Science.gov

Sample records for mitochondria-targeted triphenylphosphonium-conjugated nitroxide

  1. Mitochondria targeting of non-peroxidizable triphenylphosphonium conjugated oleic acid protects mouse embryonic cells against apoptosis: Role of cardiolipin remodeling

    PubMed Central

    Tyurina, Yulia Y.; Tungekar, Muhammad A.; Jung, Mi-Yeon; Tyurin, Vladimir A.; Greenberger, Joel S.; Stoyanovsky, Detcho A.; Kagan, Valerian E.

    2012-01-01

    Peroxidation of cardiolipin in mitochondria is essential for the execution of apoptosis. We suggested that integration of oleic acid into cardiolipin generates non-oxidizable cardiolipin species hence protects cells against apoptosis. We synthesized mitochondria-targeted triphenylphosphonium oleic acid ester. Using lipidomics analysis we found that pretreatment of mouse embryonic cells with triphenylphosphonium oleic acid ester resulted in decreased contents of polyunsaturated cardiolipins and elevation of its species containing oleic acid residues. This caused suppression of apoptosis induced by actinomycin D. Triacsin C, an inhibitor of acyl-CoA synthase, blocked integration of oleic acid into cardiolipin and restored cell sensitivity to apoptosis. PMID:22210054

  2. The mitochondria-targeted nitroxide JP4-039 augments potentially lethal irradiation damage repair.

    PubMed

    Rajagopalan, Malolan S; Gupta, Kanika; Epperly, Michael W; Franicola, Darcy; Zhang, Xichen; Wang, Hong; Zhao, Hong; Tyurin, Vladimir A; Pierce, Joshua G; Kagan, Valerian E; Wipf, Peter; Kanai, Anthony J; Greenberger, Joel S

    2009-01-01

    It was unknown if a mitochondria-targeted nitroxide (JP4-039) could augment potentially lethal damage repair (PLDR) of cells in quiescence. We evaluated 32D cl 3 murine hematopoietic progenitor cells which were irradiated and then either centrifuged to pellets (to simulate PLDR conditions) or left in exponential growth for 0, 24, 48 or 72 h. Pelleted cells demonstrated cell cycle arrest with a greater percentage in the G(1)-phase than did exponentially growing cells. Irradiation survival curves demonstrated a significant radiation damage mitigation effect of JP4-039 over untreated cells in cells pelleted for 24 h. No significant radiation mitigation was detected if drugs were added 48 or 72 h after irradiation. Electron paramagnetic resonance spectroscopy demonstrated a greater concentration of JP4-039 in mitochondria of 24 h-pelleted cells than in exponentially growing cells. These results establish a potential role of mitochondria-targeted nitroxide drugs as mitigators of radiation damage to quiescent cells including stem cells. PMID:19779106

  3. A Mitochondria-Targeted Nitroxide/Hemigramicidin S Conjugate Protects Mouse Embryonic Cells Against Gamma Irradiation

    SciTech Connect

    Jiang Jianfei; Belikova, Natalia A.; Hoye, Adam T.; Zhao Qing; Epperly, Michael W.; Greenberger, Joel S.; Wipf, Peter; Kagan, Valerian E.

    2008-03-01

    Purpose: To evaluate the in vitro radioprotective effect of the mitochondria-targeted hemigramicidin S-conjugated 4-amino-2,2,6,6-tetramethyl-piperidine-N-oxyl (hemi-GS-TEMPO) 5-125 in {gamma}-irradiated mouse embryonic cells and adenovirus-12 SV40 hybrid virus transformed human bronchial epithelial cells BEAS-2B and explore the mechanisms involved in its radioprotective effect. Methods and Materials: Cells were incubated with 5-125 before (10 minutes) or after (1 hour) {gamma}-irradiation. Superoxide generation was determined by using dihydroethidium assay, and lipid oxidation was quantitated by using a fluorescence high-performance liquid chromatography-based Amplex Red assay. Apoptosis was characterized by evaluating the accumulation of cytochrome c in the cytosol and externalization of phosphatidylserine on the cell surface. Cell survival was measured by means of a clonogenic assay. Results: Treatment (before and after irradiation) of cells with 5-125 at low concentrations (5, 10, and 20 {mu}M) effectively suppressed {gamma}-irradiation-induced superoxide generation, cardiolipin oxidation, and delayed irradiation-induced apoptosis, evaluated by using cytochrome c release and phosphatidylserine externalization. Importantly, treatment with 5-125 increased the clonogenic survival rate of {gamma}-irradiated cells. In addition, 5-125 enhanced and prolonged {gamma}-irradiation-induced G{sub 2}/M phase arrest. Conclusions: Radioprotection/mitigation by hemi-GS-TEMPO likely is caused by its ability to act as an electron scavenger and prevent superoxide generation, attenuate cardiolipin oxidation in mitochondria, and hence prevent the release of proapoptotic factors from mitochondria. Other mechanisms, including cell-cycle arrest at the G{sub 2}/M phase, may contribute to the protection.

  4. A mitochondria-targeted inhibitor of cytochrome c peroxidase mitigates radiation induced death

    PubMed Central

    Atkinson, Jeffrey; Kapralov, Alexandr A.; Yanamala, Naveena; Tyurina, Yulia Y.; Amoscato, Andrew A.; Pearce, Linda; Peterson, Jim; Huang, Zhentai; Jiang, Jianfei; Samhan-Arias, Alejandro K.; Maeda, Akihiro; Feng, Weihong; Wasserloos, Karla; Belikova, Natalia A.; Tyurin, Vladimir A.; Wang, Hong; Fletcher, Jackie; Wang, Yongsheng; Vlasova, Irina I.; Klein-Seetharaman, Judith; Stoyanovsky, Detcho A.; Bayîr, Hülya; Pitt, Bruce R.; Epperly, Michael W.; Greenberger, Joel S.; Kagan, Valerian E.

    2013-01-01

    The risk of radionuclide release in terrorist acts or exposure of healthy tissue during radiotherapy demand potent radioprotectants/radiomitigators. Ionizing radiation induces cell death by initiating the selective peroxidation of cardiolipin in mitochondria by the peroxidase activity of its complex with cytochrome c leading to release of hemoprotein into the cytosol and commitment to the apoptotic program. Here we design and synthesize mitochondria-targeted triphenylphosphonium-conjugated imidazole-substituted oleic and stearic acids which blocked peroxidase activity of cytochrome c/cardiolipin complex by specifically binding to its heme-iron. We show that both compounds inhibit pro-apoptotic oxidative events, suppress cyt c release, prevent cell death, and protect mice against lethal doses of irradiation. Significant radioprotective/radiomitigative effects of imidazole-substituted oleic acid are observed after pretreatment of mice from 1 hr before through 24 hrs after the irradiation. PMID:21988913

  5. A mitochondria-targeted inhibitor of cytochrome c peroxidase mitigates radiation-induced death.

    PubMed

    Atkinson, Jeffrey; Kapralov, Alexandr A; Yanamala, Naveena; Tyurina, Yulia Y; Amoscato, Andrew A; Pearce, Linda; Peterson, Jim; Huang, Zhentai; Jiang, Jianfei; Samhan-Arias, Alejandro K; Maeda, Akihiro; Feng, Weihong; Wasserloos, Karla; Belikova, Natalia A; Tyurin, Vladimir A; Wang, Hong; Fletcher, Jackie; Wang, Yongsheng; Vlasova, Irina I; Klein-Seetharaman, Judith; Stoyanovsky, Detcho A; Bayîr, Hülya; Pitt, Bruce R; Epperly, Michael W; Greenberger, Joel S; Kagan, Valerian E

    2011-01-01

    The risk of radionuclide release in terrorist acts or exposure of healthy tissue during radiotherapy demand potent radioprotectants/radiomitigators. Ionizing radiation induces cell death by initiating the selective peroxidation of cardiolipin in mitochondria by the peroxidase activity of its complex with cytochrome c leading to release of haemoprotein into the cytosol and commitment to the apoptotic program. Here we design and synthesize mitochondria-targeted triphenylphosphonium-conjugated imidazole-substituted oleic and stearic acids that blocked peroxidase activity of cytochrome c/cardiolipin complex by specifically binding to its haem-iron. We show that both compounds inhibit pro-apoptotic oxidative events, suppress cyt c release, prevent cell death, and protect mice against lethal doses of irradiation. Significant radioprotective/radiomitigative effects of imidazole-substituted oleic acid are observed after pretreatment of mice from 1 h before through 24 h after the irradiation. PMID:21988913

  6. Ubiquinol and plastoquinol triphenylphosphonium conjugates can carry electrons through phospholipid membranes.

    PubMed

    Rokitskaya, Tatyana I; Murphy, Michael P; Skulachev, Vladimir P; Antonenko, Yuri N

    2016-10-01

    Many mitochondria-targeted antioxidants (MTAs) that comprise a quinol moiety covalently attached through an aliphatic carbon chain to the lipophilic triphenylphosphonium cation are widely used for evaluating the role of mitochondria in pathological processes involving oxidative stress. The potency of MTAs to carry electrons across biological membranes and thereby mediate transmembrane redox processes was unknown. To assess this, we measured the rate of ferricyanide reduction inside liposomes by external ascorbate. Here, we show that MTAs containing ubiquinone (MitoQ series) or plastoquinone (SkQ series) can carry electrons through lipid membranes, with the rate being inversely proportional to the length of the hydrocarbon linker group. Furthermore, this process was stimulated by the hydrophobic anion tetraphenylborate suggesting that permeation of the cationic MTA through the membrane was the rate-limiting step of the process. This conclusion was supported by the observation that the rate of MTA-induced electron transfer was insensitive to nigericin, in contrast to electron transfer mediated by neutral quinone derivatives. These findings indicate that MTAs can be utilized to transfer electrons across lipid membranes and this may be applicable to the study of the electron-transport chain in mitochondria and other natural membranes exhibiting redox processes. PMID:27182824

  7. MITOCHONDRIA-TARGETED CARDIOPROTECTION IN ALDOSTERONISM

    PubMed Central

    Shahbaz, Atta U.; Kamalov, German; Zhao, Wenyuan; Zhao, Tieqiang; Johnson, Patti L.; Sun, Yao; Bhattacharya, Syamal K.; Ahokas, Robert A.; Gerling, Ivan C.; Weber, Karl T.

    2010-01-01

    Chronic aldosterone/salt treatment (ALDOST) is accompanied by an adverse structural remodeling of myocardium that includes multiple foci of microscopic scarring representing morphologic footprints of cardiomyocyte necrosis. Our previous studies suggested that signal-transducer-effector pathway leading to necrotic cell death during ALDOST includes intramitochondrial Ca2+ overloading, together with an induction of oxidative stress and opening of the mitochondrial permeability transition pore (mPTP). To further validate this concept, we hypothesized mitochondria-targeted interventions will prove cardioprotective. Accordingly, 8-wk-old male Sprague-Dawley rats receiving 4 wks ALDOST were cotreated with either quercetin (Q), a flavonoid with mitochondrial antioxidant properties, or cyclosporine A (CsA), an mPTP inhibitor, and compared to ALDOST alone or untreated, age-/sex-matched controls. We monitored: mitochondrial free Ca2+ and biomarkers of oxidative stress, including 8-isoprostane and H2O2 production; mPTP opening; total Ca2+ in cardiac tissue; collagen volume fraction (CVF) to quantify replacement fibrosis, a biomarker of cardiomyocyte necrosis; and employed TUNEL assay to address apoptosis in coronal sections of ventricular myocardium. Compared to controls, at 4 wks ALDOST we found: a marked increase in mitochondrial H2O2 production and 8-isoprostane levels, an increased propensity for mPTP opening, and greater concentrations of mitochondrial free [Ca2+]m and total tissue Ca2+, coupled with a 5-fold rise in CVF without any TUNEL-based evidence of cardiomyocyte apoptosis. Each of these pathophysiologic responses to ALDOST were prevented by Q or CsA cotreatment. Thus, mitochondria play a central role in initiating the cellular-molecular pathway that leads to necrotic cell death and myocardial scarring. This destructive cycle can be interrupted and myocardium salvaged with its structure preserved by mitochondria-targeted cardioprotective strategies. PMID:20966765

  8. Polyphenols as mitochondria-targeted anticancer drugs.

    PubMed

    Gorlach, Sylwia; Fichna, Jakub; Lewandowska, Urszula

    2015-10-01

    Mitochondria are the respiratory and energetic centers of the cell where multiple intra- and extracellular signal transduction pathways converge leading to dysfunction of those organelles and, consequently, apoptotic or/and necrotic cell death. Mitochondria-targeted anticancer drugs are referred to as mitocans; they have recently been classified by Neuzil et al. (2013) according to their molecular mode of action into: hexokinase inhibitors; mimickers of the Bcl-2 homology-3 (BH3) domains; thiol redox inhibitors; deregulators of voltage-dependent anionic channel (VDAC)/adenine nucleotide translocase (ANT) complex; electron redox chain-targeting agents; lipophilic cations targeting the mitochondrial inner membrane; tricarboxylic acid cycle-targeting agents; and mitochondrial DNA-targeting agents. Polyphenols of plant origin and their synthetic or semisynthetic derivatives exhibit pleiotropic biological activities, including the above-mentioned modes of action characteristic of mitocans. Some of them have already been tested in clinical trials. Gossypol has served as a lead compound for developing more efficient BH3 mimetics such as ABT-737 and its orally available structural analog ABT-263 (Navitoclax). Furthermore, mitochondriotropic derivatives of phenolic compounds such as quercetin and resveratrol have been synthesized and reported to efficiently induce cancer cell death in vitro. PMID:26185003

  9. A mitochondria-targeted protonophoric uncoupler derived from fluorescein.

    PubMed

    Denisov, Stepan S; Kotova, Elena A; Plotnikov, Egor Y; Tikhonov, Artur A; Zorov, Dmitry B; Korshunova, Galina A; Antonenko, Yuri N

    2014-12-18

    Linking decyl-triphenyl-phosphonium to fluorescein yields a fluorescent probe that accumulates in energized mitochondria, facilitates proton transfer across membranes and stimulates mitochondrial respiration. This features a mitochondria-targeted uncoupler, being of potential interest for therapeutic use against oxidative stress-related diseases. PMID:25349923

  10. Mitochondria-targeted spin traps: synthesis, superoxide spin trapping, and mitochondrial uptake.

    PubMed

    Hardy, Micael; Poulhés, Florent; Rizzato, Egon; Rockenbauer, Antal; Banaszak, Karol; Karoui, Hakim; Lopez, Marcos; Zielonka, Jacek; Vasquez-Vivar, Jeannette; Sethumadhavan, Savitha; Kalyanaraman, Balaraman; Tordo, Paul; Ouari, Olivier

    2014-07-21

    Development of reliable methods and site-specific detection of free radicals is an active area of research. Here, we describe the synthesis and radical-trapping properties of new derivatives of DEPMPO and DIPPMPO, bearing a mitochondria-targeting triphenylphosphonium cationic moiety or guanidinium cationic group. All of the spin traps prepared have been observed to efficiently trap superoxide radical anions in a cell-free system. The superoxide spin adducts exhibited similar spectral properties, indicating no significant differences in the geometry of the cyclic nitroxide moieties of the spin adducts. The superoxide adduct stability was measured and observed to be highest (t1/2 = 73 min) for DIPPMPO nitrone linked to triphenylphosphonium moiety via a short carbon chain (Mito-DIPPMPO). The experimental results and DFT quantum chemical calculations indicate that the cationic property of the triphenylphosphonium group may be responsible for increased superoxide trapping efficiency and adduct stability of Mito-DIPPMPO, as compared to the DIPPMPO spin trap. The studies of uptake of the synthesized traps into isolated mitochondria indicated the importance of both cationic and lipophilic properties, with the DEPMPO nitrone linked to the triphenylphosphonium moiety via a long carbon chain (Mito10-DEPMPO) exhibiting the highest mitochondrial uptake. We conclude that, of the synthesized traps, Mito-DIPPMPO and Mito10-DEPMPO are the best candidates for potential mitochondria-specific spin traps for use in biologically relevant systems. PMID:24890552

  11. Mitochondria-targeted drug delivery system for cancer treatment.

    PubMed

    Chen, Zhi-Peng; Li, Man; Zhang, Liu-Jie; He, Jia-Yu; Wu, Li; Xiao, Yan-Yu; Duan, Jin-Ao; Cai, Ting; Li, Wei-Dong

    2016-07-01

    Mitochondria are one type of the major organelles in the cell, participating in a variety of important physiological and biochemical processes, such as tricarboxylic acid cycle, fatty acid metabolism and oxidative phosphorylation. Meanwhile, it also happens to be the key regulator of apoptosis by triggering the complex cell-death processes through a variety of mechanisms. Since it plays a pivotal role in cell-death, a mitochondria-targeted treatment strategy could be promising for cancer therapy. In this comprehensive review, we focused on the mechanisms of mitochondrial targeting and a variety of strategies to realize the purpose of mitochondrial targeting, including that based on the use of lipophilic cations, and mitochondrial targeting signal peptides (MTS) as well as cell-penetrating peptides (CPPs). Then on this basis we present some several developed strategies for multifunctional mitochondria-targeted agents so as to achieve the good anti-cancer therapeutic effects. PMID:26548930

  12. Mitochondria-Targeted Protective Compounds in Parkinson's and Alzheimer's Diseases

    PubMed Central

    Fernández-Moriano, Carlos; González-Burgos, Elena; Gómez-Serranillos, M. Pilar

    2015-01-01

    Mitochondria are cytoplasmic organelles that regulate both metabolic and apoptotic signaling pathways; their most highlighted functions include cellular energy generation in the form of adenosine triphosphate (ATP), regulation of cellular calcium homeostasis, balance between ROS production and detoxification, mediation of apoptosis cell death, and synthesis and metabolism of various key molecules. Consistent evidence suggests that mitochondrial failure is associated with early events in the pathogenesis of ageing-related neurodegenerative disorders including Parkinson's disease and Alzheimer's disease. Mitochondria-targeted protective compounds that prevent or minimize mitochondrial dysfunction constitute potential therapeutic strategies in the prevention and treatment of these central nervous system diseases. This paper provides an overview of the involvement of mitochondrial dysfunction in Parkinson's and Alzheimer's diseases, with particular attention to in vitro and in vivo studies on promising endogenous and exogenous mitochondria-targeted protective compounds. PMID:26064418

  13. Identification of nitroxide radioprotectors.

    PubMed

    Hahn, S M; Wilson, L; Krishna, C M; Liebmann, J; DeGraff, W; Gamson, J; Samuni, A; Venzon, D; Mitchell, J B

    1992-10-01

    The nitroxide Tempol, a stable free radical, has recently been shown to protect mammalian cells against several forms of oxidative stress including radiation-induced cytotoxicity. To extend this observation, six additional water-soluble nitroxides with different structural features were evaluated for potential radioprotective properties using Chinese hamster V79 cells and clonogenic assays. Nitroxides (10 mM) were added 10 min prior to radiation exposure and full radiation dose-response curves were determined. In addition to Tempol, five of the six nitroxides afforded in vitro radioprotection. The best protectors were found to be the positively charged nitroxides, Tempamine and 3-aminomethyl-PROXYL, with protection factors of 2.3 and 2.4, respectively, compared with Tempol, which had a protection factor of 1.3. 3-Carboxy-PROXYL, a negatively charged nitroxide, provided minimal protection. DNA binding characteristics as studied by nonequilibrium dialysis of DNA with each of the nitroxides demonstrated that Tempamine and 3-amino-methyl-PROXYL bound more strongly to DNA than did Tempol. Since DNA is assumed to be the target of radiation-induced cytotoxicity, differences in protection may be explained by variabilities in affinity of the protector for the target. This study establishes nitroxides as a general class of new nonthiol radioprotectors and suggests other parameters that may be exploited to find even better nitroxide-induced radioprotection. PMID:1410280

  14. A mitochondria-targeted derivative of ascorbate: MitoC.

    PubMed

    Finichiu, Peter G; Larsen, David S; Evans, Cameron; Larsen, Lesley; Bright, Thomas P; Robb, Ellen L; Trnka, Jan; Prime, Tracy A; James, Andrew M; Smith, Robin A J; Murphy, Michael P

    2015-12-01

    Mitochondrial oxidative damage contributes to a wide range of pathologies. One therapeutic strategy to treat these disorders is targeting antioxidants to mitochondria by conjugation to the lipophilic triphenylphosphonium (TPP) cation. To date only hydrophobic antioxidants have been targeted to mitochondria; however, extending this approach to hydrophilic antioxidants offers new therapeutic and research opportunities. Here we report the development and characterization of MitoC, a mitochondria-targeted version of the hydrophilic antioxidant ascorbate. We show that MitoC can be taken up by mitochondria, despite the polarity and acidity of ascorbate, by using a sufficiently hydrophobic link to the TPP moiety. MitoC reacts with a range of reactive species, and within mitochondria is rapidly recycled back to the active ascorbate moiety by the glutathione and thioredoxin systems. Because of this accumulation and recycling MitoC is an effective antioxidant against mitochondrial lipid peroxidation and also decreases aconitase inactivation by superoxide. These findings show that the incorporation of TPP function can be used to target polar and acidic compounds to mitochondria, opening up the delivery of a wide range of bioactive compounds. Furthermore, MitoC has therapeutic potential as a new mitochondria-targeted antioxidant, and is a useful tool to explore the role(s) of ascorbate within mitochondria. PMID:26453920

  15. A mitochondria-targeted derivative of ascorbate: MitoC

    PubMed Central

    Finichiu, Peter G.; Larsen, David S.; Evans, Cameron; Larsen, Lesley; Bright, Thomas P.; Robb, Ellen L.; Trnka, Jan; Prime, Tracy A.; James, Andrew M.; Smith, Robin A.J.; Murphy, Michael P.

    2015-01-01

    Mitochondrial oxidative damage contributes to a wide range of pathologies. One therapeutic strategy to treat these disorders is targeting antioxidants to mitochondria by conjugation to the lipophilic triphenylphosphonium (TPP) cation. To date only hydrophobic antioxidants have been targeted to mitochondria; however, extending this approach to hydrophilic antioxidants offers new therapeutic and research opportunities. Here we report the development and characterization of MitoC, a mitochondria-targeted version of the hydrophilic antioxidant ascorbate. We show that MitoC can be taken up by mitochondria, despite the polarity and acidity of ascorbate, by using a sufficiently hydrophobic link to the TPP moiety. MitoC reacts with a range of reactive species, and within mitochondria is rapidly recycled back to the active ascorbate moiety by the glutathione and thioredoxin systems. Because of this accumulation and recycling MitoC is an effective antioxidant against mitochondrial lipid peroxidation and also decreases aconitase inactivation by superoxide. These findings show that the incorporation of TPP function can be used to target polar and acidic compounds to mitochondria, opening up the delivery of a wide range of bioactive compounds. Furthermore, MitoC has therapeutic potential as a new mitochondria-targeted antioxidant, and is a useful tool to explore the role(s) of ascorbate within mitochondria. PMID:26453920

  16. Synthesis of triphenylphosphonium vitamin E derivatives as mitochondria-targeted antioxidants

    PubMed Central

    Jameson, Victoria J.A.; Cochemé, Helena M.; Logan, Angela; Hanton, Lyall R.; Smith, Robin A.J.; Murphy, Michael P.

    2015-01-01

    A series of mitochondria-targeted antioxidants comprising a lipophilic triphenylphosphonium cation attached to the antioxidant chroman moiety of vitamin E by an alkyl linker have been prepared. The synthesis of a series of mitochondria-targeted vitamin E derivatives with a range of alkyl linkers gave compounds of different hydrophobicities. This work will enable the dependence of antioxidant defence on hydrophobicity to be determined in vivo. PMID:26549895

  17. MITOCHONDRIA-TARGETED ANTIOXIDANTS FOR TREATMENT OF PARKINSON’S DISEASE: PRECLINICAL AND CLINICAL OUTCOMES

    PubMed Central

    Jin, Huajun; Kanthasamy, Arthi; Ghosh, Anamitra; Anantharam, Vellareddy; Kalyanaraman, Balaraman; Kanthasamy, Anumantha G.

    2013-01-01

    Parkinson’s disease (PD) is a progressive neurodegenerative disease in the elderly, and no cure or disease-modifying therapies exist. Several lines of evidence suggest that mitochondrial dysfunction and oxidative stress have a central role in the dopaminergic neurodegeneration of PD. In this context, mitochondria-targeted therapies that improve mitochondrial function may have great promise in the prevention and treatment of PD. In this review, we discuss the recent developments in mitochondria-targeted antioxidants and their potential beneficial effects as a therapy for ameliorating mitochondrial dysfunction in PD. PMID:24060637

  18. Enhanced Intracellular Hyperthermia Efficiency by Magnetic Nanoparticles Modified with Nucleus and Mitochondria Targeting Peptides.

    PubMed

    Wang, Xiaowen; Zhou, Jumei; Chen, Benke; Tang, Zhenghai; Zhang, Jieying; Li, Liya; Tang, Jintian

    2016-06-01

    In order to investigate whether cell organelle targeting peptide can transport magnetic nanoparticles (MNPs) into specific cell organelle, peptides bearing nuclear localization signal (NLS) or mitochondria targeting sequences were coagulated to MNPs. In vitro cytotoxicity study on the human liver cancer cells (HepG2) was tested by using MTT assay. Sub-cellular location of each peptide modified MNP (PEP-MNPs) was observed by transmission electron microscopy (TEM). The uptake of HepG2 cells growing in PEP-MNPs was measured by using ICP-OES. Magnetic induction heating efficacies of PEP-MNPs were analyzed by exposing the PEP-MNPs containing cells in an alternating magnetic field (AMF). It was demonstrated that PEP-MNPs were efficient agents for cancer nanothermotherapy with satisfactory biocompatibility. TEM showed that the fate of MNPs inside the cells depended on the peptide sequence attached to the particle surface. The uptake improvement was observed both in PEP-MNPs bearing NLS peptides and in PEP-MNPs bearing mitochondria targeting sequences. Virus original endocytosis sequence can enhance the uptake. MNP bearing mitochondria targeting sequence exerted a better magnetic induction hyperthermia performance comparing to that of NLS. Our investigation provides a strategy for fabrication cell organelle targeting magnetic nanoparticles. For instance, mitochondria targeting peptide conjugated MNPs for highly-efficiency magnetic nanothermotherapy and nuclear targeting peptides conjugated MNPs for gene magnetofection. PMID:27427753

  19. A Mitochondria-Targeted Photosensitizer Showing Improved Photodynamic Therapy Effects Under Hypoxia.

    PubMed

    Lv, Wen; Zhang, Zhang; Zhang, Kenneth Yin; Yang, Huiran; Liu, Shujuan; Xu, Aqiang; Guo, Song; Zhao, Qiang; Huang, Wei

    2016-08-16

    Organelle-targeted photosensitizers have been reported to be effective photodynamic therapy (PDT) agents. In this work, we designed and synthesized two iridium(III) complexes that specifically stain the mitochondria and lysosomes of living cells, respectively. Both complexes exhibited long-lived phosphorescence, which is sensitive to oxygen quenching. The photocytotoxicity of the complexes was evaluated under normoxic and hypoxic conditions. The results showed that HeLa cells treated with the mitochondria-targeted complex maintained a slower respiration rate, leading to a higher intracellular oxygen level under hypoxia. As a result, this complex exhibited an improved PDT effect compared to the lysosome-targeted complex, especially under hypoxia conditions, suggestive of a higher practicable potential of mitochondria-targeted PDT agents in cancer therapy. PMID:27381490

  20. Mitochondria-targeted penetrating cations as carriers of hydrophobic anions through lipid membranes.

    PubMed

    Rokitskaya, Tatyana I; Sumbatyan, Natalia V; Tashlitsky, Vadim N; Korshunova, Galina A; Antonenko, Yuri N; Skulachev, Vladimir P

    2010-09-01

    High negative electric potential inside mitochondria provides a driving force for mitochondria-targeted delivery of cargo molecules linked to hydrophobic penetrating cations. This principle is utilized in construction of mitochondria-targeted antioxidants (MTA) carrying quinone moieties which produce a number of health benefitting effects by protecting cells and organisms from oxidative stress. Here, a series of penetrating cations including MTA were shown to induce the release of the liposome-entrapped carboxyfluorescein anion (CF), but not of glucose or ATP. The ability to induce the leakage of CF from liposomes strongly depended on the number of carbon atoms in alkyl chain (n) of alkyltriphenylphosphonium and alkylrhodamine derivatives. In particular, the leakage of CF was maximal at n about 10-12 and substantially decreased at n=16. Organic anions (palmitate, oleate, laurylsulfate) competed with CF for the penetrating cation-induced efflux. The reduced activity of alkylrhodamines with n=16 or n=18 as compared to that with n=12 was ascribed to a lower rate of partitioning of the former into liposomal membranes, because electrical current relaxation studies on planar bilayer lipid membranes showed rather close translocation rate constants for alkylrhodamines with n=18 and n=12. Changes in the alkylrhodamine absorption spectra upon anion addition confirmed direct interaction between alkylrhodamines and the anion. Thus, mitochondria-targeted penetrating cations can serve as carriers of hydrophobic anions across bilayer lipid membranes. PMID:20510172

  1. Brain aging and mitochondria-targeted plastoquinone antioxidants of SkQ-type.

    PubMed

    Isaev, N K; Stelmashook, E V; Stelmashook, N N; Sharonova, I N; Skrebitsky, V G

    2013-03-01

    Normal brain aging leads to decrease in cognitive functions, shrink in brain volume, loss of nerve fibers and degenerating myelin, reduction in length and branching of dendrites, partial loss of synapses, and reduction in expression of genes that play central roles in synaptic plasticity, vesicular transport, and mitochondrial functioning. Impaired mitochondrial functions and mitochondrial reactive oxygen species can contribute to the damage of these genes in aging cerebral cortex. This review discusses the possibility of using mitochondria-targeted antioxidants to slow the processes of brain aging. PMID:23586724

  2. A novel bifunctional mitochondria-targeted anticancer agent with high selectivity for cancer cells.

    PubMed

    He, Huan; Li, Dong-Wei; Yang, Li-Yun; Fu, Li; Zhu, Xun-Jin; Wong, Wai-Kwok; Jiang, Feng-Lei; Liu, Yi

    2015-01-01

    Mitochondria have recently emerged as novel targets for cancer therapy due to its important roles in fundamental cellular function. Discovery of new chemotherapeutic agents that allow for simultaneous treatment and visualization of cancer is urgent. Herein, we demonstrate a novel bifunctional mitochondria-targeted anticancer agent (FPB), exhibiting both imaging capability and anticancer activity. It can selectively accumulate in mitochondria and induce cell apoptosis. Notably, it results in much higher toxicity toward cancer cells owing to much higher uptake by cancer cells. These features make it highly attractive in cancer imaging and treatment. PMID:26337336

  3. A novel bifunctional mitochondria-targeted anticancer agent with high selectivity for cancer cells

    PubMed Central

    He, Huan; Li, Dong-Wei; Yang, Li-Yun; Fu, Li; Zhu, Xun-Jin; Wong, Wai-Kwok; Jiang, Feng-Lei; Liu, Yi

    2015-01-01

    Mitochondria have recently emerged as novel targets for cancer therapy due to its important roles in fundamental cellular function. Discovery of new chemotherapeutic agents that allow for simultaneous treatment and visualization of cancer is urgent. Herein, we demonstrate a novel bifunctional mitochondria-targeted anticancer agent (FPB), exhibiting both imaging capability and anticancer activity. It can selectively accumulate in mitochondria and induce cell apoptosis. Notably, it results in much higher toxicity toward cancer cells owing to much higher uptake by cancer cells. These features make it highly attractive in cancer imaging and treatment. PMID:26337336

  4. Mitochondria-Targeted Antioxidant SS-31 is a Potential Novel Ophthalmic Medication for Neuroprotection in Glaucoma.

    PubMed

    Pang, Yu; Wang, Chao; Yu, Ling

    2015-01-01

    Glaucoma is the second leading cause of irreversible blindness and a neurodegenerative disease with a complex pathogenesis. Increasing evidence suggests that oxidative stress and mitochondrial dysfunction have crucial roles in most neurodegenerative diseases such as glaucoma. The conventional clinical treatment for glaucoma is lowering the intraocular pressure (IOP). Some patients have normal IOP, whereas other patients appear to obtain adequate control of IOP after filtration surgery or medication. However, these patients still experience progressive visual field loss. Vision field loss in glaucoma is attributed to retinal ganglion cell (RGC) apoptosis. Many recent researches demonstrated that the link between mitochondrial dysfunction and oxidative stress was a major cause of RGCs apoptosis. How oxidative stress leads to RGCs apoptosis in glaucoma is unclear but may involve the neurotoxic effects of oxidative stress-induced mitochondrial dysfunction and/or damage from reactive oxygen species (ROS). Investigations are needed concerning the mitochondria as effective targets for potential therapeutic interventions to maintain mitochondrial function and reduce oxidative stress, and thereby delay or stop RGC loss and prolong visual function. The mitochondria-targeted antioxidant Szeto-Schiller (SS) peptide is a candidate molecule. Szeto-Schiller-31 (H-D-Arg-Dmt-Lys-Phe-NH2) is an attractive mitochondria-targeted antioxidant that can protect the mitochondria and RGCs against oxidative damage. Therefore, we suggest SS-31 as a novel neuroprotective ophthalmic drug for protecting RGCs in glaucoma. PMID:27350953

  5. Mitochondria-Targeted Analogues of Metformin Exhibit Enhanced Antiproliferative and Radiosensitizing Effects in Pancreatic Cancer Cells.

    PubMed

    Cheng, Gang; Zielonka, Jacek; Ouari, Olivier; Lopez, Marcos; McAllister, Donna; Boyle, Kathleen; Barrios, Christy S; Weber, James J; Johnson, Bryon D; Hardy, Micael; Dwinell, Michael B; Kalyanaraman, Balaraman

    2016-07-01

    Metformin (Met) is an approved antidiabetic drug currently being explored for repurposing in cancer treatment based on recent evidence of its apparent chemopreventive properties. Met is weakly cationic and targets the mitochondria to induce cytotoxic effects in tumor cells, albeit not very effectively. We hypothesized that increasing its mitochondria-targeting potential by attaching a positively charged lipophilic substituent would enhance the antitumor activity of Met. In pursuit of this question, we synthesized a set of mitochondria-targeted Met analogues (Mito-Mets) with varying alkyl chain lengths containing a triphenylphosphonium cation (TPP(+)). In particular, the analogue Mito-Met10, synthesized by attaching TPP(+) to Met via a 10-carbon aliphatic side chain, was nearly 1,000 times more efficacious than Met at inhibiting cell proliferation in pancreatic ductal adenocarcinoma (PDAC). Notably, in PDAC cells, Mito-Met10 potently inhibited mitochondrial complex I, stimulating superoxide and AMPK activation, but had no effect in nontransformed control cells. Moreover, Mito-Met10 potently triggered G1 cell-cycle phase arrest in PDAC cells, enhanced their radiosensitivity, and more potently abrogated PDAC growth in preclinical mouse models, compared with Met. Collectively, our findings show how improving the mitochondrial targeting of Met enhances its anticancer activities, including aggressive cancers like PDAC in great need of more effective therapeutic options. Cancer Res; 76(13); 3904-15. ©2016 AACR. PMID:27216187

  6. PK11195-chitosan-graft-polyethylenimine-modified SPION as a mitochondria-targeting gene carrier.

    PubMed

    Kim, You-Kyoung; Zhang, Mei; Lu, Jin-Jian; Xu, Fengguo; Chen, Bao-An; Xing, Lei; Jiang, Hu-Lin

    2016-06-01

    Superparamagnetic iron oxide nanoparticle (SPION) holds great potential as a gene delivery system due to its unique properties, such as good biocompatibility and non-invasive targeting ability. In this study, we modified SPION with chitosan-graft-PEI (CHI-g-PEI) and PK11195, to fabricate a mitochondria-targeting gene carrier, PK-CP-SPION. PK-CP-SPION manifested prominent physicochemical properties for magnetic guided gene delivery, and it could effectively condense and protect DNA at proper weight ratios. The in vitro cytotoxicity of PK-CP-SPIONs was mild. Under an external magnetic field, the transfection efficiency of PK-CP-SPIONs was comparable to PEI 25 K with shorter transfection time. PK11195 facilitated the specific accumulation of PK-CP-SPIONs in mitochondria, leading to the leakage of cytochrome c, the dissipation of mitochondrial membrane potential and subsequently the activation of mitochondria apoptosis pathway. These results indicated that with further development, PK-CP-SPIONs could serve as a multifunctional nanoplatform for magnetic targeting gene delivery and mitochondria-targeting therapy, leading enhanced therapeutic effect towards tumor cells. PMID:26390926

  7. A Powerful Mitochondria-Targeted Iron Chelator Affords High Photoprotection against Solar Ultraviolet A Radiation.

    PubMed

    Reelfs, Olivier; Abbate, Vincenzo; Hider, Robert C; Pourzand, Charareh

    2016-08-01

    Mitochondria are the principal destination for labile iron, making these organelles particularly susceptible to oxidative damage on exposure to ultraviolet A (UVA, 320-400 nm), the oxidizing component of sunlight. The labile iron-mediated oxidative damage caused by UVA to mitochondria leads to necrotic cell death via adenosine triphosphate depletion. Therefore, targeted removal of mitochondrial labile iron via highly specific tools from these organelles may be an effective approach to protect the skin cells against the harmful effects of UVA. In this work, we designed a mitochondria-targeted hexadentate (tricatechol-based) iron chelator linked to mitochondria-homing SS-like peptides. The photoprotective potential of this compound against UVA-induced oxidative damage and cell death was evaluated in cultured primary skin fibroblasts. Our results show that this compound provides unprecedented protection against UVA-induced mitochondrial damage, adenosine triphosphate depletion, and the ensuing necrotic cell death in skin fibroblasts, and this effect is fully related to its potent iron-chelating property in the organelle. This mitochondria-targeted iron chelator has therefore promising potential for skin photoprotection against the deleterious effects of the UVA component of sunlight. PMID:27109868

  8. Treatment Strategies that Enhance the Efficacy and Selectivity of Mitochondria-Targeted Anticancer Agents

    PubMed Central

    Modica-Napolitano, Josephine S.; Weissig, Volkmar

    2015-01-01

    Nearly a century has passed since Otto Warburg first observed high rates of aerobic glycolysis in a variety of tumor cell types and suggested that this phenomenon might be due to an impaired mitochondrial respiratory capacity in these cells. Subsequently, much has been written about the role of mitochondria in the initiation and/or progression of various forms of cancer, and the possibility of exploiting differences in mitochondrial structure and function between normal and malignant cells as targets for cancer chemotherapy. A number of mitochondria-targeted compounds have shown efficacy in selective cancer cell killing in pre-clinical and early clinical testing, including those that induce mitochondria permeability transition and apoptosis, metabolic inhibitors, and ROS regulators. To date, however, none has exhibited the standards for high selectivity and efficacy and low toxicity necessary to progress beyond phase III clinical trials and be used as a viable, single modality treatment option for human cancers. This review explores alternative treatment strategies that have been shown to enhance the efficacy and selectivity of mitochondria-targeted anticancer agents in vitro and in vivo, and may yet fulfill the clinical promise of exploiting the mitochondrion as a target for cancer chemotherapy. PMID:26230693

  9. The Analgesic Effect of the Mitochondria-Targeted Antioxidant SkQ1 in Pancreatic Inflammation

    PubMed Central

    Weniger, Maximilian; Reinelt, Leonard; Neumann, Jens; Holdt, Lesca; Ilmer, Matthias; Renz, Bernhard; Hartwig, Werner; Werner, Jens; Bazhin, Alexandr V.; D'Haese, Jan G.

    2016-01-01

    Background. Chronic pancreatitis is one of the main risk factors for pancreatic cancer. In acute and chronic pancreatitis, oxidative stress is thought to play a key role. In this respect, the recently described mitochondria-targeted antioxidant SkQ1 effectively scavenges reactive oxygen species at nanomolar concentrations. Therefore, we aimed to characterize the influence of SkQ1 on tissue injury and pain in acute and chronic pancreatitis. Methods. Both acute and chronic pancreatitis were induced in C57BL/6 mice by intraperitoneal cerulein injections and treatment with SkQ1 was carried out by peroral applications. Hyperalgesia was assessed by behavioral observation and measurement of abdominal mechanical sensitivity. Blood serum and pancreatic tissue were harvested for analysis of lipase and histology. Results. SkQ1 did not influence pain, serological, or histological parameters of tissue injury in acute pancreatitis. In chronic pancreatitis, a highly significant reduction of pain-related behavior (p < 0.0001) was evident, but histological grading revealed increased tissue injury in SkQ1-treated animals (p = 0.03). Conclusion. After SkQ1 treatment, tissue injury is not ameliorated in acute pancreatitis and increased in chronic pancreatitis. However, we show an analgesic effect in chronic pancreatitis. Further studies will need to elucidate the risks and benefits of mitochondria-targeted antioxidants as an analgesic. PMID:27274778

  10. Mitochondria-Targeted Peptide Reverses Mitochondrial Dysfunction and Cognitive Deficits in Sepsis-Associated Encephalopathy.

    PubMed

    Wu, Jing; Zhang, Mingqiang; Hao, Shuangying; Jia, Ming; Ji, Muhuo; Qiu, Lili; Sun, Xiaoyan; Yang, Jianjun; Li, Kuanyu

    2015-08-01

    Sepsis-associated encephalopathy (SAE) is associated with increased mortality, morbidity, and long-term cognitive impairments. Its pathophysiology remains to be determined and an effective pharmacologic treatment is lacking. The goal of this study was to investigate the effects of the mitochondria-targeted peptide SS-31 on mitochondrial function and cognitive deficits in SAE mice. C57BL/6 male mice were randomly divided into sham, sham + SS-31, cecal ligation and puncture (CLP), and CLP + SS-31 groups. Peptide SS-31 (5 mg/kg) was intraperitoneally administrated immediately after operation and afterwards once daily for six consecutive days. Surviving mice were subjected to behavioral tests and the hippocampus was collected for biochemical analysis 7 days after operation. The results showed that CLP resulted in high mortality rate and cognitive deficits, representative characteristics of SAE. A physiological mechanistic investigation revealed that mitochondrial function of hippocampus was severely impaired, coupled with reactive oxygen species (ROS) generation, triggering neuronal apoptosis and inflammation. Notably, administration of peptide SS-31 protected the integrity of mitochondria, reversed the mitochondrial dysfunction, inhibited the apoptosis resulting from the release of cytochrome c, diminished the response of inflammation, and ultimately reversed the behavior deficits in the SAE mice. In conclusion, our data demonstrate that daily treatment with mitochondria-targeted peptide SS-31 reduces mortality rate and ameliorates cognitive deficits, which is possibly through a mechanism of reversing mitochondrial dysfunction and partial inhibition of neuronal apoptosis and inflammation in the hippocampus of the SAE mice. PMID:25288156

  11. Coumarin-appended phosphorescent cyclometalated iridium(iii) complexes as mitochondria-targeted theranostic anticancer agents.

