Science.gov

Sample records for mission design options

  1. Comparison of mission design options for manned Mars missions

    NASA Technical Reports Server (NTRS)

    Babb, Gus R.; Stump, William R.

    1986-01-01

    A number of manned Mars mission types, propulsion systems, and operational techniques are compared. Conjunction and opposition class missions for cryogenic, hybrid (cryo/storable), and NERVA propulsion concepts are addressed. In addition, both Earth and Mars orbit aerobraking, direct entry of landers, hyperbolic rendezvous, and electric propulsion cases are examined. A common payload to Mars was used for all cases. The basic figure of merit used was weight in low Earth orbit (LEO) at mission initiation. This is roughly proportional to launch costs.

  2. Superheavyweight missions SI versus DI: Ascent flight design options and recommendations

    NASA Technical Reports Server (NTRS)

    1990-01-01

    AFD has completed the trade study on Standard Insertion (SI) vs Direct Insertion (DI) for STS-50. RSOC Range Safety has developed acceptable DI targets from 130 n.mi. to 150 n.mi. and the corresponding performance assessment for these targets using STS-50 data has been completed. This mission has sufficient performance capability to perform this mission as a DI to 160 n.mi. A reduced OMS load corresponding to a DI mission is required for this option. The increase in altitude over the AFP baseline (SI to 145 n.mi.) is highly desirable for this mission. The orientation on orbit for the orbiter/USML-1 payload is such that orbital decay is maximized (maximum frontal cross-sectional area with vehicle normal to velocity vector). Increasing the operational altitude reduces the amount of vernier thruster firings necessary to maintain a constant gravity gradient. The results of this trade study can also be applied to other superheavyweight missions (EDO flights) and will allow for use of the DI technique for lower orbital altitudes, thereby eliminating the SI option for due east, low altitude missions. STSOC transmittal form no. 330-330-130, which documents the technical issues and assumptions used for this trade study effort in detail, should be referenced for further information. The main reason that a DI is desired for STS-50 and other superheavyweight flights (low altitude) is that ESMC range safety has expressed reservations about SI missions in general. The concern is that the current SI design underspeed exposes Africa and Madagascar to potential ET debris impact. In the past range safety has waived the requirement that these areas be protected in the event of an engine failure. With the advent of the pre-MECO OMS dump, the viability of DI and the high casualty expectations from the ACTA press to MECO hazard study, range safety has become more reluctant to approve SI flights. It is felt that to perform an SI mission there would have to be a large decrease in design

  3. Artificial Gravity for Mars Missions: The Different Design and Development Options

    NASA Technical Reports Server (NTRS)

    Murbach, Marcus; Arno, Roger D.

    2000-01-01

    One of the major impediments to human Mars missions is the development of appropriate countermeasures for long term physiological response to the micro-gravity environment. A plethora of countermeasure approaches have been advanced from strictly pharmacological measures to large diameter rotating spacecraft that would simulate a 1-g environment (the latter being the most conservative from a human health perspective). The different approaches have significantly different implications not only on the overall system design of a Mars Mission Vehicle (MMV) but on the necessary earth-orbiting platform that would be required to qualify the particular countermeasure system. it is found that these different design options can be conveniently categorized in terms of the order of magnitude of the rotation diameter required (100's, 10's, 1's, 0 meters). From this, the different mass penalties associated with each category can be generally compared. The overall objective of the countermeasure system should be to maximize crew safety and comfort, minimize exercise protocol time (i.e., the time per day that each crew member would have to participate in the exercise/countermeasure), maximize countermeasure effectiveness, and minimize the associated system mass penalty of the Mars Mission Vehicle (in terms of fraction of IMLEO - Injected Mass in Low Earth Orbit).

  4. Nuclear Thermal Rocket/Vehicle Design Options for Future NASA Missions to the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Corban, Robert R.; Mcguire, Melissa L.; Beke, Erik G.

    1995-01-01

    The nuclear thermal rocket (NTR) provides a unique propulsion capability to planners/designers of future human exploration missions to the Moon and Mars. In addition to its high specific impulse (approximately 850-1000 s) and engine thrust-to-weight ratio (approximately 3-10), the NTR can also be configured as a 'dual mode' system capable of generating electrical power for spacecraft environmental systems, communications, and enhanced stage operations (e.g., refrigeration for long-term liquid hydrogen storage). At present the Nuclear Propulsion Office (NPO) is examining a variety of mission applications for the NTR ranging from an expendable, single-burn, trans-lunar injection (TLI) stage for NASA's First Lunar Outpost (FLO) mission to all propulsive, multiburn, NTR-powered spacecraft supporting a 'split cargo-piloted sprint' Mars mission architecture. Each application results in a particular set of requirements in areas such as the number of engines and their respective thrust levels, restart capability, fuel operating temperature and lifetime, cryofluid storage, and stage size. Two solid core NTR concepts are examined -- one based on NERVA (Nuclear Engine for Rocket Vehicle Application) derivative reactor (NDR) technology, and a second concept which utilizes a ternary carbide 'twisted ribbon' fuel form developed by the Commonwealth of Independent States (CIS). The NDR and CIS concepts have an established technology database involving significant nuclear testing at or near representative operating conditions. Integrated systems and mission studies indicate that clusters of two to four 15 to 25 klbf NDR or CIS engines are sufficient for most of the lunar and Mars mission scenarios currently under consideration. This paper provides descriptions and performance characteristics for the NDR and CIS concepts, summarizes NASA's First Lunar Outpost and Mars mission scenarios, and describes characteristics for representative cargo and piloted vehicles compatible with a

  5. Nuclear Thermal Rocket/vehicle design options for future NASA missions to the Moon and Mars

    NASA Astrophysics Data System (ADS)

    Borowski, Stanley K.; Corban, Robert R.; McGuire, Melissa L.; Beke, Erik G.

    1995-09-01

    The nuclear thermal rocket (NTR) provides a unique propulsion capability to planners/designers of future human exploration missions to the Moon and Mars. In addition to its high specific impulse (approximately 850-1000 s) and engine thrust-to-weight ratio (approximately 3-10), the NTR can also be configured as a 'dual mode' system capable of generating electrical power for spacecraft environmental systems, communications, and enhanced stage operations (e.g., refrigeration for long-term liquid hydrogen storage). At present the Nuclear Propulsion Office (NPO) is examining a variety of mission applications for the NTR ranging from an expendable, single-burn, trans-lunar injection (TLI) stage for NASA's First Lunar Outpost (FLO) mission to all propulsive, multiburn, NTR-powered spacecraft supporting a 'split cargo-piloted sprint' Mars mission architecture. Each application results in a particular set of requirements in areas such as the number of engines and their respective thrust levels, restart capability, fuel operating temperature and lifetime, cryofluid storage, and stage size. Two solid core NTR concepts are examined -- one based on NERVA (Nuclear Engine for Rocket Vehicle Application) derivative reactor (NDR) technology, and a second concept which utilizes a ternary carbide 'twisted ribbon' fuel form developed by the Commonwealth of Independent States (CIS). The NDR and CIS concepts have an established technology database involving significant nuclear testing at or near representative operating conditions. Integrated systems and mission studies indicate that clusters of two to four 15 to 25 klbf NDR or CIS engines are sufficient for most of the lunar and Mars mission scenarios currently under consideration. This paper provides descriptions and performance characteristics for the NDR and CIS concepts, summarizes NASA's First Lunar Outpost and Mars mission scenarios, and describes characteristics for representative cargo and piloted vehicles compatible with a

  6. Boulder Capture System Design Options for the Asteroid Robotic Redirect Mission Alternate Approach Trade Study

    NASA Technical Reports Server (NTRS)

    Belbin, Scott P.; Merrill, Raymond G.

    2014-01-01

    This paper presents a boulder acquisition and asteroid surface interaction electromechanical concept developed for the Asteroid Robotic Redirect Mission (ARRM) option to capture a free standing boulder on the surface of a 100 m or larger Near Earth Asteroid (NEA). It details the down select process and ranking of potential boulder capture methods, the evolution of a simple yet elegant articulating spaceframe, and ongoing risk reduction and concept refinement efforts. The capture system configuration leverages the spaceframe, heritage manipulators, and a new microspine technology to enable the ARRM boulder capture. While at the NEA it enables attenuation of terminal descent velocity, ascent to escape velocity, boulder collection and restraint. After departure from the NEA it enables, robotic inspection, sample caching, and crew Extra Vehicular Activities (EVA).

  7. Design concepts and options for the Thermal Infrared Imager (TIRI) as part of ESA's Asteroid Impact Mission.

    NASA Astrophysics Data System (ADS)

    Bowles, Neil; Calcutt, Simon; Licandro, Javier; Reyes, Marcos; Delbo, Marco; Donaldson Hanna, Kerri; Arnold, Jessica; Howe, Chris

    2016-04-01

    ESA's Asteroid Impact Mission (AIM) is being studied as part of the joint ESA/NASA AIDA mission for launch in 2020. AIDA's primary mission is to investigate the effect of a kinetic impactor on the secondary component of the binary asteroid 65803 Didymos in late 2022. AIM will characterise the Didymos system and monitor the response of the binary system to the impact. A multi-spectral, thermal-infrared imaging instrument (TIRI) will be an essential component of AIM's remote sensing payload, as it will provide key information on the nature of the surfaces (e.g. presence or absence of materials, degree of compaction, and rock abundance of the regolith) of both components in the Didymos system. The temperature maps provided by TIRI will be important for navigation and spacecraft health and safety for proximity/lander operations. By measuring the asteroids' diurnal thermal responses (thermal inertia) and their surface compositions via spectral signatures, TIRI will provide information on the origin and evolution of the binary system. In this presentation we will discuss possible instrument design for TIRI, exploring options that include imaging spectroscopy to broadband imaging. By using thermal models and compositional analogues of the Didymos system we will show how the performance of each design option compares to the wider scientific goals of the AIDA/AIM mission.

  8. RTGs Options for Pluto Fast Flyby Mission

    SciTech Connect

    Schock, Alfred

    1993-10-01

    A small spacecraft design for the Pluto Fast Flyby (PFF) Mission is under study by the Jet Propulsion Laboratory (JPL) for the National Aeronautics and Space Administration (NASA), for a possible launch as early as 1998. JPL's 1992 baseline design calls for a power source able to furnish an energy output of 3963 kWh and a power output of 69 watts(e) at the end of the 9.2-year mission. Satisfying those demands is made difficult because NASA management has set a goal of reducing the spacecraft mass from a baseline value of 166 kg to ~110 kg, which implies a mass goal of less than 10 kg for the power source. To support the ongoing NASA/JPL studies, the Department of Energy's Office of Special Applications (DOE/OSA) commissioned Fairchild Space to prepare and analyze conceptual designs of radioisotope power systems for the PFF mission. Thus far, a total of eight options employing essentially the same radioisotope heat source modules were designed and subjected to thermal, electrical, structural, and mass analyses by Fairchild. Five of these - employing thermoelectric converters - are described in the present paper, and three - employing free-piston Stirling converters - are described in the companion paper presented next. The system masses of the thermoelectric options ranged from 19.3 kg to 10.2 kg. In general, the options requiring least development are the heaviest, and the lighter options require more development with greater programmatic risk. There are four duplicate copies

  9. Vehicle and Mission Design Options for the Human Exploration of Mars/Phobos Using "Bimodal" NTR and LANTR Propulsion

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Dudzinski, Leonard A.; McGuire, Melissa L.

    1998-01-01

    The nuclear thermal rocket (NTR) is one of the leading propulsion options for future human missions to Mars because of its high specific impulse (Isp-850-1000 s) capability and its attractive engine thrust-to-weight ratio (approximately equal 3-10). To stay within the available mass and payload volume limits of a "Magnum" heavy lift vehicle, a high performance propulsion system is required for trans-Mars injection (TMI). An expendable TMI stage, powered by three 15 thousand pounds force (klbf) NTR engines is currently under consideration by NASA for its Design Reference Mission (DRM). However, because of the miniscule burnup of enriched uranium-235 during the Earth departure phase (approximately 10 grams out of 33 kilograms in each NTR core), disposal of the TMI stage and its engines after a single use is a costly and inefficient use of this high performance stage. By reconfiguring the engines for both propulsive thrust and modest power generation (referred to as "bimodal" operation), a robust, multiple burn, "power-rich" stage with propulsive Mars capture and reuse capability is possible, A family of modular "bimodal" NTR (BNTR) vehicles are described which utilize a common "core" stage powered by three 15 klbf BNTRs that produce 50 kWe of total electrical power for crew life support, an active refrigeration / reliquification system for long term, "zero-boiloff" liquid hydrogen (LH2) storage, and high data rate communications. An innovative, spine-like "saddle truss" design connects the core stage and payload element and is open underneath to allow supplemental "in-line" propellant tanks and contingency crew consumables to be easily jettisoned to improve vehicle performance. A "modified" DRM using BNTR transfer vehicles requires fewer transportation system elements, reduces IMLEO and mission risk, and simplifies space operations. By taking the next logical step--use of the BNTR for propulsive capture of all payload elements into Mars orbit--the power available in

  10. Improving Conceptual Design for Launch Vehicles. The Bimese Concept: A Study of Mission and Economic Options

    NASA Technical Reports Server (NTRS)

    Olds, John R.; Tooley, Jeffrey

    1999-01-01

    This report summarizes key activities conducted in the third and final year of the cooperative agreement NCC1-229 entitled "Improving Conceptual Design for Launch Vehicles." This project has been funded by the Vehicle Analysis Branch at NASA's Langley Research Center in Hampton, VA. Work has been performed by the Space Systems Design Lab (SSDL) at the Georgia Institute of Technology, Atlanta, GA. Accomplishments during the first and second years of this project have been previously reported in annual progress reports. This report will focus on the third and final year of the three year activity.

  11. Implementation Options for the PROPEL Electrodynamic Tether Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Bilen, Sven G.; Johnson, Les; Gilchrist, Brian E.; Hoyt, Robert P.; Elder, Craig H.; Fuhrhop, Keith P.; Scadera, Michael P.; Stone, Nobie H.

    2014-01-01

    The PROPEL flight mission concept will demonstrate the safe use of an electrodynamic tether for generating thrust. PROPEL is being designed to be a versatile electrodynamic-tether system for multiple end users and to be flexible with respect to platform. As such, several implementation options are being explored, including a comprehensive mission design for PROPEL with a mission duration of six months; a space demonstration mission concept design with configuration of a pair of tethered satellites, one of which is the Japanese H-II Transfer Vehicle; and an ESPA-based system. We report here on these possible implementation options for PROPEL. electrodynamic tether; PROPEL demonstration mission; propellantless propulsion

  12. Abort Options for Potential Mars Missions

    NASA Technical Reports Server (NTRS)

    Tartabini, P. V.; Striepe, S. A.; Powell, R. W.

    1994-01-01

    Mars trajectory design options were examined that would accommodate a premature termination of a nominal manned opposition class mission for opportunities between 2010 and 2025. A successful abort must provide a safe return to Earth in the shortest possible time consistent with mission constraints. In this study, aborts that provided a minimum increase in the initial vehicle mass in low Earth orbit (IMLEO) were identified by locating direct transfer nominal missions and nominal missions including an outbound or inbound Venus swing-by that minimized IMLEO. The ease with which these missions could be aborted while meeting propulsion and time constraints was investigated by examining free return (unpowered) and powered aborts. Further reductions in trip time were made to some aborts by the addition or removal of an inbound Venus swing-by. The results show that, although few free return aborts met the specified constraints, 85% of each nominal mission could be aborted as a powered abort without an increase in propellant. Also, in many cases, the addition or removal of a Venus swing-by increased the number of abort opportunities or decreased the total trip time during an abort.

  13. Ballistic trajectory options for manned Mars Missions

    NASA Technical Reports Server (NTRS)

    Young, Archie C.

    1990-01-01

    Mars Mission profile options and mission requirements data are presented for earth-Mars opposition and conjunction class round-trip flyby and stopover mission opportunities. The opposition-class flyby and sprint mission uses direct transfer trajectories to and on return from Mars. The opposition-class stopover mission employs the gravitational field of Venus to accelerate the space vehicle on either the outbound or inbound leg in order to reduce the propulsion requirement associated with the opposition-class mission. The conjunction-class mission minimizes propulsion requirements by optimizing the stopover time at Mars. Representative interplanetary space vehicle systems are sized to compare and show sensitivity of the initial mass required in low earth orbit to one mission profile option and mission opportunity to another.

  14. Ballistic trajectory options for manned Mars Missions

    NASA Astrophysics Data System (ADS)

    Young, Archie C.

    Mars Mission profile options and mission requirements data are presented for earth-Mars opposition and conjunction class round-trip flyby and stopover mission opportunities. The opposition-class flyby and sprint mission uses direct transfer trajectories to and on return from Mars. The opposition-class stopover mission employs the gravitational field of Venus to accelerate the space vehicle on either the outbound or inbound leg in order to reduce the propulsion requirement associated with the opposition-class mission. The conjunction-class mission minimizes propulsion requirements by optimizing the stopover time at Mars. Representative interplanetary space vehicle systems are sized to compare and show sensitivity of the initial mass required in low earth orbit to one mission profile option and mission opportunity to another.

  15. Manned Mars mission astronomy options

    NASA Technical Reports Server (NTRS)

    Suess, S. T.

    1986-01-01

    Astronomical observations during the transit phase, in orbit about Mars, and from the surface present important scientific objectives. Primary astronomical objectives are being summarized by J. Burns (University of New Mexico). Additional or alternative options will be introduced here, together with their strengths, weaknesses, viability, and value. It is important to note at the outset that not all possible options are necessarily important or viable.

  16. Trajectory options for the DART mission

    NASA Astrophysics Data System (ADS)

    Atchison, Justin A.; Ozimek, Martin T.; Kantsiper, Brian L.; Cheng, Andrew F.

    2016-06-01

    This study presents interplanetary trajectory options for the Double Asteroid Redirection Test (DART) spacecraft to reach the near Earth object, Didymos binary system, during its 2022 Earth conjunction. DART represents a component of a joint NASA-ESA mission to study near Earth object kinetic impact deflection. The DART trajectory must satisfy mission objectives for arrival timing, geometry, and lighting while minimizing launch vehicle and spacecraft propellant requirements. Chemical propulsion trajectories are feasible from two candidate launch windows in late 2020 and 2021. The 2020 trajectories are highly perturbed by Earth's orbit, requiring post-launch deep space maneuvers to retarget the Didymos system. Within these windows, opportunities exist for flybys of additional near Earth objects: Orpheus in 2021 or 2007 YJ in 2022. A second impact attempt, in the event that the first impact is unsuccessful, can be added at the expense of a shorter launch window and increased (∼3x) spacecraft ΔV . However, the second impact arrival geometry has poor lighting, high Earth ranges, and would require additional degrees of freedom for solar panel and/or antenna gimbals. A low-thrust spacecraft configuration increases the trajectory flexibility. A solar electric propulsion spacecraft could be affordably launched as a secondary spacecraft in an Earth orbit and spiral out to target the requisite interplanetary departure condition. A sample solar electric trajectory was constructed from an Earth geostationary transfer using a representative 1.5 kW thruster. The trajectory requires 9 months to depart Earth's sphere of influence, after which its interplanetary trajectory includes a flyby of Orpheus and a second Didymos impact attempt. The solar electric spacecraft implementation would impose additional bus design constraints, including large solar arrays that could pose challenges for terminal guidance. On the basis of this study, there are many feasible options for DART to

  17. Mission Architecture Options for Enceladus Exploration

    NASA Astrophysics Data System (ADS)

    Spilker, Thomas R.; Strange, N. J.; Elliott, J. O.; Reh, K. R.

    2009-09-01

    Discoveries made by the Cassini-Huygens mission reveal Saturn's moon Enceladus as a high science-value target for a future mission. Recent work at JPL to assessed the feasibility of various mission architecture options for Enceladus exploration. This poster discusses the feasibility of Enceladus flyby, orbiter, lander, impactor, and sample return missions. In 2007 and 2008, NASA and ESA both commissioned studies of concepts for large missions that would investigate Enceladus either as a dedicated mission or jointly with Titan. This battery of studies included the 2007 NASA Enceladus Flagship study, the 2007 ESA TandEM study, and the 2008 joint NASA/ESA Titan Saturn System Mission study. We summarize these recent studies and present additional mission concepts beyond those examined in detail in these studies.

  18. Asteroid Redirect Robotic Mission: Robotic Boulder Capture Option Overview

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.; Merrill, Raymond G.; Belbin, Scott P.; Reeves, David M.; Earle, Kevin D.; Naasz, Bo J.; Abell, Paul A.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) is currently studying an option for the Asteroid Redirect Robotic Mission (ARRM) that would capture a multi-ton boulder (typically 2-4 meters in size) from the surface of a large (is approximately 100+ meter) Near-Earth Asteroid (NEA) and return it to cislunar space for subsequent human and robotic exploration. This alternative mission approach, designated the Robotic Boulder Capture Option (Option B), has been investigated to determine the mission feasibility and identify potential differences from the initial ARRM concept of capturing an entire small NEA (4-10 meters in size), which has been designated the Small Asteroid Capture Option (Option A). Compared to the initial ARRM concept, Option B allows for centimeter-level characterization over an entire large NEA, the certainty of target NEA composition type, the ability to select the boulder that is captured, numerous opportunities for mission enhancements to support science objectives, additional experience operating at a low-gravity planetary body including extended surface contact, and the ability to demonstrate future planetary defense strategies on a hazardous-size NEA. Option B can leverage precursor missions and existing Agency capabilities to help ensure mission success by targeting wellcharacterized asteroids and can accommodate uncertain programmatic schedules by tailoring the return mass.

  19. NASA's asteroid redirect mission: Robotic boulder capture option

    NASA Astrophysics Data System (ADS)

    Abell, P.; Nuth, J.; Mazanek, D.; Merrill, R.; Reeves, D.; Naasz, B.

    2014-07-01

    NASA is examining two options for the Asteroid Redirect Mission (ARM), which will return asteroid material to a Lunar Distant Retrograde Orbit (LDRO) using a robotic solar-electric-propulsion spacecraft, called the Asteroid Redirect Vehicle (ARV). Once the ARV places the asteroid material into the LDRO, a piloted mission will rendezvous and dock with the ARV. After docking, astronauts will conduct two extravehicular activities (EVAs) to inspect and sample the asteroid material before returning to Earth. One option involves capturing an entire small (˜4--10 m diameter) near-Earth asteroid (NEA) inside a large inflatable bag. However, NASA is also examining another option that entails retrieving a boulder (˜1--5 m) via robotic manipulators from the surface of a larger (˜100+ m) pre-characterized NEA. The Robotic Boulder Capture (RBC) option can leverage robotic mission data to help ensure success by targeting previously (or soon to be) well-characterized NEAs. For example, the data from the Japan Aerospace Exploration Agency's (JAXA) Hayabusa mission has been utilized to develop detailed mission designs that assess options and risks associated with proximity and surface operations. Hayabusa's target NEA, Itokawa, has been identified as a valid target and is known to possess hundreds of appropriately sized boulders on its surface. Further robotic characterization of additional NEAs (e.g., Bennu and 1999 JU_3) by NASA's OSIRIS REx and JAXA's Hayabusa 2 missions is planned to begin in 2018. This ARM option reduces mission risk and provides increased benefits for science, human exploration, resource utilization, and planetary defense.

  20. Radioisotope Stirling Generator Options for Pluto Fast Flyby Mission

    SciTech Connect

    Schock, Alfred

    1993-10-01

    The preceding paper described conceptual designs and analytical results for five Radioisotope Thermoelectric Generator (RTG) options for the Pluto Fast Flyby (PFF) mission, and the present paper describes three Radioisotope Stirling Generator (RSG) options for the same mission. The RSG options are based on essentially the same radioisotope heat source modules used in previously flown RTGs and on designs and analyses of a 75-watt free-piston Stirling engine produced by Mechanical Technology Incorporated (MTI) for NASA's Lewis Research Center. The integrated system design options presented were generated in a Fairchild Space study sponsored by the Department of Energy's Office of Special Applications, in support of ongoing PFF mission and spacecraft studies that the Jet Propulsion Laboratory (JPL) is conducting for the National Aeronautics and Space Administration (NASA). That study's NASA-directed goal is to reduce the spacecraft mass from its baseline value of 166 kg to ~110 kg, which implies a mass goal of less than 10 kg for a power source able to deliver 69 watts(e) at the end of the 9.2-year mission. In general, the Stirling options were found to be lighter than the thermoelectric options described in the preceding paper. But they are less mature, requiring more development, and entailing greater programmatic risk. The Stirling power system mass ranged from 7.3 kg (well below the 10-kg goal) for a non-redundant system to 11.3 kg for a redundant system able to maintain full power if one of its engines fails. In fact, the latter system could deliver as much as 115 watts(e) if desired by the mission planners. There are 5 copies in the file.

  1. Radioisotope Stirling Generator Options for Pluto Fast Flyby Mission

    NASA Astrophysics Data System (ADS)

    Schock, Alfred

    1994-07-01

    The preceding paper (Schock 1994) described conceptual designs and analytical results for five Radioisotope Thermoelectric Generator (RTG) options for the Pluto Fast Flyby (PFF) mission, and the present paper describes three Radioisotope Stirling Generator (RSG) options for the same mission. The RSG options are based on essentially the same radioisotope heat source modules used in previously flown RTGs and on designs and analyses of a 75-Watt free-piston Stirling engine produced by Mechanical Technology Incorporated (MTI) for NASA's Lewis Research Center. The integrated system design options presented were generated in a Fairchild Space study sponsored by the Department of Energy's Office of Special Applications, in support of ongoing PFF mission and spacecraft studies that the Jet Propulsion Laboratory (JPL) is conducting for the National Aeronautics and Space Administration (NASA). That study's NASA-directed goal is to reduce the spacecraft mass from its baseline value of 166 kg to -110 kg, which implies a mass goal of less than 10 kg for a power source able to deliver 69 Watts(e) at the end of the 9.2-year mission. In general, the Stirling options were found to be lighter than the thermoelectric options described in the preceding paper. But they are less mature, requiring more development, and entailing greater programmatic risk. The Stirling power system mass ranged from 7.3 kg (well below the 10-kg goal) for a non-redundant system to 11.3 kg for a redundant system able to maintain full power if one of its two engines fails. In fact, the latter system could deliver as much as 115 Watts(e) if desired by the mission planners.

  2. Radioisotope Stirling Generator Options for Pluto Fast Flyby Mission

    SciTech Connect

    Schock, Alfred

    2012-01-19

    The preceding paper described conceptual designs and analytical results for five Radioisotope Thermoelectric Generator (RTG) options for the Pluto Fast Flyby (PFF) mission, and the present paper describes three Radioisotope Stirling Generator (RSG) options for the same mission. The RSG options are based on essentially the same radioisotope heat source modules used in previously flown RTGs and on designs and analyses of a 75-watt free-piston Stirling engine produced by Mechanical Technology Incorporated (MTI) for NASA's Lewis Research Center. The integrated system design options presented were generated in a Fairchild Space study sponsored by the Department of Energy's Office of Special Applications, in support of ongoing PFF mission and spacecraft studies that the Jet Propulsion Laboratory (JPL) is conducting for the National Aeronautics and Space Administration (NASA). That study's NASA-directed goal is to reduce the spacecraft mass from its baseline value of 166 kg to ~110 kg, which implies a mass goal of less than 10 kg for a power source able to deliver 69 watts(e) at the end of the 9.2-year mission. In general, the Stirling options were found to be lighter than the thermoelectric options described in the preceding paper. But they are less mature, requiring more development, and entailing greater programmatic risk. The Stirling power system mass ranged from 7.3 kg (well below the 10-kg goal) for a non-redundant system to 11.3 kg for a redundant system able to maintain full power if one of its engines fails. In fact, the latter system could deliver as much as 115 watts(e) if desired by the mission planners. There are 2 copies in the file.

  3. Implementation Options for the PROPEL Electrodynamic Tether Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Bilen, Sven G.; Johnson, C. Les; Gilchrist, Brian E.; Hoyt, Robert P.; Elder, Craig H.; Fuhrhop, Keith P.; Scadera, Michael; Stone, Nobie

    2014-01-01

    . The ETPS builds on prior work on long-life, failure-resistant, conducting tethers and includes an instrument suite with demonstrated heritage capable of performing necessary diagnostics to measure performance against predictions for a given system size (to be determined) and boost rate. Mission designs in other configurations and launch vehicle options are being developed such that the system can be demonstration should a flight opportunity be identified. We will report on past and ongoing implementation options for PROPEL.

  4. Kepler Mission Design

    NASA Technical Reports Server (NTRS)

    Koch, David; Borucki, William; Lissauer, J.; Mayer, David; Voss, Janice; Basri, Gibor; Gould, Alan; Brown, Timothy; Cockran, William; Caldwell, Douglas

    2005-01-01

    The Kepler Mission is in the development phase with launch planned for 2007. The mission goal first off is to reliably detect a significant number of Earth-size planets in the habitable zone of solar-like stars. The mission design allows for exploring the diversity of planetary sizes, orbital periods, stellar spectral types, etc. In this paper we describe the technical approach taken for the mission design; describing the flight and ground system, the detection methodology, the photometer design and capabilities, and the way the data are taken and processed. (For Stellar Classification program. Finally the detection capability in terms of planet size and orbit are presented as a function of mission duration and stellar type.

  5. NASA’s Asteroid Redirect Mission: The Boulder Capture Option

    NASA Astrophysics Data System (ADS)

    Abell, Paul; Nuth, Joseph A.; Mazanek, Dan D.; Merrill, Raymond G.; Reeves, David M.; Naasz, Bo J.

    2014-11-01

    NASA is examining two options for the Asteroid Redirect Mission (ARM), which will return asteroid material to a Lunar Distant Retrograde Orbit (LDRO) using a robotic solar-electric-propulsion spacecraft, called the Asteroid Redirect Vehicle (ARV). Once the ARV places the asteroid material into the LDRO, a piloted mission will rendezvous and dock with the ARV. After docking, astronauts will conduct two extravehicular activities (EVAs) to inspect and sample the asteroid material before returning to Earth. One option involves capturing an entire small (˜4-10 m diameter) near-Earth asteroid (NEA) inside a large inflatable bag. However, NASA is examining another option that entails retrieving a boulder (˜1-5 m) via robotic manipulators from the surface of a larger (˜100+ m) pre-characterized NEA. This option can leverage robotic mission data to help ensure success by targeting previously (or soon to be) well-characterized NEAs. For example, the data from the Hayabusa mission has been utilized to develop detailed mission designs that assess options and risks associated with proximity and surface operations. Hayabusa’s target NEA, Itokawa, has been identified as a valid target and is known to possess hundreds of appropriately sized boulders on its surface. Further robotic characterization of additional NEAs (e.g., Bennu and 1999 JU3) by NASA’s OSIRIS REx and JAXA’s Hayabusa 2 missions is planned to begin in 2018. The boulder option is an extremely large sample-return mission with the prospect of bringing back many tons of well-characterized asteroid material to the Earth-Moon system. The candidate boulder from the target NEA can be selected based on inputs from the world-wide science community, ensuring that the most scientifically interesting boulder be returned for subsequent sampling. This boulder option for NASA’s ARM can leverage knowledge of previously characterized NEAs from prior robotic missions, which provides more certainty of the target NEA

  6. NASA's Asteroid Redirect Mission: The Boulder Capture Option

    NASA Technical Reports Server (NTRS)

    Abell, Paul A.; Nuth, J.; Mazanek, D.; Merrill, R.; Reeves, D.; Naasz, B.

    2014-01-01

    NASA is examining two options for the Asteroid Redirect Mission (ARM), which will return asteroid material to a Lunar Distant Retrograde Orbit (LDRO) using a robotic solar-electric-propulsion spacecraft, called the Asteroid Redirect Vehicle (ARV). Once the ARV places the asteroid material into the LDRO, a piloted mission will rendezvous and dock with the ARV. After docking, astronauts will conduct two extravehicular activities (EVAs) to inspect and sample the asteroid material before returning to Earth. One option involves capturing an entire small (approximately 4-10 m diameter) near-Earth asteroid (NEA) inside a large inflatable bag. However, NASA is examining another option that entails retrieving a boulder (approximately 1-5 m) via robotic manipulators from the surface of a larger (approximately 100+ m) pre-characterized NEA. This option can leverage robotic mission data to help ensure success by targeting previously (or soon to be) well-characterized NEAs. For example, the data from the Hayabusa mission has been utilized to develop detailed mission designs that assess options and risks associated with proximity and surface operations. Hayabusa's target NEA, Itokawa, has been identified as a valid target and is known to possess hundreds of appropriately sized boulders on its surface. Further robotic characterization of additional NEAs (e.g., Bennu and 1999 JU3) by NASA's OSIRIS REx and JAXA's Hayabusa 2 missions is planned to begin in 2018. The boulder option is an extremely large sample-return mission with the prospect of bringing back many tons of well-characterized asteroid material to the Earth-Moon system. The candidate boulder from the target NEA can be selected based on inputs from the world-wide science community, ensuring that the most scientifically interesting boulder be returned for subsequent sampling. This boulder option for NASA's ARM can leverage knowledge of previously characterized NEAs from prior robotic missions, which provides more

  7. Vehicle and Mission Design Options for the Human Exploration of Mars/Phobos Using "Bimodal" NTR and LANTR Propulsion. Revised Dec. 1998

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Dudzinski, Leonard A.; McGuire, Melissa L.

