Science.gov

Sample records for mirna target mrnas

  1. Expressed miRNAs target feather related mRNAs involved in cell signaling, cell adhesion and structure during chicken epidermal development.

    PubMed

    Bao, Weier; Greenwold, Matthew J; Sawyer, Roger H

    2016-10-15

    MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level. Previous studies have shown that miRNA regulation contributes to a diverse set of processes including cellular differentiation and morphogenesis which leads to the creation of different cell types in multicellular organisms and is thus key to animal development. Feathers are one of the most distinctive features of extant birds and are important for multiple functions including flight, thermal regulation, and sexual selection. However, the role of miRNAs in feather development has been woefully understudied despite the identification of cell signaling pathways, cell adhesion molecules and structural genes involved in feather development. In this study, we performed a microarray experiment comparing the expression of miRNAs and mRNAs among three embryonic stages of development and two tissues (scutate scale and feather) of the chicken. We combined this expression data with miRNA target prediction tools and a curated list of feather related genes to produce a set of 19 miRNA-mRNA duplexes. These targeted mRNAs have been previously identified as important cell signaling and cell adhesion genes as well as structural genes involved in feather and scale morphogenesis. Interestingly, the miRNA target site of the cell signaling pathway gene, Aldehyde Dehydrogenase 1 Family, Member A3 (ALDH1A3), is unique to birds indicating a novel role in Aves. The identified miRNA target site of the cell adhesion gene, Tenascin C (TNC), is only found in specific chicken TNC splice variants that are differentially expressed in developing scutate scale and feather tissue indicating an important role of miRNA regulation in epidermal differentiation. Additionally, we found that β-keratins, a major structural component of avian and reptilian epidermal appendages, are targeted by multiple miRNA genes. In conclusion, our work provides quantitative expression data on miRNAs and mRNAs

  2. Growth Hormone-Regulated mRNAs and miRNAs in Chicken Hepatocytes

    PubMed Central

    Wang, Huijuan; Shao, Fang; Yu, JianFeng; Jiang, Honglin; Han, Yaoping; Gong, Daoqing; Gu, Zhiliang

    2014-01-01

    Growth hormone (GH) is a key regulatory factor in animal growth, development and metabolism. Based on the expression level of the GH receptor, the chicken liver is a major target organ of GH, but the biological effects of GH on the chicken liver are not fully understood. In this work we identified mRNAs and miRNAs that are regulated by GH in primary hepatocytes from female chickens through RNA-seq, and analyzed the functional relevance of these mRNAs and miRNAs through GO enrichment analysis and miRNA target prediction. A total of 164 mRNAs were found to be differentially expressed between GH-treated and control chicken hepatocytes, of which 112 were up-regulated and 52 were down-regulated by GH. A total of 225 chicken miRNAs were identified by the RNA-Seq analysis. Among these miRNAs 16 were up-regulated and 1 miRNA was down-regulated by GH. The GH-regulated mRNAs were mainly involved in growth and metabolism. Most of the GH-upregulated or GH-downregulated miRNAs were predicted to target the GH-downregulated or GH-upregulated mRNAs, respectively, involved in lipid metabolism. This study reveals that GH regulates the expression of many mRNAs involved in metabolism in female chicken hepatocytes, which suggests that GH plays an important role in regulating liver metabolism in female chickens. The results of this study also support the hypothesis that GH regulates lipid metabolism in chicken liver in part by regulating the expression of miRNAs that target the mRNAs involved in lipid metabolism. PMID:25386791

  3. Identification of altered microRNAs and mRNAs in the cumulus cells of PCOS patients: miRNA-509-3p promotes oestradiol secretion by targeting MAP3K8.

    PubMed

    Huang, Xin; Liu, Chang; Hao, Cuifang; Tang, Qianqing; Liu, Riming; Lin, Shaoxia; Zhang, Luping; Yan, Wei

    2016-06-01

    Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder in women and is characterised by polycystic ovaries, hyperandrogenism and chronic anovulation. Although the clinical and biochemical signs of PCOS are typically heterogeneous, abnormal folliculogenesis is considered a common characteristic of PCOS. Our aim is to identify the altered miRNA and mRNA expression profiles in the cumulus cells of PCOS patients to investigate their molecular function in the aetiology and pathophysiology of PCOS. In this study, the miRNA expression profiles of the cumulus cell samples isolated from five PCOS and five control patients were determined by an miRNA microarray. At the same time, the altered mRNA profiles of the same cumulus cell samples were also identified by a cDNA microarray. From the microarray data, 17 miRNAs and 1263 mRNAs showed significantly different expression in the PCOS cumulus cells. The differentially expressed miRNA-509-3p and its potential target gene (MAP3K8) were identified from the miRNA and mRNA microarrays respectively. The expression of miRNA-509-3p was up-regulated and MAP3K8 was down-regulated in the PCOS cumulus cells. The direct interaction between miRNA-509-3p and MAP3K8 was confirmed by a luciferase activity assay in KGN cells. In addition, miRNA-509-3p mimics or inhibitor transfection tests in KGN cells further confirmed that miRNA-509-3p improved oestradiol (E2) secretion by inhibiting the expression of MAP3K8 These results help to characterise the pathogenesis of anovulation in PCOS, especially the regulation of E2 production. PMID:27001999

  4. Discovery of shear- and side-specific mRNAs and miRNAs in human aortic valvular endothelial cells

    PubMed Central

    Holliday, Casey J.; Ankeny, Randall F.; Nerem, Robert M.

    2011-01-01

    The role of endothelial cells (ECs) in aortic valve (AV) disease remains relatively unknown; however, disease preferentially occurs in the fibrosa. We hypothesized oscillatory shear (OS) present on the fibrosa stimulates ECs to modify mRNAs and microRNAs (miRNAs) inducing disease. Our goal was to identify mRNAs and miRNAs differentially regulated by OS and laminar shear (LS) in human AVECs (HAVECs) from the fibrosa (fHAVECs) and ventricularis (vHAVECs). HAVECs expressed EC markers as well as some smooth muscle cell markers and functionally aligned with the flow. HAVECs were exposed to OS and LS for 24 h, and total RNA was analyzed by mRNA and miRNA microarrays. We found over 700 and 300 mRNAs down- and upregulated, respectively, by OS; however, there was no side dependency. mRNA microarray results were validated for 26 of 28 tested genes. Ingenuity Pathway Analysis revealed thrombospondin 1 (Thbs1) and NF-κB inhibitor-α (Nfkbia) as highly connected, shear-sensitive genes. miRNA array analysis yielded 30 shear-sensitive miRNAs and 3 side-specific miRNAs. miRNA validation confirmed 4 of 17 shear-sensitive miRNAs and 1 of 3 side-dependent miRNAs. Using miRWalk and several filtering steps, we identified shear-sensitive mRNAs potentially targeted by shear-sensitive miRNAs. These genes and signaling pathways could act as therapeutic targets of AV disease. PMID:21705672

  5. Differential expression of miRNAs and their target mRNAs in endometria prior to maternal recognition of pregnancy associates with endometrial receptivity for in vivo- and in vitro-produced bovine embryos.

    PubMed

    Ponsuksili, Siriluck; Tesfaye, Dawit; Schellander, Karl; Hoelker, Michael; Hadlich, Frieder; Schwerin, Manfred; Wimmers, Klaus

    2014-12-01

    Endometrial receptivity is a prerequisite for successful embryo implantation and pregnancy. Receptivity involves complex processes promoted by many transcripts that are key components of molecular pathways that depend on ovarian hormones and that contribute to shaping structural, metabolic, and communication properties of endometrial cells toward reception of embryos. MicroRNAs (miRNAs) are important regulators of the expression of these transcripts encoding effector molecules. We acquired miRNA and mRNA signatures, miRNA-mRNA pairs, and regulatory networks linked with the emergence and maintenance of postimplantation pregnancy. Endometrial tissue samples were obtained at Days 3 and 7 of the estrous cycle of cows that did or did not become pregnant after transfer of either in vivo-produced (IVV) or in vitro-produced (IVT) embryos in the next cycle following the biopsy. We report a list of endometrial miRNAs that were differentially expressed between Day 3 and Day 7 of the bovine estrous cycle (including miR-1290, miR-3437, miR-1246, miR-486, miR-3107, and miR-382), that differed with high or low endometrial receptivity (miR-3902-3p, miR-1825, miR-H14-3p, miR-885-3p, miR-504-3p, and miR-186), or that differed among the IVT and IVV transfers (miR-449a/b/c, miR-138, miR-874, miR-4342, miR-2231, and miR-2751). Moreover, mRNA transcripts were also analyzed, and pairs of negatively correlated miRNAs and mRNAs were predicted in silico. The miRNA-mRNA target pairs had roles in response to hormonal stimuli and oxidative stress, chromatin organization, miRNA-mediated epigenetic histone changes, cell proliferation, p53 signaling, and apoptosis. Overall, we identified significant miRNAs, miRNA-mRNA pairs, and functional networks that are associated with the state of pregnancy at Day 28 as a parameter of endometrial receptivity and that are affected by estrous cycle and embryo culture systems. PMID:25253731

  6. Overexpression of E2F mRNAs Associated with Gastric Cancer Progression Identified by the Transcription Factor and miRNA Co-Regulatory Network Analysis

    PubMed Central

    Zhang, XiaoTian; Ni, ZhaoHui; Duan, ZiPeng; Xin, ZhuoYuan; Wang, HuaiDong; Tan, JiaYi; Wang, GuoQing; Li, Fan

    2015-01-01

    Gene expression is regulated at the transcription and translation levels; thus, both transcription factors (TFs) and microRNAs (miRNA) play roles in regulation of gene expression. This study profiled differentially expressed mRNAs and miRNAs in gastric cancer tissues to construct a TF and miRNA co-regulatory network in order to identify altered genes in gastric cancer progression. A total of 70 cases gastric cancer and paired adjacent normal tissues were subjected to cDNA and miRNA microarray analyses. We obtained 887 up-regulated and 93 down-regulated genes and 41 down-regulated and 4 up-regulated miRNAs in gastric cancer tissues. Using the Transcriptional Regulatory Element Database, we obtained 105 genes that are regulated by the E2F family of genes and using Targetscan, miRanda, miRDB and miRWalk tools, we predicted potential targeting genes of these 45 miRNAs. We then built up the E2F-related TF and miRNA co-regulatory gene network and identified 9 hub-genes. Furthermore, we found that levels of E2F1, 2, 3, 4, 5, and 7 mRNAs associated with gastric cancer cell invasion capacity, and has associated with tumor differentiation. These data showed Overexpression of E2F mRNAs associated with gastric cancer progression. PMID:25646628

  7. Most mammalian mRNAs are conserved targets of microRNAs

    PubMed Central

    Friedman, Robin C.; Farh, Kyle Kai-How; Burge, Christopher B.; Bartel, David P.

    2009-01-01

    MicroRNAs (miRNAs) are small endogenous RNAs that pair to sites in mRNAs to direct post-transcriptional repression. Many sites that match the miRNA seed (nucleotides 2–7), particularly those in 3′ untranslated regions (3′UTRs), are preferentially conserved. Here, we overhauled our tool for finding preferential conservation of sequence motifs and applied it to the analysis of human 3′UTRs, increasing by nearly threefold the detected number of preferentially conserved miRNA target sites. The new tool more efficiently incorporates new genomes and more completely controls for background conservation by accounting for mutational biases, dinucleotide conservation rates, and the conservation rates of individual UTRs. The improved background model enabled preferential conservation of a new site type, the “offset 6mer,” to be detected. In total, >45,000 miRNA target sites within human 3′UTRs are conserved above background levels, and >60% of human protein-coding genes have been under selective pressure to maintain pairing to miRNAs. Mammalian-specific miRNAs have far fewer conserved targets than do the more broadly conserved miRNAs, even when considering only more recently emerged targets. Although pairing to the 3′ end of miRNAs can compensate for seed mismatches, this class of sites constitutes less than 2% of all preferentially conserved sites detected. The new tool enables statistically powerful analysis of individual miRNA target sites, with the probability of preferentially conserved targeting (PCT) correlating with experimental measurements of repression. Our expanded set of target predictions (including conserved 3′-compensatory sites), are available at the TargetScan website, which displays the PCT for each site and each predicted target. PMID:18955434

  8. Interplay of viral miRNAs and host mRNAs and proteins

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir

    2011-10-01

    Recent experiments indicate that several viruses may encode microRNAs (miRNAs) in cells. Such RNAs may interfere with the host mRNAs and proteins. We present a kinetic analysis of this interplay. In our treatment, the viral miRNA is considered to be able to associate with the host mRNA with subsequent degradation. This process may result in a decline of the mRNA population and also in a decline of the population of the protein encoded by this mRNA. With these ingredients, we first show the types of the corresponding steady-state kinetics in the cases of positive and negative regulation of the miRNA synthesis by the protein. In addition, we scrutinize the situation when the protein regulates the virion replication or, in other words, provides a feedback for the replication. For the negative feedback, the replication rate is found to increase with increasing the intracellular virion population. For the positive feedback, the replication rate first increases and then drops. These features may determine the stability of steady states.

  9. Potent degradation of neuronal miRNAs induced by highly complementary targets

    PubMed Central

    de la Mata, Manuel; Gaidatzis, Dimos; Vitanescu, Mirela; Stadler, Michael B; Wentzel, Corinna; Scheiffele, Peter; Filipowicz, Witold; Großhans, Helge

    2015-01-01

    MicroRNAs (miRNAs) regulate target mRNAs by silencing them. Reciprocally, however, target mRNAs can also modulate miRNA stability. Here, we uncover a remarkable efficacy of target RNA-directed miRNA degradation (TDMD) in rodent primary neurons. Coincident with degradation, and while still bound to Argonaute, targeted miRNAs are 3′ terminally tailed and trimmed. Absolute quantification of both miRNAs and their decay-inducing targets suggests that neuronal TDMD is multiple turnover and does not involve co-degradation of the target but rather competes with miRNA-mediated decay of the target. Moreover, mRNA silencing, but not TDMD, relies on cooperativity among multiple target sites to reach high efficacy. This knowledge can be harnessed for effective depletion of abundant miRNAs. Our findings bring insight into a potent miRNA degradation pathway in primary neurons, whose TDMD activity greatly surpasses that of non-neuronal cells and established cell lines. Thus, TDMD may be particularly relevant for miRNA regulation in the nervous system. PMID:25724380

  10. Comparative Analysis of Differentially Expressed miRNAs and their Downstream mRNAs in Ovarian Cancer and its Associated Endometriosis

    PubMed Central

    Wu, Richard Licheng; Ali, Shadan; Bandyopadhyay, Sudeshna; Alosh, Baraa; Hayek, Kinda; Daaboul, MHD Fayez; Winer, Ira; Sarkar, Fazlul H; Ali-Fehmi, Rouba

    2015-01-01

    Objective There is an increased risk of developing ovarian cancer (OC) in patients with endometriosis. Hence, development of new biomarkers may provide a positive clinical outcome for early detection. MicroRNAs (miRNAs) are small non-coding RNAs that play an important role in biological and pathological process and are currently used as diagnostic and prognostic markers in various cancers. In the current study, we assessed the differential expression of miRNAs from 19 paired ovarian cancer and its associated endometriosis tissue samples. In addition we also analyzed the downstream targets of those miRNAs. Methods Nineteen paired cases of ovarian cancer and endometriosis foci were identified by a gynecologic pathologist and macro-dissected. The total RNAs were extracted and subjected to comprehensive miRNA profiling from the pooled samples of these two different entities using microarray analysis. Later, the abnormal expressions of few selected miRNAs were validated in individual cases by quantitative real-time PCR (qRT-PCR). Ingenuity pathway analysis revealed target mRNAs which were validated by qRT-PCR. Results The miRNA profiling identified deregulation of greater than 1156 miRNAs in OC, of which the top seven were further validated by qRT-PCR. The expression of miR-1, miR-133a, and miR-451 were reduced significantly (p<0.0001) in the OC patients compared to its associated endometriosis. In contrast, the expression of miR-141, miR-200a, miR-200c, and miR-3613 were elevated significantly (p<0.05) in most of the OC patients. Furthermore, among the downstream mRNAs of these miRNAs, the level of PTEN expression was significantly (p<0.05) reduced in OC compared to endometriosis while no significant difference was observed in NF-κB expression. Conclusion The expression of miRNAs and mRNAs in OC were significantly different compared to its concurrent endometriosis. These differential expressed miRNAs may serve as potential diagnostic and prognostic biomarkers for OC

  11. Changing expression profiles of lncRNAs, mRNAs, circRNAs and miRNAs during osteoclastogenesis

    PubMed Central

    Dou, Ce; Cao, Zhen; Yang, Bo; Ding, Ning; Hou, Tianyong; Luo, Fei; Kang, Fei; Li, Jianmei; Yang, Xiaochao; Jiang, Hong; Xiang, Junyu; Quan, Hongyu; Xu, Jianzhong; Dong, Shiwu

    2016-01-01

    Bone is a dynamic organ continuously undergoing shaping, repairing and remodeling. The homeostasis of bone is maintained by the balance between osteoblastic bone formation and osteoclastic bone resorption. Osteoclasts (OCs) are specialized multinucleated cells derived from hematopoietic stem cells (HSCs) or monocytes/macrophage progenitor cells. There are different stages during osteoclastogenesis, and one of the most important steps to form functional osteoclasts is realized by cell-cell fusion. In our study, microarray was performed to detect the expression profiles of lncRNA, mRNA, circRNA and miRNA at different stages during osteoclastogenesis of RAW264.7 cells. Often changed RNAs were selected and clustered among the four groups with Venn analysis. The results revealed that expressions of 518 lncRNAs, 207 mRNAs, 24 circRNAs and 37 miRNAs were often altered at each stage during OC differentiation. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway analysis were performed to predict the functions of differentially expressed lncRNAs and co-expressed potential targeting genes. Co-expression networks of lncRNA-mRNA and circRNA-miRNA were constructed based on the correlation analysis between the differentially expressed RNAs. The present study provided a systematic perspective on the potential function of non-coding RNAs (ncRNAs) during osteoclastogenesis. PMID:26856880

  12. Prediction of miRNA targets.

    PubMed

    Oulas, Anastasis; Karathanasis, Nestoras; Louloupi, Annita; Pavlopoulos, Georgios A; Poirazi, Panayiota; Kalantidis, Kriton; Iliopoulos, Ioannis

    2015-01-01

    Computational methods for miRNA target prediction are currently undergoing extensive review and evaluation. There is still a great need for improvement of these tools and bioinformatics approaches are looking towards high-throughput experiments in order to validate predictions. The combination of large-scale techniques with computational tools will not only provide greater credence to computational predictions but also lead to the better understanding of specific biological questions. Current miRNA target prediction tools utilize probabilistic learning algorithms, machine learning methods and even empirical biologically defined rules in order to build models based on experimentally verified miRNA targets. Large-scale protein downregulation assays and next-generation sequencing (NGS) are now being used to validate methodologies and compare the performance of existing tools. Tools that exhibit greater correlation between computational predictions and protein downregulation or RNA downregulation are considered the state of the art. Moreover, efficiency in prediction of miRNA targets that are concurrently verified experimentally provides additional validity to computational predictions and further highlights the competitive advantage of specific tools and their efficacy in extracting biologically significant results. In this review paper, we discuss the computational methods for miRNA target prediction and provide a detailed comparison of methodologies and features utilized by each specific tool. Moreover, we provide an overview of current state-of-the-art high-throughput methods used in miRNA target prediction. PMID:25577381

  13. Correlated mRNAs and miRNAs from co-expression and regulatory networks affect porcine muscle and finally meat properties

    PubMed Central

    2013-01-01

    Background Physiological processes aiding the conversion of muscle to meat involve many genes associated with muscle structure and metabolic processes. MicroRNAs regulate networks of genes to orchestrate cellular functions, in turn regulating phenotypes. Results We applied weighted gene co-expression network analysis to identify co-expression modules that correlated to meat quality phenotypes and were highly enriched for genes involved in glucose metabolism, response to wounding, mitochondrial ribosome, mitochondrion, and extracellular matrix. Negative correlation of miRNA with mRNA and target prediction were used to select transcripts out of the modules of trait-associated mRNAs to further identify those genes that are correlated with post mortem traits. Conclusions Porcine muscle co-expression transcript networks that correlated to post mortem traits were identified. The integration of miRNA and mRNA expression analyses, as well as network analysis, enabled us to interpret the differentially-regulated genes from a systems perspective. Linking co-expression networks of transcripts and hierarchically organized pairs of miRNAs and mRNAs to meat properties yields new insight into several biological pathways underlying phenotype differences. These pathways may also be diagnostic for many myopathies, which are accompanied by deficient nutrient and oxygen supply of muscle fibers. PMID:23915301

  14. Genome-wide identification of miRNA targets by PAR-CLIP

    PubMed Central

    Hafner, Markus; Lianoglou, Steve; Tuschl, Thomas; Betel, Doron

    2012-01-01

    MiRNAs are short (20-23 nt) RNAs that are loaded into proteins of the Argonaute (AGO) family and guide them to partially complementary target sites on mRNAs, resulting in mRNA destabilization and/or translational repression. It is estimated that about 60% of the mammalian genes are potentially regulated by miRNAs, and therefore methods for experimental miRNA target determination have become valuable tools for the characterization of posttranscriptional gene regulation. Here we present a step-by-step protocol and guidelines for the computational analysis for the large-scale identification of miRNA target sites in cultured cells by photoactivatable ribonucleoside enhanced crosslinking and immunoprecipitation (PAR-CLIP) of AGO proteins. PMID:22926237

  15. Genome-Wide Analysis of miRNA targets in Brachypodium and Biomass Energy Crops

    SciTech Connect

    Green, Pamela J.

    2015-08-11

    MicroRNAs (miRNAs) contribute to the control of numerous biological processes through the regulation of specific target mRNAs. Although the identities of these targets are essential to elucidate miRNA function, the targets are much more difficult to identify than the small RNAs themselves. Before this work, we pioneered the genome-wide identification of the targets of Arabidopsis miRNAs using an approach called PARE (German et al., Nature Biotech. 2008; Nature Protocols, 2009). Under this project, we applied PARE to Brachypodium distachyon (Brachypodium), a model plant in the Poaceae family, which includes the major food grain and bioenergy crops. Through in-depth global analysis and examination of specific examples, this research greatly expanded our knowledge of miRNAs and target RNAs of Brachypodium. New regulation in response to environmental stress or tissue type was found, and many new miRNAs were discovered. More than 260 targets of new and known miRNAs with PARE sequences at the precise sites of miRNA-guided cleavage were identified and characterized. Combining PARE data with the small RNA data also identified the miRNAs responsible for initiating approximately 500 phased loci, including one of the novel miRNAs. PARE analysis also revealed that differentially expressed miRNAs in the same family guide specific target RNA cleavage in a correspondingly tissue-preferential manner. The project included generation of small RNA and PARE resources for bioenergy crops, to facilitate ongoing discovery of conserved miRNA-target RNA regulation. By associating specific miRNA-target RNA pairs with known physiological functions, the research provides insights about gene regulation in different tissues and in response to environmental stress. This, and release of new PARE and small RNA data sets should contribute basic knowledge to enhance breeding and may suggest new strategies for improvement of biomass energy crops.

  16. Predicting miRNA Targets by Integrating Gene Regulatory Knowledge with Expression Profiles

    PubMed Central

    Zhang, Weijia; Le, Thuc Duy; Liu, Lin; Zhou, Zhi-Hua; Li, Jiuyong

    2016-01-01

    Motivation microRNAs (miRNAs) play crucial roles in post-transcriptional gene regulation of both plants and mammals, and dysfunctions of miRNAs are often associated with tumorigenesis and development through the effects on their target messenger RNAs (mRNAs). Identifying miRNA functions is critical for understanding cancer mechanisms and determining the efficacy of drugs. Computational methods analyzing high-throughput data offer great assistance in understanding the diverse and complex relationships between miRNAs and mRNAs. However, most of the existing methods do not fully utilise the available knowledge in biology to reduce the uncertainty in the modeling process. Therefore it is desirable to develop a method that can seamlessly integrate existing biological knowledge and high-throughput data into the process of discovering miRNA regulation mechanisms. Results In this article we present an integrative framework, CIDER (Causal miRNA target Discovery with Expression profile and Regulatory knowledge), to predict miRNA targets. CIDER is able to utilise a variety of gene regulation knowledge, including transcriptional and post-transcriptional knowledge, and to exploit gene expression data for the discovery of miRNA-mRNA regulatory relationships. The benefits of our framework is demonstrated by both simulation study and the analysis of the epithelial-to-mesenchymal transition (EMT) and the breast cancer (BRCA) datasets. Our results reveal that even a limited amount of either Transcription Factor (TF)-miRNA or miRNA-mRNA regulatory knowledge improves the performance of miRNA target prediction, and the combination of the two types of knowledge enhances the improvement further. Another useful property of the framework is that its performance increases monotonically with the increase of regulatory knowledge. PMID:27064982

  17. Transcriptome-Wide Identification of miRNA Targets under Nitrogen Deficiency in Populus tomentosa Using Degradome Sequencing

    PubMed Central

    Chen, Min; Bao, Hai; Wu, Qiuming; Wang, Yanwei

    2015-01-01

    miRNAs are endogenous non-coding small RNAs with important regulatory roles in stress responses. Nitrogen (N) is an indispensable macronutrient required for plant growth and development. Previous studies have identified a variety of known and novel miRNAs responsive to low N stress in plants, including Populus. However, miRNAs involved in the cleavage of target genes and the corresponding regulatory networks in response to N stress in Populus remain largely unknown. Consequently, degradome sequencing was employed for global detection and validation of N-responsive miRNAs and their targets. A total of 60 unique miRNAs (39 conserved, 13 non-conserved, and eight novel) were experimentally identified to target 64 mRNA transcripts and 21 precursors. Among them, we further verified the cleavage of 11 N-responsive miRNAs identified previously and provided empirical evidence for the cleavage mode of these miRNAs on their target mRNAs. Furthermore, five miRNA stars (miRNA*s) were shown to have cleavage function. The specificity and diversity of cleavage sites on the targets and miRNA precursors in P. tomentosa were further detected. Identification and annotation of miRNA-mediated cleavage of target genes in Populus can increase our understanding of miRNA-mediated molecular mechanisms of woody plants adapted to low N environments. PMID:26096002

  18. 3′LIFE: a functional assay to detect miRNA targets in high-throughput

    PubMed Central

    Wolter, Justin M.; Kotagama, Kasuen; Pierre-Bez, Alexandra C.; Firago, Mari; Mangone, Marco

    2014-01-01

    MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene output at the post-transcriptional level by targeting degenerate elements primarily in 3′untranslated regions (3′UTRs) of mRNAs. Individual miRNAs can regulate networks of hundreds of genes, yet for the majority of miRNAs few, if any, targets are known. Misexpression of miRNAs is also a major contributor to cancer progression, thus there is a critical need to validate miRNA targets in high-throughput to understand miRNAs' contribution to tumorigenesis. Here we introduce a novel high-throughput assay to detect miRNA targets in 3′UTRs, called Luminescent Identification of Functional Elements in 3′UTRs (3′LIFE). We demonstrate the feasibility of 3′LIFE using a data set of 275 human 3′UTRs and two cancer-relevant miRNAs, let-7c and miR-10b, and compare our results to alternative methods to detect miRNA targets throughout the genome. We identify a large number of novel gene targets for these miRNAs, with only 32% of hits being bioinformatically predicted and 27% directed by non-canonical interactions. Functional analysis of target genes reveals consistent roles for each miRNA as either a tumor suppressor (let-7c) or oncogenic miRNA (miR-10b), and preferentially target multiple genes within regulatory networks, suggesting 3′LIFE is a rapid and sensitive method to detect miRNA targets in high-throughput. PMID:25074381

  19. Widespread evidence of viral miRNAs targeting host pathways

    PubMed Central

    2013-01-01

    Background MicroRNAs (miRNA) are regulatory genes that target and repress other RNA molecules via sequence-specific binding. Several biological processes are regulated across many organisms by evolutionarily conserved miRNAs. Plants and invertebrates employ their miRNA in defense against viruses by targeting and degrading viral products. Viruses also encode miRNAs and there is evidence to suggest that virus-encoded miRNAs target specific host genes and pathways that may be beneficial for their infectivity and/or proliferation. However, it is not clear whether there are general patterns underlying cellular targets of viral miRNAs. Results Here we show that for several of the 135 known viral miRNAs in human viruses, the human genes targeted by the viral miRNA are enriched for specific host pathways whose targeting is likely beneficial to the virus. Given that viral miRNAs continue to be discovered as technologies evolve, we extended the investigation to 6809 putative miRNAs encoded by 23 human viruses. Our analysis further suggests that human viruses have evolved their miRNA repertoire to target specific human pathways, such as cell growth, axon guidance, and cell differentiation. Interestingly, many of the same pathways are also targeted in mice by miRNAs encoded by murine viruses. Furthermore, Human Cytomegalovirus (CMV) miRNAs that target specific human pathways exhibit increased conservation across CMV strains. Conclusions Overall, our results suggest that viruses may have evolved their miRNA repertoire to target specific host pathways as a means for their survival. PMID:23369080

  20. Delivery and targeting of miRNAs for treating liver fibrosis.

    PubMed

    Kumar, Virender; Mahato, Ram I

    2015-02-01

    Liver fibrosis is a pathological condition originating from liver damage that leads to excess accumulation of extracellular matrix (ECM) proteins in the liver. Viral infection, chronic injury, local inflammatory responses and oxidative stress are the major factors contributing to the onset and progression of liver fibrosis. Multiple cell types and various growth factors and inflammatory cytokines are involved in the induction and progression of this disease. Various strategies currently being tried to attenuate liver fibrosis include the inhibition of HSC activation or induction of their apoptosis, reduction of collagen production and deposition, decrease in inflammation, and liver transplantation. Liver fibrosis treatment approaches are mainly based on small drug molecules, antibodies, oligonucleotides (ODNs), siRNA and miRNAs. MicroRNAs (miRNA or miR) are endogenous noncoding RNA of ~22 nucleotides that regulate gene expression at post transcription level. There are several miRNAs having aberrant expressions and play a key role in the pathogenesis of liver fibrosis. Single miRNA can target multiple mRNAs, and we can predict its targets based on seed region pairing, thermodynamic stability of pairing and species conservation. For in vivo delivery, we need some additional chemical modification in their structure, and suitable delivery systems like micelles, liposomes and conjugation with targeting or stabilizing the moiety. Here, we discuss the role of miRNAs in fibrogenesis and current approaches of utilizing these miRNAs for treating liver fibrosis. PMID:25186440

  1. Semirna: searching for plant miRNAs using target sequences.

    PubMed

    Muñoz-Mérida, Antonio; Perkins, James R; Viguera, Enrique; Thode, Guillermo; Bejarano, Eduardo R; Pérez-Pulido, Antonio J

    2012-04-01

    Many plant genomes are already known, and new ones are being sequenced every year. The next step for researchers is to identify all of the functional elements in these genomes, including the important class of functional elements known as microRNAs (miRNAs), which are involved in posttranscriptional regulatory pathways. However, computational tools for predicting new plant miRNAs are limited, and there is a particular need for tools that can be used easily by laboratory researchers. We present semirna, a new tool for predicting miRNAs in plant genomes, available as a Web server. This tool takes a putative target sequence such as a messenger RNA (mRNA) as input, and allows users to search for miRNAs that target this sequence. It can also be used to determine whether small RNA sequences from massive sequencing analysis represent true miRNAs and to search for miRNAs in new genomes using homology. Semirna has shown a high level of accuracy using various test sets, and gives users the ability to search for miRNAs with several different adjustable parameters. Semirna, a user-friendly and intuitive Web server for predicting miRNA sequences, can be reached at http://www.bioinfocabd.upo.es/semirna/ . It is useful for researchers searching for miRNAs involved in particular pathways, as well as those searching for miRNAs in newly sequenced genomes. PMID:22433074

  2. Multiple microRNAs within the 14q32 cluster target the mRNAs of major type 1 diabetes autoantigens IA-2, IA-2β, and GAD65.

    PubMed

    Abuhatzira, Liron; Xu, Huanyu; Tahhan, Georges; Boulougoura, Afroditi; Schäffer, Alejandro A; Notkins, Abner L

    2015-10-01

    Islet antigen (IA)-2, IA-2β, and glutamate decarboxylase (GAD65) are major autoantigens in type 1 diabetes (T1D). Autoantibodies to these autoantigens appear years before disease onset and are widely used as predictive markers. Little is known, however, about what regulates the expression of these autoantigens. The present experiments were initiated to test the hypothesis that microRNAs (miRNAs) can target and affect the levels of these autoantigens. Bioinformatics was used to identify miRNAs predicted to target the mRNAs coding IA-2, IA-2β, and GAD65. RNA interference for the miRNA processing enzyme Dicer1 and individual miRNA mimics and inhibitors were used to confirm the effect in mouse islets and MIN6 cells. We show that the imprinted 14q32 miRNA cluster contains 56 miRNAs, 32 of which are predicted to target the mRNAs of T1D autoantigens and 12 of which are glucose-sensitive. Using miRNA mimics and inhibitors, we confirmed that at least 7 of these miRNAs modulate the mRNA levels of the T1D autoantigens. Dicer1 knockdown significantly reduced the mRNA levels of all 3 autoantigens, further confirming the importance of miRNAs in this regulation. We conclude that miRNAs are involved in regulating the expression of the major T1D autoantigens. PMID:26148972

  3. Identification of miRNAs and their target genes in developing maize ears by combined small RNA and degradome sequencing

    PubMed Central

    2014-01-01

    Background In plants, microRNAs (miRNAs) are endogenous ~22 nt RNAs that play important regulatory roles in many aspects of plant biology, including metabolism, hormone response, epigenetic control of transposable elements, and stress response. Extensive studies of miRNAs have been performed in model plants such as rice and Arabidopsis thaliana. In maize, most miRNAs and their target genes were analyzed and identified by clearly different treatments, such as response to low nitrate, salt and drought stress. However, little is known about miRNAs involved in maize ear development. The objective of this study is to identify conserved and novel miRNAs and their target genes by combined small RNA and degradome sequencing at four inflorescence developmental stages. Results We used deep-sequencing, miRNA microarray assays and computational methods to identify, profile, and describe conserved and non-conserved miRNAs at four ear developmental stages, which resulted in identification of 22 conserved and 21-maize-specific miRNA families together with their corresponding miRNA*. Comparison of miRNA expression in these developmental stages revealed 18 differentially expressed miRNA families. Finally, a total of 141 genes (251 transcripts) targeted by 102 small RNAs including 98 miRNAs and 4 ta-siRNAs were identified by genomic-scale high-throughput sequencing of miRNA cleaved mRNAs. Moreover, the differentially expressed miRNAs-mediated pathways that regulate the development of ears were discussed. Conclusions This study confirmed 22 conserved miRNA families and discovered 26 novel miRNAs in maize. Moreover, we identified 141 target genes of known and new miRNAs and ta-siRNAs. Of these, 72 genes (117 transcripts) targeted by 62 differentially expressed miRNAs may attribute to the development of maize ears. Identification and characterization of these important classes of regulatory genes in maize may improve our understanding of molecular mechanisms controlling ear development

  4. Small RNA and Degradome Sequencing Reveal Complex Roles of miRNAs and Their Targets in Developing Wheat Grains

    PubMed Central

    Geng, Yuke; Hao, Chenyang; Chen, Xinhong; Zhang, Xueyong

    2015-01-01

    Plant microRNAs (miRNAs) have been shown to play critical roles in plant development. In this study, we employed small RNA combined with degradome sequencing to survey development-related miRNAs and their validated targets during wheat grain development. A total of 186 known miRNAs and 37 novel miRNAs were identified in four small RNA libraries. Moreover, a miRNA-like long hairpin locus was first identified to produce 21~22-nt phased siRNAs that act in trans to cleave target mRNAs. A comparison of the miRNAomes revealed that 55 miRNA families were differentially expressed during the grain development. Predicted and validated targets of these development-related miRNAs are involved in different cellular responses and metabolic processes including cell proliferation, auxin signaling, nutrient metabolism and gene expression. This study provides insight into the complex roles of miRNAs and their targets in regulating wheat grain development. PMID:26426440

  5. Differentially Expressed miRNAs in Hepatocellular Carcinoma Target Genes in the Genetic Information Processing and Metabolism Pathways

    PubMed Central

    Thurnherr, Thomas; Mah, Way-Champ; Lei, Zhengdeng; Jin, Yu; Rozen, Steven G.; Lee, Caroline G.

    2016-01-01

    To date, studies of the roles of microRNAs (miRNAs) in hepatocellular carcinoma (HCC) have either focused on specific individual miRNAs and a small number of suspected targets or simply reported a list of differentially expressed miRNAs based on expression profiling. Here, we seek a more in-depth understanding of the roles of miRNAs and their targets in HCC by integrating the miRNA and messenger RNA (mRNA) expression profiles of tumorous and adjacent non-tumorous liver tissues of 100 HCC patients. We assessed the levels of 829 mature miRNAs, of which 32 were significantly differentially expressed. Statistical analysis indicates that six of these miRNAs regulate a significant proportion of their in silico predicted target mRNAs. Three of these miRNAs (miR-26a, miR-122, and miR-130a) were down-regulated in HCC, and their up-regulated gene targets are primarily associated with aberrant cell proliferation that involves DNA replication, transcription and nucleotide metabolism. The other three miRNAs (miR-21, miR-93, and miR-221) were up-regulated in HCC, and their down-regulated gene targets are primarily involved in metabolism and immune system processes. We further found evidence for a coordinated miRNA-induced regulation of important cellular processes, a finding to be considered when designing therapeutic applications based on miRNAs. PMID:26817861

  6. Exosomal miRNAs as cancer biomarkers and therapeutic targets

    PubMed Central

    Thind, Arron; Wilson, Clive

    2016-01-01

    Intercommunication between cancer cells and with their surrounding and distant environments is key to the survival, progression and metastasis of the tumour. Exosomes play a role in this communication process. MicroRNA (miRNA) expression is frequently dysregulated in tumour cells and can be reflected by distinct exosomal miRNA (ex-miRNA) profiles isolated from the bodily fluids of cancer patients. Here, the potential of ex-miRNA as a cancer biomarker and therapeutic target is critically analysed. Exosomes are a stable source of miRNA in bodily fluids but, despite a number of methods for exosome extraction and miRNA quantification, their suitability for diagnostics in a clinical setting is questionable. Furthermore, exosomally transferred miRNAs can alter the behaviour of recipient tumour and stromal cells to promote oncogenesis, highlighting a role in cell communication in cancer. However, our incomplete understanding of exosome biogenesis and miRNA loading mechanisms means that strategies to target exosomes or their transferred miRNAs are limited and not specific to tumour cells. Therefore, if ex-miRNA is to be employed in novel non-invasive diagnostic approaches and as a therapeutic target in cancer, two further advances are necessary: in methods to isolate and detect ex-miRNA, and a better understanding of their biogenesis and functions in tumour-cell communication. PMID:27440105

  7. Exosomal miRNAs as cancer biomarkers and therapeutic targets.

    PubMed

    Thind, Arron; Wilson, Clive

    2016-01-01

    Intercommunication between cancer cells and with their surrounding and distant environments is key to the survival, progression and metastasis of the tumour. Exosomes play a role in this communication process. MicroRNA (miRNA) expression is frequently dysregulated in tumour cells and can be reflected by distinct exosomal miRNA (ex-miRNA) profiles isolated from the bodily fluids of cancer patients. Here, the potential of ex-miRNA as a cancer biomarker and therapeutic target is critically analysed. Exosomes are a stable source of miRNA in bodily fluids but, despite a number of methods for exosome extraction and miRNA quantification, their suitability for diagnostics in a clinical setting is questionable. Furthermore, exosomally transferred miRNAs can alter the behaviour of recipient tumour and stromal cells to promote oncogenesis, highlighting a role in cell communication in cancer. However, our incomplete understanding of exosome biogenesis and miRNA loading mechanisms means that strategies to target exosomes or their transferred miRNAs are limited and not specific to tumour cells. Therefore, if ex-miRNA is to be employed in novel non-invasive diagnostic approaches and as a therapeutic target in cancer, two further advances are necessary: in methods to isolate and detect ex-miRNA, and a better understanding of their biogenesis and functions in tumour-cell communication. PMID:27440105

  8. mRNA Decay of Most Arabidopsis miRNA Targets Requires Slicer Activity of AGO11[OPEN

    PubMed Central

    2016-01-01

    MicroRNAs (miRNAs) are key posttranscriptional regulators of gene expression in animals and plants. They guide RNA-induced silencing complexes to complementary target mRNA, thereby mediating mRNA degradation or translational repression. ARGONAUTE (AGO) proteins bind directly to miRNAs and may catalyze cleavage (slicing) of target mRNAs. In animals, miRNA target degradation via slicing occurs only exceptionally, and target mRNA decay is induced via AGO-dependent recruitment of deadenylase complexes. Conversely, plant miRNAs generally direct slicing of their targets, but it is unclear whether slicer-independent mechanisms of target mRNA decay also exist, and, if so, how much they contribute to miRNA-induced mRNA decay. Here, we compare phenotypes and transcript profiles of ago1 null and slicer-deficient mutants in Arabidopsis (Arabidopsis thaliana). We also construct conditional loss-of-function mutants of AGO1 to allow transcript profiling in true leaves. Although phenotypic differences between ago1 null and slicer-deficient mutants can be discerned, the results of both transcript profiling approaches indicate that slicer activity is required for mRNA repression of the vast majority of miRNA targets. A set of genes exhibiting up-regulation specifically in ago1 null, but not in ago1 slicer-deficient mutants was also identified, leaving open the possibility that AGO1 may have functions in gene regulation independent of small RNAs. PMID:27208258

  9. Expression Profiling of Differentiating Eosinophils in Bone Marrow Cultures Predicts Functional Links between MicroRNAs and Their Target mRNAs

    PubMed Central

    Eyers, Fiona; Xiang, Yang; Guo, Man; Young, Ian G.; Rosenberg, Helene F.

    2014-01-01

    Background MicroRNAs (miRNAs) are small non-coding RNAs that regulate complex transcriptional networks underpin immune responses. However, little is known about the specific miRNA networks that control differentiation of specific leukocyte subsets. In this study, we profiled miRNA expression during differentiation of eosinophils from bone marrow (BM) progenitors (bmEos), and correlated expression with potential mRNA targets involved in crucial regulatory functions. Profiling was performed on whole BM cultures to document the dynamic changes in miRNA expression in the BM microenvironment over the differentiation period. miRNA for network analysis were identified in BM cultures enriched in differentiating eosinophils, and chosen for their potential ability to target mRNA of factors that are known to play critical roles in eosinophil differentiation pathways or cell identify. Methodology/Principal Findings We identified 68 miRNAs with expression patterns that were up- or down- regulated 5-fold or more during bmEos differentiation. By employing TargetScan and MeSH databases, we identified 348 transcripts involved in 30 canonical pathways as potentially regulated by these miRNAs. Furthermore, by applying miRanda and Ingenuity Pathways Analysis (IPA), we identified 13 specific miRNAs that are temporally associated with the expression of IL-5Rα and CCR3 and 14 miRNAs associated with the transcription factors GATA-1/2, PU.1 and C/EBPε. We have also identified 17 miRNAs that may regulate the expression of TLRs 4 and 13 during eosinophil differentiation, although we could identify no miRNAs targeting the prominent secretory effector, eosinophil major basic protein. Conclusions/Significance This is the first study to map changes in miRNA expression in whole BM cultures during the differentiation of eosinophils, and to predict functional links between miRNAs and their target mRNAs for the regulation of eosinophilopoiesis. Our findings provide an important resource that will

  10. From mobility to crosstalk. A model of intracellular miRNAs motion may explain the RNAs interaction mechanism on the basis of target subcellular localization.

    PubMed

    Vasilescu, Catalin; Tanase, Mihai; Dragomir, Mihnea; Calin, George A

    2016-10-01

    MicroRNAs (miRNAs), 22 nucleotides long molecules with the function to reduce gene expression by inhibiting mRNA translation through partial complementary to one or more messenger RNA (mRNA) molecules. A single miRNA can reduce the expression levels of hundreds of genes and one mRNA can be a target for many miRNAs. Despite the study models used so far, miRNAs and mRNAs cannot be seen as acting in an isolated manner or even "in pairs". They most likely exert their complex actions through numerous overlapping interrelations. One of the models depicting interdependence of intracytoplasmic RNAs is the crosstalk model. It is based on a competition between several target mRNAs which are regulated by the same miRNA. In this paper, we will discuss the mobility mechanism of miRNAs, recently suggested by data from "single particle tracking" experiments. These data suggests that miRNA intracellular mobility may be of "intermittent active transport"(IAT) type. IAT is a mobility model composed by alternation of active transport (AT) and Brownian motion (BM). Based on a mathematical model, we concluded that, AT phase may explain the efficiency in reaching far targets and the BM phase may explain the competition. Furthermore, we suggest that the interaction between miRNAs and their targets depends on the concentration of the molecules, the affinity between the molecules and also on the intracellular localization of the molecules. Hence, the probability that a miRNA interacts with its target depends also on the distance to the target and the macromolecular crowding. Taken together, our data proposes an intracytoplasmic mobility mechanism for miRNA and shows that this model can partially explain the RNA crosstalk. PMID:27498347

  11. Brain-expressed 3′UTR extensions strengthen miRNA cross-talk between ion channel/transporter encoding mRNAs

    PubMed Central

    Wehrspaun, Claudia C.; Ponting, Chris P.; Marques, Ana C.

