can remarkably enhance the cell apoptosis, restrain the proliferation, migration and invasion of Capan-1 cells. PMID:27609579

  5. Helium-Neon Laser Irradiation Promotes the Proliferation and Migration of Human Epidermal Stem Cells In Vitro: Proposed Mechanism for Enhanced Wound Re-epithelialization

    PubMed Central

    Liao, Xuan; Xie, Guang-Hui; Cheng, Biao; Li, Sheng-Hong; Xie, Shan; Xiao, Li-Ling; Fu, Xiao-Bing

    2014-01-01

    Abstract Objective: The present study was conducted to investigate the effects of helium-neon (He-Ne) laser irradiation on the proliferation, migration, and differentiation of cultured human epidermal stem cells (ESCs). Background data: A He-Ne laser with a wavelength of 632.8 nm is known to have photobiological effects, and is widely used for accelerating wound healing; however, the cellular mechanisms involved have not been completely understood. Methods: The ESCs were prepared from human foreskin, and irradiated by using He-Ne laser at 632.8 nm with 2 J/cm2. The ESC proliferation, migration, and differentiation were examined by using XTT assay, scratch assay, and flow cytometry technology, respectively. The phosphorylation of extracellular signal-regulated kinases (ERK) was analyzed by using Western blotting. Results: He-Ne laser irradiation markedly promoted cell proliferation and migration accompanied by an increase in the phosphorylation of ERK, but did not significantly influence cell differentiation. Conclusion: Our data indicated that photostimulation with a He-Ne laser resulted in a significant increase in human ESC proliferation and migration in vitro, which might contribute, at least partially, to accelerated wound re-epithelialization by low-level laser therapy. PMID:24661127

  6. Human amniotic epithelial stem cells promote wound healing by facilitating migration and proliferation of keratinocytes via ERK, JNK and AKT signaling pathways.

    PubMed

    Zhao, Bin; Liu, Jia-Qi; Zheng, Zhao; Zhang, Jun; Wang, Shu-Yue; Han, Shi-Chao; Zhou, Qin; Guan, Hao; Li, Chao; Su, Lin-Lin; Hu, Da-Hai

    2016-07-01

    Wound healing is a highly orchestrated physiological process consisting in a complex interaction of cellular and biochemical events. Human amniotic epithelial stem cells (HAESCs) have been shown to be an attractive resource for wound healing because they are primitive stem cells. However, the exact effects of amnion-derived stem cells on the migration or proliferation of keratinocytes and their potential mechanism are not fully understood. We have found that HAESCs accelerate the migration of keratinocytes and induce a remarkable increase in the activity of phospho-ERK, phospho-JNK, and phospho-AKT, the blockade of which by their specific inhibitors significantly inhibits migration induced by HAESC-conditioned medium (CM). Furthermore, the co-culture of keratinocytes with HAESCs up-regulates the expression levels of cell proliferation proteins Cyclin D1, Cyclin D3 and Mdm2. In vivo animal experiments have shown that HAESC-CM improves wound healing, whereas blockade with ERK, JNK and AKT inhibitors significantly impairs wound healing. Taken together, these results reveal, for the first time, that HAESCs promote wound healing by facilitating the migration and proliferation of keratinocytes via ERK, JNK and AKT signaling pathways and might be a potential therapy in skin wound healing. PMID:26888423

  7. Intraperitoneal Mesenchymal Cells Promote the Development of Peritoneal Metastasis Partly by Supporting Long Migration of Disseminated Tumor Cells

    PubMed Central

    Yamaguchi, Hironori; Ishigami, Hironori; Matsuzaki, Keisuke; Sata, Naohiro

    2016-01-01

    The human peritoneal cavity contains a small number of free cells of mesenchymal cell lineage. Intraperitoneal mesenchymal cells (PMC) play supportive roles in metastasis formation on the peritoneum. In this study, we found that PMC, when co-cultuerd with human gastric cancer cells, MKN45, enhanced the proliferation of MKN45 when cultured at low, but not high, cellular density. Also, PMC suppressed apoptotic cell death of MKN45 only under low density culture conditions. Time-lapse videoanalysis clearly demonstrated that PMC randomly migrated more vigorously than did MKN45, and strongly enhanced the migration behavior of co-cultured MKN45. In fact, the majority of MKN45 migrated together in direct physical contact with PMC, and the sum of migration lengths from original position of co-cultured MKN45 for 48 hours was approximately 10 times longer than that of MKN45 cultured alone. Our data suggest that enhanced migration can increase the chance of direct contact or positional proximity among sparcely distributed MKN45, which may bring survival advantages to tumor cells. This may be one of the important mechanisms of peritoneal metastasis, since only a small number of tumor cells are considered to be disseminated in the early step of metastasis formation on the peritoneum. PMID:27136922

  8. Fibronectin Modulates Cell Adhesion and Signaling to Promote Single Cell Migration of Highly Invasive Oral Squamous Cell Carcinoma