    PubMed

    Ye, Rui-Rong; Tan, Cai-Ping; Ji, Liang-Nian; Mao, Zong-Wan

    2016-08-16

    Theranostic anticancer agents incorporating anticancer properties with capabilities for real-time treatment assessment are appealing candidates for chemotherapy. The design of mitochondria-targeted cytotoxic drugs represents a promising approach to target tumors selectively and overcome resistance to current anticancer therapies. In this work, three coumarin-appended phosphorescent cyclometalated iridium(iii) complexes 1-3 have been explored as mitochondria-targeted theranostic anticancer agents. These complexes display rich photophysical properties, which facilitate the study of their intracellular fate. All three complexes can specifically target mitochondria and show much higher antiproliferative activities than cisplatin against various cancer cells including cisplatin-resistant cells. 1-3 can penetrate into human cervical carcinoma (HeLa) cells quickly and efficiently, and they can carry out theranostic functions by simultaneously inducing and monitoring the morphological changes in mitochondria. Mechanism studies show that 1-3 exert their anticancer efficacy by initiating a cascade of events related to mitochondrial dysfunction. Genome-wide transcriptional and Connectivity Map analyses reveal that the cytotoxicity of complex 3 is associated with pathways involved in mitochondrial dysfunction and apoptosis. PMID:27139504

  12. Mitochondria-targeted agents: Future perspectives of mitochondrial pharmaceutics in cardiovascular diseases

    PubMed Central

    Ajith, Thekkuttuparambil Ananthanarayanan; Jayakumar, Thankamani Gopinathan

    2014-01-01

    Mitochondria are one of the major sites for the generation of reactive oxygen species (ROS) as an undesirable side product of oxidative energy metabolism. Damaged mitochondria can augment the generation of ROS. Dysfunction of mitochondria increase the risk for a large number of human diseases, including cardiovascular diseases (CVDs). Heart failure (HF) following ischemic heart disease, infantile cardiomyopathy and cardiac hypertrophy associated with left ventricular dilations are some of the CVDs in which the role of mitochondrial oxidative stress has been reported. Advances in mitochondrial research during the last decade focused on the preservation of its function in the myocardium, which is vital for the cellular energy production. Experimental and clinical trials have been conducted using mitochondria-targeted molecules like: MnSOD mimetics, such as EUK-8, EUK-134 and MitoSOD; choline esters of glutathione and N-acetyl-L-cysteine; triphenylphosphonium ligated vitamin E, lipoic acid, plastoquinone and mitoCoQ10; and Szeto-Schiller (SS)- peptides (SS-02 and SS-31). Although many results are inconclusive, some of the findings, especially on CoQ10, are worthwhile. This review summarizes the role of mitochondria-targeted delivery of agents and their consequences in the control of HF. PMID:25349653

  13. Mitochondria-Targeted Antioxidant SS-31 is a Potential Novel Ophthalmic Medication for Neuroprotection in Glaucoma

    PubMed Central

    PANG, Yu; WANG, Chao; YU, Ling

    2015-01-01

    Glaucoma is the second leading cause of irreversible blindness and a neurodegenerative disease with a complex pathogenesis. Increasing evidence suggests that oxidative stress and mitochondrial dysfunction have crucial roles in most neurodegenerative diseases such as glaucoma. The conventional clinical treatment for glaucoma is lowering the intraocular pressure (IOP). Some patients have normal IOP, whereas other patients appear to obtain adequate control of IOP after filtration surgery or medication. However, these patients still experience progressive visual field loss. Vision field loss in glaucoma is attributed to retinal ganglion cell (RGC) apoptosis. Many recent researches demonstrated that the link between mitochondrial dysfunction and oxidative stress was a major cause of RGCs apoptosis. How oxidative stress leads to RGCs apoptosis in glaucoma is unclear but may involve the neurotoxic effects of oxidative stress-induced mitochondrial dysfunction and/or damage from reactive oxygen species (ROS). Investigations are needed concerning the mitochondria as effective targets for potential therapeutic interventions to maintain mitochondrial function and reduce oxidative stress, and thereby delay or stop RGC loss and prolong visual function. The mitochondria-targeted antioxidant Szeto-Schiller (SS) peptide is a candidate molecule. Szeto-Schiller-31 (H-D-Arg-Dmt-Lys-Phe-NH2) is an attractive mitochondria-targeted antioxidant that can protect the mitochondria and RGCs against oxidative damage. Therefore, we suggest SS-31 as a novel neuroprotective ophthalmic drug for protecting RGCs in glaucoma. PMID:27350953

  14. Treatment Strategies that Enhance the Efficacy and Selectivity of Mitochondria-Targeted Anticancer Agents.

    PubMed

    Modica-Napolitano, Josephine S; Weissig, Volkmar

    2015-01-01

    Nearly a century has passed since Otto Warburg first observed high rates of aerobic glycolysis in a variety of tumor cell types and suggested that this phenomenon might be due to an impaired mitochondrial respiratory capacity in these cells. Subsequently, much has been written about the role of mitochondria in the initiation and/or progression of various forms of cancer, and the possibility of exploiting differences in mitochondrial structure and function between normal and malignant cells as targets for cancer chemotherapy. A number of mitochondria-targeted compounds have shown efficacy in selective cancer cell killing in pre-clinical and early clinical testing, including those that induce mitochondria permeability transition and apoptosis, metabolic inhibitors, and ROS regulators. To date, however, none has exhibited the standards for high selectivity and efficacy and low toxicity necessary to progress beyond phase III clinical trials and be used as a viable, single modality treatment option for human cancers. This review explores alternative treatment strategies that have been shown to enhance the efficacy and selectivity of mitochondria-targeted anticancer agents in vitro and in vivo, and may yet fulfill the clinical promise of exploiting the mitochondrion as a target for cancer chemotherapy. PMID:26230693

  15. Mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes.

    PubMed

    He, Quan; Harris, Nicole; Ren, Jun; Han, Xianlin

    2014-01-01

    Tafazzin, a mitochondrial acyltransferase, plays an important role in cardiolipin side chain remodeling. Previous studies have shown that dysfunction of tafazzin reduces cardiolipin content, impairs mitochondrial function, and causes dilated cardiomyopathy in Barth syndrome. Reactive oxygen species (ROS) have been implicated in the development of cardiomyopathy and are also the obligated byproducts of mitochondria. We hypothesized that tafazzin knockdown increases ROS production from mitochondria, and a mitochondria-targeted antioxidant prevents tafazzin knockdown induced mitochondrial and cardiac dysfunction. We employed cardiac myocytes transduced with an adenovirus containing tafazzin shRNA as a model to investigate the effects of the mitochondrial antioxidant, mito-Tempo. Knocking down tafazzin decreased steady state levels of cardiolipin and increased mitochondrial ROS. Treatment of cardiac myocytes with mito-Tempo normalized tafazzin knockdown enhanced mitochondrial ROS production and cellular ATP decline. Mito-Tempo also significantly abrogated tafazzin knockdown induced cardiac hypertrophy, contractile dysfunction, and cell death. We conclude that mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes and suggest mito-Tempo as a potential therapeutic for Barth syndrome and other dilated cardiomyopathies resulting from mitochondrial oxidative stress. PMID:25247053

  16. The Use of Mitochondria-Targeted Endonucleases to Manipulate mtDNA

    PubMed Central

    Bacman, Sandra R.; Williams, Sion L.; Pinto, Milena; Moraes, Carlos T.

    2014-01-01

    For more than a decade, mitochondria-targeted nucleases have been used to promote double-strand breaks in the mitochondrial genome. This was done in mitochondrial DNA (mtDNA) homoplasmic systems, where all mtDNA molecules can be affected, to create models of mitochondrial deficiencies. Alternatively, they were also used in a heteroplasmic model, where only a subset of the mtDNA molecules were substrates for cleavage. The latter approach showed that mitochondrial-targeted nucleases can reduce mtDNA haplotype loads in affected tissues, with clear implications for the treatment of patients with mitochondrial diseases. In the last few years, designer nucleases, such as ZFN and TALEN, have been adapted to cleave mtDNA, greatly expanding the potential therapeutic use. This chapter describes the techniques and approaches used to test these designer enzymes. PMID:25416366

  17. A mitochondria-targeted ratiometric two-photon fluorescent probe for biological zinc ions detection.

    PubMed

    Ning, Peng; Jiang, Jiacheng; Li, Longchun; Wang, Shuxin; Yu, Haizhu; Feng, Yan; Zhu, Manzhou; Zhang, Buchang; Yin, Hang; Guo, Qingxiang; Meng, Xiangming

    2016-03-15

    A mitochondria-targeted ratiometric two-photon fluorescent probe (Mito-MPVQ) for biological zinc ions detection was developed based on quinolone platform. Mito-MPVQ showed large red shifts (68 nm) and selective ratiometric signal upon Zn(2+) binding. The ratio of emission intensity (I488 nm/I420 nm) increases dramatically from 0.45 to 3.79 (ca. 8-fold). NMR titration and theoretical calculation confirmed the binding of Mito-MPVQ and Zn(2+). Mito-MPVQ also exhibited large two-photon absorption cross sections (150 GM) at nearly 720 nm and insensitivity to pH within the biologically relevant pH range. Cell imaging indicated that Mito-MPVQ could efficiently located in mitochondria and monitor mitochondrial Zn(2+) under two-photon excitation with low cytotoxicity. PMID:26528806

  18. Mitochondria-targeted peptide SS-31 attenuates renal injury via an antioxidant effect in diabetic nephropathy.

    PubMed

    Hou, Yanjuan; Li, Shuangcheng; Wu, Ming; Wei, Jinying; Ren, Yunzhuo; Du, Chunyang; Wu, Haijiang; Han, Caili; Duan, Huijun; Shi, Yonghong

    2016-03-15

    Oxidative stress is implicated in the pathogenesis of diabetic kidney injury. SS-31 is a mitochondria-targeted tetrapeptide that can scavenge reactive oxygen species (ROS). Here, we investigated the effect and molecular mechanism of mitochondria-targeted antioxidant peptide SS-31 on injuries in diabetic kidneys and mouse mesangial cells (MMCs) exposed to high-glucose (HG) ambience. CD-1 mice underwent uninephrectomy and streptozotocin treatment prior to receiving daily intraperitoneal injection of SS-31 for 8 wk. The diabetic mice treated with SS-31 had alleviated proteinuria, urinary 8-hydroxy-2-deoxyguanosine level, glomerular hypertrophy, and accumulation of renal fibronectin and collagen IV. SS-31 attenuated renal cell apoptosis and expression of Bax and reversed the expression of Bcl-2 in diabetic mice kidneys. Furthermore, SS-31 inhibited expression of transforming-growth factor (TGF)-β1, Nox4, and thioredoxin-interacting protein (TXNIP), as well as activation of p38 MAPK and CREB and NADPH oxidase activity in diabetic kidneys. In vitro experiments using MMCs revealed that SS-31 inhibited HG-mediated ROS generation, apoptosis, expression of cleaved caspase-3, Bax/Bcl-2 ratio, and cytochrome c (cyt c) release from mitochondria. SS-31 normalized mitochondrial potential (ΔΨm) and ATP alterations, and inhibited the expression of TGF-β1, Nox4, and TXNIP, as well as activation of p38 MAPK and CREB and NADPH oxidase activity in MMCs under HG conditions. SS-31 treatment also could reverse the reduction of thioredoxin (TRX) biologic activity and upregulate expression of thioredoxin 2 (TRX2) in MMCs under HG conditions. In conclusion, this study demonstrates a protective effect of SS-31 against HG-induced renal injury via an antioxidant mechanism in diabetic nephropathy. PMID:26719366

  19. Electrochemistry of nitronyl and imino nitroxides

    NASA Astrophysics Data System (ADS)

    Budnikova, Yu. G.; Gryaznova, T. V.; Kadirov, M. K.; Tret'yakov, E. V.; Kholin, K. V.; Ovcharenko, V. I.; Sagdeev, R. Z.; Sinyashin, O. G.

    2009-11-01

    Redox potentials of a wide group of azolyl-substituted nitronyl and imino nitroxides were determined by classic cyclic voltammetry (CV). Conclusions have been made for this group of compounds, and their peculiarities were emphasized in comparison with methyl-, phenyl-, iodo-, and cyano-substituted nitroxides.

  20. Mitochondria-targeted antioxidant preserves contractile properties and mitochondrial function of skeletal muscle in aged rats

    PubMed Central

    Javadov, Sabzali; Jang, Sehwan; Rodriguez-Reyes, Natividad; Rodriguez-Zayas, Ana E.; Hernandez, Jessica Soto; Krainz, Tanja; Wipf, Peter; Frontera, Walter

    2015-01-01

    Mitochondrial dysfunction plays a central role in the pathogenesis of sarcopenia associated with a loss of mass and activity of skeletal muscle. In addition to energy deprivation, increased mitochondrial ROS damage proteins and lipids in aged skeletal muscle. Therefore, prevention of mitochondrial ROS is important for potential therapeutic strategies to delay sarcopenia. This study elucidates the pharmacological efficiency of the new developed mitochondria-targeted ROS and electron scavenger, XJB-5-131 (XJB) to restore muscle contractility and mitochondrial function in aged skeletal muscle. Male adult (5-month old) and aged (29-month old) Fischer Brown Norway (F344/BN) rats were treated with XJB for four weeks and contractile properties of single skeletal muscle fibres and activity of mitochondrial ETC complexes were determined at the end of the treatment period. XJB-treated old rats showed higher muscle contractility associated with prevention of protein oxidation in both muscle homogenate and mitochondria compared with untreated counterparts. XJB-treated animals demonstrated a high activity of the respiratory complexes I, III, and IV with no changes in citrate synthase activity. These data demonstrate that mitochondrial ROS play a causal role in muscle weakness, and that a ROS scavenger specifically targeted to mitochondria can reverse age-related alterations of mitochondrial function and improve contractile properties in skeletal muscle. PMID:26415224

  1. Mitochondria-Targeted Vitamin E Protects Skin from UVB-Irradiation

    PubMed Central

    Kim, Won-Serk; Kim, Ikyon; Kim, Wang-Kyun; Choi, Ju-Yeon; Kim, Doo Yeong; Moon, Sung-Guk; Min, Hyung-Keun; Song, Min-Kyu; Sung, Jong-Hyuk

    2016-01-01

    Mitochondria-targeted vitamin E (MVE) is designed to accumulate within mitochondria and is applied to decrease mitochondrial oxidative damage. However, the protective effects of MVE in skin cells have not been identified. We investigated the protective effect of MVE against UVB in dermal fibroblasts and immortalized human keratinocyte cell line (HaCaT). In addition, we studied the wound-healing effect of MVE in animal models. We found that MVE increased the proliferation and survival of fibroblasts at low concentration (i.e., nM ranges). In addition, MVE increased collagen production and downregulated matrix metalloproteinase1. MVE also increased the proliferation and survival of HaCaT cells. UVB increased reactive oxygen species (ROS) production in fibroblasts and HaCaT cells, while MVE decreased ROS production at low concentration. In an animal experiment, MVE accelerated wound healing from laser-induced skin damage. These results collectively suggest that low dose MVE protects skin from UVB irradiation. Therefore, MVE can be developed as a cosmetic raw material. PMID:26869457

  2. Mitochondria-Targeted Vitamin E Protects Skin from UVB-Irradiation.

    PubMed

    Kim, Won-Serk; Kim, Ikyon; Kim, Wang-Kyun; Choi, Ju-Yeon; Kim, Doo Yeong; Moon, Sung-Guk; Min, Hyung-Keun; Song, Min-Kyu; Sung, Jong-Hyuk

    2016-05-01

    Mitochondria-targeted vitamin E (MVE) is designed to accumulate within mitochondria and is applied to decrease mitochondrial oxidative damage. However, the protective effects of MVE in skin cells have not been identified. We investigated the protective effect of MVE against UVB in dermal fibroblasts and immortalized human keratinocyte cell line (HaCaT). In addition, we studied the wound-healing effect of MVE in animal models. We found that MVE increased the proliferation and survival of fibroblasts at low concentration (i.e., nM ranges). In addition, MVE increased collagen production and downregulated matrix metalloproteinase1. MVE also increased the proliferation and survival of HaCaT cells. UVB increased reactive oxygen species (ROS) production in fibroblasts and HaCaT cells, while MVE decreased ROS production at low concentration. In an animal experiment, MVE accelerated wound healing from laser-induced skin damage. These results collectively suggest that low dose MVE protects skin from UVB irradiation. Therefore, MVE can be developed as a cosmetic raw material. PMID:26869457

  3. A mitochondria-targeted mass spectrometry probe to detect glyoxals: implications for diabetes☆

    PubMed Central

    Pun, Pamela Boon Li; Logan, Angela; Darley-Usmar, Victor; Chacko, Balu; Johnson, Michelle S.; Huang, Guang W.; Rogatti, Sebastian; Prime, Tracy A.; Methner, Carmen; Krieg, Thomas; Fearnley, Ian M.; Larsen, Lesley; Larsen, David S.; Menger, Katja E.; Collins, Yvonne; James, Andrew M.; Kumar, G.D. Kishore; Hartley, Richard C.; Smith, Robin A.J.; Murphy, Michael P.

    2014-01-01

    The glycation of protein and nucleic acids that occurs as a consequence of hyperglycemia disrupts cell function and contributes to many pathologies, including those associated with diabetes and aging. Intracellular glycation occurs after the generation of the reactive 1,2-dicarbonyls methylglyoxal and glyoxal, and disruption of mitochondrial function is associated with hyperglycemia. However, the contribution of these reactive dicarbonyls to mitochondrial damage in pathology is unclear owing to uncertainties about their levels within mitochondria in cells and in vivo. To address this we have developed a mitochondria-targeted reagent (MitoG) designed to assess the levels of mitochondrial dicarbonyls within cells. MitoG comprises a lipophilic triphenylphosphonium cationic function, which directs the molecules to mitochondria within cells, and an o-phenylenediamine moiety that reacts with dicarbonyls to give distinctive and stable products. The extent of accumulation of these diagnostic heterocyclic products can be readily and sensitively quantified by liquid chromatography–tandem mass spectrometry, enabling changes to be determined. Using the MitoG-based analysis we assessed the formation of methylglyoxal and glyoxal in response to hyperglycemia in cells in culture and in the Akita mouse model of diabetes in vivo. These findings indicated that the levels of methylglyoxal and glyoxal within mitochondria increase during hyperglycemia both in cells and in vivo, suggesting that they can contribute to the pathological mitochondrial dysfunction that occurs in diabetes and aging. PMID:24316194

  4. Mitochondria-targeted antioxidant preserves contractile properties and mitochondrial function of skeletal muscle in aged rats.

    PubMed

    Javadov, Sabzali; Jang, Sehwan; Rodriguez-Reyes, Natividad; Rodriguez-Zayas, Ana E; Soto Hernandez, Jessica; Krainz, Tanja; Wipf, Peter; Frontera, Walter

    2015-11-24

    Mitochondrial dysfunction plays a central role in the pathogenesis of sarcopenia associated with a loss of mass and activity of skeletal muscle. In addition to energy deprivation, increased mitochondrial ROS damage proteins and lipids in aged skeletal muscle. Therefore, prevention of mitochondrial ROS is important for potential therapeutic strategies to delay sarcopenia. This study elucidates the pharmacological efficiency of the new developed mitochondria-targeted ROS and electron scavenger, XJB-5-131 (XJB) to restore muscle contractility and mitochondrial function in aged skeletal muscle. Male adult (5-month old) and aged (29-month old) Fischer Brown Norway (F344/BN) rats were treated with XJB for four weeks and contractile properties of single skeletal muscle fibres and activity of mitochondrial ETC complexes were determined at the end of the treatment period. XJB-treated old rats showed higher muscle contractility associated with prevention of protein oxidation in both muscle homogenate and mitochondria compared with untreated counterparts. XJB-treated animals demonstrated a high activity of the respiratory complexes I, III, and IV with no changes in citrate synthase activity. These data demonstrate that mitochondrial ROS play a causal role in muscle weakness, and that a ROS scavenger specifically targeted to mitochondria can reverse age-related alterations of mitochondrial function and improve contractile properties in skeletal muscle. PMID:26415224

  5. Ex vivo generation of functional immune cells by mitochondria-targeted photosensitization of cancer cells.

    PubMed

    Marrache, Sean; Tundup, Smanla; Harn, Donald A; Dhar, Shanta

    2015-01-01

    Stimulating the immune system for potent immune therapy against cancer is potentially a revolutionary method to eradicate cancer. Tumors stimulated with photosensitizers (PSs) not only kill cancer cells but also help to boost the immune system. We recently reported that tumor-associated antigens (TAAs) generated by delivery of a mitochondria-acting PS zinc phthalocyanine (ZnPc) to MCF-7 breast cancer cells followed by laser irradiation can lead to ex vivo stimulation of mouse bone marrow-derived dendritic cells (BMDCs). The antigens generated from the breast cancer cells were also found to cause significant DC maturation and the activated DCs were able to stimulate T cells to cytotoxic CD8(+) T cells. In this protocol, we describe methods to engineer a mitochondria-targeted biodegradable nanoparticle (NP) formulation, T-ZnPc-NPs for delivery of ZnPc to the mitochondria of MCF-7 cells, subsequent photodynamic therapy (PDT) using a long wavelength laser irradiation to produce TAAs, DC stimulation by the TAAs to secrete interferon-gamma (IFN-γ), and matured DC-driven T-cell activation. PMID:25634271

  6. Mitochondria-targeted antioxidant SkQ1 improves impaired dermal wound healing in old mice.

    PubMed

    Demyanenko, Ilya A; Popova, Ekaterina N; Zakharova, Vlada V; Ilyinskaya, Olga P; Vasilieva, Tamara V; Romashchenko, Valeria P; Fedorov, Artem V; Manskikh, Vasily N; Skulachev, Maxim V; Zinovkin, Roman A; Pletjushkina, Olga Yu; Skulachev, Vladimir P; Chernyak, Boris V

    2015-07-01

    The process of skin wound healing is delayed or impaired in aging animals. To investigate the possible role of mitochondrial reactive oxygen species (mtROS) in cutaneous wound healing of aged mice, we have applied the mitochondria-targeted antioxidant SkQ1. The SkQ1 treatment resulted in accelerated resolution of the inflammatory phase, formation of granulation tissue, vascularization and epithelization of the wounds. The wounds of SkQ1-treated mice contained increased amount of myofibroblasts which produce extracellular matrix proteins and growth factors mediating granulation tissue formation. This effect resembled SkQ1-induced differentiation of fibroblasts to myofibroblast, observed earlierin vitro. The Transforming Growth Factor beta (TGFb) produced by SkQ1-treated fibroblasts was found to stimulated motility of endothelial cells in vitro, an effect which may underlie pro-angiogenic action of SkQ1 in the wounds. In vitro experiments showed that SkQ1 prevented decomposition of VE-cadherin containing contacts and following increase in permeability of endothelial cells monolayer, induced by pro-inflammatory cytokine TNF. Prevention of excessive reaction of endothelium to the pro-inflammatory cytokine(s) might account for anti-inflammatory effect of SkQ1. Our findings point to an important role of mtROS in pathogenesis of age-related chronic wounds. PMID:26187706

  7. Mitochondria-targeted antioxidant SkQ1 improves impaired dermal wound healing in old mice

    PubMed Central

    Zakharova, Vlada V.; Ilyinskaya, Olga P.; Vasilieva, Tamara V.; Romashchenko, Valeria P.; Fedorov, Artem V.; Manskikh, Vasily N.; Skulachev, Maxim V.; Zinovkin, Roman A.; Pletjushkina, Olga Yu.; Skulachev, Vladimir P.; Chernyak, Boris V.

    2015-01-01

    The process of skin wound healing is delayed or impaired in aging animals. To investigate the possible role of mitochondrial reactive oxygen species (mtROS) in cutaneous wound healing of aged mice, we have applied the mitochondria-targeted antioxidant SkQ1. The SkQ1 treatment resulted in accelerated resolution of the inflammatory phase, formation of granulation tissue, vascularization and epithelization of the wounds. The wounds of SkQ1-treated mice contained increased amount of myofibroblasts which produce extracellular matrix proteins and growth factors mediating granulation tissue formation. This effect resembled SkQ1-induced differentiation of fibroblasts to myofibroblast, observed earlier in vitro. The Transforming Growth Factor beta (TGFβ)produced by SkQ1-treated fibroblasts was found to stimulated motility of endothelial cells in vitro, an effect which may underlie pro-angiogenic action of SkQ1 in the wounds. In vitro experiments showed that SkQ1 prevented decomposition of VE-cadherin containing contacts and following increase in permeability of endothelial cells monolayer, induced by pro-inflammatory cytokine TNF. Prevention of excessive reaction of endothelium to the pro-inflammatory cytokine(s) might account for anti-inflammatory effect of SkQ1. Our findings point to an important role of mtROS in pathogenesis of age-related chronic wounds. PMID:26187706

  8. Mitochondria-Targeted Antioxidants: Future Perspectives in Kidney Ischemia Reperfusion Injury.

    PubMed

    Kezic, Aleksandra; Spasojevic, Ivan; Lezaic, Visnja; Bajcetic, Milica

    2016-01-01

    Kidney ischemia/reperfusion injury emerges in various clinical settings as a great problem complicating the course and outcome. Ischemia/reperfusion injury is still an unsolved puzzle with a great diversity of investigational approaches, putting the focus on oxidative stress and mitochondria. Mitochondria are both sources and targets of ROS. They participate in initiation and progression of kidney ischemia/reperfusion injury linking oxidative stress, inflammation, and cell death. The dependence of kidney proximal tubule cells on oxidative mitochondrial metabolism makes them particularly prone to harmful effects of mitochondrial damage. The administration of antioxidants has been used as a way to prevent and treat kidney ischemia/reperfusion injury for a long time. Recently a new method based on mitochondria-targeted antioxidants has become the focus of interest. Here we review the current status of results achieved in numerous studies investigating these novel compounds in ischemia/reperfusion injury which specifically target mitochondria such as MitoQ, Szeto-Schiller (SS) peptides (Bendavia), SkQ1 and SkQR1, and superoxide dismutase mimics. Based on the favorable results obtained in the studies that have examined myocardial ischemia/reperfusion injury, ongoing clinical trials investigate the efficacy of some novel therapeutics in preventing myocardial infarct. This also implies future strategies in preventing kidney ischemia/reperfusion injury. PMID:27313826

  9. Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore.

    PubMed

    Severin, Fedor F; Severina, Inna I; Antonenko, Yury N; Rokitskaya, Tatiana I; Cherepanov, Dmitry A; Mokhova, Elena N; Vyssokikh, Mikhail Yu; Pustovidko, Antonina V; Markova, Olga V; Yaguzhinsky, Lev S; Korshunova, Galina A; Sumbatyan, Nataliya V; Skulachev, Maxim V; Skulachev, Vladimir P

    2010-01-12

    A unique phenomenon of mitochondria-targeted protonophores is described. It consists in a transmembrane H(+)-conducting fatty acid cycling mediated by penetrating cations such as 10-(6'-plastoquinonyl)decyltriphenylphosphonium (SkQ1) or dodecyltriphenylphosphonium (C(12)TPP). The phenomenon has been modeled by molecular dynamics and directly proved by experiments on bilayer planar phospholipid membrane, liposomes, isolated mitochondria, and yeast cells. In bilayer planar phospholipid membrane, the concerted action of penetrating cations and fatty acids is found to result in conversion of a pH gradient (DeltapH) to a membrane potential (Deltapsi) of the Nernstian value (about 60 mV Deltapsi at DeltapH = 1). A hydrophobic cation with localized charge (cetyltrimethylammonium) failed to substitute for hydrophobic cations with delocalized charge. In isolated mitochondria, SkQ1 and C(12)TPP, but not cetyltrimethylammonium, potentiated fatty acid-induced (i) uncoupling of respiration and phosphorylation, and (ii) inhibition of H(2)O(2) formation. In intact yeast cells, C(12)TPP stimulated respiration regardless of the extracellular pH value, whereas a nontargeted protonophorous uncoupler (trifluoromethoxycarbonylcyanide phenylhydrazone) stimulated respiration at pH 5 but not at pH 3. Hydrophobic penetrating cations might be promising to treat obesity, senescence, and some kinds of cancer that require mitochondrial hyperpolarization. PMID:20080732

  10. Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore

    PubMed Central

    Severin, Fedor F.; Severina, Inna I.; Antonenko, Yury N.; Rokitskaya, Tatiana I.; Cherepanov, Dmitry A.; Mokhova, Elena N.; Vyssokikh, Mikhail Yu.; Pustovidko, Antonina V.; Markova, Olga V.; Yaguzhinsky, Lev S.; Korshunova, Galina A.; Sumbatyan, Nataliya V.; Skulachev, Maxim V.; Skulachev, Vladimir P.

    2010-01-01

    A unique phenomenon of mitochondria-targeted protonophores is described. It consists in a transmembrane H+-conducting fatty acid cycling mediated by penetrating cations such as 10-(6’-plastoquinonyl)decyltriphenylphosphonium (SkQ1) or dodecyltriphenylphosphonium (C12TPP). The phenomenon has been modeled by molecular dynamics and directly proved by experiments on bilayer planar phospholipid membrane, liposomes, isolated mitochondria, and yeast cells. In bilayer planar phospholipid membrane, the concerted action of penetrating cations and fatty acids is found to result in conversion of a pH gradient (ΔpH) to a membrane potential (Δψ) of the Nernstian value (about 60 mV Δψ at ΔpH = 1). A hydrophobic cation with localized charge (cetyltrimethylammonium) failed to substitute for hydrophobic cations with delocalized charge. In isolated mitochondria, SkQ1 and C12TPP, but not cetyltrimethylammonium, potentiated fatty acid-induced (i) uncoupling of respiration and phosphorylation, and (ii) inhibition of H2O2 formation. In intact yeast cells, C12TPP stimulated respiration regardless of the extracellular pH value, whereas a nontargeted protonophorous uncoupler (trifluoromethoxycarbonylcyanide phenylhydrazone) stimulated respiration at pH 5 but not at pH 3. Hydrophobic penetrating cations might be promising to treat obesity, senescence, and some kinds of cancer that require mitochondrial hyperpolarization. PMID:20080732

  11. Structural modifications of mitochondria-targeted chlorambucil alter cell death mechanism but preserve MDR evasion.

    PubMed

    Jean, Sae Rin; Pereira, Mark P; Kelley, Shana O

    2014-08-01

    Multidrug resistance (MDR) remains one of the major obstacles in chemotherapy, potentially rendering a multitude of drugs ineffective. Previously, we have demonstrated that mitochondrial targeting of DNA damaging agents is a promising tool for evading a number of common resistance factors that are present in the nucleus or cytosol. In particular, mitochondria-targeted chlorambucil (mt-Cbl) has increased potency and activity against resistant cancer cells compared to the parent compound chlorambucil (Cbl). However, it was found that, due to its high reactivity, mt-Cbl induces a necrotic type of cell death via rapid nonspecific alkylation of mitochondrial proteins. Here, we demonstrate that by tuning the alkylating activity of mt-Cbl via chemical modification, the rate of generation of protein adducts can be reduced, resulting in a shift of the cell death mechanism from necrosis to a more controlled apoptotic pathway. Moreover, we demonstrate that all of the modified mt-Cbl compounds effectively evade MDR resulting from cytosolic GST-μ upregulation by rapidly accumulating in mitochondria, inducing cell death directly from within. In this study, we systematically elucidated the advantages and limitations of targeting alkylating agents with varying reactivity to mitochondria. PMID:24922525

  12. Mitochondria-Targeted Antioxidants: Future Perspectives in Kidney Ischemia Reperfusion Injury

    PubMed Central

    Kezic, Aleksandra; Spasojevic, Ivan; Lezaic, Visnja; Bajcetic, Milica

    2016-01-01

    Kidney ischemia/reperfusion injury emerges in various clinical settings as a great problem complicating the course and outcome. Ischemia/reperfusion injury is still an unsolved puzzle with a great diversity of investigational approaches, putting the focus on oxidative stress and mitochondria. Mitochondria are both sources and targets of ROS. They participate in initiation and progression of kidney ischemia/reperfusion injury linking oxidative stress, inflammation, and cell death. The dependence of kidney proximal tubule cells on oxidative mitochondrial metabolism makes them particularly prone to harmful effects of mitochondrial damage. The administration of antioxidants has been used as a way to prevent and treat kidney ischemia/reperfusion injury for a long time. Recently a new method based on mitochondria-targeted antioxidants has become the focus of interest. Here we review the current status of results achieved in numerous studies investigating these novel compounds in ischemia/reperfusion injury which specifically target mitochondria such as MitoQ, Szeto-Schiller (SS) peptides (Bendavia), SkQ1 and SkQR1, and superoxide dismutase mimics. Based on the favorable results obtained in the studies that have examined myocardial ischemia/reperfusion injury, ongoing clinical trials investigate the efficacy of some novel therapeutics in preventing myocardial infarct. This also implies future strategies in preventing kidney ischemia/reperfusion injury. PMID:27313826

  13. Mitochondria Targeted Peptides Protect Against 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Neurotoxicity

    PubMed Central

    Yang, Lichuan; Zhao, Kesheng; Calingasan, Noel Y.; Luo, Guoxiong; Szeto, Hazel H.

    2009-01-01

    Abstract A large body of evidence suggests that mitochondrial dysfunction and oxidative damage play a role in the pathogenesis of Parkinson's disease (PD). A number of antioxidants have been effective in animal models of PD. We have developed a family of mitochondria-targeted peptides that can protect against mitochondrial swelling and apoptosis (SS peptides). In this study, we examined the ability of two peptides, SS-31 and SS-20, to protect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity in mice. SS-31 produced dose-dependent complete protection against loss of dopamine and its metabolites in striatum, as well as loss of tyrosine hydroxylase immunoreactive neurons in substantia nigra pars compacta. SS-20, which does not possess intrinsic ability in scavenging reactive oxygen species, also demonstrated significant neuroprotective effects on dopaminergic neurons of MPTP-treated mice. Both SS-31 and SS-20 were very potent (nM) in preventing MPP+ (1-methyl-4-phenylpyridinium)-induced cell death in cultured dopamine cells (SN4741). Studies with isolated mitochondria showed that both SS-31 and SS-20 prevented MPP+-induced inhibition of oxygen consumption and ATP production, and mitochondrial swelling. These findings provide strong evidence that these neuroprotective peptides, which target both mitochondrial dysfunction and oxidative damage, are a promising approach for the treatment of PD. Antioxid. Redox Signal. 11, 2095–2104. PMID:19203217

  14. Mitochondria-targeted antioxidants do not prevent tumour necrosis factor-induced necrosis of L929 cells.

    PubMed

    Jarvis, Reagan M; Göttert, Jana; Murphy, Michael P; Ledgerwood, Elizabeth C

    2007-09-01

    Mitochondrial production of reactive oxygen species (ROS) is widely reported as a central effector during TNF-induced necrosis. The effect of a family of mitochondria-targeted antioxidants on TNF-induced necrosis of L929 cells was studied. While the commonly used lipid-soluble antioxidant BHA effectively protected cells from TNF-induced necrosis, the mitochondria-targeted antioxidants MitoQ(3), MitoQ(5), MitoQ(10) and MitoPBN had no effect on TNF-induced necrosis. Since BHA also acts as an uncoupler of mitochondrial membrane potential, two additional uncouplers were tested. FCCP and CCCP both provided dose-dependent inhibition of TNF-induced necrosis. In conclusion, the generation of mitochondrial ROS may not be necessary for TNF-induced necrosis. Instead, these results suggest alternative mitochondrial functions, such as a respiration-dependent process, are critical for necrotic death. PMID:17729122

  15. Mitochondria-Targeted Antioxidant SS31 Prevents Amyloid Beta-Induced Mitochondrial Abnormalities and Synaptic Degeneration in Alzheimer's Disease.

    PubMed

    Calkins, Marcus J; Manczak, Maria; Reddy, P Hemachandra

    2012-01-01

    In neuronal systems, the health and activity of mitochondria and synapses are tightly coupled. For this reason, it has been postulated that mitochondrial abnormalities may, at least in part, drive neurodegeneration in conditions such as Alzheimer's disease (AD). Mounting evidence from multiple Alzheimer's disease cell and mouse models and postmortem brains suggest that loss of mitochondrial integrity may be a key factor that mediates synaptic loss. Therefore, the prevention or rescue of mitochondrial dysfunction may help delay or altogether prevent AD-associated neurodegeneration. Since mitochondrial health is heavily dependent on antioxidant defenses, researchers have begun to explore the use of mitochondria-targeted antioxidants as therapeutic tools to prevent neurodegenerative diseases. This review will highlight advances made using a model mitochondria-targeted antioxidant peptide, SS31, as a potential treatment for AD. PMID:23226091

  16. Pulsed EPR Imaging of Nitroxides in Mice

    PubMed Central

    Hyodo, Fuminori; Matsumoto, Shingo; Devasahayam, Nallathamby; Dharmaraj, Christopher; Subramanian, Sankaran; Mitchell, James B.; Krishna, Murali C.

    2012-01-01

    Nitroxides, unlike trityl radicals, have shorter T2s which until now were not detectable by time-domain Electron Paramagnetic Resonance (EPR) spectrometer at 300 MHz pulsed EPR since their phase memory times were shorter than the spectrometer recovery times. In the current version of the time-domain EPR spectrometer with improved spectrometer recovery times, we tested the feasibility of detecting signals from nitroxide radicals. Several nitroxides and the trityl radical Oxo63 were tested. Among the nitroxides evaluated, deuterated 15N-Tempone (15N-PDT) was found to have the longest T2. The signal intensity profile as a function of concentration of these agents was evaluated and a bi-phasic behavior was observed; beyond a nitroxide concentration of 1.5 mM, signal intensity was found to decrease as a result of self-broadening. Imaging experiments were carried out with 15N-PDT in solutions equilibrated with 0, 5, 10 and 21% oxygen using the Single Point Imaging (SPI) modality in EPR. The image intensity in these tubes was found to depend on the oxygen concentration which in turn influences the T2 of 15N-PDT. In vivo experiments were demonstrated with 15N-PDT in anesthetized mice where the distribution and metabolism of 15N-PDT could be monitored. This study, for the first time shows the capability to image a cell-permeable nitroxide in mice using pulsed EPR in the SPI modality. PMID:19157932

  17. Reduction of early reperfusion injury with the mitochondria-targeting peptide bendavia.

    PubMed

    Brown, David A; Hale, Sharon L; Baines, Christopher P; del Rio, Carlos L; Hamlin, Robert L; Yueyama, Yukie; Kijtawornrat, Anusak; Yeh, Steve T; Frasier, Chad R; Stewart, Luke M; Moukdar, Fatiha; Shaikh, Saame Raza; Fisher-Wellman, Kelsey H; Neufer, P Darrell; Kloner, Robert A

    2014-01-01

    We recently showed that Bendavia, a novel mitochondria-targeting peptide, reduced infarction and no-reflow across several experimental models. The purpose of this study was to determine the therapeutic timing and mechanism of action that underlie Bendavia's cytoprotective property. In rabbits exposed to in vivo ischemia/reperfusion (30/180 min), Bendavia administered 20 minutes prior to reperfusion (0.05 mg/kg/h, intravenously) reduced myocardial infarct size by ∼50% when administered for either 1 or 3 hours of reperfusion. However, when Bendavia perfusion began just 10 minutes after the onset of reperfusion, the protection against infarction and no-reflow was completely lost, indicating that the mechanism of protection is occurring early in reperfusion. Experiments in isolated mouse liver mitochondria found no discernible effect of Bendavia on blocking the permeability transition pore, and studies in isolated heart mitochondria showed no effect of Bendavia on respiratory rates. As Bendavia significantly lowered reactive oxygen species (ROS) levels in isolated heart mitochondria, the ROS-scavenging capacity of Bendavia was compared to well-known ROS scavengers using in vitro (cell-free) systems that enzymatically generate ROS. Across doses ranging from 1 nmol/L to 1 mmol/L, Bendavia showed no discernible ROS-scavenging properties, clearly differentiating itself from prototypical scavengers. In conclusion, Bendavia is a promising candidate to reduce cardiac injury when present at the onset of reperfusion but not after reperfusion has already commenced. Given that both infarction and no-reflow are related to increased cellular ROS, Bendavia's protective mechanism of action likely involves reduced ROS generation (as opposed to augmented scavenging) by endothelial and myocyte mitochondria. PMID:24288396

  18. Mitochondria-targeted antioxidants and metabolic modulators as pharmacological interventions to slow ageing.

    PubMed

    Gruber, Jan; Fong, Sheng; Chen, Ce-Belle; Yoong, Sialee; Pastorin, Giorgia; Schaffer, Sebastian; Cheah, Irwin; Halliwell, Barry

    2013-01-01

    Populations in many nations today are rapidly ageing. This unprecedented demographic change represents one of the main challenges of our time. A defining property of the ageing process is a marked increase in the risk of mortality and morbidity with age. The incidence of cancer, cardiovascular and neurodegenerative diseases increases non-linearly, sometimes exponentially with age. One of the most important tasks in biogerontology is to develop interventions leading to an increase in healthy lifespan (health span), and a better understanding of basic mechanisms underlying the ageing process itself may lead to interventions able to delay or prevent many or even all age-dependent conditions. One of the putative basic mechanisms of ageing is age-dependent mitochondrial deterioration, closely associated with damage mediated by reactive oxygen species (ROS). Given the central role that mitochondria and mitochondrial dysfunction play not only in ageing but also in apoptosis, cancer, neurodegeneration and other age-related diseases there is great interest in approaches to protect mitochondria from ROS-mediated damage. In this review, we explore strategies of targeting mitochondria to reduce mitochondrial oxidative damage with the aim of preventing or delaying age-dependent decline in mitochondrial function and some of the resulting pathologies. We discuss mitochondria-targeted and -localized antioxidants (e.g.: MitoQ, SkQ, ergothioneine), mitochondrial metabolic modulators (e.g. dichloroacetic acid), and uncouplers (e.g.: uncoupling proteins, dinitrophenol) as well as some alternative future approaches for targeting compounds to the mitochondria, including advances from nanotechnology. PMID:23022622

  19. Cytotoxicity of mitochondria-targeted resveratrol derivatives: interactions with respiratory chain complexes and ATP synthase.