    2014-01-01

    Why protein-coding genes express transcripts with longer 3′untranslated regions (3′UTRs) in the brain rather than in other tissues remains poorly understood. Given the established role of 3′UTRs in post-transcriptional regulation of transcript abundance and their recently highlighted contributions to miRNA-mediated cross-talk between mRNAs, we hypothesized that 3′UTR lengthening enhances coordinated expression between functionally-related genes in the brain. To test this hypothesis, we annotated 3′UTRs of human brain-expressed genes and found that transcripts encoding ion channels or transporters are specifically enriched among those genes expressing their longest 3′UTR extension in this tissue. These 3′UTR extensions have high density of response elements predicted for those miRNAs that are specifically expressed in the human frontal cortex (FC). Importantly, these miRNA response elements are more frequently shared among ion channel/transporter-encoding mRNAs than expected by chance. This indicates that miRNA-mediated cross-talk accounts, at least in part, for the observed coordinated expression of ion channel/transporter genes in the adult human brain. We conclude that extension of these genes' 3′UTRs enhances the miRNA-mediated cross-talk among their transcripts which post-transcriptionally regulates their mRNAs' relative levels. PMID:24616735

  12. Rapid divergence and high diversity of miRNAs and miRNA targets in the Camelineae.

    PubMed

    Smith, Lisa M; Burbano, Hernán A; Wang, Xi; Fitz, Joffrey; Wang, George; Ural-Blimke, Yonca; Weigel, Detlef

    2015-02-01

    MicroRNAs (miRNAs) are short RNAs involved in gene regulation through translational inhibition and transcript cleavage. After processing from imperfect fold-back structures, miRNAs are incorporated into RNA-induced silencing complexes (RISCs) before targeting transcripts with varying degrees of complementarity. Some miRNAs are evolutionarily deep-rooted, and sequence complementarity with their targets is maintained through purifying selection. Both Arabidopsis and Capsella belong to the tribe Camelineae in the Brassicaceae, with Capsella rubella serving as an outgroup to the genus Arabidopsis. The genome sequence of C. rubella has recently been released, which allows characterization of its miRNA complement in comparison with Arabidopsis thaliana and Arabidopsis lyrata. Through next-generation sequencing, we identify high-confidence miRNA candidates specific to the C. rubella lineage. Only a few lineage-specific miRNAs have been studied for evolutionary constraints, and there have been no systematic studies of miRNA target diversity within or divergence between closely related plant species. Therefore we contrast sequence variation in miRNAs and their targets within A. thaliana, and between A. thaliana, A. lyrata and C. rubella. We document a surprising amount of small-scale variation in miRNA-target pairs, where many miRNAs are predicted to have species-specific targets in addition to ones that are shared between species. Our results emphasize that the transitive nature of many miRNA-target pairs can be observed even on a relatively short evolutionary time-scale, with non-random occurrences of differences in miRNAs and their complements in the miRNA precursors, the miRNA* sequences. PMID:25557441

  13. The evolution of Homo sapiens denisova and Homo sapiens neanderthalensis miRNA targeting genes in the prenatal and postnatal brain

    PubMed Central

    2015-01-01

    Background As the evolution of miRNA genes has been found to be one of the important factors in formation of the modern type of man, we performed a comparative analysis of the evolution of miRNA genes in two archaic hominines, Homo sapiens neanderthalensis and Homo sapiens denisova, and elucidated the expression of their target mRNAs in bain. Results A comparative analysis of the genomes of primates, including species in the genus Homo, identified a group of miRNA genes having fixed substitutions with important implications for the evolution of Homo sapiens neanderthalensis and Homo sapiens denisova. The mRNAs targeted by miRNAs with mutations specific for Homo sapiens denisova exhibited enhanced expression during postnatal brain development in modern humans. By contrast, the expression of mRNAs targeted by miRNAs bearing variations specific for Homo sapiens neanderthalensis was shown to be enhanced in prenatal brain development. Conclusions Our results highlight the importance of changes in miRNA gene sequences in the course of Homo sapiens denisova and Homo sapiens neanderthalensis evolution. The genetic alterations of miRNAs regulating the spatiotemporal expression of multiple genes in the prenatal and postnatal brain may contribute to the progressive evolution of brain function, which is consistent with the observations of fine technical and typological properties of tools and decorative items reported from archaeological Denisovan sites. The data also suggest that differential spatial-temporal regulation of gene products promoted by the subspecies-specific mutations in the miRNA genes might have occurred in the brains of Homo sapiens denisova and Homo sapiens neanderthalensis, potentially contributing to the cultural differences between these two archaic hominines. PMID:26693966

  14. Leptin is required for hypothalamic regulation of miRNAs targeting POMC 3′UTR

    PubMed Central

    Derghal, Adel; Djelloul, Mehdi; Airault, Coraline; Pierre, Clément; Dallaporta, Michel; Troadec, Jean-Denis; Tillement, Vanessa; Tardivel, Catherine; Bariohay, Bruno; Trouslard, Jérôme; Mounien, Lourdes

    2015-01-01

    The central nervous system (CNS) monitors modifications in metabolic parameters or hormone levels and elicits adaptive responses such as food intake regulation. Particularly, within the hypothalamus, leptin modulates the activity of pro-opiomelanocortin (POMC) neurons which are critical regulators of energy balance. Consistent with a pivotal role of the melanocortin system in the control of energy homeostasis, disruption of the POMC gene causes hyperphagia and obesity. MicroRNAs (miRNAs) are short noncoding RNA molecules that post-transcriptionally repress the expression of genes by binding to 3′-untranslated regions (3′UTR) of the target mRNAs. However, little is known regarding the role of miRNAs that target POMC 3′UTR in the central control energy homeostasis. Particularly, their interaction with the leptin signaling pathway remain unclear. First, we used common prediction programs to search for potential miRNAs target sites on 3′UTR of POMC mRNA. This screening identified a set of conserved miRNAs seed sequences for mir-383, mir-384-3p, and mir-488. We observed that mir-383, mir-384-3p, and mir-488 are up-regulated in the hypothalamus of leptin deficient ob/ob mice. In accordance with these observations, we also showed that mir-383, mir-384-3p, and mir-488 were increased in db/db mice that exhibit a non-functional leptin receptor. The intraperitoneal injection of leptin down-regulated the expression of these miRNAs of interest in the hypothalamus of ob/ob mice showing the involvement of leptin in the expression of mir-383, mir-384-3p, and mir-488. Finally, the evaluation of responsivity to intracerebroventricular administration of leptin exhibited that a chronic treatment with leptin decreased mir-488 expression in hypothalamus of C57BL/6 mice. In summary, these results suggest that leptin modulates the expression of miRNAs that target POMC mRNA in hypothalamus. PMID:25999818

  15. GW182 proteins cause PABP dissociation from silenced miRNA targets in the absence of deadenylation.

    PubMed

    Zekri, Latifa; Kuzuoğlu-Öztürk, Duygu; Izaurralde, Elisa

    2013-04-01

    GW182 family proteins interact with Argonaute proteins and are required for the translational repression, deadenylation and decay of miRNA targets. To elicit these effects, GW182 proteins interact with poly(A)-binding protein (PABP) and the CCR4-NOT deadenylase complex. Although the mechanism of miRNA target deadenylation is relatively well understood, how GW182 proteins repress translation is not known. Here, we demonstrate that GW182 proteins decrease the association of eIF4E, eIF4G and PABP with miRNA targets. eIF4E association is restored in cells in which miRNA targets are deadenylated, but decapping is inhibited. In these cells, eIF4G binding is not restored, indicating that eIF4G dissociates as a consequence of deadenylation. In contrast, PABP dissociates from silenced targets in the absence of deadenylation. PABP dissociation requires the interaction of GW182 proteins with the CCR4-NOT complex. Accordingly, NOT1 and POP2 cause dissociation of PABP from bound mRNAs in the absence of deadenylation. Our findings indicate that the recruitment of the CCR4-NOT complex by GW182 proteins releases PABP from the mRNA poly(A) tail, thereby disrupting mRNA circularization and facilitating translational repression and deadenylation. PMID:23463101

  16. GW182 proteins cause PABP dissociation from silenced miRNA targets in the absence of deadenylation

    PubMed Central

    Zekri, Latifa; Kuzuoğlu-Öztürk, Duygu; Izaurralde, Elisa

    2013-01-01

    GW182 family proteins interact with Argonaute proteins and are required for the translational repression, deadenylation and decay of miRNA targets. To elicit these effects, GW182 proteins interact with poly(A)-binding protein (PABP) and the CCR4–NOT deadenylase complex. Although the mechanism of miRNA target deadenylation is relatively well understood, how GW182 proteins repress translation is not known. Here, we demonstrate that GW182 proteins decrease the association of eIF4E, eIF4G and PABP with miRNA targets. eIF4E association is restored in cells in which miRNA targets are deadenylated, but decapping is inhibited. In these cells, eIF4G binding is not restored, indicating that eIF4G dissociates as a consequence of deadenylation. In contrast, PABP dissociates from silenced targets in the absence of deadenylation. PABP dissociation requires the interaction of GW182 proteins with the CCR4–NOT complex. Accordingly, NOT1 and POP2 cause dissociation of PABP from bound mRNAs in the absence of deadenylation. Our findings indicate that the recruitment of the CCR4–NOT complex by GW182 proteins releases PABP from the mRNA poly(A) tail, thereby disrupting mRNA circularization and facilitating translational repression and deadenylation. PMID:23463101

  17. Analysis of CDS-located miRNA target sites suggests that they can effectively inhibit translation

    PubMed Central

    Hausser, Jean; Syed, Afzal Pasha; Bilen, Biter; Zavolan, Mihaela

    2013-01-01

    Most of what is presently known about how miRNAs regulate gene expression comes from studies that characterized the regulatory effect of miRNA binding sites located in the 3′ untranslated regions (UTR) of mRNAs. In recent years, there has been increasing evidence that miRNAs also bind in the coding region (CDS), but the implication of these interactions remains obscure because they have a smaller impact on mRNA stability compared with miRNA-target interactions that involve 3′ UTRs. Here we show that miRNA-complementary sites that are located in both CDS and 3′-UTRs are under selection pressure and share the same sequence and structure properties. Analyzing recently published data of ribosome-protected fragment profiles upon miRNA transfection from the perspective of the location of miRNA-complementary sites, we find that sites located in the CDS are most potent in inhibiting translation, while sites located in the 3′ UTR are more efficient at triggering mRNA degradation. Our study suggests that miRNAs may combine targeting of CDS and 3′ UTR to flexibly tune the time scale and magnitude of their post-transcriptional regulatory effects. PMID:23335364

  18. Viral miRNAs.

    PubMed

    Plaisance-Bonstaff, Karlie; Renne, Rolf

    2011-01-01

    Since 2004, more than 200 microRNAs (miRNAs) have been discovered in double-stranded DNA viruses, mainly herpesviruses and polyomaviruses (Nucleic Acids Res 32:D109-D111, 2004). miRNAs are short 22  ±  3 nt RNA molecules that posttranscriptionally regulate gene expression by binding to 3'-untranslated regions (3'UTR) of target mRNAs, thereby inducing translational silencing and/or transcript degradation (Nature 431:350-355, 2004; Cell 116:281-297, 2004). Since miRNAs require only limited complementarity for binding, miRNA targets are difficult to determine (Mol Cell 27:91-105, 2007). To date, targets have only been experimentally verified for relatively few viral miRNAs, which either target viral or host cellular gene expression: For example, SV40 and related polyomaviruses encode miRNAs which target viral large T antigen expression (Nature 435:682-686, 2005; J Virol 79:13094-13104, 2005; Virology 383:183-187, 2009; J Virol 82:9823-9828, 2008) and miRNAs of α-, β-, and γ-herpesviruses have been implicated in regulating the transition from latent to lytic gene expression, a key step in the herpesvirus life cycle. Viral miRNAs have also been shown to target various host cellular genes. Although this field is just beginning to unravel the multiple roles of viral miRNA in biology and pathogenesis, the current data strongly suggest that virally encoded miRNAs are able to regulate fundamental biological processes such as immune recognition, promotion of cell survival, angiogenesis, proliferation, and cell differentiation. This chapter aims to summarize our current knowledge of viral miRNAs, their targets and function, and the challenges lying ahead to decipher their role in viral biology, pathogenesis, and for γ-herepsvirus-encoded miRNAs, potentially tumorigenesis. PMID:21431678

  19. Microfluidic molecular assay platform for the detection of miRNAs, mRNAs, proteins, and post-translational modifications at single-cell resolution

    SciTech Connect

    Wu, Meiye; Singh, Anup K.

    2014-07-15

    In this study, cell signaling is a dynamic and complex process. A typical signaling pathway may begin with activation of cell surface receptors, leading to activation kinase cascade that culminates in induction of mRNA and non-coding miRNA production in the nucleus, followed by modulation of mRNA expression by miRNAs in the cytosol, and end with production of proteins in response to the signaling pathway. Signaling pathways involve proteins, miRNA, and mRNAs, along with various forms of transient post-translational modifications, and detecting each type of signaling molecule requires categorically different sample preparation methods such as Western blotting for proteins, PCR for nucleic acids, and flow cytometry for post-translational modifications. Since we know that cells in populations behave heterogeneously1, especially in the cases of stem cells, cancer, and hematopoiesis, there is need for a new technology that provides capability to detect and quantify multiple categories of signaling molecules in intact single cells to provide a comprehensive view of the cell’s physiological state. In this technical brief, we describe our microfluidic platform with a portfolio of customized molecular assays that can detect nucleic acids, proteins, and post-translational modifications in single intact cells with >95% reduction in reagent requirement in under 8 hours.

  20. Microfluidic molecular assay platform for the detection of miRNAs, mRNAs, proteins, and post-translational modifications at single-cell resolution

    DOE PAGESBeta

    Wu, Meiye; Singh, Anup K.

    2014-07-15

    In this study, cell signaling is a dynamic and complex process. A typical signaling pathway may begin with activation of cell surface receptors, leading to activation kinase cascade that culminates in induction of mRNA and non-coding miRNA production in the nucleus, followed by modulation of mRNA expression by miRNAs in the cytosol, and end with production of proteins in response to the signaling pathway. Signaling pathways involve proteins, miRNA, and mRNAs, along with various forms of transient post-translational modifications, and detecting each type of signaling molecule requires categorically different sample preparation methods such as Western blotting for proteins, PCR formore » nucleic acids, and flow cytometry for post-translational modifications. Since we know that cells in populations behave heterogeneously1, especially in the cases of stem cells, cancer, and hematopoiesis, there is need for a new technology that provides capability to detect and quantify multiple categories of signaling molecules in intact single cells to provide a comprehensive view of the cell’s physiological state. In this technical brief, we describe our microfluidic platform with a portfolio of customized molecular assays that can detect nucleic acids, proteins, and post-translational modifications in single intact cells with >95% reduction in reagent requirement in under 8 hours.« less

  1. miRNA and miRNA target genes in copy number variations occurring in individuals with intellectual disability

    PubMed Central

    2013-01-01

    Background MicroRNAs (miRNAs) are a family of short, non-coding RNAs modulating expression of human protein coding genes (miRNA target genes). Their dysfunction is associated with many human diseases, including neurodevelopmental disorders. It has been recently shown that genomic copy number variations (CNVs) can cause aberrant expression of integral miRNAs and their target genes, and contribute to intellectual disability (ID). Results To better understand the CNV-miRNA relationship in ID, we investigated the prevalence and function of miRNAs and miRNA target genes in five groups of CNVs. Three groups of CNVs were from 213 probands with ID (24 de novo CNVs, 46 familial and 216 common CNVs), one group of CNVs was from a cohort of 32 cognitively normal subjects (67 CNVs) and one group of CNVs represented 40 ID related syndromic regions listed in DECIPHER (30 CNVs) which served as positive controls for CNVs causing or predisposing to ID. Our results show that 1). The number of miRNAs is significantly higher in de novo or DECIPHER CNVs than in familial or common CNV subgroups (P < 0.01). 2). miRNAs with brain related functions are more prevalent in de novo CNV groups compared to common CNV groups. 3). More miRNA target genes are found in de novo, familial and DECIPHER CNVs than in the common CNV subgroup (P < 0.05). 4). The MAPK signaling cascade is found to be enriched among the miRNA target genes from de novo and DECIPHER CNV subgroups. Conclusions Our findings reveal an increase in miRNA and miRNA target gene content in de novo versus common CNVs in subjects with ID. Their expression profile and participation in pathways support a possible role of miRNA copy number change in cognition and/or CNV-mediated developmental delay. Systematic analysis of expression/function of miRNAs in addition to coding genes integral to CNVs could uncover new causes of ID. PMID:23937676

  2. Comparative Analysis of mRNA Targets for Human PUF-Family Proteins Suggests Extensive Interaction with the miRNA Regulatory System

    PubMed Central

    Galgano, Alessia; Forrer, Michael; Jaskiewicz, Lukasz; Kanitz, Alexander; Zavolan, Mihaela; Gerber, André P.

    2008-01-01

    Genome-wide identification of mRNAs regulated by RNA-binding proteins is crucial to uncover post-transcriptional gene regulatory systems. The conserved PUF family RNA-binding proteins repress gene expression post-transcriptionally by binding to sequence elements in 3′-UTRs of mRNAs. Despite their well-studied implications for development and neurogenesis in metazoa, the mammalian PUF family members are only poorly characterized and mRNA targets are largely unknown. We have systematically identified the mRNAs associated with the two human PUF proteins, PUM1 and PUM2, by the recovery of endogenously formed ribonucleoprotein complexes and the analysis of associated RNAs with DNA microarrays. A largely overlapping set comprised of hundreds of mRNAs were reproducibly associated with the paralogous PUM proteins, many of them encoding functionally related proteins. A characteristic PUF-binding motif was highly enriched among PUM bound messages and validated with RNA pull-down experiments. Moreover, PUF motifs as well as surrounding sequences exhibit higher conservation in PUM bound messages as opposed to transcripts that were not found to be associated, suggesting that PUM function may be modulated by other factors that bind conserved elements. Strikingly, we found that PUF motifs are enriched around predicted miRNA binding sites and that high-confidence miRNA binding sites are significantly enriched in the 3′-UTRs of experimentally determined PUM1 and PUM2 targets, strongly suggesting an interaction of human PUM proteins with the miRNA regulatory system. Our work suggests extensive connections between the RBP and miRNA post-transcriptional regulatory systems and provides a framework for deciphering the molecular mechanism by which PUF proteins regulate their target mRNAs. PMID:18776931

  3. miRNAs in human cancer

    PubMed Central

    Farazi, Thalia A.; Spitzer, Jessica I.; Morozov, Pavel; Tuschl, Thomas

    2010-01-01

    Mature microRNAs (miRNAs) are single-stranded RNA molecules of 20- to 23-nucleotide (nt) length that control gene expression in many cellular processes. These molecules typically reduce the stability of mRNAs, including those of genes that mediate processes in tumorigenesis, such as inflammation, cell cycle regulation, stress response, differentiation, apoptosis, and invasion. miRNA targeting is mostly achieved through specific base-pairing interactions between the 5′ end (“seed” region) of the miRNA and sites within coding and untranslated regions (UTRs) of mRNAs; target sites in the 3′ UTR lead to more effective mRNA destabilization. Since miRNAs frequently target hundreds of mRNAs, miRNA regulatory pathways are complex. To provide a critical overview of miRNA dysregulation in cancer we first discuss the methods currently available for studying the role of miRNAs in cancer and then review miRNA genomic organization, biogenesis, and mechanism of target recognition examining how these processes are altered in tumorigenesis. Given the critical role miRNAs play in tumorigenesis processes and their disease specific expression, they hold potential as therapeutic targets and novel biomarkers. PMID:21125669

  4. PGC-Enriched miRNAs Control Germ Cell Development

    PubMed Central

    Bhin, Jinhyuk; Jeong, Hoe-Su; Kim, Jong Soo; Shin, Jeong Oh; Hong, Ki Sung; Jung, Han-Sung; Kim, Changhoon; Hwang, Daehee; Kim, Kye-Seong

    2015-01-01

    Non-coding microRNAs (miRNAs) regulate the translation of target messenger RNAs (mRNAs) involved in the growth and development of a variety of cells, including primordial germ cells (PGCs) which play an essential role in germ cell development. However, the target mRNAs and the regulatory networks influenced by miRNAs in PGCs remain unclear. Here, we demonstrate a novel miRNAs control PGC development through targeting mRNAs involved in various cellular pathways. We reveal the PGC-enriched expression patterns of nine miRNAs, including miR-10b, -18a, -93, -106b, -126-3p, -127, -181a, -181b, and -301, using miRNA expression analysis along with mRNA microarray analysis in PGCs, embryonic gonads, and postnatal testes. These miRNAs are highly expressed in PGCs, as demonstrated by Northern blotting, miRNA in situ hybridization assay, and miRNA qPCR analysis. This integrative study utilizing mRNA microarray analysis and miRNA target prediction demonstrates the regulatory networks through which these miRNAs regulate their potential target genes during PGC development. The elucidated networks of miRNAs disclose a coordinated molecular mechanism by which these miRNAs regulate distinct cellular pathways in PGCs that determine germ cell development. PMID:26442865

  5. MYCN-targeting miRNAs are predominantly downregulated during MYCN‑driven neuroblastoma tumor formation.

    PubMed

    Beckers, Anneleen; Van Peer, Gert; Carter, Daniel R; Mets, Evelien; Althoff, Kristina; Cheung, Belamy B; Schulte, Johannes H; Mestdagh, Pieter; Vandesompele, Jo; Marshall, Glenn M; De Preter, Katleen; Speleman, Frank

    2015-03-10

    MYCN is a transcription factor that plays key roles in both normal development and cancer. In neuroblastoma, MYCN acts as a major oncogenic driver through pleiotropic effects regulated by multiple protein encoding genes as well as microRNAs (miRNAs). MYCN activity is tightly controlled at the level of transcription and protein stability through various mechanisms. Like most genes, MYCN is further controlled by miRNAs, but the full complement of all miRNAs implicated in this process has not been determined through an unbiased approach. To elucidate the role of miRNAs in regulation of MYCN, we thus explored the MYCN-miRNA interactome to establish miRNAs controlling MYCN expression levels. We combined results from an unbiased and genome-wide high-throughput miRNA target reporter screen with miRNA and mRNA expression data from patients and a murine neuroblastoma progression model. We identified 29 miRNAs targeting MYCN, of which 12 miRNAs are inversely correlated with MYCN expression or activity in neuroblastoma tumor tissue. The majority of MYCN-targeting miRNAs in neuroblastoma showed a decrease in expression during murine MYCN-driven neuroblastoma tumor development. Therefore, we provide evidence that MYCN-targeting miRNAs are preferentially downregulated in MYCN-driven neuroblastoma, suggesting that MYCN negatively controls the expression of these miRNAs, to safeguard its expression. PMID:25294817

  6. VIRmiRNA: a comprehensive resource for experimentally validated viral miRNAs and their targets.

    PubMed

    Qureshi, Abid; Thakur, Nishant; Monga, Isha; Thakur, Anamika; Kumar, Manoj

    2014-01-01

    Viral microRNAs (miRNAs) regulate gene expression of viral and/or host genes to benefit the virus. Hence, miRNAs play a key role in host-virus interactions and pathogenesis of viral diseases. Lately, miRNAs have also shown potential as important targets for the development of novel antiviral therapeutics. Although several miRNA and their target repositories are available for human and other organisms in literature, but a dedicated resource on viral miRNAs and their targets are lacking. Therefore, we have developed a comprehensive viral miRNA resource harboring information of 9133 entries in three subdatabases. This includes 1308 experimentally validated miRNA sequences with their isomiRs encoded by 44 viruses in viral miRNA ' VIRMIRNA: ' and 7283 of their target genes in ' VIRMIRTAR': . Additionally, there is information of 542 antiviral miRNAs encoded by the host against 24 viruses in antiviral miRNA ' AVIRMIR': . The web interface was developed using Linux-Apache-MySQL-PHP (LAMP) software bundle. User-friendly browse, search, advanced search and useful analysis tools are also provided on the web interface. VIRmiRNA is the first specialized resource of experimentally proven virus-encoded miRNAs and their associated targets. This database would enhance the understanding of viral/host gene regulation and may also prove beneficial in the development of antiviral therapeutics. Database URL: http://crdd.osdd.net/servers/virmirna. PMID:25380780

  7. Lost in translation: miRNAs and mRNAs in ischemic preconditioning and ischemia/reperfusion injury.

    PubMed

    Gottlieb, Roberta A; Pourpirali, Somayeh

    2016-06-01

    Ischemic stress involves nutrient deprivation, hypoxia, acidosis, and altered levels of various ions and metabolites. Reperfusion, which abruptly alters these parameters, is a second stress to already stressed cells. Ischemic preconditioning, in which brief ischemia alternates with reperfusion to elicit a protective response to ischemia/reperfusion (I/R) injury, revealed the existence of a highly conserved, cell-autonomous, and nearly ubiquitous program. While we often assume that evolutionary selection is irrelevant with respect to myocardial infarctions-which generally occur long after reproduction-the program of ischemia tolerance may date back much further, to hibernating squirrels, turtles, and estivating frogs and snails (extremophiles), which must survive by entering a hypometabolic state. This relationship is further strengthened by the presence of similar signaling pathways and regulatory mechanisms such as mRNA localization and miRNA regulation. These parallels may offer new insights into the myocardial response to I/R injury. This review will explore some of the recent advances in our understanding of autophagy and mitochondrial turnover in the setting of I/R injury, and related findings drawn from research on hibernating extremophiles. PMID:26582464

  8. More than cell dust: microparticles isolated from cerebrospinal fluid of brain injured patients are messengers carrying mRNAs, miRNAs, and proteins.

    PubMed

    Patz, Silke; Trattnig, Christa; Grünbacher, Gerda; Ebner, Birgit; Gülly, Christian; Novak, Alexandra; Rinner, Beate; Leitinger, Gerd; Absenger, Markus; Tomescu, Oana A; Thallinger, Gerhard G; Fasching, Ulrike; Wissa, Sonja; Archelos-Garcia, Juan; Schäfer, Ute

    2013-07-15

    Microparticles are cell-derived, membrane-sheathed structures that are believed to shuttle proteins, mRNA, and miRNA to specific local or remote target cells. To date best described in blood, we now show that cerebrospinal fluid (CSF) contains similar structures that can deliver RNAs and proteins to target cells. These are, in particular, molecules associated with neuronal RNA granules and miRNAs known to regulate neuronal processes. Small RNA molecules constituted 50% of the shuttled ribonucleic acid. Using microarray analysis, we identified 81 mature miRNA molecules in CSF microparticles. Microparticles from brain injured patients were more abundant than in non-injured subjects and contained distinct genetic information suggesting that they play a role in the adaptive response to injury. Notably, miR-9 and miR-451 were differentially packed into CSF microparticles derived from patients versus non-injured subjects. We confirmed the transfer of genetic material from CSF microparticles to adult neuronal stem cells in vitro and a subsequent microRNA-specific repression of distinct genes. This first indication of a regulated transport of functional genetic material in human CSF may facilitate the diagnosis and analysis of cerebral modulation in an otherwise inaccessible organ. PMID:23360174

  9. Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: New trends in the development of miRNA therapeutic strategies in oncology (Review)

    PubMed Central

    GAMBARI, ROBERTO; BROGNARA, ELEONORA; SPANDIDOS, DEMETRIOS A.; FABBRI, ENRICA

    2016-01-01

    MicroRNA (miRNA or miR) therapeutics in cancer are based on targeting or mimicking miRNAs involved in cancer onset, progression, angiogenesis, epithelial-mesenchymal transition and metastasis. Several studies conclusively have demonstrated that miRNAs are deeply involved in tumor onset and progression, either behaving as tumor-promoting miRNAs (oncomiRNAs and metastamiRNAs) or as tumor suppressor miRNAs. This review focuses on the most promising examples potentially leading to the development of anticancer, miRNA-based therapeutic protocols. The inhibition of miRNA activity can be readily achieved by the use of miRNA inhibitors and oligomers, including RNA, DNA and DNA analogues (miRNA antisense therapy), small molecule inhibitors, miRNA sponges or through miRNA masking. On the contrary, the enhancement of miRNA function (miRNA replacement therapy) can be achieved by the use of modified miRNA mimetics, such as plasmid or lentiviral vectors carrying miRNA sequences. Combination strategies have been recently developed based on the observation that i) the combined administration of different antagomiR molecules induces greater antitumor effects and ii) some anti-miR molecules can sensitize drug-resistant tumor cell lines to therapeutic drugs. In this review, we discuss two additional issues: i) the combination of miRNA replacement therapy with drug administration and ii) the combination of antagomiR and miRNA replacement therapy. One of the solid results emerging from different independent studies is that miRNA replacement therapy can enhance the antitumor effects of the antitumor drugs. The second important conclusion of the reviewed studies is that the combination of anti-miRNA and miRNA replacement strategies may lead to excellent results, in terms of antitumor effects. PMID:27175518

  10. Analysis of miRNAs and Their Targets during Adventitious Shoot Organogenesis of Acacia crassicarpa

    PubMed Central

    Hou, Lingyu; Wang, Xiaoyu; Zheng, Fei; Wang, Weixuan; Liang, Di; Yang, Hailun; Jin, Yi; Xie, Xiangming

    2014-01-01

    Organogenesis is an important process for plant regeneration by tissue or cell mass differentiation to regenerate a complete plant. MicroRNAs (miRNAs) play an essential role in regulating plant development by mediating target genes at transcriptional and post-transcriptional levels, but the diversity of miRNAs and their potential roles in organogenesis of Acacia crassicarpa have rarely been investigated. In this study, approximately 10 million sequence reads were obtained from a small RNA library, from which 189 conserved miRNAs from 57 miRNA families, and 7 novel miRNAs from 5 families, were identified from A. crassicarpa organogenetic tissues. Target prediction for these miRNAs yielded 237 potentially unique genes, of which 207 received target Gene Ontology annotations. On the basis of a bioinformatic analysis, one novel and 13 conserved miRNAs were selected to investigate their possible roles in A. crassicarpa organogenesis by qRT-PCR. The stage-specific expression patterns of the miRNAs provided information on their possible regulatory functions, including shoot bud formation, modulated function after transfer of the culture to light, and regulatory roles during induction of organogenesis. This study is the first to investigate miRNAs associated with A. crassicarpa organogenesis. The results provide a foundation for further characterization of miRNA expression profiles and roles in the regulation of diverse physiological pathways during adventitious shoot organogenesis of A. crassicarpa. PMID:24718555

  11. In-silico identification of miRNAs and their regulating target functions in Ocimum basilicum.

    PubMed

    Singh, Noopur; Sharma, Ashok

    2014-12-01

    microRNA is known to play an important role in growth and development of the plants and also in environmental stress. Ocimum basilicum (Basil) is a well known herb for its medicinal properties. In this study, we used in-silico approaches to identify miRNAs and their targets regulating different functions in O. basilicum using EST approach. Additionally, functional annotation, gene ontology and pathway analysis of identified target transcripts were also done. Seven miRNA families were identified. Meaningful regulations of target transcript by identified miRNAs were computationally evaluated. Four miRNA families have been reported by us for the first time from the Lamiaceae. Our results further confirmed that uracil was the predominant base in the first positions of identified mature miRNA sequence, while adenine and uracil were predominant in pre-miRNA sequences. Phylogenetic analysis was carried out to determine the relation between O. basilicum and other plant pre-miRNAs. Thirteen potential targets were evaluated for 4 miRNA families. Majority of the identified target transcripts regulated by miRNAs showed response to stress. miRNA 5021 was also indicated for playing an important role in the amino acid metabolism and co-factor metabolism in this plant. To the best of our knowledge this is the first in silico study describing miRNAs and their regulation in different metabolic pathways of O. basilicum. PMID:25256277

  12. De novo Assembly of the Grass Carp Ctenopharyngodon idella Transcriptome to Identify miRNA Targets Associated with Motile Aeromonad Septicemia

    PubMed Central

    Fu, Jianjun; Lu, Liqun; Li, Jiale

    2014-01-01

    Background De novo transcriptome sequencing is a robust method of predicting miRNA target genes, especially for organisms without reference genomes. Differentially expressed miRNAs had been identified previously in kidney samples collected from susceptible and resistant grass carp (Ctenopharyngodon idella) affected by Aeromonas hydrophila. Target identification for these differentially expressed miRNAs poses a major challenge in this non-model organism. Results Two cDNA libraries constructed from mRNAs of susceptible and resistant C. idella were sequenced by Illumina Hiseq 2000 technology. A total of more than 100 million reads were generated and de novo assembled into 199,593 transcripts which were further extensively annotated by comparing their sequences to different protein databases. Biochemical pathways were predicted from these transcript sequences. A BLASTx analysis against a non-redundant protein database revealed that 61,373 unigenes coded for 28,311 annotated proteins. Two cDNA libraries from susceptible and resistant samples showed that 721 unigenes were expressed at significantly different levels; 475 were significantly up-regulated and 246 were significantly down-regulated in the SG samples compared to the RG samples. The computational prediction of miRNA targets from these differentially expressed genes identified 188 unigenes as the targets of 5 conserved and 4 putative novel miRNA families. Conclusion This study demonstrates the feasibility of identifying miRNA targets by transcriptome analysis. The transcriptome assembly data represent a substantial increase in the genomic resources available for C. idella and will provide insights into the gene expression profile analysis and the miRNA function annotations in further studies. PMID:25409340

  13. Genome-wide screen for miRNA targets using the MISSION target ID library.

    PubMed

    Coussens, Matthew J; Forbes, Kevin; Kreader, Carol; Sago, Jack; Cupp, Carrie; Swarthout, John

    2012-01-01

    The Target ID Library is designed to assist in discovery and identification of microRNA (miRNA) targets. The Target ID Library is a plasmid-based, genome-wide cDNA library cloned into the 3'UTR downstream from the dual-selection fusion protein, thymidine kinase-zeocin (TKzeo). The first round of selection is for stable transformants, followed with introduction of a miRNA of interest, and finally, selecting for cDNAs containing the miRNA's target. Selected cDNAs are identified by sequencing (see Figure 1-3 for Target ID Library Workflow and details). To ensure broad coverage of the human transcriptome, Target ID Library cDNAs were generated via oligo-dT priming using a pool of total RNA prepared from multiple human tissues and cell lines. Resulting cDNA range from 0.5 to 4 kb, with an average size of 1.2 kb, and were cloned into the p3Î"TKzeo dual-selection plasmid (see Figure 4 for plasmid map). The gene targets represented in the library can be found on the Sigma-Aldrich webpage. Results from Illumina sequencing (Table 3), show that the library includes 16,922 of the 21,518 unique genes in UCSC RefGene (79%), or 14,000 genes with 10 or more reads (66%). PMID:22508434

  14. Stage and tissue-specific modulation of ten conserved miRNAs and their targets during somatic embryogenesis of Valencia sweet orange.

    PubMed

    Wu, Xiao-Meng; Liu, Mei-Ya; Ge, Xiao-Xia; Xu, Qiang; Guo, Wen-Wu

    2011-03-01

    Somatic embryogenesis (SE) is a remarkable process of plant somatic cells developing into an embryo capable of forming a complete plant. MiRNAs play important roles in plant development by regulating expression of their target genes, but its function in SE has rarely been studied. Herein, ten conserved miRNAs with critical functions in plant development are detected by stem-loop qRT-PCR in the SE system of Valencia sweet orange. Sixteen unigenes from citrus are predicted to be targeted by six of the miRNAs. Cleavage sites on 15 of these target mRNAs are mapped by 5'RACE, of which ten are reported in this study. Transcript abundances of the 16 target unigenes are detected by qRT-PCR during SE process. Stage and tissue-specific expressions of miRNAs and their targets suggest their possible modulation on SE of citrus callus: miR156, 168 and 171 exert regulatory function during somatic embryo induction process; miR159, 164, 390 and 397 are related to globular-shaped embryo formation; miR166, 167 and 398 are required for cotyledon-shaped embryo morphogenesis; in addition, target genes of miR164, 166 and 397 are associated with SE disability of nonembryogenic callus. Exploration of miRNA-mediated modulation on SE is expected to provide new insights into plant cell totipotency, as well as how to maintain and enhance the embryogenic capacity of somatic cells. PMID:21103993

  15. Targeting cellular mRNAs translation by CRISPR-Cas9

    PubMed Central

    Liu, Yuchen; Chen, Zhicong; He, Anbang; Zhan, Yonghao; Li, Jianfa; Liu, Li; Wu, Hanwei; Zhuang, Chengle; Lin, Junhao; Zhang, Qiaoxia; Huang, Weiren

    2016-01-01

    Recently CRISPR-Cas9 system has been reported to be capable of targeting a viral RNA, and this phenomenon thus raises an interesting question of whether Cas9 can also influence translation of cellular mRNAs. Here, we show that both natural and catalytically dead Cas9 can repress mRNA translation of cellular genes, and that only the first 14 nt in the 5′ end of sgRNA is essential for this process. CRISPR-Cas9 can suppress the protein expression of an unintended target gene without affecting its DNA sequence and causes unexpected phenotypic changes. Using the designed RNA aptamer-ligand complexes which physically obstruct translation machinery, we indicate that roadblock mechanism is responsible for this phenomenon. Our work suggests that studies on Cas9 should avoid the potential off-target effects by detecting the alteration of genes at both the DNA and protein levels. PMID:27405721

  16. Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: Νew trends in the development of miRNA therapeutic strategies in oncology (Review).

    PubMed

    Gambari, Roberto; Brognara, Eleonora; Spandidos, Demetrios A; Fabbri, Enrica

    2016-07-01

    MicroRNA (miRNA or miR) therapeutics in cancer are based on targeting or mimicking miRNAs involved in cancer onset, progression, angiogenesis, epithelial-mesenchymal transition and metastasis. Several studies conclusively have demonstrated that miRNAs are deeply involved in tumor onset and progression, either behaving as tumor-promoting miRNAs (oncomiRNAs and metastamiRNAs) or as tumor suppressor miRNAs. This review focuses on the most promising examples potentially leading to the development of anticancer, miRNA-based therapeutic protocols. The inhibition of miRNA activity can be readily achieved by the use of miRNA inhibitors and oligomers, including RNA, DNA and DNA analogues (miRNA antisense therapy), small molecule inhibitors, miRNA sponges or through miRNA masking. On the contrary, the enhancement of miRNA function (miRNA replacement therapy) can be achieved by the use of modified miRNA mimetics, such as plasmid or lentiviral vectors carrying miRNA sequences. Combination strategies have been recently developed based on the observation that i) the combined administration of different antagomiR molecules induces greater antitumor effects and ii) some anti-miR molecules can sensitize drug-resistant tumor cell lines to therapeutic drugs. In this review, we discuss two additional issues: i) the combination of miRNA replacement therapy with drug administration and ii) the combination of antagomiR and miRNA replacement therapy. One of the solid results emerging from different independent studies is that miRNA replacement therapy can enhance the antitumor effects of the antitumor drugs. The second important conclusion of the reviewed studies is that the combination of anti-miRNA and miRNA replacement strategies may lead to excellent results, in terms of antitumor effects. PMID:27175518

  17. Deep-sequence profiling of miRNAs and their target prediction in Monotropa hypopitys.

    PubMed

    Shchennikova, Anna V; Beletsky, Alexey V; Shulga, Olga A; Mazur, Alexander M; Prokhortchouk, Egor B; Kochieva, Elena Z; Ravin, Nikolay V; Skryabin, Konstantin G

    2016-07-01

    Myco-heterotroph Monotropa hypopitys is a widely spread perennial herb used to study symbiotic interactions and physiological mechanisms underlying the development of non-photosynthetic plant. Here, we performed, for the first time, transcriptome-wide characterization of M. hypopitys miRNA profile using high throughput Illumina sequencing. As a result of small RNA library sequencing and bioinformatic analysis, we identified 55 members belonging to 40 families of known miRNAs and 17 putative novel miRNAs unique for M. hypopitys. Computational screening revealed 206 potential mRNA targets for known miRNAs and 31 potential mRNA targets for novel miRNAs. The predicted target genes were described in Gene Ontology terms and were found to be involved in a broad range of metabolic and regulatory pathways. The identification of novel M. hypopitys-specific miRNAs, some with few target genes and low abundances, suggests their recent evolutionary origin and participation in highly specialized regulatory mechanisms fundamental for non-photosynthetic biology of M. hypopitys. This global analysis of miRNAs and their potential targets in M. hypopitys provides a framework for further investigation of miRNA role in the evolution and establishment of non-photosynthetic myco-heterotrophs. PMID:27097902

  18. Computational identification of putative miRNAs and their target genes in pathogenic amoeba Naegleria fowleri.

    PubMed

    Padmashree, Dyavegowda; Swamy, Narayanaswamy Ramachandra

    2015-01-01

    Naegleria fowleri is a parasitic unicellular free living eukaryotic amoeba. The parasite spreads through contaminated water and causes primary amoebic meningoencephalitis (PAM). Therefore, it is of interest to understand its molecular pathogenesis. Hence, we analyzed the parasite genome for miRNAs (microRNAs) that are non-coding, single stranded RNA molecules. We identified 245 miRNAs using computational methods in N. fowleri, of which five miRNAs are conserved. The predicted miRNA targets were analyzed by using miRanda (software) and further studied the functions by subsequently annotating using AmiGo (a gene ontology web tool). PMID:26770029

  19. Computational identification of putative miRNAs and their target genes in pathogenic amoeba Naegleria fowleri

    PubMed Central

    Padmashree, Dyavegowda; Swamy, Narayanaswamy Ramachandra

    2015-01-01

    Naegleria fowleri is a parasitic unicellular free living eukaryotic amoeba. The parasite spreads through contaminated water and causes primary amoebic meningoencephalitis (PAM). Therefore, it is of interest to understand its molecular pathogenesis. Hence, we analyzed the parasite genome for miRNAs (microRNAs) that are non-coding, single stranded RNA molecules. We identified 245 miRNAs using computational methods in N. fowleri, of which five miRNAs are conserved. The predicted miRNA targets were analyzed by using miRanda (software) and further studied the functions by subsequently annotating using AmiGo (a gene ontology web tool). PMID:26770029

  20. MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis.

    PubMed

    Li, Shengben; Liu, Lin; Zhuang, Xiaohong; Yu, Yu; Liu, Xigang; Cui, Xia; Ji, Lijuan; Pan, Zhiqiang; Cao, Xiaofeng; Mo, Beixin; Zhang, Fuchun; Raikhel, Natasha; Jiang, Liwen; Chen, Xuemei

    2013-04-25

    Translation inhibition is a major but poorly understood mode of action of microRNAs (miRNAs) in plants and animals. In particular, the subcellular location where this process takes place is unknown. Here, we show that the translation inhibition, but not the mRNA cleavage activity, of Arabidopsis miRNAs requires ALTERED MERISTEM PROGRAM1 (AMP1). AMP1 encodes an integral membrane protein associated with endoplasmic reticulum (ER) and ARGONAUTE1, the miRNA effector and a peripheral ER membrane protein. Large differences in polysome association of miRNA target RNAs are found between wild-type and the amp1 mutant for membrane-bound, but not total, polysomes. This, together with AMP1-independent recruitment of miRNA target transcripts to membrane fractions, shows that miRNAs inhibit the translation of target RNAs on the ER. This study demonstrates that translation inhibition is an important activity of plant miRNAs, reveals the subcellular location of this activity, and uncovers a previously unknown function of the ER. PMID:23622241

  1. Characterization of wheat miRNAs and their target genes responsive to cadmium stress.

    PubMed

    Qiu, ZongBo; Hai, BenZhai; Guo, JunLi; Li, YongFang; Zhang, Liang

    2016-04-01

    A increasing number of microRNAs have been shown to play important regulatory roles in plant responses to various metal stresses. However, little information about miRNAs especially miRNAs responsive to cadmium (Cd) stress is available in wheat. To investigate the role of miRNAs in responses to Cd stress, wheat seedlings were subjected to 250 μM Cd solution for 6, 12, 24 and 48 h, and analyses of morphological and physiological changes as well as the expression of five miRNAs and their corresponding targets were carried out. Our results demonstrated that miRNAs and their targets were differentially expressed in leaves and roots of wheat seedlings exposed to Cd stress. Furthermore, miR398 may involve in oxidative stress tolerance by regulating its target CSD to participate in Cd stress. Among ten miRNA-target pairs studied, nine pairs showed complex regulation relationship in leaves and roots of wheat seedlings exposed to Cd stress. These findings suggested that miRNAs are involved in the mediation of Cd stress signaling responses in wheat. The characterization of the miRNAs and the associated targets in responses to Cd exposure provides a framework for understanding the molecular mechanism of heavy metal tolerance in plants. PMID:26854408

  2. Transcription Factors Are Targeted by Differentially Expressed miRNAs in Primates

    PubMed Central

    Dannemann, Michael; Prüfer, Kay; Lizano, Esther; Nickel, Birgit; Burbano, Hernán A.; Kelso, Janet

    2012-01-01

    MicroRNAs (miRNAs) are small RNA molecules involved in the regulation of mammalian gene expression. Together with other transcription regulators, miRNAs modulate the expression of genes and thereby potentially contribute to tissue and species diversity. To identify miRNAs that are differentially expressed between tissues and/or species, and the genes regulated by these, we have quantified expression of miRNAs and messenger RNAs in five tissues from multiple human, chimpanzee, and rhesus macaque individuals using high-throughput sequencing. The breadth of this tissue and species data allows us to show that downregulation of target genes by miRNAs is more pronounced between tissues than between species and that downregulation is more pronounced for genes with fewer binding sites for expressed miRNAs. Intriguingly, we find that tissue- and species-specific miRNAs target transcription factor genes (TFs) significantly more often than expected. Through their regulatory effect on transcription factors, miRNAs may therefore exert an indirect influence on a larger proportion of genes than previously thought. PMID:22454130

  3. In silico analysis and expression profiling of miRNAs targeting genes of steviol glycosides biosynthetic pathway and their relationship with steviol glycosides content in different tissues of Stevia rebaudiana.

    PubMed

    Saifi, Monica; Nasrullah, Nazima; Ahmad, Malik Mobeen; Ali, Athar; Khan, Jawaid A; Abdin, M Z

    2015-09-01

    miRNAs are emerging as potential regulators of the gene expression. Their proven promising role in regulating biosynthetic pathways related gene networks may hold the key to understand the genetic regulation of these pathways which may assist in selection and manipulation to get high performing plant genotypes with better secondary metabolites yields and increased biomass. miRNAs associated with genes of steviol glycosides biosynthetic pathway, however, have not been identified so far. In this study miRNAs targeting genes of steviol glycosides biosynthetic pathway were identified for the first time whose precursors were potentially generated from ESTs and nucleotide sequences of Stevia rebaudiana. Thereafter, stem-loop coupled real time PCR based expressions of these miRNAs in different tissues of Stevia rebaudiana were investigated and their relationship pattern was analysed with the expression levels of their target mRNAs as well as steviol glycoside contents. All the miRNAs investigated showed differential expressions in all the three tissues studied, viz. leaves, flowers and stems. Out of the eleven miRNAs validated, the expression levels of nine miRNAs (miR319a, miR319b, miR319c, miR319d, miR319e, miR319f, miR319h, miRstv_7, miRstv_9) were found to be inversely related, while expression levels of the two, i.e. miR319g and miRstv_11 on the contrary, showed direct relation with the expression levels of their target mRNAs and steviol glycoside contents in the leaves, flowers and stems. This study provides a platform for better understanding of the steviol glycosides biosynthetic pathway and these miRNAs can further be employed to manipulate the biosynthesis of these metabolites to enhance their contents and yield in S. rebaudiana. PMID:26042546

  4. Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance.

