Science.gov

Sample records for mirror magnetic fields

  1. Study on Axially Distributed Divertor Magnetic Field Configuration in a Mirror Cell

    SciTech Connect

    Islam, M.K.; Nakashima, Y.; Higashizono, Y.; Katanuma, I.; Cho, T

    2005-01-15

    A mirror magnetic field configuration (MFC) is studied in which a divertor is distributed axially using multipole coils. Both configurations of divertor and minimum-B are obtained in a mirror cell. Magnetohydrodynamic (MHD) instability of a mirror cell can be eliminated in this way. Concept of the design and properties of the MFC are discussed.

  2. Mirror magneto-optical trap exploiting hexapole-compensated magnetic field

    SciTech Connect

    Hyodo, Masaharu; Nakayama, Kazuyuki; Watanabe, Masayoshi; Ohmukai, Ryuzo

    2007-07-15

    A mirror magneto-optical trap (MOT) that exploits a hexapole-compensated magnetic field was developed and used in the experimental surface trapping of neutral atoms. A pair of subsidiary wires, which was placed near the main current-carrying wire, was designed to improve the uniformity of the quadrupole magnetic field and thus increased the effective capture volume of our mirror-MOT. In the experiment, the number of {sup 87}Rb atoms captured with our mirror-MOT was approximately twice that captured with a conventional mirror-MOT.

  3. Ion Beam Neutralization Using FEAs and Mirror Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Nicolaescu, Dan; Sakai, Shigeki; Gotoh, Yasuhito; Ishikawa, Junzo

    2011-01-01

    Advanced implantation systems used for semiconductor processing require transportation of ion beams which are quasi-parallel and have low energy, such as (11B+,31P+,75As+) with energy in the range Eion = 200-1000 eV. Compensation of ion beam divergence may be obtained through electron injection and confinement in regions of non-uniform magnetic fields. Field emitter arrays with special properties are used as electron sources. The present study shows that electron confinement takes place in regions of gradient magnetic field, such as nearby analyzing, collimator and final energy magnets of the ion beam line. Modeling results have been obtained using Opera3D/Tosca/Scala. In regions of gradient magnetic field, electrons have helical trajectories which are confined like a cloud inside curved "magnetic bottles". An optimal range of positions with respect to the magnet for placing electron sources in gradient magnetic field has been shown to exist.

  4. On the magnetic mirroring as the basic cause of parallel electric fields. [in magnetosphere

    NASA Technical Reports Server (NTRS)

    Lennartsson, W.

    1976-01-01

    Among the different proposed mechanisms for generating parallel electric fields, magnetic mirroring of charged particles seems to be the most plausible. In the present paper, it is suggested that magnetic mirroring is the basic cause of parallel electric fields in the magnetosphere and that the magnetic mirroring effect may be able to form the basis of an auroral theory that can remove a major portion of the ambiguity of observations. In the model proposed, the parallel electric field is due to a magnetic confinement of a negatively charged hot collision-free plasma. A transfer of electron gyroenergy into wave energy tends to weaken this confinement; if this energy transfer becomes too strong, the parallel potential gradient will break down. Hence, from this model, in contrast to certain other models of parallel electric fields, only a small fraction of the total auroral particle energy may be expected to be transformed into electromagnetic wave energy during the acceleration process.

  5. Innovative Magnetic Mirror Concepts

    NASA Astrophysics Data System (ADS)

    Simonen, Thomas

    2009-11-01

    In the past two decades, while magnetic mirror research in the US was curtailed, several innovations have been proposed and many have been demonstrated in Japan and Russia in the Gamma 10 and GDT experiments. These advances have led to new scientific understanding, means of overcoming previous short comings, and reconsideration of magnetic mirror systems as a modest size material testing neutron source or as a fusion- fission hybrid system. Compared to toroidal systems, the linear geometry of mirror systems has the significant advantages of easing construction, operation and maintenance, but has a less developed data base. The recent innovations include reliance on axi-symmetric mirror coils, suppression of energetic-ion cyclotron-modes with potential confined warm plasma, and sheared ExB flow stabilization of drift waves. To enable increased electron temperature, the magnetic field expansion ratio from the mirror to the end wall is increased beyond the square root of the ion to electron mass ratio. This expansion inhibits electron thermal conduction, reduces the incident wall power flux to low levels, and isolates plasma-wall interactions far from the confined plasma.

  6. Magnetic field effects on the accuracy of ionospheric mirror models for geolocation

    NASA Astrophysics Data System (ADS)

    Dao, Eugene V.; McNamara, Leo F.; Colman, Jonah J.

    2016-04-01

    The geolocation of an uncooperative HF emitter is based on observations of the azimuth and elevation (angle of arrival; AoA) of its signals as they arrive at a surveillance site, along with a model of the propagation medium. The simplest propagation model that provides an estimate of the location of the emitter is based on the use of a horizontal mirror placed at the appropriate altitude. If there are large-scale horizontal ionospheric gradients or traveling ionospheric disturbances present, tilts derived from a suitable ionosonde or from the AoA of convenient known emitters (check targets) may be applied to the mirror before geolocation is performed. However, the methodology of this approach to geolocation completely ignores the Earth's magnetic field, producing errors that can reach 25% of range for a short range (less than 100 km) low-latitude target. The errors are generally smaller at midlatitudes. This paper investigates and characterizes these errors in terms of wave polarization, magnetic dip, circuit length, and azimuth relative to the direction of the magnetic field. The magnetic field also affects the procedure of using tilts derived from check-target AoA because the field effects can masquerade as tilts of unknown magnitude.

  7. Characterization of Plasma Discharges in a High-Field Magnetic Tandem Mirror

    NASA Technical Reports Server (NTRS)

    Chang-Diaz, Franklin R.

    1998-01-01

    High density magnetized plasma discharges in open-ended geometries, like Tandem Mirrors, have a variety of space applications. Chief among them is the production of variable Specific Impulse (I(sub sp)) and variable thrust in a magnetic nozzle. Our research group is pursuing the experimental characterization of such discharges in our high-field facility located at the Advanced Space Propulsion Laboratory (ASPL). These studies focus on identifying plasma stability criteria as functions of density, temperature and magnetic field strength. Plasma heating is accomplished by both Electron and Ion Cyclotron Resonance (ECR and ICR) at frequencies of 2-3 Ghz and 1-30 Mhz respectively, for both Hydrogen and Helium. Electron density and temperature has measured by movable Langmuir probes. Macroscopic plasma stability is being investigated in ongoing research.

  8. Characteristics of Hot Electron Ring in a Simple Magnetic Mirror Field

    NASA Astrophysics Data System (ADS)

    Hosokawa, Minoru; Ikegami, Hideo

    1991-01-01

    Characteristics of a hot electron ring are studied in a simple magnetic mirror machine. Hot electron rings (n≈ 1010 cm-3, T≈ 100 keV) are most effectively generated under two conditions, when the magnetic field on the axis of the midplane is set near the fundamental, or the second harmonic electron cyclotron resonance to the applied microwave frequency (6.4 GHz). The density profile of the hot electrons is observed to take a so-called ring shape. The radial-cut view of the ring, however, indicates an M-shape density profile, and the density of hot electrons on the axis at the center and is about one-half of the peak ring density encircling the axis. The hot electron ring is susceptible to a few instabilities which can be artificially triggered. With the instability generated, the hot electron ring is observed to transform into a filled cylinder in a few microseconds and then disappears.

  9. Particle-in-cell simulation for different magnetic mirror effects on the plasma distribution in a cusped field thruster

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Chen, Peng-Bo; Zhao, Yin-Jian; Yu, Da-Ren

    2015-08-01

    Magnetic mirror used as an efficient tool to confine plasma has been widely adopted in many different areas especially in recent cusped field thrusters. In order to check the influence of magnetic mirror effect on the plasma distribution in a cusped field thruster, three different radii of the discharge channel (6 mm, 4 mm, and 2 mm) in a cusped field thruster are investigated by using Particle-in-Cell Plus Monte Carlo (PIC-MCC) simulated method, under the condition of a fixed axial length of the discharge channel and the same operating parameters. It is found that magnetic cusps inside the small radius discharge channel cannot confine electrons very well. Thus, the electric field is hard to establish. With the reduction of the discharge channel’s diameter, more electrons will escape from cusps to the centerline area near the anode due to a lower magnetic mirror ratio. Meanwhile, the leak width of the cusped magnetic field will increase at the cusp. By increasing the magnetic field strength in a small radius model of a cusped field thruster, the negative effect caused by the weak magnetic mirror effect can be partially compensated. Therefore, according to engineering design, the increase of magnetic field strength can contribute to obtaining a good performance, when the radial distance between the magnets and the inner surface of the discharge channel is relatively big. Project supported by the National Natural Science Foundation of China (Grant No. 51006028) and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51121004).

  10. RF Power and Magnetic Field Modulation Experiments with Simple Mirror Geometry in the Central Cell of Hanbit Device

    SciTech Connect

    Lee, S.G.; Bak, J.G.; Jhang, H.G.; Kim, S.S.

    2005-01-15

    The radio frequency (RF) stabilization effects to investigate the characteristics of the interchange instability by RF power and magnetic field modulation experiments were performed near {omega}/{omega}{sub i} {approx} = 1 and with low beta ({approx} 0.1%) plasmas in the central cell of the Hanbit mirror device. Temporal behaviors of the interchange mode were measured and analyzed when the interchange mode was triggered by sudden changes of the RF power and magnetic field intensity.

  11. Instability of field-aligned electron-cyclotron waves in a magnetic mirror plasma with anisotropic temperature

    NASA Astrophysics Data System (ADS)

    Grishanov, N. I.; Azarenkov, N. A.

    2016-08-01

    > Dispersion characteristics have been analysed for field-aligned electron-cyclotron waves (also known as right-hand polarized waves, extraordinary waves or whistlers) in a cylindrical magnetic mirror plasma including electrons with anisotropic temperature. It is shown that the instability of these waves is possible only in the range below the minimal electron-cyclotron frequency, which is much lower than the gyrotron frequency used for electron-cyclotron resonance power input into the plasma, under the condition where the perpendicular temperature of the resonant electrons is larger than their parallel temperature. The growth rates of whistler instability in the two magnetized plasma models, where the stationary magnetic field is either uniform or has a non-uniform magnetic mirror configuration, are compared.

  12. Particle Deconfinement in a Bent Magnetic Mirror

    SciTech Connect

    Renaud Gueroult and Nathaniel J. Fisch

    2012-09-06

    Coils misalignment in a magnetic mirror can produce additional particle transport. The magnetic field non axi-symmetry is responsible for radial and longitudinal drifts in a way much similar to the neo-classical transport in a tandem mirror cell distorted by end plugs. Accordingly, a regime exhibiting large radial displacements - similar to the resonant regime in tandem mirrors - can be obtained by confining ions azimuthally, for example by means of a properly tuned radial electric field. Because of the mass dependence of the magnetic field non-homogeneity drift velocities, the azimuthal trapping is mass specific, allowing in principle the filtering of a specific species based on its mass.

  13. Particle deconfinement in a bent magnetic mirror

    SciTech Connect

    Gueroult, Renaud; Fisch, Nathaniel J.

    2012-11-15

    Coils misalignment in a magnetic mirror can produce additional particle transport. The magnetic field non axi-symmetry is responsible for radial and longitudinal drifts in a way much similar to the neo-classical transport in a tandem mirror cell distorted by end plugs. Accordingly, a regime exhibiting large radial displacements--similar to the resonant regime in tandem mirrors--can be obtained by confining ions azimuthally, for example by means of a properly tuned radial electric field. Because of the mass dependence of the magnetic field non-homogeneity drift velocities, the azimuthal trapping is mass specific, allowing, in principle, the filtering of a specific species based on its mass.

  14. Mirror Birefringence in a Fabry-Perot Cavity and the Detection of Vacuum Birefringence in a Magnetic Field

    NASA Technical Reports Server (NTRS)

    Chui, T. C. P.; Shao, M.; Redding, D.; Gursel, Y.; Boden, A.

    1995-01-01

    We discuss the effect of mirror birefringence in two optical schemes designed to detect the quantum-electrodynamics (QED) predictions of vacuum birefringence under the influence of a strong magnetic field, B. Both schemes make use of a high finesse Fabry-Perot cavity (F-P) to increase the average path length of the light in the magnetic field. The first scheme, which we called the frequency scheme, is based on measurement of the beat frequency of two orthogonal polarized laser beams in the cavity. We show that mirror birefringence contributes to the detection uncertainties in first order, resulting in a high susceptibility to small thermal disturbances. We estimate that an unreasonably high thermal stability of 10-9 K is required to resolve the effect to 0.1%. In the second scheme, which we called the polarization rotation scheme, laser polarized at 45 relative to the B field is injected into the cavity.

  15. Ulysses field and plasma observations of magnetic holes in the solar wind and their relation to mirror-mode structures

    NASA Technical Reports Server (NTRS)

    Winterhalter, Daniel; Neugebauer, Marcia; Goldstein, Bruce E.; Smith, Edward J.; Bame, Samuel J.; Balogh, Andre

    1994-01-01

    The term 'magnetic hole' has been used to denote isolated intervals when the magnitude of the interplanetary magnetic field drops to a few tenths, or less, of its ambient value for a time that corresponds to a linear dimension of tens to a few hundreds of proton gyro-radii. Data obtained by the Ulysses magnetometer and solar wind anlayzer have been combined to study the properties of such magnetic holes in the solar wind between 1 AU and 5.4 AU and to 23 deg south latitude. In order to avoid confusion with decreases in field strength at interplanetary discontinuities, the study has focused on linear holes across which the field direction changed by less than 5 deg. The holes occurred preferentially, but not without exception, in the interaction regions on the leading edges of high-speed solar wind streams. Although the plasma surrounding the holes was generally stable against the mirror instability, there are indications that the holes may have been remnants of mirror-mode structures created upstream of the points of observation. Those indications include the following: (1) For the few holes for which proton of alpha-particle pressure could be measured inside the hole, the ion thermal pressure was always greater than in the plasma adjacent to the holes. (2) The plasma surrounding many of the holes was marginally stable for the mirror mode, while the plasma environment of all holes was significantly closer to mirror instability than was the average solar wind. (3) The plasma containing trains of closely spaced holes was closer to mirror instability than was the plasma containing isolated holes. (4) The near-hole plasma had much higher ion beta (ratio of thermal to magnetic pressure) than did the average solar wind. (5) Near the holes, T(sub perp)/T(sub parallel) tended to be either greater than 1 or larger than in the average wind. (6) The proton and alpha-particle distribution functions measured inside the holes occasionally exhibited the flattened phase

  16. Cold atom reflection from curved magnetic mirrors

    NASA Astrophysics Data System (ADS)

    Hughes, Ifan G.; Barton, P. A.; Boshier, M. G.; Hinds, Edward A.

    1997-05-01

    Multiple bounces of cold rubidium atoms have been observed for times up to one second in a trap formed by gravity and a 2 cm-diameter spherical mirror made from a sinusoidally magnetized floppy disk. We have studied the dynamics of the atoms bouncing in this trap from several different heights up to 40.5 mm and we conclude that the atoms are reflected specularly and with reflectivity 1.01(3). Slight roughness of the mirror is caused by harmonics in the magnetization of the surface and by discontinuities at the boundaries between recorded tracks. As the next step in this atom optics program we propose using a magnetic mirror to create a 2D atomic gas. We discuss how cold atoms can be loaded into the ground state of a static magnetic potential well that exists above the surface of the mirror as a consequence of the intermediate-field Zeeman effect.

  17. Magnetic mirror fusion: status and prospects

    SciTech Connect

    Post, R.F.

    1980-02-11

    Two improved mirror systems, the tandem mirror (TM) and the field-reversed mirror (FRM) are being intensively studied. The twin practical aims of these studies: to improve the economic prospects for mirror fusion power plants and to reduce the size and/or complexity of such plants relative to earlier approaches to magnetic fusion. While at the present time the program emphasis is still strongly oriented toward answering scientific questions, the emphasis is shifting as the data accumulates and as larger facilities - ones with a heavy technological and engineering orientation - are being prepared. The experimental and theoretical progress that led to the new look in mirror fusion research is briefly reviewed, the new TM and the FRM ideas are outlined, and the projected future course of mirror fusion research is discussed.

  18. The Axisymmetric Tandem Mirror: A Magnetic Mirror Concept Game Changer Magnet Mirror Status Study Group

    SciTech Connect

    Simonen, T; Cohen, R; Correll, D; Fowler, K; Post, D; Berk, H; Horton, W; Hooper, E B; Fisch, N; Hassam, A; Baldwin, D; Pearlstein, D; Logan, G; Turner, B; Moir, R; Molvik, A; Ryutov, D; Ivanov, A A; Kesner, J; Cohen, B; McLean, H; Tamano, T; Tang, X Z; Imai, T

    2008-10-24

    Experimental results, theory and innovative ideas now point with increased confidence to the possibility of a Gas Dynamic Trap (GDT) neutron source which would be on the path to an attractively simple Axisymmetric Tandem Mirror (ATM) power plant. Although magnetic mirror research was terminated in the US 20 years ago, experiments continued in Japan (Gamma 10) and Russia (GDT), with a very small US effort. This research has now yielded data, increased understanding, and generated ideas resulting in the new concepts described here. Early mirror research was carried out with circular axisymmetric magnets. These plasmas were MHD unstable due to the unfavorable magnetic curvature near the mid-plane. Then the minimum-B concept emerged in which the field line curvature was everywhere favorable and the plasma was situated in a MHD stable magnetic well (70% average beta in 2XII-B). The Ioffe-bar or baseball-coil became the standard for over 40 years. In the 1980's, driven by success with minimum-B stabilization and the control of ion cyclotron instabilities in PR6 and 2XII-B, mirrors were viewed as a potentially attractive concept with near-term advantages as a lower Q neutron source for applications such as a hybrid fission fuel factory or toxic waste burner. However there are down sides to the minimum-B geometry: coil construction is complex; restraining magnetic forces limit field strength and mirror ratios. Furthermore, the magnetic field lines have geodesic curvature which introduces resonant and neoclassical radial transport as observed in early tandem mirror experiments. So what now leads us to think that simple axisymmetric mirror plasmas can be stable? The Russian GDT experiment achieves on-axis 60% beta by peaking of the kinetic plasma pressure near the mirror throat (where the curvature is favorable) to counter-balance the average unfavorable mid-plane curvature. Then a modest augmentation of plasma pressure in the expander results in stability. The GDT

  19. Particle deconfinement in a bent magnetic mirror

    SciTech Connect

    Gueroult, Renaud; Fisch, Nathaniel J.

    2012-11-06

    Here, coils misalignment in a magnetic mirror can produce additional particle transport. The magnetic field non axi-symmetry is responsible for radial and longitudinal drifts in a way much similar to the neo-classical transport in a tandem mirror cell distorted by end plugs. Accordingly, a regime exhibiting large radial displacements––similar to the resonant regime in tandem mirrors––can be obtained by confining ions azimuthally, for example by means of a properly tuned radial electric field. Because of the mass dependence of the magnetic field non-homogeneity drift velocities, the azimuthal trapping is mass specific, allowing, in principle, the filtering of a specific species based on its mass.

  20. Particle deconfinement in a bent magnetic mirror

    DOE PAGESBeta

    Gueroult, Renaud; Fisch, Nathaniel J.

    2012-11-06

    Here, coils misalignment in a magnetic mirror can produce additional particle transport. The magnetic field non axi-symmetry is responsible for radial and longitudinal drifts in a way much similar to the neo-classical transport in a tandem mirror cell distorted by end plugs. Accordingly, a regime exhibiting large radial displacements––similar to the resonant regime in tandem mirrors––can be obtained by confining ions azimuthally, for example by means of a properly tuned radial electric field. Because of the mass dependence of the magnetic field non-homogeneity drift velocities, the azimuthal trapping is mass specific, allowing, in principle, the filtering of a specific speciesmore » based on its mass.« less

  1. Addition of trim coils to the Tandem Mirror Experiment Upgrade (TMX-U) magnet system to improve the magnetic field mapping

    SciTech Connect

    Wong, R.L.; Pedrotti, L.R.; Baldwin, D.E.; Hibbs, S.M.; Hill, D.N.; Hornady, R.H.; Jackson, M.C.

    1985-11-14

    The mapping of the magnetic flux bundle from the center cell to the Plasma Potential Control plates (PPC) on the end fan of the Tandem Mirror Experiment Upgrade (TMX-U), was improved by the addition of trim coils (12,000 amp-turns) on each side of each end fan next to the pump beam magnetic shields. The coils' axes are oriented perpendicular to the machine centerline. These coils made the necessary corrections to the field-line mapping, while keeping the field in the nearby pump beam magnetic shield below the saturation threshold. This paper briefly describes the problem, discusses the design as it evolved, and presents the results of the field testing. The disturbance to the field mapping and the appropriate corrections were determined using the code GFUN (a three dimensional electromagnetic field analysis code that includes the presence of permeable materials). The racetrack-shaped coils have dimensions of 1.5 feet by 3 feet and are powered by a renovated 600 kW Bart-Messing power supply controlled by the machine's magnet control system. The magnets were fabricated from polyimide-coated magnet wire. They are rated to 200/sup 0/C, although in pulsed operation they rise only a few degrees centigrade. The coils are placed outside of the vacuum system, and thus are considerably simpler than the other machine magnets. The restraints are designed to withstand a force of 1000 pounds per coil and a turning moment of 1000 foot pounds. The calculated field strengths were verified on the machine by inserting a Hall probe along the axis. The perturbations to the neutral beam magnetic shields were also measured. A brief description of the improvement in the machine performance is also included.

  2. An algorithm for approximating the L * invariant coordinate from the real-time tracing of one magnetic field line between mirror points

    NASA Astrophysics Data System (ADS)

    Lejosne, Solène

    2014-08-01

    The L * invariant coordinate depends on the global electromagnetic field topology at a given instance, and the standard method for its determination requires a computationally expensive drift contour tracing. This fact makes L * a cumbersome parameter to handle. In this paper, we provide new insights on the L * parameter, and we introduce an algorithm for an L * approximation that only requires the real-time tracing of one magnetic field line between mirrors points. This approximation is based on the description of the variation of the magnetic field mirror intensity after an adiabatic dipolarization, i.e., after the nondipolar components of a magnetic field have been turned off with a characteristic time very long in comparison with the particles' drift periods. The corresponding magnetic field topological variations are deduced, assuming that the field line foot points remain rooted in the Earth's surface, and the drift average operator is replaced with a computationally cheaper circular average operator. The algorithm results in a relative difference of a maximum of 12% between the approximate L * and the output obtained using the International Radiation Belt Environment Modeling library, in the case of the Tsyganenko 89 model for the external magnetic field (T89). This margin of error is similar to the margin of error due to small deviations between different magnetic field models at geostationary orbit. This approximate L * algorithm represents therefore a reasonable compromise between computational speed and accuracy of particular interest for real-time space weather forecast purposes.

  3. On the magnetic mirror effect in Hall thrusters

    SciTech Connect

    Keidar, M.; Boyd, I.D.

    2005-09-19

    The magnetic mirror effect is studied in the channel of a Hall thruster. It is shown that gradients in magnetic field affect the presheath structure and electric potential distribution. The length of the radial presheath region decreases in the presence of a magnetic field gradient. The two-dimensional potential shape can be affected by proper choice of the magnetic mirror ratio. In particular, it is possible to obtain a concave shape of the potential profile in the channel even in the case of a primarily radial magnetic field. This, in turn, can be used to efficiently control the ion dynamics in the acceleration region.

  4. Experimental progress in magnetic-mirror fusion research

    NASA Astrophysics Data System (ADS)

    Simonen, T. C.

    1981-08-01

    This paper discusses experimental progress in the control, confinement, and understanding of magnetic-mirror confined plasmas. A summary is given of the data base established in previous experiments on which magnetic-mirror principles are based. It includes a detailed description of present tandem and field-reversed mirror experimental results. The discussion also includes the concepts and parameters of experiments now under construction; it is shown how these experiments can both test new thermal-barrier concepts and bridge the gap between existing facilities and eventual power producers. Consideration is given to small-scale physics-oriented experiments, aimed at testing new ideas and refining the knowledge of mirror confinement. The paper concludes with an extensive bibliography of reports from the field of magnetic-mirror fusion.

  5. The Marshall Magnetic Mirror Beam-Plasma Experiment

    NASA Technical Reports Server (NTRS)

    Schneider, Todd A.; Carruth, M. R., Jr.; Vaughn, Jason A.; Edwards, David L.; Munafo, Paul (Technical Monitor)

    2001-01-01

    Plasma propulsion is an advanced propulsion concept with the potential to realize very high specific impulse. Present designs for plasma propulsion devices share a common feature, the incorporation of a magnetic mirror. A magnetic mirror is a plasma confinement scheme whereby charged particles are trapped (or reflected) between two regions of high magnetic field strength. A cylindrical geometry is most often employed to create a magnetic mirror, which is a natural geometry for propulsion devices. To utilize the magnetic mirror configuration in a plasma propulsion device, however, will require efficient coupling of power into the system. With the development of compact and efficient electron sources, such as hollow cathode sources, coupling power into a magnetic mirror using electron beams may be an attractive approach. A system, the Marshall Magnetic Mirror (M3), has been constructed to study the coupling of an electron beam into a magnetic mirror. A description of the M3 device will be provided as well as data from initial beam-plasma coupling experiments.

  6. A large stroke magnetic fluid deformable mirror for focus control

    NASA Astrophysics Data System (ADS)

    Min, Ling-kun; Wu, Zhi-zheng; Huang, Ming-shuang; Kong, Xiang-hui

    2016-03-01

    A liquid deformable mirror, which can provide a large stroke deflection more than 100 μm, is proposed for focus control. The deformable mirror utilizes the concept of magnetic fluid deformation shaped with electromagnetic fields to achieve concave or convex surface and to change the optical focus depth of the mirrors. The free surface of the magnetic fluid is coated with a thin layer of metal-liquid-like film (MELLF) prepared from densely packed silver nanoparticles to enhance the reflectance of the deformable mirror. The experimental results on the fabricated prototype magnetic fluid deformable mirror (MFDM) show that the desired concave/convex surface shape can be controlled precisely with a closed-loop adaptive optical system.

  7. Magnetic-mirror principle as applied to fusion research

    SciTech Connect

    Post, R.F.

    1983-08-11

    A tutorial account is given of the key physics issues in the confinement of high temperature plasma in magnetic mirror systems. The role of adiabatic invariants and particle drifts and their relationship to equilibrium and stability are discussed, in the context of the various forms of mirror field geometry. Collisional effects and the development and the control of ambipolar potentials are reviewed. The topic of microinstabilities is discussed together with the means for their control. The properties and advantages for fusion power purposes of various special embodiments of the mirror idea, including tandem mirrors, are discussed.

  8. Mirror-image-induced magnetic modes.

    PubMed

    Xifré-Pérez, Elisabet; Shi, Lei; Tuzer, Umut; Fenollosa, Roberto; Ramiro-Manzano, Fernando; Quidant, Romain; Meseguer, Francisco

    2013-01-22

    Reflection in a mirror changes the handedness of the real world, and right-handed objects turn left-handed and vice versa (M. Gardner, The Ambidextrous Universe, Penguin Books, 1964). Also, we learn from electromagnetism textbooks that a flat metallic mirror transforms an electric charge into a virtual opposite charge. Consequently, the mirror image of a magnet is another parallel virtual magnet as the mirror image changes both the charge sign and the curl handedness. Here we report the dramatic modification in the optical response of a silicon nanocavity induced by the interaction with its image through a flat metallic mirror. The system of real and virtual dipoles can be interpreted as an effective magnetic dipole responsible for a strong enhancement of the cavity scattering cross section. PMID:23194368

  9. ROSAT wide field camera mirrors.

    PubMed

    Willingale, R

    1988-04-15

    The ROSAT wide field camera (WFC) is an XUV telescope operating in the 12-250-eV energy band. The mirror system utilizes Wolter-Schwarzschild type I (WS I) grazing incidence optics with a focal length of 525 mm, comprised of three nested aluminum shells with an outermost diameter of 576 mm providing a geometric aperture area of 456 cm(2). The reflecting surfaces are electroless nickel plated and coated with gold to enhance their reflectivity in the XUV. The mirrors have undergone full aperture optical testing, narrow beam XUV testing, and full aperture XUV testing. Measurements of the reflectivity are compared to theoretical values derived from the optical constants of gold in the XUV range. Analysis of the focused distribution is used to estimate the surface roughness and figuring errors of the polished surfaces. The results are compared to the mechanical metrology data collected during manufacture of the shells and the power spectral density of the reflecting surfaces is found to have a power-law form. PMID:20531591

  10. Superconducting (radiation hardened) magnets for mirror fusion devices

    SciTech Connect

    Henning, C.D.; Dalder, E.N.C.; Miller, J.R.; Perkins, J.R.