    2002-01-01

    The nuclear thermal rocket (NTR) is one of the leading propulsion options for future human missions to Mars because of its high specific impulse (1sp is approximately 850-1000 s) capability and its attractive engine thrust-to-weight ratio (approximately 3-10). To stay within the available mass and payload volume limits of a "Magnum" heavy lift vehicle, a high performance propulsion system is required for trans-Mars injection (TMI). An expendable TMI stage, powered by three 15 thousand pounds force (klbf) NTR engines is currently under consideration by NASA for its Design Reference Mission (DRM). However, because of the miniscule burnup of enriched uranium-235 during the Earth departure phase (approximately 10 grams out of 33 kilograms in each NTR core), disposal of the TMI stage and its engines after a single use is a costly and inefficient use of this high performance stage. By reconfiguring the engines for both propulsive thrust and modest power generation (referred to as "bimodal" operation), a robust, multiple burn, "power-rich" stage with propulsive Mars capture and reuse capability is possible. A family of modular bimodal NTR (BNTR) vehicles are described which utilize a common "core" stage powered by three 15 klbf BNTRs that produce 50 kWe of total electrical power for crew life support, an active refrigeration / reliquification system for long term, zero-boiloff liquid hydrogen (LH2) storage, and high data rate communications. An innovative, spine-like "saddle truss" design connects the core stage and payload element and is open underneath to allow supplemental "in-line" propellant tanks and contingency crew consumables to be easily jettisoned to improve vehicle performance. A "modified" DRM using BNTR transfer vehicles requires fewer transportation system elements, reduces IMLEO and mission risk, and simplifies space operations. By taking the next logical step--use of the BNTR for propulsive capture of all payload elements into Mars orbit--the power

  8. Electric Propulsion Options for a Magnetospheric Mapping Mission

    NASA Technical Reports Server (NTRS)

    Oleson, Steven; Russell, Chris; Hack, Kurt; Riehl, John

    1998-01-01

    The Twin Electric Magnetospheric Probes Exploring on Spiral Trajectories mission concept was proposed as a Middle Explorer class mission. A pre-phase-A design was developed which utilizes the advantages of electric propulsion for Earth scientific spacecraft use. This paper presents propulsion system analyses performed for the proposal. The proposed mission required two spacecraft to explore near circular orbits 0.1 to 15 Earth radii in both high and low inclination orbits. Since the use of chemical propulsion would require launch vehicles outside the Middle Explorer class a reduction in launch mass was sought using ion, Hall, and arcjet electric propulsion system. Xenon ion technology proved to be the best propulsion option for the mission requirements requiring only two Pegasus XL launchers. The Hall thruster provided an alternative solution but required two larger, Taurus launch vehicles. Arcjet thrusters did not allow for significant launch vehicle reduction in the Middle Explorer class.

  9. Propulsion Options for the LISA Mission

    NASA Technical Reports Server (NTRS)

    Cardiff, Eric H.; Marr, Gregory C.

    2004-01-01

    The LISA mission is a constellation of three spacecraft operating at 1 AU from the Sun in a position trailing the Earth. After launch, a propulsion module provides the AV necessary to reach this operational orbit, and separates from the spacecraft. A second propulsion system integrated with the spacecraft maintains the operational orbit and reduces nongravitational disturbances on the instruments. Both chemical and electrical propulsion systems were considered for the propulsion module, and this trade is presented to show the possible benefits of an EP system. Several options for the orbit maintenance and disturbance reduction system are also briefly discussed, along with several important requirements that suggest the use of a FEEP thruster system.

  10. Comparison of Options for a Pilot Plant Fusion Nuclear Mission

    SciTech Connect

    Brown, T; Goldston, R J; El-Guebaly, L; Kessel, C; Neilson, G H; Malang, S; Menard, J E; Prager, S; Waganer, L; Titus, P; Zarnstorff, M

    2012-08-27

    A fusion pilot plant study was initiated to clarify the development needs in moving from ITER to a first of a kind fusion power plant, following a path similar to the approach adopted for the commercialization of fission. The pilot plant mission encompassed component test and fusion nuclear science missions plus the requirement to produce net electricity with high availability in a device designed to be prototypical of the commercial device. Three magnetic configuration options were developed around this mission: the advanced tokamak (AT), spherical tokamak (ST) and compact stellarator (CS). With the completion of the study and separate documentation of each design option a question can now be posed; how do the different designs compare with each other as candidates for meeting the pilot plant mission? In a pro/con format this paper will examine the key arguments for and against the AT, ST and CS magnetic configurations. Key topics addressed include: plasma parameters, device configurations, size and weight comparisons, diagnostic issues, maintenance schemes, availability influences and possible test cell arrangement schemes.

  11. Electric Power System Technology Options for Lunar Surface Missions

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.

    2005-01-01

    In 2004, the President announced a 'Vision for Space Exploration' that is bold and forward-thinking, yet practical and responsible. The vision explores answers to longstanding questions of importance to science and society and will develop revolutionary technologies and capabilities for the future, while maintaining good stewardship of taxpayer dollars. One crucial technology area enabling all space exploration is electric power systems. In this paper, the author evaluates surface power technology options in order to identify leading candidate technologies that will accomplish lunar design reference mission three (LDRM-3). LDRM-3 mission consists of multiple, 90-day missions to the lunar South Pole with 4-person crews starting in the year 2020. Top-level power requirements included a nominal 50 kW continuous habitat power over a 5-year lifetime with back-up or redundant emergency power provisions and a nominal 2-kW, 2-person unpressurized rover. To help direct NASA's technology investment strategy, this lunar surface power technology evaluation assessed many figures of merit including: current technology readiness levels (TRLs), potential to advance to TRL 6 by 2014, effectiveness of the technology to meet the mission requirements in the specified time, mass, stowed volume, deployed area, complexity, required special ground facilities, safety, reliability/redundancy, strength of industrial base, applicability to other LDRM-3 elements, extensibility to Mars missions, costs, and risks. For the 50-kW habitat module, dozens of nuclear, radioisotope and solar power technologies were down-selected to a nuclear fission heat source with Brayton, Stirling or thermoelectric power conversion options. Preferred energy storage technologies included lithium-ion battery and Proton Exchange Membrane (PEM) Regenerative Fuel Cells (RFC). Several AC and DC power management and distribution architectures and component technologies were defined consistent with the preferred habitat

  12. AXTAR: Mission Design Concept

    NASA Technical Reports Server (NTRS)

    Ray, Paul S.; Chakrabarty, Deepto; Wilson-Hodge, Colleen A.; Philips, Bernard F.; Remillard, Ronald A.; Levine, Alan M.; Wood, Kent S.; Wolff, Michael T.; Gwon, Chul S.; Strohmayer, Tod E.; Briggs, Michael S.; Capizzo, Peter; Fabisinski, Leo; Hopkins, Randall C.; Hornsby, Linda S.; Johnson, Les; Maples, C. Dauphne; Miernik, Janie H.; Thomas, Dan; DeGeronimo, Gianluigi

    2010-01-01

    The Advanced X-ray Timing Array (AXTAR) is a mission concept for X-ray timing of compact objects that combines very large collecting area, broadband spectral coverage, high time resolution, highly flexible scheduling, and an ability to respond promptly to time-critical targets of opportunity. It is optimized for sub-millisecond timing of bright Galactic X-ray sources in order to study phenomena at the natural time scales of neutron star surfaces and black hole event horizons, thus probing the physics of ultra-dense matter, strongly curved spacetimes, and intense magnetic fields. AXTAR s main instrument, the Large Area Timing Array (LATA) is a collimated instrument with 2 50 keV coverage and over 3 square meters effective area. The LATA is made up of an array of super-modules that house 2-mm thick silicon pixel detectors. AXTAR will provide a significant improvement in effective area (a factor of 7 at 4 keV and a factor of 36 at 30 keV) over the RXTE PCA. AXTAR will also carry a sensitive Sky Monitor (SM) that acts as a trigger for pointed observations of X-ray transients in addition to providing high duty cycle monitoring of the X-ray sky. We review the science goals and technical concept for AXTAR and present results from a preliminary mission design study

  13. Pioneer probe mission with orbiter option

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A spacecraft is described which is based on Pioneer 10 and 11, and existing propulsion technology; it can transport and release a probe for entry into Jupiter's atmosphere, and subsequently maneuver to place the spacecraft in orbit about Jupiter. Orbital operations last 3 years and include maneuvers to provide multiple close satellite encounters which allow the orbit to be significantly changed to explore different parts of the magnetosphere. A mission summary, a guide to related documents, and background information about Jupiter are presented along with mission analysis over the complete mission profile. Other topics discussed include the launch, interplanetary flight, probe release and orbit deflection, probe entry, orbit selection, orbit insertion, periapsis raising, spacecraft description, and the effects of Jupiter's radiation belt on both orbiter and the probe.

  14. Nuclear propulsion system options for Mars missions

    SciTech Connect

    Emrich, W.J. Jr.; Young, A.C. )

    1992-03-01

    This paper focuses on the use of a nuclear thermal rocket to accomplish a variety of space missions with emphasis on the manned Mars mission. The particle-bed-reactor type nuclear engine was chosen as the baseline engine because of its perceived versatility over other nuclear propulsion systems in conducting a wide variety of tasks. This study indicates that the particle-bed-reactor engine with its high engine thrust-to-weight ratio (about 20) and high specific impulse (about 950 to 1050 sec) offers distinct advantages over the larger and heavier NERVA-type nuclear engines.

  15. Nuclear propulsion system options for Mars missions

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.; Young, Archie C.

    1992-01-01

    This paper focuses on the use of a nuclear thermal rocket to accomplish a variety of space missions with emphasis on the manned Mars mission. The particle-bed-reactor type nuclear engine was chosen as the baseline engine because of its perceived versatility over other nuclear propulsion systems in conducting a wide variety of tasks. This study indicates that the particle-bed-reactor engine with its high engine thrust-to-weight ratio (about 20) and high specific impulse (about 950 to 1050 sec) offers distinct advantages over the larger and heavier NERVA-type nuclear engines.

  16. STEREO Mission Design Implementation

    NASA Technical Reports Server (NTRS)

    Guzman, Jose J.; Dunham, David W.; Sharer, Peter J.; Hunt, Jack W.; Ray, J. Courtney; Shapiro, Hongxing S.; Ossing, Daniel A.; Eichstedt, John E.

    2007-01-01

    STEREO (Solar-TErrestrial RElations Observatory) is the third mission in the Solar Terrestrial Probes program (STP) of the National Aeronautics and Space Administration (NASA) Science Mission Directorate Sun-Earth Connection theme. This paper describes the successful implementation (lunar swingby targeting) of the mission following the first phasing orbit to deployment into the heliocentric mission orbits following the two lunar swingbys. The STEREO Project had to make some interesting trajectory decisions in order to exploit opportunities to image a bright comet and an unusual lunar transit across the Sun.

  17. Cryogenic transfer options for exploration missions

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    1991-01-01

    The literature of in-space cryogenic transfer is reviewed in order to propose transportation concepts to support the Space Exploration Initiative (SEI). Forty-nine references are listed and key findings are synopsized. An assessment of the current maturity of cryogenic transfer system technology is made. Although the settled transfer technique is the most mature technology, the No-Vent Fill technology is maturing rapidly. Future options for development of cryogenic transfer technology are also discussed.

  18. Mission Design for the Innovative Interstellar Explorer Vision Mission

    NASA Technical Reports Server (NTRS)

    Fiehler, Douglas I.; McNutt, Ralph L.

    2005-01-01

    The Innovative Interstellar Explorer, studied under a NASA Vision Mission grant, examined sending a probe to a heliospheric distance of 200 Astronomical Units (AU) in a "reasonable" amount of time. Previous studies looked at the use of a near-Sun propulsive maneuver, solar sails, and fission reactor powered electric propulsion systems for propulsion. The Innovative Interstellar Explorer's mission design used a combination of a high-energy launch using current launch technology, a Jupiter gravity assist, and electric propulsion powered by advanced radioisotope power systems to reach 200 AU. Many direct and gravity assist trajectories at several power levels were considered in the development of the baseline trajectory, including single and double gravity assists utilizing the outer planets (Jupiter, Saturn, Uranus, and Neptune). A detailed spacecraft design study was completed followed by trajectory analyses to examine the performance of the spacecraft design options.

  19. Lowest cost, nearest term options for a manned Mars mission

    NASA Technical Reports Server (NTRS)

    Sauls, Bob; Mortensen, Michael; Myers, Renee; Guacci, Giovanni; Montes, Fred

    1992-01-01

    This study is part of a NASA/USRA Advanced Design Program project executed for the purpose of examining the requirements of a first manned Mars mission. The mission, classified as a split/sprint mission, has been designed for a crew of six with a total manned trip time of one year.

  20. Lowest cost, nearest term options for a manned Mars mission

    NASA Astrophysics Data System (ADS)

    Sauls, Bob; Mortensen, Michael; Myers, Renee; Guacci, Giovanni; Montes, Fred

    This study is part of a NASA/USRA Advanced Design Program project executed for the purpose of examining the requirements of a first manned Mars mission. The mission, classified as a split/sprint mission, has been designed for a crew of six with a total manned trip time of one year.

  1. STEREO Mission Design

    NASA Technical Reports Server (NTRS)

    Dunham, David W.; Guzman, Jose J.; Sharer, Peter J.; Friessen, Henry D.

    2007-01-01

    STEREO (Solar-TErestrial RElations Observatory) is the third mission in the Solar Terrestrial Probes program (STP) of the National Aeronautics and Space Administration (NASA). STEREO is the first mission to utilize phasing loops and multiple lunar flybys to alter the trajectories of more than one satellite. This paper describes the launch computation methodology, the launch constraints, and the resulting nine launch windows that were prepared for STEREO. More details are provided for the window in late October 2006 that was actually used.

  2. Approach to rapid mission design and planning. [earth orbit missions

    NASA Technical Reports Server (NTRS)

    Green, W. G.; Matthys, V. J.

    1973-01-01

    Methods and techniques are described for implementation in automated computer systems to assess parametric data, capabilities, requirements and constraints for planning earth orbit missions. Mission planning and design procedures are defined using two types of typical missions as examples. These missions were the high energy Astronomical Observatory Satellite missions, and Small Applications Technology Satellite missions.

  3. NEAR mission design

    NASA Astrophysics Data System (ADS)

    Dunham, David W.; McAdams, James V.; Farquhar, Robert W.

    2002-01-01

    The Near Earth Asteroid Rendezvous (NEAR) spacecraft took 4 years from launch until it became the first spacecraft to orbit an asteroid in February 2000. A month later, the spacecraft was re-christened NEAR Shoemaker to honor the late Eugene Shoemaker. To save launch costs, the mission used a special 2-year-period trajectory with an Earth gravity assist. On the way, the spacecraft imaged the asteroid 253 Mathilde. On 20 December 1998, NEAR's large engine misfired, failing to brake it for entry into orbit about 433 Eros. Another attempt 2 weeks later succeeded, but the spacecraft was almost a million kilometers away and took over a year to reach the asteroid. The mission was recovered thanks to a generous fuel supply and robust contingency planning. The implementation of the spacecraft's daring orbital maneuvers is described, including those used to land on Eros' surface in February 2001.

  4. Design Evolution Study - Aging Options

    SciTech Connect

    P. McDaniel

    2002-04-05

    The purpose of this study is to identify options and issues for aging commercial spent nuclear fuel received for disposal at the Yucca Mountain Mined Geologic Repository. Some early shipments of commercial spent nuclear fuel to the repository may be received with high-heat-output (younger) fuel assemblies that will need to be managed to meet thermal goals for emplacement. The capability to age as much as 40,000 metric tons of heavy metal of commercial spent nuclear he1 would provide more flexibility in the design to manage this younger fuel and to decouple waste receipt and waste emplacement. The following potential aging location options are evaluated: (1) Surface aging at four locations near the North Portal; (2) Subsurface aging in the permanent emplacement drifts; and (3) Subsurface aging in a new subsurface area. The following aging container options are evaluated: (1) Complete Waste Package; (2) Stainless Steel inner liner of the waste package; (3) Dual Purpose Canisters; (4) Multi-Purpose Canisters; and (5) New disposable canister for uncanistered commercial spent nuclear fuel. Each option is compared to a ''Base Case,'' which is the expected normal waste packaging process without aging. A Value Engineering approach is used to score each option against nine technical criteria and rank the options. Open issues with each of the options and suggested future actions are also presented. Costs for aging containers and aging locations are evaluated separately. Capital costs are developed for direct costs and distributable field costs. To the extent practical, unit costs are presented. Indirect costs, operating costs, and total system life cycle costs will be evaluated outside of this study. Three recommendations for aging commercial spent nuclear fuel--subsurface, surface, and combined surface and subsurface are presented for further review in the overall design re-evaluation effort. Options that were evaluated but not recommended are: subsurface aging in a new

  5. A Titan exploration study: Science, technology and mission planning options, volume 1

    NASA Technical Reports Server (NTRS)

    Tindle, E. L.; Manning, L. A.; Sadin, S. R.; Edsinger, L. E.; Weissman, P. R.; Swenson, B. L.

    1976-01-01

    Mission concepts and technology advancements that can be used in the exploration of the outer planet satellites were examined. Titan, the seventh satellite of Saturn was selected as the target of interest. Science objectives for Titan exploration were identified, and recommended science payloads for four basic mission modes were developed (orbiter, atmospheric probe, surface penetrator and lander). Trial spacecraft and mission designs were produced for the various mission modes. Using these trial designs as a base, technology excursions were then made to find solutions to the problems resulting from these conventional approaches and to uncover new science, technology and mission planning options. Several mission modes were developed that take advantage of the unique conditions expected at Titan. They include a combined orbiter, atmosphere probe and lander vehicle, a combined probe and surface penetrator configuration and concepts for advanced remote sensing orbiters.

  6. Evolution of Orion Mission Design for Exploration Mission 1 and 2

    NASA Technical Reports Server (NTRS)

    Gutkowski, Jeffrey P.; Dawn, Timothy F.; Jedrey, Richard M.

    2016-01-01

    The evolving mission design and concepts of NASA’s next steps have shaped Orion into the spacecraft that it is today. Since the initial inception of Orion, through the Constellation Program, and now in the Exploration Mission frame-work with the Space Launch System (SLS), each mission design concept and pro-gram goal have left Orion with a set of capabilities that can be utilized in many different mission types. Exploration Missions 1 and 2 (EM-1 and EM-2) have now been at the forefront of the mission design focus for the last several years. During that time, different Design Reference Missions (DRMs) were built, analyzed, and modified to solve or mitigate enterprise level design trades to ensure a viable mission from launch to landing. The resulting DRMs for EM-1 and EM-2 were then expanded into multi-year trajectory scans to characterize vehicle performance as affected by variations in Earth-Moon geometry. This provides Orion’s subsystems with stressing reference trajectories to help design their system. Now that Orion has progressed through the Preliminary and Critical Design Reviews (PDR and CDR), there is a general shift in the focus of mission design from aiding the vehicle design to providing mission specific products needed for pre-flight and real time operations. Some of the mission specific products needed include, large quantities of nominal trajectories for multiple monthly launch periods and abort options at any point in the mission for each valid trajectory in the launch window.

  7. Preliminary design of an asteroid hopping mission

    NASA Astrophysics Data System (ADS)

    Scheppa, Michael D.

    In 2010, NASA announced that its new vision is to support private space launch operations. It is anticipated that this new direction will create the need for new and innovative ideas that push the current boundaries of space exploration and contain the promise of substantial gain, both in research and capital. The purpose of the study is to plan and estimate the feasibility of a mission to visit a number of near Earth asteroids (NEAs). The mission would take place before the end of the 21st century, and would only use commercially available technology. Throughout the mission design process, while holding astronaut safety paramount, it was the goal to maximize the return while keeping the cost to a minimum. A mission of the nature would appeal to the private space industry because it could be easily adapted and set into motion. The mission design was divided into three main parts; mission timeline, vehicle design and power sources, with emphasis on nuclear and solar electric power, were investigated. The timeline and associated trajectories were initially selected using a numerical estimation and then optimized using Satellite Tool Kit (STK) 9.s's Design Explorer Optimizer [1]. Next, the spacecraft was design using commercially available parts that would support the mission requirements. The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) was and instrumental piece in maximizing the number of NEAs visited. Once the spacecraft was designed, acceptable power supply options were investigated. The VASIMR VX-200 requires 200 kilowatts of power to maintain thrust. This creates the need for a substantial power supply that consists of either a nuclear reactor of massive solar arrays. STK 9.1's Design Explorer Optimizer was able to create a mission time line that allowed for the exploration of seven NEAs in under two years, while keeping the total mission DeltaV under 71 kilometers per second. Based on these initial findings, it is determined that a mission of this

  8. Ulysses mission design after Challenger

    NASA Technical Reports Server (NTRS)

    Luthey, Joe L.; Peralta, Fernando; Pojman, Joan L.

    1990-01-01

    The delay of the Ulysses launch from May 1986 to October 1990, because of the Challenger disaster, has altered both the constraints under which the mission must be designed and the timing of several mission critical events. Safety and launch reliability concerns from the Shuttle have increased the effective launch window to durations greater than one hour. Fortuitously high declinations of the launch asymptote (DLA), of the order of the launch site latitude, ameliorate the impact of the new constraints on the launch window. Target overlays in the first hour of the launch window provide higher departure energies that improve mission performance and avoid a science schedule conflict at second opposition near the time of closest Jupiter approach. The mission design starts with the maximum earth departure energy that the upper stage can deliver within the launch constraints. The Jupiter arrival asymptotes are chosen from the optimal point of mission performance in the mission space defined in the Jupiter B-plane by contours mapped by the science and spacecraft constraints. More than half the orbital energy of the earth-to-Jupiter transfer orbit is lost in the Jupiter flyby, and the Jupiter gravitational assist rotates the orbit plane out of the ecliptic to an inclination of about 80 degrees.

  9. Mission Options Scoping Tool for Mars Orbiters: Mass Cost Calculator (MC2)

    NASA Technical Reports Server (NTRS)

    Sturm, Eric J., II; Deutsch, Marie-Jose; Harmon, Corey; Nakagawa, Roy; Kinsey, Robert; Lopez, Nino; Kudrle, Paul; Evans, Alex

    2007-01-01

    Prior to developing the details of an advanced mission study, the mission architecture trade space is typically explored to assess the scope of feasible options. This paper describes the main features of an Excel-based tool, called the Mass-Cost-Calculator (MC2 ), which is used to perform rapid, high-level mass and cost options analyses of Mars orbiter missions. MC2 consists of a combination of databases, analytical solutions, and parametric relationships to enable quick evaluation of new mission concepts and comparison of multiple architecture options. The tool's outputs provide program management and planning teams with answers to "what if" queries, as well as an understanding of the driving mission elements, during the pre-project planning phase. These outputs have been validated against the outputs generated by the Advanced Projects Design Team (Team X) at NASA's Jet Propulsion Laboratory (JPL). The architecture of the tool allows for future expansion to other orbiters beyond Mars, and to non-orbiter missions, such as those involving fly-by spacecraft, probes, landers, rovers, or other mission elements.

  10. Power generation technology options for a Mars mission

    NASA Technical Reports Server (NTRS)

    Bozek, John M.; Cataldo, Robert L.

    1994-01-01

    The power requirements and resultant power system performances of an aggressive Mars mission are characterized. The power system technologies discussed will support both cargo and piloted space transport vehicles as well as a six-person crew on the Martian surface for 600 days. The mission uses materials transported by cargo vehicles and materials produced using in-situ planetary feed stock to establish a life-support cache and infrastructure for the follow-on piloted lander. Numerous power system technical options are sized to meet the mission power requirements using conventional and solar, nuclear, and wireless power transmission technologies for stationary, mobile surface, and space applications. Technology selections will depend on key criteria such as mass, volume, area, maturity, and application flexibility.

  11. US Decadal Survey Outer Solar System Missions: Trajectory Options

    NASA Astrophysics Data System (ADS)

    Spilker, T. R.; Atkinson, D. H.; Strange, N. J.; Landau, D.

    2012-04-01

    The report of the US Planetary Science Decadal Survey (PSDS), released in draft form March 7, 2011, identifies several mission concepts involving travel to high-priority outer solar system (OSS) destinations. These include missions to Europa and Jupiter, Saturn and two of its satellites, and Uranus. Because travel to the OSS involves much larger distances and larger excursions out of the sun's gravitational potential well than inner solar system (ISS) missions, transfer trajectories for OSS missions are stronger drivers of mission schedule and resource requirements than for ISS missions. Various characteristics of each planet system, such as obliquity, radiation belts, rings, deep gravity wells, etc., carry ramifications for approach trajectories or trajectories within the systems. The maturity of trajectory studies for each of these destinations varies significantly. Europa has been the focus of studies for well over a decade. Transfer trajectory options from Earth to Jupiter are well understood. Current studies focus on trajectories within the Jovian system that could reduce the total mission cost of a Europa orbiter mission. Three missions to the Saturn system received high priority ratings in the PSDS report: two flagship orbital missions, one to Titan and one to Enceladus, and a Saturn atmospheric entry probe mission for NASA's New Frontiers Program. The Titan Saturn System Mission (TSSM) studies of 2007-2009 advanced our understanding of trajectory options for transfers to Saturn, including solar electric propulsion (SEP) trajectories. But SEP trajectories depend more on details of spacecraft and propulsion system characteristics than chemical trajectories, and the maturity of SEP trajectory search tools has not yet caught up with chemical trajectory tools, so there is still more useful research to be done on Saturn transfers. The TSSM studies revealed much about Saturn-orbiting trajectories that yield efficient and timely delivery to Titan or Enceladus

  12. Interplanetary mission design techniques for flagship-class missions

    NASA Astrophysics Data System (ADS)

    Kloster, Kevin W.

    Trajectory design, given the current level of propulsive technology, requires knowledge of orbital mechanics, computational resources, extensive use of tools such as gravity-assist and V infinity leveraging, as well as insight and finesse. Designing missions that deliver a capable science package to a celestial body of interest that are robust and affordable is a difficult task. Techniques are presented here that assist the mission designer in constructing trajectories for flagship-class missions in the outer Solar System. These techniques are applied in this work to spacecraft that are currently in flight or in the planning stages. By escaping the Saturnian system, the Cassini spacecraft can reach other destinations in the Solar System while satisfying planetary quarantine. The patched-conic method was used to search for trajectories that depart Saturn via gravity assist at Titan. Trajectories were found that fly by Jupiter to reach Uranus or Neptune, capture at Jupiter or Neptune, escape the Solar System, fly by Uranus during its 2049 equinox, or encounter Centaurs. A "grand tour," which visits Jupiter, Uranus, and Neptune, departs Saturn in 2014. New tools were built to search for encounters with Centaurs, small Solar System bodies between the orbits of Jupiter and Neptune, and to minimize the DeltaV to target these encounters. Cassini could reach Chiron, the first-discovered Centaur, in 10.5 years after a 2022 Saturn departure. For a Europa Orbiter mission, the strategy for designing Jovian System tours that include Io flybys differs significantly from schemes developed for previous versions of the mission. Assuming that the closest approach distance of the incoming hyperbola at Jupiter is below the orbit of Io, then an Io gravity assist gives the greatest energy pump-down for the least decrease in perijove radius. Using Io to help capture the spacecraft can increase the savings in Jupiter orbit insertion DeltaV over a Ganymede-aided capture. The tour design is

  13. Proximity Operations for the Robotic Boulder Capture Option for the Asteroid Redirect Mission

    NASA Technical Reports Server (NTRS)

    Reeves, David M.; Naasz, Bo J.; Wright, Cinnamon A.; Pini, Alex J.

    2014-01-01

    In September of 2013, the Asteroid Robotic Redirect Mission (ARRM) Option B team was formed to expand on NASA's previous work on the robotic boulder capture option. While the original Option A concept focuses on capturing an entire smaller Near-Earth Asteroid (NEA) using an inflatable bag capture mechanism, this design seeks to land on a larger NEA and retrieve a boulder off of its surface. The Option B team has developed a detailed and feasible mission concept that preserves many aspects of Option A's vehicle design while employing a fundamentally different technique for returning a significant quantity of asteroidal material to the Earth-Moon system. As part of this effort, a point of departure proximity operations concept was developed complete with a detailed timeline, as well as DeltaV and propellant allocations. Special attention was paid to the development of the approach strategy, terminal descent to the surface, controlled ascent with the captured boulder, and control during the Enhanced Gravity Tractor planetary defense demonstration. The concept of retrieving a boulder from the surface of an asteroid and demonstrating the Enhanced Gravity Tractor planetary defense technique is found to be feasible and within the proposed capabilities of the Asteroid Redirect Vehicle (ARV). While this point of departure concept initially focuses on a mission to Itokawa, the proximity operations design is also shown to be extensible to wide range of asteroids.

  14. XEUS: approaches to mission design

    NASA Astrophysics Data System (ADS)

    Bavdaz, Marcos; Peacock, Anthony J.; van der Laan, Thijs; Parmar, Arvind N.

    2003-03-01

    The x-ray Evolving Universe Spectroscopy mission (XEUS) is an ambitious project under study by the European Space Agency (ESA), which aims to probe the distant hot universe with comparable sensitivity to NGST and ALMA. The effective optical area and angular resolution required to perform this task is 30m2 and <5" respectively at 1 keV. The single Wolter-I x-ray telescope having these characteristics will be equipped with large area semiconductor detectors and high-resolution cryogenic imaging spectrometers with 2 eV resolution at 1 keV. A novel approach to mission design has been developed, placing the detector instruments on one dedicated spacecraft and the optics on another. The International Space Station (ISS) with the best ever available infrastructure in space will be used to expand the mirror diameter from 4.5 m to 10 m, using robotics and extravehicular activities. The detector spacecraft (DSC) uses solar-electric propulsion to maintain its position while flying in formation with the mirror spacecraft. The detector instruments are protected from straylight and contamination by sophisticated baffles and filters, and employ the earth as a sun shield to make the most sensitive low energy x-ray observations of the heavily red-shifted universe. Detailed approaches, including alternatives to the baseline mission design of XEUS, have been and continue to be addressed, ensuring an efficient concept to be available for the eventual mission implementation. Both the development of the XEUS baseline scenario and complementary work conducted on some alternative mission designs are discussed.

  15. Lunar mission design using nuclear thermal rockets

    SciTech Connect

    Stancati, M.L.; Collins, J.T. ); Borowski, S.K. )

    1991-01-01

    The NERVA-class Nuclear Thermal Rocket (NTR), with performance nearly double that of advanced chemical engines, has long been considered an enabling technology for human missions to Mars. NTR engines address the demanding trip time and payload delivery needs of both cargo-only and piloted flights. But NTR can also reduce the Earth launch requirements for manned lunar missions. First use of NTR for the Moon would be less demanding and would provide a test-bed for early operations experience with this powerful technology. Study of application and design options indicates that NTR propulsion can be integrated with the Space Exploration Initiative scenarios to deliver performance gains while managing controlled, long-term disposal of spent reactors to highly stable orbits.

  16. Lunar mission design using Nuclear Thermal Rockets

    NASA Technical Reports Server (NTRS)

    Stancati, Michael L.; Collins, John T.; Borowski, Stanley K.

    1991-01-01

    The NERVA-class Nuclear Thermal Rocket (NTR), with performance nearly double that of advanced chemical engines, has long been considered an enabling technology for human missions to Mars. NTR engines address the demanding trip time and payload delivery needs of both cargo-only and piloted flights. But NTR can also reduce the Earth launch requirements for manned lunar missions. First use of NTR for the Moon would be less demanding and would provide a test-bed for early operations experience with this powerful technology. Study of application and design options indicates that NTR propulsion can be integrated with the Space Exploration Initiative scenarios to deliver performance gains while managing controlled, long-term disposal of spent reactors to highly stable orbits.

  17. MIOSAT Mission Scenario and Design

    NASA Astrophysics Data System (ADS)

    Agostara, C.; Dionisio, C.; Sgroi, G.; di Salvo, A.

    2008-08-01

    MIOSAT ("Mssione Ottica su microSATellite") is a low-cost technological / scientific microsatellite mission for Earth Observation, funded by Italian Space Agency (ASI) and managed by a Group Agreement between Rheinmetall Italia - B.U. Spazio - Contraves as leader and Carlo Gavazzi Space as satellite manufacturer. Several others Italians Companies, SME and Universities are involved in the development team with crucial roles. MIOSAT is a microsatellite weighting around 120 kg and placed in a 525 km altitude sun-synchronuos circular LEO orbit. The microsatellite embarks three innovative optical payloads: Sagnac multi spectral radiometer (IFAC-CNR), Mach Zehender spectrometer (IMM-CNR), high resolution pancromatic camera (Selex Galileo). In addition three technological experiments will be tested in-flight. The first one is an heat pipe based on Marangoni effect with high efficiency. The second is a high accuracy Sun Sensor using COTS components and the last is a GNSS SW receiver that utilizes a Leon2 processor. Finally a new generation of 28% efficiency solar cells will be adopted for the power generation. The platform is highly agile and can tilt along and cross flight direction. The pointing accuracy is in the order of 0,1° for each axe. The pointing determination during images acquisition is <0,02° for the axis normal to the boresight and 0,04° for the boresight. This paper deals with MIOSAT mission scenario and definition, highlighting trade-offs for mission implementation. MIOSAT mission design has been constrained from challenging requirements in terms of satellite mass, mission lifetime, instrument performance, that have implied the utilization of satellite agility capability to improve instruments performance in terms of S/N and resolution. The instruments provide complementary measurements that can be combined in effective ways to exploit new applications in the fields of atmosphere composition analysis, Earth emissions, antropic phenomena, etc. The Mission

  18. Mission Architecture and Technology Options for a Flagship Class Venus In Situ Mission

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.; Kwok, Johnny H.; Kolawa, Elizabeth A.; Cutts, James A.; Senske, David A.

