Science.gov

Sample records for mission measurement synergy

  1. Mars 2001 Lander Mission: Measurement Synergy Through Coordinated Operations Planning and Implementation

    NASA Astrophysics Data System (ADS)

    Arvidson, R.

    1999-01-01

    exposed at the site, together with quantitative information on material mineralogy, chemistry, and physical properties (rock textures; soil grain size and shape distributions; degree and nature of soil induration; soil magnetic properties). Observations from the APEX, MECA, and MIP Experiments, including use of the robotic arm robotic arm camera (RAC) and the Marie Curie rover, will be used to address these parameters in a synergistic way. Further, calibration targets on APEX will provide radiometric and mineralogical control surfaces, and magnet targets will allow observations of magnetic phases. Patch plates on MECA will be imaged to determine adhesive and abrasive properties of soils. Coordinated mission planning is crucial for optimizing the measurement synergy among the packages included on the lander. This planning has already begun through generation of multi-sol detailed operations activities.

  2. Mars 2001 Lander Mission: Measurement Synergy Through Coordinated Operations Planning And Implementation

    NASA Technical Reports Server (NTRS)

    Arvidson, R.; Bell, J. F., III; Kaplan, D.; Marshall, J.; Mishkin, A.; Saunders, S.; Smith, P.; Squyres, S.

    1999-01-01

    , together with quantitative information on material mineralogy, chemistry, and physical properties (rock textures; soil grain size and shape distributions; degree and nature of soil induration; soil magnetic properties). The calibration targets provide radiometric and mineralogical control surfaces. The magnets allow observations of magnetic phases. Patch plates are imaged to determine adhesive and abrasive properties of soils. Coordinated mission planning is crucial for optimizing the measurement synergy among the packages included on the lander. This planning has already begun through generation of multi-sol detailed operations activities. One focus has been to develop a scenario to use the arm to dig a soil trench to a depth of tens of centimeters. The activity will be monitored through use of Pancam and RAC to ensure nominal operations and to acquire data to determine subsurface physical properties (e.g., angle of repose of trench walls). Pancam and Mini-TES observations would also provide constraints on mineralogy and texture for the walls and bottom of the trench during excavation. If desired, soils excavated at depth could be deposited on the surface and Mossbauer and APXS measurements could be acquired for these materials. Soil samples from various depths would be delivered to MECA for characterization of aqueous geochemistry and physical properties of soil grains, particularly size, shape, and hardness. These physical properties would be determined by optical and atomic force microscopy. When completed, detailed information of soil properties as a function of depth would be obtained. These various data sets would constrain our understanding of whether or not there are systematic variations in soil characteristics as a function of depth. These variations might be related, for example, to evaporative moisture losses and formation of salt deposits, thereby indicating water transport processes occurred fairly recently. Many other value-added measurement scenarios are

  3. Mars 2001 Lander Mission: Measurement Synergy Through Coordinated Operations Planning And Implementation

    NASA Astrophysics Data System (ADS)

    Arvidson, R.; Bell, J. F., III; Kaplan, D.; Marshall, J.; Mishkin, A.; Saunders, S.; Smith, P.; Squyres, S.

    1999-09-01

    , together with quantitative information on material mineralogy, chemistry, and physical properties (rock textures; soil grain size and shape distributions; degree and nature of soil induration; soil magnetic properties). The calibration targets provide radiometric and mineralogical control surfaces. The magnets allow observations of magnetic phases. Patch plates are imaged to determine adhesive and abrasive properties of soils. Coordinated mission planning is crucial for optimizing the measurement synergy among the packages included on the lander. This planning has already begun through generation of multi-sol detailed operations activities. One focus has been to develop a scenario to use the arm to dig a soil trench to a depth of tens of centimeters. The activity will be monitored through use of Pancam and RAC to ensure nominal operations and to acquire data to determine subsurface physical properties (e.g., angle of repose of trench walls). Pancam and Mini-TES observations would also provide constraints on mineralogy and texture for the walls and bottom of the trench during excavation. If desired, soils excavated at depth could be deposited on the surface and Mossbauer and APXS measurements could be acquired for these materials. Soil samples from various depths would be delivered to MECA for characterization of aqueous geochemistry and physical properties of soil grains, particularly size, shape, and hardness. These physical properties would be determined by optical and atomic force microscopy. When completed, detailed information of soil properties as a function of depth would be obtained. These various data sets would constrain our understanding of whether or not there are systematic variations in soil characteristics as a function of depth. These variations might be related, for example, to evaporative moisture losses and formation of salt deposits, thereby indicating water transport processes occurred fairly recently. Many other value-added measurement scenarios are

  4. Mars 2001 Lander Mission: Measurement Synergy Through Coordinated Operations Planning And Implementation

    NASA Technical Reports Server (NTRS)

    Arvidson, R.; Bell, J. F., III; Kaplan, D.; Marshall, J.; Mishkin, A.; Saunders, S.; Smith, P.; Squyres, S.

    1999-01-01

    , together with quantitative information on material mineralogy, chemistry, and physical properties (rock textures; soil grain size and shape distributions; degree and nature of soil induration; soil magnetic properties). The calibration targets provide radiometric and mineralogical control surfaces. The magnets allow observations of magnetic phases. Patch plates are imaged to determine adhesive and abrasive properties of soils. Coordinated mission planning is crucial for optimizing the measurement synergy among the packages included on the lander. This planning has already begun through generation of multi-sol detailed operations activities. One focus has been to develop a scenario to use the arm to dig a soil trench to a depth of tens of centimeters. The activity will be monitored through use of Pancam and RAC to ensure nominal operations and to acquire data to determine subsurface physical properties (e.g., angle of repose of trench walls). Pancam and Mini-TES observations would also provide constraints on mineralogy and texture for the walls and bottom of the trench during excavation. If desired, soils excavated at depth could be deposited on the surface and Mossbauer and APXS measurements could be acquired for these materials. Soil samples from various depths would be delivered to MECA for characterization of aqueous geochemistry and physical properties of soil grains, particularly size, shape, and hardness. These physical properties would be determined by optical and atomic force microscopy. When completed, detailed information of soil properties as a function of depth would be obtained. These various data sets would constrain our understanding of whether or not there are systematic variations in soil characteristics as a function of depth. These variations might be related, for example, to evaporative moisture losses and formation of salt deposits, thereby indicating water transport processes occurred fairly recently. Many other value-added measurement scenarios are

  5. Mars 2001 Lander Mission: Measurement Synergy through Coordinated Operations Planning and Implementation

    NASA Astrophysics Data System (ADS)

    Arvidson, R.; Bell, J. F., III; Kaplan, D.; Marshall, J.; Mishkin, A.; Saunders, S.; Smith, P.; Squyres, S.

    1999-03-01

    The Science Operations Working Group, Mars 2001 Mission, has developed coordinated plans for scientific observations that treat the instruments as an integrated payload. This approach ensures maximum return of scientific information.

  6. James Webb Space Telescope Synergy with Dark Energy Missions

    NASA Astrophysics Data System (ADS)

    Gardner, Jonathan P.

    2014-01-01

    As the successor to the Hubble Space Telescope (HST), the James Webb Space Telescope (JWST) will be a general-purpose observatory which will impact all areas of observational astronomy. Two future dark energy missions are being planned: Euclid in Europe and the Wide-Field Infrared Survey Telescope (WFIRST) in the US. While JWST is designed to go very deep in the infrared, the dark energy missions will conduct wide-area surveys of a substantial fraction of the sky in the optical and near-infrared. Synergy between JWST and Euclid or WFIRST could proceed in several ways. (1) JWST will make contributions to dark energy science that will be complementary to the results from the wide-area surveys. These contributions could include a more precise measurement of the current value of the Hubble constant, and rest-frame near-infrared light curves for high-redshift type Ia supernovae. (2) JWST could directly contribute to the dark energy science of the wide-area missions by providing additional calibration, investigating anomalies in the dataset, or with complementary observations that are deeper over a smaller area. (3) JWST could make follow-up observations of Euclid or WFIRST discoveries of rare objects, such as high-redshift quasars, strong-lens systems, galaxy clusters and supernovae.

  7. Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Tropical rainfall affects the lives and economics of a majority of the Earth's population. Tropical rain systems, such as hurricanes, typhoons, and monsoons, are crucial to sustaining the livelihoods of those living in the tropics. Excess rainfall can cause floods and great property and crop damage, whereas too little rainfall can cause drought and crop failure. The latent heat release during the process of precipitation is a major source of energy that drives the atmospheric circulation. This latent heat can intensify weather systems, affecting weather thousands of kilometers away, thus making tropical rainfall an important indicator of atmospheric circulation and short-term climate change. Tropical forests and the underlying soils are major sources of many of the atmosphere's trace constituents. Together, the forests and the atmosphere act as a water-energy regulating system. Most of the rainfall is returned to the atmosphere through evaporation and transpiration, and the atmospheric trace constituents take part in the recycling process. Hence, the hydrological cycle provides a direct link between tropical rainfall and the global cycles of carbon, nitrogen, and sulfur, all important trace materials for the Earth's system. Because rainfall is such an important component in the interactions between the ocean, atmosphere, land, and the biosphere, accurate measurements of rainfall are crucial to understanding the workings of the Earth-atmosphere system. The large spatial and temporal variability of rainfall systems, however, poses a major challenge to estimating global rainfall. So far, there has been a lack of rain gauge networks, especially over the oceans, which points to satellite measurement as the only means by which global observation of rainfall can be made. The Tropical Rainfall Measuring Mission (TRMM), jointly sponsored by the National Aeronautics and Space Administration (NASA) of the United States and the National Space Development Agency (NASDA) of

  8. A synergy of values. Catholic healthcare leaders must implement their organization's mission and model its values.

    PubMed

    Clifton, R M; McEnroe, J J

    1994-06-01

    Catholic organizations need to select, develop, and retain healthcare leaders who dedicate themselves to carrying on the Church's healing ministry and the work begun by those who have preceded them. Persons entrusted to carry on Jesus' healing mission perform their duties out of a sense of commitment to the ministry and a love for the persons with whom they work and whom they serve. They recognize a synergy between their own values and the values of the healthcare organizations they lead. Dedication to leadership in Catholic healthcare can be viewed from three perspectives: the Bible and selected documents of the Catholic Church; the transfer of responsibility for Catholic healthcare from religious congregations to evolving forms of sponsorship; and the implications for the selection, development, and retention of healthcare leaders, both lay and religious. Servant-leadership is an integral part of the religious tradition that underlies Catholic healthcare. As cooperation increases between healthcare providers, third-party payers, employers, and other healthcare agents. Catholic healthcare organizations are challenged to reassert a mission and values that will enable healthcare in the United States to be delivered both compassionately and competently. PMID:10134188

  9. A Methodology to Measure Synergy Among Energy-Efficiency Programs at the Program Participant Level

    SciTech Connect

    Tonn, B.E.

    2003-11-14

    This paper presents a methodology designed to measure synergy among energy-efficiency programs at the program participant level (e.g., households, firms). Three different definitions of synergy are provided: strong, moderate, and weak. Data to measure synergy can be collected through simple survey questions. Straightforward mathematical techniques can be used to estimate the three types of synergy and explore relative synergistic impacts of different subsets of programs. Empirical research is needed to test the concepts and methods and to establish quantitative expectations about synergistic relationships among programs. The market for new energy-efficient motors is the context used to illustrate all the concepts and methods in this paper.

  10. Ground-based and spacecraft-based data sets: examples of synergy from recent missions

    NASA Astrophysics Data System (ADS)

    Buratti, Bonnie; Hicks, Michael; Bauer, James

    2015-08-01

    Missions to small bodies have returned a wealth of observations at high spatial resolution and new wavelengths. Nevertheless, spacecraft data is often deficient in many ways, lacking in temporal coverage, specific viewing geometries, context, spectral range, and calibrations. Several recent examples illustrate how modest ground-based “support” measurements for missions to small bodies have substantially enhanced the results from these missions. Triton, Neptune’s giant moon, was observed by Voyager 2 in 1989: high resolution images showed a sublimating polar cap and explosive plumes of volatiles. This instant in time was placed into context by subsequent ground-based and HST observations of the moon that showed continued volatile transport. Similarly, decades of ground-based observations leading up to the New Horizons fast flyby of Pluto monitored long-term changes in frosts on the dwarf planet’s surface. Another example of synergistic measurements for small-body missions is that of complementary solar phase angle coverage. Space-based missions seldom have small phase angle measurements; similarly, ground-based measurements are often lacking at large solar phase angles (except of course for NEOs). This complementary phase angle coverage enables accurate photometric modeling, including determination of the bolometric Bond albedo, which is a key parameter for thermal modeling. Another key use of ground-based observations is to check and refine spacecraft calibrations, at least at wavelengths that are visible from Earth. In some cases, complete calibration sets are provided by Earth-based observing programs, such as that of ROLO (RObotic Lunar Observatory) for the Moon. Finally, context and the “big picture” in both time and space are provided by telescopic views of spacecraft targets before, during, and after mission durations or critical events.The astronomical community should continue to support, and participate in, teams that make synergistic

  11. Synergies of the European Microwave Remote Sensing Missions SMOS and ASCAT for Monitoring Soil Moisture

    NASA Astrophysics Data System (ADS)

    Scipal, K.; Wagner, W.

    2003-04-01

    The lack of global soil moisture observations is one of the most glaring and pressing deficiencies in current research activities of related fields, from climate monitoring and ecological applications to the quantification of biogeophysical fluxes. This has implications for important issues of the international political agenda like managing global water resources, securing food production and studying climate change. Currently it is held that only microwave remote sensing offers the potential to produce reliable global scale soil moisture information economically. Recognising the urgent need for a soil moisture mission several international initiatives are planning satellite missions dedicated to monitor the global hydrological cycle among them two European microwave satellites. ESA is planning to launch the Soil Moisture and Ocean Salinity Mission SMOS, in 2006. SMOS will measure soil moisture over land and ocean salinity over the oceans. The mission rests on a passive microwave sensor (radiometer) operated in L-band which is currently believed to hold the largest potential for soil moisture retrieval. One year before (2005) EUMETSAT will launch the Meteorological Operational satellite METOP which carries the active microwave system Advanced Scatterometer ASCAT on board. ASCAT has been designed to retrieve winds over the oceans but recent research has established its capability to retrieve soil moisture. Although currently it is hold that, using active microwave techniques, the effect of surface roughness dominates that of soil moisture (while the converse is true for radiometers), the ERS scatterometer was successfully used to derive global soil moisture information at a spatial resolution of 50 km with weekly to decadal temporal resolution. The quality of the soil moisture products have been assessed by independent experts in several pilot projects funded by the European Space Agency. There is evidence to believe that both missions will provide a flow of

  12. Creating synergy between ground and space-based precipitation measurements

    NASA Astrophysics Data System (ADS)

    Gourley, J. J.; Hong, Y.; Petersen, W. A.; Howard, K.; Flamig, Z.; Wen, Y.

    2010-12-01

    As the successor of the Tropical Rainfall Measuring Mission (TRMM) satellite launched in 1997, the multi-national Global Precipitation Measurement (GPM) Mission, to be launched in 2013, will provide next-generation global precipitation estimates from space within a unified framework. On the ground, several countries worldwide are in the throes of expanding their weather radar networks with gap-filling radars and upgrading them to include polarimetric capabilities. While significant improvements in precipitation estimation capabilities have been realized from space- and ground-based platforms separately, little effort has been focused on aligning these communities for synergistic, joint development of algorithms. In this study, we demonstrate the integration of real-time rainfall products from the Tropical Rainfall Measurement Mission (TRMM) into the National Severe Storms Laboratory’s (NSSL) National Mosaic and QPE (NMQ/Q2; http://nmq.ou.edu) system. The NMQ system enables a CONUS-wide comparison of TRMM products to NEXRAD-based Q2 rainfall products. Moreover, NMQ’s ground validation software ingests and quality controls data from all automatic-reporting rain gauge networks throughout the US and provides robust graphical and statistical validation tools, accessible by anyone with internet access. This system will readily incorporate future products from GPM as well as those from the dual-polarization upgrade to the NEXRAD network. While initial efforts are on the intercomparison of rainfall products, we envision this system will ultimately promote the development of precipitation algorithms that capitalize on the strengths of spatiotemporal and error characteristics of space and ground remote-sensing data. An example algorithm is presented where the vertical structure of precipitating systems over complex terrain is more completely resolved using combined information from NMQ and TRMM precipitation radar (PR), leading to more accurate surface rainfall estimates.

  13. Measure and exploitation of multisensor and multiwavelength synergy for remote sensing: 2. Application to the retrieval of atmospheric temperature and water vapor from MetOp

    NASA Astrophysics Data System (ADS)

    Aires, Filipe; Paul, Maxime; Prigent, Catherine; Rommen, BjöRn; Bouvet, Marc

    2011-01-01

    In the companion paper, classical information content (IC) analysis was used to measure the potential synergy between the microwave (MW) and infrared (IR) observations from Atmospheric Microwave Sounding Unit-A, Microwave Humidity Sounder, and Improved Atmospheric Sounding in the Infrared instruments, used to retrieve the atmospheric profiles of temperature and water vapor over ocean, under clear-sky conditions. Some limitations of IC were pointed out that questioned the reliability of this technique for synergy characterization. The goal of this second paper is to develop a methodology to measure realistic potential synergies and to construct retrieval methods able to exploit them. Three retrieval methods are considered: the k nearest neighbors, the linear regression, and the neural networks (NN). These statistical retrieval schemes are tested on an application involving IR and MW synergy. Only clear-sky, near-nadir radiances over ocean are considered. The IR/MW synergy is expected to be stronger in cloudy cases, but it will be shown that it can also be observed in clear situations. The inversion algorithms are calibrated and tested with simulated observations, without any loss of generality, using similar theoretical assumption (same radiative transfer model, observational noise, and a priori information) in order to truly compare the IC and the direct statistical retrieval approaches. Multivariate and nonlinear methods such as the NN approach show that there is a strong potential for synergy. Synergy measurement tools such as the method proposed in this study should be considered in the future for the definition of new missions: The instrument characteristics should be determined not independently, sensor by sensor, but taking into account all the instruments together as a whole observing system.

  14. The Global Precipitation Measurement Mission

    NASA Astrophysics Data System (ADS)

    Jackson, Gail

    2014-05-01

    The Global Precipitation Measurement (GPM) mission's Core satellite, scheduled for launch at the end of February 2014, is well designed estimate precipitation from 0.2 to 110 mm/hr and to detect falling snow. Knowing where and how much rain and snow falls globally is vital to understanding how weather and climate impact both our environment and Earth's water and energy cycles, including effects on agriculture, fresh water availability, and responses to natural disasters. The design of the GPM Core Observatory is an advancement of the Tropical Rainfall Measuring Mission (TRMM)'s highly successful rain-sensing package [3]. The cornerstone of the GPM mission is the deployment of a Core Observatory in a unique 65o non-Sun-synchronous orbit to serve as a physics observatory and a calibration reference to improve precipitation measurements by a constellation of 8 or more dedicated and operational, U.S. and international passive microwave sensors. The Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will provide measurements of 3-D precipitation structures and microphysical properties, which are key to achieving a better understanding of precipitation processes and improving retrieval algorithms for passive microwave radiometers. The combined use of DPR and GMI measurements will place greater constraints on possible solutions to radiometer retrievals to improve the accuracy and consistency of precipitation retrievals from all constellation radiometers. Furthermore, since light rain and falling snow account for a significant fraction of precipitation occurrence in middle and high latitudes, the GPM instruments extend the capabilities of the TRMM sensors to detect falling snow, measure light rain, and provide, for the first time, quantitative estimates of microphysical properties of precipitation particles. The GPM Core Observatory was developed and tested at NASA

  15. Study of atmospheric parameters measurements using MM-wave radar in synergy with LITE-2

    NASA Technical Reports Server (NTRS)

    Andrawis, Madeleine Y.

    1994-01-01

    The Lidar In-Space Technology Experiment, (LITE), has been developed, designed, and built by NASA Langley Research Center, to be flown on the space shuttle 'Discovery' on September 9, 1994. Lidar, which stands for light detecting and ranging, is a radar system that uses short pulses of laser light instead of radio waves in the case of the common radar. This space-based lidar offers atmospheric measurements of stratospheric and tropospheric aerosols, the planetary boundary layer, cloud top heights, and atmospheric temperature and density in the 10-40 km altitude range. A study is being done on the use, advantages, and limitations of a millimeterwave radar to be utilized in synergy with the Lidar system, for the LITE-2 experiment to be flown on a future space shuttle mission. The lower atmospheric attenuation, compared to infrared and optical frequencies, permits the millimeter-wave signals to penetrate through the clouds and measure multi-layered clouds, cloud thickness, and cloud-base height. These measurements would provide a useful input to radiation computations used in the operational numerical weather prediction models, and for forecasting. High power levels, optimum modulation, data processing, and high antenna gain are used to increase the operating range, while space environment, radar tradeoffs, and power availability are considered. Preliminary, numerical calculations are made, using the specifications of an experimental system constructed at Georgia Tech. The noncoherent 94 GHz millimeter-wave radar system has a pulsed output with peak value of 1 kW. The backscatter cross section of the particles to be measured, that are present in the volume covered by the beam footprint, is also studied.

  16. Study of atmospheric parameters measurements using MM-wave radar in synergy with LITE-2

    NASA Astrophysics Data System (ADS)

    Andrawis, Madeleine Y.

    1994-12-01

    The Lidar In-Space Technology Experiment, (LITE), has been developed, designed, and built by NASA Langley Research Center, to be flown on the space shuttle 'Discovery' on September 9, 1994. Lidar, which stands for light detecting and ranging, is a radar system that uses short pulses of laser light instead of radio waves in the case of the common radar. This space-based lidar offers atmospheric measurements of stratospheric and tropospheric aerosols, the planetary boundary layer, cloud top heights, and atmospheric temperature and density in the 10-40 km altitude range. A study is being done on the use, advantages, and limitations of a millimeterwave radar to be utilized in synergy with the Lidar system, for the LITE-2 experiment to be flown on a future space shuttle mission. The lower atmospheric attenuation, compared to infrared and optical frequencies, permits the millimeter-wave signals to penetrate through the clouds and measure multi-layered clouds, cloud thickness, and cloud-base height. These measurements would provide a useful input to radiation computations used in the operational numerical weather prediction models, and for forecasting. High power levels, optimum modulation, data processing, and high antenna gain are used to increase the operating range, while space environment, radar tradeoffs, and power availability are considered. Preliminary, numerical calculations are made, using the specifications of an experimental system constructed at Georgia Tech. The noncoherent 94 GHz millimeter-wave radar system has a pulsed output with peak value of 1 kW. The backscatter cross section of the particles to be measured, that are present in the volume covered by the beam footprint, is also studied.

  17. Precursor Asteroid Missions and Synergies to Human Exploration of Phobos and Deimos

    NASA Technical Reports Server (NTRS)

    Abell, Paul

    2013-01-01

    U.S. President Obama stated on April 15, 2010 that the next goal for human spaceflight will be to send human beings to a near-Earth asteroid by 2025 and then on to the Martian system in the 2030s. Given this direction from the White House, NASA has been involved in studying various strategies for near-Earth object (NEO) exploration in order to follow U.S. space exploration policy. These missions would be the first human expeditions to interplanetary bodies beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars and its moons, as well as other Solar System destinations. Robotic precursor missions to NEOs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific investigations of these primitive objects. In addition, the resulting scientific investigations would refine designs for future extraterrestrial resource extraction and utilization, which may play a vital role in leveraging potential resources from the Martian moons that in turn could enable robotic and human exploration of Mars.

  18. Global Precipitation Measurement Mission: Architecture and Mission Concept

    NASA Technical Reports Server (NTRS)

    Bundas, David

    2005-01-01

    The Global Precipitation Measurement (GPM) Mission is a collaboration between the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), and other partners, with the goal of monitoring the diurnal and seasonal variations in precipitation over the surface of the earth. These measurements will be used to improve current climate models and weather forecasting, and enable improved storm and flood warnings. This paper gives an overview of the mission architecture and addresses some of the key trades that have been completed, including the selection of the Core Observatory s orbit, orbit maintenance trades, and design issues related to meeting orbital debris requirements.

  19. Global Precipitation Measurement (GPM) Mission Development Status

    NASA Technical Reports Server (NTRS)

    Azarbarzin, Ardeshir Art

    2011-01-01

    Mission Objective: (1) Improve scientific understanding of the global water cycle and fresh water availability (2) Improve the accuracy of precipitation forecasts (3) Provide frequent and complete sampling of the Earth s precipitation Mission Description (Class B, Category I): (1) Constellation of spacecraft provide global precipitation measurement coverage (2) NASA/JAXA Core spacecraft: Provides a microwave radiometer (GMI) and dual-frequency precipitation radar (DPR) to cross-calibrate entire constellation (3) 65 deg inclination, 400 km altitude (4) Launch July 2013 on HII-A (5) 3 year mission (5 year propellant) (6) Partner constellation spacecraft.

  20. Tropical Rainfall Measurement Mission (TRMM) Operation Summary

    NASA Technical Reports Server (NTRS)

    Nio, Tomomi; Saito, Susumu; Stocker, Erich; Pawloski, James H.; Murayama, Yoshifumi; Ohata, Takeshi

    2015-01-01

    The Tropical Rainfall Measurement Mission (TRMM) is a joint U.S. and Japan mission to observe tropical rainfall, which was launched by H-II No. 6 from Tanegashima in Japan at 6:27 JST on November 28, 1997. After the two-month commissioning of TRMM satellite and instruments, the original nominal mission lifetime was three years. In fact, the operations has continued for approximately 17.5 years. This paper provides a summary of the long term operations of TRMM.

  1. Wide-Field InfraRed Survey Telescope (WFIRST) Mission and Synergies with LISA and LIGO-Virgo

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Spergel, D.

    2015-01-01

    The Wide-Field InfraRed Survey Telescope (WFIRST) is a NASA space mission in study for launch in 2024. It has a 2.4 m telescope, wide-field IR instrument operating in the 0.7 - 2.0 micron range and an exoplanet imaging coronagraph instrument operating in the 400 - 1000 nm range. The observatory will perform galaxy surveys over thousands of square degrees to J=27 AB for dark energy weak lensing and baryon acoustic oscillation measurements and will monitor a few square degrees for dark energy SN Ia studies. It will perform microlensing observations of the galactic bulge for an exoplanet census and direct imaging observations of nearby exoplanets with a pathfinder coronagraph. The mission will have a robust and wellfunded guest observer program for 25% of the observing time. WFIRST will be a powerful tool for time domain astronomy and for coordinated observations with gravitational wave experiments. Gravitational wave events produced by mergers of nearby binary neutron stars (LIGO-Virgo) or extragalactic supermassive black hole binaries (LISA) will produce electromagnetic radiation that WFIRST can observe.

  2. The NASA Soil Moisture Active Passive (SMAP) Mission - Algorithm and Cal/Val Activities and Synergies with SMOS and Other L-Band Missions

    NASA Technical Reports Server (NTRS)

    Njoku, Eni; Entekhabi, Dara; O'Neill, Peggy; Jackson, Tom; Kellogg, Kent; Entin, Jared

    2011-01-01

    NASA's Soil Moisture Active Passive (SMAP) mission, planned for launch in late 2014, has as its key measurement objective the frequent, global mapping of near-surface soil moisture and its freeze-thaw state. SMAP soil moisture and freeze/thaw measurements at 10 km and 3 km resolutions respectively, would enable significantly improved estimates of water, energy and carbon transfers between the land and atmosphere. Soil moisture control of these fluxes is a key factor in the performance of atmospheric models used for weather forecasts and climate projections Soil moisture measurements are also of great importance in assessing floods and for monitoring drought. In addition, observations of soil moisture and freeze/thaw timing over the boreal latitudes can help reduce uncertainties in quantifying the global carbon balance. The SMAP measurement concept utilizes an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna. The SMAP radiometer and radar flight hardware and ground processing designs are incorporating approaches to identify and mitigate potential terrestrial radio frequency interference (RFI). The radar and radiometer instruments are planned to operate in a 680 km polar orbit, viewing the surface at a constant 40-degree incidence angle with a 1000-km swath width, providing 3-day global coverage. Data from the instruments would yield global maps of soil moisture and freeze/thaw state to be provided at 10 km and 3 km resolutions respectively, every two to three days. Plans are to provide also a radiometer-only soil moisture product at 40-km spatial resolution. This product and the underlying brightness temperatures have characteristics similar to those provided by the Soil Moisture and Ocean Salinity (SMOS) mission. As a result, there are unique opportunities for common data product development and continuity between the two missions. SMAP also has commonalities with other satellite missions having L-band radiometer and/or radar sensors

  3. Global Precipitation Measurement Mission Launch and Commissioning

    NASA Technical Reports Server (NTRS)

    Davis, Nikesha; Deweese, Keith; Vess, Missie; Welter, Gary; O'Donnell, James R., Jr.

    2015-01-01

    During launch and early operation of the Global Precipitation Measurement (GPM) Mission, the Guidance, Navigation and Control (GNC) analysis team encountered four main on orbit anomalies. These include: (1) unexpected shock from Solar Array deployment, (2) momentum buildup from the Magnetic Torquer Bars (MTBs) phasing errors, (3) transition into Safehold due to albedo-induced Course Sun Sensor (CSS) anomaly, and (4) a flight software error that could cause a Safehold transition due to a Star Tracker occultation. This paper will discuss ways GNC engineers identified and tracked down the root causes. Flight data and GNC on board models will be shown to illustrate how each of these anomalies were investigated and mitigated before causing any harm to the spacecraft. On May 29, 2014, GPM was handed over to the Mission Flight Operations Team after a successful commissioning period. Currently, GPM is operating nominally on orbit, collecting meaningful scientific data that will significantly improve our understanding of the Earth's climate and water cycle.

  4. Muscle Synergies in Cycling after Incomplete Spinal Cord Injury: Correlation with Clinical Measures of Motor Function and Spasticity

    PubMed Central

    Barroso, Filipe O.; Torricelli, Diego; Bravo-Esteban, Elisabeth; Taylor, Julian; Gómez-Soriano, Julio; Santos, Cristina; Moreno, Juan C.; Pons, José L.

    2016-01-01

    Background: After incomplete spinal cord injury (iSCI), patients suffer important sensorimotor impairments, such as abnormal locomotion patterns and spasticity. Complementary to current clinical diagnostic procedures, the analysis of muscle synergies has emerged as a promising tool to study muscle coordination, which plays a major role in the control of multi-limb functional movements. Objective: Based on recent findings suggesting that walking and cycling share similar synergistic control, the analysis of muscle synergies during cycling might be explored as an early descriptor of gait-related impaired control. This idea was split into the following two hypotheses: (a) iSCI patients present a synergistic control of muscles during cycling; (b) muscle synergies outcomes extracted during cycling correlate with clinical measurements of gait performance and/or spasticity. Methods: Electromyographic (EMG) activity of 13 unilateral lower limb muscles was recorded in a group of 10 healthy individuals and 10 iSCI subjects during cycling at four different cadences. A non-negative matrix factorization (NNMF) algorithm was applied to identify synergistic components (i.e., activation coefficients and muscle synergy vectors). Reconstruction goodness scores (VAF and r2) were used to evaluate the ability of a given number of synergies to reconstruct the EMG signals. A set of metrics based on the similarity between pathologic and healthy synergies were correlated with clinical scales of gait performance and spasticity. Results: iSCI patients preserved a synergistic control of muscles during cycling. The similarity with the healthy reference was consistent with the degree of the impairment, i.e., less impaired patients showed higher similarities with the healthy reference. There was a strong correlation between reconstruction goodness scores at 42 rpm and motor performance scales (TUG, 10-m test and WISCI II). On the other hand, the similarity between the healthy and affected

  5. [Gestalt synergy.].

    PubMed

    Carpentier, L

    1980-01-01

    The author describes a new psychotherapeutic approach called Gestalt Synergy. After presenting it's originality among others Body/Mind approaches, the author retraces the history of it's development through the personal history of the founder of Gestalt Synergy : Ilana Rubenfeld. Then follows an introduction of the Alexander Technique and the Feldenkrais Method which, with Gestalt, inspired Gestalt Synergy. The concepts and techniques of Gestalt Synergy are discussed and, the sequence of one session is illustrated. The author concludes on some personal changes noted from her use of this approach. PMID:17093697

  6. The Tropical Rainfall Measuring Mission (TRMM)

    NASA Technical Reports Server (NTRS)

    Simpson, Joanne; Kummerow, Christian D.; Meneghini, Robert; Hou, Arthur; Adler, Robert F.; Huffman, George; Barkstrom, Bruce; Wielicki, Bruce; Goodman, Steven J.; Christian, Hugh; Einaudi, Franco (Technical Monitor)

    1999-01-01

    Recognizing the importance of rain in the tropics and the accompanying latent heat release, NASA for the U.S. and NASDA for Japan have partnered in the design, construction and flight of an Earth Probe satellite to measure tropical rainfall and calculate the associated heating. Primary mission goals are: 1) the understanding of crucial links in climate variability by the hydrological cycle, 2) improvement in the large-scale models of weather and climate, and 3) improvement in understanding cloud ensembles and their impacts on larger scale circulations. The linkage with the tropical oceans and landmasses are also emphasized. The Tropical Rainfall Measuring Mission (TRMM) satellite was launched in November 1997 with fuel enough to obtain a four to five year data set of rainfall over the global tropics from 37 deg N to 37 deg S. This paper reports progress from launch date through the spring of 1999. The data system and its products and their access is described, as are the algorithms used to obtain the data. Some exciting early results from TRMM are described. Some important algorithm improvements are shown. These will be used in the first total data reprocessing, scheduled to be complete in early 2000. The reader is given information on how to access and use the data.

  7. Statistical sampling analysis for stratospheric measurements from satellite missions

    NASA Technical Reports Server (NTRS)

    Drewry, J. W.; Harrison, E. F.; Brooks, D. R.; Robbins, J. L.

    1978-01-01

    Earth orbiting satellite experiments can be designed to measure stratospheric constituents such as ozone by utilizing remote sensing techniques. Statistical analysis techniques, mission simulation and model development have been utilized to develop a method for analyzing various mission/sensor combinations. Existing and planned NASA satellite missions such as Nimbus-4 and G, and Stratospheric Aerosol and Gas Experiment-Application Explorer Mission (SAGE-AEM) have been analyzed to determine the ability of the missions to adequately sample the global field.

  8. Global Precipitation Measurement Mission Launch and Commissioning

    NASA Technical Reports Server (NTRS)

    Davis, Nikesha; DeWeese, Keith; Vess, Melissa; O'Donnell, James R., Jr.; Welter, Gary

    2015-01-01

    During launch and early operation of the Global Precipitation Measurement (GPM) Mission, the Guidance, Navigation, and Control (GN&C) analysis team encountered four main on-orbit anomalies. These include: (1) unexpected shock from Solar Array deployment, (2) momentum buildup from the Magnetic Torquer Bars (MTBs) phasing errors, (3) transition into Safehold due to albedo induced Course Sun Sensor (CSS) anomaly, and (4) a flight software error that could cause a Safehold transition due to a Star Tracker occultation. This paper will discuss ways GN&C engineers identified the anomalies and tracked down the root causes. Flight data and GN&C on-board models will be shown to illustrate how each of these anomalies were investigated and mitigated before causing any harm to the spacecraft. On May 29, 2014, GPM was handed over to the Mission Flight Operations Team after a successful commissioning period. Currently, GPM is operating nominally on orbit, collecting meaningful scientific data that will significantly improve our understanding of the Earth's climate and water cycle.

  9. Synergies between Visible/Near-Infrared imaging spectrometry and the Thermal Infrared in an urban environment: An evaluation of the Hyperspectral Infrared Imager (HyspIRI) mission

    NASA Astrophysics Data System (ADS)

    Roberts, D. A.; Quattrochi, D. A.; Hulley, G. C.; Hook, S.; Green, R. O.

    2011-12-01

    More than half of humanity lives in urban areas, projected to exceed 80% by 2015. Urban areas are major sources of environmental contaminants and sinks of energy and materials. Globally, remote sensing contributes to improved understanding of urban impacts through mapping urban extent, vegetation and impervious cover fractions and urban energy balance including albedo, emissivity and land surface temperature (LST). HyspIRI is a NRC "Decadal Survey" mission combining a visible, near-infrared and shortwave infrared (VSWIR) imaging spectrometer with a multispectral thermal infrared (TIR) instrument . Potential synergies between VSWIR and TIR data were explored using analogous airborne data acquired over Santa Barbara in June, 2008. These data were analyzed at their native spatial resolutions (7.5m VSWIR and 15m TIR), and aggregated 60 m spatial resolution similar to HyspIRI. A spectral library of common urban materials (e.g., grass, trees, soil, roofs, roads) was built from field and airborne-measured spectra . LST and emissivity were also retrieved from the airborne data. Co-located pixels from airborne data were used to generate reflectance/emissivity spectra for a subset of urban materials. Multiple Endmember Spectral Mixture Analysis (MESMA) was used to map fractions of impervious, soil, green vegetation (GV) and non-photosynthetic vegetation (NPV) at the different spatial resolutions and to compare the fractional estimates across spatial scales. Surface energy parameters, including albedo, vegetation cover fraction, broadband emissivity and LST were also determined for urban and natural land-cover classes in the region. Fractions were validated using 1m digital photography. GV and NPV Fractions were highly correlated with validation data at all spatial scales, producing a near 1:1 relationship but with a <10% overestimate of GV from MESMA. Similar, high correlations were observed for impervious surfaces, although impervious was underestimated in most urban areas

  10. RF propagation measurement and model validation during RF/IR synergy trial VAMPIRA

    NASA Astrophysics Data System (ADS)

    Heemskerk, Eric

    2005-10-01

    The member nations of AC/323 SET-RTG056/RTG32 on Integration of Radar and Infrared for Ship Self Defence have performed the Validation Measurements for Propagation in the Infrared and Radar (VAMPIRA). The objective was to get insight into the radar and infrared synergy concentrated on propagation in a coastal environment including horizontal inhomogeneity and to validate radar and infrared propagation models. The trial was held in the period 25 March-5 April 2004 near Surendorf Germany. As part of the trial TNO made RF 1-way transmission measurements, 24 hours/day during the whole trial period. The transmission path over the Eckernforder Bucht in Northern Germany had a length of 8.2 km. The transmitted signal was a sweep consisting of 6 frequencies i.e. 3.36, 5.32, 8.015, 9.7, 13.45, and 15.71 GHz. The transmitter height was 11.5 m, the receiver height 6.4 m above 'normal null'. At each end of the path a meteorological station was installed measuring every 30s the air temperature, relative humidity, air pressure, wind speed and wind direction. About halfway the path the TNO meteo buoy was anchored measuring air temperature and relative humidity at 5 heights between 0.65 and 5.15m above the sea surface. Also the sea water temperature was measured by the buoy on a depth of 1m below the sea surface. The effects of evaporation ducting at the propagation at the various frequencies were clearly demonstrated. Some times very deep fadings were present at 13.45 and 15.71 GHz where at the same time almost no effect at 3.36 and 5.32 GHz was observed. The measured propagation at 15.71 GHz was more enhanced than at 13.45 GHz due to the ducting conditions and the elevation angle of the transmitter and receiver antenna. In several sample cases the 1-way propagation factors are computed for every 5 minutes using the propagation model TERPEM (Signal Science) and the vertical refractivity profiles computed by the TNO model TARMOS. The 1-way computed propagation factors compared very

  11. TRMM (Tropical Rainfall Measuring Mission): A satellite mission to measure tropical rainfall

    NASA Technical Reports Server (NTRS)

    Simpson, Joanne (Editor)

    1988-01-01

    The Tropical Rainfall Measuring Mission (TRMM) is presented. TRMM is a satellite program being studied jointly by the United States and Japan which would carry out the systematic study of tropical rainfall required for major strides in weather and climate research. The scientific justification for TRMM is discussed. The implementation process for the scientific community, NASA management, and the other decision-makers and advisory personnel who are expected to evaluate the priority of the project is outlined.

  12. Professional Synergy.

    ERIC Educational Resources Information Center

    Harris, P. R.

    1981-01-01

    True professionals develop and create together a better future by their human endeavors in synergy. They must operate comfortably in two cultures--the industrial culture which is disappearing, and the superindustrial or cyberculture which is emerging. (CT)

  13. The development of motor synergies in children: Ultrasound and acoustic measurements

    PubMed Central

    Noiray, Aude; Ménard, Lucie; Iskarous, Khalil

    2013-01-01

    The present study focuses on differences in lingual coarticulation between French children and adults. The specific question pursued is whether 4–5 year old children have already acquired a synergy observed in adults in which the tongue back helps the tip in the formation of alveolar consonants. Locus equations, estimated from acoustic and ultrasound imaging data were used to compare coarticulation degree between adults and children and further investigate differences in motor synergy between the front and back parts of the tongue. Results show similar slope and intercept patterns for adults and children in both the acoustic and articulatory domains, with an effect of place of articulation in both groups between alveolar and non-alveolar consonants. These results suggest that 4–5 year old children (1) have learned the motor synergy investigated and (2) have developed a pattern of coarticulatory resistance depending on a consonant place of articulation. Also, results show that acoustic locus equations can be used to gauge the presence of motor synergies in children. PMID:23297916

  14. Utilizing The Synergy of Airborne Backscatter Lidar and In-Situ Measurements for Evaluating CALIPSO

    NASA Astrophysics Data System (ADS)

    Tsekeri, Alexandra; Amiridis, Vassilis; Marenco, Franco; Marinou, Eleni; Rosenberg, Phil; Solomos, Stavros; Trembath, Jamie; Allan, James; Bacak, Asan; Nenes, Athanasios

    2016-06-01

    Airborne campaigns dedicated to satellite validation are crucial for the effective global aerosol monitoring. CALIPSO is currently the only active remote sensing satellite mission, acquiring the vertical profiles of the aerosol backscatter and extinction coefficients. Here we present a method for CALIPSO evaluation from combining lidar and in-situ airborne measurements. The limitations of the method have to do mainly with the in-situ instrumentation capabilities and the hydration modelling. We also discuss the future implementation of our method in the ICE-D campaign (Cape Verde, August 2015).

  15. Precipitation Measurements from Space: The Global Precipitation Measurement Mission

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.

    2007-01-01

    Water is fundamental to the life on Earth and its phase transition between the gaseous, liquid, and solid states dominates the behavior of the weather/climate/ecological system. Precipitation, which converts atmospheric water vapor into rain and snow, is central to the global water cycle. It regulates the global energy balance through interactions with clouds and water vapor (the primary greenhouse gas), and also shapes global winds and dynamic transport through latent heat release. Surface precipitation affects soil moisture, ocean salinity, and land hydrology, thus linking fast atmospheric processes to the slower components of the climate system. Precipitation is also the primary source of freshwater in the world, which is facing an emerging freshwater crisis in many regions. Accurate and timely knowledge of global precipitation is essential for understanding the behavior of the global water cycle, improving freshwater management, and advancing predictive capabilities of high-impact weather events such as hurricanes, floods, droughts, and landslides. With limited rainfall networks on land and the impracticality of making extensive rainfall measurements over oceans, a comprehensive description of the space and time variability of global precipitation can only be achieved from the vantage point of space. This presentation will examine current capabilities in space-borne rainfall measurements, highlight scientific and practical benefits derived from these observations to date, and provide an overview of the multi-national Global Precipitation Measurement (GPM) Mission scheduled to bc launched in the early next decade.

  16. Prehension Synergies

    PubMed Central

    Zatsiorsky, Vladimir M.; Latash, Mark L.

    2010-01-01

    The precision grip requires the control of the normal and tangential forces exerted by the fingers as well as the control of the rotational equilibrium of the grasped object. Prehension synergies involve the conjoint changes in finger forces and moments during multifinger gripping tasks. Some of these adjustments are dictated by mechanics, whereas others are the result of a choice by the performer. PMID:15064652

  17. Mars In-situ Measurements and Sample Return: Trades and Synergies

    NASA Astrophysics Data System (ADS)

    Arvidson, R. E.

    2002-05-01

    An overarching emphasis for Mars exploration should focus on defining the global tectonic and climatic cycles and how they have evolved in space and time. Further, as part of the delineation of these cycles we should define the locations and nature of reservoirs of biogeochemically active species (C, N, P, S compounds, water), particularly for key settings (energy sources available, biochemically active species present, some degree of protection) where life may have developed and evolved. At least two discovery-driven pathways can be defined to address the exploration focus: a. We discover through analysis of observations acquired through end of the 2009 Smart Lander (SML) Mission that these key settings can be found and accessed and we go for sample return at the Smart Lander site. b. We discover through analysis of observations acquired through the end of SML Mission era that these key settings can be found and accessed and we go for detailed in-situ analyses of these areas as an alternative to sample return. The Program would be successful for all pathways whether or not life is found as long as we define the global cycles through space and time and we find and explore the key setting areas where life may have developed and evolved. It would be equally interesting to go to an area where protection, energy, and biogeochemically active species have been present for a long time and: (a) not find prebiotic compounds or extinct or extant life, or (b) find prebiotic com-pounds and evidence of extinct or extant life. If the former, why did prebiotic compounds and life fail to develop? If the latter, what compounds or organisms do we have and why? In either case we need to understand the context for these measurements and that demands an understanding of the global cycles and how they have varied in space and time. The question is not whether to go for sample return or in-situ observations. Rather the two methods are com-plementary in that in-situ observations pave the

  18. Synergy between cellulolytic enzymes during the biodegradation of cellulose microfibrils measured using angle-scanning surface plasmon resonance (SPR) imaging

    NASA Astrophysics Data System (ADS)

    Raegen, Adam; Dion, Alexander; Reiter, Kyle; Clarke, Anthony; Lipkowski, Jacek; Dutcher, John

    2014-03-01

    The use of cellulosic ethanol, a promising emerging energy source, is limited by the energy intensive and costly step of first converting the cellulose fibers into their constituent glucose monomers. Industrial processes mimic those that occur in nature, using mixtures or ``cocktails'' of different classes of cellulolytic enzymes derived from fungi. Despite several decades of investigation, the molecular mechanisms for enzyme synergy remain poorly understood. To gain additional insight, we have used a custom angle-scanning surface plasmon resonance (SPR) imaging apparatus to obtain a sensitive measure of enzymatic degradation. By implementing a novel SPR data analysis procedure, we have been able to track the thickness and roughness of laterally heterogeneous cellulose microfibril-coated substrates as enzymatic degradation proceeds. This has allowed us to measure the synergistic actions of the different enzymes, providing data that are directly relevant to the cellulosic ethanol industry.

  19. Prototype of NASA's Global Precipitation Measurement Mission Ground Validation System

    NASA Technical Reports Server (NTRS)

    Schwaller, M. R.; Morris, K. R.; Petersen, W. A.

    2007-01-01

    NASA is developing a Ground Validation System (GVS) as one of its contributions to the Global Precipitation Mission (GPM). The GPM GVS provides an independent means for evaluation, diagnosis, and ultimately improvement of GPM spaceborne measurements and precipitation products. NASA's GPM GVS consists of three elements: field campaigns/physical validation, direct network validation, and modeling and simulation. The GVS prototype of direct network validation compares Tropical Rainfall Measuring Mission (TRMM) satellite-borne radar data to similar measurements from the U.S. national network of operational weather radars. A prototype field campaign has also been conducted; modeling and simulation prototypes are under consideration.

  20. Summary Report of Mission Acceleration Measurements for STS-95

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin; Hrovat, Kenneth

    2000-01-01

    John H. Glenn's historic return to space was a primary focus of the STS-95 mission. The Hubble Space Telescope (HST) Orbital Systems Test (HOST). an STS-95 payload, was an in-flight demonstration of HST components to be installed during the next HST servicing mission. One of the components under evaluation was the cryocooler for the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). Based on concerns about vibrations from the operation of the NICMOS cryocooler affecting the overall HST line-of-sight requirements, the Space Acceleration Measurement System for Free-Flyers (SAMS-FF) was employed to measure the vibratory environment of the STS-95 mission, including any effects introduced by the NICMOS cryocooler. The STS-95 mission represents the first STS mission supported by SAMS-FF. Utilizing a Control and Data Acquisition Unit (CDU) and two triaxial sensor heads (TSH) mounted on the HOST support structure in Discovery's cargo bay, the SAMS-FF and the HOST project were able to make vibratory measurements both on-board the vibration-isolated NICMOS cryocooler and off-board the cryocooler mounting plate. By comparing the SAMS-FF measured vibrations on-board and off-board the NICMOS cryocooler, HST engineers could assess the cryocooler g-jitter effects on the HST line-of-sight requirements. The acceleration records from both SAMS-FF accelerometers were analyzed and significant features of the microgravity environment are detailed in this report.

  1. Status and Future of the Tropical Rainfall, Measuring Mission (TRMM)

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.

    2006-01-01

    The Tropical Rainfall Measuring Mission (TRMM) will have completed nine years in orbit in November 2006. This successful research mission, a joint U.S./Japan effort, has become a key element in the routine monitoring of global precipitation. The package of rain measuring instrumentation, including the first meteorological radar in space, continues to function perfectly, and with the increase in orbital altitude (from 350 km to 400 km) in August 2001 and the mission extension approval in 2005, the satellite has sufficient station-keeping fuel to potentially last until 2012, or perhaps longer. The status of TRMM algorithms and products will be summarized, including the impact of the altitude boost in 2001, and the plans for the upcoming Version 7 of the products will be outlined. The role of TRMM as part of the constellation of rain-measuring satellites preceding GPM will be discussed, as well as its role in climate analysis using its unique radar/radiometer combination.

  2. Aquarius Satellite Salinity Measurement Mission Status, and Science Results from the initial 3-Year Prime Mission

    NASA Astrophysics Data System (ADS)

    Lagerloef, G. S. E.; Kao, H. Y.

    2014-12-01

    The Aquarius satellite microwave sensor, launched June 2011, as part of the US-Argentina joint Aquarius/SAC-D mission, and commenced observations on 25 Aug2011, and completed three years of ocean surface salinity measurements in late August 2014. The Aquarius measurement objectives are to describe unknown features in the sea surface salinity (SSS) field, and document seasonal and interannual variations on regional and basin scales. This presentation will first describe the structure of the mean annual global salinity field compared with the previous in situ climatology and contemporary in situ measurements , including small persistent biases of opposite sign in high latitudes versus low latitudes, currently under intense investigation, as well as global and regional error statistics. Then we summarize highlights of various studies and papers submitted to the JGR-Oceans special section on satellite salinity (2014). The most prominent seasonal variations, most notably the extant and variability of the SSS signature of the Atlantic and Pacific inter-tropical convergence zones, Amazon-Orinoco and other major rivers, and other important regional patterns of seasonal variability. Lastly we will examine the trends observed during the three Sep-Aug measurement years beginning Sep2011, Sep2012 and Sep2013, respectively, in relation to ENSO and other climate indices, as the first step in analyzing interannual SSS variability. An outline for extended mission operations beyond the initial three-year prime mission will be presented.

  3. Earth Sensor Assembly for the Tropical Rainfall Measuring Mission Observatory

    NASA Technical Reports Server (NTRS)

    Prince, Steven S.; Hoover, James M.

    1995-01-01

    EDO Corporation/Barnes Engineering Division (BED) has provided the Tropical Rainfall Measurement Mission (TRMM) Earth Sensor Assembly (ESA), a key element in the TRMM spacecraft's attitude control system. This report documents the history, design, fabrication, assembly, and test of the ESA.

  4. The Global Precipitation Measurement (GPM) Mission: Overview and Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur

    2008-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission to unify and advance global precipitation measurements from a constellation of dedicated and operational microwave sensors. The GPM concept centers on the deployment of a Core Spacecraft in a non-Sun-synchronous orbit at 65 degrees inclination carrying a dual-frequency precipitation radar (DPR) and a multi-frequency passive microwave radiometer (GMI) with high-frequency capabilities to serve as a precipitation physics observatory and calibration standard for the constellation radiometers. The baseline GPM constellation is envisioned to comprise conical-scanning microwave imagers (e.g., GMI, SSMIS, AMSR, MIS, MADRAS, GPM-Brazil) augmented with cross-track microwave temperature/humidity sounders (e.g., MHS, ATMS) over land. In addition to the Core Satellite, the GPM Mission will contribute a second GMI to be flown in a low-inclination (approximately 40 deg.) non-Sun-synchronous orbit to improve near real-time monitoring of hurricanes. GPM is a science mission with integrated applications goals aimed at (1) advancing the knowledge of the global water/energy cycle variability and freshwater availability and (2) improving weather, climate, and hydrological prediction capabilities through more accurate and frequent measurements of global precipitation. The GPM Mission is currently a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA), with opportunities for additional partners in satellite constellation and ground validation activities. Within the framework of the inter-governmental Group ob Earth Observations (GEO) and Global Earth Observation System of Systems (GEOSS), GPM has been identified as a cornerstone for the Precipitation Constellation (PC) being developed under the auspices of Committee of Earth Observation Satellites (CEOS). The GPM Core Observatory is scheduled for launch in 2013, followed by the launch of the GPM Low-Inclination Observatory in

  5. The Global Precipitation Measurement (GPM) Mission: Overview and Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Azarbarzin, Ardeshir A.; Kakar, Ramesh K.; Neeck, Steven

    2008-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission to unify and advance global precipitation measurements from a constellation of dedicated and operational microwave sensors. The GPM concept centers on the deployment of a Core SpacecraR in a non-Sun-synchronous orbit at 65 deg. inclination carrying a dual-frequency precipitation radar (DPR) and a multi-frequency passive microwave radiometer (GMI) with high-frequency capabilities to serve as a precipitation physics observatory and calibration standard for the constellation radiometers. The baseline GPM constellation is envisioned to comprise conical-scanning microwave imagers (e.g., GMI, SSMIS, AMSR, MIS, MADRAS, GPM-Brazil) augmented with cross-track microwave temperaturethumidity sounders (e.g., MHS, ATMS) over land. In addition to the Core Satellite, the GPM Mission will contribute a second GMI to be flown in a low-inclination (approximately 40 deg.) non-Sun-synchronous orbit to improve near-realtime monitoring of hurricanes. GPM is a science mission with integrated applications goals aimed at (1) advancing the knowledge of the global watertenergy cycle variability and freshwater availability and (2) improving weather, climate, and hydrological prediction capabilities through more accurate and frequent measurements of global precipitation. The GPM Mission is currently a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA), with opportunities for additional partners in satellite constellation and ground validation activities. Within the framework of the inter-governmental Group ob Earth Observations (GEO) and Global Earth Observation System of Systems (GEOSS), GPM has been identified as a cornerstone for the Precipitation Constellation (PC) being developed under the auspices of Committee of Earth Observation Satellites (CEOS). The GPM Core Observatory is scheduled for launch in 2013, followed by the launch of the GPM Low-Inclination Observatory in 2014

  6. The Global Precipitation Measurement (GPM) Mission: Overview and Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur

    2008-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission to unify and advance global precipitation measurements from a constellation of dedicated and operational microwave sensors. The GPM concept centers on the deployment of a Core Spacecraft in a non-Sun-synchronous orbit at 65' inclination carrying a dual-frequency precipitation radar (DPR) and a multi-frequency passive microwave radiometer (GMI) with high-frequency capabilities to serve as a precipitation physics observatory and calibration standard for the constellation radiometers. The baseline GPM constellation is envisioned to comprise conical-scanning microwave imagers (e.g., GMI, SSMIS, AMSR, MIS, MADRAS, GPM-Brazil) augmented with cross-track microwave temperaturelhumidity sounders (e.g., MHS, ATMS) over land. In addition to the Core Satellite, the GPM Mission will contribute a second GMI to be flown in a low-inclination (approx.40deg) non-Sun-synchronous orbit to improve near real-time monitoring of hurricanes. GPM is a science mission with integrated applications goals aimed at (1) advancing the knowledge of the global waterlenergy cycle variability and freshwater availability and (2) improving weather, climate, and hydrological prediction capabilities through more accurate and frequent measurements of global precipitation. The GPM Mission is currently a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA), with opportunities for additional partners in satellite constellation and ground validation activities. Within the framework of the inter-governmental Group ob Earth Observations (GEO) and Global Earth Observation System of Systems (GEOSS), GPM has been identified as a cornerstone for the Precipitation Constellation (PC) being developed under the auspices of Committee of Earth Observation Satellites (CEOS). The GPM Core Observatory is scheduled for launch in 201 3, followed by the launch of the GPM Low- Inclination Observatory in 2014. An

  7. Neutral Gas and Ion Measurements by the CONTOUR Mission

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul R.; Niemann, Hasso B. (Technical Monitor)

    2002-01-01

    The Neutral Gas and Ion Mass Spectrometer (NGIMS) on the Comet Nucleus Tour (CONTOUR) Mission will measure the chemical and isotopic composition of neutral and ion species in the coma of comet Encke and the subsequent targets of this mission. Currently the second target of this mission is comet Schwassmann-Wachmann 3. This neutral gas and ion data together with complementary data from the dust analyzer and the imaging spectrometer is designed to allow a broad characterization of the molecular and elemental composition of each cometary nucleus. These experiments enable the study of the of the likely variations in chemical conditions present in different regions of the early solar nebula where the comets formed. With these experiments we will also test ideas about cometary contributions of organics, water, and other volatiles to the inner planets. The CONTOUR NGIMS data set from multiple comets is expected to provide an important extension of to the only other detailed in situ data set from a close flyby of a nucleus, that from Halley. CONTOUR will extend this measurement of an Oort cloud comet to the class of short period comets thought to originate in the Kuiper belt. This data will complement the detailed measurements to be carried out at a single nucleus by the Rosetta Mission.

  8. Tropospheric Wind Measurements from Space: The SPARCLE Mission and Beyond

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Emmitt, G. David

    1998-01-01

    For over 20 years researchers have been investigating the feasibility of profiling tropospheric vector wind velocity from space with a pulsed Doppler lidar. Efforts have included theoretical development, system and mission studies, technology development, and ground-based and airborne measurements. Now NASA plans to take the next logical step towards enabling operational global tropospheric wind profiles by demonstrating horizontal wind measurements from the Space Shuttle in early 2001 using a coherent Doppler wind lidar system.

  9. ARIM-1: The Atmospheric Refractive Index Measurements Sounding Rocket Mission

    NASA Technical Reports Server (NTRS)

    Ruiz, B. Ian (Editor)

    1995-01-01

    A conceptual design study of the ARIM-1 sounding rocket mission, whose goal is to study atmospheric turbulence in the tropopause region of the atmosphere, is presented. The study was conducted by an interdisciplinary team of students at the University of Alaska Fairbanks who were enrolled in a Space Systems Engineering course. The implementation of the ARIM-1 mission will be carried out by students participating in the Alaska Student Rocket Program (ASRP), with a projected launch date of August 1997. The ARIM-1 vehicle is a single stage sounding rocket with a 3:1 ogive nose cone, a payload diameter of 8 in., a motor diameter of 7.6 in., and an overall height of 17.0 ft including the four fins. Emphasis is placed on standardization of payload support systems. The thermosonde payload will measure the atmospheric turbulence by direct measurement of the temperature difference over a distance of one meter using two 3.45-micron 'hot-wire' probes. The recovery system consists of a 6 ft. diameter ribless guide surface drogue chute and a 33 ft. diameter main cross parachute designed to recover a payload of 31 pounds and slow its descent rate to 5 m/s through an altitude of 15 km. This document discusses the science objectives, mission analysis, payload mechanical configuration and structural design, recovery system, payload electronics, ground station, testing plans, and mission implementation.

  10. ATMOS: Long term atmospheric measurements for mission to planet Earth

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A long-term, space-based measurement program, together with continued balloon and aircraft-borne investigations, is essential to monitor the predicted effects in the atmosphere, to determine to what extent the concentration measurements agree with current models of stratospheric chemistry, and to determine the condition of the ozone layer. The Atmospheric Trace Molecule Spectroscopy (ATMOS) Experiment is currently making comprehensive, global measurements of Earth's atmosphere as part of the Atmospheric Laboratory for Applications and Science (ATLAS) program on the Space Shuttle. Part of NASA's Mission to Planet Earth, ATLAS is a continuing series of missions to study Earth and the Sun and provide a more fundamental understanding of the solar influences on Earth's atmosphere. The ATMOS program, instruments, and science results are presented.

  11. Program control on the Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    Pennington, Dorothy J.; Majerowicw, Walter

    1994-01-01

    The Tropical Rainfall Measuring Mission (TRMM), an integral part of NASA's Mission to Planet Earth, is the first satellite dedicated to measuring tropical rainfall. TRMM will contribute to an understanding of the mechanisms through which tropical rainfall influences global circulation and climate. Goddard Space Flight Center's (GSFC) Flight Projects Directorate is responsible for establishing a Project Office for the TRMM to manage, coordinate, and integrate the various organizations involved in the development and operation of this complex satellite. The TRMM observatory, the largest ever developed and built inhouse at GSFC, includes state-of-the-art hardware. It will carry five scientific instruments designed to determine the rate of rainfall and the total rainfall occurring between the north and south latitudes of 35 deg. As a secondary science objective, TRMM will also measure the Earth's radiant energy budget and lightning.

  12. The Global Precipitation Measurement Mission: NASA Status and Early Results

    NASA Astrophysics Data System (ADS)

    Skofronick-Jackson, Gail; Huffman, G.; Petersen, W.; Kidd, Chris

    The Global Precipitation Measurement (GPM) mission’s Core satellite, launched 27 February 2014, is well-designed to estimate precipitation from 0.2 to 110 mm/hr and to detect falling snow. Knowing where and how much rain and snow falls globally is vital to understanding how weather and climate impact both our environment and Earth’s water and energy cycles, including effects on agriculture, fresh water availability, and responses to natural disasters. GPM is a joint NASA-JAXA mission. The design of the GPM Core Observatory is an advancement of the Tropical Rainfall Measuring Mission (TRMM)’s highly successful rain-sensing package. The cornerstone of the GPM mission is the deployment of a Core Observatory in a unique 65 (°) non-Sun-synchronous orbit serving as a physics observatory and a calibration reference to improve precipitation measurements by a constellation of 8 or more dedicated and operational, U.S. and international passive microwave sensors. The Core Observatory carries a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR provides measurements of 3-D precipitation structures and microphysical properties, which are key to achieving a better understanding of precipitation processes and improving retrieval algorithms for passive microwave radiometers. The combined use of DPR and GMI measurements places greater constraints on possible solutions to radiometer retrievals to improve the accuracy and consistency of precipitation retrievals from all constellation radiometers. Furthermore, since light rain and falling snow account for a significant fraction of precipitation occurrence in middle and high latitudes, the GPM instruments extend the capabilities of the TRMM sensors to detect falling snow, measure light rain, and provide, for the first time, quantitative estimates of microphysical properties of precipitation particles. The GPM mission science objectives and instrument

  13. NASA's Global Precipitation Measurement (GPM) Mission for Science and Society

    NASA Astrophysics Data System (ADS)

    Jackson, Gail

    2016-04-01

    Water is fundamental to life on Earth. Knowing where and how much rain and snow falls globally is vital to understanding how weather and climate impact both our environment and Earth's water and energy cycles, including effects on agriculture, fresh water availability, and responses to natural disasters. The Global Precipitation Measurement (GPM) Mission, launched February 27, 2014, is an international satellite mission to unify and advance precipitation measurements from a constellation of research and operational sensors to provide "next-generation" precipitation products. The joint NASA-JAXA GPM Core Observatory serves as the cornerstone and anchor to unite the constellation radiometers. The GPM Core Observatory carries a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). Furthermore, since light rain and falling snow account for a significant fraction of precipitation occurrence in middle and high latitudes, the GPM instruments extend the capabilities of the TRMM sensors to detect falling snow, measure light rain, and provide, for the first time, quantitative estimates of microphysical properties of precipitation particles. As a science mission with integrated application goals, GPM is designed to (1) advance precipitation measurement capability from space through combined use of active and passive microwave sensors, (2) advance the knowledge of the global water/energy cycle and freshwater availability through better description of the space-time variability of global precipitation, and (3) improve weather, climate, and hydrological prediction capabilities through more accurate and frequent measurements of instantaneous precipitation rates and time-integrated rainfall accumulation. Since launch, the instruments have been collecting outstanding precipitation data. New scientific insights resulting from GPM data, an overview of the GPM mission concept and science activities in the United States

  14. Global Precipitation Measurement (GPM) Mission Applications: Activities, Challenges, and Vision

    NASA Technical Reports Server (NTRS)

    Kirschbaum, Dalia; Hou, Arthur

    2012-01-01

    Global Precipitation Measurement (GPM) is an international satellite mission to provide nextgeneration observations of rain and snow worldwide every three hours. NASA and the Japan Aerospace Exploration Agency (JAXA) will launch a "Core" satellite carrying advanced instruments that will set a new standard for precipitation measurements from space. The data they provide will be used to unify precipitation measurements made by an international network of partner satellites to quantify when, where, and how much it rains or snows around the world. The GPM mission will help advance our understanding of Earth's water and energy cycles, improve the forecasting of extreme events that cause natural disasters, and extend current capabilities of using satellite precipitation information to directly benefit society. Building upon the successful legacy of the Tropical Rainfall Measuring Mission (TRMM), GPM's next-generation global precipitation data will lead to scientific advances and societal benefits within a range of hydrologic fields including natural hazards, ecology, public health and water resources. This talk will highlight some examples from TRMM's IS-year history within these applications areas as well as discuss some existing challenges and present a look forward for GPM's contribution to applications in hydrology.

  15. Solar oblateness as measured with the PICARD mission

    NASA Astrophysics Data System (ADS)

    Irbah, A.; Meftah, M.; Hauchecorne, A.; Djelloul, D.; Cisse, M.

    2013-12-01

    PICARD is a space mission launched in June 2010. One of its scientific objectives is to study the geometry of the Sun including measurements of the solar oblateness at several wavelengths. This physical parameter is however difficult to achieve since all image defaults due to the whole system telescope-CCD affect its measurement. Rolling the satellite as already done with previous space missions allows discriminating from the telescope-CCD contribution when considering the Sun as constant during the observations. This supposes however that the telescope optical response is time-invariant during the roll operations. This is not the case for PICARD where an orbital signature is clearly observed in the solar radius obtained from its images. We have taken advantage of this effect and developed a new method to process the PICARD images to deduce the solar oblateness. This method supposes that there are both a time and an angular modulation of the solar limb due to the satellite moving on its orbit and when it is rotated around the line of sight during the specific observations. We will first give in this work an overview of the PICARD mission and present after the solar observations recorded for the oblateness measurements. The new method developed to process the data is then detailed and some results are given and discussed.

  16. Status of Validation Program for Tropical Rainfall Measuring Mission (TRMM)

    NASA Technical Reports Server (NTRS)

    Adler, Robert

    2004-01-01

    The Tropical Rainfall Measuring Mission (TRMM) is in its sixth year of operation. This successful research mission, a joint U.S./Japan effort, has become-a key element in the routine monitoring of global precipitation. The package of rain measuring instrumentation, including the first meteorological radar in space, continues to function perfectly, and with the increase in orbital altitude (from 350 km to 400 km) the mission will hopefully continue for a number of years. The validation effort has been a combination of routine use of 1) ground-based radar and raingauge measurements for comparison with the satellite-based estimates, 2) the use of field experiment data for evaluation of the satellite data products and investigation of some of the assumptions in the satellite retrievals, and 3) use of other comparison data sets, including atoll and buoy gauges over ocean and research and operational gauge data sets over land. The status of the program will be described along with "lessons learned". Near term plans for improved validation products and new thrusts related to validation of TRMM-based multi-satellite products that extend into middle latitudes will be outlined.

  17. Synergy benefit in temperature, humiditiy and cloud property profiling by integrating ground based and satellite measurements

    NASA Astrophysics Data System (ADS)

    Ebell, K.; Orlandi, E.; Hünerbein, A.; Crewell, S.; Löhnert, U.

    2012-12-01

    Accurate, highly vertically resolved temperature, humidity and cloud property profiles are needed for many applications. They are essential for climate monitoring, a better process understanding and the subsequent improvement of parameterizations in numerical weather prediction and climate models. In order to provide such profiles with a high temporal resolution, multiple wavelength active and passive remote sensing techniques available at ground based observatories, e.g. the Atmospheric Radiation Measruement (ARM) Program and Cloudnet facilities, need to be exploited. In particular, the Integrated Profiling Technique (IPT, Löhnert et al., 2008) has been successfully applied to simultaneously derive profiles of temperature, humidity and liquid water by a Bayesian based retrieval using a combination of ground based microwave radiometer, cloud radar and a priori information. Within the project ICOS (Integrating Cloud Observations from Ground and Space - a Way to Combine Time and Space Information), we develop a flexible IPT, which allows for the combination of a variety of ground based measurements from cloud radar, microwave radiometer (MWR) and IR spectrometer as well as satellite based information from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard of METEOSAT. As ground based observations are mainly sensitive to the lower parts of the troposphere, the satellite measurements provide complementary information and are thus expected to improve the estimates of the thermodynamic and cloud property profiles, i. e. hydrometeor content and effective radius, considerably. In addition to the SEVIRI IR measurements, which are provided with a high repetition time, information from polar orbiting satellites could be included. In paticular, the potential of the Advanced Microwave Sounding Unit-A (AMSU-A) and Microwave Sounding Unit (MHS) in the retrieval is investigated. In order to understand the improvement by integrating the measurements of the above

  18. Analysis of plasma measurements for the Geotail mission

    NASA Technical Reports Server (NTRS)

    Frank, Louis A.

    1995-01-01

    The first phase of the Geotail mission, an exploration of the distant magnetotail, was successfully concluded in October 1994. Geotail is currently engaged in a survey of plasmas at distances from Earth approximately 10 to 30 R(sub E). Throughout the mission the Comprehensive Plasma Instrumentation has functioned well with successful return of data. The analysis of the CPI measurements has resulted in a series of publications, and research efforts are ongoing. Research topics include interaction of the magnetotail with the fields and plasmas of the solar wind, steady-state magnetic reconnection in the distant magnetotail at a neutral line bounded by a pair of slow-mode magnetohydrodynamic shocks, development and evolution of plasmoids in magnetotail and magnetospheric substorms, and cold ion beams coexisting as distinct components in the presence of hot plasma-sheet plasmas.

  19. Atmospheric Measurements by the 2002 Geoscience Laser Altimeter System Mission

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The NASA Earth Observing System (EOS) program is a multiple platform NASA initiative for the study of global change. As part of the EOS project, the Geoscience Laser Altimeter System (GLAS) was selected as a laser sensor filling complementary requirements for several earth science disciplines including atmospheric and surface applications. Late in 2002, the GaAs instrument is to be launched for a three to five year observational mission. For the atmosphere, the instrument is designed to full fill comprehensive requirements for profiling of radiatively significant cloud and aerosol. Algorithms have been developed to process the cloud and aerosol data and provide standard data products. After launch there will be a three-month project to analyze and understand the system performance and accuracy of the data products. As an EOS mission, the GaAs measurements and data products will be openly available to all investigators. An overview of the instrument, data products and evaluation plan is given.

  20. Aerosol Sources, Absorption, and Intercontinental Transport: Synergies Among Models, Remote Sensing, and Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Chu, Allen; Levy, Robert; Remer, Lorraine; Kaufman, Yoram; Dubovik, Oleg; Holben, Brent; Eck, Tom; Anderson, Tad; Quinn, Patricia

    2004-01-01

    Aerosol climate forcing is one of the largest uncertainties in assessing the anthropogenic impact on the global climate system. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, our limited knowledge of aerosol mixing state and optical properties, and the consequences of intercontinental transport of aerosols and their precursors. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt, from anthropogenic, .biomass burning, and natural sources. We compare the model calculated aerosol extinction and absorption with those quantities from the ground-based sun photometer measurements from AERON" at several different wavelengths and the field observations from ACE-Asia, and model calculated total aerosol optical depth and fine mode fractions with the MODIS satellite retrieval. We will also estimate the intercontinental transport of pollution and dust aerosols from their source regions to other areas in different seasons.

  1. Aerosol Sources, Absorption, and Intercontinental Transport: Synergies among Models, Remote Sensing, and Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Dubovik, Oleg; Holben, Brent; Kaufman, Yoram; chu, Allen; Anderson, Tad; Quinn, Patricia

    2003-01-01

    Aerosol climate forcing is one of the largest uncertainties in assessing the anthropogenic impact on the global climate system. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, our limited knowledge of aerosol mixing state and optical properties, and the consequences of intercontinental transport of aerosols and their precursors. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt, from anthropogenic, biomass burning, and natural sources. We compare the model calculated aerosol extinction and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia, and model calculated total aerosol optical depth and fine mode fractions with the MODIS satellite retrieval. We will also estimate the intercontinental transport of pollution and dust aerosols from their source regions to other areas in different seasons.

  2. Global Precipitation Measurement (GPM) Mission: Overview and Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.

    2012-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. NASA and JAXA will deploy a Core Observatory in 2014 to serve as a reference satellite to unify precipitation measurements from the constellation of sensors. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will be the first dual-frequency radar in space to provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles. The DPR and GMI measurements will together provide a database that relates vertical hydrometeor profiles to multi-frequency microwave radiances over a variety of environmental conditions across the globe. This combined database will be used as a common transfer standard for improving the accuracy and consistency of precipitation retrievals from all constellation radiometers. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer-2 (AMSR-2) on the GCOM-W1 satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder

  3. Ion Flow Measurements from the JOULE Sounding Rocket Mission

    NASA Astrophysics Data System (ADS)

    Sangalli, L.; Knudsen, D.; Pfaff, R.; Burchil, J.; Larsen, M.; Clemmons, J.; Steigies, C.

    2006-12-01

    The JOULE sounding rocket mission was designed to investigate structured Joule dissipation in the auroral ionosphere. JOULE was launched March 27, 2003 from Poker Flat, Alaska, during a substorm. The mission included two instrumented rockets and two chemical release (TMA) rockets. One of the instrumented payloads carried a Suprathermal Ion Imager (SII) that measured 2-D (energy/angle) distributions of the core (0- 8 eV) ion population at a rate of 125 per second. SII measured one component of the ion drift velocitiy perpendicular to the magnetic field and the field-aligned component of the ion drift velocity. We present results showing good agreement between ion drifts measured perpendicular to the geomagnetic field and those inferred from an ěc E×ěc B measurement, with signs of ion demagnetization as the payload reached the upper E region. Also, the SII shows evidence of downward field-aligned ion flows at altitudes of 140-170 km within a region of enhanced auroral precipitation.