    PubMed

    Denzler, Rémy; Agarwal, Vikram; Stefano, Joanna; Bartel, David P; Stoffel, Markus

    2014-06-01

    Recent studies have reported that competitive endogenous RNAs (ceRNAs) can act as sponges for a microRNA (miRNA) through their binding sites and that changes in ceRNA abundances from individual genes can modulate the activity of miRNAs. Consideration of this hypothesis would benefit from knowing the quantitative relationship between a miRNA and its endogenous target sites. Here, we altered intracellular target site abundance through expression of an miR-122 target in hepatocytes and livers and analyzed the effects on miR-122 target genes. Target repression was released in a threshold-like manner at high target site abundance (≥1.5 × 10(5) added target sites per cell), and this threshold was insensitive to the effective levels of the miRNA. Furthermore, in response to extreme metabolic liver disease models, global target site abundance of hepatocytes did not change sufficiently to affect miRNA-mediated repression. Thus, modulation of miRNA target abundance is unlikely to cause significant effects on gene expression and metabolism through a ceRNA effect. PMID:24793693

  5. Genomic Analyses of Sperm Fate Regulator Targets Reveal a Common Set of Oogenic mRNAs in Caenorhabditis elegans

    PubMed Central

    Noble, Daniel C.; Aoki, Scott T.; Ortiz, Marco A.; Kim, Kyung Won; Verheyden, Jamie M.; Kimble, Judith

    2016-01-01

    Germ cell specification as sperm or oocyte is an ancient cell fate decision, but its molecular regulation is poorly understood. In Caenorhabditis elegans, the FOG-1 and FOG-3 proteins behave genetically as terminal regulators of sperm fate specification. Both are homologous to well-established RNA regulators, suggesting that FOG-1 and FOG-3 specify the sperm fate post-transcriptionally. We predicted that FOG-1 and FOG-3, as terminal regulators of the sperm fate, might regulate a battery of gamete-specific differentiation genes. Here we test that prediction by exploring on a genomic scale the messenger RNAs (mRNAs) associated with FOG-1 and FOG-3. Immunoprecipitation of the proteins and their associated mRNAs from spermatogenic germlines identifies 81 FOG-1 and 722 FOG-3 putative targets. Importantly, almost all FOG-1 targets are also FOG-3 targets, and these common targets are strongly biased for oogenic mRNAs. The discovery of common target mRNAs suggested that FOG-1 and FOG-3 work together. Consistent with that idea, we find that FOG-1 and FOG-3 proteins co-immunoprecipitate from both intact nematodes and mammalian tissue culture cells and that they colocalize in germ cells. Taking our results together, we propose a model in which FOG-1 and FOG-3 work in a complex to repress oogenic transcripts and thereby promote the sperm fate. PMID:26564160

  6. C-mii: a tool for plant miRNA and target identification

    PubMed Central

    2012-01-01

    Background MicroRNAs (miRNAs) have been known to play an important role in several biological processes in both animals and plants. Although several tools for miRNA and target identification are available, the number of tools tailored towards plants is limited, and those that are available have specific functionality, lack graphical user interfaces, and restrict the number of input sequences. Large-scale computational identifications of miRNAs and/or targets of several plants have been also reported. Their methods, however, are only described as flow diagrams, which require programming skills and the understanding of input and output of the connected programs to reproduce. Results To overcome these limitations and programming complexities, we proposed C-mii as a ready-made software package for both plant miRNA and target identification. C-mii was designed and implemented based on established computational steps and criteria derived from previous literature with the following distinguishing features. First, software is easy to install with all-in-one programs and packaged databases. Second, it comes with graphical user interfaces (GUIs) for ease of use. Users can identify plant miRNAs and targets via step-by-step execution, explore the detailed results from each step, filter the results according to proposed constraints in plant miRNA and target biogenesis, and export sequences and structures of interest. Third, it supplies bird's eye views of the identification results with infographics and grouping information. Fourth, in terms of functionality, it extends the standard computational steps of miRNA target identification with miRNA-target folding and GO annotation. Fifth, it provides helper functions for the update of pre-installed databases and automatic recovery. Finally, it supports multi-project and multi-thread management. Conclusions C-mii constitutes the first complete software package with graphical user interfaces enabling computational identification of

  7. Five miRNAs Considered as Molecular Targets for Predicting Esophageal Cancer

    PubMed Central

    Zhao, Jia-ying; Wang, Fei; Li, Yi; Zhang, Xing-bo; Yang, Lei; Wang, Wei; Xu, Hao; Liu, Da-zhong; Zhang, Lin-you

    2015-01-01

    Background Esophageal cancer (EC) is one of the most aggressive malignant gastrointestinal tumors; however the traditional therapies for EC are not effective enough. Great improvements are needed to explore new and valid treatments for EC. We aimed to screen the differentially expressed miRNAs (DEMs) in esophageal cancer and explore the pathogenesis of esophageal cancer along with functions and pathways of the target genes. Material/Methods miRNA high-throughput sequencing data were downloaded from The Cancer Genome Atlas (TCGA), then the DEMs underwent principal component analysis (PCA) based on their expression value. Following that, TargetScan software was used to predict the target genes, and enrichment analysis and pathway annotation of these target genes were done by DAVID and KEGG, respectively. Finally, survival analysis between the DEMs and patient survival time was done, and the miRNAs with prediction potential were identified. Results A total of 140 DEMs were obtained, 113 miRNAs were up-regulated including hsa-mir-153-2, hsa-mir-92a-1 and hsa-mir-182; while 27 miRNAs were down-regulated including hsa-mir comprising 29a, hsa-mir-100 and hsa-mir-139 and so on. Five miRNAs (hsa-mir-103-1, hsa-mir-18a, hsa-mir-324, hsa-mir-369 and hsa-mir-320b-2) with diagnostic and preventive potential were significantly correlated with survival time. Conclusions The crucial molecular targets such as p53 may provide great clinical value in treatment, as well to provide new ideas for esophageal cancer therapy. The target genes of miRNA were found to play key roles in protein phosphorylation, and the functions of the target genes during protein phosphorylation should be further studied to explore novel treatment of EC. PMID:26498375

  8. Identification and analysis of miRNAs and their targets in ginger using bioinformatics approach.

    PubMed

    Singh, Noopur; Srivastava, Swati; Sharma, Ashok

    2016-01-10

    MicroRNAs (miRNAs) are a large family of endogenous small RNAs derived from the non-protein coding genes. miRNA regulates the gene expression at the post-transcriptional level and plays an important role in plant development. Zingiber officinale is an important medicinal plant having numerous therapeutic properties. Its bioactive compound gingerol and essential oil posses important pharmacological and physiological activities. In this study, we used a homology search based computational approach for identifying miRNAs in Z. officinale. A total of 16 potential miRNA families (miR167, miR407, miR414, miR5015, miR5021, miR5644, miR5645, miR5656, miR5658, miR5664, miR827, miR838, miR847, miR854, miR862 and miR864) were predicted in ginger. Phylogenetic and conserved analyses were performed for predicted miRNAs. Thirteen miRNA families were found to regulate 300 target transcripts and play an important role in cell signaling, reproduction, metabolic process and stress. To understand the miRNA mediated gene regulatory control and to validate miRNA target predictions, a biological network was also constructed. Gene ontology and pathway analyses were also done. miR5015 was observed to regulate the biosynthesis of gingerol by inhibiting phenyl ammonia lyase (PAL), a precursor enzyme in the biosynthesis of gingerol. Our results revealed that most of the predicted miRNAs were involved in the regulation of rhizome development. miR5021, miR854 and miR838 were identified to regulate the rhizome development and the essential oil biosynthesis in ginger. PMID:26392033

  9. IMP1 suppresses breast tumor growth and metastasis through the regulation of its target mRNAs.

    PubMed

    Wang, Guangli; Huang, Zhenqiang; Liu, Xin; Huang, Wenhe; Chen, Shaoying; Zhou, Yanchun; Li, Deling; Singer, Robert H; Gu, Wei

    2016-03-29

    We have previously reported the ability of IMP1 in inhibiting proliferation and invasiveness of breast carcinoma cells in vitro. In the current study, we utilized a mouse xenograft model to further investigate the function of IMP1 in breast tumor progression and its underlying mechanism. We demonstrated that IMP1 expression significantly suppressed the growth of MDA231 cell-derived xenograft tumors and subsequent lung metastasis. Microarray analyses and differential gene expression identified handful mRNAs, many of which were involved in breast tumor-growth and metastasis. Further studies revealed that these mRNAs were directly interacted with the KH34 domain of IMP1 and this interaction post-transcriptionally regulated their corresponding protein expression. Either deletion of the KH34 domain of IMP1 or alteration of the expression of IMP1-bound mRNAs affected cell proliferation and tumor growth, producing the same phenotypes as IMP1 knockdown. Correlation of increased IMP1 expression with the reduced levels of its bound mRNAs, such as PTGS2, GDF15 and IGF-2 transcripts, was also observed in human breast tumors. Our studies provide insights into a molecular mechanism that the positive function of IMP1 to inhibit breast tumor growth and metastasis could be through the regulation of its target mRNAs. PMID:26910917

  10. IMP1 suppresses breast tumor growth and metastasis through the regulation of its target mRNAs

    PubMed Central

    Liu, Xin; Huang, Wenhe; Chen, Shaoying; Zhou, Yanchun; Li, Deling; Singer, Robert H.; Gu, Wei

    2016-01-01

    We have previously reported the ability of IMP1 in inhibiting proliferation and invasiveness of breast carcinoma cells in vitro. In the current study, we utilized a mouse xenograft model to further investigate the function of IMP1 in breast tumor progression and its underlying mechanism. We demonstrated that IMP1 expression significantly suppressed the growth of MDA231 cell-derived xenograft tumors and subsequent lung metastasis. Microarray analyses and differential gene expression identified handful mRNAs, many of which were involved in breast tumor-growth and metastasis. Further studies revealed that these mRNAs were directly interacted with the KH34 domain of IMP1 and this interaction post-transcriptionally regulated their corresponding protein expression. Either deletion of the KH34 domain of IMP1 or alteration of the expression of IMP1-bound mRNAs affected cell proliferation and tumor growth, producing the same phenotypes as IMP1 knockdown. Correlation of increased IMP1 expression with the reduced levels of its bound mRNAs, such as PTGS2, GDF15 and IGF-2 transcripts, was also observed in human breast tumors. Our studies provide insights into a molecular mechanism that the positive function of IMP1 to inhibit breast tumor growth and metastasis could be through the regulation of its target mRNAs. PMID:26910917

  11. Telomere Length, TERT, and miRNA Expression.

    PubMed

    Slattery, Martha L; Herrick, Jennifer S; Pellatt, Andrew J; Wolff, Roger K; Mullany, Lila E

    2016-01-01

    It has been proposed that miRNAs are involved in the control of telomeres. We test that hypothesis by examining the association between miRNAs and telomere length (TL). Additionally, we evaluate if genetic variation in telomerase reverse transcriptase (TERT) is associated with miRNA expression levels. We use data from a population-based study of colorectal cancer (CRC), where we have previously shown associations between TL and TERT and CRC, to test associations between TL and miRNA expression and TERT and miRNA expression. To gain insight into functions of miRNAs associated with TERT we tested linear associations between miRNAs and their targeted gene mRNAs. An Agilent platform that contained information on over 2000 miRNAs was used. TL was measured using a multiplexed quantitative PCR (qPCR). RNAseq was used to assess gene expression. Our sample consisted of 1152 individuals with SNP data and miRNA expression data; 363 individuals with both TL and miRNA; and 148 individuals with miRNA and mRNA data. Thirty-three miRNAs were directly associated with TL after adjusting for age and sex (false discovery rate (FDR) of 0.05). TERT rs2736118 was associated with differences in miRNA expression between carcinoma and normal colonic mucosa for 75 miRNAs (FDR <0.05). Genes regulated by these miRNAs, as indicated by mRNA/miRNA associations, were associated with major signaling pathways beyond their TL-related functions, including PTEN, and PI3K/AKT signaling. Our data support a direct association between miRNAs and TL; differences in miRNA expression levels by TERT genotype were observed. Based on miRNA and targeted mRNA associations our data suggest that TERT is involved in non-TL-related functions by acting through altered miRNA expression. PMID:27627813

  12. Role of miRNAs and alternative mRNA 3'-end cleavage and polyadenylation of their mRNA targets in cardiomyocyte hypertrophy.

    PubMed

    Soetanto, R; Hynes, C J; Patel, H R; Humphreys, D T; Evers, M; Duan, G; Parker, B J; Archer, S K; Clancy, J L; Graham, R M; Beilharz, T H; Smith, N J; Preiss, T

    2016-05-01

    miRNAs play critical roles in heart disease. In addition to differential miRNA expression, miRNA-mediated control is also affected by variable miRNA processing or alternative 3'-end cleavage and polyadenylation (APA) of their mRNA targets. To what extent these phenomena play a role in the heart remains unclear. We sought to explore miRNA processing and mRNA APA in cardiomyocytes, and whether these change during cardiac hypertrophy. Thoracic aortic constriction (TAC) was performed to induce hypertrophy in C57BL/6J mice. RNA extracted from cardiomyocytes of sham-treated, pre-hypertrophic (2 days post-TAC), and hypertrophic (7 days post-TAC) mice was subjected to small RNA- and poly(A)-test sequencing (PAT-Seq). Differential expression analysis matched expectations; nevertheless we identified ~400 mRNAs and hundreds of noncoding RNA loci as altered with hypertrophy for the first time. Although multiple processing variants were observed for many miRNAs, there was little change in their relative proportions during hypertrophy. PAT-Seq mapped ~48,000 mRNA 3'-ends, identifying novel 3' untranslated regions (3'UTRs) for over 7000 genes. Importantly, hypertrophy was associated with marked changes in APA with a net shift from distal to more proximal mRNA 3'-ends, which is predicted to decrease overall miRNA repression strength. We independently validated several examples of 3'UTR proportion change and showed that alternative 3'UTRs associate with differences in mRNA translation. Our work suggests that APA contributes to altered gene expression with the development of cardiomyocyte hypertrophy and provides a rich resource for a systems-level understanding of miRNA-mediated regulation in physiological and pathological states of the heart. PMID:27032571

  13. Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance

    PubMed Central

    Denzler, Rémy; Agarwal, Vikram; Stefano, Joanna; Bartel, David P; Stoffel, Markus

    2014-01-01

    SUMMARY Recent studies have reported that competitive endogenous RNAs (ceRNAs) can act as sponges for a microRNA (miRNA) through their binding sites and that changes in ceRNA abundances from individual genes can modulate the miRNA’s activity. Consideration of this hypothesis would benefit from knowing the quantitative relationship between a miRNA and its endogenous target sites. Here, we altered intracellular target-site abundance through expression of a miR-122 target in hepatocytes and livers, and analyzed the effects on miR-122 target genes. Target repression was released in a threshold-like manner at high target-site abundance (≥1.5×105 added target sites per cell), and this threshold was insensitive to the effective levels of the miRNA. Furthermore, in response to extreme metabolic liver disease models, global target-site abundance of hepatocytes did not change sufficiently to affect miRNA-mediated repression. Thus, modulation of miRNA target abundance is unlikely to cause significant effects on gene expression and metabolism through a ceRNA effect. PMID:24793693

  14. In vivo NCL targeting affects breast cancer aggressiveness through miRNA regulation

    PubMed Central

    Palmieri, Dario; De Luca, Luciana; Consiglio, Jessica; You, Jia; Rocci, Alberto; Talabere, Tiffany; Piovan, Claudia; Lagana, Alessandro; Cascione, Luciano; Guan, Jingwen; Gasparini, Pierluigi; Balatti, Veronica; Nuovo, Gerard; Coppola, Vincenzo; Hofmeister, Craig C.; Marcucci, Guido; Byrd, John C.; Volinia, Stefano; Shapiro, Charles L.; Freitas, Michael A.

    2013-01-01

    Numerous studies have described the altered expression and the causal role of microRNAs (miRNAs) in human cancer. However, to date, efforts to modulate miRNA levels for therapeutic purposes have been challenging to implement. Here we find that nucleolin (NCL), a major nucleolar protein, posttranscriptionally regulates the expression of a specific subset of miRNAs, including miR-21, miR-221, miR-222, and miR-103, that are causally involved in breast cancer initiation, progression, and drug resistance. We also show that NCL is commonly overexpressed in human breast tumors and that its expression correlates with that of NCL-dependent miRNAs. Finally, inhibition of NCL using guanosine-rich aptamers reduces the levels of NCL-dependent miRNAs and their target genes, thus reducing breast cancer cell aggressiveness both in vitro and in vivo. These findings illuminate a path to novel therapeutic approaches based on NCL-targeting aptamers for the modulation of miRNA expression in the treatment of breast cancer. PMID:23610125

  15. In vivo NCL targeting affects breast cancer aggressiveness through miRNA regulation.

    PubMed

    Pichiorri, Flavia; Palmieri, Dario; De Luca, Luciana; Consiglio, Jessica; You, Jia; Rocci, Alberto; Talabere, Tiffany; Piovan, Claudia; Lagana, Alessandro; Cascione, Luciano; Guan, Jingwen; Gasparini, Pierluigi; Balatti, Veronica; Nuovo, Gerard; Coppola, Vincenzo; Hofmeister, Craig C; Marcucci, Guido; Byrd, John C; Volinia, Stefano; Shapiro, Charles L; Freitas, Michael A; Croce, Carlo M

    2013-05-01

    Numerous studies have described the altered expression and the causal role of microRNAs (miRNAs) in human cancer. However, to date, efforts to modulate miRNA levels for therapeutic purposes have been challenging to implement. Here we find that nucleolin (NCL), a major nucleolar protein, posttranscriptionally regulates the expression of a specific subset of miRNAs, including miR-21, miR-221, miR-222, and miR-103, that are causally involved in breast cancer initiation, progression, and drug resistance. We also show that NCL is commonly overexpressed in human breast tumors and that its expression correlates with that of NCL-dependent miRNAs. Finally, inhibition of NCL using guanosine-rich aptamers reduces the levels of NCL-dependent miRNAs and their target genes, thus reducing breast cancer cell aggressiveness both in vitro and in vivo. These findings illuminate a path to novel therapeutic approaches based on NCL-targeting aptamers for the modulation of miRNA expression in the treatment of breast cancer. PMID:23610125

  16. MiRNA-20 and MiRNA-106a Regulate Spermatogonial Stem Cell Renewal at the Post-transcriptional Level via Targeting STAT3 and Ccnd1

    PubMed Central

    He, Zuping; Jiang, Jiji; Kokkinaki, Maria; Tang, Lin; Zeng, Wenxian; Gallicano, Ian; Dobrinski, Ina; Dym, Martin

    2013-01-01

    Studies onspermatogonial stem cells (SSCs) are of unusual significance because they are the unique stem cells that transmit genetic information to subsequent generations and they can acquire pluripotency to become embryonic stem-like cells that have therapeutic applications in human diseases. MicroRNAs (miRNAs) have recently emerged as critical endogenous regulators in mammalian cells. However, the function and mechanisms of individual miRNAs in regulating SSC fate remain unknown. Here we report for the first time that miRNA-20 and miRNA-106a are preferentially expressed in mouse SSCs. Functional assays in vitro and in vivo using miRNA mimics and inhibitors reveal that miRNA-20 and miRNA-106a are essential for renewal of SSCs. We further demonstrate that these two miRNAs promote renewal at the post-transcriptional level via targeting STAT3 and Ccnd1 and that knockdown of STAT3, Fos, and Ccnd1 results in renewal of SSCs. This study thus provides novel insights into molecular mechanisms regulating renewal and differentiation of SSCs and may have important implications for regulating male reproduction. PMID:23836497

  17. [Efficient transient expression to analyze miRNA targets in rice protoplasts].

    PubMed

    Guo, Ping; Wu, Yao; Li, Jia; Fang, Rongxiang; Jia, Yantao

    2014-11-01

    Compared with the transgenic approach, transient assays provide a convenient alternative to analyze gene expression. To analyze the relationship between miRNAs and their target genes, a rice protoplast system to detect target gene activity was established. The MIRNA and GFP-fused target sequence (or GFP-fused mutated sequence as a non-target control) were constructed into the same plasmid, and then delivered into rice protoplasts. The GFP expression level decreased significantly when the protoplasts were transfected with the plasmid containing GFP-fused target compared to that of the plasmid with non-target sequence either by fluorescence microscopy or qRT-PCR method. Two microRNA genes, osaMIR156 and osaMIR397, and their target sequences were used to prove the feasibility of the rice protoplast transient assay system. This method will facilitate large-scale screening of rice miRNA target in vivo, and may be suitable for functional analysis of miRNAs of other monocot plants that might share the evolutionarily conserved small RNA processing system with rice. PMID:25985526

  18. miRISC recruits decapping factors to miRNA targets to enhance their degradation

    PubMed Central

    Nishihara, Tadashi; Zekri, Latifa; Braun, Joerg E.; Izaurralde, Elisa

    2013-01-01

    MicroRNA (miRNA)-induced silencing complexes (miRISCs) repress translation and promote degradation of miRNA targets. Target degradation occurs through the 5′-to-3′ messenger RNA (mRNA) decay pathway, wherein, after shortening of the mRNA poly(A) tail, the removal of the 5′ cap structure by decapping triggers irreversible decay of the mRNA body. Here, we demonstrate that miRISC enhances the association of the decapping activators DCP1, Me31B and HPat with deadenylated miRNA targets that accumulate when decapping is blocked. DCP1 and Me31B recruitment by miRISC occurs before the completion of deadenylation. Remarkably, miRISC recruits DCP1, Me31B and HPat to engineered miRNA targets transcribed by RNA polymerase III, which lack a cap structure, a protein-coding region and a poly(A) tail. Furthermore, miRISC can trigger decapping and the subsequent degradation of mRNA targets independently of ongoing deadenylation. Thus, miRISC increases the local concentration of the decapping machinery on miRNA targets to facilitate decapping and irreversibly shut down their translation. PMID:23863838

  19. Peptide nucleic acids targeting β-globin mRNAs selectively inhibit hemoglobin production in murine erythroleukemia cells.

    PubMed

    Montagner, Giulia; Gemmo, Chiara; Fabbri, Enrica; Manicardi, Alex; Accardo, Igea; Bianchi, Nicoletta; Finotti, Alessia; Breveglieri, Giulia; Salvatori, Francesca; Borgatti, Monica; Lampronti, Ilaria; Bresciani, Alberto; Altamura, Sergio; Corradini, Roberto; Gambari, Roberto

    2015-01-01

    In the treatment of hemoglobinopathies, amending altered hemoglobins and/or globins produced in excess is an important part of therapeutic strategies and the selective inhibition of globin production may be clinically beneficial. Therefore the development of drug-based methods for the selective inhibition of globin accumulation is required. In this study, we employed peptide nucleic acids (PNAs) to alter globin gene expression. The main conclusion of the present study was that PNAs designed to target adult murine β-globin mRNA inhibit hemoglobin accumulation and erythroid differentiation of murine erythroleukemia (MEL) cells with high efficiency and fair selectivity. No major effects were observed on cell proliferation. Our study supports the concept that PNAs may be used to target mRNAs that, similar to globin mRNAs, are expressed at very high levels in differentiating erythroid cells. Our data suggest that PNAs inhibit the excess production of globins involved in the pathophysiology of hemoglobinopathies. PMID:25405921

  20. Genome-wide analysis reveals the differential regulations of mRNAs and miRNAs in Dorset and Small Tail Han sheep muscles.

    PubMed

    Miao, Xiangyang; Luo, Qingmiao; Qin, Xiaoyu

    2015-05-15

    Sheep are highly diverse species raised for meat and other agricultural products. The aim of the present study was to investigate the genetic regulators that could control muscle growth and development in different sheep breeds. The study showed that the differentially expressed genes are involved in various cellular activities, such as metabolic cascades, catalytic function and signaling pathway. Many signaling molecules are also found to be differentially expressed, suggesting important roles of signaling pathways contributing to genetic diversity and sheep development. Analysis of miRNAs suggested important roles of miRNAs in controlling muscle differences. This study provided a genome-wide resolution of mRNA and miRNA regulations in muscles from Dorset and Han sheep. PMID:25732516

  1. DIANA-microT Web server upgrade supports Fly and Worm miRNA target prediction and bibliographic miRNA to disease association.

    PubMed

    Maragkakis, Manolis; Vergoulis, Thanasis; Alexiou, Panagiotis; Reczko, Martin; Plomaritou, Kyriaki; Gousis, Mixail; Kourtis, Kornilios; Koziris, Nectarios; Dalamagas, Theodore; Hatzigeorgiou, Artemis G

    2011-07-01

    microRNAs (miRNAs) are small endogenous RNA molecules that are implicated in many biological processes through post-transcriptional regulation of gene expression. The DIANA-microT Web server provides a user-friendly interface for comprehensive computational analysis of miRNA targets in human and mouse. The server has now been extended to support predictions for two widely studied species: Drosophila melanogaster and Caenorhabditis elegans. In the updated version, the Web server enables the association of miRNAs to diseases through bibliographic analysis and provides insights for the potential involvement of miRNAs in biological processes. The nomenclature used to describe mature miRNAs along different miRBase versions has been extensively analyzed, and the naming history of each miRNA has been extracted. This enables the identification of miRNA publications regardless of possible nomenclature changes. User interaction has been further refined allowing users to save results that they wish to analyze further. A connection to the UCSC genome browser is now provided, enabling users to easily preview predicted binding sites in comparison to a wide array of genomic tracks, such as single nucleotide polymorphisms. The Web server is publicly accessible in www.microrna.gr/microT-v4. PMID:21551220

  2. PlantMirnaT: miRNA and mRNA integrated analysis fully utilizing characteristics of plant sequencing data.

    PubMed

    Rhee, S; Chae, H; Kim, S

    2015-07-15

    miRNA is known to regulate up to several hundreds coding genes, thus the integrated analysis of miRNA and mRNA expression data is an important problem. Unfortunately, the integrated analysis is challenging since it needs to consider expression data of two different types, miRNA and mRNA, and target relationship between miRNA and mRNA is not clear, especially when microarray data is used. Fortunately, due to the low sequencing cost, small RNA and RNA sequencing are routinely processed and we may be able to infer regulation relationships between miRNAs and mRNAs more accurately by using sequencing data. However, no method is developed specifically for sequencing data. Thus we developed PlantMirnaT, a new miRNA-mRNA integrated analysis system. To fully leverage the power of sequencing data, three major features are developed and implemented in PlantMirnaT. First, we implemented a plant-specific short read mapping tool based on recent discoveries on miRNA target relationship in plant. Second, we designed and implemented an algorithm considering miRNA targets in the full intragenic region, not just 3' UTR. Lastly but most importantly, our algorithm is designed to consider quantity of miRNA expression and its distribution on target mRNAs. The new algorithm was used to characterize rice under drought condition using our proprietary data. Our algorithm successfully discovered that two miRNAs, miRNA1425-5p, miRNA 398b, that are involved in suppression of glucose pathway in a naturally drought resistant rice, Vandana. The system can be downloaded at https://sites.google.com/site/biohealthinformaticslab/resources. PMID:25863133

  3. Targeting strategies on miRNA-21 and PDCD4 for glioblastoma.

    PubMed

    Wang, Gang; Wang, Jun Jie; Tang, Hong Ming; To, Shing Shun Tony

    2015-08-15

    MicroRNAs (miRNAs) are often deregulated in glioblastoma multiforme (GBM). Downregulation of microRNA-21 (miR-21), especially in GBM, is responsible for increased apoptosis, decreased cell proliferation and invasion, increased G0/G1 cell cycle arrest, and reduced chemotherapeutic resistance to doxorubicin. Furthermore, it is a critical regulator of multiple downstream genes and signaling pathways involved in gliomagenesis. Programmed cell death 4 (PDCD4) is critical in mediating apoptosis in GBM, and is downregulated by miR-21, which may mediate the resistance of glioblastoma cells against chemotherapy or radiation via its target genes PDCD4. Evidence is mounting that how alterations of these miRNAs transcription factors provide initiation, maintenance, or progression of tumors. This review will focus on the roles of miRNAs family members (particularly miR-21 and its target gene PDCD4) in tumors like glioblastoma and new targeting strategies, as examples some new targeting therapeutic methods and molecular mechanisms of signal pathways in glioblastoma therapeutics, to give the reader the current trends of approach to target regulation of these miRNA and genes for future glioma therapies. PMID:26142886

  4. Targeting of Runx2 by miRNA-135 and miRNA-203 Impairs Progression of Breast Cancer and Metastatic Bone Disease

    PubMed Central

    Taipaleenmäki, Hanna; Browne, Gillian; Akech, Jacqueline; Zustin, Jozef; van Wijnen, Andre J.; Stein, Janet L.; Hesse, Eric; Stein, Gary S.; Lian, Jane B.

    2015-01-01

    Progression of breast cancer to metastatic bone disease is linked to deregulated expression of the transcription factor Runx2. Therefore, our goal was to evaluate the potential for clinical use of Runx2-targeting microRNAs (miRNAs) to reduce tumor growth and bone metastatic burden. Expression analysis of a panel of miRNAs regulating Runx2 revealed a reciprocal relationship between the abundance of Runx2 protein and two miRNAs, miR-135 and miR-203. These miRNAs are highly expressed in normal breast epithelial cells where Runx2 is not detected, and absent in metastatic breast cancer cells and tissue biopsies that express Runx2. Reconstituting metastatic MDA-MB-231-Luc cells with miR-135 and miR-203 reduced the abundance of Runx2 and expression of the metastasis-promoting Runx2 target genes IL-11, MMP-13, and PTHrP. Additionally, tumor cell viability was decreased and migration suppressed in vitro. Orthotopic implantation of MDA-MB-231-luc cells delivered with miR-135 or miR-203, followed by an intratumoral administration of the synthetic miRNAs reduced the tumor growth and spontaneous metastasis to bone. Furthermore, intratibial injection of these miRNA-delivered cells impaired tumor growth in the bone environment and inhibited bone resorption. Importantly, reconstitution of Runx2 in MDA-MB-231-luc cells delivered with miR-135 and miR-203 reversed the inhibitory effect of the miRNAs on tumor growth and metastasis. Thus, we have identified that aberrant expression of Runx2 in aggressive tumor cells is related to the loss of specific Runx2-targeting miRNAs and that a clinically relevant replacement strategy by delivery of synthetic miRNAs is a candidate therapeutic approach to prevent metastatic bone disease by this route. PMID:25634212

  5. Targeting CSC-Related miRNAs for Cancer Therapy by Natural Agents

    PubMed Central

    Bao, Bin; Li, Yiwei; Ahmad, Aamir; Azmi, Asfar S.; Bao, Ginny; Ali, Shadan; Banerjee, Sanjeev; Kong, Dejuan; Sarkar, Fazlul H.

    2013-01-01

    The theory of cancer stem cells (CSCs) has provided evidence on fundamental clinical implications because of the involvement of CSCs in cell migration, invasion, metastasis, and treatment resistance, which leads to the poor clinical outcome of cancer patients. Therefore, targeting CSCs will provide a novel therapeutic strategy for the treatment and/or prevention of tumors. However, the regulation of CSCs and its signaling pathways during tumorigenesis are not well understood. MicroRNAs (miRNAs) have been proved to act as key regulators of the post-transcriptional regulation of genes, which involve in a wide array of biological processes including tumorigenesis. The altered expressions of miRNAs are associated with poor clinical outcome of patients diagnosed with a variety of tumors. Therefore, emerging evidence strongly suggest that miRMAs play critical roles in tumor development and progression. Emerging evidence also suggest that miRNAs participate in the regulation of tumor cell growth, migration, invasion, angiogenesis, drug resistance, and metastasis. Moreover, miRNAs such as let-7, miR-21, miR-22, miR-34, miR-101, miR-146a, and miR-200 have been found to be associated with CSC phenotype and function mediated through targeting oncogenic signaling pathways. In this article, we will discuss the role of miRNAs in the regulation of CSC phenotype and function during tumor development and progression. We will also discuss the potential role of naturally occurring agents (nutraceuticals) as potent anti-tumor agents that are believed to function by targeting CSC-related miRNAs. PMID:23140295

  6. MTUS1 and its targeting miRNAs in colorectal carcinoma: significant associations.

    PubMed

    Ozcan, Onder; Kara, Murat; Yumrutas, Onder; Bozgeyik, Esra; Bozgeyik, Ibrahim; Celik, Ozgur Ilhan

    2016-05-01

    Deregulated microRNA (miRNA) expression has been shown to be involved in the pathogenesis of several types of cancers including colorectal cancer (CRC). Thus, determining miRNA targets of genes that play critical role in the malignant transformation is very important. Here, expression levels of tumor suppressor microtubule-associated tumor suppressor 1 (MTUS1) and its regulatory miRNAs were reported. Predicted and validated targets of MTUS1 gene was determined by a computational approach. Expressions of MTUS1 and miRNAs were determined by using 96.96 Dynamic Array™ integrated fluidic circuit (Fluidigm). As a result, MTUS1 levels were found to be diminished in formalin-fixed, paraffin-embedded (FFPE) tissue samples of CRC patients compared to controls. Also, several of MTUS1 targeting miRNAs were found to be upregulated in CRC samples (miR-373-3p, 183-5p, 142-5p, 200c-3p, 19a-3p, -20a-5p, -181a-5p, -184, -181d-5p, -372-3p, 27b-3p, 98-5p, -let-7i-5p, -let-7d-5p, -let-7g-5p, -let-7b-5p, and -let-7c-5p). Of these miRNAs, miR-135b-5p, -373-3p, 183-5p, 142-5p, 200c-3p, 19a-3p showed marked expression levels. In contrast, expression levels of let-7a-5p, 7e-5p, 7f-5p, hsa-miR-125a-5p, and 125b-5p were found to be downregulated in CRC tissues. Accordingly, some of the overexpressed miRNAs especially the miR-135b-5p, -373-3p, 183-5p, 142-5p, 200c-3p, and 19a-3p may play key roles in CRC pathophysiology through MTUS1. In contrast, let-7a-5p, 7e-5p, 7f-5p, miR-125a-5p, and 125b-5p may play important roles in CRC carcinogenesis independent from the MTUS1. In conclusion, MTUS1 targeting miRNAs may play key roles in the development of CRC by downregulating tumor suppressor MTUS1. PMID:26643896

  7. Polysome arrest restricts miRNA turnover by preventing exosomal export of miRNA in growth-retarded mammalian cells

    PubMed Central

    Ghosh, Souvik; Bose, Mainak; Ray, Anirban; Bhattacharyya, Suvendra N.

    2015-01-01

    MicroRNAs (miRNAs) are tiny posttranscriptional regulators of gene expression in metazoan cells, where activity and abundance of miRNAs are tightly controlled. Regulated turnover of these regulatory RNAs is important to optimize cellular response to external stimuli. We report that the stability of mature miRNAs increases inversely with cell proliferation, and the increased number of microribonucleoproteins (miRNPs) in growth-restricted mammalian cells are in turn associated with polysomes. This heightened association of miRNA with polysomes also elicits reduced degradation of target mRNAs and impaired extracellular export of miRNA via exosomes. Overall polysome sequestration contributes to an increase of cellular miRNA levels but without an increase in miRNA activity. Therefore miRNA activity and turnover can be controlled by subcellular distribution of miRNPs that may get differentially regulated as a function of cell growth in mammalian cells. PMID:25609084

  8. Global investigation of the co-evolution of MIRNA genes and microRNA targets during soybean domestication.

    PubMed

    Liu, Tengfei; Fang, Chao; Ma, Yanming; Shen, Yanting; Li, Congcong; Li, Qing; Wang, Min; Liu, Shulin; Zhang, Jixiang; Zhou, Zhengkui; Yang, Rui; Wang, Zheng; Tian, Zhixi

    2016-02-01

    Although the selection of coding genes during plant domestication has been well studied, the evolution of MIRNA genes (MIRs) and the interaction between microRNAs (miRNAs) and their targets in this process are poorly understood. Here, we present a genome-wide survey of the selection of MIRs and miRNA targets during soybean domestication and improvement. Our results suggest that, overall, MIRs have higher evolutionary rates than miRNA targets. Nonetheless, they do demonstrate certain similar evolutionary patterns during soybean domestication: MIRs and miRNA targets with high expression and duplication status, and with greater numbers of partners, exhibit lower nucleotide divergence than their counterparts without these characteristics, suggesting that expression level, duplication status, and miRNA-target interaction are essential for evolution of MIRs and miRNA targets. Further investigation revealed that miRNA-target pairs that are subjected to strong purifying selection have greater similarities than those that exhibited genetic diversity. Moreover, mediated by domestication and improvement, the similarities of a large number of miRNA-target pairs in cultivated soybean populations were increased compared to those in wild soybeans, whereas a small number of miRNA-target pairs exhibited decreased similarity, which may be associated with the adoption of particular domestication traits. Taken together, our results shed light on the co-evolution of MIRs and miRNA targets during soybean domestication. PMID:26714457

  9. Inference of Target Gene Regulation via miRNAs during Cell Senescence by Using the MiRaGE Server.

    PubMed

    Taguchi, Y-H

    2012-08-01

    miRNAs have recently been shown to play a key role in cell senescence, by downregulating target genes. Thus, inference of those miRNAs that critically downregulate target genes is important. However, inference of target gene regulation by miRNAs is difficult and is often achieved simply by investigating significant upregulation during cell senescence. Here, we inferred the regulation of target genes by miRNAs, using the recently developed MiRaGE server, together with the change in miRNA expression during fibroblast IMR90 cell senescence. We revealed that the simultaneous consideration of 2 criteria, the up(down)regulation and the down(up) regulatiion of target genes, yields more feasible miRNA, i.e., those that are most frequently reported to be down/upregulated and/or to possess biological backgrounds that induce cell senescence. Thus, when analyzing miRNAs that critically contribute to cell senescence, it is important to consider the level of target gene regulation, simultaneously with the change in miRNA expression. PMID:23185711

  10. MiRNA-133b promotes the proliferation of human Sertoli cells through targeting GLI3

    PubMed Central

    Yao, Chencheng; Sun, Min; Yuan, Qingqing; Niu, Minghui; Chen, Zheng; Hou, Jingmei; Wang, Hong; Wen, Liping; Liu, Yun; Li, Zheng; He, Zuping

    2016-01-01

    Sertoli cells play critical roles in regulating spermatogenesis and they can be reprogrammed to the cells of other lineages, highlighting that they have significant applications in reproductive and regenerative medicine. The fate determinations of Sertoli cells are regulated precisely by epigenetic factors. However, the expression, roles, and targets of microRNA (miRNA) in human Sertoli cells remain unknown. Here we have for the first time revealed that 174 miRNAs were distinctly expressed in human Sertoli cells between Sertoli-cell-only syndrome (SCOS) patients and obstructive azoospermia (OA) patients with normal spermatogenesis using miRNA microarrays and real time PCR, suggesting that these miRNAs may be associated with the pathogenesis of SCOS. MiR-133b is upregulated in Sertoli cells of SCOS patients compared to OA patients. Proliferation assays with miRNA mimics and inhibitors showed that miR-133b enhanced the proliferation of human Sertoli cells. Moreover, we demonstrated that GLI3 was a direct target of miR-133b and the expression of Cyclin B1 and Cyclin D1 was enhanced by miR-133b mimics but decreased by its inhibitors. Gene silencing of GLI3 using RNA inference stimulated the growth of human Sertoli cells. Collectively, miR-133b promoted the proliferation of human Sertoli cells by targeting GLI3. This study thus sheds novel insights into epigenetic regulation of human Sertoli cells and the etiology of azoospermia and offers new targets for treating male infertility PMID:26755652

  11. Polycistronic trypanosome mRNAs are a target for the exosome

    PubMed Central

    Kramer, Susanne; Piper, Sophie; Estevez, Antonio; Carrington, Mark

    2016-01-01

    Eukaryotic cells have several mRNA quality control checkpoints to avoid the production of aberrant proteins. Intron-containing mRNAs are actively degraded by the nuclear exosome, prevented from nuclear exit and, if these systems fail, degraded by the cytoplasmic NMD machinery. Trypanosomes have only two introns. However, they process mRNAs from long polycistronic precursors by trans-splicing and polycistronic mRNA molecules frequently arise from any missed splice site. Here, we show that RNAi depletion of the trypanosome exosome, but not of the cytoplasmic 5′-3′ exoribonuclease XRNA or the NMD helicase UPF1, causes accumulation of oligocistronic mRNAs. We have also revisited the localization of the trypanosome exosome by expressing eYFP-fusion proteins of the exosome subunits RRP44 and RRP6. Both proteins are significantly enriched in the nucleus. Together with published data, our data suggest a major nuclear function of the trypanosome exosome in rRNA, snoRNA and mRNA quality control. PMID:26946399

  12. Polycistronic trypanosome mRNAs are a target for the exosome.

    PubMed

    Kramer, Susanne; Piper, Sophie; Estevez, Antonio; Carrington, Mark

    2016-01-01

    Eukaryotic cells have several mRNA quality control checkpoints to avoid the production of aberrant proteins. Intron-containing mRNAs are actively degraded by the nuclear exosome, prevented from nuclear exit and, if these systems fail, degraded by the cytoplasmic NMD machinery. Trypanosomes have only two introns. However, they process mRNAs from long polycistronic precursors by trans-splicing and polycistronic mRNA molecules frequently arise from any missed splice site. Here, we show that RNAi depletion of the trypanosome exosome, but not of the cytoplasmic 5'-3' exoribonuclease XRNA or the NMD helicase UPF1, causes accumulation of oligocistronic mRNAs. We have also revisited the localization of the trypanosome exosome by expressing eYFP-fusion proteins of the exosome subunits RRP44 and RRP6. Both proteins are significantly enriched in the nucleus. Together with published data, our data suggest a major nuclear function of the trypanosome exosome in rRNA, snoRNA and mRNA quality control. PMID:26946399

  13. miRNA-29a targets COL3A1 to regulate the level of type III collagen in pig.