    2008-01-01

    Venus, as part of the inner triad with Earth and Mars, represents an important exploration target if we want to learn more about solar system formation and evolution. Comparative planetology could also elucidate the differences between the past, present, and future of these three planets, and can help with the characterization of potential habitable zones in our solar system and, by extension, extrasolar systems. A long lived in situ Venus mission concept, called the Venus Mobile Explorer, was prominently featured in NASA's 2006 SSE Roadmap and supported in the community White Paper by the Venus Exploration Analysis Group (VEXAG). Long-lived in situ missions are expected to belong to the largest (Flagship) mission class, which would require both enabling and enhancing technologies beside mission architecture options. Furthermore, extreme environment mitigation technologies for Venus are considered long lead development items and are expected to require technology development through a dedicated program. To better understand programmatic and technology needs and the motivating science behind them, in this fiscal year (FY08) NASA is funding a Venus Flaghip class mission study, based on key science and technology drivers identified by a NASA appointed Venus Science and Technology Definition Team (STDT). These mission drivers are then assembled around a suitable mission architecture to further refine technology and cost elements. In this paper we will discuss the connection between the final mission architecture and the connected technology drivers from this NASA funded study, which - if funded - could enable a future Flagship class Venus mission and potentially drive a proposed Venus technology development program.

  19. Pioneer Mars surface penetrator mission. Mission analysis and orbiter design

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Mars Surface Penetrator mission was designed to provide a capability for multiple and diverse subsurface science measurements at a low cost. Equipment required to adapt the Pioneer Venus spacecraft for the Mars mission is described showing minor modifications to hardware. Analysis and design topics which are similar and/or identical to the Pioneer Venus program are briefly discussed.

  20. Mission analysis for the potassium-Rankine NEP option

    NASA Astrophysics Data System (ADS)

    Cross, Elden H.; Widman, Frederick W.; North, D. Michael

    1992-01-01

    Mission analyses were conducted to select the design point of a nuclear electric propulsion (NEP) system for a manned mission to Mars. The propulsion system is comprised of ion thrusters with argon propellant and a potassium-Rankine cycle nuclear power plant. Mars parking orbits, departure dates, and outbound/return transfer times were varied to provide a minimum-mass system for a 390-day trip time. The study resulted in a power requirement of 46 MWe and an initial mass in low-Earth-orbit (IMLEO) of 700 tonnes.

  1. Evolution of Orion Mission Design for Exploration Mission 1 and 2

    NASA Technical Reports Server (NTRS)

    Gutkowski, Jeffrey P.; Dawn, Timothy F.; Jedrey, Richard M.

    2016-01-01

    The evolving mission design and concepts of NASA's next steps have shaped Orion into the spacecraft that it is today. Since the initial inception of Orion, through the Constellation Program, and now in the Exploration Mission frame-work with the Space Launch System (SLS), each mission design concept and program goal have left Orion with a set of capabilities that can be utilized in many different mission types. Exploration Missions 1 and 2 (EM-1 and EM-2) have now been at the forefront of the mission design focus for the last several years. During that time, different Design Reference Missions (DRMs) were built, analyzed, and modified to solve or mitigate enterprise level design trades to ensure a viable mission from launch to landing. The resulting DRMs for EM-1 and EM-2 were then expanded into multi-year trajectory scans to characterize vehicle performance and Earth-Moon geometry trends. This provides Orion's subsystems with stressing reference trajectories to help design their system. Now that Orion has progressed through the Preliminary and Critical Design Re-views (PDR and CDR) there is a general shift in the focus of mission design from aiding the vehicle design to providing mission specific products needed for pre-flight and real time operations. Some of the mission specific products need-ed include analysis of steering law performance, inputs into navigational accura-cy assessments, abort options at any point in the mission for each valid trajecto-ry in the launch window, recontact avoidance between the upper stage and Orion post nominal separation, etc.

  2. Early SP-100 flight mission designs

    SciTech Connect

    Josloff, A.T.; Shepard, N.F.; Kirpich, A.S.; Murata, R.; Smith, M.A.; Stephen, J.D. )

    1993-01-10

    Early flight mission objectives can be met with a Space Reactor Power System (SRPS) using thermoelectric conversion in conjunction with fast spectrum, lithium-cooled reactors. This paper describes two system design options using thermoelectric technology to accommodate an early launch. In the first of these options, radiatively coupled Radioiosotope Thermoelectric Generator (RTG) unicouples are adapted for use with a SP-100-type reactor heat source. Unicouples have been widely used as the conversion technology in RTGs and have demonstrated the long-life characteristics necessary for a highly relible SRPS. The thermoelectric leg height is optimized in conjunction with the heat rejection temperature to provide a mass optimum 6-kW[sub e] system configured for launch on a Delta II launch vehicle. The flight-demonstrated status of this conversion technology provides a high confidence that such a system can be designed, assembled, tested, and launched by 1997. The use of a SP-100-type reactor assures compliance with safety requirements and expedites the flight safety approval process while, at the same time, providing flight performance verification for a heat source technology with the growth potential to meet future national needs for higher power levels. A 15-kW[sub 2], Atlas IIAS-launched system using the compact, conductively coupled multicouple converters being developed under the SP-100 program to support an early flight system launch also described. Both design concepts have been scaled to 20-kW[sub e] in order to support recent studies by DOE/NASA for higher power early launch missions.

  3. Early SP-100 flight mission designs

    NASA Astrophysics Data System (ADS)

    Josloff, Allan T.; Shepard, Neal F.; Kirpich, Aaron S.; Murata, Ronald; Smith, Michael A.; Stephen, James D.

    1993-01-01

    Early flight mission objectives can be met with a Space Reactor Power System (SRPS) using thermoelectric conversion in conjunction with fast spectrum, lithium-cooled reactors. This paper describes two system design options using thermoelectric technology to accommodate an early launch. In the first of these options, radiatively coupled Radioiosotope Thermoelectric Generator (RTG) unicouples are adapted for use with a SP-100-type reactor heat source. Unicouples have been widely used as the conversion technology in RTGs and have demonstrated the long-life characteristics necessary for a highly relible SRPS. The thermoelectric leg height is optimized in conjunction with the heat rejection temperature to provide a mass optimum 6-kWe system configured for launch on a Delta II launch vehicle. The flight-demonstrated status of this conversion technology provides a high confidence that such a system can be designed, assembled, tested, and launched by 1997. The use of a SP-100-type reactor assures compliance with safety requirements and expedites the flight safety approval process while, at the same time, providing flight performance verification for a heat source technology with the growth potential to meet future national needs for higher power levels. A 15-kW2, Atlas IIAS-launched system using the compact, conductively coupled multicouple converters being developed under the SP-100 program to support an early flight system launch also described. Both design concepts have been scaled to 20-kWe in order to support recent studies by DOE/NASA for higher power early launch missions.

  4. Radioisotope power system options for future planetary missions

    NASA Astrophysics Data System (ADS)

    Cockfield, Robert D.

    2001-02-01

    Like previous missions to the outer planets, future spacecraft missions such as Pluto/Kuiper Express, Europa Orbiter, and Solar Probe will require radioisotope power systems for their long voyages away from the Sun. Several candidate advanced power conversion technologies have been proposed that have been proposed that have higher power conversion efficiencies than the traditional thermoelectric generators, with the potential for reduced mass and reduced quantities of nuclear fuel required. Studies conducted by Lockheed Martin under the direction of the Department of Energy have included the development of system conceptual designs utilizing Alkali Metal to Electric Conversion (AMTEC) and Stirling power conversion. Generator concepts based on these conversion technologies are compared in this paper with an alternative Small RTG, based on the General Purpose Heat Source-Radioisotope Thermoelectric Generator (GPHS-RTG). .

  5. Crew Transportation System Design Reference Missions

    NASA Technical Reports Server (NTRS)

    Mango, Edward J.

    2015-01-01

    Contains summaries of potential design reference mission goals for systems to transport humans to andfrom low Earth orbit (LEO) for the Commercial Crew Program. The purpose of this document is to describe Design Reference Missions (DRMs) representative of the end-to-end Crew Transportation System (CTS) framework envisioned to successfully execute commercial crew transportation to orbital destinations. The initial CTS architecture will likely be optimized to support NASA crew and NASA-sponsored crew rotation missions to the ISS, but consideration may be given in this design phase to allow for modifications in order to accomplish other commercial missions in the future. With the exception of NASA’s mission to the ISS, the remaining commercial DRMs are notional. Any decision to design or scar the CTS for these additional non-NASA missions is completely up to the Commercial Provider. As NASA’s mission needs evolve over time, this document will be periodically updated to reflect those needs.

  6. Mechanical design of the Mars Pathfinder mission

    NASA Technical Reports Server (NTRS)

    Eisen, Howard Jay; Buck, Carl W.; Gillis-Smith, Greg R.; Umland, Jeffrey W.

    1997-01-01

    The Mars Pathfinder mission and the Sojourner rover is reported on, with emphasis on the various mission steps and the performance of the technologies involved. The mechanical design of mission hardware was critical to the success of the entry sequence and the landing operations. The various mechanisms employed are considered.

  7. Study of Power Options for Jupiter and Outer Planet Missions

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Fincannon, James

    2015-01-01

    Power for missions to Jupiter and beyond presents a challenging goal for photovoltaic power systems, but NASA missions including Juno and the upcoming Europa Clipper mission have shown that it is possible to operate solar arrays at Jupiter. This work analyzes photovoltaic technologies for use in Jupiter and outer planet missions, including both conventional arrays, as well as analyzing the advantages of advanced solar cells, concentrator arrays, and thin film technologies. Index Terms - space exploration, spacecraft solar arrays, solar electric propulsion, photovoltaic cells, concentrator, Fresnel lens, Jupiter missions, outer planets.

  8. Trade Space Assessment for Human Exploration Mission Design

    NASA Technical Reports Server (NTRS)

    Joosten, B. Kent

    2006-01-01

    Many human space exploration mission architecture assessments have been performed over the years by diverse organizations and individuals. Direct comparison of metrics among these studies is extremely difficult due to widely varying assumptions involving projected technology readiness, mission goals, acceptable risk criteria, and socio-political environments. However, constant over the years have been the physical laws of celestial dynamics and rocket propulsion systems. A finite diverse yet finite architecture trade space should exist which captures methods of human exploration - particularly of the Moon and Mars - by delineating technical trades and cataloging the physically realizable options of each. A particular architectural approach should then have a traceable path through this "trade tree". It should be pointed out that not every permutation of paths will result in a physically realizable mission approach, but cataloging options that have been examined by past studies should help guide future analysis. This effort was undertaken in two phases by multi-center NASA working groups in the spring and summer of 2004 using more than thirty years of past studies to "flesh out" the Moon-Mars human exploration trade space. The results are presented, not as a "trade tree", which would be unwieldy, but as a "menu" of potential technical options as a function of mission phases. This is envisioned as a tool to aid future mission designers by offering guidance to relevant past analyses.

  9. Neptune aerocapture mission and spacecraft design overview

    NASA Technical Reports Server (NTRS)

    Bailey, Robert W.; Hall, Jeff L.; Spliker, Tom R.; O'Kongo, Nora

    2004-01-01

    A detailed Neptune aerocapture systems analysis and spacecraft design study was performed as part of NASA's In-Space Propulsion Program. The primary objectives were to assess the feasibility of a spacecraft point design for a Neptune/Triton science mission. That uses aerocapture as the Neptune orbit insertion mechanism. This paper provides an overview of the science, mission and spacecraft design resulting from that study.

  10. Conceptual Design Methods and the Application of a Tradespace Modeling Tool for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Jones, Melissa A.; Chase, James P.

    2008-01-01

    Concept studies for deep space missions are typically time-consuming and costly, given the variety of missions and uniqueness of each design. Yet, in an increasingly cost-constrained environment, it is critical to identify the most scientifically valuable and cost-effective designs early in the design process. Modeling is an integral part in helping to identify the most desirable design option. While some spacecraft design models currently exist for Earth-orbiting spacecraft, there has been less success with deep space missions. Instead, these missions require a modified design and modeling approach to enable the same construction of a comprehensive, yet credible, mission tradespace. This paper presents an approach for efficiently constructing such a mission tradespace. In addition to a proposed design and modeling approach, three case study missions are presented including a solar orbiter, a Europa orbiter, and a near-Earth asteroid (NEA) sample return mission.

  11. Xenia Mission: Spacecraft Design Concept

    NASA Technical Reports Server (NTRS)

    Hopkins, R. C.; Johnson, C. L.; Kouveliotou, C.; Jones, D.; Baysinger, M.; Bedsole, T.; Maples, C. C.; Benfield, P. J.; Turner, M.; Capizzo, P.; Fabinski, L.; Hornsby, L.; Thompson, K.; Miernik, J. H.; Percy, T.

    2009-01-01

    The proposed Xenia mission will, for the first time, chart the chemical and dynamical state of the majority of baryonic matter in the universe. using high-resolution spectroscopy, Xenia will collect essential information from major traces of the formation and evolution of structures from the early universe to the present time. The mission is based on innovative instrumental and observational approaches: observing with fast reaction gamma-ray bursts (GRBs) with a high spectral resolution. This enables the study of their (star-forming) environment from the dark to the local universe and the use of GRBs as backlight of large-scale cosmological structures, observing and surveying extended sources with high sensitivity using two wide field-of-view x-ray telescopes - one with a high angular resolution and the other with a high spectral resolution.

  12. Space station needs, attributes and architectural options: Mission requirements

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Various mission requirements for the proposed space station are examined. Subjects include modelling methodology, science applications, commercial opportunities, operations analysis, integrated mission requirements, and the role of man in space station functions and activities. The information is presented through the use of graphs.

  13. Outer planet probe missions, designs and science

    NASA Technical Reports Server (NTRS)

    Colin, L.

    1978-01-01

    The similarities and differences of atmosphere entry probe mission designs and sciences appropriate to certain solar system objects, are reviewed. Candidate payloads for Saturn and Titan probes are suggested. Significant supporting research and technology efforts are required to develop mission-peculiar technology for probe exploration of the Saturnian system.

  14. Space station needs, attributes, and architectural options: Mission requirements

    NASA Technical Reports Server (NTRS)

    Riel, F. D.

    1983-01-01

    Space station missions and their requirements are discussed. Analyses of the following four mission categories are summarized: (1) commercial, (2) technology, (3) operation, and (4) science and applications. The requirements determined by the study dictate a very strong need for a manned space station to satisfy the majority of the missions. The station is best located at a 28.5-deg inclination and initially (1992 era) requires a crew of four (three for mission payloads) and a mission power of 25 kW. A space platform in a polar orbit is needed to augment the station capability; it initially would be a 15-kW system, located in a sun-synchronous orbit.

  15. Mission Design of LiteBIRD

    NASA Astrophysics Data System (ADS)

    Matsumura, T.; Akiba, Y.; Borrill, J.; Chinone, Y.; Dobbs, M.; Fuke, H.; Ghribi, A.; Hasegawa, M.; Hattori, K.; Hattori, M.; Hazumi, M.; Holzapfel, W.; Inoue, Y.; Ishidoshiro, K.; Ishino, H.; Ishitsuka, H.; Karatsu, K.; Katayama, N.; Kawano, I.; Kibayashi, A.; Kibe, Y.; Kimura, K.; Kimura, N.; Koga, K.; Kozu, M.; Komatsu, E.; Lee, A.; Matsuhara, H.; Mima, S.; Mitsuda, K.; Mizukami, K.; Morii, H.; Morishima, T.; Murayama, S.; Nagai, M.; Nagata, R.; Nakamura, S.; Naruse, M.; Natsume, K.; Nishibori, T.; Nishino, H.; Noda, A.; Noguchi, T.; Ogawa, H.; Oguri, S.; Ohta, I.; Otani, C.; Richards, P.; Sakai, S.; Sato, N.; Sato, Y.; Sekimoto, Y.; Shimizu, A.; Shinozaki, K.; Sugita, H.; Suzuki, T.; Suzuki, A.; Tajima, O.; Takada, S.; Takakura, S.; Takei, Y.; Tomaru, T.; Uzawa, Y.; Wada, T.; Watanabe, H.; Yoshida, M.; Yamasaki, N.; Yoshida, T.; Yotsumoto, K.

    2014-09-01

    LiteBIRD is a next-generation satellite mission to measure the polarization of the cosmic microwave background (CMB) radiation. On large angular scales the B-mode polarization of the CMB carries the imprint of primordial gravitational waves, and its precise measurement would provide a powerful probe of the epoch of inflation. The goal of LiteBIRD is to achieve a measurement of the characterizing tensor to scalar ratio to an uncertainty of . In order to achieve this goal we will employ a kilo-pixel superconducting detector array on a cryogenically cooled sub-Kelvin focal plane with an optical system at a temperature of 4 K. We are currently considering two detector array options; transition edge sensor (TES) bolometers and microwave kinetic inductance detectors. In this paper we give an overview of LiteBIRD and describe a TES-based polarimeter designed to achieve the target sensitivity of 2 K arcmin over the frequency range 50-320 GHz.

  16. Lattice Design for ERL Options at SLAC

    SciTech Connect

    Nosochkov, Yuri; Cai, Yunhai; Huang, Xiaobiao; Wang, Min-Huey; /SLAC

    2011-06-02

    SLAC is investigating long-range options for building a high performance light source machine while reusing the existing linac and PEP-II tunnels. One previously studied option is the PEP-X low emittance storage ring. The alternative option is based on a superconducting Energy Recovery Linac (ERL) and the PEP-X design. The ERL advantages are the low beam emittance, short bunch length and small energy spread leading to better qualities of the X-ray beams. Two ERL configurations differed by the location of the linac have been studied. Details of the lattice design and the results of beam transport simulations with the coherent synchrotron radiation effects are presented.

  17. Shuttle mission simulator software conceptual design

    NASA Technical Reports Server (NTRS)

    Burke, J. F.

    1973-01-01

    Software conceptual designs (SCD) are presented for meeting the simulator requirements for the shuttle missions. The major areas of the SCD discussed include: malfunction insertion, flight software, applications software, systems software, and computer complex.

  18. Cloud Computing Techniques for Space Mission Design

    NASA Technical Reports Server (NTRS)

    Arrieta, Juan; Senent, Juan

    2014-01-01

    The overarching objective of space mission design is to tackle complex problems producing better results, and faster. In developing the methods and tools to fulfill this objective, the user interacts with the different layers of a computing system.

  19. NASA'S RPS Design Reference Mission Set for Solar System Exploration

    NASA Astrophysics Data System (ADS)

    Balint, Tibor S.

    2007-01-01

    NASA's 2006 Solar System Exploration (SSE) Strategic Roadmap identified a set of proposed large Flagship, medium New Frontiers and small Discovery class missions, addressing key exploration objectives. These objectives respond to the recommendations by the National Research Council (NRC), reported in the SSE Decadal Survey. The SSE Roadmap is down-selected from an over-subscribed set of missions, called the SSE Design Reference Mission (DRM) set Missions in the Flagship and New Frontiers classes can consider Radioisotope Power Systems (RPSs), while small Discovery class missions are not permitted to use them, due to cost constraints. In line with the SSE DRM set and the SSE Roadmap missions, the RPS DRM set represents a set of missions, which can be enabled or enhanced by RPS technologies. At present, NASA has proposed the development of two new types of RPSs. These are the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), with static power conversion; and the Stirling Radioisotope Generator (SRG), with dynamic conversion. Advanced RPSs, under consideration for possible development, aim to increase specific power levels. In effect, this would either increase electric power generation for the same amount of fuel, or reduce fuel requirements for the same power output, compared to the proposed MMRTG or SRG. Operating environments could also influence the design, such that an RPS on the proposed Titan Explorer would use smaller fins to minimize heat rejection in the extreme cold environment; while the Venus Mobile Explorer long-lived in-situ mission would require the development of a new RPS, in order to tolerate the extreme hot environment, and to simultaneously provide active cooling to the payload and other electric components. This paper discusses NASA's SSE RPS DRM set, in line with the SSE DRM set. It gives a qualitative assessment regarding the impact of various RPS technology and configuration options on potential mission architectures, which could

  20. NASA's RPS Design Reference Mission Set for Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.

    2007-01-01

    NASA's 2006 Solar System Exploration (SSE) Strategic Roadmap identified a set of proposed large Flagship, medium New Frontiers and small Discovery class missions, addressing key exploration objectives. These objectives respond to the recommendations by the National Research Council (NRC), reported in the SSE Decadal Survey. The SSE Roadmap is down-selected from an over-subscribed set of missions, called the SSE Design Reference Mission (DRM) set. Missions in the Flagship and New Frontiers classes can consider Radioisotope Power Systems (RPSs), while small Discovery class missions are not permitted to use them, due to cost constraints. In line with the SSE DRM set and the SSE Roadmap missions, the RPS DRM set represents a set of missions, which can be enabled or enhanced by RPS technologies. At present, NASA has proposed the development of two new types of RPSs. These are the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), with static power conversion; and the Stirling Radioisotope Generator (SRG), with dynamic conversion. Advanced RPSs, under consideration for possible development, aim to increase specific power levels. In effect, this would either increase electric power generation for the same amount of fuel, or reduce fuel requirements for the same power output, compared to the proposed MMRTG or SRG. Operating environments could also influence the design, such that an RPS on the proposed Titan Explorer would use smaller fins to minimize heat rejection in the extreme cold environment; while the Venus Mobile Explorer long-lived in-situ mission would require the development of a new RPS, in order to tolerate the extreme hot environment, and to simultaneously provide active cooling to the payload and other electric components. This paper discusses NASA's SSE RPS DRM set, in line with the SSE DRM set. It gives a qualitative assessment regarding the impact of various RPS technology and configuration options on potential mission architectures, which could

  1. BRRISON Mission Design and Development

    NASA Astrophysics Data System (ADS)

    O'Malley, Terence; Kremic, T.; Adams, D.; Arnold, S.; Cheng, A.

    2013-10-01

    In September 2012, the comet C/2012 S1 “ISON” was discovered by Russian amateur astronomers. A team consisting of personnel from Glenn Research Center (GRC) Space Science Project Office, the Johns Hopkins University Applied Physics Lab (APL), and the Southwest Research Institute (SWRI) was established to identify the science return on a high altitude balloon mission to observe ISON, and develop a plan based on re-using most of the hardware from the Stratospheric Terahertz Observatory (STO). The team determined that measuring the comet’s H20/CO2 ratio with an infra-red Camera would be a high-value and unique scientific contribution of a balloon borne payload. The BRRISON scientific payload consists of a heritage 80-cm telescope, a near-ultraviolet visible optical bench and instruments, and an infrared optical bench and instruments. The telescope, which has flown on prior balloon missions, consists of a light-weighted f/1.5 hyperboloid 80 cm diameter primary and a secondary mirror to provide an f/17 beam. The near ultra-violet and visible cameras and associated instruments are being integrated to an optics bench by SwRI. These instruments consist of a fine steering mirror (FSM) and a CMOS high rate camera to provide sub-arcsec pointing, and a CCD camera for low noise science operation, and a dichroic for splitting the f/17 beam between the two cameras. The infrared optics bench and instruments consist of an optics bench, re-imaging optics and cold stop, filter wheel and filters, and an infrared camera that is sensitive over the required wavelengths of 2.5 - 5 microns. The IR optics bench and instruments will be enclosed in an aluminum housing, which will be cooled to reduce the thermal background contribution to the IR signal. The BRRISON gondola is composed of a metal frame that carries and protects the science payload and subsystems and is the structural interface with the balloon flight train. They are composed of a Command & Control system, a Pointing

  2. Controlled Ecological Life Support Systems (CELSS) conceptual design option study

    NASA Technical Reports Server (NTRS)

    Oleson, Melvin; Olson, Richard L.

    1986-01-01

    Results are given of a study to explore options for the development of a Controlled Ecological Life Support System (CELSS) for a future Space Station. In addition, study results will benefit the design of other facilities such as the Life Sciences Research Facility, a ground-based CELSS demonstrator, and will be useful in planning longer range missions such as a lunar base or manned Mars mission. The objectives were to develop weight and cost estimates for one CELSS module selected from a set of preliminary plant growth unit (PGU) design options. Eleven Space Station CELSS module conceptual PGU designs were reviewed, components and subsystems identified and a sensitivity analysis performed. Areas where insufficient data is available were identified and divided into the categories of biological research, engineering research, and technology development. Topics which receive significant attention are lighting systems for the PGU, the use of automation within the CELSS system, and electric power requirements. Other areas examined include plant harvesting and processing, crop mix analysis, air circulation and atmosphere contaminant flow subsystems, thermal control considerations, utility routing including accessibility and maintenance, and nutrient subsystem design.

  3. Tracking system options for future altimeter satellite missions

    NASA Technical Reports Server (NTRS)

    Davis, G. W.; Rim, H. J.; Ries, J. C.; Tapley, B. D.

    1994-01-01

    Follow-on missions to provide continuity in the observation of the sea surface topography once the successful TOPEX/POSEIDON (T/P) oceanographic satellite mission has ended are discussed. Candidates include orbits which follow the ground tracks of T/P GEOSAT or ERS-1. The T/P precision ephemerides, estimated to be near 3 cm root-mean-square, demonstrate the radial orbit accuracy that can be achieved at 1300 km altitude. However, the radial orbit accuracy which can be achieved for a mission at the 800 km altitudes of GEOSAT and ERS-1 has not been established, and achieving an accuracy commensurate with T/P will pose a great challenge. This investigation focuses on the radial orbit accuracy that can be achieved for a mission in the GEOSAT orbit. Emphasis is given to characterizing the effects of force model errors on the estimated radial orbit accuracy, particularly those due to gravity and drag. The importance of global, continuous tracking of the satellite for reduction in these sources of orbit error is demonstrated with simulated GPS tracking data. A gravity tuning experiment is carried out to show how the effects of gravity error may be reduced. Assuming a GPS flight receiver with a full-sky tracking capability, the simulation results indicate that a 5 cm radial orbit accuracy for an altimeter satellite in GEOSAT orbit should be achievable during low-drag atmospheric conditions and after an acceptable tuning of the gravity model.

  4. Vehicle configuration options using nuclear propulsion for Mars missions

    SciTech Connect

    Emrich, W.J. Jr. )

    1993-01-20

    The solid core nuclear thermal rocket (NTR) provides an attractive means of providing the propulsive force needed to accomplish a wide array of space missions. With its factor of two or more advantage in Isp over chemical engines, nuclear propulsion provides the opportunity to accomplish space missions which are impractical by other means. This paper focuses on the use of a nuclear thermal rocket to accomplish a variety of space missions with emphasis on the manned Mars mission. The particle bed reactor (PBR) type nuclear engine was chosen as the baseline engine used to conduct the present study because of its perceived versatility over other nuclear propulsion systems in conducting a wide variety of tasks. This study baselines a particle bed reactor engine with an engine thrust-to-weight ratio ([similar to]11.5) and a specific impulse of [similar to]950 s. It is shown that a PBR engine of this type will offer distinct advantages over the larger and heavier NERVA type nuclear engines.

  5. Design of an Extended Mission for GRAIL

    NASA Technical Reports Server (NTRS)

    Sweetser, Theodore H.; Wallace, Mark S.; Hatch, Sara J.; Roncoli, Ralph B.

    2012-01-01

    The GRAIL extended mission will extend the measurement of the lunar gravity field beyond what was achieved by the primary GRAIL mission this past spring (2012). By lowering the orbits of the two GRAIL spacecraft to less than half the altitude of the primary mission orbits on average, the resolution of the gravity field measurements will be improved by a factor of two, yielding a signicant improvement in our knowledge of the structure of the upper crust of the Moon. The challenges of flying so low and the design which will meet those challenges is presented here.

  6. The OSIRIS-REx Asteroid Sample Return Mission Operations Design

    NASA Technical Reports Server (NTRS)

    Gal-Edd, Jonathan S.; Cheuvront, Allan

    2015-01-01

    OSIRIS-REx is an acronym that captures the scientific objectives: Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer. OSIRIS-REx will thoroughly characterize near-Earth asteroid Bennu (Previously known as 1019551999 RQ36). The OSIRIS-REx Asteroid Sample Return Mission delivers its science using five instruments and radio science along with the Touch-And-Go Sample Acquisition Mechanism (TAGSAM). All of the instruments and data analysis techniques have direct heritage from flown planetary missions. The OSIRIS-REx mission employs a methodical, phased approach to ensure success in meeting the mission's science requirements. OSIRIS-REx launches in September 2016, with a backup launch period occurring one year later. Sampling occurs in 2019. The departure burn from Bennu occurs in March 2021. On September 24, 2023, the Sample Return Capsule (SRC) lands at the Utah Test and Training Range (UTTR). Stardust heritage procedures are followed to transport the SRC to Johnson Space Center, where the samples are removed and delivered to the OSIRIS-REx curation facility. After a six-month preliminary examination period the mission will produce a catalog of the returned sample, allowing the worldwide community to request samples for detailed analysis. Traveling and returning a sample from an Asteroid that has not been explored before requires unique operations consideration. The Design Reference Mission (DRM) ties together spacecraft, instrument and operations scenarios. Asteroid Touch and Go (TAG) has various options varying from ground only to fully automated (natural feature tracking). Spacecraft constraints such as thermo and high gain antenna pointing impact the timeline. The mission is sensitive to navigation errors, so a late command update has been implemented. The project implemented lessons learned from other "small body" missions. The key lesson learned was 'expect the unexpected' and implement planning tools early in the lifecycle

  7. Guidelines and Capabilities for Designing Human Missions

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S.; Burnett, Rebeka; Charles, John; Cucinotta, Frank; Fullerton, Richard; Goodman, Jerry R.; Griffith, Anthony D., Sr.; Kosmo, Joseph J.; Perchonok, Michele; Railsback, Jan; Rajulu, Sudhakar; Stilwell, Don; Thomas, Gretchen; Tri, Terry; Joshi, Jitendra; Wheeler, Ray; Rudisill, Marianne; Wilson, John; Mueller, Alyssa; Simmons, Anne

    2003-01-01

    These guidelines and capabilities identify the points of intersection between human spaceflight crews and mission considerations such as architecture, vehicle design, technologies, operations, and science requirements. In these chapters, we will provide clear, top-level guidelines for human-related exploration studies and technology research that will address common questions and requirements. As a result, we hope that ongoing mission trade studies will consider common, standard, and practical criteria for human interfaces.

  8. Physics design options for compact ignition experiments

    SciTech Connect

    Uckan, N.A.

    1985-01-01

    This paper considers the following topics: (1) physics assessments-design and engineering impact, (2) zero-dimensional confinement studies relating to physics requirements and options for ignited plasmas, classes of devices with equivalent performance, and sensitivity to variations in confinement models, and (3) one and one-half dimensional confinement studies relating to dynamic simulations, critical physics issues, startup analyses, and volt-second consumption. (MOW)

  9. Network interface unit design options performance analysis

    NASA Technical Reports Server (NTRS)

    Miller, Frank W.

    1991-01-01

    An analysis is presented of three design options for the Space Station Freedom (SSF) onboard Data Management System (DMS) Network Interface Unit (NIU). The NIU provides the interface from the Fiber Distributed Data Interface (FDDI) local area network (LAN) to the DMS processing elements. The FDDI LAN provides the primary means for command and control and low and medium rate telemetry data transfers on board the SSF. The results of this analysis provide the basis for the implementation of the NIU.

  10. Experimental Design for the LATOR Mission

    NASA Technical Reports Server (NTRS)

    Turyshev, Slava G.; Shao, Michael; Nordtvedt, Kenneth, Jr.

    2004-01-01

    This paper discusses experimental design for the Laser Astrometric Test Of Relativity (LATOR) mission. LATOR is designed to reach unprecedented accuracy of 1 part in 10(exp 8) in measuring the curvature of the solar gravitational field as given by the value of the key Eddington post-Newtonian parameter gamma. This mission will demonstrate the accuracy needed to measure effects of the next post-Newtonian order (near infinity G2) of light deflection resulting from gravity s intrinsic non-linearity. LATOR will provide the first precise measurement of the solar quadrupole moment parameter, J(sub 2), and will improve determination of a variety of relativistic effects including Lense-Thirring precession. The mission will benefit from the recent progress in the optical communication technologies the immediate and natural step above the standard radio-metric techniques. The key element of LATOR is a geometric redundancy provided by the laser ranging and long-baseline optical interferometry. We discuss the mission and optical designs, as well as the expected performance of this proposed mission. LATOR will lead to very robust advances in the tests of Fundamental physics: this mission could discover a violation or extension of general relativity, or reveal the presence of an additional long range interaction in the physical law. There are no analogs to the LATOR experiment; it is unique and is a natural culmination of solar system gravity experiments.

  11. Shuttle mission simulator hardware conceptual design report

    NASA Technical Reports Server (NTRS)

    Burke, J. F.

    1973-01-01

    The detailed shuttle mission simulator hardware requirements are discussed. The conceptual design methods, or existing technology, whereby those requirements will be fulfilled are described. Information of a general nature on the total design problem plus specific details on how these requirements are to be satisfied are reported. The configuration of the simulator is described and the capabilities for various types of training are identified.

  12. Cascade Distillation System Design for Safety and Mission Assurance

    NASA Technical Reports Server (NTRS)

    Sarguisingh, Miriam; Callahan, Michael R.; Okon, Shira

    2015-01-01

    Per the NASA Human Health, Life Support and Habitation System Technology Area 06 report "crewed missions venturing beyond Low-Earth Orbit (LEO) will require technologies with improved reliability, reduced mass, self-sufficiency, and minimal logistical needs as an emergency or quick-return option will not be feasible".1 To meet this need, the development team of the second generation Cascade Distillation System (CDS 2.0) chose a development approach that explicitly incorporate consideration of safety, mission assurance, and autonomy. The CDS 2.0 preliminary design focused on establishing a functional baseline that meets the CDS core capabilities and performance. The critical design phase is now focused on incorporating features through a deliberative process of establishing the systems failure modes and effects, identifying mitigation strategies, and evaluating the merit of the proposed actions through analysis and test. This paper details results of this effort on the CDS 2.0 design.