  4. Earthquake-Lightning Signature Probed by Tropical Rainfall Measuring Mission

    NASA Astrophysics Data System (ADS)

    Lee, Hao; Liu, Jann-Yenq Tiger

    2016-04-01

    The lightning activity is one of the key parameters to understand the atmospheric electric fields near the Earth's surface and the lithosphere-atmosphere-ionosphere coupling during the earthquake preparation period. A statistical study shows more lightning before magnitude M>=5.0 earthquakes in Taiwan during 1993-2004. In this paper, the Lightning Imaging Sensor (LIS) onboard Tropical Rainfall Measuring Mission (TRMM) is used to statistically exam the lightning activity 30 days before and after 198 M>=7.0 earthquakes in the tropical area of the globe during the 17-year period of 1988-2014. The statistical results show that lightning activities over epicenter significantly enhance before the earthquakes.

  5. Electro-optical Synergy Technique

    PubMed Central

    El-Domyati, Moetaz; El-Ammawi, Tarek S.; Medhat, Walid; Moawad, Osama; Mahoney, My G.

    2010-01-01

    Objectives: Electro-optical synergy technology is one of the most recently described methods for nonablative skin rejuvenation. The aim of this study is to evaluate the effects of electro-optical synergy on connective tissue composition by histological and immunohistochemical techniques coupled with computerized morphometric analysis. Design: A prospective clinical study. Participants: Six volunteers with Fitzpatrick skin types 3 to 4 and Glogau class I to II wrinkles were subjected to three months (6 sessions at 2-week intervals) of electro-optical synergy treatment. Measurements: Standard photographs and skin biopsies were obtained at baseline as well as three and six months after the start of treatment. The authors performed quantitative evaluation of total elastin, tropoelastin, collagen types I, III, and VII, and newly synthesized collagen. Results: Noticeable clinical and histological improvement was observed after electro-optical synergy treatment. A statistically significant increase in the means of collagen types I, III, and VII, as well as newly synthesized collagen, together with increased levels of tropoelastin, were detected, while the mean level of total elastin was significantly decreased at the end of treatment and three months post-treatment. Conclusion: Electro-optical synergy is an effective treatment for contouring facial skin laxity. This modality stimulates the repair processes and reverses the clinical, as well as the histopathological, signs of aging with the advantage of being a relatively risk-free procedure with minimal patient recovery time. PMID:21203352

  6. A proposed tropical rainfall measuring mission (TRMM) satellite

    NASA Technical Reports Server (NTRS)

    Simpson, Joanne; Adler, Robert F.; North, Gerald R.

    1988-01-01

    The proposed Tropical Rainfall Measuring Mission (TRMM) satellite (presently in its third year of planning), is described. The TRMM satellite, planned for an operational duration of at least three years beginning in the mid-1990s, is intended to obtain high-quality measurements of tropical precipitation by means of information derived from a quantitative spaceborne radar, a multichannel passive microwave radiometer, and an AVHRR. The satellite's orbit will be low-altitude (320 km), for high resolution, and low-inclination (30 to 35 deg), for making it possible to visit each sampling area twice a day. Radar and passive microwave algorithms and rain-retrieval algorithms to be used in precipitation measurements are discussed together with cloud dynamical models designed to test these algorithms.

  7. Analysis of TRMM Microphysical Measurements: Tropical Rainfall Measuring Mission (TRMM)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    SPEC Incorporated participated in three of the four TRMM field campaigns (TEFLUN-A, TEFLUN-B and KWAJEX), installing and operating a cloud particle imager (CPI) and a high volume precipitation spectrometer (HVPS) on the SPEC Learjet in TEFLUN-A, the University of North Dakota Citation in TEFLUN-B and KWAJEX, and a CPI on the NASA DC-8 in KWAJEX. This report presents and discusses new software tools and algorithms that were developed to analyze microphysical data collected during these field campaigns, as well as scientific interpretations of the data themselves. Software algorithms were developed to improve the analysis of microphysical measurements collected by the TRMM aircraft during the field campaigns. Particular attention was paid to developing and/or improving algorithms used to compute particle size distributions and ice water content. Software was also developed in support of production of the TRMM Common Microphysical Product (CMP) data files. CMP data files for TEFLUN-A field campaign were produced and submitted to the DAAC. Typical microphysical properties of convective and stratiform regions from TEFLUN-A and KWAJEX clouds were produced. In general, it was found that in the upper cloud region near -20 to -25 C, stratiform clouds contain very high (greater than 1 per cubic centimeter) concentrations of small ice particles, which are suspected to be a residual from homogeneous freezing and sedimentation of small drops in a convective updraft. In the upper cloud region near -20 to -25 C, convective clouds contain aggregates, which are not found lower in the cloud. Stratiform clouds contain aggregates at all levels, with the majority in the lowest levels. Convective cloud regions contain much higher LWC and drop concentrations than stratiform regions at all levels, and higher LWC in the middle and upper regions. Stratiform clouds contain higher IWC than convective clouds only at the lowest level. Irregular shaped ice particles are found in very high

  8. New method for astrometric measurements in Space Mission, JASMINE

    NASA Astrophysics Data System (ADS)

    Yano, T.; Gouda, N.; Yamada, Y.

    We present a new method for measuring positions of stars in the Milky Way Galaxy by astrometric satellite, JASMINE, which is in progress at the National Astronomical Observatory of Japan. JASMINE is the acronym of the Japan Astrometry Satellite Mission for Infrared (z-band : 0.9 micron) Exploration, and is planned to be launched around 2015 The main objective of JASMINE is to study the fundamental structure and evolution of the bulge components of the Milky Way Galaxy. In order to accomplish these objectives, JASMINE will measure trigonometric parallaxes, positions and proper motions of about a few million stars during the observational program, with the precision of 10 microarcsec at z =14mag. The telescope of JASMINE has just one field of view, which is different from other astrometric satellites like Hipparcos and GAIA, that have two fields of view with large angle. These satellites, Hipparcos and GAIA, scan along the great circle with the spin axis perpendicular to both two fields of view to estimate the relative positions of stars on the great circle. They scan many different great circles to observe all the sky. On the other hand, JASMINE will take overlapping fields of view without any gaps to survey an area of about 20deg×10deg. Accordingly survey area covers the region of about 20deg×10deg in the bulge component. JASMINE will continue the above procedure for observing the area during the mission life. As a consequence, JASMINE will observe the restricted regions around the Galactic bulge and sweep repeatedly. The mission life is planned to be 5 years.

  9. New Method for Astrometric Measurements in Space Mission, JASMINE.

    NASA Astrophysics Data System (ADS)

    Yano, T.; Gouda, N.; Yamada, Y.

    2006-08-01

    We present a new method for measuring positions of stars in the Milky Way Galaxy by astrometric satellite, JASMINE, which is in progress at the National Astronomical Observatory of Japan. JASMINE is the acronym of the Japan Astrometry Satellite Mission for Infrared (z-band : 0.9 micron) Exploration, and is planned to be launched around 2015 The main objective of JASMINE is to study the fundamental structure and evolution of the bulge components of the Milky Way Galaxy. In order to accomplish these objectives, JASMINE will measure trigonometric parallaxes, positions and proper motions of about a few million stars during the observational program, with the precision of 10 microarcsec at z =14mag. The telescope of JASMINE has just one field of view, which is different from other astrometric satellites like Hipparcos and GAIA, that have two fields of view with large angle. These satellites, Hipparcos and GAIA, scan along the great circle with the spin axis perpendicular to both two fields of view to estimate the relative positions of stars on the great circle. They scan many different great circles to observe all the sky. On the other hand, JASMINE will take overlapping fields of view without any gaps to survey an area of about 20deg*10deg. Accordingly survey area covers the region of about 20deg*10deg in the bulge component. JASMINE will continue the above procedure for observing the area during the mission life. As a consequence, JASMINE will observe the restricted regions around the Galactic bulge and sweep repeatedly. The mission life is planned to be 5 years.

  10. SRAG Measurements Performed During the Orion EFT-1 Mission

    NASA Technical Reports Server (NTRS)

    Gaza, Ramona

    2015-01-01

    The Exploration Flight Test 1 (EFT-1) was the first flight of the Orion Multi-Purpose Crew Vehicle (MPCV). The flight was launched on December 5, 2014, by a Delta IV Heavy rocket and lasted 4.5 hours. The EFT-1 trajectory involved one low altitude orbit and one high altitude orbit with an apogee of almost 6000 km. As a result of this particular flight profile, the Orion MPCV passed through intense regions of trapped protons and electron belts. In support of the radiation measurements aboard the EFT-1, the Space Radiation Analysis Group (SRAG) provided a Battery-operated Independent Radiation Detector (BIRD) based on Timepix radiation monitoring technology similar to that employed by the ISS Radiation Environmental Monitors (REM). In addition, SRAG provided a suite of optically and thermally stimulated luminescence detectors, with 2 Radiation Area Monitor (RAM) units collocated with the BIRD instrument for comparison purposes, and 6 RAM units distributed at different shielding configurations within the Orion MPCV. A summary of the EFT-1 Radiation Area Monitors (RAM) mission dose results obtained from measurements performed in the Space Radiation Dosimetry Laboratory at the NASA Johnson Space Center will be presented. Each RAM included LiF:Mg,Ti (TLD-100), (6)LiF:Mg,Ti (TLD-600), (7)LiF:Mg,Ti (TLD-700), Al2O3:C (Luxel trademark), and CaF2:Tm (TLD-300). The RAM mission dose values will be compared with the BIRD instrument total mission dose. In addition, a similar comparison will be shown for the ISS environment by comparing the ISS RAM data with data from the six Timepix-based REM units deployed on ISS as part of the NASA REM Technology Demonstration.

  11. Ground-based solar astrometric measurements during the PICARD mission

    NASA Astrophysics Data System (ADS)

    Irbah, A.; Meftah, M.; Corbard, T.; Ikhlef, R.; Morand, F.; Assus, P.; Fodil, M.; Lin, M.; Ducourt, E.; Lesueur, P.; Poiet, G.; Renaud, C.; Rouze, M.

    2011-11-01

    PICARD is a space mission developed mainly to study the geometry of the Sun. The satellite was launched in June 2010. The PICARD mission has a ground program which is based at the Calern Observatory (Observatoire de la C^ote d'Azur). It will allow recording simultaneous solar images from ground. Astrometric observations of the Sun using ground-based telescopes need however an accurate modelling of optical e®ects induced by atmospheric turbulence. Previous works have revealed a dependence of the Sun radius measurements with the observation conditions (Fried's parameter, atmospheric correlation time(s) ...). The ground instruments consist mainly in SODISM II, replica of the PICARD space instrument and MISOLFA, a generalized daytime seeing monitor. They are complemented by standard sun-photometers and a pyranometer for estimating a global sky quality index. MISOLFA is founded on the observation of Angle-of-Arrival (AA) °uctuations and allows us to analyze atmospheric turbulence optical e®ects on measurements performed by SODISM II. It gives estimations of the coherence parameters characterizing wave-fronts degraded by the atmospheric turbulence (Fried's parameter, size of the isoplanatic patch, the spatial coherence outer scale and atmospheric correlation times). This paper presents an overview of the ground based instruments of PICARD and some results obtained from observations performed at Calern observatory in 2011.

  12. The Tropical Rainfall Measuring Mission (TRMM) Progress Report

    NASA Technical Reports Server (NTRS)

    Simpson, Joanne; Meneghini, Robert; Kummerow, Christian D.; Meneghini, Robert; Hou, Arthur; Adler, Robert F.; Huffman, George; Barkstrom, Bruce; Wielicki, Bruce; Goodman, Steve

    1999-01-01

    Recognizing the importance of rain in the tropics and the accompanying latent heat release, NASA for the U.S. and NASDA for Japan have partnered in the design, construction and flight of an Earth Probe satellite to measure tropical rainfall and calculate the associated heating. Primary mission goals are 1) the understanding of crucial links in climate variability by the hydrological cycle, 2) improvement in the large-scale models of weather and climate 3) Improvement in understanding cloud ensembles and their impacts on larger scale circulations. The linkage with the tropical oceans and landmasses are also emphasized. The Tropical Rainfall Measuring Mission (TRMM) satellite was launched in November 1997 with fuel enough to obtain a four to five year data set of rainfall over the global tropics from 37'N to 37'S. This paper reports progress from launch date through the spring of 1999. The data system and its products and their access is described, as are the algorithms used to obtain the data. Some exciting early results from TRMM are described. Some important algorithm improvements are shown. These will be used in the first total data reprocessing, scheduled to be complete in early 2000. The reader is given information on how to access and use the data.

  13. Development of a prototype fluid volume measurement system. [for urine volume measurement on space missions

    NASA Technical Reports Server (NTRS)

    Poppendiek, H. F.; Sabin, C. M.; Meckel, P. T.

    1974-01-01

    The research is reported in applying the axial fluid temperature differential flowmeter to a urine volume measurement system for space missions. The fluid volume measurement system is described along with the prototype equipment package. Flowmeter calibration, electronic signal processing, and typical void volume measurements are also described.

  14. Successes with the Global Precipitation Measurement (GPM) Mission

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail; Huffman, George; Stocker, Erich; Petersen, Walter

    2016-01-01

    Water is essential to our planet Earth. Knowing when, where and how precipitation falls is crucial for understanding the linkages between the Earth's water and energy cycles and is extraordinarily important for sustaining life on our planet during climate change. The Global Precipitation Measurement (GPM) Core Observatory spacecraft launched February 27, 2014, is the anchor to the GPM international satellite mission to unify and advance precipitation measurements from a constellation of research and operational sensors to provide "next-generation" precipitation products. GPM is currently a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA). Status and successes in terms of spacecraft, instruments, retrieval products, validation, and impacts for science and society will be presented. Precipitation, microwave, satellite

  15. Global Precipitation Measurement (GPM) Mission Data and Data Access

    NASA Astrophysics Data System (ADS)

    Stocker, Erich Franz

    2014-05-01

    If all goes as plans, the core satellite of the GPM mission will have launched on February 28, 2014 from the Tanegashima Space Center in Japan. The core satellite is the center of the GPM mission as it carries both an imagining radiometer with high frequency channels and a dual-frequency precipitation radar. In addition, the core satellite is at a 65 degree inclination so that it affords many opportunities of coincident measurements with the polar orbiting radiometers that form the GPM constellation. This allows the science team to intercalibrate the brightness temperature data retrieved from the constellation satellites by using the core satellite data as the reference satellite. This will ensure that GPM produces consistent mission brightness temperatures that should lead to consistent precipitation retrievals. The paper will also present the data production status as of the week before the conference. The precipitation community will, of course, be very interested in the data generated by the core satellite instruments as well as the intercalibrated brightness temperatures and precipitation retrievals from the partner constellation satellites. This paper will present the various data products, from the instrument count data through the monthly precipitation retrievals, produced as part of the mission. It will present the key parameters available in the products; provide information of the purpose of the various products; and provide some preliminary information about the weaknesses of the new products when compared to Tropical Rainfall Measuring Mission (TRMM) products. If the official public release of the first image has taken place before the conference, then the paper will provide some early examples of the data products. Near realtime (NRT) products from the core satellite radiometer and radar are available in both near-realtime and research mode. NRT precipitation retrievals will also be made from each of the partner radiometers. All these retrievals

  16. Charge measurements for an asteroid sample return mission

    NASA Astrophysics Data System (ADS)

    Macfaden, A.; Aplin, K. L.; Bowles, N. E.

    2013-09-01

    Photoelectric charging of asteroid regolith material influences particle motion and escape. Differing spacecraft and asteroid charges may also affect sample return on missions such as Marco Polo-R. To study this, bespoke 2D particle-in-cell code simulating the behaviour of photoelectrons trapped near a photoemitting surface (photosheath) has been written and implemented. The spacecraft- photosheath system reaches equilibrium in 1 ms, which is rapid compared to the descent timescale. Equilibria reached in simulations are therefore assumed representative of the dynamic spacecraft environment. Predicted potentials at different heightsand with different solar zenith angle are presented, so that an instrument to measure the potential difference across the spacecraft can be defined. The distorting effect of the spacecraft significantly modifies the potential difference and displacement currents during the terminal descent, by introducing an equipotential body, creating a shadow, and photoemitting itself. By considering the distortion from different parts of the spacecraft, optimal locations for a set of electrodes to measure the potential difference are suggested. Potential differences of about 100 mV are expected to be generated across the electrodes, which should be representative of the electrical environment. The results demonstrate that a simple set of electrodes can measure the asteroid's surface electric field during sample collection.

  17. Space acceleration measurement system description and operations on the First Spacelab Life Sciences Mission

    NASA Technical Reports Server (NTRS)

    Delombard, Richard; Finley, Brian D.

    1991-01-01

    The Space Acceleration Measurement System (SAMS) project and flight units are briefly described. The SAMS operations during the STS-40 mission are summarized, and a preliminary look at some of the acceleration data from that mission are provided. The background and rationale for the SAMS project is described to better illustrate its goals. The functions and capabilities of each SAMS flight unit are first explained, then the STS-40 mission, the SAMS's function for that mission, and the preparation of the SAMS are described. Observations about the SAMS operations during the first SAMS mission are then discussed. Some sample data are presented illustrating several aspects of the mission's microgravity environment.

  18. The PICARD mission

    NASA Astrophysics Data System (ADS)

    Thuillier, G.; Prado, J.-Y.

    The understanding of the physical processes taking place in the Sun allows construction of solar models. These models are validated by comparison between predictions and observations. Most of the observations are total and spectral solar irradiance, temperature, frequencies of oscillation, diameter, and asphericity, as well as their variations as a function of time. By 2006 and beyond, several missions dedicated to solar observations will be operated in particular PICARD and Solar Dynamics Observer which have complementary measurements and a strong scientific synergy for the study of the solar variability and its consequence for the Earth's climate.

  19. Analysis of plasma measurements for the Geotail mission

    NASA Technical Reports Server (NTRS)

    Frank, Louis A.

    1994-01-01

    Data processing and research efforts for the period October 1993 to September 1994 are reported. Routine data processing includes the production of color spectrograms and computing of quantitative plasma parameters such as the plasma number density, bulk flow velocity, temperature, and pressure. In addition, specialized analysis software is being developed for specific and general applications. Research activities include the measurement of plasmas from the Geotail spacecraft; the processing of the measurements from a hot plasma analyzer to compute one minute averages of plasma densities, temperatures, and velocities for a substantial part of the Geotail deep tail mission; and, a preliminary survey of the magnetotail for geocentric radial distances of 10 to 210 earth radii. The topology of the magnetotail with its various regions and boundaries is determined by a complex interaction with the fields and plasmas of the solar wind. Observations of the rotation of the magnetic field in the solar wind show that it is well correlated with repeated transitions at Geotail from the magnetotail lobe to a magnetosheath-like boundary layer.

  20. Summary Report of Mission Acceleration Measurements for STS-89

    NASA Technical Reports Server (NTRS)

    Hrovat, Kenneth; McPherson, Kevin

    1999-01-01

    Support of microgravity research on the 89th flight of the Space Transportation System (STS-89) and a continued effort to characterize the acceleration environment of the Space Shuttle Orbiter and the Mir Space Station form the basis for this report. For the STS-89 mission, the Space Shuttle Endeavour was equipped with a Space Acceleration Measurement System (SAMS) unit, which collected more than a week's worth of data. During docked operations with Mir, a second SAMS unit collected approximately a day's worth of data yielding the only set of acceleration measurements recorded simultaneously on the two spacecraft. Based on the data acquired by these SAMS units, this report serves to characterize a number of acceleration events and quantify their impact on the local nature of the accelerations experienced at the Mechanics of Granular Materials (MGM) experiment location. Crew activity was shown to nearly double the median root-mean-square (RMS) acceleration level calculated below 10 Hz, while the Enhanced Orbiter Refrigerator/Freezer operating at about 22 Hz was a strong acceleration source in the vicinity of the MGM location. The MGM science requirement that the acceleration not exceed plus or minus 1 mg was violated numerous times during their experiment runs; however, no correlation with sample instability has been found to this point. Synchronization between the SAMS data from Endeavour and from Mir was shown to be close much of the time, but caution with respect to exact timing should be exercised when comparing these data. When orbiting as a separate vehicle prior to docking, Endeavour had prominent structural modes above 3 Hz, while Mir exhibited a cluster of modes around 1 Hz. When mated, a transition to common modes was apparent in the two SAMS data sets. This report is not a comprehensive analysis of the acceleration data, so those interested in further details should contact the Principal Investigator Microgravity Services team at the National Aeronautics

  1. (abstract) MEASURE-Jupiter: Low Cost Missions to Explore Jupiter in the Post-Galileo Era

    NASA Technical Reports Server (NTRS)

    Wallace, R. A.; Stern, S. A.; Ayon, J. A.; Lane, A. L.; Nunez, C. L.; Sauer, C. G.; Stetson, D. G.; West, R. A.

    1994-01-01

    MEASURE-Jupiter is a new mission concept for the exploration of giant planets, with initial application to Jupiter. By flying sets of lightweight spacecraft with highly focused measurement objectives, it is designed to break the apparent impass in giant planet exploration beyond Cassini. The MEASURE-Jupiter concept is characterized by: 1) intensive exploration of a giant planet system, 2) multiple small missions flown in focused waves using spacecraft costing $100M to $200M, and 3) mission sets launched every 2 to 3 years. Why Jupiter? Jupiter is the most complex planetary system in the Solar System with many scientifically intriguing bodies and phenomena to explore. The Galileo mission will scratch the surface of the exploration of Jupiter, posing many questions for the MEASURE-Jupiter missions to address. Jupiter is also the easiest planet in the Outer Solar System to reach, making possible flight times of 2 years and total mission durations of 3 years or less. Concept design studies have uncovered a number of scientifically rewarding, simple, low-cost mission options. These options have the additional attraction of being able to launch on 2-year trajectories to Jupiter with low-cost Delta II expendable launch vehicles. A partial list of mission concepts studied to date include: Io Very Close Flyby, Jupiter Close Polar Pass, Mini-Orbiters, and Galilean Satellite Penetrators. Key to the realization of the MEASURE-Jupiter missions is the judicious use of the new low power consuming advanced technology and applicable systems from the Pluto Fast Flyby mission spacecraft design. Foremost of the new technologies planned for inclusion are the elements of hybrid solar array/battery power systems which make it possible to perform the identified missions without the need for Radioactive Thermoelectric Generators (RTGs). This relieves the mission design of the attendant programmatic complexities, cost, and constraints attendant with the use of RTGs.

  2. Heat capacity mapping mission. [satellite for earth surface temperature measurement

    NASA Technical Reports Server (NTRS)

    Price, J. C.

    1978-01-01

    A Heat Capacity Mapping Mission (HCMM), part of a series of Applications Explorers Missions, is designed to provide data on surface heating as a response to solar energy input. The data is obtained by a two channel scanning radiometer, with one channel covering the visible and near-IR band between 0.5 and 1.1 micrometers, and the other covering the thermal-IR between 10.5 and 12.5 micrometers. The temperature range covered lies between 260 and 340 K, in 0.3 deg steps, with an accuracy at 280 K of plus or minus 0.5 K. Nominal altitude is 620 km, with a ground swath 700 km wide.

  3. Measuring Staff Perceptions of University Identity and Activities: The Mission and Values Inventory

    ERIC Educational Resources Information Center

    Ferrari, Joseph R.; Velcoff, Jessica

    2006-01-01

    Higher education institutions need to ascertain whether their stakeholders understand the school's mission, vision, and values. In the present study, the psychometric properties of a mission identity and activity measure were investigated with two staff samples. Using a principal component factor analysis (varimax rotation), respondents in Sample…

  4. Terrestrial outgoing radiation measurements with small satellite mission

    NASA Astrophysics Data System (ADS)

    Zhu, Ping; Dewitte, Steven; Karatekin, Ozgur; Chevalier, André; Conscience, Christian

    2015-04-01

    The solar force is the main driver of the Earth's climate. For a balanced climate system, the incoming solar radiation is equal to the sum of the reflected visible and reemitted thermal radiation at top of the atmosphere (TOA). Thus the energy imbalance plays an important role to diagnose the health of nowadays climate. However it remains a challenge to directly track the small Energy imbalance in Earth's Radiation Budget (EIERB) from space due to the complicities of the Earth's climate system and the limitation on long term stability of space instrument. The terrestrial outgoing radiation (TOR) has been recoded with a Bolometric Oscillation Sensor onboard PICAD microsatellite. In this presentation, we will report the three years TOR observed with PICARD-BOS and its further comparison with the CERES product. However the data acquired from this mission is still not enough to derive the EIERB. But the heritage gained from this experiment shields a light on the EIERB tracking with the small satellite even a cubesat mission.

  5. Radiation environment measurements on shuttle missions using the CREAM experiment

    NASA Astrophysics Data System (ADS)

    Dyer, C. S.; Sims, A. J.; Truscott, P. R.; Farren, J.; Underwood, C.

    1992-12-01

    The Cosmic Radiation Environment and Activation Monitor (CREAM) was successfully deployed in the middeck area on Shuttle missions STS-48 and STS-44 during September and November 1991 with the aim of monitoring those aspects of the primary and secondary radiation environment responsible for single event upsets in microelectronics and background noise in sensors. Results are compared with the outputs of standard radiation environment models. For the accurate location of trapped protons the choice of geomagnetic field model is shown to be critical, while results at high latitudes show the low-altitude manifestation of the new trapped proton belt observed to follow the March 1991 solar flare event. From deployment at a number of locations there is clear evidence for a significant build-up with shielding of secondary charged particles and neutrons.

  6. Measurement of process variables in solid-state fermentation of wheat straw using FT-NIR spectroscopy and synergy interval PLS algorithm

    NASA Astrophysics Data System (ADS)

    Jiang, Hui; Liu, Guohai; Mei, Congli; Yu, Shuang; Xiao, Xiahong; Ding, Yuhan

    2012-11-01

    The feasibility of rapid determination of the process variables (i.e. pH and moisture content) in solid-state fermentation (SSF) of wheat straw using Fourier transform near infrared (FT-NIR) spectroscopy was studied. Synergy interval partial least squares (siPLS) algorithm was implemented to calibrate regression model. The number of PLS factors and the number of subintervals were optimized simultaneously by cross-validation. The performance of the prediction model was evaluated according to the root mean square error of cross-validation (RMSECV), the root mean square error of prediction (RMSEP) and the correlation coefficient (R). The measurement results of the optimal model were obtained as follows: RMSECV = 0.0776, Rc = 0.9777, RMSEP = 0.0963, and Rp = 0.9686 for pH model; RMSECV = 1.3544% w/w, Rc = 0.8871, RMSEP = 1.4946% w/w, and Rp = 0.8684 for moisture content model. Finally, compared with classic PLS and iPLS models, the siPLS model revealed its superior performance. The overall results demonstrate that FT-NIR spectroscopy combined with siPLS algorithm can be used to measure process variables in solid-state fermentation of wheat straw, and NIR spectroscopy technique has a potential to be utilized in SSF industry.

  7. On the Tropical Rainfall Measuring Mission (TRMM): Bringing NASA's Earth System Science Program to the Classroom

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall

    1998-01-01

    The Tropical Rainfall Measuring Mission is the first mission dedicated to measuring tropical and subtropical rainfall using a variety of remote sensing instrumentation, including the first spaceborne rain-measuring radar. Since the energy released when tropical rainfall occurs is a primary "fuel" supply for the weather and climate "engine"; improvements in computer models which predict future weather and climate states may depend on better measurements of global tropical rainfall and its energy. In support of the STANYS conference theme of Education and Space, this presentation focuses on one aspect of NASA's Earth Systems Science Program. We seek to present an overview of the TRMM mission. This overview will discuss the scientific motivation for TRMM, the TRMM instrument package, and recent images from tropical rainfall systems and hurricanes. The presentation also targets educational components of the TRMM mission in the areas of weather, mathematics, technology, and geography that can be used by secondary school/high school educators in the classroom.

  8. Science, Measurement, and Technology Requirements for Infrared Climate Benchmark Missions

    NASA Technical Reports Server (NTRS)

    Johnson, David G.; Mlynczak, Martin G.

    2011-01-01

    Quantifying climate change in the presence of natural variability requires highly accurate global measurements covering more than a decade. Instrument design considerations for trending terrestrial emitted radiance are described.

  9. The coarticulation/invariance scale: Mutual information as a measure of coarticulation resistance, motor synergy, and articulatory invariance

    PubMed Central

    Iskarous, Khalil; Mooshammer, Christine; Hoole, Phil; Recasens, Daniel; Shadle, Christine H.; Saltzman, Elliot; Whalen, D. H.

    2013-01-01

    Coarticulation and invariance are two topics at the center of theorizing about speech production and speech perception. In this paper, a quantitative scale is proposed that places coarticulation and invariance at the two ends of the scale. This scale is based on physical information flow in the articulatory signal, and uses Information Theory, especially the concept of mutual information, to quantify these central concepts of speech research. Mutual Information measures the amount of physical information shared across phonological units. In the proposed quantitative scale, coarticulation corresponds to greater and invariance to lesser information sharing. The measurement scale is tested by data from three languages: German, Catalan, and English. The relation between the proposed scale and several existing theories of coarticulation is discussed, and implications for existing theories of speech production and perception are presented. PMID:23927125

  10. Onboard Processing of Electromagnetic Measurements for the Luna - Glob Mission

    NASA Astrophysics Data System (ADS)

    Hruska, F.; Kolmasova, I.; Santolik, O.; Skalski, A.; Pronenko, V.; Belyayev, S.; Lan, R.; Uhlir, L.

    2013-12-01

    The LEMRA-L instrument (Long-wavelength Electro-Magnetic Radiation Analyzer) will be implemented on the LUNA-GLOB spacecraft. It will analyze the data of the three-axial flux gate (DC - 10Hz) and searchcoil (1Hz - 10kHz) magnetometers LEMI. It will measure intensity, polarization, and coherence properties of waves in plasmas of the solar wind, in the lunar wake and its boundaries, and study the magnetic anomalies. We will use new modern robust onboard analysis methods to estimate the wave coherence, sense of polarization, ellipticity, and wave-vector direction, and thus substantially compress the transmitted data volumes, while conserving the important scientific information. In the burst mode data set intended for studying nonlinear phenomena, we will conserve the continuous flux-gate magnetometer data and discrete snapshots of three axial waveform measurements. In the survey-mode data set, continuous flux-gate magnetometer data will be transmitted together with onboard analyzed and averaged spectral matrices from the higher-frequency wave measurements or with onboard calculated propagation and polarization parameters.

  11. Compliant Synergies in Locomotion

    NASA Astrophysics Data System (ADS)

    Travers, Matthew; Choset, Howie; Goldman @ Georgia Tech. Physics Department Collaboration

    Biological systems appear to have natural mechanisms that allow them to readily compensate for unexpected environmental variations when compared to their mechanical (i.e., robotic) counterparts. We hypothesize that the basis for this discrepancy is almost innate: what biology appears to be born with, built-in mechanisms for coordinating their many degrees of freedom, we struggle to ``program.'' We therefore look toward biology for inspiration. In particular, we are interested in kinematic synergies, low-dimensional representations that explicitly encode the underlying structure of how systems coordinate their internal degrees of freedom to achieve high-level tasks. In this work, we derive parametric representations of kinematic synergies and present a new compliant locomotion control framework that enables the parameters to be directly controlled in response to external disturbances. We present results of this framework implemented on two separate platforms, a snake-like and hexapod robot. Our results show that, using synergies, the locomotion control of these very different systems can be reduced to simple, extremely capable, and common forms, thus offering new insights into both robotic as well as biological locomotion in complex terrains.

  12. In-Situ Environmental Measurements Needed for Future Mars Missions

    NASA Technical Reports Server (NTRS)

    Crisp, D.; Wilson, G. R.; Murphy, J. R.; Banfield, D.; Barnes, J. R.; Farrell, W. M.; Haberle, R. M.; Magalhaes, J.; Paige, D. A.; Tillman, J. E.

    2000-01-01

    Existing measurements and modeling studies indicate that the climate and general circulation of the thin, predominately CO2 Martian atmosphere are characterized by large-amplitude variations with a wide range of spatial and temporal scales. Remote sensing observations from Earth-based telescopes and the Mariner 9, Viking, Phobos, and Mars Global Surveyor (MGS) orbiters show that the prevailing climate includes large-scale seasonal variations in surface and atmospheric temperatures (140 to 300 K), dust optical depth (0.15 to 1), and water vapor (10 to 100 precipitable microns). These observations also provided the first evidence for episodic regional and global dust storms that produce even larger perturbations in the atmospheric thermal structure and general circulation. In-situ measurements by the Viking and Mars Pathfinder Landers reinforced these conclusions, documenting changes in the atmospheric pressure on diurnal (5%) and seasonal (>20%) time scales, as well as large diurnal variations in the near-surface temperature (40 to 70 K), wind velocity (0 to 35 m/s), and dust optical depth (0.3 to 6). These in-situ measurements also reveal phenomena with temporal and spatial scales that cannot be resolved from orbit, including rapid changes in near-surface temperatures (+/- 10 K in 10 seconds), large near-surface vertical temperature gradients (+/- 15 K/meter), diurnally-varying slope winds, and dust devils . Modeling studies indicate that these changes are forced primarily by diurnal and seasonal variations in solar insolation, but they also include contributions from atmospheric thermal tides, baroclinic waves (fronts), Kelvin waves, slope winds, and monsoonal flows from the polar caps.

  13. An optimum opportunity for interstellar dust measurements by the JUICE mission

    NASA Astrophysics Data System (ADS)

    Sterken, V. J.; Altobelli, N.; Kempf, S.; Krüger, H.; Postberg, F.; Soja, R. H.; Srama, R.; Grün, E.

    2012-10-01

    The JUpiter ICy moons Explorer (JUICE) is an ESA L-class mission concept designed to explore the Galilean satellites of the Jovian system. Although the current mission science goals do not include any astrophysical observations, we find that the planned period of the JUICE mission is optimal for in situ measurements of Interstellar Dust (ISD), due to highly increased flux levels at that time. In case that JUICE carries a dust detector, this could lead to in situ high-resolution mass spectra of ISD grains. Such compositional information on the ISD grains is important for understanding the origins of solar/planetary systems, and therefore could represent a valuable addition to the core JUICE mission science.

  14. Summary Report of Mission Acceleration Measurement for STS-87: Launched November 19, 1997

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Hrovat, Kenneth; McPherson, Kevin; DeLombard, Richard; Reckart, Timothy

    1999-01-01

    Two accelerometer systems, the Orbital Acceleration Research Experiment and the Space Acceleration Measurement System, were used to measure and record the microgravity environment of the Orbiter Columbia during the STS-87 mission in November-December 1997. Data from two separate Space Acceleration Measurement System units were telemetered to the ground during the mission and data plots were displayed for investigators of the Fourth United States Microgravity Payload experiments in near real-time using the World Wide Web. Plots generated using Orbital Acceleration Research Experiment data (telemetered to the ground using a tape delay) were provided to the investigators using the World Wide Web approximately twelve hours after data recording. Disturbances in the microgravity environment as recorded by these instruments are grouped by source type: Orbiter systems, on-board activities, payload operations, and unknown sources. The environment related to the Ku-band antenna dither, Orbiter structural modes, attitude deadband collapses, water dump operations, crew sleep, and crew exercise was comparable to the effects of these sources on previous Orbiter missions. Disturbances related to operations of the Isothermal Dendritic Growth Experiment and Space Acceleration Measurement Systems that were not observed on previous missions are detailed. The effects of Orbiter cabin and airlock depressurization and extravehicular activities are also reported for the first time. A set of data plots representing the entire mission is included in the CD-ROM version of this report.

  15. Summary Report of Mission Acceleration Measurement for STS-87, Launched November 19, 1997

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Hrovat, Kenneth; McPherson, Kevin; DeLombard, Richard; Reckart, Timothy

    1999-01-01

    Two accelerometer systems, the Orbital Acceleration Research Experiment and the Space Acceleration Measurement System, were used to measure and record the microgravity environment of the Orbiter Columbia during the STS-87 mission in November-December 1997. Data from two separate Space Acceleration Measurement System units were telemetered to the ground during the mission and data plots were displayed for investigators of the Fourth United States Microgravity Payload experiments in near real-time using the World Wide Web. Plots generated using Orbital Acceleration Research Experiment data (telemetered to the ground using a tape delay) were provided to the investigators using the World Wide Web approximately twelve hours after data recording. Disturbances in the microgravity environment as recorded by these instruments are grouped by source type: Orbiter systems, on-board activities, payload operations, and unknown sources. The environment related to the Ku-band antenna dither, Orbiter structural modes, attitude deadband collapses, water dump operations, crew sleep, and crew exercise was comparable to the effects of these sources on previous Orbiter missions. Disturbances related to operations of the Isothermal Dendritic Growth Experiment and Space Acceleration Measurement Systems that were not observed on previous missions are detailed. The effects of Orbiter cabin and airlock depressurization and extravehicular activities are also reported for the first time. A set of data plots representing the entire mission is included in the CD-ROM version of this report.

  16. Summary Report of Mission Acceleration Measurements for STS-95: Launched October 19, 1998

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin; Hrovat, Kevin

    2000-01-01

    John H. Glenn's historic return to space was a primary focus of the STS-95 mission. The Hubble Space Telescope (HST) orbital Systems Test (HOST), an STS-95 payload, was an in-flight demonstration of HST components to be installed during the next HST servicing mission. One of the components under evaluation was the cryocooler for the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). Based on concerns about vibrations from the operation of the NICMOS cryocooler affecting the overall HST line-of-sight requirements, the Space Acceleration Measurement System for Free-Flyers (SAMS-FF) was employed to measure the vibratory environment of the STS-95 mission, including any effects introduced by the NICMOS cryocooler. The STS-95 mission represents the first STS mission supported by SAMS-FF. Utilizing a Control and Data Acquisition Unit (CDU) and two triaxial sensor heads (TSH) mounted on the HOST support structure in Discovery's cargo bay, the SAMS-FF and the HOST project were able to make vibratory measurements both on-board the vibration-isolated NICMOS cryocooler and off-board the cryocooler mounting plate. By comparing the SAMS-FF measured vibrations on-board and off-board the NICMOS cryocooler, HST engineers could assess the cryocooler g-jitter effects on the HST line-of-sight requirements. The acceleration records from both SAMS-FF accelerometers were analyzed and significant features of the microgravity environment are detailed in this report.

  17. Investigating aerosol properties in Peninsular Malaysia via the synergy of satellite remote sensing and ground-based measurements

    NASA Astrophysics Data System (ADS)

    Kanniah, Kasturi Devi; Lim, Hui Qi; Kaskaoutis, Dimitris G.; Cracknell, Arthur P.

    2014-03-01

    Spatio-temporal variation and trends in atmospheric aerosols as well as their impact on solar radiation and clouds are crucial for regional and global climate change assessment. These topics are not so well-documented over Malaysia, the fact that it receives considerable amounts of pollutants from both local and trans-boundary sources. The present study aims to analyse the spatio-temporal evolution and decadal trend of Aerosol Optical Depth (AOD) from Terra and Aqua MODIS sensors, to identify different types and origin of aerosols and explore the link between aerosols and solar radiation. AOD and fine-mode fraction (FMF) products from MODIS, AOD and Ångström Exponent (AE) values from AERONET stations along with ground-based PM10 measurements and solar radiation recordings at selected sites in Peninsular Malaysia are used for this scope. The MODIS AODs exhibit a wide spatio-temporal variation over Peninsular Malaysia, while Aqua AOD is consistently lower than that from Terra. The AOD shows a neutral-to-declining trend during the 2000s (Terra satellite), while that from Aqua exhibits an increasing trend (~ 0.01 per year). AERONET AODs exhibit either insignificant diurnal variation or higher values during the afternoon, while their short-term availability does not allow for a trend analysis. Moreover, the PM10 concentrations exhibit a general increasing trend over the examined locations. The sources and destination of aerosols are identified via the HYSPLIT trajectory model, revealing that aerosols during the dry season (June to September) are mainly originated from the west and southwest (Sumatra, Indonesia), while in the wet season (November to March) they are mostly associated with the northeast monsoon winds from the southern China Sea. Different aerosol types are identified via the relationship of AOD with FMF, revealing that the urban and biomass-burning aerosols are the most abundant over the region contributing to a significant reduction (~- 0.21 MJ m- 2) of

  18. The Tropical Rainfall Measuring Mission (TRMM) update and its role in EOS and GEWEX

    NASA Technical Reports Server (NTRS)

    Simpson, Joanne

    1992-01-01

    Updated information is presented on the U.S./Japan Tropical Rainfall Measuring Mission (TRMM), which is a relatively low-budget earth-probe satellite with a secondary objective of measuring upwelling radiation from the clouds and the surfaces below the satellite. Particular attention is given to the TRMM rain measurements and the characteristics of the three TRMM rain measuring instruments: the microwave radiometer, the radar, and the visible/IR radiometer. Also discussed are the TRMM contributions to EOS and GEWEX.

  19. DXL: A sounding rocket mission measuring Solar Wind Charge eXchange properties

    NASA Astrophysics Data System (ADS)

    Galeazzi, Massimiliano

    2016-04-01

    Solar Wind interacts with the interstellar neutrals via charge exchange mechanism to produce spatially and temporally varying x-rays making it difficult to separate from other diffuse sources. The Diffuse X-rays from the Local Galaxy (DXL) mission measured the spatial signature of Solar Wind Charge eXchange (SWCX) emission due to the helium focusing cone. The mission used 2 large area proportional counters and was able to separate the SWCX contribution from Local Hot Bubble emission. The data from the mission provide a robust estimate of the SWCX contribution to the ROSAT maps, measuring the compound SWCX cross section with He in all ROSAT bands. The results showed that the total SWCX contribution in the ¼ keV band is, on average, ~27%. A new mission, DXL-2, was launched on December 4, 2015 with two new counters for a better understanding of the energy distribution of heliospheric SWCX photons, by using a multi-band approach. A dedicated scan to accurately measure the cone position and solve the IBEX controversy was also performed. The talk will discuss the DXL mission, the results from the first flight, and the preliminary results from the latest flight.Submitted for the DXL Collaboration

  20. Global precipitation measurement (GPM) mission and its application for flood monitoring

    NASA Astrophysics Data System (ADS)

    Kachi, Misako; Oki, Riko; Shimizu, Shuji; Kojima, Masahiro

    2006-12-01

    The Global Precipitation Measurement (GPM) mission is an expanded follow-on mission of the current Tropical Rainfall Measuring Mission (TRMM). The concept of GPM is, 1) TRMM-like, non-sun-synchronous core satellite carrying the Dual-frequency Precipitation Radar (DPR) to be developed by Japan and a microwave radiometer to be developed by United States, and 2) constellation of satellites in polar orbit, each carrying a microwave radiometer provided by international partner. The constellation system of GPM will make it possible every three-hour global precipitation measurement. Because of its concept on focusing high-accurate and high-frequent global precipitation observation, GPM has a unique position among future Earth observation missions. GPM international partnerships will embody concept of GEOSS. Observation data acquired by the GPM mission are expected to be used for both Earth environmental research and various societal benefit areas. One of most expected application fields is weather prediction. Use of high-frequent observation in numerical weather prediction models will improve weather forecasting especially for extreme events such as tropical cyclones and heavy rain. Another example is application to flood monitoring and forecasting. Recent increasing needs of real-time flood information required from many countries especially in Asia will strongly support operational application of GPM products in this field.

  1. Coordinated science with the Solar Orbiter, Solar Probe Plus, Interhelioprobe and SPORT missions

    NASA Astrophysics Data System (ADS)

    Maksimovic, Milan; Vourlidas, Angelos; Zimovets, Ivan; Velli, Marco; Zhukov, Andrei; Kuznetsov, Vladimir; Liu, Ying; Bale, Stuart; Ming, Xiong

    The concurrent science operations of the ESA Solar Orbiter (SO), NASA Solar Probe Plus (SPP), Russian Interhelioprobe (IHP) and Chinese SPORT missions will offer a truly unique epoch in heliospheric science. While each mission will achieve its own important science objectives, taken together the four missions will be capable of doing the multi-point measurements required to address many problems in Heliophysics such as the coronal origin of the solar wind plasma and magnetic field or the way the Solar transients drive the heliospheric variability. In this presentation, we discuss the capabilities of the four missions and the Science synergy that will be realized by concurrent operations

  2. The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Science Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur

    2007-01-01

    The Global Precipitation Measurement (GPM) Mission, an international satellite mission to unify and advance space-based precipitation measurements around the globe, is a science mission with integrated application goals. The mission is designed to (1) advance the knowledge of the global water cycle and freshwater availability, and (2) improve weather, climate, and hydrological prediction capabilities through more accurate and frequent measurements of global precipitation. The cornerstone of GPM is the deployment of a Core Spacecraft in a unique 65 deg-inclined orbit to serve as a physics observatory and a calibration reference to improve the accuracy of precipitation measurements by a heterogeneous constellation of dedicated and operational passive microwave sensors. The Core Spacecraft will carry a dual-frequency (Ku-Ka band) radar and a multi-channel microwave radiometer with high-frequency capabilities to provide measurements of 3-D precipitation structures and microphysical properties, which are key to achieving a better understanding of precipitation processes and improved retrieval algorithms for passive microwave radiometers. The GPM constellation is envisioned to comprise 5 or more conical-scanning microwave radiometers provided by partners, augmented by cross-track microwave sounders on operational satellites such as the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), POES, NPOESS, and MetOp satellites for improved sampling over land. The GPM Mission is currently a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA), with opportunities for additional international partners in constellation satellites and ground validation. An overview of the GPM mission concept and science activities in the United States will be presented.

  3. A Plan for Measuring Climatic Scale Global Precipitation Variability: The Global Precipitation Mission

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The outstanding success of the Tropical Rainfall Measuring Mission (TRMM) stemmed from a near flawless launch and deployment, a highly successful measurement campaign, achievement of all original scientific objectives before the mission life had ended, and the accomplishment of a number of unanticipated but important additional scientific advances. This success and the realization that satellite rainfall datasets are now a foremost tool in the understanding of decadal climate variability has helped motivate a comprehensive global rainfall measuring mission, called 'The Global Precipitation Mission' (GPM). The intent of this mission is to address looming scientific questions arising in the context of global climate-water cycle interactions, hydrometeorology, weather prediction, the global carbon budget, and atmosphere-biosphere-cryosphere chemistry. This paper addresses the status of that mission currently planed for launch in the early 2007 time frame. The GPM design involves a nine-member satellite constellation, one of which will be an advanced TRMM-like 'core' satellite carrying a dual-frequency Ku-Ka band radar (df-PR) and a TMI-like radiometer. The other eight members of the constellation can be considered drones to the core satellite, each carrying some type of passive microwave radiometer measuring across the 10.7-85 GHz frequency range, likely based on both real and synthetic aperture antenna technology and to include a combination of new lightweight dedicated GPM drones and both co-existing operational and experimental satellites carrying passive microwave radiometers (i.e., SSM/l, AMSR, etc.). The constellation is designed to provide a minimum of three-hour sampling at any spot on the globe using sun-synchronous orbit architecture, with the core satellite providing relevant measurements on internal cloud precipitation microphysical processes. The core satellite also enables 'training' and 'calibration' of the drone retrieval process. Additional

  4. Greenhouses and their humanizing synergies

    NASA Astrophysics Data System (ADS)

    Haeuplik-Meusburger, Sandra; Paterson, Carrie; Schubert, Daniel; Zabel, Paul

    2014-03-01

    Greenhouses in space will require advanced technical systems of automatic watering, soil-less cultivation, artificial lighting, and computerized observation of plants. Functions discussed for plants in space habitats include physical/health requirements and human psychology, social cohesion, as well as the complex sensorial benefits of plants for humans. The authors consider the role of plants in long-term space missions historically since 1971 (Salyut 1) and propose a set of priorities to be considered within the design requirements for greenhouses and constructed environments given a range of benefits associated with plant-human relationships. They cite recent research into the use of greenhouses in extreme environments to reveal the relative importance of greenhouses for people living in isolated locations. Additionally, they put forward hypotheses about where greenhouses might factor into several strata of human health. In a recent design-in-use study of astronauts' experiences in space habitats discussed in Architecture for Astronauts (Springer Press 2011) it was found that besides the basic advantages for life support there are clearly additional "side benefits" for habitability and physical wellbeing, and thus long-term mission success. The authors have composed several key theses regarding the need to promote plant-human relationships in space, including areas where synergy and symbiosis occur. They cite new comprehensive research into the early US Space Program to reveal where programmatic requirements could be added to space architecture to increase the less quantifiable benefits to astronauts of art, recreation, and poetic engagement with their existential condition of estrangement from the planet. Specifically in terms of the technological requirements, the authors propose the integration of a new greenhouse subsystem component into space greenhouses—the Mobile Plant Cultivation Subsystem—a portable, personal greenhouse that can be integrated

  5. Summary report of mission acceleration measurements for Spacehab-01, STS-57 launched 21 June 1993

    NASA Technical Reports Server (NTRS)

    Finley, Brian; Grodsinsky, Carlos; Delombard, Richard

    1994-01-01

    The maiden voyage of the commercial Spacehab laboratory module onboard the STS-57 mission was integrated with several accelerometer packages, one of which was the Space Acceleration Measurement System (SAMS). The June 21st 1993, launch was the seventh successful mission for the Office of Life and Microgravity Sciences and Application's (OLMSA) SAMS unit. This flight was also complemented by a second accelerometer system. The Three Dimensional Microgravity Accelerometer (3-DMA), a Code C funded acceleration measurement system, offering an on-orbit residual calibration as a reference for the unit's four triaxial accelerometers. The SAMS accelerometer unit utilized three remote triaxial sensor heads mounted on the forward Spacehab module bulkhead and on one centrally located experiment locker door. These triaxial heads had filter cut-offs set to 5, 50, and 1000 Hz. The mission also included other experiment specific accelerometer packages in various locations.

  6. Summary Report of Mission Acceleration Measurements for STS-62, Launched 4 March 1994

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Delombard, Richard

    1994-01-01

    The second mission of the United States Microgravity Payload on-board the STS-62 mission was supported with three accelerometer instruments: the Orbital Acceleration Research Experiment (OARE) and two units of the Space Acceleration Measurements System (SAMS). The March 4, 1994 launch was the fourth successful mission for OARE and the ninth successful mission for SAMS. The OARE instrument utilizes a sensor for very low frequency measurements below one Hertz. The accelerations in this frequency range are typically referred to as quasisteady accelerations. One of the SAMS units had two remote triaxial sensor heads mounted on the forward MPESS structure between two furnance experiments, MEPHISTO and AADSF. These triaxial heads had low-pass filter cut-off frequencies at 10 and 25 Hz. The other SAMS unit utilized three remote triaxial sensor heads. Two of the sensor heads were mounted on the aft MPESS structure between the two experiments IDGE and ZENO. These triaxial heads had low-pass filter cut-off frequencies at 10 and 25 Hz. The third sensor head was mounted on the thermostat housing inside the IDGE experiment container. This triaxial head had a low-pass filter cut-off frequency at 5 Hz. This report is prepared to furnish interested experiment investigators with a guide to evaluating the acceleration environment during STS-62 and as a means of identifying areas which require further study. To achieve this purpose, various pieces of information are included, such as an overview of the STS-62 mission, a description of the accelerometer system flown on STS-62, some specific analysis of the accelerometer data in relation to the various mission activities, and an overview of the low-gravity environment during the entire mission. An evaluation form is included at the end of the report to solicit users' comments about the usefulness of this series of reports.

  7. From silos to synergy.

    PubMed

    Treadwell, Janet; Levermann, Laurie; Soffar, Gail; Giardino, Angelo

    2007-08-01

    Texas Children's Health Plan (TCHP) redesigned its approach to care management in an effort to provide support for member-centric care and the medical home. The changes in process and structure focused on connecting information and programs to promote care for members in a collaborative manner and taking advantage of the synergy between staff, programming, and the physician practices serving health plan membership. The results brought about an improvement in job satisfaction, positive change in the medical-loss ratio, and new innovations to support preventive and chronic care service delivery needs of the TCHP membership. PMID:18041351

  8. Synergy in satellite communication

    NASA Astrophysics Data System (ADS)

    Sachdev, D. K.

    1989-10-01

    After presenting a development history for satellite communications systems demonstrating the extent to which synergistic, efficiency-enhancing interactions between emerging technologies form the basis for much of the economic feasibility of these efforts, an evaluation is made of prospective synergisms. Among those identified as uniquely promising are the interactions of electric propulsion and Ni-H batteries, and of onboard data processing/bulk demultiplexing. An attempt is made to furnish a stimulus for system designers to actively seek out synergies rather than wait passively until they emerge.

  9. Summary Report of Mission Acceleration Measurements for STS-75, Launched February 22, 1996

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Hrovat, Kenneth; Moskowitz, Milton E.; McPherson, Kevin M.; DeLombard, Richard

    1996-01-01

    Two accelerometers provided acceleration data during the STS-75 mission in support of the third United States Microgravity Payload (USMP-3) experiments. The Orbital Acceleration Research Experiment (OARE) and the Space Acceleration Measurement System (SAMS) provided a measure of the microgravity environment of the Space Shuttle Columbia. The OARE provided investigators with quasi-steady acceleration measurements after about a six hour time lag dictated by downlink constraints. SAMS data were downlinked in near-real-time and recorded on-board for post-mission analysis. An overview of the mission is provided as are brief discussions of these two accelerometer systems. Data analysis techniques used to process SAMS and OARE data are discussed Using a combination of these techniques, the microgravity environment related to several different Orbiter, crew, and experiment operations is presented and interpreted. The microgravity environment represented by SAMS and OARE data is comparable to the environments measured by the instruments on earlier microgravity science missions. The OARE data compared well with predictions of the quasi-steady environment. The SAMS data show the influence of thruster firings and crew motion (transient events) and of crew exercise, Orbiter systems, and experiment operations (oscillatory events). Thruster activity on this mission appears to be somewhat more frequent than on other microgravity missions with the combined firings of the F5L and F5R jets producing significant acceleration transients. The specific crew activities performed in the middeck and flight deck, the SPREE table rotations, the waste collection system compaction, and the fuel cell purge had negligible effects on the microgravity environment of the USMP-3 carriers. The Ku band antenna repositioning activity resulted in a brief interruption of the ubiquitous 17 Hz signal in the SAMS data. In addition, the auxiliary power unit operations during the Flight Control System checkout

  10. Summary Report of Mission Acceleration Measurements for STS-78. Launched June 20, 1996

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak; Hrovat, Kenneth; McPherson, Kevin M.; Moskowitz, Milton E.; Rogers, Melissa J. B.

    1997-01-01

    The microgravity environment of the Space Shuttle Columbia was measured during the STS-78 mission using accelerometers from three different instruments: the Orbital Acceleration Research Experiment, the Space Acceleration Measurement System and the Microgravity Measurement Assembly. The quasi-steady environment was also calculated in near real-time during the mission by the Microgravity Analysis Workstation. The Orbital Acceleration Research Experiment provided investigators with real-time quasi-steady acceleration measurements. The Space Acceleration Measurement System recorded higher frequency data on-board for post-mission analysis. The Microgravity Measurement Assembly provided investigators with real-time quasi-steady and higher frequency acceleration measurements. The Microgravity Analysis Workstation provided calculation of the quasi-steady environment. This calculation was presented to the science teams in real-time during the mission. The microgravity environment related to several different Orbiter, crew and experiment operations is presented and interpreted in this report. A radiator deploy, the Flight Control System checkout, and a vernier reaction control system reboost demonstration had minimal effects on the acceleration environment, with excitation of frequencies in the 0.01 to 10 Hz range. Flash Evaporator System venting had no noticeable effect on the environment while supply and waste water dumps caused excursions of 2 x lO(exp -6) to 4 x 10(exp -6) g in the Y(sub b) and Z(sub b) directions. Crew sleep and ergometer exercise periods can be clearly seen in the acceleration data, as expected. Accelerations related to the two Life Science Laboratory Equipment Refrigerator/Freezers were apparent in the data as are accelerations caused by the Johnson Space Center Projects Centrifuge. As on previous microgravity missions, several signals are present in the acceleration data for which a source has not been identified. The causes of these accelerations

  11. Global Precipitation Measurement (GPM) Mission: Precipitation Processing System (PPS) GPM Mission Gridded Text Products Provide Surface Precipitation Retrievals

    NASA Technical Reports Server (NTRS)

    Stocker, Erich Franz; Kelley, O.; Kummerow, C.; Huffman, G.; Olson, W.; Kwiatkowski, J.

    2015-01-01

    In February 2015, the Global Precipitation Measurement (GPM) mission core satellite will complete its first year in space. The core satellite carries a conically scanning microwave imager called the GPM Microwave Imager (GMI), which also has 166 GHz and 183 GHz frequency channels. The GPM core satellite also carries a dual frequency radar (DPR) which operates at Ku frequency, similar to the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar, and a new Ka frequency. The precipitation processing system (PPS) is producing swath-based instantaneous precipitation retrievals from GMI, both radars including a dual-frequency product, and a combined GMIDPR precipitation retrieval. These level 2 products are written in the HDF5 format and have many additional parameters beyond surface precipitation that are organized into appropriate groups. While these retrieval algorithms were developed prior to launch and are not optimal, these algorithms are producing very creditable retrievals. It is appropriate for a wide group of users to have access to the GPM retrievals. However, for researchers requiring only surface precipitation, these L2 swath products can appear to be very intimidating and they certainly do contain many more variables than the average researcher needs. Some researchers desire only surface retrievals stored in a simple easily accessible format. In response, PPS has begun to produce gridded text based products that contain just the most widely used variables for each instrument (surface rainfall rate, fraction liquid, fraction convective) in a single line for each grid box that contains one or more observations.This paper will describe the gridded data products that are being produced and provide an overview of their content. Currently two types of gridded products are being produced: (1) surface precipitation retrievals from the core satellite instruments GMI, DPR, and combined GMIDPR (2) surface precipitation retrievals for the partner constellation

  12. Airborne Measurements in Support of the NASA Atmospheric Carbon and Transport - America (ACT-America) Mission

    NASA Technical Reports Server (NTRS)

    Meadows, Byron; Davis, Ken; Barrick, John; Browell, Edward; Chen, Gao; Dobler, Jeremy; Fried, Alan; Lauvaux, Thomas; Lin, Bing; McGill, Matt; Miles, Natasha; Nehrir, Amin; Obland, Michael; O'Dell, Chris; Sweeney, Colm; Yang, Melissa

    2015-01-01

    NASA announced the research opportunity Earth Venture Suborbital -2 (EVS-2) mission in support of the NASA's science strategic goals and objectives in 2013. Penn State University, NASA Langley Research Center (LaRC), and other academic institutions, government agencies, and industrial companies together formulated and proposed the Atmospheric Carbon and Transport -America (ACT -America) suborbital mission, which was subsequently selected for implementation. The airborne measurements that are part of ACT-America will provide a unique set of remote and in-situ measurements of CO2 over North America at spatial and temporal scales not previously available to the science community and this will greatly enhance our understanding of the carbon cycle. ACT -America will consist of five airborne campaigns, covering all four seasons, to measure regional atmospheric carbon distributions and to evaluate the accuracy of atmospheric transport models used to assess carbon sinks and sources under fair and stormy weather conditions. This coordinated mission will measure atmospheric carbon in the three most important regions of the continental US carbon balance: Northeast, Midwest, and South. Data will be collected using 2 airborne platforms (NASA Wallops' C-130 and NASA Langley's B-200) with both in-situ and lidar instruments, along with instrumented ground towers and under flights of the Orbiting Carbon Observatory (OCO-2) satellite. This presentation provides an overview of the ACT-America instruments, with particular emphasis on the airborne CO2and backscatter lidars, and the, rationale, approach, and anticipated results from this mission.

  13. Airborne Measurements in Support of the NASA Atmospheric Carbon and Transport - America (ACT-America) Mission

    NASA Astrophysics Data System (ADS)

    Meadows, B.; Davis, K.; Barrick, J. D. W.; Browell, E. V.; Chen, G.; Dobler, J. T.; Fried, A.; Lauvaux, T.; Lin, B.; McGill, M. J.; Miles, N. L.; Nehrir, A. R.; Obland, M. D.; O'Dell, C.; Sweeney, C.; Yang, M. M.

    2015-12-01

    NASA announced the research opportunity Earth Venture Suborbital - 2 (EVS-2) mission in support of the NASA's science strategic goals and objectives in 2013. Penn State University, NASA Langley Research Center (LaRC), and other academic institutions, government agencies, and industrial companies together formulated and proposed the Atmospheric Carbon and Transport - America (ACT - America) suborbital mission, which was subsequently selected for implementation. The airborne measurements that are part of ACT-America will provide a unique set of remote and in-situ measurements of CO2 over North America at spatial and temporal scales not previously available to the science community and this will greatly enhance our understanding of the carbon cycle. ACT - America will consist of five airborne campaigns, covering all four seasons, to measure regional atmospheric carbon distributions and to evaluate the accuracy of atmospheric transport models used to assess carbon sinks and sources under fair and stormy weather conditions. This coordinated mission will measure atmospheric carbon in the three most important regions of the continental US carbon balance: Northeast, Midwest, and South. Data will be collected using 2 airborne platforms (NASA Wallops' C-130 and NASA Langley's B-200) with both in-situ and lidar instruments, along with instrumented ground towers and under flights of the Orbiting Carbon Observatory (OCO-2) satellite. This presentation provides an overview of the ACT-America instruments, with particular emphasis on the airborne CO2 and backscatter lidars, and the, rationale, approach, and anticipated results from this mission.

  14. Operating the Dual-Orbiter GRAIL Mission to Measure the Moon's Gravity

    NASA Technical Reports Server (NTRS)

    Beerer, Joseph G.; Havens, Glen G.

    2012-01-01

    NASA's mission to measure the Moon's gravity and determine the interior structure, from crust to core, has almost completed its 3-month science data collection phase. The twin orbiters of the Gravity Recovery and Interior Laboratory (GRAIL) mission were launched from Florida on September 10, 2011, on a Delta-II launch vehicle. After traveling for nearly four months on a low energy trajectory to the Moon, they were inserted into lunar orbit on New Year's Eve and New Year's Day. In January 2012 a series of circularization maneuvers brought the orbiters into co-planar near-circular polar orbits. In February a distant (75- km) rendezvous was achieved and the science instruments were turned on. A dual- frequency (Ka and S-band) inter-orbiter radio link provides a precise orbiter-to-orbiter range measurement that enables the gravity field estimation. NASA's Jet Propulsion Laboratory in Pasadena, CA, manages the GRAIL project. Mission management, mission planning and sequencing, and navigation are conducted at JPL. Lockheed Martin, the flight system manufacturer, operates the orbiters from their control center in Denver, Colorado. The orbiters together have performed 28 propulsive maneuvers to reach and maintain the science phase configuration. Execution of these maneuvers, as well as the payload checkout and calibration activities, has gone smoothly due to extensive pre-launch operations planning and testing. The key to the operations success has been detailed timelines for product interchange between the operations teams and proven procedures from previous JPL/LM planetary missions. Once in science phase, GRAIL benefitted from the payload operational heritage of the GRACE mission that measures the Earth's gravity.

  15. Simultaneous measurement of the total solar irradiance and solar diameter by the PICARD mission

    NASA Astrophysics Data System (ADS)

    Thuillier, Gérard; Dewitte, Steven; Schmutz, Werner; Picard Team

    2006-01-01

    A mission dedicated to simultaneous measurements of the solar diameter, spectral, and total solar irradiance is presently in development for launch end of the year 2008 on board of a microsatellite under the responsibility of Centre National d'Etudes Spatiales. The payload will consist of an imaging telescope, three filter radiometers with in total twelve channels, and two independent absolute radiometers. The scientific aims are presented as well as the concepts and properties of the instrumentation. This mission is named PICARD after the pioneering work of Jean Picard (1620-1682) who precisely determined the solar diameter during the Maunder minimum.

  16. Nuclear emulsion measurements of the astronauts' radiation exposures on Skylab missions 2, 3, and 4

    NASA Technical Reports Server (NTRS)

    Schaefer, H. J.; Sullivan, J. J.

    1975-01-01

    On the Skylab missions, Ilford G.5 and K.2 emulsions were flown as part of passive dosimeter packs carried by the astronauts on their wrists. Due to the long mission times, latent image fading and track crowing imposed limitations on a quantitative track and grain count analysis. For Skylab 2, the complete proton energy spectrum was determined within reasonable error limits. A combined mission dose equivalent of 2,490 millirems from protons, tissue stars and neutrons was measured on Skylab 2. A stationary emulsion stack, kept in a film vault drawer on the same mission, displayed a highly structured directional distribution of the fluence of low-energy protons (enders) reflecting the local shield distribution. On the 59 and 84-day mission 3 and 4, G.5 emulsions had to be cut on the microtom to 5-7 microns for microscopic examination. Even so, the short track segments in such thin layers precluded a statistically reliable grain count analysis. However, the K.2 emulsions still allowed accurate proton ender counts without special provisions.

  17. Combined Infrared Stereo and Laser Ranging Cloud Measurements from Shuttle Mission STS-85

    NASA Technical Reports Server (NTRS)

    Lancaster, R. S.; Spinhirne, J. D.; Manizade, K. F.

    2004-01-01

    Multiangle remote sensing provides a wealth of information for earth and climate monitoring, such as the ability to measure the height of cloud tops through stereoscopic imaging. As technology advances so do the options for developing spacecraft instrumentation versatile enough to meet the demands associated with multiangle measurements. One such instrument is the infrared spectral imaging radiometer, which flew as part of mission STS-85 of the space shuttle in 1997 and was the first earth- observing radiometer to incorporate an uncooled microbolometer array detector as its image sensor. Specifically, a method for computing cloud-top height with a precision of +/- 620 m from the multispectral stereo measurements acquired during this flight has been developed, and the results are compared with coincident direct laser ranging measurements from the shuttle laser altimeter. Mission STS-85 was the first space flight to combine laser ranging and thermal IR camera systems for cloud remote sensing.

  18. Tropical Rainfall Measuring Mission (TRMM). Phase B: Data capture facility definition study

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The National Aeronautics and Aerospace Administration (NASA) and the National Space Development Agency of Japan (NASDA) initiated the Tropical Rainfall Measuring Mission (TRMM) to obtain more accurate measurements of tropical rainfall then ever before. The measurements are to improve scientific understanding and knowledge of the mechanisms effecting the intra-annual and interannual variability of the Earth's climate. The TRMM is largely dependent upon the handling and processing of the data by the TRMM Ground System supporting the mission. The objective of the TRMM is to obtain three years of climatological determinations of rainfall in the tropics, culminating in data sets of 30-day average rainfall over 5-degree square areas, and associated estimates of vertical distribution of latent heat release. The scope of this study is limited to the functions performed by TRMM Data Capture Facility (TDCF). These functions include capturing the TRMM spacecraft return link data stream; processing the data in the real-time, quick-look, and routine production modes, as appropriate; and distributing real time, quick-look, and production data products to users. The following topics are addressed: (1) TRMM end-to-end system description; (2) TRMM mission operations concept; (3) baseline requirements; (4) assumptions related to mission requirements; (5) external interface; (6) TDCF architecture and design options; (7) critical issues and tradeoffs; and (8) recommendation for the final TDCF selection process.

  19. History of satellite missions and measurements of the Earth Radiation Budget (1957-1984)

    NASA Technical Reports Server (NTRS)

    House, F. B.; Gruber, A.; Hunt, G. E.; Mecherikunnel, A. T.

    1986-01-01

    The history of satellite missions and their measurements of the earth radiation budget from the beginning of the space age until the present time are reviewed. The survey emphasizes the early struggle to develop instrument systems to monitor reflected shortwave and emitted long-wave exitances from the earth, and the problems associated with the interpretation of these observations from space. In some instances, valuable data sets were developed from satellite measurements whose instruments were not specifically designed for earth radiation budget observations.

  20. Relationship of Global Precipitation Measurement (GPM) Mission to Global Change Research

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Starr, David OC. (Technical Monitor)

    2002-01-01

    In late 2001, the Global Precipitation Measurement (GPM) mission was approved as a new start by the National Aeronautics and Space Administration (NASA). This new mission is motivated by a number of scientific questions that are posed over a range of space and time scales that generally fall within the discipline of the global water and energy cycle (GWEC). Recognizing that satellite rainfall datasets are now a foremost tool for understanding global climate variability out to decadal scales and beyond, for improving weather forecasting, and for producing better predictions of hydrometeorological processes including short-term hazardous flooding and seasonal fresh water resources assessment, a comprehensive and internationally sanctioned global measuring strategy has led to the GPM mission. The GPM mission plans to expand the scope of rainfall measurement through use of a multi-member satellite constellation that will be contributed by a number of world nations. This talk overviews the GPM scientific research program that has been fostered within NASA, then focuses on scientific progress that is being made in various research areas in the course of the mission formulation phase that are of interest to the global change scientific community. This latter part of the talk addresses research issues that have become central to the GPM science implementation plan concerning: (1) the rate of global water cycling through the atmosphere and surface and the relationship of precipitation variability to the sustained rate of the water cycle; (2) the relationship between climate change and cloud macrophysical- microphysical processes; and (3) the general improvement in measuring precipitation at the fundamental microphysical level that will take place during the GPM era and an explanation of how these improvements are expected to come about.

  1. Radioscience and seismic measurements for the INSIGHT mission about interior of Mars.

    NASA Astrophysics Data System (ADS)

    Dehant, Véronique; Asmar, Sami; Folkner, William; Lognonné, Philippe; Banerdt, Bruce; Smrekar, Suzanne; Rivoldini, Attilio; Christensen, Ulrich; Giardini, Domenico; Pike, Tom; Clinton, John; Garcia, Raphael; Johnson, Catherine; Kobayashi, Naoki; Knapmeyer-Endrun, Brigitte; Mimoun, David; Mocquet, Antoine; Panning, Mark; Tromp, Jeroen; Weber, Renee

    2015-04-01

    We shall use the X-band radio link of the future 2016 InSIGHT (Interior exploration using Seismic Investigations, Geodesy, and Heat Transport) lander on the surface of Mars with the objective to better determine the rotation and interior structure of Mars. This X-band radio link consists in two-way Doppler measurements from a direct radio-link between the Martian lander and deep space tracking stations on the Earth. On the basis of these measurements, it will be possible to monitor the lander position relative to the Earth and in turn to improve the determination of the Mars' orientation and rotation parameters (MOP), i.e. the rotation rate variations (or Length of Days LOD), the precession rate and the nutations of the rotation axis. As these MOP parameters are related to the interior of the planet, we further discuss the expected improvement in our knowledge of Mars' interior in synergy with the seismic data, which include the tidal data. We will show in particular how to determine the state, size, and composition of the Martian core. These parameters are very important for understanding the evolution of Mars.

  2. A novel computational framework for deducing muscle synergies from experimental joint moments

    PubMed Central

    Gopalakrishnan, Anantharaman; Modenese, Luca; Phillips, Andrew T. M.

    2014-01-01

    Prior experimental studies have hypothesized the existence of a “muscle synergy” based control scheme for producing limb movements and locomotion in vertebrates. Such synergies have been suggested to consist of fixed muscle grouping schemes with the co-activation of all muscles in a synergy resulting in limb movement. Quantitative representations of these groupings (termed muscle weightings) and their control signals (termed synergy controls) have traditionally been derived by the factorization of experimentally measured EMG. This study presents a novel approach for deducing these weightings and controls from inverse dynamic joint moments that are computed from an alternative set of experimental measurements—movement kinematics and kinetics. This technique was applied to joint moments for healthy human walking at 0.7 and 1.7 m/s, and two sets of “simulated” synergies were computed based on two different criteria (1) synergies were required to minimize errors between experimental and simulated joint moments in a musculoskeletal model (pure-synergy solution) (2) along with minimizing joint moment errors, synergies also minimized muscle activation levels (optimal-synergy solution). On comparing the two solutions, it was observed that the introduction of optimality requirements (optimal-synergy) to a control strategy solely aimed at reproducing the joint moments (pure-synergy) did not necessitate major changes in the muscle grouping within synergies or the temporal profiles of synergy control signals. Synergies from both the simulated solutions exhibited many similarities to EMG derived synergies from a previously published study, thus implying that the analysis of the two different types of experimental data reveals similar, underlying synergy structures. PMID:25520645

  3. Upper limb joint space modeling of stroke induced synergies using isolated and voluntary arm perturbations.

    PubMed

    Simkins, Matt; Al-Refai, Aimen H; Rosen, Jacob

    2014-05-01

    Among other diminished motor capabilities, survivors of a stroke often exhibit joint synergies. These synergies are stereotypically characterized by involuntary joint co-activation. With respect to the upper limbs, such synergies diminish coordination in reaching, pointing, and other daily tasks. The primary goal of this research is to model synergy and quantify it in a comprehensive and mathematically tractable form. A motion capture system was used to measure joint rotations from stroke survivors and control subjects. These data showed that joint synergies are nonunique and asymmetric. The model also provided a way to calculate joint combinations that result in maximum and minimum synergy. Beyond providing a more complete view of synergies, this approach could facilitate new ways to evaluate and treat stroke survivors. In particular, this approach may have applications in diagnostic and treatment algorithms for use in rehabilitation robots. PMID:23912501

  4. The Global Lightning and Sprite Measurement (GLIMS) Mission on International Space Station

    NASA Astrophysics Data System (ADS)

    Ushio, Tomoo; Sato, Mitsuteru; Morimoto, Takeshi; Suzuki, Makoto; Kikuchi, Hiroshi; Yamazaki, Atsushi; Takahashi, Yukihiro; Hobara, Yasuhide; Inan, Umran; Linscott, Ivan; Sakamoto, Yuji; Ishida, Ryohei; Kikuchi, Masayuki; Yoshida, Kazuya; Kawasaki, Zen-Ichiro

    Global Lightning and sprIte MeasurementS (GLIMS) is a mission on the International Space Station (ISS) to detect and locate optical transient luminous events (TLEs) and associated lightning simultaneously from the non-sun-synchronous orbit. It is scheduled to be launched from Japan in January, 2012 as part of the multi-mission consolidated equipment on the Japanese Exposure Module (JEM). Our mission's goals are (1) to detect and locate lightning and sprites within storm scale resolution over a large region of the Earth's surface along the orbital track of the ISS without any bias, (2) to clarify the mechanism by which sprites are generated, and (3) to identify the conditions under which TLEs occur. To achieve these goals, two CMOS cameras, six Photometers, a VLF receiver and VHF interferometer with two antennas are installed at the bottom of the module to observe the TLEs, as well as causative lightning discharges at nadir direction during day and night time. Though the luminous events' so-called sprites, elves and jets have been investigated by numerous researchers all over the world based mainly on ground observations, some important problems have not been fully understood yet. These include the generation mechanisms of columniform fine structures and horizontal offset of some sprites from the parent lightning discharges. In the JEM-GLIMS mission, observations from our synchronized sensors will shed light on the unsolved problems mentioned above regarding TLEs and causative lightning discharges. In this presentation scientific background, instrumentation, and project summaries are given.