    PubMed Central

    Ramos, Grasieli de Oliveira; Bernardi, Lisiane; Lauxen, Isabel; Sant’Ana Filho, Manoel; Horwitz, Alan Rick; Lamers, Marcelo Lazzaron

    2016-01-01

    Cell migration is regulated by adhesion to the extracellular matrix (ECM) through integrins and activation of small RhoGTPases, such as RhoA and Rac1, resulting in changes to actomyosin organization. During invasion, epithelial-derived tumor cells switch from laminin-enriched basal membrane to collagen and fibronectin-enriched connective tissue. How this switch affects the tumor migration is still unclear. We tested the hypothesis that ECM dictates the invasiveness of Oral Squamous Cell Carcinoma (OSCC). We analyzed the migratory properties of two OSCC lines, a low invasive cell line with high e-cadherin levels (Linv/HE-cad) or a highly invasive cell line with low e-cadherin levels (Hinv/LE-cad), plated on different ECM components. Compared to laminin, fibronectin induced non-directional collective migration and decreased RhoA activity in Linv/HE-cad OSCC. For Hinv/LE-cad OSCC, fibronectin increased Rac1 activity and induced smaller adhesions, resulting in a fast single cell migration in both 2D and 3D environments. Consistent with these observations, human OSCC biopsies exhibited similar changes in cell-ECM adhesion distribution at the invasive front of the tumor, where cells encounter fibronectin. Our results indicate that ECM composition might induce a switch from collective to single cell migration according to tumor invasiveness due to changes in cell-ECM adhesion and the resulting signaling pathways that alter actomyosin organization. PMID:26978651

  9. Lactate promotes glioma migration by TGF-β2–dependent regulation of matrix metalloproteinase-2

    PubMed Central

    Baumann, Fusun; Leukel, Petra; Doerfelt, Anett; Beier, Christoph P.; Dettmer, Katja; Oefner, Peter J.; Kastenberger, Michael; Kreutz, Marina; Nickl-Jockschat, Thomas; Bogdahn, Ulrich; Bosserhoff, Anja-Katrin; Hau, Peter

    2009-01-01

    Lactate dehydrogenase type A (LDH-A) is a key metabolic enzyme catalyzing pyruvate into lactate and is excessively expressed by tumor cells. Transforming growth factor-β2 (TGF-β2) is a key regulator of invasion in high-grade gliomas, partially by inducing a mesenchymal phenotype and by remodeling the extracellular matrix. In this study, we tested the hypothesis that lactate metabolism regulates TGF-β2–mediated migration of glioma cells. Small interfering RNA directed against LDH-A (siLDH-A) suppresses, and lactate induces, TGF-β2 expression, suggesting that lactate metabolism is strongly associated with TGF-β2 in glioma cells. Here we demonstrate that TGF-β2 enhances expression, secretion, and activation of matrix metalloproteinase-2 (MMP-2) and induces the cell surface expression of integrin αvβ3 receptors. In spheroid and Boyden chamber migration assays, inhibition of MMP-2 activity using a specific MMP-2 inhibitor and blocking of integrin αvβ3 abrogated glioma cell migration stimulated by TGF-β2. Furthermore, siLDH-A inhibited MMP2 activity, leading to inhibition of glioma migration. Taken together, we define an LDH-A–induced and TGF-β2–coordinated regulatory cascade of transcriptional regulation of MMP-2 and integrin αvβ3. This novel interaction between lactate metabolism and TGF-β2 might constitute a crucial mechanism for glioma migration. PMID:19033423

  10. αPIX RhoGEF supports positive selection by restraining migration and promoting arrest of thymocytes.

    PubMed

    Korthals, Mark; Schilling, Kerstin; Reichardt, Peter; Mamula, Dejan; Schlüter, Thomas; Steiner, Michael; Langnäse, Kristina; Thomas, Ulrich; Gundelfinger, Eckart; Premont, Richard T; Tedford, Kerry; Fischer, Klaus-Dieter

    2014-04-01

    Thymocytes mature in a series of stages by migrating through specific areas of the thymus and interacting with other cells to receive the necessary developmental signals; however, little is known about the molecular mechanisms governing this migration. We report that murine thymocytes with a knockout mutation in α-PAK (p21-activated kinase)-interacting exchange factor (PIX; Arhgef6), an activator of Rho GTPases, showed greatly increased motility and altered morphology in two-dimensional migration on ICAM-1. αPIX was also required for efficient positive selection, but not negative selection, of thymocytes. TCR signaling was normal in αPix(-) thymocytes, indicating that the effects of αPIX on positive selection are largely independent of TCR signaling. αPix(-) thymocytes also paused less during migration in the thymic cortex, interacted less with ICAM-1 coated beads, and could overcome TCR stop signals, consistent with defective scanning behavior. These results identify αPIX as a regulator of thymocyte migration and subsequent arrest that is linked to positive selection. PMID:24591366