    PubMed

    Chuan-Hao, Li; Wei, Chen; Jia-Qing, Hu; Yan-Dong, Wang; Shou-Dong, Wang; Yong-Qing, Zeng; Hui, Wang

    2016-10-30

    COL3A1 encodes the protein, collagen type III alpha 1, which is an important component of collagen. Collagen can have a considerable effect on the processing quality of meat, and is nutritious. Bioinformatic analysis using Targetscan showed that COL3A1 could be a target gene of miRNA-29a. Moreover, we found that Laiwu pigs have higher levels of type III collagen and lower levels of miRNA-29a than Landrace pigs. Therefore, we hypothesized that miRNA-29a suppresses the expression of COL3A1 by targeting its 3'-UTR. miRNA-29a appears to play an inhibitory role in the regulation of COL3A1 in PK15 cells because of the following: (1) overexpression of miRNA-29a resulted in a significant down-regulation of COL3A1 protein levels (2) overexpression of miRNA-29a significantly decreased the level of COL3A1 mRNA. (3) The activity of a COL3A1 luciferase reporter was significant reduced by miRNA-29a. Furthermore, the levels of miRNA-29a and collagen type III in four tissues in Laiwu and Landrace pigs were consistent with the above observations. In this study, we identified COL3A1 as a direct target for miRNA-29a, which will inform further studies of meat quality. PMID:27476968

  14. miRNA-148b suppresses hepatic cancer stem cell by targeting neuropilin-1

    PubMed Central

    Liu, Qinying; Xu, Yangmei; Wei, Shenghong; Gao, Wei; Chen, Li; Zhou, Tong; Wang, Zhen; Ying, Mingang; Zheng, Qiuhong

    2015-01-01

    The existence of cancer stem cells (CSCs) is considered as a direct reason for the failure of clinic treatment in hepatocellular carcinoma (HCC). Growing evidences have demonstrated that miRNAs play an important role in regulation of stem cell proliferation, differentiation and self-renewal and their aberrances cause the formation of CSCs and eventually result in carcinogenesis. We recently identified miRNA-148b as one of the miRNAs specifically down-regulated in side population (SP) cells of PLC/PRF/5 cell line. However, it remains elusive how miRNA-148b regulates CSC properties in HCC. In the present study, we observed that overexpression or knockdown of miR-148b through lentiviral transfection could affect the proportion of SP cells as well as CSC-related gene expression in HCC cell lines. In addition, miR-148b blocking could stimulate cell proliferation, enhance chemosensitivity, as well as increase cell metastasis and angiogenesis in vitro. More importantly, miR-148b could significantly suppress tumorigenicity in vivo. Further studies revealed that Neuropilin-1 (NRP1), a transmembrane co-receptor involved in tumour initiation, metastasis and angiogenesis, might be the direct target of miRNA-148b. Taking together, our findings define that miR-148b might play a critical role in maintenance of SP cells with CSC properties by targeting NRP1 in HCC. It is the potential to develop a new strategy specifically targeting hepatic CSCs (HCSCs) through restoration of miR-148b expression in future therapy. PMID:25997710

  15. Cross-talks between microRNAs and mRNAs in pancreatic tissues of streptozotocin-induced type 1 diabetic mice

    PubMed Central

    TIAN, CAIMING; OUYANG, XIAOXI; LV, QING; ZHANG, YAOU; XIE, WEIDONG

    2015-01-01

    Network cross-talks between microRNAs (miRNAs) and mRNAs may be useful to elucidate the pathological mechanisms of pancreatic islet cells in diabetic individuals. The aim of the present study was to investigate the cross-talks between miRNAs and mRNAs in pancreatic tissues of streptozotocin-induced diabetic mice through microarray and bioinformatic methods. Based on the miRNA microarray, 64 upregulated and 72 downregulated miRNAs were observed in pancreatic tissues in diabetic mice compared to the normal controls. Based on the mRNA microarrray, 507 upregulated mRNAs and 570 downregulated mRNAs were identified in pancreatic tissues in diabetic mice compared to the normal controls. Notably, there were 246 binding points between upregulated miRNA and downregulated mRNAs; simultaneously, there were 583 binding points between downregulated miRNA and upregulated mRNAs. These changed mRNA may potentially involve the following signaling pathways: Insulin secretion, pancreatic secretion, mammalian target of rapamycin signaling pathway, forkhead box O signaling pathway and phosphatidylinositol 3-kinase-protein kinase B signaling. The fluctuating effects of miRNAs and matched mRNAs indicated that miRNAs may have wide cross-talks with mRNAs in pancreatic tissues of type 1 diabetic mice. The cross-talks may play important roles in contributing to impaired islet functions and the development of diabetes. However, further functional validation should be conducted in the future. PMID:26137232

  16. Detection of miRNA Targets in High-throughput Using the 3'LIFE Assay.

    PubMed

    Wolter, Justin M; Kotagama, Kasuen; Babb, Cody S; Mangone, Marco

    2015-01-01

    Luminescent Identification of Functional Elements in 3'UTRs (3'LIFE) allows the rapid identification of targets of specific miRNAs within an array of hundreds of queried 3'UTRs. Target identification is based on the dual-luciferase assay, which detects binding at the mRNA level by measuring translational output, giving a functional readout of miRNA targeting. 3'LIFE uses non-proprietary buffers and reagents, and publically available reporter libraries, making genome-wide screens feasible and cost-effective. 3'LIFE can be performed either in a standard lab setting or scaled up using liquid handling robots and other high-throughput instrumentation. We illustrate the approach using a dataset of human 3'UTRs cloned in 96-well plates, and two test miRNAs, let-7c and miR-10b. We demonstrate how to perform DNA preparation, transfection, cell culture and luciferase assays in 96-well format, and provide tools for data analysis. In conclusion 3'LIFE is highly reproducible, rapid, systematic, and identifies high confidence targets. PMID:26066857

  17. Design of nanodrugs for miRNA targeting in tumor cells.

    PubMed

    Yoo, Byunghee; Ghosh, Subrata K; Kumar, Mohanraja; Moore, Anna; Yigit, Mehmet V; Medarova, Zdravka

    2014-06-01

    The delivery of oligonucleotide antagonists to cytosolic RNA targets such as microRNA represents an avenue for the post-transcriptional control of cellular phenotype. In tumor cells, oncogenic miRNAs, termed oncomirs, are tightly linked to processes that ultimately determine cancer initiation, progression, and response to therapy. Therefore, the capacity to redirect tumor cell fate towards therapeutically beneficial phenotypes holds promise in a future clinical scenario. Previously, we have designed "nanodrugs" for the specific inhibition of oncogenic microRNAs in tumor cells. The basic design of these nanodrugs includes dextran coated iron oxide nanoparticles, conjugated to a tumor-targeting peptide, and a locked nucleic acid (LNA)-modified antisense oligonucleotide that stably binds and inhibits the complementary mature miRNA. Here, we focus on elucidating an optimal nanodrug design for effective miRNA inhibition in tumor cells. Specifically, we investigate the choice of chemical linker for the conjugation of the oligonucleotide to the nanoparticles and evaluate the contribution of tumor-cell targeting to nanodrug uptake and functionality. We find that short labile linkers (SPDP; N-Succinimidyl 3-(2-pyridyldithio)-propionate) are superior to non-labile short linkers (GMBS; N-(gamma-Maleimidobutyryloxy)succinimide ester) or non-labile long linkers (PEG24; Succinimidyl-([N-maleimidopropionamido]-24ethyleneglycol)ester) in terms of their capacity to gain access to the cytosolic cellular compartment and to engage their cognate miRNA. Furthermore, using the nanodrug design that incorporates SPDP as a linker, we establish that the addition of tumor-cell targeting through functionalization of the nanodrug with the alphavbeta3-specific cyclic RGDfK-PEG peptide does not confer an advantage in vitro at long incubation times required for inhibition. PMID:24749405

  18. Identification of AGO3-Associated miRNAs and Computational Prediction of Their Targets in the Green Alga Chlamydomonas reinhardtii

    PubMed Central

    Voshall, Adam; Kim, Eun-Jeong; Ma, Xinrong; Moriyama, Etsuko N.; Cerutti, Heriberto

    2015-01-01

    The unicellular green alga Chlamydomonas reinhardtii harbors many types of small RNAs (sRNAs) but little is known about their role(s) in the regulation of endogenous genes and cellular processes. To define functional microRNAs (miRNAs) in Chlamydomonas, we characterized sRNAs associated with an argonaute protein, AGO3, by affinity purification and deep sequencing. Using a stringent set of criteria for canonical miRNA annotation, we identified 39 precursor miRNAs, which produce 45 unique, AGO3-associated miRNA sequences including 13 previously reported miRNAs and 32 novel ones. Potential miRNA targets were identified based on the complementarity of miRNAs with candidate binding sites on transcripts and classified, depending on the extent of complementarity, as being likely to be regulated through cleavage or translational repression. The search for cleavage targets identified 74 transcripts. However, only 6 of them showed an increase in messenger RNA (mRNA) levels in a mutant strain almost devoid of sRNAs. The search for translational repression targets, which used complementarity criteria more stringent than those empirically required for a reduction in target protein levels, identified 488 transcripts. However, unlike observations in metazoans, most predicted translation repression targets did not show appreciable changes in transcript abundance in the absence of sRNAs. Additionally, of three candidate targets examined at the protein level, only one showed a moderate variation in polypeptide amount in the mutant strain. Our results emphasize the difficulty in identifying genuine miRNA targets in Chlamydomonas and suggest that miRNAs, under standard laboratory conditions, might have mainly a modulatory role in endogenous gene regulation in this alga. PMID:25769981

  19. SKI2 mediates degradation of RISC 5′-cleavage fragments and prevents secondary siRNA production from miRNA targets in Arabidopsis

    PubMed Central

    Branscheid, Anja; Marchais, Antonin; Schott, Gregory; Lange, Heike; Gagliardi, Dominique; Andersen, Stig Uggerhøj; Voinnet, Olivier; Brodersen, Peter

    2015-01-01

    Small regulatory RNAs are fundamental in eukaryotic and prokaryotic gene regulation. In plants, an important element of post-transcriptional control is effected by 20–24 nt microRNAs (miRNAs) and short interfering RNAs (siRNAs) bound to the ARGONAUTE1 (AGO1) protein in an RNA induced silencing complex (RISC). AGO1 may cleave target mRNAs with small RNA complementarity, but the fate of the resulting cleavage fragments remains incompletely understood. Here, we show that SKI2, SKI3 and SKI8, subunits of a cytoplasmic cofactor of the RNA exosome, are required for degradation of RISC 5′, but not 3′-cleavage fragments in Arabidopsis. In the absence of SKI2 activity, many miRNA targets produce siRNAs via the RNA-dependent RNA polymerase 6 (RDR6) pathway. These siRNAs are low-abundant, and map close to the cleavage site. In most cases, siRNAs were produced 5′ to the cleavage site, but several examples of 3′-spreading were also identified. These observations suggest that siRNAs do not simply derive from RDR6 action on stable 5′-cleavage fragments and hence that SKI2 has a direct role in limiting secondary siRNA production in addition to its function in mediating degradation of 5′-cleavage fragments. PMID:26464441

  20. Analysis of miRNAs and their target genes associated with lipid metabolism in duck liver.

    PubMed

    He, Jun; Wang, Weiqun; Lu, Lizhi; Tian, Yong; Niu, Dong; Ren, Jindong; Dong, Liyan; Sun, Siwei; Zhao, Yan; Chen, Li; Shen, Jianliang; Li, Xiuhong

    2016-01-01

    Fat character is an important index in duck culture that linked to local flavor, feed cost and fat intake for costumers. Since the regulation networks in duck lipid metabolism had not been reported very clearly, we aimed to explore the potential miRNA-mRNA pairs and their regulatory roles in duck lipid metabolism. Here, Cherry-Valley ducks were selected and treated with/without 5% oil added in feed for 2 weeks, and then fat content determination was performed on. The data showed that the fat contents and the fatty acid ratios of C17:1 and C18:2 were up-regulated in livers of oil-added ducks, while the C12:0 ratio was down-regulated. Then 21 differential miRNAs, including 10 novel miRNAs, were obtain from the livers by sequencing, and 73 target genes involved in lipid metabolic processes of these miRNAs were found, which constituted 316 miRNA-mRNA pairs. Two miRNA-mRNA pairs including one novel miRNA and one known miRNA, N-miR-16020-FASN and gga-miR-144-ELOVL6, were selected to validate the miRNA-mRNA negative relation. And the results showed that N-mir-16020 and gga-miR-144 could respectively bind the 3'-UTRs of FASN and ELOVL6 to control their expressions. This study provides new sights and useful information for future research on regulation network in duck lipid metabolism. PMID:27272010

  1. Analysis of miRNAs and their target genes associated with lipid metabolism in duck liver

    PubMed Central

    He, Jun; Wang, Weiqun; Lu, Lizhi; Tian, Yong; Niu, Dong; Ren, Jindong; Dong, Liyan; Sun, Siwei; Zhao, Yan; Chen, Li; Shen, Jianliang; Li, Xiuhong

    2016-01-01

    Fat character is an important index in duck culture that linked to local flavor, feed cost and fat intake for costumers. Since the regulation networks in duck lipid metabolism had not been reported very clearly, we aimed to explore the potential miRNA-mRNA pairs and their regulatory roles in duck lipid metabolism. Here, Cherry-Valley ducks were selected and treated with/without 5% oil added in feed for 2 weeks, and then fat content determination was performed on. The data showed that the fat contents and the fatty acid ratios of C17:1 and C18:2 were up-regulated in livers of oil-added ducks, while the C12:0 ratio was down-regulated. Then 21 differential miRNAs, including 10 novel miRNAs, were obtain from the livers by sequencing, and 73 target genes involved in lipid metabolic processes of these miRNAs were found, which constituted 316 miRNA-mRNA pairs. Two miRNA-mRNA pairs including one novel miRNA and one known miRNA, N-miR-16020-FASN and gga-miR-144-ELOVL6, were selected to validate the miRNA-mRNA negative relation. And the results showed that N-mir-16020 and gga-miR-144 could respectively bind the 3′-UTRs of FASN and ELOVL6 to control their expressions. This study provides new sights and useful information for future research on regulation network in duck lipid metabolism. PMID:27272010

  2. Identification and Comparative Analysis of Cadmium Tolerance-Associated miRNAs and Their Targets in Two Soybean Genotypes

    PubMed Central

    Ma, Qibin; Huang, Yian; Wang, Peng; Zhang, Jie; Nian, Hai; Yang, Cunyi

    2013-01-01

    MicroRNAs (miRNAs) play crucial roles in regulating the expression of various stress responses genes in plants. To investigate soybean (Glycine max) miRNAs involved in the response to cadmium (Cd), microarrays containing 953 unique miRNA probes were employed to identify differences in the expression patterns of the miRNAs between different genotypes, Huaxia3 (HX3, Cd-tolerant) and Zhonghuang24 (ZH24, Cd-sensitive). Twenty six Cd-responsive miRNAs were identified in total. Among them, nine were detected in both cultivars, while five were expressed only in HX3 and 12 were only in ZH24. The expression of 16 miRNAs was tested by qRT-PCR and most of the identified miRNAs were found to have similar expression patterns with microarray. Three hundred and seventy six target genes were identified for 204 miRNAs from a mixture degradome library, which was constructed from the root of HX3 and ZH24 with or without Cd treatment. Fifty five genes were identified to be cleaved by 14 Cd-responsive miRNAs. Gene ontology (GO) annotations showed that these target transcripts are implicated in a broad range of biological processes. In addition, the expression patterns of ten target genes were validated by qRT-PCR. The characterization of the miRNAs and the associated target genes in response to Cd exposure provides a framework for understanding the molecular mechanism of heavy metal tolerance in plants. PMID:24363811

  3. Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver

    PubMed Central

    Elmén, Joacim; Lindow, Morten; Silahtaroglu, Asli; Bak, Mads; Christensen, Mette; Lind-Thomsen, Allan; Hedtjärn, Maj; Hansen, Jens Bo; Hansen, Henrik Frydenlund; Straarup, Ellen Marie; McCullagh, Keith; Kearney, Phil; Kauppinen, Sakari

    2008-01-01

    MicroRNA-122 (miR-122) is an abundant liver-specific miRNA, implicated in fatty acid and cholesterol metabolism as well as hepatitis C viral replication. Here, we report that a systemically administered 16-nt, unconjugated LNA (locked nucleic acid)-antimiR oligonucleotide complementary to the 5′ end of miR-122 leads to specific, dose-dependent silencing of miR-122 and shows no hepatotoxicity in mice. Antagonism of miR-122 is due to formation of stable heteroduplexes between the LNA-antimiR and miR-122 as detected by northern analysis. Fluorescence in situ hybridization demonstrated uptake of the LNA-antimiR in mouse liver cells, which was accompanied by markedly reduced hybridization signals for mature miR-122 in treated mice. Functional antagonism of miR-122 was inferred from a low cholesterol phenotype and de-repression within 24 h of 199 liver mRNAs showing significant enrichment for miR-122 seed matches in their 3′ UTRs. Expression profiling extended to 3 weeks after the last LNA-antimiR dose revealed that most of the changes in liver gene expression were normalized to saline control levels coinciding with normalized miR-122 and plasma cholesterol levels. Combined, these data suggest that miRNA antagonists comprised of LNA are valuable tools for identifying miRNA targets in vivo and for studying the biological role of miRNAs and miRNA-associated gene-regulatory networks in a physiological context. PMID:18158304

  4. Screening of Target Genes and Regulatory Function of miRNAs as Prognostic Indicators for Prostate Cancer.

    PubMed

    Xiaoli, Zhang; Yawei, Wei; Lianna, Liu; Haifeng, Li; Hui, Zhang

    2015-01-01

    BACKGROUND MicroRNAs expression profiling of prostate cancer is becoming increasingly used due to its usefulness in diagnosis, staging, prognosis, and response to treatment. The aim of this study was to screen differentially expressed miRNAs in prostate cancer and analyze the functions and signal pathways of their target genes. MATERIAL AND METHODS High-throughput data of miRNAs were downloaded from The Cancer Genome Atlas (TCGA) database. A total of 551 samples (52 normal and 499 prostate cancer cases) and 1046 miRNAs expression values were selected for further analysis. Differentially expressed miRNAs between normal and prostate cancer tissues were identified using SAMR. StarBase and TargetScan software were used to predict the miRNAs' target group and target genes, respectively. GO functional and KEGG pathway analysis was conducted on up/down-regulated expressed miRNA with DAVID. Finally, survival analysis was performed to evaluate the association of differently expressed miRNAs signature and overall survival of prostate cancer patients. RESULTS A total of 162 miRNAs were differentially expressed between normal and prostate cancer samples, including 128 up-regulated and 38 down-regulated ones; hsa-mir-153-2, hsa-mir-92a-1, and hsa-mir-182 (up-regulated); and hsa-mir-29a, hsa-mir-10a, and hsa-mir-221 (down-regulated) were identified as good biomarkers. In GO and KEGG analysis, target genes of down-regulated miRNAs were significantly enriched in positive ion combination and JAK-STAT pathway annotation, respectively; the ones with up-regulated miRNAs were significantly enriched in the function of plasma membrane and MARK signaling pathway annotation, respectively. Patients were categorized into low- or high-score groups according to their risk scores from each miRNA. The patients in the low-score group had better overall survival compared with those in high-score group. CONCLUSIONS The 6 differentially expressed miRNAs and their target genes were used to define

  5. Ewing's Sarcoma: An Analysis of miRNA Expression Profiles and Target Genes in Paraffin-Embedded Primary Tumor Tissue.

    PubMed

    Parafioriti, Antonina; Bason, Caterina; Armiraglio, Elisabetta; Calciano, Lucia; Daolio, Primo Andrea; Berardocco, Martina; Di Bernardo, Andrea; Colosimo, Alessia; Luksch, Roberto; Berardi, Anna C

    2016-01-01

    The molecular mechanism responsible for Ewing's Sarcoma (ES) remains largely unknown. MicroRNAs (miRNAs), a class of small non-coding RNAs able to regulate gene expression, are deregulated in tumors and may serve as a tool for diagnosis and prediction. However, the status of miRNAs in ES has not yet been thoroughly investigated. This study compared global miRNAs expression in paraffin-embedded tumor tissue samples from 20 ES patients, affected by primary untreated tumors, with miRNAs expressed in normal human mesenchymal stromal cells (MSCs) by microarray analysis. A miRTarBase database was used to identify the predicted target genes for differentially expressed miRNAs. The miRNAs microarray analysis revealed distinct patterns of miRNAs expression between ES samples and normal MSCs. 58 of the 954 analyzed miRNAs were significantly differentially expressed in ES samples compared to MSCs. Moreover, the qRT-PCR analysis carried out on three selected miRNAs showed that miR-181b, miR-1915 and miR-1275 were significantly aberrantly regulated, confirming the microarray results. Bio-database analysis identified BCL-2 as a bona fide target gene of the miR-21, miR-181a, miR-181b, miR-29a, miR-29b, miR-497, miR-195, miR-let-7a, miR-34a and miR-1915. Using paraffin-embedded tissues from ES patients, this study has identified several potential target miRNAs and one gene that might be considered a novel critical biomarker for ES pathogenesis. PMID:27144561

  6. Sarcoidosis in celiac disease: A page written by genetic variants in IL-18 miRNAs target site?

    PubMed

    Mormile, Raffaella

    2016-05-01

    Sarcoidosis is a chronic idiopathic granulomatous disease. Interleukin-18 (IL-18) has been strongly implicated in the pathogenesis of sarcoidosis. Sarcoidosis shows characteristic microRNAs (miRNAs) profiles. MiRNAs have recently emerged as a new class of modulators of gene expression. MiRNAs are involved in susceptibility to a number of autoimmune diseases promoting and inhibiting the gene expression of different Th1 pro-inflammatory cytokines including IL18. Sarcoidosis has been connected with a variety of autoimmune disorders including celiac disease (CD). CD is a chronic, immune-mediated condition of the small intestine caused by permanent intolerance to dietary gluten. IL-18 has been reported to play an important role in inducing and maintaining inflammation after gluten exposure. MiRNAs expression is significantly altered in CD patients. We hypothesize that sarcoidosis and CD may be the result of common genetic variants in IL-18 miRNA target site. PMID:27063085

  7. miRNAs: roles and clinical applications in vascular disease.

    PubMed

    Jamaluddin, Md Saha; Weakley, Sarah M; Zhang, Lidong; Kougias, Panagiotis; Lin, Peter H; Yao, Qizhi; Chen, Changyi

    2011-01-01

    miRNAs are small, endogenously expressed noncoding RNAs that regulate gene expression, mainly at the post-transcriptional level, via degradation or translational inhibition of their target mRNAs. Functionally, an individual miRNA can regulate the expression of multiple target genes. The study of miRNAs is rapidly growing and recent studies have revealed a significant role of miRNAs in vascular biology and disease. Many miRNAs are highly expressed in the vasculature, and their expression is dysregulated in diseased vessels. Several miRNAs have been found to be critical modulators of vascular pathologies, such as atherosclerosis, lipoprotein metabolism, inflammation, arterial remodeling, angiogenesis, smooth muscle cell regeneration, hypertension, apoptosis, neointimal hyperplasia and signal transduction pathways. Thus, miRNAs may serve as novel biomarkers and/or therapeutic targets for vascular disease. This article summarizes the current studies related to the disease correlations and functional roles of miRNAs in the vascular system and discusses the potential applications of miRNAs in vascular disease. PMID:21171923

  8. miRNAs: roles and clinical applications in vascular disease

    PubMed Central

    Jamaluddin, Md Saha; Weakley, Sarah M; Zhang, Lidong; Kougias, Panagiotis; Lin, Peter H; Yao, Qizhi; Chen, Changyi

    2011-01-01

    miRNAs are small, endogenously expressed noncoding RNAs that regulate gene expression, mainly at the post-transcriptional level, via degradation or translational inhibition of their target mRNAs. Functionally, an individual miRNA can regulate the expression of multiple target genes. The study of miRNAs is rapidly growing and recent studies have revealed a significant role of miRNAs in vascular biology and disease. Many miRNAs are highly expressed in the vasculature, and their expression is dysregulated in diseased vessels. Several miRNAs have been found to be critical modulators of vascular pathologies, such as atherosclerosis, lipoprotein metabolism, inflammation, arterial remodeling, angiogenesis, smooth muscle cell regeneration, hypertension, apoptosis, neointimal hyperplasia and signal transduction pathways. Thus, miRNAs may serve as novel biomarkers and/or therapeutic targets for vascular disease. This article summarizes the current studies related to the disease correlations and functional roles of miRNAs in the vascular system and discusses the potential applications of miRNAs in vascular disease. PMID:21171923

  9. Citrus psorosis virus 24K protein interacts with citrus miRNA precursors, affects their processing and subsequent miRNA accumulation and target expression.

    PubMed

    Reyes, Carina A; Ocolotobiche, Eliana E; Marmisollé, Facundo E; Robles Luna, Gabriel; Borniego, María B; Bazzini, Ariel A; Asurmendi, Sebastian; García, María L

    2016-04-01

    Sweet orange (Citrus sinensis), one of the most important fruit crops worldwide, may suffer from disease symptoms induced by virus infections, thus resulting in dramatic economic losses. Here, we show that the infection of sweet orange plants with two isolates of Citrus psorosis virus (CPsV) expressing different symptomatology alters the accumulation of a set of endogenous microRNAs (miRNAs). Within these miRNAs, miR156, miR167 and miR171 were the most down-regulated, with almost a three-fold reduction in infected samples. This down-regulation led to a concomitant up-regulation of some of their targets, such as Squamosa promoter-binding protein-like 9 and 13, as well as Scarecrow-like 6. The processing of miRNA precursors, pre-miR156 and pre-miR171, in sweet orange seems to be affected by the virus. For instance, virus infection increases the level of unprocessed precursors, which is accompanied by a concomitant decrease in mature species accumulation. miR156a primary transcript accumulation remained unaltered, thus strongly suggesting a processing deregulation for this transcript. The co-immunoprecipitation of viral 24K protein with pre-miR156a or pre-miR171a suggests that the alteration in the processing of these precursors might be caused by a direct or indirect interaction with this particular viral protein. This result is also consistent with the nuclear localization of both miRNA precursors and the CPsV 24K protein. This study contributes to the understanding of the manner in which a virus can alter host regulatory mechanisms, particularly miRNA biogenesis and target expression. PMID:26033697

  10. Screening of Target Genes and Regulatory Function of miRNAs as Prognostic Indicators for Prostate Cancer

    PubMed Central

    Xiaoli, Zhang; Yawei, Wei; Lianna, Liu; Haifeng, Li; Hui, Zhang

    2015-01-01

    Background MicroRNAs expression profiling of prostate cancer is becoming increasingly used due to its usefulness in diagnosis, staging, prognosis, and response to treatment. The aim of this study was to screen differentially expressed miRNAs in prostate cancer and analyze the functions and signal pathways of their target genes. Material/Methods High-throughput data of miRNAs were downloaded from The Cancer Genome Atlas (TCGA) database. A total of 551 samples (52 normal and 499 prostate cancer cases) and 1046 miRNAs expression values were selected for further analysis. Differentially expressed miRNAs between normal and prostate cancer tissues were identified using SAMR. StarBase and TargetScan software were used to predict the miRNAs’ target group and target genes, respectively. GO functional and KEGG pathway analysis was conducted on up/down-regulated expressed miRNA with DAVID. Finally, survival analysis was performed to evaluate the association of differently expressed miRNAs signature and overall survival of prostate cancer patients. Results A total of 162 miRNAs were differentially expressed between normal and prostate cancer samples, including 128 up-regulated and 38 down-regulated ones; hsa-mir-153-2, hsa-mir-92a-1, and hsa-mir-182 (up-regulated); and hsa-mir-29a, hsa-mir-10a, and hsa-mir-221 (down-regulated) were identified as good biomarkers. In GO and KEGG analysis, target genes of down-regulated miRNAs were significantly enriched in positive ion combination and JAK-STAT pathway annotation, respectively; the ones with up-regulated miRNAs were significantly enriched in the function of plasma membrane and MARK signaling pathway annotation, respectively. Patients were categorized into low- or high-score groups according to their risk scores from each miRNA. The patients in the low-score group had better overall survival compared with those in high-score group. Conclusions The 6 differentially expressed miRNAs and their target genes were used to define

  11. Epigenetics and miRNA as predictive markers and targets for lung cancer chemotherapy

    PubMed Central

    El-Awady, Raafat A; Hersi, Fatema; Al-Tunaiji, Hala; Saleh, Ekram M; Abdel-Wahab, Abdel-Hady A; Al Homssi, Amer; Suhail, Mousa; El-Serafi, Ahmed; Al-Tel, Taleb

    2015-01-01

    Lung cancer cells show inherent and acquired resistance to chemotherapy. The lack of good predictive markers/novel targets and the incomplete understanding of the mechanisms of resistance limit the success of lung cancer response to chemotherapy. In the present study, we used an isogenic pair of lung adenocarcinoma cell lines; A549 (wild-type) and A549DOX11 (doxorubicin resistant) to study the role of epigenetics and miRNA in resistance/response of non-small cell lung cancer (NSCLC) cells to doxorubicin. Our results demonstrate differential expression of epigenetic markers whereby the level of HDACs 1, 2, 3 and4, DNA methyltransferase, acetylated H2B and acetylated H3 were lower in A549DOX11 compared to A549 cells. Fourteen miRNAs were dys-regulated in A549DOX11 cells compared to A549 cells, of these 14 miRNAs, 4 (has-mir-1973, 494, 4286 and 29b-3p) have shown 2.99 – 4.44 fold increase in their expression. This was associated with reduced apoptosis and higher resistance of A549DOX11cells to doxorubicin and etoposide. Sequential treatment with the epigenetic modifiers trichostatin A or 5-aza-2'-deoxycytidine followed by doxorubicin resulted in: (i) enhanced sensitivity of both cell lines to doxorubicin especially at low concentrations, (ii) enhanced doxorubicin-induced DNA damage in both cell lines, (iii) dysregulation of some miRNAs in A549 cells. In conclusion, A549DOX11 cells resistant to DNA damaging drugs have epigenetic profile and miRNA expression different from the sensitive cells. Moreover, epigenetic modifiers may reverse the resistance of certain NSCLC cells to DNA damaging agents by enhancing induction of DNA damage. This may open the door for using epigenetic profile/miRNA expression of some cancer cells as resistance markers/targets to improve response of resistant cells to doxorubicin and for the use of combination doxorubicin/epigenetic modifiers to reduce doxorubicin toxicity. PMID:25962089

  12. Epigenetics and miRNA as predictive markers and targets for lung cancer chemotherapy.

    PubMed

    El-Awady, Raafat A; Hersi, Fatema; Al-Tunaiji, Hala; Saleh, Ekram M; Abdel-Wahab, Abdel-Hady A; Al Homssi, Amer; Suhail, Mousa; El-Serafi, Ahmed; Al-Tel, Taleb

    2015-01-01

    Lung cancer cells show inherent and acquired resistance to chemotherapy. The lack of good predictive markers/novel targets and the incomplete understanding of the mechanisms of resistance limit the success of lung cancer response to chemotherapy. In the present study, we used an isogenic pair of lung adenocarcinoma cell lines; A549 (wild-type) and A549DOX11 (doxorubicin resistant) to study the role of epigenetics and miRNA in resistance/response of non-small cell lung cancer (NSCLC) cells to doxorubicin. Our results demonstrate differential expression of epigenetic markers whereby the level of HDACs 1, 2, 3 and4, DNA methyltransferase, acetylated H2B and acetylated H3 were lower in A549DOX11 compared to A549 cells. Fourteen miRNAs were dys-regulated in A549DOX11 cells compared to A549 cells, of these 14 miRNAs, 4 (has-mir-1973, 494, 4286 and 29b-3p) have shown 2.99 - 4.44 fold increase in their expression. This was associated with reduced apoptosis and higher resistance of A549DOX11cells to doxorubicin and etoposide. Sequential treatment with the epigenetic modifiers trichostatin A or 5-aza-2'-deoxycytidine followed by doxorubicin resulted in: (i) enhanced sensitivity of both cell lines to doxorubicin especially at low concentrations, (ii) enhanced doxorubicin-induced DNA damage in both cell lines, (iii) dysregulation of some miRNAs in A549 cells. In conclusion, A549DOX11 cells resistant to DNA damaging drugs have epigenetic profile and miRNA expression different from the sensitive cells. Moreover, epigenetic modifiers may reverse the resistance of certain NSCLC cells to DNA damaging agents by enhancing induction of DNA damage. This may open the door for using epigenetic profile/miRNA expression of some cancer cells as resistance markers/targets to improve response of resistant cells to doxorubicin and for the use of combination doxorubicin/epigenetic modifiers to reduce doxorubicin toxicity. PMID:25962089

  13. Identification of LIN28B-bound mRNAs reveals features of target recognition and regulation

    PubMed Central

    Graf, Robin; Munschauer, Mathias; Mastrobuoni, Guido; Mayr, Florian; Heinemann, Udo; Kempa, Stefan; Rajewsky, Nikolaus; Landthaler, Markus

    2013-01-01

    The conserved human LIN28 RNA-binding proteins function in development, maintenance of pluripotency and oncogenesis. We used PAR-CLIP and a newly developed variant of this method, iDo-PAR-CLIP, to identify LIN28B targets as well as sites bound by the individual RNA-binding domains of LIN28B in the human transcriptome at nucleotide resolution. The position of target binding sites reflected the known structural relative orientation of individual LIN28B-binding domains, validating iDo-PAR-CLIP. Our data suggest that LIN28B directly interacts with most expressed mRNAs and members of the let-7 microRNA family. The Lin28-binding motif detected in pre-let-7 was enriched in mRNA sequences bound by LIN28B. Upon LIN28B knockdown, cell proliferation and the cell cycle were strongly impaired. Quantitative shotgun proteomics of LIN28B depleted cells revealed significant reduction of protein synthesis from its RNA targets. Computational analyses provided evidence that the strength of protein synthesis reduction correlated with the location of LIN28B binding sites within target transcripts. PMID:23770886

  14. Middle East Respiratory Syndrome Coronavirus nsp1 Inhibits Host Gene Expression by Selectively Targeting mRNAs Transcribed in the Nucleus while Sparing mRNAs of Cytoplasmic Origin

    PubMed Central

    Lokugamage, Kumari G.; Narayanan, Krishna; Nakagawa, Keisuke; Terasaki, Kaori; Ramirez, Sydney I.; Tseng, Chien-Te K.

    2015-01-01

    ABSTRACT The newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome CoV (SARS-CoV) represent highly pathogenic human CoVs that share a property to inhibit host gene expression at the posttranscriptional level. Similar to the nonstructural protein 1 (nsp1) of SARS-CoV that inhibits host gene expression at the translational level, we report that MERS-CoV nsp1 also exhibits a conserved function to negatively regulate host gene expression by inhibiting host mRNA translation and inducing the degradation of host mRNAs. Furthermore, like SARS-CoV nsp1, the mRNA degradation activity of MERS-CoV nsp1, most probably triggered by its ability to induce an endonucleolytic RNA cleavage, was separable from its translation inhibitory function. Despite these functional similarities, MERS-CoV nsp1 used a strikingly different strategy that selectively targeted translationally competent host mRNAs for inhibition. While SARS-CoV nsp1 is localized exclusively in the cytoplasm and binds to the 40S ribosomal subunit to gain access to translating mRNAs, MERS-CoV nsp1 was distributed in both the nucleus and the cytoplasm and did not bind stably to the 40S subunit, suggesting a distinctly different mode of targeting translating mRNAs. Interestingly, consistent with this notion, MERS-CoV nsp1 selectively targeted mRNAs, which are transcribed in the nucleus and transported to the cytoplasm, for translation inhibition and mRNA degradation but spared exogenous mRNAs introduced directly into the cytoplasm or virus-like mRNAs that originate in the cytoplasm. Collectively, these data point toward a novel viral strategy wherein the cytoplasmic origin of MERS-CoV mRNAs facilitates their escape from the inhibitory effects of MERS-CoV nsp1. IMPORTANCE Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly pathogenic human CoV that emerged in Saudi Arabia in 2012. MERS-CoV has a zoonotic origin and poses a major threat to public health

  15. Combining miRNA and mRNA Expression Profiles in Wilms Tumor Subtypes

    PubMed Central

    Ludwig, Nicole; Werner, Tamara V.; Backes, Christina; Trampert, Patrick; Gessler, Manfred; Keller, Andreas; Lenhof, Hans-Peter; Graf, Norbert; Meese, Eckart

    2016-01-01

    Wilms tumor (WT) is the most common childhood renal cancer. Recent findings of mutations in microRNA (miRNA) processing proteins suggest a pivotal role of miRNAs in WT genesis. We performed miRNA expression profiling of 36 WTs of different subtypes and four normal kidney tissues using microarrays. Additionally, we determined the gene expression profile of 28 of these tumors to identify potentially correlated target genes and affected pathways. We identified 85 miRNAs and 2107 messenger RNAs (mRNA) differentially expressed in blastemal WT, and 266 miRNAs and 1267 mRNAs differentially expressed in regressive subtype. The hierarchical clustering of the samples, using either the miRNA or mRNA profile, showed the clear separation of WT from normal kidney samples, but the miRNA pattern yielded better separation of WT subtypes. A correlation analysis of the deregulated miRNA and mRNAs identified 13,026 miRNA/mRNA pairs with inversely correlated expression, of which 2844 are potential interactions of miRNA and their predicted mRNA targets. We found significant upregulation of miRNAs-183, -301a/b and -335 for the blastemal subtype, and miRNAs-181b, -223 and -630 for the regressive subtype. We found marked deregulation of miRNAs regulating epithelial to mesenchymal transition, especially in the blastemal subtype, and miRNAs influencing chemosensitivity, especially in regressive subtypes. Further research is needed to assess the influence of preoperative chemotherapy and tumor infiltrating lymphocytes on the miRNA and mRNA patterns in WT. PMID:27043538

  16. Time-Course Small RNA Profiling Reveals Rice miRNAs and Their Target Genes in Response to Rice Stripe Virus Infection.

    PubMed

    Lian, Sen; Cho, Won Kyong; Kim, Sang-Min; Choi, Hoseong; Kim, Kook-Hyung

    2016-01-01

    It has been known that many microRNAs (miRNAs) are involved in the regulation for the plant development and defense mechanism by regulating the expression of the target gene. Several previous studies has demonstrated functional roles of miRNAs in antiviral defense mechanisms. In this study, we employed high-throughput sequencing technology to identify rice miRNAs upon rice stripe virus (RSV) infection at three different time points. Six libraries from mock and RSV-infected samples were subjected for small RNA sequencing. Bioinformatic analyses revealed 374 known miRNAs and 19 novel miRNAs. Expression of most identified miRNAs was not dramatically changed at 3 days post infection (dpi) and 7 dpi by RSV infection. However, many numbers of miRNAs were up-regulated in mock and RSV-infected samples at 15 dpi by RSV infection. Moreover, expression profiles of identified miRNAs revealed that only few numbers of miRNAs were strongly regulated by RSV infection. In addition, 15 resistance genes were targets of six miRNAs suggesting that those identified miRNAs and 15 NBS-LRR resistance genes might be involved in RSV infection. Taken together, our results provide novel insight into the dynamic expression profiles of rice miRNAs upon RSV infection and clues for the understanding of the regulatory roles of miRNAs via time-course. PMID:27626631

  17. Enhanced translation by Nucleolin via G-rich elements in coding and non-coding regions of target mRNAs.

    PubMed

    Abdelmohsen, Kotb; Tominaga, Kumiko; Lee, Eun Kyung; Srikantan, Subramanya; Kang, Min-Ju; Kim, Mihee M; Selimyan, Roza; Martindale, Jennifer L; Yang, Xiaoling; Carrier, France; Zhan, Ming; Becker, Kevin G; Gorospe, Myriam

    2011-10-01

    RNA-binding proteins (RBPs) regulate gene expression at many post-transcriptional levels, including mRNA stability and translation. The RBP nucleolin, with four RNA-recognition motifs, has been implicated in cell proliferation, carcinogenesis and viral infection. However, the subset of nucleolin target mRNAs and the influence of nucleolin on their expression had not been studied at a transcriptome-wide level. Here, we globally identified nucleolin target transcripts, many of which encoded cell growth- and cancer-related proteins, and used them to find a signature motif on nucleolin target mRNAs. Surprisingly, this motif was very rich in G residues and was not only found in the 3'-untranslated region (UTR), but also in the coding region (CR) and 5'-UTR. Nucleolin enhanced the translation of mRNAs bearing the G-rich motif, since silencing nucleolin did not change target mRNA stability, but decreased the size of polysomes forming on target transcripts and lowered the abundance of the encoded proteins. In summary, nucleolin binds G-rich sequences in the CR and UTRs of target mRNAs, many of which encode cancer proteins, and enhances their translation. PMID:21737422

  18. Enhanced translation by Nucleolin via G-rich elements in coding and non-coding regions of target mRNAs

    PubMed Central

    Abdelmohsen, Kotb; Tominaga, Kumiko; Lee, Eun Kyung; Srikantan, Subramanya; Kang, Min-Ju; Kim, Mihee M.; Selimyan, Roza; Martindale, Jennifer L.; Yang, Xiaoling; Carrier, France; Zhan, Ming; Becker, Kevin G.; Gorospe, Myriam

    2011-01-01

    RNA-binding proteins (RBPs) regulate gene expression at many post-transcriptional levels, including mRNA stability and translation. The RBP nucleolin, with four RNA-recognition motifs, has been implicated in cell proliferation, carcinogenesis and viral infection. However, the subset of nucleolin target mRNAs and the influence of nucleolin on their expression had not been studied at a transcriptome-wide level. Here, we globally identified nucleolin target transcripts, many of which encoded cell growth- and cancer-related proteins, and used them to find a signature motif on nucleolin target mRNAs. Surprisingly, this motif was very rich in G residues and was not only found in the 3′-untranslated region (UTR), but also in the coding region (CR) and 5′-UTR. Nucleolin enhanced the translation of mRNAs bearing the G-rich motif, since silencing nucleolin did not change target mRNA stability, but decreased the size of polysomes forming on target transcripts and lowered the abundance of the encoded proteins. In summary, nucleolin binds G-rich sequences in the CR and UTRs of target mRNAs, many of which encode cancer proteins, and enhances their translation. PMID:21737422

  19. A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites

    PubMed Central

    Sharma, Cynthia M.; Darfeuille, Fabien; Plantinga, Titia H.; Vogel, Jörg

    2007-01-01

    The interactions of numerous regulatory small RNAs (sRNAs) with target mRNAs have been characterized, but how sRNAs can regulate multiple, structurally unrelated mRNAs is less understood. Here we show that Salmonella GcvB sRNA directly acts on seven target mRNAs that commonly encode periplasmic substrate-binding proteins of ABC uptake systems for amino acids and peptides. Alignment of GcvB homologs of distantly related bacteria revealed a conserved G/U-rich element that is strictly required for GcvB target recognition. Analysis of target gene fusion regulation in vivo, and in vitro structure probing and translation assays showed that GcvB represses its target mRNAs by binding to extended C/A-rich regions, which may also serve as translational enhancer elements. In some cases (oppA, dppA), GcvB repression can be explained by masking the ribosome-binding site (RBS) to prevent 30S subunit binding. However, GcvB can also effectively repress translation by binding to target mRNAs at upstream sites, outside the RBS. Specifically, GcvB represses gltI mRNA translation at the C/A-rich target site located at positions −57 to −45 relative to the start codon. Taken together, our study suggests highly conserved regions in sRNAs and mRNA regions distant from Shine-Dalgarno sequences as important elements for the identification of sRNA targets. PMID:17974919

  20. An invertebrate-specific miRNA targeted the ancient cholinergic neuroendocrine system of oyster.

    PubMed

    Chen, Hao; Zhou, Zhi; Wang, Lingling; Wang, Hao; Liu, Rui; Zhang, Huan; Song, Linsheng

    2016-08-01

    Acetylcholine (ACh) is the main neurotransmitter in the cholinergic neuroendocrine system and plays an indispensable role in modulating diverse immune responses. As important transporters in choline uptake, choline transporter-like proteins (CTLs) can control ACh synthesis and release indirectly in multiple organisms. In this study, cgi-miR-2d, an invertebrate-specific miRNA in oyster Crassostrea gigas, is proved to repress the synthesis/release of ACh by targeting CgCTL1 and choline uptake in haemocytes during the early stage of pathogen infection. In short, an opposite expression pattern between CgCTL1 and cgi-miR-2d is observed during Vibrio splendidus infection, accompanied by changes in haemolymph ACh. In addition, the expression level of CgCTL1 is found to be significantly repressed after cgi-miR-2d overexpression in vivo, while both haemocyte choline and haemolymph ACh are also decreased simultaneously, similar to the finding in CgCTL1 knock-down assay. As a result, the expression of two tumour necrosis factor-like proteins and the bacteriostatic activity of oyster haemocytes are found to be altered significantly by either gain-of-function cgi-miR-2d or knock-down of CgCTL1. To our knowledge, this is the first miRNA identified in invertebrates that can target the ancient cholinergic system and augment immune response during infection. PMID:27488375

  1. Dual miRNA Targeting Restricts Host Range and Attenuates Neurovirulence of Flaviviruses

    PubMed Central

    Tsetsarkin, Konstantin A.; Liu, Guangping; Kenney, Heather; Bustos-Arriaga, Jose; Hanson, Christopher T.; Whitehead, Stephen S.; Pletnev, Alexander G.

    2015-01-01

    Mosquito-borne flaviviruses are among the most significant arboviral pathogens worldwide. Vaccinations and mosquito population control programs remain the most reliable means for flavivirus disease prevention, and live attenuated viruses remain one of the most attractive flavivirus vaccine platforms. Some live attenuated viruses are capable of infecting principle mosquito vectors, as demonstrated in the laboratory, which in combination with their intrinsic genetic instability could potentially lead to a vaccine virus reversion back to wild-type in nature, followed by introduction and dissemination of potentially dangerous viral strains into new geographic locations. To mitigate this risk we developed a microRNA-targeting approach that selectively restricts replication of flavivirus in the mosquito host. Introduction of sequences complementary to a mosquito-specific mir-184 and mir-275 miRNAs individually or in combination into the 3’NCR and/or ORF region resulted in selective restriction of dengue type 4 virus (DEN4) replication in mosquito cell lines and adult Aedes mosquitos. Moreover a combined targeting of DEN4 genome with mosquito-specific and vertebrate CNS-specific mir-124 miRNA can silence viral replication in two evolutionally distant biological systems: mosquitoes and mouse brains. Thus, this approach can reinforce the safety of newly developed or existing vaccines for use in humans and could provide an additional level of biosafety for laboratories using viruses with altered pathogenic or transmissibility characteristics. PMID:25906260

  2. An invertebrate-specific miRNA targeted the ancient cholinergic neuroendocrine system of oyster

    PubMed Central

    Chen, Hao; Zhou, Zhi; Wang, Hao; Liu, Rui; Zhang, Huan; Song, Linsheng

    2016-01-01

    Acetylcholine (ACh) is the main neurotransmitter in the cholinergic neuroendocrine system and plays an indispensable role in modulating diverse immune responses. As important transporters in choline uptake, choline transporter-like proteins (CTLs) can control ACh synthesis and release indirectly in multiple organisms. In this study, cgi-miR-2d, an invertebrate-specific miRNA in oyster Crassostrea gigas, is proved to repress the synthesis/release of ACh by targeting CgCTL1 and choline uptake in haemocytes during the early stage of pathogen infection. In short, an opposite expression pattern between CgCTL1 and cgi-miR-2d is observed during Vibrio splendidus infection, accompanied by changes in haemolymph ACh. In addition, the expression level of CgCTL1 is found to be significantly repressed after cgi-miR-2d overexpression in vivo, while both haemocyte choline and haemolymph ACh are also decreased simultaneously, similar to the finding in CgCTL1 knock-down assay. As a result, the expression of two tumour necrosis factor-like proteins and the bacteriostatic activity of oyster haemocytes are found to be altered significantly by either gain-of-function cgi-miR-2d or knock-down of CgCTL1. To our knowledge, this is the first miRNA identified in invertebrates that can target the ancient cholinergic system and augment immune response during infection. PMID:27488375

  3. Maize miRNA and target regulation in response to hormone depletion and light exposure during somatic embryogenesis

    PubMed Central

    Chávez-Hernández, Elva C.; Alejandri-Ramírez, Naholi D.; Juárez-González, Vasti T.; Dinkova, Tzvetanka D.

    2015-01-01

    Maize somatic embryogenesis (SE) is induced from the immature zygotic embryo in darkness and under the appropriate hormones' levels. Small RNA expression is reprogrammed and certain miRNAs become particularly enriched during induction while others, characteristic to the zygotic embryo, decrease. To explore the impact of different environmental cues on miRNA regulation in maize SE, we tested specific miRNA abundance and their target gene expression in response to photoperiod and hormone depletion for two different maize cultivars (VS-535 and H-565). The expression levels of miR156, miR159, miR164, miR168, miR397, miR398, miR408, miR528, and some predicted targets (SBP23, GA-MYB, CUC2, AGO1c, LAC2, SOD9, GR1, SOD1A, PLC) were examined upon staged hormone depletion in the presence of light photoperiod or darkness. Almost all examined miRNA, except miR159, increased upon hormone depletion, regardless photoperiod absence/presence. miR528, miR408, and miR398 changed the most. On the other hand, expression of miRNA target genes was strongly regulated by the photoperiod exposure. Stress-related miRNA targets showed greater differences between cultivars than development-related targets. miRNA/target inverse relationship was more frequently observed in darkness than light. Interestingly, miR528, but not miR159, miR168 or miR398, was located on polyribosome fractions suggesting a role for this miRNA at the level of translation. Overall our results demonstrate that hormone depletion exerts a great influence on specific miRNA expression during plant regeneration independently of light. However, their targets are additionally influenced by the presence of photoperiod. The reproducibility or differences observed for particular miRNA-target regulation between two different highly embryogenic genotypes provide clues for conserved miRNA roles within the SE process. PMID:26257760

  4. From target therapy to miRNA therapeutics of human multiple myeloma: theoretical and technological issues in the evolving scenario.

    PubMed

    Rossi, Marco; Amodio, Nicola; Di Martino, M T; Caracciolo, Daniele; Tagliaferri, Pierosandro; Tassone, Pierfrancesco

    2013-09-01

    The progress in the understanding of biological events underlying multiple myeloma (MM) development and progression has allowed the design of molecularly targeted therapies (MTTs) for this disease and several new compounds are presently under investigation in the preclinical and clinical settings. The recent discovery that miRNAs, and short non coding RNAs in general, are involved in the pathogenesis of cancer has raised the issue whether a novel therapeutic approach should be provided by selective interference with miRNA network. This review will focus on the rationale of miRNA-based therapeutics, providing the most relevant information on biogenesis and technical issues in miRNA analysis. Finally, a detailed overview of the recent findings on miRNA therapeutics of MM will be discussed. PMID:23834146

  5. Novel primate miRNAs co-evolved with ancient target genes in germinal zone specific expression patterns

    PubMed Central

    Arcila, Mary L; Betizeau, Marion; Cambronne, Xiaolu A; Guzman, Elmer; Doerflinger, Nathalie; Bouhallier, Frantz; Zhou, Hongjun; Wu, Bian; Rani, Neha; Bassett, Dani S; Borello, Ugo; Huissoud, Cyril; Goodman, Richard H; Dehay, Colette; Kosik, Kenneth S

    2014-01-01

    Summary Major non primate-primate differences in corticogenesis include the dimensions, precursor lineages and developmental timing of the germinal zones (GZ). microRNAs (miRNAs) of laser dissected GZ compartments and cortical plate (CP) from embryonic E80 macaque visual cortex were deep sequenced. The CP and the GZ including Ventricular Zone (VZ), outer and inner subcompartments of the Outer SubVentricular Zone (OSVZ) in area 17 displayed unique miRNA profiles. miRNAs present in primate, but absent in rodent, contributed disproportionately to the differential expression between GZ sub-regions. Prominent among the validated targets of these miRNAs were cell-cycle and neurogenesis regulators. Co-evolution between the emergent miRNAs and their targets suggested that novel miRNAs became integrated into ancient gene circuitry to exert additional control over proliferation. We conclude that multiple cell-cycle regulatory events contribute to the emergence of primate-specific cortical features, including the OSVZ, generated enlarged supragranular layers, largely responsible for the increased primate cortex computational abilities. PMID:24583023

  6. Novel primate miRNAs coevolved with ancient target genes in germinal zone-specific expression patterns.

    PubMed

    Arcila, Mary L; Betizeau, Marion; Cambronne, Xiaolu A; Guzman, Elmer; Doerflinger, Nathalie; Bouhallier, Frantz; Zhou, Hongjun; Wu, Bian; Rani, Neha; Bassett, Danielle S; Borello, Ugo; Huissoud, Cyril; Goodman, Richard H; Dehay, Colette; Kosik, Kenneth S

    2014-03-19

    Major nonprimate-primate differences in cortico-genesis include the dimensions, precursor lineages, and developmental timing of the germinal zones (GZs). microRNAs (miRNAs) of laser-dissected GZ compartments and cortical plate (CP) from embryonic E80 macaque visual cortex were deep sequenced. The CP and the GZ including ventricular zone (VZ) and outer and inner subcompartments of the outer subventricular zone (OSVZ) in area 17 displayed unique miRNA profiles. miRNAs present in primate, but absent in rodent, contributed disproportionately to the differential expression between GZ subregions. Prominent among the validated targets of these miRNAs were cell-cycle and neurogenesis regulators. Coevolution between the emergent miRNAs and their targets suggested that novel miRNAs became integrated into ancient gene circuitry to exert additional control over proliferation. We conclude that multiple cell-cycle regulatory events contribute to the emergence of primate-specific cortical features, including the OSVZ, generated enlarged supragranular layers, largely responsible for the increased primate cortex computational abilities. PMID:24583023

  7. miRNA Profiling Reveals Dysregulation of RET and RET-Regulating Pathways in Hirschsprung's Disease.