  5. Synergies with the infrared

    NASA Astrophysics Data System (ADS)

    Alexander, D.

    2016-06-01

    In this solicited talk I will review the synergy between XMM-Newton (and Chandra) and infrared facilities. I will focus on two key advantages from the combination of X-ray and infrared observations. First, infrared observations allow for the identification of the most heavily obscured AGNs that are weak or undetected at X-ray observations, providing a more complete census of AGN activity than from X-ray observations alone. Second, infrared observations provide constraints on the star-formation properties of the AGNs, allowing for insight into the connection between AGN activity and star formation. I will use these key advantages to discuss our progress in identifying a complete census of AGN activity and our understanding of the AGN-star formation connection. I will also review how yet greater gains can be made with future planned and proposed facilities.

  6. Summary Report of Mission Acceleration Measurements for STS-65, Launched 8 July 1994

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Delombard, Richard

    1995-01-01

    The second flight of the International Microgravity Laboratory (IML-2) payload on board the STS-65 mission was supported by three accelerometer instruments: The Orbital Acceleration Research Experiment (OARE) located close to the orbiter center of mass; the Quasi-Steady Acceleration Measurement experiment, and the Space Acceleration Measurement System (SAMS), both in the Spacelab module. A fourth accelerometer, the Microgravity Measuring Device recorded data in the middeck in support of exercise isolation tests.Data collected by OARE and SAMS during IML-2 are displayed in this report. The OARE data represent the microgravity environment below 1 Hz. The SAMS data represent the environment in the 0.01 Hz to 100 Hz range. Variations in the environment caused by unique activities are presented. Specific events addressed are: crew activity, crew exercise, experiment component mixing activities, experiment centrifuge operations, refrigerator/freezer operations and circulation pump operations. The analyses included in this report complement analyses presented in other mission summary reports.

  7. GlobCurrent: Sentinel-3 Synergy in Action

    NASA Astrophysics Data System (ADS)

    Johannessen, J. A.; Chapron, B.; Collard, F.; Rio, M.-H.; Piolle, J.-F.; Quartly, G.; Shutler, J.; Escola, R.; Donlon, C.; Danielson, R.; Korosov, A.; Raj, R. P.; Kudryavtsev, V.; Roca, M.; Tournadre, J.; Larnicol, G.; Labroue, S.; Miller, P.; Nencioli, F.; Warren, M.; Hansen, M.

    2015-12-01

    The ESA Data User Element (DUE) funded GlobCurrent project (http://www.globcurrent.org) aims to: (i) advance the quantitative estimation of ocean surface currents from satellite sensor synergy; and (ii) demonstrate impact in user-led scientific, operational and commercial applications that, in turn, will improve and strengthen the uptake of satellite measurements. Today, a synergetic approach for quantitative analysis can build on high-resolution imaging radar and spectrometer data, infrared radiometer data and radar altimeter measurements. It will further integrate Sentinel-3 in combination with Sentinel-1 SAR data. From existing and past missions, it is often demonstrated that sharp gradients in the sea surface temperature (SST) field and the ocean surface chlorophyll-a distribution are spatially correlated with the sea surface roughness anomaly fields at small spatial scales, in the sub-mesocale (1-10 km) to the mesoscale (30-80 km). At the larger mesoscale range (>50 km), information derived from radar altimeters often depict the presence of coherent structures and eddies. The variability often appears largest in regions where the intense surface current regimes (>100 - 200 km) are found. These 2-dimensional structures manifested in the satellite observations represent evidence of the upper ocean (~100-200 m) dynamics. Whereas the quasi geostrophic assumption is valid for the upper ocean dynamics at the larger scale (>100 km), possible triggering mechanisms for the expressions at the mesoscale-to-sub-mesoscale may include spiraling tracers of inertial motion and the interaction of the wind-driven Ekman layer with the quasi-geostrophic current field. This latter, in turn, produces bands of downwelling (convergence) and upwelling (divergence) near fronts. A regular utilization of the sensor synergy approach with the combination of Sentinel-3 and Sentinel-1 will provide a highly valuable data set for further research and development to better relate the 2

  8. The Global Precipitation Measurement (GPM) Mission: U.S. Program and Science Status

    NASA Astrophysics Data System (ADS)

    Hou, A.; Azarbarzin, A.; Kakar, R.; Neeck, S.

    2009-04-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors to provide next-generation precipitation data products for scientific research and societal applications. NASA and JAXA will deploy the GPM Core Observatory carrying an advanced radar-radiometer system to serve as a physics observatory and calibration reference for constellation radiometers. NASA will deploy the GPM Low-Inclination Observatory to enhance the near real-time monitoring of hurricanes and mid-latitude storms, and JAXA will contribute data from the Global Change Observation Mission-Water (GCOM-W) satellite. Partnerships are under development to include additional conical-scanning microwave imagers on the French-Indian Megha-Tropiques satellite and U.S. Defense Meteorological Satellite Program (DMSP) satellites, as well as cross-track scanning humidity sounders on operational satellites such as the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), POES, NPOESS, and European MetOp satellites, which are used to improve the precipitation sampling over land. In addition, Brazil has in its national space plan for a GPM low-inclination radiometer, and data from Chinese and Russian microwave radiometers could potentially become available through international collaboration under the auspices of the Committee on Earth Observation Satellites (CEOS) and Group on Earth Observations (GEO). As a science mission with integrated application goals, GPM is expected to (1) provide new measurement standards for precipitation estimation from space, (2) improve understanding of precipitation physics, the global water cycle variability, and freshwater availability, and (3) advance weather/climate/hydrological prediction capabilities to directly benefit the society. An overview of the GPM mission concept, program

  9. Science and Measurement Requirements for a Plant Physiology and Functional Types Mission: Measuring the Composition, Function and Health of Global Land and Coastal Ocean Ecosystems

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Rogez, Francois; Green, Rob; Ungar, Steve; Knox, Robert; Asner, Greg; Muller-Karger, Frank; Bissett, Paul; Chekalyuk, Alex; Dierssen, Heidi; Gamon, John; Hook, Simon; Meister, Gerhard; Middleton, Betsy; Ollinger, Scott; Roberts, Dar; Siegel, Dave; Townsend, Phil; Saatchi, Sassan; Unstin, Susan; Turner, Woody; Wickland, Diane; Bontempi, Paula; Emanuel, Bill

    2007-01-01

    This slide presentation reviews the proposed Plant Physiology and Functional Types (PPFT) Mission. The National Academy of Sciences Decadal Survey, placed a critical priority on a Mission to observe distribution and changes in ecosystem functions. The PPFT satellite mission provides the essential measurements needed to assess drivers of change in biodiversity and ecosystem services that affect human welfare. The presentation reviews the science questions that the mission will be designed to answer, the science rationale, the science measurements, the mission concept, the planned instrumentation, the calibration method, and key signal to noise ratios and uniformity requirements.

  10. The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.

    2010-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. NASA and JAXA will deploy the GPM Core Observatory carrying an advanced radar-radiometer system to serve as a physics observatory and a transfer standard for inter-calibration of constellation radiometers. The GPM Core Observatory is scheduled for launch in July 2013. NASA will provide a second radiometer to be flown on a partner-provided GPM Low-Inclination Observatory to enhance the near real-time monitoring of hurricanes and mid-latitude storms. JAXA will also contribute data from the Global Change Observation Mission-Water (GCOM-W) satellite. Additional partnerships are under development to include microwave radiometers on the French-Indian Megha-Tropiques satellite and U.S. Defense Meteorological Satellite Program (DMSP) satellites, as well as cross-track scanning humidity sounders on operational satellites such as the NPP, POES, JPSS, and MetOp satellites, which are used to improve the precipitation sampling over land. Brazil has in its national space plan for a GPM low-inclination radiometer, and data from Chinese and Russian microwave radiometers could potentially become available through international collaboration under the auspices of the Committee on Earth Observation Satellites (CEOS) and Group on Earth Observations (GEO). The current generation of global rainfall products combines observations from a network of uncoordinated satellite missions using a variety of merging techniques. GPM will provide "next-generation" precipitation data products characterized by: (1) more accurate instantaneous precipitation measurement (especially for light rain and cold-season solid precipitation), (2) more frequent sampling by an expanded constellation of microwave radiometers including operational humidity sounders over land, (3) intercalibrated microwave

  11. The Global Precipitation Measurement (GPM) Mission: U.S. Program and Science Status

    NASA Astrophysics Data System (ADS)

    Hou, Arthur; Azarbarzin, Ardeshir; Kakar, Ramesh; Neeck, Steven

    2010-05-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. NASA and JAXA will deploy the GPM Core Observatory carrying an advanced radar-radiometer system to serve as a physics observatory and a transfer standard for inter-calibration of constellation radiometers. The GPM Core Observatory is scheduled for launch in July 2013. In addition, NASA will provide a second radiometer to be flown on a partner-provided GPM Low-Inclination Observatory to enhance the near real-time monitoring of hurricanes and mid-latitude storms. JAXA will also contribute data from the Global Change Observation Mission-Water (GCOM-W) satellite. Additional partnerships are under development to include conical-scanning microwave imagers on the French-Indian Megha-Tropiques satellite and U.S. Defense Meteorological Satellite Program (DMSP) satellites, as well as cross-track scanning humidity sounders on operational satellites such as the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), POES, NPOESS, and European MetOp satellites, which are used to improve the precipitation sampling over land. Currently, Brazil has in its national space plan for a GPM low-inclination radiometer, and data from Chinese and Russian microwave radiometers could potentially become available through international collaboration under the auspices of the Committee on Earth Observation Satellites (CEOS) and Group on Earth Observations (GEO). The current generation of global rainfall products combines observations from a network of uncoordinated satellite missions using a variety of merging techniques. GPM will provide "next-generation" precipitation data products characterized by: (1) more accurate instantaneous precipitation measurement (especially for light rain and cold-season solid precipitation), (2) more

  12. Observing System Simulations for the NASA ASCENDS Lidar CO2 Mission Concept: Substantiating Science Measurement Requirements

    NASA Technical Reports Server (NTRS)

    Kawa, Stephan R.; Baker, David Frank; Schuh, Andrew E.; Abshire, James Brice; Browell, Edward V.; Michalak, Anna M.

    2012-01-01

    The NASA ASCENDS mission (Active Sensing of Carbon Emissions, Nights, Days, and Seasons) is envisioned as the next generation of dedicated, space-based CO2 observing systems, currently planned for launch in about the year 2022. Recommended by the US National Academy of Sciences Decadal Survey, active (lidar) sensing of CO2 from space has several potentially significant advantages, in comparison to current and planned passive CO2 instruments, that promise to advance CO2 measurement capability and carbon cycle understanding into the next decade. Assessment and testing of possible lidar instrument technologies indicates that such sensors are more than feasible, however, the measurement precision and accuracy requirements remain at unprecedented levels of stringency. It is, therefore, important to quantitatively and consistently evaluate the measurement capabilities and requirements for the prospective active system in the context of advancing our knowledge of carbon flux distributions and their dependence on underlying physical processes. This amounts to establishing minimum requirements for precision, relative accuracy, spatial/temporal coverage and resolution, vertical information content, interferences, and possibly the tradeoffs among these parameters, while at the same time framing a mission that can be implemented within a constrained budget. Here, we present results of observing system simulation studies, commissioned by the ASCENDS Science Requirements Definition Team, for a range of possible mission implementation options that are intended to substantiate science measurement requirements for a laser-based CO2 space instrument.

  13. Summary of LET spectra and dose measurements on ten STS missions

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A comparison of linear energy transfer (LET) spectra measurements made with plastic nuclear track detectors (PNTD's) from area passive dosimeters (APD's), was made for ten different STS missions under similar shielding. The results show that integral flux, dose rate and equivalent dose rate values follow a general increase with respect to increasing orbital inclination and altitude but that there are large variations from a simple relationship. This is to be expected since it has been shown that Shuttle attitude variations, combined with the anisotropic particle flux at the South Atlantic Anomaly (SAA), can result in differences of a factor of 2 in dose rate inside the Shuttle (Badhwar et al., 1995). Solar cycle and shielding differences also result in variations in radiation dose between STS missions. Spaceflight dosimeters from the STS missions are also being used in the development of a method for increasing LET spectra measurement accuracy by extending LET measurements to particle tracks of ranges 10-80 microns. Refinements in processing and measurement techniques for the flight PNTD's have yielded increased detection efficiencies for the short tracks when LET spectra determined by using the standard and refined methods were intercompared.

  14. Ocean Surface reconstruction from the synergy of Sentinel-3 sensors

    NASA Astrophysics Data System (ADS)

    Gonzalez-Haro, C.; Autret, E.; Isern-Fontanet, J.; Tandeo, P.; Le Goff, C.; Garello, R.; Fablet, R.

    2015-12-01

    Along-track altimetric measurements of Sea Surface Heights (SSH) are very well suited to quantify across-track currents. However, the spatial resolution of derived 2D velocities is restricted to scales above 100-150 km and the limited number of altimeters can lead to errors in the location of currents. On the contrary, infrared measurements of Sea Surface Temperature (SST) are well suited to locate flow patterns but it is difficult to extract quantitative estimations of ocean currents. During the last years, some works began to exploit the synergy of SST and altimetry measurements in order to retrieve ocean currents. Nevertheless, all this previous works employed measurements which were near in time but not simultaneous. In that sense, Sentinel-3 is a multi-instrument mission that will circumvent this temporal limitation, providing simultaneous measurements of SST and altimetry with high-end accuracy and reliability. Our approach, based on the spectral properties of simultaneous SST and SSH observations, is tested using ENVISAT (RA, AATSR) data, since its geometry is similar to that of Sentinel-3 (SRAL, SLSTR).

  15. Drop Size Distribution Measurements Supporting the NASA Global Precipitation Measurement Mission: Infrastructure and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Petersen, Walter A.; Carey, Lawerence D.; Gatlin, Patrick N.; Wingo, Matthew; Tokay, Ali; Wolff, David B.; Bringi, V. N.

    2011-01-01

    Global Precipitation Measurement Mission (GPM) retrieval algorithm validation requires datasets that characterize the 4-D structure, variability, and correlation properties of hydrometeor particle size distributions (PSD) and accumulations over satellite fields of view (5 -- 50 km). Key to this process is the combined use of disdrometer and polarimetric radar platforms. Here the disdrometer measurements serve as a reference for up-scaling dual-polarimetric radar observations of the PSD to the much larger volumetric sampling domain of the radar. The PSD observations thus derived provide a much larger data set for assessing DSD variability, and satellite-based precipitation retrieval algorithm assumptions, in all three spatial dimensions for a range of storm types and seasons. As one component of this effort, the GPM Ground Validation program recently acquired five 3rd generation 2D Video disdrometers as part of its Disdrometer and Radar Observations of Precipitation Facility (DROP), currently hosted in northern Alabama by the NASA Marshall Space Flight Center and the University of Alabama in Huntsville. These next-generation 2DVDs were operated and evaluated in different phases of data collection under the scanning domain of the UAH ARMOR C-band dual-polarimetric radar. During this period approximately 7500 minutes of PSD data were collected and processed to create gamma size distribution parameters using a truncated method of moments approach. After creating the gamma parameter datasets the DSDs were then used as input to T-matrix code for computation of polarimetric radar moments at C-band. The combined dataset was then analyzed with two basic objectives in mind: 1) the investigation of seasonal variability in the rain PSD parameters as observed by the 2DVDs; 2) the use of combined polarimetric moments and observed gamma distribution parameters in a functional form to retrieve PSD parameters in 4-D using the ARMOR radar for precipitation occurring in different

  16. Assimilation of Precipitation Measurement Missions Microwave Radiance Observations With GEOS-5

    NASA Technical Reports Server (NTRS)

    Jin, Jianjun; Kim, Min-Jeong; McCarty, Will; Akella, Santha; Gu, Wei

    2015-01-01

    The Global Precipitation Mission (GPM) Core Observatory satellite was launched in February, 2014. The GPM Microwave Imager (GMI) is a conically scanning radiometer measuring 13 channels ranging from 10 to 183 GHz and sampling between 65 S 65 N. This instrument is a successor to the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI), which has observed 9 channels at frequencies ranging 10 to 85 GHz between 40 S 40 N since 1997. This presentation outlines the base procedures developed to assimilate GMI and TMI radiances in clear-sky conditions, including quality control methods, thinning decisions, and the estimation of, observation errors. This presentation also shows the impact of these observations when they are incorporated into the GEOS-5 atmospheric data assimilation system.

  17. Measurement of precipitation induced FUV emission and Geocoronal Lyman Alpha from the IMI mission

    NASA Technical Reports Server (NTRS)

    Mende, Stephen B.; Fuselier, S. A.; Rairden, R. L.

    1995-01-01

    This final report describes the activities of the Lockheed Martin Palo Alto Research Laboratory in studying the measurement of ion and electron precipitation induced Far Ultra-Violet (FUV) emissions and Geocoronal Lyman Alpha for the NASA Inner Magnetospheric Imager (IMI) mission. this study examined promising techniques that may allow combining several FUV instruments that would separately measure proton aurora, electron aurora, and geocoronal Lyman alpha into a single instrument operated on a spinning spacecraft. The study consisted of two parts. First, the geocoronal Lyman alpha, proton aurora, and electron aurora emissions were modeled to determine instrument requirements. Second, several promising techniques were investigated to determine if they were suitable for use in an IMI-type mission. Among the techniques investigated were the Hydrogen gas cell for eliminating cold geocoronal Lyman alpha emissions, and a coded aperture spectrometer with sufficient resolution to separate Doppler shifted Lyman alpha components.

  18. CLAIRE: a Canadian Small Satellite Mission for Measurement of Greenhouse Gases

    NASA Astrophysics Data System (ADS)

    Sloan, James; Grant, Cordell; Germain, Stephane; Durak, Berke; McKeever, Jason; Latendresse, Vincent

    2016-07-01

    CLAIRE, a Canadian mission operated by GHGSat Inc. of Montreal, is the world's first satellite designed to measure greenhouse gas emissions from single targeted industrial facilities. Claire was launched earlier this year into a 500 km polar sun-synchronous orbit selected to provide an acceptable balance between return frequency and spatial resolution. Extensive simulations of oil & gas facilities, power plants, hydro reservoirs and even animal feedlots were used to predict the mission performance. The principal goal is to measure the emission rates of carbon dioxide and methane from selected targets with greater precision and lower cost than ground-based alternatives. CLAIRE will measure sources having surface areas less than 10 x 10 km2 with a spatial resolution better than 50 m, thereby providing industrial site operators and government regulators with the information they need to understand, manage and ultimately to reduce greenhouse gas emissions more economically. The sensor is based on a Fabry-Perot interferometer, coupled with a 2D InGaAs focal plane array operating in the short-wave infrared with a spectral resolution of about 0.1 nm. The patented, high étendue, instrument design provides signal to noise ratios that permit quantification of emission rates with accuracies adequate for most regulatory reporting thresholds. The very high spatial resolution of the density maps produced by the CLAIRE mission resolves plume shapes and emitter locations so that advanced dispersion models can derive accurate emission rates of multiple sources within the field of view. The satellite bus, provided by the University of Toronto's Space Flight Laboratory, is based on the well-characterized NEMO architecture, including hardware that has significant spaceflight heritage. The mission is currently undergoing initial test and validation measurements in preparation for commercial operation later this year.

  19. Tropical Rainfall Measuring Mission (TRMM) project. VI - Spacecraft, scientific instruments, and launching rocket. Part 1 - Spacecraft

    NASA Technical Reports Server (NTRS)

    Keating, Thomas; Ihara, Toshio; Miida, Sumio

    1990-01-01

    A cooperative United States/Japan study was made for one year from 1987 to 1988 regarding the feasibility of the Tropical Rainfall Measuring Mission (TRMM). As part of this study a phase-A-level design of spacecraft for TRMM was developed by NASA/GSFC, and the result was documented in a feasibility study. The phase-A-level design is developed for the TRMM satellite utilizing a multimission spacecraft.

  20. The Tropical Rainfall Measuring Mission and Vern Suomi 's Vital Role

    NASA Technical Reports Server (NTRS)

    Simpson, Joanne; Kummerow, Christian

    1999-01-01

    The Tropical Rainfall Measuring Mission was a new concept of measuring rainfall over the global tropics using a combination of instruments, including the first weather radar to be flown in space. An important objective of the mission was to obtain profiles of latent heat in order to initialize large-scale circulation models and to understand the relationship between short-term climate changes in relation to rainfall variability. The idea originated in the early 1980's from scientists at the Goddard Space Flight Center/NASA who had been involved with attempts to measure rain with a passive microwave instrument on Nimbus 5 and had compared its results with rain falling in the area covered by the GATE1 radar ships. Using an imaginary satellite flying over the GATE ships, scientists showed that a satellite with an inclined orbit of 30-35 degrees could obtain monthly rainfalls with a sampling error of less than 10 percent over 5 degree by 5 degree areas. The Japanese proposed that they could build a nadir-scanning rain radar for the satellite. Vern Suomi was excited by this mission from the outset, since he recognized the great importance of adequate rainfall measurements over the tropical oceans. He was a charter member of the Science Steering Team and prepared a large part of the Report. While the mission attracted strong support in the science community, it was opposed by some of the high-level NASA management who feared its competition for funds with some much larger Earth Science satellites. Vern was able to overcome this opposition and to generate Congressional support, so that the Project finally got underway on both sides of the Pacific in 1991. The paper will discuss the design of the satellite, its data system and ground validation program. TP.NM was successfully launched in late 1997. Early results will be described. 1 GATE stands for GARP Atlantic Tropical Experiment and GARP stands for Global Atmospheric Research Program.

  1. Mission Simulation of Space Lidar Measurements for Seasonal and Regional CO2 Variations

    NASA Technical Reports Server (NTRS)

    Kawa, Stephan; Collatz, G. J.; Mao, J.; Abshire, J. B.; Sun, X.; Weaver, C. J.

    2010-01-01

    Results of mission simulation studies are presented for a laser-based atmospheric [82 sounder. The simulations are based on real-time carbon cycle process modeling and data analysis. The mission concept corresponds to the Active Sensing of [82 over Nights, Days, and Seasons (ASCENDS) recommended by the US National Academy of Sciences Decadal Survey of Earth Science and Applications from Space. One prerequisite for meaningful quantitative sensor evaluation is realistic CO2 process modeling across a wide range of scales, i.e., does the model have representative spatial and temporal gradients? Examples of model comparison with data will be shown. Another requirement is a relatively complete description of the atmospheric and surface state, which we have obtained from meteorological data assimilation and satellite measurements from MODIS and [ALIPS0. We use radiative transfer model calculations, an instrument model with representative errors ' and a simple retrieval approach to complete the cycle from "nature" run to "pseudo-data" CO2, Several mission and instrument configuration options are examined/ and the sensitivity to key design variables is shown. We use the simulation framework to demonstrate that within reasonable technological assumptions for the system performance, relatively high measurement precision can be obtained, but errors depend strongly on environmental conditions as well as instrument specifications. Examples are also shown of how the resulting pseudo - measurements might be used to address key carbon cycle science questions.

  2. Tropical Rainfall Measuring Mission (TRMM) and the Future of Rainfall Estimation from Space

    NASA Technical Reports Server (NTRS)

    Kakar, Ramesh; Adler, Robert; Smith, Eric; Starr, David OC. (Technical Monitor)

    2001-01-01

    Tropical rainfall is important in the hydrological cycle and to the lives and welfare of humans. Three-fourths of the energy that drives the atmospheric wind circulation comes from the latent heat released by tropical precipitation. Recognizing the importance of rain in the tropics, NASA for the U.S.A. and NASDA for Japan have partnered in the design, construction and flight of a satellite mission to measure tropical rainfall and calculate the associated latent heat release. The Tropical Rainfall Measuring Mission (TRMM) satellite was launched on November 27, 1997, and data from all the instruments first became available approximately 30 days after launch. Since then, much progress has been made in the calibration of the sensors, the improvement of the rainfall algorithms and applications of these results to areas such as Data Assimilation and model initialization. TRMM has reduced the uncertainty of climatological rainfall in tropics by over a factor of two, therefore establishing a standard for comparison with previous data sets and climatologies. It has documented the diurnal variation of precipitation over the oceans, showing a distinct early morning peak and this satellite mission has shown the utility of precipitation information for the improvement of numerical weather forecasts and climate modeling. This paper discusses some promising applications using TRMM data and introduces a measurement concept being discussed by NASA/NASDA and ESA for the future of rainfall estimation from space.

  3. Short and long term efficiencies of debris risk reduction measures: Application to a European LEO mission

    NASA Astrophysics Data System (ADS)

    Lang, T.; Kervarc, R.; Bertrand, S.; Carle, P.; Donath, T.; Destefanis, R.; Grassi, L.; Tiboldo, F.; Schäfer, F.; Kempf, S.; Gelhaus, J.

    2015-01-01

    Recent numerical studies indicate that the low Earth orbit (LEO) debris environment has reached a point such that even if no further space launches were conducted, the Earth satellite population would remain relatively constant for only the next 50 years or so. Beyond that, the debris population would begin to increase noticeably, due to the production of collisional debris (Liou and Johnson, 2008). Measures to be enforced play thus a major role to preserve an acceptable space mission risk and ensure sustainable space activities. The identification of such measures and the quantification of their efficiency over time for LEO missions is of prime concern in the decision-making process, as it has been investigated for the last few decades by the Inter-Agency Space Debris Coordination Committee (IADC). This paper addresses the final results of a generic methodology and the characteristics of a tool developed to assess the efficiency of the risk reduction measures identified for the Sentinel-1 (S1) mission. This work is performed as part of the 34-month P2-ROTECT project (Prediction, Protection & Reduction of OrbiTal Exposure to Collision Threats), funded by the European Union within the Seventh Framework Programme. Three ways of risk reduction have been investigated, both in short and long-term, namely: better satellite protection, better conjunction prediction, and cleaner environment. According to our assumptions, the S1 mission vulnerability evaluations in the long term (from 2093 to 2100) show that full compliance to the mitigation measures leads to a situation twice safer than that induced by an active debris removal of 5 objects per year in a MASTER2009 Business-As-Usual context. Because these measures have visible risk reduction effects in the long term, complementary measures with short response time are also studied. In the short term (from 2013 to 2020), a better prediction of the conjunctions is more efficient than protecting the satellite S1 itself. By

  4. The Global Precipitation Measurement (GPM) Mission contributions to terrestrial hydrology and societal applications

    NASA Astrophysics Data System (ADS)

    Kirschbaum, D.; Skofronick Jackson, G.; Huffman, G. J.

    2015-12-01

    Too much or too little rain can serve as a tipping point for triggering catastrophic flooding and landslides or widespread drought. Knowing when, where and how much rain is falling globally is vital to understanding how vulnerable areas may be more or less impacted by these disasters. The Global Precipitation Measurement (GPM) mission is an international constellation of satellites coordinated through a partnership with NASA and the Japan Aerospace Exploration Agency (JAXA) to provide next-generation global observations of rain and snow. The GPM mission centers on the deployment of a Core Observatory satellite that serves as a reference standard to unify precipitation measurements from a constellation of research and operational satellites. This satellite launched from Tanegashima Space Complex in Japan on January 28th, 2014 and carries advanced instruments setting a new standard for precipitation measurements from space. The GPM Core Observatory satellite measures rain and snow using two science instruments: the GPM Microwave Imager (GMI) and the Dual-frequency Precipitation Radar (DPR). The GMI captures precipitation intensities and horizontal patterns, while the DPR provides insights into the three dimensional structure of precipitating particles. Together these two instruments provide a database of measurements against which other partner satellites' microwave observations can be meaningfully compared and combined to make a global precipitation dataset. GPM has already provided unprecedented views of typhoons, extratropical systems, light rain, snow storms and extreme precipitation. Through improved measurements of precipitation globally, the GPM mission provides new insights into measuring the fluxes of Earth's water cycle. This presentation will outline new findings and advancements of GPM in understanding and modeling of Earth's water and energy cycles, improving forecasting of extreme events that cause natural hazards and disasters, and extending current

  5. Eight years of OMI measurements and what we can learn from these for the Sentinel missions

    NASA Astrophysics Data System (ADS)

    Levelt, Pieternel; Veefkind, Pepijn; Bhartia, Pawan; Joiner, Joanna; Taminen, Johanna; Omi Science Team

    2013-04-01

    Eight years of OMI measurements and what we can learn from these for the Sentinel missions P.F. Levelt, P. Veefkind, PK Bhartia, J. Joiner, J. Tamminen, OMI Science Team The Ozone Monitoring Instrument (OMI) is an UV/VIS nadir solar backscatter imaging spectrometer, which provides nearly global coverage in one day with a spatial resolution of 13 x 24 km2. OMI measures solar irradiance and Earth radiances in the wavelength range of 270 to 500 nm with a spectral resolution of about 0.5 nm. The OMI instrument was launched at July 15, 2004 on NASA's EOS-Aura satellite. OMI is a third party mission of ESA. OMI's unique capabilities rely in measuring tropospheric trace gases with a small footprint and daily global coverage. The unprecedented spatial resolution of the instrument revealed for the first time tropospheric pollution maps on a daily basis with urban scale resolution, and also enables research improving our understanding of air pollutants and aerosols in the interaction between air quality and climate change. The data are used for obtaining emission maps using inverse modelling or related techniques. The sentinel missions (S5p/TROPOMI and Sentinel 4 and 5) will have an even better spatial resolution than OMI. In order to exploit their capability for tropospheric research and actual monitoring of emission sources the calibration and validation of these instruments and their data products are of high importance. In this presentation new findings of OMI will be presented and what we can learn from that for the preparation of the Sentinel missions, their validation and their scientific exploitation. Also lessons learned from the NASA methodology for OMI validation will be discussed and results of validation campaigns that supported OMI validation (i.e. SAUNA, DANDELIONS, CINDI, DISCOVER AQ, etc etc) will be shown.

  6. Geoscience Laser Altimeter System (GLAS) on the ICESat Mission: Science Measurement Performance since Launch

    NASA Technical Reports Server (NTRS)

    Sun, Xiao-Li; Abshire, James B.; Riris, Haris; McGarry, Jan; Sirota, Marcos

    2004-01-01

    The Geoscience Laser Altimeter System is the primary space lidar on NASA's ICESat mission. Since launch in January 2003 GLAS has produced about 544 million measurements of the Earth's surface and atmosphere. It has made global measurements of the Earth's icesheets, land topography and atmosphere with unprecedented vertical resolution and accuracy. GLAS was first activated for science measurements in February 2003. Since then its operation and performance has confirmed many pre-launch expectations and exceed a few of the most optimistic expectations in vertical resolution. However GLAS also suffered an unexpected failure of its first laser, and the GLAS measurements have yielded some surprises in other areas. The talk will give a post launch assessment of the science measurement performance of the GLAS instrument, and compare the science measurements and engineering operation to pre-launch expectations. It also will address some of what has been learned from the GLAS operations and data, which may benefit future space lidar.

  7. Forest Biomass Mapping From Lidar and Radar Synergies

    NASA Technical Reports Server (NTRS)

    Sun, Guoqing; Ranson, K. Jon; Guo, Z.; Zhang, Z.; Montesano, P.; Kimes, D.

    2011-01-01

    The use of lidar and radar instruments to measure forest structure attributes such as height and biomass at global scales is being considered for a future Earth Observation satellite mission, DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice). Large footprint lidar makes a direct measurement of the heights of scatterers in the illuminated footprint and can yield accurate information about the vertical profile of the canopy within lidar footprint samples. Synthetic Aperture Radar (SAR) is known to sense the canopy volume, especially at longer wavelengths and provides image data. Methods for biomass mapping by a combination of lidar sampling and radar mapping need to be developed. In this study, several issues in this respect were investigated using aircraft borne lidar and SAR data in Howland, Maine, USA. The stepwise regression selected the height indices rh50 and rh75 of the Laser Vegetation Imaging Sensor (LVIS) data for predicting field measured biomass with a R(exp 2) of 0.71 and RMSE of 31.33 Mg/ha. The above-ground biomass map generated from this regression model was considered to represent the true biomass of the area and used as a reference map since no better biomass map exists for the area. Random samples were taken from the biomass map and the correlation between the sampled biomass and co-located SAR signature was studied. The best models were used to extend the biomass from lidar samples into all forested areas in the study area, which mimics a procedure that could be used for the future DESDYnI Mission. It was found that depending on the data types used (quad-pol or dual-pol) the SAR data can predict the lidar biomass samples with R2 of 0.63-0.71, RMSE of 32.0-28.2 Mg/ha up to biomass levels of 200-250 Mg/ha. The mean biomass of the study area calculated from the biomass maps generated by lidar- SAR synergy 63 was within 10% of the reference biomass map derived from LVIS data. The results from this study are preliminary, but do show the

  8. Atmospheric Airborne Pressure Measurements Using the Oxygen A Band for the ASCENDS Mission

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Rodriguez, Mike; Stephen, Mark; Hasselbrack, William; Allan, Graham; Mao, Jianping; Kawa, Stephen R.; Weaver, Clark J.

    2010-01-01

    We report on airborne atmospheric pressure measurements using new fiber-based laser technology and the oxygen A-band at 765 nm. Remote measurements of atmospheric temperature and pressure are required for a number of NASA Earth science missions and specifically for the Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve predictions on any future climate change. The ultimate goal of a CO2 remote sensing mission, such as ASCENDS, is to derive the CO2 concentration in the atmosphere in terms of mole fraction in unit of parts-per-million (ppmv) with regard to dry air. Therefore, both CO2 and the dry air number of molecules in the atmosphere are needed in deriving this quantity. O2 is a stable molecule and uniformly mixed in the atmosphere. Measuring the O2 absorption in the atmosphere can thus be used to infer the dry air number of molecules and then used to calculate CO2 concentration. With the knowledge of atmospheric water vapor, we can then estimate the total surface pressure needed for CO2 retrievals. Our work, funded by the ESTO IIP program, uses fiber optic technology and non-linear optics to generate 765 nm laser radiation coincident with the Oxygen A-band. Our pulsed, time gated technique uses several on- and off-line wavelengths tuned to the O2 absorption line. The choice of wavelengths allows us to measure the pressure by using two adjacent O2 absorptions in the Oxygen A-band. Our retrieval algorithm fits the O2 lineshapes and derives the pressure. Our measurements compare favorably with a local weather monitor mounted outside our laboratory and a local weather station.

  9. Atmospheric Airborne Pressure Measurements Using the Oxygen A Band for the ASCENDS Mission

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Rodriguez, Mike; Stephen, Mark; Hasselbrack, William; Allan, Graham; Mao, Jiamping,; Kawa, Stephan R.; Weaver, Clark J.

    2011-01-01

    We report on airborne atmospheric pressure measurements using new fiber-based laser technology and the oxygen A-band at 765 nm. Remote measurements of atmospheric temperature and pressure are required for a number of NASA Earth science missions and specifically for the Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve predictions on any future climate change. The ultimate goal of a CO2 remote sensing mission, such as ASCENDS, is to derive the CO2 concentration in the atmosphere in terms of mole fraction in unit of parts-per-million (ppmv) with regard to dry air. Therefore, both CO2 and the dry air number of molecules in the atmosphere are needed in deriving this quantity. O2 is a stable molecule and uniformly mixed in the atmosphere. Measuring the O2 absorption in the atmosphere can thus be used to infer the dry air number of molecules and then used to calculate CO2 concentration. With the knowledge of atmospheric water vapor, we can then estimate the total surface pressure needed for CO2 retrievals. Our work, funded by the ESTO IIP program, uses fiber optic technology and non-linear optics to generate 765 nm laser radiation coincident with the Oxygen A-band. Our pulsed, time gated technique uses several on- and off-line wavelengths tuned to the O2 absorption line. The choice of wavelengths allows us to measure the pressure by using two adjacent O2 absorptions in the Oxygen A-band. Our retrieval algorithm fits the O2 lineshapes and derives the pressure. Our measurements compare favorably with a local weather monitor mounted outside our laboratory and a local weather station.

  10. PICARD SOL mission, a ground-based facility for long-term solar radius measurement

    NASA Astrophysics Data System (ADS)

    Meftah, M.; Irbah, A.; Corbard, T.; Morand, F.; Thuillier, G.; Hauchecorne, A.; Ikhlef, R.; Rouze, M.; Renaud, C.; Djafer, D.; Abbaki, S.; Assus, P.; Chauvineau, B.; Cissé, E. M.; Dalaudier, F.; D'Almeida, Eric; Fodil, M.; Laclare, F.; Lesueur, P.; Lin, M.; Marcovici, J. P.; Poiet, G.

    2012-09-01

    For the last thirty years, ground time series of the solar radius have shown different variations according to different instruments. The origin of these variations may be found in the observer, the instrument, the atmosphere and the Sun. These time series show inconsistencies and conflicting results, which likely originate from instrumental effects and/or atmospheric effects. A survey of the solar radius was initiated in 1975 by F. Laclare, at the Calern site of the Observatoire de la Cˆote d'Azur (OCA). PICARD is an investigation dedicated to the simultaneous measurements of the absolute total and spectral solar irradiance, the solar radius and solar shape, and to the Sun's interior probing by the helioseismology method. The PICARD mission aims to the study of the origin of the solar variability and to the study of the relations between the Sun and the Earth's climate by using modeling. These studies will be based on measurements carried out from orbit and from the ground. PICARD SOL is the ground segment of the PICARD mission to allow a comparison of the solar radius measured in space and on ground. PICARD SOL will enable to understand the influence of the atmosphere on the measured solar radius. The PICARD Sol instrumentation consists of: SODISM II, a replica of SODISM (SOlar Diameter Imager and Surface Mapper), a high resolution imaging telescope, and MISOLFA (Moniteur d'Images SOLaires Franco-Alǵerien), a seeing monitor. Additional instrumentation consists in a Sun photometer, which measures atmospheric aerosol properties, a pyranometer to measure the solar irradiance, a visible camera, and a weather station. PICARD SOL is operating since March 2011. First results from the PICARD SOL mission are briefly reported in this paper.

  11. NanoSWARM: A Nano-satellite Mission to Measure Particles and Fields Around the Moon

    NASA Astrophysics Data System (ADS)

    Garrick-Bethell, I.

    2015-12-01

    The NanoSWARM mission concept uses a fleet of cubesats around the Moon to address a number of open problems in planetary science: 1) The mechanisms of space weathering, 2) The origins of planetary magnetism, 3) The origins, distributions, and migration processes of surface water on airless bodies, and 4) The physics of small-scale magnetospheres. To accomplish these goals, NanoSWARM targets scientifically rich features on the Moon known as swirls. Swirls are high-albedo features correlated with strong magnetic fields and low surface-water. NanoSWARM cubesats will make the first near-surface (<1 km altitude) measurements of solar wind flux and magnetic fields at swirls. NanoSWARM cubesats will also perform low-altitude neutron measurements to provide key constraints on the distribution of polar hydrogen concentrations, which are important volatile sinks in the lunar water cycle. To release its cubesats, NanoSWARM uses a high-heritage mother ship in a low altitude, polar, circular orbit. NanoSWARM's results will have direct applications to the geophysics, volatile distribution, and plasma physics of numerous other bodies, in particular asteroids and the terrestrial planets. The technologies and methods used by NanoSWARM will enable many new cubesat missions in the next decade. NanoSWARM was proposed as a NASA Discovery mission in February 2015.

  12. NanoSWARM - A nano-satellite mission to measure particles and fields around the Moon

    NASA Astrophysics Data System (ADS)

    Garrick-Bethell, Ian; Russell, Christopher; Pieters, Carle; Weiss, Benjamin; Halekas, Jasper; Poppe, Andrew; Larson, Davin; Lawrence, David; Elphic, Richard; Hayne, Paul; Blakely, Richard; Kim, Khan-Hyuk; Choi, Young-Jun; Jin, Ho; Hemingway, Doug; Nayak, Michael; Puig-Suari, Jordi; Jaroux, Belgacem; Warwick, Steven

    2015-04-01

    The NanoSWARM mission concept uses a fleet of cubesats around the Moon to address a number of open problems in planetary science: 1) The mechanisms of space weathering, 2) The origins of planetary magnetism, 3) The origins, distributions, and migration processes of surface water on airless bodies, and 4) The physics of small-scale magnetospheres. To accomplish these goals, NanoSWARM targets scientifically rich features on the Moon known as swirls. Swirls are high-albedo features correlated with strong magnetic fields and low surface-water. NanoSWARM cubesats will make the first near-surface (<500 m altitude) measurements of solar wind flux and magnetic fields at swirls. NanoSWARM cubesats will also perform low-altitude neutron measurements to provide key constraints on the distribution of polar hydrogen concentrations, which are important volatile sinks in the lunar water cycle. To release its cubesats, NanoSWARM uses a high-heritage mother ship in a low altitude, polar, circular orbit. NanoSWARM's results will have direct applications to the geophysics, volatile distribution, and plasma physics of numerous other bodies, in particular asteroids and the terrestrial planets. The technologies and methods used by NanoSWARM will enable many new cubesat missions in the next decade, and expand the cubesat paradigm into deep space. NanoSWARM will be proposed as a NASA Discovery mission in early 2015.

  13. Analysis of earth albedo effect on sun sensor measurements based on theoretical model and mission experience

    NASA Technical Reports Server (NTRS)

    Brasoveanu, Dan; Sedlak, Joseph

    1998-01-01

    Analysis of flight data from previous missions indicates that anomalous Sun sensor readings could be caused by Earth albedo interference. A previous Sun sensor study presented a detailed mathematical model of this effect. The model can be used to study the effect of both diffusive and specular reflections and to improve Sun angle determination based on perturbed Sun sensor measurements, satellite position, and an approximate knowledge of attitude. The model predicts that diffuse reflected light can cause errors of up to 10 degrees in Coarse Sun Sensor (CSS) measurements and 5 to 10 arc sec in Fine Sun Sensor (FSS) measurements, depending on spacecraft orbit and attitude. The accuracy of these sensors is affected as long as part of the illuminated Earth surface is present in the sensor field of view. Digital Sun Sensors (DSS) respond in a different manner to the Earth albedo interference. Most of the time DSS measurements are not affected, but for brief periods of time the Earth albedo can cause errors which are a multiple of the sensor least significant bit and may exceed one degree. This paper compares model predictions with Tropical Rainfall Measuring Mission (TRMM) CSS measurements in order to validate and refine the model. Methods of reducing and mitigating the impact of Earth albedo are discussed. ne CSS sensor errors are roughly proportional to the Earth albedo coefficient. Photocells that are sensitive only to ultraviolet emissions would reduce the effective Earth albedo by up to a thousand times, virtually eliminating all errors caused by Earth albedo interference.

  14. Design and Performance of Tropical Rainfall Measuring Mission (TRMM) Super NiCd Batteries

    NASA Technical Reports Server (NTRS)

    Ahmad, Anisa J.; Rao, Gopalakrishna M.; Jallice, Doris E.; Moran Vickie E.

    1999-01-01

    The Tropical Rainfall Measuring Mission (TRMM) is a joint mission between NASA and the National Space Development Agency (NASDA) of Japan. The observatory is designed to monitor and study tropical rainfall and the associated release of energy that helps to power the global atmospheric circulation shaping both weather and climate around the globe. The spacecraft was launched from Japan on November 27,1997 via the NASDA H-2 launch vehicle. The TRMM Power Subsystem is a Peak Power Tracking system that can support the maximum TRMM load of 815 watts at the end of its three year life. The Power Subsystem consists of two 50 Ampere Hour Super NiCd batteries, Gallium Arsenide Solar Array and the Power System Electronics. This paper describes the TRMM Power Subsystem, battery design, cell and battery ground test performance, and in-orbit battery operations and performance.

  15. The Science of the Global-scale measurements of the Limb and Disk (GOLD) Mission

    NASA Astrophysics Data System (ADS)

    Burns, A. G.; Eastes, R.; McClintock, W. E.; Solomon, S. C.; Anderson, D. N.; Andersson, L.; Codrescu, M.; Daniell, R. E.; Harvey, J.; Krywonos, A.; Lankton, M.; Lumpe, J. D.; Richmond, A. D.; Rusch, D. W.; Siegmund, O.; Strickland, D. J.; Woods, T. N.; Lieberman, R. S.; Martinis, C. R.; Oberheide, J.; Budzien, S. A.; Dymond, K.; Eparvier, F. G.; Foroosh, H.; Aksnes, A.

    2013-12-01

    GOLD is a mission of opportunity that has been funded by NASA to fly on board a commercial communications satellite. GOLD is a far ultraviolet spectrometer that will measure the temperature, composition and electron density in the Earth's upper atmosphere from geostationary orbit. Because GOLD will remain over one location on the Earth's equator, local time and longitude effects can be separated. This geostationary perspective allows GOLD's primary science questions to be addressed in a new way: treating the thermosphere/ionosphere (TI) as a weather system. Four questions frame this mission that pertain to how the thermosphere and ionosphere (TI) respond to external forcing. Specifically the GOLD team will investigate the response of the TI to geomagnetic storms, changes in solar radiation; the effects of upwardly propagating tides on the system; and the presence and evolution of ionospheric bubbles. We will describe these scientific goals in more detail in this poster.

  16. Summary Report of mission acceleration measurements for STS-66. Launched November 3, 1994

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Delombard, Richard

    1995-01-01

    Experiments flown in the middeck of Atlantis during the STS-66 mission were supported by the Space Acceleration Measurement System (SAMS). In particular, the three triaxial SAMS sensor heads collected data in support of protein crystal growth experiments. Data collected during STS-66 are reviewed in this report. The STS-66 SAMS data represent the microgravity environment in the 0.01 Hz to 10 Hz range. Variations in the environment related to differing levels of crew activity are discussed in the report. A comparison is made among times when the crew was quiet during a public affairs conference, working quietly, and exercising. These levels of activity are also compared to levels recorded by a SAMS unit in the Spacelab on Columbia during the STS-65 mission.

  17. High-resolution Ion Drift Measurements from the JOULE Sounding Rocket Mission.

    NASA Astrophysics Data System (ADS)

    Sangalli, L.; Knudsen, D. J.

    2004-12-01

    The JOULE sounding rocket mission was designed to investigate structured Joule dissipation in the auroral ionosphere. JOULE was launched March 27, 2003 from Poker Flat, Alaska, into an active substorm. The mission included two instrumented rockets and two chemical release (TMA) rockets in addition to ground-based diagnostics. One of the instrumented payloads carried a Suprathermal Ion Imager (SII) that measured 2-D (energy/angle) distributions of the core (0-8 eV) ion population at a rate of 125 images per second. In this presentation we compare bulk ion drifts derived from the SII with those inferred from DC electric fields. From differences in these two parameters we calculate the local Joule heating rate at a spatial resolution of 8 m.

  18. Water vapor and cloud water measurements over Darwin during the STEP 1987 tropical mission

    SciTech Connect

    Kelly, K.K.; Proffitt, M.H. ); Chan, K.R.; Loewenstein, M.; Podolske, J.R. ); Strahan, S.E. ); Wilson, J.C. ); Kley, D. )

    1993-05-20

    The authors report results of total water, and water vapor measurements made in the upper troposphere and stratosphere during the Stratosphere-Troposphere Exchange Project (STEP) Tropical mission over Darwin, Australia. Measurements were made from an ER-2 aircraft by lyman-[alpha] hygrometers. The average lower stratosphere water vapor was 2.4 parts per million by volume (ppmv), at a potential temperature of 375 K. This level is lower than the 3 to 4 ppmv water vapor level typical of the stratosphere.

  19. Operating the Dual-Orbtier GRAIL Mission to Measure the Moon's Gravity

    NASA Technical Reports Server (NTRS)

    Beerer, Joseph G.; Havens, Glen G.

    2012-01-01

    The GRAIL mission is on track to satisfy all prime mission requirements. The performance of the orbiters and payload has been exceptional. Detailed pre-launch operations planning and validation have paid off. Prime mission timeline has been conducted almost exactly as laid out in the mission plan. Flight experience in the prime mission puts the flight team in a good position for completing the challenges of the extended mission where the science payoff is even greater

  20. On the possibility of measuring the Lense Thirring effect with a LAGEOS LAGEOS II OPTIS mission

    NASA Astrophysics Data System (ADS)

    Iorio, Lorenzo; Ciufolini, Ignazio; Pavlis, Erricos C.; Schiller, Stephan; Dittus, Hansjörg; Lämmerzahl, Claus

    2004-04-01

    A space mission, OPTIS, has been proposed for testing the foundations of special relativity and post-Newtonian gravitation in the field of the Earth. The constraints posed on the original OPTIS orbital geometry would allow for a rather wide range of possibilities for the final OPTIS orbital parameters. This freedom could be exploited for further tests of post-Newtonian gravity. In this paper, we wish to preliminarily investigate if it would be possible to use the orbital data from OPTIS together with those from the existing geodetic passive laser-ranged LAGEOS and LAGEOS II satellites in order to perform precise measurements of the Lense Thirring effect. With regard to this possibility, it is important to note that the drag-free technology which should be adopted for the OPTIS mission would yield a lifetime of many years for this satellite. It turns out that the best choice would probably be to adopt the same orbital configuration as the proposed LAGEOS-like LARES satellite and, for testing, select a linear combination including the nodes of LAGEOS, LAGEOS II and OPTIS and the perigee of OPTIS. The total systematic error should be of the order of 1%. The LARES orbital geometry should not be too much in conflict with the original specifications of the OPTIS mission. However, a compromise solution could also be adopted. A comparison with the new perspectives of measuring the Lense Thirring effect with the existing laser-tracked satellites opened by the new gravity models from CHAMP and, especially, GRACE is made. It turns out that an OPTIS/LARES mission would still be of great significance because the obtainable accuracy would be better than that offered by a reanalysis of the currently existing satellites.

  1. Combined Infrared Stereo and Laser Ranging Cloud Measurements from Shuttle Mission STS-85

    NASA Technical Reports Server (NTRS)

    Lancaster, Redgie S.; Spinhirne, James D.; OCStarr, David (Technical Monitor)

    2001-01-01

    Multi-angle remote sensing provides a wealth of information for earth and climate monitoring. And, as technology advances so do the options for developing instrumentation versatile enough to meet the demands associated with these types of measurements. In the current work, the multiangle measurement capability of the Infrared Spectral Imaging Radiometer is demonstrated. This instrument flew as part of mission STS-85 of the space shuttle Columbia in 1997 and was the first earth-observing radiometer to incorporate an uncooled microbolometer array detector as its image sensor. Specifically, a method for computing cloud-top height from the multi-spectral stereo measurements acquired during this flight has been developed and the results demonstrate that a vertical precision of 10.6 km was achieved. Further, the accuracy of these measurements is confirmed by comparison with coincident direct laser ranging measurements from the Shuttle Laser Altimeter. Mission STS-85 was the first space flight to combine laser ranging and thermal IR camera systems for cloud remote sensing.

  2. Measuring Earth's radiation imbalance with RAVAN: A CubeSat mission to measure the driver of global climate change

    NASA Astrophysics Data System (ADS)

    Swartz, W. H.; Dyrud, L. P.; Wiscombe, W. J.; Lorentz, S. R.; Papadakis, S.; Summers, R. A.; Smith, A. W.; Wu, D. L.; Deglau, D. M.; Arnold, S. P.

    2013-12-01

    The Earth radiation imbalance (ERI) is the single most important quantity for predicting the course of climate change over the next century. It is also the single most important metric for any geo-engineering scheme. We review the current scientific understanding of ERI and present a recently funded CubeSat mission, the Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN), that will demonstrate an affordable, accurate radiometer that directly measures Earth-leaving fluxes of total and solar-reflected radiation. Coupled with knowledge of the incoming radiation from the Sun, RAVAN directly gives ERI. The objective of RAVAN is to demonstrate that a compact spaceborne radiometer that is absolutely accurate to NIST-traceable standards can be built for low cost. The key technologies that enable a radiometer with all these attributes are: a gallium fixed-point blackbody as a built-in calibration source and a vertically aligned carbon nanotube (VACNT) absorber. VACNTs are the blackest known substance, making them ideal radiometer absorbers with order-of-magnitude improvements in spectral flatness and stability over the existing art. The Johns Hopkins University Applied Physics Laboratory heritage 3U Multi-Mission Nanosat will host RAVAN, providing the reliability, agility, and resources needed. RAVAN will pave the way for a constellation Earth radiation budget mission that can provide the measurements needed to enable vastly superior predictions of future climate change.

  3. New Mission to Measure Global Lightning from the International Space Station (ISS)

    NASA Astrophysics Data System (ADS)

    Blakeslee, R. J.; Christian, H. J., Jr.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M. G.; Stewart, M. F.; O'Brien, S.; Wilson, T. O.; Pavelitz, S. D.; Coker, C.

    2015-12-01

    Over the past 20 years, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners developed and demonstrated the effectiveness and value of space-based lightning observations as a remote sensing tool for Earth science research and applications, and, in the process, established a robust global lightning climatology. The observations included measurements from the Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) that acquired global observations of total lightning (i.e., intracloud and cloud-to-ground discharges) from November 1997 to April 2015 between 38° N/S latitudes, and its Optical Transient Detector predecessor that acquired observation from May 1995 to April 2000 over 75° N/S latitudes. In February 2016, as an exciting follow-on to these prior missions, a space-qualified LIS built as a flight-spare for TRMM will be delivered to the International Space Station (ISS) for a 2 year or longer mission, flown as a hosted payload on the Department of Defense Space Test Program-Houston 5 (STP-H5) mission. The LIS on ISS will continue observations of the amount, rate, and radiant energy of total lightning over the Earth. More specifically, LIS measures lightning during both day and night, with storm scale resolution (~4 km), millisecond timing, and high, uniform detection efficiency, without any land-ocean bias. Lightning is a direct and most impressive response to intense atmospheric convection. ISS LIS lightning observations will continue to provide important gap-filling inputs to pressing Earth system science issues across a broad range of disciplines. This mission will also extend TRMM time series observations, expand the latitudinal coverage to 54° latitude, provide real-time lightning data to operational users, espically over data sparse oceanic regions, and enable cross-sensor observations and calibrations that includes the new GOES-R Geostationary Lightning Mapper (GLM) and the Meteosat

  4. Summary report of mission acceleration measurements for STS-60, SPACEHAB2, launched 11 February 1994

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Delombard, Richard

    1994-01-01

    The STS-60 mission, which launched on 11 February 1994, carried seven accelerometer systems. This report describes the configuration of each of these systems, where they were located on the Orbiter and the name of a contact person for each system. The Space Acceleration Measurement System (SAMS) was one of the accelerometer systems on-board and this mission marked its eighth successful flight. Acceleration data are provided here for SAMS which flew under an agreement between the NASA Microgravity Science and Applications division and the NASA office of Advanced Concepts and Technology. Acceleration data for the other accelerometer systems are not presented here. SAMS was located in the commercial SPACEHAB laboratory, on its second flight. The SAMS system was configured with three triaxial sensor heads with filter cut-offs of 5, 10, and 50 Hz. The acceleration environment related to an experiment centrifuge, an experiment refrigerator freezer unit, a SAMS sensor head rotation, an Orbiter shudder, and payload deploy activities are discussed. In the Appendices, all of the data from SAMS Head B (10 Hz) are plotted to provide an overview of the environment during the majority of the STS-60 mission. An evaluation form is included at the end of the report to solicit users' comments about the usefulness of this series of reports.

  5. Global Precipitation Measurement. Report 2; Benefits of Partnering with GPM Mission

    NASA Technical Reports Server (NTRS)

    Stocker, Erich F.; Smith, Eric A. (Editor); Adams, W. James (Editor); Starr, David OC. (Technical Monitor)

    2002-01-01

    An important goal of the Global Precipitation Measurement (GPM) mission is to maximize participation by non-NASA partners both domestic and international. A consequence of this objective is the provision for NASA to provide sufficient incentives to achieve partner buy-in and commitment to the program. NASA has identified seven specific areas in which substantive incentives will be offered: (1) partners will be offered participation in governance of GPM mission science affairs including definition of data products; (2) partners will be offered use of NASA's TDRSS capability for uplink and downlink of commands and data in regards to partner provided spacecraft; (3) partners will be offered launch support for placing partner provided spacecraft in orbit conditional upon mutually agreeable co-manifest arrangements; (4) partners will be offered direct data access at the NASA-GPM server level rather than through standard data distribution channels; (5) partners will be offered the opportunity to serve as regional data archive and distribution centers for standard GPM data products; and (6) partners will be offered the option to insert their own specialized filtering and extraction software into the GPM data processing stream or to obtain specialized subsets and products over specific areas of interest (7) partners will be offered GPM developed software tools that can be run on their platforms. Each of these incentives, either individually or in combination, represents a significant advantage to partners who may wish to participate in the GPM mission.

  6. Conceptual design study for the use of COBE rocket engines on the Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The objective of this conceptual design study is to verify that the Cosmic Background Explorer (COBE) Hydrazine Propulsion Subsystem (HPS) Rocket Engine Assembly (REA) will satisfy the Tropical Rainfall Measuring Mission (TRMM) requirements and to develop a preliminary thruster module design using the existing REAs. The performance of the COBE HPS 5 lbf thrusters meet the TRMM mission requirements. The preliminary design consists of a single 5 lbf REA REM which is isolation mounted to a spacecraft interface angle bracket (5 or 10 deg angle). The REM incorporates a catalyst bed heater and sensor assembly, and propellant thermal control is achieved by thermostatically controlled heaters on the thruster valves. A ROM cost of approx. $950 K has been estimated for the phase 2 program to finalize the design, fabricate, and test the hardware using mechanical thermostats for thermal control. In the event that solid state thermostats are used, the cost is estimated to be $160 K higher. A ROM cost is approx. $145 K is estimated to study the effects of using Japanese manufactured hydrazine for the TRMM mission.

  7. The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Azarbarzin, Ardeshir A.; Kakar, Ramesh K.; Neeck, Steven

    2011-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. Building upon the success of the U.S.-Japan Tropical Rainfall Measuring Mission (TRMM), the National Aeronautics and Space Administration (NASA) of the United States and the Japan Aerospace and Exploration Agency (JAXA) will deploy in 2013 a GPM "Core" satellite carrying a KulKa-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Imager (GMI) to establish a new reference standard for precipitation measurements from space. The combined active/passive sensor measurements will also be used to provide common database for precipitation retrievals from constellation sensors. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer- 2 (AMSR-2) on the GCOM-Wl satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder (SAPHIR) on the French-Indian Megha-Tropiques satellite, (4) the Microwave Humidity Sounder (MHS) on the National Oceanic and Atmospheric Administration (NOAA)-19, (5) MHS instruments on MetOp satellites launched by the European Organisation for the Exploitation of Meteorological

  8. The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Science Status

    NASA Astrophysics Data System (ADS)

    Hou, Arthur Y.; Skofronick-Jackson, Gail; Stocker, Erich F.

    2013-04-01

    The Global Precipitation Measurement (GPM) Mission is a satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors provided by a consortium of international partners. NASA and JAXA will deploy a Core Observatory in 2014 to serve as a reference satellite for precipitation measurements by the constellation sensors. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR, the first dual-frequency radar in space, will provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles. The DPR and GMI measurements will together provide a database that relates vertical hydrometeor profiles to multi-frequency microwave radiances over a variety of environmental conditions across the globe. This combined database will serve as a common transfer standard for improving the accuracy and consistency of precipitation retrievals from all constellation radiometers. In addition to the Core Observatory, the GPM constellation consists of (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer-2 (AMSR-2) on the GCOM-W1 satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder (SAPHIR) on the French-Indian Megha-Tropiques satellite, (4) the Microwave Humidity Sounder (MHS) on the National Oceanic and Atmospheric Administration (NOAA) Polar Orbiting Environmental Satellites (POES), (5) MHS instruments on MetOp satellites launched by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), (6) the Advanced Technology Microwave Sounder (ATMS) on the National Polar

  9. Synergy Between probes and Orbiter

    NASA Technical Reports Server (NTRS)

    Young, Richard E.

    2005-01-01

    There are many ways in which the science return from a planetary mission is considerably enhanced by interactions between entry probes and a mission orbiter. Mission configuration aspects that are desirable include delivery of entry probes by the orbiter, and communication between probe and orbiter. Both of these mission aspects could greatly enhance access to key scientific sites that might not otherwise be accessible using delivery from say, a flyby, or employing direct communication from probes to Earth. Examples for Venus and Jupiter will be discussed. A second class of orbiter-probe interaction could better be termed direct probe-orbiter science collaboration. That would include, determining the global context of the entry probe sites from the orbiter, obtaining ground truth from the probe for remote sensing observations from the orbiter, observing the global and vertical distribution of key atmospheric trace species, and measuring the global and vertical distribution of clouds and winds. The importance of each of these items will be illustrated by particular examples.

  10. Pulsed Lidar for Measurement of C02 Concentrations for the ASCENDS Mission - Update

    NASA Technical Reports Server (NTRS)

    Abshire, James; Riris, Haris; Allan, Graham; Sun, Xiaoli; Mao, Jianping; Weaver, Clark; Yu, Anthony; Chen, Jeffrey; Rodriquez, Michael; Kawa, S. Randy

    2011-01-01

    We have been developing a laser-based sounding technique for the remote measurement of the tropospheric CO2 concentrations from orbit for NASA is ASCENDS mission. The mission's goals are to provide measurements of tropospheric CO2 abundance with global-coverage, a few hundred km spatial and monthly temporal resolution. These are needed to better understand CO2 fluxes and the processes that regulate CO2 storage by the land and oceans. For the lIP, we are developing and demonstrating the lidar techniques and key lidar technology that will permit measurements of the CO2 column abundance in the lower troposphere from aircraft. Our final goal is to demonstrate the key capabilities needed for a space lidar and mission approach for the ASCENDS mission. We use a pulsed lidar technique, which is much less sensitive to errors from cloud and atmospheric scattering and to noise from solar background. It allows continuous measurements of CO2 mixing ratio in the lower troposphere during day and night. Our approach uses the 1570nm CO2 band and a two-wavelength laser absorption spectrometer, which continuously measures at nadir from a circular polar orbit. It directs the narrow co-aligned laser beams from the instrument's lasers toward nadir, and measures the energy of the laser echoes reflected from land and water surfaces. It uses a pair of tunable laser transmitters, which allowing measurement of the extinction from a single selected CO2 absorption line in the 1570 nm band and from a line pair in the Oxygen A-band near 765 nm. These regions have temperature insensitive absorption lines are free from interference from other gases. The lasers pulse at 10KHz, use tunable diode seed lasers followed by laser amplifiers, and have MHz spectral widths. During the measurement the lasers are stepped across the selected lines at a kHz rate. The receiver uses a 1-m class telescope and photon sensitive detectors and measures the background light and energies of the laser echoes from the

  11. Oceanographic measurement capabilities of the NASA P-3 aircraft. [ERS-1 mission

    NASA Technical Reports Server (NTRS)

    Mollo-Christensen, Erik; Jackson, F. C.; Walsh, E. J.; Hoge, F.

    1986-01-01

    Instrumentation on NASA P3 aircraft available to provide ground truth for ERS-1 is described. The wave sensors include the 36 GHz Surface Contour Radar (SCR), the Ku-band Radar Ocean Wave Spectrometer (ROWS), and the Airborne Oceanographic Lidar. The other sensors include a C-band scatterometer, video camera, radiation thermometer, and AXRTs. The SCR and ROWS directional spectrum measurements are discussed. When planning for an underflight mission, the limited endurance of the aircraft (6 hr) and flight cost (2.7 K$/hr) must be considered. The advantage of the redundancy afforded by the several wave instruments is another important consideration.

  12. High resolution Microwave Spectrometer Sounder (HIMSS) instrument program. Appendix: TRMM study (an instrument for NASA's tropical rainfall measuring mission)

    NASA Technical Reports Server (NTRS)

    Lobl, E. (Editor)

    1991-01-01

    The TRMM (Tropical Rain Measuring Mission) Study shows the feasibility of a conically scanned, total power radiometer. The heritage of the TRMM radiometer is the Special Sensor Microwave/Imager (SSM/I) flying for the Air Force DMSP.

  13. Japanese Global Precipitation Measurement (GPM) mission status and application of satellite-based global rainfall map

    NASA Astrophysics Data System (ADS)

    Kachi, Misako; Shimizu, Shuji; Kubota, Takuji; Yoshida, Naofumi; Oki, Riko; Kojima, Masahiro; Iguchi, Toshio; Nakamura, Kenji

    2010-05-01

    As accuracy of satellite precipitation estimates improves and observation frequency increases, application of those data to societal benefit areas, such as weather forecasts and flood predictions, is expected, in addition to research of precipitation climatology to analyze precipitation systems. There is, however, limitation on single satellite observation in coverage and frequency. Currently, the Global Precipitation Measurement (GPM) mission is scheduled under international collaboration to fulfill various user requirements that cannot be achieved by the single satellite, like the Tropical Rainfall Measurement Mission (TRMM). The GPM mission is an international mission to achieve high-accurate and high-frequent rainfall observation over a global area. GPM is composed of a TRMM-like non-sun-synchronous orbit satellite (GPM core satellite) and constellation of satellites carrying microwave radiometer instruments. The GPM core satellite carries the Dual-frequency Precipitation Radar (DPR), which is being developed by the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT), and microwave radiometer provided by the National Aeronautics and Space Administration (NASA). Development of DPR instrument is in good progress for scheduled launch in 2013, and DPR Critical Design Review has completed in July - September 2009. Constellation satellites, which carry a microwave imager and/or sounder, are planned to be launched around 2013 by each partner agency for its own purpose, and will contribute to extending coverage and increasing frequency. JAXA's future mission, the Global Change Observation Mission (GCOM) - Water (GCOM-W) satellite will be one of constellation satellites. The first generation of GCOM-W satellite is scheduled to be launched in 2011, and it carries the Advanced Microwave Scanning Radiometer 2 (AMSR2), which is being developed based on the experience of the AMSR-E on EOS Aqua satellite

  14. [Analysis of Multiplatform CO (Carbon Monoxide) Measurements During Trace-P Mission

    NASA Technical Reports Server (NTRS)

    Pougatchev, Nikita S.

    2004-01-01

    Carbon monoxide is considered mission critical (TRACE-P NRA) because it is one of the gases involved in controlling the oxidizing power of the atmosphere and, as a tracer gas, is valuable in interpreting mission data sets. Carbon monoxide exhibits interannual differences, suggesting relatively short-term imbalances in sources and sinks. Sources of CO are dominated by fossil fuel combustion, biomass burning, and the photochemical oxidation of CH4 and nonmethane hydrocarbons while reaction with OH is believed to be the major sink for atmospheric CO, with additional losses due to soil uptake. Uncertainties in the magnitude and distribution of both sources and sinks remain fairly large however, and additional data are required to refine the global budget. Seasonal changes and a northern hemispheric latitudinal gradient have been described for a variety of Pacific basin sites through long-term monitoring of surface background levels. Latitudinal variations have also recently been described at upper tropospheric altitudes over a multi-year period by. TRACE-P will provide an aircraft survey of CO over the northern Pacific in the northern spring when CO concentrations are at their seasonal maximum in the northern hemisphere (NH) and at their seasonal minimum in the southern hemisphere (SH). Previous GTE missions, Le., PEM West-B and PEM Tropics-B, ground-based, and satellite observations (MAPS, April 1994) give us a general picture of the distribution of CO over the northern Pacific during this season. Based on these measurements, background CO levels over remote ocean areas are anticipated to be in the range of 110 - 180 ppbv, while those closer to the Asian continent may rise as high as 600 ppbv. These measurements also reveal high spatial variability (both horizontal and vertical) as well as temporal variations in CO over the area planned for the TRACE-P mission. This variability is a result of multiple CO sources, the meteorological complexity of transport processes

  15. Advances in Understanding Global Water Cycle with Advent of Global Precipitation Measurement (GPM) Mission

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Starr, David (Technical Monitor)

    2002-01-01

    Within this decade the internationally organized Global Precipitation Measurement (GPM) Mission will take an important step in creating a global precipitation observing system from space. One perspective for understanding the nature of GPM is that it will be a hierarchical system of datastreams beginning with very high caliber combined dual frequency radar/passive microwave (PMW) rain-radiometer retrievals, to high caliber PMW rain-radiometer only retrievals, and then on to blends of the former datastreams with additional lower-caliber PMW-based and IR-based rain retrievals. Within the context of the now emerging global water & energy cycle (GWEC) programs of a number of research agencies throughout the world, GPM serves as a centerpiece space mission for improving our understanding of the global water cycle from a global measurement perspective. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in climate, e.g., climate warming. As there are a number of ways in which to define a rate-change of the global water cycle, it is not entirely clear as to what constitutes such a determination. This paper presents an overview of the GPM Mission and how its observations can be used within the framework of the oceanic and continental water budget equations to determine whether a given perturbation in precipitation is indicative of an actual rate change in the global water cycle, consistent with required responses in water storage and/or water flux transport processes, or whether it is the natural variability of a fixed rate cycle.

  16. Validation for the Tropical Rainfall Measuring Mission: Lessons Learned and Future Plans

    NASA Astrophysics Data System (ADS)

    Wolff, D. B.; Amitai, E.; Marks, D. A.; Silberstein, D.; Lawrence, R. A.

    2005-05-01

    The Tropical Rainfall Measuring Mission (TRMM) was launched in November 1997 and was a highly regarded and successful mission. A major component of the TRMM program was its Ground Validation (GV) program. Through dedicated research and hard work by many groups, both the GV and satellite-retrieved rain estimates have shown a convergence at key GV sites, lending credibility to the global TRMM estimates. To be sure, there are some regional differences between the various satellite estimates themselves which still need to be addressed; however, it can be said with some certainty that TRMM has provided a high-quality, long-term climatological data set for researchers that provides errors on the order of 10-20%, rather than pre-TRMM-era error estimates on the order of 50-10%. The TRMM GV program's main operational task was to provide rainfall products for four sites: Darwin, Australia; Houston, Texas; Kwajalein, Republic of the Marshall Islands; and, Melbourne, Florida. A comparison between TRMM GV (Version 5) and satellite (Version 6) rain intensity estimates is presented. The gridded satellite product (3G-68) will be compared to GV Level II rain-intensity and -type maps. The 3G-68 product represents a 0.5 deg x 0.5 deg data grid providing estimates of rain intensities from the TRMM Precipitation Radar, Microwave Imager and Combined algorithms. The comparisons will be classified according to geographical type (land, coast or ocean). The convergence of the GV and satellite estimates bodes well for expectations for the proposed Global Precipitation Measurement (GPM) program, but it is now well understood that providing uncertainties of the estimates is perhaps more important than convergence on its own. Further, while TRMM originally focused on monthly and climatological validation, future precipitation missions should concentrate on instantaneous validation in order to avoid inevitable and large sampling errors.

  17. Pacific Exploratory Mission-Tropics carbon monoxide measurements in historical context

    NASA Astrophysics Data System (ADS)

    Pougatchev, N. S.; Sachse, G. W.; Fuelberg, H. E.; Rinsland, C. P.; Chatfield, R. B.; Connors, V. S.; Jones, N. B.; Notholt, J.; Novelli, P. C.; Reichle, H. G.

    1999-11-01

    The three-dimensional (3-D) distribution of carbon monoxide (CO) over the southern Pacific during the NASA Global Tropospheric Experiment Pacific Exploratory Mission-Tropics (PEM-T) (August-October 1996) has been analyzed in comparison to other CO measurements. The following data sets have been used in the study: National Oceanic and Atmospheric Administration Climate Monitoring and Diagnostic Laboratory surface level sampling; Commonwealth Scientific and Industrial Research Organization aircraft measurements over Cape Grim, Tasmania; solar spectroscopic measurements at Lauder, New Zealand; and data from two spaceborne Measurement of Air Pollution From Satellite experiments. For the PEM-T mission back trajectories analysis and 3-D modeling of the CO transport have been performed. It has been demonstrated that CO measurements obtained by different in situ and remote techniques can be used to build the picture of the CO climatology over the large geographical area. The structure of the CO distribution over the western part of the southern Pacific during the austral spring is mainly controlled by emission from biomass burning in Australia and Africa and subsequent long-range transport. The prevailing westerly transport occurs in the middle and upper troposphere, whereas the marine boundary layer remains relatively clean and uniform. Barriers in the form of the Intertropical Convergence Zone and South Pacific Convergence Zone protect the equatorial area (equator to 10°S) from direct impact of biomass burning plumes from north and southwest. Consistency between the measurements taken in different years and modeling results indicates that the observed feature is a stable phenomenon. Outside the equatorial area the CO vertical distribution has a broad distinctive maximum at the altitude range 5-8 km and latitudes between 20°S and 30°S. This maximum is a stable feature, and its location indicates the area where the most intensive westerly transport occurs.

  18. Atmospheric Airborne Pressure Measurements Using the Oxygen A Band for the ASCENDS Mission

    NASA Astrophysics Data System (ADS)

    Rodriguez, M.; Riris, H.; Abshire, J. B.; Allan, G. R.; Stephen, M.; Hasselbrack, W.; Mao, J.