  13. Cascade Distillation System Design for Safety and Mission Assurance

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam J.; Callahan, Michael R.

    2015-01-01

    Per the NASA Human Health, Life Support and Habitation System Technology Area 06 report "crewed missions venturing beyond Low-Earth Orbit (LEO) will require technologies with improved reliability, reduced mass, self-sufficiency, and minimal logistical needs as an emergency or quick-return option will not be feasible." To meet this need, the development team of the second generation Cascade Distillation System (CDS 2.0) opted a development approach that explicitely incorporate consideration of safety, mission assurance, and autonomy. The CDS 2.0 prelimnary design focused on establishing a functional baseline that meets the CDS core capabilities and performance. The critical design phase is now focused on incorporating features through a deliberative process of establishing the systems failure modes and effects, identifying mitigative strategies, and evaluating the merit of the proposed actions through analysis and test. This paper details results of this effort on the CDS 2.0 design.

  14. Molten carbonate fuel cell stack design options

    SciTech Connect

    Benjamin, T.G.; Petri, R.J.

    1986-01-01

    Significant strides in molten carbonate fuel cell (MCFC) life and performance have been made during the last 20 years. Results include single cell performance improvement from 10 watts/ft/sup 2/ to 120 watts/ft/sup 2/, testing of several sub-scale stacks, and significant reductions in cost. In the 1980s, attention has turned toward stack-related issues including component dimensional and structural stability, cathode dissolution, sulfur poisoning, hardware design, electrolyte management, carbon dioxide conservation, internal reforming, and systems considerations. This paper discusses MCFC stack hardware design options and present a brief introduction to MCFC technology. 4 refs., 8 figs.

  15. Molten carbonate fuel cell stack design options

    SciTech Connect

    Benjamin, T.G.; Petri, R.J.

    1986-03-01

    Significant strides in molten carbonate fuel cell (MCFC) life and performance have been made during the last 20 years. Results include single cell performance improvement from 10 watts/ft/sup 2/ to 120 watts/ft/sup 2/, testing of several sub-scale stacks, and significant reductions in cost. In the 1980's, attention has turned toward stack-related issues including component dimensional and structural stability, cathode dissolution, sulfur poisoning, hardware design, electrolyte management, carbon dioxide conservation, internal reforming, and systems considerations. This paper discusses MCFC stack hardware design options and present a brief introduction to MCFC technology. 4 references, 8 figures.

  16. Guidelines and Capabilities for Designing Human Missions

    NASA Astrophysics Data System (ADS)

    2002-03-01

    The human element is likely the most complex and difficult one of mission design; it significantly influences every aspect of mission planning, from the basic parameters like duration to the more complex tradeoffs between mass, volume, power, risk, and cost. For engineers who rely on precise specifications in data books and other such technical references, dealing with the uncertainty and the variability of designing for human beings can be frustrating. When designing for the human element, questions arise more often than definitive answers. Nonetheless, we do not doubt that the most captivating discoveries in future space missions will necessitate human explorers. These guidelines and capabilities are meant to identify the points of intersection between humans and mission considerations such as architecture, vehicle design, technologies, operations, and science requirements. We seek to provide clear, top-level guidelines for human-related exploration studies and technology research that address common questions and requirements. As a result, we hope that ongoing mission trade studies consider common, standard, and practical criteria for human interfaces.

  17. Guidelines and Capabilities for Designing Human Missions

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The human element is likely the most complex and difficult one of mission design; it significantly influences every aspect of mission planning, from the basic parameters like duration to the more complex tradeoffs between mass, volume, power, risk, and cost. For engineers who rely on precise specifications in data books and other such technical references, dealing with the uncertainty and the variability of designing for human beings can be frustrating. When designing for the human element, questions arise more often than definitive answers. Nonetheless, we do not doubt that the most captivating discoveries in future space missions will necessitate human explorers. These guidelines and capabilities are meant to identify the points of intersection between humans and mission considerations such as architecture, vehicle design, technologies, operations, and science requirements. We seek to provide clear, top-level guidelines for human-related exploration studies and technology research that address common questions and requirements. As a result, we hope that ongoing mission trade studies consider common, standard, and practical criteria for human interfaces.

  18. Power System Options Evaluated for the Radiation and Technology Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Benson, Scott W.

    2000-01-01

    The Radiation and Technology Demonstration (RTD) Mission is under joint study by three NASA Centers: the NASA Johnson Space Center, the NASA Goddard Space Flight Center, and the NASA Glenn Research Center at Lewis Field. This Earth-orbiting mission, which may launch on a space shuttle in the first half of the next decade, has the primary objective of demonstrating high-power electric thruster technologies. Secondary objectives include better characterization of Earth's Van Allen trapped-radiation belts, measurement of the effectiveness of the radiation shielding for human protection, measurement of radiation effects on advanced solar cells, and demonstration of radiation-tolerant microelectronics. During the mission, which may continue up to 1 year, the 2000-kg RTD spacecraft will first spiral outward from the shuttle-deployed, medium-inclination, low Earth orbit. By the phased operation of a 10-kW Hall thruster and a 10-kW Variable Specific Impulse Magneto-Plasma Rocket, the RTD spacecraft will reach a low-inclination Earth orbit with a radius greater than five Earth radii. This will be followed by an inward spiraling orbit phase when the spacecraft deploys 8 to 12 microsatellites to map the Van Allen belts. The mission will conclude in low Earth orbit with the possible retrieval of the spacecraft by the space shuttle. A conceptual RTD spacecraft design showing two photovoltaic (PV) array wings, the Hall thruster with propellant tanks, and stowed microsatellites is presented. Early power system studies assessed five different PV array design options coupled with a 120-Vdc power management and distribution system (PMAD) and secondary lithium battery energy storage. Array options include (1) state-of-the-art 10-percent efficient three-junction amorphous SiGe thin-film cells on thin polymer panels deployed with an inflatable (or articulated) truss, (2) SCARLET array panels, (3) commercial state-of-the-art, planar PV array rigid panels with 25-percent efficient, three

  19. The Outer Planetary Mission Design Project

    NASA Astrophysics Data System (ADS)

    Benfield, Michael; Turner, M. W.

    2010-10-01

    With the recent focus from the planetary science community on the outer planets of the solar system, The University of Alabama in Huntsville Integrated Product Team program is embarking on a new challenge to develop an outer planetary mission for the academic year 2010-2011. Currently four bodies are of interest for this mission: Titan, Europa, Triton, and Enceledus, with one body being chosen by the instructors by the beginning of the fall semester. This project will use the 2010 Discovery Announcement of Opportunity as its Request for Proposal (RFP). All of the teams competing in this project will use the AO to respond with a proposal to the instructors for their proposed mission and spacecraft concept. The project employs the two-semester design sequence of the IPT program to provide a framework for the development of this mission. This sequence is divided into four phases. Phase 1 - Requirements Development - focuses on the development of both the scientific and engineering requirements of the mission. During this phase the teams work very closely with the PI organization, represented by the College of Charleston. Phase 2 - Team Formation and Architecture Development - concentrates on the assessment of the overall mission architecture from the launch vehicle to the ground operations of the proposed spacecraft. Phase 3 - System Definition - provides for spacecraft subsystem trade studies and further refinement of the specific spacecraft to meet the scientific requirements and objectives developed in Phase 1. Phase 4 - Design - is the phase where the engineers provide the spacecraft design that is required for the mission of interest. At the conclusion of Phases 2 and 4, an external review board evaluates the proposed designs and chooses one winner of the competition.

  20. Mission Design for Global Mapping Orbits at Primitive Bodies

    NASA Technical Reports Server (NTRS)

    Lantoine, Gregory; Broschart, Stephen B.; Grebow, Daniel J.

    2013-01-01

    Global mapping campaigns are part of most primitive body exploration missions. However, designing a mapping orbit without station keeping maneuvers is challenging due to the highly perturbed environment near small bodies. In this paper, we present a new design methodology to support mapping campaigns using 'quasi-terminator' orbits, a class of quasi-periodic orbits that exist in the vicinity of the well-known terminator orbits. The inherent stability of quasi-terminator trajectories and their wide variety of viewing geometries make them a very compelling option for mapping campaigns. A high-fidelity test case solution is also presented to prove the existence of these mapping orbits in full ephemeris.

  1. The Phoenix Mission and its Current Landing Site options

    NASA Astrophysics Data System (ADS)

    Tamppari, LK; Smith, P.; Arvidson, RE; Phoenix Team

    2005-08-01

    Phoenix is the 2007 Mars Scout program mission that will send a lander and suite of instruments to study the north polar region on Mars. Central goals for the Phoenix mission are to study the recent history of water as written into the high latitude soils and to search for habitable zones. In order to do this, Phoenix carries a comprehensive suite of seven instruments. This suite includes 3 cameras, an optical microscope and an atomic-force microscope, allowing imaging at spatial scales ranging from kms, for large scale geomorphological studies, to microns, for examining single grain sizes and shapes. Phoenix also has a meteorology suite, which includes atmospheric temperature measurements at 3 levels, atmospheric pressure, and an upward-looking lidar, for dust and water-ice cloud detection. A robotic arm will dig a trench into the surface near the lander to collect and deliver samples to on-board chemistry and mineralogy experiments. These experiments will allow the detection of the mineral makeup of the soil as well as its water content, pH, salt content, and organic content. An important aspect of this exciting mission is the selection of the landing site, within the 65-72 deg N latitude band. Both science and safety concerns will play into this selection. Work is ongoing to determine the most favorable location, with consideration focusing on the best ice/soil ratio, the shallowest slopes and fewest large rocks. Current sites under consideration will be discussed. Selected in 2003, Phoenix was recently confirmed to proceed into Phase C/D of spacecraft development. This research was funded by a NASA Grant and carried out by the Jet Propulsion Laboratory, California Institute of Technology.

  2. Options for a Geostationary Science Demonstration Mission (GSDM)

    NASA Astrophysics Data System (ADS)

    Pougatchev, N. S.; Bingham, G. E.; Zollinger, L.; Hancock, J. J.

    2009-12-01

    Geostationary ultraspectral imager with spectral resolution comparable with the ones of the current advanced LEO sounders such as AIRS and IASI brings the potential for significant new products to improve our lives and protect property. These include: improved severe weather warnings and hurricane track prediction, troposphere wind profiles at 2 Km vertical resolution, and pollutant and water vapor flux profiles. The GSDM data combined with OCO and GOSAT data can provide local and regional CO, CO2 emissions. The potential value of a GSDM is so great that the resent NASA/NOAA Decadal Survey recommended they “Complete the GIFTS instrument, deliver it to orbit via a cost-effective launch and spacecraft opportunity, and evaluate its potential to be a prototype for the HES instrument…”. GOES-R mission costs led to the cancellation of the HES program. Development of an entirely new instrument and flying it as an operational payload is clearly outside of the NOAA budget profile. However a joint NASA/NOAA An out-of-the-box, Venture Class style, PI-led mission to satisfy the NASA/NOAA Decadal Survey recommendation can be funded and managed with today’s budgets. An ideal NASA/NOAA mission would combine NOAA’s spare “Q” Imager and the upgraded GIFTS EDU hardware on a free flyer, launched in 2014 to the GOES East position and using the developing GOES-R downlink and communications system. Because the Ultraspectral Imager/Sounder data pixels are independent, GSDM data can be easily segmented into subimages, processed by massively parallel Linux computers, and analyzed by NASA and NOAA Algorithm working groups and science teams. A well calibrated Ultraspectral Imager/Sounder in a Geo orbit would also become the ultimate calibration transfer standard to support the WMO Global Space-based Inter-Calibration System (GSICS) effort. This poster reviews the science payoff of a GSDM, the measured GIFTS EDU hardware performance, and suggests an affordable mission strategy.

  3. Mars rapid round trip mission design

    NASA Astrophysics Data System (ADS)

    Sarzi Amade', Nicola

    The present research is divided in two parts. The first part is a well defined mathematical problem, with exact rules and results, in which the basic constraints for interplanetary round trip travels are used to calculate an interplanetary train schedule (ITS) of missions to Mars, in the general case of orbits with non-zero eccentricity and non-zero inclination. Several possible options for round trip travels to Mars are considered. In particular, options at high energy, which allow rapid round trip missions, are discussed. These options have important applications for human travels to Mars. The second part of the research is about systems engineering aspects, which are intrinsically less exact, since they can change with time due, for example, to technology development or economic and political factors. For the case of a selected human rapid round trip mission to Mars, the development of a mission architecture, an assessment of the masses involved in the mission (such as the initial masses required in LEO), an estimate of the necessary number of launches, and a preliminary analysis of the radiation protection requirements, are performed. The main problem that justifies the existence of basic constraints for round trip missions is that by increasing the DeltaV of a mission, in general the total round trip time does not vary much, because a higher DeltaV can only reduce the transfer time and it simply increases the stay-time on the target planet. However, if the DeltaV is increased beyond a well-defined level, the total round trip time has a sudden drop in duration that makes fast round trips possible. This is due to the fact that the traveler can go back before the home planet makes one extra revolution around the Sun. For a sufficiently high DeltaV, a round trip to Mars can change in duration from 2.7 years to about 5 months. For Mars missions, the round trip times are calculated for different DeltaV's and for different transfer trajectories (T1, T2, etc.). An

  4. CEV Trajectory Design Considerations for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Condon, Gerald L.; Dawn, Timothy; Merriam, Robert S.; Sostaric, Ronald; Westhelle, Carlos H.

    2007-01-01

    The Crew Exploration Vehicle (CEV) translational maneuver Delta-V budget must support both the successful completion of a nominal lunar mission and an "anytime" emergency crew return with the potential for much more demanding orbital maneuvers. This translational Delta-V budget accounts for Earth-based LEO rendezvous with the lunar surface access module (LSAM)/Earth departure stage (EDS) stack, orbit maintenance during the lunar surface stay, an on-orbit plane change to align the CEV orbit for an in-plane LSAM ascent, and the Moon-to-Earth trans-Earth injection (TEI) maneuver sequence as well as post-TEI TCMs. Additionally, the CEV will have to execute TEI maneuver sequences while observing Earth atmospheric entry interface objectives for lunar high-latitude to equatorial sortie missions as well as near-polar sortie and long duration missions. The combination of these objectives places a premium on appropriately designed trajectories both to and from the Moon to accurately size the translational V and associated propellant mass in the CEV reference configuration and to demonstrate the feasibility of anytime Earth return for all lunar missions. This report examines the design of the primary CEV translational maneuvers (or maneuver sequences) including associated mission design philosophy, associated assumptions, and methodology for lunar sortie missions with up to a 7-day surface stay and with global lunar landing site access as well as for long duration (outpost) missions with up to a 210-day surface stay at or near the polar regions. The analyses presented in this report supports the Constellation Program and CEV project requirement for nominal and anytime abort (early return) by providing for minimum wedge angles, lunar orbit maintenance maneuvers, phasing orbit inclination changes, and lunar departure maneuvers for a CEV supporting an LSAM launch and subsequent CEV TEI to Earth return, anytime during the lunar surface stay.

  5. Active Debris Removal mission design in Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Martin, Th.; Pérot, E.; Desjean, M.-Ch.; Bitetti, L.

    2013-03-01

    Active Debris Removal (ADR) aims at removing large sized intact objects ― defunct satellites, rocket upper-stages ― from space crowded regions. Why? Because they constitute the main source of the long-term debris environment deterioration caused by possible future collisions with fragments and worse still with other intact but uncontrolled objects. In order to limit the growth of the orbital debris population in the future (referred to as the Kessler syndrome), it is now highly recommended to carry out such ADR missions, together with the mitigation measures already adopted by national agencies (such as postmission disposal). At the French Space Agency, CNES, and in the frame of advanced studies, the design of such an ADR mission in Low Earth Orbit (LEO) is under evaluation. A two-step preliminary approach has been envisaged. First, a reconnaissance mission based on a small demonstrator (˜500 kg) rendezvousing with several targets (observation and in-flight qualification testing). Secondly, an ADR mission based on a larger vehicle (inherited from the Orbital Transfer Vehicle (OTV) concept) being able to capture and deorbit several preselected targets by attaching a propulsive kit to these targets. This paper presents a flight dynamics level tradeoff analysis between different vehicle and mission concepts as well as target disposal options. The delta-velocity, times, and masses required to transfer, rendezvous with targets and deorbit are assessed for some propelled systems and propellant less options. Total mass budgets are then derived for two end-to-end study cases corresponding to the reconnaissance and ADR missions mentioned above.

  6. An Initial Comparison of Selected Earth Departure Options for Solar Electric Propulsion Missions

    NASA Technical Reports Server (NTRS)

    Merrill, Raymond Gabriel; Komar, D. R.; Qu, Min; Chrone, Jon; Strange, Nathan; Landau, Damon

    2012-01-01

    Earth departure options such as the location for deployment, aggregation, and crew rendezvous as well as the type of propulsion leveraged for each mission phase effect overall mission performance metrics such as number of critical maneuvers, mass of propellant to achieve departure, and initial mass required in low Earth orbit. This paper identifies and compares a subset of tactical options for deployment, crew rendezvous, and Earth departure that leverage electric propulsion and hybrid chemical electric propulsion with a goal of improving system efficiency. Departure maneuver specific limitations and penalties are then identified for missions to specific targets for human interplanetary missions providing a better understanding of the impact of decisions related to aggregation and rendezvous locations as well as Earth departure maneuvers on overall system performance.

  7. Mars Rover and Sample Return Mission design

    NASA Technical Reports Server (NTRS)

    Kwok, Johnny H.; Friedlander, Alan L.

    1989-01-01

    The current reference Mars Rover and Sample Return mission is described. Technical issues are outlined, including high-resolution image acquisition and reconstruction, approach navigation, ground and flight systems operational complexity, rover autonomy, autonomous rendezvous and docking in Mars orbit, aerocapture and aeromaneuver, estimating the probability of mission success, and end-to-end information system design. Focus is placed on lander hazard identification and avoidance, pinpoint landing guidance and control, Mars ascent vehicle guidance and control, planetary protection and quarantine, sample acquisition and preservation, project management and control, systems requirements and interface control, and costing. In addition, program issues such as international participation, fiscal constraints, and launch-vehicle availability are considered.

  8. 47 CFR 1.2103 - Competitive bidding design options.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Competitive bidding design options. 1.2103... design options. Link to an amendment published at 79 FR 48528, August 15, 2014. (a) The Commission will... forth as follows: § 1.2103 Competitive bidding design options. (a) Public notice of competitive...

  9. ETF Mission Statement document. ETF Design Center team

    SciTech Connect

    Not Available

    1980-04-01

    The Mission Statement document describes the results, activities, and processes used in preparing the Mission Statement, facility characteristics, and operating goals for the Engineering Test Facility (ETF). Approximately 100 engineers and scientists from throughout the US fusion program spent three days at the Knoxville Mission Workshop defining the requirements that should be met by the ETF during its operating life. Seven groups were selected to consider one major category each of design and operation concerns. Each group prepared the findings of the assigned area as described in the major sections of this document. The results of the operations discussed must provide the data, knowledge, experience, and confidence to continue to the next steps beyond the ETF in making fusion power a viable energy option. The results from the ETF mission (operations are assumed to start early in the 1990's) are to bridge the gap between the base of magnetic fusion knowledge at the start of operations and that required to design the EPR/DEMO devices.

  10. Nuclear Thermal Rocket/Stage Technology Options for NASA's Future Human Exploration Missions to the Moon and Mars

    NASA Astrophysics Data System (ADS)

    Borowski, Stanley K.; Corban, Robert R.; McGuire, Melissa L.; Beke, Erik G.

    1994-07-01

    The nuclear thermal rocket (NTR) provides a unique propulsion capability to planners and designers of future human exploration missions to the Moon and Mars. In addition to its high specific impulse (Isp ~ 850-1000 seconds) and engine thrust-to-weight ratio (~ 3-10), the NTR can also be configured as a ``dual mode'' system capable of generating stage electrical power. At present, NASA is examining a variety of mission applications for the NTR ranging from an expendable, ``single burn'' trans-lunar injection (TLI) stage for NASA's ``First Lunar Outpost'' (FLO) mission to all propulsive, ``multi-burn,'' spacecraft supporting a ``split cargo/piloted sprint'' Mars mission architecture. Two ``proven'' solid core NTR concepts are examined -one based on NERVA (Nuclear Engine for Rocket Vehicle Application)-derivative reactor (NDR) technology, and a second concept which utilizes a ternary carbide ``twisted ribbon'' fuel form developed by the Commonwealth of Independent States (CIS). Integrated systems and mission study results are used in designing ``aerobraked'' and ``all propulsive'' Mars vehicle concepts which are mass-, and volume-compatible with both a reference 240 metric tonne (t) heavy lift launch vehicle (HLLV) and a smaller 120 t HLLV option. For the ``aerobraked'' scenario, the 2010 piloted mission determines the size of the expendable trans-Mars injection (TMI) stage which is a growth version of the FLO TLI stage. An ``all-propulsive'' Moon/Mars mission architecture is also described which uses common ``modular'' engine and stage hardware consisting of: (1) clustered 15 thousand pounds force (klbf) NDR or CIS engines; (2) two ``standardized'' liquid hydrogen (LH2) tank sizes; and (3) ``dual mode'' NTR and refrigeration system technologies for long duration missions. The ``modular'' NTR approach can form the basis for a ``faster, safer, and cheaper'' space transportation system for tomorrow's piloted missions to the Moon and Mars.

  11. Multiple main-belt asteroid mission options for a Mariner Mark II spacecraft

    NASA Technical Reports Server (NTRS)

    Sauer, Carl G., Jr.; Yen, Chen-Wan L.

    1990-01-01

    This paper presents the trajectory options available for a MMII spacecraft mission to asteroids and introduces systematic methods of uncovering attractive mission opportunities. The analysis presented considers multiple synchronous gravity assists of Mars and introduces a terminal resonant or phasing orbit; a concept useful for both increasing the number of asteroid rendezvous targets attainable during a launch opportunity, and also in increasing the number of potential asteroid flybys. Systematic examinations of the requirements for superior asteroidal alignments are made and a comprehensive set of asteroid rendezvous opportunities for the 1998 to 2010 period are presented. Examples of candidate missions involving one or more rendezvous and several flybys are also presented.

  12. Lunar prospector mission design and trajectory support

    NASA Technical Reports Server (NTRS)

    Lozier, David; Galal, Ken; Folta, David; Beckman, Mark

    1998-01-01

    The Lunar Prospector mission is the first dedicated NASA lunar mapping mission since the Apollo Orbiter program which was flown over 25 years ago. Competitively selected under the NASA Discovery Program, Lunar Prospector was launched on January 7, 1998 on the new Lockheed Martin Athena 2 launch vehicle. The mission design of Lunar Prospector is characterized by a direct minimum energy transfer trajectory to the moon with three scheduled orbit correction maneuvers to remove launch and cislunar injection errors prior to lunar insertion. At lunar encounter, a series of three lunar orbit insertion maneuvers and a small circularization burn were executed to achieve a 100 km altitude polar mapping orbit. This paper will present the design of the Lunar Prospector transfer, lunar insertion and mapping orbits, including maneuver and orbit determination strategies in the context of mission goals and constraints. Contingency plans for handling transfer orbit injection and lunar orbit insertion anomalies are also summarized. Actual flight operations results are discussed and compared to pre-launch support analysis.

  13. Crew Exploration Vehicle Environmental Control and Life Support Design Reference Missions

    NASA Technical Reports Server (NTRS)

    Lewis, John F.; Anderson, Molly K.; Ewert, Mike S.; Stephan, Ryan A.; Carrasquillo, Robyn L.

    2007-01-01

    In preparation for the contract award of the Crew Exploration Vehicle (CEV), the National Aeronautics and Space Administration (NASA) produced two design reference missions for the vehicle. The design references used teams of engineers across the agency to come up with two configurations. This process helped NASA understand the conflicts and limitations in the CEV design, and investigate options to solve them.

  14. Integrating Safety and Mission Assurance in Design

    NASA Technical Reports Server (NTRS)

    Cianciola, Chris; Crane, Kenneth

    2008-01-01

    This presentation describes how the Ares Projects are learning from the successes and failures of previous launch systems in order to maximize safety and reliability while maintaining fiscal responsibility. The Ares Projects are integrating Safety and Mission Assurance into design activities and embracing independent assessments by Quality experts in thorough reviews of designs and processes. Incorporating Lean thinking into the design process, Ares is also streamlining existing processes and future manufacturing flows which will yield savings during production. Understanding the value of early involvement of Quality experts, the Ares Projects are leading launch vehicle development into the 21st century.

  15. Space interferometer mission (SIM) instrument design concepts.

    NASA Astrophysics Data System (ADS)

    Duncan, A. L.

    SIM is a 12 meter baseline interferometer to be built as part of the NASA Origins program, designed to fly in space and provide high precision astrometry measurements of astronomical objects. SIM will provide angular measurements three orders of magnitude more precise than current space or ground based sensors, allowing the indirect detection of Earth-like planets around neighboring stars. The SIM mission will also include the ability to synthesize images by varying the interferometer baseline lengths and will demonstrate a nulling beam combiner as a technology pathfinder for future missions. A team at Lockheed Martin Missiles and Space (LMMS) in Sunnyvale, CA has been chosen by JPL to enter a partnership to design and build the SIM instrument. This paper describes the overall LMMS SIM instrument concept and its unique features, including the full aperture laser metrology approach for high precision metrology.

  16. Mars ISRU for Production of Mission Critical Consumables - Options, Recent Studies, and Current State of the Art

    NASA Technical Reports Server (NTRS)

    Sanders, G. B.; Paz, A.; Oryshchyn, L.; Araghi, K.; Muscatello, A.; Linne, D.; Kleinhenz, J.; Peters, T.

    2015-01-01

    In 1978, a ground breaking paper titled, "Feasibility of Rocket Propellant Production on Mars" by Ash, Dowler, and Varsi discussed how ascent propellants could be manufactured on the Mars surface from carbon dioxide collected from the atmosphere to reduce launch mass. Since then, the concept of making mission critical consumables such as propellants, fuel cell reactants, and life support consumables from local resources, commonly known as In-Situ Resource Utilization (ISRU), for robotic and human missions to Mars has been studied many times. In the late 1990's, NASA initiated a series of Mars Human Design Reference Missions (DRMs), the first of which was released in 1997. These studies primarily focused on evaluating the impact of making propellants on Mars for crew ascent to Mars orbit, but creating large caches of life support consumables (water & oxygen) as a backup for regenerative life support systems for long-duration surface stays (>500 days) was also considered in Mars DRM 3.0. Until science data from the Mars Odyssey orbiter and subsequent robotic missions revealed that water may be widely accessable across the surface of Mars, prior Mars ISRU studies were limited to processing Mars atmospheric resources (carbon dioxide, nitrogen, argon, oxygen, and water vapor). In December 2007, NASA completed the Mars Human Design Reference Architecture (DRA) 5.0 study which considered water on Mars as a potential resource for the first time in a human mission architecture. While knowledge of both water resources on Mars and the hardware required to excavate and extract the water were very preliminary, the study concluded that a significant reduction in mass and significant enhancements to the mission architecture were possible if Mars water resources were utilized. Two subsequent Mars ISRU studies aimed at reexamining ISRU technologies, processing options, and advancements in the state-of-the-art since 2007 and to better understand the volume and packaging associated

  17. Trajectory design for space missions to libration point L2.

    PubMed

    Di Salvo, Alessio

    2005-12-01

    This work is focused on the detection and computation of "free" transfer trajectories from parking orbits around the Earth to quasiperiodic orbits around the collinear libration point L(2), in the Sun-Earth system; no correction or insertion maneuvers into the final orbits have been considered. The circular restricted three-body problem is the mathematical model used to describe the motion of a spacecraft, in the gravitational field of the two primaries, computed by integrating the nonlinearized equations of motion. A shooting method has been designed and developed to determine the increment of velocity required for the perigee maneuver, which injects a spacecraft into its transfer trajectory: first the velocity boundary for the Earth escape/capture condition is detected and then an iterative bisection method is applied until the burnout velocity, tangential to the parking orbit, leads the spacecraft to its final Lissajous orbit. For a launch from Kourou at local noon, Ariane5 GTO and Soyuz GTO "equivalent" have been studied and compared, considering fuel minimization for the transfer maneuver and general mission constraints, as maximum excursion of the final Lissajous orbit from the ecliptic plane and eclipses avoidance during the mission. This analysis highlights advantages and drawbacks of various parking orbits. Mission goals are the key factor for the tradeoff among orbit selection, launch options, and the other constraints, fixed by mission requirements. PMID:16510417

  18. Towards Risk Based Design for NASA's Missions

    NASA Technical Reports Server (NTRS)

    Tumer, Irem Y.; Barrientos, Francesca; Meshkat, Leila

    2004-01-01

    This paper describes the concept of Risk Based Design in the context of NASA s low volume, high cost missions. The concept of accounting for risk in the design lifecycle has been discussed and proposed under several research topics, including reliability, risk analysis, optimization, uncertainty, decision-based design, and robust design. This work aims to identify and develop methods to enable and automate a means to characterize and optimize risk, and use risk as a tradeable resource to make robust and reliable decisions, in the context of the uncertain and ambiguous stage of early conceptual design. This paper first presents a survey of the related topics explored in the design research community as they relate to risk based design. Then, a summary of the topics from the NASA-led Risk Colloquium is presented, followed by current efforts within NASA to account for risk in early design. Finally, a list of "risk elements", identified for early-phase conceptual design at NASA, is presented. The purpose is to lay the foundation and develop a roadmap for future work and collaborations for research to eliminate and mitigate these risk elements in early phase design.

  19. The HSCT mission analysis of waverider designs

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The grant provided partial support for an investigation of wave rider design and analysis with application to High-Speed Civil Transport (HSCT) vehicles. Proposed was the development of the necessary computational fluid dynamics (CFD) tools for the direct simulation of the waverider vehicles, the development of two new wave rider design methods that would provide computational speeds and design flexibilities never before achieved in wave rider design studies, and finally the selection of a candidate waverider-based vehicle and the evaluation of the chosen vehicle for a canonical HSCT mission scenario. This, the final report, reiterates the proposed project objectives in moderate detail, and it outlines the state of completion of each portion of the study, providing references to current and forthcoming publications that resulted from this work.

  20. The Far Ultraviolet (FUV) auroral imager for the Inner Magnetospheric Imager (IMI) mission: Options

    NASA Technical Reports Server (NTRS)

    Wilson, Gordon R.

    1993-01-01

    The change from an intermediate mission (cost ceiling of $300 million) to a solar-terrestrial probe class mission (cost ceiling of $150 million) will require some major changes in the configuration of the IMI mission. One option being considered is to move to a small spin-stabilized spacecraft (with no despun platform) which could be launched with a smaller Taurus or Conestoga class booster. Such a change in spacecraft type would not present any fundamental problems (other than restrictions on mass and power) for the He plus 304 A plasmasphere imager, the high and low energy neutral atom imagers, and the geocoronal imager, but would present a challenge for the FUV auroral imager since the original plan called for this instrument to operate from a despun platform. Since the FUV instrument is part of the core payload it cannot be dropped from the instrument complement without jeopardizing the science goals of the mission. A way must be found to keep this instrument and to allow it to accomplish most, if not all, of its science objectives. One of the subjects discussed are options for building an FUV instrument for a spinning spacecraft. Since a number of spinning spacecraft have carried auroral imagers, a range of techniques exists. In addition, the option of flying the FUV imager on a separate micro-satellite launched with the main IMI spacecraft or with a separate pegasus launch, was considered and is discussed.

  1. Structural Design for a Neptune Aerocapture Mission

    NASA Technical Reports Server (NTRS)

    Dyke, R. Eric; Hrinda, Glenn A.

    2004-01-01

    A multi-center study was conducted in 2003 to assess the feasibility of and technology requirements for using aerocapture to insert a scientific platform into orbit around Neptune. The aerocapture technique offers a potential method of greatly reducing orbiter mass and thus total spacecraft launch mass by minimizing the required propulsion system mass. This study involved the collaborative efforts of personnel from Langley Research Center (LaRC), Johnson Space Flight Center (JSFC), Marshall Space Flight Center (MSFC), Ames Research Center (ARC), and the Jet Propulsion Laboratory (JPL). One aspect of this effort was the structural design of the full spacecraft configuration, including the ellipsled aerocapture orbiter and the in-space solar electric propulsion (SEP) module/cruise stage. This paper will discuss the functional and structural requirements for each of these components, some of the design trades leading to the final configuration, the loading environments, and the analysis methods used to ensure structural integrity. It will also highlight the design and structural challenges faced while trying to integrate all the mission requirements. Component sizes, materials, construction methods and analytical results, including masses and natural frequencies, will be presented, showing the feasibility of the resulting design for use in a Neptune aerocapture mission. Lastly, results of a post-study structural mass optimization effort on the ellipsled will be discussed, showing potential mass savings and their influence on structural strength and stiffness

  2. The system design of TRIO cinema Mission

    NASA Astrophysics Data System (ADS)

    Jin, Ho; Seon, Jongho; Kim, Khan-Hyuk; Lee, Dong-Hun; Kim, Kap-Sung; Lin, Robert; Parks, George; Tindall, Craig; Horbury, T. S.; Larson, Davin; Sample, John

    TRIO (Triplet Ionospheric Observatory) CINEMA ( Cubesat for Ion, Neutral, Electron, MAg-netic fields) is a space science mission with three identical cubesats. The main scientific objec-tives are a multi-observation of ionospheric ENA (Energetic Neutral Atom) imaging, ionospheric signature of suprathermal electrons and ions and complementary measurements of magnetic fields for particle data. For this, Main payloads consist of a suprathermal electron, ion, neutral (STEIN) instrument and a 3-axis magnetometer of magnetoresistive sensors. The CINEMA is a 3-unit CubeSat, which translates to a 10 cm x 10 cm x 30 cm in volume and no more than four kilograms in mass. An attitude control system (ACS) uses torque coils, a sun sensor and the magnetometers and spin CINEMA spcaecraft 4 rpm with the spin axis perpendicular to the ecliptic plane. CINEMA will be placed into a high inclination low earth orbit that crosses the auroral zone and cusp. Three institutes are collaborating to develop CINEMA cubesats: i) two cubesats by Kyung Hee University (KHU) under their World Class University (WCU) program, ii) one cubesat by UC Berkeley under the NSF support, and iii) three magnetometers are provide by Imperial College, respectively. In this paper, we describe the system design and their performance of TR IO cinema mission. TRIO cinema's development of miniature in-strument and spacecraft spinning operation will play an important role for future nanosatellite space missions

  3. Concurrent engineering: Spacecraft and mission operations system design

    NASA Technical Reports Server (NTRS)

    Landshof, J. A.; Harvey, R. J.; Marshall, M. H.