    PubMed

    Li, Shuangshuang; Wang, Shiqi; Guo, Zhenhua; Wu, Huan; Jin, Xianqing; Wang, Yi; Li, Xiaoqing; Liang, Shaoyan

    2016-01-01

    Hirschsprung's disease (HSCR), the most common congenital malformation of the gut, is regulated by multiple signal transduction pathways. Several components of these pathways are important targets for microRNAs (miRNAs). Multiple miRNAs have been associated with the pathophysiology of HSCR, and serum miRNAs profiles of HSCR patients have been reported, but miRNA expression in HSCR colon tissue is almost completely unexplored. Using microarray technology, we screened colon tissue to detect miRNAs whose expression profiles were altered in HSCR and identify targets of differentially expressed miRNAs. Following filtering of low-intensity signals, data normalization, and volcano plot filtering, we identified 168 differentially expressed miRNAs (104 up-regulated and 64 down-regulated). Fifty of these mRNAs represent major targets of dysegulated miRNAs and may thus important roles in the pathophysiology of HSCR. Pathway analysis revealed that 7 of the miRNA targets encode proteins involved in regulation of cell proliferation and migration via RET and related signaling pathways (MAPK and PI3K/AKT). Our results identify miRNAs that play key roles in the pathophysiology of the complex multi-factorial disease HSCR. PMID:26933947

  8. miRNA Profiling Reveals Dysregulation of RET and RET-Regulating Pathways in Hirschsprung's Disease

    PubMed Central

    Li, Shuangshuang; Wang, Shiqi; Guo, Zhenhua; Wu, Huan; Jin, Xianqing; Wang, Yi; Li, Xiaoqing; Liang, Shaoyan

    2016-01-01

    Hirschsprung’s disease (HSCR), the most common congenital malformation of the gut, is regulated by multiple signal transduction pathways. Several components of these pathways are important targets for microRNAs (miRNAs). Multiple miRNAs have been associated with the pathophysiology of HSCR, and serum miRNAs profiles of HSCR patients have been reported, but miRNA expression in HSCR colon tissue is almost completely unexplored. Using microarray technology, we screened colon tissue to detect miRNAs whose expression profiles were altered in HSCR and identify targets of differentially expressed miRNAs. Following filtering of low-intensity signals, data normalization, and volcano plot filtering, we identified 168 differentially expressed miRNAs (104 up-regulated and 64 down-regulated). Fifty of these mRNAs represent major targets of dysegulated miRNAs and may thus important roles in the pathophysiology of HSCR. Pathway analysis revealed that 7 of the miRNA targets encode proteins involved in regulation of cell proliferation and migration via RET and related signaling pathways (MAPK and PI3K/AKT). Our results identify miRNAs that play key roles in the pathophysiology of the complex multi-factorial disease HSCR. PMID:26933947

  9. miRNA–target chimeras reveal miRNA 3′-end pairing as a major determinant of Argonaute target specificity

    PubMed Central

    Moore, Michael J.; Scheel, Troels K. H.; Luna, Joseph M.; Park, Christopher Y.; Fak, John J.; Nishiuchi, Eiko; Rice, Charles M.; Darnell, Robert B.

    2015-01-01

    microRNAs (miRNAs) act as sequence-specific guides for Argonaute (AGO) proteins, which mediate posttranscriptional silencing of target messenger RNAs. Despite their importance in many biological processes, rules governing AGO–miRNA targeting are only partially understood. Here we report a modified AGO HITS-CLIP strategy termed CLEAR (covalent ligation of endogenous Argonaute-bound RNAs)-CLIP, which enriches miRNAs ligated to their endogenous mRNA targets. CLEAR-CLIP mapped ∼130,000 endogenous miRNA–target interactions in mouse brain and ∼40,000 in human hepatoma cells. Motif and structural analysis define expanded pairing rules for over 200 mammalian miRNAs. Most interactions combine seed-based pairing with distinct, miRNA-specific patterns of auxiliary pairing. At some regulatory sites, this specificity confers distinct silencing functions to miRNA family members with shared seed sequences but divergent 3′-ends. This work provides a means for explicit biochemical identification of miRNA sites in vivo, leading to the discovery that miRNA 3′-end pairing is a general determinant of AGO binding specificity. PMID:26602609

  10. Epigenetic regulation of miRNA-124 and multiple downstream targets is associated with treatment response in myeloid malignancies

    PubMed Central

    Liu, Hongbin; Pattie, Phillip; Chandrasekara, Sahan; Spencer, Andrew; Dear, Anthony E.

    2016-01-01

    Epigenetic regulation of microRNA (miRNA) expression has recently been implicated in the pathogenesis of myelodysplastic syndrome (MDS). Particular interest has focused on miRNA-124 expression, which is inhibited in MDS and has recently been demonstrated to be upregulated in response to epigenetic treatment (EGT). Previous studies have determined the in vitro and in vivo expression of miRNA-124 and several molecular targets, including cyclin-dependent kinase (CDK) 4, CDK6 and enhancer of zeste homolog 2 (EZH2), in order to elucidate the molecular mechanisms associated with the miRNA-124-mediated therapeutic response to EGT in MDS and identify additional potential biomarkers of early EGT treatment response in myeloid malignancies. In vitro studies in the HL60 leukemic cell line identified upregulation of miRNA-124 expression in response to single-agent EGT with either azacytidine (AZA) or the histone deacetylase inhibitor panobinostat (LBH589). Combination EGT with AZA and LBH589 resulted in significant additive induction of miRNA-124 expression. Expression of downstream targets of miRNA-124, including CDK4, CDK6 and EZH2, in response to single agent and combined EGT was determined in HL60 cells. Single and combination EGT treatment resulted in inhibition of CDK4, CDK6 and EZH2 expression with combination EGT resulting in a significant and additive inhibitory effect. In vivo studies using peripheral blood mononuclear cells from patients receiving combination EGT for high risk MDS or acute myeloid leukemia demonstrated significant induction of miRNA-124 and inhibition CDK4 and CDK6 messenger (m)RNA expression in patients that responded to combination EGT. A trend to inhibited EZH2 mRNA expression was also identified in response to combination EGT. Overall, the present observations identify a potential molecular mechanism for miRNA-124-mediated response to EGT involving regulation of CDK4, CDK6 and EZH2 expression. In addition, the present findings further qualify miRNA

  11. The essential polysome-associated RNA-binding protein RBP42 targets mRNAs involved in Trypanosoma brucei energy metabolism

    PubMed Central

    Das, Anish; Morales, Rachel; Banday, Mahrukh; Garcia, Stacey; Hao, Li; Cross, George A.M.; Estevez, Antonio M.; Bellofatto, Vivian

    2012-01-01

    RNA-binding proteins that target mRNA coding regions are emerging as regulators of post-transcriptional processes in eukaryotes. Here we describe a newly identified RNA-binding protein, RBP42, which targets the coding region of mRNAs in the insect form of the African trypanosome, Trypanosoma brucei. RBP42 is an essential protein and associates with polysome-bound mRNAs in the cytoplasm. A global survey of RBP42-bound mRNAs was performed by applying HITS-CLIP technology, which captures protein–RNA interactions in vivo using UV light. Specific RBP42–mRNA interactions, as well as mRNA interactions with a known RNA-binding protein, were purified using specific antibodies. Target RNA sequences were identified and quantified using high-throughput RNA sequencing. Analysis revealed that RBP42 bound mainly within the coding region of mRNAs that encode proteins involved in cellular energy metabolism. Although the mechanism of RBP42's function is unclear at present, we speculate that RBP42 plays a critical role in modulating T. brucei energy metabolism. PMID:22966087

  12. miRNA-216 and miRNA-499 target cyb561d2 in zebrafish in response to fipronil exposure.

    PubMed

    Zhou, Yongyong; Huang, Hannian; Zhang, Kai; Ding, Xianfeng; Jia, Longlue; Yu, Liang; Zhu, Guonian; Guo, Jiangfeng

    2016-07-01

    MicroRNA (miRNA) can regulate the expression of its target gene by mediating mRNA cleavage or by translational repression at a post-transcriptional level. Usually, one miRNA may regulate many genes as its targets, while one gene may also be targeted by many miRNAs. We previously demonstrated that cyb561d2, whose protein product is involved in cell defense, and chemical stress, is targeted by miR-155 in adult zebrafish (Danio rerio) when exposed to fipronil (5-amino-1-[2,6-dichloro-4-(trifluoromethyl) phenyl]-4-[(trifluoromethyl) sulphinyl]-1H-pyrazole-3-carbonitrile). Microcosm Targets prediction showed that the cyb561d2 gene is also highly possibly targeted by miR-194a, miR-216b, miR-429, and miR-499. These interactions need to be further validated experimentally. In this study, we evaluated the effects of fipronil on miR-194a, miR-216b, miR-429, miR-499 and cyb561d2 in zebrafish and investigated whether these four miRNAs could regulate the expression of cyb561d2 in both mRNA and protein levels. The expression of cyb561d2 was upregulated in both mRNA and protein level in a dose-dependent manner upon stimulation of fipronil, and miR-216b and miR-499 were downregulated concurrently, whereas there was no significant changes were observed in the expression level of miR-194a and miR-429. The dual luciferase report assay demonstrated that miR-216b and miR-499 interacted with cyb561d2 3'-untranslated regions (3'-UTR), miR-194a and miR-429 did not stimulate degradation of cyb561d2 mRNA. The expression of cyb561d2 was reduced in both mRNA and protein level when ZF4 cells were transfected with miR-499 mimic, whereas expression level of both mRNA and protein was increased when endogenous miR-499 was inhibited by transfection with miR-499 inhibitor. Likewise, the mRNA and protein level of cyb561d2 was affected by treatment with the mimics and the inhibitor of miR-216b. In contrast, when ZF4 cells were transfected with a mimic of miR-194a or miR-429, the expression of cyb561d2

  13. Targeted Inhibition of miRNA Maturation with Morpholinos Reveals a Role for miR-375 in Pancreatic Islet Development

    PubMed Central

    Kloosterman, Wigard P; Lagendijk, Anne K; Ketting, René F; Moulton, Jon D; Plasterk, Ronald H. A

    2007-01-01

    Several vertebrate microRNAs (miRNAs) have been implicated in cellular processes such as muscle differentiation, synapse function, and insulin secretion. In addition, analysis of Dicer null mutants has shown that miRNAs play a role in tissue morphogenesis. Nonetheless, only a few loss-of-function phenotypes for individual miRNAs have been described to date. Here, we introduce a quick and versatile method to interfere with miRNA function during zebrafish embryonic development. Morpholino oligonucleotides targeting the mature miRNA or the miRNA precursor specifically and temporally knock down miRNAs. Morpholinos can block processing of the primary miRNA (pri-miRNA) or the pre-miRNA, and they can inhibit the activity of the mature miRNA. We used this strategy to knock down 13 miRNAs conserved between zebrafish and mammals. For most miRNAs, this does not result in visible defects, but knockdown of miR-375 causes defects in the morphology of the pancreatic islet. Although the islet is still intact at 24 hours postfertilization, in later stages the islet cells become scattered. This phenotype can be recapitulated by independent control morpholinos targeting other sequences in the miR-375 precursor, excluding off-target effects as cause of the phenotype. The aberrant formation of the endocrine pancreas, caused by miR-375 knockdown, is one of the first loss-of-function phenotypes for an individual miRNA in vertebrate development. The miRNA knockdown strategy presented here will be widely used to unravel miRNA function in zebrafish. PMID:17676975

  14. miRNA let-7e targeting MMP9 is involved in adipose-derived stem cell differentiation toward epithelia

    PubMed Central

    Ventayol, M; Viñas, J L; Sola, A; Jung, M; Brüne, B; Pi, F; Mastora, C; Hotter, G

    2014-01-01

    miRNA let-7e is involved in stem cell differentiation, and metalloproteinases are among its potential target genes. We hypothesized that the inhibitory action of let-7e on regulation of MMP9 expression could represent a crucial mechanism during differentiation of adipose-derived stem cells (ASCs). ASCs were differentiated with all-trans retinoic acid (ATRA) to promote differentiation, and the effect of let-7 silencing during differentiation was tested. Results indicate that ASCs cultured with ATRA differentiated into cells of the epithelial lineage. We found that ASCs cultured with ATRA or transfected with miRNA let-7e expressed epithelial markers such as cytokeratin-18 and early renal organogenesis markers such as Pax2, Wt1, Wnt4 and megalin. Conversely, the specific knockdown of miRNA let-7e in ASCs significantly decreased the expression of these genes, indicating its vital role during the differentiation process. Using luciferase reporter assays, we also showed that MMP9 is a direct target of miRNA let-7e. Thus, our results suggest that miRNA let-7e acts as a matrix metalloproteinase-9 (MMP9) inhibitor and differentiation inducer in ASCs. PMID:24503540

  15. Mechanisms of regulation of mature miRNAs.

    PubMed

    Towler, Benjamin P; Jones, Christopher I; Newbury, Sarah F

    2015-12-01

    miRNAs are short RNA molecules of ∼22-nt in length that play important roles in post-transcriptional control of gene expression. miRNAs normally function as negative regulators of mRNA expression by binding complementary sequences in the 3'-UTR of target mRNAs and causing translational repression and/or target degradation. Much research has been undertaken to enhance understanding of the biogenesis, function and targeting of miRNAs. However, until recently, the mechanisms underlying the regulation of the levels of mature miRNAs themselves have been largely overlooked. Although it has generally been assumed that miRNAs are stable molecules, recent evidence indicates that the stability of specific mature miRNAs can be regulated during key cellular and developmental processes in certain cell types. Here we discuss the current knowledge of the mechanisms by which mature miRNAs are regulated in the cell and the factors that contribute to the control of their stability. PMID:26614662

  16. Integrated analysis of miRNA and mRNA paired expression profiling of prenatal skeletal muscle development in three genotype pigs

    PubMed Central

    Tang, Zhonglin; Yang, Yalan; Wang, Zishuai; Zhao, Shuanping; Mu, Yulian; Li, Kui

    2015-01-01

    MicroRNAs (miRNAs) play a vital role in muscle development by binding to messenger RNAs (mRNAs). Based on prenatal skeletal muscle at 33, 65 and 90 days post-coitus (dpc) from Landrace, Tongcheng and Wuzhishan pigs, we carried out integrated analysis of miRNA and mRNA expression profiling. We identified 33, 18 and 67 differentially expressed miRNAs and 290, 91 and 502 mRNA targets in Landrace, Tongcheng and Wuzhishan pigs, respectively. Subsequently, 12 mRNAs and 3 miRNAs differentially expressed were validated using quantitative real-time PCR (qPCR), and 5 predicted miRNA targets were confirmed via dual luciferase reporter or western blot assays. We identified a set of miRNAs and mRNA genes differentially expressed in muscle development. Gene ontology (GO) enrichment analysis suggests that the miRNA targets are primarily involved in muscle contraction, muscle development and negative regulation of cell proliferation. Our data indicated that more mRNAs are regulated by miRNAs at earlier stages than at later stages of muscle development. Landrace and Tongcheng pigs also had longer phases of myoblast proliferation than Wuzhishan pigs. This study will be helpful to further explore miRNA-mRNA interactions in myogenesis and aid to uncover the molecular mechanisms of muscle development and phenotype variance in pigs. PMID:26496978

  17. miRNAs and Melanoma: How Are They Connected?

    PubMed Central

    da Cruz, Adriana Taveira; Jasiulionis, Miriam Galvonas

    2012-01-01

    miRNAs are non-coding RNAs that bind to mRNA targets and disturb their stability and/or translation, thus acting in gene posttranscriptional regulation. It is predicted that over 30% of mRNAs are regulated by miRNAs. Therefore these molecules are considered essential in the processing of many biological responses, such as cell proliferation, apoptosis, and stress responsiveness. As miRNAs participate of virtually all cellular pathways, their deregulation is critical to cancer development. Consequently, loss or gain of miRNAs function may contribute to tumor progression. Little is known about the regulation of miRNAs and understanding the events that lead to changes in their expression may provide new perspectives for cancer treatment. Among distinct types of cancer, melanoma has special implications. It is characterized as a complex disease, originated from a malignant transformation of melanocytes. Despite being rare, its metastatic form is usually incurable, which makes melanoma the major death cause of all skin cancers. Some molecular pathways are frequently disrupted in melanoma, and miRNAs probably have a decisive role on these alterations. Therefore, this review aims to discuss new findings about miRNAs in melanoma fields, underlying epigenetic processes, and also to argue possibilities of using miRNAs in melanoma diagnosis and therapy. PMID:21860617

  18. A Set of miRNAs, Their Gene and Protein Targets and Stromal Genes Distinguish Early from Late Onset ER Positive Breast Cancer

    PubMed Central

    Bastos, E. P.; Brentani, H.; Pereira, C. A. B.; Polpo, A.; Lima, L.; Puga, R. D.; Pasini, F. S.; Osorio, C. A. B. T.; Roela, R. A.; Achatz, M. I.; Trapé, A. P.; Gonzalez-Angulo, A. M.; Brentani, M. M.

    2016-01-01

    Breast cancer (BC) in young adult patients (YA) has a more aggressive biological behavior and is associated with a worse prognosis than BC arising in middle aged patients (MA). We proposed that differentially expressed miRNAs could regulate genes and proteins underlying aggressive phenotypes of breast tumors in YA patients when compared to those arising in MA patients. Objective: Using integrated expression analyses of miRs, their mRNA and protein targets and stromal gene expression, we aimed to identify differentially expressed profiles between tumors from YA-BC and MA-BC. Methodology and Results: Samples of ER+ invasive ductal breast carcinomas, divided into two groups: YA-BC (35 years or less) or MA-BC (50–65 years) were evaluated. Screening for BRCA1/2 status according to the BOADICEA program indicated low risk of patients being carriers of these mutations. Aggressive characteristics were more evident in YA-BC versus MA-BC. Performing qPCR, we identified eight miRs differentially expressed (miR-9, 18b, 33b, 106a, 106b, 210, 518a-3p and miR-372) between YA-BC and MA-BC tumors with high confidence statement, which were associated with aggressive clinicopathological characteristics. The expression profiles by microarray identified 602 predicted target genes associated to proliferation, cell cycle and development biological functions. Performing RPPA, 24 target proteins differed between both groups and 21 were interconnected within a network protein-protein interactions associated with proliferation, development and metabolism pathways over represented in YA-BC. Combination of eight mRNA targets or the combination of eight target proteins defined indicators able to classify individual samples into YA-BC or MA-BC groups. Fibroblast-enriched stroma expression profile analysis resulted in 308 stromal genes differentially expressed between YA-BC and MA-BC. Conclusion: We defined a set of differentially expressed miRNAs, their mRNAs and protein targets and stromal

  19. The STAR protein QKI-7 recruits PAPD4 to regulate post-transcriptional polyadenylation of target mRNAs

    PubMed Central

    Yamagishi, Ryota; Tsusaka, Takeshi; Mitsunaga, Hiroko; Maehata, Takaharu; Hoshino, Shin-ichi

    2016-01-01

    Emerging evidence has demonstrated that regulating the length of the poly(A) tail on an mRNA is an efficient means of controlling gene expression at the post-transcriptional level. In early development, transcription is silenced and gene expression is primarily regulated by cytoplasmic polyadenylation. In somatic cells, considerable progress has been made toward understanding the mechanisms of negative regulation by deadenylation. However, positive regulation through elongation of the poly(A) tail has not been widely studied due to the difficulty in distinguishing whether any observed increase in length is due to the synthesis of new mRNA, reduced deadenylation or cytoplasmic polyadenylation. Here, we overcame this barrier by developing a method for transcriptional pulse-chase analysis under conditions where deadenylases are suppressed. This strategy was used to show that a member of the Star family of RNA binding proteins, QKI, promotes polyadenylation when tethered to a reporter mRNA. Although multiple RNA binding proteins have been implicated in cytoplasmic polyadenylation during early development, previously only CPEB was known to function in this capacity in somatic cells. Importantly, we show that only the cytoplasmic isoform QKI-7 promotes poly(A) tail extension, and that it does so by recruiting the non-canonical poly(A) polymerase PAPD4 through its unique carboxyl-terminal region. We further show that QKI-7 specifically promotes polyadenylation and translation of three natural target mRNAs (hnRNPA1, p27kip1 and β-catenin) in a manner that is dependent on the QKI response element. An anti-mitogenic signal that induces cell cycle arrest at G1 phase elicits polyadenylation and translation of p27kip1 mRNA via QKI and PAPD4. Taken together, our findings provide significant new insight into a general mechanism for positive regulation of gene expression by post-transcriptional polyadenylation in somatic cells. PMID:26926106

  20. Midbrain dopamine neurons in Parkinson's disease exhibit a dysregulated miRNA and target-gene network.

    PubMed

    Briggs, Christine E; Wang, Yulei; Kong, Benjamin; Woo, Tsung-Ung W; Iyer, Lakshmanan K; Sonntag, Kai C

    2015-08-27

    The degeneration of substantia nigra (SN) dopamine (DA) neurons in sporadic Parkinson׳s disease (PD) is characterized by disturbed gene expression networks. Micro(mi)RNAs are post-transcriptional regulators of gene expression and we recently provided evidence that these molecules may play a functional role in the pathogenesis of PD. Here, we document a comprehensive analysis of miRNAs in SN DA neurons and PD, including sex differences. Our data show that miRNAs are dysregulated in disease-affected neurons and differentially expressed between male and female samples with a trend of more up-regulated miRNAs in males and more down-regulated miRNAs in females. Unbiased Ingenuity Pathway Analysis (IPA) revealed a network of miRNA/target-gene associations that is consistent with dysfunctional gene and signaling pathways in PD pathology. Our study provides evidence for a general association of miRNAs with the cellular function and identity of SN DA neurons, and with deregulated gene expression networks and signaling pathways related to PD pathogenesis that may be sex-specific. PMID:26047984

  1. Two novel aspects of the kinetics of gene expression including miRNAs

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2013-04-01

    In eukaryotic cells, many genes are transcribed into non-coding RNAs. Small RNAs or, more specifically, microRNAs (miRNAs) form an abundant sub-class of such RNAs. miRNAs are transcribed as long noncoding RNA and then generated via a processing pathway down to the 20-24-nucleotide length. The key ability of miRNAs is to associate with target mRNAs and to suppress their translation and/or facilitate degradation. Using the mean-field kinetic equations and Monte Carlo simulations, we analyze two aspects of this interplay. First, we describe the situation when the formation of mRNA or miRNA is periodically modulated by a transcription factor which itself is not perturbed by these species. Depending on the ratio between the mRNA and miRNA formation rates, the corresponding induced periodic kinetics are shown to be either nearly harmonic or shaped as anti-phase pulses. The second part of the work is related to recent experimental studies indicating that differentiation of stem cells often involves changes in gene transcription into miRNAs and/or the interference between miRNAs, mRNAs and proteins. In particular, the regulatory protein obtained via mRNA translation may suppress the miRNA formation, and the latter may suppress in turn the miRNA-mRNA association and degradation. The corresponding bistable kinetics are described in detail.

  2. Dynamic Expression of Novel MiRNA Candidates and MiRNA-34 Family Members in Early- to Mid-Gestational Fetal Keratinocytes Contributes to Scarless Wound Healing by Targeting the TGF-β Pathway

    PubMed Central

    Zhao, Feng; Wang, Zhe; Lang, Hongxin; Liu, Xiaoyu; Zhang, Dianbao; Wang, Xiliang; Zhang, Tao; Wang, Rui; Shi, Ping; Pang, Xining

    2015-01-01

    Background Early- to mid-gestational fetal mammalian skin wounds heal rapidly and without scarring. Keratinocytes (KCs) have been found to exert important effects on the regulation of fibroblasts. There may be significant differences of gestational fetal KCs at different ages. The advantages in early- to mid-gestational fetal KCs could lead to fetal scarless wound healing. Methods KCs from six human fetal skin samples were divided into two groups: a mid-gestation group (less than 28 weeks of gestational age) and a late-gestation group (more than 28 weeks of gestational age). RNA extracted from KCs was used to prepare a library of small RNAs for next-generation sequencing (NGS). To uncover potential novel microRNA (miRNAs), the mirTools 2.0 web server was used to identify candidate novel human miRNAs from the NGS data. Other bioinformatical analyses were used to further validate the novel miRNAs. The expression levels of the miRNAs were further confirmed by real-time quantitative RT-PCR. Results A total of 61.59 million reads were mapped to 1,170 known human miRNAs in miRBase. Among a total of 202 potential novel miRNAs uncovered, 106 candidates have a higher probability of being novel human miRNAs. A total of 110 miRNAs, including 22 novel miRNA candidates, were significantly differently expressed between mid- and late-gestational fetal KCs. Thirty-three differentially expressed miRNAs and miR-34 family members are correlated with the transforming growth factor-β (TGF-β) pathway. Conclusions Taken together, our results provide compelling evidence supporting the existence of 106 novel miRNAs and the dynamic expression of miRNAs that extensively targets the TGF-β pathway at different gestational ages in fetal KCs. MiRNAs showing altered expression at different gestational ages in fetal KCs may contribute to scarless wound healing in early- to mid-gestational fetal KCs, and thus may be new targets for potential scar prevention and reduction therapies. PMID:25978377

  3. Pathway analysis of senescence-associated miRNA targets reveals common processes to different senescence induction mechanisms.

    PubMed

    Lafferty-Whyte, Kyle; Cairney, Claire J; Jamieson, Nigel B; Oien, Karin A; Keith, W Nicol

    2009-04-01

    Multiple mechanisms of senescence induction exist including telomere attrition, oxidative stress, oncogene expression and DNA damage signalling. The regulation of the cellular changes required to respond to these stimuli and create the complex senescent cell phenotype has many different mechanisms. MiRNAs present one mechanism by which genes with diverse functions on multiple pathways can be simultaneously regulated. In this study we investigated 12 miRNAs previously identified as senescence regulators. Using pathway analysis of their target genes we tested the relevance of miRNA regulation in the induction of senescence. Our analysis highlighted the potential of these senescence-associated miRNAs (SA-miRNAs) to regulate the cell cycle, cytoskeletal remodelling and proliferation signalling logically required to create a senescent cell. The reanalysis of publicly available gene expression data from studies exploring different senescence stimuli also revealed their potential to regulate core senescence processes, regardless of stimuli. We also identified stimulus specific apoptosis survival pathways theoretically regulated by the SA-miRNAs. Furthermore the observation that miR-499 and miR-34c had the potential to regulate all 4 of the senescence induction types we studied highlights their future potential as novel drug targets for senescence induction. PMID:19419692

  4. Identification of Cold-Responsive miRNAs and Their Target Genes in Nitrogen-Fixing Nodules of Soybean

    PubMed Central

    Zhang, Senlei; Wang, Youning; Li, Kexue; Zou, Yanmin; Chen, Liang; Li, Xia

    2014-01-01

    As a warm climate species, soybean is highly sensitive to chilling temperatures. Exposure to chilling temperatures causes a significant reduction in the nitrogen fixation rate in soybean plants and subsequent yield loss. However, the molecular basis for the sensitivity of soybean to chilling is poorly understood. In this study, we identified cold-responsive miRNAs in nitrogen-fixing nodules of soybean. Upon chilling, the expression of gma-miR397a, gma-miR166u and gma-miR171p was greatly upregulated, whereas the expression of gma-miR169c, gma-miR159b, gma-miR319a/b and gma-miR5559 was significantly decreased. The target genes of these miRNAs were predicted and validated using 5' complementary DNA ends (5'-RACE) experiments, and qPCR analysis identified putative genes targeted by the cold-responsive miRNAs in response to chilling temperatures. Taken together, our results reveal that miRNAs may be involved in the protective mechanism against chilling injury in mature nodules of soybean. PMID:25100171

  5. Computational identification and characterization of conserved miRNAs and their target genes in beet (Beta vulgaris).

    PubMed

    Li, J L; Cui, J; Cheng, D Y

    2015-01-01

    Highly conserved endogenous non-coding microRNAs (miRNAs) play important roles in plants and animals by silencing genes via destruction or blocking of translation of homologous mRNA. Sugar beet, Beta vulgaris, is one of the most important sugar crops in China, with properties that include wide adaptability and strong tolerance to salinity and impoverished soils. Seedlings of B. vulgaris can grow in soils containing up to 0.6% salt; it is important to understand the molecular mechanisms of salt tolerance to enrich genetic resources for breeding salt-tolerant sugar beets. Here, we report 13 mature miRNAs from 12 families, predicted using an in silico approach from 29,857 expressed sequence tags and 279,223 genome survey sequences. The psRNATarget server predicted 25 target genes for the 13 miRNAs. Most of the target genes appeared to encode transcription factors or were involved in metabolism, signal transduction, stress response, growth, and development. These results improve our understanding of the molecular mechanisms of miRNA in beet and may aid in the development of novel and precise techniques for understanding post-transcriptional gene-silencing mechanisms in response to stress tolerance. PMID:26345842

  6. Identification of Cold-Responsive miRNAs and Their Target Genes in Nitrogen-Fixing Nodules of Soybean.

    PubMed

    Zhang, Senlei; Wang, Youning; Li, Kexue; Zou, Yanmin; Chen, Liang; Li, Xia

    2014-01-01

    As a warm climate species, soybean is highly sensitive to chilling temperatures. Exposure to chilling temperatures causes a significant reduction in the nitrogen fixation rate in soybean plants and subsequent yield loss. However, the molecular basis for the sensitivity of soybean to chilling is poorly understood. In this study, we identified cold-responsive miRNAs in nitrogen-fixing nodules of soybean. Upon chilling, the expression of gma-miR397a, gma-miR166u and gma-miR171p was greatly upregulated, whereas the expression of gma-miR169c, gma-miR159b, gma-miR319a/b and gma-miR5559 was significantly decreased. The target genes of these miRNAs were predicted and validated using 5' complementary DNA ends (5'-RACE) experiments, and qPCR analysis identified putative genes targeted by the cold-responsive miRNAs in response to chilling temperatures. Taken together, our results reveal that miRNAs may be involved in the protective mechanism against chilling injury in mature nodules of soybean. PMID:25100171

  7. Comparative Analysis and Identification of miRNAs and Their Target Genes Responsive to Salt Stress in Diploid and Tetraploid Paulownia fortunei Seedlings

    PubMed Central

    Fan, Guoqiang; Li, Xiaoyu; Deng, Minjie; Zhao, Zhenli; Yang, Lu

    2016-01-01

    Salt stress is a global environmental problem that affects plant growth and development. Paulownia fortunei is an adaptable and fast-growing deciduous tree native to China that is environmentally and economically important. MicroRNAs (miRNAs) play important regulatory roles in growth, development, and stress responses in plants. MiRNAs that respond to biotic stresses have been identified; however, how miRNAs in P. fortunei respond to salt stress has not yet been reported. To identify salt-stress-responsive miRNAs and predict their target genes, four small RNA and four degradome libraries were constructed from NaCl-treated and NaCl-free leaves of P. fortunei seedlings. The results indicated that salt stress had different physiological effects on diploid and tetraploid P. fortunei. We detected 53 conserved miRNAs belonging to 17 miRNA families and 134 novel miRNAs in P. fortunei. Comparing their expression levels in diploid and tetraploid P. fortunei, we found 10 conserved and 10 novel miRNAs that were significantly differentially expressed under salt treatment, among them eight were identified as miRNAs probably associated with higher salt tolerance in tetraploid P. fortunei than in diploid P. fortunei. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed to predict the functions of the target genes of the conserved and novel miRNAs. The expressions of 10 differentially expressed miRNAs were validated by quantitative real-time polymerase chain reaction (qRT-PCR). This is the first report on P. fortunei miRNAs and their target genes under salt stress. The results provided information at the physiological and molecular levels for further research into the response mechanisms of P. fortunei to salt stress. PMID:26894691

  8. The PARN Deadenylase Targets a Discrete Set of mRNAs for Decay and Regulates Cell Motility in Mouse Myoblasts

    PubMed Central

    Lee, Jerome E.; Lee, Ju Youn; Trembly, Jarrett; Wilusz, Jeffrey; Tian, Bin; Wilusz, Carol J.

    2012-01-01

    PARN is one of several deadenylase enzymes present in mammalian cells, and as such the contribution it makes to the regulation of gene expression is unclear. To address this, we performed global mRNA expression and half-life analysis on mouse myoblasts depleted of PARN. PARN knockdown resulted in the stabilization of 40 mRNAs, including that encoding the mRNA decay factor ZFP36L2. Additional experiments demonstrated that PARN knockdown induced an increase in Zfp36l2 poly(A) tail length as well as increased translation. The elements responsible for PARN-dependent regulation lie within the 3′ UTR of the mRNA. Surprisingly, changes in mRNA stability showed an inverse correlation with mRNA abundance; stabilized transcripts showed either no change or a decrease in mRNA abundance. Moreover, we found that stabilized mRNAs had reduced accumulation of pre–mRNA, consistent with lower transcription rates. This presents compelling evidence for the coupling of mRNA decay and transcription to buffer mRNA abundances. Although PARN knockdown altered decay of relatively few mRNAs, there was a much larger effect on global gene expression. Many of the mRNAs whose abundance was reduced by PARN knockdown encode factors required for cell migration and adhesion. The biological relevance of this observation was demonstrated by the fact that PARN KD cells migrate faster in wound-healing assays. Collectively, these data indicate that PARN modulates decay of a defined set of mRNAs in mammalian cells and implicate this deadenylase in coordinating control of genes required for cell movement. PMID:22956911

  9. Hypothesis: Do miRNAs Targeting the Leucine-Rich Repeat Kinase 2 Gene (LRRK2) Influence Parkinson's Disease Susceptibility?

    PubMed

    Yılmaz, Şenay Görücü; Geyik, Sırma; Neyal, Ayşe Münife; Soko, Nyarai D; Bozkurt, Hakan; Dandara, Collet

    2016-04-01

    Parkinson's disease (PD) is a frequently occurring neurodegenerative motor disorder adversely impacting global health. There is a paucity of biomarkers and diagnostics that can forecast susceptibility to PD. A new research frontier for PD pathophysiology is the study of variations in microRNA (miRNA) expression whereby miRNAs serve as "upstream regulators" of gene expression in relation to functioning of the dopamine neuronal pathways. Leucine-Rich Repeat Kinase 2 (LRRK2) is a frequently studied gene in PD. Little is known about the ways in which expression of miRNAs targeting LRKK2 impact PD susceptibility. In a sample of 204 unrelated subjects (102 persons with PD and 102 healthy controls), we report here candidate miRNA expression in whole blood samples as measured by real-time PCR (hsa-miR-4671-3p, hsa-miR-335-3p, hsa-miR-561-3p, hsa-miR-579-3p, and hsa-miR-3143) that target LRRK2. Using step-wise logistic regression, and controlling for covariates such as age, gender, PD disease severity, concomitant medications, and co-morbidity, we found that the combination of has-miR-335-3p, has-miR-561-3p, and has-miR-579-3p account for 50% of the variation in regards to PD susceptibility (p < 0.0001). Notably, the hsa-miR-561-3p expression was the most robust predictor of PD in both univariate and multivariate analyses (p < 0.001). Moreover, the biological direction (polarity) of the association was plausible in that the candidate miRNAs displayed a diminished expression in patients. This is consistent with the hypothesis that decreased levels of miRNAs targeting LRRK2 might result in a gain of function for LRRK2, and by extension, loss of neuronal viability. To the best of our knowledge, this is the first clinical association study of the above candidate miRNAs' expression in PD using peripheral samples. These observations may guide future clinical diagnostics research on PD. PMID:27093107

  10. Detection of miRNA Targets in High-throughput Using the 3′LIFE Assay

    PubMed Central

    Wolter, Justin M.; Kotagama, Kasuen; Babb, Cody S.; Mangone, Marco

    2015-01-01

    Luminescent Identification of Functional Elements in 3′UTRs (3′LIFE) allows the rapid identification of targets of specific miRNAs within an array of hundreds of queried 3′UTRs. Target identification is based on the dual-luciferase assay, which detects binding at the mRNA level by measuring translational output, giving a functional readout of miRNA targeting. 3′LIFE uses non-proprietary buffers and reagents, and publically available reporter libraries, making genome-wide screens feasible and cost-effective. 3′LIFE can be performed either in a standard lab setting or scaled up using liquid handling robots and other high-throughput instrumentation. We illustrate the approach using a dataset of human 3′UTRs cloned in 96-well plates, and two test miRNAs, let-7c and miR-10b. We demonstrate how to perform DNA preparation, transfection, cell culture and luciferase assays in 96-well format, and provide tools for data analysis. In conclusion 3′LIFE is highly reproducible, rapid, systematic, and identifies high confidence targets. PMID:26066857

  11. Targeting miRNAs involved in cancer stem cell and EMT regulation: an emerging concept in overcoming drug resistance

    PubMed Central

    Wang, Zhiwei; Li, Yiwei; Ahmad, Aamir; Azmi, Asfar S; Kong, Dejuan; Banerjee, Sanjeev; Sarkar, Fazlul H

    2010-01-01

    Although chemotherapy is an important therapeutic strategy for cancer treatment, it fails to eliminate all tumor cells due to intrinsic or acquired drug resistance, which is the most common cause of tumor recurrence. Emerging evidence suggests an intricate role of cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT)-type cells in anticancer drug resistance. Recent studies also demonstrated that microRNAs (miRNAs) play critical roles in the regulation of drug resistance. Here we will discuss current knowledge regarding CSCs, EMT and the role of regulation by miRNAs in the context of drug resistance, tumor recurrence and metastasis. A better understanding of the molecular intricacies of drug resistant cells will help to design novel therapeutic strategies by selective targeting of CSCs and EMT-phenotypic cells through alterations in the expression of specific miRNAs toward eradicating tumor recurrence and metastasis. A particular promising lead is the potential synergistic combination of natural compounds that affect critical miRNAs, such as curcumin or epigallocatechin-3-gallate (EGCG) with chemotherapeutic agents. PMID:20692200

  12. RNase-L control of cellular mRNAs: roles in biologic functions and mechanisms of substrate targeting.

    PubMed

    Brennan-Laun, Sarah E; Ezelle, Heather J; Li, Xiao-Ling; Hassel, Bret A

    2014-04-01

    RNase-L is a mediator of type 1 interferon-induced antiviral activity that has diverse and critical cellular roles, including the regulation of cell proliferation, differentiation, senescence and apoptosis, tumorigenesis, and the control of the innate immune response. Although RNase-L was originally shown to mediate the endonucleolytic cleavage of both viral and ribosomal RNAs in response to infection, more recent evidence indicates that RNase-L also functions in the regulation of cellular mRNAs as an important mechanism by which it exerts its diverse biological functions. Despite this growing body of work, many questions remain regarding the roles of mRNAs as RNase-L substrates. This review will survey known and putative mRNA substrates of RNase-L, propose mechanisms by which it may selectively cleave these transcripts, and postulate future clinical applications. PMID:24697205

  13. RNase-L Control of Cellular mRNAs: Roles in Biologic Functions and Mechanisms of Substrate Targeting

    PubMed Central

    Brennan-Laun, Sarah E.; Ezelle, Heather J.; Li, Xiao-Ling

    2014-01-01

    RNase-L is a mediator of type 1 interferon-induced antiviral activity that has diverse and critical cellular roles, including the regulation of cell proliferation, differentiation, senescence and apoptosis, tumorigenesis, and the control of the innate immune response. Although RNase-L was originally shown to mediate the endonucleolytic cleavage of both viral and ribosomal RNAs in response to infection, more recent evidence indicates that RNase-L also functions in the regulation of cellular mRNAs as an important mechanism by which it exerts its diverse biological functions. Despite this growing body of work, many questions remain regarding the roles of mRNAs as RNase-L substrates. This review will survey known and putative mRNA substrates of RNase-L, propose mechanisms by which it may selectively cleave these transcripts, and postulate future clinical applications. PMID:24697205

  14. Novel miRNA-31 and miRNA-200a-Mediated Regulation of Retinoblastoma Proliferation.

    PubMed

    Montoya, Vanessa; Fan, Hanli; Bryar, Paul J; Weinstein, Joanna L; Mets, Marilyn B; Feng, Gang; Martin, Joshua; Martin, Alissa; Jiang, Hongmei; Laurie, Nikia A

    2015-01-01

    Retinoblastoma is the most common intraocular tumor in children. Current management includes broad-based treatments such as chemotherapy, enucleation, laser therapy, or cryotherapy. However, therapies that target specific pathways important for retinoblastoma progression could provide valuable alternatives for treatment. MicroRNAs are short, noncoding RNA transcripts that can regulate the expression of target genes, and their aberrant expression often facilitates disease. The identification of post-transcriptional events that occur after the initiating genetic lesions could further define the rapidly aggressive growth displayed by retinoblastoma tumors. In this study, we used two phenotypically different retinoblastoma cell lines to elucidate the roles of miRNA-31 and miRNA-200a in tumor proliferation. Our approach confirmed that miRNAs-31 and -200a expression is significantly reduced in human retinoblastomas. Moreover, overexpression of these two miRNAs restricts the expansion of a highly proliferative cell line (Y79), but does not restrict the growth rate of a less aggressive cell line (Weri1). Gene expression profiling of miRNA-31 and/or miRNA-200a-overexpressing cells identified differentially expressed mRNAs associated with the divergent response of the two cell lines. This work has the potential to enhance the development of targeted therapeutic approaches for retinoblastoma and improve the efficacy of treatment. PMID:26379276

  15. Novel miRNA-31 and miRNA-200a-Mediated Regulation of Retinoblastoma Proliferation

    PubMed Central

    Montoya, Vanessa; Fan, Hanli; Bryar, Paul J.; Weinstein, Joanna L.; Mets, Marilyn B.; Feng, Gang; Martin, Joshua; Martin, Alissa; Jiang, Hongmei; Laurie, Nikia A.

    2015-01-01

    Retinoblastoma is the most common intraocular tumor in children. Current management includes broad-based treatments such as chemotherapy, enucleation, laser therapy, or cryotherapy. However, therapies that target specific pathways important for retinoblastoma progression could provide valuable alternatives for treatment. MicroRNAs are short, noncoding RNA transcripts that can regulate the expression of target genes, and their aberrant expression often facilitates disease. The identification of post-transcriptional events that occur after the initiating genetic lesions could further define the rapidly aggressive growth displayed by retinoblastoma tumors. In this study, we used two phenotypically different retinoblastoma cell lines to elucidate the roles of miRNA-31 and miRNA-200a in tumor proliferation. Our approach confirmed that miRNAs-31 and -200a expression is significantly reduced in human retinoblastomas. Moreover, overexpression of these two miRNAs restricts the expansion of a highly proliferative cell line (Y79), but does not restrict the growth rate of a less aggressive cell line (Weri1). Gene expression profiling of miRNA-31 and/or miRNA-200a-overexpressing cells identified differentially expressed mRNAs associated with the divergent response of the two cell lines. This work has the potential to enhance the development of targeted therapeutic approaches for retinoblastoma and improve the efficacy of treatment. PMID:26379276

  16. miRegulome: a knowledge-base of miRNA regulomics and analysis

    PubMed Central

    Barh, Debmalya; Kamapantula, Bhanu; Jain, Neha; Nalluri, Joseph; Bhattacharya, Antaripa; Juneja, Lucky; Barve, Neha; Tiwari, Sandeep; Miyoshi, Anderson; Azevedo, Vasco; Blum, Kenneth; Kumar, Anil; Silva, Artur; Ghosh, Preetam

    2015-01-01

    miRNAs regulate post transcriptional gene expression by targeting multiple mRNAs and hence can modulate multiple signalling pathways, biological processes, and patho-physiologies. Therefore, understanding of miRNA regulatory networks is essential in order to modulate the functions of a miRNA. The focus of several existing databases is to provide information on specific aspects of miRNA regulation. However, an integrated resource on the miRNA regulome is currently not available to facilitate the exploration and understanding of miRNA regulomics. miRegulome attempts to bridge this gap. The current version of miRegulome v1.0 provides details on the entire regulatory modules of miRNAs altered in response to chemical treatments and transcription factors, based on validated data manually curated from published literature. Modules of miRegulome (upstream regulators, downstream targets, miRNA regulated pathways, functions, diseases, etc) are hyperlinked to an appropriate external resource and are displayed visually to provide a comprehensive understanding. Four analysis tools are incorporated to identify relationships among different modules based on user specified datasets. miRegulome and its tools are helpful in understanding the biology of miRNAs and will also facilitate the discovery of biomarkers and therapeutics. With added features in upcoming releases, miRegulome will be an essential resource to the scientific community. Availability: http://bnet.egr.vcu.edu/miRegulome. PMID:26243198

  17. Chemical Inhibitors and microRNAs (miRNA) Targeting the Mammalian Target of Rapamycin (mTOR) Pathway: Potential for Novel Anticancer Therapeutics

    PubMed Central

    AlQurashi, Naif; Hashimi, Saeed M.; Wei, Ming Q.