    PubMed

    Sassi, Nicola; Mattarei, Andrea; Azzolini, Michele; Szabo', Ildiko'; Paradisi, Cristina; Zoratti, Mario; Biasutto, Lucia

    2014-10-01

    We recently reported that mitochondria-targeted derivatives of resveratrol are cytotoxic in vitro, selectively inducing mostly necrotic death of fast-growing and tumoral cells when supplied in the low μM range (N. Sassi et al., Curr. Pharm. Des. 2014). Cytotoxicity is due to H2O2 produced upon accumulation of the compounds into mitochondria. We investigate here the mechanisms underlying ROS generation and mitochondrial depolarization caused by these agents. We find that they interact with the respiratory chain, especially complexes I and III, causing superoxide production. "Capping" free hydroxyls with acetyl or methyl groups increases their effectiveness as respiratory chain inhibitors, promoters of ROS generation and cytotoxic agents. Exposure to the compounds also induces an increase in the occurrence of short transient [Ca(2+)] "spikes" in the cells. This increase is unrelated to ROS production, and it is not the cause of cell death. These molecules furthermore inhibit the F0F1 ATPase. When added to oligomycin-treated cells, the acetylated/methylated ones cause a recovery of the cellular oxygen consumption rates depressed by oligomycin. Since a protonophoric futile cycle which might account for the uncoupling effect is impossible, we speculate that the compounds may cause the transformation of the ATP synthase and/or respiratory chain complex(es) into a conduit for uncoupled proton translocation. Only in the presence of excess oligomycin the most effective derivatives appear to induce the mitochondrial permeability transition (MPT) within the cells. This may be considered to provide circumstantial support for the idea that the ATP synthase is the molecular substrate for the MPT pore. PMID:24997425

  20. The mitochondria-targeted antioxidant MitoQ attenuates liver fibrosis in mice

    PubMed Central

    Rehman, Hasibur; Liu, Qinlong; Krishnasamy, Yasodha; Shi, Zengdun; Ramshesh, Venkat K; Haque, Khujista; Schnellmann, Rick G; Murphy, Michael P; Lemasters, John J; Rockey, Don C; Zhong, Zhi

    2016-01-01

    Oxidative stress plays an essential role in liver fibrosis. This study investigated whether MitoQ, an orally active mitochondrial antioxidant, decreases liver fibrosis. Mice were injected with corn oil or carbon tetrachloride (CCl4, 1:3 dilution in corn oil; 1 µl/g, ip) once every 3 days for up to 6 weeks. 4-Hydroxynonenal adducts increased markedly after CCl4 treatment, indicating oxidative stress. MitoQ attenuated oxidative stress after CCl4. Collagen 1α1 mRNA and hydroxyproline increased markedly after CCl4 treatment, indicating increased collagen formation and deposition. CCl4 caused overt pericentral fibrosis as revealed by both the sirius red staining and second harmonic generation microscopy. MitoQ blunted fibrosis after CCl4. Profibrotic transforming growth factor-β1 (TGF-β1) mRNA and expression of smooth muscle α-actin, an indicator of hepatic stellate cell (HSC) activation, increased markedly after CCl4 treatment. Smad 2/3, the major mediator of TGF-β fibrogenic effects, was also activated after CCl4 treatment. MitoQ blunted HSC activation, TGF-β expression, and Smad2/3 activation after CCl4 treatment. MitoQ also decreased necrosis, apoptosis and inflammation after CCl4 treatment. In cultured HSCs, MitoQ decreased oxidative stress, inhibited HSC activation, TGF-β1 expression, Smad2/3 activation, and extracellular signal-regulated protein kinase activation. Taken together, these data indicate that mitochondrial reactive oxygen species play an important role in liver fibrosis and that mitochondria-targeted antioxidants are promising potential therapies for prevention and treatment of liver fibrosis. PMID:27186319

  1. The mitochondria-targeted antioxidant MitoQ attenuates liver fibrosis in mice.

    PubMed

    Rehman, Hasibur; Liu, Qinlong; Krishnasamy, Yasodha; Shi, Zengdun; Ramshesh, Venkat K; Haque, Khujista; Schnellmann, Rick G; Murphy, Michael P; Lemasters, John J; Rockey, Don C; Zhong, Zhi

    2016-01-01

    Oxidative stress plays an essential role in liver fibrosis. This study investigated whether MitoQ, an orally active mitochondrial antioxidant, decreases liver fibrosis. Mice were injected with corn oil or carbon tetrachloride (CCl4, 1:3 dilution in corn oil; 1 µl/g, ip) once every 3 days for up to 6 weeks. 4-Hydroxynonenal adducts increased markedly after CCl4 treatment, indicating oxidative stress. MitoQ attenuated oxidative stress after CCl4. Collagen 1α1 mRNA and hydroxyproline increased markedly after CCl4 treatment, indicating increased collagen formation and deposition. CCl4 caused overt pericentral fibrosis as revealed by both the sirius red staining and second harmonic generation microscopy. MitoQ blunted fibrosis after CCl4. Profibrotic transforming growth factor-β1 (TGF-β1) mRNA and expression of smooth muscle α-actin, an indicator of hepatic stellate cell (HSC) activation, increased markedly after CCl4 treatment. Smad 2/3, the major mediator of TGF-β fibrogenic effects, was also activated after CCl4 treatment. MitoQ blunted HSC activation, TGF-β expression, and Smad2/3 activation after CCl4 treatment. MitoQ also decreased necrosis, apoptosis and inflammation after CCl4 treatment. In cultured HSCs, MitoQ decreased oxidative stress, inhibited HSC activation, TGF-β1 expression, Smad2/3 activation, and extracellular signal-regulated protein kinase activation. Taken together, these data indicate that mitochondrial reactive oxygen species play an important role in liver fibrosis and that mitochondria-targeted antioxidants are promising potential therapies for prevention and treatment of liver fibrosis. PMID:27186319

  2. Toxicity of neurons treated with herbicides and neuroprotection by mitochondria-targeted antioxidant SS31.

    PubMed

    Reddy, Tejaswini P; Manczak, Maria; Calkins, Marcus J; Mao, Peizhong; Reddy, Arubala P; Shirendeb, Ulziibat; Park, Byung; Reddy, P Hemachandra

    2011-01-01

    The purpose of this study was to determine the neurotoxicity of two commonly used herbicides: picloram and triclopyr and the neuroprotective effects of the mitochondria-targeted antioxidant, SS31. Using mouse neuroblastoma (N2a) cells and primary neurons from C57BL/6 mice, we investigated the toxicity of these herbicides, and protective effects of SS1 peptide against picloram and triclopyr toxicity. We measured total RNA content, cell viability and mRNA expression of peroxiredoxins, neuroprotective genes, mitochondrial-encoded electron transport chain (ETC) genes in N2a cells treated with herbicides and SS31. Using primary neurons from C57BL/6 mice, neuronal survival was studied in neurons treated with herbicides, in neurons pretreated with SS31 plus treated with herbicides, neurons treated with SS31 alone, and untreated neurons. Significantly decreased total RNA content, and cell viability in N2a cells treated with picloram and triclopyr were found compared to untreated N2a cells. Decreased mRNA expression of neuroprotective genes, and ETC genes in cells treated with herbicides was found compared to untreated cells. Decreased mRNA expression of peroxiredoxins 1-6 in N2a cells treated with picloram was found, suggesting that picloram affects the antioxidant enzymes in N2a cells. Immunofluorescence analysis of primary neurons revealed that decreased neuronal branching and degenerating neurons in neurons treated with picloram and triclopyr. However, neurons pretreated with SS31 prevented degenerative process caused by herbicides. Based on these results, we propose that herbicides--picloram and triclopyr appear to damage neurons, and the SS31 peptide appears to protect neurons from herbicide toxicity. PMID:21318024

  3. Toxicity of Neurons Treated with Herbicides and Neuroprotection by Mitochondria-Targeted Antioxidant SS31

    PubMed Central

    Reddy, Tejaswini P.; Manczak, Maria; Calkins, Marcus J.; Mao, Peizhong; Reddy, Arubala P.; Shirendeb, Ulziibat; Park, Byung; Reddy, P. Hemachandra

    2011-01-01

    The purpose of this study was to determine the neurotoxicity of two commonly used herbicides: picloram and triclopyr and the neuroprotective effects of the mitochondria-targeted antioxidant, SS31. Using mouse neuroblastoma (N2a) cells and primary neurons from C57BL/6 mice, we investigated the toxicity of these herbicides, and protective effects of SS1 peptide against picloram and triclopyr toxicity. We measured total RNA content, cell viability and mRNA expression of peroxiredoxins, neuroprotective genes, mitochondrial-encoded electron transport chain (ETC) genes in N2a cells treated with herbicides and SS31. Using primary neurons from C57BL/6 mice, neuronal survival was studied in neurons treated with herbicides, in neurons pretreated with SS31 plus treated with herbicides, neurons treated with SS31 alone, and untreated neurons. Significantly decreased total RNA content, and cell viability in N2a cells treated with picloram and triclopyr were found compared to untreated N2a cells. Decreased mRNA expression of neuroprotective genes, and ETC genes in cells treated with herbicides was found compared to untreated cells. Decreased mRNA expression of peroxiredoxins 1–6 in N2a cells treated with picloram was found, suggesting that picloram affects the antioxidant enzymes in N2a cells. Immunofluorescence analysis of primary neurons revealed that decreased neuronal branching and degenerating neurons in neurons treated with picloram and triclopyr. However, neurons pretreated with SS31 prevented degenerative process caused by herbicides. Based on these results, we propose that herbicides—picloram and triclopyr appear to damage neurons, and the SS31 peptide appears to protect neurons from herbicide toxicity. PMID:21318024

  4. A high-resolution mitochondria-targeting ratiometric fluorescent probe for detection of the endogenous hypochlorous acid

    NASA Astrophysics Data System (ADS)

    Zhou, Liyi; Lu, Dan-Qing; Wang, Qianqian; Hu, Shunqin; Wang, Haifei; Sun, Hongyan; Zhang, Xiaobing

    2016-09-01

    Hypochlorite anion, one of the biologically important reactive oxygen species, plays an essential role in diverse normal biochemical functions and abnormal pathological processes. Herein, an efficient high-resolution mitochondria-targeting ratiometric fluorescent probe for hypochlorous acid detection has been designed, synthesized and characterized. It is easily synthesized by the condensation reaction (Cdbnd C) of a 2-(2-hydroxyphenyl) quinazolin-4(3H)-one fluorophore and a cyanine group (mitochondria-targeting), which made the whole molecular a large Stokes shift (210 nm) and the two well-resolved emission peaks separated by 140 nm. As a result, it is considered as a good candidate for high resolution hypochlorous acid imaging in live cells. The ratiometric fluorescent probe exhibited outstanding features of high sensitivity, high selectivity, rapid response time (within 50 s), and excellent mitochondria-targeting ability. Moreover, the probe can also be successfully applied to imaging endogenously hypochlorous acid in the mitochondria of living cells with low cytotoxicity, and high resolution.

  5. A high-resolution mitochondria-targeting ratiometric fluorescent probe for detection of the endogenous hypochlorous acid.

    PubMed

    Zhou, Liyi; Lu, Dan-Qing; Wang, Qianqian; Hu, Shunqin; Wang, Haifei; Sun, Hongyan; Zhang, Xiaobing

    2016-09-01

    Hypochlorite anion, one of the biologically important reactive oxygen species, plays an essential role in diverse normal biochemical functions and abnormal pathological processes. Herein, an efficient high-resolution mitochondria-targeting ratiometric fluorescent probe for hypochlorous acid detection has been designed, synthesized and characterized. It is easily synthesized by the condensation reaction (CC) of a 2-(2-hydroxyphenyl) quinazolin-4(3H)-one fluorophore and a cyanine group (mitochondria-targeting), which made the whole molecular a large Stokes shift (210nm) and the two well-resolved emission peaks separated by 140nm. As a result, it is considered as a good candidate for high resolution hypochlorous acid imaging in live cells. The ratiometric fluorescent probe exhibited outstanding features of high sensitivity, high selectivity, rapid response time (within 50s), and excellent mitochondria-targeting ability. Moreover, the probe can also be successfully applied to imaging endogenously hypochlorous acid in the mitochondria of living cells with low cytotoxicity, and high resolution. PMID:27236136

  6. Pulsed EPR imaging of nitroxides in mice.

    PubMed

    Hyodo, Fuminori; Matsumoto, Shingo; Devasahayam, Nallathamby; Dharmaraj, Christopher; Subramanian, Sankaran; Mitchell, James B; Krishna, Murali C

    2009-04-01

    Nitroxides, unlike trityl radicals, have shorter T(2)s which until now were not detectable in vivo by a time-domain pulsed Electron Paramagnetic Resonance (EPR) spectrometer at 300 MHz since their phase memory times were shorter than the spectrometer recovery times. In the current version of the time-domain EPR spectrometer with improved spectrometer recovery times, the feasibility of detecting signals from nitroxide radicals was tested. Among the nitroxides evaluated, deuterated (15)N-Tempone ((15)N-PDT) was found to have the longest T(2). The signal intensity profile as a function of concentration of these agents was evaluated and a biphasic behavior was observed; beyond a nitroxide concentration of 1.5mM, signal intensity was found to decrease as a result of self-broadening. Imaging experiments were carried out with (15)N-PDT in solutions equilibrated with 0%, 5%, 10%, and 21% oxygen using the single point imaging (SPI) modality in EPR. The image intensity in these tubes was found to depend on the oxygen concentration which in turn influences the T(2) of (15)N-PDT. In vivo experiments were demonstrated with (15)N-PDT in anesthetized mice where the distribution and metabolism of (15)N-PDT could be monitored. This study, for the first time shows the capability to image a cell-permeable nitroxide in mice using pulsed EPR in the SPI modality. PMID:19157932

  7. Ex vivo programming of dendritic cells by mitochondria-targeted nanoparticles to produce interferon-gamma for cancer immunotherapy.

    PubMed

    Marrache, Sean; Tundup, Smanla; Harn, Donald A; Dhar, Shanta

    2013-08-27

    One of the limitations for clinical applications of dendritic cell (DC)-based cancer immunotherapy is the low potency in generating tumor antigen specific T cell responses. We examined the immunotherapeutic potential of a mitochondria-targeted nanoparticle (NP) based on a biodegradable polymer and zinc phthalocyanine (ZnPc) photosensitizer (T-ZnPc-NPs). Here, we report that tumor antigens generated from treatment of breast cancer cells with T-ZnPc-NPs upon light stimulation activate DCs to produce high levels of interferon-gamma, an important cytokine considered as a product of T and natural killer cells. The remarkable ex vivo DC stimulation ability of this tumor cell supernatant is a result of an interleukin (IL)-12/IL-18 autocrine effect. These findings contribute to the understanding of how in situ light activation amplifies the host immune responses when NPs deliver the photosensitizer to the mitochondria and open up the possibility of using mitochondria-targeted-NP-treated, light-activated cancer cell supernatants as possible vaccines. PMID:23899410

  8. Mitochondria-targeted antioxidant mitotempo protects mitochondrial function against amyloid beta toxicity in primary cultured mouse neurons.

    PubMed

    Hu, Hongtao; Li, Mo

    2016-09-01

    Mitochondrial defects including excess reactive oxygen species (ROS) production and compromised ATP generation are featured pathology in Alzheimer's disease (AD). Amyloid beta (Aβ)-mediated mitochondrial ROS overproduction disrupts intra-neuronal Redox balance, in turn exacerbating mitochondrial dysfunction leading to neuronal injury. Previous studies have found the beneficial effects of mitochondria-targeted antioxidants in preventing mitochondrial dysfunction and neuronal injury in AD animal and cell models, suggesting that mitochondrial ROS scavengers hold promise for the treatment of this neurological disorder. In this study, we have determined that mitotempo, a novel mitochondria-targeted antioxidant protects mitochondrial function from the toxicity of Aβ in primary cultured neurons. Our results showed that Aβ-promoted mitochondrial superoxide production and neuronal lipid oxidation were significantly suppressed by the application of mitotempo. Moreover, mitotempo also demonstrated protective effects on mitochondrial bioenergetics evidenced by preserved mitochondrial membrane potential, cytochrome c oxidase activity as well as ATP production. In addition, the Aβ-induced mitochondrial DNA (mtDNA) depletion and decreased expression levels of mtDNA replication-related DNA polymerase gamma (DNA pol γ) and Twinkle were substantially mitigated by mitotempo. Therefore, our study suggests that elimination of excess mitochondrial ROS rescues mitochondrial function in Aβ-insulted neruons; and mitotempo has the potential to be a promising therapeutic agent to protect mitochondrial and neuronal function in AD. PMID:27444386

  9. Methodology for use of mitochondria-targeted cations in the field of oxidative stress-related research.

    PubMed

    Vyssokikh, Mikhail Y; Antonenko, Yury N; Lyamzaev, Konstantin G; Rokitskaya, Tatyana I; Skulachev, Vladimir P

    2015-01-01

    For many pathological conditions, reactive oxygen species (ROS) generated in mitochondria are considered to have a role as a trigger. When mitochondrial ROS (mROS) are formed in the inner mitochondrial membrane, they initiate free radical-mediated chain reactions of lipid peroxidation and are thus especially damaging. The consequences of membrane damage are decreased electrical resistance of the membrane, oxidative damage to cardiolipin (a mitochondria specific lipid essential for functioning of respiratory chain proteins and H(+)-ATP synthase), and damage to mitochondrial DNA localized in close vicinity to the inner membrane, with consequent mitochondrial dysfunction and induction of apoptotic cascade and cell death. To target the starting point of such undesirable events, antioxidants conjugated with mitochondria-targeted, membrane-penetrating cations can be used to scavenge ROS inside mitochondria. The most demonstrative indications favoring this conclusion originate from recent discoveries of the in vivo effects of such cations belonging to the MitoQ and SkQ groups. Here we describe some essential methodological aspects of the application of mitochondria-targeted cations promising in treating oxidative stress-related pathologies. PMID:25634274

  10. Protection against renal ischemia–reperfusion injury in vivo by the mitochondria targeted antioxidant MitoQ

    PubMed Central

    Dare, Anna J.; Bolton, Eleanor A.; Pettigrew, Gavin J.; Bradley, J. Andrew; Saeb-Parsy, Kourosh; Murphy, Michael P.

    2015-01-01

    Ischemia–reperfusion (IR) injury to the kidney occurs in a range of clinically important scenarios including hypotension, sepsis and in surgical procedures such as cardiac bypass surgery and kidney transplantation, leading to acute kidney injury (AKI). Mitochondrial oxidative damage is a significant contributor to the early phases of IR injury and may initiate a damaging inflammatory response. Here we assessed whether the mitochondria targeted antioxidant MitoQ could decrease oxidative damage during IR injury and thereby protect kidney function. To do this we exposed kidneys in mice to in vivo ischemia by bilaterally occluding the renal vessels followed by reperfusion for up to 24 h. This caused renal dysfunction, measured by decreased creatinine clearance, and increased markers of oxidative damage. Administering MitoQ to the mice intravenously 15 min prior to ischemia protected the kidney from damage and dysfunction. These data indicate that mitochondrial oxidative damage contributes to kidney IR injury and that mitochondria targeted antioxidants such as MitoQ are potential therapies for renal dysfunction due to IR injury. PMID:25965144

  11. Nitroxide delivery system for Nrf2 activation and skin protection.

    PubMed

    Ben Yehuda Greenwald, Maya; Frušić-Zlotkin, Marina; Soroka, Yoram; Sasson, Shmuel Ben; Bianco-Peled, Havazelet; Bitton, Ronit; Kohen, Ron

    2015-08-01

    Cyclic nitroxides are a large group of compounds composed of diverse stable radicals also known as synthetic antioxidants. Although nitroxides are valuable for use in several skin conditions, in in vivo conditions they have several drawbacks, such as nonspecific dispersion in normal tissue, preferential renal clearance and rapid reduction of the nitroxide to the corresponding hydroxylamine. However, these drawbacks can be easily addressed by encapsulating the nitroxides within microemulsions. This approach would allow nitroxide activity and therefore their valuable effects (e.g. activation of the Keap1-Nrf2-EpRE pathway) to continue. In this work, nitroxides were encapsulated in a microemulsion composed of biocompatible ingredients. The nanometric size and shape of the vehicle microemulsion and nitroxide microemulsion displayed high similarity, indicating that the stability of the microemulsions was preserved. Our studies demonstrated that nitroxide microemulsions were more potent inducers of the Keap1-Nrf2-EpRE pathway than the free nitroxides, causing the activation of phase II enzymes. Moreover, microemulsions containing nitroxides significantly reduced UVB-induced cytotoxicity in the skin. Understanding the mechanism of this improved activity may expand the usage of many other Nrf2 modulating molecules in encapsulated form, as a skin protection strategy against oxidative stress-related conditions. PMID:25986586

  12. Exchange and shuttling of electrons by nitroxide spin labels.

    PubMed

    Nettleton, D O; Morse, P D; Swartz, H M

    1989-06-01

    The ability of nitroxide spin labels to act as oxidizers of reduced nitroxides (hydroxylamines) in biological and model systems was demonstrated. All of the nitroxides tested were able to act as oxidizing agents with respect to hydroxylamine derivatives of nitroxides. The rates of these reactions were first order with respect to nitroxide concentration and with respect to hydroxylamine concentration, making the reaction second order overall. The second-order rate constants are reported for a number of these reactions. These reactions proceeded to an equilibrium state and the equilibrium constants for several combinations of reactants are presented. Both the rate constants and the equilibrium constants were found to be dependent on the ring structure of the nitroxide and hydroxylamine, with piperidines being reduced more easily and pyrrolidines and oxazolidines being oxidized more easily. All of the hydroxylamine derivatives were oxidized by air to their respective nitroxides, with the rate of this oxidation greater for pyrrolidines than for piperidines. Furthermore, hydroxylamines that are permeable to lipid bilayers were able to act as shuttles of reducing equivalents to liposome-encapsulated nitroxides that were otherwise inaccessible to reducing agents. This mechanism of shuttling of electrons was able to explain the relatively rapid reduction by cells of a nonpermeable nitroxide in the presence of a permeable nitroxide. PMID:2729999

  13. Nitroxides protect against peroxynitrite-induced nitration and oxidation.

    PubMed

    Sadowska-Bartosz, Izabela; Gajewska, Agnieszka; Skolimowski, Janusz; Szewczyk, Rafał; Bartosz, Grzegorz

    2015-12-01

    Nitroxides are promising compounds for prevention of undesired protein modifications. The aim of this study was to compare the efficiency of 11 nitroxides, derivatives of 2,2,6,6-tetramethylpiperidine-1-oxide (TEMPO) and 2,2,5,5-tetramethylpirrolidine-1-oxyl (PROXYL) in prevention of nitration and oxidation of model compounds and human serum albumin (HSA). Most nitroxides were very efficient in preventing loss of fluorescein fluorescence induced by peroxynitrite (PN) (IC50 in the nanomolar range) and preventing HSA nitration. The loss of fluorescein fluorescence was demonstrated to be due to nitration. Nitroxides were more effective in prevention nitration than oxidation reactions. They showed a concentration window for preventing dihydrorhodamine (DHR) 123 oxidation but exerted a prooxidant effect at both high and low concentrations. No prooxidant effect of nitroxides was seen in prevention of DHR123 oxidation induced by SIN-1. In all essays hydrophobic nitroxides (especially 4-nonylamido-TEMPO and 3-carbamolyl-dehydroPROXYL) showed the lowest efficiency. An exception was the prevention of thiol group oxidation by PN and SIN-1 where hydrophobic nitroxides were the most effective, apparently due to binding to the protein. Nitroxides showed low toxicity to MCF-7 cells. Most nitroxides, except for the most hydrophobic ones, protected cells from the cytotoxic action of SIN-1 and SIN-1-induced protein nitration. These results point to potential usefulness of nitroxides for prevention of PN-induced oxidation and, especially, nitration. PMID:26546694

  14. Design and Synthesis of a Mitochondria-Targeted Mimic of Glutathione Peroxidase, MitoEbselen-2, as a Radiation Mitigator

    PubMed Central

    2015-01-01

    Ionizing radiation (IR) triggers mitochondrial overproduction of H2O2 and accumulation of lipid hydroperoxides leading to the induction of apoptotic and necroptotic cell death pathways. Given the high catalytic efficiency of the seleno-enzyme glutathione peroxidase (Gpx) toward reduction of lipid hydroperoxides and H2O2, we tested the potential of mitochondria-targeted derivatives of ebselen to mitigate the deleterious effects of IR. We report that 2-[[2-[4-(3-oxo-1,2-benzoselenazol-2-yl)phenyl]acetyl]amino]ethyl-triphenyl-phosphonium chloride (MitoPeroxidase 2) was effective in reducing lipid hydroperoxides, preventing apoptotic cell death, and, when administered 24 h postirradiation, increased the survival of mice exposed to whole body γ-irradiation. PMID:25530831

  15. Identification of functionally important amino acid residues in the mitochondria targeting sequence of Hepatitis B virus X protein

    SciTech Connect

    Li, Sai Kam; Ho, Sai Fan; Tsui, Kwok Wing; Fung, Kwok Pui; Waye, M.Y. Mary

    2008-11-10

    Chronic hepatitis B virus (HBV) infection has been strongly associated with hepatocellular carcinoma (HCC) and the X protein (HBx) is thought to mediate the cellular changes associated with carcinogenesis. Recently, isolation of the hepatitis B virus integrants from HCC tissue by others have established the fact that the X gene is often truncated at its C-terminus. Expression of the GFP fusion proteins of HBx and its truncation mutants with a GFP tag in human liver cell-lines in this study revealed that the C-terminus of HBx is indispensable for its specific localization in the mitochondria. A crucial region of seven amino acids at the C-terminus has been mapped out in which the cysteine residue at position 115 serves as the most important residue for the subcellular localization. When cysteine 115 of HBx is mutated to alanine the mitochondria targeting property of HBx is abrogated.

  16. Novel mitochondria-targeted compounds composed of natural constituents: conjugates of plant alkaloids berberine and palmatine with plastoquinone.

    PubMed

    Chernyak, B V; Antonenko, Y N; Galimov, E R; Domnina, L V; Dugina, V B; Zvyagilskaya, R A; Ivanova, O Yu; Izyumov, D S; Lyamzaev, K G; Pustovidko, A V; Rokitskaya, T I; Rogov, A G; Severina, I I; Simonyan, R A; Skulachev, M V; Tashlitsky, V N; Titova, E V; Trendeleva, T A; Shagieva, G S

    2012-09-01

    Novel mitochondria-targeted compounds composed entirely of natural constituents have been synthesized and tested in model lipid membranes, in isolated mitochondria, and in living human cells in culture. Berberine and palmatine, penetrating cations of plant origin, were conjugated by nonyloxycarbonylmethyl residue with the plant electron carrier and antioxidant plastoquinone. These conjugates (SkQBerb, SkQPalm) and their analogs lacking the plastoquinol moiety (C10Berb and C10Palm) penetrated across planar bilayer phospholipid membrane in their cationic forms and accumulated in isolated mitochondria or in mitochondria in living human cells in culture. Reduced forms of SkQBerb and SkQPalm inhibited lipid peroxidation in isolated mitochondria at nanomolar concentrations. In isolated mitochondria and in living cells, the berberine and palmatine moieties were not reduced, so antioxidant activity belonged exclusively to the plastoquinol moiety. In human fibroblasts, nanomolar SkQBerb and SkQPalm prevented fragmentation of mitochondria and apoptosis induced by exogenous hydrogen peroxide. At higher concentrations, conjugates of berberine and palmatine induced proton transport mediated by free fatty acids both in model and in mitochondrial membrane. In mitochondria this process was facilitated by the adenine nucleotide carrier. As an example of application of the novel mitochondria-targeted antioxidants SkQBerb and SkQPalm to studies of signal transduction, we discuss induction of cell cycle arrest, differentiation, and morphological normalization of some tumor cells. We suggest that production of oxygen radicals in mitochondria is necessary for growth factors-MAP-kinase signaling, which supports proliferation and transformed phenotype. PMID:23157257

  17. Rapid-Scan EPR of Immobilized Nitroxides

    PubMed Central

    Yu, Zhelin; Quine, Richard W.; Rinard, George A.; Tseitlin, Mark; Elajaili, Hanan; Kathirvelu, Velavan; Clouston, Laura J.; Boratyński, Przemysław J.; Rajca, Andrzej; Stein, Richard; Mchaourab, Hassane; Eaton, Sandra S.; Eaton, Gareth R.

    2014-01-01

    X-band electron paramagnetic resonance spectra of immobilized nitroxides were obtained by rapid scan at 293 K. Scan widths were 155 G with 13.4 kHz scan frequency for 14N-perdeuterated tempone and for T4 lysozyme doubly spin labeled with an iodoacetamide spirocyclohexyl nitroxide and 100 G with 20.9 kHz scan frequency for 15N-perdeuterated tempone. These wide scans were made possible by modifications to our rapid-scan driver, scan coils made of Litz wire, and the placement of highly conducting aluminum plates on the poles of a Bruker 10" magnet to reduce resistive losses in the magnet pole faces. For the same data acquisition time, the signal-to-noise for the rapid-scan absorption spectra was about an order of magnitude higher than for continuous wave first-derivative spectra recorded with modulation amplitudes that do not broaden the lineshapes. PMID:25240151

  18. Rapid-scan EPR of immobilized nitroxides.

    PubMed

    Yu, Zhelin; Quine, Richard W; Rinard, George A; Tseitlin, Mark; Elajaili, Hanan; Kathirvelu, Velavan; Clouston, Laura J; Boratyński, Przemysław J; Rajca, Andrzej; Stein, Richard; Mchaourab, Hassane; Eaton, Sandra S; Eaton, Gareth R

    2014-10-01

    X-band electron paramagnetic resonance spectra of immobilized nitroxides were obtained by rapid scan at 293 K. Scan widths were 155 G with 13.4 kHz scan frequency for (14)N-perdeuterated tempone and for T4 lysozyme doubly spin labeled with an iodoacetamide spirocyclohexyl nitroxide and 100 G with 20.9 kHz scan frequency for (15)N-perdeuterated tempone. These wide scans were made possible by modifications to our rapid-scan driver, scan coils made of Litz wire, and the placement of highly conducting aluminum plates on the poles of a Bruker 10″ magnet to reduce resistive losses in the magnet pole faces. For the same data acquisition time, the signal-to-noise for the rapid-scan absorption spectra was about an order of magnitude higher than for continuous wave first-derivative spectra recorded with modulation amplitudes that do not broaden the lineshapes. PMID:25240151

  19. Nitroxide amide-BODIPY probe behavior in fibroblasts analyzed by advanced fluorescence microscopy.

    PubMed

    Liras, M; Simoncelli, S; Rivas-Aravena, A; García, O; Scaiano, J C; Alarcon, E I; Aspée, A

    2016-04-26

    A novel synthesized nitroxide amide-BODIPY prefluorescent probe was used to study cellular redox balance that modulates nitroxide/hydroxylamine ratio in cultured human fibroblasts. FLIM quantitatively differentiated between nitroxide states of the cytoplasm-localized probe imaged by TIRF, monitoring nitroxide depletion by hydrogen peroxide; eluding incorrect interpretation if only fluorescence intensity is considered. PMID:27065020

  20. BODIPY-Appended 2-(2-Pyridyl)benzimidazole Platinum(II) Catecholates for Mitochondria-Targeted Photocytotoxicity.

    PubMed

    Mitra, Koushambi; Gautam, Srishti; Kondaiah, Paturu; Chakravarty, Akhil R

    2016-09-01

    Platinum(II) complexes of the type [Pt(L)(cat)] (1 and 2), in which H2 cat is catechol and L represents two 2-(2-pyridyl)benzimidazole ligands with 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) pendants, were synthesized to achieve mitochondria-targeted photocytotoxicity. The complexes showed strong absorptions in the range λ=510-540 nm. Complex 1 exhibited intense emission at λ=525 nm in 1 % DMSO/water solution (fluorescence quantum yield of 0.06). Nanosecond transient absorption spectral features indicated an enhanced population of the triplet excited state in di-iodinated complex 2. The generation of singlet oxygen by complex 2 upon exposure to visible light, as evidenced from experiments with 1,3-diphenylisobenzofuran, is suitable for photodynamic therapy because of the remarkable photosensitizing ability. The complexes resulted in excellent photocytotoxicity in HaCaT cells (half maximal inhibitory concentration IC50 ≈3 μm, λ=400-700 nm, light dose=10 J cm(-2) ), but they remained non-toxic in the dark (IC50 >100 μm). Confocal microscopy images of 1 and Pt estimation from isolated mitochondria showed colocalization of the complexes in the mitochondria. Complex 2 displayed generation of reactive oxygen species induced by visible light, disruption of the mitochondrial membrane potential, and apoptosis. PMID:27465792

  1. Urushiol detection using a profluorescent nitroxide.

    PubMed

    Braslau, Rebecca; Rivera, Frank; Lilie, Erin; Cottman, MariEllen

    2013-01-18

    A method to visually detect minute amounts of urushiol, the toxic catechol from poison oak, poison ivy, and poison sumac, has been developed utilizing the reaction of a profluorescent nitroxide with the B-n-butylcatecholboronate ester formed in situ from urushiol and B-n-butylboronic acid. The resulting N-alkoxyamine is strongly fluorescent upon illumination with a fluorescent lamp, allowing the location of the toxic urushiol contamination to be visualized. This methodology constitutes the groundwork for the future development of a spray to detect urushiol to avoid contact dermatitis, as well as to detect catecholamines for biomedical applications. PMID:22900824

  2. Inhibition of myeloperoxidase-mediated hypochlorous acid production by nitroxides

    PubMed Central

    Rees, Martin D.; Bottle, Steven E.; Fairfull-Smith, Kathryn E.; Malle, Ernst; Whitelock, John M.; Davies, Michael J.

    2014-01-01

    Tissue damage resulting from the extracellular production of HOCl (hypochlorous acid) by the MPO (myeloperoxidase)-hydrogen peroxide-chloride system of activated phagocytes is implicated as a key event in the progression of a number of human inflammatory diseases. Consequently, there is considerable interest in the development of therapeutically useful MPO inhibitors. Nitroxides are well established antioxidant compounds of low toxicity that can attenuate oxidative damage in animal models of inflammatory disease. They are believed to exert protective effects principally by acting as superoxide dismutase mimetics or radical scavengers. However, we show here that nitroxides can also potently inhibit MPO-mediated HOCl production, with the nitroxide 4-aminoTEMPO inhibiting HOCl production by MPO and by neutrophils with IC50 values of approx. 1 and 6 μM respectively. Structure–activity relationships were determined for a range of aliphatic and aromatic nitroxides, and inhibition of oxidative damage to two biologically-important protein targets (albumin and perlecan) are demonstrated. Inhibition was shown to involve one-electron oxidation of the nitroxides by the compound I form of MPO and accumulation of compound II. Haem destruction was also observed with some nitroxides. Inhibition of neutrophil HOCl production by nitroxides was antagonized by neutrophil-derived superoxide, with this attributed to superoxide-mediated reduction of compound II. This effect was marginal with 4-aminoTEMPO, probably due to the efficient superoxide dismutase-mimetic activity of this nitroxide. Overall, these data indicate that nitroxides have considerable promise as therapeutic agents for the inhibition of MPO-mediated damage in inflammatory diseases. PMID:19379130

  3. Designing Inhibitors of Cytochrome c/Cardiolipin Peroxidase Complexes: Mitochondria-Targeted Imidazole-Substituted Fatty Acids

    PubMed Central

    Jiang, Jianfei; Bakan, Ahmet; Kapralov, Alexandr A.; Silva, K. Ishara; Huang, Zhentai; Amoscato, Andrew A.; Peterson, James; Garapati, Venkata Krishna; Saxena, Sunil; Bayir, Hülya; Atkinson, Jeffrey; Bahar, Ivet; Kagan, Valerian E.

    2014-01-01

    Mitochondria have emerged as the major regulatory platform responsible for coordination of numerous metabolic reactions as well as cell death processes, whereby the execution of intrinsic apoptosis includes the production of reactive oxygen species fueling oxidation of cardiolipin (CL) catalyzed by cytochrome (cyt) c. As this oxidation occurs within the peroxidase complex of cyt c with CL, the latter represents a promising target for the discovery and design of drugs with anti-apoptotic mechanism of action. In this work, we designed and synthesized a new group of mitochondria-targeted imidazole-substituted analogues of stearic acid TPP-n-ISA with different positions of the attached imidazole group on the fatty acid (n=6, 8, 10, 13 and 14). By using a combination of absorption spectroscopy and EPR protocols (continuous wave electron paramagnetic resonance, and electron spin echo envelope modulation) we demonstrated that TPP-n-ISA indeed were able to potently suppress CL induced structural re-arrangements in cyt c paving the way to its peroxidase competence. TPP-n-ISA analogues preserved the low spin hexa-coordinated heme iron state in cyt c/CL complexes whereby TPP-6-ISA displayed a significantly more effective preservation pattern than TPP-14-ISA. Elucidation of these intermolecular stabilization mechanisms of cyt c identified TPP-6-ISA as an effective inhibitor of the peroxidase function of cyt c/CL complexes with a significant anti-apoptotic potential realized in mouse embryonic cells exposed to ionizing irradiation. These experimental findings were detailed and supported by all atom molecular dynamics simulations. Based on the experimental data and computations predictions, we identified TPP-6-ISA as a candidate drug with optimized anti-apoptotic potency. PMID:24631490

  4. Inactivation of renal mitochondrial respiratory complexes and manganese superoxide dismutase during sepsis: mitochondria-targeted antioxidant mitigates injury.

    PubMed

    Patil, Naeem K; Parajuli, Nirmala; MacMillan-Crow, Lee Ann; Mayeux, Philip R

    2014-04-01

    Acute kidney injury (AKI) is a complication of sepsis and leads to a high mortality rate. Human and animal studies suggest that mitochondrial dysfunction plays an important role in sepsis-induced multi-organ failure; however, the specific mitochondrial targets damaged during sepsis remain elusive. We used a clinically relevant cecal ligation and puncture (CLP) murine model of sepsis and assessed renal mitochondrial function using high-resolution respirometry, renal microcirculation using intravital microscopy, and renal function. CLP caused a time-dependent decrease in mitochondrial complex I and II/III respiration and reduced ATP. By 4 h after CLP, activity of manganese superoxide dismutase (MnSOD) was decreased by 50% and inhibition was sustained through 36 h. These events were associated with increased mitochondrial superoxide generation. We then evaluated whether the mitochondria-targeted antioxidant Mito-TEMPO could reverse renal mitochondrial dysfunction and attenuate sepsis-induced AKI. Mito-TEMPO (10 mg/kg) given at 6 h post-CLP decreased mitochondrial superoxide levels, protected complex I and II/III respiration, and restored MnSOD activity by 18 h. Mito-TEMPO also improved renal microcirculation and glomerular filtration rate. Importantly, even delayed therapy with a single dose of Mito-TEMPO significantly increased 96-h survival rate from 40% in untreated septic mice to 80%. Thus, sepsis causes sustained inactivation of three mitochondrial targets that can lead to increased mitochondrial superoxide. Importantly, even delayed therapy with Mito-TEMPO alleviated kidney injury, suggesting that it may be a promising approach to treat septic AKI. PMID:24500690

  5. Mitochondria-targeted ROS scavenger improves post-ischemic recovery of cardiac function and attenuates mitochondrial abnormalities in aged rats

    PubMed Central

    Escobales, Nelson; Nuñez, Rebeca E.; Jang, Sehwan; Parodi-Rullan, Rebecca; Ayala-Peña, Sylvette; Sacher, Joshua R.; Skoda, Erin M.; Wipf, Peter; Frontera, Walter; Javadov, Sabzali

    2014-01-01

    Mitochondria-generated reactive oxygen species (ROS) play a crucial role in the pathogenesis of aging and age-associated diseases. In this study, we evaluated the effects of XJB-5-131 (XJB), a mitochondria-targeted ROS and electron scavenger, on cardiac resistance to ischemia-reperfusion (IR)-induced oxidative stress in aged rats. Male adult (5-month old, n=17) and aged (29-month old, n=19) Fischer Brown Norway (F344/BN) rats were randomly assigned to the following groups: adult (A), adult+XJB (AX), aged (O), and aged+XJB (OX). XJB was administered 3 times per week (3 mg/kg body weight, IP) for four weeks. At the end of the treatment period, cardiac function was continuously monitored in excised hearts using the Langendorff technique for 30 min, followed by 20-min of global ischemia, and 60-min reperfusion. XJB improved post-ischemic recovery of aged hearts, as evidenced by greater left ventricular developed-pressures and rate-pressure products than the untreated, aged-matched group. The state 3 respiration rates at complexes I, II and IV of mitochondria isolated from XJB-treated aged hearts were 57% (P<0.05), 25% (P<0.05) and 28% (P<0.05), respectively, higher than controls. Ca2+-induced swelling, an indicator of permeability transition pore opening, was reduced in mitochondria of XJB-treated aged rats. In addition, XJB significantly attenuated the H2O2-induced depolarization of the mitochondrial inner membrane as well as total and mitochondrial ROS levels in cultured cardiomyocytes. This study underlines the importance of mitochondrial ROS in aging-induced cardiac dysfunction and suggests that targeting mitochondrial ROS may be an effective therapeutic approach to protect the aged heart against IR injury. PMID:25451170

  6. Mitochondria-targeted ROS scavenger improves post-ischemic recovery of cardiac function and attenuates mitochondrial abnormalities in aged rats.

    PubMed

    Escobales, Nelson; Nuñez, Rebeca E; Jang, Sehwan; Parodi-Rullan, Rebecca; Ayala-Peña, Sylvette; Sacher, Joshua R; Skoda, Erin M; Wipf, Peter; Frontera, Walter; Javadov, Sabzali

    2014-12-01

    Mitochondria-generated reactive oxygen species (ROS) play a crucial role in the pathogenesis of aging and age-associated diseases. In this study, we evaluated the effects of XJB-5-131 (XJB), a mitochondria-targeted ROS and electron scavenger, on cardiac resistance to ischemia-reperfusion (IR)-induced oxidative stress in aged rats. Male adult (5-month old, n=17) and aged (29-month old, n=19) Fischer Brown Norway (F344/BN) rats were randomly assigned to the following groups: adult (A), adult+XJB (AX), aged (O), and aged+XJB (OX). XJB was administered 3 times per week (3mg/kg body weight, IP) for four weeks. At the end of the treatment period, cardiac function was continuously monitored in excised hearts using the Langendorff technique for 30 min, followed by 20 min of global ischemia, and 60-min reperfusion. XJB improved post-ischemic recovery of aged hearts, as evidenced by greater left ventricular developed-pressures and rate-pressure products than the untreated, aged-matched group. The state 3 respiration rates at complexes I, II and IV of mitochondria isolated from XJB-treated aged hearts were 57% (P<0.05), 25% (P<0.05) and 28% (P<0.05), respectively, higher than controls. Ca(2+)-induced swelling, an indicator of permeability transition pore opening, was reduced in the mitochondria of XJB-treated aged rats. In addition, XJB significantly attenuated the H2O2-induced depolarization of the mitochondrial inner membrane as well as the total and mitochondrial ROS levels in cultured cardiomyocytes. This study underlines the importance of mitochondrial ROS in aging-induced cardiac dysfunction and suggests that targeting mitochondrial ROS may be an effective therapeutic approach to protect the aged heart against IR injury. PMID:25451170

  7. How mitochondrial dysfunction affects zebrafish development and cardiovascular function: an in vivo model for testing mitochondria-targeted drugs

    PubMed Central

    Pinho, Brígida R; Santos, Miguel M; Fonseca-Silva, Anabela; Valentão, Patrícia; Andrade, Paula B; Oliveira, Jorge M A

    2013-01-01

    , it evidences zebrafish's potential for in vivo efficacy or toxicity screening of ubiquinone analogues or antiparasitic mitochondria-targeted drugs. PMID:23758163

  8. Designing inhibitors of cytochrome c/cardiolipin peroxidase complexes: mitochondria-targeted imidazole-substituted fatty acids.

    PubMed

    Jiang, Jianfei; Bakan, Ahmet; Kapralov, Alexandr A; Silva, K Ishara; Huang, Zhentai; Amoscato, Andrew A; Peterson, James; Garapati, Venkata Krishna; Saxena, Sunil; Bayir, Hülya; Atkinson, Jeffrey; Bahar, Ivet; Kagan, Valerian E

    2014-06-01

    Mitochondria have emerged as the major regulatory platform responsible for the coordination of numerous metabolic reactions as well as cell death processes, whereby the execution of intrinsic apoptosis includes the production of reactive oxygen species fueling oxidation of cardiolipin (CL) catalyzed by cytochrome (Cyt) c. As this oxidation occurs within the peroxidase complex of Cyt c with CL, the latter represents a promising target for the discovery and design of drugs with antiapoptotic mechanisms of action. In this work, we designed and synthesized a new group of mitochondria-targeted imidazole-substituted analogs of stearic acid TPP-n-ISAs with various positions of the attached imidazole group on the fatty acid (n = 6, 8, 10, 13, and 14). By using a combination of absorption spectroscopy and EPR protocols (continuous wave electron paramagnetic resonance and electron spin echo envelope modulation) we demonstrated that TPP-n-ISAs indeed were able to potently suppress CL-induced structural rearrangements in Cyt c, paving the way to its peroxidase competence. TPP-n-ISA analogs preserved the low-spin hexa-coordinated heme-iron state in Cyt c/CL complexes whereby TPP-6-ISA displayed a significantly more effective preservation pattern than TPP-14-ISA. Elucidation of these intermolecular stabilization mechanisms of Cyt c identified TPP-6-ISA as an effective inhibitor of the peroxidase function of Cyt c/CL complexes with a significant antiapoptotic potential realized in mouse embryonic cells exposed to ionizing irradiation. These experimental findings were detailed and supported by all-atom molecular dynamics simulations. Based on the experimental data and computation predictions, we identified TPP-6-ISA as a candidate drug with optimized antiapoptotic potency. PMID:24631490

  9. Inactivation of renal mitochondrial respiratory complexes and manganese superoxide dismutase during sepsis: mitochondria-targeted antioxidant mitigates injury

    PubMed Central

    Patil, Naeem K.; Parajuli, Nirmala; Mayeux, Philip R.