    1983-12-07

    Superconducting magnets for mirror fusion have evolved considerably since the Baseball II magnet in 1970. Recently, the Mirror Fusion Test Facility (MFTF-B) yin-yang has been tested to a full field of 7.7 T with radial dimensions representative of a full scale reactor. Now the emphasis has turned to the manufacture of very high field solenoids (choke coils) that are placed between the tandem mirror central cell and the yin-yang anchor-plug set. For MFTF-B the choke coil field reaches 12 T, while in future devices like the MFTF-Upgrade, Fusion Power Demonstration and Mirror Advanced Reactor Study (MARS) reactor the fields are doubled. Besides developing high fields, the magnets must be radiation hardened. Otherwise, thick neutron shields increase the magnet size to an unacceptable weight and cost. Neutron fluences in superconducting magnets must be increased by an order of magnitude or more. Insulators must withstand 10/sup 10/ to 10/sup 11/ rads, while magnet stability must be retained after the copper has been exposed to fluence above 10/sup 19/ neutrons/cm/sup 2/.

  11. Cyclotron-resonance maser in a magnetic mirror.

    PubMed

    Caspi, R; Jerby, E

    1999-08-01

    A cyclotron-resonance maser (CRM) experiment is performed in a high-gradient magnetic field using a low-energy electron beam ( approximately 10 keV/1 A). The magnetic field exceeds 1.63 T, which corresponds to a 45-GHz cyclotron frequency. The CRM radiation output is observed in much lower frequencies, between 6.6 and 20 GHz only. This discrepancy is explained by the finite penetration depth of the electrons into the growing magnetic field, as in a magnetic mirror. The electrons emit radiation at the local cyclotron frequency in their reflection point from that magnetic mirror; hence, the radiation frequency depends mostly on the initial electron energy. A conceptual reflex gyrotron scheme is proposed in this paper, as a CRM analogue for the known reflex klystron. PMID:11970042

  12. Development of a two-dimensional scanning micro-mirror utilizing magnetic polymer composite

    NASA Astrophysics Data System (ADS)

    Suzuki, Junya; Onishi, Yoshiyuki; Terao, Kyohei; Takao, Hidekuni; Shimokawa, Fusao; Oohira, Fumikazu; Miyagawa, Hayato; Namazu, Takahiro; Suzuki, Takaaki

    2016-06-01

    In this study, we propose a magnetically driven micro-mirror, constructed using negative photoresist SU-8 containing magnetic particles, as a magnetic actuator and torsion bar structure. Because the magnetic polymer composite uses thick negative photoresist SU-8 as the main material, the micro-mirror is simply fabricated in just a few steps by conventional photolithography and deep reactive ion etching. A fabricated prototype of the micro-mirror, which is magnetically driven by using an external magnetic field, is shown to deflect with two-dimensional optical deflection angles of 6.5 and 12.5°. Moreover, Lissajous scanning motion of the fabricated mirror is achieved.

  13. Magnetic Interface for Segmented Mirror Assembly

    NASA Technical Reports Server (NTRS)

    Stahl, H.

    2012-01-01

    Newly developed magnetic devices are used to create an interface between adjacent mirror segments so that once assembled, aligned, and phased, the multiple segments will behave functionally equivalent to a monolithic aperture mirror. One embodiment might be a kinematic interface that is reversible so that any number of segments can be pre-assembled, aligned, and phased to facilitate fabrication operations, and then disassembled and reassembled, aligned, and phased in space for operation. The interface mechanism has sufficient stiffness, force, and stability to maintain phasing. The key to producing an interface is the correlated magnetic surface. While conventional magnets are only constrained in one direction -- the direction defined by their point of contact (they are in contact and cannot get any closer) -- correlated magnets can be designed to have constraints in multiple degrees of freedom. Additionally, correlated magnetic surfaces can be designed to have a limited range of action.

  14. Magnet and conductor developments for the Mirror Fusion Program

    SciTech Connect

    Cornish, D.N.

    1981-10-09

    The conductor development and the magnet design and construction for the MFTF are described. Future plans for the Mirror Program and their influence on the associated superconductor development program are discussed. Included is a summary of the progress being made to develop large, high-field, multifilamentary Nb/sub 3/Sn superconductors and the feasibility of building a 12-T yin-yang set of coils for the machine to follow MFTF. In a further look into the future, possible magnetic configurations and requirements for mirror reactors are surveyed.

  15. Ion-cyclotron instability in magnetic mirrors

    SciTech Connect

    Pearlstein, L.D.

    1987-02-02

    This report reviews the role of ion-cyclotron frequency instability in magnetic mirrors. The modes discussed here are loss-cone or anisotropy driven. The discussion includes quasilinear theory, explosive instabilities of 3-wave interaction and non-linear Landau damping, and saturation due to non-linear orbits. (JDH)

  16. Timecourse of mirror and counter-mirror effects measured with transcranial magnetic stimulation

    PubMed Central

    Cavallo, Andrea; Heyes, Cecilia; Becchio, Cristina; Bird, Geoffrey

    2014-01-01

    The human mirror system has been the subject of much research over the past two decades, but little is known about the timecourse of mirror responses. In addition, it is unclear whether mirror and counter-mirror effects follow the same timecourse. We used single-pulse transcranial magnetic stimulation to investigate the timecourse of mirror and counter-mirror responses in the human brain. Experiment 1 demonstrated that mirror responses can be measured from around 200 ms after observed action onset. Experiment 2 demonstrated significant effects of counter-mirror sensorimotor training at all timepoints at which a mirror response was found in Experiment 1 (i.e. from 200 ms onward), indicating that mirror and counter-mirror responses follow the same timecourse. By suggesting similarly direct routes for mirror and counter-mirror responses, these results support the associative account of mirror neuron origins whereby mirror responses arise as a result of correlated sensorimotor experience during development. More generally, they contribute to theorizing regarding mirror neuron function by providing some constraints on how quickly mirror responses can influence social cognition. PMID:23709352

  17. Timecourse of mirror and counter-mirror effects measured with transcranial magnetic stimulation.

    PubMed

    Cavallo, Andrea; Heyes, Cecilia; Becchio, Cristina; Bird, Geoffrey; Catmur, Caroline

    2014-08-01

    The human mirror system has been the subject of much research over the past two decades, but little is known about the timecourse of mirror responses. In addition, it is unclear whether mirror and counter-mirror effects follow the same timecourse. We used single-pulse transcranial magnetic stimulation to investigate the timecourse of mirror and counter-mirror responses in the human brain. Experiment 1 demonstrated that mirror responses can be measured from around 200 ms after observed action onset. Experiment 2 demonstrated significant effects of counter-mirror sensorimotor training at all timepoints at which a mirror response was found in Experiment 1 (i.e. from 200 ms onward), indicating that mirror and counter-mirror responses follow the same timecourse. By suggesting similarly direct routes for mirror and counter-mirror responses, these results support the associative account of mirror neuron origins whereby mirror responses arise as a result of correlated sensorimotor experience during development. More generally, they contribute to theorizing regarding mirror neuron function by providing some constraints on how quickly mirror responses can influence social cognition. PMID:23709352

  18. Phase-Controlled Magnetic Mirror for Wavefront Correction

    NASA Technical Reports Server (NTRS)

    Hagopian, John; Wollack, Edward

    2011-01-01

    Typically, light interacts with matter via the electric field and interaction with weakly bound electrons. In a magnetic mirror, a patterned nanowire is fabricated over a metallic layer with a dielectric layer in between. Oscillation of the electrons in the nanowires in response to the magnetic field of incident photons causes a re-emission of photons and operation as a "magnetic mirror." By controlling the index of refraction in the dielectric layer using a local applied voltage, the phase of the emitted radiation can be controlled. This allows electrical modification of the reflected wavefront, resulting in a deformable mirror that can be used for wavefront control. Certain applications require wavefront quality in the few-nanometer regime, which is a major challenge for optical fabrication and alignment of mirrors or lenses. The use of a deformable magnetic mirror allows for a device with no moving parts that can modify the phase of incident light over many spatial scales, potentially with higher resolution than current approaches. Current deformable mirrors modify the incident wavefront by using nano-actuation of a substrate to physically bend the mirror to a desired shape. The purpose of the innovation is to modify the incident wavefront for the purpose of correction of fabrication and alignment-induced wavefront errors at the system level. The advanced degree of precision required for some applications such as gravity wave detection (LISA - Laser Interferometer Space Antenna) or planet finding (FKSI - Fourier-Kelvin Stellar Interferometer) requires wavefront control at the limits of the current state of the art. All the steps required to fabricate a magnetic mirror have been demonstrated. The modification is to apply a bias voltage to the dielectric layer so as to change the index of refraction and modify the phase of the reflected radiation. Light is reflected off the device and collected by a phase-sensing interferometer. The interferometer determines the

  19. Studies of a magnetically focused electrostatic mirror. II. Aberration corrections

    PubMed

    Tsai

    2000-02-01

    A magnetically focused electrostatic mirror is shown to be able to correct the spherical and chromatic aberrations of a probe forming system simultaneously. The probe forming system comprises a uniform magnetic lens and a uniform electrostatic mirror. Previous theoretical investigations showed that the spherical and chromatic aberration coefficients of these two components are the same values but with opposite sign, whose combination will therefore be free from aberrations. The experimental arrangement used a solenoid to produce a uniform magnetic field, and a series of plate electrodes to produce a uniform electrostatic field. These fields are shown to satisfy the experimental requirements. By deliberately changing the extraction voltage to defocus the electron beam, the author is able to observe correction of chromatic aberration by one order of magnitude. By deliberately changing the lens field and the mirror field, the author is able to observe the reduction of the asymmetry caused by the spherical aberration, which the author believes also indicates correction by one order of magnitude. PMID:10652006

  20. A novel magnetic field-assisted polishing method using magnetic compound slurry and its performance in mirror surface finishing of miniature V-grooves

    NASA Astrophysics Data System (ADS)

    Wang, Youliang; Wu, Yongbo; Mitsuyoshi, Nomura

    2016-05-01

    A novel magnetic field-assisted polishing technique was proposed for finishing 3D structured surface using a magnetic compound (MC) slurry. The MC slurry was prepared by blending carbonyl-iron-particles, abrasive grains and α-cellulose into a magnetic fluid which contains nano-scale magnetite particles. An experimental setup was constructed firstly by installing an oscillation worktable and a unit onto a polishing machine. Then, experimental investigations were conducted on oxygen-free copper workpiece with parallel distributed linear V-grooves to clarify the influence of the polishing time and abrasive impact angle on the grooves surface qualities. It was found that (1) the groove form accuracy, i.e. the form retention rate η varied with the polishing locations. Although the form retention rate η deteriorated during the polishing process, the final η was greater than 99.4%; (2) the effective impact angle θm affected the material removal and form accuracy seriously. An increase of the absolute value θm resulted with an increase of material removal rate and a decrease of the form accuracy; (3) the work-surface roughness decreased more than 6 times compared with the original surface after MC slurry polishing. These results confirmed the performance of the proposed new magnetic field-assisted polishing method in the finishing of 3D-structured surface.

  1. Magnetic mirrors at the nanoscale: theory

    NASA Astrophysics Data System (ADS)

    Chang, Mark P. J. L.; Jia, Dongdong; Nazari, Haedeh

    2004-08-01

    The control of charged particles at sub micrometer and nanometer length scales presents an intrinsically interesting challenge, as well as being a rich field for the study of trapped ions and plasmas. Motivated by this, we obtain the exact solution for the vector potential for a wire of finite length and of arbitrary form. Closed form solutions can then be deduced describing the electromagnetic waves propagating from the wire. This allows us to investigate design parameters, so that we may produce spiral wire shapes which, when injected with oscillatory currents, produce effects similar to conventional magnetic mirrors, except at the submicron and nanometre scale. Nanoscale devices present an added complication: very closely placed surfaces can exchange heat through the tunneling of evanescent radiation modes. This can augment the local heating effect when compared to blackbody emission, so any fabrication defects on the surface of the wire spirals could be problematic. We show that the evanescent contributions scale as a function of separation and dominate the heat exchange process when the spacing is much less than the characteristic wavelength of a given temperature. We expect that excess material might be deposited erroneously during fabrication of the spiral wires, so the transfer of heat from one wire coil to the defect will be higher than the rate due to uniform blackbody radiation. In the case of tungsten, for our typical spiral geometry, the heating rate is enhanced by a factor of 15. In the case of a carbon or other high conductivity composite material this rate can be raised by as much as 106, which is evidently not appropriate.

  2. Magnetic alignment of the Tara tandem mirror

    SciTech Connect

    Post, R.S.; Coleman, J.W.; Irby, J.H.; Olmstead, M.M.; Torti, R.P.

    1985-06-01

    Techniques developed for the alignment of high-energy accelerators have been applied to the alignment of the Tara tandem mirror magnetic confinement device. Tools used were: a transit/laser surveyor's system for establishing an invariant reference; optical scattering from ferromagnetic crystallites for establishing magnetic centers in the quadrupole anchor/transition modules; an electron-optical circle-generating wand for alignment of the solenoidal plug and central cell modules; and four differently configured electron emissive probes, including a 40-beam flux mapping e gun, for testing the alignment of the coils under vacuum. Procedures are outlined, and results are given which show that the magnetic axes of the individual coils in the Tara set have been made colinear with each other and with the reference to within +- 1.0 mm over the length of the machine between the anchor midplanes.

  3. Trapping of the PHERMEX beam in a mirror field

    SciTech Connect

    Hughes, T.P.; Builta, L.A.; Mack, J.M.; Moir, D.C.

    1987-01-01

    An experiment is underway at Los Alamos National Laboratory to trap the 1-kA, 30-MeV PHERMEX beam in a magnetic mirror. The eventual aim is to accelerate the beam to 50 MeV by ramping up the magnetic field. Tangential injection of the beam through a soft iron nozzle is employed. Because the nozzle is placed within the magnetic mirror, energy must be extracted from the beam in one bounce time to prevent particles returning to the nozzle. A design to make the bounce time as long as possible is described, and two schemes to damp the axial motion are considered. Numerical simulations of the device show considerable axial spreading of the beam in one bounce time. Estimates are made of negative mass instability growth rates and the damping to be expected from the experimentally measured beam energy spread. Experimental results obtained to date are described.

  4. Magnetic field modification of optical magnetic dipoles.

    PubMed

    Armelles, Gaspar; Caballero, Blanca; Cebollada, Alfonso; Garcia-Martin, Antonio; Meneses-Rodríguez, David

    2015-03-11

    Acting on optical magnetic dipoles opens novel routes to govern light-matter interaction. We demonstrate magnetic field modification of the magnetic dipolar moment characteristic of resonant nanoholes in thin magnetoplasmonic films. This is experimentally shown through the demonstration of the magneto-optical analogue of Babinet's principle, where mirror imaged MO spectral dependencies are obtained for two complementary magnetoplasmonic systems: holes in a perforated metallic layer and a layer of disks on a substrate. PMID:25646869

  5. On the role of magnetic mirroring in the auroral phenomena

    NASA Technical Reports Server (NTRS)

    Lennartsson, W.

    1976-01-01

    On the basis of field and particle observations, it is suggested that a bright auroral display is a part of a magnetosphere-ionosphere current system which is fed by a charge-separation process in the outer magnetosphere (or the solar wind). The upward magnetic-field-aligned current is flowing out of the display, carried mainly by downflowing electrons from the hot-particle populations in the outer magnetosphere (the ambient cold electrons being depleted at high altitudes). As a result of the magnetic mirroring of these downflowing current carriers, a large potential drop is set up along the magnetic field, increasing both the number flux and the kinetic energy of precipitating electrons. It is found that this simple basic model, when combined with wave-particle interactions, may be able to explain a highly diversified selection of auroral particle observations.

  6. Proposal for achieving in-plane magnetic mirrors by silicon photonic crystals.

    PubMed

    Zhou, You; He, Xin-Tao; Zhao, Fu-Li; Dong, Jian-Wen

    2016-05-15

    Magnetic mirrors exhibit predominant physical characteristics such as high surface impedance and strong near-field enhancement. However, there is no way to implement these materials on a silicon lab chip. Here, we propose a scheme for an in-plane magnetic mirror in a silicon-based photonic crystal with a high-impedance surface, in contrast to the previous electric mirrors with low surface impedance. A tortuous bending waveguide with zero-index core and magnetic mirror walls is designed that exhibits high transmission and zero phase change at the waveguide exit. This type of magnetic mirror opens the door to exploring the physics of high-impedance surfaces and applications in integrated photonics. PMID:27176964

  7. Non-neutral plasma equilibria, trapping, separatrices, and separatrix crossing in magnetic mirrors

    NASA Astrophysics Data System (ADS)

    Fajans, J.

    2003-05-01

    The equilibria of non-neutral plasmas confined in Penning-Malmberg traps with axial varying (mirror) magnetic fields exhibit numerous unusual features, including potential differences along field lines, plasma density variations, trapped particles in both the high and low field regions, and unusual separatrices between trapped and untrapped particles. Mirror fields play prominent roles in a number of recent experiments, and overly simplistic models of the equilibria can lead to errors in the interpretation of experimental results.

  8. Magnetic mirror fusion systems: Characteristics and distinctive features

    SciTech Connect

    Post, R.F.

    1987-08-10

    A tutorial account is given of the main characteristics and distinctive features of conceptual magnetic fusion systems employing the magnetic mirror principle. These features are related to the potential advantages that mirror-based fusion systems may exhibit for the generation of economic fusion power.

  9. NASA superconducting magnetic mirror facility. [for thermonuclear research

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Swanson, M. C.; Nichols, C. R.; Bloy, S. J.; Nagy, L. A.; Brady, F. J.

    1973-01-01

    The design details and initial test results of a superconducting magnetic mirror facility that has been constructed at NASA Lewis Research Center for use in thermonuclear research are summarized. The magnet system consists of four solenoidal coils which are individually rated at 5.0 T. Each coll is composed of an inner, middle, and outer winding. The inner winding is wound of stabilized Nb3Sn superconducting ribbon, and the middle and outer windings are wound of stabilized Nb-Ti superconducting wire. When arranged in the mirror geometry, the four coils will produce 8.7 T at the mirrors and a 1.8 mirror ratio. The magnet has a 41-cm diameter clear bore which is open to atmosphere. Distance between the mirrors is 111 cm. Presently there are only three magnets in the facility; the fourth magnet is being rebuilt.

  10. Particle confinement property in the cusp-mirror field of a compact fusion reactor

    NASA Astrophysics Data System (ADS)

    Zhu, Limin; Liu, Haifeng; Wang, Xianqu

    2016-09-01

    The cusp-mirror magnetic structure in a compact fusion reactor (CFR) is investigated to understand the properties of the particle confinement for the first time. Compared with a cascade magnetic mirror device, its advanced performance is shown by means of test particle simulations. Some interesting results are obtained as follows: the adiabatic region and non-adiabatic region are found in the CFR’s magnetic configuration. In the non-adiabatic region, due to the magnetic field-free space existing, the ions are scattered stochastically and are not directly guided into the loss cone, unlike the particles around the fixed magnetic lines in the adiabatic region, which decrease the ion loss fraction. The CFR’s configuration, combining advantages of cusp-magnetic configuration and mirror-magnetic configuration, leads to confine particles longer than cascade magnetic mirror’s. This phenomenon may be relevant to the construction of advanced magnetic-confinement devices.

  11. Mirror Domain Structures Induced by Interlayer Magnetic Wall Coupling

    NASA Astrophysics Data System (ADS)

    Lew, W. S.; Li, S. P.; Lopez-Diaz, L.; Hatton, D. C.; Bland, J. A.

    2003-05-01

    We have found that during giant magnetoresistance measurements in ˜10×10 mm2 NiFe/Cu/Co continuous film spin-valve structures, the resistance value suddenly drops to its absolute minimum during the NiFe reversal. The results reveal that the alignment of all magnetic domains in the NiFe film follow exactly that of corresponding domains in the Co film for an appropriate applied field strength. This phenomenon is caused by trapping of the NiFe domain walls through the magnetostatic interaction with the Co domain-wall stray fields. Consequently, the interlayer domain-wall coupling induces a mirror domain structure in the magnetic trilayer.

  12. Magnetic whispering-gallery mirror for atoms

    NASA Astrophysics Data System (ADS)

    Bertram, R. P.; Merimeche, H.; Mützel, M.; Metcalf, H.; Haubrich, D.; Meschede, D.; Rosenbusch, P.; Hinds, E. A.

    2001-05-01

    Videotape with a sinusoidal magnetization of 31 μm wavelength is used to reflect Cs atoms with unit reflectivity in a 75 m/s atomic beam. The atoms serve as a probe, allowing us to measure the magnetic field at the surface. A technique is presented for mounting the videotape so that its surface can be curved to a specific shape or made flexible. We show that such a reflector provides high-quality grazing-incidence atom optics and we demonstrate deflections as large as 23 ° in a whispering-gallery geometry.

  13. Studies of a magnetically focused electrostatic mirror. I. Experimental test of the first order properties

    PubMed

    Crewe; Ruan; Korda; Tsai

    2000-02-01

    When a uniform magnetic field is superimposed on a uniform electrostatic field, the combination can act as a magnetically focused mirror. This mirror is predicted to have aberrations of opposite sign to those of a magnetic lens and may therefore be useful as a corrector. We have built an electron optical system to test these ideas. The results are presented in two papers. This first paper describes the general design and the results of the measurements of the first order properties. The second paper (Tsai, F., J. Microsc. 197 (2000) 118-135) will describe the measurements of the aberration properties. PMID:10652005

  14. Plasma confinement apparatus using solenoidal and mirror coils

    DOEpatents

    Fowler, T. Kenneth; Condit, William C.

    1979-01-01

    A plasma confinement apparatus, wherein multiple magnetic mirror cells are linked by magnetic field lines inside of a solenoid with the mirroring regions for adjacent magnetic mirror cells each formed by a separate mirror coil inside of the solenoid. The magnetic mirror cells may be field reversed.

  15. Experimental realization of an achromatic magnetic mirror based on metamaterials.

    PubMed

    Pisano, Giampaolo; Ade, Peter A R; Tucker, Carole

    2016-06-20

    Our work relates to the use of metamaterials engineered to realize a metasurface approaching the exotic properties of an ideal object not observed in nature, a "magnetic mirror." Previous realizations were based on resonant structures that implied narrow bandwidths and large losses. The working principle of our device is ideally frequency-independent, it does not involve resonances and it does not rely on a specific technology. The performance of our prototype, working at millimeter wavelengths, has never been achieved before and it is superior to any other device reported in the literature, both in the microwave and optical regions. The device inherently has large bandwidth (144%), low losses (<1%), and is almost independent of incidence angle and polarization state, and thus approaches the behavior of an ideal magnetic mirror. Applications of magnetic mirrors range from low-profile antennas, absorbers to optoelectronic devices. Our device can be realized using different technologies to operate in other spectral regions. PMID:27409104

  16. Nonlinear electron magnetohydrodynamics physics. I. Whistler spheromaks, mirrors, and field reversed configurations

    SciTech Connect

    Stenzel, R. L.; Urrutia, J. M.; Strohmaier, K. D.

    2008-04-15

    The nonlinear interactions of time-varying magnetic fields with plasmas is investigated in the regime of electron magnetohydrodynamics. Simple magnetic field geometries are excited in a large laboratory plasma with a loop antenna driven with large oscillatory currents. When the axial loop field opposes the ambient field, the net field can be reversed to create a field-reversed configuration (FRC). In the opposite polarity, a strong field enhancement is produced. The time-varying antenna field excites whistler modes with wave magnetic fields exceeding the ambient magnetic field. The resulting magnetic field topologies have been measured. As the magnetic topology is changed from FRC to strong enhancement, two propagating field configurations resembling spheromaks are excited, one with positive and the other with negative helicity. Such 'whistler spheromaks' propagate with their null points along the weaker ambient magnetic field, with the current density localized around its O-line. In contrast, 'whistler mirrors' which have topologies similar to linear whistlers, except with B{sub wave}>B{sub 0}, have no null regions and, therefore, broad current layers. This paper describes the basic field topologies of whistler spheromaks and mirrors, while companion papers discuss the associated nonlinear phenomena as well as the interaction between them.

  17. Magnetic field sensor

    NASA Astrophysics Data System (ADS)

    Silva, Nicolas

    2012-09-01

    Earlier papers1-3 in this journal have described experiments on measuring the magnetic fields of current-carrying wires and permanent magnets using magnetic field probes of various kinds. This paper explains how to use an iPad and the free app MagnetMeter-3D Vector Magnetometer and Accelerometer4 (compass HD) to measure the magnetic fields.

  18. Magnet Loader for Schmidt-Cassegrain Mirror Flop Reduction

    NASA Astrophysics Data System (ADS)

    Vander Haagen, G. A.

    2006-05-01

    The struggle with mechanical and optical issues in most commercially available Schmidt-Cassegrain amateur telescopes is exacerbated by the random flop of the primary mirror as it progresses beyond the meridian. Several retrofit techniques are available to reduce this problem, including lock-down screws and collars. Such approaches all require some modification to the optical tube. This paper discusses "work-in-progress" on a Magnetic Loader for the popular C14 optical tube that locates a rare-earth magnetic assembly on the primary mirror collar thereby continuously loading the sleeve bearing assembly. This technique requires no machined modifications or parts, can be accomplished by removal of the secondary mirror, and requires no operator intervention during focusing. While the initial data looks favorable, additional development and testing over a wider range of conditions is necessary.

  19. Production of field-reversed mirror plasma with a coaxial plasma gun

    DOEpatents

    Hartman, Charles W.; Shearer, James W.

    1982-01-01

    The use of a coaxial plasma gun to produce a plasma ring which is directed into a magnetic field so as to form a field-reversed plasma confined in a magnetic mirror. Plasma thus produced may be used as a target for subsequent neutral beam injection or other similarly produced and projected plasma rings or for direct fusion energy release in a pulsed mode.

  20. Production of field-reversed mirror plasma with a coaxial plasma gun

    DOEpatents

    Hartman, C.W.; Shearer, J.W.

    The use of a coaxial plasma gun to produce a plasma ring which is directed into a magnetic field so as to form a field-reversed plasma confined in a magnetic mirror. Plasma thus produced may be used as a target for subsequent neutral beam injection or other similarly produced and projected plasma rings or for direct fusion energy release in a pulsed mode.

  1. Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization

    DOEpatents

    Doughty, Frank C.; Spencer, John E.

    2000-12-19

    In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.

  2. Expansion and relaxation of magnetic mirror domains in a Pt/Co/Pt/Co/Pt multilayer with antiferromagnetic interlayer coupling

    NASA Astrophysics Data System (ADS)

    Metaxas, P. J.; Stamps, R. L.; Jamet, J.-P.; Ferré, J.; Baltz, V.; Rodmacq, B.

    2012-01-01

    We detail measurements of field-driven expansion and zero-field relaxation of magnetic mirror domains in antiferromagnetically coupled perpendicularly magnetized ultrathin Co layers. The zero-field stability of aligned ('mirror') domains in such systems results from non-homogeneous dipolar stray fields which exist in the vicinity of the domain walls. During field-driven domain expansion, we evidence a separation of the domain walls which form the mirror domain boundary. However, the walls realign, thereby reforming a mirror domain, if their final separation is below a critical distance at the end of the field pulse. This critical distance marks the point at which the effective net interaction between the walls changes from attractive to repulsive.