    1994-01-01

    Despite our awareness of the mission design process, spacecraft historically have been designed and developed by one team and then turned over as a system to the Mission Operations organization to operate on-orbit. By applying concurrent engineering techniques and envisioning operability as an essential characteristic of spacecraft design, tradeoffs can be made in the overall mission design to minimize mission lifetime cost. Lessons learned from previous spacecraft missions will be described, as well as the implementation of concurrent mission operations and spacecraft engineering for the Near Earth Asteroid Rendezvous (NEAR) program.

  4. Space station needs, attributes and architectural options. Volume 3, task 1: Mission requirements

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The mission requirements of the space station program are investigated. Mission parameters are divided into user support from private industry, scientific experimentation, U.S. national security, and space operations away from the space station. These categories define the design and use of the space station. An analysis of cost estimates is included.

  5. Space station needs, attributes and architectural options study. Volume 2: Mission definition

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The space applications and science programs appropriate to the era beyond 1990, those user missions which can utilize the Space Station to an advantage, and user mission concepts so that requirements, which will drive the Space Stations (SS) design are addressed.

  6. NASA's Asteroid Redirect Mission: A Robotic Boulder Capture Option for Science, Human Exploration, Resource Utilization, and Planetary Defense

    NASA Technical Reports Server (NTRS)

    Abell, P.; Nuth, J.; Mazanek, D.; Merrill, R.; Reeves, D.; Naasz, B.

    2014-01-01

    NASA is examining two options for the Asteroid Redirect Mission (ARM), which will return asteroid material to a Lunar Distant Retrograde Orbit (LDRO) using a robotic solar electric propulsion spacecraft, called the Asteroid Redirect Vehicle (ARV). Once the ARV places the asteroid material into the LDRO, a piloted mission will rendezvous and dock with the ARV. After docking, astronauts will conduct two extravehicular activities (EVAs) to inspect and sample the asteroid material before returning to Earth. One option involves capturing an entire small (4 - 10 m diameter) near-Earth asteroid (NEA) inside a large inflatable bag. However, NASA is also examining another option that entails retrieving a boulder (1 - 5 m) via robotic manipulators from the surface of a larger (100+ m) pre-characterized NEA. The Robotic Boulder Capture (RBC) option can leverage robotic mission data to help ensure success by targeting previously (or soon to be) well- characterized NEAs. For example, the data from the Japan Aerospace Exploration Agency's (JAXA) Hayabusa mission has been utilized to develop detailed mission designs that assess options and risks associated with proximity and surface operations. Hayabusa's target NEA, Itokawa, has been identified as a valid target and is known to possess hundreds of appropriately sized boulders on its surface. Further robotic characterization of additional NEAs (e.g., Bennu and 1999 JU3) by NASA's OSIRIS REx and JAXA's Hayabusa 2 missions is planned to begin in 2018. This ARM option reduces mission risk and provides increased benefits for science, human exploration, resource utilization, and planetary defense. Science: The RBC option is an extremely large sample-return mission with the prospect of bringing back many tons of well-characterized asteroid material to the Earth-Moon system. The candidate boulder from the target NEA can be selected based on inputs from the world-wide science community, ensuring that the most scientifically interesting

  7. Mission Design Overview for the Phoenix Mars Scout Mission

    NASA Technical Reports Server (NTRS)

    Garcia, Mark D.; Fujii, Kenneth K.

    2007-01-01

    The Phoenix mission "follows the water" by landing in a region where NASA's Mars Odyssey orbiter has discovered evidence of ice-rich soil very near the Martian surface. For three months after landing, the fixed Lander will perform in-situ and remote sensing investigations that will characterize the chemistry of the materials at the local surface, sub-surface, and atmosphere, and will identify potential provenance of key indicator elements of significance to the biological potential of Mars, including potential organics and any accessible water ice. The Lander will employ a robotic arm to dig to the ice layer, and will analyze the acquired samples using a suite of deck-mounted, science instruments. The development of the baseline strategy to achieve the objectives of this mission involves the integration of a variety of elements into a coherent mission plan.

  8. Another Option for the Asteroid Sample of the Asteroid Redirect Mission

    NASA Astrophysics Data System (ADS)

    Hou, Xiyun; Tang, Jingshi; Liu, Lin; Xin, Xiaosheng

    2016-07-01

    The asteroid redirect mission (ARM) consists of two phases: the asteroid redirect robotic mission (ARRM) and the asteroid redirect crewed mission (ARCM). The ARRM phase aims at capturing a boulder from the surface of an asteroid of hundred meters in diameter and returning it back to the Earth-Moon system. Currently, the option for the orbit of the returned sample is a large lunar distant retrograde orbit (LDRO) around the Moon. After the sample is returned to this LDRO, then the ARCM phase will send astronauts to the sample. The total energy cost consists of two parts: (1) from the orbit of an near-Earth asteroid to the LDRO, here as part I; (2) from the parking low Earth orbit (LEO) to the LDRO, here as part II. In the authors' work for stable motions in the real Earth-Moon system, we found that there are stable motions around the triangular libration points (TLP). Theoretically, these orbits can also be used as candidate orbits to hold the returned sample. Our previous preliminary works show that the energy of sending a manned probe from the LEO to these orbits is comparable to the option of sending it from the LEO to the LDRO. Besides, it's also possible for the sample to be returned from the orbit of a near-Earth asteroid to these stable orbits, with very small delta-V corrections. In this work, we'll study the energy cost of this option (i.e., using the stable orbits around the TLP as the orbits for the asteroid sample) in detail and compare this option with the LDRO option.

  9. Waste Management Options for Long-Duration Space Missions: When to Reject, Reuse, or Recycle

    NASA Technical Reports Server (NTRS)

    Linne, Diane L.; Palaszewski, Bryan A.; Gokoglu, Suleyman; Gallo, Christopher A.; Balasubramaniam, Ramaswamy; Hegde, Uday G.

    2014-01-01

    The amount of waste generated on long-duration space missions away from Earth orbit creates the daunting challenge of how to manage the waste through reuse, rejection, or recycle. The option to merely dispose of the solid waste through an airlock to space was studied for both Earth-moon libration point missions and crewed Mars missions. Although the unique dynamic characteristics of an orbit around L2 might allow some discarded waste to intersect the lunar surface before re-impacting the spacecraft, the large amount of waste needed to be managed and potential hazards associated with volatiles recondensing on the spacecraft surfaces make this option problematic. A second option evaluated is to process the waste into useful gases to be either vented to space or used in various propulsion systems. These propellants could then be used to provide the yearly station-keeping needs at an L2 orbit, or if processed into oxygen and methane propellants, could be used to augment science exploration by enabling lunar mini landers to the far side of the moon.

  10. Preliminary Design of Low-Thrust Interplanetary Missions

    NASA Technical Reports Server (NTRS)

    Sims, Jon A.; Flanagan, Steve N.

    1997-01-01

    For interplanetary missions, highly efficient electric propulsion systems can be used to increase the mass delivered to the destination and/or reduce the trip time over typical chemical propulsion systems. This technology is being demonstrated on the Deep Space 1 mission - part of NASA's New Millennium Program validating technologies which can lower the cost and risk and enhance the performance of future missions. With the successful demonstration on Deep Space 1, future missions can consider electric propulsion as a viable propulsion option. Electric propulsion systems, while highly efficient, produce only a small amount of thrust. As a result, the engines operate during a significant fraction of the trajectory. This characteristic makes it much more difficult to find optimal trajectories. The methods for optimizing low-thrust trajectories are typically categorized as either indirect, or direct. Indirect methods are based on calculus of variations, resulting in a two-point boundary value problem that is solved by satisfying terminal constraints and targeting conditions. These methods are subject to extreme sensitivity to the initial guess of the variables - some of which are not physically intuitive. Adding a gravity assist to the trajectory compounds the sensitivity. Direct methods parameterize the problem and use nonlinear programming techniques to optimize an objective function by adjusting a set of variables. A variety of methods of this type have been examined with varying results. These methods are subject to the limitations of the nonlinear programming techniques. In this paper we present a direct method intended to be used primarily for preliminary design of low-thrust interplanetary trajectories, including those with multiple gravity assists. Preliminary design implies a willingness to accept limited accuracy to achieve an efficient algorithm that executes quickly.

  11. A survey of propulsion options for cargo and piloted missions to Mars.

    PubMed

    Sankaran, K; Cassady, L; Kodys, A D; Choueiri, E Y

    2004-05-01

    In this paper, high-power electric propulsion options are surveyed in the context of cargo and piloted missions to Mars. A low-thrust trajectory optimization program (raptor) is utilized to analyze this mission. Candidate thrusters are chosen based upon demonstrated performance in the laboratory. Hall, self-field magnetoplasmadynamic (MPDT), self-field lithium Lorentz force accelerator (LiLFA), arcjet, and applied-field LiLFA systems are considered for this mission. In this first phase of the study, all thrusters are assumed to operate at a single power level (regardless of the efficiency-power curve), and the thruster specific mass and power plant specific mass are taken to be the same for all systems. Under these assumptions, for a 7.5 MW, 60 mT payload, piloted mission, the self-field LiLFA results in the shortest trip time (340 days) with a reasonable propellant mass fraction of 57% (129 mT). For a 150 kW, 9 mT payload, cargo mission, both the applied-field LiLFA and the Hall thruster seem reasonable choices with propellant mass fractions of 42 to 45%(7 to 8 mT). The Hall thrusters provide better trip times (530-570 days) compared to the applied-field LiLFA (710 days) for the relatively less demanding mission. PMID:15220162

  12. Libration point staging options for SEI lunar missions - Station keeping implications

    NASA Technical Reports Server (NTRS)

    Haynes, Davy A.

    1992-01-01

    Libration point staging is one alternative to lunar orbit rendezvous which is being examined for the Space Exploration Initiative lunar missions. The libration point staging strategy being considered would eliminate the lunar mid-latitude accessibility constraint for long duration missions. Staging options for such a strategy are discussed with particular emphasis on the impact of the libration points' stability. The equations of motion for a satellite at the libration points are numerically integrated to investigate the stability and to determine the station-keeping requirements. These requirements are presented, and overall requirements for libration point staging briefly summarized. The results indicate that the slight eccentricity of the Moon's orbit would result in excessive station-keeping requirements for long duration missions.

  13. Starshade Design for Occulter Based Exoplanet Missions

    NASA Technical Reports Server (NTRS)

    Thomson, Mark W.; Lisman, P. Douglas; Helms, Richard; Walkemeyer, Phil; Kissil, Andrew; Polanco, Otto; Lee, Siu-Chun

    2010-01-01

    We present a lightweight starshade design that delivers the requisite profile figure accuracy with a compact stowed volume that permits launching both the occulter system (starshade and spacecraft) and a 1 to 2m-class telescope system on a single existing launch vehicle. Optimal figure stability is achieved with a very stiff and mass-efficient deployable structure design that has a novel configuration. The reference design is matched to a 1.1m telescope and consists of a 15m diameter inner disc and 24 flower-like petals with 7.5m length. The total tip-to-tip diameter of 30m provides an inner working angle of 75 mas. The design is scalable to accommodate larger telescopes and several options have been assessed. A proof of concept petal is now in production at JPL for deployment demonstrations and as a testbed for developing additional elements of the design. Future plans include developing breadboard and prototype hardware of increasing fidelity for use in demonstrating critical performance capabilities such as deployed optical edge profile figure tolerances and stability thereof.

  14. Reduced cost mission design using surrogate models

    NASA Astrophysics Data System (ADS)

    Feldhacker, Juliana D.; Jones, Brandon A.; Doostan, Alireza; Hampton, Jerrad

    2016-01-01

    This paper uses surrogate models to reduce the computational cost associated with spacecraft mission design in three-body dynamical systems. Sampling-based least squares regression is used to project the system response onto a set of orthogonal bases, providing a representation of the ΔV required for rendezvous as a reduced-order surrogate model. Models are presented for mid-field rendezvous of spacecraft in orbits in the Earth-Moon circular restricted three-body problem, including a halo orbit about the Earth-Moon L2 libration point (EML-2) and a distant retrograde orbit (DRO) about the Moon. In each case, the initial position of the spacecraft, the time of flight, and the separation between the chaser and the target vehicles are all considered as design inputs. The results show that sample sizes on the order of 102 are sufficient to produce accurate surrogates, with RMS errors reaching 0.2 m/s for the halo orbit and falling below 0.01 m/s for the DRO. A single function call to the resulting surrogate is up to two orders of magnitude faster than computing the same solution using full fidelity propagators. The expansion coefficients solved for in the surrogates are then used to conduct a global sensitivity analysis of the ΔV on each of the input parameters, which identifies the separation between the spacecraft as the primary contributor to the ΔV cost. Finally, the models are demonstrated to be useful for cheap evaluation of the cost function in constrained optimization problems seeking to minimize the ΔV required for rendezvous. These surrogate models show significant advantages for mission design in three-body systems, in terms of both computational cost and capabilities, over traditional Monte Carlo methods.

  15. Mars Mission Analysis Trades Based on Legacy and Future Nuclear Propulsion Options

    NASA Astrophysics Data System (ADS)

    Joyner, Russell; Lentati, Andrea; Cichon, Jaclyn

    2007-01-01

    The purpose of this paper is to discuss the results of mission-based system trades when using a nuclear thermal propulsion (NTP) system for Solar System exploration. The results are based on comparing reactor designs that use a ceramic-metallic (CERMET), graphite matrix, graphite composite matrix, or carbide matrix fuel element designs. The composite graphite matrix and CERMET designs have been examined for providing power as well as propulsion. Approaches to the design of the NTP to be discussed will include an examination of graphite, composite, carbide, and CERMET core designs and the attributes of each in regards to performance and power generation capability. The focus is on NTP approaches based on tested fuel materials within a prismatic fuel form per the Argonne National Laboratory testing and the ROVER/NERVA program. NTP concepts have been examined for several years at Pratt & Whitney Rocketdyne for use as the primary propulsion for human missions beyond earth. Recently, an approach was taken to examine the design trades between specific NTP concepts; NERVA-based (UC)C-Graphite, (UC,ZrC)C-Composite, (U,Zr)C-Solid Carbide and UO2-W CERMET. Using Pratt & Whitney Rocketdyne's multidisciplinary design analysis capability, a detailed mission and vehicle model has been used to examine how several of these NTP designs impact a human Mars mission. Trends for the propulsion system mass as a function of power level (i.e. thrust size) for the graphite-carbide and CERMET designs were established and correlated against data created over the past forty years. These were used for the mission trade study. The resulting mission trades presented in this paper used a comprehensive modeling approach that captures the mission, vehicle subsystems, and NTP sizing.

  16. Mars Mission Analysis Trades Based on Legacy and Future Nuclear Propulsion Options

    SciTech Connect

    Joyner, Russell; Lentati, Andrea; Cichon, Jaclyn

    2007-01-30

    The purpose of this paper is to discuss the results of mission-based system trades when using a nuclear thermal propulsion (NTP) system for Solar System exploration. The results are based on comparing reactor designs that use a ceramic-metallic (CERMET), graphite matrix, graphite composite matrix, or carbide matrix fuel element designs. The composite graphite matrix and CERMET designs have been examined for providing power as well as propulsion. Approaches to the design of the NTP to be discussed will include an examination of graphite, composite, carbide, and CERMET core designs and the attributes of each in regards to performance and power generation capability. The focus is on NTP approaches based on tested fuel materials within a prismatic fuel form per the Argonne National Laboratory testing and the ROVER/NERVA program. NTP concepts have been examined for several years at Pratt and Whitney Rocketdyne for use as the primary propulsion for human missions beyond earth. Recently, an approach was taken to examine the design trades between specific NTP concepts; NERVA-based (UC)C-Graphite, (UC,ZrC)C-Composite, (U,Zr)C-Solid Carbide and UO2-W CERMET. Using Pratt and Whitney Rocketdyne's multidisciplinary design analysis capability, a detailed mission and vehicle model has been used to examine how several of these NTP designs impact a human Mars mission. Trends for the propulsion system mass as a function of power level (i.e. thrust size) for the graphite-carbide and CERMET designs were established and correlated against data created over the past forty years. These were used for the mission trade study. The resulting mission trades presented in this paper used a comprehensive modeling approach that captures the mission, vehicle subsystems, and NTP sizing.

  17. Implementation Options For the Solar System Exploration Survey's "Jupiter Polar Orbiter with Probes" Mission

    NASA Astrophysics Data System (ADS)

    Spilker, T. R.

    2002-09-01

    In July of this year the National Academy of Science released a draft of its report, "New Frontiers in the Solar System: An Integrated Exploration Strategy," briefly describing the current state of solar system planetary science and the most important science objectives for the next decade (2003-2013). It includes a prioritized list of five mission concepts that might be flown as part of NASA's fledgling New Frontiers Program; each "concept" is more a list of science or measurement objectives than a full mission concept, since it does not specify implementation details in most cases. Number three on that list is the "Jupiter Polar Orbiter with Probes" ("JPOP") mission. This mission concept combines the strengths of previously described or proposed Jupiter missions into a single mission, and gains from the synergies of some of the newly-combined investigations. The primary science objectives are: 1. Determine if Jupiter has a central core 2. Determine the deep abundance of water (and other volatiles) 3. Measure Jupiter's deep winds 4. Determine the structure of Jupiter's dynamo magnetic field 5. Sample in situ Jupiter's polar magnetosphere This paper examines some of the implementation options for a JPOP mission, and gives relative advantages and disadvantages. Given the New Frontier Program's maximum cost to NASA of \\650M, plus an approx. \\120M cap on international contributions, implementing the full range of JPOP science objectives in a single New Frontiers mission may be challenging. This work was performed at the Jet Propulsion Laboratory / California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  18. 47 CFR 1.2103 - Competitive bidding design options.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Competitive bidding design options. 1.2103... Competitive Bidding Proceedings General Procedures § 1.2103 Competitive bidding design options. (a) The... methodology it establishes in advance of each auction with combinatorial bidding. (2) Substitute for...

  19. 47 CFR 1.2103 - Competitive bidding design options.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Competitive bidding design options. 1.2103 Section 1.2103 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Competitive Bidding Proceedings General Procedures § 1.2103 Competitive bidding design options. (a)...

  20. Mission Design for NASA's Inner Heliospheric Sentinels and ESA's Solar Orbiter Missions

    NASA Technical Reports Server (NTRS)

    Downing, John; Folta, David; Marr, Greg; Rodriquez-Canabal, Jose; Conde, Rich; Guo, Yanping; Kelley, Jeff; Kirby, Karen

    2007-01-01

    This paper will document the mission design and mission analysis performed for NASA's Inner Heliospheric Sentinels (IHS) and ESA's Solar Orbiter (SolO) missions, which were conceived to be launched on separate expendable launch vehicles. This paper will also document recent efforts to analyze the possibility of launching the Inner Heliospheric Sentinels and Solar Orbiter missions using a single expendable launch vehicle, nominally an Atlas V 551.

  1. Jovian plasma modeling for mission design

    NASA Technical Reports Server (NTRS)

    Garrett, Henry B.; Kim, Wousik; Belland, Brent; Evans, Robin

    2015-01-01

    The purpose of this report is to address uncertainties in the plasma models at Jupiter responsible for surface charging and to update the jovian plasma models using the most recent data available. The updated plasma environment models were then used to evaluate two proposed Europa mission designs for spacecraft charging effects using the Nascap-2k code. The original Divine/Garrett jovian plasma model (or "DG1", T. N. Divine and H. B. Garrett, "Charged particle distributions in Jupiter's magnetosphere," J. Geophys. Res., vol. 88, pp. 6889-6903,1983) has not been updated in 30 years, and there are known errors in the model. As an example, the cold ion plasma temperatures between approx.5 and 10 Jupiter radii (Rj) were found by the experimenters who originally published the data to have been underestimated by approx.2 shortly after publication of the original DG1 model. As knowledge of the plasma environment is critical to any evaluation of the surface charging at Jupiter, the original DG1 model needed to be updated to correct for this and other changes in our interpretation of the data so that charging levels could beproperly estimated using the Nascap-2k charging code. As an additional task, the Nascap-2k spacecraft charging tool has been adapted to incorporate the so-called Kappa plasma distribution function--an important component of the plasma model necessary to compute the particle fluxes between approx.5 keV and 100 keV (at the outset of this study,Nascap-2k did not directly incorporate this common representation of the plasma thus limiting the accuracy of our charging estimates). The updating of the DG1 model and its integration into the Nascap-2k design tool means that charging concerns can now be more efficiently evaluated and mitigated. (We note that, given the subsequent decision by the Europa project to utilize solar arrays for its baseline design, surface charging effects have becomeeven more of an issue for its mission design). The modifications and

  2. Jovian Plasma Modeling for Mission Design

    NASA Technical Reports Server (NTRS)

    Garrett, Henry B.; Kim, Wousik; Belland, Brent; Evans, Robin

    2015-01-01

    The purpose of this report is to address uncertainties in the plasma models at Jupiter responsible for surface charging and to update the jovian plasma models using the most recent data available. The updated plasma environment models were then used to evaluate two proposed Europa mission designs for spacecraft charging effects using the Nascap-2k code. The original Divine/Garrett jovian plasma model (or "DG1", T. N. Divine and H. B. Garrett, "Charged particle distributions in Jupiter's magnetosphere," J. Geophys. Res., vol. 88, pp. 6889-6903,1983) has not been updated in 30 years, and there are known errors in the model. As an example, the cold ion plasma temperatures between approx.5 and 10 Jupiter radii (Rj) were found by the experimenters who originally published the data to have been underestimated by approx.2 shortly after publication of the original DG1 model. As knowledge of the plasma environment is critical to any evaluation of the surface charging at Jupiter, the original DG1 model needed to be updated to correct for this and other changes in our interpretation of the data so that charging levels could beproperly estimated using the Nascap-2k charging code. As an additional task, the Nascap-2k spacecraft charging tool has been adapted to incorporate the so-called Kappa plasma distribution function--an important component of the plasma model necessary to compute the particle fluxes between approx.5 keV and 100 keV (at the outset of this study,Nascap-2k did not directly incorporate this common representation of the plasma thus limiting the accuracy of our charging estimates). The updating of the DG1 model and its integration into the Nascap-2k design tool means that charging concerns can now be more efficiently evaluated and mitigated. (We note that, given the subsequent decision by the Europa project to utilize solar arrays for its baseline design, surface charging effects have becomeeven more of an issue for its mission design). The modifications and

  3. Mission design for the low-cost Mariner Mark II missions

    NASA Technical Reports Server (NTRS)

    Wallace, R. A.; Blume, W. H.; Hulkower, N. D.; Yen, C. L.

    1982-01-01

    Mariner Mark II is a program of missions, now under study at JPL, which will maximize scientific return at substantially reduced cost. There will be 3 to 5 missions in the program investigating comets, asteroids, the outer planets and their satellites, and Mars in the 1990s. Mission opportunities for these targets in this time period are described in terms of launch vehicle, propulsion, and flight time requirements, as well as other mission constraints such as margin and launch period objectives. Example encounter designs as well as mission launch scenarios are also described.

  4. Attitude Design for the LADEE Mission

    NASA Technical Reports Server (NTRS)

    Galal, Ken; Nickel, Craig; Sherman, Ryan

    2015-01-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) satellite successfully completed its 148-day science investigation in a low-altitude, near-equatorial lunar orbit on April 18, 2014. The LADEE spacecraft was built, managed and operated by NASA's Ames Research Center (ARC). The Mission Operations Center (MOC) was located at Ames and was responsible for activity planning, command sequencing, trajectory and attitude design, orbit determination, and spacecraft operations. The Science Operations Center (SOC) was located at Goddard Space Flight Center and was responsible for science planning, data archiving and distribution. This paper details attitude design and operations support for the LADEE mission. LADEE's attitude design was shaped by a wide range of instrument pointing requirements that necessitated regular excursions from the baseline one revolution per orbit "Ram" attitude. Such attitude excursions were constrained by a number of flight rules levied to protect instruments from the Sun, avoid geometries that would result in simultaneous occlusion of LADEE's two star tracker heads, and maintain the spacecraft within its thermal and power operating limits. To satisfy LADEE's many attitude requirements and constraints, a set of rules and conventions was adopted to manage the complexity of this design challenge and facilitate the automation of ground software that generated pointing commands spanning multiple days of operations at a time. The resulting LADEE Flight Dynamics System (FDS) that was developed used Visual Basic scripts that generated instructions to AGI's Satellite Tool Kit (STK) in order to derive quaternion commands at regular intervals that satisfied LADEE's pointing requirements. These scripts relied heavily on the powerful "align and constrain" capability of STK's attitude module to construct LADEE's attitude profiles and the slews to get there. A description of the scripts and the attitude modeling they embodied is provided. One particular

  5. 2016 Mars Insight Mission Design and Navigation

    NASA Technical Reports Server (NTRS)

    Abilleira, Fernando; Frauenholz, Ray; Fujii, Ken; Wallace, Mark; You, Tung-Han

    2014-01-01

    Scheduled for a launch in the 2016 Earth to Mars opportunity, the Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport (InSight) Mission will arrive to Mars in late September 2016 with the primary objective of placing a science lander on the surface of the Red Planet followed by the deployment of two science instruments to investigate the fundamental processes of terrestrial planet formation and evolution. In order to achieve a successful landing, the InSight Project has selected a launch/arrival strategy that satisfies the following key and driving requirements: (1) Deliver a total launch mass of 727 kg, (2) target a nominal landing site with a cumulative Delta V99 less than 30 m/s, and (3) approach EDL with a V-infinity upper limit of 3.941 km/s and (4) an entry flight-path angle (EFPA) of -12.5 +/- 0.26 deg, 3-sigma; the InSight trajectories have been designed such that they (5) provide UHF-band communications via Direct-To-Earth and MRO from Entry through landing plus 60 s, (6) with injection aimpoints biased away from Mars such that the probability of the launch vehicle upper stage impacting Mars is less than 1.0 X 10(exp 4) for fifty years after launch, and (7) non-nominal impact probabilities due to failure during the Cruise phase less than 1.0 X 10(exp 2).

  6. Cloud Computing for Mission Design and Operations

    NASA Technical Reports Server (NTRS)

    Arrieta, Juan; Attiyah, Amy; Beswick, Robert; Gerasimantos, Dimitrios

    2012-01-01

    The space mission design and operations community already recognizes the value of cloud computing and virtualization. However, natural and valid concerns, like security, privacy, up-time, and vendor lock-in, have prevented a more widespread and expedited adoption into official workflows. In the interest of alleviating these concerns, we propose a series of guidelines for internally deploying a resource-oriented hub of data and algorithms. These guidelines provide a roadmap for implementing an architecture inspired in the cloud computing model: associative, elastic, semantical, interconnected, and adaptive. The architecture can be summarized as exposing data and algorithms as resource-oriented Web services, coordinated via messaging, and running on virtual machines; it is simple, and based on widely adopted standards, protocols, and tools. The architecture may help reduce common sources of complexity intrinsic to data-driven, collaborative interactions and, most importantly, it may provide the means for teams and agencies to evaluate the cloud computing model in their specific context, with minimal infrastructure changes, and before committing to a specific cloud services provider.

  7. Mission Design for the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Beckman, Mark

    2007-01-01

    The Lunar Reconnaissance Orbiter (LRO) will be the first mission under NASA's Vision for Space Exploration. LRO will fly in a low 50 km mean altitude lunar polar orbit. LRO will utilize a direct minimum energy lunar transfer and have a launch window of three days every two weeks. The launch window is defined by lunar orbit beta angle at times of extreme lighting conditions. This paper will define the LRO launch window and the science and engineering constraints that drive it. After lunar orbit insertion, LRO will be placed into a commissioning orbit for up to 60 days. This commissioning orbit will be a low altitude quasi-frozen orbit that minimizes stationkeeping costs during commissioning phase. LRO will use a repeating stationkeeping cycle with a pair of maneuvers every lunar sidereal period. The stationkeeping algorithm will bound LRO altitude, maintain ground station contact during maneuvers, and equally distribute periselene between northern and southern hemispheres. Orbit determination for LRO will be at the 50 m level with updated lunar gravity models. This paper will address the quasi-frozen orbit design, stationkeeping algorithms and low lunar orbit determination.

  8. Radioisotope Electric Propulsion Missions Utilizing a Common Spacecraft Design

    NASA Technical Reports Server (NTRS)

    Fiehler, Douglas; Oleson, Steven

    2004-01-01

    A study was conducted that shows how a single Radioisotope Electric Propulsion (REP) spacecraft design could be used for various missions throughout the solar system. This spacecraft design is based on a REP feasibility design from a study performed by NASA Glenn Research Center and the Johns Hopkins University Applied Physics Laboratory. The study also identifies technologies that need development to enable these missions. The mission baseline for the REP feasibility design study is a Trojan asteroid orbiter. This mission sends an REP spacecraft to Jupiter s leading Lagrange point where it would orbit and examine several Trojan asteroids. The spacecraft design from the REP feasibility study would also be applicable to missions to the Centaurs, and through some change of payload configuration, could accommodate a comet sample-return mission. Missions to small bodies throughout the outer solar system are also within reach of this spacecraft design. This set of missions, utilizing the common REP spacecraft design, is examined and required design modifications for specific missions are outlined.

  9. Electric propulsion options for 10 kW class earth space missions

    NASA Technical Reports Server (NTRS)

    Patterson, M. J.; Curran, Francis M.

    1989-01-01

    Five and 10 kW ion and arcjet propulsion system options for a near-term space demonstration experiment have been evaluated. Analyses were conducted to determine first-order propulsion system performance and system component mass estimates. Overall mission performance of the electric propulsion systems was quantified in terms of the maximum thrusting time, total impulse, and velocity increment capability available when integrated onto a generic spacecraft under fixed mission model assumptions. Maximum available thrusting times for the ion-propelled spacecraft options, launched on a DELTA II 6920 vehicle, range from approximately 8,600 hours for a 4-engine 10 kW system to more than 29,600 hours for a single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 1.2x10(7) to 2.1x10(7) N-s, and 3550 to 6200 m/s, respectively. Maximum available thrusting times for the arcjet propelled spacecraft launched on the DELTA II 6920 vehicle range from approximately 528 hours for the 6-engine 10 kW hydrazine system to 2328 hours for the single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 2.2x10(6) to 3.6x10(6) N-s, and approximately 662 to 1072 m/s, respectively.

  10. Electric Propulsion Options for 10 kW Class Earth-Space Missions

    NASA Technical Reports Server (NTRS)

    Patterson, M. J.; Curran, Francis M.

    1989-01-01

    Five and 10 kW ion and arcjet propulsion system options for a near-term space demonstration experiment were evaluated. Analyses were conducted to determine first-order propulsion system performance and system component mass estimates. Overall mission performance of the electric propulsion systems was quantified in terms of the maximum thrusting time, total impulse, and velocity increment capability available when integrated onto a generic spacecraft under fixed mission model assumptions. Maximum available thrusting times for the ion-propelled spacecraft options, launched on a DELTA 2 6920 vehicle, range from approximately 8,600 hours for a 4-engine 10 kW system to more than 29,600 hours for a single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 1.2x10 (exp 7) to 2.1x10 (exp 7) N-s, and 3550 to 6200 m/s, respectively. Maximum available thrusting times for the arcjet propelled spacecraft launched on the DELTA 2 6920 vehicle range from approximately 528 hours for the 6-engine 10 kW hydrazine system to 2328 hours for the single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 2.2x10 (exp 6) to 3.6x10 (exp 6) N-s, and approximately 662 to 1072 m/s, respectively.

  11. A reliability study of instrument air system design options

    SciTech Connect

    Guey, C.; Skelley, W. ); Gilbert, L.; Anoba, R.; Stutzke, M. )

    1992-01-01

    The existing instrument air system at Turkey Point station uses mobile diesel-driven air compressors. Although these diesel compressors have performed their function well, they represent a maintenance and financial burden requiring engineering review. An engineering evaluation is ongoing to develop several feasible conceptual design options to upgrade the instrument air systems. This phase-1 study was performed to assess the reliability of the various proposed design options. A phase-2 study will be conducted later to determine the core damage frequency for a selected option.

  12. Contribution to GFR design option selection

    SciTech Connect

    Garnier, JC.; Bassi, C.; Blanc, M.; Bosq, JC.; Dumaz, P.; Malo, J.Y.; Mathieu, B.; Messie, A.

    2006-07-01

    This paper gives the status of the 2400 MWth Gas cooled Fast Reactor (GFR) preconceptual design by the end of year 2005. Most of the design issues are discussed: the core, the primary system, the general system arrangement and the decay heat removal systems. Some preliminary safety evaluations have been made including transient analyses using the CATHARE computer code. (authors)

  13. Designer Babies: Eugenics Repackaged or Consumer Options?

    ERIC Educational Resources Information Center

    Baird, Stephen L.