    2012-12-01

    We report on airborne atmospheric pressure measurements using fiber-based laser technology and the oxygen A-band at 765 nm. Remote atmospheric temperature and pressure measurements are needed for NASA's Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission. ASCENDS will measure atmospheric CO2 dry mixing ratios on a global scale. Remote atmospheric pressure measurements are necessary to normalize ASCENDS CO2 measurements. Our work, funded by the ESTO IIP program, uses erbium doped fiber optic amplifiers and non-linear optics technology to tune laser radiation over the Oxygen A-band between 764.5 nm and 765 nm. Surface reflections are fiber-coupled from a receiver telescope to photon counting detectors. Our pulsed, time gated approach resolves ground reflections from cloud returns. This system successfully recorded O2 absorption spectra during two airborne campaigns aboard a NASA DC-8. Airborne data has been analyzed and fitted to HITRAN reference spectra based upon aircraft meteorological data. Our algorithm linearly scales the HITRAN reference until measurement errors are minimized. Atmospheric pressure changes are estimated by comparing the differential optical depth of the optimum scaled HITRAN spectra to the differential optical depth of the nominal HITRAN spectra. On flights over gradually sloping terrain, these results compare favorably with ground-based observations and predictions from computer models. Measurement uncertainty is commensurate with photon counting noise. We plan to reduce measurement uncertainty in future campaigns by improving transmitter pulse energy and increasing wavelength sweep frequency.

  19. The RAVAN CubeSat mission: Progress toward a new measurement of Earth outgoing radiation

    NASA Astrophysics Data System (ADS)

    Swartz, B. H.; Dyrud, L. P.; Lorentz, S. R.; Wu, D. L.; Wiscombe, W. J.; Papadakis, S.; Huang, P. M.; Smith, A.; Deglau, D.

    2014-12-01

    The Earth radiation imbalance (ERI) is the single most important quantity for predicting the course of climate change over the next century. The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat mission, funded by NASA's Earth Science Technology Office, will demonstrate an affordable, accurate radiometer that directly measures Earth-leaving fluxes of total and solar-reflected radiation. The objective of RAVAN is to demonstrate that a compact spaceborne radiometer that is absolutely accurate to NIST-traceable standards can be built for low cost. The key technologies that enable a radiometer with all these attributes are: a vertically aligned carbon nanotube (VACNT) absorber and a gallium fixed-point blackbody as a built-in calibration source. VACNTs are exceedingly black and spectrally flat, making them ideal radiometer absorbers. We present results from the fabrication and calibration of the RAVAN radiometer and plans for CubeSat hosting and launch. RAVAN will help enable the development of a constellation Earth radiation budget mission that can provide the measurements needed for superior predictions of future climate change.

  20. Atmospheric seeing measurements obtained with MISOLFA in the framework of the PICARD Mission

    NASA Astrophysics Data System (ADS)

    Ikhlef, R.; Corbard, T.; Irbah, A.; Morand, F.; Fodil, M.; Chauvineau, B.; Assus, P.; Renaud, C.; Meftah, M.; Abbaki, S.; Borgnino, J.; Cissé, E. M.; D'Almeida, E.; Hauchecorne, A.; Laclare, F.; Lesueur, P.; Lin, M.; Martin, F.; Poiet, G.; Rouzé, M.; Thuillier, G.; Ziad, A.

    2012-09-01

    PICARD is a space mission launched in June 2010 to study mainly the geometry of the Sun. The PICARD mission has a ground program consisting mostly in four instruments based at the Calern Observatory (Observatoire de la Côte d’Azur). They allow recording simultaneous solar images and various atmospheric data from ground. The ground instruments consist in the qualification model of the PICARD space instrument (SODISM II: Solar Diameter Imager and Surface Mapper), standard sun-photometers, a pyranometer for estimating a global sky quality index, and MISOLFA a generalized daytime seeing monitor. Indeed, astrometric observations of the Sun using ground-based telescopes need an accurate modeling of optical effects induced by atmospheric turbulence. MISOLFA is founded on the observation of Angle-of-Arrival (AA) fluctuations and allows us to analyze atmospheric turbulence optical effects on measurements performed by SODISM II. It gives estimations of the coherence parameters characterizing wave-fronts degraded by the atmospheric turbulence (Fried parameter r0, size of the isoplanatic patch, the spatial coherence outer scale L0 and atmospheric correlation times). We present in this paper simulations showing how the Fried parameter infered from MISOLFA records can be used to interpret radius measurements extracted from SODISM II images. We show an example of daily and monthly evolution of r0 and present its statistics over 2 years at Calern Observatory with a global mean value of 3.5cm.

  1. Effective dose measured with a life size human phantom in a low Earth orbit mission.

    PubMed

    Yasuda, Hiroshi

    2009-03-01

    The biggest concern about the health risk to astronauts is how large the stochastic effects (cancers and hereditary effects) of space radiation could be. The practical goal is to determine the "effective dose" precisely, which is difficult for each crew because of the complex transport processes of energetic secondary particles. The author and his colleagues thus attempted to measure an effective dose in space using a life-size human phantom torso in the STS-91 Shuttle-Mir mission, which flew at nearly the same orbit as that of the International Space Station (ISS). The effective dose for about 10-days flight was 4.1 mSv, which is about 90% of the dose equivalent (H) at the skin; the lowest H values were seen in deep, radiation-sensitive organs/tissues such as the bone marrow and colon. Succeeding measurements and model calculations show that the organ dose equivalents and effective dose in the low Earth orbit mission are highly consistent, despite the different dosimetry methodologies used to determine them. PMID:19202325

  2. Early Results from the Global Precipitation Measurement (GPM) Mission in Japan

    NASA Astrophysics Data System (ADS)

    Kachi, Misako; Kubota, Takuji; Masaki, Takeshi; Kaneko, Yuki; Kanemaru, Kaya; Oki, Riko; Iguchi, Toshio; Nakamura, Kenji; Takayabu, Yukari N.

    2015-04-01

    The Global Precipitation Measurement (GPM) mission is an international collaboration to achieve highly accurate and highly frequent global precipitation observations. The GPM mission consists of the GPM Core Observatory jointly developed by U.S. and Japan and Constellation Satellites that carry microwave radiometers and provided by the GPM partner agencies. The Dual-frequency Precipitation Radar (DPR) was developed by the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT), and installed on the GPM Core Observatory. The GPM Core Observatory chooses a non-sun-synchronous orbit to carry on diurnal cycle observations of rainfall from the Tropical Rainfall Measuring Mission (TRMM) satellite and was successfully launched at 3:37 a.m. on February 28, 2014 (JST), while the Constellation Satellites, including JAXA's Global Change Observation Mission (GCOM) - Water (GCOM-W1) or "SHIZUKU," are launched by each partner agency sometime around 2014 and contribute to expand observation coverage and increase observation frequency JAXA develops the DPR Level 1 algorithm, and the NASA-JAXA Joint Algorithm Team develops the DPR Level 2 and DPR-GMI combined Level2 algorithms. JAXA also develops the Global Rainfall Map (GPM-GSMaP) algorithm, which is a latest version of the Global Satellite Mapping of Precipitation (GSMaP), as national product to distribute hourly and 0.1-degree horizontal resolution rainfall map. Major improvements in the GPM-GSMaP algorithm is; 1) improvements in microwave imager algorithm based on AMSR2 precipitation standard algorithm, including new land algorithm, new coast detection scheme; 2) Development of orographic rainfall correction method for warm rainfall in coastal area (Taniguchi et al., 2012); 3) Update of database, including rainfall detection over land and land surface emission database; 4) Development of microwave sounder algorithm over land (Kida et al., 2012); and 5) Development

  3. The PICARD Mission: an investigation based on measurements dedicated to solar and climate modeling

    NASA Astrophysics Data System (ADS)

    Thuillier, Gerard; Schmutz, Werner; Dewitte, Steven

    PICARD mission is dedicated to the study of the solar activity origin using several key solar measurements. The project also includes development of the solar convective zone and climate models to evaluate the consequences for the Earth'climate of the solar activity. The measure-ments are the total and spectral solar irradiance, solar diameter, limb shape, solar asphericity, and helioseismic waves, which are key inputs for solar physics modeling. The measurements will be carried out by two absolute radiometers, sunphotometers, and a metrological imag-ing telescope onboard a microsatellite built by the French Space Agency CNES, with launch scheduled for March 2010. The radiometers are similar to the ones flown on board SOHO. The imaging telescope contains an angular reference allowing a permanent control of the instrument geometric scale, which is referred to angular stars distances. Optical distortion and flatfield of the imaging telescope are foreseen to be regularly measured. The measurements in space will have correlative measurements from ground using an identical imaging telescope, associated to the measurement of the local turbulence and aerosols localization and concentration. The op-portunity of diameter measurements by solar eclipse method will be used and finally the Solar Disk Sextant instrument will be regularly flown as an external measurement validation. An after launch activities is scheduled for three months, which consists in several instrument checks and recording of some scientific data. Given the launch date, these preliminary measurements will be shown. Images in UV, CaII line and solar photospheric continuum will be presented with some analysis of their contains. Furthermore, preliminary information concerning the radiometric and spectrometric measurements will be given.

  4. Tropical Rainfall Measuring Mission (TRMM) Satellite: Assessment and Lessons Learned After Three Flight Years

    NASA Technical Reports Server (NTRS)

    Simpson, Joanne; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Tropical Rain Measuring Mission (TRMM) is an experiment in measuring rainfall and the associated latent heat release from space. A primary goal is to help in initializing the large-scale weather and climate models for crucial improvement in location and profile of atmospheric heat release. For this, precipitation and latent heating profiles are needed. This goal requires cloud-resolving models. The basic approach was to use passive microwave and rain radar in combination to issue a limited number of products, improving the retrieval algorithms by testing during flight, so the products are updated annually. Despite a tight budget, the TRMM observatory and data system worked excellently from launch for the past three years. A basic philosophy has been to do physical validation as much as possible, in preference to empirical adjustments for algorithm improvement. Additional information is contained in the original extended abstract.

  5. Summary Report of Mission Acceleration Measurements for STS-73, Launched October 20, 1995

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; DeLombard, Richard

    1996-01-01

    The microgravity environment of the Space Shuttle Columbia was measured during the STS-73 mission using accelerometers from five different instruments: the Orbital Acceleration Research Experiment, the Space Acceleration Measurement System, the Three-dimensional Microgravity Accelerometer, the Microgravity Measuring Device, and Suppression of Transient Accelerations by Levitation Evaluation System. The Microgravity Analysis Workstation quasi-steady environment calculation and comparison of this calculation with Orbital Acceleration Research Experiment data was used to assess how appropriate a planned attitude was expected to be for one Crystal Growth Facility experiment sample. The microgravity environment related to several different Orbiter, crew, and experiment operations is presented and interpreted in this report. Data are examined to show the effects of vernier reaction control system jet firings for Orbiter attitude control. This is compared to examples of data when no thrusters were firing, when the primary reaction control system jets were used for attitude control, and when single vernier jets were fired for test purposes. In general, vernier jets, when used for attitude control, cause accelerations in the 3 x 10(exp -4) g to 7 x 10(exp -4) g range. Primary jets used in this manner cause accelerations in the 0.01 to 0.025 g range. Other significant disturbance sources characterized are water dump operations, with Y(sub b) axis acceleration deviations of about 1 x 10(exp -6) g; payload bay door opening motion, with Y(sub o) and Z(sub o) axis accelerations of frequency 0.4 Hz; and probable Glovebox fan operations with notable frequency components at 20, 38, 43, 48, and 53 Hz. The STS-73 microgravity environment is comparable to the environments measured on earlier microgravity science missions.

  6. Polarized Imaging Nephelometer Scattering Measurements from the Winter of 2013 Discover-AQ Field Mission

    NASA Astrophysics Data System (ADS)

    Espinosa, R.; Martins, J.; Dolgos, G.; Dubovik, O.; Ziemba, L. D.; Beyersdorf, A. J.

    2013-12-01

    the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (Discover-AQ) mission. This presentation will focus on the results of the PI-Neph's twelve successful science flights during this past winter's Discover-AQ mission. These flights focused primarily on vehicle traffic, agriculture and biomass burning emissions over the San Joaquin Valley in central California. PI-Neph scattering data from this mission will be analyzed with an emphasis on evaluating horizontal, vertical and temporal variation in the sampled aerosol to asses the reliability of column measurements made by remote sensing platforms in determining air quality. Measured PI-Neph phase functions during spirals over AERONET (AErosol RObotic NETwork) stations will also be compared with retrieved phase functions from AERONET. In an effort to further validate AERONET retrievals an inversion method (Dubovik et al., J. Geophys. Res., 111, D11208, doi:10.1029/2005JD006619d, 2006) similar to the AERONET inversion will be applied to PI-NEPH data to obtain size distribution estimates. These results will be compared to measurements of the same sample made by particle counters on board the aircraft.

  7. CHASER: An Innovative Satellite Mission Concept to Measure the Effects of Aerosols on Clouds and Climate

    NASA Astrophysics Data System (ADS)

    Renno, N.; Williams, E.; Rosenfeld, D.; Fischer, D.; Fischer, J.; Kremic, T.; Agrawal, A.; Andreae, M.; Bierbaum, R.; Blakeslee, R.; Boerner, A.; Bowles, N.; Christian, H.; Dunion, J.; Horvath, A.; Huang, X.; Khain, A.; Kinne, S.; Lemos, M.-C.; Penner, J.

    2012-04-01

    The formation of cloud droplets on aerosol particles, technically known as the activation of cloud condensation nuclei (CCN), is the fundamental process driving the interactions of aerosols with clouds and precipitation. Knowledge of these interactions is foundational to our understanding of weather and climate. The Intergovernmental Panel on Climate Change (IPCC) and the Decadal Survey (NRC 2007) indicate that the uncertainty in how clouds adjust to aerosol perturbations dominates the uncertainty in the overall quantification of the radiative forcing attributable to human activities. The Clouds, Hazards, and Aerosols Survey for Earth Researchers (CHASER) mission concept responds to the IPCC and Decadal Survey concerns by studying the activation of CCN and their interactions with clouds and storms. CHASER proposes to revolutionize our understanding of the interactions of aerosols with clouds by making the first global measurements of the fundamental physical entity linking them: activated cloud condensation nuclei. The CHASER mission was conceptualized to measure all quantities necessary for determining the interactions of aerosols with clouds and storms. Measurements by current satellites allow the determination of crude profiles of cloud particle size but not of the activated CCN that seed them. CHASER uses a new technique (Freud et al. 2011; Rosenfeld et al. 2012) and high-heritage instruments to produce the first global maps of activated CCN and the properties of the clouds associated with them. CHASER measures the CCN concentration and cloud thermodynamic forcing simultaneously, allowing their effects to be distinguished. Changes in the behavior of a group of weather systems in which only one of the quantities varies (a partial derivative of the intensity with the desirable quantity) allow the determination of each effect statistically. The high uncertainties of current climate predictions limit their much-needed use in decision-making. CHASER mitigates this

  8. The number and choice of muscles impact the results of muscle synergy analyses

    PubMed Central

    Steele, Katherine M.; Tresch, Matthew C.; Perreault, Eric J.

    2013-01-01

    One theory for how humans control movement is that muscles are activated in weighted groups or synergies. Studies have shown that electromyography (EMG) from a variety of tasks can be described by a low-dimensional space thought to reflect synergies. These studies use algorithms, such as nonnegative matrix factorization, to identify synergies from EMG. Due to experimental constraints, EMG can rarely be taken from all muscles involved in a task. However, it is unclear if the choice of muscles included in the analysis impacts estimated synergies. The aim of our study was to evaluate the impact of the number and choice of muscles on synergy analyses. We used a musculoskeletal model to calculate muscle activations required to perform an isometric upper-extremity task. Synergies calculated from the activations from the musculoskeletal model were similar to a prior experimental study. To evaluate the impact of the number of muscles included in the analysis, we randomly selected subsets of between 5 and 29 muscles and compared the similarity of the synergies calculated from each subset to a master set of synergies calculated from all muscles. We determined that the structure of synergies is dependent upon the number and choice of muscles included in the analysis. When five muscles were included in the analysis, the similarity of the synergies to the master set was only 0.57 ± 0.54; however, the similarity improved to over 0.8 with more than ten muscles. We identified two methods, selecting dominant muscles from the master set or selecting muscles with the largest maximum isometric force, which significantly improved similarity to the master set and can help guide future experimental design. Analyses that included a small subset of muscles also over-estimated the variance accounted for (VAF) by the synergies compared to an analysis with all muscles. Thus, researchers should use caution using VAF to evaluate synergies when EMG is measured from a small subset of muscles

  9. Operational Processing of Ground Validation Data for the Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    Kulie, Mark S.; Robinson, Mike; Marks, David A.; Ferrier, Brad S.; Rosenfeld, Danny; Wolff, David B.

    1999-01-01

    The Tropical Rainfall Measuring Mission (TRMM) satellite was successfully launched in November 1997. A primary goal of TRMM is to sample tropical rainfall using the first active spaceborne precipitation radar. To validate TRMM satellite observations, a comprehensive Ground Validation (GV) Program has been implemented for this mission. A key component of GV is the analysis and quality control of meteorological ground-based radar data from four primary sites: Melbourne, FL; Houston, TX; Darwin, Australia; and Kwajalein Atoll, RMI. As part of the TRMM GV effort, the Joint Center for Earth Systems Technology (JCET) at the University of Maryland, Baltimore County, has been tasked with developing and implementing an operational system to quality control (QC), archive, and provide data for subsequent rainfall product generation from the four primary GV sites. This paper provides an overview of the JCET operational environment. A description of the QC algorithm and performance, in addition to the data flow procedure between JCET and the TRNM science and Data Information System (TSDIS), are presented. The impact of quality-controlled data on higher level rainfall and reflectivity products will also be addressed, Finally, a brief description of JCET's expanded role into producing reference rainfall products will be discussed.

  10. Tropical Rainfall Measuring Mission: Monitoring the Global Tropics for 3 Years and Beyond. 1.1

    NASA Technical Reports Server (NTRS)

    Shepherd, Marshall; Starr, David OC. (Technical Monitor)

    2001-01-01

    The Tropical Rainfall Measuring Mission (TRMM) was launched in November 1997 as a joint U.S.-Japanese mission to advance understanding of the global energy and water cycle by providing distributions of rainfall and latent heating over the global tropics. As a part of NASA's Earth System Enterprise, TRMM seeks to understand the mechanisms through which changes in tropical rainfall influence global circulation. Additionally, a goal is to improve the ability to model these processes in order to predict global circulations and rainfall variability at monthly and longer time scales. Such understanding has implications for assessing climate processes related to El Nino/La Nina and Global Warming. TRMM has also provided unexpected and exciting new knowledge and applications in areas related to hurricane monitoring, lightning, pollution, hydrology, and other areas. This CD-ROM includes a self-contained PowerPoint presentation that provides an overview of TRMM and significant science results; a set of data movies or animation; and listings of current TRMM-related publications in the literature.

  11. Acquisition and Analysis of NASA Ames Sunphotometer Measurements during SAGE III Validation Campaigns and other Tropospheric and Stratospheric Research Missions

    NASA Technical Reports Server (NTRS)

    Livingston, John M.

    2004-01-01

    NASA Cooperative Agreement NCC2-1251 provided funding from April 2001 through December 2003 for Mr. John Livingston of SRI International to collaborate with NASA Ames Research Center scientists and engineers in the acquisition and analysis of airborne sunphotometer measurements during various atmospheric field studies. Mr. Livingston participated in instrument calibrations at Mauna Loa Observatory, pre-mission hardware and software preparations, acquisition and analysis of sunphotometer measurements during the missions, and post-mission analysis of data and reporting of scientific findings. The atmospheric field missions included the spring 2001 Intensive of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia), the Asian Dust Above Monterey-2003 (ADAM-2003) experiment, and the winter 2003 Second SAGE III Ozone Loss and Validation Experiment (SOLVE II).

  12. Advanced Soil Moisture Network Technologies; Developments in Collecting in situ Measurements for Remote Sensing Missions

    NASA Astrophysics Data System (ADS)

    Moghaddam, M.; Silva, A. R. D.; Akbar, R.; Clewley, D.

    2015-12-01

    The Soil moisture Sensing Controller And oPtimal Estimator (SoilSCAPE) wireless sensor network has been developed to support Calibration and Validation activities (Cal/Val) for large scale soil moisture remote sensing missions (SMAP and AirMOSS). The technology developed here also readily supports small scale hydrological studies by providing sub-kilometer widespread soil moisture observations. An extensive collection of semi-sparse sensor clusters deployed throughout north-central California and southern Arizona provide near real time soil moisture measurements. Such a wireless network architecture, compared to conventional single points measurement profiles, allows for significant and expanded soil moisture sampling. The work presented here aims at discussing and highlighting novel and new technology developments which increase in situ soil moisture measurements' accuracy, reliability, and robustness with reduced data delivery latency. High efficiency and low maintenance custom hardware have been developed and in-field performance has been demonstrated for a period of three years. The SoilSCAPE technology incorporates (a) intelligent sensing to prevent erroneous measurement reporting, (b) on-board short term memory for data redundancy, (c) adaptive scheduling and sampling capabilities to enhance energy efficiency. A rapid streamlined data delivery architecture openly provides distribution of in situ measurements to SMAP and AirMOSS cal/val activities and other interested parties.

  13. Total Uncertainty in Measurements Record for Climate: Strategies from the CLARREO Mission

    NASA Astrophysics Data System (ADS)

    Dykema, J. A.; Anderson, J.

    2010-12-01

    Questions about uncertainty in observed trends in the climate system arise from multiple sources, including instrument performance, issues of temporal and spatial sampling, and geophysical information content obtainable from measurement records. The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission is designed to provide objective, testable evidence to support uncertainty estimates associated with these various sources. In this paper, we examine the strategies planned for CLARREO to obtain the information required to achieve this objective. In the case of instrument performance, the CLARREO sensors will utilize methods for obtaining robust uncertainty estimates that have been refined throughout the natural sciences through the work of the international community of National Measurement Institutes (NMIs). The foundation of the methods developed by the NMI community is a set of measurement standards that can be reproduced over time, and across national borders and institutions, to assure an exact quantitative relationship between different measurements. These measurement standards are the International System of Units, or SI. The SI units achieve the required properties by utilizing fundamental properties of matter to define a measurement system that is independent of instruments or techniques that are specific to a particular place or time. The set of a robust set of measurement standards then forms the basis for an experimental strategy to test the uncertainty of a climate observation system based on objective techniques that can be repeated by any experimenter, anywhere in the world, at any time. This paper will look at specific examples of the physical logic underlying this framework for the CLARREO infrared instrument suite, paying special attention to the overlap between the CLARREO calibration strategies and measurement successes from other areas of natural science. The interplay of measurement uncertainty with sampling and information

  14. The HYSPIRI Decadal Survey Mission: Update on the Mission Concept and Science Objectives for Global Imaging Spectroscopy and Multi-Spectral Thermal Measurements

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Hook, Simon J.; Middleton, Elizabeth; Turner, Woody; Ungar, Stephen; Knox, Robert

    2012-01-01

    The NASA HyspIRI mission is planned to provide global solar reflected energy spectroscopic measurement of the terrestrial and shallow water regions of the Earth every 19 days will all measurements downlinked. In addition, HyspIRI will provide multi-spectral thermal measurements with a single band in the 4 micron region and seven bands in the 8 to 12 micron region with 5 day day/night coverage. A direct broadcast capability for measurement subsets is also planned. This HyspIRI mission is one of those designated in the 2007 National Research Council (NRC) Decadal Survey: Earth Science and Applications from Space. In the Decadal Survey, HyspIRI was recognized as relevant to a range of Earth science and science applications, including climate: "A hyperspectral sensor (e.g., FLORA) combined with a multispectral thermal sensor (e.g., SAVII) in low Earth orbit (LEO) is part of an integrated mission concept [described in Parts I and II] that is relevant to several panels, especially the climate variability panel." The HyspIRI science study group was formed in 2008 to evaluate and refine the mission concept. This group has developed a series of HyspIRI science objectives: (1) Climate: Ecosystem biochemistry, condition & feedback; spectral albedo; carbon/dust on snow/ice; biomass burning; evapotranspiration (2) Ecosystems: Global plant functional types, physiological condition, and biochemistry including agricultural lands (3) Fires: Fuel status, fire frequency, severity, emissions, and patterns of recovery globally (4) Coral reef and coastal habitats: Global composition and status (5) Volcanoes: Eruptions, emissions, regional and global impact (6) Geology and resources: Global distributions of surface mineral resources and improved understanding of geology and related hazards These objectives are achieved with the following measurement capabilities. The HyspIRI imaging spectrometer provides: full spectral coverage from 380 to 2500 at 10 nm sampling; 60 m spatial sampling

  15. Performance of the Falling Snow Retrieval Algorithms for the Global Precipitation Measurement (GPM) Mission

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail; Munchak, Stephen J.; Ringerud, Sarah

    2016-01-01

    Retrievals of falling snow from space represent an important data set for understanding the Earth's atmospheric, hydrological, and energy cycles, especially during climate change. Estimates of falling snow must be captured to obtain the true global precipitation water cycle, snowfall accumulations are required for hydrological studies, and without knowledge of the frozen particles in clouds one cannot adequately understand the energy and radiation budgets. While satellite-based remote sensing provides global coverage of falling snow events, the science is relatively new and retrievals are still undergoing development with challenges remaining). This work reports on the development and testing of retrieval algorithms for the Global Precipitation Measurement (GPM) mission Core Satellite, launched February 2014.

  16. Measurements of heavy solar wind and higher energy solar particles during the Apollo 17 mission

    NASA Technical Reports Server (NTRS)

    Walker, R. M.; Zinner, E.; Maurette, M.

    1973-01-01

    The lunar surface cosmic ray experiment, consisting of sets of mica, glass, plastic, and metal foil detectors, was successfully deployed on the Apollo 17 mission. One set of detectors was exposed directly to sunlight and another set was placed in shade. Preliminary scanning of the mica detectors shows the expected registration of heavy solar wind ions in the sample exposed directly to the sun. The initial results indicate a depletion of very-heavy solar wind ions. The effect is probably not real but is caused by scanning inefficiencies. Despite the lack of any pronounced solar activity, energetic heavy particles with energies extending to 1 MeV/nucleon were observed. Equal track densities of approximately 6000 tracks/cm sq 0.5 microns in length were measured in mica samples exposed in both sunlight and shade.

  17. Long Duration Exposure Facility post-flight data as it influences the Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    Straka, Sharon A.

    1995-01-01

    The Tropical Rainfall Measuring Mission (TRMM) is an earth observing satellite that will be in a low earth orbit (350 kilometers) during the next period of maximum solar activity. The TRMM observatory is expected to experience an atomic oxygen fluence of 8.9 x 10(exp 22) atoms per square centimeter. This fluence is ten times higher than the atomic oxygen impingement incident to the Long Duration Exposure Facility (LDEF). Other environmental concerns on TRMM include: spacecraft glow, silicon oxide contaminant build-up, severe spacecraft material degradation, and contamination deposition resulting from molecular interactions with the dense ambient atmosphere. Because of TRMM's predicted harsh environment, TRMM faces many unique material concerns and subsystem design issues. The LDEF data has influenced the design of TRMM and the TRMM material selection process.

  18. Hurricane Floyd from SeaWinds and the Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The microwave scatterometer SeaWinds on the newly-launched QuikScat Mission observed the ocean surface winds feeding moisture into Hurricane Floyd. The moisture turns into rain, releases latent heat, and fuels the storm. The surface rain and the vertical rain profiles were observed by the TRMM Microwave Imager (TMI) and the Precipitation Radar (PR) on the Tropical Rain Measuring Mission (TRMM). The close relation between the dynamic and hydrologic parameters is visible in the image as Floyd approaches the Bahamas on 13 September 1999. In the image, wind vectors (white arrows) from SeaWinds are superimposed on the surface precipitation (color image) from TMI along the groundtracks of QuikScat and TRMM, which are approximately 78 minutes apart. After the image was taken, Hurricane Floyd turned north. Its strength and its proximity to the Atlantic Coast of the U.S. caused the largest evacuation of citizens in U.S. history. Its landfall on September 16 resulted in severe flooding and devastation in the Carolinas. Over the ocean, in situ observations in a tropical cyclone are extremely sparse, and conventional satellite data provide only cloud imagery at the top of the storm. Tropical cyclones are devastating when accompanied by strong winds and heavy rain. QuikSCAT, which was launched in June 1999, and TRMM, which was launched 18 months earlier, provide the opportunity to observe both wind and rain before landfall. The coincident measurements of surface wind and rain reveal the interplay between the dynamics and the hydrologic balances of the storm. These variables are important in understanding the structure of the storm and predicting its path. The image is part of a paper by Liu, Hu, and Yueh [Eos, Trans. of AGU, 2000, in press]. The paper shows that the surface wind divergence has strong influence in the hydrologic and energy balance in a tropical storm. The high spatial information of the scatterometer improves the estimation of the profile of moisture sink and

  19. EGPM - The proposed European contribution to the Global Precipitation Measurement (GPM) mission

    NASA Astrophysics Data System (ADS)

    Mugnai, A.; Egpm Mission Advisory Group

    2003-04-01

    At the beginning of January 2002, an international scientific consortium (the EGPM Science Team) constituted by numerous scientists involved in several disciplines related to precipitation, submitted to the European Space Agency (ESA) a proposal titled "EGPM: European contribution to the Global Precipitation Mission" in response to ESA's second call for proposals for Earth Explorer Opportunity Missions (EEOMs). The principle objective of the EGPM proposal was to encourage ESA to directly engage in the international organization for the Global Precipitation Measurement (GPM) mission formulated by NASA and NASDA, by providing one member of the GPM constellation of satellites aimed at providing frequent global rainfall observations for an extended operations period starting in the time frame of 2007. Noteworthy, a large part of the European scientific and operational community is strongly interested in GPM. Especially, the operational community related to NWP, nowcasting and hydrological hazards would take advantage of Europe being part of the constellation, because this would guarantee direct access to real-time data. The proposed EGPM satellite should satisfy, in association with the overall GPM constellation, the following "regional" requirements: - Improve the rainfall estimation accuracy with respect to SSM/I; - Enhance the detectability of light rain and snowfall, specifically over land, as appropriate for Northern Europe and Canada and in mid-latitude oceanic perturbations; - Provide a significant contribution to the monitoring and the understanding of hazardous and flash-flood producing storms along the Mediterranean coasts; - Improve the forecast skill of global and regional NWP models through data assimilation of precipitation measurements; - Provide direct-read-out data for real-time applications, as well as global data acquisition. To this end, the scientific payload of the EGPM satellite would consist of an advanced conically scanning microwave radiometer

  20. Open Imaging Nephelometer Scattering Measurements from the 2014 Discover-AQ Field Mission

    NASA Astrophysics Data System (ADS)

    Espinosa, R.; Orozco, D.; Dolgos, G.; Martins, J. V.

    2014-12-01

    After greenhouse gases, aerosols are thought to have the largest contribution to total atmospheric radiative forcing, but they are frequently cited as the single largest source of uncertainty among all anthropogenic radiative forcing components. Remote sensing allows for global measurements of aerosol properties, however validation of these measurements and the climatological assumptions used in their retrieval algorithms require high quality in situ sampling. The Laboratory for Aerosols, Clouds and Optics (LACO) at the University of Maryland Baltimore County (UMBC) has developed the Imaging Nephelometer, a novel and highly accurate instrument concept designed to significantly aid in situ optical scattering measurements. Imaging Nephelometers allow for measurements of scattering coefficient, phase function and polarized phase function over a wide angular range of 2 to 178 degrees with an angular resolution of less than half of a degree. The simple layout of these devices also permits the construction of an instrument that is compact enough to be deployed on a variety of airborne platforms. Additionally, a version of this instrument that is capable of in situ sampling in open-air, free from sample biases potentially introduced by an inlet or containment apparatus, has recently been constructed. This instrument, known as the Open Imaging NEPHelometer (OI-NEPH), was flown on the P3 aircraft in the summer of 2014 during the Colorado portion of the Discover-AQ field mission (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality). This presentation will focus on the results of the OI-NEPH's successful science flights during this field experiment. The P3's flights during this mission focused primarily on vehicle, agriculture, biomass burning and industrial processing emissions over the Colorado Front Range. Emphasis will be placed on any observed differences in scattering properties between the measurements

  1. Validation for the Tropical Rainfall Measuring Mission: Lessons Learned and Future Plans

    NASA Technical Reports Server (NTRS)

    Wolff, David B.; Amitai, E.; Marks, D. A.; Silberstein, D.; Lawrence, R. J.

    2005-01-01

    The Tropical Rainfall Measuring Mission (TRMM) was launched in November 1997 and is a highly regarded and successful mission. A major component of the TRMM program was its Ground Validation (GV) program. Through dedicated research and hard work by many groups, both the GV and satellite-retrieved rain estimates have shown a convergence at key GV sites, lending credibility to the global TRMM estimates. To be sure, there are some regional differences between the various satellite estimates themselves, which still need to be addressed; however, it can be said with some certainty that TRMM has provided a high-quality, long-term climatological data set for researchers that provides errors on the order of 10-20%, rather than pre-TRMM era error estimates on the order of 50-100%. The TRMM GV program's main operational task is to provide rainfall products for four sites: Darwin, Australia (DARW); Houston, Texas (HSTN); Kwajalein, Republic of the Marshall Islands (KWAJ); and, Melbourne, Florida (MELB). A comparison between TRMM Ground Validation (Version 5) and Satellite (Version 6) rain intensity estimates is presented. The gridded satellite product (3668) will be compared to GV Level II rain-intensity and -type maps (2A53 and 2A54, respectively). The 3G68 product represents a 0.5 deg x 0.5 deg data grid providing estimates of rain intensities from the TRMM Precipitation Radar (PR), Microwave Imager (TMI) and Combined (COM) algorithms. The comparisons will be sub-setted according to geographical type (land, coast and ocean). The convergence of the GV and satellite estimates bodes well for expectations for the proposed Global Precipitation Measurement (GPM) program and this study and others are being leveraged towards planning GV goals for GPM. A discussion of lessons learned and future plans for TRMM GV in planning for GPM will also be provided.

  2. On pressure measurement and seasonal pressure variations during the Phoenix mission

    NASA Astrophysics Data System (ADS)

    Taylor, Peter A.; Kahanpää, Henrik; Weng, Wensong; Akingunola, Ayodeji; Cook, Clive; Daly, Mike; Dickinson, Cameron; Harri, Ari-Matti; Hill, Darren; Hipkin, Victoria; Polkko, Jouni; Whiteway, Jim

    2010-03-01

    In situ surface pressures measured at 2 s intervals during the 150 sol Phoenix mission are presented and seasonal variations discussed. The lightweight Barocap®/Thermocap® pressure sensor system performed moderately well. However, the original data processing routine had problems because the thermal environment of the sensor was subject to more rapid variations than had been expected. Hence, the data processing routine was updated after Phoenix landed. Further evaluation and the development of a correction are needed since the temperature dependences of the Barocap sensor heads have drifted after the calibration of the sensor. The inaccuracy caused by this appears when the temperature of the unit rises above 0°C. This frequently affects data in the afternoons and precludes a full study of diurnal pressure variations at this time. Short-term fluctuations, on time scales of order 20 s are unaffected and are reported in a separate paper in this issue. Seasonal variations are not significantly affected by this problem and show general agreement with previous measurements from Mars. During the 151 sol mission the surface pressure dropped from around 860 Pa to a minimum (daily average) of 724 Pa on sol 140 (Ls 143). This local minimum occurred several sols earlier than expected based on GCM studies and Viking data. Since battery power was lost on sol 151 we are not sure if the timing of the minimum that we saw could have been advanced by a low-pressure meteorological event. On sol 95 (Ls 122), we also saw a relatively low-pressure feature. This was accompanied by a large number of vertical vortex events, characterized by short, localized (in time), low-pressure perturbations.

  3. Measurement of the PPN-beta parameter in the GAME mission.

    NASA Astrophysics Data System (ADS)

    Vecchiato, Alberto; Bernardi, Gabriella; Gai, Mario

    GAME (Gamma Astrometric Measurement Experiment) is a proposal for a space mission whose main scientific goal is the estimation of the γ parameter of the Parametrized Post-Newtonian (PPN) formalism. A possible configuration as a small mission, and its possible performances for the main scientific case, has already been described in some recent papers (Gai et al. 2009, Vecchiato et al. 2009). However, simple considerations on the applicable observation strategy suggest that GAME can also provide outstanding results on other topics. We address the possible application to another classical test of General Relativity, i.e. the determination of the β parameter of the PPN formalism, or more precisely of the (2γ - β - 1) combination, by means of the reconstruction of the orbit of Mercury. The present accepted limit for this combination is |2γ - β - 1| < 10-3 (Will, 2006), while the proposed ESA Bepi-Colombo Mercury orbiter is expected to improve this limit to 3 × 10-4 after 2020. Preliminary estimations, based on the astrometric accuracy of the satellite measurements, suggest that GAME, in the baseline configuration, could reach the 10-4 -level of accuracy or better, hence calling for a more accurate evaluation which takes into account a relativistic model of the observable. The astrometric position of the planet, in fact, is influenced by the well-known light deflection effect whose lower limit, in the case of Mercury, is of the order of 10-2 arcsec, i.e. well above the expected sub-mas astrometric accuracy of GAME for bright objects. We describe the results of some simulations based on this relativistic model applied to the case of Mercury. Further work will assess in more detail the GAME performance by optimization of the observation strategy and the possible inclusion of other observational targets (high ellipticity orbit asteroids) which could improve on the overall accuracy of the estimate of the β parameter.

  4. High precision ground-based measurements of solar diameter in support of PICARD mission

    NASA Astrophysics Data System (ADS)

    Sigismondi, Costantino

    2011-12-01

    The measurement of the solar diameter is introduced in the wider framework of solar variability and of the influences of the Sun upon the Earth's climate. Ancient eclipses and planetary transits would permit to extend the knowledge of the solar irradiance back to three centuries, through the parameter W=dLogR/dLogL. The method of Baily's beads timing during eclipses is discussed, and a significant improvement with respect to the last 40 years has been obtained by reconstructing the Limb Darkening Function's inflexion point from their light curve and the corresponding lunar valleys' profiles. The case of the Jan 15, 2010 annular eclipse has been studied in detail, as well as the last two transits of Venus. The atlas of Baily's beads, realized with worldwide contributions by IOTA members is presented along with the solar diameter during the eclipse of 2006. The transition between the photographic atlas of the lunar limb (Watts, 1963) and the laser-altimeter map made by the Kaguya lunar probe in 2009 has been followed. The other method for the accurate measurement of the solar diameter alternative to the PICARD / PICARD-sol mission is the drift-scan method used either by the solar astrolabes either by larger telescopes. The observatories of Locarno and Paris have started an observational program of the Sun with this method with encouraging results. For the first time an image motion of the whole Sun has been detected at frequencies of 1/100 Hz. This may start explain the puzzling results of the observational campaigns made in Greenwich and Rome from 1850 to 1955. The meridian line of Santa Maria degli Angeli in Rome is a giant pinhole telescope and it permits to introduce didactically almost all the arguments of classical astrometry here presented. The support to the PICARD mission continues with the analyses of the transit of Venus and the total eclipse of 2012.

  5. Atmospheric Airborne Pressure Measurements using the Oxygen A Band for the ASCENDS Mission

    NASA Astrophysics Data System (ADS)

    Riris, H.; Rodriguez, M.

    2014-12-01

    We report on an airborne demonstration of atmospheric oxygen optical depth measurements with an Integrated Path Differential Absorption (IPDA) lidar using a fiber-based laser system and a photon counting detector. Accurate knowledge of atmospheric temperature and pressure is required for NASA's Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) space mission, and climate modeling studies. The lidar uses a doubled Erbium Doped Fiber amplifier and single photon counting detector to measure oxygen absorption at 765 nm. Our approach uses a sequence of laser pulses at increasing wavelengths that sample a pair of absorption lines in the Oxygen A-band at 764.7 nm. The O2 lines were selected after careful spectroscopic analysis to minimize the O2 line temperature dependence and the availability of the transmitter and receiver technology to maximize transmitter power, doubling efficiency, and detector sensitivity. We compare our 2013 and 2014 Oxygen IPDA lidar measurements and evaluate the impact of receiver dynamic range, transmitter stability and signal to noise ratio on the differential optical depth measurements.

  6. Power, Propulsion, and Communications for Microspacecraft Missions

    NASA Technical Reports Server (NTRS)

    deGroot, W. A.; Maloney, T. M.; Vanderaar, M. J.

    1998-01-01

    The development of small sized, low weight spacecraft should lead to reduced scientific mission costs by lowering fabrication and launch costs. An order of magnitude reduction in spacecraft size can be obtained by miniaturizing components. Additional reductions in spacecraft weight, size, and cost can be obtained by utilizing the synergy that exists between different spacecraft systems. The state-of-the-art of three major systems, spacecraft power, propulsion, and communications is discussed. Potential strategies to exploit the synergy between these systems and/or the payload are identified. Benefits of several of these synergies are discussed.

  7. Leveraging synergy for multiple agent infotaxis

    SciTech Connect

    Gintautas, Vadas; Hagberg, Aric A; Bettencourt, Luis M A

    2008-01-01

    Social computation, whether in the form of a search performed by a swarm of agents or the predictions of markets, often supplies remarkably good solutions to complex problems, which often elude the best experts. There is an intuition, built upon many anecdotal examples, that pervading principles are at play that allow individuals trying to solve a problem locally to aggregate their information to arrive at an outcome superior than any available to isolated parties. Here we show that the general structure of this problem can be cast in terms of information theory and derive general mathematical conditions for information sharing and coordination that lead to optimal multi-agent searches. Specifically we illustrate the problem in terms of the construction of local search algorithms for autonomous agents looking for the spatial location of a stochastic source. We explore the types of search problems -defined in terms of the properties of the source and the nature of measurements at each sensor -for which coordination among multiple searchers yields an advantage beyond that gained by having the same number of independent searchers. We assert that effective coordination corresponds to synergy and that ineffective coordination corresponds to redundancy as defined using information theory. We classify explicit types of sources in terms of their potential for synergy. We show that sources that emit uncorrelated particles based on a Poisson process, provide no opportunity for synergetic coordination while others, particularly sources that emit correlated signals, do allow for strong synergy between searchers. These general considerations are crucial for designing optimal algorithms for particular search problems in real world settings.

  8. Nearby stars to distant galaxies: TMT-ALMA synergies

    NASA Astrophysics Data System (ADS)

    Sheth, Kartik; Wilson, Christine

    2014-07-01

    Although they will probe very different wavelength regimes, significant synergies will exist for TMT and ALMA due to their capabilities for high angular resolution photometric and spectroscopic imaging. We illustrate this complementarity by examining a few specific science examples ranging from exoplanets, star forming disks in our Milky Way to black hole mass measurements in nearby galaxies to high redshift galaxy assemly. Since ALMA will be a relatively mature instrument by the end of TMT construction, we focus on synergies with the TMT first-light instruments as much as possible. We will also describe the current status and capabilities of ALMA and showcase some recent science results.

  9. Synergy between middle infrared and millimeter-wave limb sounding of atmospheric temperature and minor constituents

    NASA Astrophysics Data System (ADS)

    Cortesi, Ugo; Del Bianco, Samuele; Ceccherini, Simone; Gai, Marco; Dinelli, Bianca Maria; Castelli, Elisa; Oelhaf, Hermann; Woiwode, Wolfgang; Höpfner, Michael; Gerber, Daniel

    2016-05-01

    Synergistic exploitation of redundant and complementary information from independent observations of the same target remains a major issue in atmospheric remote sounding and increasing attention is devoted to investigate optimized or innovative methods for the combination of two or more measured data sets. This paper focuses on the synergy between middle infrared and millimeter-wave limb sounding measurements of atmospheric composition and temperature and reports the results of a study conducted as part of the preparatory activities of the PREMIER (Process Exploration through Measurements of Infrared and millimeter-wave Emitted Radiation) mission candidate to the Core Missions of the European Space Agency (ESA) Earth Explorer 7. The activity was based on data acquired by the MIPAS-STR (Michelson Interferometer for Passive Atmospheric Sounding - STRatospheric aircraft) and MARSCHALS (Millimetre-wave Airborne Receivers for Spectroscopic CHaracterisation in Atmospheric Limb Sounding) instruments on-board the high-altitude research aircraft M-55 Geophysica during the flight of the PremierEx (PREMIER Experiment) campaign on 10 March 2010 from Kiruna, Sweden, for observation of the Arctic upper troposphere and lower stratosphere. The cloud coverage observed along the flight provided representative test cases to evaluate the synergy in three different scenarios: low clouds in the first part, no clouds in the central part and high tropospheric clouds at the end. The calculation of synergistic profiles of four atmospheric targets (i.e., O3, HNO3, H2O and temperature) was performed using a posteriori combination of individual retrieved profiles, i.e., Level 2 (L2) data rather than simultaneous inversion of observed radiances, i.e., Level 1 (L1) data. An innovative method of data fusion, based on the Measurement Space Solution (MSS) was applied along with the standard approach of inversion of MARSCHALS spectral radiances using MIPAS-STR retrieval products as a priori

  10. Synergy between middle infrared and millimetre-wave limb sounding of atmospheric temperature and minor constituents

    NASA Astrophysics Data System (ADS)

    Cortesi, U.; Del Bianco, S.; Ceccherini, S.; Gai, M.; Dinelli, B. M.; Castelli, E.; Oelhaf, H.; Woiwode, W.; Höpfner, M.; Gerber, D.

    2015-11-01

    Synergistic exploitation of redundant and complementary information from independent observations of the same target remains a major issue in atmospheric remote-sounding and increasing attention is devoted to investigate optimised or innovative methods for the combination of two or more measured data sets. This paper is focusing on the synergy between middle infrared and millimetre-wave limb sounding measurements of atmospheric composition and temperature and reports the results of a study conducted as part of the preparatory activities of the PREMIER (Process Exploration through Measurements of Infrared and millimetre wave Emitted Radiation) mission candidate to the Core Missions of ESA Earth Explorer 7. The activity was based on data acquired by the MIPAS-STR (Michelson Interferometer for Passive Atmospheric Sounding - STRatospheric aircraft) and MARSCHALS (Millimetre-wave Airborne Receivers for Spectroscopic CHaracterisation in Atmospheric Limb Sounding) instruments onboard the high altitude research aircraft M-55 Geophysica during the flight of the PremierEx (PREMIER Experiment) campaign on 10 March 2010 from Kiruna, Sweden for observation of the Arctic upper troposphere and lower stratosphere. The cloud coverage observed along the flight provided representative test cases to evaluate the synergy in three different scenarios: low clouds in the first part, no clouds in the central part and high tropospheric clouds at the end. The calculation of synergistic profiles of four atmospheric targets (i.e., O2, HNO3, H2O and temperature) was performed using a posteriori combination of individual retrieved profiles, i.e., Level 2 (L2) data rather than simultaneous inverse processing of observed radiances, i.e., Level 1 (L1) data. An innovative method of data fusion, based on the Measurement Space Solution (MSS) was applied along with the standard approach of inverse processing of MARSCHALS spectral radiances using MIPAS-STR retrieval products as a priori information (L1

  11. Surge Pressure Mitigation in the Global Precipitation Measurement Mission Core Propulsion System

    NASA Technical Reports Server (NTRS)

    Scroggins, Ashley R.; Fiebig, Mark D.

    2014-01-01

    The Global Precipitation Measurement (GPM) mission is an international partnership between NASA and JAXA whose Core spacecraft performs cutting-edge measurements of rainfall and snowfall worldwide and unifies data gathered by a network of precipitation measurement satellites. The Core spacecraft's propulsion system is a blowdown monopropellant system with an initial hydrazine load of 545 kg in a single composite overwrapped propellant tank. At launch, the propulsion system contained propellant in the tank and manifold tubes upstream of the latch valves, with low-pressure helium gas in the manifold tubes downstream of the latch valves. The system had a relatively high beginning-of- life pressure and long downstream manifold lines; these factors created conditions that were conducive to high surge pressures. This paper discusses the GPM project's approach to surge mitigation in the propulsion system design. The paper describes the surge testing program and results, with discussions of specific difficulties encountered. Based on the results of surge testing and pressure drop analyses, a unique configuration of cavitating venturis was chosen to mitigate surge while minimizing pressure losses during thruster maneuvers. This paper concludes with a discussion of overall lessons learned with surge pressure testing for NASA Goddard spacecraft programs.

  12. Cross-track sensor precipitation retrievals for the Global Precipitation Measurement mission

    NASA Astrophysics Data System (ADS)

    Kidd, Chris; Randel, David; Stocker, Erich; Kummerow, Christian

    2014-05-01

    The utilization of observations from passive microwave cross-track, or sounders, for global precipitation estimation provides a number of distinct advantages including the potential to retrieve precipitation over cold surface backgrounds and improvements in temporal sampling. As part of the Global Precipitation Measurement (GPM) mission, observations from these cross-track instruments are being incorporated into the overall retrieval framework to enable better temporal and spatial sampling, particularly over regions where surface conditions provide a challenging background against which to observe precipitation. GPM is an international satellite mission and brings together a number of different component satellites and sensors, each contributing observations capable of providing information on precipitation. The joint US-Japan core observatory was launched in early 2014 and carries the GPM Microwave Imager (GMI) and the Dual-frequency Precipitation Radar (DPR). The core observatory serves as a standard against which other sensors in the constellation are calibrated, providing a consistent observational dataset to ensure the highest quality precipitation retrievals to be made. The conically-scanning GMI provides observations from 10.65 GHz through to 166 GHz with dual polarization capabilities, and two 183 GHz channels (+-1 and +-3 GHz) with vertical polarization. The highest frequencies provide resolutions in the order of 4.4x7.3 km. 885 km swath width. The DPR operates at 35.5 GHz and 13.6 GHz with swath widths 120 and 245 km respectively, and a vertical resolution of 250 m. The higher frequency radar will provide a sensitivity down to 12 dBZ, or about 0.2 mmh-1 equivalent rainrate, particularly useful for higher latitudes where light precipitation dominates. Integration of the cross-track sensors into the overall retrieval scheme of the GPM mission is achieved through the GPROF retrieval scheme, utilizing databases based upon observational and modelled data sets

  13. The Status of NASA's Global Precipitation Measurement (GPM) Mission 26 Months After Launch

    NASA Astrophysics Data System (ADS)

    Jackson, Gail; Huffman, George

    2016-04-01

    Water is essential to our planet Earth. Knowing when, where and how precipitation falls is crucial for understanding the linkages between the Earth's water and energy cycles and is extraordinarily important for sustaining life on our planet during climate change. The Global Precipitation Measurement (GPM) Core Observatory spacecraft launched February 27, 2014, is the anchor to the GPM international satellite mission to unify and advance precipitation measurements from a constellation of research and operational sensors to provide "next-generation" precipitation products [1-2]. GPM is currently a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA). The unique 65o non-Sun-synchronous orbit at an altitude of 407 km for the GPM Core Observatory allows for highly sophisticated observations of precipitation in the mid-latitudes where a majority of the population lives. Indeed, the GOM Core Observatory serves as the cornerstone, as a physics observatory and a calibration reference to improve precipitation measurements by a constellation of 8 or more dedicated and operational, U.S. and international passive microwave sensors. GPM's requirements are to measure rain rates from 0.2 to 110 mm/hr and to detect and estimate falling snow. GPM has several retrieval product levels ranging from raw instrument data to Core and partner swath precipitation estimates to gridded and accumulated products and finally to multi-satellite merged products. The latter merged product, called IMERG, is available with a 5-hour latency with temporal resolution of 30 minutes and spatial resolution of 0.1o x 0.1o (~10km x 10km) grid box. Some products have a 1-hour latency for societal applications such as floods, landslides, hurricanes, blizzards, and typhoons and all have late-latency high-quality science products. The GPM mission is well on its way to providing essential data on precipitation (rain and snow) from micro to local to global scales via providing precipitation

  14. Synergy for a Strong Future FY 2008

    SciTech Connect

    Devore, L; Chrzanowski, P

    2008-11-06

    Lawrence Livermore National Security, LLC is committed to delivering the best combination of scientific research, technology development, business management, and safe, secure operations in support of Lawrence Livermore National Laboratory's critical national security mission. LLNS was formed specifically to manage LLNL for the Department of Energy's National Nuclear Security Administration. LLNS consists of a team of five organizations renowned for their expertise and accomplishments throughout the U.S. nuclear weapons complex and beyond - Bechtel National, University of California, Babcock & Wilcox, Washington Division of URS Corporation, and Battelle. Bechtel is the nation's largest engineering and construction firm and a leader in project management. The University of California is the world's largest public research institution. Babcock & Wilcox and the Washington Division of URS Corporation are top nuclear facilities contractors and between them manage four of DOE's five safest sites. Battelle is a global leader in science and technology development and commercialization. The LLNS Board of Governors provides oversight for the management of the Laboratory and holds the Director and LLNS President responsible for the Laboratory's performance. The Board has seven standing committees that assist in assessing Laboratory performance and monitoring risks and internal controls. Through the Board of Governors, the Laboratory can reach back to LLNS partner organizations to help ensure that it fulfills its national security mission with excellence in scientific research, technology development, business management, and safe, secure operations. LLNS assumed management of LLNL on October 1, 2007. This report highlights LLNS accomplishments in FY2008, its first year as the Laboratory's managing contractor. It is clear that LLNS and the Laboratory have exploited numerous synergies inherent in their relationship - for example, science and engineering, mission and operations

  15. Inter-comparison of precipitation retrievals from the Global Precipitation Measurement mission constellation.

    NASA Astrophysics Data System (ADS)

    Kidd, Chris; Matsui, Toshihisa; Randel, Dave; Stocker, Erich; Kummerow, Chris

    2015-04-01

    The Global Precipitation Measurement mission (GPM) is an international satellite mission that brings together a number of different component satellites and sensors, each contributing observations capable of providing information on precipitation. The joint US-Japan core observatory, launched on 27 February 2014, carries the GPM Microwave Imager (GMI) and the Dual-frequency Precipitation Radar (DPR). The core observatory serves as a standard against which other sensors in the constellation are calibrated, providing a consistent observational dataset to ensure the highest quality precipitation retrievals to be made. Precipitation retrievals from the constellation of partner satellites are generated through the common framework of the Goddard-PROFiling (GPROF) scheme, and is applied to both the conically-scanning sensors and the cross-track sensors; the provision of precipitation estimates from all the constellation sensors contributing to the better-than 3-hour average temporal sampling. This study focuses upon the inter-comparison of the products from the different sensors during the first year of GPM operations; March 2014-February 2015. The two regions chosen for the inter-comparison, are the United States and Western Europe, and utilize the extensive radar networks of these regions. Statistical results were generated for instantaneous precipitation retrievals for each of the constellation sensors. Results show that overall the retrievals from the cross-track observations produce higher correlations with the surface radar data sets than the retrievals from the conically-scanning observations, although they tend to have higher root-mean squared errors. Some variation in performance between the individual types of sensors is also noted, which may be attributed to assumptions within the retrieval scheme (e.g. resolution, background fields, etc); other differences require further investigation.

  16. Tropical Rainfall Measuring Mission (TRMM) Precipitation Data and Services for Research and Applications

    NASA Technical Reports Server (NTRS)

    Liu, Zhong; Ostrenga, Dana; Teng, William; Kempler, Steven

    2012-01-01

    Precipitation is a critical component of the Earth's hydrological cycle. Launched on 27 November 1997, TRMM is a joint U.S.-Japan satellite mission to provide the first detailed and comprehensive data set of the four-dimensional distribution of rainfall and latent heating over vastly under-sampled tropical and subtropical oceans and continents (40 S - 40 N). Over the past 14 years, TRMM has been a major data source for meteorological, hydrological and other research and application activities around the world. The purpose of this short article is to inform that the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) provides TRMM archive and near-real-time precipitation data sets and services for research and applications. TRMM data consist of orbital data from TRMM instruments at the sensor s resolution, gridded data at a range of spatial and temporal resolutions, subsets, ground-based instrument data, and ancillary data. Data analysis, display, and delivery are facilitated by the following services: (1) Mirador (data search and access); (2) TOVAS (TRMM Online Visualization and Analysis System); (3) OPeNDAP (Open-source Project for a Network Data Access Protocol); (4) GrADS Data Server (GDS); and (5) Open Geospatial Consortium (OGC) Web Map Service (WMS) for the GIS community. Precipitation data application services are available to support a wide variety of applications around the world. Future plans include enhanced and new services to address data related issues from the user community. Meanwhile, the GES DISC is preparing for the Global Precipitation Measurement (GPM) mission which is scheduled for launch in 2014.

  17. Global variability of precipitation according to the Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    Haddad, Ziad S.; Meagher, Jonathan P.; Adler, Robert F.; Smith, Eric A.; Im, Eastwood; Durden, Stephen L.

    2004-01-01

    Numerous studies have documented the effect of El Nino-Southern Oscillation (ENSO) on rainfall in many regions of the globe. The question of whether ENSO is the single most important factor in interannual rainfall variability has received less attention, mostly because the kind of data that would be required to make such an assessment were simply not available. Until 1979 the evidence linking El Nino with changes in rainfall around the world came from rain gauges measuring precipitation over land masses and a handful of islands. From 1980 until the launch of the Tropical Rainfall Measuring Mission (TRMM) in November 1997 the remote sensing evidence was confined to ocean rainfall because of the very poor sensitivity of the instruments over land. In this paper we summarize the results of a principal component analysis of TRMM's 60-month (January 1998 to December 2002) global land and ocean remote-sensing record of monthly rainfall accumulations. Contrary to the first principal component of the rainfall itself, the first three indices of the anomaly are most sensitive to precipitation over the ocean rather than over the land. With the help of archived surface station data the first TRMM rain anomaly index is extended back several decades. Comparison of the extended index with the Southern Oscillation Index confirms that the first principal component of the rainfall anomaly is strongly correlated with the ENSO indices.

  18. Modeling the MLT Region in Light of Measurements From the TIMED Mission

    NASA Astrophysics Data System (ADS)

    Mayr, H. G.; Mengel, J. G.; Talaat, E. R.; Porter, H. S.

    2003-12-01

    Our Numerical Spectral Model (NSM) extends from the ground up to the thermosphere and incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves. This model describes in the mesosphere the major features of: (a) the equatorial oscillations (QBO and SAO), (b) the migrating as well as non-migrating tides, and (c) the planetary waves. The model also generates distinct intra-seasonal oscillations with periods around 3 months and planetary-scale inertio gravity waves with periods around 10 hours. After a review of the model and major findings, we discuss the scientific investigations to be carried out with the measurements from the TIMED mission. As part of this investigation, we shall attempt to describe the observations empirically (statistically) with vector spherical harmonics that delineate the temperature and wind fields in terms of zonal wave numbers, m = 0 to 4. The spectral formulation of the model allows us then to study the observed dynamical components and their interactions. With emphasis on the dynamics and energetics of the mesosphere, we shall compare some of our model simulations with temperature data from SABER and winds derived from TIDI measurements. We shall also present model predictions for comparison with coordinated ground-based observations.

  19. Measured and predicted pressure distributions on the AFTI/F-111 mission adaptive wing

    NASA Technical Reports Server (NTRS)

    Webb, Lannie D.; Mccain, William E.; Rose, Lucinda A.

    1988-01-01

    Flight tests have been conducted using an F-111 aircraft modified with a mission adaptive wing (MAW). The MAW has variable-camber leading and trailing edge surfaces that can change the wing camber in flight, while preserving smooth upper surface contours. This paper contains wing surface pressure measurements obtained during flight tests at Dryden Flight Research Facility of NASA Ames Research Center. Upper and lower surface steady pressure distributions were measured along four streamwise rows of static pressure orifices on the right wing for a leading-edge sweep angle of 26 deg. The airplane, wing, instrumentation, and test conditions are discussed. Steady pressure results are presented for selected wing camber deflections flown at subsonic Mach numbers up to 0.90 and an angle-of-attack range of 5 to 12 deg. The Reynolds number was 26 million, based on the mean aerodynamic chord. The MAW flight data are compared to MAW wind tunnel data, transonic aircraft technology (TACT) flight data, and predicted pressure distributions. The results provide a unique database for a smooth, variable-camber, advanced supercritical wing.

  20. TRMM Data from the Goddard Earth Sciences (GES) DISC DAAC: Tropical Rainfall Measuring Mission (TRMM)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Tropical rainfall affects the lives and economies of a majority of the Earth's population. Tropical rain systems, such as hurricanes, typhoons, and monsoons, are crucial to sustaining the livelihoods of those living in the tropics. Excess rainfall can cause floods and great property and crop damage, whereas too little rainfall can cause drought and crop failure. The latent heat release during the process of precipitation is a major source of energy that drives the atmospheric circulation. This latent heat can intensify weather systems, affecting weather thousands of kilometers away, thus making tropical rainfall an important indicator of atmospheric circulation and short-term climate change. The Tropical Rainfall Measuring Mission (TRMM), jointly sponsored by the National Aeronautics and Space Administration (NASA) of the United States and the National Space Development Agency (NASDA) of Japan, provides visible, infrared, and microwave observations of tropical and subtropical rain systems. The satellite observations are complemented by ground radar and rain gauge measurements to validate satellite rain estimation techniques. Goddard Space Flight Center's involvement includes the observatory, four instruments, integration and testing of the observatory, data processing and distribution, and satellite operations. TRMM has a design lifetime of three years. It is currently in its fifth year of operation. Data generated from TRMM and archived at the GES DAAC are useful not only for hydrologists, atmospheric scientists, and climatologists, but also for the health community studying infectious diseases, the ocean research community, and the agricultural community.

  1. Lidar and Mission Parameter Trade Study of Space-Based Coherent Wind Measurement Centered on NASA's 2006 GWOS Wind Mission Study Parameters

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Frehlich, Rod G.

    2007-01-01

    The global measurement of vertical profiles of horizontal vector winds has been highly desired for many years by NASA, NOAA and the Integrated Program Office (IPO) implementing the National Polar-orbiting Operational Environmental Satellite Systems (NPOESS). Recently the global wind mission was one of 15 missions recommended to NASA by the first ever NRC Earth Sciences Decadal Survey. Since before 1978, the most promising method to make this space-based measurement has been pulsed Doppler lidar. The favored technology and technique has evolved over the years from obtaining line-of-sight (LOS) wind profiles from a single laser shot using pulsed CO2 gas laser technology to the current plans to use both a coherent-detection and direct-detection pulsed Doppler wind lidar systems with each lidar employing multiple shot accumulation to produce an LOS wind profile. The idea of using two lidars (hybrid concept) entails coherent detection using the NASA LaRC-developed pulsed 2-micron solid state laser technology, and direct detection using pulsed Nd:YAG laser technology tripled in frequency to 355 nm wavelength.

  2. Understanding Human Motion Skill with Peak Timing Synergy

    NASA Astrophysics Data System (ADS)

    Ueno, Ken; Furukawa, Koichi

    The careful observation of motion phenomena is important in understanding the skillful human motion. However, this is a difficult task due to the complexities in timing when dealing with the skilful control of anatomical structures. To investigate the dexterity of human motion, we decided to concentrate on timing with respect to motion, and we have proposed a method to extract the peak timing synergy from multivariate motion data. The peak timing synergy is defined as a frequent ordered graph with time stamps, which has nodes consisting of turning points in motion waveforms. A proposed algorithm, PRESTO automatically extracts the peak timing synergy. PRESTO comprises the following 3 processes: (1) detecting peak sequences with polygonal approximation; (2) generating peak-event sequences; and (3) finding frequent peak-event sequences using a sequential pattern mining method, generalized sequential patterns (GSP). Here, we measured right arm motion during the task of cello bowing and prepared a data set of the right shoulder and arm motion. We successfully extracted the peak timing synergy on cello bowing data set using the PRESTO algorithm, which consisted of common skills among cellists and personal skill differences. To evaluate the sequential pattern mining algorithm GSP in PRESTO, we compared the peak timing synergy by using GSP algorithm and the one by using filtering by reciprocal voting (FRV) algorithm as a non time-series method. We found that the support is 95 - 100% in GSP, while 83 - 96% in FRV and that the results by GSP are better than the one by FRV in the reproducibility of human motion. Therefore we show that sequential pattern mining approach is more effective to extract the peak timing synergy than non-time series analysis approach.

  3. Assessment and Mission Planning Capability For Quantitative Aerothermodynamic Flight Measurements Using Remote Imaging

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas; Splinter, Scott; Daryabeigi, Kamran; Wood, William; Schwartz, Richard; Ross, Martin

    2008-01-01

    High resolution calibrated infrared imagery of vehicles during hypervelocity atmospheric entry or sustained hypersonic cruise has the potential to provide flight data on the distribution of surface temperature and the state of the airflow over the vehicle. In the early 1980 s NASA sought to obtain high spatial resolution infrared imagery of the Shuttle during entry. Despite mission execution with a technically rigorous pre-planning capability, the single airborne optical system for this attempt was considered developmental and the scientific return was marginal. In 2005 the Space Shuttle Program again sponsored an effort to obtain imagery of the Orbiter. Imaging requirements were targeted towards Shuttle ascent; companion requirements for entry did not exist. The engineering community was allowed to define observation goals and incrementally demonstrate key elements of a quantitative spatially resolved measurement capability over a series of flights. These imaging opportunities were extremely beneficial and clearly demonstrated capability to capture infrared imagery with mature and operational assets of the US Navy and the Missile Defense Agency. While successful, the usefulness of the imagery was, from an engineering perspective, limited. These limitations were mainly associated with uncertainties regarding operational aspects of data acquisition. These uncertainties, in turn, came about because of limited pre-flight mission planning capability, a poor understanding of several factors including the infrared signature of the Shuttle, optical hardware limitations, atmospheric effects and detector response characteristics. Operational details of sensor configuration such as detector integration time and tracking system algorithms were carried out ad hoc (best practices) which led to low probability of target acquisition and detector saturation. Leveraging from the qualified success during Return-to-Flight, the NASA Engineering and Safety Center sponsored an

  4. Geoscience Laser Altimeter System (GLAS) on the ICESat Mission: Initial Science Measurement Performance

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Sun, Xiaoli; Riris, Haris; Sirota, Marcos; McGarry, J.; Palm, Steve

    2003-01-01

    The Geoscience Laser Altimeter System is the space lidar on the NASA ICESat mission. Its design combines an altimeter with 5 cm precision with a laser pointing angle determination system and a dual wavelength cloud and aerosol lidar. GLAS measures the range to the Earth s surface with 1064 nm laser pulses. Each laser pulse produces a precision pointing measurement from the stellar reference system (SRS) and an echo pulse waveform, which permits range determination and waveform spreading analysis. The single shot ranging accuracy is < 10 cm for ice surfaces with slopes < 2 degrees. GLAS also measures atmospheric backscatter profiles at both 1064 and 532 nm. The 1064 nm measurements use an analog Si APD detector and measure the height and profile the backscatter signal from thicker clouds. The measurements at 532 nm use photon counting detectors, and will measure the vertical height distributions of optically thin clouds and aerosol layers Before launch, the measurement performance of GLAS was evaluated using a lidar test instrument called the Bench Check Equipment (BCE). The BCE was developed in parallel with GLAS and served as an inverse altimeter, inverse lidar and a stellar source simulator. It was used to simulate the range of expected optical inputs to the GLAS receiver by illuminating its telescope with simulated background light as well as laser echoes with known powers, energy levels, widths and delay times. The BCE also allowed monitoring of the transmitted laser energy, the angle measurements of the SRS, the co-alignment of the transmitted laser beam to the receiver line of sight, and performance of the flight science algorithms. Performance was evaluated during the GLAS development, before and after environmental tests, and after delivery to the spacecraft. The ICESat observatory was launched into a 94 degree inclination, 590 km altitude circular polar orbit on January 12,2003. Beginning in early February, GLAS was powered on tested in stages. Its 1064 nm

  5. The Hydrosphere State Mission (HYDROS) Soil Moisture and Freeze/Thaw Exploratory Mission

    NASA Astrophysics Data System (ADS)

    Entekhabi, D.; Njoku, E. G.; Houser, P. R.

    2003-12-01

    The Hydrosphere State Mission (HYDROS) is a pathfinder mission in the NASA's Earth System Pathfinder Program (ESSP). The objective of the mission is to provide exploratory measurements that constitute the first global scale measurement of Earth's soil moisture and land surface freeze/thaw conditions. The mission builds on the heritage of ground-based and airborne passive and active low-frequency microwave measurements that have demonstrated and validated the effectiveness of the measurements and associated algorithms for estimating the amount and phase (frozen or thawed) of surface soil moisture. The mission data will enable advances weather and climate prediction and in mapping processes that link the water, energy and carbon cycles. The proposed HYDROS instrument is a combined radar and radiometer system operating at 1.26 GHz (with VV, HH, and HV polarizations) and 1.41 GHz (with H, V, and U polarizations). The radar and the radiometer share the aperture of a 6-meter antenna pointing at 35° with respect to nadir. The lightweight deployable mesh antenna is rotated at 14.6 rpm to provide a constant look-angel scan swath of 1000 km. The large swath provides a global coverage of the Earth in 2 to 3 days with a temporal sampling less than 2 days at latitude above 50N. The radar measurements allow the retrieval of soil moisture at high resolution (3 to 10 km). The radiometer measurements allow retrieval of soil moisture in diverse (non-forested) landscapes with a resolution of 40 km. The mission includes combined radar/radiometer data products that will use the synergy of the two sensors to deliver enhanced quality soil moisture estimates.

  6. Mission specification for three generic mission classes

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Mission specifications for three generic mission classes are generated to provide a baseline for definition and analysis of data acquisition platform system concepts. The mission specifications define compatible groupings of sensors that satisfy specific earth resources and environmental mission objectives. The driving force behind the definition of sensor groupings is mission need; platform and space transportation system constraints are of secondary importance. The three generic mission classes are: (1) low earth orbit sun-synchronous; (2) geosynchronous; and (3) non-sun-synchronous, nongeosynchronous. These missions are chosen to provide a variety of sensor complements and implementation concepts. Each mission specification relates mission categories, mission objectives, measured parameters, and candidate sensors to orbits and coverage, operations compatibility, and platform fleet size.

  7. Nondestructive examination of the Tropical Rainfall Measuring Mission (TRMM) reaction control subsystem (RCS) propellant tanks

    NASA Technical Reports Server (NTRS)

    Free, James M.

    1993-01-01

    This paper assesses the feasibility of using eddy current nondestructive examination to determine flaw sizes in completely assembled hydrazine propellant tanks. The study was performed by the NASA Goddard Space Flight Center for the Tropical Rainfall Measuring Mission (TRMM) project to help determine whether existing propellant tanks could meet the fracture analysis requirements of the current pressure vessel specification, MIL-STD-1522A and, therefore be used on the TRMM spacecraft. After evaluating several nondestructive test methods, eddy current testing was selected as the most promising method for determining flaw sizes on external and internal surfaces of completely assembled tanks. Tests were conducted to confirm the detection capability of the eddy current NDE, procedures were developed to inspect two candidate tanks, and the test support equipment was designed. The non-spherical tank eddy current NDE test program was terminated when the decision was made to procure new tanks for the TRMM propulsion subsystem. The information on the development phase of this test program is presented in this paper as a reference for future investigation on the subject.

  8. Design and early in flight performance of the Tropical Rainfall Measuring Mission (TRMM) power subsystem

    SciTech Connect

    Moran, V.E.; Flatley, T.P.; Shue, J.; Gaddy, E.M.; Manzer, D.; Hicks, E.

    1998-07-01

    The Tropical Rainfall Measuring Mission (TRMM) is a joint endeavor of the United States and Japan. The National Aeronautical and Space Administration (NASA)'s Goddard Space Flight Center (GSFC) in Greenbelt, Maryland built the spacecraft in-house with four US instruments and one Japanese instrument, the first space flown Precipitation Radar (PR). The TRMM Observatory was successfully launched from Tanegashima Space Center in Japan on an H-II Expendable Launch Vehicle on November 27, 1997. This paper presents an overview of the TRMM Power System including its design, testing, and in flight performance for the first 70 days. Finally, key lessons learned are presented. The TRMM power system consists of an 18.1 square meter deployed solar array fabricated by TRW with Tecstar GaAs/Ge cells, two (2) Hughes 50 Ampere-Hour (Ah) Super NiCd TM batteries, each with 22 Eagle-Picher cells, and three (3) electronics boxes designed to provide power regulation, battery charge control, and command and telemetry interface.

  9. Nondestructive examination of the Tropical Rainfall Measuring Mission (TRMM) reaction control subsystem (RCS) propellant tanks

    NASA Astrophysics Data System (ADS)

    Free, James M.

    1993-06-01

    This paper assesses the feasibility of using eddy current nondestructive examination to determine flaw sizes in completely assembled hydrazine propellant tanks. The study was performed by the NASA Goddard Space Flight Center for the Tropical Rainfall Measuring Mission (TRMM) project to help determine whether existing propellant tanks could meet the fracture analysis requirements of the current pressure vessel specification, MIL-STD-1522A and, therefore be used on the TRMM spacecraft. After evaluating several nondestructive test methods, eddy current testing was selected as the most promising method for determining flaw sizes on external and internal surfaces of completely assembled tanks. Tests were conducted to confirm the detection capability of the eddy current NDE, procedures were developed to inspect two candidate tanks, and the test support equipment was designed. The non-spherical tank eddy current NDE test program was terminated when the decision was made to procure new tanks for the TRMM propulsion subsystem. The information on the development phase of this test program is presented in this paper as a reference for future investigation on the subject.