    2014-01-01

    Acute kidney injury (AKI) is a complication of sepsis and leads to a high mortality rate. Human and animal studies suggest that mitochondrial dysfunction plays an important role in sepsis-induced multi-organ failure; however, the specific mitochondrial targets damaged during sepsis remain elusive. We used a clinically relevant cecal ligation and puncture (CLP) murine model of sepsis and assessed renal mitochondrial function using high-resolution respirometry, renal microcirculation using intravital microscopy, and renal function. CLP caused a time-dependent decrease in mitochondrial complex I and II/III respiration and reduced ATP. By 4 h after CLP, activity of manganese superoxide dismutase (MnSOD) was decreased by 50% and inhibition was sustained through 36 h. These events were associated with increased mitochondrial superoxide generation. We then evaluated whether the mitochondria-targeted antioxidant Mito-TEMPO could reverse renal mitochondrial dysfunction and attenuate sepsis-induced AKI. Mito-TEMPO (10 mg/kg) given at 6 h post-CLP decreased mitochondrial superoxide levels, protected complex I and II/III respiration, and restored MnSOD activity by 18 h. Mito-TEMPO also improved renal microcirculation and glomerular filtration rate. Importantly, even delayed therapy with a single dose of Mito-TEMPO significantly increased 96-h survival rate from 40% in untreated septic mice to 80%. Thus, sepsis causes sustained inactivation of three mitochondrial targets that can lead to increased mitochondrial superoxide. Importantly, even delayed therapy with Mito-TEMPO alleviated kidney injury, suggesting that it may be a promising approach to treat septic AKI. PMID:24500690

  10. Mitochondria-targeting particles

    PubMed Central

    Wongrakpanich, Amaraporn; Geary, Sean M; Joiner, Mei-ling A; Anderson, Mark E; Salem, Aliasger K

    2015-01-01

    Mitochondria are a promising therapeutic target for the detection, prevention and treatment of various human diseases such as cancer, neurodegenerative diseases, ischemia-reperfusion injury, diabetes and obesity. To reach mitochondria, therapeutic molecules need to not only gain access to specific organs, but also to overcome multiple barriers such as the cell membrane and the outer and inner mitochondrial membranes. Cellular and mitochondrial barriers can be potentially overcome through the design of mitochondriotropic particulate carriers capable of transporting drug molecules selectively to mitochondria. These particulate carriers or vectors can be made from lipids (liposomes), biodegradable polymers, or metals, protecting the drug cargo from rapid elimination and degradation in vivo. Many formulations can be tailored to target mitochondria by the incorporation of mitochondriotropic agents onto the surface and can be manufactured to desired sizes and molecular charge. Here, we summarize recently reported strategies for delivering therapeutic molecules to mitochondria using various particle-based formulations. PMID:25490424

  11. Mitochondria-targeted Ogg1 and Aconitase-2 Prevent Oxidant-induced Mitochondrial DNA Damage in Alveolar Epithelial Cells*

    PubMed Central

    Kim, Seok-Jo; Cheresh, Paul; Williams, David; Cheng, Yuan; Ridge, Karen; Schumacker, Paul T.; Weitzman, Sigmund; Bohr, Vilhelm A.; Kamp, David W.

    2014-01-01

    Mitochondria-targeted human 8-oxoguanine DNA glycosylase (mt-hOgg1) and aconitase-2 (Aco-2) each reduce oxidant-induced alveolar epithelial cell (AEC) apoptosis, but it is unclear whether protection occurs by preventing AEC mitochondrial DNA (mtDNA) damage. Using quantitative PCR-based measurements of mitochondrial and nuclear DNA damage, mtDNA damage was preferentially noted in AEC after exposure to oxidative stress (e.g. amosite asbestos (5–25 μg/cm2) or H2O2 (100–250 μm)) for 24 h. Overexpression of wild-type mt-hOgg1 or mt-long α/β 317–323 hOgg1 mutant incapable of DNA repair (mt-hOgg1-Mut) each blocked A549 cell oxidant-induced mtDNA damage, mitochondrial p53 translocation, and intrinsic apoptosis as assessed by DNA fragmentation and cleaved caspase-9. In contrast, compared with controls, knockdown of Ogg1 (using Ogg1 shRNA in A549 cells or primary alveolar type 2 cells from ogg1−/− mice) augmented mtDNA lesions and intrinsic apoptosis at base line, and these effects were increased further after exposure to oxidative stress. Notably, overexpression of Aco-2 reduced oxidant-induced mtDNA lesions, mitochondrial p53 translocation, and apoptosis, whereas siRNA for Aco-2 (siAco-2) enhanced mtDNA damage, mitochondrial p53 translocation, and apoptosis. Finally, siAco-2 attenuated the protective effects of mt-hOgg1-Mut but not wild-type mt-hOgg1 against oxidant-induced mtDNA damage and apoptosis. Collectively, these data demonstrate a novel role for mt-hOgg1 and Aco-2 in preserving AEC mtDNA integrity, thereby preventing oxidant-induced mitochondrial dysfunction, p53 mitochondrial translocation, and intrinsic apoptosis. Furthermore, mt-hOgg1 chaperoning of Aco-2 in preventing oxidant-mediated mtDNA damage and apoptosis may afford an innovative target for the molecular events underlying oxidant-induced toxicity. PMID:24429287

  12. A molecular switch for targeting between endoplasmic reticulum (ER) and mitochondria: conversion of a mitochondria-targeting element into an ER-targeting signal in DAKAP1.

    PubMed

    Ma, Yuliang; Taylor, Susan S

    2008-04-25

    dAKAP1 (AKAP121, S-AKAP84), a dual specificity PKA scaffold protein, exists in several forms designated as a, b, c, and d. Whether dAKAP1 targets to endoplasmic reticulum (ER) or mitochondria depends on the presence of the N-terminal 33 amino acids (N1), and these N-terminal variants are generated by either alternative splicing and/or differential initiation of translation. The mitochondrial targeting motif, which is localized between residues 49 and 63, is comprised of a hydrophobic helix followed by positive charges ( Ma, Y., and Taylor, S. (2002) J. Biol. Chem. 277, 27328-27336 ). dAKAP1 is located on the cytosolic surface of mitochondria outer membrane and both smooth and rough ER membrane. A single residue, Asp(31), within the first 33 residues of dAKAP1b is required for ER targeting. Asp(31), which functions as a separate motif from the mitochondrial targeting signal, converts the mitochondrial-targeting signal into a bipartite ER-targeting signal, without destroying the mitochondria-targeting signal. Therefore dAKAP1 possesses a single targeting element capable of targeting to both mitochondria and ER, with the ER signal overlapping the mitochondria signal. The specificity of ER or mitochondria targeting is determined and switched by the availability of the negatively charged residue, Asp(31). PMID:18287098

  13. Mitochondrial impairments contribute to Spinocerebellar ataxia type 1 progression and can be ameliorated by the mitochondria-targeted antioxidant MitoQ.

    PubMed

    Stucki, David M; Ruegsegger, Céline; Steiner, Silvio; Radecke, Julika; Murphy, Michael P; Zuber, Benoît; Saxena, Smita

    2016-08-01

    Spinocerebellar ataxia type 1 (SCA1), due to an unstable polyglutamine expansion within the ubiquitously expressed Ataxin-1 protein, leads to the premature degeneration of Purkinje cells (PCs), decreasing motor coordination and causing death within 10-15 years of diagnosis. Currently, there are no therapies available to slow down disease progression. As secondary cellular impairments contributing to SCA1 progression are poorly understood, here, we focused on identifying those processes by performing a PC specific proteome profiling of Sca1(154Q/2Q) mice at a symptomatic stage. Mass spectrometry analysis revealed prominent alterations in mitochondrial proteins. Immunohistochemical and serial block-face scanning electron microscopy analyses confirmed that PCs underwent age-dependent alterations in mitochondrial morphology. Moreover, colorimetric assays demonstrated impairment of the electron transport chain complexes (ETC) and decrease in ATPase activity. Subsequently, we examined whether the mitochondria-targeted antioxidant MitoQ could restore mitochondrial dysfunction and prevent SCA1-associated pathology in Sca1(154Q/2Q) mice. MitoQ treatment both presymptomatically and when symptoms were evident ameliorated mitochondrial morphology and restored the activities of the ETC complexes. Notably, MitoQ slowed down the appearance of SCA1-linked neuropathology such as lack of motor coordination as well as prevented oxidative stress-induced DNA damage and PC loss. Our work identifies a central role for mitochondria in PC degeneration in SCA1 and provides evidence for the supportive use of mitochondria-targeted therapeutics in slowing down disease progression. PMID:27394174

  14. The β-phosphorus hyperfine coupling constant in nitroxides: 6. Solvent effects in non-cyclic nitroxides.

    PubMed

    Audran, Gérard; Bosco, Lionel; Nkolo, Paulin; Bikanga, Raphael; Brémond, Paul; Butscher, Teddy; Marque, Sylvain R A

    2016-04-12

    In two recent articles (Org. Biomol. Chem., 2015 and 2016), we showed that changes in the phosphorus hyperfine coupling constant aP at position β in β-phosphorylated nitroxides can be dramatic. Such changes were applied to the titration of water in organic solvents and conversely of organic solvents in water. One of the molecules tested was a non-cyclic nitroxide meaning that a thorough investigation of the solvent effect on the EPR hyperfine coupling constant is timely due. In this article, we show that the aP of persistent non-cyclic β-phosphorylated nitroxides decrease with the normalized polarity Reichardt's constant E(N)T. The Koppel-Palm and Kalmet-Abboud-Taft relationships were applied to gain deeper insight into the effects influencing aN and aP: polarity/polarizability, hydrogen bond donor properties, and the structuredness of the cybotactic region. PMID:26986555

  15. Nitroxides as redox probes of melanins: dark-induced and photoinduced changes in redox equilibria

    SciTech Connect

    Sarna, T.; Korytowski, W.; Sealy, R.C.

    1985-05-15

    The interaction of nitroxide free radicals and their reduced products (hydroxylamines) with synthetic and natural melanins has been studied. Electron spin resonance spectroscopy was used to measure changes in radical concentration in the dark and during irradiation with visible or uv light. Some reduction of nitroxide occurs in the dark, and is reversible: the nitroxide can be completely regenerated by the one-electron oxidant ferricyanide. The kinetics of the process depend strongly on radical charge and pH. For positively charged nitroxides the rate is much faster than for either neutral or anionic radicals. At pH 10 the rate is about 20 times faster than at pH 5. Oxidation of hydroxylamine also can occur so that a redox equilibrium is established. The equilibrium constant has been estimated for the reaction between a nitroxide and melanin from autoxidation of 3,4-dihydroxyphenylalanine. Results are also dependent upon the type of melanin used and chemical modification (oxidation or reduction) of the melanin. Redox equilibria are altered during irradiation with either visible or uv light. Rapid oxidation of hydroxylamine to nitroxide is apparent, together with a slower reduction of nitroxide. Action spectra for these processes are related to those for melanin radical production and oxygen consumption in nitroxide-free melanin systems. Reduction of nitroxide is inhibited by oxygen, suggesting a competition between nitroxide and oxygen for photoinduced reducing equivalents.

  16. Mitochondria-targeted esculetin alleviates mitochondrial dysfunction by AMPK-mediated nitric oxide and SIRT3 regulation in endothelial cells: potential implications in atherosclerosis

    PubMed Central

    Karnewar, Santosh; Vasamsetti, Sathish Babu; Gopoju, Raja; Kanugula, Anantha Koteswararao; Ganji, Sai Krishna; Prabhakar, Sripadi; Rangaraj, Nandini; Tupperwar, Nitin; Kumar, Jerald Mahesh; Kotamraju, Srigiridhar

    2016-01-01

    Mitochondria-targeted compounds are emerging as a new class of drugs that can potentially alter the pathophysiology of those diseases where mitochondrial dysfunction plays a critical role. We have synthesized a novel mitochondria-targeted esculetin (Mito-Esc) with an aim to investigate its effect during oxidative stress-induced endothelial cell death and angiotensin (Ang)-II-induced atherosclerosis in ApoE−/− mice. Mito-Esc but not natural esculetin treatment significantly inhibited H2O2- and Ang-II-induced cell death in human aortic endothelial cells by enhancing NO production via AMPK-mediated eNOS phosphorylation. While L-NAME (NOS inhibitor) significantly abrogated Mito-Esc-mediated protective effects, Compound c (inhibitor of AMPK) significantly decreased Mito-Esc-mediated increase in NO production. Notably, Mito-Esc promoted mitochondrial biogenesis by enhancing SIRT3 expression through AMPK activation; and restored H2O2-induced inhibition of mitochondrial respiration. siSIRT3 treatment not only completely reversed Mito-Esc-mediated mitochondrial biogenetic marker expressions but also caused endothelial cell death. Furthermore, Mito-Esc administration to ApoE−/− mice greatly alleviated Ang-II-induced atheromatous plaque formation, monocyte infiltration and serum pro-inflammatory cytokines levels. We conclude that Mito-Esc is preferentially taken up by the mitochondria and preserves endothelial cell survival during oxidative stress by modulating NO generation via AMPK. Also, Mito-Esc-induced SIRT3 plays a pivotal role in mediating mitochondrial biogenesis and perhaps contributes to its anti-atherogenic effects. PMID:27063143

  17. Synthesis and functional survey of new Tacrine analogs modified with nitroxides or their precursors

    PubMed Central

    Kálai, Tamás; Altman, Robin; Maezawa, Izumi; Balog, Mária; Morisseau, Christophe; Petrlova, Jitka; Hammock, Bruce D.; Jin, Lee-Way; Trudell, James; Voss, John C.; Hideg, Kálmán

    2014-01-01

    A series of new Tacrine analogs modified with nitroxides or pre-nitroxides on 9-amino group via methylene or piperazine spacers were synthesized; the nitroxide or its precursors were incorporated into the Tacrine scaffold. The new compounds were tested for their hydroxyl radical and peroxyl radical scavenging ability, acetyl cholinesterase inhibitor activity and protection against Aβ-induced cytotoxicity. Based on these assays, we conclude that Tacrine analogs connected to five and six-membered nitroxides via piperazine spacers (9b, 9b/HCl and 12) exhibited the best activity, providing direction for further development of additional candidates with dual functionality (anti Alzheimer’s and antioxidant). PMID:24657571

  18. Nitroxide-loaded hexosomes provide MRI contrast in vivo.

    PubMed

    Bye, Nicole; Hutt, Oliver E; Hinton, Tracey M; Acharya, Durga P; Waddington, Lynne J; Moffat, Bradford A; Wright, David K; Wang, Hong X; Mulet, Xavier; Muir, Benjamin W

    2014-07-29

    The purpose of this work was to synthesize and screen, for their effectiveness to act as T1-enhancing magnetic resonance imaging (MRI) contrast agents, a small library of nitroxide lipids incorporated into cubic-phase lipid nanoparticles (cubosomes). The most effective nitroxide lipid was then formulated into lower-toxicity lipid nanoparticles (hexosomes), and effective MR contrast was observed in the aorta and spleen of live rats in vivo. This new class of lower-toxicity lipid nanoparticles allowed for higher relaxivities on the order of those of clinically used gadolinium complexes. The new hexosome formulation presented herein was significantly lower in toxicity and higher in relaxivity than cubosome formulations previously reported by us. PMID:24979524

  19. Polyoxometalate salts of cationic nitronyl nitroxide free radicals

    NASA Astrophysics Data System (ADS)

    Coronado, Eugenio; Giménez-Saiz, Carlos; Gómez-García, Carlos J.; Romero, Francisco M.

    2008-12-01

    The cationic nitronyl nitroxide free radical of the N-methylpyridinium type p-MepyNN + has been combined with [Mo 8O 26] 4- and Keggin [SiW 12O 40] 4- polyanions to afford salts ( p-MepyNN) 4[Mo 8O 26]·DMSO (DMSO = dimethylsulfoxide) ( 1) and ( p-MepyNN) 4[SiW 12O 40]·6DMF (DMF = dimethylformamide) ( 2). Herein, their structural and magnetic properties are described.

  20. Spin-polarized nitroxide radicals in organic glasses.

    SciTech Connect

    Tarasov, V. F.; Shkrob, I. A.; Trifunac, A. D.; Chemistry

    2002-01-01

    Nonequilibrium spin polarization formed in a stable nitroxide radical, 2,2,6,6-tetramethyl-1-piperidinyloxy (Tempo) due to the occurrence of Chemically Induced Dynamic Electron Polarization (CIDEP) in photoexcited molecular complexes of this radical with 1,4-benzoquinone, 1,4-naphthaquinone, 9,10-anthraquinone, and their derivatives is observed. These complexes occur spontaneously in low-temperature organic glasses (20-70 K) upon freezing the concentrated liquid solutions. The emissive net polarization in the nitroxide radical is observed 0.1-10 {mu}s after the photoexcitation of the p-quinone moiety. No degradation of the polarized magnetic resonance signal from Tempo after >104 excitation cycles was observed. This spin polarization is shown to be mainly due to a polarization transfer from the lowest triplet state of the p-quinone. This transfer is driven by the electron spin exchange interaction between the nitroxide radical and the triplet p-quinone; it occurs simultaneously with a spin-selective electronic relaxation of the photoexcited complex. The resulting mechanism combines the features of the electron spin polarization transfer (ESPT) and radical-triplet pair mechanisms (RTPM) in liquid. A theoretical model of such a mechanism is suggested.

  1. Nitroxide pharmaceutical development for age-related degeneration and disease

    PubMed Central

    Zarling, Jacob A.; Brunt, Vienna E.; Vallerga, Anne K.; Li, Weixing; Tao, Albert; Zarling, David A.; Minson, Christopher T.

    2015-01-01

    Nitroxide small molecule agents are in development as preventative or therapeutic pharmaceutical drugs for age-related macular degeneration (AMD) and cardiovascular disease, which are two major diseases of aging. These aging diseases are associated with patient genetics, smoking, diet, oxidative stress, and chronic inflammation. Nitroxide drugs preventing aging-, smoking-, high sugar or high fat diet-, or radiation- and other environmental-induced pathophysiological conditions in aging disease are reviewed. Tempol (TP), Tempol Hydroxylamine (TP-H), and TP-H prodrug (OT-551) are evaluated in (1) non-smokers versus smokers with cutaneous microvascular dysfunction, rapidly reversed by cutaneous TP; (2) elderly cancer patients at risk for radiation-induced skin burns or hair loss, prevented by topical TP; and (3) elderly smoker or non-smoker AMD patients at risk for vision loss, prevented by daily eye drops of OT-551. The human data indicates safety and efficacy for these nitroxide drugs. Both TP and TP-H topically penetrate and function in skin or mucosa, protecting and treating radiation burns and hair loss or smoking-induced cutaneous vascular dysfunction. TP and TP-H do not penetrate the cornea, while OT-551 does effectively penetrate and travels to the back of the eye, preserving visual acuity and preserving normal and low light luminance in dry AMD smokers and non-smoker patients. Topical, oral, or injectable drug formulations are discussed. PMID:26594225

  2. Oxoammonium cation intermediate in the nitroxide-catalyzed dismutation of superoxide.

    PubMed

    Krishna, M C; Grahame, D A; Samuni, A; Mitchell, J B; Russo, A

    1992-06-15

    Dismutation of superoxide has been shown previously to be catalyzed by stable nitroxide compounds. In the present study, the mechanism of superoxide (.O2-) dismutation by various five-membered ring and six-membered ring nitroxides was studied by electron paramagnetic resonance spectrometry, UV-visible spectrophotometry, cyclic voltammetry, and bulk electrolysis. Electron paramagnetic resonance signals from the carbocyclic nitroxide derivatives (piperidinyl, pyrrolidinyl, and pyrrolinyl) were unchanged when exposed to enzymatically generated .O2-, whereas, in the presence of .O2- and reducing agents such as NADH and NADPH, the nitroxides underwent reduction to their respective hydroxylamines. The reaction of 4-hydroxy-2,2,6,6-tetramethyl-1-hydroxypiperidine (Tempol-H) with .O2- was measured and, in agreement with earlier reports on related compounds, the rate was found to be too slow to be consistent with a mechanism of .O2- dismutation involving the hydroxylamine as an intermediate. Voltammetric analyses of the carbocyclic nitroxide derivatives revealed a reversible one-electron redox couple at positive potentials. In contrast, oxazolidine derivatives were irreversibly oxidized. At negative potentials, all of the nitroxides studied exhibited a broad, irreversible reductive wave. The rate of .O2- dismutation correlated with the reversible midpoint redox potential. Bulk electrolysis at positive potentials was found to generate a metastable oxidized form of the nitroxide. The results indicate that the dismutation of .O2- is catalyzed by the oxoammonium/nitroxide redox couple for carbocyclic nitroxide derivatives. In addition to the one-electron mitochondrial reduction pathway, the present results suggest the possibility that cellular bioreduction by a two-electron pathway may occur subsequent to oxidation of stable nitroxides. Furthermore, the cellular destruction of persistent spin adduct nitroxides might also be facilitated by a primary univalent oxidation. PMID

  3. Oxoammonium cation intermediate in the nitroxide-catalyzed dismutation of superoxide.

    PubMed Central

    Krishna, M C; Grahame, D A; Samuni, A; Mitchell, J B; Russo, A

    1992-01-01

    Dismutation of superoxide has been shown previously to be catalyzed by stable nitroxide compounds. In the present study, the mechanism of superoxide (.O2-) dismutation by various five-membered ring and six-membered ring nitroxides was studied by electron paramagnetic resonance spectrometry, UV-visible spectrophotometry, cyclic voltammetry, and bulk electrolysis. Electron paramagnetic resonance signals from the carbocyclic nitroxide derivatives (piperidinyl, pyrrolidinyl, and pyrrolinyl) were unchanged when exposed to enzymatically generated .O2-, whereas, in the presence of .O2- and reducing agents such as NADH and NADPH, the nitroxides underwent reduction to their respective hydroxylamines. The reaction of 4-hydroxy-2,2,6,6-tetramethyl-1-hydroxypiperidine (Tempol-H) with .O2- was measured and, in agreement with earlier reports on related compounds, the rate was found to be too slow to be consistent with a mechanism of .O2- dismutation involving the hydroxylamine as an intermediate. Voltammetric analyses of the carbocyclic nitroxide derivatives revealed a reversible one-electron redox couple at positive potentials. In contrast, oxazolidine derivatives were irreversibly oxidized. At negative potentials, all of the nitroxides studied exhibited a broad, irreversible reductive wave. The rate of .O2- dismutation correlated with the reversible midpoint redox potential. Bulk electrolysis at positive potentials was found to generate a metastable oxidized form of the nitroxide. The results indicate that the dismutation of .O2- is catalyzed by the oxoammonium/nitroxide redox couple for carbocyclic nitroxide derivatives. In addition to the one-electron mitochondrial reduction pathway, the present results suggest the possibility that cellular bioreduction by a two-electron pathway may occur subsequent to oxidation of stable nitroxides. Furthermore, the cellular destruction of persistent spin adduct nitroxides might also be facilitated by a primary univalent oxidation. PMID

  4. Saturation factor of nitroxide radicals in liquid DNP by pulsed ELDOR experiments.

    PubMed

    Türke, Maria-Teresa; Bennati, Marina

    2011-03-01

    We propose the use of the pulse electron double resonance (ELDOR) method to determine the effective saturation factor of nitroxide radicals for dynamic nuclear polarization (DNP) experiments in liquids. The obtained values for the nitroxide radical TEMPONE-D,(15)N at different concentrations are rationalized in terms of spin relaxation and are shown to fulfil the Overhauser theory. PMID:21264371

  5. Development of a mitochondria-based centrifugal ultrafiltration/liquid chromatography/mass spectrometry method for screening mitochondria-targeted bioactive constituents from complex matrixes: Herbal medicines as a case study.

    PubMed

    Yang, Xing-Xin; Xu, Feng; Wang, Dan; Yang, Zhi-Wei; Tan, Huan-Ran; Shang, Ming-Ying; Wang, Xuan; Cai, Shao-Qing

    2015-09-25

    Mitochondria are an important intracellular pharmacological target because damage to this organelle results in a variety of human disorders and because mitochondria are involved in complex processes such as energy generation, apoptosis and lipid metabolism. To expedite the search for natural bioactive compounds targeting mitochondria, we initially developed an efficient mitochondria-based screening method by combining centrifugal ultrafiltration (CU) with liquid chromatography/mass spectrometry (LC/MS), which is called screening method for mitochondria-targeted bioactive constituents (SM-MBC) and is compatible with the search of mitochondria-targeted compounds from complex matrixes such as herbal medicines extracts. Functionally active, structurally intact and pure mitochondria were obtained from rat myocardium using an optimized protocol for mitochondrial isolation comprising organelle release followed by differential and Nycodenz density gradient centrifugation. After evaluating the reliability of the method using thiabendazole (TZ), rotenone (RN), amiodarone (AR) and trimetazidine (TD) as positive controls, this method was successfully applied to screen bioactive constituents from extracts of Polygoni Cuspidati Rhizoma et Radix (PCRR) and Scutellariae Radix (SR). Nineteen active compounds were detected and identified by LC/MS, of which 17 were new mitochondria-targeted compounds. The activity of 9 of the 19 hit compounds was confirmed by in vitro pharmacological trials. These results demonstrate that SM-MBC can be used for the efficient screening of mitochondria-targeted constituents in complex preparations used to treat mitochondrial disorders, such as PCRR and SR. The results may be meaningful for an in-depth understanding of drug mechanism of action and drug discovery from medicinal herbs. PMID:26306914

  6. The mitochondria-targeted anti-oxidant MitoQ decreases ischemia-reperfusion injury in a murine syngeneic heart transplant model

    PubMed Central

    Dare, Anna J.; Logan, Angela; Prime, Tracy A.; Rogatti, Sebastian; Goddard, Martin; Bolton, Eleanor M.; Bradley, J. Andrew; Pettigrew, Gavin J.; Murphy, Michael P.; Saeb-Parsy, Kourosh

    2015-01-01

    Background Free radical production and mitochondrial dysfunction during cardiac graft reperfusion is a major factor in post-transplant ischemia-reperfusion (IR) injury, an important underlying cause of primary graft dysfunction. We therefore assessed the efficacy of the mitochondria-targeted anti-oxidant MitoQ in reducing IR injury in a murine heterotopic cardiac transplant model. Methods Hearts from C57BL/6 donor mice were flushed with storage solution alone, solution containing the anti-oxidant MitoQ, or solution containing the non–anti-oxidant decyltriphenylphosphonium control and exposed to short (30 minutes) or prolonged (4 hour) cold preservation before transplantation. Grafts were transplanted into C57BL/6 recipients and analyzed for mitochondrial reactive oxygen species production, oxidative damage, serum troponin, beating score, and inflammatory markers 120 minutes or 24 hours post-transplant. Results MitoQ was taken up by the heart during cold storage. Prolonged cold preservation of donor hearts before IR increased IR injury (troponin I, beating score) and mitochondrial reactive oxygen species, mitochondrial DNA damage, protein carbonyls, and pro-inflammatory cytokine release 24 hours after transplant. Administration of MitoQ to the donor heart in the storage solution protected against this IR injury by blocking graft oxidative damage and dampening the early pro-inflammatory response in the recipient. Conclusions IR after heart transplantation results in mitochondrial oxidative damage that is potentiated by cold ischemia. Supplementing donor graft perfusion with the anti-oxidant MitoQ before transplantation should be studied further to reduce IR-related free radical production, the innate immune response to IR injury, and subsequent donor cardiac injury. PMID:26140808

  7. Comparison of antioxidant activity between aromatic indolinonic nitroxides and natural and synthetic antioxidants.

    PubMed

    Damiani, Elisabetta; Belaid, Chokri; Carloni, Patricia; Greci, Lucedio

    2003-07-01

    In view of the possible employment of nitroxide compounds in various fields, it is important to know how they compare with other synthetic antioxidant compounds currently used in several industries and with naturally occurring antioxidants. To address this issue, the antioxidant activity of two aromatic indolinonic nitroxides synthesized by us was compared with both commercial phenolic antioxidants (BHT and BHA) and with natural phenolic antioxidants (alpha-hydroxytyrosol, tyrosol, caffeic acid, alpha-tocopherol). DPPH radical scavenging ability and the inhibition of both lipid and protein oxidation induced by the peroxyl-radical generator, AAPH, were evaluated. The results obtained show that overall: (i) the reduced forms of the nitroxide compounds are better scavengers of DPPH radical than butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BLT) but less efficient than the natural compounds; (ii) the nitroxides inhibit both linolenic acid micelles and bovine serum albumin (BSA) oxidation to similar extents as most of the other compounds in a concentration-dependent fashion. Since the aromatic nitroxides tested in this study are less toxic than BHT, these compounds may be regarded as potential, alternative sources for several applications. The mechanisms underlying the antioxidant activity of nitroxides were further confirmed by UV-Vis absorption spectroscopy experiments and macroscale reactions in the presence of radicals generated by thermolabile azo-compounds. Distribution coefficients in octanol/buffer of the nitroxides and the other compounds were also determined as a measure of lipophilicity. PMID:12911269

  8. Ionizable Nitroxides for Studying Local Electrostatic Properties of Lipid Bilayers and Protein Systems by EPR.

    PubMed

    Voinov, Maxim A; Smirnov, Alex I

    2015-01-01

    Electrostatic interactions are known to play a major role in the myriad of biochemical and biophysical processes. Here, we describe biophysical methods to probe local electrostatic potentials of proteins and lipid bilayer systems that are based on an observation of reversible protonation of nitroxides by electron paramagnetic resonance (EPR). Two types of probes are described: (1) methanethiosulfonate derivatives of protonatable nitroxides for highly specific covalent modification of the cysteine's sulfhydryl groups and (2) spin-labeled phospholipids with a protonatable nitroxide tethered to the polar head group. The probes of both types report on their ionization state through changes in magnetic parameters and degree of rotational averaging, thus, allowing the electrostatic contribution to the interfacial pKa of the nitroxide, and, therefore, the local electrostatic potential to be determined. Due to their small molecular volume, these probes cause a minimal perturbation to the protein or lipid system. Covalent attachment secures the position of the reporter nitroxides. Experimental procedures to characterize and calibrate these probes by EPR, and also the methods to analyze the EPR spectra by simulations are outlined. The ionizable nitroxide labels and the nitroxide-labeled phospholipids described so far cover an exceptionally wide range of ca. 2.5-7.0 pH units, making them suitable to study a broad range of biophysical phenomena, especially at the negatively charged lipid bilayer surfaces. The rationale for selecting proper electrostatically neutral interface for probe calibration, and examples of lipid bilayer surface potential studies, are also described. PMID:26477252

  9. Chemistry and Antihypertensive Effects of Tempol and Other Nitroxides

    PubMed Central

    WILCOX, CHRISTOPHER S.; PEARLMAN, ADAM

    2009-01-01

    Nitroxides can undergo one- or two-electron reduction reactions to hydroxylamines or oxammonium cations, respectively, which themselves are interconvertible, thereby providing redox metabolic actions. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (tempol) is the most extensively studied nitroxide. It is a cell membrane-permeable amphilite that dismutates superoxide catalytically, facilitates hydrogen peroxide metabolism by catalase-like actions, and limits formation of toxic hydroxyl radicals produced by Fenton reactions. It is broadly effective in detoxifying these reactive oxygen species in cell and animal studies. When administered intravenously to hypertensive rodent models, tempol caused rapid and reversible dose-dependent reductions in blood pressure in 22 of 26 studies. This was accompanied by vasodilation, increased nitric oxide activity, reduced sympathetic nervous system activity at central and peripheral sites, and enhanced potassium channel conductance in blood vessels and neurons. When administered orally or by infusion over days or weeks to hypertensive rodent models, it reduced blood pressure in 59 of 68 studies. This was accompanied by correction of salt sensitivity and endothelial dysfunction and reduced agonist-evoked oxidative stress and contractility of blood vessels, reduced renal vascular resistance, and increased renal tissue oxygen tension. Thus, tempol is broadly effective in reducing blood pressure, whether given by acute intravenous injection or by prolonged administration, in a wide range of rodent models of hypertension. PMID:19112152

  10. Effect of Sterical Shielding on the Redox Properties of Imidazoline and Imidazolidine Nitroxides.

    PubMed

    Kirilyuk, Igor A; Bobko, Andrey A; Semenov, Sergey V; Komarov, Denis A; Irtegova, Irina G; Grigor'ev, Igor A; Bagryanskaya, Elena

    2015-09-18

    The oxidant properties of the series of 2,2,5,5-tetraalkyl imidazoline and imidazolidine nitroxides were investigated. An increase in the number of bulky alkyl substituents leads to a decrease in the rate of reduction with ascorbate, which makes the electrochemical reduction potential more negative and shifts the equilibrium in the mixture of nitroxide and reference hydroxylamine (3-carboxy-1-hydroxy-2,2,5,5-tetramethylpyrrolidine-1-oxyl-1-(15)N) toward the starting compounds. The effect of structural factors on these reactions was analyzed by means of multiple regression using the Fujita steric constant Es and the inductive Hammett constant σI. Satisfactory statistical outputs were obtained in all of the biparameter correlations, denoting that the oxidant properties of the nitroxides are determined by steric and electronic effects of the substituents. The data imply that bulky substituents can stabilize nitroxide and/or destabilize hydroxylamine. PMID:26302173

  11. Chiral all-organic nitroxide biradical liquid crystals showing remarkably large positive magneto-LC effects.

    PubMed

    Suzuki, Katsuaki; Takemoto, Yusa; Takaoka, Shohei; Taguchi, Koji; Uchida, Yoshiaki; Mazhukin, Dmitrii G; Grigor'ev, Igor A; Tamura, Rui

    2016-03-11

    The liquid crystalline chiral nitroxide biradical (S,S,S,S)-3 synthesized has shown much larger 'positive magneto-LC effects' in the chiral nematic (N*) phase than the monoradical (S,S)-1. PMID:26871609

  12. Synthesis and Evaluation of Ciprofloxacin-Nitroxide Conjugates as Anti-Biofilm Agents.

    PubMed

    Verderosa, Anthony D; Mansour, Sarah C; de la Fuente-Núñez, César; Hancock, Robert E W; Fairfull-Smith, Kathryn E

    2016-01-01

    As bacterial biofilms are often refractory to conventional antimicrobials, the need for alternative and/or novel strategies for the treatment of biofilm related infections has become of paramount importance. Herein, we report the synthesis of novel hybrid molecules comprised of two different hindered nitroxides linked to the piperazinyl secondary amine of ciprofloxacin via a tertiary amine linker achieved utilising reductive amination. The corresponding methoxyamine derivatives were prepared alongside their radical-containing counterparts as controls. Subsequent biological evaluation of the hybrid compounds on preformed P. aeruginosa flow cell biofilms divulged significant dispersal and eradication abilities for ciprofloxacin-nitroxide hybrid compound 10 (up to 95% eradication of mature biofilms at 40 μM). Importantly, these hybrids represent the first dual-action antimicrobial-nitroxide agents, which harness the dispersal properties of the nitroxide moiety to circumvent the well-known resistance of biofilms to treatment with antimicrobial agents. PMID:27355936

  13. Photoinduced electron transfer from dialkyl nitroxides to halogenated solvents

    SciTech Connect

    Chateauneuf, J. ); Lusztyk, J.; Ingold, K.U. )

    1990-02-02

    Laser flash photolysis (LFP) at wavelengths within the charge-transfer absorption present in CCl{sub 4} solutions of 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) yields the oxoammonium chloride of TEMPO, 1 ({lambda}{sub max} = 460 nm), and the trichloromethyl radical in an essentially instantaneous ({le}18 ps) process. The primary photochemical event is an electron transfer from TEMPO to CCl{sub 4}, and this is followed by immediate decomposition of the CCl{sub 4}{sup {sm bullet}{minus}} radical anion to Cl{sup {minus}} and Cl{sub 3}C{sup {sm bullet}}. An independent synthesis of 1 confirmed that the absorption attributed to this species has been correctly assigned. The formation of Cl{sub 3}C{sup {sm bullet}} was inferred by its trapping by molecular oxygen. LFP of TEMPO in other halogenated solvents and of other nitroxides in halogenated solvents has confirmed the generality of these photoreactions.

  14. Conduction mechanism of nitronyl-nitroxide molecular magnetic compounds

    NASA Astrophysics Data System (ADS)

    Dotti, N.; Heintze, E.; Slota, M.; Hübner, R.; Wang, F.; Nuss, J.; Dressel, M.; Bogani, L.

    2016-04-01

    We investigate the conduction mechanisms of nitronyl-nitroxide (NIT) molecular radicals, as useful for the creation of nanoscopic molecular spintronic devices, finding that it does not correspond to standard Mott behavior, as previously postulated. We provide a complete investigation using transport measurements, low-energy, sub-THz spectroscopy and introducing differently substituted phenyl appendages. We show that a nontrivial surface-charge-limited regime is present in addition to the standard low-voltage Ohmic conductance. Scaling analysis allows one to determine all the main transport parameters for the compounds and highlights the presence of charge-trapping effects. Comparison among the different compounds shows the relevance of intermolecular stacking between the aromatic ring of the phenyl appendix and the NIT motif in the creation of useful electron transport channels. The importance of intermolecular pathways is further highlighted by electronic structure calculations, which clarify the nature of the electronic channels and their effect on the Mott character of the compounds.

  15. Use of nitroxide spin probes and electron paramagnetic resonance for assessing reducing power of beer. role of SH groups.

    PubMed

    Kocherginsky, Nikolai M; Kostetski, Yuri Yu; Smirnov, Alex I

    2005-02-23

    Intensity of EPR spectra of stable organic free radicals, nitroxides, is decreasing with time if the radicals are dissolved in beer. The process is determined by a chemical reaction of nitroxide reduction by components naturally present in beer. Kinetics can be described as a simple irreversible first order with respect to both nitroxide and one reducing agent. Effective concentration of the reducing agent and the corresponding reaction rate constant has been determined. It is demonstrated that the nitroxide reduction is sensitive to the presence of solvent-accessible SH groups of proteins present in beer. It is proposed that quantitative analysis of reduction kinetics of small water-soluble nitroxide radicals such as TEMPO and TEMPOL can be used to assess the reducing power of beer. The effect of accelerated aging of beer achieved at elevated temperatures on nitroxide reduction kinetics is demonstrated. PMID:15713019

  16. Further insights into the environmental effects on the computed hyperfine coupling constants of nitroxides in aqueous solution.

    PubMed

    Houriez, Céline; Ferré, Nicolas; Siri, Didier; Masella, Michel

    2009-11-12

    We investigated the main two factors influencing the mean hyperfine coupling constants of small nitroxide radicals in aqueous solution, i.e., the out-of-plane displacement of their nitrogen atom and the environmental effects (solvent effects), by means of the approach we previously developed and fine-tuned to study the solvation of the dimethyl nitroxide radical. Our methodology efficiently combines classical molecular dynamics based on a polarizable force field at the nanosecond scale and quantum mechanics/molecular mechanics (QM/MM) computations to account for the bulk instantaneous electrostatic environmental effect. Our method has been applied to five small nitroxides, namely methyl nitroxide, ethyl nitroxide, dimethyl nitroxide, di-tert-butyl nitroxide, and PROXYL. The theoretical nitrogen hyperfine coupling constant values for the five nitroxides in solution are in good agreement with experiment (difference of 0.3 G on average). Our approach showed that the solvent shift in nitroxide hyperfine coupling constants is almost constant whatever the nitroxide, and, particularly, whatever the nitroxide NO moiety's accessibility to the solvent. This result contrasts with earlier results derived from 10 ps scale trajectories based on Car-Parrinello molecular dynamics approach. However, we show that if we consider on average these latter results, they are in agreement with our conclusion. We also present an attempt to identify the origin of this result by analyzing the solvent contributions in terms of effects of the nitroxide first hydration shell and of the bulk, and by investigating the relation between these two contributions and the solvent structure at the vicinity of the NO moiety. PMID:19845322

  17. Differential protection by nitroxides and hydroxylamines to radiation-induced and metal ion-catalyzed oxidative damage.

    PubMed

    Xavier, Sandhya; Yamada, Ken-ichi; Samuni, Ayelet M; Samuni, Amram; DeGraff, William; Krishna, Murali C; Mitchell, James B

    2002-11-14

    Modulation of radiation- and metal ion-catalyzed oxidative-induced damage using plasmid DNA, genomic DNA, and cell survival, by three nitroxides and their corresponding hydroxylamines, were examined. The antioxidant property of each compound was independently determined by reacting supercoiled DNA with copper II/1,10-phenanthroline complex fueled by the products of hypoxanthine/xanthine oxidase (HX/XO) and noting the protective effect as assessed by agarose gel electrophoresis. The nitroxides and their corresponding hydroxylamines protected approximately to the same degree (33-47% relaxed form) when compared to 76.7% relaxed form in the absence of protectors. Likewise, protection by both the nitroxide and corresponding hydroxylamine were observed for Chinese hamster V79 cells exposed to hydrogen peroxide. In contrast, when plasmid DNA damage was induced by ionizing radiation (100 Gy), only nitroxides (10 mM) provide protection (32.4-38.5% relaxed form) when compared to radiation alone or in the presence of hydroxylamines (10 mM) (79.8% relaxed form). Nitroxide protection was concentration dependent. Radiation cell survival studies and DNA double-strand break (DBS) assessment (pulse field electrophoresis) showed that only the nitroxide protected or prevented damage, respectively. Collectively, the results show that nitroxides and hydroxylamines protect equally against the damage mediated by oxidants generated by the metal ion-catalyzed Haber-Weiss reaction, but only nitroxides protect against radiation damage, suggesting that nitroxides may more readily react with intermediate radical species produced by radiation than hydroxylamines. PMID:12399020

  18. Conformationally Constrained, Stable, Triplet Ground State (S = 1) Nitroxide Diradicals. Antiferromagnetic Chains of S = 1 Diradicals

    SciTech Connect

    Rajca, Andrzej; Takahashi, Masahiro; Pink, Maren; Spagnol, Gaelle; Rajca, Suchada

    2008-06-30

    Nitroxide diradicals, in which nitroxides are annelated to m-phenylene forming tricyclic benzobisoxazine-like structures, have been synthesized and characterized by X-ray crystallography, magnetic resonance (EPR and {sup 1}H NMR) spectroscopy, as well as magnetic studies in solution and in solid state. For the octamethyl derivative of benzobisoxazine nitroxide diradical, the conformationally constrained nitroxide moieties are coplanar with the m-phenylene, leading to large values of 2J (2J/k > 200 K in solution and 2J/k >> 300 K in the solid state). For the diradical, in which all ortho and para positions of the m-phenylene are sterically shielded, distortion of the nitroxide moieties from coplanarity is moderate, such that the singlet-triplet gaps remain large in both solution (2J/k > 200 K) and the solid state (2J/k {approx} 400-800 K), though an onset of thermal depopulation of the triplet ground state is detectable near room temperature. These diradicals have robust triplet ground states with strong ferromagnetic coupling and good stability at ambient conditions. Magnetic behavior of the nitroxide diradicals at low temperature is best fit to the model of one-dimensional S = 1 Heisenberg chains with intrachain antiferromagnetic coupling. The antiferromagnetic coupling between the S = 1 diradicals may be associated with the methyl nitroxide C-H {hor_ellipsis} O contacts, including nonclassical hydrogen bonds. These unprecedented organic S = 1 antiferromagnetic chains are highly isotropic, compared to those of the extensively studied Ni(II)-based chains.

  19. Do stable nitroxide radicals catalyze or inhibit the degradation of hyaluronic acid?

    PubMed

    Lurie, Ziva; Offer, Tal; Russo, Angelo; Samuni, Amram; Nitzan, Dorrit

    2003-07-15

    Reactive oxygen-derived species and particularly OH radicals can degrade hyaluronic acid (HA), resulting in a loss of viscosity and a subsequent decrease in its effectiveness as a joint-lubricating agent. The production of OH in the vicinity of HA can be catalyzed by bound redox-active metals, which participate in the Haber-Weiss reaction. Damage to HA can also occur as a result of hypochlorite formed by myeloperoxidase (MPO). The protective reagents commonly used to inhibit oxidative stress-induced degradation of HA include antioxidative enzymes, such as SOD and catalase, chelators that coordinate metal ions rendering them redox-inactive, and scavengers of radicals, such as OH, as well as nonradical reactive species. In recent years, stable cyclic nitroxides have also been widely used as effective antioxidants. In many cases, nitroxide antioxidants operate catalytically and mediate their protective effect through an exchange between their oxidized and reduced forms. It was anticipated, therefore, that nitroxides would protect HA from oxidative degradation as well. On the other hand, nitroxides serve as catalysts in many oxidation reactions of alcohols, sugars and polysaccharides, including hyalouronan. Such opposite effects of nitroxides on oxidative degradation are particularly intriguing and the aim of the present study was to examine their effect on HA when subjected to diverse forms of oxidative stress. The results indicate that nitroxides protect HA from OH radicals generated enzymatically or radiolytically. The protective effect is attributable neither to the scavenging of OH nor to the oxidation of reduced metal, but to the reaction of nitroxides with secondary carbohydrate radicals-most likely peroxyl radicals. PMID:12853073

  20. Ionizable Nitroxides for Studying Local Electrostatic Properties of Lipid Bilayers and Protein Systems by EPR

    PubMed Central

    Voinov, Maxim A.; Smirnov, Alex I.