    2007-01-01

    "Designer babies" is a term used by journalists and commentators--not by scientists--to describe several different reproductive technologies. These technologies have one thing in common: they give parents more control over what their offspring will be like. Designer babies are made possible by progress in three fields: (1) Advanced Reproductive…

  14. Simulation Packages Expand Aircraft Design Options

    NASA Technical Reports Server (NTRS)

    2013-01-01

    In 2001, NASA released a new approach to computational fluid dynamics that allows users to perform automated analysis on complex vehicle designs. In 2010, Palo Alto, California-based Desktop Aeronautics acquired a license from Ames Research Center to sell the technology. Today, the product assists organizations in the design of subsonic aircraft, space planes, spacecraft, and high speed commercial jets.

  15. Modeling and Simulation for Mission Operations Work System Design

    NASA Technical Reports Server (NTRS)

    Sierhuis, Maarten; Clancey, William J.; Seah, Chin; Trimble, Jay P.; Sims, Michael H.

    2003-01-01

    Work System analysis and design is complex and non-deterministic. In this paper we describe Brahms, a multiagent modeling and simulation environment for designing complex interactions in human-machine systems. Brahms was originally conceived as a business process design tool that simulates work practices, including social systems of work. We describe our modeling and simulation method for mission operations work systems design, based on a research case study in which we used Brahms to design mission operations for a proposed discovery mission to the Moon. We then describe the results of an actual method application project-the Brahms Mars Exploration Rover. Space mission operations are similar to operations of traditional organizations; we show that the application of Brahms for space mission operations design is relevant and transferable to other types of business processes in organizations.

  16. Designing Mission Operations for the Gravity Recovery and Interior Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Havens, Glen G.; Beerer, Joseph G.

    2012-01-01

    NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission, to understand the internal structure and thermal evolution of the Moon, offered unique challenges to mission operations. From launch through end of mission, the twin GRAIL orbiters had to be operated in parallel. The journey to the Moon and into the low science orbit involved numerous maneuvers, planned on tight timelines, to ultimately place the orbiters into the required formation-flying configuration necessary. The baseline GRAIL mission is short, only 9 months in duration, but progressed quickly through seven very unique mission phases. Compressed into this short mission timeline, operations activities and maneuvers for both orbiters had to be planned and coordinated carefully. To prepare for these challenges, development of the GRAIL Mission Operations System began in 2008. Based on high heritage multi-mission operations developed by NASA's Jet Propulsion Laboratory and Lockheed Martin, the GRAIL mission operations system was adapted to meet the unique challenges posed by the GRAIL mission design. This paper describes GRAIL's system engineering development process for defining GRAIL's operations scenarios and generating requirements, tracing the evolution from operations concept through final design, implementation, and validation.

  17. Designing Medical Support for a Near-Earth Asteroid Mission

    NASA Technical Reports Server (NTRS)

    Watkins, S. D.; Charles, J. B.; Kundrot, C. E.; Barr, Y. R.; Barsten, K. N.; Chin, D. A.; Kerstman, E. L.; Otto, C.

    2011-01-01

    This panel will discuss the design of medical support for a mission to a near-Earth asteroid (NEA) from a variety of perspectives. The panelists will discuss the proposed parameters for a NEA mission, the NEA medical condition list, recommendations from the NASA telemedicine workshop, an overview of the Exploration Medical System Demonstration planned for the International Space Station, use of predictive models for mission planning, and mission-related concerns for behavioral health and performance. This panel is intended to make the audience aware of the multitude of factors influencing medical support during a NEA mission.

  18. Rural Schools Prototype Analysis. Volume I: Design, Determinants and Options.

    ERIC Educational Resources Information Center

    Construction Systems Management, Inc., Anchorage, AK.

    This resource guide presents Design Determinants and Options to be used by designers, school district personnel, and State officials in the programing and design of small rural secondary schools in the Alaska bush. The vast and unconventional educational and space planning challenge is compounded by: the need to provide most or all of the…

  19. Unique mission options available with a megawatt-class nuclear electric propulsion system

    SciTech Connect

    Coomes, E.P.; McCauley, L.A.; Christian, J.L.; Gomez, M.A.; Wong, W.A.

    1988-10-01

    The advantages of using electric propulsion systems are well-known in the aerospace community with the most common being its high specific impulse, lower propellant requirements, and lower system mass. But these advantages may not be as important as the overall unique mission options electric propulsion makes possible, especially if the system is powered by a megawatt-class nuclear electric power source. Although the lack of suitable electric power systems has been a major drawback to electric propulsion, recent efforts have shown megawatt-class nuclear electric power systems are feasible and could be available by the turn of the century. Coupling this with the resurgence in interest in free-space electromagnetic transmission of energy and technology developments in this area provide a whole new aspect to the view of electric propulsion. The propulsion system now has a second mission function that may be of more value than the well understood benefits of electric propulsion; that is providing large quantities of prime power in support of a broad spectrum of mission tasks. 30 refs., 9 figs.

  20. Risk analysis of earth return options for the Mars rover/sample return mission

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Four options for return of a Mars surface sample to Earth were studied to estimate the risk of mission failure and the risk of a sample container breach that might result in the release of Martian life forms, should such exist, in the Earth's biosphere. The probabilities calculated refer only to the time period from the last midcourse correction burn to possession of the sample on Earth. Two extreme views characterize this subject. In one view, there is no life on Mars, therefore there is no significant risk and no serious effort is required to deal with back contamination. In the other view, public safety overrides any desire to return Martian samples, and any risk of damaging contamination greater than zero is unacceptable. Zero risk requires great expense to achieve and may prevent the mission as currently envisioned from taking place. The major conclusion is that risk of sample container breach can be reduced to a very low number within the framework of the mission as now envisioned, but significant expense and effort, above that currently planned is needed. There are benefits to the public that warrant some risk. Martian life, if it exists, will be a major discovery. If it does not, there is no risk.

  1. ExoMars Mission Analysis and Design - Launch, Cruise and Arrival Analyses

    NASA Technical Reports Server (NTRS)

    Cano, Juan L.; Cacciatore, Francesco

    2007-01-01

    ExoMars is ESA s next mission to planet Mars. The probe is aimed for launch either in 2013 or in 2016. The project is currently undergoing Phase B1 studies under ESA management and Thales Alenia Space Italia project leadership. In that context, DEIMOS Space is responsible for the Mission Analysis and Design for the interplanetary and the entry, descent and landing (EDL) activities. The present mission baseline is based on an Ariane 5 or Proton M launch in 2013 of a spacecraft Composite bearing a Carrier Module (CM) and a Descent Module (DM). A back-up option is proposed in 2016. This paper presents the current status of the interplanetary mission design from launch up to the start of the EDL phase.

  2. Design Reference Missions for Deep-Space Optical Communication

    NASA Astrophysics Data System (ADS)

    Breidenthal, J.; Abraham, D.

    2016-05-01

    We examined the potential, but uncertain, NASA mission portfolio out to a time horizon of 20 years, to identify mission concepts that potentially could benefit from optical communication, considering their communications needs, the environments in which they would operate, and their notional size, weight, and power constraints. A set of 12 design reference missions was selected to represent the full range of potential missions. These design reference missions span the space of potential customer requirements, and encompass the wide range of applications that an optical ground segment might eventually be called upon to serve. The design reference missions encompass a range of orbit types, terminal sizes, and positions in the solar system that reveal the chief system performance variables of an optical ground segment, and may be used to enable assessments of the ability of alternative systems to meet various types of customer needs.

  3. Mission design applications of QUICK. [software for interactive trajectory calculation

    NASA Technical Reports Server (NTRS)

    Skinner, David L.; Bass, Laura E.; Byrnes, Dennis V.; Cheng, Jeannie T.; Fordyce, Jess E.; Knocke, Philip C.; Lyons, Daniel T.; Pojman, Joan L.; Stetson, Douglas S.; Wolf, Aron A.

    1990-01-01

    An overview of an interactive software environment for space mission design termed QUICK is presented. This stand-alone program provides a programmable FORTRAN-like calculator interface to a wide range of both built-in and user defined functions. QUICK has evolved into a general-purpose software environment that can be intrinsically and dynamically customized for a wide range of mission design applications. Specific applications are described for some space programs, e.g., the earth-Venus-Mars mission, the Cassini mission to Saturn, the Mars Observer, the Galileo Project, and the Magellan Spacecraft.

  4. Trajectory optimization software for planetary mission design

    NASA Technical Reports Server (NTRS)

    D'Amario, Louis A.

    1989-01-01

    The development history and characteristics of the interactive trajectory-optimization programs MOSES (D'Amario et al., 1981) and PLATO (D'Amario et al., 1982) are briefly reviewed, with an emphasis on their application to the Galileo mission. The requirements imposed by a mission involving flybys of several planetary satellites or planets are discussed; the formulation of the parameter-optimization problem is outlined; and particular attention is given to the use of multiconic methods to model the gravitational attraction of Jupiter in MOSES. Diagrams and tables of numerical data are included.

  5. Design options for a bunsen reactor.

    SciTech Connect

    Moore, Robert Charles

    2013-10-01

    This work is being performed for Matt Channon Consulting as part of the Sandia National Laboratories New Mexico Small Business Assistance Program (NMSBA). Matt Channon Consulting has requested Sandia's assistance in the design of a chemical Bunsen reactor for the reaction of SO2, I2 and H2O to produce H2SO4 and HI with a SO2 feed rate to the reactor of 50 kg/hour. Based on this value, an assumed reactor efficiency of 33%, and kinetic data from the literature, a plug flow reactor approximately 1%E2%80%9D diameter and and 12 inches long would be needed to meet the specification of the project. Because the Bunsen reaction is exothermic, heat in the amount of approximately 128,000 kJ/hr would need to be removed using a cooling jacket placed around the tubular reactor. The available literature information on Bunsen reactor design and operation, certain support equipment needed for process operation and a design that meet the specification of Matt Channon Consulting are presented.

  6. The Space Infrared Interferometric Telescope (SPIRIT): The Mission Design Solution Space and the Art of the Possible

    NASA Technical Reports Server (NTRS)

    Leisawitz, David; Hyde, T. Tupper; Rinehart, Stephen A.; Weiss, Michael

    2008-01-01

    Although the Space Infrared Interferometric Telescope (SPIRIT) was studied as a candidate NASA Origins Probe mission, the real world presents a broader set of options, pressures, and constraints. Fundamentally, SPIRIT is a far-IR observatory for high-resolution imaging and spectroscopy designed to address a variety of compelling scientific questions. How do planetary systems form from protostellar disks, dousing some planets in water while leaving others dry? Where do planets form, and why are some ice giants while others are rocky? How did high-redshift galaxies form and merge to form the present-day population of galaxies? This paper takes a pragmatic look at the mission design solution space for SPIRIT, presents Probe-class and facility-class mission scenarios, and describes optional design changes. The costs and benefits of various mission design alternatives are roughly evaluated, giving a basis for further study and to serve as guidance to policy makers.

  7. Collaborative Mission Design at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Gough, Kerry M.; Allen, B. Danette; Amundsen, Ruth M.

    2005-01-01

    NASA Langley Research Center (LaRC) has developed and tested two facilities dedicated to increasing efficiency in key mission design processes, including payload design, mission planning, and implementation plan development, among others. The Integrated Design Center (IDC) is a state-of-the-art concurrent design facility which allows scientists and spaceflight engineers to produce project designs and mission plans in a real-time collaborative environment, using industry-standard physics-based development tools and the latest communication technology. The Mission Simulation Lab (MiSL), a virtual reality (VR) facility focused on payload and project design, permits engineers to quickly translate their design and modeling output into enhanced three-dimensional models and then examine them in a realistic full-scale virtual environment. The authors were responsible for envisioning both facilities and turning those visions into fully operational mission design resources at LaRC with multiple advanced capabilities and applications. In addition, the authors have created a synergistic interface between these two facilities. This combined functionality is the Interactive Design and Simulation Center (IDSC), a meta-facility which offers project teams a powerful array of highly advanced tools, permitting them to rapidly produce project designs while maintaining the integrity of the input from every discipline expert on the project. The concept-to-flight mission support provided by IDSC has shown improved inter- and intra-team communication and a reduction in the resources required for proposal development, requirements definition, and design effort.

  8. Designing Electrostatic Accelerometers for Next Gravity Missions

    NASA Astrophysics Data System (ADS)

    Huynh, Phuong-Anh; Foulon, Bernard; Christophe, Bruno; Liorzou, Françoise; Boulanger, Damien; Lebat, Vincent

    2016-04-01

    Square cuboid electrostatic accelerometers sensor core have been used in various combinations in recent and still flying missions (CHAMP, GRACE, GOCE). ONERA is now in the process of delivering such accelerometers for the GRACE Follow-On mission. The goal is to demonstrate the performance benefits of an interferometry laser ranging method for future low-low satellite to satellite missions. The electrostatic accelerometer becoming thus the system main performance limiter, we propose for future missions a new symmetry which will allow for three ultrasensitive axes instead of two. This implies no performance ground testing, as the now cubic proof-mass will be too heavy, but only free fall tests in catapult mode, taking advantage of the additional microgravity testing time offered by the updated ZARM tower. The updated mission will be in better adequacy with the requirements of a next generation of smaller and drag compensated micro-satellites. In addition to the measurement of the surface forces exerted on the spacecraft by the atmospheric drag and by radiation pressures, the accelerometer will become a major part of the attitude and orbit control system by acting as drag free sensor and by accurately measuring the angular accelerations. ONERA also works on a hybridization of the electrostatic accelerometer with an atomic interferometer to take advantage of the absolute nature of the atomic interferometer acceleration measurement and its great accuracy in the [5-100] mHz bandwidth. After a description of the improvement of the GRACE-FO accelerometer with respect to the still in-orbit previous models and a status of its development, the presentation will describe the new cubic configuration and how its operations and performances can be verified in the Bremen drop tower.

  9. Abort Options for Human Lunar Missions between Earth Orbit and Lunar Vicinity

    NASA Technical Reports Server (NTRS)

    Condon, Gerald L.; Senent, Juan S.; Llama, Eduardo Garcia

    2005-01-01

    Apollo mission design emphasized operational flexibility that supported premature return to Earth. However, that design was tailored to use expendable hardware for short expeditions to low-latitude sites and cannot be applied directly to an evolutionary program requiring long stay times at arbitrary sites. This work establishes abort performanc e requirements for representative onorbit phases of missions involvin g rendezvous in lunar-orbit, lunar-surface and at the Earth-Moon libr ation point. This study submits reference abort delta-V requirements and other Earth return data (e.g., entry speed, flight path angle) and also examines the effect of abort performance requirements on propul sive capability for selected vehicle configurations.

  10. Space Station needs, attributes and architectural options. Volume 2, book 1, part 1: Mission requirements

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The baseline mission model used to develop the space station mission-related requirements is described as well as the 90 civil missions that were evaluated, (including the 62 missions that formed the baseline model). Mission-related requirements for the space station baseline are defined and related to space station architectural development. Mission-related sensitivity analyses are discussed.

  11. Solar Power System Design for the Solar Probe+ Mission

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Schmitz, Paul C.; Kinnison, James; Fraeman, Martin; Roufberg, Lew; Vernon, Steve; Wirzburger, Melissa

    2008-01-01

    Solar Probe+ is an ambitious mission proposed to the solar corona, designed to make a perihelion approach of 9 solar radii from the surface of the sun. The high temperature, high solar flux environment makes this mission a significant challenge for power system design. This paper summarizes the power system conceptual design for the solar probe mission. Power supplies considered included nuclear, solar thermoelectric generation, solar dynamic generation using Stirling engines, and solar photovoltaic generation. The solar probe mission ranges from a starting distance from the sun of 1 AU, to a minimum distance of about 9.5 solar radii, or 0.044 AU, from the center of the sun. During the mission, the solar intensity ranges from one to about 510 times AM0. This requires power systems that can operate over nearly three orders of magnitude of incident intensity.

  12. PFERD Mission: Pluto Flyby Exploration/Research Design

    NASA Technical Reports Server (NTRS)

    Lemke, Gary; Zayed, Husni; Herring, Jason; Fuehne, Doug; Sutton, Kevin; Sharkey, Mike

    1990-01-01

    The Pluto Flyby Exploration/Research Design (PFERD) mission will consist of a flyby spacecraft to Pluto and its satellite, Charon. The mission lifetime is expected to be 18 years. The Titan 4 with a Centaur upper stage will be utilized to launch the craft into the transfer orbit. The proposal was divided into six main subsystems: (1) scientific instrumentation; (2) command, communications, and control: (3) altitude and articulation control; (4) power and propulsion; (5) structures and thermal control; and (6) mission management and costing. Tradeoff studies were performed to optimize all factors of design, including survivability, performance, cost, and weight. Problems encountered in the design are also presented.

  13. Advance Approach to Concept and Design Studies for Space Missions

    NASA Technical Reports Server (NTRS)

    Deutsch, M.; Nichols, J.

    1999-01-01

    Recent automated and advanced techniques developed at JPL have created a streamlined and fast-track approach to initial mission conceptualization and system architecture design, answering the need for rapid turnaround of trade studies for potential proposers, as well as mission and instrument study groups.

  14. Mars reconnaissance lander: Vehicle and mission design

    NASA Astrophysics Data System (ADS)

    Williams, H. R.; Bridges, J. C.; Ambrosi, R. M.; Perkinson, M.-C.; Reed, J.; Peacocke, L.; Bannister, N. P.; Howe, S. D.; O'Brien, R. C.; Klein, A. C.

    2011-10-01

    There is enormous potential for more mobile planetary surface science. This is especially true in the case of Mars because the ability to cross challenge terrain, access areas of higher elevation, visit diverse geological features and perform long traverses of up to 200 km supports the search for past water and life. Vehicles capable of a ballistic ‘hop’ have been proposed on several occasions, but those proposals using in-situ acquired propellants are the most promising for significant planetary exploration. This paper considers a mission concept termed Mars Reconnaissance Lander using such a vehicle. We describe an approach where planetary science requirements that cannot be met by a conventional rover are used to derive vehicle and mission requirements. The performance of the hopper vehicle was assessed by adding estimates of gravity losses and mission mass constraints to recently developed methods. A baseline vehicle with a scientific payload of 16.5 kg and conservatively estimated sub-system masses is predicted to achieve a flight range of 0.97 km. Using a simple consideration of system reliability, the required cumulative range of 200 km could be achieved with a probability of around 80%. Such a range is sufficient to explore geologically diverse terrains. We therefore plot an illustrative traverse in Hypanis Valles/Xanthe Terra, which encounters crater wall sections, periglacial terrain, aqueous sedimentary deposits and a traverse up an ancient fluvial channel. Such a diversity of sites could not be considered with a conventional rover. The Mars Reconnaissance Lander mission and vehicle presents some very significant engineering challenges, but would represent a valuable complement to rovers, static landers and orbital observations.

  15. Mars Orbiter Study. Volume 2: Mission Design, Science Instrument Accommodation, Spacecraft Design

    NASA Technical Reports Server (NTRS)

    Drean, R.; Macpherson, D.; Steffy, D.; Vargas, T.; Shuman, B.; Anderson, K.; Richards, B.

    1982-01-01

    Spacecraft system and subsystem designs were developed at the conceptual level to perform either of two Mars Orbiter Missions, a Climatology Mission and an Aeronomy Mission. The objectives of these missions are to obtain and return data to increase knowledge of Mars.

  16. Solar Probe Plus: Mission design challenges and trades

    NASA Astrophysics Data System (ADS)

    Guo, Yanping

    2010-11-01

    NASA plans to launch the first mission to the Sun, named Solar Probe Plus, as early as 2015, after a comprehensive feasibility study that significantly changed the original Solar Probe mission concept. The original Solar Probe mission concept, based on a Jupiter gravity assist trajectory, was no longer feasible under the new guidelines given to the mission. A complete redesign of the mission was required, which called for developing alternative trajectories that excluded a flyby of Jupiter. Without the very powerful gravity assist from Jupiter it was extremely difficult to get to the Sun, so designing a trajectory to reach the Sun that is technically feasible under the new mission guidelines became a key enabler to this highly challenging mission. Mission design requirements and challenges unique to this mission are reviewed and discussed, including various mission scenarios and six different trajectory designs utilizing various planetary gravity assists that were considered. The V 5GA trajectory design using five Venus gravity assists achieves a perihelion of 11.8 solar radii ( RS) in 3.3 years without any deep space maneuver (DSM). The V 7GA trajectory design reaches a perihelion of 9.5 RS using seven Venus gravity assists in 6.39 years without any DSM. With nine Venus gravity assists, the V 9GA trajectory design shows a solar orbit at inclination as high as 37.9° from the ecliptic plane can be achieved with the time of flight of 5.8 years. Using combined Earth and Venus gravity assists, as close as 9 RS from the Sun can be achieved in less than 10 years of flight time at moderate launch C3. Ultimately the V 7GA trajectory was chosen as the new baseline mission trajectory. Its design allowing for science investigation right after launch and continuing for nearly 7 years is unprecedented for interplanetary missions. The redesigned Solar Probe Plus mission is not only feasible under the new guidelines but also significantly outperforms the original mission concept

  17. Design and application of electromechanical actuators for deep space missions

    NASA Astrophysics Data System (ADS)

    Haskew, Tim A.; Wander, John

    1993-09-01

    The annual report Design and Application of Electromechanical Actuators for Deep Space Missions is presented. The reporting period is 16 Aug. 1992 to 15 Aug. 1993. However, the primary focus will be work performed since submission of our semi-annual progress report in Feb. 1993. Substantial progress was made. We currently feel confident in providing guidelines for motor and control strategy selection in electromechanical actuators to be used in thrust vector control (TVC) applications. A small portion was presented in the semi-annual report. At this point, we have implemented highly detailed simulations of various motor/drive systems. The primary motor candidates were the brushless dc machine, permanent magnet synchronous machine, and the induction machine. The primary control implementations were pulse width modulation and hysteresis current control. Each of the two control strategies were applied to each of the three motor choices. With either pulse width modulation or hysteresis current control, the induction machine was always vector controlled. A standard test position command sequence for system performance evaluation is defined. Currently, we are gathering all of the necessary data for formal presentation of the results. Briefly stated for TVC application, we feel that the brushless dc machine operating under PWM current control is the best option. Substantial details on the topic, with supporting simulation results, will be provided later, in the form of a technical paper prepared for submission and also in the next progress report with more detail than allowed for paper publication.

  18. Design and application of electromechanical actuators for deep space missions

    NASA Technical Reports Server (NTRS)

    Haskew, Tim A.; Wander, John

    1993-01-01

    The annual report Design and Application of Electromechanical Actuators for Deep Space Missions is presented. The reporting period is 16 Aug. 1992 to 15 Aug. 1993. However, the primary focus will be work performed since submission of our semi-annual progress report in Feb. 1993. Substantial progress was made. We currently feel confident in providing guidelines for motor and control strategy selection in electromechanical actuators to be used in thrust vector control (TVC) applications. A small portion was presented in the semi-annual report. At this point, we have implemented highly detailed simulations of various motor/drive systems. The primary motor candidates were the brushless dc machine, permanent magnet synchronous machine, and the induction machine. The primary control implementations were pulse width modulation and hysteresis current control. Each of the two control strategies were applied to each of the three motor choices. With either pulse width modulation or hysteresis current control, the induction machine was always vector controlled. A standard test position command sequence for system performance evaluation is defined. Currently, we are gathering all of the necessary data for formal presentation of the results. Briefly stated for TVC application, we feel that the brushless dc machine operating under PWM current control is the best option. Substantial details on the topic, with supporting simulation results, will be provided later, in the form of a technical paper prepared for submission and also in the next progress report with more detail than allowed for paper publication.

  19. Interplanetary Trajectory Design for the Asteroid Robotic Redirect Mission Alternate Approach Trade Study

    NASA Technical Reports Server (NTRS)

    Merrill, Raymond Gabriel; Qu, Min; Vavrina, Matthew A.; Englander, Jacob A.; Jones, Christopher A.

    2014-01-01

    This paper presents mission performance analysis methods and results for the Asteroid Robotic Redirect Mission (ARRM) option to capture a free standing boulder on the surface of a 100 m or larger NEA. It details the optimization and design of heliocentric low-thrust trajectories to asteroid targets for the ARRM solar electric propulsion spacecraft. Extensive searches were conducted to determine asteroid targets with large pick-up mass potential and potential observation opportunities. Interplanetary trajectory approximations were developed in method based tools for Itokawa, Bennu, 1999 JU3, and 2008 EV5 and were validated by end-to-end integrated trajectories.

  20. Multi-mission nuclear electric propulsion stage design.

    NASA Technical Reports Server (NTRS)

    Prickett, W. Z.; Stearns, J. W.

    1973-01-01

    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions. Critical technologies assessed are associated with the development of nuclear electric propulsion (NEP), and the impact of its availability on future space programs. Specific areas of investigation include outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, and technology requirements for NEP stage development. A multimission NEP stage can be developed to perform both multiple geocentric and interplanetary missions for a 1983 launch. Identified pacing NEP technology requirements are the development of 20,000 full power hour ion thrustors and thermionic reactor and the development of related power conditioning. The resulting NEP stage design provides both inherent reliability and high payload mass capability.

  1. Planning Coverage Campaigns for Mission Design and Analysis: Clasp for the Proposed DESDynI Mission

    NASA Technical Reports Server (NTRS)

    Knight, Russell; McLaren, David; Hu, Steven

    2012-01-01

    Mission design and analysis present challenges in that almost all variables are in constant flux, yet the goal is to achieve an acceptable level of performance against a concept of operations, which might also be in flux. To increase responsiveness, our approach is to use automated planning tools that allow for the continual modification of spacecraft, ground system, staffing, and concept of operations while returning metrics that are important to mission evaluation, such as area covered, peak memory usage, and peak data throughput. We have applied this approach to DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice) mission design concept using the CLASP (Compressed Large-scale Activity Scheduler/Planner) planning system [7], but since this adaptation many techniques have changed under the hood for CLASP and the DESDynI mission concept has undergone drastic changes, including that it has been renamed the Earth Radar Mission. Over the past two years, we have run more than fifty simulations with the CLASP-DESDynI adaptation, simulating different mission scenarios with changing parameters including targets, swaths, instrument modes, and data and downlink rates. We describe the evolution of simulations through the DESDynI MCR (Mission Concept Review) and afterwards.

  2. Interplanetary Mission Design Handbook: Earth-to-Mars Mission Opportunities 2026 to 2045

    NASA Technical Reports Server (NTRS)

    Burke, Laura M.; Falck, Robert D.; McGuire, Melissa L.

    2010-01-01

    The purpose of this Mission Design Handbook is to provide trajectory designers and mission planners with graphical information about Earth to Mars ballistic trajectory opportunities for the years of 2026 through 2045. The plots, displayed on a departure date/arrival date mission space, show departure energy, right ascension and declination of the launch asymptote, and target planet hyperbolic arrival excess speed, V(sub infinity), for each launch opportunity. Provided in this study are two sets of contour plots for each launch opportunity. The first set of plots shows Earth to Mars ballistic trajectories without the addition of any deep space maneuvers. The second set of plots shows Earth to Mars transfer trajectories with the addition of deep space maneuvers, which further optimize the determined trajectories. The accompanying texts explains the trajectory characteristics, transfers using deep space maneuvers, mission assumptions and a summary of the minimum departure energy for each opportunity.

  3. Overview of Mission Design for NASA Asteroid Redirect Robotic Mission Concept

    NASA Technical Reports Server (NTRS)

    Strange, Nathan; Landau, Damon; McElrath, Timothy; Lantoine, Gregory; Lam, Try; McGuire, Melissa; Burke, Laura; Martini, Michael; Dankanich, John

    2013-01-01

    Part of NASA's new asteroid initiative would be a robotic mission to capture a roughly four to ten meter asteroid and redirect its orbit to place it in translunar space. Once in a stable storage orbit at the Moon, astronauts would then visit the asteroid for science investigations, to test in space resource extraction, and to develop experience with human deep space missions. This paper discusses the mission design techniques that would enable the redirection of a 100-1000 metric ton asteroid into lunar orbit with a 40-50 kW Solar Electric Propulsion (SEP) system.

  4. Orion Entry, Descent, and Landing Performance and Mission Design

    NASA Technical Reports Server (NTRS)

    Broome, Joel M.; Johnson, Wyatt

    2007-01-01

    The Orion Vehicle is the next spacecraft to take humans into space and will include missions to ISS as well as missions to the Moon. As part of that challenge, the vehicle will have to accommodate multiple mission design concepts, since return from Low Earth Orbit and return from the Moon can be quite different. Commonality between the different missions as it relates to vehicle systems, guidance capability, and operations concepts is the goal. Several unique mission design concepts include the specification of multiple land-based landing sites for a vehicle with closed-loop direct and skip entry guidance, followed by a parachute descent and landing attenuation system. This includes the ability of the vehicle to accurately target and land at a designated landing site, including site location aspects, landing site size, and landing opportunities assessments. Analyses associated with these mission design and flight performance challenges and constraints will be discussed as well as potential operational concepts to provide feasibility and/or mission commonality.

  5. Design of the ARES Mars Airplane and Mission Architecture

    NASA Technical Reports Server (NTRS)

    Braun, Robert D.; Wright, Henry S.; Croom, Mark A.; Levine, Joel S.; Spencer, David A.

    2006-01-01

    Significant technology advances have enabled planetary aircraft to be considered as viable science platforms. Such systems fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Recent efforts have produced mature mission and flight system concepts, ready for flight project implementation. This paper summarizes the development of a Mars airplane mission architecture that balances science, implementation risk and cost. Airplane mission performance, flight system design and technology maturation are described. The design, analysis and testing completed demonstrates the readiness of this science platform for use in a Mars flight project.

  6. A Neptune Orbiter Mission

    NASA Technical Reports Server (NTRS)

    Wallace, R. A.; Spilker, T. R.

    1998-01-01

    This paper describes the results of new analyses and mission/system designs for a low cost Neptune Orbiter mission. Science and measurement objectives, instrumentation, and mission/system design options are described and reflect an aggressive approach to the application of new advanced technologies expected to be available and developed over the next five to ten years.

  7. 2011 Mars Science Laboratory Mission Design Overview

    NASA Technical Reports Server (NTRS)

    Abilleira, Fernando

    2010-01-01

    Scheduled to launch in the fall of 2011 with arrival at Mars occurring in the summer of 2012, NASA's Mars Science Laboratory will explore and assess whether Mars ever had conditions capable of supporting microbial life. In order to achieve its science objectives, the Mars Science Laboratory will be equipped with the most advanced suite of instruments ever sent to the surface of the Red Planet. Delivering the next mobile science laboratory safely to the surface of Mars has various key challenges derived from a strict set of requirements which include launch vehicle performance, spacecraft mass, communications coverage during Entry, Descent, and Landing, atmosphere-relative entry speeds, latitude accessibility, and dust storm season avoidance among others. The Mars Science Laboratory launch/arrival strategy selected after careful review satisfies all these mission requirements.

  8. The Ninevah Mission: A design summary for an unmanned mission to Venus, volume 1

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The design summary for an unmanned mission to the planet Venus, with code name Ninevah, is presented. The design includes a Hohmann transfer trajectory analysis, propulsion trade study, an overview of the communication and instrumentation systems, power requirements, probe and lander analysis, and a weight and cost analysis.

  9. Use of Concurrent Engineering in Space Mission Design

    NASA Technical Reports Server (NTRS)

    Wall, S.

    2000-01-01

    In recent years, conceptual-phase (proposal level) design of space missions has been improved considerably. Team structures, tool linkage, specialized facilities known as design centers and scripted processes have been demonstrated to cut proposal-level engineering design time from a few months to a few weeks.

  10. A GNM mission and system design proposal

    NASA Technical Reports Server (NTRS)

    Bailey, Stephen

    1990-01-01

    Here, the author takes an advocacy position for the proposed Mars Global Network Mission (GNM); it is not intended to be an objective review, although both pros and cons are presented in summary. The mission consists of launches from earth in the '96, '98, and '01 opportunities on Delta-class launch vehicles (approx. 1000 kg injected to Mars in 8 to 10 ft diameter shroud). The trans Mars boost stage injects a stack of small independent, aeroshelled spacecraft. The stack separates from the boost stage and each rigid (as opposed to deployable) aeroshell flies to Mars on its own, performing midcourse maneuvers as necessary. Each spacecraft flies a unique trajectory which is targeted to achieve approach atmospheric interface at the desired latitude and lighting conditions; arrival times may vary by a month or more. A direct entry is performed, there is no propulsive orbit capture. The aeroshelled rough-landers are targeted to achieve a desired attitude and entry flight path angle, and then follow a passive ballistic trajectory until terminal descent. Based on sensed acceleration (integrated to deduce altitude), the aft aeroshell skirt is jettisoned; a short later a supersonic parachute is deployed. The ballistic coefficient of the parachute is sized to achieve terminal velocity at about 8 km. However the parachute is not deployed until a few Km above the surface to minimize wind-induced drift. The nose cap descent imaging begins, a laser altimeter also measures true altitude. Based on range and range rate to the surface, the parachute is jettisoned and the lander uses descent engines to achieve touchdown velocity. A contact sensor shuts down the motors to avoid cratering, and the lander rough-lands at less than 5 m/sec. The remaining aeroshell and a deployable bladder attenuate landing loads and minimize the possibility of tip over. Science instruments are deployed and activated, and the network is established.

  11. Nuclear Cryogenic Propulsion Stage Conceptual Design and Mission Analysis

    NASA Technical Reports Server (NTRS)

    Kos, Larry D.; Russell, Tiffany E.