    2013-01-01

    The mammalian target of rapamycin (mTOR) is a critical regulator of many fundamental features in response to upstream cellular signals, such as growth factors, energy, stress and nutrients, controlling cell growth, proliferation and metabolism through two complexes, mTORC1 and mTORC2. Dysregulation of mTOR signalling often occurs in a variety of human malignant diseases making it a crucial and validated target in the treatment of cancer. Tumour cells have shown high susceptibility to mTOR inhibitors. Rapamycin and its derivatives (rapalogs) have been tested in clinical trials in several tumour types and found to be effective as anticancer agents in patients with advanced cancers. To block mTOR function, they form a complex with FKBP12 and then bind the FRB domain of mTOR. Furthermore, a new generation of mTOR inhibitors targeting ATP-binding in the catalytic site of mTOR showed potent and more selective inhibition. More recently, microRNAs (miRNA) have emerged as modulators of biological pathways that are essential in cancer initiation, development and progression. Evidence collected to date shows that miRNAs may function as tumour suppressors or oncogenes in several human neoplasms. The mTOR pathway is a promising target by miRNAs for anticancer therapy. Extensive studies have indicated that regulation of the mTOR pathway by miRNAs plays a major role in cancer progression, indicating a novel way to investigate the tumorigenesis and therapy of cancer. Here, we summarize current findings of the role of mTOR inhibitors and miRNAs in carcinogenesis through targeting mTOR signalling pathways and determine their potential as novel anti-cancer therapeutics. PMID:23434669

  18. A novel biochemical method to identify target genes of individual microRNAs: Identification of a new Caenorhabditis elegans let-7 target

    PubMed Central

    Andachi, Yoshiki

    2008-01-01

    MicroRNAs (miRNAs) are roughly 22-nucleotide regulatory RNAs that play important roles in many developmental and physiological processes. Animal miRNAs down-regulate target genes by forming imperfect base pairs with 3′ untranslated regions (3′ UTRs) of their mRNAs. Thousands of miRNAs have been discovered in several organisms. However, the target genes of almost all of these miRNAs remain to be identified. Here, we describe a method for isolating cDNA clones of target mRNAs that form base pairs in vivo with an endogenous miRNA of interest, in which the cDNAs are synthesized from the mRNAs using the miRNA as a reverse-transcription primer. The application of this method to Caenorhabditis elegans miRNA lin-4 under test conditions yielded many clones of the known target gene lin-14 that correspond to partial sequences 5′ to lin-4 binding sites in the 3′ UTR. The method was also applied to C. elegans miRNA let-7 and a new target gene responsible for the lethal phenotype in let-7 mutants was identified. These results demonstrate that the method is a useful way to identify targets on the basis of base pairing with individual miRNAs. PMID:18824511

  19. Lung endothelial HO-1 targeting in vivo using lentiviral miRNA regulates apoptosis and autophagy during oxidant injury

    PubMed Central

    Zhang, Yi; Jiang, Ge; Sauler, Maor; Lee, Patty J.

    2013-01-01

    The lung endothelium is a major target for inflammatory and oxidative stress. Heme oxygenase-1 (HO-1) induction is a crucial defense mechanism during oxidant challenges, such as hyperoxia. The role of lung endothelial HO-1during hyperoxia in vivo is not well defined. We engineered lentiviral vectors with microRNA (miRNA) sequences controlled by vascular endothelium cadherin (VE-cad) to study the specific role of lung endothelial HO-1. Wild-type (WT) murine lung endothelial cells (MLECs) or WT mice were treated with lentivirus and exposed to hyperoxia (95% oxygen). We detected HO-1 knockdown (∼55%) specifically in the lung endothelium. MLECs and lungs showed approximately a 2-fold increase in apoptosis and ROS generation after HO-1 silencing. We also demonstrate for the first time that silencing endothelial HO-1 has the same effect on lung injury and survival as silencing HO-1 in multiple lung cell types and that HO-1 regulates caspase 3 activation and autophagy in endothelium during hyperoxia. These studies demonstrate the utility of endothelial-targeted gene silencing in vivo using lentiviral miRNA constructs to assess gene function and that endothelial HO-1 is an important determinant of survival during hyperoxia.—Zhang, Y., Jiang, G., Sauler, M., Lee, P. J. Lung endothelial HO-1 targeting in vivo using lentiviral miRNA regulates apoptosis and autophagy during oxidant injury. PMID:23771928

  20. Topological characteristics of target genes regulated by abiotic-stress-responsible miRNAs in a rice interactome network.

    PubMed

    Zhang, Linzhong; Xuan, Hongdong; Zuo, Yongchun; Xu, Gaojian; Wang, Ping; Song, Youhong; Zhang, Shihua

    2016-05-01

    A great number of microRNAs (miRNAs) have been identified in responding and acting in gene regulatory networks associated with plant tolerance to abiotic stress conditions, such as drought, salinity, and high temperature. The topological exploration of target genes regulated by abiotic-stress-responsible miRNAs (ASRmiRs) in a network facilitates to discover the molecular basis of plant abiotic stress response. This study was based on the staple food rice (Oryza sativa) in which ASRmiRs were manually curated. After having compared the topological properties of target genes (stress-miR-targets) with those (non-stress-miR-targets) not regulated by ASRmiRs in a rice interactome network, we found that stress-miR-targets exhibited distinguishable topological properties. The interaction probability analysis and k-core decomposition showed that stress-miR-targets preferentially interacted with non-stress-miR-targets and located at the peripheral positions in the network. Our results indicated an obvious topological distinction between the two types of genes, reflecting the specific mechanisms of action of stress-miR-targets in rice abiotic stress response. Also, the results may provide valuable clues to elucidate molecular mechanisms of crop response to abiotic stress. PMID:26830287

  1. miRNAs, a potential target in the treatment of Non-Small-Cell Lung Carcinomas.

    PubMed

    Malleter, Marine; Jacquot, Catherine; Rousseau, Bénédicte; Tomasoni, Christophe; Juge, Marcel; Pineau, Alain; Sakanian, Vehary; Roussakis, Christos

    2012-09-15

    Lung cancer is a serious public health problem and Non Small Cell Lung Carcinoma, NSCLC, is particularly resistant to current treatments. So it is important to find new strategies that are active against NSCLC. miRNA is implicated in cancer and may be implicated in NSCLC. Our team has been working on two genes HEF1, a gene implicated in different functions of cell cycle and B2, a large non-coding RNA (nc RNA). These two genes have the same localisation: chromosome 6 and locus p24-25. nc RNA B2 may be involved in the regulation of HEF1. Firstly, we examine a bank of different human miRNAs known to interact with exons of HEF1. HEF1 and B2 were overexpressed in vitro by treating NSCLC-N6 with the cytostatic molecule A190, and carried out qRT-PCR for the expression of miRNA. Secondly, using specific software, we sought for structures originating from the B2 RNA sequence which might interact with HEF1 and assessed their expression. This strategy enabled us to confirm firstly that known miRNAs that can interact with exons of HEF1 are expressed in NSCLC-N6 cells. More precisely this strategy highlighted overexpression of one miRNA, hsa-miR-146b, listed in miRbase. The second step of the studies highlighted the expression of miRNA, potentially sequences originating from B2 in the NSCLC-N6. This miRNA overexpressed might be one of the regulators of the gene HEF1 and consequently implies on the carcinogenesis of lung cancer. So in the future it could be a potential and an innovative way to find a new strategy for the treatment of lung cancer. PMID:22732573

  2. Nanoparticles Modified With Tumor-targeting scFv Deliver siRNA and miRNA for Cancer Therapy

    PubMed Central

    Chen, Yunching; Zhu, Xiaodong; Zhang, Xiaoju; Liu, Bin; Huang, Leaf

    2010-01-01

    Targeted delivery of RNA-based therapeutics for cancer therapy remains a challenge. We have developed a LPH (liposome-polycation-hyaluronic acid) nanoparticle formulation modified with tumor-targeting single-chain antibody fragment (scFv) for systemic delivery of small interfering RNA (siRNA) and microRNA (miRNA) into experimental lung metastasis of murine B16F10 melanoma. The siRNAs delivered by the scFv targeted nanoparticles efficiently downregulated the target genes (c-Myc/MDM2/VEGF) in the lung metastasis. Two daily intravenous injections of the combined siRNAs in the GC4-targeted nanoparticles significantly reduced the tumor load in the lung. miRNA-34a (miR-34a) induced apoptosis, inhibited survivin expression, and downregulated MAPK pathway in B16F10 cells. miR-34a delivered by the GC4-targeted nanoparticles significantly downregulated the survivin expression in the metastatic tumor and reduced tumor load in the lung. When miR-34a and siRNAs were co-formulated in GC4-targeted nanoparticles, an enhanced anticancer effect was observed. PMID:20606648

  3. Ewing’s Sarcoma: An Analysis of miRNA Expression Profiles and Target Genes in Paraffin-Embedded Primary Tumor Tissue

    PubMed Central

    Parafioriti, Antonina; Bason, Caterina; Armiraglio, Elisabetta; Calciano, Lucia; Daolio, Primo Andrea; Berardocco, Martina; Di Bernardo, Andrea; Colosimo, Alessia; Luksch, Roberto; Berardi, Anna C.

    2016-01-01

    The molecular mechanism responsible for Ewing’s Sarcoma (ES) remains largely unknown. MicroRNAs (miRNAs), a class of small non-coding RNAs able to regulate gene expression, are deregulated in tumors and may serve as a tool for diagnosis and prediction. However, the status of miRNAs in ES has not yet been thoroughly investigated. This study compared global miRNAs expression in paraffin-embedded tumor tissue samples from 20 ES patients, affected by primary untreated tumors, with miRNAs expressed in normal human mesenchymal stromal cells (MSCs) by microarray analysis. A miRTarBase database was used to identify the predicted target genes for differentially expressed miRNAs. The miRNAs microarray analysis revealed distinct patterns of miRNAs expression between ES samples and normal MSCs. 58 of the 954 analyzed miRNAs were significantly differentially expressed in ES samples compared to MSCs. Moreover, the qRT-PCR analysis carried out on three selected miRNAs showed that miR-181b, miR-1915 and miR-1275 were significantly aberrantly regulated, confirming the microarray results. Bio-database analysis identified BCL-2 as a bona fide target gene of the miR-21, miR-181a, miR-181b, miR-29a, miR-29b, miR-497, miR-195, miR-let-7a, miR-34a and miR-1915. Using paraffin-embedded tissues from ES patients, this study has identified several potential target miRNAs and one gene that might be considered a novel critical biomarker for ES pathogenesis. PMID:27144561

  4. From Evolution to Revolution: miRNAs as Pharmacological Targets for Modulating Cholesterol Efflux and Reverse Cholesterol Transport

    PubMed Central

    Dávalos, Alberto; Fernández-Hernando, Carlos

    2013-01-01

    There has been strong evolutionary pressure to ensure that an animal cell maintain levels of cholesterol within tight limits for normal function. Imbalances in cellular cholesterol levels are a major player in the development of different pathologies associated to dietary excess. Although epidemiological studies indicate that elevated levels of high-density lipoprotein (HDL)-cholesterol reduce the risk of cardiovascular disease, recent genetic evidence and pharmacological therapies to raise HDL levels do not support their beneficial effects. Cholesterol efflux as the first and probably the most important step in reverse cholesterol transport is an important biological process relevant to HDL function. Small non-coding RNAs (microRNAs), post-transcriptional control different aspects of cellular cholesterol homeostasis including cholesterol efflux. miRNA families miR-33, miR-758, miR-10b, miR-26 and miR-106b directly modulates cholesterol efflux by targeting the ATP-binding cassette transporter A1 (ABCA1). Pre-clinical studies with anti-miR therapies to inhibit some of these miRNAs have increased cellular cholesterol efflux, reverse cholesterol transport and reduce pathologies associated to dyslipidemia. Although miRNAs as therapy have benefits from existing antisense technology, different obstacles need to be solved before we incorporate such research into clinical care. Here we focus on the clinical potential of miRNAs as therapeutic target to increase cholesterol efflux and reverse cholesterol transport as a new alternative to ameliorate cholesterol-related pathologies. PMID:23435093

  5. Comparison of miRNAs and Their Targets in Seed Development between Two Maize Inbred Lines by High-Throughput Sequencing and Degradome Analysis

    PubMed Central

    Guo, Yu-Min; Yang, Min-Kai; Yang, Rong-Wu; Lu, Gui-Hua; Yang, Yong-Hua

    2016-01-01

    MicroRNAs (miRNAs) play an important role in plant growth, development, and response to environment. For identifying and comparing miRNAs and their targets in seed development between two maize inbred lines (i.e. PH6WC and PH4CV), two sRNAs and two degradome libraries were constructed. Through high-throughput sequencing and miRNA identification, 55 conserved and 24 novel unique miRNA sequences were identified in two sRNA libraries; moreover, through degradome sequencing and analysis, 137 target transcripts corresponding to 38 unique miRNA sequences were identified in two degradome libraries. Subsequently, 16 significantly differentially expressed miRNA sequences were verified by qRT-PCR, in which 9 verified sequences obviously target 30 transcripts mainly involved with regulation in flowering and development in embryo. Therefore, the results suggested that some miRNAs (e.g. miR156, miR171, miR396 and miR444) related reproductive development might differentially express in seed development between the PH6WC and PH4CV maize inbred lines in this present study. PMID:27463682

  6. Comparative Anterior Pituitary miRNA and mRNA Expression Profiles of Bama Minipigs and Landrace Pigs Reveal Potential Molecular Network Involved in Animal Postnatal Growth.

    PubMed

    Ye, Rui-Song; Li, Meng; Qi, Qi-En; Cheng, Xiao; Chen, Ting; Li, Chao-Yun; Wang, Song-Bo; Shu, Gang; Wang, Li-Na; Zhu, Xiao-Tong; Jiang, Qing-Yan; Xi, Qian-Yun; Zhang, Yong-Liang

    2015-01-01

    The anterior pituitary is the most important endocrine organ modulating animal postnatal growth, mainly by controlling growth hormone (GH) gene transcription, synthesis, and secretion. As an ideal model for animal postnatal growth studies, the Bama minipig is characterized as having a lower growth performance and fewer individual differences compared with larger pig breeds. In this study, anterior pituitaries from Bama minipig and Landrace pig were used for miRNA and mRNA expression profile analysis using miRNA microarrays and mRNA-seq. Consequently, a total of 222 miRNAs and 12,909 transcripts were detected, and both miRNAs and mRNAs in the two breeds showed high correlation (r > 0.97). Additionally, 41 differentially expressed miRNAs and 2,254 transcripts were identified. Pathways analysis indicated that 32 pathways significantly differed in the two breeds. Importantly, two GH-regulation-signalling pathways, cAMP and inositol 1, 4, 5-triphosphate (IP3), and multiple GH-secretion-related transcripts were significantly down-regulated in Bama minipigs. Moreover, TargetScan and RNAHybrid algorithms were used for predicting differentially expressed miRNAs (DE miRNAs) and differentially expressed mRNAs (DE mRNAs) interaction. By examining their fold-changes, interestingly, most DE miRNA-DE mRNA target pairs (63.68-71.33%) presented negatively correlated expression pattern. A possible network among miRNAs, mRNAs, and GH-regulation pathways was also proposed. Among them, two miRNA-mRNA interactions (Y-47 targets FSHB; ssc-miR-133a-3p targets GNAI3) were validated by dual-luciferase assay. These data will be helpful in understanding the possible molecular mechanisms involved in animal postnatal growth. PMID:26134288

  7. Comparative Anterior Pituitary miRNA and mRNA Expression Profiles of Bama Minipigs and Landrace Pigs Reveal Potential Molecular Network Involved in Animal Postnatal Growth

    PubMed Central

    Qi, Qi-En; Cheng, Xiao; Chen, Ting; Li, Chao-Yun; Wang, Song-Bo; Shu, Gang; Wang, Li-Na; Zhu, Xiao-Tong; Jiang, Qing-Yan; Xi, Qian-Yun; Zhang, Yong-Liang

    2015-01-01

    The anterior pituitary is the most important endocrine organ modulating animal postnatal growth, mainly by controlling growth hormone (GH) gene transcription, synthesis, and secretion. As an ideal model for animal postnatal growth studies, the Bama minipig is characterized as having a lower growth performance and fewer individual differences compared with larger pig breeds. In this study, anterior pituitaries from Bama minipig and Landrace pig were used for miRNA and mRNA expression profile analysis using miRNA microarrays and mRNA-seq. Consequently, a total of 222 miRNAs and 12,909 transcripts were detected, and both miRNAs and mRNAs in the two breeds showed high correlation (r > 0.97). Additionally, 41 differentially expressed miRNAs and 2,254 transcripts were identified. Pathways analysis indicated that 32 pathways significantly differed in the two breeds. Importantly, two GH-regulation-signalling pathways, cAMP and inositol 1, 4, 5-triphosphate (IP3), and multiple GH-secretion-related transcripts were significantly down-regulated in Bama minipigs. Moreover, TargetScan and RNAHybrid algorithms were used for predicting differentially expressed miRNAs (DE miRNAs) and differentially expressed mRNAs (DE mRNAs) interaction. By examining their fold-changes, interestingly, most DE miRNA–DE mRNA target pairs (63.68–71.33%) presented negatively correlated expression pattern. A possible network among miRNAs, mRNAs, and GH-regulation pathways was also proposed. Among them, two miRNA-mRNA interactions (Y-47 targets FSHB; ssc-miR-133a-3p targets GNAI3) were validated by dual-luciferase assay. These data will be helpful in understanding the possible molecular mechanisms involved in animal postnatal growth. PMID:26134288

  8. Identification of miRNAs and Their Target Genes Associated with Sweet Corn Seed Vigor by Combined Small RNA and Degradome Sequencing.

    PubMed

    Gong, Shumin; Ding, Yanfei; Huang, Shanxia; Zhu, Cheng

    2015-06-10

    High seed vigor is significant for agriculture. Low seed vigor of sweet corn hindered the popularization of sweet corn (Zea mays L. saccharata Sturt). To better understand the involvement and regulatory mechanism of miRNAs with seed vigor, small RNA libraries from seeds non-artificially aged and artificially aged for 2 days were generated by small RNA sequencing. A total of 27 differentially expressed miRNAs were discovered, of which 10 were further confirmed by real-time quantitative polymerase chain reaction. Furthermore, targets of miRNAs were identified by degradome sequencing. A total of 1142 targets that were potentially cleaved by 131 miRNAs were identified. Gene ontology (GO) annotations of target transcripts indicated that 26 target genes cleaved by 9 differentially expressed miRNAs might play roles in the regulation of seed vigor, such as peroxidase superfamily protein targeted by PC-5p-213179_17 playing a role in the oxidation-reduction process and response to oxidative stress. These findings provide valuable information to understand the involvement of miRNAs with seed vigor. PMID:25997082

  9. sPARTA: a parallelized pipeline for integrated analysis of plant miRNA and cleaved mRNA data sets, including new miRNA target-identification software

    PubMed Central

    Kakrana, Atul; Hammond, Reza; Patel, Parth; Nakano, Mayumi; Meyers, Blake C.

    2014-01-01

    Parallel analysis of RNA ends (PARE) is a technique utilizing high-throughput sequencing to profile uncapped, mRNA cleavage or decay products on a genome-wide basis. Tools currently available to validate miRNA targets using PARE data employ only annotated genes, whereas important targets may be found in unannotated genomic regions. To handle such cases and to scale to the growing availability of PARE data and genomes, we developed a new tool, ‘sPARTA’ (small RNA-PARE target analyzer) that utilizes a built-in, plant-focused target prediction module (aka ‘miRferno’). sPARTA not only exhibits an unprecedented gain in speed but also it shows greater predictive power by validating more targets, compared to a popular alternative. In addition, the novel ‘seed-free’ mode, optimized to find targets irrespective of complementarity in the seed-region, identifies novel intergenic targets. To fully capitalize on the novelty and strengths of sPARTA, we developed a web resource, ‘comPARE’, for plant miRNA target analysis; this facilitates the systematic identification and analysis of miRNA-target interactions across multiple species, integrated with visualization tools. This collation of high-throughput small RNA and PARE datasets from different genomes further facilitates re-evaluation of existing miRNA annotations, resulting in a ‘cleaner’ set of microRNAs. PMID:25120269

  10. Targeting CSCs in Tumor Microenvironment: The Potential Role of ROS-Associated miRNAs in Tumor Aggressiveness

    PubMed Central

    Bao, Bin; Azmi, Asfar S.; Li, Yiwei; Ahmad, Aamir; Ali, Shadan; Banerjee, Sanjeev; Kong, Dejuan; Sarkar, Fazlul H.

    2015-01-01

    Reactive oxygen species (ROS) have been widely considered as critical cellular signaling molecules involving in various biological processes such as cell growth, differentiation, proliferation, apoptosis, and angiogenesis. The homeostasis of ROS is critical to maintain normal biological processes. Increased production of ROS, namely oxidative stress, due to either endogenous or exogenous sources causes irreversible damage of bio-molecules such as DNA, proteins, lipids, and sugars, leading to genomic instability, genetic mutation, and altered gene expression, eventually contributing to tumorigenesis. A great amount of experimental studies in vitro and in vivo have produced solid evidence supporting that oxidative stress is strongly associated with increased tumor cell growth, treatment resistance, and metastasis, and all of which contribute to tumor aggressiveness. More recently, the data have indicated that altered production of ROS is also associated with cancer stem cells (CSCs), epithelial-to-mesenchymal transition (EMT), and hypoxia, the most common features or phenomena in tumorigenesis and tumor progression. However, the exact mechanism by which ROS is involved in the regulation of CSC and EMT characteristics as well as hypoxia- and, especially, HIF-mediated pathways is not well known. Emerging evidence suggests the role of miRNAs in tumorigenesis and progression of human tumors. Recently, the data have indicated that altered productions of ROS are associated with deregulated expression of miRNAs, suggesting their potential roles in the regulation of ROS production. Therefore, targeting ROS mediated through the deregulation of miRNAs by novel approaches or by naturally occurring anti-oxidant agents such as genistein could provide a new therapeutic approach for the prevention and/or treatment of human malignancies. In this article, we will discuss the potential role of miRNAs in the regulation of ROS production during tumorigenesis. Finally, we will discuss

  11. The Therapeutic Targets of miRNA in Hepatic Cancer Stem Cells

    PubMed Central

    Bimonte, Sabrina; Leongito, Maddalena; Barbieri, Antonio; del Vecchio, Vitale; Falco, Michela; Giudice, Aldo; Palaia, Raffaele; Albino, Vittorio; Di Giacomo, Raimondo; Petrillo, Antonella; Granata, Vincenza; Izzo, Francesco

    2016-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide malignancy and the third leading cause of cancer death in patients. Several studies demonstrated that hepatic cancer stem cells (HCSCs), also called tumor-initiating cells, are involved in regulation of HCC initiation, tumor progression, metastasis development, and drug resistance. Despite the extensive research, the underlying mechanisms by which HCSCs are regulated remain still unclear. MicroRNAs (miRNAs) are able to regulate a lot of biological processes such as self-renewal and pluripotency of HCSCs, representing a new promising strategy for treatment of HCC chemotherapy-resistant tumors. In this review, we synthesize the latest findings on therapeutic regulation of HCSCs by miRNAs, in order to highlight the perspective of novel miRNA-based anticancer therapies for HCC treatment. PMID:27118975

  12. ‘MicroRNA Targets’, a new AthaMap web-tool for genome-wide identification of miRNA targets in Arabidopsis thaliana

    PubMed Central

    2012-01-01

    Background The AthaMap database generates a genome-wide map for putative transcription factor binding sites for A. thaliana. When analyzing transcriptional regulation using AthaMap it may be important to learn which genes are also post-transcriptionally regulated by inhibitory RNAs. Therefore, a unified database for transcriptional and post-transcriptional regulation will be highly useful for the analysis of gene expression regulation. Methods To identify putative microRNA target sites in the genome of A. thaliana, processed mature miRNAs from 243 annotated miRNA genes were used for screening with the psRNATarget web server. Positional information, target genes and the psRNATarget score for each target site were annotated to the AthaMap database. Furthermore, putative target sites for small RNAs from seven small RNA transcriptome datasets were used to determine small RNA target sites within the A. thaliana genome. Results Putative 41,965 genome wide miRNA target sites and 10,442 miRNA target genes were identified in the A. thaliana genome. Taken together with genes targeted by small RNAs from small RNA transcriptome datasets, a total of 16,600 A. thaliana genes are putatively regulated by inhibitory RNAs. A novel web-tool, ‘MicroRNA Targets’, was integrated into AthaMap which permits the identification of genes predicted to be regulated by selected miRNAs. The predicted target genes are displayed with positional information and the psRNATarget score of the target site. Furthermore, putative target sites of small RNAs from selected tissue datasets can be identified with the new ‘Small RNA Targets’ web-tool. Conclusions The integration of predicted miRNA and small RNA target sites with transcription factor binding sites will be useful for AthaMap-assisted gene expression analysis. URL: http://www.athamap.de/ PMID:22800758

  13. MiRNA expression profile and miRNA-mRNA integrated analysis (MMIA) during podocyte differentiation.

    PubMed

    Li, Zhigui; Wang, Lifeng; Xu, Jing; Yang, Zhuo

    2015-06-01

    The podocyte is a prominent cell type, which encases the capillaries of glomerulus. Podocyte-selective deletion of Dicer or Drosha was reported to induce proteinuria and glomerulosclerosis, suggesting the essential role of microRNA (miRNA) in podocytes for renal function. However, no comprehensive miRNA expression or miRNA-mRNA integrated analysis (MMIA) can be found during podocyte differentiation. Herein, miRNA and mRNA microarrays are presented, which were carried out in differentiated and undifferentiated mouse podocyte cell lines (MPC5). A total of 50 abnormal miRNAs (26 down-regulated and 24 up-regulated) were identified in differentiated and undifferentiated podocytes. Using MMIA, 80 of the 743 mRNAs (>twofold change) were predicted for potential crosstalk with 30 miRNAs of the 50 abnormal miRNAs. In addition, the gene ontology of mRNAs and the pathway analysis of miRNAs revealed a new potential-regulated network during podocyte differentiation. The expressions of three remarkably changed miRNAs (miR-34c, miR-200a and miR-467e) and four mRNAs (Runx1t1, Atp2a2, Glrp1, and Mmp15), were randomly chosen for further validation by the quantitative real-time polymerase chain reaction, and their expression trends were consistent with the microarray data. Reference searching was also conducted to confirm our data and to find potential new molecules and miRNA-target pairs involved in the podocyte differentiation. The dual luciferase reporter assay for miR-200a/GLRX and let-7b/ARL4D confirmed the prediction of MMIA. The results of this study provide a detailed integration of mRNA and miRNA during podocyte differentiation. The molecular integration mode will open up new perspectives for a better understanding of the mechanism during podocyte differentiation. PMID:25433550

  14. miRNA profiling of high, low and non-producing CHO cells during biphasic fed-batch cultivation reveals process relevant targets for host cell engineering.

    PubMed

    Stiefel, Fabian; Fischer, Simon; Sczyrba, Alexander; Otte, Kerstin; Hesse, Friedemann

    2016-05-10

    Fed-batch cultivation of recombinant Chinese hamster ovary (CHO) cell lines is one of the most widely used production modes for commercial manufacturing of recombinant protein therapeutics. Furthermore, fed-batch cultivations are often conducted as biphasic processes where the culture temperature is decreased to maximize volumetric product yields. However, it remains to be elucidated which intracellular regulatory elements actually control the observed pro-productive phenotypes. Recently, several studies have revealed microRNAs (miRNAs) to be important molecular switches of cell phenotypes. In this study, we analyzed miRNA profiles of two different recombinant CHO cell lines (high and low producer), and compared them to a non-producing CHO DG44 host cell line during fed-batch cultivation at 37°C versus a temperature shift to 30°C. Taking advantage of next-generation sequencing combined with cluster, correlation and differential expression analyses, we could identify 89 different miRNAs, which were differentially expressed in the different cell lines and cultivation phases. Functional validation experiments using 19 validated target miRNAs confirmed that these miRNAs indeed induced changes in process relevant phenotypes. Furthermore, computational miRNA target prediction combined with functional clustering identified putative target genes and cellular pathways, which might be regulated by these miRNAs. This study systematically identified novel target miRNAs during different phases and conditions of a biphasic fed-batch production process and functionally evaluated their potential for host cell engineering. PMID:27002234

  15. Sequencing and expression analysis of salt-responsive miRNAs and target genes in the halophyte smooth cordgrass (Spartina alternifolia Loisel).

    PubMed

    Zandkarimi, Hana; Bedre, Renesh; Solis, Julio; Mangu, Venkata; Baisakh, Niranjan

    2015-08-01

    MicroRNAs have been shown to be involved in regulating plant's response to environmental stresses, including salinity. There is no report yet on the miRNA-mediated posttranscriptional regulation of salt stress response of a grass halophyte by miRNAs. Here we report on the deep-sequencing followed by expression validation through (s)qRT-PCR of a selected set of salt-responsive miRNAs and their targets of the salt marsh monocot halophyte smooth cordgrass (Spartina alterniflora Loisel). Expression kinetics study of 12 miRNAs showed differential up/down-regulation in leaf and root tissues under salinity. Induction of expression of six putative novel microRNAs with high read counts in the sequence library suggested that the halophyte grass may possess different/novel gene posttranscriptional regulation of its salinity adaptation. Similarly, expression analysis of target genes of four selected miRNAs showed temporal and spatial variation in the up/down-regulation of their transcript accumulation under salt stress. The expression levels of miRNAs and their respective targets were coherent, non-coherent, or semi-coherent type. Understanding the gene regulation mechanism(s) at the miRNA level will broaden our fundamental understanding of the biology of the salt stress tolerance of the halophyte and provide novel positive regulators of salt stress tolerance for downstream research. PMID:25976974

  16. miRNA-132-3p inhibits osteoblast differentiation by targeting Ep300 in simulated microgravity

    PubMed Central

    Hu, Zebing; Wang, Yixuan; Sun, Zhongyang; Wang, Han; Zhou, Hua; Zhang, Lianchang; Zhang, Shu; Cao, Xinsheng

    2015-01-01

    Recent studies have demonstrated that miRNAs can play important roles in osteoblast differentiation and bone formation. However, the function of miRNAs in bone loss induced by microgravity remains unclear. In this study, we investigated the differentially expressed miRNAs in both the femur tissues of hindlimb unloading rats and primary rat osteoblasts (prOB) exposed to simulated microgravity. Specifically, miR-132-3p was found up-regulated and negatively correlated with osteoblast differentiation. Overexpression of miR-132-3p significantly inhibited prOB differentiation, whereas inhibition of miR-132-3p function yielded an opposite effect. Furthermore, silencing of miR-132-3p expression effectively attenuated the negative effects of simulated microgravity on prOB differentiation. Further experiments confirmed that E1A binding protein p300 (Ep300), a type of histone acetyltransferase important for Runx2 activity and stability, was a direct target of miR-132-3p. Up-regulation of miR-132-3p by simulated microgravity could inhibit osteoblast differentiation in part by decreasing Ep300 protein expression, which, in turn, resulted in suppression of the activity and acetylation of Runx2, a key regulatory factor of osteoblast differentiation. Taken together, our findings are the first to demonstrate that miR-132-3p can inhibit osteoblast differentiation and participate in the regulation of bone loss induced by simulated microgravity, suggesting a potential target for counteracting decreases in bone formation. PMID:26686902

  17. miRNA-29a as a tumor suppressor mediates PRIMA-1Met-induced anti-myeloma activity by targeting c-Myc

    PubMed Central

    Yang, Yijun; Chang, Hong

    2016-01-01

    The proto-oncogene c-Myc plays substantial role in multiple myeloma (MM) pathogenesis and is considered a potential drug target. Here we provide evidence of a novel mechanism for PRIMA-1Met, a small molecule with anti-tumor activity in phase I/II clinical trial, showing that PRIMA-1Met induces apoptosis in MM cells by suppressing c-Myc and upregulating miRNA-29a. Our study further demonstrates that miRNA-29a functions as a tumor suppressor which targets c-Myc. The baseline expression of miR-29a was significantly lower in MM cell lines and MM patient samples compared to normal hematopoietic cells. In addition, ectopic expression of miRNA-29a or exposure to PRIMA-1Met reduced cell proliferation and induced apoptosis in MM cells. On the other hand, overexpression of c-Myc at least partially reverted the inhibitory effects of PRIMA-1Met or miRNA-29a overexpression suggesting the miRNA-29a/c-Myc axis mediates anti-myeloma effects of PRIMA-1Met. Importantly, intratumor delivery of miRNA-29a mimics induced regression of tumors in mouse xenograft model of MM and this effect synergized with PRIMA-1Met. Our study indicates that miRNA-29a is a tumor suppressor that plays an important role during PRIMA-1Met-induced apoptotic signaling by targeting c-Myc and provides the basis for novel therapeutic strategies using miRNA-29a mimics combined with PRIMA-1Met in MM. PMID:26771839

  18. Alterations in miRNA Levels in the Dentate Gyrus in Epileptic Rats

    PubMed Central

    Bot, Anna Maria; Dębski, Konrad Józef; Lukasiuk, Katarzyna

    2013-01-01

    The aim of this study was to characterize changes in miRNA expression in the epileptic dentate gyrus. Status epilepticus evoked by amygdala stimulation was used to induce epilepsy in rats. The dentate gyri were isolated at 7 d, 14 d, 30 d and 90 d after stimulation (n=5). Sham-operated time-matched controls were prepared for each time point (n=5). The miRNA expression was evaluated using Exiqon microarrays. Additionally, mRNA from the same animals was profiled using Affymetrix microarrays. We detected miRNA expression signatures that differentiate between control and epileptic animals. Significant changes in miRNA expression between stimulated and sham operated animals were observed at 7 and 30 d following stimulation. Moreover, we found that there are ensembles of miRNAs that change expression levels over time. Analysis of the mRNA expression from the same animals revealed that the expression of several mRNAs that are potential targets for miRNA with altered expression level is regulated in the expected direction. The functional characterization of miRNAs and their potential mRNA targets indicate that miRNA can participate in several molecular events that occur in epileptic tissue, including immune response and neuronal plasticity. This is the first report on changes in the expression of miRNA and the potential functional impact of these changes in the dentate gyrus of epileptic animals. Complex changes in the expression of miRNAs suggest an important role for miRNA in the molecular mechanisms of epilepsy. PMID:24146813

  19. Practical Aspects of microRNA Target Prediction

    PubMed Central

    Witkos, T.M; Koscianska, E; Krzyzosiak, W.J

    2011-01-01

    microRNAs (miRNAs) are endogenous non-coding RNAs that control gene expression at the posttranscriptional level. These small regulatory molecules play a key role in the majority of biological processes and their expression is also tightly regulated. Both the deregulation of genes controlled by miRNAs and the altered miRNA expression have been linked to many disorders, including cancer, cardiovascular, metabolic and neurodegenerative diseases. Therefore, it is of particular interest to reliably predict potential miRNA targets which might be involved in these diseases. However, interactions between miRNAs and their targets are complex and very often there are numerous putative miRNA recognition sites in mRNAs. Many miRNA targets have been computationally predicted but only a limited number of these were experimentally validated. Although a variety of miRNA target prediction algorithms are available, results of their application are often inconsistent. Hence, finding a functional miRNA target is still a challenging task. In this review, currently available and frequently used computational tools for miRNA target prediction, i.e., PicTar, TargetScan, DIANA-microT, miRanda, rna22 and PITA are outlined and various practical aspects of miRNA target analysis are extensively discussed. Moreover, the performance of three algorithms (PicTar, TargetScan and DIANA-microT) is both demonstrated and evaluated by performing an in-depth analysis of miRNA interactions with mRNAs derived from genes triggering hereditary neurological disorders known as trinucleotide repeat expansion diseases (TREDs), such as Huntington’s disease (HD), a number of spinocerebellar ataxias (SCAs), and myotonic dystrophy type 1 (DM1). PMID:21342132

  20. The Sequence and Structure Determine the Function of Mature Human miRNAs

    PubMed Central

    Wawrzyniak, Dariusz; Jeleniewicz, Jaroslaw; Barciszewska, Miroslawa Z.; Barciszewski, Jan

    2016-01-01

    Micro RNAs (miRNAs) (19–25 nucleotides in length) belong to the group of non-coding RNAs are the most abundant group of posttranscriptional regulators in multicellular organisms. They affect a gene expression by binding of fully or partially complementary sequences to the 3’-UTR of target mRNA. Furthermore, miRNAs present a mechanism by which genes with diverse functions on multiple pathways can be simultaneously regulated at the post-transcriptional level. However, little is known about the specific pathways through which miRNAs with specific sequence or structural motifs regulate the cellular processes. In this paper we showed the broad and deep characteristics of mature miRNAs according to their sequence and structural motifs. We investigated a distinct group of miRNAs characterized by the presence of specific sequence motifs, such as UGUGU, GU-repeats and purine/pyrimidine contents. Using computational function and pathway analysis of their targeted genes, we were able to observe the relevance of sequence and the type of targeted mRNAs. As the consequence of the sequence analysis we finally provide the comprehensive description of pathways, biological processes and proteins associated with the distinct group of characterized miRNAs. Here, we found that the specific group of miRNAs with UGUGU can activate the targets associated to the interferon induction pathway or pathways prominently observed during carcinogenesis. GU-rich miRNAs are prone to regulate mostly processes in neurogenesis, whereas purine/pyrimidine rich miRNAs could be involved rather in transport and/or degradation of RNAs. Additionally, we have also analyzed the simple sequence repeats (SSRs). Their variation within mature miRNAs might be critical for normal miRNA regular activity. Expansion or contraction of SSRs in mature miRNA might directly affect its mRNA interaction or even change the function of that distinct miRNA. Our results prove that due to the specific sequence features, these

  1. MicroRNA fate upon targeting with anti-miRNA oligonucleotides as revealed by an improved Northern-blot-based method for miRNA detection.

    PubMed

    Torres, Adrian G; Fabani, Martin M; Vigorito, Elena; Gait, Michael J

    2011-05-01

    MicroRNAs (miRNAs) are small non-coding RNAs involved in fine-tuning of gene regulation. Antisense oligonucleotides (ONs) are promising tools as anti-miRNA (anti-miR) agents toward therapeutic applications and to uncover miRNA function. Such anti-miR ONs include 2'-O-methyl (OMe), cationic peptide nucleic acids like K-PNA-K3, and locked nucleic acid (LNA)-based anti-miRs such as LNA/DNA or LNA/OMe. Northern blotting is a widely used and robust technique to detect miRNAs. However, miRNA quantification in the presence of anti-miR ONs has proved to be challenging, due to detection artifacts, which has led to poor understanding of miRNA fate upon anti-miR binding. Here we show that anti-miR ON bound to miR-122 can prevent the miRNA from being properly precipitated into the purified RNA fraction using the standard RNA extraction protocol (TRI-Reagent), yielding an RNA extract that does not reflect the real cellular levels of the miRNA. An increase in the numbers of equivalents of isopropanol during the precipitation step leads to full recovery of the targeted miRNA back into the purified RNA extract. Following our improved protocol, we demonstrate by Northern blotting, in conjunction with a PNA decoy strategy and use of high denaturing PAGE, that high-affinity anti-miRs (K-PNA-K3, LNA/DNA, and LNA/OMe) sequester miR-122 without causing miRNA degradation, while miR-122 targeting with a lower-affinity anti-miR (OMe) seems to promote degradation of the miRNA. The technical issues explored in this work will have relevance for other hybridization-based techniques for miRNA quantification in the presence of anti-miR ONs. PMID:21441346

  2. MicroRNA fate upon targeting with anti-miRNA oligonucleotides as revealed by an improved Northern-blot-based method for miRNA detection

    PubMed Central

    Torres, Adrian G.; Fabani, Martin M.; Vigorito, Elena; Gait, Michael J.

    2011-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs involved in fine-tuning of gene regulation. Antisense oligonucleotides (ONs) are promising tools as anti-miRNA (anti-miR) agents toward therapeutic applications and to uncover miRNA function. Such anti-miR ONs include 2′-O-methyl (OMe), cationic peptide nucleic acids like K-PNA-K3, and locked nucleic acid (LNA)-based anti-miRs such as LNA/DNA or LNA/OMe. Northern blotting is a widely used and robust technique to detect miRNAs. However, miRNA quantification in the presence of anti-miR ONs has proved to be challenging, due to detection artifacts, which has led to poor understanding of miRNA fate upon anti-miR binding. Here we show that anti-miR ON bound to miR-122 can prevent the miRNA from being properly precipitated into the purified RNA fraction using the standard RNA extraction protocol (TRI-Reagent), yielding an RNA extract that does not reflect the real cellular levels of the miRNA. An increase in the numbers of equivalents of isopropanol during the precipitation step leads to full recovery of the targeted miRNA back into the purified RNA extract. Following our improved protocol, we demonstrate by Northern blotting, in conjunction with a PNA decoy strategy and use of high denaturing PAGE, that high-affinity anti-miRs (K-PNA-K3, LNA/DNA, and LNA/OMe) sequester miR-122 without causing miRNA degradation, while miR-122 targeting with a lower-affinity anti-miR (OMe) seems to promote degradation of the miRNA. The technical issues explored in this work will have relevance for other hybridization-based techniques for miRNA quantification in the presence of anti-miR ONs. PMID:21441346

  3. Endogenous microRNAs in human microvascular endothelial cells regulate mRNAs encoded by hypertension-related genes.

    PubMed

    Kriegel, Alison J; Baker, Maria Angeles; Liu, Yong; Liu, Pengyuan; Cowley, Allen W; Liang, Mingyu

    2015-10-01

    The goal of this study was to systematically identify endogenous microRNAs (miRNAs) in endothelial cells that regulate mRNAs encoded by genes relevant to hypertension. Small RNA deep sequencing was performed in cultured human microvascular endothelial cells. Of the 50 most abundant miRNAs identified, 30 had predicted target mRNAs encoded by genes with known involvement in hypertension or blood pressure regulation. The cells were transfected with anti-miR oligonucleotides to inhibit each of the 30 miRNAs and the mRNA abundance of predicted targets was examined. Of 95 miRNA-target pairs examined, the target mRNAs were significantly upregulated in 35 pairs and paradoxically downregulated in 8 pairs. The result indicated significant suppression of the abundance of mRNA encoded by ADM by endogenous miR-181a-5p, ATP2B1 by the miR-27 family, FURIN by miR-125a-5p, FGF5 by the let-7 family, GOSR2 by miR-27a-3p, JAG1 by miR-21-5p, SH2B3 by miR-30a-5p, miR-98, miR-181a-5p, and the miR-125 family, TBX3 by the miR-92 family, ADRA1B by miR-22-3p, ADRA2A by miR-30a-5p and miR-30e-5p, ADRA2B by miR-30e-5p, ADRB1 by the let-7 family and miR-98, EDNRB by the miR-92 family, and NOX4 by the miR-92 family, miR-100-5p, and miR-99b-5p (n=3-9; P<0.05 versus scrambled anti-miR). Treatment with anti-miR-21 decreased blood pressure in mice fed a 4% NaCl diet. Inhibition of the miRNAs targeting NOX4 mRNA increased H2O2 release from endothelial cells. The findings indicate widespread, tonic control of mRNAs encoded by genes relevant to blood pressure regulation by endothelial miRNAs and provide a novel and uniquely informative basis for studying the role of miRNAs in hypertension. PMID:26283043

  4. miRNA gene counts in chromosomes vary widely in a species and biogenesis of miRNA largely depends on transcription or post-transcriptional processing of coding genes

    PubMed Central

    Ghorai, Atanu; Ghosh, Utpal

    2014-01-01

    MicroRNAs target specific mRNA(s) to silence its expression and thereby regulate various cellular processes. We have investigated miRNA gene counts in chromosomes for 20 different species and observed wide variation. Certain chromosomes have extremely high number of miRNA gene compared with others in all the species. For example, high number of miRNA gene in X chromosome and the least or absence of miRNA gene in Y chromosome was observed in all species. To search the criteria governing such variation of miRNA gene counts in chromosomes, we have selected three parameters- length, number of non-coding and coding genes in a chromosome. We have calculated Pearson's correlation coefficient of miRNA gene counts with length, number of non-coding and coding genes in a chromosome for all 20 species. Major number of species showed that number of miRNA gene was not correlated with chromosome length. Eighty five percent of species under study showed strong positive correlation coefficient (r ≥ 0.5) between the numbers of miRNA gene vs. non-coding gene in chromosomes as expected because miRNA is a sub-set of non-coding genes. 55% species under study showed strong positive correlation coefficient (r ≥ 0.5) between numbers of miRNA gene vs. coding gene. We hypothesize biogenesis of miRNA largely depends on coding genes, an evolutionary conserved process. Chromosomes having higher number of miRNA genes will be most likely playing regulatory roles in several cellular processes including different disorders. In humans, cancer and cardiovascular disease associated miRNAs are mostly intergenic and located in Chromosome 19, X, 14, and 1. PMID:24808907

  5. miRNA863-3p sequentially targets negative immune regulator ARLPKs and positive regulator SERRATE upon bacterial infection

    PubMed Central

    Niu, Dongdong; Lii, Yifan E.; Chellappan, Padmanabhan; Lei, Lei; Peralta, Karl; Jiang, Chunhao; Guo, Jianhua; Coaker, Gitta; Jin, Hailing

    2016-01-01

    Plant small RNAs play important roles in gene regulation during pathogen infection. Here we show that miR863-3p is induced by the bacterial pathogen Pseudomonas syringae carrying various effectors. Early during infection, miR863-3p silences two negative regulators of plant defence, atypical receptor-like pseudokinase1 (ARLPK1) and ARLPK2, both lacking extracellular domains and kinase activity, through mRNA degradation to promote immunity. ARLPK1 associates with, and may function through another negative immune regulator ARLPK1-interacting receptor-like kinase 1 (AKIK1), an active kinase with an extracellular domain. Later during infection, miR863-3p silences SERRATE, which is essential for miRNA accumulation and positively regulates defence, through translational inhibition. This results in decreased miR863-3p levels, thus forming a negative feedback loop to attenuate immune responses after successful defence. This is an example of a miRNA that sequentially targets both negative and positive regulators of immunity through two modes of action to fine-tune the timing and amplitude of defence responses. PMID:27108563

  6. The miRNA biogenesis in marine bivalves.

    PubMed

    Rosani, Umberto; Pallavicini, Alberto; Venier, Paola

    2016-01-01

    Small non-coding RNAs include powerful regulators of gene expression, transposon mobility and virus activity. Among the various categories, mature microRNAs (miRNAs) guide the translational repression and decay of several targeted mRNAs. The biogenesis of miRNAs depends on few gene products, essentially conserved from basal to higher metazoans, whose protein domains allow specific interactions with dsRNA. Here, we report the identification of key genes responsible of the miRNA biogenesis in 32 bivalves, with particular attention to the aquaculture species Mytilus galloprovincialis and Crassostrea gigas. In detail, we have identified and phylogenetically compared eight evolutionary conserved proteins: DROSHA, DGCR8, EXP5, RAN, DICER TARBP2, AGO and PIWI. In mussels, we recognized several other proteins participating in the miRNA biogenesis or in the subsequent RNA silencing. According to digital expression analysis, these genes display low and not inducible expression levels in adult mussels and oysters whereas they are considerably expressed during development. As miRNAs play an important role also in the antiviral responses, knowledge on their production and regulative effects can shed light on essential molecular processes and provide new hints for disease prevention in bivalves. PMID:26989613