    2016-01-01

    Electrostatic interactions are known to play one of the major roles in the myriad of biochemical and biophysical processes. In this Chapter we describe biophysical methods to probe local electrostatic potentials of proteins and lipid bilayer systems that is based on an observation of reversible protonation of nitroxides by EPR. Two types of the electrostatic probes are discussed. The first one includes methanethiosulfonate derivatives of protonatable nitroxides that could be used for highly specific covalent modification of the cysteine’s sulfhydryl groups. Such spin labels are very similar in magnetic parameters and chemical properties to conventional MTSL making them suitable for studying local electrostatic properties of protein-lipid interfaces. The second type of EPR probes is designed as spin-labeled phospholipids having a protonatable nitroxide tethered to the polar head group. The probes of both types report on their ionization state through changes in magnetic parameters and a degree of rotational averaging, thus, allowing one to determine the electrostatic contribution to the interfacial pKa of the nitroxide, and, therefore, determining the local electrostatic potential. Due to their small molecular volume these probes cause a minimal perturbation to the protein or lipid system while covalent attachment secure the position of the reporter nitroxides. Experimental procedures to characterize and calibrate these probes by EPR and also the methods to analyze the EPR spectra by least-squares simulations are also outlined. The ionizable nitroxide labels and the nitroxide-labeled phospholipids described so far cover an exceptionally wide pH range from ca. 2.5 to 7.0 pH units making them suitable to study a broad range of biophysical phenomena especially at the negatively charged lipid bilayer surfaces. The rationale for selecting proper electrostatically neutral interface for calibrating such probes and example of studying surface potential of lipid bilayer is

  1. Development of nitroxide radicals-containing polymer for scavenging reactive oxygen species from cigarette smoke

    NASA Astrophysics Data System (ADS)

    Yoshitomi, Toru; Kuramochi, Kazuhiro; Binh Vong, Long; Nagasaki, Yukio

    2014-06-01

    We developed a nitroxide radicals-containing polymer (NRP), which is composed of poly(4-methylstyrene) possessing nitroxide radicals as a side chain via amine linkage, to scavenge reactive oxygen species (ROS) from cigarette smoke. In this study, the NRP was coated onto cigarette filters and its ROS-scavenging activity from streaming cigarette smoke was evaluated. The intensity of electron spin resonance signals of the NRP in the filter decreased after exposure to cigarette smoke, indicating consumption of nitroxide radicals. To evaluate the ROS-scavenging activity of the NRP-coated filter, the amount of peroxy radicals in an extract of cigarette smoke was measured using UV-visible spectrophotometry and 1,1-diphenyl-2-picrylhydrazyl (DPPH). The absorbance of DPPH at 517 nm decreased with exposure to cigarette smoke. When NRP-coated filters were used, the decrease in the absorbance of DPPH was prevented. In contrast, both poly[4-(cyclohexylamino)methylstyrene]- and poly(acrylic acid)-coated filters, which have no nitroxide radical, did not show any effect, indicating that the nitroxide radicals in the NRP scavenge the ROS in cigarette smoke. As a result, the extract of cigarette smoke passed through the NRP-coated filter has a lower cellular toxicity than smoke passed through poly[4-(cyclohexylamino)methylstyrene]- and poly(acrylic acid)-coated filters. Accordingly, NRP is a promising material for ROS scavenging from cigarette smoke.

  2. Prediction of nitroxide hyperfine coupling constants in solution from combined nanosecond scale simulations and quantum computations

    NASA Astrophysics Data System (ADS)

    Houriez, Céline; Ferré, Nicolas; Masella, Michel; Siri, Didier

    2008-06-01

    We present a combined theoretical approach based on analyzing molecular dynamics trajectories (at the nanosecond scale) generated by use of classical polarizable force fields and on quantum calculations to compute averaged hyperfine coupling constants. That method is used to estimate the constant of a prototypical nitroxide: the dimethylnitroxide. The molecule is embedded during the simulations in a cubic box containing about 500 water molecules and the molecular dynamics is generated using periodic conditions. Once the trajectories are achieved, the nitroxide and its first hydration shell molecules are extracted, and the coupling constants are computed by considering the latter aggregates by means of quantum computations. However, all the water molecules of the bulk are also accounted for during those computations by means of the electrostatic potential fitted method. Our results exhibit that in order to predict accurate and reliable coupling constants, one needs to describe carefully the out-of-plane motion of the nitroxide nitrogen and to sample trajectories with a time interval of 400 fs at least to generate an uncorrelated large set of nitroxide structures. Compared to Car-Parrinello molecular dynamics techniques, our approach can be used readily to compute hyperfine coupling constants of large systems, such as nitroxides of great size interacting with macromolecules such as proteins or polymers.

  3. Prediction of nitroxide hyperfine coupling constants in solution from combined nanosecond scale simulations and quantum computations.

    PubMed

    Houriez, Céline; Ferré, Nicolas; Masella, Michel; Siri, Didier

    2008-06-28

    We present a combined theoretical approach based on analyzing molecular dynamics trajectories (at the nanosecond scale) generated by use of classical polarizable force fields and on quantum calculations to compute averaged hyperfine coupling constants. That method is used to estimate the constant of a prototypical nitroxide: the dimethylnitroxide. The molecule is embedded during the simulations in a cubic box containing about 500 water molecules and the molecular dynamics is generated using periodic conditions. Once the trajectories are achieved, the nitroxide and its first hydration shell molecules are extracted, and the coupling constants are computed by considering the latter aggregates by means of quantum computations. However, all the water molecules of the bulk are also accounted for during those computations by means of the electrostatic potential fitted method. Our results exhibit that in order to predict accurate and reliable coupling constants, one needs to describe carefully the out-of-plane motion of the nitroxide nitrogen and to sample trajectories with a time interval of 400 fs at least to generate an uncorrelated large set of nitroxide structures. Compared to Car-Parrinello molecular dynamics techniques, our approach can be used readily to compute hyperfine coupling constants of large systems, such as nitroxides of great size interacting with macromolecules such as proteins or polymers. PMID:18601346

  4. Structural specifics of light-induced metastable states in copper(II)-nitroxide molecular magnets.

    PubMed

    Barskaya, I Yu; Veber, S L; Fokin, S V; Tretyakov, E V; Bagryanskaya, E G; Ovcharenko, V I; Fedin, M V

    2015-12-28

    Although light-induced magnetostructural switching in copper(II)-nitroxide molecular magnets Cu(hfac)2L(R) has been known for several years, structural characterization of metastable photoinduced states has not yet been accomplished due to significant technical demands. In this work we apply, for the first time, variable-temperature FTIR spectroscopy with photoexcitation to investigate the structural specifics of light-induced states in the Cu(hfac)2L(R) family represented by (i) Cu(hfac)2L(Me) comprising two-spin copper(II)-nitroxide clusters, and (ii) Cu(hfac)2L(Pr) comprising three-spin nitroxide-copper(II)-nitroxide clusters. The light-induced state of Cu(hfac)2L(Me) manifests the same set of vibrational bands as the corresponding thermally-induced state, implying their similar structures. For the second compound Cu(hfac)2L(Pr), the coordination environment of copper(II) is similar in light- and thermally-induced states, but distinct differences are found for packing of the peripheral n-propyl substituent of nitroxide. Thus, generally the structures of the corresponding thermally- and light-induced states in molecular magnets Cu(hfac)2L(R) might differ, and FTIR spectroscopy provides a useful approach for revealing and elucidating such differences. PMID:26571045

  5. Structural and atoms-in-molecules analysis of hydrogen-bond network around nitroxides in liquid water.

    PubMed

    Houriez, Céline; Masella, Michel; Ferré, Nicolas

    2010-09-28

    In this study, we investigated the hydrogen-bond network patterns involving the NO moieties of five small nitroxides in liquid water by analyzing nanosecond scale molecular dynamics trajectories. To this end, we implemented two types of hydrogen-bond definitions, based on electronic structure, using Bader's atoms-in-molecules analysis and based on geometric criteria. In each definition framework, the nitroxide/water hydrogen-bond networks appear very variable from a nitroxide to another. Moreover, each definition clearly leads to a different picture of nitroxide hydration. For instance, the electronic structure-based definition predicts a number of hydrogen bonds around the nitroxide NO moiety usually larger than geometric structure-based ones. One particularly interesting result is that the strength of a nitroxide/water hydrogen bond does not depend on its linearity, leading us to question the relevance of geometric definition based on angular cutoffs to study this type of hydrogen bond. Moreover, none of the hydrogen-bond definitions we consider in the present study is able to quantitatively correlate the strength of nitroxide/water hydrogen-bond networks with the aqueous nitroxide spin properties. This clearly exhibits that the hydrogen-bonding concept is not reliable enough to draw quantitative conclusions concerning such properties. PMID:20886951

  6. Structural and atoms-in-molecules analysis of hydrogen-bond network around nitroxides in liquid water

    NASA Astrophysics Data System (ADS)

    Houriez, Céline; Masella, Michel; Ferré, Nicolas

    2010-09-01

    In this study, we investigated the hydrogen-bond network patterns involving the NO moieties of five small nitroxides in liquid water by analyzing nanosecond scale molecular dynamics trajectories. To this end, we implemented two types of hydrogen-bond definitions, based on electronic structure, using Bader's atoms-in-molecules analysis and based on geometric criteria. In each definition framework, the nitroxide/water hydrogen-bond networks appear very variable from a nitroxide to another. Moreover, each definition clearly leads to a different picture of nitroxide hydration. For instance, the electronic structure-based definition predicts a number of hydrogen bonds around the nitroxide NO moiety usually larger than geometric structure-based ones. One particularly interesting result is that the strength of a nitroxide/water hydrogen bond does not depend on its linearity, leading us to question the relevance of geometric definition based on angular cutoffs to study this type of hydrogen bond. Moreover, none of the hydrogen-bond definitions we consider in the present study is able to quantitatively correlate the strength of nitroxide/water hydrogen-bond networks with the aqueous nitroxide spin properties. This clearly exhibits that the hydrogen-bonding concept is not reliable enough to draw quantitative conclusions concerning such properties.

  7. In vitro synthesis of nitroxide free radicals by hog liver microsomes

    SciTech Connect

    Valvis, I.I.; Lischick, D.; Shen, D.; Sofer, S.S. )

    1990-01-01

    The in vitro biooxidation of 4-hydroxy-2,2,6,6-tetra methylpiperidine (TEMP), 4-hydroxy-2,2,4,4-tetra methyl-1,3-oxazolidine (TEMO) and diphenylamine (DPA) by hog liver microsomes to their respective nitroxide free radicals, 4-hydroxy-2,2,6,6-tetra methylpiperidine-1-oxyl (TEMPO), 2,2,4,4-tetra methyl-1,3-oxazolidine-1-oxyl (TEMOO), and diphenylnitroxide (DPNO) has been investigated. For extending the life span of the liver microsomes, a calcium alginate immobilization procedure was used. The biooxidation rates of the above amines to their respective nitroxide metabolites were measured by means of oxygen uptake at 37 degrees C and pH 7.4. N-octylamine was found to be an activator in the biooxidation of the amines. The formation of the nitroxide radicals was identified by E.S.R. spectroscopy.

  8. Investigation of the inner environment of carbon nanotubes with a fullerene-nitroxide probe.

    PubMed

    Campestrini, Sandro; Corvaja, Carlo; De Nardi, Marco; Ducati, Caterina; Franco, Lorenzo; Maggini, Michele; Meneghetti, Moreno; Menna, Enzo; Ruaro, Giorgio

    2008-03-01

    A fulleropyrrolidine bearing a nitroxide free radical has been inserted into single-walled carbon nanotubes with the aid of supercritical CO2. Thanks to the encapsulated paramagnetic probes, it has been possible to detect and characterize the resulting peapod-like structure through electron paramagnetic resonance (EPR) spectroscopy. In particular, the analysis of spectral parameters derived from extensive EPR studies has elucidated the orientation and the residual rotational dynamics of the molecules embedded in the nanotubes. A limited anisotropic rotational freedom of the encapsulated fullerene nitroxide reveals a rather strong interaction of the probe with the surrounding nanotube walls. The interaction seems to involve the fullerene cage (as confirmed by Raman spectroscopy) and not the nitroxide moiety, whose EPR spectral characteristics, such as the isotropic hyperfine constant and the g-tensor, remain unaltered after encapsulation. PMID:18228238

  9. Efficient Dynamic Nuclear Polarization at 800 MHz/527 GHz with Trityl-Nitroxide Biradicals.

    PubMed

    Mathies, Guinevere; Caporini, Marc A; Michaelis, Vladimir K; Liu, Yangping; Hu, Kan-Nian; Mance, Deni; Zweier, Jay L; Rosay, Melanie; Baldus, Marc; Griffin, Robert G

    2015-09-28

    Cross-effect (CE) dynamic nuclear polarization (DNP) is a rapidly developing technique that enhances the signal intensities in magic-angle spinning (MAS) NMR spectra. We report CE DNP experiments at 211, 600, and 800 MHz using a new series of biradical polarizing agents referred to as TEMTriPols, in which a nitroxide (TEMPO) and a trityl radical are chemically tethered. The TEMTriPol molecule with the optimal performance yields a record (1) H NMR signal enhancement of 65 at 800 MHz at a concentration of 10 mM in a glycerol/water solvent matrix. The CE DNP enhancement for the TEMTriPol biradicals does not decrease as the magnetic field is increased in the manner usually observed for bis-nitroxides. Instead, the relatively strong exchange interaction between the trityl and nitroxide moieties determines the magnetic field at which the optimum enhancement is observed. PMID:26268156

  10. Electron Paramagnetic Resonance Spectroscopy of Nitroxide-Labeled Calmodulin

    PubMed Central

    Bowman, Paula B.; Puett, David

    2014-01-01

    Calmodulin (CaM) is a highly conserved calcium-binding protein consisting of two homologous domains, each of which contains two EF-hands, that is known to bind well over 300 proteins and peptides. In most cases the (Ca2+)4-form of CaM leads to the activation of a key regulatory enzyme or protein in a myriad of biological processes. Using the nitroxide spin-labeling reagent, 3-(2-iodoacetamido)-2,2,5,5-tetramethyl-1-pyrrolidinyl oxyl, bovine brain CaM was modified at 2-3 methionines with retention of activity as judged by the activation of cyclic nucleotide phosphodiesterase. X-band electron paramagnetic resonance (EPR) spectroscopy was used to measure the spectral changes upon addition of Ca2+ to the apo-form of spin-labeled protein. A significant loss of spectral intensity, arising primarily from reductions in the heights of the low, intermediate, and high field peaks, accompanied Ca2+ binding. The midpoint of the Ca2+-mediated transition determined by EPR occurred at a higher Ca2+ concentration than that measured with circular dichroic spectroscopy and enzyme activation. Recent data have indicated that the transition from the apo-state of CaM to the fully saturated form, [Ca2+)4-CaM], contains a compact intermediate corresponding to [Ca2+)2-CaM], and the present results suggest that the spin probes are reporting on Ca2+ binding to the last two sites in the N-terminal domain, i.e. for the [Ca2+)2-CaM] → [Ca2+)4-CaM] transition in which the compact structure becomes more extended. EPR of CaM, spin-labeled at methionines, offers a different approach for studying Ca2+-mediated conformational changes and may emerge as a useful technique for monitoring interactions with target proteins. PMID:24718677

  11. A new model for Overhauser enhanced nuclear magnetic resonance using nitroxide radicals

    NASA Astrophysics Data System (ADS)

    Armstrong, Brandon D.; Han, Songi

    2007-09-01

    Nitroxide free radicals are the most commonly used source for dynamic nuclear polarization (DNP) enhanced nuclear magnetic resonance (NMR) experiments and are also exclusively employed as spin labels for electron spin resonance (ESR) spectroscopy of diamagnetic molecules and materials. Nitroxide free radicals have been shown to have strong dipolar coupling to H1 in water, and thus result in large DNP enhancement of H1 NMR signal via the well known Overhauser effect. The fundamental parameter in a DNP experiment is the coupling factor, since it ultimately determines the maximum NMR signal enhancements which can be achieved. Despite their widespread use, measurements of the coupling factor of nitroxide free radicals have been inconsistent, and current models have failed to successfully explain our experimental data. We found that the inconsistency in determining the coupling factor arises from not taking into account the characteristics of the ESR transitions, which are split into three (or two) lines due to the hyperfine coupling of the electron to the N14 nuclei (or N15) of the nitric oxide radical. Both intermolecular Heisenberg spin exchange interactions as well as intramolecular nitrogen nuclear spin relaxation mix the three (or two) ESR transitions. However, neither effect has been taken into account in any experimental studies on utilizing or quantifying the Overhauser driven DNP effects. The expected effect of Heisenberg spin exchange on Overhauser enhancements has already been theoretically predicted and observed by Bates and Drozdoski [J. Chem. Phys. 67, 4038 (1977)]. Here, we present a new model for quantifying Overhauser enhancements through nitroxide free radicals that includes both effects on mixing the ESR hyperfine states. This model predicts the maximum saturation factor to be considerably higher by the effect of nitrogen nuclear spin relaxation. Because intramolecular nitrogen spin relaxation is independent of the nitroxide concentration, this

  12. Room-temperature electron spin relaxation of nitroxides immobilized in trehalose: Effect of substituents adjacent to NO-group

    NASA Astrophysics Data System (ADS)

    Kuzhelev, Andrey A.; Strizhakov, Rodion K.; Krumkacheva, Olesya A.; Polienko, Yuliya F.; Morozov, Denis A.; Shevelev, Georgiy Yu.; Pyshnyi, Dmitrii V.; Kirilyuk, Igor A.; Fedin, Matvey V.; Bagryanskaya, Elena G.

    2016-05-01

    Trehalose has been recently promoted as efficient immobilizer of biomolecules for room-temperature EPR studies, including distance measurements between attached nitroxide spin labels. Generally, the structure of nitroxide influences the electron spin relaxation times, being crucial parameters for room-temperature pulse EPR measurements. Therefore, in this work we investigated a series of nitroxides with different substituents adjacent to NO-moiety including spirocyclohexane, spirocyclopentane, tetraethyl and tetramethyl groups. Electron spin relaxation times (T1, Tm) of these radicals immobilized in trehalose were measured at room temperature at X- and Q-bands (9/34 GHz). In addition, a comparison was made with the corresponding relaxation times in nitroxide-labeled DNA immobilized in trehalose. In all cases phase memory times Tm were close to 700 ns and did not essentially depend on structure of substituents. Comparison of temperature dependences of Tm at T = 80-300 K shows that the benefit of spirocyclohexane substituents well-known at medium temperatures (∼100-180 K) becomes negligible at 300 K. Therefore, unless there are specific interactions between spin labels and biomolecules, the room-temperature value of Tm in trehalose is weakly dependent on the structure of substituents adjacent to NO-moiety of nitroxide. The issues of specific interactions and stability of nitroxide labels in biological media might be more important for room temperature pulsed dipolar EPR than differences in intrinsic spin relaxation of radicals.

  13. Structural Origins of Nitroxide Side Chain Dynamics on Membrane Protein [alpha]-Helical Sites

    SciTech Connect

    Kroncke, Brett M.; Horanyi, Peter S.; Columbus, Linda

    2010-12-07

    Understanding the structure and dynamics of membrane proteins in their native, hydrophobic environment is important to understanding how these proteins function. EPR spectroscopy in combination with site-directed spin labeling (SDSL) can measure dynamics and structure of membrane proteins in their native lipid environment; however, until now the dynamics measured have been qualitative due to limited knowledge of the nitroxide spin label's intramolecular motion in the hydrophobic environment. Although several studies have elucidated the structural origins of EPR line shapes of water-soluble proteins, EPR spectra of nitroxide spin-labeled proteins in detergents or lipids have characteristic differences from their water-soluble counterparts, suggesting significant differences in the underlying molecular motion of the spin label between the two environments. To elucidate these differences, membrane-exposed {alpha}-helical sites of the leucine transporter, LeuT, from Aquifex aeolicus, were investigated using X-ray crystallography, mutational analysis, nitroxide side chain derivatives, and spectral simulations in order to obtain a motional model of the nitroxide. For each crystal structure, the nitroxide ring of a disulfide-linked spin label side chain (R1) is resolved and makes contacts with hydrophobic residues on the protein surface. The spin label at site I204 on LeuT makes a nontraditional hydrogen bond with the ortho-hydrogen on its nearest neighbor F208, whereas the spin label at site F177 makes multiple van der Waals contacts with a hydrophobic pocket formed with an adjacent helix. These results coupled with the spectral effect of mutating the i {+-} 3, 4 residues suggest that the spin label has a greater affinity for its local protein environment in the low dielectric than on a water-soluble protein surface. The simulations of the EPR spectra presented here suggest the spin label oscillates about the terminal bond nearest the ring while maintaining weak contact

  14. The palladium-catalysed copper-free Sonogashira coupling of isoindoline nitroxides: a convenient route to robust profluorescent carbon-carbon frameworks.

    PubMed

    Keddie, Daniel J; Fairfull-Smith, Kathryn E; Bottle, Steven E

    2008-09-01

    A series of novel acetylene-substituted isoindoline nitroxides were synthesised via palladium-catalysed copper-free Sonogashira coupling. These results demonstrate that the Sonogashira reaction is suitable for the generation of a wide range of aryl nitroxides of expanded structural variety. The novel aryl-iodide containing nitroxide, 5-iodo-1,1,3,3-tetramethylisoindolin-2-yloxyl, 3, was a key intermediate for this coupling, giving acetylene-substituted isoindoline nitroxides in high yield. Subsequent reaction of the deprotected ethynyl nitroxide 12 with iodinated polyaromatics furnished novel aromatic nitroxides with extended-conjugation. Such nitroxides have been described as profluorescent, as their quantum yields are significantly lower than those of the corresponding diamagnetic derivatives. The quantum yields of the naphthyl- and phenanthryl-acetylene isoindoline nitroxides (13 and 14) were found to be 200-fold and 65-fold less than the non-radical methoxyamine derivatives (23 and 24). Ethyne- and butadiyne-linked nitroxide dimers could also be synthesised by this cross coupling methodology. PMID:18698473

  15. Oxidation of Annelated Diarylamines: Analysis of Reaction Pathways to Nitroxide Diradical and Spirocyclic Products

    SciTech Connect

    Rajca, Andrzej; Shiraishi, Kouichi; Boraty; #324; ski, Przemyslaw J.; Pink, Maren; Miyasaka, Makoto; Rajca, Suchada

    2012-02-06

    Oxidation of diaryldiamine 2, a tetrahydrodiazapentacene derivative, provides diarylnitroxide diradical 1 accompanied by an intermediate nitroxide monoradical and a multitude of isolable diamagnetic products. DFT-computed tensors for EPR spectra and paramagnetic {sup 1}H NMR isotropic shifts for nitroxide diradical 1 show good agreement with the experimental EPR spectra in rigid matrices and paramagnetic {sup 1}H NMR spectra in solution, respectively. Examination of the diamagnetic products elucidates their formation via distinct pathways involving C-O bond-forming reactions, including Baeyer-Villiger-type oxidations. An unusual diiminoketone structure and two spirocyclic structures of the predominant diamagnetic products are confirmed by either X-ray crystallography or correlations between DFT-computed and experimental spectroscopic data such as {sup 1}H, {sup 13}C, and {sup 15}N NMR chemical shifts and electronic absorption spectra.

  16. Photostability enhancement of the pentacene derivative having two nitronyl nitroxide radical substituents.

    PubMed

    Shimizu, Akihiro; Ito, Akitaka; Teki, Yoshio

    2016-02-18

    Pentacene derivatives possessing nitronyl nitroxide radical substituents (1a and 1b) were synthesized, and their photochemical properties were evaluated. 1a with two radical substituents showed a remarkable enhancement of photostability compared with pentacene, 6,13-bis(triisopropylsilylethynyl)pentacene and the monoradical, 1b. This is understood due to the presence of the multiple deactivation pathways in the photoexcited states. PMID:26814191

  17. Rare Earth Metal Complexes of Bidentate Nitroxide Ligands: Synthesis and Electrochemistry.

    PubMed

    Kim, Jee Eon; Bogart, Justin A; Carroll, Patrick J; Schelter, Eric J

    2016-01-19

    We report rare earth metal complexes with tri- and bidentate ligands including strongly electron-donating nitroxide groups. The tridentate ligand 1,3,5-tris(2'-tert-butylhydroxylaminoaryl)benzene (H3arene-triNOx) was complexed to cerium(IV) in a 2:1 ligand-to-metal stoichiometry as Ce(Harene-triNOx)2 (1). Cyclic voltammetry of this compound showed stabilization of the tetravalent cerium cation with a Ce(IV/III) couple at E1/2 = -1.82 V versus Fc/Fc(+). On the basis of the uninvolvement of the third nitroxide group in the coordination chemistry with the cerium(IV) cation, the ligand system was redesigned toward a simpler bidentate mode, and a series of rare earth metal-arene-diNOx complexes were prepared with La(III), Ce(IV), Pr(III), Tb(III), and Y(III), [RE(arene-diNOx)2](-) ([2-RE](-), RE = La, Pr, Y, Tb) and Ce(IV)(arene-diNOx)2, where H2arene-diNOx = 1,3-bis(2'-tert-butylhydroxylaminoaryl)benzene. The core structures were isostructural throughout the series, with three nitroxide groups in η(2) binding modes and one κ(1) nitroxide group coordinated to the metal center in the solid state. In all cases except Ce(IV)(arene-diNOx)2, electrochemical analysis described two subsequent, ligand-based, quasi-reversible redox waves, indicating that a stable [N-O•] group was generated on the electrochemical time scale. Chemical oxidation of the terbium complex was performed, and isolation of the resulting complex, Tb(arene-diNOx)2·CH2Cl2 (3·CH2Cl2), confirmed the assignment of the cyclic voltammograms. Magnetic data showed no evidence of mixing between the Tb(III) states and the states of the open-shell ligand. PMID:26689656

  18. Acid Is Key to the Radical-Trapping Antioxidant Activity of Nitroxides.

    PubMed

    Haidasz, Evan A; Meng, Derek; Amorati, Riccardo; Baschieri, Andrea; Ingold, Keith U; Valgimigli, Luca; Pratt, Derek A

    2016-04-27

    Persistent dialkylnitroxides (e.g., 2,2,6,6-tetramethylpiperidin-1-oxyl, TEMPO) play a central role in the activity of hindered amine light stabilizers (HALS)-additives that inhibit the (photo)oxidative degradation of consumer and industrial products. The accepted mechanism of HALS comprises a catalytic cycle involving the rapid combination of a nitroxide with an alkyl radical to yield an alkoxyamine that subsequently reacts with a peroxyl radical to eventually re-form the nitroxide. Herein, we offer evidence in favor of an alternative reaction mechanism involving the acid-catalyzed reaction of a nitroxide with a peroxyl radical to yield an oxoammonium ion followed by electron transfer from an alkyl radical to the oxoammonium ion to re-form the nitroxide. In preliminary work, we showed that TEMPO reacts with peroxyl radicals at diffusion-controlled rates in the presence of acids. Now, we show that TEMPO can be regenerated from its oxoammonium ion by reaction with alkyl radicals. We have determined that this reaction, which has been proposed to be a key step in TEMPO-catalyzed synthetic transformations, occurs with k ∼ 1-3 × 10(10) M(-1) s(-1), thereby enabling it to compete with O2 for alkyl radicals. The addition of weak acids facilitates this reaction, whereas the addition of strong acids slows it by enabling back electron transfer. The chemistry is shown to occur in hydrocarbon autoxidations at elevated temperatures without added acid due to the in situ formation of carboxylic acids, accounting for the long-known catalytic radical-trapping antioxidant activity of TEMPO that prompted the development of HALS. PMID:27023326

  19. Using nitroxide decay to study the photooxidation kinetics of automotive topcoat enamels.

    PubMed

    Gerlock, J L; Bauer, D R; Mielewski, D F

    1990-01-01

    Free radical scavenging by nitroxide dopant is used to quantify the photoinitiation rate of free radicals in acrylic/melamine and polyester/urethane coatings during photolysis under "near ambient" exposure conditions. Photoinitiation rate measurements on weathered coatings reveal that acrylic/melamine coatings photooxidize non-autocatalytically, while polyester/urethane coatings photooxidize autocatalytically. The decomposition of hydroperoxide photolysis products by melamine crosslinker is claimed to account for this difference in photooxidation kinetics. PMID:2379865

  20. Syntheses, crystal structures, magnetic and luminescence properties of five novel lanthanide complexes of nitronyl nitroxide radical

    SciTech Connect

    Wang, Ya-Li; Gao, Yuan-Yuan; Ma, Yue; Wang, Qing-Lun; Li, Li-Cun; Liao, Dai-Zheng

    2013-06-01

    Five novel Ln(III) complexes based on a new nitronyl nitroxide radical have been synthesized, characterized structurally and magnetically: [Ln(hfac)₃(NITPh-3-Br-4-OMe)₂] (Ln(III)=Eu(1), Gd(2), Tb(3), Dy(4), Ho(5); hfac=hexafluoroacetylacetonate; and NITPh-3-Br-4-OMe=2-3´-Br-4´-methoxyphenyl-4,4,5,5 -tetramethylimidazoline-1-oxyl-3-oxide). The single-crystal structures analyses show that these complexes have similar mononuclear tri-spin structures, in which central Ln(III) ions are all eight coordinated by three hfac molecules and two NITPh-3-Br-4-OMe radicals. The variable-temperature magnetic susceptibility studies reveal the antiferromagnetic interactions between the paramagnetic ions (Ln(III) and radicals) in complexes 1, 2, 3 and 5 and ferromagnetic interaction in complex 4. The luminescence characterizations of complexes Eu(1), Tb(3) and Dy(4) are also studied in this paper. - Graphical abstract: Using a novel halogen phenyl-substituted nitronyl-nitroxide radical, we obtained and characterized five isostructural lanthanide mononuclear tri-spin compounds. Highlights: • A new halogen phenyl-substituted nitronyl-nitroxide radical was designed. • Five new Ln(III) radical complexes have been synthesized and characterized. • The reasonable evaluation the magnetic interactions between Ln(III) ions and radical is meaningful. • These complexes show good luminescent properties.

  1. Kinetic analysis of nitroxide radical formation under oxygenated photolysis: toward quantitative singlet oxygen topology.

    PubMed

    Zigler, David F; Ding, Eva Chuheng; Jarocha, Lauren E; Khatmullin, Renat R; DiPasquale, Vanessa M; Sykes, R Brendan; Tarasov, Valery F; Forbes, Malcolm D E

    2014-12-01

    Reaction kinetics for two sterically hindered secondary amines with singlet oxygen have been studied in detail. A water soluble porphyrin sensitizer, 5,10,15,20-tetrakis-(4-sulfunatophenyl)-21,23H-porphyrin (TPPS), was irradiated in oxygenated aqueous solutions containing either 2,2,6,6-tetramethylpiperidin-4-one (TMPD) or 4-[N,N,N-trimethyl-ammonium]-2,2,6,6-tetramethylpiperidinyl chloride (N-TMPCl). The resulting sensitization reaction produced singlet oxygen in high yield, ultimately leading to the formation of the corresponding nitroxide free radicals (R2NO) which were detected using steady-state electron paramagnetic resonance (EPR) spectroscopy. Careful actinometry and EPR calibration curves, coupled with a detailed kinetic analysis, led to a simple and compact expression relating the nitroxide quantum yield ΦR2NO (from the doubly-integrated EPR signal intensity) to the initial amine concentration [R2NH]i. With all other parameters held constant, a plot of ΦR2NOvs. [R2NH]i gave a straight line with a slope proportional to the rate constant for nitroxide formation, kR2NO. This establishment of a rigorous quantitative relationship between the EPR signal and the rate constant provides a mechanism for quantifying singlet oxygen production as a function of its topology in heterogeneous media. Implications for in vivo assessment of singlet oxygen topology are briefly discussed. PMID:25369860

  2. Discriminative EPR detection of NO and HNO by encapsulated nitronyl nitroxides

    PubMed Central

    Bobko, Andrey A.; Ivanov, Alexander; Khramtsov, Valery V.

    2014-01-01

    Nitric oxide, •NO, is one of the most important molecules in the biochemistry of living organisms. By contrast, nitroxyl, NO−, one-electron reduced analog of •NO which exists at physiological conditions in its protonated form, HNO, has been relatively overlooked. Recent data shows that HNO might be produced endogenously and display unique biological effects. However, there is a lack of specific and quantitative methods of detection of endogenous HNO production. Here we present a new method for discriminative •NO and HNO detection by nitronyl nitroxides (NNs) using electron paramagnetic resonance (EPR). It was found that NNs react with •NO and HNO with similar rate constants of about 104 M−1s−1 but yield different products: imino nitroxides and the hydroxylamine of imino nitroxides, correspondingly. An EPR approach for discriminative •NO and HNO detection using liposome-encapsulated NNs was developed. The membrane barrier of liposomes protects NNs against reduction in biological systems while is permeable to both analytes, •NO and HNO. The sensitivity of this approach for the detection of the rates of •NO/HNO generation is about 1 nM/s. The application of encapsulated NNs for real-time discriminative •NO/HNO detection might become a valuable tool in nitric oxide related studies. PMID:23136998

  3. Simultaneous 280 MHz EPR imaging of rat organs during nitroxide free radical clearance.

    PubMed Central

    Alecci, M; Ferrari, M; Quaresima, V; Sotgiu, A; Ursini, C L

    1994-01-01

    A radio frequency (RF) (280 MHz) electron paramagnetic resonance (EPR) spectroscopy and imaging apparatus has been used to localize a pyrrolidine nitroxide free radical in the rat abdomen and thorax. The nitroxide 2,2.5.5,-tetramethylpyrrolidine-1-oxyl-3- carboxylic acid (PCA) had a whole body monoexponential decay with half-life of 13.3 +/- 0.7 (n = 4), 19.4 +/- 0.2 (n = 3), and 23 +/- 2 (n = 6) min for 1, 2, and 3 mmol/kg PCA, respectively. Up to seven one-dimensional longitudinal projections were collected on six rats in the presence of a 8 mT/m field gradient. With an injection dose of 3 mmol/kg, PCA half-lives were 19 +/- 1, 17 +/- 2, and 22 +/- 2 min (n = 6) in the lower abdomen, in the liver, and in the thorax, respectively. Thorax half-life was significantly longer than liver half-life. Sequential two-dimensional images of PCA distribution in a plane longitudinal to the rat body were obtained from eight spectra in the presence of a gradient of 12 mT/m (acquisition time 5 min; spatial resolution 8 mm). After 7 min, the nitroxide was detectable in the left side of the thorax area, but it was mostly localized in the liver. PCA was more uniformly distributed in the image collected after 17 min. Images FIGURE 4 PMID:7811942

  4. Site-Specific DNA Structural and Dynamic Features Revealed by Nucleotide-Independent Nitroxide Probes

    SciTech Connect

    Popova, Anna; Kalai, Tamas; Hideg, Kalman; Qin, Peter Z.

    2009-09-15

    In site-directed spin labeling, a covalently attached nitroxide probe containing a chemically inert unpaired electron is utilized to obtain information on the local environment of the parent macromolecule. Studies presented here examine the feasibility of probing local DNA structural and dynamic features using a class of nitroxide probes that are linked to chemically substituted phosphorothioate positions at the DNA backbone. Two members of this family, designated as R5 and R5a, were attached to eight different sites of a dodecameric DNA duplex without severely perturbing the native B-form conformation. Measured X-band electron paramagnetic resonance (EPR) spectra, which report on nitroxide rotational motions, were found to vary depending on the location of the label (e.g., duplex center vs termini) and the surrounding DNA sequence. This indicates that R5 and R5a can provide information on the DNA local environment at the level of an individual nucleotide. As these probes can be attached to arbitrary nucleotides within a nucleic acid sequence, they may provide a means to “scan” a given DNA molecule in order to interrogate its local structural and dynamic features.

  5. Pulsed electron-electron double resonance spectroscopy between a high-spin Mn(2+) ion and a nitroxide spin label.

    PubMed

    Akhmetzyanov, D; Plackmeyer, J; Endeward, B; Denysenkov, V; Prisner, T F

    2015-03-14

    Pulsed Electron-Electron Double Resonance (PELDOR) has attracted considerable attention for biomolecular applications, as it affords precise measurements of distances between pairs of spin labels in the range of 1.5-8 nm. Usually nitroxide moieties incorporated by site-directed spin labelling with cysteine residues are used as spin probes in protein systems. Recently, naturally occurring cofactors and metal ions have also been explored as paramagnetic spin species for such measurements. In this work we investigate the performance of PELDOR between a nitroxide spin label and a high-spin Mn(2+) ion in a synthetic model compound at Q-band (34 GHz) and G-band (180 GHz). We demonstrate that the distances obtained with high-frequency PELDOR are in good agreement with structural predictions. At Q-band frequencies experiments have been performed by probing either the high-spin Mn(2+) ion or the nitroxide spin label. At G-band frequencies we have been able to detect changes in the dipolar oscillation frequency, depending on the pump-probe positions across the g-tensor resolved nitroxide EPR spectrum. These changes result from the restricted mobility of the nitroxide spin label in the model compound. Our results demonstrate that the high-spin Mn(2+) ion can be used for precise distance measurements and open the doors for many biological applications, as naturally occurring Mg(2+) sites can be readily exchanged for Mn(2+). PMID:25669744

  6. Understanding the fundamentals of redox mediators in Li-O2 batteries: a case study on nitroxides.

    PubMed

    Bergner, Benjamin J; Hofmann, Christine; Schürmann, Adrian; Schröder, Daniel; Peppler, Klaus; Schreiner, Peter R; Janek, Jürgen

    2015-12-21

    The development of aprotic lithium-oxygen (Li-O2) batteries suffers from high charging overvoltages. Dissolved redox mediators, like nitroxides, providing increased energy efficiency and longer lifetime are promising tools to overcome this challenge. Since this auspicious concept is still in its infancy, the underlying chemical reactions as well as the impact of the different (electro)chemical parameters are poorly understood. Herein, we derive an electrochemical model for the charging reactions, which is validated by potentiostatic measurements. The model elucidates the impact of the major factors including basic cell parameters and the chemical properties of the redox mediator. The model is applied to the promising class of nitroxides, which is systematically investigated by using derivatives of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy), AZADO (2-azaadamantane-N-oxyl), and an azaphenalene based nitroxide. The nitroxides are electrochemically characterized by cyclic voltammetry and their performance as redox mediators is studied in Li-O2 batteries with an ether-based electrolyte. Based on the presented model, the charging profiles of the different nitroxide redox mediators are correlated with their molecular structures. PMID:26563563

  7. In vivo high-resolution magic angle spinning magnetic and electron paramagnetic resonance spectroscopic analysis of mitochondria-targeted peptide in Drosophila melanogaster with trauma-induced thoracic injury

    PubMed Central

    CONSTANTINOU, CATERINA; APIDIANAKIS, YIORGOS; PSYCHOGIOS, NIKOLAOS; RIGHI, VALERIA; MINDRINOS, MICHAEL N.; KHAN, NADEEM; SWARTZ, HAROLD M.; SZETO, HAZEL H.; TOMPKINS, RONALD G.; RAHME, LAURENCE G.; TZIKA, A. ARIA

    2016-01-01

    Trauma is the most common cause of mortality among individuals aged between 1 and 44 years and the third leading cause of mortality overall in the US. In this study, we examined the effects of trauma on the expression of genes in Drosophila melanogaster, a useful model for investigating genetics and physiology. After trauma was induced by a non-lethal needle puncture of the thorax, we observed the differential expression of genes encoding for mitochondrial uncoupling proteins, as well as those encoding for apoptosis-related and insulin signaling-related proteins, thus indicating muscle functional dysregulation. These results prompted us to examine the link between insulin signaling and mitochondrial dysfunction using in vivo nuclear magnetic resonance (NMR) with complementary electron paramagnetic resonance (EPR) spectroscopy. Trauma significantly increased insulin resistance biomarkers, and the NMR spectral profile of the aged flies with trauma-induced thoracic injury resembled that of insulin-resistant chico mutant flies. In addition, the mitochondrial redox status, as measured by EPR, was significantly altered following trauma, indicating mitochondrial uncoupling. A mitochondria-targeted compound, Szeto-Schiller (SS)-31 that promotes adenosine triphosphate (ATP) synthesis normalized the NMR spectral profile, as well as the mitochondrial redox status of the flies with trauma-induced thoracic injury, as assessed by EPR. Based on these findings, we propose a molecular mechanism responsible for trauma-related mortality and also propose that trauma sequelae in aging are linked to insulin signaling and mitochondrial dysfunction. Our findings further suggest that SS-31 attenuates trauma-associated pathological changes. PMID:26648055

  8. Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools.

    PubMed

    James, Andrew M; Cochemé, Helena M; Smith, Robin A J; Murphy, Michael P

    2005-06-01

    Antioxidants, such as ubiquinones, are widely used in mitochondrial studies as both potential therapies and useful research tools. However, the effects of exogenous ubiquinones can be difficult to interpret because they can also be pro-oxidants or electron carriers that facilitate respiration. Recently we developed a mitochondria-targeted ubiquinone (MitoQ10) that accumulates within mitochondria. MitoQ10 has been used to prevent mitochondrial oxidative damage and to infer the involvement of mitochondrial reactive oxygen species in signaling pathways. However, uncertainties remain about the mitochondrial reduction of MitoQ10, its oxidation by the respiratory chain, and its pro-oxidant potential. Therefore, we compared MitoQ analogs of varying alkyl chain lengths (MitoQn, n = 3-15) with untargeted exogenous ubiquinones. We found that MitoQ10 could not restore respiration in ubiquinone-deficient mitochondria because oxidation of MitoQ analogs by complex III was minimal. Complex II and glycerol 3-phosphate dehydrogenase reduced MitoQ analogs, and the rate depended on chain length. Because of its rapid reduction and negligible oxidation, MitoQ10 is a more effective antioxidant against lipid peroxidation, peroxynitrite and superoxide. Paradoxically, exogenous ubiquinols also autoxidize to generate superoxide, but this requires their deprotonation in the aqueous phase. Consequently, in the presence of phospholipid bilayers, the rate of autoxidation is proportional to ubiquinol hydrophilicity. Superoxide production by MitoQ10 was insufficient to damage aconitase but did lead to hydrogen peroxide production and nitric oxide consumption, both of which may affect cell signaling pathways. Our results comprehensively describe the interaction of exogenous ubiquinones with mitochondria and have implications for their rational design and use as therapies and as research tools to probe mitochondrial function. PMID:15788391

  9. Mitochondria-targeting for improved photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Ngen, Ethel J.

    Photodynamic therapy (PDT) is an emerging cancer therapeutic modality, with great potential to selectively treat surface cancers, thus minimizing systemic side effects. In this dissertation, two approaches to deliver photosensitizers to mitochondria were investigated: 1) Reducing photosensitizer sizes to improve endocytosis and lysosomal localization. Upon irradiation the photosensitizers would then produce singlet oxygen which could rupture the lysosomal membrane releasing the lysosomally trapped photosensitizers to the cytosol, from where they could relocalize to mitochondria by passive diffusion (photochemical internalization). 2) Using delocalized lipophilic cationic dyes (DLCs) to exploit membrane potential differences between the cytoplasm and mitochondria in delivering photosensitizers to mitochondria. To investigate the effects of steric hindrance on mitochondrial localization and photodynamic response, a series of eight thiaporphyrins were studied. Two new thiaporphyrin analogues 6 and 8 with reduced steric hindrance at the 10- and 15- meso positions were studied in comparison to 5,20-diphenyl-10,15-bis[4 (carboxymethyleneoxy)-phenyl]-21,23-dithiaporphyrin 1, previously validated as a potential second generation photosensitizer. Although 6 showed an extraordinarily high uptake (7.6 times higher than 1), it was less potent than 1 (IC 50 = 0.18 muM versus 0.13 muM) even though they both showed similar sub-cellular localization patterns. This low potency was attributed to its high aggregation tendency in aqueous media (4 times higher than 1), which might have affected its ability to generate singlet oxygen in vitro . 8 on the other hand showed an even lower potency than 6 (2.28 vs 0.18 muM). However this was attributed to its low cellular uptake (20 times less than 6) and inefficient generation of singlet oxygen. Overall, although the structural modifications did improve the cellular uptake of 6, 6 was still less potent than the lead photosensitizers 1. Thus, other strategies to target mitochondria for improved photodynamic activity were investigated. In a continuing project, we evaluated the ability of delocalized lipophilic cationic dyes to deliver photosensitizers to mitochondria by exploiting the membrane potential difference between the cytoplasm and mitochondria. Two conjugates: a porphyrin--rhodamine B conjugate (TPP--Rh) and a porphyrin-acridine orange conjugate (TPP--AO), each possessing a single delocalized lipophilic cation, were designed and synthesized. The conjugates were synthesized by conjugating a monohydroxy porphyrin (TPP-OH) to rhodamine B (Rh B) and acridine orange base (AO), respectively, via saturated hydrocarbon linkers. To evaluate the efficiency of the conjugates as photosensitizers, their photophysical properties and in vitro photodynamic activities were studied in comparison to those of TPP-OH, the parent porphyrin photosensitizer. Although fluorescence energy transfer (FRET) was observed in the conjugates, they were capable of generating singlet oxygen at rates comparable to TPP-OH. In a final project, we evaluated the photophysical potential of TPP-Rh to act as a two-photon photosensitizer for PDT. Two-photon PDT is a rational approach used to improve light penetration through the skin. Rhodamine B is an effective two-photon chromophore and could significantly improve the two-photon absorption of the porphyrin photosensitizer in the TPP-Rh dyad system following energy transfer. Thus the porphyrin--rhodamine B dyad (TPP--Rh), previously demonstrated to preferentially accumulate in the mitochondria, was photophysically evaluated as a potential two-photon photosensitizer. To evaluate the efficiency of TPP-Rh as a two-photon photosensitizer, its two-photon photophysical properties were compared with those of its individual components (Rh B and TPP-OH). This included: the two-photon cross sections (sigma 2), RET kinetics and dynamics and rates of singlet oxygen generation. A FRET efficiency of ~99 % was observed from the Rh moiety (donor) to the TPP moiety (acceptor) of the system. This significantly enhanced the sigma 2 of TPP-Rh by ˜ 100 % (20 GM) compared to the parent TPP-OH. Furthermore, TPP-Rh produced singlet oxygen at a significantly faster rate than TPP-OH upon two-photon excitation. Thus, this indicates that conjugating photosensitizers to Rh B via short saturated hydrocarbon linkers could provide deeper tissue penetration, in addition to preferential mitochondrial accumulation for improved photodynamic response. (Abstract shortened by UMI.)