  10. Qualification of the Tropical Rainfall Measuring Mission Solar Array Deployment System

    NASA Technical Reports Server (NTRS)

    Lawrence, Jon

    1998-01-01

    The Tropical Rainfall Measuring Mission (TRMM) solar arrays are placed into orbital configuration by a complex deployment system. Its two wings each comprise twin seven square solar panels located by a twelve foot articulated boom. The four spring-driven hinge lines per wing are rate-limited by viscous dampers. The wings are stowed against the spacecraft kinematically, and released by five pyrotechnically-actuated mechanisms. Since deployment failure would be catastrophic, a total of 17 deployment tests were completed to qualify the system for the worst cast launch environment. This successful testing culminated in the flawless deployment of the solar arrays on orbit, 15 minutes after launch in November 1997. The custom gravity negation system used to perform deployment testing is modular to allow its setup in several locations, including the launch site in Japan. Both platform and height can be varied, to meet the requirements of the test configuration and the test facility. Its air pad floatation system meets tight packaging requirements, allowing installation while stowed against the spacecraft without breaking any flight interfaces, and avoiding interference during motion. This system was designed concurrently with the deployment system, to facilitate its installation, to aid in the integration of the flight system to the spacecraft, while demonstrating deployment capabilities. Critical parameters for successful testing were alignment of deployment axes and tables to gravity, alignment of table seams to minimize discontinuities, and minimizing pressure drops in the air supply system. Orbital performance was similar to that predicted by ground testing.

  11. Radar Rainfall Estimation for Ground Validation Studies of the Tropical Rainfall Measuring Mission.

    NASA Astrophysics Data System (ADS)

    Ciach, Grzegorz J.; Krajewski, Witold F.; Anagnostou, Emmanouil N.; Baeck, Mary L.; Smith, James A.; McCollum, Jeffrey R.; Kruger, Anton

    1997-06-01

    This study presents a multicomponent rainfall estimation algorithm, based on weather radar and rain gauge network, that can be used as a ground-based reference in the satellite Tropical Rainfall Measuring Mission (TRMM). The essential steps are constructing a radar observable, its nonlinear transformation to rainfall, interpolation to rectangular grid, constructing several timescale accumulations, bias adjustment, and merging of the radar rainfall estimates and rain gauge data. Observations from a C-band radar in Darwin, Australia, and a local network of 54 rain gauges were used to calibrate and test the algorithm. A period of 25 days was selected, and the rain gauges were split into two subsamples to apply cross-validation techniques.A Z-R relationship with continuous range dependence and a temporal interpolation scheme that accounts for the advection effects is applied. An innovative methodology was used to estimate the algorithm controlling parameters. The model was globally optimized by using an objective function on the level of the final products. This is equivalent to comparing hundreds of Z-R relationships using a uniform and representative performance criterion. The algorithm performance is fairly insensitive to the parameter variations around the optimum. This suggests that the accuracy limit of the radar rainfall estimation based on power-law Z-R relationships has been reached. No improvement was achieved by using rain regime classification prior to estimation.

  12. A pose and position measurement system for the Hubble Space Telescope servicing mission

    NASA Astrophysics Data System (ADS)

    Balch, Michael; Tandy, Dave

    2007-04-01

    As NASA develops the new space explorations systems required for the Crew Exploration Vehicle (CEV) also known as ORION, there is a growing need for hardware and algorithms to support Automated Rendezvous and Docking (AR&D) technology for both manned and unmanned flights. A new definition of space hardware is also emerging based on reconfigurable computing. Goddard Space Flight Center (GSFC) has developed a high processing bandwidth hardware platform based on the latest Xilinx Field Programmable Gate Array (FPGA) technology. This platform, called SpaceCube, incorporates the processing power of immersed PowerPC core technology with an extremely flexible I/O capability. The result is an adaptable, reconfigurable computing platform well suited for hosting computationally intensive AR&D algorithms. Advanced Optical Systems, Inc. (AOS) has developed several electro-optical sensor systems for both NASA and the Department of Defense. ULTOR ® is one such sensor technology, developed for Automatic Target Recognition (ATR) in missile guidance systems. AOS has applied ULTOR ® to target position and attitude measurements in space, commonly referred to as pose estimation. Under GSFC funding, AOS has successfully integrated ULTOR ® into the SpaceCube platform. GSFC plans to demonstrate on-station pose estimation using the integrated ULTOR ® SpaceCube system on the next shuttle mission to the service the Hubble Space Telescope.

  13. Toward a Reliable and Valid Measure of Institutional Mission and Values Perception: The DePaul Values Inventory

    ERIC Educational Resources Information Center

    Ferrari, Joseph R.; Cowman, Shaun E.

    2004-01-01

    Across three studies, the development of a reliable and valid measure of perceptions by students of an urban, private, faith-based teaching university's mission and values was assessed. Study 1 presented scale construction and reliability of the DePaul Values Inventory (DeVI) with undergraduates (n = 111), yielding a final 22-item rating scale…

  14. Wind Lidar Edge Technique Shuttle Demonstration Mission: Anemos

    NASA Technical Reports Server (NTRS)

    Leete, Stephen J.; Bundas, David J.; Martino, Anthony J.; Carnahan, Timothy M.; Zukowski, Barbara J.

    1998-01-01

    A NASA mission is planned to demonstrate the technology for a wind lidar. This will implement the direct detection edge technique. The Anemos instrument will fly on the Space Transportation System (STS), or shuttle, aboard a Hitchhiker bridge. The instrument is being managed by the Goddard Space Flight Center as an in-house build, with science leadership from the GSFC Laboratory for Atmospheres, Mesoscale Atmospheric Processes Branch. During a roughly ten-day mission, the instrument will self calibrate and adjust for launch induced mis-alignments, and perform a campaign of measurements of tropospheric winds. The mission is planned for early 2001. The instrument is being developed under the auspices of NASA's New Millennium Program, in parallel with a comparable mission being managed by the Marshall Space Flight Center. That mission, called SPARCLE, will implement the coherent technique. NASA plans to fly the two missions together on the same shuttle flight, to allow synergy of wind measurements and a direct comparison of performance.

  15. Summary Report of Mission Acceleration Measurements for STS-89: Launched January 22, 1998

    NASA Technical Reports Server (NTRS)

    Hrovat, Kenneth; McPherson, Kevin

    1999-01-01

    Support of microgravity research on the 89th flight of the Space Transportation System (STS-89) and a continued effort to characterize the acceleration environment of the Space Shuttle Orbiter and the Mir Space Station form the basis for this report. For the STS-89 mission, the Space Shuttle Endeavour was equipped with a Space Acceleration Measurement System (SAMS) unit, which collected more than a week's worth of data. During docked operations with Mir, a second SAMS unit collected approximately a day's worth of data yielding the only set of acceleration measurements recorded simultaneously on the two spacecraft. Based on the data acquired by these SAMS units, this report serves to characterize a number of acceleration events and quantify their impact on the local nature of the accelerations experienced at the Mechanics of Granular Materials (MGM) experiment location. Crew activity was shown to nearly double the median root-mean-square (RMS) acceleration level calculated below 10 Hz, while the Enhanced Orbiter Refrigerator/Freezer operating at about 22 Hz was a strong acceleration source in the vicinity of the MGM location. The MGM science requirement that the acceleration not exceed q I mg was violated numerous times during their experiment runs; however, no correlation with sample instability has been found to this point. Synchronization between the SAMS data from Endeavour and from Mir was shown to be close much of the time, but caution with respect to exact timing should be exercised when comparing these data. When orbiting as a separate vehicle prior to docking, Endeavour had prominent structural modes above 3 Hz, while Mir exhibited a cluster of modes around 1 Hz. When mated, a transition to common modes was apparent in the two SAMS data sets. This report is not a comprehensive analysis of the acceleration data, so those interested in further details should contact the Principal Investigator Microgravity Services team at the National Aeronautics and Space

  16. An optimum opportunity for interstellar dust measurements by the JUICE mission

    NASA Astrophysics Data System (ADS)

    Sterken, V. J.; Altobelli, N.; Kempf, S.; Krüger, H.; Soja, R. H.; Srama, R.; Grün, E.

    2012-09-01

    The JUpiter ICy moons Explorer (JUICE) is an ESA L-class mission concept designed to explore the Galilean satellites of the Jovian system. Although the mission science goals do not include any astronomical observations, we find by modeling the Interstellar Dust (ISD) trajectories that the planned period of the JUICE mission is optimal for in-situ observations of Interstellar Dust, due to highly increased flux levels at that time at the orbit of Jupiter. If JUICE would carry a dust detector, this could lead to exclusive highresolution mass spectra of ISD grains. Such compositional information on the ISD grains is important for understanding the origins of of solar/planetary systems, and therefore could represent a valuable addition to the core JUICE mission science.

  17. Measuring Atmospheric Carbon Dioxide from Space: The GOSAT and OCO-2 Missions

    NASA Technical Reports Server (NTRS)

    Crisp, David

    2011-01-01

    The Japanese Greenhouse gases Observing Satellite (GOSAT) is providing new insight into atmospheric carbon dioxide trends. The NASA Orbiting Carbon Observatory-2 (OCO-2)Mission will build on this record with increased sensitivity resolution, and coverage.

  18. Simulation of Meteosat Third Generation-Lightning Imager through tropical rainfall measuring mission: Lightning Imaging Sensor data

    NASA Astrophysics Data System (ADS)

    Biron, Daniele; De Leonibus, Luigi; Laquale, Paolo; Labate, Demetrio; Zauli, Francesco; Melfi, Davide

    2008-08-01

    The Centro Nazionale di Meteorologia e Climatologia Aeronautica recently hosted a fellowship sponsored by Galileo Avionica, with the intent to study and perform a simulation of Meteosat Third Generation - Lightning Imager (MTG-LI) sensor behavior through Tropical Rainfall Measuring Mission - Lightning Imaging Sensor data (TRMM-LIS). For the next generation of earth observation geostationary satellite, major operating agencies are planning to insert an optical imaging mission, that continuously observes lightning pulses in the atmosphere; EUMETSAT has decided in recent years that one of the three candidate mission to be flown on MTG is LI, a Lightning Imager. MTG-LI mission has no Meteosat Second Generation heritage, but users need to evaluate the possible real time data output of the instrument to agree in inserting it on MTG payload. Authors took the expected LI design from MTG Mission Requirement Document, and reprocess real lightning dataset, acquired from space by TRMM-LIS instrument, to produce a simulated MTG-LI lightning dataset. The simulation is performed in several run, varying Minimum Detectable Energy, taking into account processing steps from event detection to final lightning information. A definition of the specific meteorological requirements is given from the potential use in meteorology of lightning final information for convection estimation and numerical cloud modeling. Study results show the range of instrument requirements relaxation which lead to minimal reduction in the final lightning information.

  19. New discoveries enabled by OMI SO2 measurements and future missions

    NASA Astrophysics Data System (ADS)

    Krotkov, Nickolay

    2010-05-01

    -sulfur coal in its many coal-fired power plants. Recently, China's government has instituted nationwide measures to control SO2 emissions through the adoption of flue-gas desulfurization technology (FGD) on new power plants; and even greater measures were adopted in the Beijing area in anticipation of the Olympic Games. We demonstrate that the OMI can pick up both SO2 and NO2 emissions from large point sources in northern China, where large increases in both gases were observed from 2005 to 2007, over areas with newly established power plants. The OMI SO2/NO2 ratio generally agrees with the estimated emission factors for coal-fired power plants based on a bottom-up approach. Between 2007 and 2008, OMI detected little change in NO2 but dramatic decline in SO2 over the same areas. While the almost constant NO2 levels between the two years imply steady electricity generation from the power plants, the large reduction in SO2 confirms the effectiveness of the FGD units, which likely became operational between 2007 and 2008. Further development of satellite detection and monitoring of point pollution sources requires better than 10km ground resolution. We show how planned Dutch /ESA TROPOMI and NASA GEOCape missions will advance the art of measuring point source emissions in coming decade.

  20. Space Propulsion Synergy Group ETO technology assessments

    NASA Astrophysics Data System (ADS)

    Bray, James

    The Space Propulsion Synergy Group (SPSG), which was chartered to support long-range strategic planning, has, using a broad industry/government team, evaluated and achieved consensus on the vehicles, propulsion systems, and propulsion technologies that have the best long-term potential for achieving desired system attributes. The breakthrough that enabled broad consensus was developing criteria that are measurable a priori. The SPSG invented a dual prioritization approach that balances long-term strategic thrusts with current programmatic constraints. This enables individual program managers to make decisions based on both individual project needs and long-term strategic needs. Results indicate that an SSTO using an integrated modular engine has the best long-term potential for a 20 Klb class vehicle, and that health monitoring and control technologies are among the highest dual priority liquid rocket technologies.

  1. Global Elemental Maps of the Moon Using Gamma Rays Measured by the Kaguya (SELENE) Mission

    NASA Astrophysics Data System (ADS)

    Reedy, Robert C.; Hasebe, N.; Yamashita, N.; Karouji, Y.; Kobayashi, S.; Hareyama, M.; Hayatsu, K.; Okudaira, O.; Kobayashi, M.; d'Uston, C.; Maurice, S.; Gasnault, O.; Forni, O.; Diez, B.; Kim, K.

    2009-09-01

    The Kaguya spacecraft was in a circular polar lunar orbit from 17 October 2007 until 10 June 2009 as part of JAXA's SELENE lunar exploration program. Among the 13 instruments, an advanced gamma-ray spectrometer (GRS) studied the distributions of many elements. The gamma rays were from the decay of the naturally-radioactive elements K, Th, and U and from cosmic-ray interactions with H, O, Mg, Al, Si, Ca, Ti, Fe, and other elements. They are emitted from the top few tens of centimeters of the lunar surface. The main detector of the GRS was high-purity germanium, which was surrounded by bismuth germanate and plastic scintillators to reduce backgrounds. Gamma-ray spectra were sent to the Earth every 17 seconds (1 degree of the lunar surface) with energies from 0-12 MeV. These spectra were adjusted to a standard gain and then summed over many lunar regions. Background spectra were also determined. Over 200 gamma rays have been observed, with most being backgrounds but many being from the lunar surface, an order more gamma rays than from any previous lunar GRS missions. Elemental results have been determined for K, Th, and U. Results for K and Th are consistent with those from the GRS on Apollo and Lunar Prospector. The first lunar global maps for U have been determined. These 3 elements show strong correlations among themselves, which implies that the Moon is homogeneous in these elements over the entire Moon. Their elemental ratios agree well with those measured in lunar samples and meteorites. Preliminary maps for Fe are consistent with earlier maps. Other elements, including O, Mg, Si, Ca, and Ti, are being mapped, and their distributions vary over the lunar surface and appear consistent with previous lunar elemental results. This work was supported by JAXA, NASA, and CNRS, France.

  2. Summary Report of Mission Acceleration Measurements for STS-79. Launched 16 Sep. 1996

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Moskowitz, Milton E.; Hrovat, Kenneth; Reckart, Timothy A.

    1997-01-01

    The Space Acceleration Measurement System (SAMS) collected acceleration data in support of the Mechanics of Granular Materials experiment during the STS-79 Mir docking mission, September 1996. STS-79 was the first opportunity to record SAMS data on an Orbiter while it was docked to Mir. Crew exercise activities in the Atlantis middeck and the Mir base module are apparent in the data. The acceleration signals related to the Enhanced Orbiter Refrigerator Freezer had different characteristics when comparing the data recorded on Atlantis on STS-79 with the data recorded on Mir during STS-74. This is probably due, at least in part, to different transmission paths and SAMS sensor head mounting mechanisms. Data collected on Atlantis during the STS-79 docking indicate that accelerations due to vehicle and solar array structural modes from Mir transfer to Atlantis and that the structural modes of the Atlantis-Mir complex are different from those of either vehicle independently. A 0.18 Hz component of the SAMS data, present while the two vehicles were docked, was probably caused by the Mir solar arrays. Compared to Atlantis structural modes of about 3.9 and 4.9 Hz, the Atlantis-Mir complex has structural components of about 4.5 and 5.1 Hz. After docking, apparent structural modes appeared in the data at about 0.8 and 1.8 Hz. The appearance, disappearance, and change in the structural modes during the docking and undocking phases of the joint Atlantis-Mir operations indicates that the structural modes of the two spacecraft have an effect on the microgravity environment of each other. The transfer of structural and equipment related accelerations between vehicles is something that should be considered in the International Space Station era.

  3. The Status of the Tropical Rainfall Measuring Mission (TRMM) after 2 Years in Orbit

    NASA Technical Reports Server (NTRS)

    Kummerow, C.; Simpson, J.; Thiele, O.; Barnes, W.; Chang, A. T. C.; Stocker, E.; Adler, R. F.; Hou, A.; Kakar, R.; Wentz, F.

    1999-01-01

    The Tropical Rainfall Measuring Mission (TRMM) satellite was launched on November 27, 1997, and data from all the instruments first became available approximately 30 days after launch. Since then, much progress has been made in the calibration of the sensors, the improvement of the rainfall algorithms, in related modeling applications and in new datasets tailored specifically for these applications. This paper reports the latest results regarding the calibration of the TRMM Microwave Imager, (TMI), Precipitation Radar (PR) and Visible and Infrared Sensor (VIRS). For the TMI, a new product is in place that corrects for a still unknown source of radiation leaking in to the TMI receiver. The PR calibration has been adjusted upward slightly (by 0.6 dBZ) to better match ground reference targets, while the VIRS calibration remains largely unchanged. In addition to the instrument calibration, great strides have been made with the rainfall algorithms as well, with the new rainfall products agreeing with each other to within less than 20% over monthly zonally averaged statistics. The TRMM Science Data and Information System (TSDIS) has responded equally well by making a number of new products, including real-time and fine resolution gridded rainfall fields available to the modeling community. The TRMM Ground Validation (GV) program is also responding with improved radar calibration techniques and rainfall algorithms to provide more accurate GV products which will be further enhanced with the new multiparameter 10 cm radar being developed for TRMM validation and precipitation studies. Progress in these various areas has, in turn, led to exciting new developments in the modeling area where Data Assimilation, and Weather Forecast models are showing dramatic improvements after the assimilation of observed rainfall fields.

  4. D/H ratio during the northern polar summer and what the Phoenix mission might measure

    NASA Astrophysics Data System (ADS)

    Fisher, David; Novak, Robert; Mumma, Michael J.

    2008-09-01

    The Phoenix polar mission will land close to 68°N, 233°E in May 2008 at Ls ~ 75 and operate 90 sols until Ls ~ 125 with possible extension to Ls ~ 142. Phoenix Meteorology (MET), Thermal and Evolved Gas Analyzer (TEGA) and Microscopy, Electrochemistry and Conductivity Analyzer (MECA) instrument packages will measure the air's temperature, water vapor concentration, ice crystal concentration and the water's stable isotope ratio D/H, and the D/H for the uppermost ground ice. This paper summarizes what is known about the seasonal cycle of atmospheric D/H and makes a theoretical connection between the atmospheric ratio and that expected from the ground ice that Phoenix will sample. A simple mixed cloud stable isotope model is used to show that the seasonal progress of D/H in the polar region cannot be used alone. It is argued that the seasonal cycle in D/H is explained by their being an interplay between multilatitudinal sources or reservoirs that have a range of reservoir D/H values. These reservoirs have different sizes and seasonal response times so that they release their water contributions at different times of the spring and summer and together explain most of the seasonal D/H observed by Mumma et al. (2003) and Novak et al. (2005). Phoenix observations from its high-latitude vantage point during the summer and fall will add some atmospheric D/H values, temperature, water vapor concentration, and ice cloudiness data points that will constrain the various theoretical possibilities. The D/H of the ice recovered by Phoenix from the surface of the ground ice combined with the atmospheric D/H will suggest, whether the ground ice presently is a net receiver or supplier of water to the northern ice cap.

  5. ATLAS-2 and UARS correlative measurement opportunities during Space Shuttle mission on April 8-17, 1993

    NASA Technical Reports Server (NTRS)

    Harrison, Edwin F.; Denn, Fred M.; Gibson, Gary G.

    1993-01-01

    The second ATmospheric Laboratory for Applications and Science (ATLAS-2) mission was flown aboard the Space Shuttle Discovery from 8-17 Apr. 1993. The nighttime launch at 0529 Greenwich Mean Time provided maximum solar occultation sunrise coverage of the northern latitudes by the Atmospheric Trace Molecule Spectroscopy instrument. The ATLAS-2 Earth-viewing instruments provided a large number of measurements which were nearly coincident with observations from experiments on the Upper Atmosphere Research Satellite (UARS). Based on instrument operating schedules during the ATLAS-2 mission, simulations were performed to determine when and where correlative measurements between ATLAS and UARS instruments occurred. Results of these orbital and instrument simulations provide valuable information for the ATLAS and UARS scientists to compare measurements between various instruments on the two satellites.

  6. Airborne Polarimetric, Two-Color Laser Altimeter Measurements of Lake Ice Cover: A Pathfinder for NASA's ICESat-2 Spaceflight Mission

    NASA Technical Reports Server (NTRS)

    Harding, David; Dabney, Philip; Valett, Susan; Yu, Anthony; Vasilyev, Aleksey; Kelly, April

    2011-01-01

    The ICESat-2 mission will continue NASA's spaceflight laser altimeter measurements of ice sheets, sea ice and vegetation using a new measurement approach: micropulse, single photon ranging at 532 nm. Differential penetration of green laser energy into snow, ice and water could introduce errors in sea ice freeboard determination used for estimation of ice thickness. Laser pulse scattering from these surface types, and resulting range biasing due to pulse broadening, is assessed using SIMPL airborne data acquired over icecovered Lake Erie. SIMPL acquires polarimetric lidar measurements at 1064 and 532 nm using the micropulse, single photon ranging measurement approach.

  7. Long Awaited Fundamental Measurement of the Martian Upper Atmosphere from the Langmuir Probe and Waves Instrument on the MAVEN Mission.

    NASA Astrophysics Data System (ADS)

    Andersson, Laila; Andrews, David; Ergun, Bob; Delory, Greg; Morooka, Michiko; Fowler, Chris; McEnulty, Tess; Weber, Tristan; Eriksson, Anders; Malaspina, David; Crary, Frank; Mitchell, David; McFadden, Jim; Halekas, Jasper; Larson, Davin; Connerney, Jack; Espley, Jared; Eparvies, Frank

    2015-04-01

    Electron temperature and density are critical quantities in understanding an upper atmosphere. Approximately 40 years ago, the Viking landers reached the Martian surface, measuring the first (and only) two temperature profiles during it's descent. With the MAVEN mission arriving at Mars details of the Martian ionosphere can agin be studied by a complete plasma package. This paper investigates the first few months of data from the MAVEN mission when the orbit is below 500 km and around the northern hemisphere's terminator. The fo-cus of this presentation is on the different measure-ments that the Langmuir probe and Waves (LPW) in-strument is making on the MAVEN mission. Some of the LPW highlights that will be presented: (a) the long awaited new the electron temperature profiles; (b) the structures observed on the nightside ionosphere; (c) wave-particle insteractions observed below 500 km; and (d) the observed dusty environment at Mars. This presentation is supported by measurements from the other Particle and Fileds (PF) measurements on MAVEN.

  8. How accurately can current, planned and proposed InSAR missions measure slow, long-wavelength tectonic strain? (Invited)

    NASA Astrophysics Data System (ADS)

    Wright, T. J.; Garthwaite, M.; Jung, H.; Shepherd, A.

    2010-12-01

    Since the launch of ERS-1 in 1991, InSAR has been widely used to measure large deformation events such as earthquakes or volcanic eruptions. In the last decade, small strains accumulating around locked crustal faults and dormant volcanic edifices have also been measured, in certain favourable conditions. In this presentation, we discuss the accuracy of current, planned and proposed InSAR missions. We quantify the main contributions to the error budget of a single interferogram at different spatial scales: atmospheric and orbital errors dominate at long wavelengths (tens of kilometres), and errors from system noise and surface incoherence at short spatial scales (tens of metres). We show that the optimum method for combining multiple interferograms to measure the average line-of-sight (LOS) deformation rate is via a weighted linear inversion of a connected network of short-interval interferograms. The LOS accuracy is strongly dependent on the mission length and satellite revisit time, as well as the spatial length scale. For example, to obtain an LOS accuracy of 1 mm/yr over 100 km requires 5 years of observation with a 13-day repeat, or 7 years for a 35-day repeat. We assess the ability of current (ERS/Envisat), planned (Sentinel-1), and proposed (SuperSAR, DesDYNI) satellite missions to measure long wavelength tectonic strain by estimating the proportion of global straining areas (as defined by the Global Strain Rate Map) where the strain rates are higher than the measurement error. The results highlight the importance of obtaining measurements in three dimensions in order to monitor all actively deforming regions. Of the planned/proposed missions, only SuperSAR (submitted to ESA’s Earth Explorer 8 call) has the ability to achieve 1 mm/yr accuracy over 100 km in all three dimensions after 5 years of observation. This is sufficient to map strain accumulating around faults that are responsible for 95% of damaging onshore earthquakes.

  9. Differences between kinematic synergies and muscle synergies during two-digit grasping

    PubMed Central

    Tagliabue, Michele; Ciancio, Anna Lisa; Brochier, Thomas; Eskiizmirliler, Selim; Maier, Marc A.

    2015-01-01

    The large number of mechanical degrees of freedom of the hand is not fully exploited during actual movements such as grasping. Usually, angular movements in various joints tend to be coupled, and EMG activities in different hand muscles tend to be correlated. The occurrence of covariation in the former was termed kinematic synergies, in the latter muscle synergies. This study addresses two questions: (i) Whether kinematic and muscle synergies can simultaneously accommodate for kinematic and kinetic constraints. (ii) If so, whether there is an interrelation between kinematic and muscle synergies. We used a reach-grasp-and-pull paradigm and recorded the hand kinematics as well as eight surface EMGs. Subjects had to either perform a precision grip or side grip and had to modify their grip force in order to displace an object against a low or high load. The analysis was subdivided into three epochs: reach, grasp-and-pull, and static hold. Principal component analysis (PCA, temporal or static) was performed separately for all three epochs, in the kinematic and in the EMG domain. PCA revealed that (i) Kinematic- and muscle-synergies can simultaneously accommodate kinematic (grip type) and kinetic task constraints (load condition). (ii) Upcoming grip and load conditions of the grasp are represented in kinematic- and muscle-synergies already during reach. Phase plane plots of the principal muscle-synergy against the principal kinematic synergy revealed (iii) that the muscle-synergy is linked (correlated, and in phase advance) to the kinematic synergy during reach and during grasp-and-pull. Furthermore (iv), pair-wise correlations of EMGs during hold suggest that muscle-synergies are (in part) implemented by coactivation of muscles through common input. Together, these results suggest that kinematic synergies have (at least in part) their origin not just in muscular activation, but in synergistic muscle activation. In short: kinematic synergies may result from muscle

  10. Verification of Satellite Rainfall Estimates from the Tropical Rainfall Measuring Mission over Ground Validation Sites

    NASA Astrophysics Data System (ADS)

    Fisher, B. L.; Wolff, D. B.; Silberstein, D. S.; Marks, D. M.; Pippitt, J. L.

    2007-12-01

    The Tropical Rainfall Measuring Mission's (TRMM) Ground Validation (GV) Program was originally established with the principal long-term goal of determining the random errors and systematic biases stemming from the application of the TRMM rainfall algorithms. The GV Program has been structured around two validation strategies: 1) determining the quantitative accuracy of the integrated monthly rainfall products at GV regional sites over large areas of about 500 km2 using integrated ground measurements and 2) evaluating the instantaneous satellite and GV rain rate statistics at spatio-temporal scales compatible with the satellite sensor resolution (Simpson et al. 1988, Thiele 1988). The GV Program has continued to evolve since the launch of the TRMM satellite on November 27, 1997. This presentation will discuss current GV methods of validating TRMM operational rain products in conjunction with ongoing research. The challenge facing TRMM GV has been how to best utilize rain information from the GV system to infer the random and systematic error characteristics of the satellite rain estimates. A fundamental problem of validating space-borne rain estimates is that the true mean areal rainfall is an ideal, scale-dependent parameter that cannot be directly measured. Empirical validation uses ground-based rain estimates to determine the error characteristics of the satellite-inferred rain estimates, but ground estimates also incur measurement errors and contribute to the error covariance. Furthermore, sampling errors, associated with the discrete, discontinuous temporal sampling by the rain sensors aboard the TRMM satellite, become statistically entangled in the monthly estimates. Sampling errors complicate the task of linking biases in the rain retrievals to the physics of the satellite algorithms. The TRMM Satellite Validation Office (TSVO) has made key progress towards effective satellite validation. For disentangling the sampling and retrieval errors, TSVO has developed

  11. Visualization of Space-Time Ambiguities to be Explored by NASA GEC Mission with a Critique of Synthesized Measurements for Different GEC Mission Scenarios

    NASA Technical Reports Server (NTRS)

    Sojka, Jan J.

    2003-01-01

    The Grant supported research addressing the question of how the NASA Solar Terrestrial Probes (STP) Mission called Geospace electrodynamics Connections (GEC) will resolve space-time structures as well as collect sufficient information to solve the coupled thermosphere-ionosphere- magnetosphere dynamics and electrodynamics. The approach adopted was to develop a high resolution in both space and time model of the ionosphere-thermosphere (I-T) over altitudes relevant to GEC, especially the deep-dipping phase. This I-T model was driven by a high- resolution model of magnetospheric-ionospheric (M-I) coupling electrodynamics. Such a model contains all the key parameters to be measured by GEC instrumentation, which in turn are the required parameters to resolve present-day problems in describing the energy and momentum coupling between the ionosphere-magnetosphere and ionosphere-thermosphere. This model database has been successfully created for one geophysical condition; winter, solar maximum with disturbed geophysical conditions, specifically a substorm. Using this data set, visualizations (movies) were created to contrast dynamics of the different measurable parameters. Specifically, the rapidly varying magnetospheric E and auroral electron precipitation versus the slower varying ionospheric F-region electron density, but rapidly responding E-region density.

  12. Flux Of Carbon from an Airborne Laboratory (FOCAL): Synergy of airborne and surface measures of carbon emission and isotopologue content from tundra landscape in Alaska

    NASA Astrophysics Data System (ADS)

    Dobosy, R.; Dumas, E.; Sayres, D. S.; Kochendorfer, J.

    2013-12-01

    Arctic tundra, recognized as a potential major source of new atmospheric carbon, is characterized by low topographic relief and small-scale heterogeneity consisting of small lakes and intervening tundra vegetation. This fits well the flux-fragment method (FFM) of analysis of data from low-flying aircraft. The FFM draws on 1)airborne eddy-covariance flux measurements, 2)a classified surface-characteristics map (e.g. open water vs tundra), 3)a footprint model, and 4)companion surface-based eddy-covariance flux measurements. The FOCAL, a collaboration among Harvard University's Anderson Group, NOAA's Atmospheric Turbulence and Diffusion Division (ATDD), and Aurora Flight Sciences, Inc., made coordinated flights in 2013 August with a collaborating surface site. The FOCAL gathers not only flux data for CH4 and CO2 but also the corresponding carbon-isotopologue content of these gases. The surface site provides a continuous sample of carbon flux from interstitial tundra over time throughout the period of the campaign. The FFM draws samples from the aircraft data over many instances of tundra and also open water. From this we will determine how representative the surface site is of the larger area (100 km linear scale), and how much the open water differs from the tundra as a source of carbon.

  13. Synergy between measurements of gravitational waves and the triple-Higgs coupling in probing the first-order electroweak phase transition

    NASA Astrophysics Data System (ADS)

    Hashino, Katsuya; Kakizaki, Mitsuru; Kanemura, Shinya; Matsui, Toshinori

    2016-07-01

    Probing the Higgs potential and new physics behind the electroweak symmetry breaking is one of the most important issues of particle physics. In particular, the nature of the electroweak phase transition is essential for understanding the physics of the early Universe, such that the strongly first-order phase transition is required for a successful scenario of electroweak baryogenesis. The strongly first-order phase transition is expected to be tested by precisely measuring the triple Higgs boson coupling at future colliders like the International Linear Collider. It can also be explored via the spectrum of stochastic gravitational waves to be measured at future space-based interferometers such as eLISA and DECIGO. We discuss the complementarity of both the methods in testing the strongly first-order phase transition of the electroweak symmetry in models with additional isospin singlet scalar fields with and without classical scale invariance. We find that they are synergetic in identifying specific models of electroweak symmetry breaking in more detail.

  14. Synergy between NMR measurements and MD simulations of protein/RNA complexes: application to the RRMs, the most common RNA recognition motifs.

    PubMed

    Krepl, Miroslav; Cléry, Antoine; Blatter, Markus; Allain, Frederic H T; Sponer, Jiri

    2016-07-27

    RNA recognition motif (RRM) proteins represent an abundant class of proteins playing key roles in RNA biology. We present a joint atomistic molecular dynamics (MD) and experimental study of two RRM-containing proteins bound with their single-stranded target RNAs, namely the Fox-1 and SRSF1 complexes. The simulations are used in conjunction with NMR spectroscopy to interpret and expand the available structural data. We accumulate more than 50 μs of simulations and show that the MD method is robust enough to reliably describe the structural dynamics of the RRM-RNA complexes. The simulations predict unanticipated specific participation of Arg142 at the protein-RNA interface of the SRFS1 complex, which is subsequently confirmed by NMR and ITC measurements. Several segments of the protein-RNA interface may involve competition between dynamical local substates rather than firmly formed interactions, which is indirectly consistent with the primary NMR data. We demonstrate that the simulations can be used to interpret the NMR atomistic models and can provide qualified predictions. Finally, we propose a protocol for 'MD-adapted structure ensemble' as a way to integrate the simulation predictions and expand upon the deposited NMR structures. Unbiased μs-scale atomistic MD could become a technique routinely complementing the NMR measurements of protein-RNA complexes. PMID:27193998

  15. The detection of Jupiter normal modes with gravity measurements of the mission Juno

    NASA Astrophysics Data System (ADS)

    Durante, D.; Iess, L.

    2015-10-01

    Arriving at Jupiter on July 4, 2016, NASA's Juno mission will complete 37 orbits (14-days period) around the planet, revealing details of the interior structure and composition, a crucial aspect to understand the origin and evolution of Jupiter. A radio science experiment will help to select and validate the existing models of Jupiter internal composition, in particular the mass of the silicate core.

  16. Continuous measurements of PM at ground level over an industrial area of Evia (Greece) using synergy of a scanning Lidar system and in situ sensors during TAMEX campaign

    NASA Astrophysics Data System (ADS)

    Georgoussis, G.; Papayannis, A.; Remoudaki, E.; Tsaknakis, G.; Mamouri, R.; Avdikos, G.; Chontidiadis, C.; Kokkalis, P.; Tzezos, M.; Veenstra, M.

    2009-09-01

    During the TAMEX (Tamyneon Air pollution Mini EXperiment) field Campaign, which took place in the industrial site of Aliveri (38o,24'N, 24o 01'E), Evia (Greece) between June 25 and September 25, 2008, continuous measurements of airborne particulate matter (PM) were performed by in situ sensors at ground level. Additional aerosol measurements were performed by a single-wavelength (355 nm) eye-safe scanning lidar, operating in the Range-Height Indicator (RHI) mode between July 22 and 23, 2008. The industrial site of the city of Aliveri is located south-east of the city area at distance of about 2.5 km. The in situ aerosol sampling site was located at the Lykeio area at 62 m above sea level (ASL) and at a distance of 2,8 km from the Public Power Corporation complex area (DEI Corporation) and 3,3 km from a large cement industrial complex owned by Hercules/Lafarge SA Group of Companies (HLGC) and located at Milaki area. According to the European Environment Agency (EEA) report for the year 2004, this industry emits about 302 tons per year of PM10, 967,000 tons of CO2, 16700 tons of SOx and 1410 tons of NOx while the second industrial complex (HLGC) emits about 179 tons per year of PM10, 1890 tons of CO, 1,430,000 tons of CO2, 3510 tons of NOx, 15.4 Kg of cadmium and its compounds, 64.2 kg of mercury and its compounds and 2.2 tons of benzene. The measuring site was equipped with a full meteorological station (Davis Inc., USA), and 3 aerosol samplers: two Dust Track optical sensors from TSI Inc. (USA) and 1 Skypost PM sequential atmospheric particulate matter. The Dust Track sensors monitored the PM10, PM2.5 and PM1.0 concentration levels, with time resolution ranging from 1 to 3 minutes, while a Tecora sensor was taking continuous PM monitoring by the sampling method on 47 mm diameter filter membrane. The analysis of the PM sensors showed that, systematically, during nighttime large quantities of PM2.5 particles were detected (e.g. exceeding 50 ug/m3). During daytime

  17. A New Approach to Micro-arcsecond Astrometry with SIM Allowing Early Mission Narrow Angle Measurements of Compelling Astronomical Targets

    NASA Technical Reports Server (NTRS)

    Shaklan, Stuart; Pan, Xiaopei

    2004-01-01

    The Space Interferometry Mission (SIM) is capable of detecting and measuring the mass of terrestrial planets around stars other than our own. It can measure the mass of black holes and the visual orbits of radio and x-ray binary sources. SIM makes possible a new level of understanding of complex astrophysical processes. SIM achieves its high precision in the so-called narrow-angle regime. This is defined by a 1 degree diameter field in which the position of a target star is measured with respect to a set of reference stars. The observation is performed in two parts: first, SIM observes a grid of stars that spans the full sky. After a few years, repeated observations of the grid allow one to determine the orientation of the interferometer baseline. Second, throughout the mission, SIM periodically observes in the narrow-angle mode. Every narrow-angle observation is linked to the grid to determine the precise attitude and length of the baseline. The narrow angle process demands patience. It is not until five years after launch that SIM achieves its ultimate accuracy of 1 microarcsecond. The accuracy is degraded by a factor of approx. 2 at mid-mission. Our work proposes a technique for narrow angle astrometry that does not rely on the measurement of grid stars. This technique, called Gridless Narrow Angle Astrometry (GNAA) can obtain microarcsecond accuracy and can detect extra-solar planets and other exciting objects with a few days of observation. It can be applied as early as during the first six months of in-orbit calibration (IOC). The motivations for doing this are strong. First, and obviously, it is an insurance policy against a catastrophic mid-mission failure. Second, at the start of the mission, with several space-based interferometers in the planning or implementation phase, NASA will be eager to capture the public's imagination with interferometric science. Third, early results and a technique that can duplicate those results throughout the mission will

  18. Synergy Between Entry Probes and Orbiters

    NASA Technical Reports Server (NTRS)

    Young, Richard E.

    2005-01-01

    We identify two catagories of probe-orbiter interactions which benefit the science return from a particular mission. The first category is termed "Mission Design Aspects". This category is meant to describe those aspects of the mission design involving the orbiter that affect the science return from the probe(s). The second category of probe-orbiter interaction is termed "Orbiter-Probe Science Interactions", and is meant to include interactions between oribter and probe(s) that directly involve science measurements made from each platform. Two mission related aspects of probe-orbiter interactions are delivery of a probe(s) to the entry site(s) by an orbiter, and communication between each probe and the orbiter. We consider four general probe-orbiter science interactions that greatly enhance, or in certain cases are essential for, the mission science return. The four topics are, global context of the probe entry site(s), ground truth for remote sensing observations of an orbiter, atmospheric composition measurements, and wind measurements.

  19. Magnetopause Current Measurements Using the Magnetospheric Multiscale Mission: A Dynamic Current-Strength in Regions of Opposing Magnetic Forces

    NASA Astrophysics Data System (ADS)

    Russell, Christopher T.; Strangeway, Robert J.; Zhao, Cong; Anderson, Brian J.; Baumjohann, Wolfgang; Bromund, Kenneth R.; Fischer, David; Kepko, Larry; Le, Guan; Leinweber, Hannes K.; Magnes, Werner; Nakamura, Rumi; Torbert, Roy B.; Burch, James L.

    2016-04-01

    The fluxgate magnetometers on the MMS mission with the aid of the electron drift instruments have been turned into an extremely precise curlometer, probing the currents in volumes down to about 10 km across. These measurements have revealed that the magnetopause is a dynamic boundary in more than just its location, but also in its thickness, current strength and force balance. We examine sample magnetopause crossings and illustrate this unexpected behavior of the boundary.

  20. Regional extreme rainfalls observed globally with 17 years of the Tropical Precipitation Measurement Mission

    NASA Astrophysics Data System (ADS)

    Takayabu, Yukari; Hamada, Atsushi; Mori, Yuki; Murayama, Yuki; Liu, Chuntao; Zipser, Edward

    2015-04-01

    While extreme rainfall has a huge impact upon human society, the characteristics of the extreme precipitation vary from region to region. Seventeen years of three dimensional precipitation measurements from the space-borne precipitation radar equipped with the Tropical Precipitation Measurement Mission satellite enabled us to describe the characteristics of regional extreme precipitation globally. Extreme rainfall statistics are based on rainfall events defined as a set of contiguous PR rainy pixels. Regional extreme rainfall events are defined as those in which maximum near-surface rainfall rates are higher than the corresponding 99.9th percentile in each 2.5degree x2.5degree horizontal resolution grid. First, regional extreme rainfall is characterized in terms of its intensity and event size. Regions of ''intense and extensive'' extreme rainfall are found mainly over oceans near coastal areas and are likely associated with tropical cyclones and convective systems associated with the establishment of monsoons. Regions of ''intense but less extensive'' extreme rainfall are distributed widely over land and maritime continents, probably related to afternoon showers and mesoscale convective systems. Regions of ''extensive but less intense'' extreme rainfall are found almost exclusively over oceans, likely associated with well-organized mesoscale convective systems and extratropical cyclones. Secondly, regional extremes in terms of surface rainfall intensity and those in terms of convection height are compared. Conventionally, extremely tall convection is considered to contribute the largest to the intense rainfall. Comparing probability density functions (PDFs) of 99th percentiles in terms of the near surface rainfall intensity in each regional grid and those in terms of the 40dBZ echo top heights, it is found that heaviest precipitation in the region is not associated with tallest systems, but rather with systems with moderate heights. Interestingly, this separation

  1. Mission analysis for earth atmospheric measurements using solar occultation experiments on Shuttle Spacelabs

    NASA Technical Reports Server (NTRS)

    Harrison, E. F.; Lawrence, G. F.; Lamkin, S. L.

    1979-01-01

    The maximum geographical coverage of solar occultation experiments for various Shuttle-Spacelab mission concepts is defined and an analysis that includes trade-offs between parameters such as launch time, season, orbital inclination and altitude is presented as well as the mission design data for the Spacelab-3 flight. The effects of orbital ranges from 220 to 600 km on geographical coverage are examined with inclinations up to 97 deg for sun-synchronous orbit. Results show that the widest band of latitude coverage in the tropics and the temperate zones can be achieved with a mid-inclined (i.e., 57 deg) orbit and a mid-morning or late-night launch time.

  2. Estimation of Effective Doses for Radiation Cancer Risks on ISS, Lunar, and Mars Missions with Space Radiation Measurement

    NASA Technical Reports Server (NTRS)

    Kim, M.Y.; Cucinotta, F.A.

    2005-01-01

    Radiation protection practices define the effective dose as a weighted sum of equivalent dose over major sites for radiation cancer risks. Since a crew personnel dosimeter does not make direct measurement of effective dose, it has been estimated with skin-dose measurements and radiation transport codes for ISS and STS missions. The Phantom Torso Experiment (PTE) of NASA s Operational Radiation Protection Program has provided the actual flight measurements of active and passive dosimeters which were placed throughout the phantom on STS-91 mission for 10 days and on ISS Increment 2 mission. For the PTE, the variation in organ doses, which is resulted by the absorption and the changes in radiation quality with tissue shielding, was considered by measuring doses at many tissue sites and at several critical body organs including brain, colon, heart, stomach, thyroid, and skins. These measurements have been compared with the organ dose calculations obtained from the transport models. Active TEPC measurements of lineal energy spectra at the surface of the PTE also provided the direct comparison of galactic cosmic ray (GCR) or trapped proton dose and dose equivalent. It is shown that orienting the phantom body as actual in ISS is needed for the direct comparison of the transport models to the ISS data. One of the most important observations for organ dose equivalent of effective dose estimates on ISS is the fractional contribution from trapped protons and GCR. We show that for most organs over 80% is from GCR. The improved estimation of effective doses for radiation cancer risks will be made with the resultant tissue weighting factors and the modified codes.

  3. The BepiColombo Mission to Mercury: reaction wheels desaturation manoeuvres and the ISA accelerometer Δ →V measurements

    NASA Astrophysics Data System (ADS)

    Iafolla, Valerio; Nozzoli, Sergio; Lucchesi, David; Santoli, Francesco; Peron, Roberto; Fiorenza, Emiliano; Lefevre, Carlo; Reale, Andrea

    2010-05-01

    The MPO will be a three-axis stabilized spacecraft and nadir pointing to Mercury center-of-mass. Such a pointing, needed for the very ambitious goals of the ESA space mission to Mercury denominated BepiColombo, is reached thanks to the onboard reaction wheels, and it is also required during the unobserved (from Earth) arcs. The unavoidable manoeuvres of desaturation of the reaction wheels, which are necessary to remove the accumulated angular momentum, represent a clear reduction of the accuracy of the objectives of the ESA space mission. Indeed, during these manoeuvres the spacecraft thrusters are fired -- to guarantee the planet center-of-mass pointing -- and directly impact the accuracy of the propagated state-vector of the satellite at the beginning of the subsequent observed arc. Their impact is quantified by their number, position along the orbit and, especially, in the uncertainty in the linear momentum transferred to the spacecraft. This presentation is devoted to prove the feasibility of the measurements of the transferred momentum by the thruster thanks to the onboard accelerometer ISA. Therefore, such measurements will be an essential ingredient in order to preserve the accuracy of the BepiColombo Radio Science Experiments and of the pointing accuracy of other onboard instruments, as is the case of BELA. This additional capability of ISA strengthen once more the key rôle of the accelerometer in the BepiColombo mission to Mercury.

  4. The BepiColombo mission to Mercury: Reaction wheels desaturation manoeuvres and the ISA accelerometer Δ V⇒ measurements

    NASA Astrophysics Data System (ADS)

    Iafolla, V.; Lucchesi, D.-M.; Nozzoli, S.; Santoli, F.

    2011-01-01

    The Mercury Planetary Orbiter will be a three-axis stabilized spacecraft and nadir pointing to Mercury center-of-mass. The pointing accuracy, needed for the very ambitious goals of the ESA space mission to Mercury denominated BepiColombo, is reached thanks to the onboard reaction wheels, and it is also required during the unobserved arcs. The unavoidable manoeuvres of desaturation of the reaction wheels, which are necessary to remove the accumulated angular momentum, represent a clear reduction of the accuracy of the objectives of the ESA space mission. Indeed, these manoeuvres are performed through the spacecraft thrusters and directly impact the accuracy of the propagated state-vector of the satellite at the beginning of the subsequent observed arc. Their impact is quantified by their number, position along the orbit and, especially, in the uncertainty in the linear momentum transferred to the spacecraft. The present paper is devoted to prove the feasibility of the speed variation measurements produced by the thruster thanks to the onboard accelerometer, ISA. Therefore, such measurements may be an essential ingredient in order to preserve the accuracy of the BepiColombo Radio Science Experiments and of other onboard instruments pointing accuracy, as is the case of BELA. This additional capability of ISA strengthens once more the key role of the accelerometer in the BepiColombo mission to Mercury.

  5. An Overview of the Comet Nucleus TOUR Discovery Mission and a Description of Neutral Gas and Ion Measurements Planned

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul; Veverka, Joe; Niemann, Hasso; Harpold, Dan; Chiu, Mary; Reynolds, Edward; Owen, Toby; Kasprzak, Wayne; Patrick, Ed; Raaen, Eric

    2001-01-01

    The CONTOUR (Comet Nucleus TOUR) Mission led by its Principal Investigator Professor Joseph Veverka of Cornell is presently under development at the Johns Hopkins Applied Physics Laboratory for launch in July of 2002 with a flyby of Comet Encke scheduled for November 3, 2003 at a solar distance of 1.07 au. A robust Whipple dust shield is designed to allow a close nucleus approach distance (less than 150 km). The 2nd nominal CONTOUR target is Comet Schwassmann-Wachmann 3, although the spacecraft can alternately be directed to a new comet if such an interesting target is discovered. CONTOUR contains 4 instruments: an imaging spectrometer (CRISP) developed at APL that will obtain both high resolution nucleus images through 8 filters and IR spectra (800 to 2550 nm) of the nucleus, a narrow field of view forward imager (CFI) to locate the target days before the encounter, a dust composition time of flight mass spectrometer (CIDA) provided by Dr. J. Kissel and von Hoemer & Sulger, GmbH, and a mass spectrometer (NGIMS) provided by Goddard Space Flight Center to measure neutral gas and ambient ions. Laboratory calibration of the NGIMS has now been completed. NGIMS also includes an in-flight calibration system that we plan to exercise before and after each comet encounter. We will provide an overview of the CONTOUR Mission and discuss more specifically the NGIMS measurement goals for this mission.

  6. CONSTRAINING SATURN'S CORE PROPERTIES BY A MEASUREMENT OF ITS MOMENT OF INERTIA-IMPLICATIONS TO THE CASSINI SOLSTICE MISSION

    SciTech Connect

    Helled, R.

    2011-07-01

    Knowledge of Saturn's axial moment of inertia can provide valuable information on its internal structure. We suggest that Saturn's angular momentum may be determined by the Solstice Mission (Cassini XXM) by measuring Saturn's pole precession rate and the Lense-Thirring acceleration on the spacecraft, and therefore put constraints on Saturn's moment of inertia. It is shown that Saturn's moment of inertia can change up to {approx}2% due to different core properties. However, a determination of Saturn's rotation rate is required to constrain its axial moment of inertia. A change of about seven minutes in rotation period leads to a similar uncertainty in the moment of inertia value as different core properties (mass, radius). A determination of Saturn's angular momentum and rotation period by the Solstice Mission could reveal important information on Saturn's internal structure, in particular, its core properties.

  7. Tropical Rainfall Measuring Mission (TRMM) project. VI - Spacecraft, scientific instruments, and launching rocket. Part 4 - TRMM rain radar

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Atlas, David; Awaka, Jun; Okamoto, Ken'ichi; Ihara, Toshio; Nakamura, Kenji; Kozu, Toshiaki; Manabe, Takeshi

    1990-01-01

    The basic system parameters for the Tropical Rainfall Measuring Mission (TRMM) radar system are frequency, beamwidth, scan angle, resolution, number of independent samples, pulse repetition frequency, data rate, and so on. These parameters were chosen to satisfy NASA's mission requirements. Six candidates for the TRMM rain radar were studied. The study considered three major competitive items: (1) a pulse-compression radar vs. a conventional radar; (2) an active-array radar with a solid state power amplifier vs. a passive-array radar with a traveling-wave-tube amplifier; and (3) antenna types (planar-array antenna vs. cylindrical parabolic antenna). Basic system parameters such as radar sensitivities, power consumption, weight, and size of these six types are described. Trade-off studies of these cases show that the non-pulse-compression active-array radar with a planar array is considered to be the most suitable candidate for the TRMM rain radar at 13.8 GHz.

  8. Four-Dimensional Oceanic and Atmosperic Data Assimilation with Tropical Rainfall Measuring Mission Data

    NASA Technical Reports Server (NTRS)

    Takano, Kenji

    1996-01-01

    An oceanic data assimilation system which allows to utilize the forthcoming Tropical Rainfall Measuring Mission (TRMM) data has been developed and applied to the Pacific Ocean to produce the velocity field. The assimilated data will be indispensable to examine the effects of rainfall and its variability on the structure and circulation of the tropical oceans and to assess the impact of global warming due to the increase of carbon dioxide on the ocean circulation system and the marine pollution caused by oil spill and ocean damping of radionuclide. The data will also provide the verification for the oceanic and ocean-atmosphere coupled General Circulation Models (GCM's). The system consists of oceanic GCM, analysis scheme and data. In the system the flow field has been determined to be physically consistent with the observed density field and the sea surface winds derived from the Special Sensor Microwave Imagery (SSM/I) data which drive the ocean current. The time integration has been performed for five years until the flow field near the surface attained the steady state starting from the rest ocean with observed temperature and salinity fields, and the SSM/I surface wind velocity. The resultant flow field showed high producibility of the system. Especially the flow near the ocean surface agreed well with available observed data. The system, for the first time, succeeded to produce the eastward subtropical current which has been discovered in the joint investigation on Kuroshio current (CSK) in the 1960s. To verify the quality of the flow field a trajectory analysis has been carried out and compared with the Algos buoy data. BRIEF DESCRIPTION OF THE DATA ASSIMILATION SYSTEM ## Oceanic GCM and analysis scheme--The basic equations are much the same as used for the GCM's, except for the Newtonian damping terms introduced into the prediction equations for the potential temperature and salinity to maintain these fields as observed. The C grid of 2'lat. by 2'long. in

  9. Precipitation measurements with GNSS polarimetric Radio Occultations: Status of the ROHP-PAZ mission and anticipated retrievals

    NASA Astrophysics Data System (ADS)

    Padullés, Ramon; Cardellach, Estel; de la Torre Juárez, Manuel; Tomás, Sergio; Turk, F. Joseph; Ao, Chi O.; Rius, Toni; Oliveras, Santi

    2016-04-01

    The upcoming ROHP-PAZ (Radio Occultations and Heavy Precipitation experiment aboard the spanish PAZ satellite) mission aims to detect, for the first time, precipitation using Global Navigation Satellite System Radio Occultations (GNSS-RO). The electromagnetic signals coming from the GNSS satellites travel tangentially through the atmosphere and will be collected in the PAZ Low Earth Orbiter at two polarizations (vertical and horizontal). This sounding-like technique of the atmosphere will measure all the atmospheric phenomena that are inducing depolarization effects, in addition to all the thermodynamic profiles that standard RO are nowadays providing. The main contributors to depolarization in the troposphere are known to be the hydrometeors, both rain drops from heavy precipitation events and horizontally oriented ice particles in the top of clouds. Their effects on the GNSS signals were predicted in Cardellach et. al. 2015 (IEEE Trans. Geosci. Remote Sens.), and measured in the ROHP-PAZ field campaign Padullés et. al. 2016 (Atmos. Chem. Phys.). Prior to the launch, a complete characterization of all the possible effects, including hydrometeors but also taking into account other elements was needed. To do so, actual data from the COSMIC - FORMOSAT 3 mission (Radio Occultation events) have been collocated with the TRMM, GPM and CloudSat missions (precipitation and clouds missions). Thousands of events have been analyzed, in terms of SNR and phase delays. For the same events, the effect of hydrometeors has been simulated as well as the most known ionospheric effects, such as Faraday Rotation and Cotton-Mouton effects. And finally, the predicted noise, actual measurements of the antenna pattern and some tolerance in the purity of the emitted signal have been included. This has resulted in an extensive data base that is key in the understanding of the upcoming actual data, as well as for the characterization of all the unpredicted effects. We will discuss here the

  10. Miniature GC-Minicell Ion Mobility Spectrometer (IMS) for In Situ Measurements in Astrobiology Planetary Missions

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Stimac, Robert M.; Kaye, William J.; Holland, Paul M.; Takeuchi, Norishige

    2006-01-01

    Astrobiology flight experiments require highly sensitive instrumentation for in situ analysis of volatile chemical species and minerals present in the atmospheres and surfaces of planets, moons, and asteroids. The complex mixtures encountered place a heavy burden on the analytical instrumentation to detect and identify all species present. The use of land rovers and balloon aero-rovers place additional emphasis on miniaturization of the analytical instrumentation. In addition, smaller instruments, using tiny amounts of consumables, allow the use of more instrumentation and/or ionger mission life for stationary landers/laboratories. The miniCometary Ice and Dust Experiment (miniCIDEX), which combined Gas Chromatography (GC) with helium Ion Mobility Spectrometry (IMS), was capable of providing the wide range of analytical information required for Astrobiology missions. The IMS used here was based on the PCP model 111 IMS. A similar system, the Titan Ice and Dust Experiment (TIDE), was proposed as part of the Titan Orbiter Aerorover Mission (TOAM). Newer GC systems employing Micro Electro- Mechanical System (MEMS) based technology have greatly reduced both the size and resource requirements for space GCs. These smaller GCs, as well as the continuing miniaturization of Astrobiology analytical instruments in general, has highlighted the need for smaller, dry helium IMS systems. We describe here the development of a miniature, MEMS GC-IMS system (MEMS GC developed by Thorleaf Research Inc.), employing the MiniCell Ion Mobility Spectrometer (IMS), from Ion Applications Inc., developed through NASA's Astrobiology Science and Technology Instrument Development (ASTID) Program and NASA s Small Business Innovative Research (SBIR) Program.

  11. Taking the Measure of the Universe: Cosmology from the WMAP Mission

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary F.

    2007-01-01

    The data from the first three years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature anisotropy and new full-sky maps of the polarization. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. These and other aspects of the mission will be discussed.

  12. Taking the Measure of the Universe: Cosmology from the WMAP Mission

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary F.

    2003-01-01

    The data from the first year of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide the first detailed full sky map of the cosmic microwave background radiation. The anisotropy in the radiation temperature provides a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. These and other aspects of the mission will be discussed. The WMAP satellite was built in a close partnership between Princeton University and the Goddard Space Flight Center.

  13. Task constraints and minimization of muscle effort result in a small number of muscle synergies during gait

    PubMed Central

    De Groote, Friedl; Jonkers, Ilse; Duysens, Jacques

    2014-01-01

    Finding muscle activity generating a given motion is a redundant problem, since there are many more muscles than degrees of freedom. The control strategies determining muscle recruitment from a redundant set are still poorly understood. One theory of motor control suggests that motion is produced through activating a small number of muscle synergies, i.e., muscle groups that are activated in a fixed ratio by a single input signal. Because of the reduced number of input signals, synergy-based control is low dimensional. But a major criticism on the theory of synergy-based control of muscles is that muscle synergies might reflect task constraints rather than a neural control strategy. Another theory of motor control suggests that muscles are recruited by optimizing performance. Optimization of performance has been widely used to calculate muscle recruitment underlying a given motion while assuming independent recruitment of muscles. If synergies indeed determine muscle recruitment underlying a given motion, optimization approaches that do not model synergy-based control could result in muscle activations that do not show the synergistic muscle action observed through electromyography (EMG). If, however, synergistic muscle action results from performance optimization and task constraints (joint kinematics and external forces), such optimization approaches are expected to result in low-dimensional synergistic muscle activations that are similar to EMG-based synergies. We calculated muscle recruitment underlying experimentally measured gait patterns by optimizing performance assuming independent recruitment of muscles. We found that the muscle activations calculated without any reference to synergies can be accurately explained by on average four synergies. These synergies are similar to EMG-based synergies. We therefore conclude that task constraints and performance optimization explain synergistic muscle recruitment from a redundant set of muscles. PMID:25278871

  14. Sensory synergy as environmental input integration

    PubMed Central

    Alnajjar, Fady; Itkonen, Matti; Berenz, Vincent; Tournier, Maxime; Nagai, Chikara; Shimoda, Shingo

    2015-01-01

    The development of a method to feed proper environmental inputs back to the central nervous system (CNS) remains one of the challenges in achieving natural movement when part of the body is replaced with an artificial device. Muscle synergies are widely accepted as a biologically plausible interpretation of the neural dynamics between the CNS and the muscular system. Yet the sensorineural dynamics of environmental feedback to the CNS has not been investigated in detail. In this study, we address this issue by exploring the concept of sensory synergy. In contrast to muscle synergy, we hypothesize that sensory synergy plays an essential role in integrating the overall environmental inputs to provide low-dimensional information to the CNS. We assume that sensor synergy and muscle synergy communicate using these low-dimensional signals. To examine our hypothesis, we conducted posture control experiments involving lateral disturbance with nine healthy participants. Proprioceptive information represented by the changes on muscle lengths were estimated by using the musculoskeletal model analysis software SIMM. Changes on muscles lengths were then used to compute sensory synergies. The experimental results indicate that the environmental inputs were translated into the two dimensional signals and used to move the upper limb to the desired position immediately after the lateral disturbance. Participants who showed high skill in posture control were found to be likely to have a strong correlation between sensory and muscle signaling as well as high coordination between the utilized sensory synergies. These results suggest the importance of integrating environmental inputs into suitable low-dimensional signals before providing them to the CNS. This mechanism should be essential when designing the prosthesis' sensory system to make the controller simpler. PMID:25628523

  15. Are muscle synergies useful for neural control?

    PubMed

    de Rugy, Aymar; Loeb, Gerald E; Carroll, Timothy J

    2013-01-01

    The observation that the activity of multiple muscles can be well approximated by a few linear synergies is viewed by some as a sign that such low-dimensional modules constitute a key component of the neural control system. Here, we argue that the usefulness of muscle synergies as a control principle should be evaluated in terms of errors produced not only in muscle space, but also in task space. We used data from a force-aiming task in two dimensions at the wrist, using an electromyograms (EMG)-driven virtual biomechanics technique that overcomes typical errors in predicting force from recorded EMG, to illustrate through simulation how synergy decomposition inevitably introduces substantial task space errors. Then, we computed the optimal pattern of muscle activation that minimizes summed-squared muscle activities, and demonstrated that synergy decomposition produced similar results on real and simulated data. We further assessed the influence of synergy decomposition on aiming errors (AEs) in a more redundant system, using the optimal muscle pattern computed for the elbow-joint complex (i.e., 13 muscles acting in two dimensions). Because EMG records are typically not available from all contributing muscles, we also explored reconstructions from incomplete sets of muscles. The redundancy of a given set of muscles had opposite effects on the goodness of muscle reconstruction and on task achievement; higher redundancy is associated with better EMG approximation (lower residuals), but with higher AEs. Finally, we showed that the number of synergies required to approximate the optimal muscle pattern for an arbitrary biomechanical system increases with task-space dimensionality, which indicates that the capacity of synergy decomposition to explain behavior depends critically on the scope of the original database. These results have implications regarding the viability of muscle synergy as a putative neural control mechanism, and also as a control algorithm to restore

  16. Precise methane absorption measurements in the 1.64 μm spectral region for the MERLIN mission

    NASA Astrophysics Data System (ADS)

    Delahaye, T.; Maxwell, S. E.; Reed, Z. D.; Lin, H.; Hodges, J. T.; Sung, K.; Devi, V. M.; Warneke, T.; Spietz, P.; Tran, H.

    2016-06-01

    In this article we describe a high-precision laboratory measurement targeting the R(6) manifold of the 2ν3 band of 12CH4. High-fidelity modeling of this absorption spectrum for atmospheric temperature and pressure conditions will be required by the Franco-German, Methane Remote Sensing LIDAR (MERLIN) space mission for retrievals of atmospheric methane. The analysis uses the Hartmann-Tran profile for modeling line shape and also includes line-mixing effects. To this end, six high-resolution and high signal-to-noise ratio absorption spectra of air-broadened methane were recorded using a frequency-stabilized cavity ring-down spectroscopy apparatus. Sample conditions corresponded to room temperature and spanned total sample pressures of 40 hPa-1013 hPa with methane molar fractions between 1 µmol mol-1 and 12 µmol mol-1. All spectroscopic model parameters were simultaneously adjusted in a multispectrum nonlinear least squares fit to the six measured spectra. Comparison of the fitted model to the measured spectra reveals the ability to calculate the room temperature, methane absorption coefficient to better than 0.1% at the online position of the MERLIN mission. This is the first time that such fidelity has been reached in modeling methane absorption in the investigated spectral region, fulfilling the accuracy requirements of the MERLIN mission. We also found excellent agreement when comparing the present results with measurements obtained over different pressure conditions and using other laboratory techniques. Finally, we also evaluated the impact of these new spectral parameters on atmospheric transmissions spectra calculations.

  17. Common Spacecraft Bus for Earth Science Decadal Survey Missions

    NASA Astrophysics Data System (ADS)

    Cook, T.; Klaus, K.; Elsperman, M. S.

    2010-12-01

    Our study assessed the overall technical and programmatic viability of a Common Spacecraft Bus (CSB) approach that could satify the requirements of multiple Earth Science Decadal Mission programs resulting in cost and schedule savings over individual programs. Our approach developed a Common Payload Interface (CPIF) concept based on assessment of TIER I mission requirements to enable flexibility to the payloads while maintaining maximum commonality in the bus design. Satellite missions in Tier 1 of the Decadal Survey are missions with a launch period beginning in 2014. Four missions are planned and will measure climate change by examining solar and earth radiation, soil moisture and freeze/thaw cycles, ice sheet height differences, surface and ice sheet deformation from natural hazards, and vegetation structure (SMAP, ICESat-2, CLARREO, and DESDynI). Our study goals and objectives were: Develop a Common Spacecraft Bus (CSB) that incorporates the defined CPIF that can be configured to meet the individual Tier I mission specific requirements with minimal impacts or changes; Develop a efficient Assembly, Integration and Test (AI&T) flow and program schedule that can accommodate multiple Observatory level spacecraft processing and provide the flexibility to respond to program changes and other schedule perturbations; Develop a ROM cost for the CSB program approach, based on the reference design and schedules; Evaluate the CSB capability to host payloads of opportunity on the Tier I spacecraft; Evaluate the CSB capability to host the Tier II missions and what changes are required from the Tier I CSB We concluded: CSB approach for Tier I missions is feasible with very good synergy; Program Execution and AI&T approaches can be defined to take maximum advantage of CSB program approach and meet required launch readiness dates; ROM cost analysis indicates that a CSB approach is viable and offers substantial savings over separate procurements The Common Spacecraft Bus

  18. The Atmospheric Measurements of ICESat-2: Scientific Applications and an Aide to Mission Success

    NASA Astrophysics Data System (ADS)

    Palm, S. P.; Herzfeld, U. C.; Yang, Y.

    2015-12-01

    Carrying the Advanced Topographic Lidar Altimeter System (ATLAS), ICESat-2 is scheduled for launch in 2017. Though the primary science objective of the 3 year mission is the high resolution altimetry mapping of the Earth's major ice sheets, ATLAS will also acquire atmospheric backscatter profiles from the 3 strong 532 nm laser beams (ATLAS utilizes 6 beams in total). The main intent of the atmospheric channel is to characterize the atmosphere to aide in the interpretation and filtering of altimetry data, as clouds, fog and blowing snow can adversely affect the ranging accuracy due to signal attenuation and multiple scattering. But aside from their use as an aide to altimetry, the ATLAS atmospheric data have potential scientific uses in their own right such as Global and especially polar cloud studies, aerosol sources and transport and blowing snow over the polar regions. This presentation will discuss the characteristics of the ATLAS atmospheric data, the planned atmospheric data products and their potential for contributing to atmospheric science and the success of the ICESat-2 mission.

  19. COBRAS/SAMBA: the ESA Medium Size Mission for measurements of CBR anisotropy

    NASA Astrophysics Data System (ADS)

    Mandolesi, N.; Bersanelli, M.; Cesarsky, C.; Danese, L.; Efstathiou, G.; Griffin, M.; Lamarre, J. M.; Norgaard-Nielsen, H. U.; Pace, O.; Puget, J. L.; Raisanen, A.; Smoot, G. F.; Tauber, J.; Volonte, S.

    1995-02-01

    The COBRAS/SAMBA mission is designed for extensive, accurate mapping of the anisotropy of the Cosmic Background Radiation. with angular sensitivity from scales of a few arcminutes up to and overlapping with the > 7° COBE-DMR resolution. This will allow a full identification of the primordial density perturbations which grew to Corm the large-scale structures observed in the present universe. The COBRAS/SAMBA maps will provide a major source of information relevant to several cosmological and astrophysical issues, such as testing theories of the early universe and the origin of cosmic structure. One of the main diffuse foreground emissions will be from interstellar dust, and the mission will provide relevant information on its components and emission properties. A combination of bolometric and radiometric detection techniques will ensure the sensitivity and wide spectral coverage required for accurate foreground discrimination. A far-Earth orbit has been selected to minimize the unwanted emission from the Earth as a source of contamination. The project is currently undergoing a feasibility study within the European Space Agency M3 programme.

  20. Implementation of a complex of measures to fulfill the planetary protection requirements of the ExoMars-2016 mission

    NASA Astrophysics Data System (ADS)

    Khamidullina, Natalia; Novikova, Nataliya; Deshevaya, Elena; Orlov, Oleg; Guridov, Alexander; Zakharenko, Dmitry; Zaytseva, Olga

    2016-07-01

    The major purpose of the planetary protection program in the ExoMars-2016 mission is to forestall Mars contamination by terrestrial microorganisms. Since Martian descent module is not intended for biological experiments, ExoMars-2016 mission falls under COSPAR category IVa. Within the joint project co-sponsored by ESA and Roscosmos the European side holds full responsibility for ensuring a prescribed level of SC microbiological purity, while the Russian side is charged with compliance of the launch services provided on Baikonur technical complex with the planetary protection requirements that is, specifically, prevention of SC recontamination. To this end, a complex of measures was executed to control microbial contamination of cosmodrome facilities on the prescribed level which included: - regular decontamination of clean rooms using an effective disinfectant and impulse ultraviolet radiation that created favorable conditions for reliable functioning of the ESA clean tent, - replacement of airline filters in the Thermal Conditioning Unit (TCU) air duct for SC conditioning with pure air. The results of microbiological tests performed in the period of 2015 - 2016 lead to the conclusion that the Baikonur clean rooms (ISO class 8), TCU air ducts and Air Thermal Control System (ATCS) at launch site are ready for the launch campaign and that the Russian side fulfilled the planetary protection requirements of the ExoMars-2016 mission.

  1. Examining the Synergy of Practice

    PubMed Central

    2014-01-01

    Public health nurses in Ireland are charged with conducting a home visit to every postnatal mother within 48 hours of hospital discharge. This represents the beginning of a long-term relationship, not only with the mother and newborn child but also with the family. This article fundamentally demonstrates the essential work of the public health nurse in promoting the health of the baby within a family. In this article, the expertise the public health nurse uses in the first visit is examined in the context of 3 competencies: communication, partnerships with the family, and partnerships with individual family members. This expertise provides the foundation for a long-term therapeutic relationship with the family to the essential benefit of the baby’s early childhood growth and developmental milestones. Consequently, the first postnatal visit by public health nursing in Ireland represents a synergy of practice, which provides the foundation for enduring family relationships focused on potentializing both individual family members’ health and the family as a dynamic unit. PMID:27335911

  2. Visualization of Space-Time Ambiguities to be Explored by the NASA GEC Mission with a Critique of Synthesized Measurements for Different GEC Mission Scenarios

    NASA Technical Reports Server (NTRS)

    Sojka, Jan J.; Zhu, Lie; Fuller-Rowell, Timothy J.

    2005-01-01

    The objective of this grant was to study how a multi-satellite mission configuration can be optimized for maximum exploratory scientific return. NASA's Solar Terrestrial Probe (STP) concept mission Geospace Electrodynamic Connections (GEC) was the target mission for this pilot study. GEC prime mission characteristics were two fold: (i) a series of three satellites in the same orbit plane with differential spacing, and (ii) a deep-dipping phase in which these satellites could dip to altitudes as low as 130 km to explore the lower ionosphere and thermosphere. Each satellite would carry a full suite of plasma and neutral in-situ sensors and have the same dipping capability. This latter aspect would be envisaged as a series, up to 10, of deep-dipping campaigns, each lasting 10 days during which the perigee would be lowered to the desired probing depth. The challenge in optimization is to establish the scientific problems that can best be addressed by varying or selecting satellite spacing during a two-year mission while also interspersing, in this two year time frame, the deep-dipping campaigns. Although this sounds like a straightforward trade-off situation, it is complicated by the orbit precession in local time, the location of perigee, and that even the dipping campaigns will have preferred satellite spacing requirements.

  3. The PICARD mission: scientific objectives and status of development

    NASA Astrophysics Data System (ADS)

    Thuillier, G.; Dewitte, S.; Schmutz, W.

    Jean Picard a French astronomer measured the solar diameter during the Maunder minimum and his observations opened an important question about the diameter variation with solar activity The solar diameter solar activity relationship remains unclear till this time however it is an important relation for solar physics The PICARD mission will carry out several key measurements such as total and spectral solar irradiance solar diameter limb shape solar asphericity and helioseismologic observations These measurements represent key inputs to validate solar models and to understand the origin of the solar activity These measurements will be carried out by three metrological instruments under the responsibility of Belgium France and Switzerland which will provide absolute radiometers sunphotometers and an imaging telescope The platform is a microsatellite built by the French Space Agency CNES The launch is foreseen by October 2008 This date will allow to have PICARD and Solar Dynamics Observatory NASA in space at the same period for complementary simultaneous measurements Given the specific observations by each mission a strong synergy exists between these two programs Past and present solar diameter measurements reveal discrepancies among results with solar activity consisting either correlation anticorrelation or no variation To understand the role of the atmosphere ground based instruments will be also run during the mission allowing PICARD to extent its domain of interest toward the atmosphere physics by comparing ground and space simultaneous

  4. Future space missions and ground observatory for measurements of coronal magnetic fields

    NASA Astrophysics Data System (ADS)

    Fineschi, Silvano; Gibson, Sarah; Bemporad, Alessandro; Zhukov, Andrei; Damé, Luc; Susino, Roberto; Larruquert, Juan

    2016-07-01

    This presentation gives an overview of the near-future perspectives for probing coronal magnetism from space missions (i.e., SCORE and ASPIICS) and ground-based observatory (ESCAPE). Spectro-polarimetric imaging of coronal emission-lines in the visible-light wavelength-band provides an important diagnostics tool of the coronal magnetism. The interpretation in terms of Hanle and Zeeman effect of the line-polarization in forbidden emission-lines yields information on the direction and strength of the coronal magnetic field. As study case, this presentation will describe the Torino Coronal Magnetograph (CorMag) for the spectro-polarimetric observation of the FeXIV, 530.3 nm, forbidden emission-line. CorMag - consisting of a Liquid Crystal (LC) Lyot filter and a LC linear polarimeter. The CorMag filter is part of the ESCAPE experiment to be based at the French-Italian Concordia base in Antarctica. The linear polarization by resonance scattering of coronal permitted line-emission in the ultraviolet (UV)can be modified by magnetic fields through the Hanle effect. Space-based UV spectro-polarimeters would provide an additional tool for the disgnostics of coronal magnetism. As a case study of space-borne UV spectro-polarimeters, this presentation will describe the future upgrade of the Sounding-rocket Coronagraphic Experiment (SCORE) to include new generation, high-efficiency UV polarizer with the capability of imaging polarimetry of the HI Lyman-α, 121.6 nm. SCORE is a multi-wavelength imager for the emission-lines, HeII 30.4 nm and HI 121.6 nm, and visible-light broad-band emission of the polarized K-corona. SCORE has flown successfully in 2009. The second lauch is scheduled in 2016. Proba-3 is the other future solar mission that would provide the opportunity of diagnosing the coronal magnetic field. Proba-3 is the first precision formation-flying mission to launched in 2019). A pair of satellites will fly together maintaining a fixed configuration as a 'large rigid

  5. Surface temperature variations as measured by the Heat Capacity Mapping Mission

    NASA Technical Reports Server (NTRS)

    Price, J. C.