    2014-01-01

    The Nuclear Cryogenic Propulsion Stage (NCPS) is an in-space transportation vehicle, comprised of three main elements, designed to support a long-stay human Mars mission architecture beginning in 2035. The stage conceptual design and the mission analysis discussed here support the current nuclear thermal propulsion going on within partnership activity of NASA and the Department of Energy (DOE). The transportation system consists of three elements: 1) the Core Stage, 2) the In-line Tank, and 3) the Drop Tank. The driving mission case is the piloted flight to Mars in 2037 and will be the main point design shown and discussed. The corresponding Space Launch System (SLS) launch vehicle (LV) is also presented due to it being a very critical aspect of the NCPS Human Mars Mission architecture due to the strong relationship between LV lift capability and LV volume capacity.

  12. Design of Superconducting Gravity Gradiometer Cryogenic System for Mars Mission

    NASA Technical Reports Server (NTRS)

    Li, X.; Lemoine, F. G.; Paik, H. J.; Zagarola, M.; Shirron, P. J.; Griggs, C. E.; Moody, M. V.; Han, S.-C.

    2016-01-01

    Measurement of a planet's gravity field provides fundamental information about the planet's mass properties. The static gravity field reveals information about the internal structure of the planet, including crustal density variations that provide information on the planet's geological history and evolution. The time variations of gravity result from the movement of mass inside the planet, on the surface, and in the atmosphere. NASA is interested in a Superconducting Gravity Gradiometer (SGG) with which to measure the gravity field of a planet from orbit. An SGG instrument is under development with the NASA PICASSO program, which will be able to resolve the Mars static gravity field to degree 200 in spherical harmonics, and the time-varying field on a monthly basis to degree 20 from a 255 x 320 km orbit. The SGG has a precision two orders of magnitude better than the electrostatic gravity gradiometer that was used on the ESA's GOCE mission. The SGG operates at the superconducting temperature lower than 6 K. This study developed a cryogenic thermal system to maintain the SGG at the design temperature in Mars orbit. The system includes fixed radiation shields, a low thermal conductivity support structure and a two-stage cryocooler. The fixed radiation shields use double aluminized polyimide to emit heat from the warm spacecraft into the deep space. The support structure uses carbon fiber reinforced plastic, which has low thermal conductivity at cryogenic temperature and very high stress. The low vibration cryocooler has two stages, of which the high temperature stage operates at 65 K and the low temperature stage works at 6 K, and the heat rejection radiator works at 300 K. The study also designed a second option with a 4-K adiabatic demagnetization refrigerator (ADR) and two-stage 10-K turbo-Brayton cooler.

  13. Design of Superconducting Gravity Gradiometer Cryogenic System for Mars Mission

    NASA Technical Reports Server (NTRS)

    Li, X.; Lemoine, F. G.; Shirron, P. J.; Paik, H. J.; Griggs, C. E.; Moody, M. V.; Han, S. C.; Zagarola, M.

    2016-01-01

    Measurement of a planets gravity field provides fundamental information about the planets mass properties. The static gravity field reveals information about the internal structure of the planet, including crustal density variations that provide information on the planets geological history and evolution. The time variations of gravity result from the movement of mass inside the planet, on the surface, and in the atmosphere. NASA is interested in a Superconducting Gravity Gradiometer (SGG) with which to measure the gravity field of a planet from orbit. An SGG instrument is under development with the NASA PICASSO program, which will be able to resolve the Mars static gravity field to degree 200 in spherical harmonics, and the time-varying field on a monthly basis to degree 20 from a 255 x 320 km orbit. The SGG has a precision two orders of magnitude better than the electrostatic gravity gradiometer that was used on the ESAs GOCE mission. The SGG operates at the superconducting temperature lower than 6 K. This study developed a cryogenic thermal system to maintain the SGG at the design temperature in Mars orbit. The system includes fixed radiation shields, a low thermal conductivity support structure and a two-stage cryocooler. The fixed radiation shields use double aluminized polyimide to emit heat from the warm spacecraft into the deep space. The support structure uses carbon fiber reinforced plastic, which has low thermal conductivity at cryogenic temperature and very high stress. The low vibration cryocooler has two stages, of which the high temperature stage operates at 65 K and the low temperature stage works at 6 K, and the heat rejection radiator works at 300 K. The study also designed a second option with a 4-K adiabatic demagnetization refrigerator (ADR) and two-stage 10-K turbo-Brayton cooler.

  14. Libration Orbit Mission Design: Applications of Numerical & Dynamical Methods

    NASA Technical Reports Server (NTRS)

    Bauer, Frank (Technical Monitor); Folta, David; Beckman, Mark

    2002-01-01

    Sun-Earth libration point orbits serve as excellent locations for scientific investigations. These orbits are often selected to minimize environmental disturbances and maximize observing efficiency. Trajectory design in support of libration orbits is ever more challenging as more complex missions are envisioned in the next decade. Trajectory design software must be further enabled to incorporate better understanding of the libration orbit solution space and thus improve the efficiency and expand the capabilities of current approaches. The Goddard Space Flight Center (GSFC) is currently supporting multiple libration missions. This end-to-end support consists of mission operations, trajectory design, and control. It also includes algorithm and software development. The recently launched Microwave Anisotropy Probe (MAP) and upcoming James Webb Space Telescope (JWST) and Constellation-X missions are examples of the use of improved numerical methods for attaining constrained orbital parameters and controlling their dynamical evolution at the collinear libration points. This paper presents a history of libration point missions, a brief description of the numerical and dynamical design techniques including software used, and a sample of future GSFC mission designs.

  15. Integrated Human-Robotic Missions to the Moon and Mars: Mission Operations Design Implications

    NASA Technical Reports Server (NTRS)

    Mishkin, Andrew; Lee, Young; Korth, David; LeBlanc, Troy

    2007-01-01

    For most of the history of space exploration, human and robotic programs have been independent, and have responded to distinct requirements. The NASA Vision for Space Exploration calls for the return of humans to the Moon, and the eventual human exploration of Mars; the complexity of this range of missions will require an unprecedented use of automation and robotics in support of human crews. The challenges of human Mars missions, including roundtrip communications time delays of 6 to 40 minutes, interplanetary transit times of many months, and the need to manage lifecycle costs, will require the evolution of a new mission operations paradigm far less dependent on real-time monitoring and response by an Earthbound operations team. Robotic systems and automation will augment human capability, increase human safety by providing means to perform many tasks without requiring immediate human presence, and enable the transfer of traditional mission control tasks from the ground to crews. Developing and validating the new paradigm and its associated infrastructure may place requirements on operations design for nearer-term lunar missions. The authors, representing both the human and robotic mission operations communities, assess human lunar and Mars mission challenges, and consider how human-robot operations may be integrated to enable efficient joint operations, with the eventual emergence of a unified exploration operations culture.

  16. Integrated Human-Robotic Missions to the Moon and Mars: Mission Operations Design Implications

    NASA Technical Reports Server (NTRS)

    Korth, David; LeBlanc, Troy; Mishkin, Andrew; Lee, Young

    2006-01-01

    For most of the history of space exploration, human and robotic programs have been independent, and have responded to distinct requirements. The NASA Vision for Space Exploration calls for the return of humans to the Moon, and the eventual human exploration of Mars; the complexity of this range of missions will require an unprecedented use of automation and robotics in support of human crews. The challenges of human Mars missions, including roundtrip communications time delays of 6 to 40 minutes, interplanetary transit times of many months, and the need to manage lifecycle costs, will require the evolution of a new mission operations paradigm far less dependent on real-time monitoring and response by an Earthbound operations team. Robotic systems and automation will augment human capability, increase human safety by providing means to perform many tasks without requiring immediate human presence, and enable the transfer of traditional mission control tasks from the ground to crews. Developing and validating the new paradigm and its associated infrastructure may place requirements on operations design for nearer-term lunar missions. The authors, representing both the human and robotic mission operations communities, assess human lunar and Mars mission challenges, and consider how human-robot operations may be integrated to enable efficient joint operations, with the eventual emergence of a unified exploration operations culture.

  17. Revised Point of Departure Design Options for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Fittje, James E.; Borowski, Stanley K.; Schnitzler, Bruce

    2015-01-01

    In an effort to further refine potential point of departure nuclear thermal rocket engine designs, four proposed engine designs representing two thrust classes and utilizing two different fuel matrix types are designed and analyzed from both a neutronics and thermodynamic cycle perspective. Two of these nuclear rocket engine designs employ a tungsten and uranium dioxide cermet (ceramic-metal) fuel with a prismatic geometry based on the ANL-200 and the GE-710, while the other two designs utilize uranium-zirconium-carbide in a graphite composite fuel and a prismatic fuel element geometry developed during the Rover/NERVA Programs. Two engines are analyzed for each fuel type, a small criticality limited design and a 111 kN (25 klbf) thrust class engine design, which has been the focus of numerous manned mission studies, including NASA's Design Reference Architecture 5.0. slightly higher T/W ratios, but they required substantially more 235U.

  18. Upper stage options for reusable launch vehicle {open_quotes}pop-up{close_quotes} missions

    SciTech Connect

    Eckmann, J.B.; Cotta, R.B.; Matuszak, L.W.; Perkins, D.R.

    1997-01-01

    Suborbital separation of an expendable upper stage from a small, single-stage Reusable Launch Vehicle (RLV) to transfer spacecraft into Geosynchronous Equatorial Orbit (GEO) was investigated and found to significantly increase spacecraft mass into GEO (over 400{percent}) although operational issues exist. An assessment of propulsion system options for this {open_quotes}Pop-Up{close_quotes} Mission was performed to determine the propellant combinations, stage configurations, and propulsion technologies that maximize spacecraft mass and minimize size. Propellants included earth and space storable combinations, cryogenic LH{sub 2}/LO{sub 2}, and Class 1.3 solids. Stage configurations employing cylindrical metal and overwrapped tanks, isogrid tanks, and toroidal tanks were considered. Non-toxic earth storable propellants provided comparable performance (5{endash}10{percent}) to existing storables while the use of pressure-fed engines gave about 15{percent} lower performance than pump-fed. Solid stage performance was within 5{percent} of existing storable propellants. Stages employing toroidal tanks packaged more efficiently in length constrained RLV payload bays than 4-cylindrical tank configurations, giving up to 30{percent} greater mass into GEO. The use of Extendable Exit Cones (EEC) for length constrained cases resulted in about 5{endash}10{percent} higher stage performance. {copyright} {ital 1997 American Institute of Physics.}

  19. Game Changing: NASA's Space Launch System and Science Mission Design

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.

    2013-01-01

    NASA s Marshall Space Flight Center (MSFC) is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will carry the Orion Multi-Purpose Crew Vehicle (MPCV) and other important payloads far beyond Earth orbit (BEO). Its evolvable architecture will allow NASA to begin with Moon fly-bys and then go on to transport humans or robots to distant places such as asteroids and Mars. Designed to simplify spacecraft complexity, the SLS rocket will provide improved mass margins and radiation mitigation, and reduced mission durations. These capabilities offer attractive advantages for ambitious missions such as a Mars sample return, by reducing infrastructure requirements, cost, and schedule. For example, if an evolved expendable launch vehicle (EELV) were used for a proposed mission to investigate the Saturn system, a complicated trajectory would be required - with several gravity-assist planetary fly-bys - to achieve the necessary outbound velocity. The SLS rocket, using significantly higher C3 energies, can more quickly and effectively take the mission directly to its destination, reducing trip time and cost. As this paper will report, the SLS rocket will launch payloads of unprecedented mass and volume, such as "monolithic" telescopes and in-space infrastructure. Thanks to its ability to co-manifest large payloads, it also can accomplish complex missions in fewer launches. Future analyses will include reviews of alternate mission concepts and detailed evaluations of SLS figures of merit, helping the new rocket revolutionize science mission planning and design for years to come.

  20. Preliminary Report on Mission Design and Operations for Critical Events

    NASA Technical Reports Server (NTRS)

    Hayden, Sandra C.; Tumer, Irem

    2005-01-01

    Mission-critical events are defined in the Jet Propulsion Laboratory s Flight Project Practices as those sequences of events which must succeed in order to attain mission goals. These are dependent on the particular operational concept and design reference mission, and are especially important when committing to irreversible events. Critical events include main engine cutoff (MECO) after launch; engine cutoff or parachute deployment on entry, descent, and landing (EDL); orbital insertion; separation of payload from vehicle or separation of booster segments; maintenance of pointing accuracy for power and communication; and deployment of solar arrays and communication antennas. The purpose of this paper is to report on the current practices in handling mission-critical events in design and operations at major NASA spaceflight centers. The scope of this report includes NASA Johnson Space Center (JSC), NASA Goddard Space Flight Center (GSFC), and NASA Jet Propulsion Laboratory (JPL), with staff at each center consulted on their current practices, processes, and procedures.

  1. Spacecraft and mission design for the SP-100 flight experiment

    NASA Technical Reports Server (NTRS)

    Deininger, William D.; Vondra, Robert J.

    1988-01-01

    The design and performance of a spacecraft employing arcjet nuclear electric propulsion, suitable for use in the SP-100 Space Reactor Power System (SRPS) Flight Experiment, are outlined. The vehicle design is based on a 93 kW(e) ammonia arcjet system operating at an experimentally measured specific impulse of 1031 s and an efficiency of 42.3 percent. The arcjet/gimbal assemblies, power conditioning subsystem, propellant feed system, propulsion system thermal control, spacecraft diagnostic instrumentation, and the telemetry requirements are described. A 100 kW(e) SRPS is assumed. The spacecraft mass is baselined at 5675 kg excluding the propellant and propellant feed system. Four mission scenarios are described which are capable of demonstrating the full capability of the SRPS. The missions considered include spacecraft deployment to possible surveillance platform orbits, a spacecraft storage mission, and an orbit raising round trip corresponding to possible orbit transfer vehicle (OTV) missions.

  2. Satellite Servicing in Mission Design Studies at the NASA GSFC

    NASA Technical Reports Server (NTRS)

    Leete, Stephen J.

    2003-01-01

    Several NASA missions in various stages of development have undergone one-week studies in the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) Integrated Mission Design Center (IMDC), mostly in preparation for proposals. The possible role of satellite servicing has been investigated for several of these missions, applying the lessons learned from Hubble Space Telescope (HST) servicing, taking into account the current state of the art, projecting into the future, and implementing NASA long-range plans, and is presented here. The general benefits and costs of injecting satellite servicing are detailed, including components such as mission timeline, mass, fuel, spacecraft design, risk abatement, life extension, and improved performance. The approach taken in addressing satellite servicing during IMDC studies is presented.

  3. Flight Path Control Design for the Cassini Solstice Mission

    NASA Technical Reports Server (NTRS)

    Ballard, Christopher G.; Ionasescu, Rodica

    2011-01-01

    The Cassini spacecraft has been in orbit around Saturn for just over 7 years, with a planned 7-year extension, called the Solstice Mission, which started on September 27, 2010. The Solstice Mission includes 205 maneuvers and 70 flybys which consist of the moons Titan, Enceladus, Dione, and Rhea. This mission is designed to use all available propellant with a statistical margin averaging 0.6 m/s per encounter, and the work done to prove and ensure the viability of this margin is highlighted in this paper.

  4. Aeroassisted-vehicle design studies for a manned Mars mission

    NASA Technical Reports Server (NTRS)

    Menees, Gene P.

    1987-01-01

    An aerobrake design accounting for all of the important flow phenomenology which are characteristic of aerobraking vehicles is proposed as the mission baseline. Flight regimes and aerothermal environments for both Mars and earth entry are calculated using advanced methods to account for real-gas, thermochemical, relaxation effects. The results are correlated with thermal-protection and structural requirements and mission performance capability. The importance of nonequilibrium radiative heating for earth aerocapture is demonstrated. It is suggested that two aerobrakes of different sizes will produce optimal performance for the three phases of the mission (i.e., one aerobrake for Mars aerocapture and descent of the surface lander and another for earth return).

  5. Orbit Options for an Orion-Class Spacecraft Mission to a Near-Earth Object

    NASA Astrophysics Data System (ADS)

    Shupe, Nathan C.

    Based on the recommendations of the Augustine Commission, President Obama has proposed a vision for U.S. human spaceflight in the post-Shuttle era which includes a manned mission to a Near-Earth Object (NEO). A 2006-2007 study commissioned by the Constellation Program Advanced Projects Office investigated the feasibility of sending a crewed Orion spacecraft to a NEO using different combinations of elements from the latest launch system architecture at that time. The study found a number of suitable mission targets in the database of known NEOs, and predicted that the number of candidate NEOs will continue to increase as more advanced observatories come online and execute more detailed surveys of the NEO population. The objective of this thesis is to pick up where the previous Constellation study left off by considering what orbit options are available for an Orion-class spacecraft upon arrival at a NEO. A model including multiple perturbations (solar radiation pressure, solar gravity, non-spherical mass distribution of the central body) to two-body dynamics is constructed to numerically integrate the motion of a satellite in close proximity to a small body in an elliptical orbit about the Sun. Analytical limits derived elsewhere in the literature for the thresholds on the size of the satellite orbit required to maintain stability in the presence of these perturbing forces are verified by the numerical model. Simulations about NEOs possessing various physical parameters (size, shape, rotation period) are then used to empirically develop general guidelines for establishing orbits of an Orion-class spacecraft about a NEO. It is found that an Orion-class spacecraft can orbit NEOs at any distance greater than the NEO surface height and less than the maximum semi-major axis allowed by the solar radiation pressure perturbation, provided that the ellipticity perturbation is sufficiently weak (this condition is met if the NEO is relatively round and/or has a long rotation

  6. The ARCTAS aircraft mission: design and execution

    NASA Astrophysics Data System (ADS)

    Jacob, D. J.; Crawford, J. H.; Maring, H. B.; Clarke, A. D.; Dibb, J. E.; Ferrare, R. A.; Hostetler, C. A.; Russell, P. B.; Singh, H. B.; Thompson, A. M.; Shaw, G. E.; McCauley, E.; Pederson, J. R.; Fisher, J. A.

    2009-12-01

    We present an overview of the NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission, conducted in two 3-week deployments based in Alaska (April 2008) and western Canada (June-July 2008). The goal of ARCTAS was to better understand the factors driving current changes in Arctic atmospheric composition and climate, including (1) transport of mid-latitude pollution, (2) boreal forest fires, (3) aerosol radiative forcing, and (4) chemical processes. ARCTAS involved three aircraft: a DC-8 with detailed chemical payload, a P-3 with extensive aerosol payload, and a B-200 with aerosol remote sensing instrumentation. The aircraft augmented satellite observations of Arctic atmospheric composition, in particular from the NASA A-Train, by (1) validating the data, (2) improving constraints on retrievals, (3) making correlated observations, and (4) characterizing chemical and aerosol processes. The April flights (ARCTAS-A) sampled pollution plumes from all three mid-latitude continents, fire plumes from Siberia and Southeast Asia, and halogen radical events. The June-July flights (ARCTAS-B) focused on boreal forest fire influences and sampled fresh fire plumes from northern Saskatchewan as well as older fire plumes from Canada, Siberia, and California. The June-July deployment was preceded by one week of flights over California sponsored by the California Air Resources Board (ARCTAS-CARB). The ARCTAS-CARB goals were to (1) improve state emission inventories for greenhouse gases and aerosols, (2) provide observations to test and improve models of ozone and aerosol pollution. Extensive sampling across southern California and the Central Valley characterized emissions from urban centers, offshore shipping lanes, agricultural crops, feedlots, industrial sources, and wildfires.

  7. A new paradigm for space astrophysics mission design

    NASA Astrophysics Data System (ADS)

    Arenberg, Jonathan; Atkinson, Charles; Breckinridge, Jim; Conti, Alberto; Feinberg, Lee; Lillie, Charles; MacEwen, Howard; Polidan, Ronald; Postman, Marc; Matthews, Gary; Smith, Eric

    2014-08-01

    Pursuing ground breaking science in a highly cost-constrained environment presents new challenges to the development of future space astrophysics missions. Within the conventional cost models for large observatories, executing a flagship "mission after next" appears to be unstainable. To achieve our nation's science ambitions requires a new paradigm of system design, development and manufacture. This paper explores the nature of the current paradigm and proposes a series of steps to guide the entire community to a sustainable future.

  8. Designing planetary protection into the Mars Observer mission.

    PubMed

    Sweetser, T H; Halsell, C A; Cesarone, R J

    1995-03-01

    Planetary protection has been an important consideration during the process of designing the Mars Observer mission. It affected trajectory design of both the interplanetary transfer and the orbits at Mars; these in turn affected the observation strategies developed for the mission. The Project relied mainly on the strategy of collision avoidance to prevent contamination of Mars. Conservative estimates of spacecraft reliability and Martian atmosphere density were used to evaluate decisions concerning the interplanetary trajectory, the orbit insertion phase at Mars, and operations in orbit at Mars and afterwards. Changes in the trajectory design, especially in the orbit insertion phase, required a refinement of those estimates. PMID:11539235

  9. Bounding the Spacecraft Atmosphere Design Space for Future Exploration Missions

    NASA Technical Reports Server (NTRS)

    Lange, Kevin E.; Perka, Alan T.; Duffield, Bruce E.; Jeng, Frank F.

    2005-01-01

    The selection of spacecraft and space suit atmospheres for future human space exploration missions will play an important, if not critical, role in the ultimate safety, productivity, and cost of such missions. Internal atmosphere pressure and composition (particularly oxygen concentration) influence many aspects of spacecraft and space suit design, operation, and technology development. Optimal atmosphere solutions must be determined by iterative process involving research, design, development, testing, and systems analysis. A necessary first step in this process is the establishment of working bounds on the atmosphere design space.

  10. Mask Design for the Space Interferometry Mission Internal Metrology

    NASA Technical Reports Server (NTRS)

    Marx, David; Zhao, Feng; Korechoff, Robert

    2005-01-01

    This slide presentation reviews the mask design used for the internal metrology of the Space Interferometry Mission (SIM). Included is information about the project, the method of measurements with SIM, the internal metrology, numerical model of internal metrology, wavefront examples, performance metrics, and mask design

  11. Asteroid Redirect Crewed Mission Nominal Design and Performance

    NASA Technical Reports Server (NTRS)

    Condon, Gerald; williams, Jacob

    2014-01-01

    Mission (ARCM) nominal design and performance costs associated with an Orion based crewed rendezvous mission to a captured asteroid in an Earth-Moon DRO. The ARM study includes two fundamental mission phases: 1) The Asteroid Redirect Robotic Mission (ARRM) and 2) the ARCM. The ARRM includes a solar electric propulsion based robotic asteroid return vehicle (ARV) sent to rendezvous with a selected near Earth asteroid, capture it, and return it to a DRO in the Earth-Moon vicinity. The DRO is selected over other possible asteroid parking orbits due to its achievability (by both the robotic and crewed vehicles) and by its stability (e.g., no orbit maintenance is required). After the return of the asteroid to the Earth-Moon vicinity, the ARCM is executed and carries a crew of two astronauts to a DRO to rendezvous with the awaiting ARV with the asteroid. The outbound and inbound transfers employ lunar gravity assist (LGA) flybys to reduce the Orion propellant requirement for the overall nominal mission, which provides a nominal mission with some reserve propellant for possible abort situations. The nominal mission described in this report provides a better understanding of the mission considerations as well as the feasibility of such a crewed mission, particularly with regard to spacecraft currently undergoing development, such as the Orion vehicle and the Space Launch System (SLS).

  12. Concept designs for NASA's Solar Electric Propulsion Technology Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David H.; Herman, Daniel A.

    2014-01-01

    Multiple Solar Electric Propulsion Technology Demonstration Mission were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kilogram spacecraft capable of delivering 4000 kilogram of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kilogram spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload. Low-cost and maximum Delta-V capability variants of a spacecraft concept based on utilizing a secondary payload adapter as the primary bus structure were developed as were concepts designed to be co-manifested with another spacecraft on a single launch vehicle. Each of the Solar Electric Propulsion Technology Demonstration Mission concepts developed included an estimated spacecraft cost. These data suggest estimated spacecraft costs of $200 million - $300 million if 30 kilowatt-class solar arrays and the corresponding electric propulsion system currently under development are used as the basis for sizing the mission concept regardless of launch vehicle costs. The most affordable mission concept developed based on subscale variants of the advanced solar arrays and electric propulsion technology currently under development by the NASA Space Technology Mission Directorate has an estimated cost of $50M and could provide a Delta-V capability comparable to much larger spacecraft concepts.

  13. Design and Analysis of RTGs for CRAF and Cassini Missions

    SciTech Connect

    Schock, Alfred; Noravian, Heros; Or, Chuen; Sankarankandath, Kumar

    1991-01-01

    The design and analysis of Radioisotope Thermoelectric Generators integrated with JPL's CRAF and Cassini spacecraft are described. The principal purposed of the CRAF mission are the study of asteroids and comets, and the principal purposes of the Cassini mission are the study of asteroids, Saturn, and its moons (particularly Titan). Both missions will employ the Mariner/Mark-2 spacecraft, and each will be powered by two GPHS-RTGs. JPL's spacecraft designers wish to locate the two RTGs in close proximity to each other, resulting in mutual and unsymmetrical obstruction of their heat rejection paths. To support JPL's design studies, the U.S. Department of Energy asked Fairchild to determine the effect of the RTGs' proximity on their power output. This required the development of novel analysis methods and computer codes, described in this report, for the coupled thermal and electrical analysis of obstructed RTGs with axial and circumferential temperature, voltage, and current variations. The code was validated against measured data of unobstructed RTG tests, and was used for the detailed analysis of the obstructed CRAF/Cassini RTGs. Also described is a new method for predicting the combined effect of fuel decay and thermoelectric degradation on the output of obstructed RTGs, which accounts for the effect of diminishing temperatures on degradation rates. The computed results indicate that for the 24-degree separation angle of JPL's baseline design, the mutually obstructed standard GPHS/RTGs show adequate power margins for the CRAF mission, but slightly negative margins for the Cassini mission.

  14. Science investigation options with a NASA New Frontiers Program Saturn entry probe mission

    NASA Astrophysics Data System (ADS)

    Spilker, T. R.; Atreya, S. K.; Atkinson, D. H.; Colaprete, A.; Coustenis, A.

    2012-09-01

    In 2011 the Space Studies Board of the US National Research Council released its report, "Vision and Voyages for Planetary Science in the Decade 2013- 2022" [1] (PSDS). This document is intended to be the guiding document for NASA's planetary science and space flight mission priorities for that decade. The PSDS treats three classes of flight missions: small, medium, and large. Small missions are ones that could be flown within the resource constraints of NASA's Discovery Program, a program of PI-led, competed missions, including a US 500 million (FY 2015) recommended cost cap, excluding the launch vehicle. The PSDS makes no specific recommendations for science objectives or destinations for small missions. Medium missions could be flown under NASA's New Frontiers Program, also a program of PI-led, competed missions, with a recommended cost cap of US 1 billion excluding the launch vehicle. Both of these competed mission programs have been highly successful, with multiple spacecraft currently in flight and more either under development or in the final steps of competition. Large missions, generally called flagship missions, would have total mission costs exceeding US $1 billion and would be directed by NASA, not PI-led. Unlike Small class missions, the PSDS recommends specific science objectives for Medium class missions. Four Medium class mission concepts and their science objectives carry over from the previous PSDS [2]: • Comet Surface Sample Return • Lunar South-Pole Aitken Basin Sample Return • Trojan Tour and Rendezvous • Venus In Situ Explorer The current PSDS adds a fifth mission concept to the list for the next New Frontiers Program AO ("NF-4"), currently anticipated in 2016: a Saturn probe mission. This mission would deliver an atmospheric entry probe into Saturn's atmosphere to make composition and atmospheric structure measurements critical to understanding the materials, processes, and time scales of Saturn's formation, and by comparison to

  15. The OSIRIS-Rex Asteroid Sample Return: Mission Operations Design

    NASA Technical Reports Server (NTRS)

    Gal-Edd, Jonathan; Cheuvront, Allan

    2014-01-01

    The OSIRIS-REx mission employs a methodical, phased approach to ensure success in meeting the missions science requirements. OSIRIS-REx launches in September 2016, with a backup launch period occurring one year later. Sampling occurs in 2019. The departure burn from Bennu occurs in March 2021. On September 24, 2023, the SRC lands at the Utah Test and Training Range (UTTR). Stardust heritage procedures are followed to transport the SRC to Johnson Space Center, where the samples are removed and delivered to the OSIRIS-REx curation facility. After a six-month preliminary examination period the mission will produce a catalog of the returned sample, allowing the worldwide community to request samples for detailed analysis.Traveling and returning a sample from an Asteroid that has not been explored before requires unique operations consideration. The Design Reference Mission (DRM) ties together space craft, instrument and operations scenarios. The project implemented lessons learned from other small body missions: APLNEAR, JPLDAWN and ESARosetta. The key lesson learned was expected the unexpected and implement planning tools early in the lifecycle. In preparation to PDR, the project changed the asteroid arrival date, to arrive one year earlier and provided additional time margin. STK is used for Mission Design and STKScheduler for instrument coverage analysis.

  16. Post Galileo-Europa-Mission Satellite Tour Design

    NASA Technical Reports Server (NTRS)

    Wilson, M. G.; Johannesen, J. R.; Halsell, C. A.; Haw, R. J.; Pojman, J. L.

    2000-01-01

    The Galileo orbiter mission as originally envisioned would orbit Jupiter eleven times, closely encountering either Europa, Ganymede, or Callisto on ten of those orbits. This nominal or prime mission began with Jupiter orbit insertion on December 7, 1995 and ended as designed ten encounters later on December 1, 1997. An extension to this nominal mission was proposed, developed and accepted in 1997 and was designed to continue orbital operations through an additional two years until December 31, 1999. This follow- on mission, labelled the Galileo Europa Mission, visits Europa eight times, Callisto four times, and ends with two visits to Io. It augments the prime mission by offering many attractive additional opportunities for science, especially remote sensing. The opportunities include increased scrutiny of Europa, a world with a possible global ocean hidden beneath the surface ice-cap, and the first high resolution images of Io (the only major satellite not encountered during the nominal tour). In 1998 a new effort was begun to investigate a possible extension to GEM. Remote sensing observations will continue to be important but moreover, valuable unique in situ fields and particles measurements will be a high priority motivation in the design and selection of any post-GEM tour. A significant design feature of a possible post-GEM tour would be the extension of the mission through the December 2000 timeframe. This would permit the possibility of simultaneous fields and particles experiments coordinated with the Cassini spacecraft as it swings by the Jupiter system for the final gravity assist enroute to Saturn.

  17. Preliminary design trade-offs for a multi-mission stored cryogen cooler

    NASA Technical Reports Server (NTRS)

    Sherman, A.

    1978-01-01

    Preliminary design studies were performed for a multi-mission solid cryogen cooler having a wide range of application for both the shuttle sortie and free flyer missions. This multi-mission cooler (MMC) is designed to be utilized with various solid cryogens to meet a wide range of instrument cooling from 10 K (with solid hydrogen) to 90 K. The baseline cooler utilizes two stages of solid cryogen and incorporates an optional, higher temperature third stage which is cooled by either a passive radiator or a thermoelectric cooler. The MMC has an interface which can accommodate a wide variety of instrument configurations. A shrink fit adapter is incorporated which allows a drop-in instrument integration. The baseline design provides cooling of approximately 1 watt over a 60 to 100 K temperature range and about 0.5 watts from 15 to 60 K for a one year lifetime. For low cooling loads and with use of the optional radiator shield, cooling lifetimes as great as 8 years are predicted.

  18. Design Study for a Global Magnetospheric Dynamics Mission

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1999-01-01

    A successful design was developed, one with many advantages over the original mission. The time spent in orbit was more evenly spread over the region being investigated. The radiation close was significantly lower and the mission did not rely on gravity assist at the moon and thus did not have to make measurements that far out in the tail. A spacecraft design was developed that keeps interference from the engines to a minimum. The design however was quite specific for four spacecraft. It could not be easily scaled to five spacecraft for example. One problem was discovered that is a concern for all similar missions. Inter- spacecraft communication can determine the spacing of the vehicles easily and to the accuracy required. However, the orientation of the polyhedron with the spacecraft at its vertices is not well known for small separations. Ground station range measurements give the line of sight location well but not the angle around that vector. This is a problem any such mission needs to solve. Neither the navigation teams at Goddard nor at Lewis were willing to attempt to solve this problem. At the completion of the study a report was made to the AGU meeting in San Francisco and a paper published in the volume "Science Closure and Enabling Technologies for Constellation Class Missions". This paper is attached.

  19. Designing an Alternate Mission Operations Control Room

    NASA Technical Reports Server (NTRS)

    Montgomery, Patty; Reeves, A. Scott

    2014-01-01

    The Huntsville Operations Support Center (HOSC) is a multi-project facility that is responsible for 24x7 real-time International Space Station (ISS) payload operations management, integration, and control and has the capability to support small satellite projects and will provide real-time support for SLS launches. The HOSC is a service-oriented/ highly available operations center for ISS payloads-directly supporting science teams across the world responsible for the payloads. The HOSC is required to endure an annual 2-day power outage event for facility preventive maintenance and safety inspection of the core electro-mechanical systems. While complete system shut-downs are against the grain of a highly available sub-system, the entire facility must be powered down for a weekend for environmental and safety purposes. The consequence of this ground system outage is far reaching: any science performed on ISS during this outage weekend is lost. Engineering efforts were focused to maximize the ISS investment by engineering a suitable solution capable of continuing HOSC services while supporting safety requirements. The HOSC Power Outage Contingency (HPOC) System is a physically diversified compliment of systems capable of providing identified real-time services for the duration of a planned power outage condition from an alternate control room. HPOC was designed to maintain ISS payload operations for approximately three continuous days during planned HOSC power outages and support a local Payload Operations Team, International Partners, as well as remote users from the alternate control room located in another building.