  10. Antioxidant and antitumor activity of trolox, trolox succinate, and α-tocopheryl succinate conjugates with nitroxides.

    PubMed

    Zakharova, Ol'ga D; Frolova, Tat'yana S; Yushkova, Yuliya V; Chernyak, Elena I; Pokrovsky, Andrei G; Pokrovsky, Mikhail A; Morozov, Sergei V; Sinitsina, Ol'ga I; Grigor'ev, Igor A; Nevinsky, Georgy A

    2016-10-21

    A possible ability of twelve new derivatives of known antioxidants trolox (TroH), trolox succinate (TroS), α-tocopheryl succinate (α-TOS) containing nitroxyl radicals (1-12) to protect bacterial cells from spontaneous and peroxide-induced mutagenesis and their cytotoxicity against six different tumor cells as well as two normal cells were investigated and compared with that for TroH, TroS, α-TOH, and α-TOS for the first time. In contrast to TroH and TroS, all nitroxide derivatives 1-12 demonstrated not only antioxidant properties, but also suppress the growth of human tumor cells: myeloma, mammary adenocarcinoma, hepatocarcinoma, T cells leukemia, histiocytic lymphoma, and T-cellular leucosis. The IC50 values (24 - ≥ 300 μM) depend significantly on the compounds and type of tumor cells. Some compounds were capable to inhibit the growth of normal mouse (LMTK) and hamster (AG17) fibroblast cells and demonstrate very different ratios in inhibition of various tumor and normal cell lines. Some nitroxide conjugates showed pronounced selectivity in suppressing the growth of several cancer cells. Overall, several compounds may be promising in parallel as antioxidants and as specific inhibitors of some tumor cells growth. Among considered spin labeled conjugates the most perspective derivatives as antioxidants and as antitumor agents are the compounds containing pyrrolidine nitroxides. In contrast to spin labeled TroH, TroS and α-TOS conjugates 1-12 succinyl derivatives 13-15 were inactive in inhibiting the growth of any tumor cells. It means that for suppressing the cancer cells the compounds should contain in their structures fragments of TroH, TroS or α-TOS. PMID:27344490

  11. Effects of mitochondria-targeted plastoquinone derivative antioxidant (SkQ1) on demography of free-breeding Campbell dwarf hamsters (Phodopus campbelli) kept in outdoor conditions. reproduction and lifespan: explanation in the framework of ultimate loads.

    PubMed

    Rogovin, K A; Khrushcheva, A M; Shekarova, O N; Ushakova, M V; Manskikh, V N; Sokolova, O V; Vasilieva, N Yu

    2014-10-01

    We studied demographic effects of the mitochondria-targeted antioxidant SkQ1 on free-breeding Campbell dwarf hamsters (Phodopus campbelli, Thomas, 1905, Rodentia, Cricetidae) in an outdoor vivarium with seasonally varying day length and temperatures. The animals were kept in pairs from their young age. We removed litters from parental cages at their age of 25 days. Experimental hamsters received daily 50 nmol/kg SkQ1 with water by oral dosing, whereas control animals received water. SkQ1 had no effect on the lifespan of either males or females in reproductive pairs. Mortality among females was higher than among males irrespective of SkQ1 treatment, this being related to higher costs of reproduction in females. However, SkQ1 accelerated breeding in pairs in the first half of the reproductive period of a year. Although there were no statistical differences in body mass of males and females between experimental and control animals during most of their life, SkQ1-receiving males had higher body mass at the end of their life. The opposite tendency was characteristic for old females. One-year-old males and females of the experimental and control groups showed no difference in intensity of immune response to sheep red blood cells. The dermal hypersensitivity response to phytohemagglutinin (test for T-cell immunity) was significantly higher in SkQ1-treated 1- and 1.5-year-old males. This was not true for females. There was a tendency toward increased density of the neutrophil population in blood in 1-year-old SkQ1-treated males. However, experimental males showed no difference from control males in the activity of the "peroxidase-endogenous hydrogen peroxide system" of neutrophils. The background level of stress estimated by the concentration of cortisol in blood serum was significantly lower in the SkQ1-treated males during autumn adaptive adjustment of the organism. A similar trend was also observed during the January frosts, when the background level of stress was

  12. Structure and dynamics of an imidazoline nitroxide side chain with strongly hindered internal motion in proteins

    NASA Astrophysics Data System (ADS)

    Toledo Warshaviak, Dora; Khramtsov, Valery V.; Cascio, Duilio; Altenbach, Christian; Hubbell, Wayne L.

    2013-07-01

    A disulfide-linked imidazoline nitroxide side chain (V1) has a similar and highly constrained internal motion at diverse topological sites in a protein, unlike that for the disulfide-linked pyrroline nitroxide side chain (R1) widely used in site directed spin labeling EPR. Crystal structures of V1 at two positions in a helix of T4 Lysozyme and quantum mechanical calculations suggest the source of the constraints as intra-side chain interactions of the disulfide sulfur atoms with both the protein backbone and the 3-nitrogen in the imidazoline ring. These interactions apparently limit the conformation of the side chain to one of only three possible rotamers, two of which are observed in the crystal structure. An inter-spin distance measurement in frozen solution using double electron-electron resonance (DEER) gives a value essentially identical to that determined from the crystal structure of the protein containing two copies of V1, indicating that lattice forces do not dictate the rotamers observed. Collectively, the results suggest the possibility of predetermining a unique rotamer of V1 in helical structures. In general, the reduced rotameric space of V1 compared to R1 should simplify interpretation of inter-spin distance information in terms of protein structure, while the highly constrained internal motion is expected to extend the dynamic range for characterizing large amplitude nanosecond backbone fluctuations.

  13. Fluorescent dye-labelled polymer synthesis by nitroxide mediated radical polymerization

    NASA Astrophysics Data System (ADS)

    Kollár, Jozef; Chmela, Štefan; Hrčková, Ľudmila; Hrdlovič, Pavol

    2012-07-01

    New applications of polymers at advanced technologies demand increased requirements on their properties. These properties are influenced by molecular as well as supramolecular structure. Controlled radical polymerization mediated by stable nitroxides (NMP) or substituted alkoxyamines offers simple method for preparation of polymers with programmable structure of macromolecules which possess remarkable better physical as well as chemical properties. They can be used as a macro initiators for the synthesis of block copolymers. At the present time it has been generally accepted that the extent of "livingness" is high for all conversions [1-4]. To verify this statement a series of fluorescent dye-labelled regulators has been synthesized, spectrally characterized and used as the mediators of styrene and n-butyl acrylate polymerization. Direct quantification of dormant species concentration (extent of livingness) and calculation of molar mass of marked polymers was performed by absorption and/or emission spectroscopy. Controlled radical polymerization mediated by stable nitroxides bearing fluorescence mark represents unconventional approach for monitoring and evaluation of mechanism and kinetics of polymerization process. Results indicate that the extent of livingness is strongly influenced by conversion as well as mediator concentration. There is a clear tendency toward to decreasing amount of dormant species with increasing monomer conversion. Moreover, lower mediator concentration decreases livingness of polymerization process.

  14. Relaxation-based distance measurements between a nitroxide and a lanthanide spin label

    NASA Astrophysics Data System (ADS)

    Jäger, H.; Koch, A.; Maus, V.; Spiess, H. W.; Jeschke, G.

    2008-10-01

    Distance measurements by electron paramagnetic resonance techniques between labels attached to biomacromolecules provide structural information on systems that cannot be crystallized or are too large to be characterized by NMR methods. However, existing techniques are limited in their distance range and sensitivity. It is anticipated by theoretical considerations that these limits could be extended by measuring the enhancement of longitudinal relaxation of a nitroxide label due to a lanthanide complex label at cryogenic temperatures. The relaxivity of the dysprosium complex with the macrocyclic ligand DOTA can be determined without direct measurements of longitudinal relaxation rates of the lanthanide and without recourse to model compounds with well defined distance by analyzing the dependence of relaxation enhancement on either temperature or concentration in homogeneous glassy frozen solutions. Relaxivities determined by the two calibration techniques are in satisfying agreement with each other. Error sources for both techniques are examined. A distance of about 2.7 nm is measured in a model compound of the type nitroxide-spacer-lanthanide complex and is found in good agreement with the distance in a modeled structure. Theoretical considerations suggest that an increase of the upper distance limit requires measurements at lower fields and temperatures.

  15. Drug binding to the acetylcholine receptor: Nitroxide analogs of phencyclidine and a local anesthetic

    SciTech Connect

    Palma, A.L.

    1988-01-01

    The interaction of noncompetitive inhibitors (NCIs) with Torpedo californica native nicotinic acetylcholine receptor (nAChR) membranes was examined primarily by the technique of electron paramagnetic resonance (EPR) spectroscopy. The goal of this work being to define some of the physical characteristics for the site(s) of association between an NCI and the nAChR membrane. A nitroxide labeled analog of a quaternary amine local anesthetic, 2-(N,N-dimethyl-N-4-(2,2,6,6-tetramethylpiperidinoxyl)amino)-ethyl 4-hexyloxybenzoate iodide (C6SLMeI), displays a strongly immobilized EPR component when added to nAChR membranes in the presence of carbamylcholine (carb). To further this work, a nitroxide labeled analog of phencyclidine (PCP), a potent NCI, was synthesized. 4-phenyl-4-(1-piperidinyl)-2,2,6,6-tetramethylpiperidinoxyl (PPT) exhibited one-third the potency of PCP in inhibiting nAChR mediated ion flux, and from competition binding studies with ({sup 3}H)PCP displayed a K{sub D} of 0.21 {mu}M towards a carb desensitized nAChR and a K{sub 0.5} of 18 {mu}M for a resting {alpha}-bungarotoxin treated nAChR.

  16. Synthesis, crystal structure, superoxide scavenging activity, anticancer and docking studies of novel adamantyl nitroxide derivatives

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao-he; Sun, Jin; Wang, Shan; Bu, Wei; Yao, Min-na; Gao, Kai; Song, Ying; Zhao, Jin-yi; Lu, Cheng-tao; Zhang, En-hu; Yang, Zhi-fu; Wen, Ai-dong

    2016-03-01

    A novel adamantyl nitroxide derivatives has been synthesized and characterized by IR, ESI-MS and elemental analysis. Quantum chemical calculations have also been performed to calculate the molecular geometry using density functional theory (B3LYP) with the 6-31G (d,p) basis set. The calculated results showed that the optimized geometry can well reproduce the crystal structure. The antioxidant and antiproliferative activity were evaluated by superoxide (NBT) and MTT assay. The adamantyl nitroxide derivatives exhibited stronger scavenging ability towards O2· - radicals when compared to Vitamin C, and demonstrated a remarked anticancer activity against all the tested cell lines, especially Bel-7404 cells with IC50 of 43.3 μM, compared to the positive control Sorafenib (IC50 = 92.0 μM). The results of molecular docking within EGFR using AutoDock confirmed that the titled compound favorably fitted into the ATP binding site of EGFR and would be a potential anticancer agent.

  17. A Novel Nitronyl Nitroxide with Salicylic Acid Framework Attenuates Pain Hypersensitivity and Ectopic Neuronal Discharges in Radicular Low Back Pain

    PubMed Central

    Han, Wen-Juan; Chen, Lei; Wang, Hai-Bo; Liu, Xiang-Zeng; Hu, San-Jue; Sun, Xiao-Li; Luo, Ceng

    2015-01-01

    Evidence has accumulated that reactive oxygen species and inflammation play crucial roles in the development of chronic pain, including radicular low back pain. Nonsteroid anti-inflammatory drugs (NSAIDs), for example, salicylic acid, aspirin, provided analgesic effects in various types of pain. However, long-term use of these drugs causes unwanted side effects, which limits their implication. Stable nitronyl (NIT) nitroxide radicals have been extensively studied as a unique and interesting class of new antioxidants for protection against oxidative damage. The present study synthesized a novel NIT nitroxide radical with salicylic acid framework (SANR) to provide synergistic effect of both antioxidation and antiinflammation. We demonstrated for the first time that both acute and repeated SANR treatment exerted dramatic analgesic effect in radicular low back pain mimicked by chronic compression of dorsal root ganglion in rats. This analgesic potency was more potent than that produced by classical NSAIDs aspirin and traditional nitroxide radical Tempol alone. Furthermore, SANR-induced behavioral analgesia is found to be mediated, at least in partial, by a reduction of ectopic spontaneous discharges in injured DRG neurons. Therefore, the synthesized NIT nitroxide radical coupling with salicylic acid framework may represent a novel potential therapeutic candidate for treatment of chronic pain, including radicular low back pain. PMID:26609438

  18. Interaction of poly(ethylene oxide) with the sodium dodecyl sulfate micelle interface studied with nitroxide spin probes

    SciTech Connect

    Kang, Y.S.; Kevan, L. )

    1994-08-04

    Electron spin resonance (ESR) line widths of 5-, 7-, 12-, and 16-doxylstearic acid (x-DSA) and tempo nitroxides versus the concentration of poly(ethylene oxide) (PEO) in sodium dodecyl sulfate (SDS) micelles show different trends. The ESR line widths of 5-, 7-, and 16-DSA increase with increasing concentration of PEO, which is interpreted as due to increasing viscosity in the environment of the nitroxide spin probe. The tempo and 12-DSA line widths were independent of the concentration of PEO. The line width showed the highest value for 5-DSA and the lowest value of tempo. The line width of x-DSA decreases from 5-DSA to a minimum value for 12-DSA and then increases somewhat for 16-DSA. This is interpreted as bending of the alkyl chain to provide different locations for the nitroxide moiety relative to the micelle interface. The relative distances of the nitroxide moiety of [chi]-DSA from deuterated water at the SDS micelle interface was measured by deuterium electron spin echo modulation. The distances increased from 5-DSA to 12-DSA and then decreased for 16-DSA. The interpretation of the DSR line width trend is supported by the deuterium modulation depth trend. 28 refs., 5 figs., 2 tabs.

  19. Distance determination between low-spin ferric haem and nitroxide spin label using DEER: the neuroglobin case

    NASA Astrophysics Data System (ADS)

    Ezhevskaya, M.; Bordignon, E.; Polyhach, Y.; Moens, L.; Dewilde, S.; Jeschke, G.; Van Doorslaer, S.

    2013-10-01

    This work demonstrates for the first time the feasibility of using double electron-electron resonance (DEER) to determine the inter-spin distance between nitroxide spin labels and low-spin (S = 1/2) ferric haem centres. For these means, two human neuroglobin variants were spin labelled leading to singly labelled haem proteins with the nitroxide label on one of the natural Cys residues (Cys55 or Cys120). Room-temperature electron paramagnetic resonance was used to characterise the mobility of the nitroxide labels and X- and Q-band DEER experiments were performed to detect nitroxide-haem distances. Effects of residual nuclear modulations in the DEER traces were carefully evaluated. The DEER-derived distances were compared with theoretical predictions from an X-ray diffraction structure of human neuroglobin using a rotamer library approach as well as with distance information obtained from electron relaxation measurements. The structural biological implications of the spin-labelled side chains' dynamics and of the obtained distances are also discussed.

  20. Spatial aromatic fences of metal-organic frameworks for manipulating the electron spin of a fulleropyrrolidine nitroxide radical.

    PubMed

    Cao, Jiamei; Feng, Yongqiang; Zhou, Shengju; Sun, Xiaofeng; Wang, Taishan; Wang, Chunru; Li, Hongguang

    2016-07-28

    The electron spin properties of a fulleropyrrolidine nitroxide radical incarcerated in the pores of MOF-177 and MIL-53 respectively were investigated for the first time. It was found that the spatial confinement effect and intramolecular interactions in these two solid-state spin systems lead to dramatically distinctive spin dynamics. PMID:27356865

  1. Characterization of redox activity in resting and activated mast cells by reduction and reoxidation of lipophilic nitroxides.

    PubMed

    Suzuki-Nishimura, T; Swartz, H M

    1998-10-01

    1. We measured redox systems in resting and activated rat peritoneal mast cells under anoxia by using the redox metabolism of free doxyl stearic acid (5DS) and phosphatidylcholine with two 5DS molecules esterified to the glycerol (di5DSPC). 2. In the absence of oxygen, 5DS and di5DSPC were reduced to the corresponding hydroxylamines by resting mast cells, with apparent first-order kinetics of 0.085 and 0.078/min, respectively. 3. The activation of mast cells induced by compound 48/80 and bradykinin did not affect the rates of reduction of the nitroxides, and therefore the activation appeared not to be closely coupled to the redox system of these cells; this finding implies that ischemia is unlikely to affect histamine release from mast cells. 4. The oxidation of the nitroxides by the mast cells was very fast and may be nonenzymatic. 5. We concluded that nitroxides can be useful probes of redox metabolism in the mast cells but, because the characteristics of the cellular reduction-reoxidation systems differed from that of other cells, the use of this approach in other cells will require careful characterization of the redox metabolism of nitroxides in those cells. PMID:9792226

  2. PELDOR measurements on a nitroxide-labeled Cu(II) porphyrin: orientation selection, spin-density distribution, and conformational flexibility.

    PubMed

    Bode, Bela E; Plackmeyer, Jörn; Prisner, Thomas F; Schiemann, Olav

    2008-06-12

    Metal ions are functionally or structurally important centers in metalloproteins or RNAs, which makes them interesting targets for spectroscopic investigations. In combination with site-directed spin labeling, pulsed electron-electron double resonance (PELDOR or DEER) could be a well-suited method to characterize and localize them. Here, we report on the synthesis, full characterization, and PELDOR study of a copper(II) porphyrin/nitroxide model system. The X-band PELDOR time traces contain besides the distance information a convolution of orientational selectivity, conformational flexibility, exchange coupling, and spin density distribution, which can be deconvoluted by experiments with different frequency offsets and simulations. The simulations are based on the known experimental and spin Hamiltonian parameters and make use of a geometric model as employed for structurally similar bis-nitroxides and spin density parameters as obtained from density functional theory calculations. It is found that orientation selection with respect to dipolar angles is only weakly resolvable at X-band frequencies due to the large nitrogen hyperfine coupling of the copper porphyrin. On the other hand, the PELDOR time traces reveal a much faster oscillation damping than observed for structurally similar bis-nitroxides, which is mainly assigned to a small distribution in exchange couplings J. Taking the effects of orientation selectivity, distribution in J, and spin density distribution into account leads finally to a narrow distance distribution caused solely by the flexibility of the structure, which is in agreement with distributions from known bis-nitroxides of similar structure. Thus, X-band PELDOR measurements at different frequency offsets in combination with explicit time trace simulations allow for distinguishing between structural models and quantitative interpretation of copper-nitroxide PELDOR data gives access to localization of copper(II) ions. PMID:18491846

  3. Brain nuclear magnetic resonance imaging enhanced by a paramagnetic nitroxide contrast agent: preliminary report. [Dogs

    SciTech Connect

    Brasch, R.C.; Nitecki, D.E.; Brant-Zawadzki, M.; Enzmann, D.R.; Wesbey, G.E.; Tozer, T.N.; Tuck, L.D.; Cann, C.E.; Fike, J.R.; Sheldon, P.

    1983-11-01

    Contrast-enhancing agents for demonstrating abnormalities of the blood-brain barrier may extend the diagnostic utility of proton nuclear magnetic resonance (NMR) imaging. TES, a nitroxide stable free radical derivative, was tested as a central nervous system contrast enhancer in dogs with experimentally induced unilateral cerebritis or radiation cerebral damage. After intravenous injection of TES, the normal brain showed no change in NMR appearance, but areas of disease demonstrated a dramatic increase (up to 45%) in spin-echo intensity and a decrease in T/sub 1/, relaxation times. The areas of disease defined by TES enhancement were either not evident on the nonenhanced NMR images or were better defined after contrast administration. In-depth tests of toxicity, stability, and metabolism of this promising NMR contrast agent are now in progress.

  4. Imaging of Nitroxides at 250 MHz using Rapid-Scan Electron Paramagnetic Resonance

    PubMed Central

    Biller, Joshua R.; Tseitlin, Mark; Quine, Richard W.; Rinard, George A.; Weismiller, Hilary A.; Elajaili, Hanan; Rosen, Gerald M.; Kao, Joseph P. Y.; Eaton, Sandra S.; Eaton, Gareth R.

    2014-01-01

    Projections for 2D spectral-spatial images were obtained by continuous wave and rapid-scan electron paramagnetic resonance using a bimodal cross-loop resonator at 251 MHz. The phantom consisted of three 4 mm tubes containing different 15N,2H-substituted nitroxides. Rapid-scan and continuous wave images were obtained with 5 min total acquisition times. For comparison, images also were obtained with 29 s acquisition time for rapid scan and 15 min for continuous wave. Relative to continuous wave projections obtained for the same data acquisition time, rapid-scan projections had significantly less low-frequency noise and substantially higher signal-to-noise at higher gradients. Because of the improved image quality for the same data acquisition time, linewidths could be determined more accurately from the rapid-scan images than from the continuous wave images. PMID:24650729

  5. Spatial distribution of phases during gradual magnetostructural transitions in copper(II)-nitroxide based molecular magnets.

    PubMed

    Fedin, Matvey V; Veber, Sergey L; Bagryanskaya, Elena G; Romanenko, Galina V; Ovcharenko, Victor I

    2015-11-21

    Copper(ii)-nitroxide based molecular magnets Cu(hfac)2L(R) exhibit thermally-induced transitions between high- and low-temperature (HT/LT) magnetostructural states. In this work we report the first study on the spatial distribution of HT/LT phases during gradual transitions in these compounds. We explore the possibility of domain formation at intermediate temperatures, which has never been addressed before. For this purpose, we reexamine the available electron paramagnetic resonance (EPR) and X-ray diffraction data, and perform numerical calculations of EPR spectra for different models of exchange-coupled networks. A thorough analysis shows that during gradual transitions, molecular magnets Cu(hfac)2L(R) represent solid solutions of disordered HT and LT phases, and the formation of single-phase domains larger than a few nanometers in size is unlikely. PMID:26461851

  6. Translational diffusion in paramagnetic liquids by 1H NMR relaxometry: Nitroxide radicals in solution

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Korpała, A.; Kubica, A.; Meier, R.; Rössler, E. A.; Moscicki, J.

    2013-01-01

    For nitroxide radicals in solution one can identify three frequency regimes in which 1H spin-lattice relaxation rate of solvent molecules depend linearly on square root of the 1H resonance frequency. Combining a recently developed theory of nuclear (proton) spin-lattice relaxation in solutions of nitroxide radicals [D. Kruk et al., J. Chem. Phys. 137, 044512 (2012)], 10.1063/1.4736854 with properties of the spectral density function associated with translational dynamics, relationships between the corresponding linear changes of the relaxation rate (for 14N spin probes) and relative translational diffusion coefficient of the solvent and solute molecules have been derived (in analogy to 15N spin probes [E. Belorizky et al., J. Phys. Chem. A 102, 3674 (1998)], 10.1021/jp980397h). This method allows a simple and straightforward determination of diffusion coefficients in spin-labeled systems, by means of 1H nuclear magnetic resonance (NMR) relaxometry. The approach has thoroughly been tested by applying to a large set of experimental data—1H spin-lattice relaxation dispersion results for solutions of different viscosity (decalin, glycerol, propylene glycol) of 14N and 15N spin probes. The experiments have been performed versus temperature (to cover a broad range of translational diffusion coefficients) using field cycling spectrometer which covers three decades in 1H resonance frequency, 10 kHz-20 MHz. The limitations of NMR relaxometry caused by the time scale of the translational dynamics as well as electron spin relaxation have been discussed. It has been shown that for spin-labeled systems NMR relaxometry gives access to considerably faster diffusion processes than for diamagnetic systems.

  7. Exchange Coupling Mediated Through-Bonds and Through-Space in Conformationally-Constrained Polyradical Scaffolds: Calix[4]arene Nitroxide Tetraradicals And Diradical

    PubMed Central

    Rajca, Andrzej; Mukherjee, Sumit; Pink, Maren; Rajca, Suchada

    2008-01-01

    Calix[4]arenes constrained to 1,3-alternate conformation and functionalized at the upper rim with four and two tert-butylnitroxides have been synthesized, and characterized by X-ray crystallography, magnetic resonance (EPR and 1H NMR) spectroscopy, and magnetic studies. The 1,3-alternate nitroxide tetraradical and diradical provide unique polyradical scaffolds for dissection of the through-bond and through-space intramolecular exchange couplings. In addition, detailed magnetic studies of the previously reported calix[4]arene nitroxide tetraradical, which possesses cone conformation in solution, reveal conformational dependence of exchange coupling. Through-bond coupling between the adjacent nitroxide radicals is mediated by the nitroxide-m-phenylene-CH2-m-phenylene-nitroxide coupling pathway, and through-space coupling is found between the diagonal nitroxide radicals at the conformationally-constrained N···N distance of 5–6 Å. Magnetic studies of the calix[4]arene polyradical scaffolds in frozen solutions show that the through-bond exchange coupling in the 1,3-alternate calix[4]arene tetraradical is antiferromagnetic, while that in cone calix[4]arene tetraradical is ferromagnetic. The through-space exchange couplings are antiferromagnetic in both cone and 1,3-alternate calix[4]arene tetraradical, as well as in the 1,3-alternate calix[4]arene diradical. The exchange coupling constants (|J/k|) are of the order of 1 Kelvin. PMID:17031963

  8. Nitroxides as anti-biofilm compounds for the treatment of Pseudomonas aeruginosa and mixed-culture biofilms.

    PubMed

    Alexander, Stefanie-Ann; Kyi, Caroline; Schiesser, Carl H

    2015-04-28

    A series of 23 nitroxides () was tested for biofilm modulatory activity using a crystal violet staining technique. 3-(Dodecane-1-thiyl)-4-(hydroxymethyl)-2,2,5,5-tetramethyl-1-pyrrolinoxyl () was found to significantly suppress biofilm formation and elicit dispersal events in both Pseudomonas aeruginosa and mixed-culture biofilms. Twitching and swarming motilities were enhanced by nitroxide , leaving the planktonic-specific swimming motility unaffected and suggesting that the mechanism of -mediated biofilm modulation is linked to the hyperactivation of surface-associated cell motilities. Preliminary structure-activity relationship studies identify the dodecanethiyl chain, hydroxymethyl substituent and the free radical moiety to be structural features pertinent to the anti-biofilm activity of . PMID:25804546

  9. Cytochrome P450-2E1 promotes aging-related hepatic steatosis, apoptosis and fibrosis through increased nitroxidative stress.

    PubMed

    Abdelmegeed, Mohamed A; Choi, Youngshim; Ha, Seung-Kwon; Song, Byoung-Joon

    2016-02-01

    The role of ethanol-inducible cytochrome P450-2E1 (CYP2E1) in promoting aging-dependent hepatic disease is unknown and thus was investigated in this study. Young (7 weeks) and aged female (16 months old) wild-type (WT) and Cyp2e1-null mice were used in this study to evaluate age-dependent changes in liver histology, steatosis, apoptosis, fibrosis and many nitroxidative stress parameters. Liver histology showed that aged WT mice exhibited markedly elevated hepatocyte vacuolation, ballooning degeneration, and inflammatory cell infiltration compared to all other groups. These changes were accompanied with significantly higher hepatic triglyceride and serum cholesterol in aged WT mice although serum ALT and insulin resistance were not significantly altered. Aged WT mice showed the highest rates of hepatocyte apoptosis and hepatic fibrosis. Further, the highest levels of hepatic hydrogen peroxide, lipid peroxidation, protein carbonylation, nitration, and oxidative DNA damage were observed in aged WT mice. These increases in the aged WT mice were accompanied by increased levels of mitochondrial nitroxidative stress and alteration of mitochondrial complex III and IV proteins in aged WT mice, although hepatic ATP levels seems to be unchanged. In contrast, the aging-related nitroxidative changes were very low in aged Cyp2e1-null mice. These results suggest that CYP2E1 is important in causing aging-dependent hepatic steatosis, apoptosis and fibrosis possibly through increasing nitroxidative stress and that CYP2E1 could be a potential target for translational research in preventing aging-related liver disease. PMID:26703967

  10. In vivo evaluation of different alterations of redox status by studying pharmacokinetics of nitroxides using magnetic resonance techniques

    PubMed Central

    Bačić, Goran; Pavićević, Aleksandra; Peyrot, Fabienne

    2015-01-01

    Free radicals, particularly reactive oxygen species (ROS), are involved in various pathologies, injuries related to radiation, ischemia-reperfusion or ageing. Unfortunately, it is virtually impossible to directly detect free radicals in vivo, but the redox status of the whole organism or particular organ can be studied in vivo by using magnetic resonance techniques (EPR and MRI) and paramagnetic stable free radicals – nitroxides. Here we review results obtained in vivo following the pharmacokinetics of nitroxides on experimental animals (and a few in humans) under various conditions. The focus was on conditions where the redox status has been altered by induced diseases or harmful agents, clearly demonstrating that various EPR/MRI/nitroxide combinations can reliably detect metabolically induced changes in the redox status of organs. These findings can improve our understanding of oxidative stress and provide a basis for studying the effectiveness of interventions aimed to modulate oxidative stress. Also, we anticipate that the in vivo EPR/MRI approach in studying the redox status can play a vital role in the clinical management of various pathologies in the years to come providing the development of adequate equipment and probes. PMID:26827126

  11. Synthesis of a novel adamantyl nitroxide derivative with potent anti-hepatoma activity in vitro and in vivo

    PubMed Central

    Sun, Jin; Wang, Shan; Bu, Wei; Wei, Meng-Ying; Li, Wei-Wei; Yao, Min-Na; Ma, Zhong-Ying; Lu, Cheng-Tao; Li, Hui-Hui; Hu, Na-Ping; Zhang, En-Hu; Yang, Guo-Dong; Wen, Ai-Dong; Zhu, Xiao-He

    2016-01-01

    In this study, a novel adamantyl nitroxide derivative was synthesized and its antitumor activities in vitro and in vivo were investigated. The adamantyl nitroxide derivative 4 displayed a potent anticancer activity against all the tested human hepatoma cells, especially with IC50 of 68.1 μM in Bel-7404 cells, compared to the positive control 5-FU (IC50=607.7 μM). The significant inhibition of cell growth was also observed in xenograft mouse model, with low toxicity. Compound 4 suppressed the cell migration and invasion, induced the G2/M phase arrest. Further mechanistic studies revealed that compound 4 induced cell death, which was accompanied with damaging mitochondria, increasing the generation of intracellular reactive oxygen species, cleavages of caspase-9 and caspase-3, as well as activations of Bax and Bcl-2. These results confirmed that adamantyl nitroxide derivative exhibited selective antitumor activities via mitochondrial apoptosis pathway in Bel-7404 cells, and would be a potential anticancer agent for liver cancer. PMID:27429843

  12. In vivo evaluation of different alterations of redox status by studying pharmacokinetics of nitroxides using magnetic resonance techniques.

    PubMed

    Bačić, Goran; Pavićević, Aleksandra; Peyrot, Fabienne

    2016-08-01

    Free radicals, particularly reactive oxygen species (ROS), are involved in various pathologies, injuries related to radiation, ischemia-reperfusion or ageing. Unfortunately, it is virtually impossible to directly detect free radicals in vivo, but the redox status of the whole organism or particular organ can be studied in vivo by using magnetic resonance techniques (EPR and MRI) and paramagnetic stable free radicals - nitroxides. Here we review results obtained in vivo following the pharmacokinetics of nitroxides on experimental animals (and a few in humans) under various conditions. The focus was on conditions where the redox status has been altered by induced diseases or harmful agents, clearly demonstrating that various EPR/MRI/nitroxide combinations can reliably detect metabolically induced changes in the redox status of organs. These findings can improve our understanding of oxidative stress and provide a basis for studying the effectiveness of interventions aimed to modulate oxidative stress. Also, we anticipate that the in vivo EPR/MRI approach in studying the redox status can play a vital role in the clinical management of various pathologies in the years to come providing the development of adequate equipment and probes. PMID:26827126

  13. Synthesis of a Novel Nitronyl Nitroxide Radical and Determination of its Protective Effects Against Infrasound-Induced Injury.

    PubMed

    Wang, Haibo; Wang, Jin; Yang, Qi; Zhang, Xinwei; Gao, Peng; Xu, Shenglong; Sun, XiaoLi; Wang, YuKun

    2015-07-01

    Infrasound causes functional disorders and structural injury to the central nervous system. However, few anti-infrasound drugs exist, and they are inefficient. Nitronyl nitroxide radicals have been reported to be good antioxidants that act as superoxide dismutase mimics and directly react with reactive oxygen species, such as ·OH, H2O2, and O 2 (∙) -. Our previous research showed that the nitronyl nitroxide radical L-NNNBP has good protective effects against β-amyloid deposition and memory deficits in an AD rat model of APP/PS1. The objective of the present study was to find a new group of anti-infrasound drugs and determine the underlying pharmacological actions of nitronyl nitroxide radicals against infrasound-induced neuronal impairment in vivo. We synthesized a new stable nitronyl nitroxide radical, NRbt, and characterized its crystal structure. The results of the anti-oxidative damage effects of NRbt and the positive control drug tempol showed that they could significantly increase the SOD activity, CAT activity and GSH level and decrease the MDA level in rat hippocampi compared with infrasound exposure without pretreatment. Moreover, the ability of NRbt to regulate the activity or level of these biochemical markers was better than that of tempol. Our results showed that both NRbt and tempol significantly protected against the learning and memory impairments induced by infrasound exposure in a Morris water maze, but there were no significant differences in the path length or escape latency between the rats in the tempol group and the three NRbt groups (P > 0.05). In addition, the infrasound-induced neuronal apoptosis in rat hippocampi was significantly suppressed by NRbt and tempol. The results demonstrated that compared with the infrasound exposure group, the expression of Bcl-2 was up-regulated and the expressions of Bax and caspase-3 were down-regulated in rats pretreated with NRbt (40 mg/kg) or tempol (40 mg/kg). These results showed that the newly

  14. Effects of tempol and redox-cycling nitroxides in models of oxidative stress

    PubMed Central

    Wilcox, Christopher S.

    2010-01-01

    Tempol is a redox cycling nitroxide that promotes the metabolism of many reactive oxygen species (ROS) and improves nitric oxide bioavailability. It has been studied extensively in animal models of oxidative stress. Tempol has been shown to preserve mitochondria against oxidative damage and improve tissue oxygenation. Tempol improved insulin responsiveness in models of diabetes mellitus and improved the dyslipidemia, reduced the weight gain and prevented diastolic dysfunction and heart failure in fat-fed models of the metabolic syndrome. Tempol protected many organs, including the heart and brain, from ischemia/reperfusion damage. Tempol prevented podocyte damage, glomerulosclerosis, proteinuria and progressive loss of renal function in models of salt and mineralocorticosteroid excess. It reduced brain or spinal cord damage after ischemia or trauma and exerted a spinal analgesic action. Tempol improved survival in several models of shock. It protected normal cells from radiation while maintaining radiation sensitivity of tumor cells. Its paradoxical pro-oxidant action in tumor cells accounted for a reduction in spontaneous tumor formation. Tempol was effective in some models of neurodegeneration. Thus, tempol has been effective in preventing several of the adverse consequences of oxidative stress and inflammation that underlie radiation damage and many of the diseases associated with aging. Indeed, tempol given from birth prolonged the life span of normal mice. However, presently tempol has been used only in human subjects as a topical agent to prevent radiation-induced alopecia. PMID:20153367

  15. Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress.

    PubMed

    Akbar, Mohammed; Essa, Musthafa Mohamed; Daradkeh, Ghazi; Abdelmegeed, Mohamed A; Choi, Youngshim; Mahmood, Lubna; Song, Byoung-Joon

    2016-04-15

    Mitochondria are important for providing cellular energy ATP through the oxidative phosphorylation pathway. They are also critical in regulating many cellular functions including the fatty acid oxidation, the metabolism of glutamate and urea, the anti-oxidant defense, and the apoptosis pathway. Mitochondria are an important source of reactive oxygen species leaked from the electron transport chain while they are susceptible to oxidative damage, leading to mitochondrial dysfunction and tissue injury. In fact, impaired mitochondrial function is commonly observed in many types of neurodegenerative diseases, including Alzheimer's disease, Parkinson׳s disease, Huntington׳s disease, alcoholic dementia, brain ischemia-reperfusion related injury, and others, although many of these neurological disorders have unique etiological factors. Mitochondrial dysfunction under many pathological conditions is likely to be promoted by increased nitroxidative stress, which can stimulate post-translational modifications (PTMs) of mitochondrial proteins and/or oxidative damage to mitochondrial DNA and lipids. Furthermore, recent studies have demonstrated that various antioxidants, including naturally occurring flavonoids and polyphenols as well as synthetic compounds, can block the formation of reactive oxygen and/or nitrogen species, and thus ultimately prevent the PTMs of many proteins with improved disease conditions. Therefore, the present review is aimed to describe the recent research developments in the molecular mechanisms for mitochondrial dysfunction and tissue injury in neurodegenerative diseases and discuss translational research opportunities. PMID:26883165

  16. Stabilization of reactive nitroxides using invasomes to allow prolonged electron paramagnetic resonance measurements.

    PubMed

    Haag, S F; Taskoparan, B; Bittl, R; Teutloff, C; Wenzel, R; Fahr, A; Chen, M; Lademann, J; Schäfer-Korting, M; Meinke, M C

    2011-01-01

    The detection of the antioxidative capacity of the skin is of great practical relevance since free radicals are involved in many skin damaging processes, including aging and inflammation. The nitroxide TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxyl) in combination with electron paramagnetic resonance spectroscopy was found suitable for measuring the antioxidative capacity since its reaction with reducing agents is considerably fast. Yet, in order to achieve longer measurement times, e.g. in inflammatory skin diseases, the stabilizing effect of an invasome (ultraflexible vesicle/liposome) suspension with TEMPO was investigated ex vivo on porcine skin and in vivo on human skin. Invasomes increased the measurement time ex vivo 2-fold and the reduction was significantly slowed down in vivo, which is due to membrane-associated and therefore protected TEMPO. Furthermore, TEMPO accumulation in the membrane phase as well as the decreasing polarity of the ultimate surroundings of TEMPO during skin penetration explains the stabilizing effect. Thus, an invasome suspension with TEMPO exhibits stabilizing effects ex vivo and in vivo. PMID:21822032

  17. Nitroxide TEMPO: a genotoxic and oxidative stress inducer in cultured cells.

    PubMed

    Guo, Xiaoqing; Mittelstaedt, Roberta A; Guo, Lei; Shaddock, Joseph G; Heflich, Robert H; Bigger, Anita H; Moore, Martha M; Mei, Nan

    2013-08-01

    2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) is a low molecular weight nitroxide and stable free radical. In this study, we investigated the cytotoxicity and genotoxicity of TEMPO in mammalian cells using the mouse lymphoma assay (MLA) and in vitro micronucleus assay. In the absence of metabolic activation (S9), 3mM TEMPO produced significant cytotoxicity and marginal mutagenicity in the MLA; in the presence of S9, treatment of mouse lymphoma cells with 1-2mM TEMPO resulted in dose-dependent decreases of the relative total growth and increases in mutant frequency. Treatment of TK6 human lymphoblastoid cells with 0.9-2.3mM TEMPO increased the frequency of both micronuclei (a marker for clastogenicity) and hypodiploid nuclei (a marker of aneugenicity) in a dose-dependent manner; greater responses were produced in the presence of S9. Within the dose range tested, TEMPO induced reactive oxygen species and decreased glutathione levels in mouse lymphoma cells. In addition, the majority of TEMPO-induced mutants had loss of heterozygosity at the Tk locus, with allele loss of ⩽34Mbp. These results indicate that TEMPO is mutagenic in the MLA and induces micronuclei and hypodiploid nuclei in TK6 cells. Oxidative stress may account for part of the genotoxicity induced by TEMPO in both cell lines. PMID:23517621

  18. Radiobiologic Effects of GS-Nitroxide (JP4-039)on the Hematopoietic Syndrome

    PubMed Central

    GOFF, JULIE P.; EPPERLY, MICHAEL W.; DIXON, TRACY; WANG, HONG; FRANICOLA, DARCY; SHIELDS, DONNA; WIPF, PETER; LI, SONG; GAO, XIANG; GREENBERGER, JOEL S.