    1979-01-01

    The AEM-1 satellite, the Heat Capacity Mapping Mission, has acquired high-quality thermal infrared data at times of day especially suited for studying the earth's surface and the exchange of heat and moisture with the atmosphere. Selected imagery illustrates the considerable variability of surface temperature in and around cities, in the dry southwestern United States, in the Appalachian Mountains, and in agricultural areas. Through simplifying assumptions, an analytic experience is derived that relates day/night temperature differences to the near-surface layer (thermal inertia) and to meteorological factors. Analysis of the result suggests that, in arid regions, estimates of relative thermal inertia may be inferred, whereas, in agricultural areas, a hydrologic interpretation is possible.

  6. A Neptune Orbiter Mission

    NASA Technical Reports Server (NTRS)

    Wallace, R. A.; Spilker, T. R.

    1998-01-01

    This paper describes the results of new analyses and mission/system designs for a low cost Neptune Orbiter mission. Science and measurement objectives, instrumentation, and mission/system design options are described and reflect an aggressive approach to the application of new advanced technologies expected to be available and developed over the next five to ten years.

  7. The Surface Water and Ocean Topography Satellite Mission - An Assessment of Swath Altimetry Measurements of River Hydrodynamics

    NASA Technical Reports Server (NTRS)

    Wilson, Matthew D.; Durand, Michael; Alsdorf, Douglas; Chul-Jung, Hahn; Andreadis, Konstantinos M.; Lee, Hyongki

    2012-01-01

    The Surface Water and Ocean Topography (SWOT) satellite mission, scheduled for launch in 2020 with development commencing in 2015, will provide a step-change improvement in the measurement of terrestrial surface water storage and dynamics. In particular, it will provide the first, routine two-dimensional measurements of water surface elevations, which will allow for the estimation of river and floodplain flows via the water surface slope. In this paper, we characterize the measurements which may be obtained from SWOT and illustrate how they may be used to derive estimates of river discharge. In particular, we show (i) the spatia-temporal sampling scheme of SWOT, (ii) the errors which maybe expected in swath altimetry measurements of the terrestrial surface water, and (iii) the impacts such errors may have on estimates of water surface slope and river discharge, We illustrate this through a "virtual mission" study for a approximately 300 km reach of the central Amazon river, using a hydraulic model to provide water surface elevations according to the SWOT spatia-temporal sampling scheme (orbit with 78 degree inclination, 22 day repeat and 140 km swath width) to which errors were added based on a two-dimension height error spectrum derived from the SWOT design requirements. Water surface elevation measurements for the Amazon mainstem as may be observed by SWOT were thereby obtained. Using these measurements, estimates of river slope and discharge were derived and compared to those which may be obtained without error, and those obtained directly from the hydraulic model. It was found that discharge can be reproduced highly accurately from the water height, without knowledge of the detailed channel bathymetry using a modified Manning's equation, if friction, depth, width and slope are known. Increasing reach length was found to be an effective method to reduce systematic height error in SWOT measurements.

  8. Interpersonal synergies: static prehension tasks performed by two actors.

    PubMed

    Solnik, Stanislaw; Reschechtko, Sasha; Wu, Yen-Hsun; Zatsiorsky, Vladimir M; Latash, Mark L

    2016-08-01

    We investigated multidigit synergies stabilizing components of the resultant force vector during joint performance of a static prehension task by two persons as compared to similar tasks performed by a single person using both hands. Subjects transferred the instrumented handle from the right hand to the left hand (one-person condition) or passed that handle to another person (two-person condition) while keeping the handle's position and orientation stationary. Only three digits were involved per hand, the thumb, the index finger, and the middle finger; the forces and moments produced by the digits were measured by six-component sensors. We estimated the performance-stabilizing synergies within the uncontrolled manifold framework by quantifying the intertrial variance structure of digit forces and moments. The analysis was performed at three levels: between hands, between virtual finger and virtual thumb (imagined digits producing the same mechanical variables as the corresponding actual digits combined) produced by the two hands (in both interpersonal and intrapersonal conditions), and between the thumb and virtual finger for one hand only. Additionally, we performed correlation and phase synchronization analyses of resultant tangential forces and internal normal forces. Overall, the one-person conditions were characterized by higher amount of intertrial variance that did not affect resultant normal force components, higher internal components of normal forces, and stronger synchronization of the normal forces generated by the hands. Our observations suggest that in two-person tasks, when participants try to achieve a common mechanical outcome, the performance-stabilizing synergies depend on non-visual information exchange, possibly via the haptic and proprioceptive systems. Therefore, synergies quantified in tasks using visual feedback only may not be generalizable to more natural tasks. PMID:27021074

  9. Doses due to the South Atlantic Anomaly during the Euromir'95 mission measured by an on-board TLD system.

    PubMed

    Deme, S; Reitz, G; Apathy, I; Hejja, I; Lang, E; Feher, I

    1999-01-01

    During the Euromir'95 mission, a specially designed microprocessor-controlled thermoluminescent detector (TLD) system, called the 'Pille'95', was used by ESA astronaut Thomas Reiter to measure the cosmic radiation dose inside the Mir space station. One of the experiment's objectives was to determine the dose fraction on Mir due to the South Atlantic Anomaly (SAA) on an orbit inclined at 51.6 degrees and at an altitude of about 400 km. Using an hourly measuring period for 170 h in automatic mode, dose components both of galactic (independent of SAA) and SAA origin were determined. It was found that the maximum dose due to crossing the SAA was equal to 55 microGy. Averaging all the measurements it was calculated that the mean dose rate inside the Mir was 12-14 microGy h-1 and that half of this value was caused by the SAA. PMID:11542232

  10. A modular neural model of motor synergies.

    PubMed

    Byadarhaly, Kiran V; Perdoor, Mithun C; Minai, Ali A

    2012-08-01

    Animals such as reptiles, amphibians and mammals (including humans) are mechanically extremely complex. It has been estimated that the human body has between 500 and 1400 degrees of freedom! And yet, these animals can generate an infinite variety of very precise, complicated and goal-directed movements in continuously changing and uncertain environments. Understanding how this is achieved is of great interest to both biologists and engineers. There are essentially two questions that must be addressed: (1) What type of control strategy is used to handle the large number of degrees of freedom involved? and (2) How is this strategy instantiated in the substrate of neural and musculoskeletal elements comprising the animal bodies? The first question has been studied intensively for several decades, providing strong indications that, rather than using standard feedback control based on continuous tracking of desired trajectories, animals' movements emerge from the controlled combination of pre-configured movement primitives or synergies. These synergies represent coordinated activity patterns over groups of muscles, and can be triggered as a whole with controlled amplitude and temporal offset. Complex movements can thus be constructed from the appropriate combination of a relatively small number of synergies, greatly simplifying the control problem. Although experimental studies on animal movements have confirmed the existence of motor synergies, and their utility has been demonstrated in the control of fairly complex robots, their neural basis remains poorly understood. In this paper, we introduce a simple but plausible and general neural model for motor synergies based on the principle that these functional modules reflect the structural modularity of the underlying physical system. Using this model, we show that a small set of synergies selected through a redundancy-reduction principle can generate a rich motor repertoire in a model two-jointed arm system. We

  11. Space Propulsion Synergy Group ETO technology assessments

    NASA Astrophysics Data System (ADS)

    Bray, James

    There exists within the aerospace community a widely recognized need to improve future space launch systems. While these needs have been expressed by many national committees, potential solutions have not achieved consensus nor have they endured. Facing the challenge to remain competitive with limited national resources, the U.S. must improve its strategic planning efforts. A nationally accepted strategic plan for space would enable a focused research & development program. The Space Propulsion Synergy Group (SPSG), chartered to support long range strategic planning, has achieved several breakthroughs. First, using a broad industry/government team, the SPSG evaluated and achieved consensus on the vehicles, propulsion systems, and propulsion technologies that have the best long term potential for achieving desired system attributes. The breakthrough that enabled broad consensus was developing criteria that are measurable a-priori. Second, realizing that systems having the best long term payoffs can loose support when constraints are tight, the SPSG invented a dual prioritization approach that balances long term strategic thrusts with current programmatic constraints. This breakthrough enables individual program managers to make decisions based on both individual project needs and long term strategic needs. Results indicate that a SSTO using an integrated modular engine has the best long term potential for a 20 Klb class vehicle and that health monitoring and control technologies rank among the highest dual priority liquid rocket technologies.

  12. Star Formation Studies with SOFIA and its Synergy with TMT

    NASA Astrophysics Data System (ADS)

    De Buizer, James

    2014-07-01

    The Stratospheric Observatory For Infrared Astronomy (SOFIA) is a modified Boeing 747 aircraft equipped with a 2.5m telescope that performs observations at high altitude from the optical to the sub-mm. The observatory just reached full operational capability in April of this year. Given that it is slated for a 20-year mission lifetime, SOFIA will overlap TMT by more than a decade. I will discuss the contrasting and complementary features of SOFIA and TMT in the context of star formation, discuss some of the early results from SOFIA in this field, and finish with a discussion of how TMT data can enhance and extended our understanding of star formation processes.[This talk could also be generalized to discuss more about synergies between SOFIA and TMT in a broader context (not just star formation), should the organizers prefer that.

  13. Taking the Measure of the Universe: Cosmology from the WMAP Mission

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary F.

    2006-01-01

    The data from the first three years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature anisotropy and new full-sky maps of the polarization. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. These and other aspects of the mission will be discussed. WMAP, part of NASA's Explorers program, was launched on June 30,2001. The WMAP satellite was produced in a partnership between the Goddard Space Flight Center and Princeton University. The WMAP team also includes researchers at the Johns Hopkins University; the Canadian Institute of Theoretical Astrophysics; University of Texas; Cornel1 University; University of Chicago; Brown University; University of British Columbia; University of Pennsylvania; and University of California, Los Angeles

  14. Measurements at Los Alamos National Laboratory Plutonium Facility in Support of Global Security Mission Space

    SciTech Connect

    Stange, Sy; Mayo, Douglas R.; Herrera, Gary D.; McLaughlin, Anastasia D.; Montoya, Charles M.; Quihuis, Becky A.; Trujillo, Julio B.; Van Pelt, Craig E.; Wenz, Tracy R.

    2012-07-13

    The Los Alamos National Laboratory Plutonium Facility at Technical Area (TA) 55 is one of a few nuclear facilities in the United States where Research & Development measurements can be performed on Safeguards Category-I (CAT-I) quantities of nuclear material. This capability allows us to incorporate measurements of CAT-IV through CAT-I materials as a component of detector characterization campaigns and training courses conducted at Los Alamos. A wider range of measurements can be supported. We will present an overview of recent measurements conducted in support of nuclear emergency response, nuclear counterterrorism, and international and domestic safeguards. This work was supported by the NNSA Office of Counterterrorism.

  15. Leveraging Improvements in Precipitation Measuring from GPM Mission to Achieve Prediction Improvements in Climate, Weather and Hydrometeorology

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.

    2002-01-01

    The main scientific goal of the GPM mission, currently planned for start in the 2007 time frame, is to investigate important scientific problems arising within the context of global and regional water cycles. These problems cut across a hierarchy of scales and include climate-water cycle interactions, techniques for improving weather and climate predictions, and better methods for combining observed precipitation with hydrometeorological prediction models for applications to hazardous flood-producing storms, seasonal flood/draught conditions, and fresh water resource assessments. The GPM mission will expand the scope of precipitation measurement through the use of a constellation of some 9 satellites, one of which will be an advanced TRMM-like "core" satellite carrying a dual-frequency Ku-Ka band precipitation radar and an advanced, multifrequency passive microwave radiometer with vertical-horizontal polarization discrimination. The other constellation members will include new dedicated satellites and co-existing Operational/research satellites carrying similar (but not identical) passive microwave radiometers. The goal of the constellation is to achieve approximately 3-hour sampling at any spot on the globe. The constellation's orbit architecture will consist of a mix of sun-synchronous and non-sun-synchronous satellites with the core satellite providing measurements of cloud-precipitation microphysical processes plus calibration-quality rainrate retrievals to be used with the other retrieval information to ensure bias-free constellation coverage. GPM is organized internationally, currently involving a partnership between NASA in the US and the National Space Development Agency in Japan. Additionally, the program is actively pursuing agreements with other international partners and domestic scientific agencies and institutions, as well as participation by individual scientists from academia, government, and the private sector to fulfill mission goals and to pave

  16. In Vivo Measurements in Mice in the Bion-M 1 Mission

    NASA Astrophysics Data System (ADS)

    Andreev-Andrievskiy, Alexander; Custaud, Marc-Antoine; Popova, Anfisa; Borovik, Anatoliy; Dolgov, Oleg; Anokhin, Konstantin; Tsvirkun, Daria; Vinogradova, Olga

    The main aim of BION-M 1 mission was to reveal morphological, biochemical and molecular mechanisms of adaptation to prolonged exposure in microgravity. Besides that functional state and behavior were assessed in vivo using test battery, home cage observations and implantable telemetry in space-flown mice (SF), control mice from the ground replica of the flight experiment (GC) and in mice kept in vivarium (SFV and GCV). Blood pressure and heart rate were monitored continuously in a subgroup of mice using implantable telemetry throughout the flight as well as before and after it. After 30-days flight aboard BION-M 1 biosatellite SF mice have gained more weight than GC, SFV or GCV mice (11%). SF mice displayed pronounced motor impairment upon examination shortly after landing. 1 day after the flight mice were less active and more anxious in the open-field test, less coordinated in the Rotarod and aerial drop test and had less grip force compared to both control and pre-flight values. Exercise performance was greatly reduced after 30-days flight and recovered by day 7 post-flight. Before the flight mice were trained to perform a simple task using positively reinforced free operant conditioning approach. After the flight performance in the same task was preserved, however learning ability was impaired. Mice displayed drastic reduction of heart rate during launch and reentry acceleration periods. Heart rate (by 8-10%) and, to a lesser extent blood pressure (by 5%) were elevated during the 30-days flight. After return heart rate in SF mice remained elevated throughout the 7-days observation period with no apparent recovery. In summary, mice display pronounced disadaptation to 1g after 30-days exposure in microgravity with different physiological systems having different recovery dynamics. Of particular interest, hemodynamic reactions in mice closely resemble reactions in larger organisms, implying that factors that govern the cardiovascular system adaptation to

  17. Airborne lidar measurements of ozone and aerosols during the pacific exploratory mission-tropics A

    NASA Technical Reports Server (NTRS)

    Fenn, Marta A.; Browell, Edward V.; Grant, William B.; Butler, Carolyn F.; Kooi, Susan A.; Clayton, Marian B.; Brackett, Vincent G.; Gregory, Gerald L.

    1998-01-01

    Airborne lidar measurements of aerosol and ozone distributions from the surface to above the tropopause over the South Pacific Ocean are presented. The measurements illustrate large-scale features of the region, and are used to quantify the relative contributions of different ozone sources to the tropospheric ozone budget in this remote region.

  18. Hierarchies of Synergies in Human Movements

    PubMed Central

    Latash, Mark L.; Gorniak, Stacey; Zatsiorsky, Vladimir M.

    2009-01-01

    This brief review addresses the problem of motor redundancy, which exists at many levels of the neuromotor hierarchies involved in the production of voluntary movements. An approach to this problem is described based on the principle of abundance. This approach offers an operational definition for motor synergies using the framework of the uncontrolled manifold hypothesis. It is shown that hierarchical systems have inherent trade-offs between synergies at different control levels. These trade-offs have been demonstrated in experimental studies of human multi-finger pressing and prehension. They are likely to be present in other hierarchical systems, for example those involved in the control of large groups of muscles. The framework of the equilibrium-point hypothesis offers a physiologically based mechanism, which may form the basis for hierarchies of synergies. PMID:20354578

  19. Robustness of muscle synergies during visuomotor adaptation

    PubMed Central

    Gentner, Reinhard; Edmunds, Timothy; Pai, Dinesh K.; d'Avella, Andrea

    2013-01-01

    During visuomotor adaptation a novel mapping between visual targets and motor commands is gradually acquired. How muscle activation patterns are affected by this process is an open question. We tested whether the structure of muscle synergies is preserved during adaptation to a visuomotor rotation. Eight subjects applied targeted isometric forces on a handle instrumented with a force transducer while electromyographic (EMG) activity was recorded from 13 shoulder and elbow muscles. The recorded forces were mapped into horizontal displacements of a virtual sphere with simulated mass, elasticity, and damping. The task consisted of moving the sphere to a target at one of eight equally spaced directions. Subjects performed three baseline blocks of 32 trials, followed by six blocks with a 45° CW rotation applied to the planar force, and finally three wash-out blocks without the perturbation. The sphere position at 100 ms after movement onset revealed significant directional error at the beginning of the rotation, a gradual learning in subsequent blocks, and aftereffects at the beginning of the wash-out. The change in initial force direction was closely related to the change in directional tuning of the initial EMG activity of most muscles. Throughout the experiment muscle synergies extracted using a non-negative matrix factorization algorithm from the muscle patterns recorded during the baseline blocks could reconstruct the muscle patterns of all other blocks with an accuracy significantly higher than chance indicating structural robustness. In addition, the synergies extracted from individual blocks remained similar to the baseline synergies throughout the experiment. Thus synergy structure is robust during visuomotor adaptation suggesting that changes in muscle patterns are obtained by rotating the directional tuning of the synergy recruitment. PMID:24027524

  20. Factors Affecting Crater Size-Frequency Distribution Measurements: Insights Supported by the LRO Mission

    NASA Astrophysics Data System (ADS)

    van der Bogert, C. H.; Hiesinger, H.; Zanetti, M.; Plescia, J. B.; Ostrach, L. R.; Mahanti, P.; Meyer, H. M.; McEwen, A. S.; Pasckert, J. H.; Michael, G.; Kneissl, T.; Robinson, M. S.

    2016-05-01

    CSFD measurements are affected by illumination angle, count area size/slope, secondary cratering, target property effects, and differential degradation. Investigations using LRO data have made progress characterizing and quantifying these factors.

  1. Climate Change Mitigation and Adaptation in the Land Use Sector: From Complementarity to Synergy

    NASA Astrophysics Data System (ADS)

    Duguma, Lalisa A.; Minang, Peter A.; van Noordwijk, Meine

    2014-09-01

    Currently, mitigation and adaptation measures are handled separately, due to differences in priorities for the measures and segregated planning and implementation policies at international and national levels. There is a growing argument that synergistic approaches to adaptation and mitigation could bring substantial benefits at multiple scales in the land use sector. Nonetheless, efforts to implement synergies between adaptation and mitigation measures are rare due to the weak conceptual framing of the approach and constraining policy issues. In this paper, we explore the attributes of synergy and the necessary enabling conditions and discuss, as an example, experience with the Ngitili system in Tanzania that serves both adaptation and mitigation functions. An in-depth look into the current practices suggests that more emphasis is laid on complementarity—i.e., mitigation projects providing adaptation co-benefits and vice versa rather than on synergy. Unlike complementarity, synergy should emphasize functionally sustainable landscape systems in which adaptation and mitigation are optimized as part of multiple functions. We argue that the current practice of seeking co-benefits (complementarity) is a necessary but insufficient step toward addressing synergy. Moving forward from complementarity will require a paradigm shift from current compartmentalization between mitigation and adaptation to systems thinking at landscape scale. However, enabling policy, institutional, and investment conditions need to be developed at global, national, and local levels to achieve synergistic goals.

  2. PC/CIC: A Tandem 3U CubeSat Mission for Global Cloud Ice Mass Measurement

    NASA Astrophysics Data System (ADS)

    Gasiewski, A. J.; Sanders, B. T.; Gallaher, D. W.; Periasamy, L.; Alvarenga, G.; Scambos, T. A.; Weaver, R.; Evans, K. F.; Heymsfield, A.; Pilewskie, P.; Buehler, S. A.

    2014-12-01

    PolarCube and CloudIceCube (PC/CIC) are twin tandem 3U CubeSat satellites based on a common and existing bus design (ALL-STAR) and a common Earth-imaging passive microwave instrument payload architecture with suborbital aircraft flight heritage. These instrument payloads are being miniaturized for an orbital opportunity to provide atmospheric temperature profile measurements, cloud ice mass statistics, sea ice/ice-free ocean detection and mapping, and ice sheet surface snow properties that complement and extend existing passive microwave measurements from space. Collectively, these instruments, currently being prototyped, will comprise the first multi-frequency millimeter-wave and submillimeter-wave (MMW/SMMW) passive microwave imaging sensors flown in space. The objective is to map the brightness temperature spectra of several critical cryospheric and tropospheric Earth systems at high spatial resolution (~18.5 km) and high radiometric precision (~0.3-2.0K) at three key bands (118.7503, 325.153-340, and 670 GHz) over the entire globe during a nominal one year mission beginning in 2016. We discuss the application of the integrated PC/CIC data sets to climatological cloud modeling, determination of the vertical temperature and water vapor structure of polar regions, polar climate and atmosphere change studies, sea ice mapping, and ice sheet snow accumulation. Importantly, global cloud ice mass and mean particle size mapping will be supported at ~2o spatial scale using a new and independent passive MMW/SMMW technique as a means to constrain general circulation model cloud statistics. The PC/CIC mission will provide an important snapshot of global cloud ice mass statistics in the current era years prior to operational passive microwave cloud ice measurement. It will also demonstrate the use of compact, multi-frequency, scanning microwave radiometers that are prototypes of a new low-cost class of spaceborne microwave weather and climate sensors.

  3. Exploration Analysis of Carbon Dioxide Levels and Ultrasound Measures of the Eye During ISS Missions

    NASA Technical Reports Server (NTRS)

    Young, M.; Mason, S.; Schaefer, C.; Wear, M. L.; Sargsyan, A.; Garcia, K.; Coble, C.; Gruschkus, S.; Law, J.; Alexander, D.; Meyers, V.; Van Baalen, M.

    2016-01-01

    Enhanced screening for the Visual Impairment/Intracranial Pressure (VIIP) Syndrome, including in-flight ultrasound, was implemented in 2010 to better characterize the changes in vision observed in some long-duration crewmembers. Suggested possible risk factors for VIIP include cardiovascular changes, diet, anatomical and genetic factors, and environmental conditions. As a potent vasodilator, carbon dioxide (CO (sub 2)), which is chronically elevated on the International Space Station (ISS) relative to typical indoor and outdoor ambient levels on Earth, seems a plausible contributor to VIIP. In an effort to understand the possible associations between CO (sub 2) and VIIP, this study analyzes the relationship between ambient CO (sub 2) levels on ISS and ultrasound measures of the eye obtained from ISS fliers. CO (sub 2) measurements will be pulled directly from Operational Data Reduction Complex for the Lab and Node 3 major constituent analyzers (MCAs) on ISS or from sensors located in the European Columbus module, as available. CO (sub 2) measures between ultrasound sessions will be summarized using standard time series class metrics in MATLAB including time-weighted means and variances. Cumulative CO (sub 2) exposure metrics will also be developed. Regression analyses will be used to quantify the relationships between the CO (sub 2) metrics and specific ultrasound measures. Generalized estimating equations will adjust for the repeated measures within individuals. Multiple imputation techniques will be used to adjust for any possible biases in missing data for either CO (sub 2) or ultrasound measures. These analyses will elucidate the possible relationship between CO (sub 2) and changes in vision and also inform future analysis of inflight VIIP data.

  4. Solar X-ray Emission Measured by the Vernov Mission During September - October of 2014

    NASA Astrophysics Data System (ADS)

    Myagkova, I. N.; Bogomolov, A. V.; Kashapova, L. K.; Bogomolov, V. V.; Svertilov, S. I.; Panasyuk, M. I.; Kuznetsova, E. A.; Rozhkov, G. V.

    2016-08-01

    Solar hard X-ray and γ-ray emissions were measured by the Detector of the Roentgen and Gamma-ray Emissions (DRGE) instrument, which is part of the RELEC set of instruments operated onboard the Russian satellite Vernov, from July 8, 2014 until December 10, 2014 (on a solar-synchronous orbit with an apogee of 830 km, perigee of 640 km, and an inclination of 98.4°. RELEC measurements of 18 flares with X-ray energy {>} 30 keV, taken in September - October 2014, were connected with the same active region with the number AR 12172 during the first rotation and AR 12192 during the next one. These measurements were compared to the data obtained with RHESSI, Konus-Wind, Fermi Observatory, Radio Solar Telescope Net (RSTN), and the Nobeyama Radioheliograph (NoRH) operating at the same time. Quasi-periodicities with similar periods of 7±2 s were found in about one third of all flares measured by RELEC (Vernov) from September 24 until October 30, 2014.

  5. MOLA 1064nm Radiometry Measurements: Status and Prospects in Extended Mission

    NASA Technical Reports Server (NTRS)

    Neumann, G. A.; Abshire, J. B.; Smith, D. E.; Sun, X.; Zuber, M. T.

    2002-01-01

    The Mars Orbiting Laser Altimeter (MOLA) instrument has measured the brightness of the Mars surface at 1064 nm in a passive mode, from background noise counts, since 1997. After ceasing altimetry collection July 2001, MOLA has taken >50 million high-resolution radiometer observations. Additional information is contained in the original extended abstract.

  6. Global Lightning Climatology from the Tropical Rainfall Measuring Mission (TRMM), Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD)

    NASA Technical Reports Server (NTRS)

    Cecil, Daniel J.; Buechler, Dennis E.; Blakeslee, Richard J.

    2015-01-01

    The Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) has been collecting observations of total lightning in the global tropics and subtropics (roughly 38 deg S - 38 deg N) since December 1997. A similar instrument, the Optical Transient Detector, operated from 1995-2000 on another low earth orbit satellite that also saw high latitudes. Lightning data from these instruments have been used to create gridded climatologies and time series of lightning flash rate. These include a 0.5 deg resolution global annual climatology, and lower resolution products describing the annual cycle and the diurnal cycle. These products are updated annually. Results from the update through 2013 will be shown at the conference. The gridded products are publicly available for download. Descriptions of how each product can be used will be discussed, including strengths, weaknesses, and caveats about the smoothing and sampling used in various products.

  7. Preliminary Results of a New Type of Surface Property Measurement Ideal for a Future Mars Rover Mission

    NASA Technical Reports Server (NTRS)

    Buhler, C. R.; Calle, C. I.; Mantovani, J. G.; Buehler, M. G.; Nowicki, A. W.; Ritz, M.

    2004-01-01

    The success of the recent rover missions to Mars has stressed the importance of acquiring the maximum amount of geological information with the least amount of data possible. We have designed, tested and implemented special sensors mounted on a rover s wheel capable of detecting minute changes in surface topology thus eliminating the need for specially- made science platforms. These sensors, based on the previously designed, flight qualified Mars Environmental Compatibility Assessment (MECA) Electrometer, measure the static electricity (triboelectricity) generated between polymer materials and the Martian regolith during rover transverses. The sensors are capable of detecting physical changes in the soil that may not be detectable by other means, such as texture, size and moisture content. Although triboelectricity is a surface phenomenon, the weight of a rover will undoubtedly protrude the sensors below the dust covered layers, exposing underlying regolith whose properties may not be detectable through other means.

  8. A Japanese New Altimetry Mission, COMPIRA - Towards High Temporal and Spatial Sampling of Sea Surface Height Measurement

    NASA Astrophysics Data System (ADS)

    Ito, N.; Uematsu, A.; Yajima, Y.; Isoguchi, O.

    2014-12-01

    Japan Aerospace Exploration Agency (JAXA) is working on a conceptual study of altimeter mission named Coastal and Ocean measurement Mission with Precise and Innovative Radar Altimeter (COMPIRA), which will carry a wide-swath altimeter named Synthetic aperture radar (SAR) Height Imaging Oceanic Sensor with Advanced Interferometry (SHIOSAI). Capturing meso/submeso-scale phenomena is one of important objectives of the COMPIRA mission, as well as operational oceanography and fishery. For operational oceanography including coastal forecast, swath of SHIOSAI is selected to be 80 km in left and right sides to maximize temporal and spatial sampling of the sea surface height. Orbit specifications are also designed to be better sampling especially for mid-latitude region. That is, a spatial grid sampling is 5 km and an observation times per revisit period (about 10 days) is 2 to 3 times. In order to meet both sampling frequency and spatial coverage requirements as much as possible, orbit inclination was set relatively low, 51 degrees. Although this sampling frequency is, of course, not enough high to capture time evolution of coastal phenomena, an assimilation process would compensate its time evolution if 2D SSH fields was observed at least once within decal time scale of phenomena. JAXA has launched a framework called "Coastal forecast core team" to aim at developing coastal forecast system through pre-launch activities toward COMPIRA. Assimilation segment as well as satellite and in situ data provision will play an important role on these activities. As a first step, we evaluated effects of ocean current forecast improvement with COMPIRA-simulated wide-swath and high sampling sea surface heights (SSH) data. Simulated SSH data are generated from regional ocean numerical models and the COMPIRA orbit and error specifications. Then, identical twin experiments are conducted to investigate the effect of wide-swath SSH measurements on coastal forecast in the Tohoku Pacific coast

  9. Revolutions in Galaxy Cluster Science: Astro-H/eROSITA Synergy and Athena Outlook

    NASA Astrophysics Data System (ADS)

    Reiprich, Thomas

    eROSITA will perform the first X-ray imaging all-sky survey up to 10 keV and is expected to detect about 100,000 galaxy clusters. It is planned to be launched as the primary instrument of the Spectrum-Roentgen-Gamma mission, around the same time as Astro-H. To reach its major scientific goal -- unprecedented constraints on dark energy -- the cluster masses need to be known accurately. Astro-H will allow us for the first time to tightly constrain sources of non-thermal pressure support in galaxy clusters through its revolutionary micro-calorimeter array, and thereby to quantify one of the primary systematic uncertainties in X-ray mass measurements. The excellent synergy between eROSITA and Astro-H for clusters and cosmology will be illustrated. Moreover, at the end of the next decade, Athena is expected to be launched. Examples will be shown how Athena's combination of high throughput and excellent spectral resolution will enable breakthroughs in our understanding of cluster evolution.

  10. CILT2000: Synergy, Technology, and Teacher Professional Development.

    ERIC Educational Resources Information Center

    Baumgartner, Eric; Hsi, Sherry

    2002-01-01

    Introduces the concept of synergy and synergy research conducted in the context of a water quality project and CILT2000, a meeting of the Center for Innovative Learning Technologies (CILT). Shares ways in which synergy research addresses methodological questions, promotes collaborative partnerships, and contributes to equity. (Contains 16…

  11. Project SYNERGY: Software Support for Underprepared Students. Year Four Report.

    ERIC Educational Resources Information Center

    Miami-Dade Community Coll., FL. Div. of Educational Technologies.

    With funds from the International Business Machines (IBM) Corporation, Project SYNERGY was launched in January 1990 to address the problem of students deficient in basic skills entering colleges. Project SYNERGY I focused on reviewing and compiling a list of useful instructional software for basic skills remediation; Project SYNERGY II focused on…

  12. Adapting an existing visualization application for browser-based deployment: A case study from the Tropical Rainfall Measuring Mission

    NASA Astrophysics Data System (ADS)

    Kelley, Owen A.

    2013-02-01

    THOR, the Tool for High-resolution Observation Review, is a data viewer for the Tropical Rainfall Measuring Mission (TRMM) and the upcoming Global Precipitation Measurement (GPM) mission. THOR began as a desktop application, but now it can be accessed with a web browser, making THOR one of the first online tools for visualizing TRMM satellite data (http://pps.gsfc.nasa.gov/thor). In this effort, the reuse of the existing visualization code was maximized and the complexity of new code was minimized by avoiding unnecessary functionality, frameworks, or libraries. The simplicity of this approach makes it potentially attractive to researchers wishing to adapt their visualization applications for online deployment. To enable THOR to run within a web browser, three new pieces of code are written. First, the graphical user interface (GUI) of the desktop application is translated into HTML, JavaScript, and CSS. Second, a simple communication mechanism is developed over HTTP. Third, a virtual GUI is created on the server that interfaces with the image-generating routines of the existing desktop application so that these routines do not need to be modified for online use. While the basic functionality of THOR is now available online, prototyping is ongoing for enhanced 3D imaging and other aspects of both THOR Desktop and THOR Online. Because TRMM data products are complex and periodically reprocessed with improved algorithms, having a tool such as THOR is important to analysts at the Precipitation Processing System where the algorithms are tested and the products generated, stored, and distributed. Researchers also have found THOR useful for taking a first look at individual files before writing their own software to perform specialized calculations and analyses.

  13. Water vapor and cloud water measurements over Darwin during the STEP 1987 tropical mission

    NASA Technical Reports Server (NTRS)

    Kelly, K. K.; Proffitt, M. H.; Chan, K. R.; Loewenstein, M.; Podolske, J. R.; Strahan, E.; Wilson, J. C.; Kley, D.

    1993-01-01

    Measurements of stratospheric and upper tropospheric cloud water plus water vapor (total water) and water vapor were made with two Lyman alpha hygrometers as part of the STEP tropical experiment. The in situ measurements were made in the Darwin, Australia, area in January and February of 1987 on an ER-2 aircraft. Average stratospheric water vapor at a potential temperature of 375 K (the average value of Theta at the tropopause) was 2.4 parts per million by volume (ppmv). This water mixing ratio is below the 3.0 to 4.0 ppmv necessary to be consistent with the observed upper stratospheric dryness. Saturation with respect to ice and the potential for dehydration was observed up to Theta = 402 K.

  14. Sputter-produced plasma as a measure of satellite surface composition - The Cassini mission

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.; Sittler, E. C., Jr.

    1990-01-01

    Measurements of the co-orbiting neutral cloud or the plasma produced by sputtering of the icy Saturnian satellites can be used to determine the relative abundance of a minority surface species which would be difficult to determine from reflectance spectra. This is due to the fact that the sputter source rates, hence the plasma supply rates, are directly proportional to the bulk concentrations of mixed solids or clathrates, although the surface grains may be depleted in the most volatile species.

  15. Instrumentation for the Future Lunar Missions: Multicomponent Electromagnetic Measurements at Long Wavelengths

    NASA Astrophysics Data System (ADS)

    Kolmasova, Ivana; Santolik, Ondrej; Belyayev, Serhiy; Uhlir, Ludek; Skalsky, Alexander; Pronenko, Vira; Lan, Radek

    The LEMRA-L instrument (Long-wavelength Electro-Magnetic Radiation Analyzer) will be implemented on the LUNA-GLOB spacecraft. It will analyze the data of the three-axial flux gate (DC - 10Hz) and searchcoil (1Hz - 10kHz) magnetometers LEMI. It will measure intensity, polarization, and coherence properties of waves in plasmas of the solar wind, in the lunar wake and its boundaries, and study the magnetic anomalies. We will use new modern robust onboard analysis methods to estimate the wave coherence, sense of polarization, ellipticity, and wave-vector direction, and thus substantially compress the transmitted data volumes, while conserving the important scientific information. In the burst mode data set intended for studying nonlinear phenomena, we will conserve the continuous flux-gate magnetometer data and discrete snapshots of three axial waveform measurements. In the survey-mode data set, continuous flux-gate magnetometer data will be transmitted together with onboard analyzed and averaged spectral matrices from the higher-frequency wave measurements or with onboard calculated propagation and polarization parameters.

  16. Exploratory Analysis of Carbon Dioxide Levels and Ultrasound Measures of the Eye During ISS Missions

    NASA Technical Reports Server (NTRS)

    Schaefer, C.; Young, M.; Mason, S.; Coble, C.; Wear, M. L.; Sargsyan, A.; Garcia, K.; Law. J.; Alexander, D.; Ryder, V. Myers; Van Baalen, M.

    2016-01-01

    Carbon dioxide (CO2) levels on ISS have typically averaged 2.3 to 5.3mm Hg, with large fluctuations occurring over periods of hours and days. CO2 has effects on cerebral vascular tone, resulting in vasodilation and alteration of cerebral blood flow(CBF). Increased CBF leads to elevated intracranial pressure(ICP), which is a factor leading to visual disturbance, headaches, and other central nervous system symptoms. Ultrasound of the optic nerve provides a surrogate measurement of ICP. Inflight ultrasounds were implemented as an enhanced screening tool for the Visual Impairment/Intracranial Pressure (VIIP) Syndrome. This analysis examines the relationships between ambient CO2 levels on ISS and ultrasound measures of the eye in an effort to understand how CO2 may be associated with VIIP and to inform future analysis of inflight VIIP data. Results as shown in Figure2, there was a large timeframe where CO2 readings were removed due to sensor fault errors(see Limitations), from June 2011 to January 2012. After extensive cleaning of the CO2 data, metrics for all of the data were calculated (Table2). Preliminary analyses showed possible associations between variability measures of CO2 and AP diameter (Figure3),and average CO2 exposure and ONSD(Figure4). Adjustments for multiple comparisons were not made due to the exploratory nature of the analysis.

  17. IT Portfolio Selection and IT Synergy

    ERIC Educational Resources Information Center

    Cho, Woo Je

    2010-01-01

    This dissertation consists of three chapters. The primary objectives of this dissertation are: (1) to provide a methodological framework of IT (Information Technology) portfolio management, and (2) to identify the effect of IT synergy on IT portfolio selection of a firm. The first chapter presents a methodological framework for IT project…

  18. Synergy: People Power for the Classroom

    ERIC Educational Resources Information Center

    Hassard, Jack

    1977-01-01

    Suggests and describes several learning activities that complement a high synergy classroom, i. e., "one which thrives on cooperative use of power." Described are: (1) the stages in using synectics with examples; (2) the techniques of webbing and guiding; (3) development of new games; (4) development of student portfolios; and (5) classroom…

  19. Laboratory measurements of dielectric properties of compact and granular materials, in relation with Rosetta mission.

    NASA Astrophysics Data System (ADS)

    Brouet, Y.; Levasseur-Regourd, A. C.; Encrenaz, P.; Gheudin, M.; Ciarletti, V.; Gulkis, S.; Jambon, A.; Ruffié, G.; Prigent, C.

    2012-04-01

    The European Rosetta spacecraft (s/c), launched in 2004, will be the first s/c to orbit a comet and place a lander module on its surface. In 2014, the s/c will rendezvous with the comet 67P/Churyumov-Gerasimenko and place the lander on its surface thereby allowing in situ and remote sensing of the comet nucleus. Two radio experiments, one passive (MIRO [1]) and one active (CONSERT [2]), are aboard the Rosetta s/c. MIRO, composed of two radiometers, with center band frequencies at 190 GHz and at 563 GHz to determine the brightness temperatures of the target surfaces and sub-surfaces, has already observed asteroids (2867) Steins [3] and (21) Lutetia [4]. CONSERT will investigate the deep interior of the nucleus using 90 MHz radio-waves transmitted from the orbiter through the nucleus and returned to the orbiter from the lander. To support interpretations of MIRO and CONSERT observations, a program of dielectric properties measurements is under development on a large range of frequencies encompassing those of the above-mentioned experiments. Several instruments for dielectric constant determination are available at IMS laboratory (Bordeaux, France): impedance analyzer, coaxial sensor, resonant cavities (measuring respectively at 100 MHz, 0.5-6 GHz, 1.2-13.4 GHz). Millimeter benches are available at both IMS and LERMA laboratories (measuring respectively at 30-110 GHz and 70-230 GHz). Taking into account the possible presence of regolith layers on the surface of asteroids or nuclei and the very low density of cometary nuclei [5], the dependence of the dielectric constant on the structure and porosity of given granular materials needs also to be investigated (while the thermal and hygrometric conditions are carefully monitored). We have already reported measurements obtained on various meteorites, possibly representative of some asteroid surfaces [6, 7]. We will also report systematic measurements obtained on a large sample of pyroclastic deposits from Etna, providing

  20. Remote measurement and monitoring of inland water heights using multi-mission satellite radar altimetry

    NASA Astrophysics Data System (ADS)

    Benveniste, Jerome

    The effective management of the Earth's inland water is a major challenge facing scientists and governments worldwide. However, whilst demand for this often scarce resource continues to grow, the number and distribution of in-situ hydrological gauge stations is steadily falling and many catchments basins in the developing world are now entirely ungauged. Over the past few years research has been undertaken into a spacebased technique which can remotely measure river and lake heights using data from the series of satellite radar altimeters, originally designed to measure the height of the Earth's oceans. Results over inland water were initially confined to a handful of very large lakes, where the water surface resembled the ocean sufficiently well to allow existing processing techniques to retrieve meaningful measurements. This capability has now been transformed by the development of echo processing techniques which allow that part of the returned signal originating from inland water to be separated from the return from the surrounding terrain. This has extended the scope of this technique to monitoring thousands of river and lake heights worldwide, with the access to more than a decade of historical data now permitting analysis of trends and identification of climate signatures. This paper presents analyses of 15 years of altimeter data using results from hundreds of time series from ERS-2, EnviSat, TOPEX and Jason-1 to demonstrate the effectiveness of this technique in monitoring river and lake heights on a continental scale. The extension of this technique to near real time monitoring using data from the Envisat RA-2 is also presented. The results illustrate the current capability and future potential of this approach to derive a global picture of the Earth's inland water resources and to identify both climate signatures and regions where human usage is depleting the resource beyond its capacity to recharge.

  1. Thermal property measurements on lunar material returned by Apollo 11 and 12 missions.

    NASA Technical Reports Server (NTRS)

    Horai, K.-I.; Simmons, G.

    1972-01-01

    Measurement of thermal diffusivity on Apollo 11 type A and type C samples in the temperature range between 150 and 440 K under atmospheric pressure. Thermal diffusivity of type C material is lower and less temperature-dependent than type A material. Both types of samples exhibit lower thermal diffusivities than nonporous terrestrial basalt. The rate of heat generation of Apollo 11 and 12 samples was calculated from the concentrations of radioactive elements: potassium, thorium, and uranium. Apollo 11 crystalline rocks show an average rate of heat generation which is not significantly different from terrestrial basalt. The Th/U ratio does not differ greatly from chondritic and terrestrial averages.

  2. Tropical Rainfall Measuring Mission (TRMM) project. VII - Techniques for radar data processing

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Atlas, David; Fujita, Masaharu; Nakamura, Kenji

    1990-01-01

    The paper describes algorithms for rain-rate profiling with an airborne or space-borne radar. Some problems involved in the radar measurements from an airborne or space-borne platform are discussed. An outline of a dual-frequency algorithm is described and its performance is confirmed by a computer simulation and an airborne experiment. A single-frequency algorithm is developed by introducing a path-integrated rain rate estimated from an attenuation of surface echoes or from microwave brightness temperature. The computer simulation shows good performance for an airborne or space-borne radar.

  3. Intercomparison of Remote and Flight Level Measured Aerosol Backscatter Coefficient During GLOBE 2 Pacific Survey Mission

    NASA Technical Reports Server (NTRS)

    Cutten, D. R.; Spinhime, J. D.; Menzies, R. T.; Bowdle, D. A.; Srivastava, V.; Pueschel, R. F.; Clarke, A. D.; Rothermel, J.

    1998-01-01

    Aerosol backscatter coefficient data are examined from two local flights undertaken during NASA's GLObal Backscatter Experiment (GLOBE) in May - June, 1990. During each of these two flights the aircraft traversed different altitudes within a region of the atmosphere defined by the same set of latitude and longitude coordinates. This provides an ideal opportunity to allow flight level measured or modeled aerosol backscafter to be compared with pulsed lidar aerosol backscafter data that were obtained at these same altitudes either earlier or later than the flight level measurements. Aerosol backscafter comparisons were made at 1.06-, 9.11- and 9.25-mm wavelengths, using data from three lidar systems and two aerosol optical counters. The best agreement between all sensor's was found in the altitude region below 7 km where backscafter values were moderately high at all three wavelengths. Above this altitude the pulsed lidar backscafter data at 1.06- and 9.25-mm wavelengths were higher than the flight level data obtained from the CW lidar or derived from the optical counters. Possible reasons are offered to explain this discrepancy. During the Japan local flight, microphysics analysis revealed: (1) evidence of a strong advected seasalt aerosol plume from the marine boundary layer, and (2) where backscatter was low, the large lidar sampling volume included many large particles which were of different chemical composition to the small particle category sampled by the particle counters.

  4. Extra dose due to extravehicular activity during the NASA4 mission measured by an on-board TLD system

    NASA Technical Reports Server (NTRS)

    Deme, S.; Apathy, I.; Hejja, I.; Lang, E.; Feher, I.

    1999-01-01

    A microprocessor-controlled on-board TLD system, 'Pille'96', was used during the NASA4 (1997) mission to monitor the cosmic radiation dose inside the Mir Space Station and to measure the extra dose to two astronauts in the course of their extravehicular activity (EVA). For the EVA dose measurements, CaSO4:Dy bulb dosemeters were located in specially designed pockets of the ORLAN spacesuits. During an EVA lasting 6 h, the dose ratio inside and outside Mir was measured. During the EVA, Mir crossed the South Atlantic Anomaly (SAA) three times. Taking into account the influence of these three crossings the mean EVA/internal dose rate ratio was 3.2. Internal dose mapping using CaSO4:Dy dosemeters gave mean dose rates ranging from 9.3 to 18.3 microGy h-1 at locations where the shielding effect was not the same. Evaluation results of the high temperature region of LiF dosemeters are given to estimate the mean LET.

  5. Extra dose due to extravehicular activity during the NASA4 mission measured by an on-board TLD system.

    PubMed

    Deme, S; Apathy, I; Hejja, I; Lang, E; Feher, I

    1999-01-01

    A microprocessor-controlled on-board TLD system, 'Pille'96', was used during the NASA4 (1997) mission to monitor the cosmic radiation dose inside the Mir Space Station and to measure the extra dose to two astronauts in the course of their extravehicular activity (EVA). For the EVA dose measurements, CaSO4:Dy bulb dosemeters were located in specially designed pockets of the ORLAN spacesuits. During an EVA lasting 6 h, the dose ratio inside and outside Mir was measured. During the EVA, Mir crossed the South Atlantic Anomaly (SAA) three times. Taking into account the influence of these three crossings the mean EVA/internal dose rate ratio was 3.2. Internal dose mapping using CaSO4:Dy dosemeters gave mean dose rates ranging from 9.3 to 18.3 microGy h-1 at locations where the shielding effect was not the same. Evaluation results of the high temperature region of LiF dosemeters are given to estimate the mean LET. PMID:11542227

  6. The Integrated Science Investigation of the Sun (ISIS): Energetic Particle Measurements for the Solar Probe Plus Mission

    NASA Technical Reports Server (NTRS)

    McComas, D. J.; Christian, E. R.; Wiedenbeck, M. E.; McNutt, R. L.; Cummings, A. C.; Desai, M. I.; Giacalone, J.; Hill, M. E.; Mewaldt, R. A.; Krimigis, SA. M.; Livi, S. A.; Mitchell, D. G.; Matthaeus, W. H.; Roelof, E. C.; Stone, E. C.; Schwardron, N. A.; vonRosenvinge, T. T.

    2011-01-01

    One of the major goals of NASA's Solar Probe Plus (SPP) mission is to determine the mechanisms that accelerate and transport high-energy particles from the solar atmosphere out into the heliosphere. Processes such as coronal mass ejections and solar flares, which peak roughly every 11 years around solar maximum, release huge quantities of energized matter, magnetic fields and electromagnetic radiation into space. The high-energy particles, known as solar energetic particles or SEPs, present a serious radiation threat to human explorers living and working outside low-Earth orbit and to technological assets such as communications and scientific satellites in space. This talk describes the Integrated Science Investigation of the Sun (ISIS) - Energetic Particle Instrument suite. ISIS measures key properties such as intensities, energy spectra, composition, and angular distributions of the low-energy suprathermal source populations, as well as the more hazardous, higher energy particles ejected from the Sun. By making the first-ever direct measurements of the near-Sun regions where the acceleration takes place, ISIS will provide the critical measurements that, when integrated with other SPP instruments and with solar and interplanetary observations, will lead to a revolutionary new understanding of the Sun and major drivers of solar system space weather.

  7. Laboratory Measurements on Martian Soil Simulant JSC Mars-1 Supporting the Calibration of Instruments for Planetary Missions

    NASA Astrophysics Data System (ADS)

    Simõs, F.; Trautner, R.; Grard, R.; Hamelin, M.

    2004-04-01

    The concentration of water in the Martian regolith is an important parameter in many scientific domains. The abundance and distribution of water in the atmosphere and under the surface of Mars have fundamental significance for the geological, hydrological and climatic history of the planet. Furthermore, water is a fundamental ingredient of life and represents an important potential resource for future manned missions. Water possesses an electrical signature that allows the identification of its presence among other materials, even at very low concentrations. Not only the permittivity, but also the conductivity of permafrost and water-bearing rocks depends upon the presence of water. A laboratory facility has been set up to measure the complex permittivity of soil mixtures as a function of porosity, humidity, and temperature in the frequency range 10 Hz 10 kHz. The experimental technique is presented and the results obtained with the JSC Mars-1 soil simulant are discussed. A measurable gravimetric water content threshold is evaluated. The measurement of the dielectric properties of soil analogues allows estimating conductivity and permittivity of the Martian regolith, and supports the design of instruments for the detection of water and ice.

  8. The Integrated Science Investigation of the Sun (ISIS): Energetic Particle Measurements for the Solar Probe Plus Mission

    NASA Astrophysics Data System (ADS)

    Scherrer, J.; McComas, D. J.; Christian, E. R.; Cummings, A. C.; Desai, M. I.; Giacalone, J.; Hill, M. E.; Krimigis, S. M.; Livi, S. A.; McNutt, R. L.; Mewaldt, R. A.; Mitchell, D. G.; Matthaeus, W. H.; Roelof, E. C.; von Rosenvinge, T. T.; Schwadron, N. A.; Stone, E. C.; Velli, M. M.; Wiedenbeck, M. E.

    2010-12-01

    One of the major goals of NASA’s Solar Probe Plus (SPP) mission is to determine the mechanisms that accelerate and transport high-energy particles from the solar atmosphere out into the heliosphere. During the height of solar activity, which occurs roughly once every 11 years, processes such as coronal mass ejections and solar flares release huge quantities of energized matter, magnetic fields and electromagnetic radiation into space. These high-energy particles, known as solar energetic particles or SEPs, present a serious radiation threat to human explorers living and working outside low-Earth orbit and to technological assets such as communications and scientific satellites in space. This talk describes the Integrated Science Investigation of the Sun (ISIS) - Energetic Particle Instrument suite. ISIS measures key properties such as intensities, energy spectra, composition, and angular distributions of the low-energy suprathermal source populations, as well as the more hazardous, higher energy particles ejected from the Sun. By making the first-ever direct measurements of the near-Sun regions where the acceleration takes place, ISIS will provide the critical measurements that, when integrated with other SPP instruments and with solar and interplanetary observations, will lead to a much deeper understanding of the Sun and major drivers of solar system space weather.

  9. 10+ more years of Chandra-XMM-Newton Synergy

    NASA Astrophysics Data System (ADS)

    Wilkes, B.

    2016-06-01

    In this current golden age of X-ray astronomy, the frontiers of the X-ray Universe are continually expanding in multiple, often unexpected, directions, due to the extraordinary success and longevity of both ESA's XMM-Newton and NASA's Chandra X-ray Observatory. These two ground-breaking, major observatories are supported by a number of smaller, more focused missions which feed into and expand the discovery space of X-ray astronomy even further. With the prospect of another decade of observing, now is an excellent time to take stock of how far we have come, and to look forward to the future with a view to maximizing the scientific legacy of both XMM-Newton and Chandra. This not only involves optimizing the contents of the archives and the impact of the science results, but also laying the ground-work for the next generation of X-ray telescopes, led by ESA's Athena mission in the late 2020s. I will summarize the synergy between XMM-Newton and Chandra, including complementary capabilities which facilitate coordinated observations and science programs, and overlapping capabilities which often provide the necessary confirmation (or not) of new, marginal and/or controversial results.

  10. Micrometeorological measurements in Amazon forest during GTE/ABLE 2A mission

    SciTech Connect

    Viswanadham, Y.; Molion, L.C.B.; Manzi, A.O.; Sa, L.D.A.; Silva Filho, V.P.; Nogueira, J.L.M.; dos Santos, R.C. ); Andre, R.G.B. )

    1990-08-20

    As part of the Global Tropospheric Experiment/Amazon Boundary Layer Experiment 2A, micrometeorological measurements were made using a 45 m scaffolding tower located in the Ducke Reserve Forest site (2{degree}57{prime}S, 59{degree}57{prime}W) 26 km northeaster of Manaus, Amazonas, Brazil. The authors report the daily variation within and above the forest of several meteorological parameters such as temperature, humidity, winds, radiation exchange, and energy partition into latent and sensible heat fluxes. Estimates of eddy diffusivity coefficients for momentum, heat, and water vapor were made using the observed profiles. These results provide information on the physical processes involved in the exchange of momentum, heat, and water vapor between the forest and the air layer above. To account for the anomalies in eddy diffusivities, a brief discussion is presented based on turbulent transport processes.

  11. The ground truth analysis of rain gauge data for the TRMM project. [Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    Kowalewsky, Karen J.; Thiele, Otto

    1989-01-01

    As a part of the Tropical Rainfall Measuring Missioin (TRMM) ground truth program to determine the diurnal variability of the area wide rain rates, the rain rate PDFs, and their effect on the area integral algorithm, rain rate data have been collected from a network of gages located in the area near the Cape Canaveral and Kennedy Space Center, in the period beginning in September 1987. In the preliminary statistical analysis, based on the rain rates derived from the eleven gages, the seasonal diurnal rainfall and network averaged rain rates are determined. The analysis was performed in two steps: determination of the hourly and daily rain accumulations and rain rates; and computation of the fraction of hourly and daily rain rates that exceed a particular threshold, and analysis of the hourly and daily rain rate PDFs for the network. The results indicate that there are diurnal and seasonal variations in the components which determine the network rain rate PDFs.

  12. Continuous metabolic and cardiovascular measurements on a monkey subject during a simulated 6-day Spacelab mission

    NASA Technical Reports Server (NTRS)

    Pace, N.; Rahlmann, D. F.; Mains, R. C.; Kodama, A. M.; Mccutcheon, E. P.

    1979-01-01

    A 10-kg male pig-tailed monkey (Macaca nemestrina) was selected as an optimal species for spaceflight studies on weightlessness. Three days before the simulated launch, the animal was placed in a fiberglass pod system to provide continuous measurement of respiratory gas exchange. Attention is given to examining the effects of weightlessness on several basic parameters of metabolic and cardiovascular function in an adult nonhuman primate. The 10.7-day total simulated-experiment period consisted of preflight 2.6 days, inflight 6.3 days, and postflight 1.8 days. Statistically significant diurnal variation was noted in oxygen consumption and CO2 production rates, body temperature and HR, but not in respiratory quotient or blood pressure. The high quality of the continuous data obtained demonstrates the feasibility of performing sound physiological experimentation on nonhuman primates in the Spacelab environment.

  13. A proposed space mission around the Moon to measure the Moon Radio-Quiet Zone

    NASA Astrophysics Data System (ADS)

    Antonietti, N.; Pagana, G.; Pluchino, S.; Maccone, C.

    In a series of papers published since 2000 mainly in Acta Astronautica the senior author Maccone dealt with the advantages of the Farside of the Moon for future utilization Clearly the Moon Farside is free from RFI Radio Frequency Interference produced in larger and larger amounts by the increasing human exploitation of radio technologies That author suggested that crater Daedalus located at the center of the Farside was the best possible location to build up in the future one or more radiotelescopes or phased arrays to achieve the maximum sensitivity in radioastronomical and SETI searches Also a radio-quiet region of space above the Farside of the Moon exists and is called the Quiet Cone The Quiet Cone actual size however is largely unknown since it depends on the orbits of radio-emitting satellites around the Earth that are themselves largely unknown due to the military involvements In addition diffraction of electromagnetic waves grazing the surface of the Moon causes further changes in the geometrical shape of the Quiet Cone This riddle can be solved only by direct measurements of the radio attenuation above the Farside of the Moon performed by satellites orbiting the Moon itself In this paper we propose to let one or more low cost radiometers be put into orbit around the Moon to measure the RFI attenuation at different frequencies and altitudes above the Moon The opportunity of adding more payload s such as an ion detector and or a temperature sensor is evaluated also In this regard we present in this paper the experience gained by

  14. Europa Lander Mission: A Challenge to Find Traces of Alien Life

    NASA Astrophysics Data System (ADS)

    Zelenyi, Lev; Korablev, Oleg; Vorobyova, Elena; Martynov, Maxim; Akim, Efraim L.; Zakahrov, Alexander

    2010-01-01

    An international effort dedicated to science exploration of Jupiter system planned by ESA and NASA in the beginning of next decade includes in-depth science investigation of Europa. In parallel to EJSM (Europa-Jupiter System Mission) Russian Space Agency and the academy of Science plan Laplace-Europa Lander mission, which will include the small telecommunication and science orbiter and the surface element: Europa Lander. In-situ methods on the lander provide the only direct possibility to assess environmental conditions, and to perform the search for signatures of life. A critical advantage of such in situ analysis is the possibility to enhance concentration and detection limits and to provide ground truth for orbital measurements. The science mission of the lander is biological, geophysical, chemical, and environmental characterizations of the Europa surface. Remote investigations from the orbit around Europa would not be sufficient to address fully the astrobiology, geodesy, and geology goals. The science objectives of the planned mission, the synergy between the Europa Lander and EJSM mission elements, and a brief description of the Laplace-Europa Lander mission are presented.

  15. Analysis of hand synergies in healthy subjects during bimanual manipulation of various objects

    PubMed Central

    2014-01-01

    Background Hand synergies have been extensively studied over the last few decades. Objectives of such research are numerous. In neuroscience, the aim is to improve the understanding of motor control and its ability to reduce the control dimensionality. In applied research fields like robotics the aim is to build biomimetic hand structures, or in prosthetics to design more performant underactuated replacement hands. Nevertheless, most of the synergy schemes identified to this day have been obtained from grasping experiments performed with one single (generally dominant) hand to objects placed in a given position and orientation in space. Aiming at identifying more generic synergies, we conducted similar experiments on postural synergy identification during bimanual manipulation of various objects in order to avoid the factors due to the extrinsic spatial position of the objects. Methods Ten healthy naive subjects were asked to perform a selected “grasp-give-receive” task with both hands using 9 objects. Subjects were wearing Cyberglove Ⓒ on both hands, allowing a measurement of the joint posture (15 degrees of freedom) of each hand. Postural synergies were then evaluated through Principal Component Analysis (PCA). Matches between the identified Principal Components and the human hand joints were analyzed thanks to the correlation matrix. Finally, statistical analysis was performed on the data in order to evaluate the effect of some specific variables on the hand synergies: object shape, hand side (i.e., laterality) and role (giving or receiving hand). Results Results on PCs are consistent with previous literature showing that a few principal components might be sufficient to describe a large variety of different grasps. Nevertheless some simple and strong correlations between PCs and clearly identified sets of hand joints were obtained in this study. In addition, these groupings of DoF corresponds to well-defined anatomo-functional finger joints according to

  16. Complete positive ion, electron, and ram negative ion measurements near Comet Halley (COPERNIC) plasma experiment for the European Giotto Mission

    NASA Technical Reports Server (NTRS)

    Lin, Robert P.

    1988-01-01

    Participation of U.S. scientists on the COPERNIC (COmplete Positive ions, Electrons and Ram Negative Ion measurements near Comet Halley) plasma experiment on the Giotto mission is described. The experiment consisted of two detectors: the EESA (electron electrostatic analyzer) which provided three-dimensional measurements of the distribution of electrons from 10 eV to 30 keV, and the PICCA (positive ion cluster composition analyzer) which provided mass analysis of positively charged cold cometary ions from mass 10 to 210 amu. In addition, a small 3 deg wide sector of the EESA looking in the ram direction was devoted to the detection of negatively charged cold cometary ions. Both detectors operated perfectly up to near closest approach (approx. 600 km) to Halley, but impacts of dust particles and neutral gas on the spacecraft contaminated parts of the data during the last few minutes. Although no flight hardware was fabricated in the U.S., The U.S. made very significant contributions to the hardware design, ground support equipment (GSE) design and fabrication, and flight and data reduction software required for the experiment, and also participated fully in the data reduction and analysis, and theoretical modeling and interpretation. Cometary data analysis is presented.

  17. Complete positive ion, electron, and Ram negative ion measurements near Comet Halley (COPERNIC) plasma experiment for the European Giotto Mission

    NASA Astrophysics Data System (ADS)

    Lin, Robert P.

    1988-05-01

    Participation of U.S. scientists on the COPERNIC (COmplete Positive ions, Electrons and Ram Negative Ion measurements near Comet Halley) plasma experiment on the Giotto mission is described. The experiment consisted of two detectors: the EESA (electron electrostatic analyzer) which provided three-dimensional measurements of the distribution of electrons from 10 eV to 30 keV, and the PICCA (positive ion cluster composition analyzer) which provided mass analysis of positively charged cold cometary ions from mass 10 to 210 amu. In addition, a small 3 deg wide sector of the EESA looking in the ram direction was devoted to the detection of negatively charged cold cometary ions. Both detectors operated perfectly up to near closest approach (approx. 600 km) to Halley, but impacts of dust particles and neutral gas on the spacecraft contaminated parts of the data during the last few minutes. Although no flight hardware was fabricated in the U.S., The U.S. made very significant contributions to the hardware design, ground support equipment (GSE) design and fabrication, and flight and data reduction software required for the experiment, and also participated fully in the data reduction and analysis, and theoretical modeling and interpretation. Cometary data analysis is presented.

  18. Analysis of plasma measurements for the Geotail mission. Annual report, 1 October 1993-30 September 1994

    SciTech Connect

    Frank, L.A.

    1994-01-01

    Data processing and research efforts for the period October 1993 to September 1994 are reported. Routine data processing includes the production of color spectrograms and computing of quantitative plasma parameters such as the plasma number density, bulk flow velocity, temperature, and pressure. In addition, specialized analysis software is being developed for specific and general applications. Research activities include the measurement of plasmas from the Geotail spacecraft; the processing of the measurements from a hot plasma analyzer to compute one minute averages of plasma densities, temperatures, and velocities for a substantial part of the Geotail deep tail mission; and, a preliminary survey of the magnetotail for geocentric radial distances of 10 to 210 earth radii. The topology of the magnetotail with its various regions and boundaries is determined by a complex interaction with the fields and plasmas of the solar wind. Observations of the rotation of the magnetic field in the solar wind show that it is well correlated with repeated transitions at Geotail from the magnetotail lobe to a magnetosheath-like boundary layer.

  19. A synergy-based hand control is encoded in human motor cortical areas.

    PubMed

    Leo, Andrea; Handjaras, Giacomo; Bianchi, Matteo; Marino, Hamal; Gabiccini, Marco; Guidi, Andrea; Scilingo, Enzo Pasquale; Pietrini, Pietro; Bicchi, Antonio; Santello, Marco; Ricciardi, Emiliano

    2016-01-01

    How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional modules that may simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether and to what extent synergic hand postures are encoded as such at a cortical level remains unknown. Here, we combined kinematic, electromyography, and brain activity measures obtained by functional magnetic resonance imaging while subjects performed a variety of movements towards virtual objects. Hand postural information, encoded through kinematic synergies, were represented in cortical areas devoted to hand motor control and successfully discriminated individual grasping movements, significantly outperforming alternative somatotopic or muscle-based models. Importantly, hand postural synergies were predicted by neural activation patterns within primary motor cortex. These findings support a novel cortical organization for hand movement control and open potential applications for brain-computer interfaces and neuroprostheses. PMID:26880543

  20. Determination of land surface temperature and soil moisture from Tropical Rainfall Measuring Mission/Microwave Imager remote sensing data

    NASA Astrophysics Data System (ADS)

    Wen, Jun; Su, Zhongbo; Ma, Yaoming

    2003-01-01

    An analytical algorithm for the determination of land surface temperature and soil moisture from the Tropical Rainfall Measuring Mission/Microwave Imager (TRMM/TMI) remote sensing data has been developed in this study. The error analyses indicate that the uncertainties of the enrolled parameters will not cause serious errors in the proposed algorithm. By applying the proposed algorithm to TRMM/TMI remote sensing data collected during the Global Energy and Water Experiment (GEWEX) Asian Monsoon Experiment (GAME)/Tibet Intensive Observation Period field campaign in 1998 (IOP'98), the temporal and regional distributions of land surface temperature and volumetric soil moisture are evaluated over the central Tibetan plateau area. To validate the proposed method, the ground-measured surface temperature and volumetric soil moisture are compared to TRMM/TMI-derived land surface temperature and soil Fresnel reflectivity respectively. The results show that the estimated surface temperature is in good agreement with ground measurements; their difference and correlation coefficient are 0.52 ± 2.41 K and 0.80, respectively. A quasi-linear relationship exists between estimated Fresnel reflectivity and ground-measured volumetric soil moisture with a correlation coefficient 0.82. The land surface thermal status can also be clearly identified from the regional distribution of the estimated land surface temperature; the mountainous area and water bodies have a very lower surface temperature, while the river basin shows a higher surface temperature compared to the mountainous area. The southeastern part of the selected area has lower soil moisture, while the river basin exhibits high soil moisture. It is therefore concluded that the proposed algorithm is successful for the retrieval of land surface temperature and soil moisture using TRMM/TMI data over the study area.

  1. Early lunar rover mission studies

    NASA Technical Reports Server (NTRS)

    Gillespie, Vernon P.

    1993-01-01

    Results of lunar mission studies aimed at developing mission goals and high level requirements are reported. A mission concept to meet the mission requirements was developed and the design of mission hardware was to follow. Mission concepts not only included operations analysis and plans but also fabrication and test planning, quality control measures, and project organization. The design of mission concepts and hardware identified issues that are not easily resolved. Although none of the issues identified appear to be unresolvable, many will be difficult to resolve within Space Exploration Initiative constraints. These issues discussed which appear to have the potential for negative project impact are rover mobility, power, imaging, telemanagment, and remote control.

  2. Mars 2020 Science Rover: Science Goals and Mission Concept

    NASA Astrophysics Data System (ADS)

    Mustard, John F.; Beaty, D.; Bass, D.

    2013-10-01

    The Mars 2020 Science Definition Team (SDT), chartered in January 2013 by NASA, formulated a spacecraft mission concept for a science-focused, highly mobile rover to explore and investigate in detail a site on Mars that likely was once habitable. The mission, based on the Mars Science Laboratory landing and rover systems, would address, within a cost- and time-constrained framework, four objectives: (A) Explore an astrobiologically relevant ancient environment on Mars to decipher its geological processes and history, including the assessment of past habitability; (B) Assess the biosignature preservation potential within the selected geological environment and search for potential biosignatures; (C) Demonstrate significant technical progress towards the future return of scientifically selected, well-documented samples to Earth; and (D) provide an opportunity for contributed instruments from Human Exploration or Space Technology Programs. The SDT addressed the four mission objectives and six additional charter-specified tasks independently while specifically looking for synergy among them. Objectives A and B are each ends unto themselves, while Objective A is also the means by which samples are selected for objective B, and together they motivate and inform Objective C. The SDT also found that Objective D goals are well aligned with A through C. Critically, Objectives A, B, and C as an ensemble brought the SDT to the conclusion that exploration oriented toward both astrobiology and the preparation of a returnable cache of scientifically selected, well documented surface samples is the only acceptable mission concept. Importantly the SDT concluded that the measurements needed to attain these objectives were essentially identical, consisting of six types of field measurements: 1) context imaging 2) context mineralogy, 3) fine-scale imaging, 4) fine-scale mineralogy, 5) fine-scale elemental chemistry, and 6) organic matter detection. The mission concept fully addresses

  3. Polymicrobial synergy and dysbiosis in inflammatory disease

    PubMed Central

    Lamont, Richard J.; Hajishengallis, George

    2014-01-01

    Uncontrolled inflammation of the periodontal area may arise when complex microbial communities transition from a commensal to a pathogenic entity. Communication among constituent species leads to polymicrobial synergy among metabolically compatible organisms that acquire functional specialization within the developing community. Keystone pathogens, even at low abundance, elevate community virulence and the resulting dysbiotic community targets specific aspects of host immunity to further disable immune surveillance while promoting an overall inflammatory response. Inflammophilic organisms benefit from proteinaceous substrates derived from inflammatory tissue breakdown. Inflammation and dysbiosis reinforce each other and the escalating environmental changes further select for a pathobiotic community. We have synthesized the polymicrobial synergy and dysbiotic components of the process into a new model for inflammatory diseases. PMID:25498392

  4. Signature of biased range in the non-dynamical Chern-Simons modified gravity and its measurements with satellite-satellite tracking missions: theoretical studies

    NASA Astrophysics Data System (ADS)

    Qiang, Li-E.; Xu, Peng

    2015-08-01

    Having great accuracy in the range and range rate measurements, the GRACE mission and the planed GRACE follow on mission can in principle be employed to place strong constraints on certain relativistic gravitational theories. In this paper, we work out the range observable of the non-dynamical Chern-Simons modified gravity for the satellite-to-satellite tracking (SST) measurements. We find out that a characteristic time accumulating range signal appears in non-dynamical Chern-Simons gravity, which has no analogue found in the standard parity-preserving metric theories of gravity. The magnitude of this Chern-Simons range signal will reach a few times of cm for each free flight of these SST missions, here is the dimensionless post-Newtonian parameter of the non-dynamical Chern-Simons theory. Therefore, with the 12 years data of the GRACE mission, one expects that the mass scale of the non-dynamical Chern-Simons gravity could be constrained to be larger than eV. For the GRACE FO mission that scheduled to be launched in 2017, the much stronger bound that eV is expected.

  5. [The mission].

    PubMed

    Ruiz Moreno, J; Blanch Mon, A

    2000-01-01

    After having made a historical review of the concept of mission statement, of evaluating its importance (See Part I), of describing the bases to create a mission statement from a strategic perspective and of analyzing the advantages of this concept, probably more important as a business policy (See Parts I and II), the authors proceed to analyze the mission statement in health organizations. Due to the fact that a mission statement is lacking in the majority of health organizations, the strategy of health organizations are not exactly favored; as a consequence, neither are its competitive advantage nor the development of its essential competencies. After presenting a series of mission statements corresponding to Anglo-Saxon health organizations, the authors highlight two mission statements corresponding to our social context. The article finishes by suggesting an adequate sequence for developing a mission statement in those health organizations having a strategic sense. PMID:10983153

  6. JPL Mission Bibliometrics

    NASA Technical Reports Server (NTRS)

    Coppin, Ann

    2013-01-01

    For a number of years ongoing bibliographies of various JPL missions (AIRS, ASTER, Cassini, GRACE, Earth Science, Mars Exploration Rovers (Spirit & Opportunity)) have been compiled by the JPL Library. Mission specific bibliographies are compiled by the Library and sent to mission scientists and managers in the form of regular (usually quarterly) updates. Charts showing publications by years are periodically provided to the ASTER, Cassini, and GRACE missions for supporting Senior Review/ongoing funding requests, and upon other occasions as a measure of the impact of the missions. Basically the Web of Science, Compendex, sometimes Inspec, GeoRef and Aerospace databases are searched for the mission name in the title, abstract, and assigned keywords. All get coded for journal publications that are refereed publications.

  7. Developing a synergy algorithm for land surface temperature: the SEN4LST project

    NASA Astrophysics Data System (ADS)

    Sobrino, Jose A.; Jimenez, Juan C.; Ghent, Darren J.

    2013-04-01

    Land surface Temperature (LST) is one of the key parameters in the physics of land-surface processes on regional and global scales, combining the results of all surface-atmosphere interactions and energy fluxes between the surface and the atmosphere. An adequate characterization of LST distribution and its temporal evolution requires measurements with detailed spatial and temporal frequencies. With the advent of the Sentinel 2 (S2) and 3 (S3) series of satellites a unique opportunity exists to go beyond the current state of the art of single instrument algorithms. The Synergistic Use of The Sentinel Missions For Estimating And Monitoring Land Surface Temperature (SEN4LST) project aims at developing techniques to fully utilize synergy between S2 and S3 instruments in order to improve LST retrievals. In the framework of the SEN4LST project, three LST retrieval algorithms were proposed using the thermal infrared bands of the Sea and Land Surface Temperature Retrieval (SLSTR) instrument on board the S3 platform: split-window (SW), dual-angle (DA) and a combined algorithm using both split-window and dual-angle techniques (SW-DA). One of the objectives of the project is to select the best algorithm to generate LST products from the synergy between S2/S3 instruments. In this sense, validation is a critical step in the selection process for the best performing candidate algorithm. A unique match-up database constructed at University of Leicester (UoL) of in situ observations from over twenty ground stations and corresponding brightness temperature (BT) and LST match-ups from multi-sensor overpasses is utilised for validating the candidate algorithms. Furthermore, their performance is also evaluated against the standard ESA LST product and the enhanced offline UoL LST product. In addition, a simulation dataset is constructed using 17 synthetic images of LST and the radiative transfer model MODTRAN carried under 66 different atmospheric conditions. Each candidate LST

  8. Airborne Measurements of NO, NO2, and NO(y) as Related to NASA's Pacific Exploratory Mission

    NASA Technical Reports Server (NTRS)

    Sandholm, Scott

    1997-01-01

    The Tropospheric Trace Gas and Airborne Measurements Group's (TTGAMG) efforts on NASA GTE (Global Tropospheric Experiment) PEM (Pacific Exploratory Mission) West A & B field campaign primarily involved the acquisition of NO, NO2 and NO(y) measurements, as well as the subsequent analysis and interpretation of the data base obtained during the PEM West field campaign. These investigations focused on the distribution of trace gases, sources and sinks of ozone, ozone producing precursors with a heavy emphasize on ozone's photochemical state, and the partitioning of the molecules within the NO(y) family over the north western Pacific Ocean. The two components of PEM West were focused on observing air masses as they reached the Asian Continent (PEM West A) or as the air mass departed the Asian Continent (PEM West B). NO(x) concentrations play a pivotal role in controlling the photochemical lifetime of ozone in these environments, and understanding the NO(x) species partitioning is paramount. The transport of NO(x) into the regions, in the form of longer lived NO(y) family members, was examined in relation to the comparison of natural occurring sources of NO(x) (i.e., lightning and stratosphere/troposphere exchange) to those produced as a result of anthropogenic activity (i.e., biomass burning and aircraft emissions). The TTGAMG's measurements of NOx and NO(y), in conjunction with other investigators' measurements of PAN (H. B. Singh's group) and HNO3 (R. W. Talbot's group), have been used to assess the total reactive odd nitrogen levels over the study regions, the partitioning of the reactive odd nitrogen species in their various forms, and the usefulness of the NO, measurement and its measurement technique. The TTGAMG's primary PEM West objectives were the characterization of the factors controlling the distribution and fate of reactive odd nitrogen compounds over the western Pacific Ocean and an analysis of the concentration of various trace gases in the troposphere as

  9. Synergy in protein-osmolyte mixtures.

    PubMed

    Rösgen, Jörg

    2015-01-01

    Virtually all taxa use osmolytes to protect cells against biochemical stress. Osmolytes often occur in mixtures, such as the classical combination of urea with TMAO (trimethylamine N-oxide) in cartilaginous fish or the cocktail of at least six different osmolytes in the kidney. The concentration patterns of osmolyte mixtures found in vivo make it likely that synergy between them plays an important role. Using statistical mechanical n-component Kirkwood-Buff theory, we show from first principles that synergy in protein-osmolyte systems can arise from two separable sources: (1) mutual alteration of protein surface solvation and (2) effects mediated through bulk osmolyte chemical activities. We illustrate both effects in a four-component system with the experimental example of the unfolding of a notch ankyrin domain in urea-TMAO mixtures, which make urea a less effective denaturant and TMAO a more effective stabilizer. Protein surface effects are primarily responsible for this synergy. The specific patterns of surface solvation point to denatured state expansion as the main factor, as opposed to direct competition. PMID:25490052

  10. The "Synergies" Research-Practice Partnership Project: A "2020 Vision" Case Study

    ERIC Educational Resources Information Center

    Falk, John H.; Dierking, Lynn D.; Staus, Nancy L.; Wyld, Jennifer N.; Bailey, Deborah L.; Penuel, William R.