  3. Expansion and relaxation of magnetic mirror domains in a Pt/Co/Pt/Co/Pt multilayer with antiferromagnetic interlayer coupling.

    PubMed

    Metaxas, P J; Stamps, R L; Jamet, J-P; Ferré, J; Baltz, V; Rodmacq, B

    2012-01-18

    We detail measurements of field-driven expansion and zero-field relaxation of magnetic mirror domains in antiferromagnetically coupled perpendicularly magnetized ultrathin Co layers. The zero-field stability of aligned ('mirror') domains in such systems results from non-homogeneous dipolar stray fields which exist in the vicinity of the domain walls. During field-driven domain expansion, we evidence a separation of the domain walls which form the mirror domain boundary. However, the walls realign, thereby reforming a mirror domain, if their final separation is below a critical distance at the end of the field pulse. This critical distance marks the point at which the effective net interaction between the walls changes from attractive to repulsive. PMID:22173339

  4. Study on magnetic mirror array image intensifier to work at room temperature.

    PubMed

    Tang, Yuanhe; Yu, Yang; Gao, HaiYang; Liu, Shulin; Wang, Xiaolin

    2015-09-10

    In order to improve the detection capability of the current low-light-level (LLL) imaging systems at room temperature, a new device, a magnetic mirror array image intensifier (MMAII), is proposed in this paper. A magnetic mirror array device (MMAD) is coupled into an image intensifier which sits between the photocathode and the microchannel plate (MCP). The trace photoelectrons, one after another, are first sufficiently accumulated by the MMAD over a long time at room temperature, and then they are released and enter the MCP for further gain. These two steps are used to improve the detection capability at the LLL imaging system at room temperature. After the two-dimensional magnetic field distribution of the magnetic mirror array (MMA) is calculated, the MMA is designed and optimized with a rubidium Nd-Fe-B permanent magnet. Three groups of ideal parameters for the Nd-Fe-B permanent magnet MMAD, with a magnetic mirror ratio of 1.69, for all of them have been obtained. According to the research results on the noise of the escape cone of the MMAII, the angle between the incident direction and the axis is greater than 57°, so the trace electrons must be constrained by the magnetic mirror. We made 54 MMAs from Nd-Fe-B permanent magnets and packaged them in a container. Then the system was evacuated to 10-3  Pa at room temperature. It was found by experiment that the trace electrons could be actually constrained by the MMAD. The MMAII can be applied to images for static LLL objects. PMID:26368978

  5. Magnetic mirror structure for testing shell-type quadrupole coils

    SciTech Connect

    Andreev, N.; Barzi, E.; Bossert, R.; Chlachidze, G.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; Tartaglia, N.; Turrioni, D.; /Fermilab

    2009-10-01

    This paper presents magnetic and mechanical designs and analyses of the quadrupole mirror structure to test single shell-type quadrupole coils. Several quadrupole coils made of different Nb{sub 3}Sn strands, cable insulation and pole materials were tested using this structure at 4.5 and 1.9 K. The coils were instrumented with voltage taps, spot heaters, temperature sensors and strain gauges to study their mechanical and thermal properties and quench performance. The results of the quadrupole mirror model assembly and test are reported and discussed.

  6. Modal dynamics of magnetic-liquid deformable mirrors.

    PubMed

    Brousseau, Denis; Thibault, Simon; Borra, Ermanno F; Boivin, Simon F

    2014-08-01

    Magnetic-liquid deformable mirrors (MLDMs) were introduced by our group in 2004 and numerous developments have been made since then. The usefulness of this type of mirror in various applications has already been shown, but experimental data on their dynamics are still lacking. A complete theoretical modeling of MLDM dynamics is a complex task because it requires an approach based on magnetohydrodynamics. A purpose of this paper is to present and analyze new experimental data of the dynamics of these mirrors from open-loop step response measurements and show that a basic transfer function modeling is adequate to achieve closed-loop control. Also, experimental data on the eigenmodes dynamic is presented and a modal-based control approach is suggested. PMID:25090320

  7. Sketch of a unifying auroral theory. [based on magnetic mirroring of magnetic disturbances

    NASA Technical Reports Server (NTRS)

    Lennartsson, W.

    1975-01-01

    On the basis of field and particle observations, it is suggested that a bright auroral display is a part of a magnetosphere-ionosphere current system which is fed by a charge-separation process in the outer magnetosphere (or the solar wind). The upward magnetic-field-aligned current is flowing out of the display, carried mainly by down-flowing electrons from the hot-particle populations in the outer magnetosphere (the ambient cold electrons being depleted at high altitudes). As a result of the magnetic mirroring of these downflowing current carriers, a large potential drop is set up along the magnetic field, increasing both the number flux and the kinetic energy of the precipitating electrons. It is found that this simple basic model, when combined with wave-particle interactions, may be able to explain a highly diversified selection of auroral particle observations. It may thus be possible to explain both inverted-V events and auroral rays in terms of a static parallel electric field, and the electric field may be compatible with a strongly variable pitch-angle distribution of the precipitating electrons, including distributions peaked at 90 deg as well as 0 deg. This model may also provide a simple explanation of the simultaneous precipitation of electrons and collimated positive ions.

  8. MAGNETIC LIQUID DEFORMABLE MIRRORS FOR ASTRONOMICAL APPLICATIONS: ACTIVE CORRECTION OF OPTICAL ABERRATIONS FROM LOWER-GRADE OPTICS AND SUPPORT SYSTEM

    SciTech Connect

    Borra, E. F.

    2012-08-01

    Deformable mirrors are increasingly used in astronomy. However, they still are limited in stroke for active correction of high-amplitude optical aberrations. Magnetic liquid deformable mirrors (MLDMs) are a new technology that has the advantages of high-amplitude deformations and low costs. In this paper, we demonstrate extremely high strokes and interactuator strokes achievable by MLDMs which can be used in astronomical instrumentation. In particular, we consider the use of such a mirror to suggest an interesting application for the next generation of large telescopes. We present a prototype 91 actuator deformable mirror made of a magnetic liquid (ferrofluid). This mirror uses a technique that linearizes the response of such mirrors by superimposing a large and uniform magnetic field on the magnetic field produced by an array of small coils. We discuss experimental results that illustrate the performance of MLDMs. A most interesting application of MLDMs comes from the fact they could be used to correct the aberrations of large and lower optical quality primary mirrors held by simple support systems. We estimate basic parameters of the needed MLDMs, obtaining reasonable values.

  9. Measurements of Beam Coupling in the Marshall Magnetic Mirror Device

    NASA Technical Reports Server (NTRS)

    Schneider, T. A.; Vaughn, J. A.; Carruth, M. R., Jr.; Edwards, D. L.; Heard, J. W.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Experimental investigations of the coupling of an electron beam into a magnetically confined plasma have been undertaken at the Marshall Space Flight Center using the Marshall Magnetic Mirror (M3) system. The M3 system is composed of the following: two magnet coils; a cylindrical vacuum vessel; microwave source; and electron beam source. The magnet coils, which form the magnetic mirror, have an inner diameter of 25.4 cm and an outer diameter of 50.8 cm. The coils are composed of 9 coil segments with 33 turns in each segment. Each coil segment is connected in series. To create the target plasma, a 2 kW microwave source (2.45 gHz) is coupled into the vacuum chamber via waveguide. The electron beam source is a hollow cathode device created by the EPL Corporation. The hollow cathode is capable of producing a 50 amp beam with a pulse length of 1 second. It is also capable of continuous operation at 5 amps. The hollow cathode is mounted on one end of the cylindrical vacuum vessel 24 cm outside of a magnet coil. A current sensor is placed in the hollow cathode keeper bias circuit to measure emission current.

  10. Transport and equilibrium in field-reversed mirrors

    SciTech Connect

    Boyd, J.K.

    1982-09-01

    Two plasma models relevant to compact torus research have been developed to study transport and equilibrium in field reversed mirrors. In the first model for small Larmor radius and large collision frequency, the plasma is described as an adiabatic hydromagnetic fluid. In the second model for large Larmor radius and small collision frequency, a kinetic theory description has been developed. Various aspects of the two models have been studied in five computer codes ADB, AV, NEO, OHK, RES. The ADB code computes two dimensional equilibrium and one dimensional transport in a flux coordinate. The AV code calculates orbit average integrals in a harmonic oscillator potential. The NEO code follows particle trajectories in a Hill's vortex magnetic field to study stochasticity, invariants of the motion, and orbit average formulas. The OHK code displays analytic psi(r), B/sub Z/(r), phi(r), E/sub r/(r) formulas developed for the kinetic theory description. The RES code calculates resonance curves to consider overlap regions relevant to stochastic orbit behavior.

  11. The Status of Research Regarding Magnetic Mirrors as a Fusion Neutron Source or Power Plant

    SciTech Connect

    Simonen, T

    2008-12-23

    Experimental results, theory and innovative ideas now point with increased confidence to the possibility of a Gas Dynamic Trap (GDT) neutron source which would be on the path to an attractively simple Axisymmetric Tandem Mirror (ATM) power plant. Although magnetic mirror research was terminated in the US 20 years ago, experiments continued in Japan (Gamma 10) and Russia (GDT), with a very small US effort. This research has now yielded data, increased understanding, and generated ideas resulting in the new concepts described here. Early mirror research was carried out with circular axisymmetric magnets. These plasmas were MHD unstable due to the unfavorable magnetic curvature near the mid-plane. Then the minimum-B concept emerged in which the field line curvature was everywhere favorable and the plasma was situated in a MHD stable magnetic well (70% average beta in 2XII-B). The Ioffe-bar or baseball-coil became the standard for over 40 years. In the 1980's, driven by success with minimum-B stabilization and the control of ion cyclotron instabilities in PR6 and 2XII-B, mirrors were viewed as a potentially attractive concept with near-term advantages as a lower Q neutron source for applications such as a hybrid fission fuel factory or toxic waste burner. However there are down sides to the minimum-B geometry: coil construction is complex; restraining magnetic forces limit field strength and mirror ratios. Furthermore, the magnetic field lines have geodesic curvature which introduces resonant and neoclassical radial transport as observed in early tandem mirror experiments. So what now leads us to think that simple axisymmetric mirror plasmas can be stable? The Russian GDT experiment achieves on-axis 60% beta by peaking of the kinetic plasma pressure near the mirror throat (where the curvature is favorable) to counter-balance the average unfavorable mid-plane curvature. Then a modest augmentation of plasma pressure in the expander results in stability. The GDT

  12. Testing of Nb3Sn quadrupole coils using magnetic mirror structure

    SciTech Connect

    Zlobin, A.V.; Andreev, N.; Barzi, E.; Bossert, R.; Chlachidze, G.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.; Novitski, I.; Tartaglia, M.; Tompkins, J.C.; /Fermilab

    2009-07-01

    This paper describes the design and parameters of a quadrupole mirror structure for testing the mechanical, thermal and quench performance of single shell-type superconducting quadrupole coils at field, current and force levels similar to that of real magnet. The concept was experimentally verified by testing two quadrupole coils, previously used in quadrupole models, in the developed mirror structure in the temperature range from 4.5 to 1.9 K. The coils were instrumented with voltage taps, heaters, and strain gauges to monitor their mechanical and thermal properties and quench performance. A new quadrupole coil made of improved Nb{sub 3}Sn RRP-108/127 strand and cable insulation based on E-glass tape was also tested using this structure. The fabrication and test results of the quadrupole mirror models are reported and discussed.

  13. Testing of NB3SN Quadrupole Coils Using Magnetic Mirror Structure

    NASA Astrophysics Data System (ADS)

    Zlobin, A. V.; Andreev, N.; Barzi, E.; Bossert, R.; Chlachidze, G.; Kashikhin, V. S.; Kashikhin, V. V.; Lamm, M. J.; Novitski, I.; Tartaglia, M.; Tompkins, J. C.; Turrioni, D.; Yamada, R.

    2010-04-01

    This paper describes the design and parameters of a quadrupole mirror structure for testing the mechanical, thermal and quench performance of single shell-type superconducting quadrupole coils at field, current and force levels similar to that of real magnet. The concept was experimentally verified by testing two quadrupole coils, previously used in quadrupole models, in the developed mirror structure in the temperature range from 4.5 to 1.9 K. The coils were instrumented with voltage taps, heaters, and strain gauges to monitor their mechanical and thermal properties and quench performance. A new quadrupole coil made of improved Nb3Sn RRP-108/127 strand and cable insulation based on E-glass tape was also tested using this structure. The fabrication and test results of the quadrupole mirror models are reported and discussed.

  14. Experimental study of the hot electron plasma equilibrium in a minimum-B magnetic mirror

    SciTech Connect

    Chen, X.; Lane, B.G.; Smatlak, D.L.; Post, R.S.; Hokin, S.A.

    1989-03-01

    The Constance B mirror (in Plasma Physics and Controlled Nuclear Fusion Research 1984 (IAEA, Vienna, 1985), Vol. II, p. 285) is a single cell quadrupole magnetic mirror in which high-beta (typically 0.3), hot electron plasmas (T/sub e/approx. =400 keV) are created with up to 4 kW of fundamental electron cyclotron resonance heating (ECRH). Details of the plasma equilibrium profile are quantitatively determined by fitting model plasma pressure profiles to the data from four complementary measurements: diamagnetic loops and magnetic probes, x-ray pinhole cameras, visible light TV cameras, and thermocouple probes. The experimental analysis shows that the equilibrium pressure profile of an ECRH generated plasma in a baseball magnetic mirror is hollow and the plasma is concentrated along a baseball-seam-shaped curve. The hollowness of the hot electron density profile is 50% +- 10%. The baseball-seam-shaped equilibrium profile coincides with the drift orbit of deeply trapped electrons in the quadrupole mirror field. Particle drift reversal is predicted to occur for the model pressure profile that best fits the experimental data under the typical operating conditions.

  15. Photospheric magnetic fields

    NASA Technical Reports Server (NTRS)

    Howard, R.

    1972-01-01

    Knowledge on the nature of magnetic fields on the solar surface is reviewed. At least a large part of the magnetic flux in the solar surface is confined to small bundles of lines of force within which the field strength is of the order of 500 gauss. Magnetic fields are closely associated with all types of solar activity. Magnetic flux appears at the surface at the clearly defined birth or regeneration of activity of an active region. As the region ages, the magnetic flux migrates to form large-scale patterns and the polar fields. Some manifestations of the large-scale distribution are discussed.

  16. Mirror moving in quantum vacuum of a massive scalar field

    NASA Astrophysics Data System (ADS)

    Wang, Qingdi; Unruh, William G.

    2015-09-01

    We present a mirror model moving in the quantum vacuum of a massive scalar field and study its motion under infinitely fluctuating quantum vacuum stress. The model is similar to the one in [Q. Wang and W. G. Unruh, Motion of a mirror under infinitely fluctuating quantum vacuum stress Phys. Rev. D 89, 085009 (2014).], but this time there is no divergent effective mass to weaken the effect of divergent vacuum energy density. We show that this kind of weakening is not necessary. The vacuum friction and strong anticorrelation property of the quantum vacuum are enough to confine the mirror's position fluctuations. This is another example illustrating that while the actual value of the vacuum energy can be physically significant even for a nongravitational system, and that its infinite value makes sense, but that its physical effect can be small despite this infinity.

  17. Extremely high resolution tip-tilt-piston mirror mechanism for the VLT-NAOS field selector

    NASA Astrophysics Data System (ADS)

    Spanoudakis, Peter; Zago, Lorenzo; Chetelat, O.; Gentsch, R.; Mato Mira, F.

    2000-07-01

    NAOS (Nasmyth Adaptive Optics System) is the adaptive optics system presently developed for the ESO VLT. The field selectors are to feed the NAOS wavefront sensor with the light coming from an appropriate reference source which can be up to 1 arcmin (on the sky) distant from the center of the field of view. A large input tip-tilt-piston mirror selects the required part of the field of view. A second active mirror redirects the selected field to the wavefront sensor. The displacement of both mirrors are synchronized. The NAOS Field Selector consists of two extremely accurate tip-tilt-piston mirror mechanisms controlled in closed loop. Each mechanism provides a mechanical angle amplitude of +/- 6 degrees with a resolution and mechanical stability of 0.42 arcsec rms over 20 minutes. This implies a dynamic range of 100,000 which requires an extremely accurate, very high resolution closed loop control. Both mirrors are made in SiC for low mass and inertia. The design configuration of the mechanism in based on three electromagnetic actuators 120 degrees apart with the mobile magnets mounted on flexure guides. The mirror is supported by a combination of flex pivots and a membrane for flexibility in tilt and high radial stiffness. All kinematic joints consist of flexure elements so that the mechanism is essentially frictionless. The control system is implemented on a VME bus operated with the VXWorks OS with high electrical resolution (>= 18-bit) AD and DA interface boards. The controller has been carefully designed to achieve the best overall performances, i.e., a very good noise rejection, and a relatively low settling time.

  18. Enhanced loss of magnetic-mirror-trapped fast electrons by a shear Alfvén wave

    SciTech Connect

    Wang, Y.; Gekelman, W.; Pribyl, P.; Papadopoulos, K.

    2014-05-15

    Laboratory observations of enhanced loss of magnetic mirror trapped fast electrons irradiated by a shear Alfvén Wave (SAW) are reported. The experiment is performed in the quiescent after-glow plasma in the Large Plasma Device [Gekelman et al., Rev. Sci. Instrum. 62(12), 2875–2883 (1991)]. A trapped energetic electron population (>100 keV) is generated in a magnetic mirror section (mirror ratio ≈ 2, length = 3.5 m) by an X-mode high power microwave pulse, and forms a hot electron ring due to the grad-B and curvature drift. SAWs of arbitrary polarization are launched externally by a Rotating Magnetic Field source (δB/B{sub 0} ≈ 0.1%, λ{sub ∥} ≈ 9 m). Irradiated by a right-handed circularly polarized SAW, the loss of electrons, in both the radial and the axial direction of the mirror field, is significantly enhanced and is modulated at f{sub Alfvén}. The periodical loss continues even after the termination of the SAW. Experimental observations suggest that a spatial distortion of the ring is formed in the SAW field and creates a collective mode of the hot electron population that degrades its confinement and leads to electron loss from the magnetic mirror. The results could have implications on techniques of radiation belt remediation.

  19. Magnetic field generator

    DOEpatents

    Krienin, Frank

    1990-01-01

    A magnetic field generating device provides a useful magnetic field within a specific retgion, while keeping nearby surrounding regions virtually field free. By placing an appropriate current density along a flux line of the source, the stray field effects of the generator may be contained. One current carrying structure may support a truncated cosine distribution, and it may be surrounded by a current structure which follows a flux line that would occur in a full coaxial double cosine distribution. Strong magnetic fields may be generated and contained using superconducting cables to approximate required current surfaces.

  20. On Cosmic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Florido, E.; Battaner, E.

    2010-12-01

    Magnetic fields are present in all astrophysical media. However, many models and interpretations of observations often ignore them, because magnetic fields are difficult to handle and because they produce complicated morphological features. Here we will comment on the basic intuitive properties, which even if not completely true, provide a first guiding insight on the physics of a particular astrophysical problem. These magnetic properties are not mathematically demonstrated here. How magnetic fields evolve and how they introduce dynamical effects are considered, also including a short comment on General Relativity Magnetohydrodynamics. In a second part we consider some audacious and speculative matters. They are answers to three questions: a) How draw a cube without lifting the pencil from the paper so that when the pen passes through the same side do in the same direction? B) Are MILAGRO anisotropies miraculous? C) Do cosmic magnetic lenses exist?. The last two questions deal with issues related with the interplay between magnetic fields and cosmic ray propagation.

  1. Magnetic Fields in Galaxies

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    Magnetic fields are a major agent in the interstellar medium. They contribute significantly to the total pressure which balances the gas disk against gravitation. They affect the gas flows in spiral arms (Gómez and Cox, 2002). The effective sound speed of the gas is increased by the presence of strong fields which reduce the shock strength. The interstellar fields are closely connected to gas clouds. They affect the dynamics of the gas clouds (Elmegreen, 1981; de Avillez and Breitschwerdt, 2004). The stability and evolution of gas clouds are also influenced by magnetic fields, but it is not understood how (Crutcher, 1999; see Chap. 7). Magnetic fields are essential for the onset of star formation as they enable the removal of angular momentum from the protostellar cloud during its collapse (magnetic braking, Mouschovias, 1990). Strong fields may shift the stellar mass spectrum towards the more massive stars (Mestel, 1990). MHD turbulence distributes energy from supernova explosions within the ISM (Subramanian, 1998) and regenerates the field via the dynamo process (Wielebinski, R., Krause, 1993, Beck et al., 1996; Sect. 6). Magnetic reconnection is a possible heating source for the ISM and halo gas (Birk et al., 1998). Magnetic fields also control the density and distribution of cosmic rays in the ISM. A realistic model for any process in the ISM needs basic information about the magnetic field which has to be provided by observations.

  2. Performance of a magnetic driven tip-tilt mirror

    NASA Astrophysics Data System (ADS)

    Farinato, Jacopo; Esposito, Simone; Marchetti, Enrico; Ragazzoni, Roberto; Bruns, Donald G.

    1997-03-01

    ThermoTrex Corporation has designed and built a prototype of the fast steering mirror to be used for image motion control in the TNG adaptive optics system. The principal characteristic of this mirror is the use of voice coil actuators whose positions are controlled with closed loops based on capacitive sensors. Here we report the main features of the mirror assembly and laboratory measurements done to characterize the mirror behavior. The Bode diagram of the mirror is reported and discussed.

  3. Simulation studies of non-neutral plasma equilibria in an electrostatic trap with a magnetic mirror

    SciTech Connect

    Gomberoff, K; Fajans, J; Wurtele, J; Friedman, A; Grote, D P; Cohen, R H; Vay, J

    2006-06-05

    The equilibrium of an infinitely long, strongly magnetized, non-neutral plasma confined in a Penning-Malmberg trap with an additional mirror coil has been solved analytically [J. Fajans, Phys. Plasmas 10, 1209 (2003)] and shown to exhibit unusual features. Particles not only reflect near the mirror in the low field region, but also may be weakly trapped in part of in the high field region. The plasma satisfies a Boltzmann distribution along field lines; however, the density and the potential vary along field lines. Some other simplifying assumptions were employed in order to analytically characterize the equilibrium; for example the interface region between the low and high field regions was not considered. The earlier results are confirmed in the present study, where two-dimensional particle-in-cell simulations are performed with the Warp code in a more realistic configuration with an arbitrary (but physical) density profile, realistic trap geometry and magnetic field. A range of temperatures and radial plasma sizes are considered. Particle tracking is used to identify populations of trapped and untrapped particles. The present study also shows that it is possible to obtain local equilibria of non-neutral plasmas using a collisionless PIC code, by a scheme that uses the inherent numerical collisionality as a proxy for physical collisions.

  4. Simulation studies of non-neutral plasma equilibria in anelectrostatic trap with magnetic mirror

    SciTech Connect

    Gomberoff, K.; Fajans, J.; Wurtele, J.; Friedman, A.; Grote,D.P.; Cohen, R.H.; Vay, J-L.

    2006-06-01

    The equilibrium of an infinitely long, strongly magnetized, non-neutral plasma confined in a Penning-Malmberg trap with an additional mirror coil has been solved analytically [J. Fajans, Phys. Plasmas 10, 1209 (2003)] and shown to exhibit unusual features. Particles not only reflect near the mirror in the low field region, but also may be weakly trapped in part of in the high field region. The plasma satisfies a Boltzmann distribution along field lines; however, the density and the potential vary along field lines. Some other simplifying assumptions were employed in order to analytically characterize the equilibrium; for example the interface region between the low and high field regions was not considered. The earlier results are confirmed in the present study, where two-dimensional particle-in-cell simulations are performed with the Warp code in a more realistic configuration with an arbitrary (but physical) density profile, realistic trap geometry and magnetic field. A range of temperatures and radial plasma sizes are considered. Particle tracking is used to identify populations of trapped and untrapped particles. The present study also shows that it is possible to obtain local equilibria of non-neutral plasmas using a collisionless PIC code, by a scheme that uses the inherent numerical collisionality as a proxy for physical collisions.

  5. Do Mirror Glasses Have the Same Effect on Brain Activity as a Mirror Box? Evidence from a Functional Magnetic Resonance Imaging Study with Healthy Subjects

    PubMed Central

    Milde, Christopher; Rance, Mariela; Kirsch, Pinar; Trojan, Jörg; Fuchs, Xaver; Foell, Jens; Bekrater-Bodmann, Robin

    2015-01-01

    Since its original proposal, mirror therapy has been established as a successful neurorehabilitative intervention in several neurological disorders to recover motor function or to relieve pain. Mirror therapy seems to operate by reactivating the contralesional representation of the non-mirrored limb in primary motor- and somatosensory cortex. However, mirror boxes have some limitations which prompted the use of additional mirror visual feedback devices. The present study evaluated the utility of mirror glasses compared to a mirror box. We also tested the hypothesis that increased interhemispheric communication between the motor hand areas is the mechanism by which mirror visual feedback recruits the representation of the non-mirrored limb. Therefore, mirror illusion capacity and brain activations were measured in a within-subject design during both mirror visual feedback conditions in counterbalanced order with 20 healthy subjects inside a magnetic resonance imaging scanner. Furthermore, we analyzed task-dependent functional connectivity between motor hand representations using psychophysiological interaction analysis during both mirror tasks. Neither the subjective quality of mirror illusions nor the patterns of functional brain activation differed between the mirror tasks. The sensorimotor representation of the non-mirrored hand was recruited in both mirror tasks. However, a significant increase in interhemispheric connectivity between the hand areas was only observed in the mirror glasses condition, suggesting different mechanisms for the recruitment of the representation of the non-mirrored hand in the two mirror tasks. We conclude that the mirror glasses might be a promising alternative to the mirror box, as they induce similar patterns of brain activation. Moreover, the mirror glasses can be easy applied in therapy and research. We want to emphasize that the neuronal mechanisms for the recruitment of the affected limb representation might differ depending on

  6. Enhanced stability of skyrmions in magnets with broken mirror symmetry

    NASA Astrophysics Data System (ADS)

    Rowland, James; Banerjee, Sumilan; Randeria, Mohit

    Most previous work on skyrmion phases in chiral magnets with Dzyaloshinkii Moriya interactions (DMI) focuses on the case of broken bulk inversion symmetry. The skyrmion crystal is then stable only in a limited range of parameter space with easy-axis anisotropy. In this talk I will describe the effects of including broken mirror or surface inversion symmetry which leads to a Rashba DMI, in addition to the Dresselhaus DMI arising from broken bulk inversion. I will show that increasing Rashba DMI leads to a progressively larger domain of stability for skyrmions, especially in the easy-plane anisotropy regime. In the latter regime the topological charge density shows an unusual internal structure, and isolated skyrmions cannot be embedded in a ferromagnetic background. Thus the homotopy group π2 (S2) method of classifying skyrmions fails. I will discuss a Chern number classification of these non-trivial skyrmions using maps from the 2-torus (the unit cell for skyrmion crystals) to the 2-sphere in spin space. Finally, I will discuss the elliptic cone phase, a new state that emerges for easy-axis anisotropy and broken mirror symmetry. We acknowledge support by the National Science Foundation by the NSF Graduate Research Fellowship Program Grant No. DGE-1343012 (JR), by an NSF Grant DMR-1410364 (MR), and by the CEM, an NSF MRSEC, under Grant DMR-1420451.

  7. Magnetic field dosimeter development

    SciTech Connect

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1980-09-01

    In recent years there has been increased concern over potential health hazards related to exposure of personnel to magnetic fields. If exposure standards are to be established, then a means for measuring magnetic field dose must be available. To meet this need, the Department of Energy has funded development of prototype dosimeters at the Battelle Pacific Northwest Laboratory. This manual reviews the principle of operation of the dosimeter and also contains step-by-step instructions for its operation.

  8. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Chiba, Masashi

    The magnetic-field characteristics in spiral galaxies are investigated, with emphasis on the Milky Way. The dynamo theory is considered, and axisymmetric spiral (ASS) and bisymmetric spiral (BSS) magnetic fields are analyzed. Toroidal and poloidal magnetic fields are discussed.