    2011-01-01

    Background/Aim Total-body irradiation (TBI) doses in the range of 2–8 Gy are associated with a drop in peripheral blood counts, decreased bone marrow cellularity, and hematopoietic syndrome. Radiation mitigators must be safe for individuals likely to recover spontaneously. Materials and Methods Female C57BL/6HNsd mice exposed to 9.0 and 9.15 Gy TBI, received intraperitoneal (10 mg/kg) JP4-039, a novel radiation mitigator, 24 hours after irradiation and were followed for hematopoietic recovery. Results Irradiated mice showed reduced peripheral blood lymphocytes and neutrophils and bone marrow cellularity at day 5. Serum electrolytes, liver and renal function tests showed no deleterious effect of JP4-039-after irradiation, and no reduction in survival compared to irradiated controls. Marrow recovery measured as cellularity, and hematopoietic colony-forming cells including primitive granulocyte-erythroid-megakaryocyte-monocytes (GEMM), reached pre-irradiation levels by day 30 in JP4-039 treated groups. Mice receiving single or multiple administrations of JP4-039 showed an early return of CFU-GEMM. Conclusion JP4-039 (GS-Nitroxide) is a safe radiation mitigator in mice warranting studies in larger animals and potentially a Phase I Clinical Trial. PMID:21576404

  19. Theoretical study of the photochemical initiation in nitroxide-mediated photopolymerization.

    PubMed

    Huix-Rotllant, Miquel; Ferré, Nicolas

    2014-06-26

    Nitroxide-mediated photopolymerization (NMP(2)) is a promising novel route to initiate radical polymerization. In NMP(2), alkoxyamines bounded to a monomer are attached to a chromophore. Upon light absorption, the excitation energy is transferred from the chromophore to the alkoxyamine moiety, inducing the cleavage of the oxygen-carbon bond and thus initiating the polymerization. The NMP(2) mechanism depends strongly on several factors like the type of chromophore, the monomer, the connectivity pattern, etc. This complexity makes it difficult to design new NMP(2) initiators with increased polymerization efficiency and selectivity. In the present article, we characterize by means of quantum mechanical calculations the main steps of the NMP(2) initiation for alkoxyamines attached to aromatic ketones. We show how the excitation energy can be transferred from the chromophore to the alkoxyamine moiety, and present two easily computed parameters which can account for the selectivity of the O-C bond photocleaveage. Finally, using results obtained for a series of isomers, we give some rules that may help the design of more efficient NMP(2) initiators. PMID:24922558

  20. Synthesis and fluorescence properties of six fluorescein-nitroxide radical hybrid-compounds.

    PubMed

    Sato, Shingo; Endo, Susumu; Kurokawa, Yusuke; Yamaguchi, Masaki; Nagai, Akio; Ito, Tomohiro; Ogata, Tateaki

    2016-12-01

    Six fluorescein-nitroxide radical hybrid-compounds (2ab, 3ab, 4, and 5) were synthesized by the condensation of 5- or 6-carboxy-fluorescein and 4-amino-TEMPO (2ab), 5- or 6-aminofluorescein and 4-carboxy-TEMPO (3ab), and fluorescein and 4-carboxy-TEMPO (4), or by reaction of the 3-hydroxyl group of fluorescein with DPROXYL-3-ylmethyl methanesulfonate (5). Fluorescence intensities (around 520nm) after reduction of the radical increased to 1.43-, 1.38-, and 1.61-folds for 2a, 2b and 3b respectively; 3a alone exhibited a decrease in intensity on reduction. Since 4 was readily solvolyzed in PBS or even methanol to afford fluorescein and 4-carboxy-TEMPO, its fluorescence change could not be measured. Hybrid compound 5 containing an ether-linkage between the fluorescein phenol and 3-hydroxymethyl-DPROXYL hydroxyl centers, was stable and on reduction, showed a maximum increase (3.21-fold) in relative fluorescence intensity in PBS (pH5.0), despite its remarkably low absolute fluorescence intensity. PMID:27337053

  1. EELS Analysis of Nylon 6 Nanofibers Reinforced with Nitroxide-Functionalized Graphene Oxide.

    PubMed

    Leyva-Porras, César; Ornelas-Gutiérrez, C; Miki-Yoshida, M; Avila-Vega, Yazmín I; Macossay, Javier; Bonilla-Cruz, José

    2014-01-01

    A detailed analysis by transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) of nitroxide-functionalized graphene oxide layers (GOFT) dispersed in Nylon 6 nanofibers is reported herein. The functionalization and exfoliation process of graphite oxide to GOFT was confirmed by TEM using electron diffraction patterns (EDP), wherein 1 to 4 graphene layers of GOFT were observed. The distribution and alignment of GOFT layers within a sample of Nylon 6 nanofiber reveals that GOFT platelets are mainly within the fiber, but some were partially protruding from it. Furthermore, Nylon 6 nanofibers exhibit an average diameter of 225 nm with several microns in length. GOFT platelets embedded into the fiber, the pristine fiber, and amorphous carbon were analyzed by EELS where each spectra [corresponding to the carbon edge (C-K)] exhibited changes in the fine structure, allowing a clear distinction between: i) GOFT single-layers, ii) Nylon-6 nanofibers, and iii) the carbon substrate. EELS analysis is presented here for the first time as a powerful tool to identify functionalized graphene single-layers (< 4 layers of GOFT) into a Nylon 6 nanofiber composite. PMID:24634536

  2. EELS Analysis of Nylon 6 Nanofibers Reinforced with Nitroxide-Functionalized Graphene Oxide

    PubMed Central

    Leyva-Porras, César; Ornelas-Gutiérrez, C.; Miki-Yoshida, M.; Avila-Vega, Yazmín I.; Macossay, Javier; Bonilla-Cruz, José

    2014-01-01

    A detailed analysis by transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) of nitroxide-functionalized graphene oxide layers (GOFT) dispersed in Nylon 6 nanofibers is reported herein. The functionalization and exfoliation process of graphite oxide to GOFT was confirmed by TEM using electron diffraction patterns (EDP), wherein 1 to 4 graphene layers of GOFT were observed. The distribution and alignment of GOFT layers within a sample of Nylon 6 nanofiber reveals that GOFT platelets are mainly within the fiber, but some were partially protruding from it. Furthermore, Nylon 6 nanofibers exhibit an average diameter of 225 nm with several microns in length. GOFT platelets embedded into the fiber, the pristine fiber, and amorphous carbon were analyzed by EELS where each spectra [corresponding to the carbon edge (C-K)] exhibited changes in the fine structure, allowing a clear distinction between: i) GOFT single-layers, ii) Nylon-6 nanofibers, and iii) the carbon substrate. EELS analysis is presented here for the first time as a powerful tool to identify functionalized graphene single-layers (< 4 layers of GOFT) into a Nylon 6 nanofiber composite. PMID:24634536

  3. Large molecular weight nitroxide biradicals providing efficient dynamic nuclear polarization at temperatures up to 200 K.

    PubMed

    Zagdoun, Alexandre; Casano, Gilles; Ouari, Olivier; Schwarzwälder, Martin; Rossini, Aaron J; Aussenac, Fabien; Yulikov, Maxim; Jeschke, Gunnar; Copéret, Christophe; Lesage, Anne; Tordo, Paul; Emsley, Lyndon

    2013-08-28

    A series of seven functionalized nitroxide biradicals (the bTbK biradical and six derivatives) are investigated as exogenous polarization sources for dynamic nuclear polarization (DNP) solid-state NMR at 9.4 T and with ca. 100 K sample temperatures. The impact of electron relaxation times on the DNP enhancement (ε) is examined, and we observe that longer inversion recovery and phase memory relaxation times provide larger ε. All radicals are tested in both bulk 1,1,2,2-tetrachloroethane solutions and in mesoporous materials, and the difference in ε between the two cases is discussed. The impact of the sample temperature and magic angle spinning frequency on ε is investigated for several radicals each characterized by a range of electron relaxation times. In particular, TEKPol, a bulky derivative of bTbK with a molecular weight of 905 g·mol(-1), is presented. Its high-saturation factor makes it a very efficient polarizing agent for DNP, yielding unprecedented proton enhancements of over 200 in both bulk and materials samples at 9.4 T and 100 K. TEKPol also yields encouraging enhancements of 33 at 180 K and 12 at 200 K, suggesting that with the continued improvement of radicals large ε may be obtained at higher temperatures. PMID:23961876

  4. Synthesis of 14N and 15N-labeled trityl-nitroxide biradicals with strong spin-spin interaction and improved sensitivity to redox status and oxygen

    PubMed Central

    Liu, Yangping; Villamena, Frederick A.; Song, Yuguang; Sun, Jian; Rockenbauer, Antal

    2014-01-01

    Simultaneous evaluation redox status and oxygenation in biological systems is of great importance for the understanding of biological functions. Electron paramagnetic resonance spectroscopy coupled with the use of the nitroxide radicals have been an indispensable technique for this application but are still limited by its low oxygen sensitivity, and low EPR resolution in part due to the moderately broad EPR triplet and spin quenching through bioreduction. In this study, we showed that these drawbacks can be overcome through the use of trityl-nitroxide biradicals allowing for the simultaneous measurement of redox status and oxygenation. A new trityl-nitroxide biradical TNN14 composed of a pyrrolidinyl-nitroxide and a trityl, and its isotopically labeled 15N analogue TNN15 were synthesized and characterized. Both biradicals exhibited much stronger spin-spin interaction with J > 400 G than the previous synthesized trityl-nitroxide biradicals TN1 (~160 G) and TN2 (~52 G) with longer linker chain length. The enhanced stability of TNN14 was evaluated using ascorbate as reductant and the effect of different types of cyclodextrins on its stability in the presence of ascorbate was also investigated. Both biradicals are sensitive to redox status, and their corresponding trityl-hydroxylamines resulting from the reduction of the biradicals by ascorbate share the same oxygen sensitivity. Of note is that the 15N-labeled TNN15-H with an EPR doublet exhibits improved EPR signal amplitude as compared to TNN14-H with an EPR triplet. In addition, cyclic voltammetric studies verify the characteristic electrochemical behaviors of the trityl-nitroxide biradicals. PMID:21028905

  5. Astrocytes expressing mutant SOD1 and TDP43 trigger motoneuron death that is mediated via sodium channels and nitroxidative stress

    PubMed Central

    Rojas, Fabiola; Cortes, Nicole; Abarzua, Sebastian; Dyrda, Agnieszka; van Zundert, Brigitte

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal paralytic disorder caused by dysfunction and degeneration of motor neurons. Multiple disease-causing mutations, including in the genes for SOD1 and TDP-43, have been identified in ALS. Astrocytes expressing mutant SOD1 are strongly implicated in the pathogenesis of ALS: we have shown that media conditioned by astrocytes carrying mutant SOD1G93A contains toxic factor(s) that kill motoneurons by activating voltage-sensitive sodium (Nav) channels. In contrast, a recent study suggests that astrocytes expressing mutated TDP43 contribute to ALS pathology, but do so via cell-autonomous processes and lack non-cell-autonomous toxicity. Here we investigate whether astrocytes that express diverse ALS-causing mutations release toxic factor(s) that induce motoneuron death, and if so, whether they do so via a common pathogenic pathway. We exposed primary cultures of wild-type spinal cord cells to conditioned medium derived from astrocytes (ACM) that express SOD1 (ACM-SOD1G93A and ACM-SOD1G86R) or TDP43 (ACM-TDP43A315T) mutants; we show that such exposure rapidly (within 30–60 min) increases dichlorofluorescein (DCF) fluorescence (indicative of nitroxidative stress) and leads to extensive motoneuron-specific death within a few days. Co-application of the diverse ACMs with anti-oxidants Trolox or esculetin (but not with resveratrol) strongly improves motoneuron survival. We also find that co-incubation of the cultures in the ACMs with Nav channel blockers (including mexiletine, spermidine, or riluzole) prevents both intracellular nitroxidative stress and motoneuron death. Together, our data document that two completely unrelated ALS models lead to the death of motoneuron via non-cell-autonomous processes, and show that astrocytes expressing mutations in SOD1 and TDP43 trigger such cell death through a common pathogenic pathway that involves nitroxidative stress, induced at least in part by Nav channel activity. PMID:24570655

  6. Dynamics of intramolecular spin exchange interaction of a nitronyl nitroxide diradical in solution and on surfaces.

    PubMed

    Lloveras, V; Badetti, E; Veciana, J; Vidal-Gancedo, J

    2016-03-01

    In this paper we report the study of the dynamics of a thermally modulated intramolecular spin exchange interaction of a novel diradical nitronyl nitroxide-substituted disulfide in solution and when it is grafted on a gold surface. The structure of this diradical was designed to have flexible chains leading to intramolecular collisions and hence spin exchange interaction, and with an appropriate binding group to be grafted on the gold surface to study its behavior on the surface. In solution, this diradical shows a strong spin exchange interaction between both radicals which is modulated by temperature, but also gold nanoparticles (AuNPs) functionalized with this diradical permit investigation of such a phenomenon in surface-grafted radicals. The spin-labelled AuNP synthesis was optimized to obtain high coverage of spin labels to lead to high spin exchange interaction. The obtained AuNPs were studied by Electron Paramagnetic Resonance (EPR), UV-Vis, and IR spectroscopies, HR-TEM microscopy, Cyclic Voltammetry (CV), Energy Dispersive X-ray analysis (EDX) and Thermogravimetric Analysis (TGA). This inorganic-organic hybrid material also showed dipolar interactions between its radicals which were confirmed by the appearance in the EPR spectra of an |Δms| = 2 transition at half-field. This signal gives direct evidence of the presence of a high-spin state and permitted us to study the nature of the magnetic coupling between the spins which was found to be antiferromagnetic. Self-Assembled Monolayers (SAMs) of these radicals on the Au (111) substrate were also prepared and studied by contact angle, X-Ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), Cyclic Voltammetry and EPR. The magnetic as well as the electrochemical properties of the hybrid surfaces were studied and compared with the properties of this diradical in solution. Analogies between the properties of AuNPs with high coverage of radicals and those of SAM were

  7. E1 of α-ketoglutarate dehydrogenase defends Mycobacterium tuberculosis against glutamate anaplerosis and nitroxidative stress

    PubMed Central

    Maksymiuk, Christina; Balakrishnan, Anand; Bryk, Ruslana; Rhee, Kyu Y.; Nathan, Carl F.

    2015-01-01

    Enzymes of central carbon metabolism (CCM) in Mycobacterium tuberculosis (Mtb) make an important contribution to the pathogen’s virulence. Evidence is emerging that some of these enzymes are not simply playing the metabolic roles for which they are annotated, but can protect the pathogen via additional functions. Here, we found that deficiency of 2-hydroxy-3-oxoadipate synthase (HOAS), the E1 component of the α-ketoglutarate (α-KG) dehydrogenase complex (KDHC), did not lead to general metabolic perturbation or growth impairment of Mtb, but only to the specific inability to cope with glutamate anaplerosis and nitroxidative stress. In the former role, HOAS acts to prevent accumulation of aldehydes, including growth-inhibitory succinate semialdehyde (SSA). In the latter role, HOAS can participate in an alternative four-component peroxidase system, HOAS/dihydrolipoyl acetyl transferase (DlaT)/alkylhydroperoxide reductase colorless subunit gene (ahpC)-neighboring subunit (AhpD)/AhpC, using α-KG as a previously undescribed source of electrons for reductase action. Thus, instead of a canonical role in CCM, the E1 component of Mtb’s KDHC serves key roles in situational defense that contribute to its requirement for virulence in the host. We also show that pyruvate decarboxylase (AceE), the E1 component of pyruvate dehydrogenase (PDHC), can participate in AceE/DlaT/AhpD/AhpC, using pyruvate as a source of electrons for reductase action. Identification of these systems leads us to suggest that Mtb can recruit components of its CCM for reactive nitrogen defense using central carbon metabolites. PMID:26430237

  8. Quenching of the perylene fluorophore by stable nitroxide radical-containing macromolecules.

    PubMed

    Hughes, Barbara K; Braunecker, Wade A; Ferguson, Andrew J; Kemper, Travis W; Larsen, Ross E; Gennett, Thomas

    2014-10-30

    Stable nitroxide radical bearing organic polymer materials are attracting much attention for their application as next generation energy storage materials. A greater understanding of the inherent charge transfer mechanisms in such systems will ultimately be paramount to further advancements in the understanding of both intrafilm and interfacial ion- and electron-transfer reactions. This work is focused on advancing the fundamental understanding of these dynamic charge transfer properties by exploiting the fact that these species are efficient fluorescence quenchers. We systematically incorporated fluorescent perylene dyes into solutions containing the 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) radical and controlled their interaction by binding the TEMPO moiety into macromolecules with varying morphologies (e.g., chain length, density of radical pendant groups). In the case of the model compound, 4-oxo-TEMPO, quenching of the perylene excited state was found to be dominated by a dynamic (collisional) process, with a contribution from an apparent static process that is described by an ∼2 nm quenching sphere of action. When we incorporated the TEMPO unit into a macromolecule, the quenching behavior was altered significantly. The results can be described by using two models: (A) a collisional quenching process that becomes less efficient, presumably due to a reduction in the diffusion constant of the quenching entity, with a quenching sphere of action similar to 4-oxo-TEMPO or (B) a collisional quenching process that becomes more efficient as the radius of interaction grows larger with increasing oligomer length. This is the first study that definitively illustrates that fluorophore quenching by a polymer system cannot be explained using merely a classical Stern-Volmer approach but rather necessitates a more complex model. PMID:25329883

  9. Redox properties of the nitronyl nitroxide antioxidants studied via their reactions with nitroxyl (HNO) and ferrocyanide

    PubMed Central

    Bobko, Andrey A.; Khramtsov, Valery V.

    2016-01-01

    Nitronyl nitroxides (NNs) are the paramagnetic probes that capable of scavenging physiologically relevant reactive oxygen (ROS) and nitrogen (RNS) species, namely superoxide, nitric oxide (NO) and nitroxyl (HNO). NNs are increasingly considered as potent antioxidants and potential therapeutic agents. Understanding redox chemistry of the NNs is important for their use as antioxidants and as paramagnetic probes for discriminative detection of NO and HNO by electron paramagnetic resonance (EPR) spectroscopy. Here we investigated the redox properties of the two most commonly used NNs, including determination of the equilibrium and rate constants of their reduction by HNO and ferrocyanide, and reduction potential of the couple NN/hydroxylamine of NN (hNN). The rate constants of the reaction of the NNs with HNO were found to be equal to (1-2)×104 M-1s-1 being close to the rate constants of scavenging superoxide and NO by NNs. The reduction potential of the NNs and iminonitroxides (INs, product of NNs reaction with NO) were calculated based on their reaction constants with ferrocyanide. The obtained values of the reduction potential for NN/hNN ( E0′≈285mV) and IN/hIN ( E0′≈495mV) are close to the corresponding values for vitamin c and vitamin e, correspondingly. The “balanced” scavenging rates of the NNs towards superoxide, NO and HNO, and their low reduction potential being thermodynamically close to the bottom of the pecking order of oxidizing radicals, might be important factors contributing into their antioxidant activity. PMID:25789760

  10. Conformations of Human Telomeric G-Quadruplex Studied Using a Nucleotide-Independent Nitroxide Label.

    PubMed

    Zhang, Xiaojun; Xu, Cui-Xia; Di Felice, Rosa; Sponer, Jiri; Islam, Barira; Stadlbauer, Petr; Ding, Yuan; Mao, Lingling; Mao, Zong-Wan; Qin, Peter Z

    2016-01-19

    Guanine-rich oligonucleotides can form a unique G-quadruplex (GQ) structure with stacking units of four guanine bases organized in a plane through Hoogsteen bonding. GQ structures have been detected in vivo and shown to exert their roles in maintaining genome integrity and regulating gene expression. Understanding GQ conformation is important for understanding its inherent biological role and for devising strategies to control and manipulate functions based on targeting GQ. Although a number of biophysical methods have been used to investigate structure and dynamics of GQs, our understanding is far from complete. As such, this work explores the use of the site-directed spin labeling technique, complemented by molecular dynamics simulations, for investigating GQ conformations. A nucleotide-independent nitroxide label (R5), which has been previously applied for probing conformations of noncoding RNA and DNA duplexes, is attached to multiple sites in a 22-nucleotide DNA strand derived from the human telomeric sequence (hTel-22) that is known to form GQ. The R5 labels are shown to minimally impact GQ folding, and inter-R5 distances measured using double electron-electron resonance spectroscopy are shown to adequately distinguish the different topological conformations of hTel-22 and report variations in their occupancies in response to changes of the environment variables such as salt, crowding agent, and small molecule ligand. The work demonstrates that the R5 label is able to probe GQ conformation and establishes the base for using R5 to study more complex sequences, such as those that may potentially form multimeric GQs in long telomeric repeats. PMID:26678746

  11. Synthesis and evaluation of nitroxide-based oligoradicals for low-temperature dynamic nuclear polarization in solid state NMR

    NASA Astrophysics Data System (ADS)

    Yau, Wai-Ming; Thurber, Kent R.; Tycko, Robert

    2014-07-01

    We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25-30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2-6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92-128 for cross-polarized 13C NMR signals from 15N,13C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6-3.8 s for 1H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute 13C NMR signal amplitudes and build-up times, are approximately 2-4 times lower than with the best triradicals.

  12. Nitroxidative chemistry interferes with fluorescent probe chemistry: implications for nitric oxide detection using 2,3-diaminonaphthalene.

    PubMed

    Hu, Teh-Min; Chiu, Shih-Jiuan; Hsu, Yu-Ming

    2014-08-22

    Simultaneous production of nitric oxide (NO) and superoxide generates peroxynitrite and causes nitroxidative stress. The fluorometric method for NO detection is based on the formation of a fluorescent product from the reaction of a nonfluorescent probe molecule with NO-derived nitrosating species. Here, we present an example of how nitroxidative chemistry could interact with fluorescent probe chemistry. 2,3-Naphthotriazole (NAT) is the NO-derived fluorescent product of 2,3-diaminonaphthalene (DAN), a commonly used NO-detecting molecule. We show that NO/superoxide cogeneration, and particularly peroxynitrite, mediates the chemical decomposition of NAT. Moreover, the extent of NAT decomposition depends on the relative fluxes of NO and superoxide; the maximum effect being reached at almost equivalent generation rates for both radicals. The rate constant for the reaction of NAT with peroxynitrite was determined to be 2.2×10(3)M(-1)s(-1). Further, various peroxynitrite scavengers were shown to effectively inhibit NO/superoxide- and peroxynitrite-mediated decomposition of NAT. Taken together, the present study suggests that the interference of a fluorometric NO assay can be originated from the interaction between the final fluorescent product and the formed reactive nitrogen and oxygen species. PMID:25078618

  13. Dipolar Coupling between Nitroxide Spin Labels: The Development and Application of a Tether-in-a-Cone Model

    PubMed Central

    Hustedt, Eric J.; Stein, Richard A.; Sethaphong, Latsavongsakda; Brandon, Suzanne; Zhou, Zheng; DeSensi, Susan C.

    2006-01-01

    A tether-in-a-cone model is developed for the simulation of electron paramagnetic resonance spectra of dipolar coupled nitroxide spin labels attached to tethers statically disordered within cones of variable halfwidth. In this model, the nitroxides adopt a range of interprobe distances and orientations. The aim is to develop tools for determining both the distance distribution and the relative orientation of the labels from experimental spectra. Simulations demonstrate the sensitivity of electron paramagnetic resonance spectra to the orientation of the cones as a function of cone halfwidth and other parameters. For small cone halfwidths (<∼40°), simulated spectra are strongly dependent on the relative orientation of the cones. For larger cone halfwidths, spectra become independent of cone orientation. Tether-in-a-cone model simulations are analyzed using a convolution approach based on Fourier transforms. Spectra obtained by the Fourier convolution method more closely fit the tether-in-a-cone simulations as the halfwidth of the cone increases. The Fourier convolution method gives a reasonable estimate of the correct average distance, though the distance distribution obtained can be significantly distorted. Finally, the tether-in-a-cone model is successfully used to analyze experimental spectra from T4 lysozyme. These results demonstrate the utility of the model and highlight directions for further development. PMID:16214868

  14. Amelioration of Radiation Esophagitis by Orally Administered p53/Mdm2/Mdm4 Inhibitor (BEB55) or GS-Nitroxide

    PubMed Central

    KIM, HYUN; BERNARD, MARK E.; EPPERLY, MICHAEL W.; SHEN, HONGMEI; AMOSCATO, ANDREW; DIXON, TRACY M.; DOEMLING, ALEXANDER S.; LI, SONG; GAO, XIANG; WIPF, PETER; WANG, HONG; ZHANG, XICHEN; KAGAN, VALERIAN E.; GREENBERGER, JOEL S.

    2012-01-01

    Background/Aim Esophagitis is a significant toxicity of radiation therapy for lung cancer. In this study, reduction of irradiation esophagitis in mice, by orally administered p53/Mdm2/Mdm4 inhibitor, BEB55, or the GS-nitroxide, JP4-039, was evaluated. Materials and Methods BEB55 or JP4-039 in F15 (liposomal) formulation was administered intraesophageally to C57BL/6 mice prior to thoracic irradiation of 29 Gy × 1 or 11.5 Gy × 4 thoracic irradiation. Progenitor cells were sorted from excised esophagus, and nitroxide was quantified, by electron paramagnetic resonance (EPR). Mice with Lewis lung carcinoma (3LL) orthotopic lung tumors were treated with BEB55 or JP4-039 prior to 20 Gy to determine if the drugs would protect the tumor cells from radiation. Results Intraesophageal BEB55 and JP4-039 compared to formulation alone increased survival after single fraction (p=0.0209 and 0.0384, respectively) and four fraction thoracic irradiation (p=0.0241 and 0.0388, respectively). JP4-039 was detected in esophagus, liver, bone marrow, and orthotopic Lewis lung carcinoma (3LL) tumor. There was no significant radiation protection of lung tumors by BEB55 or JP4-039 compared to formulation only as assessed by survival (p=0.3021 and 0.3693, respectively). Thus, BEB55 and JP4-039 safely ameliorate radiation esophagitis in mice. PMID:22021675

  15. Intraesophageal Administration of GS-Nitroxide (JP4-039) Protects Against Ionizing Irradiation-induced Esophagitis

    PubMed Central

    EPPERLY, MICHAEL W.; GOFF, JULIE P.; LI, SONG; GAO, XIANG; WIPF, PETER; DIXON, TRACY; WANG, HONG; FRANICOLA, DARCY; SHEN, HONGMEI; RWIGEMA, JEAN-CLAUDE M.; KAGAN, VALERIAN; BERNARD, MARK; GREENBERGER, JOEL S.

    2012-01-01

    Background/Aim This study evaluated esophageal radioprotection by the Gramicidin S (GS) derived-nitroxide, JP4-039, a mitochondrial targeting peptide-isostere covalently-linked to 4-amino-Tempo, delivered in a novel swallowed oil-based (F15) formulation. Materials and Methods C57BL/6HNsd female mice received intraesophageal F15 formulation containing JP4-039 (4 mg/ml in 100 μl volumes) 10 minutes before 28 or 29 Gy upper body irradiation compared to MnSOD-PL (100 μl containing 100 μg plasmid) 24 hours prior to irradiation. Subgroups received 1×107 C57BL/6HNsd, GFP+ male bone marrow cells intravenously 5 days after irradiation. Results JP4-039/F15 or MnSOD-PL increased survival compared to irradiated controls (p<0.0001 for either). Marrow injection further increased survival (p=0.0462 and 0.0351, respectively). Esophagi removed at 1, 3, 7, 14, 24, or 60 days showed bone marrow-derived cells in the esophagi. Conclusion Intraesophageal GS-nitroxide radioprotection is mediated primarily through recovery of endogenous esophageal progenitor cells. PMID:21164038

  16. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves

    SciTech Connect

    Thurber, Kent R. Tycko, Robert

    2014-05-14

    We report solid state {sup 13}C and {sup 1}H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, {sup 1}H and cross-polarized {sup 13}C NMR signals from {sup 15}N,{sup 13}C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T{sub 1e} is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.

  17. W-band orientation selective DEER measurements on a Gd3+/nitroxide mixed-labeled protein dimer with a dual mode cavity

    NASA Astrophysics Data System (ADS)

    Kaminker, Ilia; Tkach, Igor; Manukovsky, Nurit; Huber, Thomas; Yagi, Hiromasa; Otting, Gottfried; Bennati, Marina; Goldfarb, Daniella

    2013-02-01

    Double electron-electron resonance (DEER) at W-band (95 GHz) was applied to measure the distance between a pair of nitroxide and Gd3+ chelate spin labels, about 6 nm apart, in a homodimer of the protein ERp29. While high-field DEER measurements on systems with such mixed labels can be highly attractive in terms of sensitivity and the potential to access long distances, a major difficulty arises from the large frequency spacing (about 700 MHz) between the narrow, intense signal of the Gd3+ central transition and the nitroxide signal. This is particularly problematic when using standard single-mode cavities. Here we show that a novel dual-mode cavity that matches this large frequency separation dramatically increases the sensitivity of DEER measurements, allowing evolution times as long as 12 μs in a protein. This opens the possibility of accessing distances of 8 nm and longer. In addition, orientation selection can be resolved and analyzed, thus providing additional structural information. In the case of W-band DEER on a Gd3+-nitroxide pair, only two angles and their distributions have to be determined, which is a much simpler problem to solve than the five angles and their distributions associated with two nitroxide spin labels.

  18. 1,3-Alternate calix[4]arene nitronyl nitroxide tetraradical and diradical: synthesis, X-ray crystallography, paramagnetic NMR spectroscopy, EPR spectroscopy, and magnetic studies

    SciTech Connect

    Rajca, Andrzej; Pink, Maren; Mukherjee, Sumit; Rajca, Suchada; Das, Kausik

    2008-04-02

    Calix[4]arenes constrained to 1,3-alternate conformation and functionalized at the upper rim with four and two nitronyl nitroxides have been synthesized, and characterized by X-ray crystallography, magnetic resonance (EPR and {sup 1}H NMR) spectroscopy, and magnetic studies. Such calix[4]arene tetraradicals and diradicals provide scaffolds for through-bond and through-space intramolecular exchange couplings.

  19. A collision gradient method to determine the immersion depth of nitroxides in lipid bilayers: application to spin-labeled mutants of bacteriorhodopsin.

    PubMed Central

    Altenbach, C; Greenhalgh, D A; Khorana, H G; Hubbell, W L

    1994-01-01

    Ten mutants of bacteriorhodopsin, each containing a single cysteine residue regularly spaced along helix D and facing the lipid bilayer, were derivatized with a nitroxide spin label. Collision rates of the nitroxide with apolar oxygen increased with distance from the membrane/solution interface. Collision rates with polar metal ion complexes decreased over the same distance. Although the collision rates depend on steric constraints imposed by the local protein structure and on the depth in the membrane, the ratio of the collision rate of oxygen to those of a polar metal ion complex is independent of structural features of the protein. The logarithm of the ratio is a linear function of depth within the membrane. Calibration of this ratio parameter with spin-labeled phospholipids allows localization of the individual nitroxides, and hence the bacteriorhodopsin molecule, relative to the plane of the phosphate groups of the bilayer. The spacing between residues is consistent with the pitch of an alpha-helix. These results provide a general strategy for determining the immersion depth of nitroxides in bilayers. Images PMID:8127863

  20. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves

    PubMed Central

    Thurber, Kent R.; Tycko, Robert

    2014-01-01

    We report solid state 13C and 1H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, 1H and cross-polarized 13C NMR signals from 15N,13C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations. PMID:24832263

  1. Two tri-spin complexes based on gadolinium and nitronyl nitroxide radicals: Structure and ferromagnetic interactions

    SciTech Connect

    Zhou Na; Ma Yue; Wang Chao; Xu Gongfeng; Tang Jinkui; Yan Shiping; Liao Daizheng

    2010-04-15

    Three Radical-Ln(III)-Radical complexes based on nitronyl nitroxide radicals have been synthesized, structurally and magnetically characterized: [Gd(hfac){sub 3}(NITPhOEt){sub 2}] (1) (hfac=hexafluoroacetylacetonate, and NITPhOEt=4'-ethoxy-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide), [Gd(hfac){sub 3}(NITPhOCH{sub 2}Ph){sub 2}] (2) (NITPhOCH{sub 2}Ph=4'-benzyloxy-phenyl-4,4,5, 5-tetramethylimidazoline-1-oxyl-3-oxide) and [Lu(hfac){sub 3}(NITPhOCH{sub 2}Ph){sub 2}] (3). The X-ray crystal structure analyses show that the structures of the three compounds are similar and all consist of the isolated molecules, in which central ions Gd{sup III} or Lu{sup III} are coordinated by six oxygen atoms from three hfac and two oxygen atoms from nitronyl radicals. The magnetic studies show that in both of the two Gd{sup III} complexes, there are ferromagnetic Gd{sup III}-Rad interactions and antiferro-magnetic Rad-Rad interactions in the molecules (with J{sub Rad-Gd}=0.27 cm{sup -1}, j{sub Rad-Rad}=-2.97 cm{sup -1} for 1: and J{sub Rad-Gd}=0.62 cm{sup -1}, j{sub Rad-Rad}=-7.01 cm{sup -1} for 2). An analogous complex of [Lu(hfac){sub 3} (NITPhOCH{sub 2}Ph){sub 2}] (3) containing diamagnetic Lu{sup III} ions has also been introduced for further demonstrating the nature of magnetic coupling between radicals. - Graphical abstract: Two tri-spin complexes based on gadolinium-radical have been synthesized and characterized, the magnetic studies show that in the two complexes the Gd-radical interaction is ferromagnetic and the radical-radical interaction is antiferromagnetic. An analogous complex containing the diamagnetic Lu{sup III} ions has also been synthesized to further demonstrate the nature of the magnetic coupling between radicals.

  2. GS-nitroxide (JP4-039)-mediated radioprotection of human Fanconi anemia cell lines.

    PubMed

    Bernard, Mark E; Kim, Hyun; Berhane, Hebist; Epperly, Michael W; Franicola, Darcy; Zhang, Xichen; Houghton, Frank; Shields, Donna; Wang, Hong; Bakkenist, Christopher J; Frantz, Marie-Celine; Forbeck, Erin M; Goff, Julie P; Wipf, Peter; Greenberger, Joel S

    2011-11-01

    Fanconi anemia (FA) is an inherited disorder characterized by defective DNA repair and cellular sensitivity to DNA crosslinking agents. Clinically, FA is associated with high risk for marrow failure, leukemia and head and neck squamous cell carcinoma (HNSCC). Radiosensitivity in FA patients compromises the use of total-body irradiation for hematopoietic stem cell transplantation and radiation therapy for HNSCC. A radioprotector for the surrounding tissue would therefore be very valuable during radiotherapy for HNSCC. Clonogenic radiation survival curves were determined for pre- or postirradiation treatment with the parent nitroxide Tempol or JP4-039 in cells of four FA patient-derived cell lines and two transgene-corrected subclonal lines. FancG(-/-) (PD326) and FancD2(-/-) (PD20F) patient lines were more sensitive to the DNA crosslinking agent mitomycin C (MMC) than their transgene-restored subclonal cell lines (both P < 0.0001). FancD2(-/-) cells were more radiosensitive than the transgene restored subclonal cell line (ñ = 2.0 ± 0.7 and 4.7 ± 2.2, respectively, P = 0.03). In contrast, FancG(-/-) cells were radioresistant relative to the transgene-restored subclonal cell line (ñ = 9.4 ± 1.5 and 2.2 ± 05, respectively, P = 0.001). DNA strand breaks measured by the comet assay correlated with radiosensitivity. Cell lines from a Fanc-C and Fanc-A patients showed radiosensitivity similar to that of Fanc-D2(-/-) cells. A fluorophore-tagged JP4-039 (BODIPY-FL) analog targeted the mitochondria of the cell lines. Preirradiation or postirradiation treatment with JP4-039 at a lower concentration than Tempol significantly increased the radioresistance and stabilized the antioxidant stores of all cell lines. Tempol increased the toxicity of MMC in FancD2(-/-) cells. These data provide support for the potential clinical use of JP4-039 for normal tissue radioprotection during chemoradiotherapy in FA patients. PMID:21939290

  3. GS-Nitroxide (JP4-039)-Mediated Radioprotection of Human Fanconi Anemia Cell Lines

    PubMed Central

    Bernard, Mark E.; Kim, Hyun; Berhane, Hebist; Epperly, Michael W.; Franicola, Darcy; Zhang, Xichen; Houghton, Frank; Shields, Donna; Wang, Hong; Bakkenist, Christopher J.; Frantz, Marie-Celine; Forbeck, Erin M.; Goff, Julie P.; Wipf, Peter; Greenberger, Joel S.

    2011-01-01

    Fanconi anemia (FA) is an inherited disorder characterized by defective DNA repair and cellular sensitivity to DNA crosslinking agents. Clinically, FA is associated with high risk for marrow failure, leukemia and head and neck squamous cell carcinoma (HNSCC). Radiosensitivity in FA patients compromises the use of total-body irradiation for hematopoietic stem cell transplantation and radiation therapy for HNSCC. A radioprotector for the surrounding tissue would therefore be very valuable during radiotherapy for HNSCC. Clonogenic radiation survival curves were determined for pre- or postirradiation treatment with the parent nitroxide Tempol or JP4-039 in cells of four FA patient-derived cell lines and two transgene-corrected subclonal lines. FancG–/– (PD326) and FancD2–/– (PD20F) patient lines were more sensitive to the DNA crosslinking agent mitomycin C (MMC) than their transgene-restored subclonal cell lines (both P < 0.0001). FancD2–/– cells were more radiosensitive than the transgene restored subclonal cell line (ñ = 2.0 ± 0.7 and 4.7 ± 2.2, respectively, P = 0.03). In contrast, FancG–/– cells were radioresistant relative to the transgene-restored subclonal cell line (ñ = 9.4 ± 1.5 and 2.2 ± 05, respectively, P = 0.001). DNA strand breaks measured by the comet assay correlated with radiosensitivity. Cell lines from a Fanc-C and Fanc-A patients showed radiosensitivity similar to that of Fanc-D2–/– cells. A fluorophore-tagged JP4-039 (BODIPY-FL) analog targeted the mitochondria of the cell lines. Preirradiation or postirradiation treatment with JP4-039 at a lower concentration than Tempol significantly increased the radioresistance and stabilized the antioxidant stores of all cell lines. Tempol increased the toxicity of MMC in FancD2–/– cells. These data provide support for the potential clinical use of JP4-039 for normal tissue radioprotection during chemoradiotherapy in FA patients. PMID:21939290

  4. Nitroxide spin exchange due to re-encounter collisions in a series of n-alkanes.

    PubMed

    Kurban, Mark R; Peric, Miroslav; Bales, Barney L

    2008-08-14

    Bimolecular collisions between perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-l-oxyl molecules in three alkanes have been studied by measuring the electron paramagnetic resonance (EPR) spectral changes induced by spin exchange. We define an "encounter" to be a first-time collision followed by a series of re-encounters prior to the diffusing pair's escaping each other's presence. The present work stems from a recent proposal [B. L. Bales et al., J. Phys. Chem. A 107, 9086 (2003)] that an unexpected linear dependence of the spin-exchange-induced EPR line shifts on spin-exchange frequency can be explained by re-encounters of the same probe pair during one encounter. By employing nonlinear least-squares fitting, full use of the information available from the spectral changes allows us to study encounters and re-encounters separately. The encounter rate constants appear to be dominated by hydrodynamic forces, forming a common curve for hexane, decane, and hexadecane when plotted against T/eta, where eta is the shear viscosity. Unexpectedly, encounters are not dependent on the ratio mu = a/a(s), where a and a(s) are the van der Waals radii of the nitroxide probe and the solvent, respectively. It is argued that the near coincidence of the resulting encounter rate constant with the hydrodynamic prediction is likely due to a near cancellation of terms in the general diffusion coefficient. Thus, the semblance of hydrodynamic behavior is coincidental rather than intrinsic. In contrast, the mean times between re-encounters do depend on the relative sizes of probe and solvent. For hexane at lower temperatures, the Stokes-Einstein equation apparently describes re-encounters well; however, at higher temperatures and for decane and hexadecane, departures from the hydrodynamic prediction become larger as mu becomes smaller. This is in qualitative agreement with the theory of microscopic diffusion of Hynes et al. [J. Chem. Phys. 70, 1456 (1979)]. These departures are well

  5. Nitroxide spin exchange due to re-encounter collisions in a series of n-alkanes

    PubMed Central

    Kurban, Mark R.; Peric, Miroslav; Bales, Barney L.

    2008-01-01

    Bimolecular collisions between perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-l-oxyl molecules in three alkanes have been studied by measuring the electron paramagnetic resonance (EPR) spectral changes induced by spin exchange. We define an “encounter” to be a first-time collision followed by a series of re-encounters prior to the diffusing pair’s escaping each other’s presence. The present work stems from a recent proposal [B. L. Bales , J. Phys. Chem. A 107, 9086 (2003)] that an unexpected linear dependence of the spin-exchange-induced EPR line shifts on spin-exchange frequency can be explained by re-encounters of the same probe pair during one encounter. By employing nonlinear least-squares fitting, full use of the information available from the spectral changes allows us to study encounters and re-encounters separately. The encounter rate constants appear to be dominated by hydrodynamic forces, forming a common curve for hexane, decane, and hexadecane when plotted against T∕η, where η is the shear viscosity. Unexpectedly, encounters are not dependent on the ratio μ=a∕as, where a and as are the van der Waals radii of the nitroxide probe and the solvent, respectively. It is argued that the near coincidence of the resulting encounter rate constant with the hydrodynamic prediction is likely due to a near cancellation of terms in the general diffusion coefficient. Thus, the semblance of hydrodynamic behavior is coincidental rather than intrinsic. In contrast, the mean times between re-encounters do depend on the relative sizes of probe and solvent. For hexane at lower temperatures, the Stokes–Einstein equation apparently describes re-encounters well; however, at higher temperatures and for decane and hexadecane, departures from the hydrodynamic prediction become larger as μ becomes smaller. This is in qualitative agreement with the theory of microscopic diffusion of Hynes [J. Chem. Phys. 70, 1456 (1979)]. These departures are well correlated

  6. Distance measurements across randomly distributed nitroxide probes from the temperature dependence of the electron spin phase memory time at 240 GHz

    NASA Astrophysics Data System (ADS)

    Edwards, Devin T.; Takahashi, Susumu; Sherwin, Mark S.; Han, Songi

    2012-10-01

    At 8.5 T, the polarization of an ensemble of electron spins is essentially 100% at 2 K, and decreases to 30% at 20 K. The strong temperature dependence of the electron spin polarization between 2 and 20 K leads to the phenomenon of spin bath quenching: temporal fluctuations of the dipolar magnetic fields associated with the energy-conserving spin "flip-flop" process are quenched as the temperature of the spin bath is lowered to the point of nearly complete spin polarization. This work uses pulsed electron paramagnetic resonance (EPR) at 240 GHz to investigate the effects of spin bath quenching on the phase memory times (TM) of randomly-distributed ensembles of nitroxide molecules below 20 K at 8.5 T. For a given electron spin concentration, a characteristic, dipolar flip-flop rate (W) is extracted by fitting the temperature dependence of TM to a simple model of decoherence driven by the spin flip-flop process. In frozen solutions of 4-Amino-TEMPO, a stable nitroxide radical in a deuterated water-glass, a calibration is used to quantify average spin-spin distances as large as r¯=6.6 nm from the dipolar flip-flop rate. For longer distances, nuclear spin fluctuations, which are not frozen out, begin to dominate over the electron spin flip-flop processes, placing an effective ceiling on this method for nitroxide molecules. For a bulk solution with a three-dimensional distribution of nitroxide molecules at concentration n, we find W∝n∝1/r, which is consistent with magnetic dipolar spin interactions. Alternatively, we observe W∝n for nitroxides tethered to a quasi two-dimensional surface of large (Ø ˜ 200 nm), unilamellar, lipid vesicles, demonstrating that the quantification of spin bath quenching can also be used to discern the geometry of molecular assembly or organization.

  7. Distance measurements across randomly distributed nitroxide probes from the temperature dependence of the electron spin phase memory time at 240 GHz.

    PubMed

    Edwards, Devin T; Takahashi, Susumu; Sherwin, Mark S; Han, Songi

    2012-10-01

    At 8.5 T, the polarization of an ensemble of electron spins is essentially 100% at 2 K, and decreases to 30% at 20 K. The strong temperature dependence of the electron spin polarization between 2 and 20 K leads to the phenomenon of spin bath quenching: temporal fluctuations of the dipolar magnetic fields associated with the energy-conserving spin "flip-flop" process are quenched as the temperature of the spin bath is lowered to the point of nearly complete spin polarization. This work uses pulsed electron paramagnetic resonance (EPR) at 240 GHz to investigate the effects of spin bath quenching on the phase memory times (T(M)) of randomly-distributed ensembles of nitroxide molecules below 20 K at 8.5 T. For a given electron spin concentration, a characteristic, dipolar flip-flop rate (W) is extracted by fitting the temperature dependence of T(M) to a simple model of decoherence driven by the spin flip-flop process. In frozen solutions of 4-Amino-TEMPO, a stable nitroxide radical in a deuterated water-glass, a calibration is used to quantify average spin-spin distances as large as r=6.6 nm from the dipolar flip-flop rate. For longer distances, nuclear spin fluctuations, which are not frozen out, begin to dominate over the electron spin flip-flop processes, placing an effective ceiling on this method for nitroxide molecules. For a bulk solution with a three-dimensional distribution of nitroxide molecules at concentration n, we find W∝n∝1/r(3), which is consistent with magnetic dipolar spin interactions. Alternatively, we observe W∝n(32) for nitroxides tethered to a quasi two-dimensional surface of large (Ø∼200 nm), unilamellar, lipid vesicles, demonstrating that the quantification of spin bath quenching can also be used to discern the geometry of molecular assembly or organization. PMID:22975249

  8. Oxidant stress in malaria as probed by stable nitroxide radicals in erythrocytes infected with Plasmodium berghei. The effects of primaquine and chloroquine.