    2016-01-01

    This paper, describes "Synergies," an on-going longitudinal study and design effort, being conducted in a diverse, under-resourced community in Portland, Oregon, with the goal of measurably improving STEM learning, interest and participation by early adolescents, both in school and out of school. Authors examine how the work of this…

  11. Estimating continental hydrology parameters from existing space missions: the need for a dedicated surface water mission

    NASA Astrophysics Data System (ADS)

    Mognard, N. M.; Cazenave, A.; Alsdorf, D. E.; Rodriguez, E.

    2006-12-01

    Different instruments on board Earth observing satellite missions that were designed either for ocean missions or land surface classification have been used to retrieve continental surface hydrology parameters. Conventional altimeter profilers that have been designed for measuring the ocean surface topography provide limited use for surface hydrology. Analysis of conventional altimeter time series over lakes and rivers clearly indicates superimposed seasonal and interannual variabilities while the synergy of altimeter water height estimate with the water extent provided by radiometers is a means of estimating water volume variations. The synergy with the GRACE gravimetry mission, which estimates the variations of the integrated water mass, can provide estimates of the underground water mass variability. However, profiling altimetric methods of measuring water surface elevations and their changes are incapable of capturing the inherent dynamics of all continental surface waters. For example, using a profiling altimeter and a 16-day orbital repeat cycle, like that of Terra, misses about 30 percent of the rivers and 70 percent of the lakes in the global data bases. An international team is proposing the Water Elevation Recovery mission (WatER), a high-resolution, image- based approach with two-dimensional acquisitions of water surface elevations h, dh/dt, and dh/dx required to answer important hydrologic questions. A key technology of the WatER mission is a Ka-band Radar INterferometer (KaRIN) which is a near-nadir viewing, 120 km wideswath based instrument that uses interferometric SAR processing of the returned pulses to yield single-look 5m azimuth and 10m to 70m range resolution, with an elevation accuracy of approximately 50 cm. Polynomial based averaging of heights along the water body increases the height accuracy to about 3 cm. The entire globe is covered twice every 16 days and orbit subcycles allow the average visit to be about half this time at low to mid

  12. Power Systems for Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.

    1998-01-01

    Power system options were reviewed for their appropriateness to meet mission requirements and guidelines. Contending system technologies include: solar, nuclear, isotopic, electro-chemical and chemical. Mission elements can basically be placed into two categories; in-space transportation systems, both cargo and piloted; and surface systems, both stationary and mobile. All transportation and surface element power system requirements were assessed for application synergies that would suggest common hardware (duplicates of the same or similar design) or multi-use (reuse system in a different application/location), wherever prudent.

  13. The Relationship between Student Engagement and the Development of Character in Mission Driven Faith-Based Colleges and Universities as Measured by the National Survey of Student Engagement

    ERIC Educational Resources Information Center

    Turi, David M.

    2012-01-01

    For many institutions devoted to their mission, especially those that state as their goal the promotion of character development, the need for measurement tools becomes a priority. These tools can by used not only to assess the stated outcomes, but also to guide institutional policies, practices, and improvements. The purpose of this study is to…

  14. Discovering Pair-wise Synergies in Microarray Data

    PubMed Central

    Chen, Yuan; Cao, Dan; Gao, Jun; Yuan, Zheming

    2016-01-01

    Informative gene selection can have important implications for the improvement of cancer diagnosis and the identification of new drug targets. Individual-gene-ranking methods ignore interactions between genes. Furthermore, popular pair-wise gene evaluation methods, e.g. TSP and TSG, are helpless for discovering pair-wise interactions. Several efforts to discover pair-wise synergy have been made based on the information approach, such as EMBP and FeatKNN. However, the methods which are employed to estimate mutual information, e.g. binarization, histogram-based and KNN estimators, depend on known data or domain characteristics. Recently, Reshef et al. proposed a novel maximal information coefficient (MIC) measure to capture a wide range of associations between two variables that has the property of generality. An extension from MIC(X; Y) to MIC(X1; X2; Y) is therefore desired. We developed an approximation algorithm for estimating MIC(X1; X2; Y) where Y is a discrete variable. MIC(X1; X2; Y) is employed to detect pair-wise synergy in simulation and cancer microarray data. The results indicate that MIC(X1; X2; Y) also has the property of generality. It can discover synergic genes that are undetectable by reference feature selection methods such as MIC(X; Y) and TSG. Synergic genes can distinguish different phenotypes. Finally, the biological relevance of these synergic genes is validated with GO annotation and OUgene database. PMID:27470995

  15. Discovering Pair-wise Synergies in Microarray Data.

    PubMed

    Chen, Yuan; Cao, Dan; Gao, Jun; Yuan, Zheming

    2016-01-01

    Informative gene selection can have important implications for the improvement of cancer diagnosis and the identification of new drug targets. Individual-gene-ranking methods ignore interactions between genes. Furthermore, popular pair-wise gene evaluation methods, e.g. TSP and TSG, are helpless for discovering pair-wise interactions. Several efforts to discover pair-wise synergy have been made based on the information approach, such as EMBP and FeatKNN. However, the methods which are employed to estimate mutual information, e.g. binarization, histogram-based and KNN estimators, depend on known data or domain characteristics. Recently, Reshef et al. proposed a novel maximal information coefficient (MIC) measure to capture a wide range of associations between two variables that has the property of generality. An extension from MIC(X; Y) to MIC(X1; X2; Y) is therefore desired. We developed an approximation algorithm for estimating MIC(X1; X2; Y) where Y is a discrete variable. MIC(X1; X2; Y) is employed to detect pair-wise synergy in simulation and cancer microarray data. The results indicate that MIC(X1; X2; Y) also has the property of generality. It can discover synergic genes that are undetectable by reference feature selection methods such as MIC(X; Y) and TSG. Synergic genes can distinguish different phenotypes. Finally, the biological relevance of these synergic genes is validated with GO annotation and OUgene database. PMID:27470995

  16. Muscle synergies may improve optimization prediction of knee contact forces during walking.

    PubMed

    Walter, Jonathan P; Kinney, Allison L; Banks, Scott A; D'Lima, Darryl D; Besier, Thor F; Lloyd, David G; Fregly, Benjamin J

    2014-02-01

    The ability to predict patient-specific joint contact and muscle forces accurately could improve the treatment of walking-related disorders. Muscle synergy analysis, which decomposes a large number of muscle electromyographic (EMG) signals into a small number of synergy control signals, could reduce the dimensionality and thus redundancy of the muscle and contact force prediction process. This study investigated whether use of subject-specific synergy controls can improve optimization prediction of knee contact forces during walking. To generate the predictions, we performed mixed dynamic muscle force optimizations (i.e., inverse skeletal dynamics with forward muscle activation and contraction dynamics) using data collected from a subject implanted with a force-measuring knee replacement. Twelve optimization problems (three cases with four subcases each) that minimized the sum of squares of muscle excitations were formulated to investigate how synergy controls affect knee contact force predictions. The three cases were: (1) Calibrate+Match where muscle model parameter values were calibrated and experimental knee contact forces were simultaneously matched, (2) Precalibrate+Predict where experimental knee contact forces were predicted using precalibrated muscle model parameters values from the first case, and (3) Calibrate+Predict where muscle model parameter values were calibrated and experimental knee contact forces were simultaneously predicted, all while matching inverse dynamic loads at the hip, knee, and ankle. The four subcases used either 44 independent controls or five synergy controls with and without EMG shape tracking. For the Calibrate+Match case, all four subcases closely reproduced the measured medial and lateral knee contact forces (R2 ≥ 0.94, root-mean-square (RMS) error < 66 N), indicating sufficient model fidelity for contact force prediction. For the Precalibrate+Predict and Calibrate+Predict cases, synergy controls yielded better contact force

  17. Implementation Options For the Solar System Exploration Survey's "Jupiter Polar Orbiter with Probes" Mission

    NASA Astrophysics Data System (ADS)

    Spilker, T. R.

    2002-09-01

    In July of this year the National Academy of Science released a draft of its report, "New Frontiers in the Solar System: An Integrated Exploration Strategy," briefly describing the current state of solar system planetary science and the most important science objectives for the next decade (2003-2013). It includes a prioritized list of five mission concepts that might be flown as part of NASA's fledgling New Frontiers Program; each "concept" is more a list of science or measurement objectives than a full mission concept, since it does not specify implementation details in most cases. Number three on that list is the "Jupiter Polar Orbiter with Probes" ("JPOP") mission. This mission concept combines the strengths of previously described or proposed Jupiter missions into a single mission, and gains from the synergies of some of the newly-combined investigations. The primary science objectives are: 1. Determine if Jupiter has a central core 2. Determine the deep abundance of water (and other volatiles) 3. Measure Jupiter's deep winds 4. Determine the structure of Jupiter's dynamo magnetic field 5. Sample in situ Jupiter's polar magnetosphere This paper examines some of the implementation options for a JPOP mission, and gives relative advantages and disadvantages. Given the New Frontier Program's maximum cost to NASA of \\650M, plus an approx. \\120M cap on international contributions, implementing the full range of JPOP science objectives in a single New Frontiers mission may be challenging. This work was performed at the Jet Propulsion Laboratory / California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  18. NASA Earth Remote Sensing Programs: An Overview with Special Emphasis on the NASA/JAXA Led Global Precipitation Measurement Mission

    NASA Technical Reports Server (NTRS)

    Stocker, Erich Franz

    2009-01-01

    This slide presentation gives an overview of NASA's operations monitoring the earth from space. It includes information on NASA's administrative divisions and key operating earth science missions with specific information on the Landsat satellites, Seastar spacecraft, and the TRMM satellite.

  19. Toward synergy-based brain-machine interfaces.

    PubMed

    Vinjamuri, Ramana; Weber, Douglas J; Mao, Zhi-Hong; Collinger, Jennifer L; Degenhart, Alan D; Kelly, John W; Boninger, Michael L; Tyler-Kabara, Elizabeth C; Wang, Wei

    2011-09-01

    This paper demonstrates a synergy-based brain-machine interface that uses low-dimensional command signals to control a high dimensional virtual hand. First, temporal postural synergies were extracted from the angular velocities of finger joints of five healthy subjects when they performed hand movements that were similar to activities of daily living. Two synergies inspired from the extracted synergies, namely, two-finger pinch and whole-hand grasp, were used in real-time brain control, where a virtual hand with 10 degrees of freedom was controlled to grasp or pinch virtual objects. These two synergies were controlled by electrocorticographic (ECoG) signals recorded from two electrodes of an electrode array that spanned motor and speech areas of an individual with intractable epilepsy, thus demonstrating closed loop control of a synergy-based brain-machine interface. PMID:21708506

  20. Cassini Mission

    SciTech Connect

    Mitchell, Robert

    2005-08-10

    The Cassini/Huygens mission is a joint NASA/European Space Agency/Italian Space Agency project which has a spacecraft currently in orbit about Saturn, and has successfully sent an atmospheric probe through the atmosphere of Saturn's largest moon Titan and down to its previously hidden surface. This presentation will describe the overall mission, how it got a rather massive spacecraft to Saturn, and will cover some of the scientific results of the mission to date.

  1. Ground-Support Algorithms for Simulation, Processing, and Calibration of Barnes Static Earth Sensor Measurements: Applications to Tropical Rainfall Measuring Mission Observatory

    NASA Technical Reports Server (NTRS)

    Natanson, G. A.

    1997-01-01

    New algorithms are described covering the simulation, processing, and calibration of penetration angles of the Barnes static Earth sensor assembly (SESA) as implemented in the Goddard Space Flight Center Flight Dynamics Division ground support system for the Tropical Rainfall Measuring Mission (TRMM) Observatory. The new treatment involves a detailed analysis of the measurements by individual quadrants. It is shown that, to a good approximation, individual quadrant misalignments can be treated simply as penetration angle biases. Simple formulas suitable for real-time applications are introduced for computing quadrant-dependent effects. The simulator generates penetration angles by solving a quadratic equation with coefficients uniquely determined by the spacecraft's position and the quadrant's orientation in GeoCentric Inertial (GCI) coordinates. Measurement processing for attitude determination is based on linearized equations obtained by expanding the coefficients of the aforementioned quadratic equation as a Taylor series in both the Earth oblateness coefficient (alpha approx. 1/150) and the angle between the pointing axis and the geodetic nadir vector. A simple formula relating a measured value of the penetration angle to the deviation of the Earth-pointed axis from the geodetic nadir vector is derived. It is shown that even near the very edge of the quadrant's Field Of View (FOV), attitude errors resulting from quadratic effects are a few hundredths of a degree, which is small compared to the attitude determination accuracy requirement (0.18 degree, 3 sigma) of TRMM. Calibration of SESA measurements is complicated by a first-order filtering used in the TRMM onboard algorithm to compute penetration angles from raw voltages. A simple calibration scheme is introduced where these complications are avoided by treating penetration angles as the primary raw measurements, which are adjusted using biases and scale factors. In addition to three misalignment parameters

  2. Marine parameters from synergy of optical and radar satellite data

    NASA Astrophysics Data System (ADS)

    Lehner, S.; Hoja, D.; Schulz-Stellenfleth, J.

    In 2001 the European Space Agency ESA will launch the earth observation satellite ENVISAT. It will carry several instruments that provide new opportunities to measure oceanographic variables. Together, they represent the main measurement techniques of satellite oceanography, and complement each other in an ideal manner. These instruments are to be used in synergy to: Improve the analysis of measured wind and ocean wave fields, and thereby improve weather forecasting at weather centers; Determine the extent and variables of sea ice and develop a five-day sea ice prediction model, to support maritime shipping and offshore activities; Monitor and map sediment and suspended matter transport in coastal regions, especially in areas with large river estuaries, which greatly affects shipping lanes, harbors, and dredging activities; Monitor hydrobiological and bio-geochemical variables related to water quality in coastal regions and large inland waters, which affects ecology, coastal development, aquaculture, drinking water supplies, and tourism. To prepare the oceanographic community to make best use of the ENVISAT sensors in the pre-launch phase, existing algorithms to derive marine parameters are used and validated using data from the ERS SAR, the ERS RA, SeaWiFS and IRS MOS sensors now in operation. Derived products are used to address problems that can best be tackled using the synergy of radar and optical data, such as the effect of surface slicks on radar wind measurements, of sea state on ocean color, of wind and waves on the resuspension of suspended matter, and of wind and waves on sea ice variables.

  3. Earth System Mass Transport Mission (e.motion): A Concept for Future Earth Gravity Field Measurements from Space

    NASA Astrophysics Data System (ADS)

    Panet, I.; Flury, J.; Biancale, R.; Gruber, T.; Johannessen, J.; van den Broeke, M. R.; van Dam, T.; Gegout, P.; Hughes, C. W.; Ramillien, G.; Sasgen, I.; Seoane, L.; Thomas, M.

    2013-03-01

    In the last decade, satellite gravimetry has been revealed as a pioneering technique for mapping mass redistributions within the Earth system. This fact has allowed us to have an improved understanding of the dynamic processes that take place within and between the Earth's various constituents. Results from the Gravity Recovery And Climate Experiment (GRACE) mission have revolutionized Earth system research and have established the necessity for future satellite gravity missions. In 2010, a comprehensive team of European and Canadian scientists and industrial partners proposed the e.motion (Earth system mass transport mission) concept to the European Space Agency. The proposal is based on two tandem satellites in a pendulum orbit configuration at an altitude of about 370 km, carrying a laser interferometer inter-satellite ranging instrument and improved accelerometers. In this paper, we review and discuss a wide range of mass signals related to the global water cycle and to solid Earth deformations that were outlined in the e.motion proposal. The technological and mission challenges that need to be addressed in order to detect these signals are emphasized within the context of the scientific return. This analysis presents a broad perspective on the value and need for future satellite gravimetry missions.

  4. The EOS Aura Mission

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Douglass, A. R.; Hilsenrath, E.; Luce, M.; Barnett, J.; Beer, R.; Waters, J.; Gille, J.; Levelt, P. F.; DeCola, P.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The EOS Aura Mission is designed to make comprehensive chemical measurements of the troposphere and stratosphere. In addition the mission will make measurements of important climate variables such as aerosols, and upper tropospheric water vapor and ozone. Aura will launch in late 2003 and will fly 15 minutes behind EOS Aqua in a polar sun synchronous ascending node orbit with a 1:30 pm equator crossing time.

  5. PERCIVAL mission to Mars

    NASA Technical Reports Server (NTRS)

    Reed, David W.; Lilley, Stewart; Sirman, Melinda; Bolton, Paul; Elliott, Susan; Hamilton, Doug; Nickelson, James; Shelton, Artemus

    1992-01-01

    With the downturn of the world economy, the priority of unmanned exploration of the solar system has been lowered. Instead of foregoing all missions to our neighbors in the solar system, a new philosophy of exploration mission design has evolved to insure the continued exploration of the solar system. The 'Discovery-class' design philosophy uses a low cost, limited mission, available technology spacecraft instead of the previous 'Voyager-class' design philosophy that uses a 'do-everything at any cost' spacecraft. The Percival Mission to Mars was proposed by Ares Industries as one of the new 'Discovery-class' of exploration missions. The spacecraft will be christened Percival in honor of American astronomer Percival Lowell who proposed the existence of life on Mars in the early twentieth century. The main purpose of the Percival mission to Mars is to collect and relay scientific data to Earth suitable for designing future manned and unmanned missions to Mars. The measurements and observations made by Percival will help future mission designers to choose among landing sites based on the feasibility and scientific interest of the sites. The primary measurements conducted by the Percival mission include gravity field determination, surface and atmospheric composition, sub-surface soil composition, sub-surface seismic activity, surface weather patterns, and surface imaging. These measurements will be taken from the orbiting Percival spacecraft and from surface penetrators deployed from Mars orbit. The design work for the Percival Mission to Mars was divided among four technical areas: Orbits and Propulsion System, Surface Penetrators, Gravity and Science Instruments, and Spacecraft Structure and Systems. The results for each of the technical areas is summarized and followed by a design cost analysis and recommendations for future analyses.

  6. IMP mission

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The program requirements and operations requirements for the IMP mission are presented. The satellite configuration is described and the missions are analyzed. The support equipment, logistics, range facilities, and responsibilities of the launching organizations are defined. The systems for telemetry, communications, satellite tracking, and satellite control are identified.

  7. Water Vapor in the Tropical Upper Troposphere and Lower Stratosphere over Costa Rica: Insights from In Situ Measurements from the TC4 and CWVCS Summertime Missions

    NASA Astrophysics Data System (ADS)

    Smith, J. B.; Weinstock, E. M.; Moyer, E. J.; Pittman, J. V.; Hanisco, T. F.; Sayres, D. S.; St. Clair, J. M.; O'Brien, A.; Anderson, J. G.

    2007-12-01

    In situ measurements of water vapor and its isotopologues from the suite of Harvard University instruments, in combination with simultaneous measurements of other tracers and meteorological parameters acquired aboard the WB-57 aircraft during two summertime missions out of San Jose, Costa Rica, are used to investigate the processes controlling water vapor in the tropical upper troposphere and lower stratosphere. Measurements from both the Clouds and Water Vapor in the Climate System (CWVCS) mission during August 2001, and the recent Tropical Composition Cloud and Climate Coupling (TC4) mission during August 2007, provide an excellent combined data set for investigating the causes of observed short-term (i.e. flight-to-flight) variability in water vapor concentrations in the UT/LS, and differences between the data sets provide a means of assessing inter-annual variability in this region. Both data sets show evidence of extreme short-term variability in UT water vapor, with the near-tropopause concentrations in both missions differing by more than 10 ppmv from flight to flight. Very low near-tropopause mixing ratios are coincident with the cooling of the upper tropical troposphere and tropopause. However, whether this is evidence of local in situ dehydration or part of a mesoscale change in the temperature and humidity structure of the tropical UT remains to be determined. Additionally, does this variability propagate into the lower tropical stratosphere? The data from both missions show no evidence of the dehydrated air masses impacting lower stratosphere humidity, however, the data do show evidence of the convective injection of water vapor and/or ice directly into the tropical lower stratosphere. Back-trajectory analyses, as well as MLS tracer contour maps, will be used to pinpoint the location, again whether local or remote, of these large-convective events. In general, the combined data set provides a rich set of examples of different processes that affect water

  8. Low Latitude Ionosphere Measurements by the Global-scale Observations of the Limb and Disk (GOLD) Mission

    NASA Astrophysics Data System (ADS)

    Eastes, R. W.; Anderson, D. N.; McClintock, W. E.; Aksnes, A.; Andersson, L.; Burns, A. G.; Budzien, S. A.; Codrescu, M. V.; Daniell, R. E.; Dymond, K. F.; England, S. L.; Eparvier, F. J.; Harvey, J. E.; Immel, T. J.; Krywonos, A.; Lankton, M. R.; Lumpe, J. D.; Richmond, A. D.; Rusch, D. W.; Siegmund, O. H.; Solomon, S. C.; Strickland, D. J.; Woods, T. N.

    2008-12-01

    The GOLD Mission of Opportunity will provide answers to key elements of an overarching question for Heliophysics science: what is the global-scale response of the thermosphere and ionosphere to forcing in the integrated Sun-Earth system? GOLD will perform remote-sensing measurements of the Earth's thermosphere and ionosphere, using an ultraviolet imager on board a commercial, geosynchronous satellite. The resulting measurements of the electron densities in the nighttime ionosphere as well as the neutral composition and temperature in the thermosphere, when combined with current modeling capabilities, will advance our understanding of Thermosphere-Ionosphere (T-I) forcing. GOLD will provide the first global- scale "snapshot" of temperature that can be compared with the coincident "snapshot" of composition changes to understand how these two major parameters simultaneously react to the various forcing mechanisms. GOLD will continue observing the same longitudes from the daytime into the night allowing the relationship between presunset conditions in the T-I system and the longitudinal dependence of variations in the ionosphere to be separated. One question that GOLD will address is: do vertical ion drifts, as manifested in the structure of the equatorial anomaly, affect the occurrence of ionospheric irregularities? Solar and geomagnetic forcing produces variations in the structure of the equatorial ionosphere at night (equatorial anomaly) and the occurrence of irregularities within the ionosphere. These ionospheric density variations, with scale sizes ranging from hundreds to tens of km, have profound effects on systems using radio frequencies. Irregularities at low latitudes are produced in the post-sunset ionosphere by the Rayleigh-Taylor (R-T) instability. The growth of these R-T instabilities into large-scale plasma bubbles has an optical signature and is the greatest source of ionospheric irregularities at low latitudes. Simulations of GOLD observations indicate

  9. Broadband permittivity measurements on porous planetary regoliths simulants, in relation with the Rosetta mission to 67P/C-G

    NASA Astrophysics Data System (ADS)

    Brouet, Yann; Levasseur-Regourd, Anny-Chantal; Encrenaz, Pierre; Sabouroux, Pierre; Heggy, Essam; Kofman, Wlodek; Thomas, Nick

    2015-04-01

    The Rosetta mission has successfully rendezvous comet 67P/Churyumov-Gerasimenko (hereafter 67P) last year and landed Philae module on its nucleus on 12 November it 2014. Among instruments onboard Rosetta, MIRO [1], composed of two radiometers, with receivers at 190 GHz and 563 GHz (center-band), is dedicated to the measurements of the subsurface and surface brightness temperatures. These values depend on the complex relative permittivity (hereafter permittivity) with ɛ' and ɛ'' the real and imaginary parts. The permittivity of the material depends on frequency, bulk density/porosity, composition and temperature [2]. Considering the very low bulk density of 67P nucleus (about 450 kg.m-3 [3]) and the suspected presence of a dust mantle in many areas of the nucleus [4], investigations on the permittivity of porous granular samples are needed to support the interpretation of MIRO data, as well as of other microwave experiments onboard Rosetta, e.g. CONSERT [5], a bistatic penetrating radar working at 90 MHz. We have developed a programme of permittivity measurements on porous granular samples over a frequency range from 50 MHz to 190 GHz under laboratory conditions (e.g. [6] and [7]). We present new results obtained on JSC-1A lunar soil simulant and ashes from Etna. The samples were split into several sub-samples with different size ranges covering a few to 500 μm. Bulk densities of the sub-samples were carefully measured and found to be in the 800-1400 kg.m-3 range. Sub-samples were also dried and volumetric moisture content was found to be below 0.6%. From 50 MHz to 6 GHz and at 190 GHz, the permittivity has been determined, respectively with a coaxial cell and with a quasi-optical bench mounted in transmission, both connected to a vector network analyzer. The results demonstrate the dispersive behaviours of ɛ' between 50 MHz and 190 GHz. Values of ɛ' remain within the 3.9-2.6 range for all sub-samples. At CONSERT frequency, ɛ'' is within the 0.01-0.09 range

  10. An interstellar precursor mission

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Ivie, C.; Lewis, J. C.; Lipes, R.; Norton, H. N.; Stearns, J. W.; Stimpson, L. D.; Weissman, P.

    1980-01-01

    A mission out of the planetary system, launched about the year 2000, could provide valuable scientific data as well as test some of the technology for a later mission to another star. Primary scientific objectives for the precursor mission concern characteristics of the heliopause, the interstellar medium, stellar distances (by parallax measurements), low-energy cosmic rays, interplanetary gas distribution, and the mass of the solar system. Secondary objectives include investigation of Pluto. The mission should extend to 400-1000 AU from the sun. A heliocentric hyperbolic escape velocity of 50-100 km/sec or more is needed to attain this distance within a reasonable mission duration (20-50 years). The trajectory should be toward the incoming interstellar gas. For a year 2000 launch, a Pluto encounter and orbiter can be included. A second mission targeted parallel to the solar axis would also be worthwhile. The mission duration is 20 years, with an extended mission to a total of 50 years. A system using one or two stages of nuclear electric propulsion (NEP) was selected as a possible baseline. The most promising alternatives are ultralight solar sails or laser sailing, with the lasers in earth orbit, for example. The NEP baseline design allows the option of carrying a Pluto orbiter as a daughter spacecraft.

  11. Development and evaluation of a questionnaire to measure the perceived implementation of the mission statement of a competency based curriculum

    PubMed Central

    2012-01-01

    Background A mission statement (MS) sets out the long-term goals of an institution and is supposed to be suited for studying learning environments. Yet, hardly any study has tested this issue so far. The aim of the present study was the development and psychometric evaluation of an MS-Questionnaire (MSQ) focusing on explicit competencies. We investigated to what extent the MSQ captures the construct of learning environment and how well a faculty is following - in its perception - a competency orientation in a competency-based curriculum. Methods A questionnaire was derived from the MS “teaching” (Medical Faculty, Heinrich-Heine University Düsseldorf) which was based on (inter-) nationally accepted goals and recommendations for a competency based medical education. The MSQ was administered together with the Dundee Ready Education Environment Measure (DREEM) to 1119 students and 258 teachers. Cronbach’s alpha was used to analyze the internal consistency of the items. Explorative factor analyses were performed to analyze homogeneity of the items within subscales and factorial validity of the MSQ. Item discrimination was assessed by means of part-whole corrected discrimination indices, and convergent validity was analyzed with respect to DREEM. Demographic variations of the respondents were used to analyze the inter-group variations in their responses. Results Students and teachers perceived the MS implementation as “moderate” and on average, students differed significantly in their perception of the MS. They thought implementation of the MS was less successful than faculty did. Women had a more positive perception of educational climate than their male colleagues and clinical students perceived the implementation of the MS on all dimensions significantly worse than preclinical students. The psychometric properties of the MSQ were very satisfactory: Item discrimination was high. Similarly to DREEM, the MSQ was highly reliable among students (α = 0.92) and

  12. Anomalies and synergy in the caloric effects of magnetoelectrics

    NASA Astrophysics Data System (ADS)

    Anand, Shashwat; Waghmare, Umesh V.

    2014-12-01

    We determine isothermal entropy changes (Δ S) associated with electrocaloric, magnetocaloric, and the corresponding multicaloric effects in a model type-I multiferroic system using Landau-Devonshire thermodynamic analysis. We show that (a) the magnetocaloric effect exhibits an unexpected anomaly at the ferroelectric transition occurring at a high temperature, even in the absence of magnetic ordering, and (b) the synergy between electro- and magnetocaloric effects leads to a significantly enhanced multicaloric effect (\\mid Δ {{S}MultiCE}\\mid \\gt \\mid Δ {{S}ECE}\\mid +\\mid Δ {{S}MCE}\\mid ) over a wide temperature range when the difference in temperatures of magnetic and ferroelectric ordering (\\mid Δ {{T}C}\\mid =\\mid TCE-TCM\\mid ) is small. This result originate from the coupled thermal fluctuations of magnetic and electric order parameters. While the former is useful in detecting multiferroic materials from the measurements covering higher temperature transition alone, the latter augurs well for caloric applications of multiferroics.

  13. Summary Report of Mission Acceleration Measurements for MSL-1: STS-83, Launched April 14, 1997; STS-94, Launched July 1, 1997

    NASA Technical Reports Server (NTRS)

    Moskowitz, Milton E.; Hrovat, Kenneth; Tschen, Peter; McPherson, Kevin; Nati, Maurizio; Reckart, Timothy A.

    1998-01-01

    The microgravity environment of the Space Shuttle Columbia was measured during the STS-83 and STS-94 flights of the Microgravity Science Laboratory (MSL-1) mission using four different accelerometer systems: the Orbital Acceleration Research Experiment (OARE), the Space Acceleration Measurement System (SAMS), the Microgravity Measurement Assembly (MMA), and the Quasi-Steady Acceleration Measurement (QSAM) system. All four accelerometer systems provided investigators with acceleration measurements downlinked in near-real-time. Data from each system was recorded for post-mission analysis. The OARE measured the Shuttle's acceleration with high resolution in the quasi-steady frequency regime below about 0.1 Hz. The SAMS provided investigators with higher frequency acceleration measurements up to 25 Hz. The QSAM and MMA systems provided investigators with quasi-steady and higher frequency (up to 100 Hz) acceleration measurements, respectively. The microgravity environment related to various Orbiter maneuvers, crew activities, and experiment operations as measured by the OARE and MMA is presented and interpreted in section 8 of this report.

  14. Using organizational mission, vision, and values to guide professional practice model development and measurement of nurse performance.

    PubMed

    Ingersoll, Gail L; Witzel, Patricia A; Smith, Toni C

    2005-02-01

    An organization's mission, vision, and values statements are the guiding forces behind the institution's administrative strategic planning and performance assessment activities. Linking nursing professional practice model components and performance evaluation criteria with each of these foundational documents assures that their values, beliefs, and intentions are evident in daily work life. PMID:15714101

  15. Modulation of Chemokine Responses: Synergy and Cooperativity

    PubMed Central

    Proudfoot, Amanda E. I.; Uguccioni, Mariagrazia

    2016-01-01

    Chemokine biology is mediated by more complex interactions than simple monomolecular ligand–receptor interactions, as chemokines can form higher order quaternary structures, which can also be formed after binding to glycosaminoglycans (GAGs) on endothelial cells, and their receptors are found as dimers and/or oligomers at the cell surface. Due to the complexity of the chemokine binding and signaling system, several mechanisms have been proposed to provide an explanation for the synergy observed between chemokines in leukocyte migration. Pioneering studies on interactions between different chemokines have revealed that they can act as antagonists, or synergize with other chemokines. The synergism can occur at different levels, involving either two chemokine receptors triggered simultaneously or sequentially exposed to their agonists, or the activation of one type of chemokine receptor triggered by chemokine heterocomplexes. In addition to the several chemokines that, by forming a heterocomplex with chemokine receptor agonists, act as enhancers of molecules of the same family, we have recently identified HMGB1, an endogenous damage-associated molecular patterns (DAMPs) molecule, as an enhancer of the activity of CXCL12. It is now evident that synergism between chemokines is crucial at the very early stage of inflammation. In addition, the low-affinity interaction with GAGs has recently been shown to induce cooperativity allowing synergy or inhibition of activity by displacement of other ligands. PMID:27242790

  16. Neurosurgery, "neurospine," and neuroscience: a vital synergy?

    PubMed

    Nowitzke, Adrian

    2008-10-01

    A fundamental dilemma that faces both neurosurgery in general and the subspecialty field of spine surgery is the question of whether those who trained in the former and now work in the latter should maintain their links with their origins and remain under the broader umbrella of neurosurgery, or whether they should develop their own organizational structure and identity separate from organized neurosurgery. This challenge raises many questions with respect to future potential for growth and development, professional identity, and collegiality. This paper is an edited version of an invited speech to the 2007 Annual Meeting of the Joint Section on Disorders of the Spine and Peripheral Nerves. It uses the concept of synergy to review relevant history and explore possible future options for neurosurgery, neurospine, and neuroscience. An example from medical politics is used to illustrate the importance of perspective in approaching these questions, and examples of current therapeutic cutting-edge endeavors highlight the need for team-based behavior that takes a broad view. The premise of the paper is that while individual and specialty aspirations need to be acknowledged, considered, and managed, the results from truly working together will be greater than the sum of the individual efforts-synergy. PMID:18939916

  17. Measurements of micron-scale meteoroids and orbital debris with the Space Dust (SPADUS) instrument on the upcoming ARGOS P91-1 mission

    NASA Technical Reports Server (NTRS)

    McKibben, R. B.; Simpson, J. A.; Tuzzolino, A. J.

    1997-01-01

    The space dust (SPADUS) experiment, to be launched into a sun-synchronous polar orbit at an altitude of 833 km onboard the USAF ARGOS P91-1 mission, will provide time-resolved measurements of the intensity, size spectrum and geocentric trajectories of dust particles encountered during the nominal three year mission. The experiment uses polyvinylidene fluoride dust sensors with a total detector area of 576 sq cm. The SPADUS will measure particle sizes between 2 and 200 microns, particle velocities between 1 and 10 km/s to better than 4 percent, and the direction of incidence with a mean error of 7 percent. These data will identify the particles as being debris or of natural origin.

  18. The International Union for Health Promotion and Education (IUHPE) Student and Early Career Network (ISECN): a case illustrating three strategies for maximizing synergy in professional collaboration.

    PubMed

    Corbin, J Hope; Fisher, Emily A; Bull, Torill

    2012-09-01

    The International Union for Health Promotion and Education (IUHPE) Student and Early Career Network (ISECN) was constructed upon a foundation of research, using the Bergen Model of Collaborative Functioning (BMCF) as a blueprint to inform its leadership, communication, structure, and culture. The BMCF consists of inputs (partners, mission, and financial resources), throughputs (operational processes), and outputs (synergy and antagony). In this commentary, we use the BMCF to describe the ISECN work, highlighting opportunities, successes, and challenges. We also put forward three strategies derived from the BMCF that have been purposefully employed by ISECN to maximize its production of synergy from the voluntary contributions of its members. PMID:24802784

  19. Tapping Geography's Potential for Synergy with Creative Instructional Approaches

    ERIC Educational Resources Information Center

    Conway-Gomez, Kristen; Williams, Nikki; Atkinson-Palombo, Carol; Ahlqvist, Ola; Kim, Eje; Morgan, Miranda

    2011-01-01

    We define synergy, explain its importance within the context of rapidly changing academia, and provide examples of how geographic educators have used creative instructional approaches to create synergies. Both the content of geography and some of the instructional approaches used by geographic educators support the discipline's ability to deliver…

  20. Muscle synergies evoked by microstimulation are preferentially encoded during behavior

    PubMed Central

    Overduin, Simon A.; d'Avella, Andrea; Carmena, Jose M.; Bizzi, Emilio

    2014-01-01

    Electrical microstimulation studies provide some of the most direct evidence for the neural representation of muscle synergies. These synergies, i.e., coordinated activations of groups of muscles, have been proposed as building blocks for the construction of motor behaviors by the nervous system. Intraspinal or intracortical microstimulation (ICMS) has been shown to evoke muscle patterns that can be resolved into a small set of synergies similar to those seen in natural behavior. However, questions remain about the validity of microstimulation as a probe of neural function, particularly given the relatively long trains of supratheshold stimuli used in these studies. Here, we examined whether muscle synergies evoked during ICMS in two rhesus macaques were similarly encoded by nearby motor cortical units during a purely voluntary behavior involving object reach, grasp, and carry movements. At each microstimulation site we identified the synergy most strongly evoked among those extracted from muscle patterns evoked over all microstimulation sites. For each cortical unit recorded at the same microstimulation site, we then identified the synergy most strongly encoded among those extracted from muscle patterns recorded during the voluntary behavior. We found that the synergy most strongly evoked at an ICMS site matched the synergy most strongly encoded by proximal units more often than expected by chance. These results suggest a common neural substrate for microstimulation-evoked motor responses and for the generation of muscle patterns during natural behaviors. PMID:24634652

  1. Mission scheduling

    NASA Technical Reports Server (NTRS)

    Gaspin, Christine

    1989-01-01

    How a neural network can work, compared to a hybrid system based on an operations research and artificial intelligence approach, is investigated through a mission scheduling problem. The characteristic features of each system are discussed.

  2. Muscle synergy analysis in children with cerebral palsy

    NASA Astrophysics Data System (ADS)

    Tang, Lu; Li, Fei; Cao, Shuai; Zhang, Xu; Wu, De; Chen, Xiang

    2015-08-01

    Objective. To explore the mechanism of lower extremity dysfunction of cerebral palsy (CP) children through muscle synergy analysis. Approach. Twelve CP children were involved in this study, ten adults (AD) and eight typically developed (TD) children were recruited as a control group. Surface electromyographic (sEMG) signals were collected bilaterally from eight lower limb muscles of the subjects during forward walking at a comfortable speed. A nonnegative matrix factorization algorithm was used to extract muscle synergies. In view of muscle synergy differences in number, structure and symmetry, a model named synergy comprehensive assessment (SCA) was proposed to quantify the abnormality of muscle synergies. Main results. There existed larger variations between the muscle synergies of the CP group and the AD group in contrast with the TD group. Fewer mature synergies were recruited in the CP group, and many abnormal synergies specific to the CP group appeared. Specifically, CP children were found to recruit muscle synergies with a larger difference in structure and symmetry between two legs of one subject and different subjects. The proposed SCA scale demonstrated its great potential to quantitatively assess the lower-limb motor dysfunction of CP children. SCA scores of the CP group (57.00 ± 16.78) were found to be significantly less (p < 0.01) than that of the control group (AD group: 95.74 ± 2.04; TD group: 84.19 ± 11.76). Significance. The innovative quantitative results of this study can help us to better understand muscle synergy abnormality in CP children, which is related to their motor dysfunction and even the physiological change in their nervous system.

  3. A computational analysis of motor synergies by dynamic response decomposition

    PubMed Central

    Alessandro, Cristiano; Carbajal, Juan Pablo; d'Avella, Andrea

    2014-01-01

    Analyses of experimental data acquired from humans and other vertebrates have suggested that motor commands may emerge from the combination of a limited set of modules. While many studies have focused on physiological aspects of this modularity, in this paper we propose an investigation of its theoretical foundations. We consider the problem of controlling a planar kinematic chain, and we restrict the admissible actuations to linear combinations of a small set of torque profiles (i.e., motor synergies). This scheme is equivalent to the time-varying synergy model, and it is formalized by means of the dynamic response decomposition (DRD). DRD is a general method to generate open-loop controllers for a dynamical system to solve desired tasks, and it can also be used to synthesize effective motor synergies. We show that a control architecture based on synergies can greatly reduce the dimensionality of the control problem, while keeping a good performance level. Our results suggest that in order to realize an effective and low-dimensional controller, synergies should embed features of both the desired tasks and the system dynamics. These characteristics can be achieved by defining synergies as solutions to a representative set of task instances. The required number of synergies increases with the complexity of the desired tasks. However, a possible strategy to keep the number of synergies low is to construct solutions to complex tasks by concatenating synergy-based actuations associated to simple point-to-point movements, with a limited loss of performance. Ultimately, this work supports the feasibility of controlling a non-linear dynamical systems by linear combinations of basic actuations, and illustrates the fundamental relationship between synergies, desired tasks and system dynamics. PMID:24474915

  4. Suboptimal Muscle Synergy Activation Patterns Generalize their Motor Function across Postures

    PubMed Central

    Sohn, M. Hongchul; Ting, Lena H.

    2016-01-01

    We used a musculoskeletal model to investigate the possible biomechanical and neural bases of using consistent muscle synergy patterns to produce functional motor outputs across different biomechanical conditions, which we define as generalizability. Experimental studies in cats demonstrate that the same muscle synergies are used during reactive postural responses at widely varying configurations, producing similarly-oriented endpoint force vectors with respect to the limb axis. However, whether generalizability across postures arises due to similar biomechanical properties or to neural selection of a particular muscle activation pattern has not been explicitly tested. Here, we used a detailed cat hindlimb model to explore the set of feasible muscle activation patterns that produce experimental synergy force vectors at a target posture, and tested their generalizability by applying them to different test postures. We used three methods to select candidate muscle activation patterns: (1) randomly-selected feasible muscle activation patterns, (2) optimal muscle activation patterns minimizing muscle effort at a given posture, and (3) generalizable muscle activation patterns that explicitly minimized deviations from experimentally-identified synergy force vectors across all postures. Generalizability was measured by the deviation between the simulated force direction of the candidate muscle activation pattern and the experimental synergy force vectors at the test postures. Force angle deviations were the greatest for the randomly selected feasible muscle activation patterns (e.g., >100°), intermediate for effort-wise optimal muscle activation patterns (e.g., ~20°), and smallest for generalizable muscle activation patterns (e.g., <5°). Generalizable muscle activation patterns were suboptimal in terms of effort, often exceeding 50% of the maximum possible effort (cf. ~5% in minimum-effort muscle activation patterns). The feasible muscle activation ranges of individual

  5. Synergy of β-Lactams with Vancomycin against Methicillin-Resistant Staphylococcus aureus: Correlation of Disk Diffusion and Checkerboard Methods.

    PubMed

    Sy, Cheng Len; Huang, Tsi-Shu; Chen, Chii Shiang; Chen, Yao-Shen; Tsai, Hung-Chin; Wann, Shue-Renn; Wu, Kuan-Sheng; Chen, Jui-Kuang; Lee, Susan Shin-Jung; Liu, Yung-Ching

    2016-03-01

    Modified disk diffusion (MDD) and checkerboard tests were employed to assess the synergy of combinations of vancomycin and β-lactam antibiotics for 59 clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and Mu50 (ATCC 700699). Bacterial inocula equivalent to 0.5 and 2.0 McFarland standard were inoculated on agar plates containing 0, 0.5, 1, and 2 μg/ml of vancomycin. Oxacillin-, cefazolin-, and cefoxitin-impregnated disks were applied to the surface, and the zones of inhibition were measured at 24 h. The CLSI-recommended checkerboard method was used as a reference to detect synergy. The MICs for vancomycin were determined using the Etest method, broth microdilution, and the Vitek 2 automated system. Synergy was observed with the checkerboard method in 51% to 60% of the isolates when vancomycin was combined with any β-lactam. The fractional inhibitory concentration indices were significantly lower in MRSA isolates with higher vancomycin MIC combinations (P < 0.05). The overall agreement between the MDD and checkerboard methods to detect synergy in MRSA isolates with bacterial inocula equivalent to McFarland standard 0.5 were 33.0% and 62.5% for oxacillin, 45.1% and 52.4% for cefazolin, and 43.1% and 52.4% for cefoxitin when combined with 0.5 and 2 μg/ml of vancomycin, respectively. Based on our study, the simple MDD method is not recommended as a replacement for the checkerboard method to detect synergy. However, it may serve as an initial screening method for the detection of potential synergy when it is not feasible to perform other labor-intensive synergy tests. PMID:26677253

  6. Representation of Muscle Synergies in the Primate Brain

    PubMed Central

    d'Avella, Andrea; Roh, Jinsook; Carmena, Jose M.; Bizzi, Emilio

    2015-01-01

    Evidence suggests that the CNS uses motor primitives to simplify movement control, but whether it actually stores primitives instead of computing solutions on the fly to satisfy task demands is a controversial and still-unanswered possibility. Also in contention is whether these primitives take the form of time-invariant muscle coactivations (“spatial” synergies) or time-varying muscle commands (“spatiotemporal” synergies). Here, we examined forelimb muscle patterns and motor cortical spiking data in rhesus macaques (Macaca mulatta) handling objects of variable shape and size. From these data, we extracted both spatiotemporal and spatial synergies using non-negative decomposition. Each spatiotemporal synergy represents a sequence of muscular or neural activations that appeared to recur frequently during the animals' behavior. Key features of the spatiotemporal synergies (including their dimensionality, timing, and amplitude modulation) were independently observed in the muscular and neural data. In addition, both at the muscular and neural levels, these spatiotemporal synergies could be readily reconstructed as sequential activations of spatial synergies (a subset of those extracted independently from the task data), suggestive of a hierarchical relationship between the two levels of synergies. The possibility that motor cortex may execute even complex skill using spatiotemporal synergies has novel implications for the design of neuroprosthetic devices, which could gain computational efficiency by adopting the discrete and low-dimensional control that these primitives imply. SIGNIFICANCE STATEMENT We studied the motor cortical and forearm muscular activity of rhesus macaques (Macaca mulatta) as they reached, grasped, and carried objects of varied shape and size. We applied non-negative matrix factorization separately to the cortical and muscular data to reduce their dimensionality to a smaller set of time-varying “spatiotemporal” synergies. Each synergy

  7. Synergies among extinction drivers under global change.

    PubMed

    Brook, Barry W; Sodhi, Navjot S; Bradshaw, Corey J A

    2008-08-01

    If habitat destruction or overexploitation of populations is severe, species loss can occur directly and abruptly. Yet the final descent to extinction is often driven by synergistic processes (amplifying feedbacks) that can be disconnected from the original cause of decline. We review recent observational, experimental and meta-analytic work which together show that owing to interacting and self-reinforcing processes, estimates of extinction risk for most species are more severe than previously recognised. As such, conservation actions which only target single-threat drivers risk being inadequate because of the cascading effects caused by unmanaged synergies. Future work should focus on how climate change will interact with and accelerate ongoing threats to biodiversity, such as habitat degradation, overexploitation and invasive species. PMID:18582986

  8. NASA Earth science missions

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Volz, Stephen M.

    2013-10-01

    NASA's Earth Science Division (ESD) conducts pioneering work in Earth system science, the interdisciplinary view of Earth that explores the interaction among the atmosphere, oceans, ice sheets, land surface interior, and life itself that has enabled scientists to measure global and climate changes and to inform decisions by governments, organizations, and people in the United States and around the world. The ESD makes the data collected and results generated by its space missions accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster management, agricultural yield projections, and aviation safety. Through partnerships with national and international agencies, NASA enables the application of this understanding. The ESD's Flight Program provides the spacebased observing systems and supporting ground segment infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth system science research and modeling activities. The Flight Program currently has 15 operating Earth observing space missions, including the recently launched Landsat-8/Landsat Data Continuity Mission (LDCM). The ESD has 16 more missions planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key data sets needed for climate science and applications, and small-sized competitively selected orbital missions and instrument missions of opportunity utilizing rideshares that are part of the Earth Venture (EV) Program. The recently selected Cyclone Global Navigation Satellite System (CYGNSS) microsatellite constellation and the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument are examples. In addition, the International Space Station (ISS) is being increasingly used to host NASA Earth observing science instruments. An overview of plans

  9. An interstellar precursor mission

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Ivie, C.; Lewis, J. C.; Lipes, R. G.; Norton, H. N.; Stearns, J. W.; Stimpson, L.; Weissman, P.

    1977-01-01

    A mission out of the planetary system, with launch about the year 2000, could provide valuable scientific data as well as test some of the technology for a later mission to another star. Primary scientific objectives for the precursor mission concern characteristics of the heliopause, the interstellar medium, stellar distances (by parallax measurements), low energy cosmic rays, interplanetary gas distribution, and mass of the solar system. Secondary objectives include investigation of Pluto. Candidate science instruments are suggested. Individual spacecraft systems for the mission were considered, technology requirements and problem areas noted, and a number of recommendations made for technology study and advanced development. The most critical technology needs include attainment of 50-yr spacecraft lifetime and development of a long-life NEP system.

  10. 3D Ion and Electron Distribution Function Measurements from the Fast Plasma Investigation on the Magnetospheric Multiscale Mission

    NASA Astrophysics Data System (ADS)

    Giles, B. L.; Pollock, C. J.; Avanov, L. A.; Barrie, A. C.; Burch, J. L.; Chandler, M. O.; Clark, G. B.; Coffey, V. N.; Dickson, C.; Dorelli, J.; Ergun, R. E.; Fuselier, S. A.; Gershman, D. J.; Gliese, U.; Holland, M. P.; Jacques, A. D.; Kreisler, S.; Lavraud, B.; MacDonald, E.; Mauk, B.; Moore, T. E.; Mukai, T.; Nakamura, R.; Paterson, W. R.; Rager, A. C.; Saito, Y.; Salo, C.; Sauvaud, J. A.; Torbert, R. B.; Vinas, A. F.; Yokota, S.

    2015-12-01

    The primary focus of the Magnetospheric Multiscale (MMS) mission, launched in March 2015, is magnetic reconnection and associated processes. Understanding hinges critically on the kinetic physics that allows reconnection to take place. The Fast Plasma Investigation (FPI) provides electron and ion distribution functions at 4.5s cadence and, for select periods of time, at cadences of 30ms for electrons and 150ms for ions. These select time periods are chosen after in situ acquisition based on inspection of the low resolution data. Thus the FPI provides, independent of spacecraft spin rate, the time resolution needed to resolve the small, fast-moving reconnection diffusion regions. The first mission phase focuses on the dayside magnetopause and this presentation is intended to demonstrate the capabilities of FPI to resolve the important spatial scales relevant to the reconnection process. Magnetopause and other boundary crossings will be examined and the phase-space trajectories identified at the tetrahedral satellite locations through analysis of the 3D distribution functions.

  11. Aerosol Intercomparison Scenarios for the Giovanni Multi-sensor Data Synergy “Advisor”

    NASA Astrophysics Data System (ADS)

    Lloyd, S. A.; Leptoukh, G. G.; Prados, A. I.; Shen, S.; Pan, J.; Rui, H.; Lynnes, C.; Fox, P. A.; West, P.; Zednik, S.

    2009-12-01

    The combination of remotely sensed aerosols datasets can result in synergistic products that are more useful than the sum of the individual datasets. Multi-sensor composite datasets can be constructed by data merging (taking very closely related parameters to create a single merged dataset to increase spatial and/or temporal coverage), cross-calibration (creating long-term climate data records from two very similar parameters), validation (using a parameter from one dataset to validate a closely related parameter in another), cross-comparison (comparing two datasets with different parameters), and data fusion (using two or more parameters to estimate a third parameter). However, care must be taken to note the differences in data provenance and quality when combining heterogeneous datasets. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is currently in its first year of funding for our project Multi-sensor Data Synergy Advisor (MDSA or Giovanni Advisor) under the NASA Earth Science Technology Office (ESTO) Advanced Information Systems and Technology (AIST) program. The Giovanni Advisor will allow researchers to combine and compare aerosol data from multiple sensors using Giovanni, such that scientifically and statistically valid conclusions can be drawn. The Giovanni Advisor will assist the user in determining how to match up two (or more) sets of data that are related, yet significantly different in some way: in the exact phenomenon being measured, the measurement technique, or the location in space-time and/or the quality of the measurements. Failing to account for these differences in merging, validation, cross calibration, comparison or fusion is likely to yield scientifically dubious results. The Giovanni Advisor captures details of each parameter’s attributes, metadata, retrieval heritage, provenance and data quality and flags relevant differences so that the user can make appropriate “apples to apples” comparisons of

  12. The United States' Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA's Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission

    NASA Technical Reports Server (NTRS)

    Fishman, J.; Iraci, Laura T.; Al-Saddi, J.; Chance, K.; Chavez, F.; Chin, M.; Coble, P.; Davis, C.; DiGiacomo, P. M.; Edwards, D.; Eldering, A.; Goes, J.; Herman, J.; Hu, C.; Jacob, D. J.; Jordan, C.; Kawa, S. R.; Key, R.; Liu, X.; Lohrenz, S.; Mannino, A.; Natraj, V.; Neil, D.; Neu, J.; Newchurch, M.; Pickering, K.; Salisbury, J.; Sosik, H.; Subramaniam, A.; Tzortziou, M; Wang, J.; Wang, M.

    2012-01-01

    The Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission was recommended by the National Research Council's (NRC's) Earth Science Decadal Survey to measure tropospheric trace gases and aerosols and coastal ocean phytoplankton, water quality, and biogeochemistry from geostationary orbit, providing continuous observations within the field of view. To fulfill the mandate and address the challenge put forth by the NRC, two GEO-CAPE Science Working Groups (SWGs), representing the atmospheric composition and ocean color disciplines, have developed realistic science objectives using input drawn from several community workshops. The GEO-CAPE mission will take advantage of this revolutionary advance in temporal frequency for both of these disciplines. Multiple observations per day are required to explore the physical, chemical, and dynamical processes that determine tropospheric composition and air quality over spatial scales ranging from urban to continental, and over temporal scales ranging from diurnal to seasonal. Likewise, high-frequency satellite observations are critical to studying and quantifying biological, chemical, and physical processes within the coastal ocean. These observations are to be achieved from a vantage point near 95deg-100degW, providing a complete view of North America as well as the adjacent oceans. The SWGs have also endorsed the concept of phased implementation using commercial satellites to reduce mission risk and cost. GEO-CAPE will join the global constellation of geostationary atmospheric chemistry and coastal ocean color sensors planned to be in orbit in the 2020 time frame.

  13. Measurements of nitric acid, carboxylic acids, and selected aerosol species for the NASA/GTE Pacific Mission - West (PEM-WEST)

    NASA Technical Reports Server (NTRS)

    Talbot, Robert W.; Dibb, Jack E.

    1993-01-01

    The research investigation funded through this grant to the University of New Hampshire was performed during a major field expedition conducted by the NASA Tropospheric Chemistry Program. The NASA Global Tropospheric Experiment (GTE) executed an airborne science mission (PEM-WEST A) aboard the NASA Ames DC-8 over the Pacific Ocean during Sep./Oct. 1981. The atmosphere over the central Pacific Ocean is the only major region in the Northern Hemisphere that is relatively free from direct anthropogenic influence. Thus, this environment is ideally suited to study the natural biogeochemical cycles of carbon, nitrogen, ozone, sulfur, and aerosols without serious confounding problems related to anthropogenic emissions. Asian sources account for about 17 percent of the global budgets of nitrogen oxides (NO(x)) and sulfur dioxide (SO2). The Pacific Rim region therefore provides the opportunity to study the anthropogenic impact on natural atmospheric chemical cycles. The PEM-WEST A flights were focused on contrasting the chemistry of 'clean' air over the central Pacific with anthropogenically impacted air advected off the Asian continent. The principal objectives of PEM-WEST A were to investigate the atmospheric chemistry of ozone (O3) and its precursors, and to study important aspects of the atmospheric sulfur cycle over the western Pacific Ocean. Measurements conducted by the University of New Hampshire contributed directly to both of these objectives. Subsequent PEM-WEST field missions are planned by GTE in the mid-1990's to contrast atmospheric chemistry documented during PEM-WEST A with other time periods. This report presents preliminary findings from the PEM-WEST A field mission. Data interpretation is currently ongoing with the goal of manuscript submission of scientific results to a special issue of the Journal of Geophysical Research-Atmospheres in Feb. 1994. The reader is strongly encouraged to review this suite of profession articles to appreciate the overall

  14. The Surface Water and Ocean Topography Mission (SWOT): the Ka-band Radar Interferometer (KaRIn) for water level measurements at all scales

    NASA Astrophysics Data System (ADS)

    Rodriguez, Ernesto; Esteban-Fernandez, Daniel

    2010-10-01

    The Surface Water and Ocean Topography (SWOT) mission will study ocean mesoscale and submesoscale phenomena and provide an inventory of storage change and discharge for fresh water bodies and rivers. In this paper, we examine the combination of measurements that will be used by SWOT to achieve a globally consistent data set. We introduce a new channel in the SWOT measurement that combines data transmitted by the interferometer antennas and received by the radiometer antenna allows the closing of the SWOT nadir coverage gap. This new mode also allows for improved calibration between the nadir altimeter and the interferometer, resulting in consistent range measurements. Consistency in the phase measurements is achieved using a mixture of cross-over calibration combined with optimal estimation of system error drift.

  15. COMET: a planned airborne mission to simultaneously measure CO2 and CH4 columns using airborne remote sensing and in-situ techniques

    NASA Astrophysics Data System (ADS)

    Fix, A.; Amediek, A.; Büdenbender, C.; Ehret, G.; Wirth, M.; Quatrevalet, M.; Rapp, M.; Gerilowski, K.; Bovensmann, H.; Gerbig, C.; Pfeilsticker, K.; Zöger, M.; Giez, A.

    2013-12-01

    To better predict future trends in the cycles of the most important anthropogenic greenhouse gases, CO2 and CH4, there is a need to measure and understand their distribution and variation on various scales. To address these requirements it is envisaged to deploy a suite of state-of-the-art airborne instruments that will be capable to simultaneously measure the column averaged dry-air mixing ratios (XGHG) of both greenhouse gases along the flight path. As the measurement platform serves the research aircraft HALO, a modified Gulfstream G550, operated by DLR. This activity is dubbed CoMet (CO2 and Methane Mission). The instrument package of CoMet will consist of active and passive remote sensors as well as in-situ instruments to complement the column measurements by highly-resolved profile information. As an active remote sensing instrument CHARM-F, the integrated-path differential absorption lidar currently under development at DLR, will provide both, XCO2 and XCH4, below flight altitude. The lidar instrument will be complemented by MAMAP which is a NIR/SWIR absorption spectrometer developed by University of Bremen and which is also capable to derive XCH4 and XCO2. As an additional passive instrument, mini-DOAS operated by University of Heidelberg will contribute with additional context information about the investigated air masses. In order to compare the remote sensing instruments with integrated profile information, in-situ instrumentation is indispensable. The in-situ package will therefore comprise wavelength-scanned Cavity-Ring-Down Spectroscopy (CRDS) for the detection of CO2, CH4, CO and H2O and a flask sampler for collection of atmospheric samples and subsequent laboratory analysis. Furthermore, the BAsic HALO Measurement And Sensor System (BAHAMAS) will provide an accurate set of meteorological and aircraft state parameters for each scientific flight. Within the frame of the first CoMet mission scheduled for the 2015 timeframe it is planned to concentrate

  16. Mission Possible

    ERIC Educational Resources Information Center

    Kittle, Penny, Ed.

    2009-01-01

    As teachers, our most important mission is to turn our students into readers. It sounds so simple, but it's hard work, and we're all on a deadline. Kittle describes a class in which her own expectations that students would become readers combined with a few impassioned strategies succeeded ... at least with a young man named Alan.

  17. [Physiological problems of manned mission to Mars].

    PubMed

    Grigor'ev, A I

    2007-05-01

    Harsh environment and extreme factors related to the supposed exploration missions to Mars are considered as well as concomitant human organism reactions. Further investigations are required to get insight into the effects of gravity ranging from microgravity to hypogravity to hypergravity the crew will be exposed to during this voyage. A special emphasis should be placed on the studies of artificial gravity as an alternative to the existing in-flight countermeasures. Other issues to be attended include transitory states of human organism as a response to changes in gravity, effects of ionizing radiation and synergy of the variety of flight factors, and mechanisms of the hypomagnetic effects. PMID:17650616

  18. Evaluation of the first simulation tool to quantitatively interpret the measurements of the ExoMars mission's Wisdom GPR

    NASA Astrophysics Data System (ADS)

    Dorizon, Sophie; Ciarletti, Valérie

    2013-04-01

    The Water Ice Sub-surface Deposits Observation on Mars (WISDOM) (500MHz - 3GHz) GPR is one of the instruments that have been selected as part of the Pasteur payload of ESA's 2018 ExoMars Rover mission. One of the main scientific objectives of the mission is to characterize the nature of the shallow sub-surface on Mars and WISDOM has been designed to explore the first 3 meters of the sub-surface with a vertical resolution of a few centimetres. Laboratory and field tests using the prototype developed for the ExoMars mission by LATMOS (Laboratoire Atmosphère, Milieux, Observations Spatiales) in collaboration with the AOB (Bordeaux) and the university of Dresden (Germany) are regularly performed to assess and improve the radar performances. In order to quantitatively interpret the experimental data obtained, we developed a simulation tool based on ray-tracing. This code proves to be a fast practical way even if simplified to help radargrams interpretation. The WISDOM GPR, unlike most traditional GPRs, is operated approximately 30 centimetres above the surface. This configuration implies that the propagation between the antenna and the surface cannot be neglected especially because the instrument's aim is to characterise the very shallow subsurface. As a consequence, while we can draw advantage of this specific configuration by using the surface echo's amplitude to retrieve information about the top layer's roughness and permittivity value, precise location of buried reflector becomes more complicated. Indeed, the signature distinctive of individual reflectors buried in the sub-surface is not more an exact mathematical hyperbola. When the individual reflector is buried deep enough in the subsurface, the adjustment by an hyperbolic function still allows the retrieval of the reflector's location and the permittivity value of the surrounding medium. But in case of a reflector closer to the surface, the approximation is no longer valid. We propose a robust model adjustment

  19. Mars Stratigraphy Mission

    NASA Technical Reports Server (NTRS)

    Budney, C. J.; Miller, S. L.; Cutts, J. A.

    2000-01-01

    The Mars Stratigraphy Mission lands a rover on the surface of Mars which descends down a cliff in Valles Marineris to study the stratigraphy. The rover carries a unique complement of instruments to analyze and age-date materials encountered during descent past 2 km of strata. The science objective for the Mars Stratigraphy Mission is to identify the geologic history of the layered deposits in the Valles Marineris region of Mars. This includes constraining the time interval for formation of these deposits by measuring the ages of various layers and determining the origin of the deposits (volcanic or sedimentary) by measuring their composition and imaging their morphology.

  20. NASA Tropical Rainfall Measurement Mission (TRMM): Effects of tropical rainfall on upper ocean dynamics, air-sea coupling and hydrologic cycle

    NASA Technical Reports Server (NTRS)

    Lagerloef, Gary; Busalacchi, Antonio J.; Liu, W. Timothy; Lukas, Roger B.; Niiler, Pern P.; Swift, Calvin T.

    1995-01-01

    This was a Tropical Rainfall Measurement Mission (TRMM) modeling, analysis and applications research project. Our broad scientific goals addressed three of the seven TRMM Priority Science Questions, specifically: What is the monthly average rainfall over the tropical ocean areas of about 10(exp 5) sq km, and how does this rain and its variability affect the structure and circulation of the tropical oceans? What is the relationship between precipitation and changes in the boundary conditions at the Earth's surface (e.g., sea surface temperature, soil properties, vegetation)? How can improved documentation of rainfall improve understanding of the hydrological cycle in the tropics?

  1. In-flight verification of avalanche photodiodes: avenue to a low-cost solution to measure suprathermal particles for future missions

    NASA Astrophysics Data System (ADS)

    Ogasawara, K.; Bonnell, J. W.; Christian, E. R.; Desai, M. I.; Grubbs, G. A., II; Jahn, J. M.; Livi, S. A.; Kanekal, S. G.; Llera, K.; McComas, D. J.; Michell, R.; Samara, M.; Vines, S. K.

    2014-12-01

    Flight operation results and plans of Avalanche Photodiodes (APDs) to measure suprathermal particles (a ~few keV up to ~100s of keV) are summarized in this presentation. Ions and electrons in this energy range play crucial roles in many fundamental processes of space plasmas including particle heating and acceleration, providing source material for the energetic particles accelerated near the Sun, the heliosphere, and in geospace. Characterizing these populations poses serious technical challenges because this energy region lies between the two most commonly used particle detection techniques, i.e., that used by thermal or plasma instruments and by Solid-State Detector (SSD)-based energetic particle telescopes, which are limited by typical SSD threshold energies of >10s keV. Our previous work has already demonstrated that a new type of low-noise, low-threshold Avalanche Photo-Diode (APD) has an intrinsic noise level of 0.9 keV, and can therefore enable high-energy resolution measurements of suprathermal electrons and ions. In addition, APDs provide suitable solutions for space plasma detectors in low-cost missions/platform because of their light-weight, small-size, power-saving features. This study presents two low-cost missions (a sounding rocket and a CubeSat) that implement APDs as particle detectors: (1) The Medium-energy Electron SPectrometer (MESP) sensor aboard a sounding rocket was launched from Poker Flat Research Range on 3 March 2014 as a part of Ground-to-Rocket Electrodynamics-Electrons Correlative Experiment (GREECE) mission. MESP successfully measured the precipitating electrons from 2 to 200 keV in 100-ms time resolution by using 2 APDs and 1 SSD. We show the overall results and the comparison with an MCP-based instrument results. (2) The Miniaturized Electron and pRoton Telescope (MERiT) on the Compact Radiation bElt Explorer (CeREs) to study charged particle dynamics in the Earth's radiation belts. CeREs will be flown as part of a 3U CubeSat in a

  2. Clarifying socio-economic impacts and mitigation measures related to potential changes in missions at the Rocky Flats Plant. Final report

    SciTech Connect

    Not Available

    1982-06-01

    Research conducted to clarify the socioeconomic impacts on the Denver-Boulder area of potential changes in missions at the Rocky Flats Plant and the mitigation measures taken to contain these impacts are described. Two primary alternatives have been examined, including the relocation of certain activities associated with radioactive materials, as well as a total phase out of the plant over the next decade. These perspectives include an assessment of alternative uses for Rocky Flats by both governmental agencies and private sector developers. Major findings address location, employment, public involvement, private enterprises, community attitudes, employee relocation; land use; and environment. (PSB)

  3. Generational Differences in Work-Family Conflict and Synergy

    PubMed Central

    Beutell, Nicholas J.

    2013-01-01

    This paper examines differences in work-family conflict and synergy among the four generational groups represented in the contemporary workforce: Generation Y Generation X, Baby Boomers, and Matures using data from the 2008 National Study of the Changing Workforce (n = 3,502). Significant generational differences were found for work-family conflict (work interfering with family and family interfering with work) but not for work-family synergy. Mental health and job pressure were the best predictors of work interfering with family conflict for each generational group. Work-family synergy presented a more complex picture. Work-family conflict and synergy were significantly related to job, marital, and life satisfaction. Implications and directions for future research are discussed. PMID:23783221

  4. Generational differences in work-family conflict and synergy.

    PubMed

    Beutell, Nicholas J

    2013-06-01

    This paper examines differences in work-family conflict and synergy among the four generational groups represented in the contemporary workforce: Generation Y Generation X, Baby Boomers, and Matures using data from the 2008 National Study of the Changing Workforce (n = 3,502). Significant generational differences were found for work-family conflict (work interfering with family and family interfering with work) but not for work-family synergy. Mental health and job pressure were the best predictors of work interfering with family conflict for each generational group. Work-family synergy presented a more complex picture. Work-family conflict and synergy were significantly related to job, marital, and life satisfaction. Implications and directions for future research are discussed. PMID:23783221

  5. NEEMO 7 undersea mission

    NASA Astrophysics Data System (ADS)

    Thirsk, Robert; Williams, David; Anvari, Mehran

    2007-02-01

    The NEEMO 7 mission was the seventh in a series of NASA-coordinated missions utilizing the Aquarius undersea habitat in Florida as a human space mission analog. The primary research focus of this mission was to evaluate telementoring and telerobotic surgery technologies as potential means to deliver medical care to astronauts during spaceflight. The NEEMO 7 crewmembers received minimal pre-mission training to perform selected medical and surgical procedures. These procedures included: (1) use of a portable ultrasound to locate and measure abdominal organs and structures in a crewmember subject; (2) use of a portable ultrasound to insert a small needle and drain into a fluid-filled cystic cavity in a simulated patient; (3) surgical repair of two arteries in a simulated patient; (4) cystoscopy and use of a ureteral basket to remove a renal stone in a simulated patient; and (5) laparoscopic cholecystectomy in a simulated patient. During the actual mission, the crewmembers performed the procedures without or with telementoring and telerobotic assistance from experts located in Hamilton, Ontario. The results of the NEEMO 7 medical experiments demonstrated that telehealth interventions rely heavily on a robust broadband, high data rate telecommunication link; that certain interventional procedures can be performed adequately by minimally trained individuals with telementoring assistance; and that prior clinical experience does not always correlate with better procedural performance. As space missions become longer in duration and take place further from Earth, enhancement of medical care capability and expertise will be required. The kinds of medical technologies demonstrated during the NEEMO 7 mission may play a significant role in enabling the human exploration of space beyond low earth orbit, particularly to destinations such as the Moon and Mars.

  6. Brain Connectivity Associated with Muscle Synergies in Humans

    PubMed Central

    Rana, Manku; Yani, Moheb S.; Asavasopon, Skulpan; Fisher, Beth E.

    2015-01-01

    The human brain is believed to simplify the control of the large number of muscles in the body by flexibly combining muscle coordination patterns, termed muscle synergies. However, the neural connectivity allowing the human brain to access and coordinate muscle synergies to accomplish functional tasks remains unknown. Here, we use a surprising pair of synergists in humans, the flexor hallucis longus (FHL, a toe flexor) and the anal sphincter, as a model that we show to be well suited in elucidating the neural connectivity underlying muscle synergy control. First, using electromyographic recordings, we demonstrate that voluntary FHL contraction is associated with synergistic anal sphincter contraction, but voluntary anal sphincter contraction occurs without FHL contraction. Second, using fMRI, we show that two important medial wall motor cortical regions emerge in relation to these tasks: one located more posteriorly that preferentially activates during voluntary FHL contraction and one located more anteriorly that activates during both voluntary FHL contraction as well as voluntary anal sphincter contraction. Third, using transcranial magnetic stimulation, we demonstrate that the anterior region is more likely to generate anal sphincter contraction than FHL contraction. Finally, using a repository resting-state fMRI dataset, we demonstrate that the anterior and posterior motor cortical regions have significantly different functional connectivity with distinct and distant brain regions. We conclude that specific motor cortical regions in humans provide access to different muscle synergies, which may allow distinct brain networks to coordinate muscle synergies during functional tasks. SIGNIFICANCE STATEMENT How the human nervous system coordinates activity in a large number of muscles is a fundamental question. The brain and spinal cord are believed to simplify the control of muscles by grouping them into functional units called muscle synergies. Motor cortex is

  7. Do muscle synergies reduce the dimensionality of behavior?

    PubMed Central

    Kuppuswamy, Naveen; Harris, Christopher M.

    2014-01-01

    The muscle synergy hypothesis is an archetype of the notion of Dimensionality Reduction (DR) occurring in the central nervous system due to modular organization. Toward validating this hypothesis, it is important to understand if muscle synergies can reduce the state-space dimensionality while maintaining task control. In this paper we present a scheme for investigating this reduction utilizing the temporal muscle synergy formulation. Our approach is based on the observation that constraining the control input to a weighted combination of temporal muscle synergies also constrains the dynamic behavior of a system in a trajectory-specific manner. We compute this constrained reformulation of system dynamics and then use the method of system balancing for quantifying the DR; we term this approach as Trajectory Specific Dimensionality Analysis (TSDA). We then investigate the consequence of minimization of the dimensionality for a given task. These methods are tested in simulations on a linear (tethered mass) and a non-linear (compliant kinematic chain) system. Dimensionality of various reaching trajectories is compared when using idealized temporal synergies. We show that as a consequence of this Minimum Dimensional Control (MDC) model, smooth straight-line Cartesian trajectories with bell-shaped velocity profiles emerged as the optima for the reaching task. We also investigated the effect on dimensionality due to adding via-points to a trajectory. The results indicate that a trajectory and synergy basis specific DR of behavior results from muscle synergy control. The implications of these results for the synergy hypothesis, optimal motor control, motor development, and robotics are discussed. PMID:25002844

  8. Synergy optimization and operation management on syndicate complementary knowledge cooperation

    NASA Astrophysics Data System (ADS)

    Tu, Kai-Jan

    2014-10-01

    The number of multi enterprises knowledge cooperation has grown steadily, as a result of global innovation competitions. I have conducted research based on optimization and operation studies in this article, and gained the conclusion that synergy management is effective means to break through various management barriers and solve cooperation's chaotic systems. Enterprises must communicate system vision and access complementary knowledge. These are crucial considerations for enterprises to exert their optimization and operation knowledge cooperation synergy to meet global marketing challenges.