  7. The miRNA biogenesis in marine bivalves

    PubMed Central

    Rosani, Umberto; Pallavicini, Alberto

    2016-01-01

    Small non-coding RNAs include powerful regulators of gene expression, transposon mobility and virus activity. Among the various categories, mature microRNAs (miRNAs) guide the translational repression and decay of several targeted mRNAs. The biogenesis of miRNAs depends on few gene products, essentially conserved from basal to higher metazoans, whose protein domains allow specific interactions with dsRNA. Here, we report the identification of key genes responsible of the miRNA biogenesis in 32 bivalves, with particular attention to the aquaculture species Mytilus galloprovincialis and Crassostrea gigas. In detail, we have identified and phylogenetically compared eight evolutionary conserved proteins: DROSHA, DGCR8, EXP5, RAN, DICER TARBP2, AGO and PIWI. In mussels, we recognized several other proteins participating in the miRNA biogenesis or in the subsequent RNA silencing. According to digital expression analysis, these genes display low and not inducible expression levels in adult mussels and oysters whereas they are considerably expressed during development. As miRNAs play an important role also in the antiviral responses, knowledge on their production and regulative effects can shed light on essential molecular processes and provide new hints for disease prevention in bivalves. PMID:26989613

  8. A knowledge base for the discovery of function, diagnostic potential and drug effects on cellular and extracellular miRNAs

    PubMed Central

    2014-01-01

    Background MicroRNAs (miRNAs) are small noncoding RNAs that play an important role in the regulation of various biological processes through their interaction with cellular mRNAs. A significant amount of miRNAs has been found in extracellular human body fluids (e.g. plasma and serum) and some circulating miRNAs in the blood have been successfully revealed as biomarkers for diseases including cardiovascular diseases and cancer. Released miRNAs do not necessarily reflect the abundance of miRNAs in the cell of origin. It is claimed that release of miRNAs from cells into blood and ductal fluids is selective and that the selection of released miRNAs may correlate with malignancy. Moreover, miRNAs play a significant role in pharmacogenomics by down-regulating genes that are important for drug function. In particular, the use of drugs should be taken into consideration while analyzing plasma miRNA levels as drug treatment. This may impair their employment as biomarkers. Description We enriched our manually curated extracellular/circulating microRNAs database, miRandola, by providing (i) a systematic comparison of expression profiles of cellular and extracellular miRNAs, (ii) a miRNA targets enrichment analysis procedure, (iii) information on drugs and their effect on miRNA expression, obtained by applying a natural language processing algorithm to abstracts obtained from PubMed. Conclusions This allows users to improve the knowledge about the function, diagnostic potential, and the drug effects on cellular and circulating miRNAs. PMID:25077952

  9. Altered expression of miRNAs in a dihydrotestosterone-induced rat PCOS model

    PubMed Central

    2013-01-01

    Background The polycystic ovary syndrome (PCOS) is a complex and heterogeneous endocrine condition characterized by hyperandrogenism, hyperinsulinemia, insulin resistance and chronic anovulation. Regulation and interaction of a multitude of genes required for follicular development are found to be altered in PCOS. MicroRNAs (miRNAs) mediate posttranscriptional gene regulation by binding to the 3´ untranslated region of mRNAs to either inhibit or enhance translation. However, the extent and regulation of miRNA expression in PCOS is poorly understood and the current study is the first to describe altered expression of miRNAs in PCOS. Methods A chronically androgenized [5α-dihydrotestosterone (DHT)-treated] rat model which recapitulates many of the phenotypes of human PCOS, and miRNA PCR array was used to investigate the expression of 349 miRNAs in DHT treated rat ovaries. The ovarian expression of several selected miRNAs was also analyzed by in situ localization experiment. Results DHT-treated rats exhibit increased body weight, disrupted estrus cyclicity, decreased insulin sensitivity and decreased ovarian weight, with the latter phenomenon readily rescued by gonadotropin treatment in vivo. In general, 24% of the 349 miRNAs investigated were found to be differentially expressed between DHT-treated and control rats. Most of the differentially expressed miRNAs were found to be predominantly localized in the theca cells of the follicles. In silico analysis of the potential target genes of dysregulated miRNAs revealed their possible involvement in various pathways in the regulation of ovarian function. Conclusion Our current findings suggest that miRNAs are differentially regulated in hyperandrogenism, a condition possibly involved in the dysregulation of steroid hormone receptors and intra-ovarian factors, and that miRNAs may be involved in the etiology of PCOS. PMID:23675970

  10. Systematic identification of miRISC proteins, miRNAs, and their mRNA targets in C. elegans by their interactions with GW182 family proteins AIN-1 and AIN-2

    PubMed Central

    Zhang, Liang; Ding, Lei; Cheung, Tom H.; Dong, Meng-Qiu; Chen, Jun; Sewell, Aileen K.; Liu, Xuedong; Yates, John R.; Han, Min

    2007-01-01

    Summary MicroRNAs (miRNAs) regulate gene expression for diverse functions, but only a limited number of mRNA targets have been experimentally identified. We show that GW182 family proteins AIN-1 and AIN-2 act redundantly to regulate the expression of miRNA targets, but not miRNA biogenesis. Immunoprecipitation (IP) and mass spectrometry indicate that AIN-1 and AIN-2 interact only with miRNA-specific Argonaute proteins ALG-1 and ALG-2 and with components of the core translational initiation complex. Known miRNA targets are enriched in AIN-2 complexes, correlating with the expression of corresponding miRNAs. Combining IP with pyrosequencing and microarray analysis of RNAs associated with AIN-1/AIN-2, we identified 106 previously annotated miRNAs plus 9 new candidate miRNAs, but nearly no siRNAs, and more than 3500 potential miRNA targets including nearly all known ones. Our results demonstrate an effective biochemical approach to systematically identify miRNA targets and provide valuable insights regarding the properties of miRNA effector complexes. PMID:18042455

  11. Co-modulated behavior and effects of differentially expressed miRNA in colorectal cancer

    PubMed Central

    2013-01-01

    Background MicroRNAs (miRNAs) are short noncoding RNAs (approximately 22 nucleotides in length) that play important roles in colorectal cancer (CRC) progression through silencing gene expression. Numerous dysregulated miRNAs simultaneously participate in the process of colon cancer development. However, the detailed mechanisms and biological functions of co-expressed miRNA in colorectal carcinogenesis have yet to be fully elucidated. Results The objective of this study was to identify the dysfunctional miRNAs and their target mRNAs using a wet-lab experimental and dry-lab bioinformatics approach. The differentially expressed miRNA candidates were identified from 2 miRNA profiles, and were confirmed in CRC clinical samples using reported target genes of dysfunctional miRNAs to perform functional pathway enrichment analysis. Potential target gene candidates were predicted by an in silico search, and their expression levels between normal and colorectal tumor tissues were further analyzed using real-time polymerase chain reaction (RT-PCR). We identified 5 miRNAs (miR-18a, miR-31, miR-96, miR-182, and miR-224) and 10 miRNAs (miR-1, miR-9, miR-10b, miR-133a, miR-143, miR-137, miR-147b, miR-196a/b, and miR-342) that were significantly upregulated and downregulated in colon tumors, respectively. Bioinformatics analysis showed that the known targets of these dysregulated miRNAs simultaneously participated in epithelial-to-mesenchymal transition (EMT), cell growth, cell adhesion, and cell cycles. In addition, we identified that several pivotal target gene candidates may be comodulated by dysfunctional miRNAs during colon cancer progression. Finally, 7 candidates were proven to be differentially expressed, and had an anti-correlationship with dysregulated miRNA in 48 CRC samples. Conclusion Fifteen dysfunctional miRNAs were engaged in metastasis-associated pathways through comodulating 7 target genes, which were identified by using a multi-step approach. The roles of these

  12. Dysregulated expression of microRNAs and mRNAs in myocardial infarction

    PubMed Central

    Wang, Yaping; Pan, Xiaohong; Fan, Youqi; Hu, Xinyang; Liu, Xianbao; Xiang, Meixiang; Wang, Jian’an

    2015-01-01

    Acute myocardial infarction (AMI) is a major cause of mortality in the general population. However, the molecular phenotypes and therapeutic targets of AMI patients remain unclear. By profiling genome-wide transcripts and microRNAs (miRNAs) in a cohort of 23 AMI patients and 23 non-AMI patients, we found 218 dysregulated genes identified in the infarcted heart tissues from AMI patients relative to non-AMI controls. Pathway enrichment analysis of the dysregulated genes pointed to cell signaling/communication, cell/organism defense and cell structure/motility. We next compared the expression profiles of potential regulating miRNAs, suggesting that dysregulation of a number of AMI-associated genes (e.g., IL12A, KIF1A, HIF1α and CDK13) may be attributed to the dysregulation of their respective regulating miRNAs. One potentially pathogenic miRNA-mRNA pair, miR-210-HIF1α, was confirmed in a mouse model of myocardial infarction (MI). Inhibition of miR-210 expression improved the survival and cardiac function of MI mice. In conclusion, we presented the pathologic relationships between miRNAs and their gene targets in AMI. Such deregulated microRNAs and mRNAs like miR-210 serve as novel therapeutic targets of AMI. PMID:26807177

  13. Estrogen Regulates the Tumour Suppressor MiRNA-30c and Its Target Gene, MTA-1, in Endometrial Cancer

    PubMed Central

    Yan, Yuhua; Guo, Feifei; Li, Jian; Hu, Yali; Zhou, Huaijun; Xun, Qingying

    2014-01-01

    MicroRNA-30c (miR-30c) has been reported to be a tumour suppressor in endometrial cancer (EC). We demonstrate that miR-30c is down-regulated in EC tissue and is highly expressed in estrogen receptor (ER)-negative HEC-1-B cells. MiR-30c directly inhibits MTA-1 expression and functions as a tumour suppressor via the miR-30c-MTA-1 signalling pathway. Furthermore, miR-30c is decreased upon E2 treatment in both ER-positive Ishikawa and ER-negative HEC-1-B cells. Taken together, our results suggest that miR-30c is an important deregulated miRNA in EC and might serve as a potential biomarker and novel therapeutic target for EC. PMID:24595016

  14. The onset of human ectopic pregnancy demonstrates a differential expression of miRNAs and their cognate targets in the Fallopian tube

    PubMed Central

    Feng, Yi; Zou, Shien; Weijdegård, Birgitta; Chen, Jie; Cong, Qing; Fernandez-Rodriguez, Julia; Wang, Lei; Billig, Håkan; Shao, Ruijin

    2014-01-01

    Human ectopic pregnancy (EP) is a leading cause of pregnancy-related death, but the molecular basis underlying the onset of tubal EP is largely unknown. Female Dicer1 conditional knockout mice are infertile with dysfunctional Fallopian tube and have a different miRNA expression profile compared to wild-type mice, and we speculated that Dicer-mediated regulation of miRNA expression and specific miRNA-controlled targets might contribute to the onset of tubal EP. In the present study, we used microarray analysis and quantitative RT-PCR to examine the expression of miRNAs and core miRNA regulatory components in Fallopian tube tissues from women with EP. We found that the levels of DICER1, four miRNAs (let-7i, miR-149, miR-182, and miR-424), and estrogen receptor α distinguished the tubal implantation site from the non-implantation site. Computational algorithms and screening for interactions with the estrogen and progesterone receptor signaling pathways showed that the four miRNAs were predicted to target ten genes, including NEDD4, TAF15, and SPEN. Subsequent experiments showed differences in NEDD4 mRNA and protein levels between the implantation and non-implantation sites. Finally, we revealed that increases in smooth muscle cell NEDD4 and stromal cell TAF15, in parallel with a decrease in epithelial cell SPEN, were associated with tubal implantation. Our study suggests that changes in miRNA levels by the DICER-mediated miRNA-processing machinery result in aberrant expression of cell type-specific proteins that are potentially involved in the onset of tubal EP. PMID:24427327

  15. Bioinformatic Identification and Expression Analysis of Banana MicroRNAs and Their Targets

    PubMed Central

    Shi, Hourui; Ren, Mengyun; Zhang, Yindong; Wang, Jingyi

    2015-01-01

    MicroRNAs (miRNAs) represent a class of endogenous non-coding small RNAs that play important roles in multiple biological processes by degrading targeted mRNAs or repressing mRNA translation. Thousands of miRNAs have been identified in many plant species, whereas only a limited number of miRNAs have been predicted in M. acuminata (A genome) and M. balbisiana (B genome). Here, previously known plant miRNAs were BLASTed against the Expressed Sequence Tag (EST) and Genomic Survey Sequence (GSS), a database of banana genes. A total of 32 potential miRNAs belonging to 13 miRNAs families were detected using a range of filtering criteria. 244 miRNA:target pairs were subsequently predicted, most of which encode transcription factors or enzymes that participate in the regulation of development, growth, metabolism, and other physiological processes. In order to validate the predicted miRNAs and the mutual relationship between miRNAs and their target genes, qRT-PCR was applied to detect the tissue-specific expression levels of 12 putative miRNAs and 6 target genes in roots, leaves, flowers, and fruits. This study provides some important information about banana pre-miRNAs, mature miRNAs, and miRNA target genes and these findings can be applied to future research of miRNA functions. PMID:25856313

  16. Temozolomide resistance in glioblastoma occurs by miRNA-9-targeted PTCH1, independent of sonic hedgehog level

    PubMed Central

    Munoz, Jessian L.; Rodriguez-Cruz, Vivian; Ramkissoon, Shakti H.; Ligon, Keith L.; Greco, Steven J.; Rameshwar, Pranela

    2015-01-01

    Glioblastoma Multiforme (GBM), the most common and lethal adult primary tumor of the brain, showed a link between Sonic Hedgehog (SHH) pathway in the resistance to temozolomide (TMZ). PTCH1, the SHH receptor, can tonically represses signaling by endocytosis. We asked how the decrease in PTCH1 in GBM cells could lead to TMZ-resistance. TMZ resistant GBM cells have increased PTCH1 mRNA and reduced protein. Knockdown of Dicer, a Type III RNAase, indicated that miRNAs can explain the decreased PTCH1 in TMZ resistant cells. Computational studies, real-time PCR, reporter gene studies, western blots, target protector oligos and ectopic expression identified miR-9 as the target of PTCH1 in resistant GBM cells with concomitant activation of SHH signaling. MiR-9 mediated increases in the drug efflux transporters, MDR1 and ABCG2. MiR-9 was increased in the tissues from GBM patients and in an early passage GBM cell line from a patient with recurrent GBM but not from a naïve patient. Pharmacological inhibition of SHH signaling sensitized the GBM cells to TMZ. Taken together, miR-9 targets PTCH1 in GBM cells by a SHH-independent method in GBM cells for TMZ resistance. The identified pathways could lead to new strategies to target GBM with combinations of drugs. PMID:25595896

  17. CtBP1 associates metabolic syndrome and breast carcinogenesis targeting multiple miRNAs

    PubMed Central

    De Luca, Paola; Dalton, Guillermo N.; Scalise, Georgina D.; Moiola, Cristian P.; Porretti, Juliana; Massillo, Cintia; Kordon, Edith; Gardner, Kevin; Zalazar, Florencia; Flumian, Carolina; Todaro, Laura; Vazquez, Elba S.; Meiss, Roberto; De Siervi, Adriana

    2016-01-01

    Metabolic syndrome (MeS) has been identified as a risk factor for breast cancer. C-terminal binding protein 1 (CtBP1) is a co-repressor of tumor suppressor genes that is activated by low NAD+/NADH ratio. High fat diet (HFD) increases intracellular NADH. We investigated the effect of CtBP1 hyperactivation by HFD intake on mouse breast carcinogenesis. We generated a MeS-like disease in female mice by chronically feeding animals with HFD. MeS increased postnatal mammary gland development and generated prominent duct patterns with markedly increased CtBP1 and Cyclin D1 expression. CtBP1 induced breast cancer cells proliferation. Serum from animals with MeS enriched the stem-like/progenitor cell population from breast cancer cells. CtBP1 increased breast tumor growth in MeS mice modulating multiple genes and miRNA expression implicated in cell proliferation, progenitor cells phenotype, epithelial to mesenchymal transition, mammary development and cell communication in the xenografts. These results define a novel function for CtBP1 in breast carcinogenesis. PMID:26933806

  18. CtBP1 associates metabolic syndrome and breast carcinogenesis targeting multiple miRNAs.

    PubMed

    De Luca, Paola; Dalton, Guillermo N; Scalise, Georgina D; Moiola, Cristian P; Porretti, Juliana; Massillo, Cintia; Kordon, Edith; Gardner, Kevin; Zalazar, Florencia; Flumian, Carolina; Todaro, Laura; Vazquez, Elba S; Meiss, Roberto; De Siervi, Adriana

    2016-04-01

    Metabolic syndrome (MeS) has been identified as a risk factor for breast cancer. C-terminal binding protein 1 (CtBP1) is a co-repressor of tumor suppressor genes that is activated by low NAD+/NADH ratio. High fat diet (HFD) increases intracellular NADH. We investigated the effect of CtBP1 hyperactivation by HFD intake on mouse breast carcinogenesis. We generated a MeS-like disease in female mice by chronically feeding animals with HFD. MeS increased postnatal mammary gland development and generated prominent duct patterns with markedly increased CtBP1 and Cyclin D1 expression. CtBP1 induced breast cancer cells proliferation. Serum from animals with MeS enriched the stem-like/progenitor cell population from breast cancer cells. CtBP1 increased breast tumor growth in MeS mice modulating multiple genes and miRNA expression implicated in cell proliferation, progenitor cells phenotype, epithelial to mesenchymal transition, mammary development and cell communication in the xenografts. These results define a novel function for CtBP1 in breast carcinogenesis. PMID:26933806

  19. Regulation of the miRNA expression by TEL/AML1, BCR/ABL, MLL/AF4 and TCF3/PBX1 oncoproteins in acute lymphoblastic leukemia (Review).

    PubMed

    Organista-Nava, Jorge; Gómez-Gómez, Yazmín; Illades-Aguiar, Berenice; Leyva-Vázquez, Marco Antonio

    2016-09-01

    MicroRNAs (miRNAs) are a class of small endogenous non-coding RNAs that play important regulatory roles by targeting mRNAs for cleavage or translational repression. miRNAs act in diverse biological processes including development, cell growth, apoptosis, and hematopoiesis. The miRNA expression is associated with specific cytogenetic changes and can also be used to discriminate between the different subtypes of leukemia in acute lymphoblastic leukemia with common translocations, it is shown that the miRNAs have the potential to be used for clinical diagnosis and prognosis. We reviewed the roles of miRNA here with emphasis on their function in human leukemia and the mechanisms of the TEL/AML1, BCR/ABL, MLL/AF4 and TCF3/PBX1 oncoproteins on miRNAs expression in acute lymphoblastic leukemia. PMID:27431573

  20. Evaluation of inhibition of miRNA expression induced by anti-miRNA oligonucleotides.

    PubMed

    Chae, Dong-Kyu; Ban, Eunmi; Yoo, Young Sook; Baik, Ja-Hyun; Song, Eun Joo

    2016-07-01

    MicroRNAs (miRNAs) are short RNA molecules that control the expression of mRNAs associated with various biological processes. Therefore, deregulated miRNAs play an important role in the pathogenesis of diseases. Numerous studies aimed at developing novel miRNA-based drugs or determining miRNA functions have been conducted by inhibiting miRNAs using anti-miRNA oligonucleotides (AMOs), which inhibit the function by hybridizing with miRNA. To increase the binding affinity and specificity to target miRNA, AMOs with various chemical modifications have been developed. Evaluating the potency of these various types of AMOs is an essential step in their development. In this study, we developed a capillary electrophoresis with laser-induced fluorescence (CE-LIF) method to evaluate the potency of AMOs by measuring changes in miRNA levels with fluorescence-labeled ssDNA probes using AMO-miR-23a, which inhibits miR-23a related to lung cancer. In order to eliminate interference by excess AMOs during hybridization of the ssDNA probe with the miR-23a, the concentration of the ssDNA probe was optimized. This newly developed method was used to compare the potency of two different modified AMOs. The data were supported by the results of a luciferase assay. This study demonstrated that CE-LIF analysis could be used to accurately evaluate AMO potency in biological samples. PMID:27178549

  1. Quantitative proteomic strategies for the identification of microRNA targets.

    PubMed

    Li, Chongyang; Xiong, Qian; Zhang, Jia; Ge, Feng; Bi, Li-Jun

    2012-10-01

    MicroRNAs (miRNAs) are small noncoding RNAs, approximately 22 nucleotides in length, found in diverse organisms. They have emerged in recent years as key regulators of a broad spectrum of cellular functions. miRNAs regulate biological processes by inducing translational inhibition and degradation of their target mRNAs through base pairing to partially or fully complementary sites. In the field of miRNA research, the identification of the targets of individual miRNAs is of utmost importance. Our understanding of the molecular mechanisms by which individual miRNAs modulate cellular functions will remain incomplete until a full set of miRNA targets is identified and validated. Since a miRNA may regulate many of its targets at the translational level without affecting mRNA abundance, proteomic methods are best suited for revealing the full spectrum of miRNA targets. Quantitative proteomics is emerging as a powerful toolbox for identifying miRNA targets and for quantifying the contribution of translational repression by miRNAs. In this review, the authors summarize the quantitative proteomic approaches that have been employed for identification of miRNA targets and discuss current challenges as well as possible ways of overcoming them. PMID:23194271

  2. Differential expression profiles of miRNAs induced by vaccination followed by Marek’s disease virus challenge at cytolytic stage in chickens resistant or susceptible to Marek’s disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mounting evidence shows microRNAs (miRNAs) directly regulate gene expression post-transcriptionally through base-pairing with regions in the 3’-untranslated sequences of target gene mRNAs, which results in dysregulation of gene expression/translation and subsequently modulates cellular processes. We...

  3. Shrimp miRNAs regulate innate immune response against white spot syndrome virus infection.

    PubMed

    Kaewkascholkul, Napol; Somboonviwat, Kulwadee; Asakawa, Shuichi; Hirono, Ikuo; Tassanakajon, Anchalee; Somboonwiwat, Kunlaya

    2016-07-01

    MicroRNAs are short noncoding RNAs of RNA interference pathways that regulate gene expression through partial complementary base-pairing to target mRNAs. In this study, miRNAs that are expressed in white spot syndrome virus (WSSV)-infected Penaeus monodon, were identified using next generation sequencing. Forty-six miRNA homologs were identified from WSSV-infected shrimp hemocyte. Stem-loop real-time RT-PCR analysis showed that 11 out of 16 selected miRNAs were differentially expressed upon WSSV infection. Of those, pmo-miR-315 and pmo-miR-750 were highly responsive miRNAs. miRNA target prediction revealed that the miRNAs were targeted at 5'UTR, ORF, and 3'UTR of several immune-related genes such as genes encoding antimicrobial peptides, signaling transduction proteins, heat shock proteins, oxidative stress proteins, proteinases or proteinase inhibitors, proteins in blood clotting system, apoptosis-related proteins, proteins in prophenoloxidase system, pattern recognition proteins and other immune molecules. The highly conserved miRNA homolog, pmo-bantam, was characterized for its function in shrimp. The pmo-bantam was predicted to target the 3'UTR of Kunitz-type serine protease inhibitor (KuSPI). Binding of pmo-bantam to the target sequence of KuSPI gene was analyzed by luciferase reporter assay. Correlation of pmo-bantam and KuSPI expression was observed in lymphoid organ of WSSV-infected shrimp. These results implied that miRNAs might play roles as immune gene regulators in shrimp antiviral response. PMID:26945623

  4. Identification and characterization of microRNAs and their target genes from Nile tilapia (Oreochromis niloticus).

    PubMed

    Huang, Yong; Ma, Xiu Ying; Yang, You Bing; Ren, Hong Tao; Sun, Xi Hong; Wang, Li Rui

    2016-01-01

    MicroRNAs (miRNAs) are a class of small single-stranded, endogenous 21-22 nt non-coding RNAs that regulate their target mRNA levels by causing either inactivation or degradation of the mRNAs. In recent years, miRNA genes have been identified from mammals, insects, worms, plants, and viruses. In this research, bioinformatics approaches were used to predict potential miRNAs and their targets in Nile tilapia from the expressed sequence tag (EST) and genomic survey sequence (GSS) database, respectively, based on the conservation of miRNAs in many animal species. A total of 19 potential miRNAs were detected following a range of strict filtering criteria. To test the validity of the bioinformatics method, seven predicted Nile tilapia miRNA genes were selected for further biological validation, and their mature miRNA transcripts were successfully detected by stem-loop RT-PCR experiments. Using these potential miRNAs, we found 56 potential targets in this species. Most of the target mRNAs appear to be involved in development, metabolism, signal transduction, transcription regulation and stress responses. Overall, our findings will provide an important foundation for further research on miRNAs function in the Nile tilapia. PMID:27305701

  5. mirPRo–a novel standalone program for differential expression and variation analysis of miRNAs

    PubMed Central

    Shi, Jieming; Dong, Min; Li, Lei; Liu, Lin; Luz-Madrigal, Agustin; Tsonis, Panagiotis A.; Del Rio-Tsonis, Katia; Liang, Chun

    2015-01-01

    Being involved in many important biological processes, miRNAs can regulate gene expression by targeting mRNAs to facilitate their degradation or translational inhibition. Many miRNA sequencing studies reveal that miRNA variations such as isomiRs and “arm switching” are biologically relevant. However, existing standalone tools usually do not provide comprehensive, detailed information on miRNA variations. To deepen our understanding of miRNA variability, we developed a new standalone tool called “mirPRo” to quantify known miRNAs and predict novel miRNAs. Compared with the most widely used standalone program, miRDeep2, mirPRo offers several new functions including read cataloging based on genome annotation, optional seed region check, miRNA family expression quantification, isomiR identification and categorization, and “arm switching” detection. Our comparative data analyses using three datasets from mouse, human and chicken demonstrate that mirPRo is more accurate than miRDeep2 by avoiding over-counting of sequence reads and by implementing different approaches in adapter trimming, mapping and quantification. mirPRo is an open-source standalone program (https://sourceforge.net/projects/mirpro/). PMID:26434581

  6. Multifunctional Nanoparticles Facilitate Molecular Targeting and miRNA Delivery to Inhibit Atherosclerosis in ApoE–/– Mice

    PubMed Central

    2016-01-01

    The current study presents an effective and selective multifunctional nanoparticle used to deliver antiatherogenic therapeutics to inflamed pro-atherogenic regions without off-target changes in gene expression or particle-induced toxicities. MicroRNAs (miRNAs) regulate gene expression, playing a critical role in biology and disease including atherosclerosis. While anti-miRNA are emerging as therapeutics, numerous challenges remain due to their potential off-target effects, and therefore the development of carriers for selective delivery to diseased sites is important. Yet, co-optimization of multifunctional nanoparticles with high loading efficiency, a hidden cationic domain to facilitate lysosomal escape and a dense, stable incorporation of targeting moieties is challenging. Here, we create coated, cationic lipoparticles (CCLs), containing anti-miR-712 (∼1400 molecules, >95% loading efficiency) within the core and with a neutral coating, decorated with 5 mol % of peptide (VHPK) to target vascular cell adhesion molecule 1 (VCAM1). Optical imaging validated disease-specific accumulation as anti-miR-712 was efficiently delivered to inflamed mouse aortic endothelial cells in vitro and in vivo. As with the naked anti-miR-712, the delivery of VHPK-CCL-anti-miR-712 effectively downregulated the d-flow induced expression of miR-712 and also rescued the expression of its target genes tissue inhibitor of metalloproteinase 3 (TIMP3) and reversion-inducing-cysteine-rich protein with kazal motifs (RECK) in the endothelium, resulting in inhibition of metalloproteinase activity. Moreover, an 80% lower dose of VHPK-CCL-anti-miR-712 (1 mg/kg dose given twice a week), as compared with naked anti-miR-712, prevented atheroma formation in a mouse model of atherosclerosis. While delivery of naked anti-miR-712 alters expression in multiple organs, miR-712 expression in nontargeted organs was unchanged following VHPK-CCL-anti-miR-712 delivery. PMID:26308181

  7. The interactions of GW182 proteins with PABP and deadenylases are required for both translational repression and degradation of miRNA targets.

    PubMed

    Huntzinger, Eric; Kuzuoglu-Öztürk, Duygu; Braun, Joerg E; Eulalio, Ana; Wohlbold, Lara; Izaurralde, Elisa

    2013-01-01

    Animal miRNAs silence the expression of mRNA targets through translational repression, deadenylation and subsequent mRNA degradation. Silencing requires association of miRNAs with an Argonaute protein and a GW182 family protein. In turn, GW182 proteins interact with poly(A)-binding protein (PABP) and the PAN2-PAN3 and CCR4-NOT deadenylase complexes. These interactions are required for the deadenylation and decay of miRNA targets. Recent studies have indicated that miRNAs repress translation before inducing target deadenylation and decay; however, whether translational repression and deadenylation are coupled or represent independent repressive mechanisms is unclear. Another remaining question is whether translational repression also requires GW182 proteins to interact with both PABP and deadenylases. To address these questions, we characterized the interaction of Drosophila melanogaster GW182 with deadenylases and defined the minimal requirements for a functional GW182 protein. Functional assays in D. melanogaster and human cells indicate that miRNA-mediated translational repression and degradation are mechanistically linked and are triggered through the interactions of GW182 proteins with PABP and deadenylases. PMID:23172285

  8. Aire-dependent peripheral tissue antigen mRNAs in mTEC cells feature networking refractoriness to microRNA interaction.

    PubMed

    Macedo, Claudia; Oliveira, Ernna H; Almeida, Renata S; Donate, Paula B; Fornari, Thaís A; Pezzi, Nicole; Sakamoto-Hojo, Elza T; Donadi, Eduardo A; Passos, Geraldo A

    2015-01-01

    The downregulation of PTA genes in mTECs is associated with the loss of self-tolerance, and the role of miRNAs in this process is not fully understood. Therefore, we studied the expression of mRNAs and miRNAs in mTECs from autoimmune NOD mice during the period when loss of self-tolerance occurs in parallel with non-autoimmune BALB/c mice. Although the expression of the transcriptional regulator Aire was unchanged, we observed downregulation of a set of PTA mRNAs. A set of miRNAs was also differentially expressed in these mice. The reconstruction of miRNA-mRNA interaction networks identified the controller miRNAs and predicted the PTA mRNA targets. Interestingly, the known Aire-dependent PTAs exhibited pronounced refractoriness in the networking interaction with miRNAs. This study reveals the existence of a new mechanism in mTECs, and this mechanism may have importance in the control of self-tolerance. PMID:25220732

  9. Role of miRNAs in muscle stem cell biology: proliferation, differentiation and death.

    PubMed

    Crippa, Stefania; Cassano, Marco; Sampaolesi, Maurilio

    2012-01-01

    miRNAs are small non-coding RNAs that regulate post-transcriptionally gene expression by degradation or translational repression of specific target mRNAs. In the 90s, lin-4 and let-7 were firstly identified as small regulatory RNAs able to control C. elegans larval development, by specifically targeting the 3'UTR of lin-14 and lin-28, respectively. These findings have introduced a novel and wide layer of complexity in the regulation of mRNA and protein expression. Lin-4 and let-7 are now considered the founding members of an abundant class of small fine-tuned RNAs, called microRNAs (miRNAs), in viruses, green algae, plants, flies, worms, and in mammals. In humans, the estimated number of genes encoding for miRNAs is as high as 1000 and around 30% of the protein-coding genes are post-transcriptionally controlled by miRNAs. This article reviews the role of miRNAs in regulating several biological responses in muscle cells, ranging from proliferation, differentiation and adaptation to stress cues. Cardiac and skeletal muscles are powerful examples to summarize the activity of miRNAs in cell fate specification, lineage differentiation and metabolic pathways. Indeed, specific miRNAs control the number of proliferating muscle progenitors to guarantee the proper formation of the heart and muscle fibers and to assure the self-renewal of muscle progenitors during adult tissue regeneration. On the other side, several other miRNAs promote the differentiation of muscle progenitors into skeletal myofibers or into cardiomyocytes, where metabolic activity, survival and remodeling process in response to stress, injury and chronic diseases are also fine-tuned by miRNAs. PMID:22352753

  10. Microarray-based approach identifies microRNAs and their target functional patterns in polycystic kidney disease

    PubMed Central

    Pandey, Priyanka; Brors, Benedikt; Srivastava, Prashant K; Bott, Andrea; Boehn, Susanne NE; Groene, Herrmann-Josef; Gretz, Norbert

    2008-01-01

    Background MicroRNAs (miRNAs) play key roles in mammalian gene expression and several cellular processes, including differentiation, development, apoptosis and cancer pathomechanisms. Recently the biological importance of primary cilia has been recognized in a number of human genetic diseases. Numerous disorders are related to cilia dysfunction, including polycystic kidney disease (PKD). Although involvement of certain genes and transcriptional networks in PKD development has been shown, not much is known how they are regulated molecularly. Results Given the emerging role of miRNAs in gene expression, we explored the possibilities of miRNA-based regulations in PKD. Here, we analyzed the simultaneous expression changes of miRNAs and mRNAs by microarrays. 935 genes, classified into 24 functional categories, were differentially regulated between PKD and control animals. In parallel, 30 miRNAs were differentially regulated in PKD rats: our results suggest that several miRNAs might be involved in regulating genetic switches in PKD. Furthermore, we describe some newly detected miRNAs, miR-31 and miR-217, in the kidney which have not been reported previously. We determine functionally related gene sets, or pathways to reveal the functional correlation between differentially expressed mRNAs and miRNAs. Conclusion We find that the functional patterns of predicted miRNA targets and differentially expressed mRNAs are similar. Our results suggest an important role of miRNAs in specific pathways underlying PKD. PMID:19102782

  11. Identification and characterization of miRNAs expressed in the bovine ovary

    PubMed Central

    Hossain, Md Munir; Ghanem, Nasser; Hoelker, Michael; Rings, Franca; Phatsara, Chirawath; Tholen, Ernst; Schellander, Karl; Tesfaye, Dawit

    2009-01-01

    Background MicroRNAs are the major class of gene-regulating molecules playing diverse roles through sequence complementarity to target mRNAs at post-transcriptional level. Tightly regulated expression and interaction of a multitude of genes for ovarian folliculogenesis could be regulated by these miRNAs. Identification of them is the first step towards understanding miRNA-guided gene regulation in different biological functions. Despite increasing efforts in miRNAs identification across various species and diverse tissue types, little is known about bovine ovarian miRNAs. Here, we report the identification and characterization of miRNAs expressed in the bovine ovary through cloning, expression analysis and target prediction. Results The miRNA library (5'-independent ligation cloning method), which was constructed from bovine ovary in this study, revealed cloning of 50 known and 24 novel miRNAs. Among all identified miRNAs, 38 were found to be new for bovine and were derived from 43 distinct loci showing characteristic secondary structure. While 22 miRNAs precursor loci were found to be well conserved in more than one species, 16 were found to be bovine specific. Most of the miRNAs were cloned multiple times, in which let-7a, let-7b, let-7c, miR-21, miR-23b, miR-24, miR-27a, miR-126 and miR-143 were cloned 10, 28, 13, 4, 11, 7, 6, 4 and 11 times, respectively. Expression analysis of all new and some annotated miRNAs in different intra-ovarian structures and in other multiple tissues showed that some were present ubiquitously while others were differentially expressed among different tissue types. Bta-miR-29a was localized in the follicular cells at different developmental stages in the cyclic ovary. Bio-informatics prediction, screening and Gene Ontology analysis of miRNAs targets identified several biological processes and pathways underlying the ovarian function. Conclusion Results of this study suggest the presence of miRNAs in the bovine ovary, thereby elucidate

  12. MirZ: an integrated microRNA expression atlas and target prediction resource

    PubMed Central

    Hausser, Jean; Berninger, Philipp; Rodak, Christoph; Jantscher, Yvonne; Wirth, Stefan; Zavolan, Mihaela

    2009-01-01

    MicroRNAs (miRNAs) are short RNAs that act as guides for the degradation and translational repression of protein-coding mRNAs. A large body of work showed that miRNAs are involved in the regulation of a broad range of biological functions, from development to cardiac and immune system function, to metabolism, to cancer. For most of the over 500 miRNAs that are encoded in the human genome the functions still remain to be uncovered. Identifying miRNAs whose expression changes between cell types or between normal and pathological conditions is an important step towards characterizing their function as is the prediction of mRNAs that could be targeted by these miRNAs. To provide the community the possibility of exploring interactively miRNA expression patterns and the candidate targets of miRNAs in an integrated environment, we developed the MirZ web server, which is accessible at www.mirz.unibas.ch. The server provides experimental and computational biologists with statistical analysis and data mining tools operating on up-to-date databases of sequencing-based miRNA expression profiles and of predicted miRNA target sites in species ranging from Caenorhabditis elegans to Homo sapiens. PMID:19468042

  13. MicroRNA regulation of stem cell differentiation and diseases of the bone and adipose tissue: Perspectives on miRNA biogenesis and cellular transcriptome.

    PubMed

    Martin, E C; Qureshi, A T; Dasa, V; Freitas, M A; Gimble, J M; Davis, T A

    2016-05-01

    MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression through targeting and suppression of mRNAs. miRNAs have been under investigation for the past twenty years and there is a large breadth of information on miRNAs in diseases such as cancer and immunology. Only more recently have miRNAs shown promise as a mechanism for intervention with respect to diseases of the bone and adipose tissue. In mesenchymal stem cell (MSC) differentiation, alterations in miRNA expression patterns can differentially promote an osteogenic, adipogenic, or myogenic phenotype. This manuscript reviews the current literature with respect to miRNAs in the context of MSC function with a particular focus on novel avenues for the examination of miRNA associated with bone and adipose tissue biology and disease. Specifically we highlight the need for a greater depth of investigation on MSCs with respect to miRNA biogenesis, processing, strand selection, and heterogeneity. We discuss how these mechanisms facilitate both altered miRNA expression and function. PMID:25726914

  14. An integrated miRNA functional screening and target validation method for organ morphogenesis

    PubMed Central

    Rebustini, Ivan T.; Vlahos, Maryann; Packer, Trevor; Kukuruzinska, Maria A.; Maas, Richard L.

    2016-01-01

    The relative ease of identifying microRNAs and their increasing recognition as important regulators of organogenesis motivate the development of methods to efficiently assess microRNA function during organ morphogenesis. In this context, embryonic organ explants provide a reliable and reproducible system that recapitulates some of the important early morphogenetic processes during organ development. Here we present a method to target microRNA function in explanted mouse embryonic organs. Our method combines the use of peptide-based nanoparticles to transfect specific microRNA inhibitors or activators into embryonic organ explants, with a microRNA pulldown assay that allows direct identification of microRNA targets. This method provides effective assessment of microRNA function during organ morphogenesis, allows prioritization of multiple microRNAs in parallel for subsequent genetic approaches, and can be applied to a variety of embryonic organs. PMID:26980315

  15. MiRNA-1469 promotes lung cancer cells apoptosis through targeting STAT5a

    PubMed Central

    Xu, Chengshan; Zhang, Ling; Li, Hengheng; Liu, Zhihua; Duan, Lianning; Lu, Chengrong

    2015-01-01

    MicroRNAs play key roles in cell growth, differentiation, and apoptosis. In this study, we described the regulation and function of miR-1469 in apoptosis of lung cancer cells (A549 and NCI-H1650). Expression analysis verified that miR-1469 expression significantly increased in apoptotic cells. Overexpression of miR-1469 in lung cancer cells increased cell apoptosis induced by etoposide. Additionally, we identified that Stat5a is a downstream target of miR-1469, which can bind directly to the 3’-untranslated region of the Stat5a, subsequently reducing both the mRNA and protein levels of Stat5a. Finally, co-expression of miR-1469 and Stat5a in A549 and NCI-H1650 cells partially abrogated the effect of miR-1469 on cell apoptosis. Our results show that miR-1469 functions as an apoptosis enhancer to regulate lung cancer apoptosis through targeting Stat5a and may become a critical therapeutic target in lung cancer. PMID:26045996

  16. Role of miRNA Let-7 and Its Major Targets in Prostate Cancer

    PubMed Central

    2014-01-01

    Prostate cancer is worldwide the sixth leading cause of cancer related death in men thus early detection and successful treatment are still of major interest. The commonly performed screening of the prostate-specific antigen (PSA) is controversially discussed, as in many patients the prostate-specific antigen levels are chronically elevated in the absence of cancer. Due to the unsatisfying efficiency of available prostate cancer screening markers and the current treatment outcome of the aggressive hormone refractory prostate cancer, the evaluation of novel molecular markers and targets is considered an issue of high importance. MicroRNAs are relatively stable in body fluids orchestrating simultaneously the expression of many genes. These molecules are currently discussed to bear a greater diagnostic potential than protein-coding genes, being additionally promising therapeutic drugs and/or targets. Herein we review the potential impact of the microRNA let-7 family on prostate cancer and show how deregulation of several of its target genes could influence the cellular equilibrium in the prostate gland, promoting cancer development as they do in a variety of other human malignant neoplasias. PMID:25276782

  17. MiRNA-1469 promotes lung cancer cells apoptosis through targeting STAT5a.

    PubMed

    Xu, Chengshan; Zhang, Ling; Li, Hengheng; Liu, Zhihua; Duan, Lianning; Lu, Chengrong

    2015-01-01

    MicroRNAs play key roles in cell growth, differentiation, and apoptosis. In this study, we described the regulation and function of miR-1469 in apoptosis of lung cancer cells (A549 and NCI-H1650). Expression analysis verified that miR-1469 expression significantly increased in apoptotic cells. Overexpression of miR-1469 in lung cancer cells increased cell apoptosis induced by etoposide. Additionally, we identified that Stat5a is a downstream target of miR-1469, which can bind directly to the 3'-untranslated region of the Stat5a, subsequently reducing both the mRNA and protein levels of Stat5a. Finally, co-expression of miR-1469 and Stat5a in A549 and NCI-H1650 cells partially abrogated the effect of miR-1469 on cell apoptosis. Our results show that miR-1469 functions as an apoptosis enhancer to regulate lung cancer apoptosis through targeting Stat5a and may become a critical therapeutic target in lung cancer. PMID:26045996

  18. miRNAs Related to Skeletal Diseases.

    PubMed

    Seeliger, Claudine; Balmayor, Elizabeth R; van Griensven, Martijn

    2016-09-01

    miRNAs as non-coding, short, double-stranded RNA segments are important for cellular biological functions, such as proliferation, differentiation, and apoptosis. miRNAs mainly contribute to the inhibition of important protein translations through their cleavage or direct repression of target messenger RNAs expressions. In the last decade, miRNAs got in the focus of interest with new publications on miRNAs in the context of different diseases. For many types of cancer or myocardial damage, typical signatures of local or systemically circulating miRNAs have already been described. However, little is known about miRNA expressions and their molecular effect in skeletal diseases. An overview of published studies reporting miRNAs detection linked with skeletal diseases was conducted. All regulated miRNAs were summarized and their molecular interactions were illustrated. This review summarizes the involvement and interaction of miRNAs in different skeletal diseases. Thereby, 59 miRNAs were described to be deregulated in tissue, cells, or in the circulation of osteoarthritis (OA), 23 miRNAs deregulated in osteoporosis, and 107 miRNAs deregulated in osteosarcoma (OS). The molecular influences of miRNAs regarding OA, osteoporosis, and OS were illustrated. Specific miRNA signatures for skeletal diseases are described in the literature. Some overlapped, but also unique ones for each disease exist. These miRNAs may present useful targets for the development of new therapeutic approaches and are candidates for diagnostic evaluations. PMID:27418331

  19. PBX3 is targeted by multiple miRNAs and is essential for liver tumour-initiating cells.

    PubMed

    Han, Haibo; Du, Yantao; Zhao, Wei; Li, Sheng; Chen, Dongji; Zhang, Jing; Liu, Jiang; Suo, Zhenhe; Bian, Xiuwu; Xing, Baocai; Zhang, Zhiqian

    2015-01-01

    Tumour-initiating cells (TICs) are advocated to constitute the sustaining force to maintain and renew fully established malignancy; however, the molecular mechanisms responsible for these properties are elusive. We previously demonstrated that voltage-gated calcium channel α2δ1 subunit marks hepatocellular carcinoma (HCC) TICs. Here we confirm directly that α2δ1 is a HCC TIC surface marker, and identify let-7c, miR-200b, miR-222 and miR-424 as suppressors of α2δ1(+) HCC TICs. Interestingly, all the four miRNAs synergistically target PBX3, which is sufficient and necessary for the acquisition and maintenance of TIC properties. Moreover, PBX3 drives an essential transcriptional programme, activating the expression of genes critical for HCC TIC stemness including CACNA2D1, EpCAM, SOX2 and NOTCH3. In addition, the expression of CACNA2D1 and PBX3 mRNA is predictive of poor prognosis for HCC patients. Collectively, our study identifies an essential signalling pathway that controls the switch of HCC TIC phenotypes. PMID:26420065

  20. Free Extracellular miRNA Functionally Targets Cells by Transfecting Exosomes from Their Companion Cells

    PubMed Central

    Bryniarski, Krzysztof; Ptak, Wlodzimierz; Martin, Emilia; Nazimek, Katarzyna; Szczepanik, Marian; Sanak, Marek; Askenase, Philip W.