  9. Parametric dependence of ion temperature and relative density in the NASA Lewis SUMMA facility. [superconducting magnetic mirror

    NASA Technical Reports Server (NTRS)

    Snyder, A.; Lauver, M. R.; Patch, R. W.

    1976-01-01

    Further hot-ion plasma experiments were conducted in the SUMMA superconducting magnetic mirror facility. A steady-state ExB plasma was formed by applying a strong radially inward dc electric field between cylindrical anodes and hollow cathodes located near the magnetic mirror maxima. Extending the use of water cooling to the hollow cathodes, in addition to the anodes, resulted in higher maximum power input to the plasma. Steady-state hydrogen plasmas with ion kinetic temperatures as high as 830 eV were produced. Functional relations were obtained empirically among the plasma current, voltage, magnetic flux density, ion temperature, and relative ion density. The functional relations were deduced by use of a multiple correlation analysis. Data were obtained for midplane magnetic fields from 0.5 to 3.37 tesla and input power up to 45 kW. Also, initial absolute electron density measurements are reported from a 90 deg Thomson scattering laser system.

  10. Field Experience with 3-Sun Mirror Module Systems

    SciTech Connect

    Fraas, Dr. Lewis; Avery, James E.; Huang, H,; Minkin, Leonid M; Fraas, J. X.; Maxey, L Curt; Gehl, Anthony C

    2008-01-01

    JX Crystals 3-sun PV mirror modules have now been operating in four separate systems in the field for up to 2 years. Two post-mounted 2-axis tracking arrays of 12 modules each were installed at the Shanghai Flower Park in April of 2006. Then 672 modules were installed in a 100 kW array on N-S horizontal beam trackers at the Shanghai Flower Port in November of 2006. Finally, sets of 4 modules were installed on azimuth-tracking carousels on buildings at the Oak Ridge National Lab and at the U. of Nevada in Las Vegas in late 2007. All of these modules in each of these systems are still operating at their initial power ratings. No degradation in performance has been observed. The benefit of these 3-sun PV mirror modules is that they use 1/3 of the silicon single-crystal cell material in comparison to traditional planar modules. Since aluminum mirrors are much cheaper than high-purity single-crystal silicon-cells, these modules and systems should be much lower in cost when manufactured in high volume.

  11. Solar Wind Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Smith, E. J.

    1995-01-01

    The magnetic fields originate as coronal fields that are converted into space by the supersonic, infinitely conducting, solar wind. On average, the sun's rotation causes the field to wind up and form an Archimedes Spiral. However, the field direction changes almost continuously on a variety of scales and the irregular nature of these changes is often interpreted as evidence that the solar wind flow is turbulent.

  12. Effects of auroral-particle anisotropies and mirror forces on high-latitude electric fields

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.; Schulz, M.; Cornwall, J. M.

    1981-01-01

    It is noted that, for most of the mechanisms for the strong electric fields that characterize the narrow regions in which there is acceleration and precipitation of ring current and/or plasma-sheet plasma, certain effects must be taken into account in simulations of auroral electric fields. The effects are those of auroral particle anisotropy, of mirror forces due to the inhomogeneous geomagnetic field, of auroral electron backscatter by the atmosphere, and of electron trapping by the combination of magnetic mirroring and electrostatic forces. What is more, the effects of the very strong perpendicular electric field must also be taken into account in a kinetic description of the Poisson equation in order to achieve a unified theory of the auroral electrostatic structure. Progress in these areas during the past few years is reviewed. It is shown that particle anisotropies and mirror forces can account for some basic electrostatic features of the quiet arc, while additional effects may be occurring in strong events in which the parallel potential drop is more than about 10 kV.

  13. Isorotation and differential rotation in a magnetic mirror with imposed EÖ-B rotation

    NASA Astrophysics Data System (ADS)

    Romero-Talamás, C. A.; Elton, R. C.; Young, W. C.; Reid, R.; Ellis, R. F.

    2012-07-01

    Doppler spectroscopy of helium impurities in the Maryland Centrifugal Experiment reveals the simultaneous existence of isorotating and differentially rotating magnetic surfaces. Differential rotation occurs at the innermost surfaces and is conjectured to cause plasma voltage oscillations of hundreds of kilohertz by periodically changing the current path inductance. High-speed images show the periodic expulsion of plasma near the mirror ends at the same frequencies. In spite of this, the critical ionization velocity limit is exceeded, with respect to the vacuum field definition, for at least 0.5 ms.

  14. Isorotation and differential rotation in a magnetic mirror with imposed E Multiplication-Sign B rotation

    SciTech Connect

    Romero-Talamas, C. A.; Elton, R. C.; Young, W. C.; Reid, R.; Ellis, R. F.

    2012-07-15

    Doppler spectroscopy of helium impurities in the Maryland Centrifugal Experiment reveals the simultaneous existence of isorotating and differentially rotating magnetic surfaces. Differential rotation occurs at the innermost surfaces and is conjectured to cause plasma voltage oscillations of hundreds of kilohertz by periodically changing the current path inductance. High-speed images show the periodic expulsion of plasma near the mirror ends at the same frequencies. In spite of this, the critical ionization velocity limit is exceeded, with respect to the vacuum field definition, for at least 0.5 ms.

  15. Magnetic Field Measurement System

    SciTech Connect

    Kulesza, Joe; Johnson, Eric; Lyndaker, Aaron; Deyhim, Alex; Waterman, Dave; Blomqvist, K. Ingvar; Dunn, Jonathan Hunter

    2007-01-19

    A magnetic field measurement system was designed, built and installed at MAX Lab, Sweden for the purpose of characterizing the magnetic field produced by Insertion Devices (see Figure 1). The measurement system consists of a large granite beam roughly 2 feet square and 14 feet long that has been polished beyond laboratory grade for flatness and straightness. The granite precision coupled with the design of the carriage yielded minimum position deviations as measured at the probe tip. The Hall probe data collection and compensation technique allows exceptional resolution and range while taking data on the fly to programmable sample spacing. Additional flip coil provides field integral data.

  16. Magnetic Field Solver

    NASA Technical Reports Server (NTRS)

    Ilin, Andrew V.

    2006-01-01

    The Magnetic Field Solver computer program calculates the magnetic field generated by a group of collinear, cylindrical axisymmetric electromagnet coils. Given the current flowing in, and the number of turns, axial position, and axial and radial dimensions of each coil, the program calculates matrix coefficients for a finite-difference system of equations that approximates a two-dimensional partial differential equation for the magnetic potential contributed by the coil. The program iteratively solves these finite-difference equations by use of the modified incomplete Cholesky preconditioned-conjugate-gradient method. The total magnetic potential as a function of axial (z) and radial (r) position is then calculated as a sum of the magnetic potentials of the individual coils, using a high-accuracy interpolation scheme. Then the r and z components of the magnetic field as functions of r and z are calculated from the total magnetic potential by use of a high-accuracy finite-difference scheme. Notably, for the finite-difference calculations, the program generates nonuniform two-dimensional computational meshes from nonuniform one-dimensional meshes. Each mesh is generated in such a way as to minimize the numerical error for a benchmark one-dimensional magnetostatic problem.

  17. Magnetic fields at neptune.

    PubMed

    Ness, N F; Acuña, M H; Burlaga, L F; Connerney, J E; Lepping, R P; Neubauer, F M

    1989-12-15

    The National Aeronautics and Space Administration Goddard Space Flight Center-University of Delaware Bartol Research Institute magnetic field experiment on the Voyager 2 spacecraft discovered a strong and complex intrinsic magnetic field of Neptune and an associated magnetosphere and magnetic tail. The detached bow shock wave in the supersonic solar wind flow was detected upstream at 34.9 Neptune radii (R(N)), and the magnetopause boundary was tentatively identified at 26.5 R(N) near the planet-sun line (1 R(N) = 24,765 kilometers). A maximum magnetic field of nearly 10,000 nanoteslas (1 nanotesla = 10(-5) gauss) was observed near closest approach, at a distance of 1.18 R(N). The planetary magnetic field between 4 and 15 R(N) can be well represented by an offset tilted magnetic dipole (OTD), displaced from the center of Neptune by the surprisingly large amount of 0.55 R(N) and inclined by 47 degrees with respect to the rotation axis. The OTD dipole moment is 0.133 gauss-R(N)(3). Within 4 R(N), the magnetic field representation must include localized sources or higher order magnetic multipoles, or both, which are not yet well determined. The obliquity of Neptune and the phase of its rotation at encounter combined serendipitously so that the spacecraft entered the magnetosphere at a time when the polar cusp region was directed almost precisely sunward. As the spacecraft exited the magnetosphere, the magnetic tail appeared to be monopolar, and no crossings of an imbedded magnetic field reversal or plasma neutral sheet were observed. The auroral zones are most likely located far from the rotation poles and may have a complicated geometry. The rings and all the known moons of Neptune are imbedded deep inside the magnetosphere, except for Nereid, which is outside when sunward of the planet. The radiation belts will have a complex structure owing to the absorption of energetic particles by the moons and rings of Neptune and losses associated with the significant changes

  18. Ion Acceleration in Plasmas Emerging from a Helicon-heated Magnetic-mirror Device

    SciTech Connect

    S.A. Cohen; N.S. Siefert; S. Stange; R.F. Boivin; E.E. Scime; F.M. Levinton

    2003-03-21

    Using laser-induced fluorescence, measurements have been made of metastable argon-ion, Ar{sup +}*(3d{sup 4} f{sub 7/2}), velocity distributions on the major axis of an axisymmetric magnetic-mirror device whose plasma is sustained by helicon wave absorption. Within the mirror, these ions have sub-eV temperature and, at most, a subthermal axial drift. In the region outside the mirror coils, conditions are found where these ions have a field-parallel velocity above the acoustic speed, to an axial energy of {approx}30 eV, while the field-parallel ion temperature remains low. The supersonic Ar{sup +}*(3d{sup 4} f{sub 7/2}) are accelerated to one-third of their final energy within a short region in the plasma column, {le}1 cm, and continue to accelerate over the next 5 cm. Neutral gas density strongly affects the supersonic Ar{sup +}*(3d{sup 4} f{sub 7/2}) density.

  19. Optimization and test of a 120mm LARP Nb3Sn quadrupole coil using magnetic mirror structure

    SciTech Connect

    Bossert, R.; Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Caspi, S.; Cheng, D.; Chlachidze, G.; Dietderich, D.; Felice, H.; Ferracin, P.; /LBL, Berkeley /Brookhaven /LBL, Berkeley /Fermilab /LBL, Berkeley /Brookhaven

    2011-09-01

    The US-LARP collaboration is developing a new generation of large-aperture high-field quadrupoles based on Nb{sub 3}Sn superconductor for the LHC upgrades. The development and implementation of this new technology involves the fabrication and testing of series of model magnets, coils and other components with various design and processing features. New 120-mm HQ coils made of Rutherford cable, one with an interlayer resistive core, and both with optimized reaction processes, were fabricated and tested using a quadrupole mirror structure under operating conditions similar to those in a real magnet. The coils were instrumented with voltage taps and strain gauges to study the mechanical and quench performance. Quench antenna and temperature gauges were installed in the mirror structure to measure the coil temperature and locate quench origins. This paper presents details of the coil design and fabrication procedures, coil assembly and pre-stress in the quadrupole mirror structure, and coil test results.

  20. Physics-magnetics trade studies for tandem mirror reactors

    SciTech Connect

    Campbell, R.B.; Perkins, L.J.; Blackfield, D.T.

    1985-03-01

    We describe and present results obtained from the optimization package of the Tandem Mirror Reactor Systems Code. We have found it to be very useful in searching through multidimensional parameter space, and have applied it here to study the effect of choke coil field strength and net electric power on cost of electricity (COE) and mass utilization factor (MUF) for MINIMARS type reactors. We have found that a broad optimum occurs at B/sub choke/ = 26 T for both COE and MUF. The COE economy of scale approaches saturation at quite low powers, around 600 MW(e). The saturation is mainly due to longer construction times for large plants, and the associated time related costs. The MUF economy of scale does not saturate, at least for powers up to 2400 MW(e).

  1. High field superconducting magnets

    NASA Technical Reports Server (NTRS)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  2. The interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Davis, L., Jr.

    1972-01-01

    Large-scale properties of the interplanetary magnetic field as determined by the solar wind velocity structure are examined. The various ways in which magnetic fields affect phenomena in the solar wind are summarized. The dominant role of high and low velocity solar wind streams that persist, with fluctuations and evolution, for weeks or months is emphasized. It is suggested that for most purposes the sector structure is better identified with the stream structure than with the magnetic polarity and that the polarity does not necessarily change from one velocity sector to the next. Several mechanisms that might produce the stream structure are considered. The interaction of the high and low velocity streams is analyzed in a model that is steady state when viewed in a frame that corotates with the sun.

  3. Mirror-field entanglement in a microscopic model for quantum optomechanics

    NASA Astrophysics Data System (ADS)

    Sinha, Kanupriya; Lin, Shih-Yuin; Hu, B. L.

    2015-08-01

    We use a microscopic model, the mirror-oscillator-field (MOF) model proposed by C. R. Galley, R. O. Behunin, and B. L. Hu [Phys. Rev. A 87, 043832 (2013), 10.1103/PhysRevA.87.043832], to describe the quantum entanglement between a mirror's center-of-mass (c.m.) motion and a field. In contrast with the conventional approach where the mirror-field entanglement is understood as arising from the radiation pressure of an optical field inducing the motion of the mirror's c.m., the MOF model incorporates the dynamics of the internal degrees of freedom of the mirror that couple to the optical field directly. The major advantage in this approach is that it provides a self-consistent treatment of the three pertinent subsystems (the mirror's c.m. motion, its internal degrees of freedom, and the field) including their back-actions on each other, thereby giving a more accurate account of the quantum correlations between the individual subsystems. The optical and the mechanical properties of a mirror arising from its dynamical interaction with a quantum field are obtained without imposing any boundary conditions on the field additionally, as is done in the conventional way. As one of the new physical features that arise from this self-consistent treatment of the coupled optics and mechanics behavior we observe a coherent transfer of quantum correlations from the field to the mirror via its internal degrees of freedom. We find the quantum entanglement between the optical field and the mirror's center-of-mass motion upon coarse-graining over the internal degree of freedom. Further, we show that in certain parameter regimes the mirror-field entanglement is enhanced when the field interacts resonantly with the mirror's internal degree of freedom, a result which highlights the importance of including the internal structure of the mirror in quantum optomechanical considerations.

  4. Formation of a magnetic hole above the mirror-instability threshold in a plasma with sloshing ions.

    PubMed

    Kotelnikov, I A; Bagryansky, P A; Prikhodko, V V

    2010-06-01

    Within the framework of paraxial approximation it is shown that in an anisotropic plasma with sloshing ions confined an open-ended system a magnetic hole is formed near the turning point of the sloshing ions above the threshold of the mirror instability. The magnetic field experiences a jump at the hole boundary from the side of the magnetic mirror. For a small excess over the mirror instability threshold, the surface of the discontinuity has the shape of a truncated paraboloid, and the magnitude of the magnetic field jump at the system axis is proportional to the radius of the hole and gradually decreases to zero away of the axis. It is argued that disappearance of the magnetic hole because of the widening of the sloshing ions angular spread in the course of the neutral beam injection results in abrupt anticorrelated changes of the diamagnetic signals measured near the turning point of the sloshing ions and near the midplane of the gas-dynamic trap. PMID:20866548

  5. Formation of a magnetic hole above the mirror-instability threshold in a plasma with sloshing ions

    SciTech Connect

    Kotelnikov, I. A.; Bagryansky, P. A.; Prikhodko, V. V.

    2010-06-15

    Within the framework of paraxial approximation it is shown that in an anisotropic plasma with sloshing ions confined an open-ended system a magnetic hole is formed near the turning point of the sloshing ions above the threshold of the mirror instability. The magnetic field experiences a jump at the hole boundary from the side of the magnetic mirror. For a small excess over the mirror instability threshold, the surface of the discontinuity has the shape of a truncated paraboloid, and the magnitude of the magnetic field jump at the system axis is proportional to the radius of the hole and gradually decreases to zero away of the axis. It is argued that disappearance of the magnetic hole because of the widening of the sloshing ions angular spread in the course of the neutral beam injection results in abrupt anticorrelated changes of the diamagnetic signals measured near the turning point of the sloshing ions and near the midplane of the gas-dynamic trap.

  6. Mirroring within the Fokker-Planck formulation of cosmic ray pitch angle scattering in homogeneous magnetic turbulence

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Klimas, A. J.; Sandri, G.

    1974-01-01

    The Fokker-Planck coefficient for pitch angle scattering, appropriate for cosmic rays in homogeneous, stationary, magnetic turbulence, is computed from first principles. No assumptions are made concerning any special statistical symmetries the random field may have. This result can be used to compute the parallel diffusion coefficient for high energy cosmic rays moving in strong turbulence, or low energy cosmic rays moving in weak turbulence. Becuase of the generality of the magnetic turbulence which is allowed in this calculation, special interplanetary magnetic field features such as discontinuities, or particular wave modes, can be included rigorously. The reduction of this results to previously available expressions for the pitch angle scattering coefficient in random field models with special symmetries is discussed. The general existance of a Dirac delta function in the pitch angle scattering coefficient is demonstrated. It is proved that this delta function is the Fokker-Planck prediction for pitch angle scattering due to mirroring in the magnetic field.

  7. De-trapping Magnetic Mirror Confined Fast Electrons by Shear Alfvén Waves

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Gekelman, W. N.; Pribyl, P.; Papadopoulos, K.

    2013-12-01

    Highly energetic electrons produced naturally or artificially can be trapped in the Earth's radiation belts for months, posing a danger to valuable space satellites. Concepts that can lead to radiation belts mitigation have drawn a great deal of interest. We report a clear demonstration in a controlled lab experiment that a shear Alfvén wave can effectively de-trap energetic electrons confined by a magnetic mirror field. The experiment is performed in a quiescent afterglow plasma in the Large Plasma Device (LaPD) at UCLA. A hot electron ring, along with hard x-rays of energies of 100 keV ~ 3 MeV, is generated by 2nd harmonic electron cyclotron resonance heating and is trapped in a magnetic mirror field (Rmirror = 1.1 ~ 4, Bmin = 438 Gauss). A shear Alfvén wave (fAlfvén ~ 0.5 fci, BAlfvén / B0 ~ 0.1%), is launched with a rotating magnetic field antenna with arbitrary polarization. Irradiated by the Alfvén wave, the loss of electrons is modulated at fAlfvén. The periodic loss of electrons is found to be related to the spatial distortion of the hot electron ring, and continues even after the termination of the wave. The effect is found to be caused only by the right-hand (electron diamagnetic direction) circularly polarized component of the Alfvén wave. Hard x-ray tomography, constructed from more than 1000 chord projections at each axial location, shows electrons are lost in both the radial and axial direction. X-ray spectroscopy shows electrons over a broad range of energy de-trapped by the Alfvén wave, which suggests a non-resonant nature of the de-trapping process. The de-trapping process is found to be accompanied by electro-magnetic fluctuations in the frequency range of 1~5 fLH, which are also modulated at the frequency of the Alfvén wave. To exclude the possible role of whistler waves in this electron de-trapping process, whistler waves at these frequencies are launched with an antenna in absence of the Alfvén wave and no significant electron loss

  8. Crustal Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick T.; Ravat, D.; Frawley, James J.

    1999-01-01

    Cosmos 49, Polar Orbit Geophysical Observatory (POGO) (Orbiting Geophysical Observatory (OGO-2, 4 and 6)) and Magsat have been the only low-earth orbiting satellites to measure the crustal magnetic field on a global scale. These missions revealed the presence of long- wavelength (> 500 km) crustal anomalies predominantly located over continents. Ground based methods were, for the most part, unable to record these very large-scale features; no doubt due to the problems of assembling continental scale maps from numerous smaller surveys acquired over many years. Questions arose as to the source and nature of these long-wave length anomalies. As a result there was a great stimulant given to the study of the magnetic properties of the lower crust and upper mantle. Some indication as to the nature of these deep sources has been provided by the recent results from the deep crustal drilling programs. In addition, the mechanism of magnetization, induced or remanent, was largely unknown. For computational ease these anomalies were considered to result solely from induced magnetization. However, recent results from Mars Orbiter Laser Altimeter (MOLA), a magnetometer-bearing mission to Mars, have revealed crustal anomalies with dimensions similar to the largest anomalies on Earth. These Martian features could only have been produced by remanent magnetization, since Mars lacks an inducing field. The origin of long-wavelength crustal anomalies, however, has not been completely determined. Several large crustal magnetic anomalies (e.g., Bangui, Kursk, Kiruna and Central Europe) will be discussed and the role of future satellite magnetometer missions (Orsted, SUNSAT and Champ) in their interpretation evaluated.

  9. SUMMA hot-ion plasma heating research at NASA Lewis Research Center. [SUperconducting Magnetic Mirror Apparatus

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Patch, R. W.; Lauver, M. R.; Englert, G. W.; Snyder, A.

    1975-01-01

    This report describes the SUMMA superconducting magnetic mirror facility at the NASA Lewis Research Center and the hot-ion plasma research conducted therein. SUMMA is characterized by intense magnetic fields (designed for 8.6 T at the mirrors) and a large-diameter working bore (41 cm diameter) with room-temperature access. The goal of the plasma research program is to produce steady-state plasmas of fusion reactor densities and temperatures (but not confinement times). The program includes electrode development to produce a hot, dense, large-volume, steady-state plasma and diagnostics development to document the plasma properties. SUMMA and its hot-ion plasma are ideally suited to develop advanced plasma diagnostics methods. Two such methods whose requirements are well matched to SUMMA are: (1) heavy ion beam probing to measure plasma space potential, and (2) submillimeter wavelength laser Thomson scattering to measure local ion temperature. Two NASA University Grants were established to identify major requirements for developing these two diagnostic techniques in SUMMA.

  10. Magnetization dynamics using ultrashort magnetic field pulses

    NASA Astrophysics Data System (ADS)

    Tudosa, Ioan

    Very short and well shaped magnetic field pulses can be generated using ultra-relativistic electron bunches at Stanford Linear Accelerator. These fields of several Tesla with duration of several picoseconds are used to study the response of magnetic materials to a very short excitation. Precession of a magnetic moment by 90 degrees in a field of 1 Tesla takes about 10 picoseconds, so we explore the range of fast switching of the magnetization by precession. Our experiments are in a region of magnetic excitation that is not yet accessible by other methods. The current table top experiments can generate fields longer than 100 ps and with strength of 0.1 Tesla only. Two types of magnetic were used, magnetic recording media and model magnetic thin films. Information about the magnetization dynamics is extracted from the magnetic patterns generated by the magnetic field. The shape and size of these patterns are influenced by the dissipation of angular momentum involved in the switching process. The high-density recording media, both in-plane and perpendicular type, shows a pattern which indicates a high spin momentum dissipation. The perpendicular magnetic recording media was exposed to multiple magnetic field pulses. We observed an extended transition region between switched and non-switched areas indicating a stochastic switching behavior that cannot be explained by thermal fluctuations. The model films consist of very thin crystalline Fe films on GaAs. Even with these model films we see an enhanced dissipation compared to ferromagnetic resonance studies. The magnetic patterns show that damping increases with time and it is not a constant as usually assumed in the equation describing the magnetization dynamics. The simulation using the theory of spin-wave scattering explains only half of the observed damping. An important feature of this theory is that the spin dissipation is time dependent and depends on the large angle between the magnetization and the magnetic

  11. Coronal Magnetic Field Models

    NASA Astrophysics Data System (ADS)

    Wiegelmann, Thomas; Petrie, Gordon J. D.; Riley, Pete

    2015-07-01

    Coronal magnetic field models use photospheric field measurements as boundary condition to model the solar corona. We review in this paper the most common model assumptions, starting from MHD-models, magnetohydrostatics, force-free and finally potential field models. Each model in this list is somewhat less complex than the previous one and makes more restrictive assumptions by neglecting physical effects. The magnetohydrostatic approach neglects time-dependent phenomena and plasma flows, the force-free approach neglects additionally the gradient of the plasma pressure and the gravity force. This leads to the assumption of a vanishing Lorentz force and electric currents are parallel (or anti-parallel) to the magnetic field lines. Finally, the potential field approach neglects also these currents. We outline the main assumptions, benefits and limitations of these models both from a theoretical (how realistic are the models?) and a practical viewpoint (which computer resources to we need?). Finally we address the important problem of noisy and inconsistent photospheric boundary conditions and the possibility of using chromospheric and coronal observations to improve the models.

  12. The neuronal correlates of mirror therapy: A functional magnetic resonance imaging study on mirror-induced visual illusions of ankle movements.

    PubMed

    Guo, Feng; Xu, Qun; Abo Salem, Hassan M; Yao, Yihao; Lou, Jicheng; Huang, Xiaolin

    2016-05-15

    Recovery in stroke is mediated by neural plasticity. Mirror therapy is an effective method in the rehabilitation of stroke patients, but the mechanism is still obscure. To identify the neural networks associated with the effect of lower-limbs mirror therapy, we investigated a functional magnetic resonance imaging (fMRI) study of mirror-induced visual illusion of ankle movements. Five healthy controls and five left hemiplegic stroke patients performed tasks related to mirror therapy in the fMRI study. Neural activation was compared in a no-mirror condition and a mirror condition. All subjects in the experiment performed the task of flexing and extending the right ankle. In a mirror condition, movement of the left ankle was simulated by mirror reflection of right ankle movement. Changes in neural activation in response to mirror therapy were assessed both in healthy controls and stroke patients. We found strong activation of the motor cortex bilaterally in healthy controls, as well as significant activation of the ipsilateral sensorimotor cortex, the occipital gyrus, and the anterior prefrontal gyrus in stroke patients with respect to the non-mirror condition. We concluded that mirror therapy of ankle movements may induce neural activation of the ipsilesional sensorimotor cortex, and that cortical reorganization may be useful for motor rehabilitation in stroke. PMID:26972531

  13. Superhorizon magnetic fields

    NASA Astrophysics Data System (ADS)

    Campanelli, Leonardo

    2016-03-01

    We analyze the evolution of superhorizon-scale magnetic fields from the end of inflation till today. Whatever is the mechanism responsible for their generation during inflation, we find that a given magnetic mode with wave number k evolves, after inflation, according to the values of k ηe , nk , and Ωk , where ηe is the conformal time at the end of inflation, nk is the number density spectrum of inflation-produced photons, and Ωk is the phase difference between the two Bogoliubov coefficients which characterize the state of that mode at the end of inflation. For any realistic inflationary magnetogenesis scenario, we find that nk-1≪|k ηe|≪1 , and three evolutionary scenarios are possible: (i) |Ωk∓π |=O (1 ) , in which case the evolution of the magnetic spectrum Bk(η ) is adiabatic, a2Bk(η )=const , with a being the expansion parameter; (ii) |Ωk∓π |≪|k ηe| , in which case the evolution is superadiabatic, a2Bk(η )∝η ; (iii) |k ηe|≪|Ωk∓π |≪1 or |k ηe|˜|Ωk∓π |≪1 , in which case an early phase of adiabatic evolution is followed, after a time η⋆˜|Ωk∓π |/k , by a superadiabatic evolution. Once a given mode reenters the horizon, it remains frozen into the plasma and then evolves adiabatically till today. As a corollary of our results, we find that inflation-generated magnetic fields evolve adiabatically on all scales and for all times in conformal-invariant free Maxwell theory, while they evolve superadiabatically after inflation on superhorizon scales in the nonconformal-invariant Ratra model, where the inflaton is kinematically coupled to the electromagnetic field. The latter result supports and, somehow, clarifies our recent claim that the Ratra model can account for the presence of cosmic magnetic fields without suffering from both backreaction and strong-coupling problems.

  14. Magnetic Field Topology in Jets

    NASA Technical Reports Server (NTRS)

    Gardiner, T. A.; Frank, A.

    2000-01-01

    We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

  15. Low field magnetic resonance imaging

    DOEpatents

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  16. Electric and magnetic fields

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.; Etters, R. D.