  9. Constraints imposed by the lower extremity extensor synergy in chronic hemiparetic stroke: Preliminary findings.

    PubMed

    Sanchez, Natalia; Dewald, Julius P A

    2014-01-01

    In the present manuscript we implemented the MultiLEIT, a lower extremity isometric torque measurement device to quantify spontaneous joint torque coupling during maximal torque generation in the paretic leg of in chronic hemiparetic stroke. We quantified extension/adduction coupling (coincident with the clinical extension synergy) during the generation of hip extension and ankle plantarflexion maximum voluntary torques. Subjects were then instructed to generate torques outside the synergy by combining hip extension+ hip abduction or ankle plantarflexion + hip abduction. During the hip dual task, the paretic hip torques were significantly different from those measured in the non-paretic and control leg (F = 22.9719, p = 0) and resulted in the inability to generate torques outside the extensor synergy patters. During the dual ankle/ hip task, the paretic extremity generated significantly smaller hip abduction torques compared to controls and to the non-paretic extremity (F = 15.861, p = 0). During this task the paretic extremity was capable of neutralizing the spontaneous adduction torque and generate a net albeit small abduction torque. Results may indicate an increased descending drive from brain stem pathways, particularly during hip extension, responsible for constraints in generating hip abduction torques after stroke. PMID:25571315

  10. The Influence of Dopaminergic Striatal Innervation on Upper Limb Locomotor Synergies

    PubMed Central

    Isaias, Ioannis U.; Volkmann, Jens; Marzegan, Alberto; Marotta, Giorgio; Cavallari, Paolo; Pezzoli, Gianni

    2012-01-01

    To determine the role of striatal dopaminergic innervation on upper limb synergies during walking, we measured arm kinematics in 13 subjects with Parkinson disease. Patients were recruited according to several inclusion criteria to represent the best possible in vivo model of dopaminergic denervation. Of relevance, we included only subjects with normal spatio-temporal parameters of the stride and gait speed to avoid an impairment of upper limbs locomotor synergies as a consequence of gait impairment per se. Dopaminergic innervation of the striatum was measured by FP-CIT and SPECT. All patients showed a reduction of gait-associated arms movement. No linear correlation was found between arm ROM reduction and contralateral dopaminergic putaminal innervation loss. Still, a partition analysis revealed a 80% chance of reduced arm ROM when putaminal dopamine content loss was >47%. A significant correlation was described between the asymmetry indices of the swinging of the two arms and dopaminergic striatal innervation. When arm ROM was reduced, we found a positive correlation between upper-lower limb phase shift modulation (at different gait velocities) and striatal dopaminergic innervation. These findings are preliminary evidence that dopaminergic striatal tone plays a modulatory role in upper-limb locomotor synergies and upper-lower limb coupling while walking at different velocities. PMID:23236504

  11. Construction of synergy networks from gene expression data related to disease.

    PubMed

    Chatterjee, Prantik; Pal, Nikhil Ranjan

    2016-09-30

    A few methods have been developed to determine whether genes collaborate with each other in relation to a particular disease using an information theoretic measure of synergy. Here, we propose an alternative definition of synergy and justify that our definition improves upon the existing measures of synergy in the context of gene interactions. We use this definition on a prostate cancer data set consisting of gene expression levels in both cancerous and non-cancerous samples and identify pairs of genes which are unable to discriminate between cancerous and non-cancerous samples individually but can do so jointly when we take their synergistic property into account. We also propose a very simple yet effective technique for computation of conditional entropy at a very low cost. The worst case complexity of our method is O(n) while the best case complexity of a state-of-the-art method is O(n(2)). Furthermore, our method can also be extended to find synergistic relation among triplets or even among a larger number of genes. Finally, we validate our results by demonstrating that these findings cannot be due to pure chance and provide the relevance of the synergistic pairs in cancer biology. PMID:27222483

  12. Measurements of Acidic Gases and Aerosol Species Aboard the NASA DC-8 Aircraft During the Pacific Exploratory Mission in the Tropics (PEM-Tropics A)

    NASA Technical Reports Server (NTRS)

    Talbot, Robert W.; Dibb, Jack E.

    1999-01-01

    We received funding to provide measurements of nitric acid (HNO3), formic acid (HCOOH), acetic acid (CH3COOH), and the chemical composition of aerosols aboard the NASA Ames DC-8 research aircraft during the PEM-Tropics A mission. These measurements were successfully completed and the final data resides in the electronic archive (ftp-gte.larc.nasa.gov) at NASA Langley Research Center. For the PEM-Tropics A mission the University of New Hampshire group was first author of four different manuscripts. Three of these have now appeared in the Journal of Geophysical Research-Atmospheres, included in the two section sections on PEM-Tropics A. The fourth manuscript has just recently been submitted to this same journal as a stand alone paper. All four of these papers are included in this report. The first paper (Influence of biomass combustion emissions on the distribution of acidic trace gases over the Southern Pacific basin during austral springtime) describes the large-scale distributions of HNO3, HCOOH, and CH3COOH. Arguments were presented to show, particularly in the middle tropospheric region, that biomass burning emissions from South America and Africa were a major source of acidic gases over the South Pacific basin. The second paper (Aerosol chemical composition and distribution during the Pacific Exploratory Mission (PEM) Tropics) covers the aerosol aspects of our measurement package. Compared to acidic gases, O3, and selected hydrocarbons, the aerosol chemistry showed little influence from biomass burning emissions. The data collected in the marine boundary layer showed a possible marine source of NH3 to the troposphere in equatorial areas. This source had been speculated on previously, but our data was the first collected from an airborne platform to show its large-scale features. The third paper (Constraints on the age and dilution of Pacific Exploratory Mission-Tropics biomass burning plumes from the natural radionuclide tracer Pb-210) utilized the unexpectedly

  13. Simultaneous Determination of Structure and Event Location Using Body and Surface Wave Measurements at a Single Station: Preparation for Mars Data from the InSight Mission

    NASA Astrophysics Data System (ADS)

    Panning, M. P.; Banerdt, W. B.; Beucler, E.; Blanchette-Guertin, J. F.; Boese, M.; Clinton, J. F.; Drilleau, M.; James, S. R.; Kawamura, T.; Khan, A.; Lognonne, P. H.; Mocquet, A.; van Driel, M.

    2015-12-01

    An important challenge for the upcoming InSight mission to Mars, which will deliver a broadband seismic station to Mars along with other geophysical instruments in 2016, is to accurately determine event locations with the use of a single station. Locations are critical for the primary objective of the mission, determining the internal structure of Mars, as well as a secondary objective of measuring the activity of distribution of seismic events. As part of the mission planning process, a variety of techniques have been explored for location of marsquakes and inversion of structure, and preliminary procedures and software are already under development as part of the InSight Mars Quake and Mars Structure Services. One proposed method, involving the use of recordings of multiple-orbit surface waves, has already been tested with synthetic data and Earth recordings. This method has the strength of not requiring an a priori velocity model of Mars for quake location, but will only be practical for larger events. For smaller events where only first orbit surface waves and body waves are observable, other methods are required. In this study, we implement a transdimensional Bayesian inversion approach to simultaneously invert for basic velocity structure and location parameters (epicentral distance and origin time) using only measurements of body wave arrival times and dispersion of first orbit surface waves. The method is tested with synthetic data with expected Mars noise and Earth data for single events and groups of events and evaluated for errors in both location and structural determination, as well as tradeoffs between resolvable parameters and the effect of 3D crustal variations.

  14. Synergy Between Astrochemical Models and Cometary Taxonomies of Parent Volatiles

    NASA Astrophysics Data System (ADS)

    Bonev, Boncho P.; Willacy, Karen; Mumma, Michael J.; Gibb, Erika L.; Millar, Tom; Charnley, Steve; DiSanti, Michael A.; Villanueva, Geronimo L.; Paganini, Lucas

    2014-11-01

    The principal output in taxonomic studies of cometary primary (parent) volatiles is the suite of “mixing ratios” between observed species. These ratios relate the abundances of different molecules (CH4/C2H2/C2H6/H2CO/CH3OH/H2O, etc.) or isotopologues (HDO/H2O, CH3D/CH4, etc.). Infrared and radio observations have found strong evidence that mixing ratios vary substantially among comets. However, we still face serious uncertainties in decoding the cosmogonic significance of the measured abundances. The observed composition of comets may be an end product of a variety of processes, including chemical evolution in the protoplanetary disk, dynamical evolution in the young solar system, and (perhaps) thermal evolution during successive perihelion passages. Improved understanding of their relative importance requires additional sensitive measurements and a comprehensive synergy with astrochemical models. These models find that protoplanetary disks can be divided into three distinct regions: (1) a cold midplane, where ices freeze to dust grains; (2) a warm molecular layer, where ices sublimate and are processed via gas-phase reactions; and (3) a hot disk atmosphere containing predominantly atoms and atomic ions. Material from the different layers can be mixed by transport processes.We will show how this synergy is being realized via close collaboration between modeling and observing teams. The goal is a deeper insight into the processes preceding comet formation that may have influenced the composition - what chemical reaction pathways dominated the synthesis of cometary compounds? What processes in the protoplanetary disk have left strong signatures in cometary ices? Can models provide testable predictions for the chemical diversity observed among comets? Addressing these questions, we will show initial comparisons between relative abundances for several cometary volatiles and those predicted for the midplane of the protoplanetary disk where comets formed. We will

  15. Synergies of space exploration and Earth science

    NASA Astrophysics Data System (ADS)

    Chung, Y.; Ehrenfreund, P.; Rummel, J.; Peter, N.

    2009-04-01

    A more flexible policy basis from which to manage our planet in the 21st century is desirable. As one contribution, we note that synergies between space exploration and the preservation of our habitat do exist, and that protecting life on Earth requires similar concepts and information as investigations of life beyond the Earth, including the expansion of human presence in space. Instrumentation and data handling to observe both planetary objects and planet Earth are based on similar techniques. Moreover, while planetary surface operations are conducted under different conditions, the technology to probe the surface and subsurface of both the Earth and other planets requires similar tools, such as radar, seismometers, and drilling devices. The Earth observation community has developed some exemplary tools and has featured a successful international cooperation in data handling and sharing that could be equally well applied to robotic planetary exploration. Likewise, the education and awareness of society can benefit tremendously from knowledge of the overall habitability of our Solar System, including steps taken to prevent biological cross-contamination (planetary protection). Here we propose a network involving both communities that will enable the interchange of scientific insights and the development of new policies and management strategies. Those tools can provide a vital forum through which the management of this planet can be assisted, and in which a new bridge between the Earth-centric and space-centric communities can be built.

  16. Synergies with CTA and VHE Astrophysics

    NASA Astrophysics Data System (ADS)

    Hofmann, W.

    2016-06-01

    The Cherenkov Telescope Array (CTA) is a next-generation observatory for very high energy (VHE) gamma-ray astronomy. With one array of imaging atmospheric Cherenkov telescopes each in the northern and southern hemispheres, CTA will provide full-sky coverage, enhance flux sensitivity by one order of magnitude compared to current instruments, cover gamma-ray energies from 20 GeV to 300 TeV, and provide angular resolution of a few arc-minutes across a multi-degree field of view. In the context of its Key Science Projects (KSPs), CTA will conduct a census of particle acceleration in the universe, with quarter-sky extragalactic, full-plane Galactic and Large Magellanic Cloud surveys planned. Additional KSPs are focused on transients, acceleration up to PeV energies in our own galaxy, active galaxies, star-forming systems on a wide range of scales, and the Perseus cluster of galaxies. A major element of the programme is the search for dark matter, in particular the annihilation signature of WIMPs. Like for current-generation VHE instruments, CTA science will strongly rely upon multiwavelength observations of sources, with the X-ray domain playing a particularly crucial role. The presentation will briefly introduce CTA, summarize its science perspectives, and address the synergies with instruments in other wavebands.

  17. Global mental health and neuroscience: potential synergies.

    PubMed

    Stein, Dan J; He, Yanling; Phillips, Anthony; Sahakian, Barbara J; Williams, John; Patel, Vikram

    2015-02-01

    Global mental health has emerged as an important specialty. It has drawn attention to the burden of mental illness and to the relative gap in mental health research and services around the world. Global mental health has raised the question of whether this gap is a developmental issue, a health issue, a human rights issue, or a combination of these issues-and it has raised awareness of the need to develop new approaches for building capacity, mobilising resources, and closing the research and treatment gap. Translational neuroscience has also advanced. It comprises an important conceptual approach to understanding the neurocircuitry and molecular basis of mental disorders, to rethinking how best to undertake research on the aetiology, assessment, and treatment of these disorders, with the ultimate aim to develop entirely new approaches to prevention and intervention. Some apparent contrasts exist between these fields; global mental health emphasises knowledge translation, moving away from the bedside to a focus on health systems, whereas translational neuroscience emphasises molecular neuroscience, focusing on transitions between the bench and bedside. Meanwhile, important opportunities exist for synergy between the two paradigms, to ensure that present opportunities in mental health research and services are maximised. Here, we review the approaches of global mental health and clinical neuroscience to diagnosis, pathogenesis, and intervention, and make recommendations for facilitating an integration of these two perspectives. PMID:26359754

  18. The Euclid Mission

    NASA Astrophysics Data System (ADS)

    Racca, Giuseppe; Laureijs, Rene

    Euclid is a space-based optical/near-infrared survey mission of the European Space Agency (ESA) designed to investigate the nature of dark energy, dark matter and gravity by observing their signatures on the geometry of the Universe and on the formation of large structures over cosmological timescales. Euclid is optimised for two primary cosmological probes: Weak gravitational Lensing, which requires the measurement of the shape and photometric redshifts of distant galaxies, and Galaxy Clustering, based on the measurement of the 3-dimensional distribution of galaxies through their spectroscopic redshifts. The mission is scheduled for a launch date in the first half of 2020 and is designed for 6 years of nominal survey operations. The Euclid Spacecraft is composed of a Service Module and a Payload Module. The Service Module comprises all the conventional spacecraft subsystems, the instruments warm electronics units, the sun shield and the solar arrays. The Payload Module consists of a 1.2 m three-mirror Korsch type telescope and of two instruments, the visible imager and the near-infrared spectro-photometer, both covering a large common field-of-view enabling to survey more than 35% of the entire sky. The ground segment is broken down into three elements: the Mission Operations, the Science Operations under the responsibility of ESA and the Science Data Centres belonging to the Euclid Consortium. We will describe the overall mission, the mission elements architecture and the current project status.

  19. Locus equations are an acoustic expression of articulator synergy

    PubMed Central

    Iskarous, Khalil; Fowler, Carol A.; Whalen, D. H.

    2010-01-01

    The study investigated the articulatory basis of locus equations, regression lines relating F2 at the start of a Consonant-Vowel (CV) transition to F2 at the middle of the vowel, with C fixed and V varying. Several studies have shown that consonants of different places of articulation have locus equation slopes that descend from labial to velar to alveolar, and intercept magnitudes that increase in the opposite order. Using formulas from the theory of bivariate regression that express regression slopes and intercepts in terms of standard deviations and averages of the variables, it is shown that the slope directly encodes a well-established measure of coarticulation resistance. It is also shown that intercepts are directly related to the degree to which the tongue body assists the formation of the constriction for the consonant. Moreover, it is shown that the linearity of locus equations and the linear relation between locus equation slopes and intercepts originates in linearity in articulation between the horizontal position of the tongue dorsum in the consonant and to that in the vowel. It is concluded that slopes and intercepts of acoustic locus equations are measures of articulator synergy. PMID:20968373

  20. Global phosphorus scarcity: identifying synergies for a sustainable future.

    PubMed

    Neset, Tina-Simone S; Cordell, Dana

    2012-01-15

    Global food production is dependent on constant inputs of phosphorus. In the current system this phosphorus is not predominantly derived from organic recycled waste, but to a large degree from phosphate-rock based mineral fertilisers. However, phosphate rock is a finite resource that cannot be manufactured. Our dependency therefore needs to be addressed from a sustainability perspective in order to ensure global food supplies for a growing global population. The situation is made more urgent by predictions that, for example, the consumption of resource intensive foods and the demand for biomass energy will increase. The scientific and societal debate has so far been focussed on the exact timing of peak phosphorus and on when the total depletion of the global reserves will occur. Even though the timing of these events is important, all dimensions of phosphorus scarcity need to be addressed in a manner which acknowledges linkages to other sustainable development challenges and which takes into consideration the synergies between different sustainability measures. Many sustainable phosphorus measures have positive impacts on other challenges; for example, shifting global diets to more plant-based foods would not only reduce global phosphorus consumption, but also reduce greenhouse gas emissions, reduce nitrogen fertiliser demand and reduce water consumption. PMID:21969145

  1. The capability of satellite borne remote sensors to measure stratospheric trace constituents. Volume 2: Ozone and aerosol related missions

    NASA Technical Reports Server (NTRS)

    Keitz, E. L.

    1978-01-01

    Stratospheric trace constituent measurement requirements are separated into two somewhat overlapping areas. In the first area, it is assumed that the only problem of interest is ozone; its chemistry chain, environmental effects and measurement requirements. In like manner, in the second area it is assumed that the only problem of interest is stratospheric aerosols; their chemistry, effects and measurement requirements.

  2. Towards an integrated determination of thermodynamic density and gravity parameters using accelerometer measurements on board of low-orbit satellite missions

    NASA Astrophysics Data System (ADS)

    Kusche, Jürgen; Forootan, Ehsan; Löcher, Anno; Henze, Christina; Börger, Klaus; Schall, Judith

    2015-04-01

    The aim of this study is to develop an integrated approach, which allows a) to measure the neutral density of the thermosphere using orbit and accelerometer information from various satellite missions and b) to relate them to operational atmospheric models. The satellite missions to be considered will include low-orbit satellites CHAMP, GRACE, GOCE and SWARM; laser-ranging satellites such as LAGEOS; as well as altimetry satellites such as Topex/Poseidon and Jason 1-2. On the other hand different atmospheric models, including Jacchia-Bowman, MSIS 86, MSISE 90, and NRLMSISE-00 models, will be investigated with respect to their sensitivity to geomagnetic activity and sunspot cycle etc. and they will be used to determine a theoretical acceleration due to air drag. Subsequently, we will compare the "computed" atmospheric density with the total mass density ("observed" atmospheric density) retrieved from accelerometer measurements made on board the satellites during their operational period. Based on these results we finally will develop a method - a so called "integrated approach" - that allows the joint determination of thermospherical, instrumental, and gravitational parameters, as well as their respective errors and correlations.

  3. PhyLM: A Mission Design Concept for an Optical/Lidar Instrument to Measure Ocean Productivity and Aerosols from Space

    NASA Technical Reports Server (NTRS)

    Gervin, Janette C.; Behrenfeld, Michael; McClain, Charles R.; Spinhirne, James; Purves, Lloyd; Wood, H. John; Roberto, Michael R.

    2004-01-01

    The Physiology Lidar-Multispectral Mission (PhyLM) is intended to explore the complex ecosystems of our global oceans. New "inversion" methods and improved understanding of marine optics have opened the door to quantifying a range of critical ocean properties. This new information could revolutionize our understanding of global ocean processes, such as phytoplankton growth, harmful algal blooms, carbon fluxes between major pools and the productivity equation. The new science requires new measurements not addressed by currently planned space missions. PhyLM will combine active and advanced passive remote sensing technologies to quantify standing stocks and fluxes of climate-critical components of the Ocean carbon cycle to meet these science providing multispectral bands from the far UV through the near infrared (340 - 1250 nm) at a ground resolution of 250 m. Improved detectors, filters, mirrors, digitization and focal plane design will offer an overall higher-quality data product. The unprecedented accuracy and precision of the absolute water-leaving radiances will support inversion- based quantification of an expanded set of ocean carbon cycle components. The dual- wavelength (532 & 1064 nm) Nd:Yag Lidar will enhance the accuracy and precision of the passive data by providing aerosol profiles for atmospheric correction and coincident active measurements of backscattering. The Lidar will also examine dark-side fluorescence as an additional approach to quantifying phytoplankton biomass in highly productive regions.

  4. Development of Ground-Based Auroral Photometry Techniques Using In-Situ Electron Precipitation Measurements from the GREECE Mission

    NASA Astrophysics Data System (ADS)

    Grubbs, G. A., II; Samara, M.; Michell, R.; Hampton, D.

    2014-12-01

    The Ground-to-Rocket Electrodynamics-Electrons Correlative Experiment (GREECE) mission successfully launched from Poker Flat, Alaska on 03 March 2014 at 11:09:50 UT and reached an apogee of approximately 335 km during a luminous auroral event. Multiple ground-based electron-multiplying charge-coupled device (EMCCD) imagers were positioned at Venetie, Alaska and aimed along magnetic zenith in order to observe the brightness of different auroral emission lines (427.8, 557.7, and 844.6 nm with a 47 degree field of view) at the magnetic footpoint of the payload, near apogee. Emission line brightness data are presented at the footpoint of the rocket flight and correlated with electron characteristics taken by the Acute Precipitating Electron Spectrometer (APES) on-board instrument. Ratios of different auroral emission lines are also compared to previously published methods and models. This research aims to describe the auroral emissions produced from a known precipitating electron distribution, such that we can more accurately use ground-based imaging and photometry to infer the characteristics of the precipitating electrons. These techniques can then be applied over larger scales and longer times, when only multi-spectral imaging data are available with no corresponding in situ data.

  5. Apollo 16 mission report

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Information is provided on the operational and engineering aspects of the Apollo 16 mission. Customary units of measurement are used in those sections of the report pertaining to spacecraft systems and trajectories. The International System of Units is used in sections pertaining to science activities.

  6. The OASIS Mission

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Barghouty, Abdulnasser F.; Binns, W. robert; Christl, Mark; Cosse, Charles B.; Guzik, T. Gregory; deNolfo, Georgia A.; Hams,Thomas; Isbert, Joachim; Israel, Martin H.; Krizmanic, John F.; Labrador, Allan W.; Link, Jason T.; Mewaldt, Richard A.; Mitchell, Martin H.; Moiseev, Alexander A.; Sasaki, Makoto; Stochaj, Steven J.; Stone, Edward C.; Steitmatter, Robert E.; Waddington, C. Jake; Watts, John W.; Wefel, John P.; Wiedenbeck, Mark E.

    2010-01-01

    The Orbiting Astrophysical Observatory in Space (OASIS) is a mission to investigate Galactic Cosmic Rays (GCRs), a major feature of our galaxy. OASIS will use measurements of GCRs to determine the cosmic ray source, where they are accelerated, to investigate local accelerators and to learn what they can tell us about the interstellar medium and the processes that occur in it. OASIS will determine the astrophysical sources of both the material and acceleration of GCRs by measuring the abundances of the rare actinide nuclei and make direct measurements of the spectrum and anisotropy of electrons at energies up to approx.10 TeV, well beyond the range of the Fermi and AMS missions. OASIS has two instruments. The Energetic Trans-Iron Composition Experiment (ENTICE) instrument measures elemental composition. It resolves individual elements with atomic number (Z) from 10 to 130 and has a collecting power of 60m2.str.yrs, >20 times larger than previous instruments, and with improved resolution. The sample of 10(exp 10) GCRs collected by ENTICE will include .100 well-resolved actinides. The High Energy Particle Calorimeter Telescope (HEPCaT) is an ionization calorimeter that will extend the electron spectrum into the TeV region for the first time. It has 7.5 sq m.str.yrs of collecting power. This talk will describe the scientific objectives of the OASIS mission and its discovery potential. The mission and its two instruments which have been designed to accomplish this investigation will also be described.

  7. Pioneer Mars surface penetrator mission. Mission analysis and orbiter design

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Mars Surface Penetrator mission was designed to provide a capability for multiple and diverse subsurface science measurements at a low cost. Equipment required to adapt the Pioneer Venus spacecraft for the Mars mission is described showing minor modifications to hardware. Analysis and design topics which are similar and/or identical to the Pioneer Venus program are briefly discussed.

  8. Non-Contact Measurement of the Spectral Emissivity through Active/Passive Synergy of CO2 Laser at 10.6 µm and 102F FTIR (Fourier Transform Infrared) Spectrometer

    PubMed Central

    Zhang, Ren-Hua; Su, Hong-Bo; Tian, Jing; Mi, Su-Juan; Li, Zhao-Liang

    2016-01-01

    In the inversion of land surface temperature (LST) from satellite data, obtaining the information on land surface emissivity is most challenging. How to solve both the emissivity and the LST from the underdetermined equations for thermal infrared radiation is a hot research topic related to quantitative thermal infrared remote sensing. The academic research and practical applications based on the temperature-emissivity retrieval algorithms show that directly measuring the emissivity of objects at a fixed thermal infrared waveband is an important way to close the underdetermined equations for thermal infrared radiation. Based on the prior research results of both the authors and others, this paper proposes a new approach of obtaining the spectral emissivity of the object at 8–14 µm with a single-band CO2 laser at 10.6 µm and a 102F FTIR spectrometer. Through experiments, the spectral emissivity of several key samples, including aluminum plate, iron plate, copper plate, marble plate, rubber sheet, and paper board, at 8–14 µm is obtained, and the measured data are basically consistent with the hemispherical emissivity measurement by a Nicolet iS10 FTIR spectrometer for the same objects. For the rough surface of materials, such as marble and rusty iron, the RMSE of emissivity is below 0.05. The differences in the field of view angle and in the measuring direction between the Nicolet FTIR method and the method proposed in the paper, and the heterogeneity in the degree of oxidation, polishing and composition of the samples, are the main reasons for the differences of the emissivities between the two methods. PMID:27347964

  9. Non-Contact Measurement of the Spectral Emissivity through Active/Passive Synergy of CO₂ Laser at 10.6 µm and 102F FTIR (Fourier Transform Infrared) Spectrometer.

    PubMed

    Zhang, Ren-Hua; Su, Hong-Bo; Tian, Jing; Mi, Su-Juan; Li, Zhao-Liang

    2016-01-01

    In the inversion of land surface temperature (LST) from satellite data, obtaining the information on land surface emissivity is most challenging. How to solve both the emissivity and the LST from the underdetermined equations for thermal infrared radiation is a hot research topic related to quantitative thermal infrared remote sensing. The academic research and practical applications based on the temperature-emissivity retrieval algorithms show that directly measuring the emissivity of objects at a fixed thermal infrared waveband is an important way to close the underdetermined equations for thermal infrared radiation. Based on the prior research results of both the authors and others, this paper proposes a new approach of obtaining the spectral emissivity of the object at 8-14 µm with a single-band CO₂ laser at 10.6 µm and a 102F FTIR spectrometer. Through experiments, the spectral emissivity of several key samples, including aluminum plate, iron plate, copper plate, marble plate, rubber sheet, and paper board, at 8-14 µm is obtained, and the measured data are basically consistent with the hemispherical emissivity measurement by a Nicolet iS10 FTIR spectrometer for the same objects. For the rough surface of materials, such as marble and rusty iron, the RMSE of emissivity is below 0.05. The differences in the field of view angle and in the measuring direction between the Nicolet FTIR method and the method proposed in the paper, and the heterogeneity in the degree of oxidation, polishing and composition of the samples, are the main reasons for the differences of the emissivities between the two methods. PMID:27347964

  10. A Full Mission Simulator Study of Aircrew Performances: the Measurement of Crew Coordination and Decisionmaking Factors and Their Relationships to Flight Task Performances

    NASA Technical Reports Server (NTRS)

    Murphy, M. R.; Randle, R. J.; Tanner, T. A.; Frankel, R. M.; Goguen, J. A.; Linde, C.

    1984-01-01

    Sixteen three man crews flew a full mission scenario in an airline flight simulator. A high level of verbal interaction during instances of critical decision making was located. Each crew flew the scenario only once, without prior knowledge of the scenario problem. Following a simulator run and in accord with formal instructions, each of the three crew members independently viewed and commented on a videotape of their performance. Two check pilot observers rated pilot performance across all crews and, following each run, also commented on the video tape of the crew's performance. A linguistic analysis of voice transcript is made to provide assessment of crew coordination and decision making qualities. Measures of crew coordination and decision making factors are correlated with flight task performance measures.

  11. STS-52 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The STS-52 insignia, designed by the mission's crew members, features a large gold star to symbolize the crew's mission on the frontiers of space. A gold star is often used to symbolize the frontier period of the American West. The red star in the shape of the Greek letter lambda represents both the laser measurements taken from the Laser Geodynamic Satellite (LAGEOS II) and the Lambda Point Experiment, which was part of the United States Microgravity Payload (USMP-l). The remote manipulator and maple leaf are emblematic of the Canadian payload specialist who conducted a series of Canadian flight experiments (CANEX-2), including the Space Vision System test.

  12. A synergy-based hand control is encoded in human motor cortical areas

    PubMed Central

    Leo, Andrea; Handjaras, Giacomo; Bianchi, Matteo; Marino, Hamal; Gabiccini, Marco; Guidi, Andrea; Scilingo, Enzo Pasquale; Pietrini, Pietro; Bicchi, Antonio; Santello, Marco; Ricciardi, Emiliano

    2016-01-01

    How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional modules that may simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether and to what extent synergic hand postures are encoded as such at a cortical level remains unknown. Here, we combined kinematic, electromyography, and brain activity measures obtained by functional magnetic resonance imaging while subjects performed a variety of movements towards virtual objects. Hand postural information, encoded through kinematic synergies, were represented in cortical areas devoted to hand motor control and successfully discriminated individual grasping movements, significantly outperforming alternative somatotopic or muscle-based models. Importantly, hand postural synergies were predicted by neural activation patterns within primary motor cortex. These findings support a novel cortical organization for hand movement control and open potential applications for brain-computer interfaces and neuroprostheses. DOI: http://dx.doi.org/10.7554/eLife.13420.001 PMID:26880543

  13. Carbon monoxide total columns from SCIAMACHY 2.3 µm atmospheric reflectance measurements: towards a full-mission data product (2003-2012)

    NASA Astrophysics Data System (ADS)

    Borsdorff, T.; Tol, P.; Williams, J. E.; de Laat, J.; aan de Brugh, J.; Nédélec, P.; Aben, I.; Landgraf, J.

    2016-01-01

    We present a full-mission data product of carbon monoxide (CO) vertical column densities using the 2310-2338 nm SCIAMACHY reflectance measurements over clear-sky land scenes for the period January 2003-April 2012. The retrieval employs the SICOR algorithm, which will be used for operational data processing of the Sentinel-5 Precursor mission. The retrieval approach infers simultaneously carbon monoxide, methane and water vapour column densities together with a Lambertian surface albedo from individual SCIAMACHY measurements employing a non-scattering radiative transfer model. To account for the radiometric instrument degradation including the formation of an ice-layer on the 2.3 µm detector array, we consider clear-sky measurements over the Sahara as a natural calibration target. For these specific measurements, we spectrally calibrate the SCIAMACHY measurements and determine a spectral radiometric offset and the width of the instrument spectral response function as a function of time for the entire operational phase of the mission. We show that the smoothing error of individual clear-sky CO retrievals is less than ±1 ppb and thus this error contribution does not need to be accounted for in the validation considering the much higher retrieval noise. The CO data product is validated against measurements of ground-based Fourier transform infrared spectrometers at 27 stations of the NDACC-IRWG and TCCON network and MOZAIC/IAGOS aircraft measurements at 26 airports worldwide. Overall, we find a good agreement with TCCON measurements with a mean bias b = -1.2 ppb and a station-to-station bias with σ = 7.2 ppb. The negative sign of the bias means a low bias of SCIAMACHY CO with respect to TCCON. For the NDACC-IRWG network, we obtain a larger mean station bias of b = -9.2 ppb with

  14. Carbon monoxide total columns from SCIAMACHY 2.3 μm atmospheric reflectance measurements: towards a full-mission data product (2003-2012)

    NASA Astrophysics Data System (ADS)

    Borsdorff, T.; Tol, P.; Williams, J. E.; de Laat, J.; aan de Brugh, J.; Nédélec, P.; Aben, I.; Landgraf, J.

    2015-09-01

    We present a full-mission data product of carbon monoxide (CO) vertical column densities using the 2310-2338 nm SCIAMACHY reflectance measurements over clear sky land scenes for the period January 2003-April 2012. The retrieval employs the SICOR algorithm, which will be used for operational data processing of the Sentinel-5 Precursor mission, combined with a SCIAMACHY specific radiometric soft-calibration to mitigate instrumental issues. The retrieval approach infers simultaneously carbon monoxide, methane and water vapour column densities together with a Lambertian surface albedo from individual SCIAMACHY measurements employing a non-scattering radiative transfer model. To account for the radiometric instrument degradation including the formation of an ice-layer on the 2.3 μm detector-array, we consider clear sky measurements over the Sahara as a natural calibration target. For these specific measurements, we spectrally calibrate the SCIAMACHY measurements and determine a spectral radiometric offset and the width of the instrument spectral response function as a function of time for the entire operational phase of the mission. We show that the smoothing error of individual clear sky CO retrievals is less than ±1 ppb and thus this error contribution has not to be accounted for in the validation considering the much higher retrieval noise. The CO data product is validated against measurements of ground-based Fourier transform infrared spectrometers at 27 stations of the NDACC-IRWG and TCCON network and MOZAIC/IAGOS aircraft measurements at 26 airports worldwide. Overall, we find a good agreement with TCCON measurements with a mean bias b = -1.2 ppb and a station-to-station bias with σ = 7.2 ppb. For the NDACC-IRWG network, we obtain a larger mean station bias of b = -9.2 ppb with

  15. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC)

    NASA Technical Reports Server (NTRS)

    Liu, Zhong; Ostrenga, D.; Vollmer, B.; Deshong, B.; Greene, M.; Teng, W.; Kempler, S. J.

    2015-01-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http:pmm.nasa.govGPM). The GPM mission consists of an international network of satellites in which a GPM Core Observatory satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following: 1. Level-1 GPM Microwave Imager (GMI) and partner radiometer products. 2. Goddard Profiling Algorithm (GPROF) GMI and partner products. 3. Integrated Multi-satellitE Retrievals for GPM (IMERG) products. (early, late, and final)A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http:disc.sci.gsfc.nasa.govgpm). Data services that are currently and to-be available include Google-like Mirador (http:mirador.gsfc.nasa.gov) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http:giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding; data

  16. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    NASA Technical Reports Server (NTRS)

    Ostrenga, D.; Liu, Z.; Vollmer, B.; Teng, W.; Kempler, S.

    2014-01-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http:pmm.nasa.govGPM). The GPM mission consists of an international network of satellites in which a GPM Core Observatory satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following:Level-1 GPM Microwave Imager (GMI) and partner radiometer productsLevel-2 Goddard Profiling Algorithm (GPROF) GMI and partner productsLevel-3 daily and monthly productsIntegrated Multi-satellitE Retrievals for GPM (IMERG) products (early, late, and final) A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http:disc.sci.gsfc.nasa.govgpm). Data services that are currently and to-be available include Google-like Mirador (http:mirador.gsfc.nasa.gov) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http:giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time

  17. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC)

    NASA Astrophysics Data System (ADS)

    Ostrenga, D.; Liu, Z.; Vollmer, B.; Teng, W. L.; Kempler, S. J.

    2014-12-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http://pmm.nasa.gov/GPM). The GPM mission consists of an international network of satellites in which a GPM "Core Observatory" satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following: Level-1 GPM Microwave Imager (GMI) and partner radiometer products Goddard Profiling Algorithm (GPROF) GMI and partner products Integrated Multi-satellitE Retrievals for GPM (IMERG) products (early, late, and final) A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http://disc.sci.gsfc.nasa.gov/gpm). Data services that are currently and to-be available include Google-like Mirador (http://mirador.gsfc.nasa.gov/) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http://giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding

  18. The LISA Pathfinder Mission

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin

    2009-01-01

    LISA Pathfinder (formerly known as SMART-2) is a European Space Agency (ESA) mission designed to pave the way for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission by testing in flight the critical technologies required for spaceborne gravitational wave detection: it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. LISA Pathfinder is currently in the integration and test phase of the development, and is due to be launched on a dedicated launch vehicle in late 2011, with first results on the performance of the system being available approx 6 months later. This poster will describe the mission in detail, give the current status of the spacecraft development, and highlight the future milestones in the integration and test campaign.

  19. The PROBA-3 Mission

    NASA Astrophysics Data System (ADS)

    Zhukov, Andrei

    2016-07-01

    PROBA-3 is the next ESA mission in the PROBA line of small technology demonstration satellites. The main goal of PROBA-3 is in-orbit demonstration of formation flying techniques and technologies. The mission will consist of two spacecraft together forming a giant (150 m long) coronagraph called ASPIICS (Association of Spacecraft for Polarimetric and Imaging Investigation of the Corona of the Sun). The bigger spacecraft will host the telescope, and the smaller spacecraft will carry the external occulter of the coronagraph. ASPIICS heralds the next generation of solar coronagraphs that will use formation flying to observe the inner corona in eclipse-like conditions for extended periods of time. The occulter spacecraft will also host the secondary payload, DARA (Davos Absolute RAdiometer), that will measure the total solar irradiance. PROBA-3 is planned to be launched in 2019. The scientific objectives of PROBA-3 will be discussed in the context of other future solar and heliospheric space missions.

  20. Mission statements in Canadian hospitals.

    PubMed

    Bart, Christopher K; Hupfer, Maureen

    2004-01-01

    One of the most popular management tools in the world, the mission statement also is subject to widespread criticism. In order to improve our understanding of the mission statement's strategic value and to provide actionable recommendations for healthcare organizations, the paper adopted a social constructionist perspective in a mission statement study conducted among Canadian hospital executives. The paper found seven factors underlying 23 possible mission statement content items. Four of these (grand inspiration, benefactors, competitive orientation and business definition) corresponded to the dimensions of dominant managerial logic proposed by von Krogh and Grand, and were positively related to various behavioral, financial performance and mission achievement measures. The findings indicate that not all mission statement components are created equal and that the recommendations of major strategy texts may require reconsideration where this particular institutional context is concerned. PMID:15366277

  1. Geospace Magnetospheric Dynamics Mission

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Kluever, C.; Burch, J. L.; Fennell, J. F.; Hack, K.; Hillard, G. B.; Kurth, W. S.; Lopez, R. E.; Luhmann, J. G.; Martin, J. B.; Hanson, J. E.

    1998-01-01

    The Geospace Magnetospheric Dynamics (GMD) mission is designed to provide very closely spaced, multipoint measurements in the thin current sheets of the magnetosphere to determine the relation between small scale processes and the global dynamics of the magnetosphere. Its trajectory is specifically designed to optimize the time spent in the current layers and to minimize radiation damage to the spacecraft. Observations are concentrated in the region 8 to 40 R(sub E) The mission consists of three phases. After a launch into geostationary transfer orbit the orbits are circularized to probe the region between geostationary orbit and the magnetopause; next the orbit is elongated keeping perigee at the magnetopause while keeping the line of apsides down the tail. Finally, once apogee reaches 40 R(sub E) the inclination is changed so that the orbit will match the profile of the noon-midnight meridian of the magnetosphere. This mission consists of 4 solar electrically propelled vehicles, each with a single NSTAR thruster utilizing 100 kg of Xe to tour the magnetosphere in the course of a 4.4 year mission, the same thrusters that have been successfully tested on the Deep Space-1 mission.

  2. European Crew Personal Active Dosimeter (EuCPAD), a novel dosimetry system utilizing operational and scientific synergies for the benefit of humans in space

    NASA Astrophysics Data System (ADS)

    Straube, Ulrich; Berger, Thomas

    A significant expansion of Human presence in space can be recognized over the last decade. Not only the frequency of human space mission did rise, but also time in space, mission duration with extended flights lasting half a year or more are becoming "standard". Despite the challenges to human health and well-being are still significant, or may even increase with mission length and work density. Also radiation exposure in space remains one of the inevitable and dominating factors relevant to crew- health, -safety and therefore mission success. The radiation environment that the space crews are exposed to differs significantly as compared to earth. Exposure in flight exceed doses that are usually received by terrestrial radiation workers on ground. Expanding "medical" demands are not a solely characteristics of current and current and upcoming mission scenarios. Likewise the margins for what is understood as "efficient utilization" for the fully operational science platform ISS, are immense. Understanding, accepting and approaching these challenges ESA-HSO did choose a particular pass of implementation for one of their current developments. Exploiting synergies of research, science and medical operational aspects, the "European Crew Personal Active Dosimeter for Astronauts (EuCPAD)" development exactly addresses these circumstances. It becomes novel part of ESA Radiation Protection Initiative for astronauts. The EuCPAD project aims at the development and manufacturing of an active (powered) dosimeter system to measure astronaut's exposures, support risk assessment dose management by providing a differentiated data set. Final goal is the verification of the system capabilities for medical monitoring at highest standards. The EuCPAD consists of several small portable Personal Active Dosimeters (MU = Mobile Unitas) and a rack mounted docking station “Personal Storage Device (PSD)” for MU storage, data read out and telemetry. The PSD furthermore contains a Tissue

  3. Pioneer F mission to Jupiter

    NASA Technical Reports Server (NTRS)

    Allaway, H. G.; Waller, P. W.

    1972-01-01

    The experimental designs for the Pioneer F mission to Jupiter are described. The spacecraft is designed to make measurements of the planet's atmosphere, radiation belts, heat balance, magnetic fields, moons, and other related phenomena. The mission also characterizes the heliosphere, the interstellar gas, cosmic rays, asteroids, and meteoroids between the earth and 2.4 billion kilometers from the sun.

  4. 3D Online Visualization and Synergy of NASA A-Train Data Using Google Earth

    NASA Technical Reports Server (NTRS)

    Chen, Aijun; Kempler, Steven; Leptoukh, Gregory; Smith, Peter

    2010-01-01

    This poster presentation reviews the use of Google Earth to assist in three dimensional online visualization of NASA Earth science and geospatial data. The NASA A-Train satellite constellation is a succession of seven sun-synchronous orbit satellites: (1) OCO-2 (Orbiting Carbon Observatory) (will launch in Feb. 2013), (2) GCOM-W1 (Global Change Observation Mission), (3) Aqua, (4) CloudSat, (5) CALIPSO (Cloud-Aerosol Lidar & Infrared Pathfinder Satellite Observations), (6) Glory, (7) Aura. The A-Train makes possible synergy of information from multiple resources, so more information about earth condition is obtained from the combined observations than would be possible from the sum of the observations taken independently

  5. Quantifying consistency and biases between aircraft, balloon and remote sensing measurements of UT/LS water vapor during the WB-57 NASA MACPEX mission

    NASA Astrophysics Data System (ADS)

    Gao, R.; Rollins, A.; Thornberry, T. D.; Hall, E.; Jordan, A.; Hurst, D. F.; Smith, J. B.; Sargent, M. R.; Fahey, D. W.

    2011-12-01

    Mixing ratios of water vapor in Earth's upper troposphere and lower stratosphere (UT/LS) are low (< 10 ppmv), yet water in this region is a significant driver of climate. Significant discrepancies have repeatedly been observed between multiple high precision measurements of water vapor at these low values in the UT/LS, leading to uncertainty in the absolute value of the direct radiative forcing from stratospheric water vapor. During the NASA Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) mission in March and April of 2011, measurements of water vapor in the UT/LS were made using the NOAA chemical ionization mass spectrometer (CIMS) and Harvard Lyman-α water vapor (HWV) instruments integrated on the NASA WB-57 based out of Ellington Field, TX. This was the first aircraft deployment of the CIMS instrument configured to measure water vapor. The CIMS carried a novel in situ calibration system using two independent water vapor standards that were in excellent agreement throughout the campaign. CIMS was also in excellent agreement with HWV, which operates and is calibrated using fundamentally different principles. The redundant and independent calibration systems of CIMS and HWV afford new confidence in the accuracy of these aircraft measurements. We compare these aircraft measurements of water vapor to those made with the MLS instrument on the AURA satellite, and to frost point balloon borne (NOAA FPH and CFH) measurements coordinated with the WB-57 descents from the LS. A persistent bias of 0.7 ppmv is observed between the frost point and aircraft measurements in the 3 to 10 ppmv range, with frost point being lower. The MLS measurements are less precise, but generally fall between the balloon and aircraft measurements in the LS. These measurements renew interest in comparisons in the tropics where even lower mixing ratios and higher saturations with respect to ice are encountered.

  6. Kepler Mission

    NASA Technical Reports Server (NTRS)

    Borucki, William J.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The first step in discovering, the extent of life in our galaxy is to determine the number of terrestrial planets in the habitable zone (HZ). The Kepler Mission is a 0.95 m aperture photometer scheduled to be launched in 2006. It is designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. The depth and repetition time of transits provide the size of the planet relative to the star and its orbital period. When combined with ground-based spectroscopy of these stars to fix the stellar parameters, the true planet radius and orbit scale, hence the relation to the HZ are determined. These spectra are also used to discover the relationships between the characteristics of planets and the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. Based on the results of the current Doppler - velocity discoveries, over a thousand giant planets will be found. Information on the albedos and densities of those giants showing transits will be obtained. At the end of the four year mission, hundreds of terrestrial planets should be discovered in and near the HZ of their stars if such planets are common. A null result would imply that terrestrial planets in the HZ occur in less than 1% of the stars and that life might be quite rare.

  7. Payload missions integration

    NASA Technical Reports Server (NTRS)

    Mitchell, R. A. K.

    1983-01-01

    Highlights of the Payload Missions Integration Contract (PMIC) are summarized. Spacelab Missions no. 1 to 3, OSTA partial payloads, Astro-1 Mission, premission definition, and mission peculiar equipment support structure are addressed.

  8. The OCO-3 MIssion

    NASA Astrophysics Data System (ADS)

    Eldering, A.; Kaki, S.; Crisp, D.; Gunson, M. R.

    2013-12-01

    For the OCO-3 mission, NASA has approved a proposal to install the OCO-2 flight spare instrument on the International Space Station (ISS). The OCO-3 mission on ISS will have a key role in delivering sustained, global, scientifically-based, spaceborne measurements of atmospheric CO2 to monitor natural sources and sinks as part of NASA's proposed OCO-2/OCO-3/ASCENDS mission sequence and NASA's Climate Architecture. The OCO-3 mission will contribute to understanding of the terrestrial carbon cycle through enabling flux estimates at smaller spatial scales and through fluorescence measurements that will reduce the uncertainty in terrestrial carbon flux measurements and drive bottom-up land surface models through constraining GPP. The combined nominal missions of both OCO-2 and OCO-3 will likely span a complete El Niño Southern Oscillation (ENSO) cycle, a key indicator of ocean variability. In addition, OCO-3 may allow investigation of the high-frequency and wavenumber structures suggested by eddying ocean circulation and ecosystem dynamics models. Finally, significant growth of urban agglomerations is underway and projected to continue in the coming decades. With the city mode sampling of the OCO-3 instrument on ISS we can evaluate different sampling strategies aimed at studying anthropogenic sources and demonstrate elements of a Greenhouse Gas Information system, as well as providing a gap-filler for tracking trends in the fastest-changing anthropogenic signals during the coming decade. In this presentation, we will describe our science objectives, the overall approach of utilization of the ISS for OCO-3, and the unique features of XCO2 measurements from ISS.

  9. Euclid Mission: Mapping the Geometry of the Dark Universe. Mission and Consortium Status

    NASA Technical Reports Server (NTRS)

    Rhodes, Jason

    2011-01-01

    Euclid concept: (1) High-precision survey mission to map the geometry of the Dark Universe (2) Optimized for two complementary cosmological probes: (2a) Weak Gravitational Lensing (2b) Baryonic Acoustic Oscillations (2c) Additional probes: clusters, redshift space distortions, ISW (3) Full extragalactic sky survey with 1.2m telescope at L2: (3a) Imaging: (3a-1) High precision imaging at visible wavelengths (3a-2) Photometry/Imaging in the near-infrared (3b) Near Infrared Spectroscopy (4) Synergy with ground based surveys (5) Legacy science for a wide range of in astronomy

  10. Observed Differences Between Imaging Nephelometer Scattering Measurements and AERONET Retrievals During the Discover-AQ Field Missions

    NASA Astrophysics Data System (ADS)

    Espinosa, R.; Remer, L. A.; Orozco, D.; Dolgos, G.; Martins, J. V.

    2015-12-01

    Aerosols, clouds, and their interaction play a central role in the climate of our planet. Satellite remote sensing allows for global measurements of aerosol radiative properties; however high confidence in these measurements, and their corresponding retrieval algorithms, requires in situ validation. The Laboratory for Aerosols, Clouds and Optics (LACO) at the University of Maryland, Baltimore County (UMBC) has developed the Imaging Nephelometer, a uniquely accurate instrument concept for the measurement of in situ optical scattering properties. Imaging Nephelometers provide measurements of the scattering coefficient, phase function and polarized phase function over an angular range of 3 to 177 degrees with an angular resolution better than one degree. The first of these instruments, the Polarized Imaging NEPHelometer (PI-NEPH) has taken part in five airborne field experiments and shown high accuracy in a wide variety of validation studies. In 2014 the open path, Open Imaging NEPHhelometer (OI-NEPH), was constructed at UMBC. This instrument provides measurements that are free from size biases introduced by a sampling inlet as well as changes in hydroscopic growth resulting from relative humidity changes. This presentation will provide an intercomparison between the aerosol properties that are measured and retrieved by LACO Imaging Nephelometers and the corresponding remote sensing retrievals obtained during the California and Colorado DISCOVER-AQ field experiments. The primary goal of this work will be to compare the scattering-weighted, column-averaged in situ phase functions measured by Imaging Nephelometers with the corresponding phase function retrievals performed by collocated AERONET (AErosol RObotic NETwork) sun photometers. These comparisons will include profiles with a wide range of aerosol loadings, including cases with low optical depth where the AERONET retrieval is less frequently evaluated and the quality of the resulting products is not well known.

  11. Measuring the spacecraft and environmental interactions of the 8-cm mercury ion thrusters on the P80-1 mission

    NASA Technical Reports Server (NTRS)

    Power, J. L.

    1981-01-01

    The subject interface measurements are described for the Ion Auxiliary Propulsion System (IAPS) flight test of two 8-cm thrusters. The diagnostic devices and the effects to be measured include: 1) quartz crystal microbalances to detect nonvolatile deposition due to thruster operation; 2) warm and cold solar cell monitors for nonvolatile and volatile (mercury) deposition; 3) retarding potential ion collectors to characterize the low energy thruster ionic efflux; and 4) a probe to measure the spacecraft potential and thruster generated electron currents to biased spacecraft surfaces. The diagnostics will also assess space environmental interactions of the spacecraft and thrusters. The diagnostic data will characterize mercury thruster interfaces and provide data useful for future applications.

  12. The Asteroid Impact Mission

    NASA Astrophysics Data System (ADS)

    Carnelli, Ian; Galvez, Andres; Mellab, Karim

    2016-04-01

    The Asteroid Impact Mission (AIM) is a small and innovative mission of opportunity, currently under study at ESA, intending to demonstrate new technologies for future deep-space missions while addressing planetary defense objectives and performing for the first time detailed investigations of a binary asteroid system. It leverages on a unique opportunity provided by asteroid 65803 Didymos, set for an Earth close-encounter in October 2022, to achieve a fast mission return in only two years after launch in October/November 2020. AIM is also ESA's contribution to an international cooperation between ESA and NASA called Asteroid Impact Deflection Assessment (AIDA), consisting of two mission elements: the NASA Double Asteroid Redirection Test (DART) mission and the AIM rendezvous spacecraft. The primary goals of AIDA are to test our ability to perform a spacecraft impact on a near-Earth asteroid and to measure and characterize the deflection caused by the impact. The two mission components of AIDA, DART and AIM, are each independently valuable but when combined they provide a greatly increased scientific return. The DART hypervelocity impact on the secondary asteroid will alter the binary orbit period, which will also be measured by means of lightcurves observations from Earth-based telescopes. AIM instead will perform before and after detailed characterization shedding light on the dependence of the momentum transfer on the asteroid's bulk density, porosity, surface and internal properties. AIM will gather data describing the fragmentation and restructuring processes as well as the ejection of material, and relate them to parameters that can only be available from ground-based observations. Collisional events are of great importance in the formation and evolution of planetary systems, own Solar System and planetary rings. The AIDA scenario will provide a unique opportunity to observe a collision event directly in space, and simultaneously from ground-based optical and

  13. The ATLAS-1 mission

    NASA Technical Reports Server (NTRS)

    Torr, Marsha R.

    1994-01-01

    Atmospheric Laboratory for Applications and Science (ATLAS)-1 was launched on March 24, 1992, carrying an international payload of 14 investigations, and conducted a successful series of experiments and observations over the subsequent 9 days. The objectives included: measuring the solar irradiance at high precision; remote sensing of the composition of the stratosphere, mesosphere, and thermosphere using techniques for wavelengths from 300 A to 5 mm; and inducing auroras by means of 1.2 amp electron beams. A subset of these instruments will subsequently be flown in a series of shuttle missions at roughly 1-year intervals over an 11-year solar cycle. The frequent recalibration opportunities afforded by such a program allows the transfer of calibrations to longer duration orbiting observatories. The ATLAS-1 mission occurred at the same time as the Upper Atmosphere Research Satellite (UARS), TIROS-N, and ERB satellites were in operation, and correlative measurements were conducted with these. In all, the mission was most successful in achieving its objectives and a unique and important database was acquired, with many scientific firsts accomplished. This paper provides the mission overview for the series of papers that follow.

  14. The LISA Pathfinder Mission

    NASA Astrophysics Data System (ADS)

    Armano, M.; Audley, H.; Auger, G.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E.; Freschi, M.; Gallegos, J.; García Marirrodriga, C.; Gerndt, R.; Gesa, L. I.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C.; Lloro, I.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martín, V.; Martin-Porqueras, F.; Mateos, I.; McNamara, P.; Mendes, J.; Mendes, L.; Moroni, A.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J.; Trenkel, C.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Wealthy, D.; Wen, S.; Weber, W.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.

    2015-05-01

    LISA Pathfinder (LPF), the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology validation mission for future spaceborne gravitational wave detectors, such as the proposed eLISA mission. LISA Pathfinder, and its scientific payload - the LISA Technology Package - will test, in flight, the critical technologies required for low frequency gravitational wave detection: it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. This is achieved through technology comprising inertial sensors, high precision laser metrology, drag-free control and an ultra-precise micro-Newton propulsion system. LISA Pathfinder is due to be launched in mid-2015, with first results on the performance of the system being available 6 months thereafter. The paper introduces the LISA Pathfinder mission, followed by an explanation of the physical principles of measurement concept and associated hardware. We then provide a detailed discussion of the LISA Technology Package, including both the inertial sensor and interferometric readout. As we approach the launch of the LISA Pathfinder, the focus of the development is shifting towards the science operations and data analysis - this is described in the final section of the paper

  15. Satellite Remote Sensing of the Reactive Lower Atmosphere Using Medium Resolution Infrared Measurements: Highlights from Iasi Mission

    NASA Astrophysics Data System (ADS)

    Coheur, P. F.

    2013-06-01

    Human activities have significantly altered the equilibrium of the Earth atmosphere. If the steady increase in the concentration of greenhouse gases has attracted most of the attention, it is important as well to monitor the evolution of our "reactive atmosphere", as shorter-lived atmospheric species impact human health and ecosystems directly (e.g. local air quality) or indirectly (e.g. chemistry-climate interactions), through poorly known and quantified processes. Optical instruments on board satellites, and especially those operating in the infrared with sufficient spectral resolution, provide unique opportunity for measuring reactive trace gases in the troposphere and the stratosphere on various scales. The presentation focuses on the measurements of the Infrared Atmospheric Sounding Interferometer IASI onboard Metop satellites. IASI makes global measurements of the Earth atmosphere in a nadir view, i.e. looking downward at the terrestrial radiation, with a horizontal resolution of a few hundreds km^2. It provides more than 10^6 radiance spectra daily, which cover the infrared range between 645 and 2760 cm^{-1} at medium spectral resolution (0.5 cm^{-1} apodized) and low noise. This, coupled to the exceptional sampling performances of IASI, made breakthroughs in the fields of atmospheric spectroscopy and chemistry. In this talk, we will shortly describe IASI instrument and its spectral measurements, as well as the radiative transfer model and retrieval scheme set up for near-real-time processing. We will review the principal accomplishments of IASI in probing the reactive atmosphere by measuring simultaneously the concentrations of about 25 trace species with short (e.g. NH_3, SO_2) to medium (e.g. O_3, CO) residence time, and from the local emission hotspot to the planetary scale. We will put emphasis on the challenging measurements of the polluted planetary boundary layer and will also show a series of focused results on pollution outflow, transport and in

  16. Resource synergy in stream periphyton communities

    SciTech Connect

    Hill, Walter; Fanta, S.E.; Roberts, Brian J; Francoeur, Steven N.

    2011-03-01

    1. Light and nutrients play pivotal roles in determining the growth of autotrophs, yet the potential for synergistic interactions between the two resources in algal communities is poorly understood, especially in stream ecosystems. In this study, light and phosphorus were manipulated in large experimental streams to examine resource colimitation and synergy in stream periphyton. 2. Whole-stream metabolism was simultaneously limited by light and phosphorus. Increasing the supply of either light or phosphorus resulted in significant increases in primary production and the transformation of the streams from heterotrophy to autotrophy. 3. Resource-driven changes in periphyton community structure occurred in concert with changes in production. Algal assemblages in highly shaded streams were composed primarily of small diatoms such as Achnanthidium minutissima, whereas larger diatoms such as Melosira varians predominated at higher irradiances. Phosphorus enrichment had relatively little effect on assemblage structure, but it did substantially diminish the abundance of Meridion circulare, a diatom whose mucilaginous colonies were conspicuously abundant in phosphorus-poor, high-light streams. Bacterial biomass declined relative to algal biomass with increases in primary productivity, regardless of whether the increases were caused by light or phosphorus. 4. Synergistic effects on primary production appeared to occur because the availability of one resource facilitated the utilization of the other. Light increased the abundance of large diatoms, which are known to convert high concentrations of nutrients into primary production more effectively than smaller taxa. Phosphorus enrichment led to the replacement of Meridion circulare by non-mucilaginous taxa in phosphorus-enriched streams, and we hypothesize that this change enabled more efficient use of light in photosynthesis. Higher ratios of chlorophyll a : biomass in phosphorus-enriched streams may have also led to more

  17. Space and Terrestrial Photovoltaics: Synergy and Diversity

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Raffaelle, Ryne; Emery, Keith

    2002-01-01

    A historical view of the research and development in photovoltaics from the perspective of both the terrestrial and the space communities is presented from the early days through the '70s and '80s and the '90s and beyond. The synergy of both communities in the beginning and once again in the present and hopefully future are highlighted, with examples of the important features in each program. The space community which was impressed by the light-weight and reliability of photovoltaics drove much of the early development. Even up to today, nearly every satellites and other scientific space probe that has been launched has included some solar power. However, since the cost of these power systems were only a small fraction of the satellite and launch cost, the use of much of this technology for the terrestrial marketplace was not feasible. It was clear that the focus of the terrestrial community would be best served by reducing costs. This would include addressing a variety of manufacturing issues and raising the rate of production. Success in these programs and a resulting globalization of effort resulted in major strides in the reduction of PV module costs and increased production. Although, the space community derived benefit from some of these advancements, its focus was on pushing the envelope with regard to cell efficiency. The gap between theoretical efficiencies and experimental efficiencies for silicon, gallium arsenide and indium phosphide became almost non-existent. Recent work by both communities have focused on the development thin film cells of amorphous silicon, CuInSe2 and CdTe. These cells hold the promise of lower costs for the terrestrial community as well as possible flexible substrates, better radiation resistance, and higher specific power for the space community. It is predicted that future trends in both communities will be directed toward advances through the application of nanotechnology. A picture is emerging in which the space and

  18. Nuclear and Renewable Energy Synergies Workshop: Report of Proceedings

    SciTech Connect

    Ruth, M.; Antkowiak, M.; Gossett, S.

    2011-12-01

    Two of the major challenges the U.S. energy sector faces are greenhouse gas emissions and oil that is both imported and potentially reaching a peak (the point at which maximum extraction is reached). Interest in development of both renewable and nuclear energy has been strong because both have potential for overcoming these challenges. Research in both energy sources is ongoing, but relatively little research has focused on the potential benefits of combining nuclear and renewable energy. In September 2011, the Joint Institute for Strategic Energy Analysis (JISEA) convened the Nuclear and Renewable Energy Synergies Workshop at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to identify potential synergies and strategic leveraging opportunities between nuclear energy and renewable energy. Industry, government, and academic thought leaders gathered to identify potential broad categories of synergies and brainstorm topic areas for additional analysis and research and development (R&D). This report records the proceedings and outcomes of the workshop.

  19. The Hydrosphere State (Hydros) Satellite Mission: An Earth System Pathfinder for Global Mapping of Soil Moisture and Land Freeze/Thaw

    NASA Technical Reports Server (NTRS)

    Entekhabi, D.; Njoku, E. G.; Spencer, M.; Kim, Y.; Smith, J.; McDonald, K. C.; vanZyl, J.; Houser, P.; Dorion, T.; Koster, R.; O'Neill, P. E.; Girard, R.; Belair, S.; Crow, W.; Jackson, T. J.; Kerr, Y. H.; Kimball, J. S.; Running, S. W.; Pultz, T.; Shi, J.; Wood, E.

    2004-01-01

    The Hydrosphere State Mission (Hydros) is a pathfinder mission in the National Aeronautics and Space Administration (NASA) Earth System Science Pathfinder Program (ESSP). The objective of the mission is to provide exploratory global measurements of the earth's soil moisture at 10-km resolution with two- to three-days revisit and land-surface freeze/thaw conditions at 3-km resolution with one- to two-days revisit. The mission builds on the heritage of ground-based and airborne passive and active low-frequency microwave measurements that have demonstrated and validated the effectiveness of the measurements and associated algorithms for estimating the amount and phase (frozen or thawed) of surface soil moisture. The mission data will enable advances in weather and climate prediction and in mapping processes that link the water, energy, and carbon cycles. The Hydros instrument is a combined radar and radiometer system operating at 1.26 GHz (with VV, HH, and HV polarizations) and 1.41 GHz (with H, V, and U polarizations), respectively. The radar and the radiometer share the aperture of a 6-m antenna with a look-angle of 39 with respect to nadir. The lightweight deployable mesh antenna is rotated at 14.6 rpm to provide a constant look-angle scan across a swath width of 1000 km. The wide swath provides global coverage that meet the revisit requirements. The radiometer measurements allow retrieval of soil moisture in diverse (nonforested) landscapes with a resolution of 40 km. The radar measurements allow the retrieval of soil moisture at relatively high resolution (3 km). The mission includes combined radar/radiometer data products that will use the synergy of the two sensors to deliver enhanced-quality 10-km resolution soil moisture estimates. In this paper, the science requirements and their traceability to the instrument design are outlined. A review of the underlying measurement physics and key instrument performance parameters are also presented.

  20. Visual-motor response of crewmen during a simulated 90-day space mission as measured by the critical task battery

    NASA Technical Reports Server (NTRS)

    Allen, R. W.; Jex, H. R.

    1973-01-01

    In order to test various components of a regenerative life support system and to obtain data on the physiological and psychological effects of long duration exposure to confinement in a space station atmosphere, four carefully screened young men were sealed in a space station simulator for 90 days and administered a tracking test battery. The battery included a clinical test (Critical Instability Task) designed to measure a subject's dynamic time delay, and a more conventional steady tracking task, during which dynamic response (describing functions) and performance measures were obtained. Good correlation was noted between the clinical critical instability scores and more detailed tracking parameters such as dynamic time delay and gain-crossover frequency. The levels of each parameter span the range observed with professional pilots and astronaut candidates tested previously. The chamber environment caused no significant decrement on the average crewman's dynamic response behavior, and the subjects continued to improve slightly in their tracking skills during the 90-day confinement period.

  1. A Preliminary Interpretation of the First Results from the REMS Surface Pressure Measurements of the MSL Mission

    NASA Technical Reports Server (NTRS)

    Haberle, Robert M.; Gomez-Elvira, J.; dalaTorreJuarez, M.; Harri, A-M.; Hollingsworth, J. L.; Kahanapaa, H.; Kahre, M. A.; Martin-Torres, F. J.; Mischna, M.; Newman, C.; Ratfkin, S. C. R.; Renno, N.; Richardson, M. I.; Rodriquez-Manfredi, J. A.; Vasavada, A. R.; Zorzano-Mier, M-P

    2013-01-01

    The Rover Environmental Monitoring Station (REMS) on the Mars Science Laboratory (MSL) Curiosity rover consists of a suite of meteorological instruments that measure pressure, temperature (air and ground), wind (speed and direction), relative humidity, and the UV flux. A description of the instruments is described elsewhere.. Here we focus on interpreting the first 90 sols of REMS operations with a particular emphasis on the pressure data.

  2. Solutions Network Formulation Report. The Potential Contributions of the Global Precipitation Measurement Mission to Estuary Management in Acadia National Park

    NASA Technical Reports Server (NTRS)

    Anderson, Daniel; Hilbert, Kent; Lewis, David

    2007-01-01

    This candidate solution suggests the use of GPM precipitation observations to enhance the Acadia National Park NLERDSS. Simulated GPM data should provide measurements that would enable analysis of how precipitation affects runoff and nutrient load in the park?s wetlands. This solution benefits society by aiding park and resource managers in making predictions based on hypothetical changes and in identifying effective mitigation scenarios. This solution supports the Coastal Management, Water Management, and Ecological Forecasting National Applications.

  3. Outer planet probe navigation. [considering Pioneer space missions

    NASA Technical Reports Server (NTRS)

    Friedman, L.

    1974-01-01

    A series of navigation studies in conjunction with outer planet Pioneer missions are reformed to determine navigation requirements and measurement systems in order to target probes. Some particular cases are established where optical navigation is important and some cases where radio alone navigation is suffucient. Considered are a direct Saturn mission, a Saturn Uranus mission, a Jupiter Uranus mission, and a Titan probe mission.

  4. Identification of muscle synergies associated with gait transition in humans

    PubMed Central

    Hagio, Shota; Fukuda, Mizuho; Kouzaki, Motoki

    2015-01-01

    There is no theoretical or empirical evidence to suggest how the central nervous system (CNS) controls a variety of muscles associated with gait transition between walking and running. Here, we examined the motor control during a gait transition based on muscle synergies, which modularly organize functionally similar muscles. To this end, the subjects walked or ran on a treadmill and performed a gait transition spontaneously as the treadmill speed increased or decreased (a changing speed condition) or voluntarily following an experimenter’s instruction at constant treadmill speed (a constant speed condition). Surface electromyograms (EMGs) were recorded from 11 lower limb muscles bilaterally. We then extracted the muscle weightings of synergies and their activation coefficients from the EMG data using non-negative matrix factorization. As a result, the gait transition was controlled by approximately 9 muscle synergies, which were common during a walking and running, and their activation profiles were changed before and after a gait transition. Near a gait transition, the peak activation phases of the synergies, which were composed of plantar flexor muscles, were shifted to an earlier phase at the walk-to-run transition, and vice versa. The shifts were gradual in the changing speed condition, but an abrupt change was observed in the constant speed condition. These results suggest that the CNS low-dimensionally regulate the activation profiles of the specific synergies based on afferent information (spontaneous gait transition) or by changing only the descending neural input to the muscle synergies (voluntary gait transition) to achieve a gait transition. PMID:25713525

  5. Europa Lander mission and the context of international cooperation

    NASA Astrophysics Data System (ADS)

    Europa Lander Team; Zelenyi, L.; Korablev, O.; Martynov, M.; Popov, G. A.; Blanc, M.; Lebreton, J. P.; Pappalardo, R.; Clark, K.; Fedorova, A.; Akim, E. L.; Simonov, A. A.; Lomakin, I. V.; Sukhanov, A.; Eismont, N.

    2011-08-01

    From 2007 the Russian Academy of Sciences and Roscosmos consider to develop a Europa surface element, in coordination with the Europa Jupiter System Mission (EJSM) international project planned to study the Jupiter system. The main scientific objectives of the Europa Lander are to search for the signatures of possible present and extinct life, in situ studies of the Europa internal structure, the surface and the environment. The mission includes the lander, and the relay orbiter, to be launched by Proton and carried to Jupiter with electric propulsion. The mass of scientific instruments on the lander is ˜50 kg, and its planned lifetime is 60 days. A dedicated international Europa Lander Workshop (ELW) was held in Moscow in February 2009. Following the ELW materials and few recent developments, the paper describes the planned mission, including the science goals, technical design of the mission elements, the ballistic scheme, and the synergy between the Europa Lander and the EJSM.

  6. Method of Drawing Up a Road Map that Considers the Synergy Effect for IT Investment

    NASA Astrophysics Data System (ADS)

    Nakagawa, Tadasuke; Tani, Shigeyuki; Akatsu, Masaharu; Komoda, Norihisa

    IT governance lacks a comprehensive vision of the investment in two or more projects. It is necessary to decide the priority level that maximizes the effect under the constraint conditions. The problem is complex because while sometimes a greater effect can be obtained by introducing two or more measures at the same time, other times the effect of two measures introduced at the same time might not be significant. Although there is thus a synergy effect when two or more measures are introduced, no method for drawing up an investment-decision road map considered that effect. We therefore developed one. What a decision-maker thinks about when considering the introduction of two or more measures can be visualized by drawing up a comprehensive road map that satisfies constraint conditions such as effectiveness of measure, budget, time, staff size, order of introduction, the synergy effect. Road map users can easily reach a consensus because the map, by taking into account the constraint conditions and the investment decision-making process, helps them logically explain the order in which the measures should be introduced.

  7. Effects of fatigue on synergies in a hierarchical system

    PubMed Central

    Singh, Tarkeshwar; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2013-01-01

    We investigated the effect of fatigue produced by timed maximal voluntary contraction (MVC) of the index finger of one of the hands on performance in MVC and accurate cyclic force production tasks in right-handed subjects. Based on earlier studies, we hypothesized that fatigue would produce an increase in the indices of force-stabilizing synergies in both hands as well as between the hands in two-hand tasks. Synergies were defined as co-varied adjustments of commands to fingers (modes) across cycles that stabilized total force. Fatigue caused a significant reduction in the MVC of the exercised as well as the non-exercised hand. Indices of finger enslaving (lack of individuation) increased with fatigue in both hands, although the increase was significant in the exercised hand only. In contrast to the significant effects of fatigue on MVC forces performed by the non-exercised hand, there were no comparable transfer effects on the root mean square errors during accurate force production. During one-hand tasks, both hands showed high indices of force-stabilizing synergies. These indices were larger in the left hand. Fatigue led to a general increase in synergy indices. Exercise by the left hand had stronger effects on synergy indices seen in both hands. Exercise by the right hand showed ipsilateral effects only. Smaller effects of fatigue were observed on accuracy of performance of the force-down segments of the force cycles compared to the force-up segments. For the bimanual tasks, synergies were analyzed at two hierarchical levels, two-hand (four-finger) and within-a-hand (two-finger). An increase in the synergy index with fatigue was observed at the lower (two-finger) level of the hierarchy only. We interpret the lack of effects of fatigue at the upper (two-hand) level as a consequence of a trade-off between synergies at different levels of the hierarchy. The differences between the hands are discussed within the dynamic dominance hypothesis. PMID:23182434

  8. Action and perception at the level of synergies.

    PubMed

    Turvey, M T

    2007-08-01

    Meeting the challenge of assembling coherent organizations of very many muscles characterizes a functional level of biological movement systems referred to as the level of muscular-articular links or synergies. The present article examines the issues confronting the forming, regulating, and ordering of synergies and the hypothesized principles, both classical and contemporary, which resolve them. A primary goal of the article is to highlight the abstractness of the concepts and tools required to understand the level's action-perception competence. Coverage is given to symmetry groups, task space, order parameters, metastability, biotensegrity, allometric scaling, and impredicative definitions. PMID:17604860

  9. Evaluating the Global Precipitation Measurement mission with NOAA/NSSL Multi-Radar Multisensor: current status and future directions.

    NASA Astrophysics Data System (ADS)

    Kirstetter, P. E.; Hong, Y.; Gourley, J. J.; Carr, N.; Petersen, W. A.; Schwaller, M.; Anagnostou, E. N.; Kummerow, C. D.; Ferraro, R. R.; Wang, N. Y.; Tanelli, S.; Turk, J.; Huffman, G. J.

    2015-12-01

    Accurate characterization of uncertainties in precipitation estimates derived from space-borne measurements is critical for many applications including water budget studies or prediction of natural hazards caused by extreme rainfall events. The GPM precipitation Level II (active and passive) and Level III (IMERG) estimates are compared to the NEXRAD-based precipitation estimates derived from NOAA/NSSL's Multi-Radar, Multi-Sensor (MRMS) platform. The NEXRAD network has undergone an upgrade in technology with dual-polarization capabilities and the MRMS products, after having been adjusted by rain gauges and passing several quality controls and filtering procedures, are 1) accurate with known uncertainty bounds and 2) measured at a resolution below the pixel sizes any GPM estimates. They are used by a number of NASA investigators to evaluate Level II and Level III satellite precipitation algorithms. A comparison framework was developed to examine the consistency of the ground and space-based sensors in term of precipitation detection, typology (e.g. convective, stratiform) and quantification. At the Level II precipitation features are introduced to analyze satellite estimates under various precipitation processes. Specific factors for passive (e.g. surface conditions for GMI) and active (e.g. attenuation of the radar signal, non uniform beam filling for DPR) sensors are investigated. Prognostic analysis directly provides feedback to algorithm developers on how to improve the satellite estimates. Comparison with TRMM products serves as a benchmark to evaluate GPM precipitation estimates. A the Level III the contribution of Level II is explicitly characterized and a rigorous characterization is performed to migrate across scales fully understanding the propagation of errors. This cross products characterization acts as a bridge to intercalibrate microwave measurements from the GPM constellation satellites and propagate to the combined and global precipitation estimates

  10. GPM