    2015-01-01

    Lymph node and spleen cells of mice doubly immunized by epicutaneous and intravenous hapten application produce a suppressive component that inhibits the action of the effector T cells that mediate contact sensitivity reactions. We recently re-investigated this phenomenon in an immunological system. CD8+ T lymphocyte-derived exosomes transferred suppressive miR-150 to the effector T cells antigen-specifically due to exosome surface coat of antibody light chains made by B1a lymphocytes. Extracellular RNA (exRNA) is protected from plasma RNases by carriage in exosomes or by chaperones. Exosome transfer of functional RNA to target cells is well described, whereas the mechanism of transfer of exRNA free of exosomes remains unclear. In the current study we describe extracellular miR-150, extracted from exosomes, yet still able to mediate antigen-specific suppression. We have determined that this was due to miR-150 association with antibody-coated exosomes produced by B1a cell companions of the effector T cells, which resulted in antigen-specific suppression of their function. Thus functional cell targeting by free exRNA can proceed by transfecting companion cell exosomes that then transfer RNA cargo to the acceptor cells. This contrasts with the classical view on release of RNA-containing exosomes from the multivesicular bodies for subsequent intercellular targeting. This new alternate pathway for transfer of exRNA between cells has distinct biological and immunological significance, and since most human blood exRNA is not in exosomes may be relevant to evaluation and treatment of diseases. PMID:25923429

  1. Small RNAs meet their targets: When methylation defends miRNAs from uridylation

    PubMed Central

    Ren, Guodong; Chen, Xuemei; Yu, Bin

    2014-01-01

    Small RNAs are incorporated into Argonaute protein-containing complexes to guide the silencing of target RNAs in both animals and plants. The abundance of endogenous small RNAs is precisely controlled at multiple levels including transcription, processing and Argonaute loading. In addition to these processes, 3′ end modification of small RNAs, the topic of a research area that has rapidly evolved over the last several years, adds another layer of regulation of their abundance, diversity and function. Here, we review our recent understanding of small RNA 3′ end methylation and tailing. PMID:25483033

  2. Dicer1-mediated miRNA processing shapes the mRNA profile and function of murine platelets.

    PubMed

    Rowley, Jesse W; Chappaz, Stéphane; Corduan, Aurélie; Chong, Mark M W; Campbell, Robert; Khoury, Amanda; Manne, Bhanu Kanth; Wurtzel, Jeremy G T; Michael, James V; Goldfinger, Lawrence E; Mumaw, Michele M; Nieman, Marvin T; Kile, Benjamin T; Provost, Patrick; Weyrich, Andrew S

    2016-04-01

    Human platelets contain microRNAs (miRNAs) and miRNA processing machinery, but their contribution to platelet function remains incompletely understood. Here, we show that murine megakaryocyte (MK)-specific knockdown of Dicer1, the ribonuclease that cleaves miRNA precursors into mature miRNAs, reduces the level of the majority of miRNAs in platelets. This leads to altered platelet messenger RNA (mRNA) expression profiles and mild thrombocytopenia. Fibrinogen receptor subunits Itga2b (αIIb) and Itgb3 (β3) mRNAs were among the differentially expressed transcripts that are increased in platelets lacking Dicer1. Argonaute 2 (Ago2), a member of the miRNA silencing complex, co-immunoprecipitated with αIIband β3mRNAs in wild-type platelets. Furthermore, co-immunoprecipitation experiments suggested reduced αIIb/β3/Ago2 complexes in miRNA-deficient platelets. These results suggested that miRNAs regulate both integrin subunits. Subsequent 3' untranslated region luciferase reporter assays confirmed that the translation of both αIIband β3mRNAs can be regulated by miRNAs miR-326, miR-128, miR-331, and miR-500. Consistent with these molecular changes, the deletion ofDicer1resulted in increased surface expression of integrins αIIband β3, and enhanced platelet binding to fibrinogen in vivo and in vitro. Heightened platelet reactivity, shortened tail-bleeding time, and reduced survival following collagen/epinephrine-induced pulmonary embolism were also observed in Dicer1-deficient animals. CombinedPf4-cre-mediated deletion of Drosha and Dicer1 did not significantly exacerbate phenotypes observed in single Dicer1 knockout mice. In summary, these findings indicate that Dicer1-dependent generation of mature miRNAs in late-stage MKs and platelets modulates the expression of target mRNAs important for the hemostatic and thrombotic function of platelets. PMID:26773046

  3. MiRNA-101 inhibits breast cancer growth and metastasis by targeting CX chemokine receptor 7

    PubMed Central

    Zhu, Xiao-Shan; Liu, Qin-Qin; Wang, Xiu-Li; Yu, Feng; Liu, Yan-Li; Yang, An-Gang; Gao, Chun-Fang

    2015-01-01

    Whereas miR-101 is involved in the development and progression of breast cancer, the underlying molecular mechanisms remain to be elucidated. Here, we report that miR-101 expression is inversely correlated with the clinical stage, lymph node metastasis and prognosis in breast cancers. Introduction of miR-101 inhibited breast cancer cell proliferation and invasion in vitro and suppressed tumor growth and lung metastasis of in vivo. CX chemokine receptor 7 (CXCR7) is a direct target of miR-101, positively correlating with the histological grade and the incidence of lymph node metastasis in breast cancer patients. The effects of miR-101 were mimicked and counteracted by CXCR7 depletion and overexpression, respectively. STAT3 signaling downstream of CXCR7 is involved in miR-101 regulation of breast cancer cell behaviors. These findings have implications for the potential application of miR-101 in breast cancer treatment. PMID:26360780

  4. Fine tuning by miRNAs in development

    NASA Astrophysics Data System (ADS)

    McHale, Peter; Levine, Erel; Levine, Herbert

    2007-03-01

    The unique role played by microRNA in a developing embryo is a topic of much current research interest. One possibility is that microRNA diffuse within a developing tissue, acting as communicators between different cells. Here we pursue this possibility in two different contexts. The first case occurs when the transcription profiles of the microRNA and its target are spatially anticorrelated, as for example is the case in the iab4-Ubx system in fly. Conversely, in the second context the two transcription profiles are correlated in space, as may be the case for the mir10-Hoxb4 system in mouse. In each context we identify a major function for a mobile miRNA. In the first, miRNA serve to induce an all-or-nothing response of the mRNA profile to its morphogen by generating a sharp boundary between domains of high and (ultimately) low target expression. In the second, miRNA amplify polarity in the target expression pattern by removing residual mRNAs. Importantly, our model predicts that these two functions require very different type of diffusion. While our results are highly quantitative, we propose ways of realizing them in experiments, taking into account limitations of standard experimental techniques.

  5. Differential expression of miRNA-146a-regulated inflammatory genes in human primary neural, astroglial and microglial cells

    PubMed Central

    Li, Yuan Yuan; Cui, Jian Guo; Dua, Prerna; Pogue, Aileen I.; Bhattacharjee, Surjyadipta; Lukiw, Walter J.

    2013-01-01

    Micro RNA-146a (miRNA-146a) is an inducible, 22 nucleotide, small RNA over-expressed in Alzheimer’s disease (AD) brain. Up-regulated miRNA-146a targets several inflammation-related and membrane-associated messenger RNAs (mRNAs), including those encoding complement factor-H (CFH) and the interleukin-1 receptor associated kinase-1 (IRAK-1), resulting in significant decreases in their expression (p < 0.05, ANOVA). In this study we assayed miRNA-146a, CFH, IRAK-1 and tetraspanin-12 (TSPAN12), abundances in primary human neuronal-glial (HNG) co-cultures, in human astroglial (HAG) and microglial (HMG) cells stressed with Aβ42 peptide and tumor necrosis factor alpha (TNFα). The results indicate a consistent inverse relationship between miRNA-146a and CFH, IRAK-1 and TSPAN12 expression levels, and indicate that HNG, HAG and HMG cell types each respond differently to Aβ42-peptide + TNFα-triggered stress. While the strongest miRNA-146a-IRAK-1 response was found in HAG cells, the largest miRNA-146a-TSPAN12 response was found in HNG cells, and the most significant miRNA-146a-CFH changes were found in HMG cells, the ‘resident scavenging macrophages’ of the brain. PMID:21640790

  6. CID-miRNA: A web server for prediction of novel miRNA precursors in human genome

    SciTech Connect

    Tyagi, Sonika; Vaz, Candida; Gupta, Vipin; Bhatia, Rohit; Maheshwari, Sachin; Srinivasan, Ashwin; Bhattacharya, Alok

    2008-08-08

    microRNAs (miRNA) are a class of non-protein coding functional RNAs that are thought to regulate expression of target genes by direct interaction with mRNAs. miRNAs have been identified through both experimental and computational methods in a variety of eukaryotic organisms. Though these approaches have been partially successful, there is a need to develop more tools for detection of these RNAs as they are also thought to be present in abundance in many genomes. In this report we describe a tool and a web server, named CID-miRNA, for identification of miRNA precursors in a given DNA sequence, utilising secondary structure-based filtering systems and an algorithm based on stochastic context free grammar trained on human miRNAs. CID-miRNA analyses a given sequence using a web interface, for presence of putative miRNA precursors and the generated output lists all the potential regions that can form miRNA-like structures. It can also scan large genomic sequences for the presence of potential miRNA precursors in its stand-alone form. The web server can be accessed at (http://mirna.jnu.ac.in/cidmirna/)

  7. MiRNA-101 inhibits oral squamous-cell carcinoma growth and metastasis by targeting zinc finger E-box binding homeobox 1

    PubMed Central

    Wu, Baolei; Lei, Delin; Wang, Lei; Yang, Xinjie; Jia, Sen; Yang, Zihui; Shan, Chun; Yang, Xi; Zhang, Chenping; Lu, Bin

    2016-01-01

    MicroRNAs (miRNAs) are implicated in the pathogenesis of oral squamous-cell carcinoma (OSCC). miR-101 is involved in the development and progression of OSCC, but the biological functions and underlying molecular mechanisms of this miRNA remain largely unknown. In this study, we showed that miR-101 was underexpressed in OSCC tissues and cell lines. miR-101 downregulation was inversely correlated with zinc finger E-box binding homeobox 1 (ZEB1) expression, lymph-node metastasis, and poor prognosis in OSCC patients. Enhanced expression of miR-101 significantly inhibited OSCC cell proliferation, apoptosis resistance, migration and invasion in vitro, and suppressed tumor growth and lung metastasis in vivo. Bioinformatics analyses showed that miR-101 directly targeted ZEB1, as confirmed by a dual-luciferase reporter assay. The inhibitory effects of miR-101 on OSCC growth and metastasis were attenuated and phenocopied by ZEB1 overexpression and knockdown, respectively. Overall, our findings indicated that miRNA-101 reduced OSCC growth and metastasis by targeting ZEB1 and provided new evidence of miR-101 as a potential therapeutic target for OSCC patients. PMID:27429852

  8. Polysome shift assay for direct measurement of miRNA inhibition by anti-miRNA drugs

    PubMed Central

    Androsavich, John R.; Sobczynski, Daniel J.; Liu, Xueqing; Pandya, Shweta; Kaimal, Vivek; Owen, Tate; Liu, Kai; MacKenna, Deidre A.; Chau, B. Nelson

    2016-01-01

    Anti-miRNA (anti-miR) oligonucleotide drugs are being developed to inhibit overactive miRNAs linked to disease. To help facilitate the transition from concept to clinic, new research tools are required. Here we report a novel method—miRNA Polysome Shift Assay (miPSA)—for direct measurement of miRNA engagement by anti-miR, which is more robust than conventional pharmacodynamics using downstream target gene derepression. The method takes advantage of size differences between active and inhibited miRNA complexes. Active miRNAs bind target mRNAs in high molecular weight polysome complexes, while inhibited miRNAs are sterically blocked by anti-miRs from forming this interaction. These two states can be assessed by fractionating tissue or cell lysates using differential ultracentrifugation through sucrose gradients. Accordingly, anti-miR treatment causes a specific shift of cognate miRNA from heavy to light density fractions. The magnitude of this shift is dose-responsive and maintains a linear relationship with downstream target gene derepression while providing a substantially higher dynamic window for aiding drug discovery. In contrast, we found that the commonly used ‘RT-interference’ approach, which assumes that inhibited miRNA is undetectable by RT-qPCR, can yield unreliable results that poorly reflect the binding stoichiometry of anti-miR to miRNA. We also demonstrate that the miPSA has additional utility in assessing anti-miR cross-reactivity with miRNAs sharing similar seed sequences. PMID:26384419

  9. Polysome shift assay for direct measurement of miRNA inhibition by anti-miRNA drugs.

    PubMed

    Androsavich, John R; Sobczynski, Daniel J; Liu, Xueqing; Pandya, Shweta; Kaimal, Vivek; Owen, Tate; Liu, Kai; MacKenna, Deidre A; Chau, B Nelson

    2016-01-29

    Anti-miRNA (anti-miR) oligonucleotide drugs are being developed to inhibit overactive miRNAs linked to disease. To help facilitate the transition from concept to clinic, new research tools are required. Here we report a novel method--miRNA Polysome Shift Assay (miPSA)--for direct measurement of miRNA engagement by anti-miR, which is more robust than conventional pharmacodynamics using downstream target gene derepression. The method takes advantage of size differences between active and inhibited miRNA complexes. Active miRNAs bind target mRNAs in high molecular weight polysome complexes, while inhibited miRNAs are sterically blocked by anti-miRs from forming this interaction. These two states can be assessed by fractionating tissue or cell lysates using differential ultracentrifugation through sucrose gradients. Accordingly, anti-miR treatment causes a specific shift of cognate miRNA from heavy to light density fractions. The magnitude of this shift is dose-responsive and maintains a linear relationship with downstream target gene derepression while providing a substantially higher dynamic window for aiding drug discovery. In contrast, we found that the commonly used 'RT-interference' approach, which assumes that inhibited miRNA is undetectable by RT-qPCR, can yield unreliable results that poorly reflect the binding stoichiometry of anti-miR to miRNA. We also demonstrate that the miPSA has additional utility in assessing anti-miR cross-reactivity with miRNAs sharing similar seed sequences. PMID:26384419

  10. SOX11 identified by target gene evaluation of miRNAs differentially expressed in focal and non-focal brain tissue of therapy-resistant epilepsy patients.

    PubMed

    Haenisch, Sierk; Zhao, Yi; Chhibber, Aparna; Kaiboriboon, Kitti; Do, Lynn V; Vogelgesang, Silke; Barbaro, Nicholas M; Alldredge, Brian K; Lowenstein, Daniel H; Cascorbi, Ingolf; Kroetz, Deanna L

    2015-05-01

    MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally control the expression of their target genes via RNA interference. There is increasing evidence that expression of miRNAs is dysregulated in neuronal disorders, including epilepsy, a chronic neurological disorder characterized by spontaneous recurrent seizures. Mesial temporal lobe epilepsy (MTLE) is a common type of focal epilepsy in which disease-induced abnormalities of hippocampal neurogenesis in the subgranular zone as well as gliosis and neuronal cell loss in the cornu ammonis area are reported. We hypothesized that in MTLE altered miRNA-mediated regulation of target genes could be involved in hippocampal cell remodeling. A miRNA screen was performed in hippocampal focal and non-focal brain tissue samples obtained from the temporal neocortex (both n=8) of MTLE patients. Out of 215 detected miRNAs, two were differentially expressed (hsa-miR-34c-5p: mean increase of 5.7 fold (p=0.014), hsa-miR-212-3p: mean decrease of 76.9% (p=0.0014)). After in-silico target gene analysis and filtering, reporter gene assays confirmed RNA interference for hsa-miR-34c-5p with 3'-UTR sequences of GABRA3, GRM7 and GABBR2 and for hsa-miR-212-3p with 3'-UTR sequences of SOX11, MECP2, ADCY1 and ABCG2. Reporter gene assays with mutated 3'-UTR sequences of the transcription factor SOX11 identified two different binding sites for hsa-miR-212-3p and its primary transcript partner hsa-miR-132-3p. Additionally, there was an inverse time-dependent expression of Sox11 and miR-212-3p as well as miR-132-3p in rat neonatal cortical neurons. Transfection of neurons with anti-miRs for miR-212-3p and miR-132-3p suggest that both miRNAs work synergistically to control Sox11 expression. Taken together, these results suggest that differential miRNA expression in neurons could contribute to an altered function of the transcription factor SOX11 and other genes in the setting of epilepsy, resulting not only in impaired neural

  11. Reduced abundance of the CYP6CY3-targeting let-7 and miR-100 miRNAs accounts for host adaptation of Myzus persicae nicotianae.

    PubMed

    Peng, Tianfei; Pan, Yiou; Gao, Xiwu; Xi, Jinghui; Zhang, Lei; Ma, Kangsheng; Wu, Yongqiang; Zhang, Juhong; Shang, Qingli

    2016-08-01

    Nicotine is one of the most abundant and toxic secondary plant metabolites in nature and is defined by high toxicity to plant-feeding insects. Studies suggest that increased expression of cytochrome P450 (CYP6CY3) and the homologous CYP6CY4 genes in Myzus persicae nicotianae is correlated with tolerance to nicotine. Indeed, through expression analyses of the CYP6CY3 and CYP6CY4 genes of different M. persicae subspecies, we determined that the mRNA levels of these two genes were much higher in M. persicae nicotianae than in M. persicae sensu stricto. We hypothesized that the expression of these two genes is subject to post-transcriptional regulation. To investigate the underlying mechanism, the miRNA profile of M. persicae nicotianae was sequenced, and twenty-two miRNAs were predicted to target CYP6CY3. Validation of these miRNAs identified two miRNAs, let-7 and miR-100, whose abundance was highly inversely correlated with the abundance of the CYP6CY3 gene. This result implies that the let-7 and miR-100 miRNAs play a major role in the post-transcriptional regulation of the CYP6CY3 gene. Modulation of the abundance of let-7 and miR-100 through the addition of inhibitors/mimics of let-7 or miR-100 to artificial diet significantly altered the tolerance of M. persicae nicotianae to nicotine, further confirming the regulatory role of these two miRNAs. Interestingly, after decreasing the transcript levels of CYP6CY3 by modulating regulatory miRNAs, the transcript levels of the homologous isozyme CYP6CY4 were significantly elevated, suggesting a compensatory mechanism between the CYP6CY3 gene and its homologous CYP6CY4 gene. Our findings provide insight into the molecular drivers of insect host shifts and reveal an important source of genetic variation for adaptive evolution in insect species. PMID:27318250

  12. miRNA-1283 Regulates the PERK/ATF4 Pathway in Vascular Injury by Targeting ATF4

    PubMed Central

    Xu, Qingyun; Chen, Ruixue; Chen, Liguo

    2016-01-01

    Background In our previous study, we found significant differences in the mRNA and microRNA (miRNA) levels among hypertensive patients with different degrees of vascular endothelial cells damage. These differences were closely associated with endoplasmic reticulum stress (ERS)-related proteins. Moreover, compared to the control group, the expression of transcription factor activating factor 4 (ATF4) was also found to be significantly different in the hypertensive patients with different degrees of vascular endothelial cells damage groups. These results were confirmed using gene prediction software, which showed synergistic effects between ATF4 and miR-1283. ATF4 is a key molecule in ERS. Three ERS pathways exist:protein kinase RNA-like ER kinase (PERK), activating transcription factor 6 (ATF6) and inositol-requiring enzyme-1 (IRE-1)-induced apoptosis. The PERK pathway is the most important and also includes the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) and ATF4. In this report, we studied the regulatory effects of miR-1283 and ATF4 on the PERK-eIF2α-ATF4 signaling pathway using human umbilical vein endothelial cells (HUVECs) and mice. Methodology/Principal Findings We verified the relationship between miR-1283 and ATF4 using a luciferase activity assay and observed the regulatory effects of miR-1283 and ATF4 on the PERK-eIF2α-ATF4 signaling pathway in vivo and in vitro. Conclusions/Significance ATF4 is a target gene of miR-1283, which regulates the PERK-eIF2α-ATF4 signaling pathway by inhibiting ATF4, and it plays a critical role in inducing injury in HUVECs and mouse heart tissue. PMID:27537404

  13. Lipopolysaccharide-Induced Differential Expression of miRNAs in Male and Female Rhipicephalus haemaphysaloides Ticks

    PubMed Central

    Zhang, Houshuang; Zhou, Yongzhi; Cao, Jie; Zhou, Jinlin

    2015-01-01

    Lipopolysaccharide (LPS) stimulates the innate immune response in arthropods. In tick vectors, LPS activates expression of immune genes, including those for antibacterial peptides. miRNAs are 21–24 nt non-coding small RNAs that regulate target mRNAs at the post-transcriptional level. However, our understanding of tick innate immunity is limited to a few cellular immune reactions and some characterized immune molecules. Moreover, there is little information on the regulation of the immune system in ticks by miRNA. Therefore, this study aimed to analyze the differential expression of miRNAs in male and female ticks after LPS injection. LPS was injected into male and female Rhipicephalus haemaphysaloides ticks to stimulate immune response, with phosphate buffered saline (PBS)-injected ticks as negative controls. miRNAs from each group were sequenced and analyzed. In the PBS- and LPS-injected female ticks, 11.46 and 12.82 million reads of 18–30 nt were obtained respectively. There were 13.92 and 15.29 million reads of 18–30 nt obtained in the PBS- and LPS-injected male ticks, respectively. Expression of miRNAs in male ticks was greater than that in female ticks. There were 955 and 984 conserved miRNA families in the PBS- and LPS-injected female ticks, respectively, and correspondingly 1684 and 1552 conserved miRNA families in male ticks. Nine novel miRNAs were detected as common miRNAs in two or more tested samples. There were 37 known miRNAs up-regulated >10-fold and 33 down-regulated >10-fold in LPS-injected female ticks; and correspondingly 52 and 59 miRNAs in male ticks. Differential expression of miRNAs in PBS- and LPS-injected samples supports their involvement in the regulation of innate immunity. These data provide an important resource for more detailed functional analysis of miRNAs in this species. PMID:26430879

  14. Identification of miRNAs and Their Targets in the Liverwort Marchantia polymorpha by Integrating RNA-Seq and Degradome Analyses

    PubMed Central

    Lin, Pin-Chun; Lu, Chia-Wei; Shen, Bing-Nan; Lee, Guan-Zong; Bowman, John L.; Arteaga-Vazquez, Mario A.; Liu, Li-Yu Daisy; Hong, Syuan-Fei; Lo, Chu-Fang; Su, Gong-Min; Kohchi, Takayuki; Ishizaki, Kimitsune; Zachgo, Sabine; Althoff, Felix; Takenaka, Mizuki; Yamato, Katsuyuki T.; Lin, Shih-Shun

    2016-01-01

    Bryophytes (liverworts, hornworts and mosses) comprise the three earliest diverging lineages of land plants (embryophytes). Marchantia polymorpha, a complex thalloid Marchantiopsida liverwort that has been developed into a model genetic system, occupies a key phylogenetic position. Therefore, M. polymorpha is useful in studies aiming to elucidate the evolution of gene regulation mechanisms in plants. In this study, we used computational, transcriptomic, small RNA and degradome analyses to characterize microRNA (miRNA)-mediated pathways of gene regulation in M. polymorpha. The data have been integrated into the open access ContigViews-miRNA platform for further reference. In addition to core components of the miRNA pathway, 129 unique miRNA sequences, 11 of which could be classified into seven miRNA families that are conserved in embryophytes (miR166a, miR390, miR529c, miR171-3p, miR408a, miR160 and miR319a), were identified. A combination of computational and degradome analyses allowed us to identify and experimentally validate 249 targets. In some cases, the target genes are orthologous to those of other embryophytes, but in other cases, the conserved miRNAs target either paralogs or members of different gene families. In addition, the newly discovered Mpo-miR11707.1 and Mpo-miR11707.2 are generated from a common precursor and target MpARGONAUTE1 (LW1759). Two other newly discovered miRNAs, Mpo-miR11687.1 and Mpo-miR11681.1, target the MADS-box transcription factors MpMADS1 and MpMADS2, respectively. Interestingly, one of the pentatricopeptide repeat (PPR) gene family members, MpPPR_66 (LW9825), the protein products of which are generally involved in various steps of RNA metabolism, has a long stem–loop transcript that can generate Mpo-miR11692.1 to autoregulate MpPPR_66 (LW9825) mRNA. This study provides a foundation for further investigations of the RNA-mediated silencing mechanism in M. polymorpha as well as of the evolution of this gene silencing pathway in

  15. Identification of miRNAs and Their Targets in the Liverwort Marchantia polymorpha by Integrating RNA-Seq and Degradome Analyses.

    PubMed

    Lin, Pin-Chun; Lu, Chia-Wei; Shen, Bing-Nan; Lee, Guan-Zong; Bowman, John L; Arteaga-Vazquez, Mario A; Liu, Li-Yu Daisy; Hong, Syuan-Fei; Lo, Chu-Fang; Su, Gong-Min; Kohchi, Takayuki; Ishizaki, Kimitsune; Zachgo, Sabine; Althoff, Felix; Takenaka, Mizuki; Yamato, Katsuyuki T; Lin, Shih-Shun

    2016-02-01

    Bryophytes (liverworts, hornworts and mosses) comprise the three earliest diverging lineages of land plants (embryophytes). Marchantia polymorpha, a complex thalloid Marchantiopsida liverwort that has been developed into a model genetic system, occupies a key phylogenetic position. Therefore, M. polymorpha is useful in studies aiming to elucidate the evolution of gene regulation mechanisms in plants. In this study, we used computational, transcriptomic, small RNA and degradome analyses to characterize microRNA (miRNA)-mediated pathways of gene regulation in M. polymorpha. The data have been integrated into the open access ContigViews-miRNA platform for further reference. In addition to core components of the miRNA pathway, 129 unique miRNA sequences, 11 of which could be classified into seven miRNA families that are conserved in embryophytes (miR166a, miR390, miR529c, miR171-3p, miR408a, miR160 and miR319a), were identified. A combination of computational and degradome analyses allowed us to identify and experimentally validate 249 targets. In some cases, the target genes are orthologous to those of other embryophytes, but in other cases, the conserved miRNAs target either paralogs or members of different gene families. In addition, the newly discovered Mpo-miR11707.1 and Mpo-miR11707.2 are generated from a common precursor and target MpARGONAUTE1 (LW1759). Two other newly discovered miRNAs, Mpo-miR11687.1 and Mpo-miR11681.1, target the MADS-box transcription factors MpMADS1 and MpMADS2, respectively. Interestingly, one of the pentatricopeptide repeat (PPR) gene family members, MpPPR_66 (LW9825), the protein products of which are generally involved in various steps of RNA metabolism, has a long stem-loop transcript that can generate Mpo-miR11692.1 to autoregulate MpPPR_66 (LW9825) mRNA. This study provides a foundation for further investigations of the RNA-mediated silencing mechanism in M. polymorpha as well as of the evolution of this gene silencing pathway in

  16. miRNAs as new molecular insights into inflammatory bowel disease: Crucial regulators in autoimmunity and inflammation

    PubMed Central

    Xu, Xiao-Min; Zhang, Hong-Jie

    2016-01-01

    Inflammatory bowel disease (IBD) is characterized by chronic relapsing inflammatory disorders of the gastrointestinal tract, and includes two major phenotypes: ulcerative colitis and Crohn’s disease. The pathogenesis of IBD is not fully understood as of yet. It is believed that IBD results from complicated interactions between environmental factors, genetic predisposition, and immune disorders. miRNAs are a class of small non-coding RNAs that can regulate gene expression by targeting the 3′-untranslated region of specific mRNAs for degradation or translational inhibition. miRNAs are considered to play crucial regulatory roles in many biologic processes, such as immune cellular differentiation, proliferation, and apoptosis, and maintenance of immune homeostasis. Recently, aberrant expression of miRNAs was revealed to play an important role in autoimmune diseases, including IBD. In this review, we discuss the current understanding of how miRNAs regulate autoimmunity and inflammation by affecting the differentiation, maturation, and function of various immune cells. In particular, we focus on describing specific miRNA expression profiles in tissues and peripheral blood that may be associated with the pathogenesis of IBD. In addition, we summarize the opportunities for utilizing miRNAs as new biomarkers and as potential therapeutic targets in IBD. PMID:26900285

  17. Interspecies Regulation of MicroRNAs and Their Targets

    PubMed Central

    Ha, Misook; Pang, Mingxiong; Agarwal, Vikram; Chen, Z. Jeffrey

    2008-01-01

    MicroRNAs (miRNAs) are 20−24 nucleotide RNA molecules that play essential roles in posttranscriptional regulation of target genes. In animals, miRNAs bind to target mRNA through imperfect complementary sequences that are usually located at the 3’ untranslated regions (UTRs), leading to translational repression or transcript degradation. In plants, miRNAs predominately mediate degradation of target mRNAs via perfect or near-perfect complementary sequences. MicroRNA targets include a large number of transcription factors, suggesting a role of miRNAs in the control of regulatory networks and cellular growth and development. Many miRNAs and their targets are conserved among plants or animals, whereas some are specific to a few plant or animal lineages. Conserved miRNAs do not necessarily exhibit the same expression levels or patterns in different species or at different stages within a species. Therefore, sequence and expression divergence in miRNAs between species may affect miRNA accumulation and target regulation in interspecific hybrids and allopolyploids that contain two or more divergent genomes, leading to developmental changes and phenotypic variation in the new species. PMID:18407843

  18. Computational identification of new porcine microRNAs and their targets.

    PubMed

    Zhou, Bo; Liu, Hong-Lin

    2010-06-01

    MicroRNAs (miRNAs) represent a newly identified class of non-protein-coding approximately 22 nt small RNAs which play important roles in multiple biological processes by degrading targeted mRNAs or repressing mRNA translation. Here we present an expressed sequence tag (EST)-based combined approach for the detection of novel porcine miRNAs. This was initiated by using previously known miRNA sequences from Homo sapiens (human) and Mus musculus (mouse) to blast the databases of Sus scrofa (pig) EST. A total of 65 new miRNAs were detected following a range of filtering criteria. Using these new potential miRNA sequences, we further obtained the publicly available porcine mRNA database from NCBI and detected 48 586 potential target hits using a software RNA hybrid. So far, compared to human and mouse, fewer miRNAs (only 54 miRNAs) were identified in Sus scrofa species. These 65 new miRNAs and their targets in pig have been run through miRHelper to yield data that may help us better understand the possible role of miRNAs in regulating the growth and development of pigs. These findings suggest that EST analysis is a good alternative strategy for identifying new miRNA candidates, their targets and other genes. PMID:20597884

  19. SoMART, a web server for miRNA, tasiRNA and target gene analysis in Solanaceae plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant micro(mi)RNAs and trans-acting small interfering (tasi)RNAs mediate posttranscriptional silencing of genes and play important roles in a variety of biological processes. Although bioinformatics prediction and small (s)RNA cloning are the key approaches used for identification of miRNAs, tasiRN...

  20. Characterization and differential expression patterns of conserved microRNAs and mRNAs in three genders of the rice field eel (Monopterus albus).

    PubMed

    Gao, Yu; Guo, Wei; Hu, Qing; Zou, Ming; Tang, Rong; Chi, Wei; Li, Dapeng

    2014-01-01

    MicroRNAs (miRNAs) are endogenous small RNAs that can regulate target mRNAs by binding to their sequences in the 3' untranslated region. The expression of miRNAs and their biogenetic pathway are involved in sexual differentiation and in the regulation of the development of germ cells and gonadal somatic cells. The rice field eel (Monopterus albus) undergoes a natural sexual transformation from female to male via an intersex stage during its life cycle. To investigate the molecular mechanisms of this sexual transformation, miRNAs present in the different sexual stages of the rice field eel were identified by high-throughput sequencing technology. A significantly differential expression among the 3 genders (p < 0.001) was observed for 48 unique miRNAs and 3 miRNAs*. Only 9 unique miRNAs showed a more than 8-fold change in their expression among the 3 genders, including mal-miR-430a and mal-miR-430c which were higher in females than in males. However, mal-miR-430b was only detected in males. Several potential miRNA target genes (cyp19a, cyp19b, nr5a1b, foxl2 amh, and vasa) were also investigated. Real-time RT-PCR demonstrated highly specific expression patterns of these genes in the 3 genders of the rice field eel. Many of these genes are targets of mal-miR-430b according to the TargetScan and miRTarBase. These results suggest that the miR-430 family may be involved in the sexual transformation of the rice field eel. PMID:25427634

  1. MicroRNAs in the failing heart--novel therapeutic targets?

    PubMed

    Gidlöf, Olof; Erlinge, David

    2014-12-01

    Heart failure is a common and disabling disease with high mortality that carries substantial societal costs. Current therapeutic strategies are aimed at relieving symptoms, avoiding hospitalization, and prolonging life, but disease progression is ultimately inevitable. MicroRNAs (miRNAs) are short, non-coding RNA molecules with pervasive roles in eukaryotic biology, annealing to complimentary sites on target mRNAs, and repressing gene expression. The fact that miRNAs are dysregulated in many human disorders, including cardiovascular disease, and the relative ease with which endogenous miRNA expression can be altered using synthetic antisense oligos has stirred enthusiasm for these molecules as potential drug targets. The aim of this review article was to summarize the current knowledge on the roles of miRNA in the pathophysiology of heart failure as well as the use of miRNAs as therapeutic targets and diagnostic tools for the disease. PMID:25375881

  2. Functional proteomics identifies miRNAs to target a p27/Myc/phospho-Rb signature in breast and ovarian cancer

    PubMed Central

    Seviour, E G; Sehgal, V; Lu, Y; Luo, Z; Moss, T; Zhang, F; Hill, S M; Liu, W; Maiti, S N; Cooper, L; Azencot, R; Lopez-Berestein, G; Rodriguez-Aguayo, C; Roopaimoole, R; Pecot, C; Sood, A K; Mukherjee, S; Gray, J W; Mills, G B; Ram, P T

    2016-01-01

    The myc oncogene is overexpressed in almost half of all breast and ovarian cancers, but attempts at therapeutic interventions against myc have proven to be challenging. Myc regulates multiple biological processes, including the cell cycle, and as such is associated with cell proliferation and tumor progression. We identified a protein signature of high myc, low p27 and high phospho-Rb significantly correlated with poor patient survival in breast and ovarian cancers. Screening of a miRNA library by functional proteomics in multiple cell lines and integration of data from patient tumors revealed a panel of five microRNAs (miRNAs) (miR-124, miR-365, miR-34b*, miR-18a and miR-506) as potential tumor suppressors capable of reversing the p27/myc/phospho-Rb protein signature. Mechanistic studies revealed an RNA-activation function of miR-124 resulting in direct induction of p27 protein levels by binding to and inducing transcription on the p27 promoter region leading to a subsequent G1 arrest. Additionally, in vivo studies utilizing a xenograft model demonstrated that nanoparticle-mediated delivery of miR-124 could reduce tumor growth and sensitize cells to etoposide, suggesting a clinical application of miRNAs as therapeutics to target the functional effect of myc on tumor growth. PMID:25639871

  3. Functional proteomics identifies miRNAs to target a p27/Myc/phospho-Rb signature in breast and ovarian cancer.

    PubMed

    Seviour, E G; Sehgal, V; Lu, Y; Luo, Z; Moss, T; Zhang, F; Hill, S M; Liu, W; Maiti, S N; Cooper, L; Azencot, R; Lopez-Berestein, G; Rodriguez-Aguayo, C; Roopaimoole, R; Pecot, C; Sood, A K; Mukherjee, S; Gray, J W; Mills, G B; Ram, P T

    2016-02-11

    The myc oncogene is overexpressed in almost half of all breast and ovarian cancers, but attempts at therapeutic interventions against myc have proven to be challenging. Myc regulates multiple biological processes, including the cell cycle, and as such is associated with cell proliferation and tumor progression. We identified a protein signature of high myc, low p27 and high phospho-Rb significantly correlated with poor patient survival in breast and ovarian cancers. Screening of a miRNA library by functional proteomics in multiple cell lines and integration of data from patient tumors revealed a panel of five microRNAs (miRNAs) (miR-124, miR-365, miR-34b*, miR-18a and miR-506) as potential tumor suppressors capable of reversing the p27/myc/phospho-Rb protein signature. Mechanistic studies revealed an RNA-activation function of miR-124 resulting in direct induction of p27 protein levels by binding to and inducing transcription on the p27 promoter region leading to a subsequent G1 arrest. Additionally, in vivo studies utilizing a xenograft model demonstrated that nanoparticle-mediated delivery of miR-124 could reduce tumor growth and sensitize cells to etoposide, suggesting a clinical application of miRNAs as therapeutics to target the functional effect of myc on tumor growth. PMID:25639871

  4. Implication of miRNAs for inflammatory bowel disease treatment: Systematic review

    PubMed Central

    Chen, Wei-Xu; Ren, Li-Hua; Shi, Rui-Hua

    2014-01-01

    Inflammatory bowel disease (IBD) is believed to develop via a complex interaction between genetic, environmental factors and the mucosal immune system. Crohn’s disease and ulcerative colitis are two major clinical forms of IBD. MicroRNAs (miRNAs) are a class of small, endogenous, noncoding RNA molecules, and evolutionary conserved in animals and plants. It controls protein production at the post-transcriptional level by targeting mRNAs for translational repression or degradation. MiRNAs are important in many biological processes, such as signal transduction, cellular proliferation, differentiation and apoptosis. Considerable attention has been paid on the key role of miRNAs in autoimmune and inflammatory disease, especially IBD. Recent studies have identified altered miRNA profiles in ulcerative colitis, Crohn’s disease and inflammatory bowel disease-associated colorectal cancer. In addition, emerging data have implicated that special miRNAs which suppress functional targets play a critical role in regulating key pathogenic mechanism in IBD. MiRNAs were found involving in regulation of nuclear transcription factor kappa B pathway (e.g., miR-146a, miR-146b, miR-122, miR-132, miR-126), intestinal epithelial barrier function (e.g., miR-21, miR-150, miR-200b) and the autophagic activity (e.g., miR-30c, miR-130a, miR-106b, miR-93, miR-196). This review aims at discussing recent advances in our understanding of miRNAs in IBD pathogenesis, their role as disease biomarkers, and perspective for future investigation and clinical application. PMID:24891977

  5. Loss-of-function screening to identify miRNAs involved in senescence: tumor suppressor activity of miRNA-335 and its new target CARF.

    PubMed

    Yu, Yue; Gao, Ran; Kaul, Zeenia; Li, Ling; Kato, Yoshio; Zhang, Zhenya; Groden, Joanna; Kaul, Sunil C; Wadhwa, Renu

    2016-01-01

    Significance of microRNAs (miRs), small non-coding molecules, has been implicated in a variety of biological processes. Here, we recruited retroviral insertional mutagenesis to obtain induction of an arbitrary noncoding RNAs, and coupled it with a cell based loss-of-function (5-Aza-2'-deoxycytidine (5Aza-dC)-induced senescence bypass) screening system. Cells that escaped 5-Aza-dC-induced senescence were subjected to miR-microarray analysis with respect to the untreated control. We identified miR-335 as one of the upregulated miRs. In order to characterize the functional significance, we overexpressed miR-335 in human cancer cells and found that it caused growth suppression. We demonstrate that the latter accounted for inhibition of 5-Aza-dC incorporation into the cell genome, enabling them to escape from induction of senescence. We also report that CARF (Collaborator of ARF) is a new target of miR-335 that regulates its growth suppressor function by complex crosstalk with other proteins including p16(INK4A), pRB, HDM2 and p21(WAF1). PMID:27457128

  6. Loss-of-function screening to identify miRNAs involved in senescence: tumor suppressor activity of miRNA-335 and its new target CARF

    PubMed Central

    Yu, Yue; Gao, Ran; Kaul, Zeenia; Li, Ling; Kato, Yoshio; Zhang, Zhenya; Groden, Joanna; Kaul, Sunil C; Wadhwa, Renu

    2016-01-01

    Significance of microRNAs (miRs), small non-coding molecules, has been implicated in a variety of biological processes. Here, we recruited retroviral insertional mutagenesis to obtain induction of an arbitrary noncoding RNAs, and coupled it with a cell based loss-of-function (5-Aza-2′-deoxycytidine (5Aza-dC)-induced senescence bypass) screening system. Cells that escaped 5-Aza-dC-induced senescence were subjected to miR-microarray analysis with respect to the untreated control. We identified miR-335 as one of the upregulated miRs. In order to characterize the functional significance, we overexpressed miR-335 in human cancer cells and found that it caused growth suppression. We demonstrate that the latter accounted for inhibition of 5-Aza-dC incorporation into the cell genome, enabling them to escape from induction of senescence. We also report that CARF (Collaborator of ARF) is a new target of miR-335 that regulates its growth suppressor function by complex crosstalk with other proteins including p16INK4A, pRB, HDM2 and p21WAF1. PMID:27457128

  7. Integrated miRNA and mRNA transcriptomes of porcine alveolar macrophages (PAM cells) identifies strain-specific miRNA molecular signatures associated with H-PRRSV and N-PRRSV infection.

    PubMed

    Cong, Peiqing; Xiao, Shuqi; Chen, Yaosheng; Wang, Liangliang; Gao, Jintao; Li, Ming; He, Zuyong; Guo, Yunxue; Zhao, Guangyin; Zhang, Xiaoyu; Chen, Luxi; Mo, Delin; Liu, Xiaohong

    2014-09-01

    Porcine reproductive and respiratory syndrome (PRRS) is one of the most significant viral diseases in swine, which causes large economic losses to the swine industry worldwide. There is considerable strain variation in PRRSV and two examples of this are the highly virulent Chinese-type PRRSV (H-PRRSV) and the classical North American type PRRSV (N-PRRSV), both with different pathogenesis. These differences may be due in part to genetic and phenotypic differences in virus replication, but also interaction with the host cell. MicroRNAs (miRNAs) are crucial regulators of gene expression and play vital roles in virus and host interactions. However, the regulation role of miRNAs during PRRSV infection has not been systematically investigated. In order to better understand the differential regulation roles of cellular miRNAs in the host response to PRRSV, miRNA expression and a global mRNA transcriptome profile was determined in primary cells infected with either H-PRRSV or N-PRRSV as multiple time points during the viral lifecycle. miRNA-mRNA interactome networks were constructed by integrating the differentially expressed miRNAs and inversely correlated target mRNAs. Using gene ontology and pathway enrichment analyses, cellular pathways associated with deregulated miRNAs were identified, including immune response, phagosome, autophagy, lysosome, autolysis, apoptosis and cell cycle regulation. To our knowledge, this is the first global analysis of strain-specific host miRNA molecular signatures associated with H- and N-PRRSV infection by integrating miRNA and mRNA transcriptomes and provides a new perspective on the contribution of miRNAs to the pathogenesis of PRRSV infection. PMID:24962047

  8. Study of microRNAs (miRNAs) that are predicted to target the autoantigens Ro/SSA and La/SSB in primary Sjögren's Syndrome.

    PubMed

    Gourzi, V C; Kapsogeorgou, E K; Kyriakidis, N C; Tzioufas, A G

    2015-10-01

    The elevated tissue expression of Ro/SSA and La/SSB autoantigens appears to be crucial for the generation and perpetuation of autoimmune humoral responses against these autoantigens in Sjögren's syndrome (SS). The mechanisms that govern their expression are not known. miRNAs, the post-transcriptional regulators of gene expression, might be implicated. We have identified previously the miRNAs let7b, miR16, miR181a, miR200b-3p, miR200b-5p, miR223 and miR483-5p that are predicted to target Ro/SSA [Ro52/tripartite motif-containing protein 21 (TRIM21), Ro60/TROVE domain family, member 2 (TROVE2)] and La/SSB mRNAs. To study possible associations with autoantigen mRNA expression and disease features, their expression was investigated in minor salivary gland (MSG) tissues, peripheral blood mononuclear cells (PBMC) and long-term cultured non-neoplastic salivary gland epithelial cells (SGEC) from 29 SS patients (20 of 29 positive for autoantibodies to Ro/SSA and La/SSB) and 24 sicca-complaining controls. The levels of miR16 were up-regulated in MSGs, miR200b-3p in SGECs and miR223 and miR483-5p in PBMCs of SS patients compared to sicca-complaining controls. The MSG levels of let7b, miR16, miR181a, miR223 and miR483-5p were correlated positively with Ro52/TRIM21-mRNA. miR181a and miR200b-3p were correlated negatively with Ro52/TRIM21 and Ro60/TROVE2 mRNAs in SGECs, respectively, whereas let7b, miR200b-5p and miR223 associated with La/SSB-mRNA. In PBMCs, let7b, miR16, miR181a and miR483-5p were correlated with Ro52/TRIM21, whereas let7b, miR16 and miR181a were also associated with La/SSB-mRNA expression. Significantly lower miR200b-5p levels were expressed in SS patients with mucosa-associated lymphoid tissue (MALT) lymphoma compared to those without. Our findings indicate that miR16, miR200b-3p, miR223 and miR483-5p are deregulated in SS, but the exact role of this deregulation in disease pathogenesis and autoantigen expression needs to be elucidated. PMID:26201309

  9. The role of nutraceuticals in pancreatic cancer prevention and therapy: Targeting cellular signaling, miRNAs and epigenome

    PubMed Central

    Li, Yiwei; Go, Vay Liang W.; Sarkar, Fazlul H.

    2014-01-01

    Pancreatic cancer is one of the most aggressive malignancies in US adults. The experimental studies have found that antioxidant nutrients could reduce oxidative DNA damage, suggesting that these antioxidants may protect against pancreatic carcinogenesis. Several epidemiologic studies showed that dietary intake of antioxidants was inversely associated with the risk of pancreatic cancer, demonstrating the inhibitory effects of antioxidants on pancreatic carcinogenesis. Moreover, nutraceuticals, the anti-cancer agents from diet or natural plants, have been found to inhibit the development and progression of pancreatic cancer through the regulation of cellular signaling pathways. Importantly, nutraceuticals also up-regulate the expression of tumor suppressive miRNAs and down-regulate the expression of oncogenic miRNAs, leading to the inhibition of pancreatic cancer cell growth and pancreatic Cancer Stem Cell (CSC) self-renewal through modulation of cellular signaling network. Furthermore, nutraceuticals also regulate epigenetically deregulated DNAs and miRNAs, leading to the normalization of altered cellular signaling in pancreatic cancer cells. Therefore, nutraceuticals could have much broader use in the prevention and/or treatment of pancreatic cancer in combination with conventional chemotherapeutics. However, more in vitro mechanistic experiments, in vivo animal studies, and clinical trials are needed to realize the true value of nutraceuticals in the prevention and/or treatment of pancreatic cancer. PMID:25493373

  10. The miRNAs and their regulatory networks responsible for pollen abortion in Ogura-CMS Chinese cabbage revealed by high-throughput sequencing of miRNAs, degradomes, and transcriptomes

    PubMed Central

    Wei, Xiaochun; Zhang, Xiaohui; Yao, Qiuju; Yuan, Yuxiang; Li, Xixiang; Wei, Fang; Zhao, Yanyan; Zhang, Qiang; Wang, Zhiyong; Jiang, Wusheng; Zhang, Xiaowei

    2015-01-01

    Chinese cabbage (Brassica rapa ssp. pekinensis) is one of the most important vegetables in Asia and is cultivated across the world. Ogura-type cytoplasmic male sterility (Ogura-CMS) has been widely used in the hybrid breeding industry for Chinese cabbage and many other cruciferous vegetables. Although, the cause of Ogura-CMS has been localized to the orf138 locus in the mitochondrial genome, however, the mechanism by which nuclear genes respond to the mutation of the mitochondrial orf138 locus is unclear. In this study, a series of whole genome small RNA, degradome and transcriptome analyses were performed on both Ogura-CMS and its maintainer Chinese cabbage buds using deep sequencing technology. A total of 289 known miRNAs derived from 69 families (including 23 new families first reported in B. rapa) and 426 novel miRNAs were identified. Among these novel miRNAs, both 3-p and 5-p miRNAs were detected on the hairpin arms of 138 precursors. Ten known and 49 novel miRNAs were down-regulated, while one known and 27 novel miRNAs were up-regulated in Ogura-CMS buds compared to the fertile plants. Using degradome analysis, a total of 376 mRNAs were identified as targets of 30 known miRNA families and 100 novel miRNAs. A large fraction of the targets were annotated as reproductive development related. Our transcriptome profiling revealed that the expression of the targets was finely tuned by the miRNAs. Two novel miRNAs were identified that were specifically highly expressed in Ogura-CMS buds and sufficiently suppressed two pollen development essential genes: sucrose transporter SUC1 and H+-ATPase 6. These findings provide clues for the contribution of a potential miRNA regulatory network to bud development and pollen engenderation. This study contributes new insights to the communication between the mitochondria and chromosome and takes one step toward filling the gap in the regulatory network from the orf138 locus to pollen abortion in Ogura-CMS plants from a miRNA