    1982-01-01

    A number of energy momentum anomalies are described that result from the use of Abraham-Lorentz electromagnetic theory. These anomalies have in common the motion of charged bodies or current carrying conductors relative to the observer. The anomalies can be avoided by using the nonflow approach, based on internal energy of the electromagnetic field. The anomalies can also be avoided by using the flow approach, if all contributions to flow work are included. The general objective of this research is a fundamental physical understanding of electric and magnetic fields which, in turn, might promote the development of new concepts in electric space propulsion. The approach taken is to investigate quantum representations of these fields.

  17. Reconnection of Magnetic Fields

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Spacecraft observations of steady and nonsteady reconnection at the magnetopause are reviewed. Computer simulations of three-dimensional reconnection in the geomagnetic tail are discussed. Theoretical aspects of the energization of particles in current sheets and of the microprocesses in the diffusion region are presented. Terrella experiments in which magnetospheric reconnection is simulated at both the magnetopause and in the tail are described. The possible role of reconnection in the evolution of solar magnetic fields and solar flares is discussed. A two-dimensional magnetohydrodynamic computer simulation of turbulent reconnection is examined. Results concerning reconnection in Tokamak devices are also presented.

  18. Magnetic fields and stardust

    NASA Technical Reports Server (NTRS)

    Hildebrand, Roger H.

    1988-01-01

    The purpose of this paper is to outline the principles governing the use of far-infrared and submillimeter polarimetry to investigate magnetic fields and dust in interstellar clouds. Particular topics of discussion are the alignment of dust grains in dense clouds, the dependence on wavelength of polarization due to emission or to partial absorption by aligned grains, the nature of that dependence for mixtures of grains with different properties, and the problem of distinguishing between (1) the effects of the shapes and dielectric functions of the grains and (2) the degree and direction of their alignment.

  19. Mirror Mode Structures in the Solar Wind: STEREO Observations

    NASA Astrophysics Data System (ADS)

    Enríquez-Rivera, O.; Blanco-Cano, X.; Russell, C. T.; Jian, L. K.; Luhmann, J. G.

    2010-03-01

    Mirror mode structures occur in the solar wind either as an isolated magnetic field depression or as trains of magnetic holes (or peaks). Some trains have long durations and have been named mirror mode storms [1]. In this work we investigate mirror mode structures at 1 AU using STEREO A and B high resolution data. Magnetic field data were scanned to search for magnetic holes and peaks in a relatively steady ambient solar wind. We found several examples of mirror mode structures present in the ambient solar wind and also associated with SIRs. In order to study mirror mode origin, we present a case study with mirror mode structures present in the leading edge of a SIR during almost 8 hours corresponding to mirror mode storms. We analyze mirror mode shape and duration as well as plasma and magnetic field conditions that occur in the region surrounding mirror mode storms.

  20. The Study of Single Nb3Sn Quadrupole Coils Using a Magnetic Mirror Structure

    SciTech Connect

    Chlachidze, G.; Andreev, N.; Barzi, E.; Bossert, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, N.; Novitski, I.; Orris, D.; Tartaglia, M.

    2010-07-30

    Several 90-mm quadrupole coils made of 0.7-mm Nb{sub 3}Sn strand based on the 'Restack Rod Process' (RRP) of 108/127 design, with cored and non-cored cables and different cable insulation, were fabricated and individually tested at Fermilab using a test structure designed to provide a quadrupole magnetic field environment. The coils were instrumented with voltage taps and strain gauges to study quench performance and mechanical properties. The Nb{sub 3}Sn strand and cable parameters, the coil fabrication details, the mirror model assembly procedure and test results at temperatures of 4.5 K and 1.9 K are reported and discussed.

  1. Threefold Increase of the Bulk Electron Temperature of Plasma Discharges in a Magnetic Mirror Device

    NASA Astrophysics Data System (ADS)

    Bagryansky, P. A.; Shalashov, A. G.; Gospodchikov, E. D.; Lizunov, A. A.; Maximov, V. V.; Prikhodko, V. V.; Soldatkina, E. I.; Solomakhin, A. L.; Yakovlev, D. V.

    2015-05-01

    This Letter describes plasma discharges with a high temperature of bulk electrons in the axially symmetric high-mirror-ratio (R =35 ) open magnetic system gas dynamic trap (GDT) in the Budker Institute (Novosibirsk). According to Thomson scattering measurements, the on-axis electron temperature averaged over a number of sequential shots is 660 ±50 eV with the plasma density being 0.7 ×1 019 m-3 ; in few shots, electron temperature exceeds 900 eV. This corresponds to at least a threefold increase with respect to previous experiments both at GDT and at other comparable machines, thus, demonstrating the highest quasistationary (about 1 ms) electron temperature achieved in open traps. The breakthrough is made possible by application of a new 0.7 MW /54.5 GHz electron cyclotron resonance heating system in addition to standard 5 MW heating by neutral beams, and application of a radial electric field to mitigate the flute instability.

  2. Study of fusion product effects in field-reversed mirrors

    SciTech Connect

    Driemeyer, D.E.

    1980-01-01

    The effect of fusion products (fps) on Field-Reversed Mirror (FRM) reactor concepts has been evaluated through the development of two new computer models. The first code (MCFRM) treats fps as test particles in a fixed background plasma, which is represented as a fluid. MCFRM includes a Monte Carlo treatment of Coulomb scattering and thus provides an accurate treatment of fp behavior even at lower energies where pitch-angle scattering becomes important. The second code (FRMOD) is a steady-state, globally averaged, two-fluid (ion and electron), point model of the FRM plasma that incorporates fp heating and ash buildup values which are consistent with the MCFRM calculations. These codes have been used extensively in the development of an advanced-fuel FRM reactor design (SAFFIRE). A Catalyzed-D version of the plant is also discussed along with an investigation of the steady-state energy distribution of fps in the FRM. User guides for the two computer codes are also included.

  3. Photonic Magnetic Field Sensor

    NASA Astrophysics Data System (ADS)

    Wyntjes, Geert

    2002-02-01

    Small, in-line polarization rotators or isolators to reduce feedback in fiber optic links can be the basis for excellent magnetic field sensors. Based on the giant magneto-optical (GMO) or Faraday effect in iron garnets, they with a magnetic field of a few hundred Gauss, (20 mT) for an interaction length for an optical beam of a few millimeters achieve a polarization rotation or phase shift of 45 deg (1/8 cycle). When powered by a small laser diode, with the induced linear phase shift recovered at the shot noise limit, we have demonstrated sensitivities at the 3.3 nT/Hz1/2 level for frequencies from less than 1 Hz to frequencies into the high kHz range. Through further improvements; an increase in interaction length, better materials and by far the greatest factor, the addition of a flux concentrator, sensitivities at the pT/Hz1/2 level appear to be within reach. We will detail such a design and discuss the issues that may limit achieving these goals.

  4. Polar Magnetic Field Experiment

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1999-01-01

    This grant covers the initial data reduction and analysis of the magnetic field measurements of the Polar spacecraft. At this writing data for the first three years of the mission have been processed and deposited in the key parameter database. These data are also available in a variety of time resolutions and coordinate systems via a webserver at UCLA that provides both plots and digital data. The flight software has twice been reprogrammed: once to remove a glitch in the data where there were rare collisions between commands in the central processing unit and once to provide burst mode data at 100 samples per second on a regular basis. The instrument continues to function as described in the instrument paper (1.1 in the bibliography attached below). The early observations were compared with observations on the same field lines at lower altitude. The polar magnetic measurements also proved to be most useful for testing the accuracy of MHD models. WE also made important contributions to study of waves and turbulence.

  5. Update to an application using magnetic smart materials to modify the shape of an x-ray telescope mirror

    NASA Astrophysics Data System (ADS)

    Ulmer, Melville P.; Wang, Xiaoli; Cao, Jian; Graham, Michael E.; Vaynman, Semyon

    2013-09-01

    We describe a technique of shape modification that can be applied to thin walled (˜100-400 μm thickness) electroformed replicated optics or glass optics to improve the near net shape of the mirror as well as the midfrequency (˜2-10 mm length scales) ripple. The process involves sputter deposition of a magnetic smart material (MSM) film onto a magnetically hard material (i.e., one that retains a magnetic field, e.g., the material in hard disk drives). Since the previous report, we have made extensive measurements of the deflection versus magnetic field strength and direction. Here we report those results along with detailed finite element analysis modeling.

  6. Properties and parameters of the electron beam injected into the mirror magnetic trap of a plasma accelerator

    NASA Astrophysics Data System (ADS)

    Andreev, V. V.; Novitsky, A. A.; Vinnichenko, L. A.; Umnov, A. M.; Ndong, D. O.

    2016-03-01

    The parameters of the injector of an axial plasma beam injected into a plasma accelerator operating on the basis of gyroresonance acceleration of electrons in the reverse magnetic field are determined. The trapping of the beam electrons into the regime of gyroresonance acceleration is numerically simulated by the particle- in-cell method. The optimal time of axial injection of the beam into a magnetic mirror trap is determined. The beam parameters satisfying the condition of efficient particle trapping into the gyromagnetic autoresonance regime are found.

  7. Magnetic Fields: Visible and Permanent.

    ERIC Educational Resources Information Center

    Winkeljohn, Dorothy R.; Earl, Robert D.

    1983-01-01

    Children will be able to see the concept of a magnetic field translated into a visible reality using the simple method outlined. Standard shelf paper, magnets, iron filings, and paint in a spray can are used to prepare a permanent and well-detailed picture of the magnetic field. (Author/JN)

  8. Performance of a two mirror, four reflection, ring field imaging system

    SciTech Connect

    Sommargren, G.E.

    1995-01-25

    The surface figure of the individual mirrors of a two mirror, four reflection, ring field imaging system has been measured after each phase of the construction process: substrate fabrication, coating and potting. Contributions to the final system wavefront error and performance of the system in terms of the modulation transfer function and initial imaging tests are discussed.

  9. Cross-field plasma injection into mirror geometry

    NASA Astrophysics Data System (ADS)

    Uzun-Kaymak, I. U.; Messer, S.; Bomgardner, R.; Case, A.; Clary, R.; Ellis, R.; Elton, R.; Teodorescu, C.; Witherspoon, F. D.; Young, W.

    2009-09-01

    The Maryland Centrifugal Experiment (MCX) and HyperV Technologies Corp. are collaborating on a series of experiments to test the use of a plasma gun to inject mass and momentum into a magnetic-confinement device. HyperV has designed, built and installed a prototype coaxial gun to drive rotation in MCX. The gun has been designed to avoid the blow-by instability via a combination of electrode shaping and a tailored plasma armature. Preliminary measurements at HyperV indicate the gun generates plasma jets with a mass of 160 µg, velocities up to 90 km s-1 and plasma density in the high 1014 cm-3. This paper emphasizes characteristics of the plasma gun and penetration of the plasma jet through the MCX magnetic field. Plans for future injection experiments are briefly discussed.

  10. Production of muons for fusion catalysis in a magnetic mirror configuration

    SciTech Connect

    Moir, R.W.; Chapline, G.F. Jr.

    1986-06-25

    One possible near term application of a muon-producing magnetic-mirror scheme would be to build a high-flux neutron source for radiation damage studies. The careful arrangement of triton orbits will result in many of the ..pi../sup -/s being produced near the axis of the magnetic mirror. The pions quickly decay into muons, which are transported into a small (few-cm-diameter) reactor chamber producing approximately 1-MW/m/sup 2/ neutron flux on the chamber walls, using a laboratory accelerator and magnetic mirror. The costs of construction and operation of the triton injection accelerator probably introduces most of the uncertainty in the viability of this scheme. If a 10-..mu..A, 600 MeV neutral triton accelerator could be built for less than $100 million and operated cheaply enough, one might well bring muon-catalyzed fusion into practical use.

  11. Observations of galactic magnetic fields

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    Magnetic fields are enchored in gas clouds. Field lines are tangled in spiral arms, but highly regular between the arms. The similarity of pitch angles between gaseous and magnetic arms suggests a coupling between the density wave and the magnetic wave. Observations of large-scale patterns in Faraday rotation favour a dynamo origin of the regular fields. Fields in barred galaxies do not reveal the strong shearing shocks observed in the cold gas, but swing smoothly from the upstream region into the bar. Magnetic fields are important for the dynamcis of gas clouds, for the formation of spiral structures, bars and halos, and for mass and angular momentum transport in central regions.

  12. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  13. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  14. Martian external magnetic field proxies

    NASA Astrophysics Data System (ADS)

    Langlais, Benoit; Civet, Francois

    2015-04-01

    Mars possesses no dynamic magnetic field of internal origin as it is the case for the Earth or for Mercury. Instead Mars is characterized by an intense and localized magnetic field of crustal origin. This field is the result of past magnetization and demagnetization processes, and reflects its evolution. The Interplanetary Magnetic Field (IMF) interacts with Mars' ionized environment to create an external magnetic field. This external field is weak compared to lithospheric one but very dynamic, and may hamper the detailed analysis of the internal magnetic field at some places or times. Because there are currently no magnetic field measurements made at Mars' surface, it is not possible to directly monitor the external field temporal variability as it is done in Earth's ground magnetic observatories. In this study we examine to indirect ways of quantifying this external field. First we use the Advanced Composition Explorer (ACE) mission which measures the solar wind about one hour upstream of the bow-shock resulting from the interaction between the solar wind and the Earth's internal magnetic field. These measurements are extrapolated to Mars' position taking into account the orbital configurations of the Mars-Earth system and the velocity of particles carrying the IMF. Second we directly use Mars Global Surveyor magnetic field measurements to quantify the level of variability of the external field. We subtract from the measurements the internal field which is otherwise modeled, and bin the residuals first on a spatial and then on a temporal mesh. This allows to compute daily or semi daily index. We present a comparison of these two proxies and demonstrate their complementarity. We also illustrate our analysis by comparing our Martian external field proxies to terrestrial index at epochs of known strong activity. These proxies will especially be useful for upcoming magnetic field measurements made around or at the surface of Mars.

  15. The moving-ring field-reversed mirror prototype reactor

    NASA Astrophysics Data System (ADS)

    Smith, A. C., Jr.; Carlson, G. A.; Fleischmann, H. H.; Grossman, W., Jr.; Kammash, T.; Schultz, K. R.; Woodall, D. M.

    1981-03-01

    A prototype fusion reactor was designed based on magnetic field reversed plasma confinement. A set of physics, technology, and mechanical design criteria were developed in order to make this concept attractive. Six major criteria guide the commercial prototype design. The prototype must: (1) produce net electricity decisively P sub net 70% of P sub gross; (2) scale to an economical commercial plant and have small physical size; (3) have all features required of a correcial upgrade plant (H-3 breeding, etc.); (4) minimize exotic technology and maintenance complexity; (5) promise significantly lower safety hazards than fission plants (environmentally and socially acceptable); and (6) be modular in design to permit repetitive production of components.

  16. A remarkable focusing property of a parabolic mirror for neutrons in the gravitational field: Geometric proof

    NASA Astrophysics Data System (ADS)

    Masalovich, S.

    2014-11-01

    An extraordinary focusing property of a parabolic mirror for ultracold neutrons in the presence of the gravitational field was first reported by Steyerl and co-authors. It was shown that all neutrons emitted from the focus of the mirror will be reflected back upon the same focus passing a point of return in the gravitational field in between. The present note offers a complementary geometric proof of this feature and discusses its application to many-mirror systems. The results can also be applied to electrons and ions in an electric field.

  17. Cyclical magnetic field flow fractionation

    NASA Astrophysics Data System (ADS)

    Tasci, T. O.; Johnson, W. P.; Gale, B. K.

    2012-04-01

    In this study, a new magnetic field flow fractionation (FFF) system was designed and modeled by using finite element simulations. Other than current magnetic FFF systems, which use static magnetic fields, our system uses cyclical magnetic fields. Results of the simulations show that our cyclical magnetic FFF system can be used effectively for the separation of magnetic nanoparticles. Cyclical magnetic FFF system is composed of a microfluidic channel (length = 5 cm, height = 30 μm) and 2 coils. Square wave currents of 1 Hz (with 90 deg of phase difference) were applied to the coils. By using Comsol Multiphysics 3.5a, magnetic field profile and corresponding magnetic force exerted on the magnetite nanoparticles were calculated. The magnetic force data were exported from Comsol to Matlab. In Matlab, a parabolic flow profile with maximum flow speed of 0.4 mL/h was defined. Particle trajectories were obtained by the calculation of the particle speeds resulted from both magnetic and hydrodynamic forces. Particle trajectories of the particles with sizes ranging from 10 to 50 nm were simulated and elution times of the particles were calculated. Results show that there is a significant difference between the elution times of the particles so that baseline separation of the particles can be obtained. In this work, it is shown that by the application of cyclical magnetic fields, the separation of magnetic nanoparticles can be done efficiently.

  18. Exposure guidelines for magnetic fields.

    PubMed

    Miller, G

    1987-12-01

    The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields. PMID:3434538

  19. Exposure guidelines for magnetic fields

    SciTech Connect

    Miller, G.

    1987-12-01

    The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields.

  20. [Magnetic fields and fish behavior].

    PubMed

    Krylov, V V; Iziumov, Iu G; Izvekov, E I; Nepomniashchikh, V A

    2013-01-01

    In the review, contemporary data on the influence of natural and artificial magnetic fields on fish behavior are considered. In this regard, elasmobranchs and teleosts appear to be studied most exhaustively. Elasmobranchs and some teleosts are able to perceive magnetic fields via electroreceptors. A number of teleosts can sense magnetic fields via sensory cells containing crystals of biogenic magnetite. Laboratory experiments and field observations indicate the influence of magnetic fields on fish locomotor activity and spatial distribution. The geomagnetic field can be used by fish for navigation. Besides, artificial magnetic fields and natural fluctuations of the geomagnetic field can affect fish embryos leading to alterations in their development. It is suggested that, afterwards, these alterations can have an effect on fish behavior. PMID:25438567

  1. [Magnetic fields and fish behavior].

    PubMed

    2013-01-01

    In the review, contemporary data on the influence of natural and artificial magnetic fields on fish behavior are considered. In this regard, elasmobranchs and teleosts appear to be studied most exhaustively. Elasmobranchs and some teleosts are able to perceive magnetic fields via electroreceptors. A number of teleosts can sense magnetic fields via sensory cells containing crystals of biogenic magnetite. Laboratory experiments and field observations indicate the influence of magnetic fields on fish locomotor activity and spatial distribution. The geomagnetic field can be used by fish for navigation. Besides, artificial magnetic fields and natural fluctuations of the geomagnetic field can affect fish embryos leading to alterations in their development. It is suggested that, afterwards, these alterations can have an effect on fish behavior. PMID:25508098

  2. Magnetic-field-dosimetry system

    DOEpatents

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1981-01-21

    A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

  3. Alignment of four-mirror wide field corrector for the Hobby-Eberly Telescope

    NASA Astrophysics Data System (ADS)

    Oh, Chang Jin; Frater, Eric H.; Coyle, Laura; Dubin, Matt; Lowman, Andrew; Zhao, Chunyu; Burge, James H.

    2013-09-01

    The Hobby-Eberly Telescope (HET) Wide Field Corrector (WFC) is a four-mirror optical system which corrects for aberrations from the 10-m segmented spherical primary mirror. The WFC mirror alignments must meet particularly tight tolerances for the system to meet performance requirements. The system uses 1-m class highly aspheric mirrors, which precludes conventional alignment methods. For the WFC system alignment a "center reference fixture" has been used as the reference for each mirror's vertex and optical axis. The center reference fixtures have both a CGH and sphere mounted retroreflector (SMR) nests. The CGH is aligned to the mirror's optical axis to provide a reference for mirror decenter and tilt. The vertex of each mirror is registered to the SMR nests on the center reference fixtures using a laser tracker. The spacing between the mirror vertices is measured during the system alignment using these SMR nest locations to determine the vertex locations. In this paper we present the procedures and results from creating and characterizing these center reference fixtures. As a verification of our alignment methods we also present results from their application in the WFC system alignment are also presented.

  4. Magnetic fields in nearby spirals

    NASA Astrophysics Data System (ADS)

    Sun, Xiaohui; Lenc, Emil

    2013-10-01

    Magnetic fields play an important role in star formation process and dynamic evolution of galaxies. Previous studies of magnetic fields relied on narrow band polarisation observations and difficult to disentangle magnetised structures along line of sight. Thanks to the broad bandwidth and multi-channels of CABB we are now able to recover the 3D structures of magnetic fields using RM synthesis and QU-fitting. We propose to observe two nearby spirals M83 and NGC 4945 to build clear pictures of their magnetic fields.

  5. A reduced set of gyrofluid equations for plasma flow in a diverging magnetic field

    NASA Astrophysics Data System (ADS)

    Robertson, Scott

    2016-04-01

    Plasmas are often generated in a small diameter source with a strong magnetic field and subsequently flow into a region with greater diameter and smaller field. The magnetic mirror force that accelerates plasma in a diverging magnetic field appears in the gyrofluid equations developed for applications to toroidal devices, but this force is often absent from fluid equations. A set of gyrofluid equations with reduced complexity is developed in which drifts are assumed negligible and the mirror force is retained. The Chew-Goldberger-Low equations of state are used for a simple closure. These reduced gyrofluid equations are applied to plasma equilibrium in a magnetic mirror, to acceleration of plasma in a magnetic nozzle, and to space charge neutralization of an ion beam by electrons in a diverging magnetic field. The results from gyrofluid theory are compared with results from drift kinetic theory to find the accuracy of the gyrofluid approximation in these applications.

  6. Vestibular stimulation by magnetic fields

    PubMed Central

    Ward, Bryan K.; Roberts, Dale C.; Della Santina, Charles C.; Carey, John P.; Zee, David S.

    2015-01-01

    Individuals working next to strong static magnetic fields occasionally report disorientation and vertigo. With the increasing strength of magnetic fields used for magnetic resonance imaging (MRI) studies, these reports have become more common. It was recently learned that humans, mice and zebrafish all demonstrate behaviors consistent with constant peripheral vestibular stimulation while inside a strong, static magnetic field. The proposed mechanism for this effect involves a Lorentz force resulting from the interaction of a strong static magnetic field with naturally occurring ionic currents flowing through the inner ear endolymph into vestibular hair cells. The resulting force within the endolymph is strong enough to displace the lateral semicircular canal cupula, inducing vertigo and the horizontal nystagmus seen in normal mice and in humans. This review explores the evidence for interactions of magnetic fields with the vestibular system. PMID:25735662

  7. Magnetic fields around evolved stars

    NASA Astrophysics Data System (ADS)

    Leal-Ferreira, M.; Vlemmings, W.; Kemball, A.; Amiri, N.; Maercker, M.; Ramstedt, S.; Olofsson, G.

    2014-04-01

    A number of mechanisms, such as magnetic fields, (binary) companions and circumstellar disks have been suggested to be the cause of non-spherical PNe and in particular collimated outflows. This work investigates one of these mechanisms: the magnetic fields. While MHD simulations show that the fields can indeed be important, few observations of magnetic fields have been done so far. We used the VLBA to observe five evolved stars, with the goal of detecting the magnetic field by means of water maser polarization. The sample consists in four AGB stars (IK Tau, RT Vir, IRC+60370 and AP Lyn) and one pPN (OH231.8+4.2). In four of the five sources, several strong maser features were detected allowing us to measure the linear and/or circular polarization. Based on the circular polarization detections, we infer the strength of the component of the field along the line of sight to be between ~30 mG and ~330 mG in the water maser regions of these four sources. When extrapolated to the surface of the stars, the magnetic field strength would be between a few hundred mG and a few Gauss when assuming a toroidal field geometry and higher when assuming more complex magnetic fields. We conclude that the magnetic energy we derived in the water maser regions is higher than the thermal and kinetic energy, leading to the conclusion that, indeed, magnetic fields probably play an important role in shaping Planetary Nebulae.

  8. Hybridized plasmon modes and near-field enhancement of metallic nanoparticle-dimer on a mirror.

    PubMed

    Huang, Yu; Ma, Lingwei; Hou, Mengjing; Li, Jianghao; Xie, Zheng; Zhang, Zhengjun

    2016-01-01

    For the attractive plasmonic structure consisting of metal nanoparticles (NPs) on a mirror, the coexistence of near-field NP-NP and NP-mirror couplings is numerically studied at normal incidence. By mapping their 3D surface charge distributions directly, we have demonstrated two different kinds of mirror-induced bonding dipole plasmon modes and confirmed the bonding hybridizations of the mirror and the NP-dimer which may offer a much stronger near-field enhancement than that of the isolated NP dimers over a broad wavelength range. Further, it is revealed that the huge near-field enhancement of these two modes exhibit different dependence on the NP-NP and NP-mirror hot spots, while both of their near-field resonance wavelengths can be tuned to the blue exponentially by increasing the NP-NP gaps or the NP-mirror separation. Our results here benifit significantly the fundamental understanding and practical applications of metallic NPs on a mirror in plasmonics. PMID:27418039

  9. Hybridized plasmon modes and near-field enhancement of metallic nanoparticle-dimer on a mirror

    PubMed Central

    Huang, Yu; Ma, Lingwei; Hou, Mengjing; Li, Jianghao; Xie, Zheng; Zhang, Zhengjun

    2016-01-01

    For the attractive plasmonic structure consisting of metal nanoparticles (NPs) on a mirror, the coexistence of near-field NP-NP and NP-mirror couplings is numerically studied at normal incidence. By mapping their 3D surface charge distributions directly, we have demonstrated two different kinds of mirror-induced bonding dipole plasmon modes and confirmed the bonding hybridizations of the mirror and the NP-dimer which may offer a much stronger near-field enhancement than that of the isolated NP dimers over a broad wavelength range. Further, it is revealed that the huge near-field enhancement of these two modes exhibit different dependence on the NP-NP and NP-mirror hot spots, while both of their near-field resonance wavelengths can be tuned to the blue exponentially by increasing the NP-NP gaps or the NP-mirror separation. Our results here benifit significantly the fundamental understanding and practical applications of metallic NPs on a mirror in plasmonics. PMID:27418039

  10. Effect of anode-cathode geometry on performance of the HIP-1 hot ion plasma. [magnetic mirrors

    NASA Technical Reports Server (NTRS)

    Lauver, M. R.

    1978-01-01

    Hot-ion hydrogen plasma experiments were conducted in the NASA Lewis HIP-1 magnetic mirror facility to determine how the ion temperature was influenced by the axial position of the cathode tips relative to the anodes. A steady-state EXB plasma was formed by applying a strong radially inward dc electric field near the throats of the magnetic mirrors. The dc electric field was created between hollow cathode rods inside hollow anode cylinders, both concentric with the magnetic axis. The highest ion temperatures, 900 eV, were attained when the tip of each cathode was in the same plane as the end of its anode. These temperatures were reached with 22 kV applied to the electrodes in a field of 1.1 tesla. Scaling relations were empirically determined for ion temperature and the product of ion density and neutral particle density as a function of cathode voltage, discharge current, and electrode positions. Plasma discharge current vs voltage (I-V) characteristics were determined.

  11. Steady, Collisionless Plasma Flow Along a Magnetic Field.

    NASA Astrophysics Data System (ADS)

    Bissell, R. C.

    Available from UMI in association with The British Library. Requires signed TDF. This thesis describes the mathematical modelling of a one dimensional, steady-state, collisionless plasma in a varying magnetic field. The plasma is enclosed, over a finite volume, between two electrically insulated walls. It originates from an extended source, where the magnetic field is constant, and then enters a simple magnetic mirror where there is no source. Initially, the magnetic field is assumed to be constant everywhere. A cold-ion (L. Tonks and I. Langmuir, Phys. Rev., 34 876 (1929)) and a warm-ion, "non-Maxwellian", kinetic theory model (G. A. Emmert et al, Phys. Fluids, 23 803 (1980)) are described. A kinetic model with a 'Maxwellian' source is formulated and solved. The results differ from those found by Emmert et al; in particular, the boundary electric field is infinite, in contrast to Emmert's finding. It is then compared with a warm-ion fluid model (E. Zawaideh, F. Najmabadi and R. W. Conn, Phys. Fluids, 29 463 (1986)). The plasma density and ion-fluid speed results are in reasonable agreement, but large differences occur in the ion temperature and ion-heat flux because of the inaccuracy of the fluid model's closure condition. The magnetic mirror is then incorporated, and a comparatively simple kinetic theory model of the whole system is developed. It extends the work of Bailey and Emmert (Nuc. Fusion, 24 1439 (1984)) by including an extended source region and trapped ions. The major conclusions are that a shock occurs downstream of the mirror throat and that a radial electric field will occur in any real magnetic mirror system, causing an E times B drift.