  20. Mission options for the first SEPS application. [rendezvous with near earth asteroids and comets

    NASA Technical Reports Server (NTRS)

    Yen, C.-W. L.

    1981-01-01

    Missions to comets and asteroids are primary candidates for Solar Electric Propulsion System (SEPS) applications. NASA estimates that the first SEPS mission might be launched as early as 1988. This paper presents mission opportunities available for launches between 1988 and early 1991 and discusses the performance capabilities of the current SEPS. Use of a Shuttle Two-Stage IUS and/or a Shuttle Wide Tank Centaur launch vehicle is assumed in the performance assessment. The list of possible first SEPS missions consists of nine missions to comets of primary interest and examples of multiple asteroid rendezvous missions. Both an earth crossing asteroid and a main belt asteroid are considered as first possible targets in the multiple asteroid rendezvous examples. Mission opportunity and performance maps for Eros and Anteros are presented which provide exact performance data and optimal launch and arrival dates for any launch year.

  1. Critical early mission design considerations for lunar data systems architecture

    NASA Technical Reports Server (NTRS)

    Hei, Donald J., Jr.; Stephens, Elaine

    1992-01-01

    This paper outlines recent early mission design activites for a lunar data systems architecture. Each major functional element is shown to be strikingly similar when viewed in a common reference system. While this similarity probably deviates with lower levels of decomposition, the sub-functions can always be arranged into similar and dissimilar categories. Similar functions can be implemented as objects - implemented once and reused several times like today's advanced integrated circuits. This approach to mission data systems, applied to other NASA programs, may result in substantial agency implementation and maintenance savings. In today's zero-sum-game budgetary environment, this approach could help to enable a lunar exploration program in the next decade. Several early mission studies leading to such an object-oriented data systems design are recommended.

  2. Lean Mission Operations Systems Design - Using Agile and Lean Development Principles for Mission Operations Design and Development

    NASA Technical Reports Server (NTRS)

    Trimble, Jay Phillip

    2014-01-01

    The Resource Prospector Mission seeks to rove the lunar surface with an in-situ resource utilization payload in search of volatiles at a polar region. The mission operations system (MOS) will need to perform the short-duration mission while taking advantage of the near real time control that the short one-way light time to the Moon provides. To maximize our use of limited resources for the design and development of the MOS we are utilizing agile and lean methods derived from our previous experience with applying these methods to software. By using methods such as "say it then sim it" we will spend less time in meetings and more time focused on the one outcome that counts - the effective utilization of our assets on the Moon to meet mission objectives.

  3. Design and Analysis of RTGs for CRAF and Cassini Missions

    SciTech Connect

    Schock, Alfred; Noravian, Heros; Sankarankandath

    1990-11-30

    This report consists of two parts. Part 1 describes the development of novel analytical methods needed to predict the BOM performance and the subsequent performance degradation of the mutually obstructed RTGs for the CRAF and Cassini missions. Part II applies those methods to the two missions, presents the resultant predictions, and discusses their programmatic implications. The results indicate that JPL's original power demand goals could have been met with two standard GPHS RTGs for each mission. But subsequently JPL significantly increased both the power level and the mission duration for both missions, so that they can no longer by met by two standard RTGs. The resultant power gap must be closed either by reducing JPL's power demand (e.g., by decreasing contingency reserves) and/or by increasing the power system's output. One way under active consideration which more than meets the system power goal would be the addition of a third RTG for each mission. However, the author concluded that it may be possible to meet or closely approach the CRAF power demand goals with just two RTGs by relatively modest modification of their design and/or operating conditions. To explore that possibility, the effect of various modifications - either singly or in combination - was analyzed by Fairchild. The results indicate that modest modifications can meet or come very close to meeting the CRAF power goals with just two RTGs. Elimination of the third RTG would yield substantial cost and schedule savings. There are three copies in the file.

  4. Asteroid Deflection Mission Design Considering On-Ground Risks

    NASA Astrophysics Data System (ADS)

    Rumpf, Clemens; Lewis, Hugh G.; Atkinson, Peter

    The deflection of an Earth-threatening asteroid requires high transparency of the mission design process. The goal of such a mission is to move the projected point of impact over the face of Earth until the asteroid is on a miss trajectory. During the course of deflection operations, the projected point of impact will match regions that were less affected before alteration of the asteroid’s trajectory. These regions are at risk of sustaining considerable damage if the deflecting spacecraft becomes non-operational. The projected impact point would remain where the deflection mission put it at the time of mission failure. Hence, all regions that are potentially affected by the deflection campaign need to be informed about this risk and should be involved in the mission design process. A mission design compromise will have to be found that is acceptable to all affected parties (Schweickart, 2004). A software tool that assesses the on-ground risk due to deflection missions is under development. It will allow to study the accumulated on-ground risk along the path of the projected impact point. The tool will help determine a deflection mission design that minimizes the on-ground casualty and damage risk due to deflection operations. Currently, the tool is capable of simulating asteroid trajectories through the solar system and considers gravitational forces between solar system bodies. A virtual asteroid may be placed at an arbitrary point in the simulation for analysis and manipulation. Furthermore, the tool determines the asteroid’s point of impact and provides an estimate of the population at risk. Validation has been conducted against the solar system ephemeris catalogue HORIZONS by NASA’s Jet Propulsion Laboratory (JPL). Asteroids that are propagated over a period of 15 years show typical position discrepancies of 0.05 Earth radii relative to HORIZONS’ output. Ultimately, results from this research will aid in the identification of requirements for

  5. NASA'S Space Launch System: Opening Opportunities for Mission Design

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Hefner, Keith; Hitt, David

    2015-01-01

    Designed to meet the stringent requirements of human exploration missions into deep space and to Mars, NASA's Space Launch System (SLS) vehicle represents a unique new launch capability opening new opportunities for mission design. While SLS's super-heavy launch vehicle predecessor, the Saturn V, was used for only two types of missions - launching Apollo spacecraft to the moon and lofting the Skylab space station into Earth orbit - NASA is working to identify new ways to use SLS to enable new missions or mission profiles. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of not only propelling the Orion crew vehicle into cislunar space, but also delivering small satellites to deep space destinations. With a 5-meter (m) fairing consistent with contemporary Evolved Expendable Launch Vehicles (EELVs), the Block 1 configuration can also deliver science payloads to high-characteristic-energy (C3) trajectories to the outer solar system. With the addition of an upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a new class of secondary payloads, larger than today's cubesats. The evolved configurations of SLS, including both Block 1B and the 130 t Block 2, also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk and operational costs associated with shorter transit time to destination and reduced risk and complexity associated with launching large systems either monolithically or in fewer components. As this paper will

  6. Trajectory design of multiple asteroids sample return missions

    NASA Astrophysics Data System (ADS)

    Morimoto, M.; Yamakawa, H.; Yoshikawa, M.; Abe, M.; Yano, H.

    ISAS's MUSES-C mission will try the World's first asteroid sample return. It is scheduled its launch in November 2002 and is defined as an engineering validation mission for major new technologies necessary for future planetary sample return missions. Following up the MUSES-C, the next generation of Japanese minor body explorations has been discussed for last two years, and two promising candidates have been identified. One of them is a multiple sample return mission from main belt asteroid family members (e.g., Koronis), which may provide direct information to reconstruct the interior of their parent planetesimal and its impact disruption history. Another is a multiple sample return mission from several known spectral types of near-earth asteroids to link major asteroid taxonomy with meteorite and cosmic dust samples. Here we have successfully investigated preliminary but technically feasible trajectory designs of these mission proposals, respectively. In addition, for satisfying these two scientific objectives within one mission, some trajectories for sample returns from the family that holds several spectral types within (e.g., Nysa-Polana) are studied. H2-A class launch vehicle and chemical or electric propulsions are assumed. As results, some good candidates satisfying many constraints from scientific, physical and technological point of view are found. For example, while MUSES-C conducts sample return from one asteroid at one launch within 4 years and its scientific payload is 6kg (only 1% of the wet mass), Nysa-Polana mission plans are possible for sample return from 2 significant asteroids, that have different spectrum, at one launch within 2-3 years in early 2010's and the scientific payloads can allowed up to 150kg (15% of the wet mass).

  7. System design from mission definition to flight validation

    NASA Technical Reports Server (NTRS)

    Batill, S. M.

    1992-01-01

    Considerations related to the engineering systems design process and an approach taken to introduce undergraduate students to that process are presented. The paper includes details on a particular capstone design course. This course is a team oriented aircraft design project which requires the students to participate in many phases of the system design process, from mission definition to validation of their design through flight testing. To accomplish this in a single course requires special types of flight vehicles. Relatively small-scale, remotely piloted vehicles have provided the class of aircraft considered in this course.

  8. The HYDROS mission: requirements and baseline system design

    NASA Technical Reports Server (NTRS)

    Njoku, Eni; Spencer, Michael; McDonald, Kyle; Smith, Joel; Houser, Paul; Doiron, Terence; ONeill, Peggy; Girard, Ralph; Entekhabi, Dara

    2004-01-01

    The HYDROS mission is under development by NASA as part of its Earth System Science Pathfinder program. HYDROS is designed to provide global maps of the Earth's soil moisture and freeze/thaw state every 2-3 days, for weather and climate prediction, water and carbon cycle studies, natural hazards monitoring, and national security applications.

  9. Mission options for rendezvous with the most accessible Near-Earth Asteroid - 1989 ML

    NASA Technical Reports Server (NTRS)

    Mcadams, Jim V.

    1992-01-01

    The recent discovery of the Amor-class 1989 ML, the most accessible known asteroid for minimum-energy rendezvous missions, has expedited the search for frequent, low-cost Near-Earth Asteroid rendezvous and round-trip missions. This paper identifies trajectory characteristics and assesses mass performance for low Delta V ballistic rendezvous opportunities to 1989 ML during the period 1996-2010. This asteroid also offers occasional unique extended mission opportunities, such as the lowest known Delta V requirement for any asteroid sample return mission as well as pre-rendezvous asteroid flyby and post-rendezvous comet flyby opportunities requiring less than 5.25 km/sec total Delta V. This paper also briefly comments concerning mission opportunities for asteroid 1991 JW, which recently replaced other known asteroids as the most accessible Near-Earth Asteroid for fast rendezvous and round-trip missions.

  10. Mission Control Technologies: A New Way of Designing and Evolving Mission Systems

    NASA Technical Reports Server (NTRS)

    Trimble, Jay; Walton, Joan; Saddler, Harry

    2006-01-01

    Current mission operations systems are built as a collection of monolithic software applications. Each application serves the needs of a specific user base associated with a discipline or functional role. Built to accomplish specific tasks, each application embodies specialized functional knowledge and has its own data storage, data models, programmatic interfaces, user interfaces, and customized business logic. In effect, each application creates its own walled-off environment. While individual applications are sometimes reused across multiple missions, it is expensive and time consuming to maintain these systems, and both costly and risky to upgrade them in the light of new requirements or modify them for new purposes. It is even more expensive to achieve new integrated activities across a set of monolithic applications. These problems impact the lifecycle cost (especially design, development, testing, training, maintenance, and integration) of each new mission operations system. They also inhibit system innovation and evolution. This in turn hinders NASA's ability to adopt new operations paradigms, including increasingly automated space systems, such as autonomous rovers, autonomous onboard crew systems, and integrated control of human and robotic missions. Hence, in order to achieve NASA's vision affordably and reliably, we need to consider and mature new ways to build mission control systems that overcome the problems inherent in systems of monolithic applications. The keys to the solution are modularity and interoperability. Modularity will increase extensibility (evolution), reusability, and maintainability. Interoperability will enable composition of larger systems out of smaller parts, and enable the construction of new integrated activities that tie together, at a deep level, the capabilities of many of the components. Modularity and interoperability together contribute to flexibility. The Mission Control Technologies (MCT) Project, a collaboration of

  11. TARDIS: An Automation Framework for JPL Mission Design and Navigation

    NASA Technical Reports Server (NTRS)

    Roundhill, Ian M.; Kelly, Richard M.

    2014-01-01

    Mission Design and Navigation at the Jet Propulsion Laboratory has implemented an automation framework tool to assist in orbit determination and maneuver design analysis. This paper describes the lessons learned from previous automation tools and how they have been implemented in this tool. In addition this tool has revealed challenges in software implementation, testing, and user education. This paper describes some of these challenges and invites others to share their experiences.

  12. Aeroassisted-vehicle design studies for a manned Mars mission

    NASA Technical Reports Server (NTRS)

    Menees, Gene P.

    1987-01-01

    An aerobrake design that has matured over several years of development accounting for all of the important flow phenomenology which are characteristic of aerobraking vehicles is proposed as the mission baseline. Flight regimes and aerothermal environments for both Mars and Earth entry are calculated using advanced methods to account for real-gas, thermochemical, relaxation effects. The results are correlated with thermal-protection and structural requirements and mission performance capability. The importance of nonequilibrium radiative heating for Earth aerocapture is demonstrated. It is suggested that two aerobrakes of different sizes will produce optimal performance for the three phases of the mission (i.e., one aerobrake for Mars aerocapture and descent of the surface lander and another for Earth return).

  13. Mission design and analysis of European astrophysics missions orbiting libration points

    NASA Astrophysics Data System (ADS)

    Landgraf, Markus; Renk, Florian; de Vogeleer, Bram

    2013-03-01

    The main characteristics of the trajectory design of space observatory missions in the Earth-Sun libration point region is highlighted, based on experiences gained in work performed by the authors on ESA missions. Free transfers always lead to large-amplitude orbits around L2, their properties (amplitudes, phases, non-linear behaviour) are related to the conditions at perigee. Launch scenarios with different degrees of freedom in the perigee geometry and different strategies of sharing the apogee raising between launcher and spacecraft propulsion for Soyuz (with circular parking orbit or direct injection) and Ariane 5 launches from French Guiana will be discussed. Besides the orbit selection and transfer analysis, an important aspect of libration missions is the maintenance of the operational orbit. For some missions it is required to maximise the time between maintenance manoeuvres, and for some the thrust authority is limited. In both cases the exponential nature of the state transition matrix has to be considered. If the equivalent velocity error in the unstable direction becomes too large, the orbit can become unrecoverable, leading to a departure from the environment of the Lagrange point within a few months.

  14. Radioisotope Power Systems Reference Book for Mission Designers and Planners

    NASA Technical Reports Server (NTRS)

    Lee, Young; Bairstow, Brian

    2015-01-01

    The RPS Program's Program Planning and Assessment (PPA) Office commissioned the Mission Analysis team to develop the Radioisotope Power Systems (RPS) Reference Book for Mission Planners and Designers to define a baseline of RPS technology capabilities with specific emphasis on performance parameters and technology readiness. The main objective of this book is to provide RPS technology information that could be utilized by future mission concept studies and concurrent engineering practices. A progress summary from the major branches of RPS technology research provides mission analysis teams with a vital tool for assessing the RPS trade space, and provides concurrent engineering centers with a consistent set of guidelines for RPS performance characteristics. This book will be iterated when substantial new information becomes available to ensure continued relevance, serving as one of the cornerstone products of the RPS PPA Office. This book updates the original 2011 internal document, using data from the relevant publicly released RPS technology references and consultations with RPS technologists. Each performance parameter and RPS product subsection has been reviewed and cleared by at least one subject matter representative. A virtual workshop was held to reach consensus on the scope and contents of the book, and the definitions and assumptions that should be used. The subject matter experts then reviewed and updated the appropriate sections of the book. The RPS Mission Analysis Team then performed further updates and crosschecked the book for consistency. Finally, a second virtual workshop was held to ensure all subject matter experts and stakeholders concurred on the contents.

  15. Space station needs, attributes and architectural options study. Volume 3: Mission requirements

    NASA Technical Reports Server (NTRS)

    1983-01-01

    User missions that are enabled or enhanced by a manned space station are identified. The mission capability requirements imposed on the space station by these users are delineated. The accommodation facilities, equipment, and functional requirements necessary to achieve these capabilities are identified, and the economic, performance, and social benefits which accrue from the space station are defined.

  16. Space station needs, attributes, and architectural options study. Volume 1: Missions and requirements

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Science and applications, NOAA environmental observation, commercial resource observations, commercial space processing, commercial communications, national security, technology development, and GEO servicing are addressed. Approach to time phasing of mission requirements, system sizing summary, time-phased user mission payload support, space station facility requirements, and integrated time-phased system requirements are also addressed.

  17. Space station needs, attributes and architectural options study. Volume 2: Mission analysis

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Space environment studies, astrophysics, Earth environment, life sciences, and material sciences are discussed. Commercial communication, materials processing, and Earth observation missions are addressed. Technology development, space operations, scenarios of operational capability, mission requirements, and benefits analysis results for space-produced gallium arsenide crystals, direct broadcasting satellite systems, and a high inclination space station are covered.

  18. Video-Guidance Design for the DART Rendezvous Mission

    NASA Technical Reports Server (NTRS)

    Ruth, Michael; Tracy, Chisholm

    2004-01-01

    NASA's Demonstration of Autonomous Rendezvous Technology (DART) mission will validate a number of different guidance technologies, including state-differenced GPS transfers and close-approach video guidance. The video guidance for DART will employ NASA/Marshall s Advanced Video Guidance Sensor (AVGS). This paper focuses on the terminal phase of the DART mission that includes close-approach maneuvers under AVGS guidance. The closed-loop video guidance design for DART is driven by a number of competing requirements, including a need for maximizing tracking bandwidths while coping with measurement noise and the need to minimize RCS firings. A range of different strategies for attitude control and docking guidance have been considered for the DART mission, and design decisions are driven by a goal of minimizing both the design complexity and the effects of video guidance lags. The DART design employs an indirect docking approach, in which the guidance position targets are defined using relative attitude information. Flight simulation results have proven the effectiveness of the video guidance design.

  19. A mission design for International Manned Mars Mission - From the 1991 International Space University (ISU) Design Project

    NASA Technical Reports Server (NTRS)

    Mendell, Wendell W.

    1991-01-01

    The International Space University (ISU) conducted a study of an international program to support human exploration of Mars as its annual Design Project activity during its 1991 summer session in Toulouse, France. Although an ISU Design Project strives to produce an in-depth analysis during the intense 10-week summer session, the International Mars Mission (IMM) project was conducted in a manner designed to provide a learning experience for young professionals working in an unusual multidisciplinary and multinational environment. The breadth of the IMM study exceeds that of most Mars mission studies of the past, encompassing political organization for long-term commitment, multinational management structure, cost analysis, mission architecture, vehicle configuration, crew health, life support, Mars surface infrastructure, mission operations, technology evaluation, risk assessment, scientific planning, exploration, communication networks, and Martian resource utilization. The IMM Final Report has particular value for those seeking insight into the choices made by a multinational group working in an apolitical environment on the problems of international cooperation in space.

  20. Automated design of multiphase space missions using hybrid optimal control

    NASA Astrophysics Data System (ADS)

    Chilan, Christian Miguel

    A modern space mission is assembled from multiple phases or events such as impulsive maneuvers, coast arcs, thrust arcs and planetary flybys. Traditionally, a mission planner would resort to intuition and experience to develop a sequence of events for the multiphase mission and to find the space trajectory that minimizes propellant use by solving the associated continuous optimal control problem. This strategy, however, will most likely yield a sub-optimal solution, as the problem is sophisticated for several reasons. For example, the number of events in the optimal mission structure is not known a priori and the system equations of motion change depending on what event is current. In this work a framework for the automated design of multiphase space missions is presented using hybrid optimal control (HOC). The method developed uses two nested loops: an outer-loop that handles the discrete dynamics and finds the optimal mission structure in terms of the categorical variables, and an inner-loop that performs the optimization of the corresponding continuous-time dynamical system and obtains the required control history. Genetic algorithms (GA) and direct transcription with nonlinear programming (NLP) are introduced as methods of solution for the outer-loop and inner-loop problems, respectively. Automation of the inner-loop, continuous optimal control problem solver, required two new technologies. The first is a method for the automated construction of the NLP problems resulting from the use of a direct solver for systems with different structures, including different numbers of categorical events. The method assembles modules, consisting of parameters and constraints appropriate to each event, sequentially according to the given mission structure. The other new technology is for a robust initial guess generator required by the inner-loop NLP problem solver. Two new methods were developed for cases including low-thrust trajectories. The first method, based on GA

  1. Mission Designs for Demonstrating Gravity Tractor Asteroid Deflection

    NASA Astrophysics Data System (ADS)

    Busch, M.; Faber, N.; Eggl, S.; Morrison, D.; Clark, A.; Frost, C.; Jaroux, B. A.; Khetawat, V.

    2015-12-01

    Gravity tractor asteroid deflection relies on the gravitational attraction between the target and a nearby spacecraft; using low-thrust propulsion to change the target's trajectory slowly but continuously. Our team, based at the NASA Ames Mission Design Center, prepared designs for a Gravity Tractor Demonstration Mission (GTDM) for the European Commission's NEOShield initiative. We found five asteroids with well-known orbits and opportunities for efficient stand-alone demonstrations in the 2020s. We selected one object, 2000 FJ10, for a detailed design analysis. Our GTDM design has a 4 kW solar-electric propulsion system and launch mass of 1150 kg. For a nominal asteroid mass of 3 x 109 kg and diameter 150 m, and a hovering altitude 125 m above the asteroid's surface, GTDM would change FJ10's semi-major axis by 10 km over 2 years. To measure the deflection clearly and to permit safe hovering by the spacecraft, several months of survey and characterization are required prior to the active tractoring phase of the mission. Accurate tracking is also required after the tractoring phase, to ensure that the asteroid has indeed been deflected as intended. The GTDM design includes both spacecraft and Earth-based observations of FJ10 to verify the deflection. The estimated cost of GTDM is $280 million. Trajectory analysis for GTDM confirmed that the outcome of a deflection of any asteroid depends on when that deflection is performed. Compared to kinetic impactor deflection, the gradual deflection from a gravity tractor produces comparable results for a given total momentum transfer. However, a gravity tractor can have greater flexibility in the direction in which the target asteroid can be deflected. Asteroid deflection scenarios must be modeled carefully on a case-to-case basis. We will review implications of the results of the GTDM study to other proposed gravity tractor demonstrations, such as that included in NASA's Asteroid Redirect Mission.

  2. LiteBIRD: mission overview and design tradeoffs

    NASA Astrophysics Data System (ADS)

    Matsumura, T.; Akiba, Y.; Borrill, J.; Chinone, Y.; Dobbs, M.; Fuke, H.; Hasegawa, M.; Hattori, K.; Hattori, M.; Hazumi, M.; Holzapfel, W.; Hori, Y.; Inatani, J.; Inoue, M.; Inoue, Y.; Ishidoshiro, K.; Ishino, H.; Ishitsuka, H.; Karatsu, K.; Kashima, S.; Katayama, N.; Kawano, I.; Kibayashi, A.; Kibe, Y.; Kimura, K.; Kimura, N.; Komatsu, E.; Kozu, M.; Koga, K.; Lee, A.; Matsuhara, H.; Mima, S.; Mitsuda, K.; Mizukami, K.; Morii, H.; Morishima, T.; Nagai, M.; Nagata, R.; Nakamura, S.; Naruse, M.; Namikawa, T.; Natsume, K.; Nishibori, T.; Nishijo, K.; Nishino, H.; Noda, A.; Noguchi, T.; Ogawa, H.; Oguri, S.; Ohta, I. S.; Okada, N.; Otani, C.; Richards, P.; Sakai, S.; Sato, N.; Sato, Y.; Segawa, Y.; Sekimoto, Y.; Shinozaki, K.; Sugita, H.; Suzuki, A.; Suzuki, T.; Tajima, O.; Takada, S.; Takakura, S.; Takei, Y.; Tomaru, T.; Uzawa, Y.; Wada, T.; Watanabe, H.; Yamada, Y.; Yamaguchi, H.; Yamasaki, N.; Yoshida, M.; Yoshida, T.; Yotsumoto, K.

    2014-08-01

    We present the mission design of LiteBIRD, a next generation satellite for the study of B-mode polarization and inflation from cosmic microwave background radiation (CMB) detection. The science goal of LiteBIRD is to measure the CMB polarization with the sensitivity of δr = 0:001, and this allows testing the major single-field slow-roll inflation models experimentally. The LiteBIRD instrumental design is purely driven to achieve this goal. At the earlier stage of the mission design, several key instrumental specifications, e.g. observing band, optical system, scan strategy, and orbit, need to be defined in order to process the rest of the detailed design. We have gone through the feasibility studies for these items in order to understand the tradeoffs between the requirements from the science goal and the compatibilities with a satellite bus system. We describe the overview of LiteBIRD and discuss the tradeoffs among the choices of scientific instrumental specifications and strategies. The first round of feasibility studies will be completed by the end of year 2014 to be ready for the mission definition review and the target launch date is in early 2020s.

  3. KEPLER MISSION DESIGN, REALIZED PHOTOMETRIC PERFORMANCE, AND EARLY SCIENCE

    SciTech Connect

    Koch, David G.; Borucki, William J.; Lissauer, Jack J.; Basri, Gibor; Marcy, Geoffrey; Batalha, Natalie M.; Brown, Timothy M.; Caldwell, Douglas; DeVore, Edna; Jenkins, Jon; Christensen-Dalsgaard, Joergen; Cochran, William D.; Dunham, Edward W.; Gautier, Thomas N.; Gilliland, Ronald L.; Gould, Alan; Kondo, Yoji; Monet, David

    2010-04-20

    The Kepler Mission, launched on 2009 March 6, was designed with the explicit capability to detect Earth-size planets in the habitable zone of solar-like stars using the transit photometry method. Results from just 43 days of data along with ground-based follow-up observations have identified five new transiting planets with measurements of their masses, radii, and orbital periods. Many aspects of stellar astrophysics also benefit from the unique, precise, extended, and nearly continuous data set for a large number and variety of stars. Early results for classical variables and eclipsing stars show great promise. To fully understand the methodology, processes, and eventually the results from the mission, we present the underlying rationale that ultimately led to the flight and ground system designs used to achieve the exquisite photometric performance. As an example of the initial photometric results, we present variability measurements that can be used to distinguish dwarf stars from red giants.

  4. An Engineering Design Reference Mission for a Future Large-Aperture UVOIR Space Observatory

    NASA Astrophysics Data System (ADS)

    Thronson, Harley A.; Bolcar, Matthew R.; Clampin, Mark; Crooke, Julie A.; Redding, David; Rioux, Norman; Stahl, H. Philip

    2016-01-01

    From the 2010 NRC Decadal Survey and the NASA Thirty-Year Roadmap, Enduring Quests, Daring Visions, to the recent AURA report, From Cosmic Birth to Living Earths, multiple community assessments have recommended development of a large-aperture UVOIR space observatory capable of achieving a broad range of compelling scientific goals. Of these priority science goals, the most technically challenging is the search for spectroscopic biomarkers in the atmospheres of exoplanets in the solar neighborhood. Here we present an engineering design reference mission (EDRM) for the Advanced Technology Large-Aperture Space Telescope (ATLAST), which was conceived from the start as capable of breakthrough science paired with an emphasis on cost control and cost effectiveness. An EDRM allows the engineering design trade space to be explored in depth to determine what are the most demanding requirements and where there are opportunities for margin against requirements. Our joint NASA GSFC/JPL/MSFC/STScI study team has used community-provided science goals to derive mission needs, requirements, and candidate mission architectures for a future large-aperture, non-cryogenic UVOIR space observatory. The ATLAST observatory is designed to operate at a Sun-Earth L2 orbit, which provides a stable thermal environment and excellent field of regard. Our reference designs have emphasized a serviceable 36-segment 9.2 m aperture telescope that stows within a five-meter diameter launch vehicle fairing. As part of our cost-management effort, this particular reference mission builds upon the engineering design for JWST. Moreover, it is scalable to a variety of launch vehicle fairings. Performance needs developed under the study are traceable to a variety of additional reference designs, including options for a monolithic primary mirror.

  5. Space station needs, attributes and architectural options study. Volume 7-2: Data book. Commercial missions

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The history of NASA's materials processing in space activities is reviewed. Market projections, support requirements, orbital operations issues, cost estimates and candidate systems (orbiter sortie flight, orbiter serviced free flyer, space station, space station serviced free flyer) for the space production of semiconductor crystals are examined. Mission requirements are identified for materials processing, communications missions, bioprocessing, and for transferring aviation maintenance training technology to spacecraft.

  6. Space station data system analysis/architecture study. Task 2: Options development, DR-5. Volume 2: Design options

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The primary objective of Task 2 is the development of an information base that will support the conduct of trade studies and provide sufficient data to make key design/programmatic decisions. This includes: (1) the establishment of option categories that are most likely to influence Space Station Data System (SSDS) definition; (2) the identification of preferred options in each category; and (3) the characterization of these options with respect to performance attributes, constraints, cost and risk. This volume contains the options development for the design category. This category comprises alternative structures, configurations and techniques that can be used to develop designs that are responsive to the SSDS requirements. The specific areas discussed are software, including data base management and distributed operating systems; system architecture, including fault tolerance and system growth/automation/autonomy and system interfaces; time management; and system security/privacy. Also discussed are space communications and local area networking.

  7. OSIRIS-REx Touch-and-Go (TAG) Mission Design for Asteroid Sample Collection

    NASA Technical Reports Server (NTRS)

    May, Alexander; Sutter, Brian; Linn, Timothy; Bierhaus, Beau; Berry, Kevin; Mink, Ron

    2014-01-01

    The Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) mission is a NASA New Frontiers mission launching in September 2016 to rendezvous with the near-Earth asteroid Bennu in October 2018. After several months of proximity operations to characterize the asteroid, OSIRIS-REx flies a Touch-And-Go (TAG) trajectory to the asteroid's surface to collect at least 60 g of pristine regolith sample for Earth return. This paper provides mission and flight system overviews, with more details on the TAG mission design and key events that occur to safely and successfully collect the sample. An overview of the navigation performed relative to a chosen sample site, along with the maneuvers to reach the desired site is described. Safety monitoring during descent is performed with onboard sensors providing an option to abort, troubleshoot, and try again if necessary. Sample collection occurs using a collection device at the end of an articulating robotic arm during a brief five second contact period, while a constant force spring mechanism in the arm assists to rebound the spacecraft away from the surface. Finally, the sample is measured quantitatively utilizing the law of conservation of angular momentum, along with qualitative data from imagery of the sampling device. Upon sample mass verification, the arm places the sample into the Stardust-heritage Sample Return Capsule (SRC) for return to Earth in September 2023.

  8. An Integrated Approach for Entry Mission Design and Flight Simulations

    NASA Technical Reports Server (NTRS)

    Lu, Ping; Rao, Prabhakara

    2004-01-01

    An integrated approach for entry trajectory design, guidance, and simulation is proposed. The key ingredients for this approach are an on-line 3 degree-of-freedom entry trajectory planning algorithm and the entry guidance algorithm that generates the guidance gains automatically. When fully developed, such a tool could enable end-bend entry mission design and simulations in 3DOF and 6DOF mode from de-orbit burn to the TAEM interface and beyond, all in one key stroke. Some preliminary examples of such a capability are presented in this paper that demonstrate the potential of this type of integrated environment.

  9. The Mask Designs for Space Interferometer Mission (SIM)

    NASA Technical Reports Server (NTRS)

    Wang, Xu

    2008-01-01

    The Space Interferometer Mission (SIM) consists of three interferometers (science, guide1, and guide2) and two optical paths (metrology and starlight). The system requirements for each interferometer/optical path combination are different and sometimes work against each other. A diffraction model is developed to design and optimize various masks to simultaneously meet the system requirements of three interferometers. In this paper, the details of this diffraction model will be described first. Later, the mask design for each interferometer will be presented to demonstrate the system performance compliance. In the end, a tolerance sensitivity study on the geometrical dimension, shape, and the alignment of these masks will be discussed.

  10. MarcoPolo-R: Mission and Spacecraft Design

    NASA Astrophysics Data System (ADS)

    Peacocke, L.; Kemble, S.; Chapuy, M.; Scheer, H.

    2013-09-01

    The MarcoPolo-R mission is a candidate for the European Space Agency's medium-class Cosmic Vision programme, with the aim to obtain a 100 g sample of asteroid surface material and return it safely to the Earth. Astrium is one of two industrial contractors currently studying the mission to Phase A level, and the team has been working on the mission and spacecraft design since January 2012. Asteroids are some of the most primitive bodies in our solar system and are key to understanding the formation of the Earth, Sun and other planetary bodies. A returned sample would allow extensive analyses in the large laboratory-sized instruments here on Earth that are not possible with in-situ instruments. This analysis would also increase our understanding of the composition and structure of asteroids, and aid in plans for asteroid deflection techniques. In addition, the mission would be a valuable precursor for missions such as Mars Sample Return, demonstrating a high speed Earth re-entry and hard landing of an entry capsule. Following extensive mission analysis of both the baseline asteroid target 1996 FG3 and alternatives, a particularly favourable trajectory was found to the asteroid 2008 EV5 resulting in a mission duration of 4.5 to 6 years. In October 2012, the MarcoPolo-R baseline target was changed to 2008 EV5 due to its extremely primitive nature, which may pre-date the Sun. This change has a number of advantages: reduced DeltaV requirements, an orbit with a more benign thermal environment, reduced communications distances, and a reduced complexity propulsion system - all of which simplify the spacecraft design significantly. The single spacecraft would launch between 2022 and 2024 on a Soyuz-Fregat launch vehicle from Kourou. Solar electric propulsion is necessary for the outward and return transfers due to the DeltaV requirements, to minimise propellant mass. Once rendezvous with the asteroid is achieved, an observation campaign will begin to characterise the