  12. The hybrid reactor project based on the straight field line mirror concept

    NASA Astrophysics Data System (ADS)

    Ågren, O.; Noack, K.; Moiseenko, V. E.; Hagnestâl, A.; Källne, J.; Anglart, H.

    2012-06-01

    The straight field line mirror (SFLM) concept is aiming towards a steady-state compact fusion neutron source. Besides the possibility for steady state operation for a year or more, the geometry is chosen to avoid high loads on materials and plasma facing components. A comparatively small fusion hybrid device with "semi-poor" plasma confinement (with a low fusion Q factor) may be developed for industrial transmutation and energy production from spent nuclear fuel. This opportunity arises from a large fission to fusion energy multiplication ratio, Qr = Pfis/Pfus>>1. The upper bound on Qr is primarily determined by geometry and reactor safety. For the SFLM, the upper bound is Qr≈150, corresponding to a neutron multiplicity of keff=0.97. Power production in a mirror hybrid is predicted for a substantially lower electron temperature than the requirement Te≈10 keV for a fusion reactor. Power production in the SFLM seems possible with Q≈0.15, which is 10 times lower than typically anticipated for hybrids (and 100 times smaller than required for a fusion reactor). This relaxes plasma confinement demands, and broadens the range for use of plasmas with supra-thermal ions in hybrid reactors. The SFLM concept is based on a mirror machine stabilized by qudrupolar magnetic fields and large expander tanks beyond the confinement region. The purpose of the expander tanks is to distribute axial plasma loss flow over a sufficiently large area so that the receiving plates can withstand the heat. Plasma stability is not relying on a plasma flow into the expander regions. With a suppressed plasma flow into the expander tanks, a possibility arise for higher electron temperature. A brief presentation will be given on basic theory for the SFLM with plasma stability and electron temperature issues, RF heating computations with sloshing ion formation, neutron transport computations with reactor safety margins and material load estimates, magnetic coil designs as well as a discussion on

  13. Production of muons for fusion catalysis in a magnetic mirror configuration. Revision 1

    SciTech Connect

    Moir, R.W.; Chapline, G.F. Jr.

    1986-07-25

    For muon-catalyzed fusion to be of practical interest, a very efficient means of producing muons must be found. We describe a scheme for producing muons that may be more energy efficient than any heretofore proposed. There are, in particular, some potential advantages of creating muons from collisions of high energy tritons confined in a magnetic mirror configuration. If one could catalyze 200 fusions per muon and employ a uranium blanket that would multiply the neutron energy by a factor of 10, one might produce electricity with an overall plant efficiency (ratio of electric energy produced to nuclear energy released) approaching 30%. One possible near term application of a muon-producing magnetic-mirror scheme would be to build a high-flux neutron source for radiation damage studies. The careful arrangement of triton orbits will result in many of the ..pi../sup -/'s being produced near the axis of the magnetic mirror. The pions quickly decay into muons, which are transported into a small (few-cm-diameter) reactor chamber producing approximately 1-MW/m/sup 2/ neutron flux on the chamber walls, using a laboratory accelerator and magnetic mirror. The costs of construction and operation of the triton injection accelerator probably introduces most of the uncertainty in the viability of this scheme. If a 10-..mu..A, 600 MeV neutral triton accelerator could be built for less than $100 million and operated cheaply enough, one might well bring muon-catalyzed fusion into practical use.

  14. The Capacitive Magnetic Field Sensor

    NASA Astrophysics Data System (ADS)

    Zyatkov, D. O.; Yurchenko, A. V.; Balashov, V. B.; Yurchenko, V. I.

    2016-01-01

    The results of a study of sensitive element magnetic field sensor are represented in this paper. The sensor is based on the change of the capacitance with an active dielectric (ferrofluid) due to the magnitude of magnetic field. To prepare the ferrofluid magnetic particles are used, which have a followingdispersion equal to 50 < Ø < 56, 45 < Ø < 50, 40 < Ø < 45 and Ø < 40micron of nanocrystalline alloy of brand 5BDSR. The dependence of the sensitivity of the capacitive element from the ferrofluid with different dispersion of magnetic particles is considered. The threshold of sensitivity and sensitivity of a measuring cell with ferrofluid by a magnetic field was determined. The experimental graphs of capacitance change of the magnitude of magnetic field are presented.

  15. Origin of cosmic magnetic fields.

    PubMed

    Campanelli, Leonardo

    2013-08-01

    We calculate, in the free Maxwell theory, the renormalized quantum vacuum expectation value of the two-point magnetic correlation function in de Sitter inflation. We find that quantum magnetic fluctuations remain constant during inflation instead of being washed out adiabatically, as usually assumed in the literature. The quantum-to-classical transition of super-Hubble magnetic modes during inflation allow us to treat the magnetic field classically after reheating, when it is coupled to the primeval plasma. The actual magnetic field is scale independent and has an intensity of few×10(-12)  G if the energy scale of inflation is few×10(16)  GeV. Such a field accounts for galactic and galaxy cluster magnetic fields. PMID:23971556

  16. Measurements of magnetic field alignment

    SciTech Connect

    Kuchnir, M.; Schmidt, E.E.

    1987-11-06

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs.

  17. Terahertz Magnetic Mirror Realized with Dielectric Resonator Antennas.

    PubMed

    Headland, Daniel; Nirantar, Shruti; Withayachumnankul, Withawat; Gutruf, Philipp; Abbott, Derek; Bhaskaran, Madhu; Fumeaux, Christophe; Sriram, Sharath

    2015-11-25

    Single-crystal silicon is bonded to a metal-coated substrate and etched in order to form an array of microcylinder passive terahertz dielectric resonator antennas (DRAs). The DRAs exhibit a magnetic response, and hence the array behaves as an efficient artificial magnetic conductor (AMC), with potential for terahertz antenna and sensing applications. PMID:26450363

  18. Magnetic fields in young galaxies

    NASA Astrophysics Data System (ADS)

    Nordlund, Åke; Rögnvaldsson, Örnólfur

    We have studied the fate of initial magnetic fields in the hot halo gas out of which the visible parts of galaxies form, using three-dimensional numerical MHD-experiments. The halo gas undergoes compression by several orders of magnitude in the subsonic cooling flow that forms the cold disk. The magnetic field is carried along and is amplified considerably in the process, reaching μG levels for reasonable values of the initial ratio of magnetic to thermal energy density.

  19. The MAVEN Magnetic Field Investigation

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2014-01-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight.

  20. The MAVEN Magnetic Field Investigation

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2015-12-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a resolution of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05 %. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers—multiple rotations about the spacecraft x and z axes—to characterize spacecraft fields and/or instrument offsets in flight.

  1. Application of power-factor correction in the Tandem Mirror Experiment Upgrade magnet power supply

    SciTech Connect

    Corvin, W.C.

    1981-08-14

    The magnet power supply for the Tandem Mirror Experiment Upgrade (TMX Upgrade) contains 24 groups of dc rectifiers that feed the water-cooled magnets. Each group consists of five or less rectifiers, connected in series. All 24 are current-regulating, using phase-controlled bilateral thyristors in the rectifier transformer primaries. The electric utility system must furnish reactive power to these phase-controlled thyristors as well as to the cmmutating diodes in the rectifier bridges.

  2. Cosmic Magnetic Fields - An Overview

    NASA Astrophysics Data System (ADS)

    Wielebinski, Richard; Beck, Rainer

    Magnetic fields have been known in antiquity. Aristotle attributes the first of what could be called a scientific discussion on magnetism to Thales, who lived from about 625 BC. In China “magnetic carts” were in use to help the Emperor in his journeys of inspection. Plinius comments that in the Asia Minor province of Magnesia shepherds' staffs get at times “glued” to a stone, a alodestone. In Europe the magnetic compass came through the Arab sailors who met the Portuguese explorers. The first scientific treatise on magnetism, “De Magnete”, was published by William Gilbert who in 1600 described his experiments and suggested that the Earth was a huge magnet. Johannes Kepler was a correspondent of Gilbert and at times suggested that planetary motion was due to magnetic forces. Alas, this concept was demolished by Isaac Newton,who seeing the falling apple decided that gravity was enough. This concept of dealing with gravitational forces only remains en vogue even today. The explanations why magnetic effects must be neglected go from “magnetic energy is only 1% of gravitation” to “magnetic fields only complicate the beautiful computer solutions”. What is disregarded is the fact that magnetic effects are very directional(not omni-directional as gravity) and also the fact that magnetic fields are seen every where in our cosmic universe.

  3. Ion pump using cylindrically symmetric spindle magnetic field

    NASA Astrophysics Data System (ADS)

    Rashid, M. H.

    2012-11-01

    For all accelerators and many research and industries, excellent vacuum conditions are required and the highest possible pumping rates are necessary. For most applications the standard ion sputtering pump (ISP) meets these requirements and is optimal for financial point of view also. The physical principle of the ISP is well known and many companies manufacture variety of ISP. Most of them use dipole magnetic field produced by permanent magnet and electric dipole field between the electrodes in which tenuous plasma is created because of interaction of between the relatively fast electrons slow residual gas atoms. Performance of an ISP depends basically on the electron cloud density in between the titanium electrodes but in the available present configurations no consideration has been given to electron confinement which needs a mirror magnetic field. If this is incorporated it will make a robust ISP surely; furthermore, the requirement of constant feeding of high voltage to electrodes for supplying sufficient number of electrons will be reduced too. A study has been performed to create sufficient rotationally symmetric spindle magnetic field (SMF) with inherent presence of magnetic mirror effect to electron motion to confine them for longer time for enhancing the density of electron cloud between the electrodes. It will lessen the electric power feeding the electrodes and lengthen their life-time. Construction of further compact and robust ISP is envisaged herein. The field simulation using the commercially available permanent magnet together with simulation of electron motion in such field will be presented and discussed in the paper.

  4. A dual-axis pointing mirror with moving-magnet actuation

    NASA Astrophysics Data System (ADS)

    Ataman, Çağlar; Lani, Sébastien; Noell, Wilfried; de Rooij, Nico

    2013-02-01

    A large-aperture and large-angle MEMS-based 2D pointing mirror is presented. The device is electromagnetically actuated by a moving-magnet/stationary-coil pair and potentially suited for high power laser beam shaping and beam pointing applications, such as LIDAR. The 4×4 mm2 mirror, the radially symmetric compliant membrane, and the off-the-shelf permanent magnet are manually assembled, with the planar coil kept at a well-defined vertical distance from the permanent magnet by simple alignment pins. The mirror and the compliant membrane structures are separately microfabricated on bulk silicon and SOI wafers, respectively. The hybrid integration of microfabricated and off-the-shelf components enable low-risk/high-yield fabrication, while limiting the throughput. The device features minimum inter-axis cross coupling and good linearity and is highly immune to alignment and assembly imperfections, thanks to the robust actuation principle. All the components including the bi-axial electromagnetic actuator provide a device footprint as small as the top mirror, allowing the design to be used in compact and high-fill-factor mirror arrays. With a drive coil of 400 mA and 5.12 W drive power, the total uniaxial dc rotation exceeds ±16° (optical) for both axes with good decoupling. At maximum measured angle (biaxial 10° (mechanical)), a position stability better than 0.05° over 7 h, and a position repeatability of 0.04° over 5000 switching cycles is reported. Thermally, the simulated mirror temperature increases to 64 K above the heat sink temperature with a thermal in-flux of 1 kW m-2, under absolute vacuum.

  5. Magnetic field synthesis for microwave magnetics

    NASA Astrophysics Data System (ADS)

    Morgenthaler, F. R.

    1982-04-01

    The Microwave and Quantum Magnetics Group of the M.I.T. Department of Electrical Engineering and Computer Science undertook a two-year research program directed at developing synthesis procedures that allow magnetostatic and/or magnetoelastic modes to be specially tailored for microwave signal processing applications that include magnetically tunable filters and limiters as well as delay lines that are either linearly dispersive or nondispersive over prescribed bandwidths. Special emphasis was given to devices employing thin films of yttrium iron garnet (YIG) that are blessed with spatially nonuniform dc magnetic fields.

  6. Magnetic field structure evolution in rotating magnetic field plasmas

    SciTech Connect

    Petrov, Yuri; Yang Xiaokang; Huang, T.-S.

    2008-07-15

    A study of magnetic field structure evolution during 40-ms plasma discharge has been performed in a new device with 80 cm long/40 cm diameter cylindrical chamber, in which a plasma current I{sub p}{approx_equal}2 kA was driven and sustained by a rotating magnetic field. The main focus of the experiments is on how the changes in externally applied magnetic field affect the current profile and magnetic field in plasma. During plasma discharge, a pulse current was briefly fed to a magnetic coil located at the midplane (middle coil). The magnetic field in cross section of plasma was scanned with pickup probes. Two regimes were studied: without and with an external toroidal field (TF) produced by axial I{sub z} current. With a relatively small current (I{sub m} {<=} 600 A) in the middle coil, the plasma current is boosted up to 5 kA. The magnetic flux surfaces become extended along the axial Z direction, sometimes with the formation of doublet shape plasma. The regime without TF appears to be less stable, presumably due to the reversal of plasma current in central area of plasma column.

  7. Elliptical magnetic mirror generated via resistivity gradients for fast ignition inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Robinson, A. P. L.; Schmitz, H.

    2013-06-01

    The elliptical magnetic mirror scheme for guiding fast electrons for Fast Ignition proposed by Schmitz et al. (Plasma Phys. Controlled Fusion 54, 085016 (2012)) is studied for conditions on the multi-kJ scale which are much closer to full-scale Fast Ignition. When scaled up, the elliptical mirror scheme is still highly beneficial to Fast Ignition. An increase in the coupling efficiency by a factor of 3-4 is found over a wide range of fast electron divergence half-angles.

  8. Elliptical magnetic mirror generated via resistivity gradients for fast ignition inertial confinement fusion

    SciTech Connect

    Robinson, A. P. L.; Schmitz, H.

    2013-06-15

    The elliptical magnetic mirror scheme for guiding fast electrons for Fast Ignition proposed by Schmitz et al. (Plasma Phys. Controlled Fusion 54, 085016 (2012)) is studied for conditions on the multi-kJ scale which are much closer to full-scale Fast Ignition. When scaled up, the elliptical mirror scheme is still highly beneficial to Fast Ignition. An increase in the coupling efficiency by a factor of 3–4 is found over a wide range of fast electron divergence half-angles.

  9. Development of achromatic full-field hard x-ray microscopy with two monolithic imaging mirrors

    NASA Astrophysics Data System (ADS)

    Matsuyama, S.; Kino, H.; Yasuda, S.; Kohmura, Y.; Okada, H.; Ishikawa, T.; Yamauchi, K.

    2015-09-01

    Advanced Kirkpatrick-Baez mirror optics using two monolithic imaging mirrors was developed to realize an achromatic, high-resolution, and a high-stability full-field X-ray microscope. The mirror consists of an elliptical section and a hyperbolic section on a quartz glass substrate, in which the geometry follows the Wolter (type I) optics rules. A preliminary test was performed at SPring-8 using X-rays monochromatized to 9.881 keV. A 100-nm feature on a Siemens star chart could be clearly observed.

  10. Thermal magnetic fluctuations and anomalous electron diffusion in a mirror-confined plasma

    SciTech Connect

    Murtaza, G.; Rahman, H.U.

    1983-09-01

    The electron test particle cross-field diffusion due to thermally excited magnetostatic modes with ergodic field lines is investigated. Estimate shows that in mirror-confined plasmas, the electron transport (and hence the electron thermal conduction) caused by the magnetostatic mode exceeds the convective as well as the classical transport.

  11. Inverse mirror plasma experimental device (IMPED) - a magnetized linear plasma device for wave studies

    NASA Astrophysics Data System (ADS)

    Bose, Sayak; Chattopadhyay, P. K.; Ghosh, J.; Sengupta, S.; Saxena, Y. C.; Pal, R.

    2015-04-01

    In a quasineutral plasma, electrons undergo collective oscillations, known as plasma oscillations, when perturbed locally. The oscillations propagate due to finite temperature effects. However, the wave can lose the phase coherence between constituting oscillators in an inhomogeneous plasma (phase mixing) because of the dependence of plasma oscillation frequency on plasma density. The longitudinal electric field associated with the wave may be used to accelerate electrons to high energies by exciting large amplitude wave. However when the maximum amplitude of the wave is reached that plasma can sustain, the wave breaks. The phenomena of wave breaking and phase mixing have applications in plasma heating and particle acceleration. For detailed experimental investigation of these phenomena a new device, inverse mirror plasma experimental device (IMPED), has been designed and fabricated. The detailed considerations taken before designing the device, so that different aspects of these phenomena can be studied in a controlled manner, are described. Specifications of different components of the IMPED machine and their flexibility aspects in upgrading, if necessary, are discussed. Initial results meeting the prerequisite condition of the plasma for such study, such as a quiescent, collisionless and uniform plasma, are presented. The machine produces δnnoise/n <= 1%, Luniform ~ 120 cm at argon filling pressure of ~10-4 mbar and axial magnetic field of B = 1090 G.

  12. PREPROCESSING MAGNETIC FIELDS WITH CHROMOSPHERIC LONGITUDINAL FIELDS

    SciTech Connect

    Yamamoto, Tetsuya T.; Kusano, K.

    2012-06-20

    Nonlinear force-free field (NLFFF) extrapolation is a powerful tool for the modeling of the magnetic field in the solar corona. However, since the photospheric magnetic field does not in general satisfy the force-free condition, some kind of processing is required to assimilate data into the model. In this paper, we report the results of new preprocessing for the NLFFF extrapolation. Through this preprocessing, we expect to obtain magnetic field data similar to those in the chromosphere. In our preprocessing, we add a new term concerning chromospheric longitudinal fields into the optimization function proposed by Wiegelmann et al. We perform a parameter survey of six free parameters to find minimum force- and torque-freeness with the simulated-annealing method. Analyzed data are a photospheric vector magnetogram of AR 10953 observed with the Hinode spectropolarimeter and a chromospheric longitudinal magnetogram observed with SOLIS spectropolarimeter. It is found that some preprocessed fields show the smallest force- and torque-freeness and are very similar to the chromospheric longitudinal fields. On the other hand, other preprocessed fields show noisy maps, although the force- and torque-freeness are of the same order. By analyzing preprocessed noisy maps in the wave number space, we found that small and large wave number components balance out on the force-free index. We also discuss our iteration limit of the simulated-annealing method and magnetic structure broadening in the chromosphere.

  13. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    DOEpatents

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  14. Preflare magnetic and velocity fields

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; Gaizauskas, V.; Chapman, G. A.; Deloach, A. C.; Gary, G. A.; Jones, H. P.; Karpen, J. T.; Martres, M.-J.; Porter, J. G.; Schmeider, B.

    1986-01-01

    A characterization is given of the preflare magnetic field, using theoretical models of force free fields together with observed field structure to determine the general morphology. Direct observational evidence for sheared magnetic fields is presented. The role of this magnetic shear in the flare process is considered within the context of a MHD model that describes the buildup of magnetic energy, and the concept of a critical value of shear is explored. The related subject of electric currents in the preflare state is discussed next, with emphasis on new insights provided by direct calculations of the vertical electric current density from vector magnetograph data and on the role of these currents in producing preflare brightenings. Results from investigations concerning velocity fields in flaring active regions, describing observations and analyses of preflare ejecta, sheared velocities, and vortical motions near flaring sites are given. This is followed by a critical review of prevalent concepts concerning the association of flux emergence with flares

  15. AC photovoltaic module magnetic fields

    SciTech Connect

    Jennings, C.; Chang, G.J.; Reyes, A.B.; Whitaker, C.M.

    1997-12-31

    Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.

  16. Magnetic Field of Strange Dwarfs

    NASA Astrophysics Data System (ADS)

    Baghdasaryan, D. S.

    2016-03-01

    The generation of a magnetic field in a strange quark star owing to differential rotation of the superfluid and superconducting quark core relative to the normal electron-nuclear crust of the star is examined. The maximum possible magnetic field on the surface is estimated for various models of strange dwarfs. Depending on the configuration parameters, i.e., the mass M and radius R of the star, a range of 103-105 G is found. These values of the magnetic field may be an additional condition for identification of strange dwarfs among the extensive class of observed white dwarfs.

  17. Magnetic fields and scintillator performance

    SciTech Connect

    Green, D.; Ronzhin, A.; Hagopian, V.

    1995-06-01

    Experimental data have shown that the light output of a scintillator depends on the magnitude of the externally applied magnetic fields, and that this variation can affect the calorimeter calibration and possibly resolution. The goal of the measurements presented here is to study the light yield of scintillators in high magnetic fields in conditions that are similar to those anticipated for the LHC CMS detector. Two independent measurements were performed, the first at Fermilab and the second at the National High Magnetic Field Laboratory at Florida State University.

  18. Magnetoconvection in sheared magnetic fields

    SciTech Connect

    Bian, N. H.; Garcia, O. E.

    2008-10-15

    The development of magnetoconvection in a sheared magnetic field is investigated. The equilibrium magnetic field B{sub 0} is horizontal and its orientation varies linearly along the vertical axis. Preliminary consideration of the transition from the inertial to the viscous regime of the gravitational resistive interchange instability, reveals that the latter is characterized by the existence of viscoresistive boundary layers of vertical width which scales as Q{sup -1/6}, where Q is the Chandrasekhar number. The situation is analogous to the one encountered in magnetically confined laboratory plasmas, where convective flows are constrained by the magnetic shear to develop in boundary layers located around resonant magnetic surfaces in order to fulfill the 'interchange condition'k{center_dot}B{sub 0}=0, where k is the wave vector of the magnetic perturbation. It follows that when the effect of thermal diffusion is taken into account in the process, convection can only occur above a certain critical value of the Rayleigh number which scales as Q{sup 2/3} for large Q. At the onset, the convection pattern is a superposition of identically thin convective rolls everywhere aligned with the local magnetic field lines and which therefore adopt the magnetic field geometry, a situation also reminiscent of the penumbra of sunspots. Using this degeneracy, equations describing the weakly nonlinear state are obtained and discussed. A reduced magnetohydrodynamic description of magnetoconvection is introduced. Since it is valid for arbitrary magnetic field configurations, it allows a simple extension to the case where there exists an inclination between the direction of gravity and the plane spanned by the equilibrium magnetic field. These reduced magnetohydrodynamic equations are proposed as a powerful tool for further investigations of magnetoconvection in more complex field line geometries.

  19. Mirror fusion test facility magnet system. Final design report

    SciTech Connect

    Henning, C.D.; Hodges, A.J.; VanSant, J.H.; Dalder, E.N.; Hinkle, R.E.; Horvath, J.A.; Scanlan, R.M.; Shimer, D.W.; Baldi, R.W.; Tatro, R.E.

    1980-09-03

    Information is given on each of the following topics: (1) magnet description, (2) superconducting manufacture, (3) mechanical behavior of conductor winding, (4) coil winding, (5) thermal analysis, (6) cryogenic system, (7) power supply system, (8) structural analysis, (9) structural finite element analysis refinement, (10) structural case fault analysis, and (11) structural metallurgy. (MOW)

  20. Bioluminescence under static magnetic fields

    NASA Astrophysics Data System (ADS)

    Iwasaka, M.; Ueno, S.

    1998-06-01

    In the present study, the effect of magnetic fields on the emission of light by a living system was studied. The fireflies Hotaria parvula and Luciola cruciata were used as the bioluminescence systems. The firefly light organ was fixed at the edge of an optical fiber. The emitted light was introduced into a single-channel photon-counting system using an optical fiber. We measured both the spectrum of a constant light emission and, the time course of bioluminescence pulses. Two horizontal-type superconducting magnets, which produced 8 and 14 T magnetic fields at their center, were used as the magnetic-field generators. We also carried out an in vitro study of bioluminescence. The enzymatic activity of luciferase was measured under a 14 T magnetic field. We measured emission spectra of bioluminescence over the interval 500-600 nm at 25 °C in a stable emission state. It was observed that the peak wavelength around 550 nm shifted to 560 nm under a 14 T magnetic field. However, the effects of magnetic fields were not significant. Also, we measured the time course of emissions at 550 nm in a transient emission state. The rate in the light intensity under a 14 T magnetic field increased compared to the control. There is a possibility that the change in the emission intensities under a magnetic field is related to a change in the biochemical systems of the firefly, such as the enzymatic process of luciferase and the excited singlet state with subsequent light emission.

  1. Magnetic field structure of Mercury

    NASA Astrophysics Data System (ADS)

    Hiremath, K. M.

    2012-04-01

    Recently planet Mercury - an unexplored territory in our solar system - has been of much interest to the scientific community due to recent flybys of the spacecraft MESSENGER that discovered its intrinsic stationary and large-scale dipole like magnetic field structure with an intensity of ˜300nT confirming Mariner 10 observations. In the present study, with the observed constraint of Mercury's atmospheric magnetic field structure, internal magnetic field structure is modeled as a solution of magnetic diffusion equation. In this study, Mercury's internal structure mainly consists of a stable stratified fluid core and the convective mantle. For simplicity, magnetic diffusivity in both parts of the structure is considered to be uniform and constant with a value represented by a suitable averages. It is further assumed that vigorous convection in the mantle disposes of the electric currents leading to a very high diffusivity in that region. Thus, in order to satisfy observed atmospheric magnetic field structure, Mercury's most likely magnetic field structure consists of a solution of MHD diffusion equation in the core and a combined multipolar (dipole and quadrupole like magnetic field structures embedded in the uniform field) solution of a current free like magnetic field structure in the mantle and in the atmosphere. With imposition of appropriate boundary conditions at the core-mantle boundary for the first two diffusion eigen modes, in order to satisfy the observed field structure, present study puts the constraint on Mercury's core radius to be ˜2000km. From the estimated magnetic diffusivity and the core radius, it is also possible to estimate the two diffusion eigen modes with their diffusion time scales of ˜8.6 and 3.7 billion years respectively suggesting that the planet inherits its present-day magnetic field structure from the solar Nebula. It is proposed that permanency of such a large-scale magnetic field structure of the planet is attained during

  2. Magnetic Field Generation in Stars

    NASA Astrophysics Data System (ADS)

    Ferrario, Lilia; Melatos, Andrew; Zrake, Jonathan

    2015-10-01

    Enormous progress has been made on observing stellar magnetism in stars from the main sequence (particularly thanks to the MiMeS, MAGORI and BOB surveys) through to compact objects. Recent data have thrown into sharper relief the vexed question of the origin of stellar magnetic fields, which remains one of the main unanswered questions in astrophysics. In this chapter we review recent work in this area of research. In particular, we look at the fossil field hypothesis which links magnetism in compact stars to magnetism in main sequence and pre-main sequence stars and we consider why its feasibility has now been questioned particularly in the context of highly magnetic white dwarfs. We also review the fossil versus dynamo debate in the context of neutron stars and the roles played by key physical processes such as buoyancy, helicity, and superfluid turbulence, in the generation and stability of neutron star fields.

  3. Bi-axial magnetic drive for scanned beam display mirrors

    NASA Astrophysics Data System (ADS)

    Sprague, Randy B.; Montague, Tom; Brown, Dean

    2005-01-01

    A novel MEMS actuation technique has been developed for scanned beam display and imaging applications that allows driving a two-axes scanning mirror to wide angles at high frequency. This actuation technique delivers sufficient torque to allow non-resonant operation as low as DC in the slow-scan axis while at the same time allowing one-atmosphere operation even at fast-scan axis frequencies great enough to support SXGA resolutions. Several display and imaging products have been developed employing this new MEMS actuation technique. Exceptionally good displays can be made by scanning laser beams much the same way a CRT scans electron beams. The display applications can be as diverse as an automotive head up display, where the laser beams are scanned onto the inside of the car"s windshield to be reflected into the driver"s eyes, and a head-worn display where the light beams are scanned directly over the viewer"s vision. For high performance displays the design challenges for a MEMS scanner are great. The scanner represents the system"s limiting aperture so it must be of sufficient size; it must remain flat to fractions of a wavelength so as to not distort the beam"s wave front; it must scan fast enough to handle the many millions of pixels written every second; and it must scan in two axes over significant angles in order to "paint" a wide angle, two-dimensional image. Using the new actuation method described, several MEMS scanner designs have been fabricated which meet the requirements of a variety of display and imaging applications.

  4. Measuring Earth's Magnetic Field Simply.

    ERIC Educational Resources Information Center

    Stewart, Gay B.

    2000-01-01

    Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)

  5. Gasdynamic Mirror Fusion Propulsion Experiment

    NASA Astrophysics Data System (ADS)

    Emrich, Bill

    2000-10-01

    A gasdynamic mirror (GDM) fusion propulsion experiment is currently being constructed at the NASA Marshall Space Flight Center (MSFC) to test the feasibility of this particular type of fusion device. Because of the open magnetic field line configuration of mirror fusion devices, they are particularly well suited for propulsion system applications since they allow for the easy ejection of thrust producing plasma. Currently, the MSFC GDM is constructed in three segments. The vacuum chamber mirror segment, the plasma injector mirror segment, and the main plasma chamber segment. Enough magnets are currently available to construct up to three main plasma chamber segments. The mirror segments are also segmented such that they can be expanded to accommodate new end plugging strategies without requiring the disassembly of the entire mirror segment. The plasma for the experiment is generated in a microwave cavity located between the main magnets and the mirror magnets. Ion heating is accomplished through ambipolar diffusion. The objective of the experiment is to investigate the stability characteristics of the gasdynamic mirror and to map a region of parameter space within which the plasma can be confined in a stable steady state configuration. The mirror ratio, plasma density, and plasma ``b" will be varied over a range of values and measurements subsequently taken to determine the degree of plasma stability.

  6. Gasdynamic Mirror Fusion Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Emrich, Bill; Rodgers, Stephen L. (Technical Monitor)

    2000-01-01

    A gasdynamic mirror (GDM) fusion propulsion experiment is currently being constructed at the NASA Marshall Space Flight Center (MSFC) to test the feasibility of this particular type of fusion device. Because of the open magnetic field line configuration of mirror fusion devices, they are particularly well suited for propulsion system applications since they allow for the easy ejection of thrust producing plasma. Currently, the MSFC GDM is constructed in three segments. The vacuum chamber mirror segment, the plasma injector mirror segment, and the main plasma chamber segment. Enough magnets are currently available to construct up to three main plasma chamber segments. The mirror segments are also segmented such that they can be expanded to accommodate new end plugging strategies with out requiring the disassembly of the entire mirror segment. The plasma for the experiment is generated in a microwave cavity located between the main magnets and the mirror magnets. Ion heating is accomplished through ambipolar diffusion. The objective of the experiment is to investigate the stability characteristics of the gasdynamic mirror and to map a region of parameter space within which the plasma can be confined in a stable steady state configuration. The mirror ratio, plasma density, and plasma "b" will be varied over a range of values and measurements subsequently taken to determine the degree of plasma stability.

  7. The magnetic field of Mercury

    NASA Technical Reports Server (NTRS)

    Ness, N. F.

    1977-01-01

    The Mariner 10 spacecraft encountered Mercury three times in 1974-1975. The first and third encounters provided detailed observations of a well-developed detached bow shock wave which results from the interaction of the solar wind. The planet possesses a global magnetic field and a modest magnetosphere, which deflects the solar wind. The field is approximately dipolar, with orientation in the same sense as earth, tilted 12 deg from the rotation axis. The magnetic moment corresponds to an undistorted equatorial field intensity of 350 gammas, approximately 1% of earth's. The field, while unequivocally intrinsic to the planet, may be due to remanent magnetization acquired from an extinct dynamo or a primordial magnetic field or due to a presently active dynamo. The latter possibility appears more plausible at present. In any case, the existence of the magnetic field provides very strong evidence of a mature differentiated planetary interior with a large core (core radius about 0.7 Mercury radius) and a record of the history of planetary formation in the magnetization of the crustal rocks.

  8. Optical sensor of magnetic fields

    DOEpatents

    Butler, M.A.; Martin, S.J.

    1986-03-25

    An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.

  9. Threefold Increase of the Bulk Electron Temperature of Plasma Discharges in a Magnetic Mirror Device.

    PubMed

    Bagryansky, P A; Shalashov, A G; Gospodchikov, E D; Lizunov, A A; Maximov, V V; Prikhodko, V V; Soldatkina, E I; Solomakhin, A L; Yakovlev, D V

    2015-05-22

    This Letter describes plasma discharges with a high temperature of bulk electrons in the axially symmetric high-mirror-ratio (R=35) open magnetic system gas dynamic trap (GDT) in the Budker Institute (Novosibirsk). According to Thomson scattering measurements, the on-axis electron temperature averaged over a number of sequential shots is 660±50  eV with the plasma density being 0.7×10^{19}  m^{-3}; in few shots, electron temperature exceeds 900 eV. This corresponds to at least a threefold increase with respect to previous experiments both at GDT and at other comparable machines, thus, demonstrating the highest quasistationary (about 1 ms) electron temperature achieved in open traps. The breakthrough is made possible by application of a new 0.7  MW/54.5  GHz electron cyclotron resonance heating system in addition to standard 5 MW heating by neutral beams, and application of a radial electric field to mitigate the flute instability. PMID:26047233

  10. Four Point Magnetic Field Measurements of Magnetosheath Fluctuations

    NASA Astrophysics Data System (ADS)

    Horbury, T. S.; Lucek, E. A.; Balogh, A.; Dunlop, M. W.; Dandouras, I.

    Using magnetic field measurements made at the four Cluster spacecraft separated by several hundred km, it is possible to measure the three dimensional correlation tensor of waves, turbulence and structures in the magnetosheath. In this way, their correlation scales, anisotropy and three dimensional power spectra can be estimated. As an exam- ple, we present such measurements of mirror mode structures and estimate their corre- lation lengths along and across the magnetic field direction. We also present an analy- sis of broadband magnetosheath MHD turbulence, and in particular its anisotropy, and compare the results to the properties of solar wind MHD turblence.

  11. Magnetic field induced dynamical chaos

    SciTech Connect

    Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra

    2013-12-15

    In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x–y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples.

  12. Design of a compliant passive magnetic bearing for use in SIRTF's Tertiary Mirror Assembly

    NASA Technical Reports Server (NTRS)

    Cannon, David M.; Brereton, Margot; Dill, Harry; Sullivan, Mark

    1990-01-01

    A proposed baseline design for the Space Infrared Telescope Facility includes a Tertiary Mirror Assembly (TMA) which selectively redirects the telescope's converging science beam to each of several instruments. The TMA's mirror rotates on an axis coincident with the beam's axis, and is held steady during observation by a kinematic mount. A bearing has been designed whose compliance causes minimal interference with the precision of the kinematic mount, and which is well suited to the particular requirements of a cryogenic satellite such as SIRTF. The bearing suspends its rotor by taking advantage of the repulsion between a superconductor and a magnet. It potentially eliminates problems associated with mechanical bearings that arise in similar applications, such as lubricant loss or failure, bearing wear, and sensitivity to particulates, and does so without imposing the thermal load of a bearing heater or active magnetic bearing. The bearing shows promise of offering an alternative to ball bearings in cryogenic applications where some compliance is acceptable or advantageous.

  13. Spatial configuration of a plasma bunch formed under gyromagnetic resonance in a magnetic mirror trap

    NASA Astrophysics Data System (ADS)

    Andreev, V. V.; Novitskii, A. A.; Umnov, A. M.; Chuprov, D. V.

    2016-06-01

    The spatial configuration of a relativistic plasma bunch generated under the gyromagnetic autoresonance and confined in a magnetic mirror trap has been studied experimentally and numerically. The characteristics of bremsstrahlung generated by the plasma bunch from the gas and chamber walls were investigated using X-ray spectroscopy and radiometry, which made it possible to determine the localization of the bunch and analyze the dynamics of its confinement.

  14. Magnetic fields in quiescent prominences

    NASA Technical Reports Server (NTRS)

    Van Ballegooijen, A. A.; Martens, P. C. H.

    1990-01-01

    The origin of the axial fields in high-latitude quiescent prominences is considered. The fact that almost all quiescent prominences obey the same hemisphere-dependent rule strongly suggests that the solar differential rotation plays an important role in producing the axial fields. However, the observations are inconsistent with the hypothesis that the axial fields are produced by differential rotation acting on an existing coronal magnetic field. Several possible explanations for this discrepancy are considered. The possibility that the sign of the axial field depends on the topology of the magnetic field in which the prominence is embedded is examined, as is the possibility that the neutral line is tilted with respect to the east-west direction, so that differential rotation causes the neutral line also to rotate with time. The possibility that the axial fields of quiescent prominences have their origin below the solar surface is also considered.

  15. Magnetic fields in ring galaxies

    NASA Astrophysics Data System (ADS)

    Moss, D.; Mikhailov, E.; Silchenko, O.; Sokoloff, D.; Horellou, C.; Beck, R.

    2016-07-01

    Context. Many galaxies contain magnetic fields supported by galactic dynamo action. The investigation of these magnetic fields can be helpful for understanding galactic evolution; however, nothing definitive is known about magnetic fields in ring galaxies. Aims: Here we investigate large-scale magnetic fields in a previously unexplored context, namely ring galaxies, and concentrate our efforts on the structures that appear most promising for galactic dynamo action, i.e. outer star-forming rings in visually unbarred galaxies. Methods: We use tested methods for modelling α-Ω galactic dynamos, taking into account the available observational information concerning ionized interstellar matter in ring galaxies. Results: Our main result is that dynamo drivers in ring galaxies are strong enough to excite large-scale magnetic fields in the ring galaxies studied. The variety of dynamo driven magnetic configurations in ring galaxies obtained in our modelling is much richer than that found in classical spiral galaxies. In particular, various long-lived transients are possible. An especially interesting case is that of NGC 4513, where the ring counter-rotates with respect to the disc. Strong shear in the region between the disc and the ring is associated with unusually strong dynamo drivers in such counter-rotators. The effect of the strong drivers is found to be unexpectedly moderate. With counter-rotation in the disc, a generic model shows that a steady mixed parity magnetic configuration that is unknown for classical spiral galaxies, may be excited, although we do not specifically model NGC 4513. Conclusions: We deduce that ring galaxies constitute a morphological class of galaxies in which identification of large-scale magnetic fields from observations of polarized radio emission, as well as dynamo modelling, may be possible. Such studies have the potential to throw additional light on the physical nature of rings, their lifetimes, and evolution.

  16. Reply to "Comment on `Lifshitz-Matsubara sum formula for the Casimir pressure between magnetic metallic mirrors' "

    NASA Astrophysics Data System (ADS)

    Guérout, R.; Lambrecht, A.; Milton, K. A.; Reynaud, S.

    2016-08-01

    We reply to the "Comment on `Lifshitz-Matsubara sum formula for the Casimir pressure between magnetic metallic mirrors.' " We believe the comment misrepresents our papers, and fails to provide a plausible resolution to the conflict between theory and experiment.

  17. Is the human mirror neuron system plastic? Evidence from a transcranial magnetic stimulation study.

    PubMed

    Mehta, Urvakhsh Meherwan; Waghmare, Avinash V; Thirthalli, Jagadisha; Venkatasubramanian, Ganesan; Gangadhar, Bangalore N

    2015-10-01

    Virtual lesions in the mirror neuron network using inhibitory low-frequency (1Hz) transcranial magnetic stimulation (TMS) have been employed to understand its spatio-functional properties. However, no studies have examined the influence of neuro-enhancement by using excitatory high-frequency (20Hz) repetitive transcranial magnetic stimulation (HF-rTMS) on these networks. We used three forms of TMS stimulation (HF-rTMS, single and paired pulse) to investigate whether the mirror neuron system facilitates the motor system during goal-directed action observation relative to inanimate motion (motor resonance), a marker of putative mirror neuron activity. 31 healthy individuals were randomized to receive single-sessions of true or sham HF-rTMS delivered to the left inferior frontal gyrus - a component of the human mirror system. Motor resonance was assessed before and after HF-rTMS using three TMS cortical reactivity paradigms: (a) 120% of resting motor threshold (RMT), (b) stimulus intensity set to evoke motor evoked potential of 1-millivolt amplitude (SI1mV) and (c) a short latency paired pulse paradigm. Two-way RMANOVA showed a significant group (true versus sham) X occasion (pre- and post-HF-rTMS motor resonance) interaction effect for SI1mV [F(df)=6.26 (1, 29), p=0.018] and 120% RMT stimuli [F(df)=7.01 (1, 29), p=0.013] indicating greater enhancement of motor resonance in the true HF-rTMS group than the sham-group. This suggests that HF-rTMS could adaptively modulate properties of the mirror neuron system. This neuro-enhancement effect is a preliminary step that can open translational avenues for novel brain stimulation therapeutics targeting social-cognition deficits in schizophrenia and autism. PMID:26194133

  18. Magnetic Fields in Stellar Jets

    NASA Astrophysics Data System (ADS)

    Hartigan, Patrick; Frank, Adam; Varniére, Peggy; Blackman, Eric G.

    2007-06-01

    Although several lines of evidence suggest that jets from young stars are driven magnetically from accretion disks, existing observations of field strengths in the bow shocks of these flows imply that magnetic fields play only a minor role in the dynamics at these locations. To investigate this apparent discrepancy we performed numerical simulations of expanding magnetized jets with stochastically variable input velocities with the AstroBEAR MHD code. Because the magnetic field B is proportional to the density n within compression and rarefaction regions, the magnetic signal speed drops in rarefactions and increases in the compressed areas of velocity-variable flows. In contrast, B~n0.5 for a steady state conical flow with a toroidal field, so the Alfvén speed in that case is constant along the entire jet. The simulations show that the combined effects of shocks, rarefactions, and divergent flow cause magnetic fields to scale with density as an intermediate power 1>p>0.5. Because p>0.5, the Alfvén speed in rarefactions decreases on average as the jet propagates away from the star. Hence, a typical Alfvén velocity in the jet close to the star is significantly larger than it is in the rarefactions ahead of bow shocks at larger distances. We find that the observed values of weak fields at large distances are consistent with strong fields required to drive the observed mass loss close to the star. Typical velocity perturbations, which form shocks at large distances, will produce only magnetic waves close to the star. For a typical stellar jet the crossover point inside which velocity perturbations of 30-40 km s-1 no longer produce shocks is ~300 AU from the source.

  19. Hysteresis in rotation magnetic field

    NASA Astrophysics Data System (ADS)

    Ivanyi, Amalia

    2000-01-01

    The different properties of the vector Jiles-Atherton hysteresis operator is proved under forced H- and B-field supply. Feeding the magnetic material with alternating and circular polarised rotational excitation, the different properties of the model under the input field intensity and the flux density are investigated and the results are proved in figures.

  20. MAGNETIC FIELD MEASUREMENTS FOR FAST-CHANGING MAGNETIC FIELDS.

    SciTech Connect

    JAIN, A.; ESCALLIER, J.; GANETIS, G.; LOUIE, W.; MARONE, A.; THOMAS. R.; WANDERER, P.

    2004-10-03

    Several recent applications for fast ramped magnets have been found that require rapid measurement of the field quality during the ramp. (In one instance, accelerator dipoles will be ramped at 1 T/sec, with measurements needed to the accuracy typically required for accelerators.) We have built and tested a new type of magnetic field measuring system to meet this need. The system consists of 16 stationary pickup windings mounted on a cylinder. The signals induced in the windings in a changing magnetic field are sampled and analyzed to obtain the field harmonics. To minimize costs, printed circuit boards were used for the pickup windings and a combination of amplifiers and ADPs used for the voltage readout system. New software was developed for the analysis. Magnetic field measurements of a model dipole developed for the SIS200 accelerator at GSI are presented. The measurements are needed to insure that eddy currents induced by the fast ramps do not impact the field quality needed for successful accelerator operation.

  1. Woofer-tweeter adaptive optics in very strong turbulence using a magnetic-liquid deformable mirror

    NASA Astrophysics Data System (ADS)

    Brousseau, Denis; Véran, Jean-Pierre; Thibault, Simon; Borra, Ermanno F.; F.-Boivin, Simon.

    2012-07-01

    We present progress towards the development of a woofer-tweeter adaptive optics (AO) system using the first 37 actuators of a 91-actuator magnetic-liquid deformable mirror (MLDM) and a magnetic 97-actuator DM from ALPAO. The MLDM, which has both very large single-actuator and inter-actuator strokes, but a low bandwidth, is used as woofer, whereas the high bandwidth and lower stroke ALPAO DM is used as tweeter. The ALPAO DM should improve the bandwidth of the MLDM while the MLDM will allow correction of strong aberrations.

  2. Magnetic field fluctuations during substorms

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.

    1971-01-01

    Before a magnetospheric substorm and during its early phases the magnetic field magnitude in the geomagnetic tail increases and field lines in the nighttime hemisphere assume a more tail-like configuration. Before the substorm onset a minimum amount of magnetic flux is observed to cross the neutral sheet which means that the neutral sheet currents attain their most earthward locations and their greatest current densities. This configuration apparently results from an increased transport of magnetic flux to the tail caused by a southward interplanetary magnetic field. The field begins relaxing toward a more dipolar configuration at the time of a substorm onset with the recovery probably occurring first between 6 and 10 R sub E. This recovery must be associated with magnetospheric convection which restores magnetic flux to the dayside hemisphere. Field aligned currents appear to be required to connect magnetospheric currents to the auroral electrojets, implying that a net current flows in a limited range of longitudes. Space measurements supporting current systems are limited. More evidence exists for the occurrence of double current sheets which do not involve net current at a given longitude.

  3. Adaptive optics with a magnetic deformable mirror: applications in the human eye

    NASA Astrophysics Data System (ADS)

    Fernandez, Enrique J.; Vabre, Laurent; Hermann, Boris; Unterhuber, Angelika; Povazay, Boris; Drexler, Wolfgang

    2006-10-01

    A novel deformable mirror using 52 independent magnetic actuators (MIRAO 52, Imagine Eyes) is presented and characterized for ophthalmic applications. The capabilities of the device to reproduce different surfaces, in particular Zernike polynomials up to the fifth order, are investigated in detail. The study of the influence functions of the deformable mirror reveals a significant linear response with the applied voltage. The correcting device also presents a high fidelity in the generation of surfaces. The ranges of production of Zernike polynomials fully cover those typically found in the human eye, even for the cases of highly aberrated eyes. Data from keratoconic eyes are confronted with the obtained ranges, showing that the deformable mirror is able to compensate for these strong aberrations. Ocular aberration correction with polychromatic light, using a near Gaussian spectrum of 130 nm full width at half maximum centered at 800 nm, in five subjects is accomplished by simultaneously using the deformable mirror and an achromatizing lens, in order to compensate for the monochromatic and chromatic aberrations, respectively. Results from living eyes, including one exhibiting 4.66 D of myopia and a near pathologic cornea with notable high order aberrations, show a practically perfect aberration correction. Benefits and applications of simultaneous monochromatic and chromatic aberration correction are finally discussed in the context of retinal imaging and vision.

  4. Indoor localization using magnetic fields

    NASA Astrophysics Data System (ADS)

    Pathapati Subbu, Kalyan Sasidhar

    Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing

  5. Magnetic field of the Earth

    NASA Astrophysics Data System (ADS)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  6. Observations of Mercury's magnetic field

    NASA Technical Reports Server (NTRS)

    Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.

    1975-01-01

    Magnetic field data obtained by Mariner 10 during the third and final encounter with the planet Mercury on 16 March 1975 were studied. A well developed bow shock and modest magnetosphere, previously observed at first encounter on 29 March 1974, were again observed. In addition, a much stronger magnetic field near closest approach, 400 gamma versus 98 gamma, was observed at an altitude of 327 km and approximately 70 deg north Mercurian latitude. Spherical harmonic analysis of the data provide an estimate of the centered planetary magnetic dipole of 4.7 x 10 to the 22nd power Gauss/cu cm with the axis tilted 12 deg to the rotation axis and in the same sense as Earth's. The interplanetary field was sufficiently different between first and third encounters that in addition to the very large field magnitude observed, it argues strongly against a complex induction process generating the observed planetary field. While a possibility exists that Mercury possesses a remanent field due to magnetization early in its formation, a present day active dynamo seems to be a more likely candidate for its origin.

  7. Galactic and Intergalactic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Klein, U.; Fletcher, A.

    This course-tested textbook conveys the fundamentals of magnetic fields and relativistic plasma in diffuse cosmic media, with a primary focus on phenomena that have been observed at different wavelengths. Theoretical concepts are addressed wherever necessary, with derivations presented in sufficient detail to be generally accessible. In the first few chapters the authors present an introduction to various astrophysical phenomena related to cosmic magnetism, with scales ranging from molecular clouds in star-forming regions and supernova remnants in the Milky Way, to clusters of galaxies. Later chapters address the role of magnetic fields in the evolution of the interstellar medium, galaxies and galaxy clusters. The book is intended for advanced undergraduate and postgraduate students in astronomy and physics and will serve as an entry point for those starting their first research projects in the field.

  8. Quantum field between moving mirrors: A three dimensional example

    NASA Technical Reports Server (NTRS)

    Hacyan, S.; Jauregui, Roco; Villarreal, Carlos

    1995-01-01

    The scalar quantum field uniformly moving plates in three dimensional space is studied. Field equations for Dirichlet boundary conditions are solved exactly. Comparison of the resulting wavefunctions with their instantaneous static counterpart is performed via Bogolubov coefficients. Unlike the one dimensional problem, 'particle' creation as well as squeezing may occur. The time dependent Casimir energy is also evaluated.

  9. Mars Crustal Magnetic Field Remnants

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The radial magnetic field measured is color coded on a global perspective view that shows measurements derived from spacecraft tracks below 200 km overlain on a monochrome shaded relief map of the topography.

    This image shows especially strong Martian magnetic fields in the southern highlands near the Terra Cimmeria and Terra Sirenum regions, centered around 180 degrees longitude from the equator to the pole. It is where magnetic stripes possibly resulting from crustal movement are most prominent. The bands are oriented approximately east - west and are about 100 miles wide and 600 miles long, although the longest band stretches more than 1200 miles.

    The false blue and red colors represent invisible magnetic fields in the Martian crust that point in opposite directions. The magnetic fields appear to be organized in bands, with adjacent bands pointing in opposite directions, giving these stripes a striking similarity to patterns seen in the Earth's crust at the mid-oceanic ridges.

    These data were compiled by the MGS Magnetometer Team led by Mario Acuna at the Goddard Space Flight Center in Greenbelt, MD.

  10. Satellite to study earth's magnetic field

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Magnetic Field Satellite (Magsat) designed to measure the near earth magnetic field and crustal anomalies is briefly described. A scalar magnetometer to measure the magnitude of the earth's crustal magnetic field and a vector magnetometer to measure magnetic field direction as well as magnitude are included. The mission and its objectives are summarized along with the data collection and processing system.

  11. The magnetic field of the Milky Way

    NASA Astrophysics Data System (ADS)

    Reid, Mark J.

    Models of the magnetic field configuration of the Milky Way are reviewed. Current analyses of rotation measure data suggest that the Milky Way possesses a bisymmetric-like spiral magnetic field, that field reversals among spiral arms exist, and that the magnetic spiral may not closely match the mass spiral structure. Zeeman measurements of OH masers may provide alternative magnetic field information.

  12. What Fits into a Mirror: Naive Beliefs about the Field of View

    ERIC Educational Resources Information Center

    Bianchi, Ivana; Savardi, Ugo

    2012-01-01

    Research on naive physics and naive optics have shown that people hold surprising beliefs about everyday phenomena that are in contrast with what they see. In this article, we investigated what adults expect to be the field of view of a mirror from various viewpoints. The studies presented here confirm that humans have difficulty dealing with the…

  13. Study of plasma immersion ion implantation into silicon substrate using magnetic mirror geometry

    NASA Astrophysics Data System (ADS)

    Pillaca, E. J. D. M.; Ueda, M.; Kostov, K. G.; Reuther, H.

    2012-10-01

    The effect of magnetic field enhanced plasma immersion ion implantation (PIII) in silicon substrate has been investigated at low and high pulsed bias voltages. The magnetic field in magnetic bottle configuration was generated by two magnetic coils installed outside the vacuum chamber. The presence of both, electric and magnetic field in PIII creates a system of crossed E × B fields, promoting plasma rotation around the target. The magnetized electrons drifting in crossed E × B fields provide electron-neutral collision. Consequently, the efficient background gas ionization augments the plasma density around the target where a magnetic confinement is achieved. As a result, the ion current density increases, promoting changes in the samples surface properties, especially in the surface roughness and wettability and also an increase of implantation dose and depth.

  14. Photospheric and coronal magnetic fields

    SciTech Connect

    Sheeley, N.R., Jr. )

    1991-01-01

    Research on small-scale and large-scale photospheric and coronal magnetic fields during 1987-1990 is reviewed, focusing on observational studies. Particular attention is given to the new techniques, which include the correlation tracking of granules, the use of highly Zeeman-sensitive infrared spectral lines and multiple lines to deduce small-scale field strength, the application of long integration times coupled with good seeing conditions to study weak fields, and the use of high-resolution CCD detectors together with computer image-processing techniques to obtain images with unsurpassed spatial resolution. Synoptic observations of large-scale fields during the sunspot cycle are also discussed. 101 refs.

  15. Plasma engineering models of tandem mirror devices with high-field test-cell inserts

    SciTech Connect

    Fenstermacher, M.E.; Campbell, R.B.

    1985-04-03

    Plasma physics and engineering models of tandem mirror devices operated with a high-field technology test-cell insert in the central cell, which have been incorporated recently in the TMRBAR tandem mirror reactor physics code, are described. The models include particle and energy balance in the test-cell region as well as the interactions between the test-cell particles and those flowing through the entire device. The code calculations yield consistent operating parameters for the test-cell, central cell, and end cell systems. A benchmark case for the MFTF-..cap alpha..+T configuration is presented which shows good agreement between the code results and previous calculations.

  16. Cosmological magnetic fields from inflation

    NASA Astrophysics Data System (ADS)

    Motta, Leonardo

    In this thesis we review the methods for computation of cosmological correlations in the early universe known as the in-in formalism which are then applied to the problem of magnetogenesis from inflation. For this computation, a power-law single field slow- roll inflation is assumed together with a coupling of the form eφ/nuF μnuFμnu between the inflaton φ and the electrodynamical field strength Fμnu. For certain choice of parameters, the model produces a scale-invariant power spectrum that can be as high as 10-12 G at cosmological scales at present time. Finally, we compute the correlation between the magnetic field energy density and scalar metric fluctuations at tree-level from which the shape of the resulting non-gaussianity is analyzed.We show that the corresponding bispectrum is of order 10-5 times the power spectrum of magnetic fields.

  17. Crystal field and magnetic properties

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1977-01-01

    Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at theta = 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) x 10 to the -6th Weber m/kg Tesla. The saturation moment is 3.84 + or - 1 - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is on the order of 160 to 180 K.

  18. Transverse Magnetic Field Propellant Isolator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2000-01-01

    An alternative high voltage isolator for electric propulsion and ground-based ion source applications has been designed and tested. This design employs a transverse magnetic field that increases the breakdown voltage. The design can greatly enhance the operating range of laboratory isolators used for high voltage applications.

  19. Mirror monochromator

    SciTech Connect

    Mankos, Marian; Shadman, Khashayar

    2014-12-02

    energy of 80-120 keV). Specialized software packages that have been developed by MEBS, Ltd. were used to calculate the electron optical properties of the key monochromator components: namely, the magnetic prism, the electron mirror, and the electron lenses. In the final step, these results were folded into a model describing the key electron-optical parameters of the complete monochromator. The simulations reveal that the mirror monochromator can reduce the energy spread of a Schottky electron source, an established electron emitter used widely in EMs, to 10 meV for practical beam current values and that further reduction of the energy spread down to 3 meV is possible for low current applications with a Cold Field Emitter (an electron source with 10x the brightness of a Schottky source). MirrorChroms can be designed and built to attach to different types of TEMs and SEMs, thus making them suitable for enhancing the study of the structure, composition, and bonding states of new materials at the nanoscale to advance material science research in the field of nanotechnology as well as biomedical research.

  20. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Krause, Marita

    2015-03-01

    The magnetic field structure in edge-on galaxies observed so far shows a plane-parallel magnetic field component in the disk of the galaxy and an X-shaped field in its halo. The plane-parallel field is thought to be the projected axisymmetric (ASS) disk field as observed in face-on galaxies. Some galaxies addionionally exhibit strong vertical magnetic fields in the halo right above and below the central region of the disk. The mean-field dynamo theory in the disk cannot explain these observed fields without the action of a wind, which also probably plays an important role to keep the vertical scale heights constant in galaxies of different Hubble types and star formation activities, as has been observed in the radio continuum: At λ6 cm the vertical scale heights of the thin disk and the thick disk/halo in a sample of five edge-on galaxies are similar with a mean value of 300 +/- 50 pc for the thin disk and 1.8 +/- 0.2 kpc for the thick disk (a table and references are given in Krause 2011) with our sample including the brightest halo observed so far, NGC 253, with strong star formation, as well as one of the weakest halos, NGC 4565, with weak star formation. If synchrotron emission is the dominant loss process of the relativistic electrons the outer shape of the radio emission should be dumbbell-like as has been observed in several edge-on galaxies like e.g. NGC 253 (Heesen et al. 2009) and NGC 4565. As the synchrotron lifetime t syn at a single frequency is proportional to the total magnetic field strength B t -1.5, a cosmic ray bulk speed (velocity of a galactic wind) can be defined as v CR = h CR /t syn = 2 h z /t syn , where h CR and h z are the scale heights of the cosmic rays and the observed radio emission at this freqnency. Similar observed radio scale heights imply a self regulation mechanism between the galactic wind velocity, the total magnetic field strength and the star formation rate SFR in the disk: v CR ~ B t 1.5 ~ SFR ~ 0.5 (Niklas & Beck 1997).

  1. Magnetic fields in the sun

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1974-01-01

    The observed properties of solar magnetic fields are reviewed, with particular reference to the complexities imposed on the field by motions of the highly conducting gas. Turbulent interactions between gas and field lead to heating or cooling of the gas according to whether the field energy density is less or greater than the maximum kinetic energy density in the convection zone. The field strength above which cooling sets in is 700 gauss. A weak solar dipole field may be primeval, but dynamo action is also important in generating new flux. The dynamo is probably not confined to the convection zone, but extends throughout most of the volume of the sun. Planetary tides appear to play a role in driving the dynamo.

  2. The magnetic field of Jupiter

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.; Ness, N. F.

    1976-01-01

    The paper is concerned mainly with the intrinsic planetary field which dominates the inner magnetosphere up to a distance of 10 to 12 Jovian radii where other phenomena, such as ring currents and diamagnetic effects of trapped charged particles, become significant. The main magnetic field of Jupiter as determined by in-situ observations by Pioner 10 and 11 is found to be relatively more complex than a simple offset tilted dipole. Deviations from a simple dipole geometry lead to distortions of the charged particle L shells and warping of the magnetic equator. Enhanced absorption effects associated with Io and Amalthea are predicted. The results are consistent with the conclusions derived from extensive radio observations at decimetric and decametric wavelengths for the planetary field.

  3. Magnetic field of the Earth

    NASA Astrophysics Data System (ADS)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  4. Oxide superconductors under magnetic field

    NASA Technical Reports Server (NTRS)

    Kitazawa, K.

    1990-01-01

    One of the current most serious problems for the oxide superconductors from the standpoint of practical application is the various novel features derived mainly from their extremely short coherence. In particular, the coherence length so far observed in the cuprate superconductors is in the range of 0.1 nm perpendicular to the CuO2 plane. This seems to be creating most of the difficulties in the device fabrication and in the performance under the magnetic field. Some of the superconducting properties under the magnetic field will be discussed in terms of the short coherence length. A model will be presented based on the gradual strengthening of the pinning force with decrease in temperature and the weak coupling at the grain boundaries. Secondly, the broadening of the superconducting transition under the magnetic field is discussed. This is observed significantly only when the field is applied perpendicular to the basal plane and the relative orientation of the current to the field is insignificant in determining the extent of the broadening. Besides, the change in the strength of the pinning force does not affect the width of the broadening. From these observations discussions will be made on a model based on the giant fluctuation. Based on this model, it is predicted that the coherence length along the c-axis will be the single most important material parameter to determine the performance of the superconductor under a strong magnetic field. It seems that BYCO is superior in this regard to Bi- or Tl-systems as far as the performance at 77 K is considered, although another material with the coherence length slightly longer along the c-axis is still highly desired.

  5. Oxide superconductors under magnetic field

    NASA Technical Reports Server (NTRS)

    Kitazawa, K.

    1991-01-01

    One of the current most serious problems for the oxide superconductors from the standpoint of practical application is the various novel features derived mainly from their extremely short coherence. In particular, the coherence length so far observed in the cuprate superconductors is in the range of 0.1 nm perpendicular to the CuO2 plane. This seems to be creating most of the difficulties in the device fabrication and in the performance under the magnetic field. Some of the superconducting properties under the magnetic field will be discussed in terms of the short coherence length. A model will be presented based on the gradual strengthening of the pinning force with decrease in temperature and the weak coupling at the grain boundaries. Secondly, the broadening of the superconducting transition under the magnetic field is discussed. This is observed significantly only when the field is applied perpendicular to the basal plane and the relative orientation of the current to the field is insignificant in determining the extent of broadening. Besides, the change in the strength of the pinning force does not affect the width of the broadening. From these observations discussions will be made on a model based on the giant fluctuation. Based on this model, it is predicted that the coherence length along the c-axis will be the single most important material parameter to determine the performance of the superconductor under a strong magnetic field. It seems that BYCO is superior in this regard to Bi- or Tl-systems as far as the performance at 77 K is considered, although another material with the coherence length slightly longer along the c-axis is still highly desired.

  6. Mathematical Formalism for Designing Wide-Field X-Ray Telescopes: Mirror Nodal Positions and Detector Tilts

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; O'Dell, S. L.; Ramsey, B. D.; Weisskopf, M. C.

    2011-01-01

    We provide a mathematical formalism for optimizing the mirror nodal positions along the optical axis and the tilt of a commonly employed detector configuration at the focus of a x-ray telescope consisting of nested mirror shells with known mirror surface prescriptions. We adopt the spatial resolution averaged over the field-of-view as the figure of merit M. A more complete description appears in our paper in these proceedings.

  7. Magnetic mirror cavities as terahertz radiation sources and a means of quantifying radiation friction

    SciTech Connect

    Holkundkar, Amol R. E-mail: amol.holkundkar@gmail.com; Harvey, Chris

    2014-10-15

    We propose a radiation source based on a magnetic mirror cavity. Relativistic electrons are simulated entering the cavity and their trajectories and resulting emission spectra are calculated. The uniformity of the particle orbits is found to result in a frequency comb in terahertz range, the precise energies of which are tunable by varying the electron's γ-factor. For very high energy particles, radiation friction causes the spectral harmonics to broaden and we suggest this as a possible way to verify competing classical equations of motion.

  8. Lifshitz-Matsubara sum formula for the Casimir pressure between magnetic metallic mirrors

    NASA Astrophysics Data System (ADS)

    Guérout, R.; Lambrecht, A.; Milton, K. A.; Reynaud, S.

    2016-02-01

    We examine the conditions of validity for the Lifshitz-Matsubara sum formula for the Casimir pressure between magnetic metallic plane mirrors. As in the previously studied case of nonmagnetic materials [Guérout et al., Phys. Rev. E 90, 042125 (2014), 10.1103/PhysRevE.90.042125], we recover the usual expression for the lossy model of optical response, but not for the lossless plasma model. We also show that the modes associated with the Foucault currents play a crucial role in the limit of vanishing losses, in contrast to expectations.

  9. Lifshitz-Matsubara sum formula for the Casimir pressure between magnetic metallic mirrors.

    PubMed

    Guérout, R; Lambrecht, A; Milton, K A; Reynaud, S

    2016-02-01

    We examine the conditions of validity for the Lifshitz-Matsubara sum formula for the Casimir pressure between magnetic metallic plane mirrors. As in the previously studied case of nonmagnetic materials [Guérout et al., Phys. Rev. E 90, 042125 (2014)], we recover the usual expression for the lossy model of optical response, but not for the lossless plasma model. We also show that the modes associated with the Foucault currents play a crucial role in the limit of vanishing losses, in contrast to expectations. PMID:26986289

  10. Seeing the magnetic monopole through the mirror of topological surface states

    SciTech Connect

    Qi, Xiao-Liang; Li, Rundong; Zang, Jiadong; Zhang, Shou-Cheng; /Stanford U., Phys. Dept. /Fudan U.

    2010-03-25

    Existence of the magnetic monopole is compatible with the fundamental laws of nature, however, this illusive particle has yet to be detected experimentally. In this work, we show that an electric charge near the topological surface state induces an image magnetic monopole charge due to the topological magneto-electric effect. The magnetic field generated by the image magnetic monopole can be experimentally measured, and the inverse square law of the field dependence can be determined quantitatively. We propose that this effect can be used to experimentally realize a gas of quantum particles carrying fractional statistics, consisting of the bound states of the electric charge and the image magnetic monopole charge.

  11. Design of four-mirror afocal principal system for wide field multichannel infrared imaging

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Huang, Ying; Li, Yan

    2015-08-01

    The image space scanning system is widely used for multichannel infrared imaging to overcome the absence of large infrared focal plane array. The field of view of afocal system directly influences the time resolution of the image space scanning system. The field of view of afocal system is generally less than 7°. Therefore, it is significant to design larger field of view of afocal system for increasing time resolution. The method of four-mirror afocal system design based on primary aberration is explored. The structural parameters are calculated according to magnification and obscuration ratio of each mirror. The conic parameters are calculated according to primary aberration coefficients. The procedure for calculating initial structural parameters is programmed. Then a four-mirror afocal system is designed with an entrance pupil diameter of 200mm, a field of view of 20°×1°, the operating wave band of 3~12μm, compression ratio of 2.5 times and the distance of exit pupil of 620mm. The results indicate that the maximum root mean square (RMS) wavefront error is less than 0.042λ(λ=7.5μm), the maximum optical path difference(OPD) is less than λ/4(λ=3~12μm). It has high imaging quality and the modulation transfer function (MTF) is approached to the diffraction limit. The method of afocal system design can be widely used for wide field multichannel infrared imaging.

  12. Wide field of view three-mirror telescopes having a common optical axis

    NASA Technical Reports Server (NTRS)

    Johnson, R. Barry

    1988-01-01

    Two coincident-optical-axis, three-mirror telescopes have been designed that feature relatively low focal ratios (f/2.3 and f/3), unobscured optical aperture, large circular fields of view (6 and 8 deg), good resolution, flat field, reimaging with accessible field stop, Lyot or glare stop, effective stray light suppression, and ease of spectral filter integration. The design for the f/3 telescope with 8 deg field of view has been fabricated and validated using single-point diamond-turned optics.

  13. Wetland fields as mirrors of drought and the Maya abandonment

    PubMed Central

    Luzzadder-Beach, Sheryl; Beach, Timothy P.; Dunning, Nicholas P.

    2012-01-01

    Getting at the Maya Collapse has both temporal and geographic dimensions, because it occurred over centuries and great distances. This requires a wide range of research sites and proxy records, ranging from lake cores to geomorphic evidence, such as stratigraphy and speleothems. This article synthesizes these lines of evidence, together with previously undescribed findings on Maya wetland formation and use in a key region near the heart of the central Maya Lowlands. Growing lines of evidence point to dryer periods in Maya history, which correlate to major periods of transition. The main line of evidence in this paper comes from wetland use and formation studies, which show evidence for both large-scale environmental change and human adaptation or response. Based on multiproxy studies, Maya wetland fields had a long and varied history, but most evidence indicates the start of disuse during or shortly after the Maya Terminal Classic. Hence, the pervasiveness of collapse extended into a range of wetlands, including perennial wetlands, which should have been less responsive to drought as a driver of disuse. A synthesis of the lines of evidence for canal infilling shows no attempts to reclaim them after the Classic Period. PMID:22371605

  14. Test of Optimized 120-mm LARP Nb3Sn Quadrupole Coil Using Magnetic Mirror Structure

    SciTech Connect

    Chlachidze, G.

    2013-06-01

    The U.S. Large Hadron Collider accelerator research program is developing a new generation of large-aperture high-field quadrupoles based on Nb3Sn conductor for the high-luminosity upgrade of the Large Hadron Collider. Tests of the first series of 120-mm-aperture high-gradient quadrupole (HQ) coils revealed the necessity for further optimization of the coil design and fabrication process. Modifications in coil design were gradually implemented in two HQ coils previously tested at Fermi National Accelerator Laboratory using a magnetic mirror structure (HQM01 and HQM02). This paper describes the construction and test of an HQ mirror model with a coil of optimized design and with an interlayer resistive core in the conductor. The cable for this coil was made of a smaller diameter strand, providing more room for coil expansion during reaction. The 0.8-mm strand, used in all previous HQ coils, was replaced with a 0.778-mm Nb3Sn strand of RRP 108/127 subelement design. The coil was instrumented with voltage taps, heaters, and strain gauges to monitor mechanical and thermal properties and quench performance of the coil

  15. Field errors in superconducting magnets

    SciTech Connect

    Barton, M. Q.

    1982-01-01

    The mission of this workshop is a discussion of the techniques for tracking particles through arbitrary accelerator field configurations to look for dynamical effects that are suggested by various theoretical models but are not amenable to detailed analysis. A major motivation for this type of study is that many of our accelerator projects are based on the use of superconducting magnets which have field imperfections that are larger and of a more complex nature than those of conventional magnets. Questions such as resonances, uncorrectable closed orbit effects, coupling between planes, and diffusion mechanisms all assume new importance. Since, simultaneously, we are trying to do sophisticated beam manipulations such as stacking, high current accelerator, long life storage, and low loss extraction, we clearly need efficient and accurate tracking programs to proceed with confidence.

  16. Magnetic fields in irregular galaxies

    NASA Astrophysics Data System (ADS)

    Chyzy, Krzysztof T.

    Radio data of large irregular galaxies reveal some extended synchrotron emission with a substantial degree of polarization. In the case of NGC 4449 strong galaxy-scale regular magnetic fields were found, in spite of the lack of ordered rotation required for the conventional dynamo action. The rigidly rotating large irregular NGC 55 shows vertical polarized spurs connected with a network of ionized gas filaments. Small dwarf irregulars show only isolated polarized spots.

  17. Tandem time-of-flight mass spectrometer (TOF-TOF) with a quadratic-field ion mirror

    NASA Astrophysics Data System (ADS)

    Giannakopulos, Anastassios E.; Thomas, Benjamin; Colburn, Alex W.; Reynolds, David J.; Raptakis, Emmanuel N.; Makarov, Alexander A.; Derrick, Peter J.

    2002-05-01

    A tandem time-of-flight (TOF-TOF) mass spectrometer comprised of two ion mirrors is described. The first ion mirror, which is a linear-field, single-stage mirror (MS1) with an intermediate collision cell, has been designed to provide the temporal focus necessary for the second, quadratic-field ion mirror (MS2) to function effectively. Due to the wide energy-range focusing capabilities of the quadratic field employed in the second ion mirror all the fragment ions can be collected in one spectrum without the need to step the reflecting working voltage of the MS2. The size of the active area of the microchannel plate detector used in the preliminary experiments was the limiting factor governing the collection efficiently of fragment ions. The use of the first ion mirror to provide temporal focusing of the precursor ion packet at the first focal point of the quadratic mirror used as the MS2 requires no alteration of the focusing conditions for different masses, in contrast to delayed extraction or postsource pulsed focusing. Precursor ions formed by matrix-assisted laser desorption/ionization were mass-selected with an ion gate located before the collision cell and the fragment ions were mass analyzed using the quadratic-field ion mirror. Experimental results demonstrating effective high-energy collision-induced dissociation of polymer and fullerene molecule-ions are presented.

  18. Helically linked mirror arrangement

    SciTech Connect

    Ranjan, P.

    1986-08-01

    A scheme is described for helical linking of mirror sections, which endeavors to combine the better features of toroidal and mirror devices by eliminating the longitudinal loss of mirror machines, having moderately high average ..beta.. and steady state operation. This scheme is aimed at a device, with closed magnetic surfaces having rotational transform for equilibrium, one or more axisymmetric straight sections for reduced radial loss, a simple geometrical axis for the links and an overall positive magnetic well depth for stability. We start by describing several other attempts at linking of mirror sections, made both in the past and the present. Then a description of our helically linked mirror scheme is given. This example has three identical straight sections connected by three sections having helical geometric axes. A theoretical analysis of the magnetic field and single-particle orbits in them leads to the conclusion that most of the passing particles would be confined in the device and they would have orbits independent of pitch angle under certain conditions. Numerical results are presented, which agree well with the theoretical results as far as passing particle orbits are concerned.

  19. A table-top demonstration of an exact mechanical analog of a magnetic mirror

    NASA Astrophysics Data System (ADS)

    Arrangoiz, Patricio; Bellan, Paul

    2012-10-01

    Long thought of as a peculiarity of electromagnetism, the well-known phenomenon of magnetic mirroring can now be understood as a property of any 2D Hamiltonian system having fast oscillatory motion in one direction and slow motion in the other. This property has recently been shown to apply to a much wider class of multidimensional systems with a periodic variable [R.J. Perkins and P.M. Bellan, PRL 105, 124301 (2010)]. The purpose of this project is to build a table-top system that is an exact mechanical analog of a magnetic mirror. The system involves a small ball that is set in rolling motion on a saddle-like surface. The surface has a downhill parabolic profile (slow direction), with a groove of parabolic cross-section (fast direction) that narrows as one moves away from the center of the hill. The dynamics of the system is such that the adiabatic invariance effectively produces a return force opposing gravity. This return force prevents the ball from falling and makes it oscillate about the top of the hill. This behavior has been verified numerically for a variety of ball masses and surface parameters. Machining possibilities such as CNC microstepping on aluminum and 3D printing techniques are being investigated.

  20. A spinning mirror for fast angular scans of EBW emission for magnetic pitch profile measurementsa)

    NASA Astrophysics Data System (ADS)

    Volpe, Francesco

    2010-10-01

    A tilted spinning mirror rapidly steers the line of sight of the electron Bernstein wave (EBW) emission radiometer at the Mega-Amp Spherical Tokamak (MAST). In order to resist high mechanical stresses at rotation speeds of up to 12 000 rpm and to avoid eddy current induced magnetic braking, the mirror consists of a glass-reinforced nylon substrate of a special self-balanced design, coated with a reflecting layer. By completing an angular scan every 2.5-10 ms, it allows one to characterize with good time resolution the Bernstein-extraordinary-ordinary mode-conversion efficiency as a function of the view angles. Angular maps of conversion efficiency are directly related to the magnetic pitch angle at the cutoff layer for the ordinary mode. Hence, measurements at various frequencies provide the safety factor profile at the plasma edge. Initial measurements and indications of the feasibility of the diagnostic are presented. Moreover, angular scans indicate the best launch conditions for EBW heating.

  1. A spinning mirror for fast angular scans of EBW emission for magnetic pitch profile measurements

    SciTech Connect

    Volpe, Francesco

    2010-10-15

    A tilted spinning mirror rapidly steers the line of sight of the electron Bernstein wave (EBW) emission radiometer at the Mega-Amp Spherical Tokamak (MAST). In order to resist high mechanical stresses at rotation speeds of up to 12 000 rpm and to avoid eddy current induced magnetic braking, the mirror consists of a glass-reinforced nylon substrate of a special self-balanced design, coated with a reflecting layer. By completing an angular scan every 2.5-10 ms, it allows one to characterize with good time resolution the Bernstein-extraordinary-ordinary mode-conversion efficiency as a function of the view angles. Angular maps of conversion efficiency are directly related to the magnetic pitch angle at the cutoff layer for the ordinary mode. Hence, measurements at various frequencies provide the safety factor profile at the plasma edge. Initial measurements and indications of the feasibility of the diagnostic are presented. Moreover, angular scans indicate the best launch conditions for EBW heating.

  2. Cryogenic tests of bimetallic diamond-turned mirrors for the FRIDA integral field unit

    NASA Astrophysics Data System (ADS)

    DeWitt, Curtis; Eikenberry, Stephen; Cuevas Cardona, Salvador; Chapa, Oscar; Espejo, Carlos; Keiman, Carolina; Sanchez, Beatriz

    2008-07-01

    We describe diamond-turned material tests for the integral field unit (IFU) for the FRIDA instrument (inFRared Imager and Dissector for the Adaptive optics system of the Gran Telescopio Canarias). FRIDA is closely based on the design of the successful FISICA cryogenic infrared image slicing device, which used "monolithic" mirror arrays, diamond turned into single pieces of metal. FRIDA, however, will require better roughness characteristics than the 15nm RMS of FISICA to avoid light scatter in FRIDA's shorter wavelength limit (900nm). Al 6061 seems to be limited to this roughness level by its silicate inclusions so some new combination of materials that are compatible with FRIDA's Al 6061 structure must be found. To this end, we have tested six diamond-turned mirrors with different materials and different platings. We used the Zygo interferometer facility at IA-UNAM to do warm and cold profile measurements of the mirrors to investigate possible bimetallic deformation effects. We present a detailed comparison of the various performance characteristics of the test mirrors.

  3. Astronomical Secondary Mirrors And Field Correctors: Special Challenges And Metrology Solutions Routinely Used At Brashear

    NASA Astrophysics Data System (ADS)

    Piche, Francios; Gardopee, G.; Clarkson, A.; Hull, T.

    2012-01-01

    It has been said that the secondary mirror is the most difficult optic of an astronomical telescope. Much of this difficulty is associated with metrology of a convex mirror. With the advent of highly deterministic modern optical finishing machines delivering high process convergence rates, like those processes used at L-3 Integrated Optical Systems (IOS), the availability of high-quality metrology on convex optical surfaces is of greater importance to take full advantage of those new technological capabilities. Once the surface error map is determined, modern optical finishing machines, like those at L-3 Integrated Optical Systems (IOS), can readily make the correction, even on optics mounted in their deliverable cells. Due to IOS' innovative engineering coupled with our extensive experience with large, fast secondary mirrors, we have delivered exceptional mirrors on short schedules. We frequently address requirements where the optical figure must be controlled to a few nanometers in wavefront error, and associated metrology must address not only low spatial frequencies (LSF), but also mid spatial frequencies (MSF) and high spatial frequencies (HSF). Special tooling and techniques that control the accumulated error are described, and examples of control of all spatial frequencies presented. Methods are available at IOS to remove predicted mounting dimples whether measured in-situ with the optics mounted in its cell or predicted from a finite-element model of the mounted optic. We will also describe metrology methods for astronomical field correctors.

  4. Effect of the particular temperature field on a National Ignition Facility deformable mirror

    NASA Astrophysics Data System (ADS)

    Bian, Qi; Huang, Lei; Ma, Xingkun; Xue, Qiao; Gong, Mali

    2016-09-01

    The changes caused by temperature in the surface shape of a deformable mirror used at the National Ignition Facility has been investigated previously. In this paper the temperature induced surface shape under different temperature fields is further studied. We find that the changes of the peak and valley (PV) or root-mean-square (RMS) value rely on the temperature gradient as well as the difference between the mirror and the environment with a certain rule. This work analyzes these quantitative relationship, using the finite element method. Some experiments were carried out to verify the analysis results. The conclusion provides guidance to minimize the effect of the temperature field on the surface shape. Considerations about how to improve the temperature induced faceplate in actual work are suggested finally.

  5. Magnetic mirror effects on a collisionless plasma in a convergent geometry

    SciTech Connect

    Martinez-Sanchez, Manuel; Ahedo, Eduardo

    2011-03-15

    Several plasma thruster concepts, as well as ion engine chambers, use magnetic cusps to protect walls and to throttle electron flow to anodes. We present a kinetic model of the plasma in the vicinity of one cusp. Electrons, strongly confined by the electrostatic presheath and sheath, are assumed isotropic. Collisionless ions are either magnetically guided or completely nonmagnetized, thus bracketing conditions of interest. For magnetized ions, electrostatic and magnetic mirror forces compete, and the resulting self-consistent potential is found by imposing quasineutrality. A similar competition occurs for nonmagnetized ions, this time as a result of the convergence of equipotential lines. Analytical solutions are found for monoenergetic ions, and these are generalized to the case of an initially Maxwellian population, for which some numerical iteration is required. The presheath potential drop is in all cases of the order of 0.6-0.75 times the electron temperature, and ions enter the sheath at a sonic velocity, according to Bohm's criterion. Contrary to intuition, the cusp does not reduce the ion flux (per unit area) to the wall, only the size of the wall area section that carries this flux by virtue of its connection to the distant plasma. These kinetic results are verified by checking the conservation of relevant moments of the ion distribution, including two new quantities that generalize the average magnetic moment and the total ion enthalpy by accounting for the nonzero ion heat fluxes.

  6. Anisotropic Magnetism in Field-Structured Composites

    SciTech Connect

    Anderson, Robert A.; Martin, James E.; Odinek, Judy; Venturini, Eugene

    1999-06-24

    Magnetic field-structured-composites (FSCs) are made by structuring magnetic particle suspensions in uniaxial or biaxial (e.g. rotating) magnetic fields, while polymerizing the suspending resin. A uniaxial field produces chain-like particle structures, and a biaxial field produces sheet-like particle structures. In either case, these anisotropic structures affect the measured magnetic hysteresis loops, with the magnetic remanence and susceptibility increased significantly along the axis of the structuring field, and decreased slightly orthogonal to the structuring field, relative to the unstructured particle composite. The coercivity is essentially unaffected by structuring. We present data for FSCs of magnetically soft particles, and demonstrate that the altered magnetism can be accounted for by considering the large local fields that occur in FSCs. FSCS of magnetically hard particles show unexpectedly large anisotropies in the remanence, and this is due to the local field effects in combination with the large crystalline anisotropy of this material.

  7. Comparing Magnetic Fields on Earth and Mars

    NASA Video Gallery

    This animation compares the magnetic fields on Earth and Mars. The Earth has a large-scale planetary magnetic field that can protect it from space weather and other hazards. Mars, on the other hand...

  8. Field quality aspects of CBA superconducting magnets

    SciTech Connect

    Kahn, S.; Engelmann, R.; Fernow, R.; Greene, A.F.; Herrera, J.; Kirk, H.; Skaritka, J.; Wanderer, P.; Willen, E.

    1983-01-01

    A series of superconducting dipole magnets for the BNL Colliding Beam Accelerator which were manufactured to have the proper field quality characteristics has been tested. This report presents the analysis of the field harmonics of these magnets.

  9. Measurements of Solar Vector Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J. (Editor)

    1985-01-01

    Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display.

  10. Thin film metallic sensors in an alternating magnetic field for magnetic nanoparticle hyperthermia cancer therapy

    NASA Astrophysics Data System (ADS)

    Hussein, Z. A.; Boekelheide, Z.

    In magnetic nanoparticle hyperthermia in an alternating magnetic field for cancer therapy, it is important to monitor the temperature in situ. This can be done optically or electrically, but electronic measurements can be problematic because conducting parts heat up in a changing magnetic field. Microfabricated thin film sensors may be advantageous because eddy current heating is a function of size, and are promising for further miniaturization of sensors and fabrication of arrays of sensors. Thin films could also be used for in situ magnetic field sensors or for strain sensors. For a proof of concept, we fabricated a metallic thin film resistive thermometer by photolithographically patterning a 500Å Au/100Å Cr thin film on a glass substrate. Measurements were taken in a solenoidal coil supplying 0.04 T (rms) at 235 kHz with the sensor parallel and perpendicular to the magnetic field. In the parallel orientation, the resistive thermometer mirrored the background heating from the coil, while in the perpendicular orientation self-heating was observed due to eddy current heating of the conducting elements by Faraday's law. This suggests that metallic thin film sensors can be used in an alternating magnetic field, parallel to the field, with no significant self-heating.