    PubMed

    Deslauriers, R; Butler, K; Smith, I C

    1987-12-10

    Erythrocytes from normal mice and mice infected with the malarial parasite Plasmodium berghei reduce the water-soluble spin probes 2,2,6,6-tetramethylpiperidine-4-hydroxy-N-oxyl (TEMPOL), 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) and 2,2,6,6-tetramethylpiperidine-4-keto-N-oxyl (TEMPONE) at similar rates under both air and N2 atmospheres. The ESR signal of the lipid-soluble spin probe 5-doxyl-stearate is stable on incorporation into erythrocytes from normal mice. In contrast, parasitized red cells reduce this nitroxide probe, at a rate which increases with the level of parasitemia. Inhibitors of electron transport such as KCN and NaN3, increase the rate of reduction. We propose that nitroxide reduction occurs via the electron transport chain in the parasite. The antimalarial drug primaquine causes reduction of both water-soluble and lipid-soluble spin probes. This action of primaquine is independent of its ability to release H2O2 from oxyhemoglobin, and is ascribed to the ability of primaquine to accelerate flux through the hexose monophosphate shunt. The increased production of NADPH results in increased rates of reduction of the nitroxide radicals. Methylene blue, which also increases flux through the shunt, is even more effective than primaquine at reducing the nitroxides. Chloroquine has no such effect. Parasitized mice treated with chloroquine six hours prior to ESR measurements show less nitroxide reducing capacity than do untreated mice. Chloroquine is known to decrease flux through the hexose monophosphate shunt. The metabolic influences of the two antimalarial drugs are, thus, quite different. PMID:3315005

  9. Dynamics of intramolecular spin exchange interaction of a nitronyl nitroxide diradical in solution and on surfaces

    NASA Astrophysics Data System (ADS)

    Lloveras, V.; Badetti, E.; Veciana, J.; Vidal-Gancedo, J.

    2016-02-01

    In this paper we report the study of the dynamics of a thermally modulated intramolecular spin exchange interaction of a novel diradical nitronyl nitroxide-substituted disulfide in solution and when it is grafted on a gold surface. The structure of this diradical was designed to have flexible chains leading to intramolecular collisions and hence spin exchange interaction, and with an appropriate binding group to be grafted on the gold surface to study its behavior on the surface. In solution, this diradical shows a strong spin exchange interaction between both radicals which is modulated by temperature, but also gold nanoparticles (AuNPs) functionalized with this diradical permit investigation of such a phenomenon in surface-grafted radicals. The spin-labelled AuNP synthesis was optimized to obtain high coverage of spin labels to lead to high spin exchange interaction. The obtained AuNPs were studied by Electron Paramagnetic Resonance (EPR), UV-Vis, and IR spectroscopies, HR-TEM microscopy, Cyclic Voltammetry (CV), Energy Dispersive X-ray analysis (EDX) and Thermogravimetric Analysis (TGA). This inorganic-organic hybrid material also showed dipolar interactions between its radicals which were confirmed by the appearance in the EPR spectra of an |Δms| = 2 transition at half-field. This signal gives direct evidence of the presence of a high-spin state and permitted us to study the nature of the magnetic coupling between the spins which was found to be antiferromagnetic. Self-Assembled Monolayers (SAMs) of these radicals on the Au (111) substrate were also prepared and studied by contact angle, X-Ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), Cyclic Voltammetry and EPR. The magnetic as well as the electrochemical properties of the hybrid surfaces were studied and compared with the properties of this diradical in solution. Analogies between the properties of AuNPs with high coverage of radicals and those of SAM were

  10. Selective High-Resolution Detection of Membrane Protein-Ligand Interaction in Native Membranes Using Trityl-Nitroxide PELDOR.

    PubMed

    Joseph, Benesh; Tormyshev, Victor M; Rogozhnikova, Olga Yu; Akhmetzyanov, Dmitry; Bagryanskaya, Elena G; Prisner, Thomas F

    2016-09-12

    The orchestrated interaction of transmembrane proteins with other molecules mediates several crucial biological processes. Detergent solubilization may significantly alter or even abolish such hetero-oligomeric interactions, which makes observing them at high resolution in their native environment technically challenging. Dipolar electron paramagnetic resonance (EPR) techniques such as pulsed electro-electron double resonance (PELDOR) can provide very precise distances within biomolecules. To concurrently determine the inter-subunit interaction and the intra-subunit conformational changes in hetero-oligomeric complexes, a combination of different spin labels is required. Orthogonal spin labeling using a triarylmethyl (TAM) label in combination with a nitroxide label is used to detect protein-ligand interactions in native lipid bilayers. This approach provides a higher sensitivity and total selectivity and will greatly facilitate the investigation of multimeric transmembrane complexes employing different spin labels in the native lipid environment. PMID:27511025

  11. DEER Sensitivity between Iron Centers and Nitroxides in Heme-Containing Proteins Improves Dramatically Using Broadband, High-Field EPR

    PubMed Central

    2016-01-01

    This work demonstrates the feasibility of making sensitive nanometer distance measurements between Fe(III) heme centers and nitroxide spin labels in proteins using the double electron–electron resonance (DEER) pulsed EPR technique at 94 GHz. Techniques to measure accurately long distances in many classes of heme proteins using DEER are currently strongly limited by sensitivity. In this paper we demonstrate sensitivity gains of more than 30 times compared with previous lower frequency (X-band) DEER measurements on both human neuroglobin and sperm whale myoglobin. This is achieved by taking advantage of recent instrumental advances, employing wideband excitation techniques based on composite pulses and exploiting more favorable relaxation properties of low-spin Fe(III) in high magnetic fields. This gain in sensitivity potentially allows the DEER technique to be routinely used as a sensitive probe of structure and conformation in the large number of heme and many other metalloproteins. PMID:27035368

  12. Three new mononuclear tri-spin lanthanide-nitronyl nitroxide radical compounds: syntheses, structures and magnetic properties.

    PubMed

    Li, Lei-Lei; Liu, Shuang; Zhang, Yuan; Shi, Wei; Cheng, Peng

    2015-04-01

    Based on the nitronyl nitroxide radical, 2-(4-(methoxycarbonyl)phenyl)-4,4,5,5-tetramethylimidazolin-1-oxyl-3-oxide (1, NITPhCOOMe), and three mononuclear tri-spin compounds [Ln(hfac)3(NITPhCOOMe)2] (Ln = Gd (2), Tb (3), Dy (4); hfac = hexafluoroacetylacetonate) are successfully synthesized and fully characterized. Compounds 2 and 4 are isostructural and crystallize in the C2/c space group, while compound 3 crystallizes in the P2₁/c space group. For compounds 2-4, the central metal ions are all eight-coordinate in distorted triangular dodecahedral LnO8 coordination geometry (D(2d) symmetry) completed by three bischelate hfac(-) ligands and two monodentate radicals. Magnetic studies show that radical 1 undertakes the transition from the paramagnetic state to 3D antiferromagnetic ordering at 4.2 K. In addition, compound 3 exhibits field-induced single-molecule magnet (SMM) behavior. PMID:25730400

  13. DEER Sensitivity between Iron Centers and Nitroxides in Heme-Containing Proteins Improves Dramatically Using Broadband, High-Field EPR.

    PubMed

    Motion, Claire L; Lovett, Janet E; Bell, Stacey; Cassidy, Scott L; Cruickshank, Paul A S; Bolton, David R; Hunter, Robert I; El Mkami, Hassane; Van Doorslaer, Sabine; Smith, Graham M

    2016-04-21

    This work demonstrates the feasibility of making sensitive nanometer distance measurements between Fe(III) heme centers and nitroxide spin labels in proteins using the double electron-electron resonance (DEER) pulsed EPR technique at 94 GHz. Techniques to measure accurately long distances in many classes of heme proteins using DEER are currently strongly limited by sensitivity. In this paper we demonstrate sensitivity gains of more than 30 times compared with previous lower frequency (X-band) DEER measurements on both human neuroglobin and sperm whale myoglobin. This is achieved by taking advantage of recent instrumental advances, employing wideband excitation techniques based on composite pulses and exploiting more favorable relaxation properties of low-spin Fe(III) in high magnetic fields. This gain in sensitivity potentially allows the DEER technique to be routinely used as a sensitive probe of structure and conformation in the large number of heme and many other metalloproteins. PMID:27035368

  14. High sensitivity and versatility of the DEER experiment on nitroxide radical pairs at Q-band frequencies.

    PubMed

    Polyhach, Yevhen; Bordignon, Enrica; Tschaggelar, René; Gandra, Sandhya; Godt, Adelheid; Jeschke, Gunnar

    2012-08-14

    Measurement of distances with the Double Electron-Electron Resonance (DEER) experiment at X-band frequencies using a pair of nitroxides as spin labels is a popular biophysical tool for studying function-related conformational dynamics of proteins. The technique is intrinsically highly precise and can potentially access the range from 1.5 to 6-10 nm. However, DEER performance drops strongly when relaxation rates of the nitroxide spin labels are high and available material quantities are low, which is usually the case for membrane proteins reconstituted into liposomes. This leads to elevated noise levels, very long measurement times, reduced precision, and a decrease of the longest accessible distances. Here we quantify the performance improvement that can be achieved at Q-band frequencies (34.5 GHz) using a high-power spectrometer. More than an order of magnitude gain in sensitivity is obtained with a homebuilt setup equipped with a 150 W TWT amplifier by using oversized samples. The broadband excitation enabled by the high power ensures that orientation selection can be suppressed in most cases, which facilitates extraction of distance distributions. By varying pulse lengths, Q-band DEER can be switched between orientationally non-selective and selective regimes. Because of suppression of nuclear modulations from matrix protons and deuterons, analysis of the Q-band data is greatly simplified, particularly in cases of very small DEER modulation depth due to low binding affinity between proteins forming a complex or low labelling efficiency. Finally, we demonstrate that a commercial Q-band spectrometer can be readily adjusted to the high-power operation. PMID:22751953

  15. Mechanistic insight into aerobic alcohol oxidation using NOx-nitroxide catalysis based on catalyst structure-activity relationships.

    PubMed

    Shibuya, Masatoshi; Nagasawa, Shota; Osada, Yuji; Iwabuchi, Yoshiharu

    2014-11-01

    The mechanism of an NOx-assisted, nitroxide(nitroxyl radical)-catalyzed aerobic oxidation of alcohols was investigated using a set of sterically and electronically modified nitroxides (i.e., TEMPO, AZADO (1), 5-F-AZADO (2), 5,7-DiF-AZADO (3), 5-MeO-AZADO (4), 5,7-DiMeO-AZADO (5), oxa-AZADO (6), TsN-AZADO (7), and DiAZADO (8)). The motivation for the present study stemmed from our previous observation that the introduction of an F atom at a remote position from the nitroxyl radical moiety on the azaadamantane nucleus effectively enhanced the catalytic activity under typical NOx-mediated aerobic-oxidation conditions. The kinetic profiles of the azaadamantane-N-oxyl-[AZADO (1)-, 5-F-AZADO (2)-, and 5,7-DiF-AZADO (3)]-catalyzed aerobic oxidations were closely investigated, revealing that AZADO (1) showed a high initial reaction rate compared to 5-F-AZADO (2) and 5,7-DiF-AZADO (3); however, AZADO-catalyzed oxidation exhibited a marked slowdown, resulting in ∼90% conversion, whereas 5-F-AZADO-catalyzed oxidation smoothly reached completion without a marked slowdown. The reasons for the marked slowdown and the role of the fluoro group are discussed. Oxa-AZADO (6), TsN-AZADO (7), and DiAZADO (8) were designed and synthesized to confirm their comparable catalytic efficiency to that of 5-F-AZADO (2), providing supporting evidence for the electronic effect on the catalytic efficiency of the heteroatoms under NOx-assisted aerobic-oxidation conditions. PMID:25286356

  16. ESR lineshape and 1H spin-lattice relaxation dispersion in propylene glycol solutions of nitroxide radicals - Joint analysis

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Hoffmann, S. K.; Goslar, J.; Lijewski, S.; Kubica-Misztal, A.; Korpała, A.; Oglodek, I.; Kowalewski, J.; Rössler, E. A.; Moscicki, J.

    2013-12-01

    Electron Spin Resonance (ESR) spectroscopy and Nuclear Magnetic Relaxation Dispersion (NMRD) experiments are reported for propylene glycol solutions of the nitroxide radical: 4-oxo-TEMPO-d16 containing 15N and 14N isotopes. The NMRD experiments refer to 1H spin-lattice relaxation measurements in a broad frequency range (10 kHz-20 MHz). A joint analysis of the ESR and NMRD data is performed. The ESR lineshapes give access to the nitrogen hyperfine tensor components and the rotational correlation time of the paramagnetic molecule. The NMRD data are interpreted in terms of the theory of paramagnetic relaxation enhancement in solutions of nitroxide radicals, recently presented by Kruk et al. [J. Chem. Phys. 138, 124506 (2013)]. The theory includes the effect of the electron spin relaxation on the 1H relaxation of the solvent. The 1H relaxation is caused by dipole-dipole interactions between the electron spin of the radical and the proton spins of the solvent molecules. These interactions are modulated by three dynamic processes: relative translational dynamics of the involved molecules, molecular rotation, and electron spin relaxation. The sensitivity to rotation originates from the non-central positions of the interacting spin in the molecules. The electronic relaxation is assumed to stem from the electron spin-nitrogen spin hyperfine coupling, modulated by rotation of the radical molecule. For the interpretation of the NMRD data, we use the nitrogen hyperfine coupling tensor obtained from ESR and fit the other relevant parameters. The consistency of the unified analysis of ESR and NMRD, evaluated by the agreement between the rotational correlation times obtained from ESR and NMRD, respectively, and the agreement of the translation diffusion coefficients with literature values obtained for pure propylene glycol, is demonstrated to be satisfactory.

  17. Generation of reactive oxygen species in the anterior eye segment. Synergistic codrugs of N-acetylcarnosine lubricant eye drops and mitochondria-targeted antioxidant act as a powerful therapeutic platform for the treatment of cataracts and primary open-angle glaucoma.

    PubMed

    Babizhayev, Mark A

    2016-12-01

    Senile cataract is a clouding of the lens in the aging eye leading to a decrease in vision. Symptoms may include faded colors, blurry vision, halos around light, trouble with bright lights, and trouble seeing at night. This may result in trouble driving, reading, or recognizing faces. Cataracts are the cause of half of blindness and 33% of visual impairment worldwide. Cataracts result from the deposition of aggregated proteins in the eye lens and lens fiber cells plasma membrane damage which causes clouding of the lens, light scattering, and obstruction of vision. ROS induced damage in the lens cell may consist of oxidation of proteins, DNA damage and/or lipid peroxidation, all of which have been implicated in cataractogenesis. The inner eye pressure (also called intraocular pressure or IOP) rises because the correct amount of fluid can't drain out of the eye. With primary open-angle glaucoma, the entrances to the drainage canals are clear and should be working correctly. The clogging problem occurs further inside the drainage canals, similar to a clogged pipe below the drain in a sink. The excessive oxidative damage is a major factor of the ocular diseases because the mitochondrial respiratory chain in mitochondria of the vital cells is a significant source of the damaging reactive oxygen species superoxide and hydrogen peroxide. However, despite the clinical importance of mitochondrial oxidative damage, antioxidants have been of limited therapeutic success. This may be because the antioxidants are not selectively taken up by mitochondria, but instead are dispersed throughout the body, ocular tissues and fluids' moieties. This work is an attempt to integrate how mitochondrial reactive oxygen species (ROS) are altered in the aging eye, along with those protective and repair therapeutic systems believed to regulate ROS levels in ocular tissues and how damage to these systems contributes to age-onset eye disease and cataract formation. Mitochondria-targeted

  18. Direct measurement of nitroxide pharmacokinetics in isolated hearts situated in a low-frequency electron spin resonance spectrometer: implications for spin trapping and in vivo oxymetry.

    PubMed Central

    Rosen, G M; Halpern, H J; Brunsting, L A; Spencer, D P; Strauss, K E; Bowman, M K; Wechsler, A S

    1988-01-01

    The pharmacokinetics of two nitroxides were investigated in isolated rat hearts situated in a low-frequency electron spin resonance spectrometer. The spin labels 2,2,3,3,5,5-hexamethyl-1-pyrrolidinyloxy and 3-carboxy-2,2,5,5-tetramethyl-1-pyrrolidinyloxy were chosen for their physiochemical analogy to the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and its corresponding spin-trapped adduct, 2-hydroxy-5,5-dimethyl-1-pyrrolidinyloxy (DMPO-OH). The bioreductive rates of the two nitroxides were measured during constant perfusion as well as during ischemia and are discussed in terms of a two-compartment pharmacokinetic model. These data provide information necessary to the design and application of spin traps to detect oxy radicals during reperfusion of ischemic tissue and suggest the feasibility of monitoring free-radical processes in intact, functioning mammalian tissues by using a low-frequency electron spin resonance spectrometer. Images PMID:2845421

  19. Single and double nitroxide labeled bis(terpyridine)-copper(II): influence of orientation selectivity and multispin effects on PELDOR and RIDME.

    PubMed

    Meyer, Andreas; Abdullin, Dinar; Schnakenburg, Gregor; Schiemann, Olav

    2016-04-01

    A rigid, nitroxide substituted terpyridine ligand has been used to synthesize hetero- and homoleptic bis-terpyridine complexes of copper(II). The homoleptic complex represents a three-spin system, while the metal ion in the heteroleptic complex is in average bound to one nitroxide bearing ligand. Both complexes are used as model systems for EPR distance measurements using pulsed electron-electron double resonance (PELDOR or DEER) and relaxation induced dipolar modulation enhancement (RIDME) sequences. The results of both methods are analyzed using detailed geometric data obtained from the crystal structure of the homoleptic complex as well as information concerning ligand scrambling and the electronic structure of the copper center. In addition, both methods are compared with respect to their sensitivity, the extent of orientation selectivity and the influence of multispin effects. PMID:26975335

  20. Long-lived frequency shifts observed in a magnetic resonance force microscope experiment following microwave irradiation of a nitroxide spin probe

    SciTech Connect

    Chen, Lei; Longenecker, Jonilyn G.; Moore, Eric W.; Marohn, John A.

    2013-04-01

    We introduce a spin-modulation protocol for force-gradient detection of magnetic resonance that enables the real-time readout of longitudinal magnetization in an electron spin resonance experiment involving fast-relaxing spins. We applied this method to observe a prompt change in longitudinal magnetization following the microwave irradiation of a nitroxide-doped perdeuterated polystyrene film having an electron spin-lattice relaxation time of T{sub 1}{approx}1ms. The protocol allowed us to discover a large, long-lived cantilever frequency shift. Based on its magnitude, lifetime, and field dependence, we tentatively attribute this persistent signal to deuteron spin magnetization created via transfer of polarization from nitroxide spins.

  1. A resonance enhancement of the phase relaxation in the electron spin echo of nitroxide covalently attached to cytochrome c

    NASA Astrophysics Data System (ADS)

    Hilczer, W.; Goslar, J.; Gramza, M.; Hoffmann, S. K.; Blicharski, W.; Osyczka, A.; Turyna, B.; Froncisz, W.

    1995-12-01

    The spin lattice T1 and phase memory TM relaxation times were measured by an electron spin echo technique for the nitroxide spin label attached covalently to horse heart cytochrome c below 80 K for oxidized (Fe 3+) and reduced (Fe 2+) samples. T1 decreases on heating and below 10 K is governed by the direct relaxation process for the reduced sample. The spin-lattice relaxation is enhanced by a cross-relaxation to Fe 3+ in an oxidized sample. In the TM temperature dependence an unusual deep minimum appears at about 25 K. This resonance type effect which vanishes completely for the reduced sample is due to a coupling to the Fe 3+ spins. The spin-lattice relaxation rate of Fe 3+ is comparable to the TM of nitroxide at low temperature producing a minimum in TM when the Ti value corresponds to the spin packet width of excited spins.

  2. Computer-based prediction of mitochondria-targeting peptides.

    PubMed

    Martelli, Pier Luigi; Savojardo, Castrense; Fariselli, Piero; Tasco, Gianluca; Casadio, Rita

    2015-01-01

    Computational methods are invaluable when protein sequences, directly derived from genomic data, need functional and structural annotation. Subcellular localization is a feature necessary for understanding the protein role and the compartment where the mature protein is active and very difficult to characterize experimentally. Mitochondrial proteins encoded on the cytosolic ribosomes carry specific patterns in the precursor sequence from where it is possible to recognize a peptide targeting the protein to its final destination. Here we discuss to which extent it is feasible to develop computational methods for detecting mitochondrial targeting peptides in the precursor sequences and benchmark our and other methods on the human mitochondrial proteins endowed with experimentally characterized targeting peptides. Furthermore, we illustrate our newly implemented web server and its usage on the whole human proteome in order to infer mitochondrial targeting peptides, their cleavage sites, and whether the targeting peptide regions contain or not arginine-rich recurrent motifs. By this, we add some other 2,800 human proteins to the 124 ones already experimentally annotated with a mitochondrial targeting peptide. PMID:25631024

  3. Tempicol-2 (4-hydroxy-4-(2-picolyl)-2,2,6,6-tetramethylpiperidine-1-oxyl), a stable free radical, is a novel member of nitroxide class of antioxidants and anticancer agents.

    PubMed

    Metodiewa, D; Skolimowski, J; Kochman, A; Gwozdzinski, K; Głebska, J

    1998-01-01

    As a part of our studies on the chemical, biochemical and pharmacological characteristics of the newly synthesized antioxidants, nitroxide derivatives, we designed a novel nitroxide, named Tempicol-2. Its capacity to act as antioxidant of potential pharmacological application was tested in three model systems: xanthine/xanthine oxidase, iron- and ascorbate Fenton reaction(s) and gamma-radiolysis. The antioxidant properties of Tempicol-2 as a function of concentration were compared with those previously characterized nitroxide derivatives Tempace and Rutoxyl which we had synthesized. The possibility of one-electron reduction of the novel substance by ascorbic acid was also examined and compared. The ability of Tempicol-2 to act as anticancer agent in vivo was also investigated in pharmacologic tests. The administration of Tempicol-2 to rats bearing 3 day-old Yoshida Sarcoma (promotion phase) led to both growth inhibition and the induction of apoptotic cells(s) death, comparable to the effects of Tempace and Rutoxyl under the same experimental conditions. Our results confirmed the suggested involvement of free radicals in the pathogenesis of model. Yoshida Sarcoma, thus indicating that anticancer activity of the investigated nitroxides may indirectly involve an antioxidant mechanism. The results reported here are encouraging as we find a limited correlation between the molecular redox properties, structure of nitroxides and their antitumor action. Tempicol-2, similarly to Tempace and Rutoxyl, is a promising antioxidant which can induce apoptosis, thus providing the basis for further investigations of the concentration and phase-dependent effects and the exact mechanisms of nitroxide(s) apoptotic action using cell line(s) model. PMID:9568105

  4. Homoleptic Ce(III) and Ce(IV) Nitroxide Complexes: Significant Stabilization of the 4+ Oxidation State

    SciTech Connect

    Bogart, Justin A.; Lewis, Andrew J.; Medling, Scott A.; Piro, Nicholas A.; Carroll, Patrick J.; Booth, Corwin H.; Schelter, Eric J.

    2014-06-25

    Electrochemical experiments performed on the complex Ce-IV[2-((BuNO)-Bu-t)py](4), where [2-((BuNO)-Bu-t)py](-) = N-tert-butyl-N-2-pyridylnitroxide, indicate a 2.51 V stabilization of the 4+ oxidation state of Ce compared to [(Bu4N)-Bu-n](2)[Ce(NO3)(6)] in acetonitrile and a 2.95 V stabilization compared to the standard potential for the ion under aqueous conditions. Density functional theory calculations suggest that this preference for the higher oxidation state is a result of the tetrakis(nitroxide) ligand framework at the Ce cation, which allows for effective electron donation into, and partial covalent overlap with, vacant 4f orbitals with delta symmetry. The results speak to the behavior of CeO2 and related solid solutions in oxygen uptake and transport applications, in particular an inherent local character of bonding that stabilizes the 4+ oxidation state. The results indicate a cerium(IV) complex that has been stabilized to an unprecedented degree through tuning of its ligand-field environment.

  5. Observation of steric hindrance effect controlling crystal packing structures and physical properties in three new isomeric nitronyl nitroxide radicals

    NASA Astrophysics Data System (ADS)

    Zhao, Hai-Rong; Sun, Jia-Sen; Sui, Yun-Xia; Ren, Xiao-Ming; Yao, Bin-Qian; Shen, Lin-Jiang; Meng, Qing-Jin

    2009-07-01

    Three isomeric nitronyl nitroxide radical compounds, 2-[ n-( N-benzyl)pyridinium]-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide bromide ( n = 2, 3 and 4 for 1, 2 and 3, respectively), have been synthesized and structurally characterized. The influence of steric hindrance on the molecular packing structures and physical properties has been observed. In the radical 1, such steric hindrance leads to a folding conformation of the imidazoline and benzene rings and the intramolecular C-H…π interaction between the methyl group and the benzene ring. There is no such effect in 2 and 3. In crystal of 2, there are the intermolecular C-H…π between methyl groups and benzene ring and intermolecular π…π stacking interaction between pyridine and benzene rings. Crystal of 2 with a chiral space group P2 12 12 1 shows the SHG response about 0.4 times as that of urea. In crystal of 3, there are three symmetry-independent radical molecules, which form an unusually six-membered supramolecular ring via intermolecular O…π interactions. For the solid sample of 3, the X-band EPR exhibits an axially symmetric signal and magnetic susceptibility data suggest intermolecular antiferromagnetic (AFM) coupling interactions and very weak intermolecular ferromagnetic (FM) coupling interactions which is more likely caused by magnetic anisotropy, while measurements of both 1 and 2 show isotropic X-band EPR signals and simple Currie-Weiss magnetic behavior.

  6. Spin density in a triazole-nitronyl-nitroxide radical presenting linear ferromagnetic interactions: role of hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Gillon, Béatrice; Aebersold, Michael A.; Kahn, Olivier; Pardi, Luca; Delley, Bernard

    1999-11-01

    The compound 2-{3-[4-methyl-1,2,4-triazolyl]}-4,4,5,5,-tetramethylimidazoline-1-oxyl-3-oxide, abbreviated as Metrz-Nit, crystallizes in the non-centrosymmetric space group P2 12 12 1. The investigation of the magnetic properties has revealed the occurrence of intermolecular ferromagnetic interactions. The crystal structure has been refined by neutron diffraction at 11 K. The spin density distribution has been determined from polarized neutron diffraction experiments carried out at 1.5 K under a magnetic field of 5 T. As expected, the main contributions of the spin distribution have been observed in the 2p π orbitals of the nitrogen and oxygen atoms of the two NO groups, and a significant negative spin population has been detected on the sp 2 carbon atom of the nitronyl nitroxide moiety. The spin distribution is slightly dissymmetrical, so that the sp 3 carbon atoms in α-position of the nitro nitrogen atoms carry spin populations of opposite signs. Concerning the triazole ring, the main spin population, of negative sign, has been found on the nitrogen atom occupying the 3-position. The carbon atom of the methyl group attached to the 4-position has been also found to carry a significant negative spin population. The spin populations on the hydrogen atoms have been determined. These experimental data have been compared to the results of LSD calculations performed on an isolated molecule. The role of intermolecular interactions in the spin distribution has been discussed.

  7. Evaluation of glucose-linked nitroxide radicals for use as an in vivo spin-label probe.

    PubMed

    Sato, Shingo; Yamaguchi, Masaki; Nagai, Akio; Onuma, Ryo; Saito, Misaki; Sugawara, Rina; Shinohara, Sayaka; Okabe, Eriko; Ito, Tomohiro; Ogata, Tateaki

    2014-04-24

    In vivo incorporation and reduction abilities of 4-carboxy-2,2,6,6-tetramethylpiperidine-1-oxyl (4-carboxy-TEMPO) (1), 3-carboxy-2,2,5,5-tetramethylpyrroline-1-oxyl (3-carboxy-dehydro-PROXYL, 3-carboxy-DPRO) (2), 4-hydroxy-TEMPO and 3-hydroxymethyl-DPRO O-β-D-glucosides (3 and 5), and newly designed forms of 6-O-(TEMPO-4-carbonyl and DPRO-3-carbonyl)-D-glucose (4 and 6) were evaluated using white radish sprouts. For each of these compounds, electron spin resonance (ESR) spectrometry was used to measure two effects: the rate of in vitro reduction via the addition of ascorbic acid; and, the rate of successful incorporation into radish sprouts for a reduction to the corresponding hydroxyl amine. DPRO-radicals 2, 5, and 6 were detected significantly more than TEMPO-radicals 1, 3, and 4 in vitro and in vivo for both experiments. Four glucose-linked nitroxide radicals were reduced faster than the glucose-non-linked ones in the in vitro experiment, but were nonetheless detected more each time in radish sprouts due to the absorbability. Glucose ester-linked radicals 4 and 6 were detected more than glycosides 3 and 5, which suggests that glucose ester-linked DPRO-radical 6 is the best for use as a spin-label probe that a plant will incorporate. PMID:24508871

  8. Small molecule GS-nitroxide ameliorates ionizing irradiation-induced delay in bone wound healing in a novel murine model.

    PubMed

    Gokhale, Abhay; Rwigema, Jean-Claude; Epperly, Michael W; Glowacki, Julie; Wang, Hong; Wipf, Peter; Goff, Julie P; Dixon, Tracy; Patrene, Ken; Greenberger, Joel S

    2010-01-01

    We studied radioprotection and mitigation by mitochondrial-targeted Tempol (GS-nitroxide, JP4-039), in a mouse injury/irradiation model of combined injury (fracture/irradiation). Right hind legs of control C57BL/6NHsd female mice, mice pretreated with MnSOD-PL, JP4-039, or with amifostine were irradiated with single and fractionated doses of 0 to 20 Gy. Twenty-four hours later, unicortical holes were drilled into the tibiae of both hind legs; at intervals, tibias were excised, radiographed, and processed for histology. Bone wounds irradiated to 20 or 30 Gy showed delayed healing at 21 to 28 days. Treatment with JP4-039 MnSOD-PL or amifostine, before or after single fraction 20 Gy or during fractionated irradiation followed by drilling accelerated wound healing at days 21 and 28. Orthotopic 3LL tumors were not protected by JP4-039 or amifostine. In nonirradiated mice, pretreatment with JP4-039 accelerated bone wound healing. This test system should be useful for the development of new small molecule radioprotectors. PMID:20668303

  9. Synthesis and crystal structure of oxalato-bridged dicopper(II) complex with reduced imino nitroxide radicals

    NASA Astrophysics Data System (ADS)

    Li, Licun; Liao, Daizheng; Bai, Lingjun; Jiang, Zonghui; Yan, Shiping

    2001-07-01

    A new oxalato-bridged dicopper(II) complex [Cu 2(μ-C 2O 4)(Him2-py) 2(NO 3) 2]CH 3OH has been synthesized and its crystal structure determined by X-ray diffraction methods. The imino nitroxide 2-(2'-pyridyl)-4,4,5,5-tetramethyl-4,5-dihydro-1 H-imidazolyl-1-oxyl(im2-py) is reduced in the reaction to yield 2-(2'-pyridyl)-4,4,5,5-tetramethyl-4,5-dihydro-1 H-imidazolyl-1-hydroxy(Him2-py). The structure consists of centrosymmetric [Cu 2(μ-C 2O 4)(Him2-py) 2(NO 3) 2] and one solvent methanol molecule. Each Cu(II) ion is in a distorted tetragonal pyramid environment: two nitrogen atoms from Him2-py, two oxygen atoms from the oxalate ion in the basal plane and one oxygen atom from the nitrato group in the axial position.

  10. Comparing continuous wave progressive saturation EPR and time domain saturation recovery EPR over the entire motional range of nitroxide spin labels.

    PubMed

    Nielsen, Robert D; Canaan, Stephane; Gladden, James A; Gelb, Michael H; Mailer, Colin; Robinson, Bruce H

    2004-07-01

    The measurement of spin-lattice relaxation rates from spin labels, such as nitroxides, in the presence and absence of spin relaxants provides information that is useful for determining biomolecular properties such as nucleic acid dynamics and the interaction of proteins with membranes. We compare X-band continuous wave (CW) and pulsed or time domain (TD) EPR methods for obtaining spin-lattice relaxation rates of spin labels across the entire range of rotational motion to which relaxation rates are sensitive. Model nitroxides and spin-labeled biological species are used to illustrate the potential complications that arise in extracting relaxation data under conditions typical to biological experiments. The effect of super hyperfine (SHF) structure is investigated for both CW and TD spectra. First and second harmonic absorption and dispersion CW spectra of the nitroxide spin label, TEMPOL, are all fit simultaneously to a model of SHF structure over a range of microwave amplitudes. The CW spectra are novel because all harmonics and microwave phases were acquired simultaneously using our homebuilt CW/TD spectrometer. The effect of the SHF structure on the pulsed free induction decay (FID) and pulsed saturation recovery spectrum is shown for both protonated and deuterated TEMPOL. We present novel pulsed saturation recovery measurements on biological molecules, including spin-lattice relaxation rates of spin-labeled proteins and spin-labeled double-stranded DNA. The impact of structure and dynamics on relaxation rates are discussed in the context of each of these examples. Collisional relaxation rates with oxygen and transition metal paramagnetic relaxants are extracted using both continuous wave and time domain methods. The extent of the errors inherent in the CW method and the advantages of pulsed methods for unambiguously measuring collisional relaxation rates are discussed. Spin-lattice relaxation rates, determined by both CW and pulsed methods, are used to determine

  11. Pressure effects on an organic radical ferromagnet: 2,5-difluorophenyl-α- nitronyl nitroxide

    NASA Astrophysics Data System (ADS)

    Mito, M.; Deguchi, H.; Tanimoto, T.; Kawae, T.; Nakatsuji, S.; Morimoto, H.; Anzai, H.; Nakao, H.; Murakami, Y.; Takeda, K.

    2003-01-01

    Raising a transition temperature (Tc) in organic radical ferromagnets is a desire for material scientists. We investigated the pressure effects on an organic radical ferromagnet 2,5-difluorophenyl-α-nitronyl nitroxide (2,5-DFPNN), which has a ferromagnetic transition at 0.45 K. The hydrostatic pressure effects were investigated through measurements of ac magnetic susceptibility (χ) up to P=1.7 GPa, heat capacity (Cp) up to P=1.5 GPa, and powder x-ray diffraction up to P=4.7 GPa. Furthermore, ac magnetic susceptibility under nonhydrostatic pressure was also measured in the pressure region up to 10.0 GPa. As for 2,5-DFPNN, we observed the pressure-induced enhancement of Tc as dTc/dP=7.9×10-2 K/GPa [Tc(P=1.5 GPa)=0.57 K], while other prototypes, the β phase of p-NPNN and p-Cl-C6H4-CH=N-TEMPO show the negative pressure effects. The results for the Cp and the crystal structural analysis suggest that the magnetic dimension of the short-range order developing above Tc transforms from one dimension (a axis) to two dimensions (ac plane) under high pressure. This increase of the magnetic dimension probably promotes to increase Tc. The ferromagnetic signal of χ, however, decreases with increasing pressure, and finally disappears for P⩾5.0 GPa. The decrease seems to originate from the decrease of the ferromagnetic interaction along the b axis. Similar instability of organic ferromagnetic long range order against pressure has been observed for the β phase of p-NPNN and p-Cl-C6H4-CH=N-TEMPO.

  12. Nitroxide free radical clearance in the live rat monitored by radio-frequency CW-EPR and PEDRI

    NASA Astrophysics Data System (ADS)

    Alecci, Marcello; Seimenis, Ioannis; McCallum, Stephen J.; Lurie, David J.; Foster, Margaret A.

    1998-07-01

    The use of RF (100 to 300 MHz) PEDRI and CW-EPR techniques allows the in vivo study of large animals such as whole rats and rabbits. Recently a PEDRI instrument was modified to also allow CW-EPR spectroscopy with samples of similar size and under the same experimental conditions. In the present study, this CW-EPR and PEDRI apparatus was used to assess the feasibility of the detection of a pyrrolidine nitroxide free radical (2,2,5,5,-tetramethylpyrrolidine-1-oxyl-3-carboxylic acid, PCA) in the abdomen of rats. In particular, we have shown that after the PCA administration ( b.w.): (i) the PCA EPR linewidth does not show line broadening due to concentration effects; (ii) a similar PCA up-take phase is observed by EPR and PEDRI; and (iii) the PCA half-lives in the whole abdomen of rats measured with the CW-EPR (, , n = 10) and PEDRI (, , n = 4) techniques were not significantly different ( p>0.05). These results show, for the first time, that information about PCA pharmacokinetics obtained by CW-EPR is the same as that from PEDRI under the same experimental conditions.

  13. A Copper-Nitroxide Adduct Exhibiting Separate Single Crystal-to-Single Crystal Polymerization-Depolymerization and Spin Crossover Transitions.

    PubMed

    Ovcharenko, Victor; Fokin, Sergey; Chubakova, Elvina; Romanenko, Galina; Bogomyakov, Artem; Dobrokhotova, Zhanna; Lukzen, Nikita; Morozov, Vitaly; Petrova, Marina; Petrova, Maria; Zueva, Ekaterina; Rozentsveig, Igor; Rudyakova, Elena; Levkovskaya, Galina; Sagdeev, Renad

    2016-06-20

    A complex cascade of solid-state processes initiated by variation of temperature was found for the heterospin complex [Cu(hfac)2L(Me/Et)] formed in the reaction of copper(II) hexafluoroacetylacetonate [Cu(hfac)2] with stable nitronyl nitroxide 2-(1-methyl-3-ethyl-1H-pyrazol-4-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl (L(Me/Et)). The cooling of the compound below 260 K initiated a solid-state chemical reaction, which led to a depolymerization of chains and formation of a pair heterospin complex [Cu(hfac)2L(Me/Et)2][[Cu(hfac)2]3L(Me/Et)2]. Further decrease in temperature below 144 K led to a spin transition accompanied by a drastic decrease in the effective magnetic moment from 2.52 to 2.24 μB. When the compound was heated, the order of effects was reversed: at first, the magnetic moment abruptly increased, and then the molecular fragments of the pair cluster united into polymer chains. Two hysteresis loops correspond to this cascade of temperature-induced structural transformations on the experimental dependence μeff(T): one at high (T↑ = 283 K and T↓ = 260 K) and the other at low (T↑ = 161 K, T↓ = 144 K) temperature. The spin transitions were also recorded for the [[Cu(hfac)2]3L(Bu/Et)2] and [[Cu(hfac)2]5L(Bu/Et)4] molecular complexes, which are models of the trinuclear fragment of the {[Cu(hfac)2]3L(Me/Et)2} pair cluster. PMID:27227270

  14. Growth and structure of rapid thermal silicon oxides and nitroxides studied by spectroellipsometry and Auger electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Gonon, N.; Gagnaire, A.; Barbier, D.; Glachant, A.

    1994-11-01

    Rapid thermal oxidation of Czochralski-grown silicon in either O2 or N2O atmospheres have been studied using spectroellipsometry and Auger electron spectroscopy. Multiwavelength ellipsometric data were processed in order to separately derive the thickness and refractive indexes of rapid thermal dielectrics. Results revealed a significant increase of the mean refractive index as the film thickness falls below 20 nm for both O2 or N2O oxidant species. A multilayer structure including an about 0.3-nm-thick interfacial region of either SiO(x) or nitroxide in the case of O2 and N2O growth, respectively, followed by a densified SiO2 layer, was found to accurately fit the experimental data. The interfacial region together with the densified state of SiO2 close to the interface suggest a dielectric structure in agreement with the continuous random network model proposed for classical thermal oxides. Auger electron spectroscopy analysis confirmed the presence of noncrystalline Si-Si bonds in the interfacial region, mostly in the case of thin oxides grown in O2. It was speculated that the initial fast growth regime was due to a transient oxygen supersaturation in the interfacial region. Besides, the self-limiting growth in N2O was confirmed and explained in agreement with several recently published data, by the early formation of a very thin nitride or oxynitride membrane in the highly densified oxide beneath the interface. The beneficial effect of direct nitrogen incorporation by rapid thermal oxidation in N2O instead of O2 for the electrical behavior of metal-oxide-semiconductor capacitors is likely a better SiO2/Si lattice accommodation through the reduction of stresses and Si-Si bonds in the interfacial region of the dielectric.

  15. The application of profluorescent nitroxides to detect reactive oxygen species derived from combustion-generated particulate matter: Cigarette smoke - A case study

    NASA Astrophysics Data System (ADS)

    Miljevic, B.; Fairfull-Smith, K. E.; Bottle, S. E.; Ristovski, Z. D.

    2010-06-01

    Reactive oxygen species (ROS) and related free radicals are considered to be key factors underpinning the various adverse health effects associated with exposure to ambient particulate matter. Therefore, measurement of ROS is a crucial factor for assessing the potential toxicity of particles. In this work, a novel profluorescent nitroxide, BPEAnit, was investigated as a probe for detecting particle-derived ROS. BPEAnit has a very low fluorescence emission due to inherent quenching by the nitroxide group, but upon radical trapping or redox activity, a strong fluorescence is observed. BPEAnit was tested for detection of ROS present in mainstream and sidestream cigarette smoke. In the case of mainstream cigarette smoke, there was a linear increase in fluorescence intensity with an increasing number of cigarette puffs, equivalent to an average of 101 nmol ROS per cigarette based on the number of moles of the probe reacted. Sidestream cigarette smoke sampled from an environmental chamber exposed BPEAnit to much lower concentrations of particles, but still resulted in a clearly detectible increase in fluorescence intensity with sampling time. It was calculated that the amount of ROS was equivalent to 50 ± 2 nmol per mg of particulate matter; however, this value decreased with ageing of the particles in the chamber. Overall, BPEAnit was shown to provide a sensitive response related to the oxidative capacity of the particulate matter. These findings present a good basis for employing the new BPEAnit probe for the investigation of particle-related ROS generated from cigarette smoke as well as from other combustion sources.

  16. Ultra-short laser-accelerated proton pulses have similar DNA-damaging effectiveness but produce less immediate nitroxidative stress than conventional proton beams.

    PubMed

    Raschke, S; Spickermann, S; Toncian, T; Swantusch, M; Boeker, J; Giesen, U; Iliakis, G; Willi, O; Boege, F

    2016-01-01

    Ultra-short proton pulses originating from laser-plasma accelerators can provide instantaneous dose rates at least 10(7)-fold in excess of conventional, continuous proton beams. The impact of such extremely high proton dose rates on A549 human lung cancer cells was compared with conventionally accelerated protons and 90 keV X-rays. Between 0.2 and 2 Gy, the yield of DNA double strand breaks (foci of phosphorylated histone H2AX) was not significantly different between the two proton sources or proton irradiation and X-rays. Protein nitroxidation after 1 h judged by 3-nitrotyrosine generation was 2.5 and 5-fold higher in response to conventionally accelerated protons compared to laser-driven protons and X-rays, respectively. This difference was significant (p < 0.01) between 0.25 and 1 Gy. In conclusion, ultra-short proton pulses originating from laser-plasma accelerators have a similar DNA damaging potential as conventional proton beams, while inducing less immediate nitroxidative stress, which probably entails a distinct therapeutic potential. PMID:27578260

  17. Structural Determinants of Nitroxide Motion in Spin-labeled Proteins: Tertiary Contact and Solvent-inaccessible Sties in Helix G of T4 Lysozyme

    SciTech Connect

    Guo,Z.; Cascio, D.; Hideg, K.; Kalai, T.; Hubbell, W.

    2007-01-01

    A nitroxide side chain (R1) has been substituted at single sites along a helix-turn-helix motif in T4 lysozyme (residues 114-135). Together with previously published data, the new sites reported complete a continuous scan through the motif. Mutants with R1 at sites 115 and 118 were selected for crystallographic analysis to identify the structural origins of the corresponding two-component EPR spectra. At 115, R1 is shown to occupy two rotamers in the room temperature crystal structure, one of which has not been previously reported. The two components in the EPR spectrum apparently arise from differential interactions of the two rotamers with the surrounding structure, the most important of which is a hydrophobic interaction of the nitroxide ring. Interestingly, the crystal structure at 100 K reveals a single rotamer, emphasizing the possibility of rotamer selection in low-temperature crystal structures. Residue 118 is at a solvent-inaccessible site in the protein core, and the structure of 118R1, the first reported for the R1 side chain at a buried site, reveals how the side chain is accommodated in an overpacked core.

  18. Structural Determinants of Nitroxide Motion in Spin-Labeled Proteins: Solvent-Exposed Sites in Helix B of T4 Lysozyme

    SciTech Connect

    Guo,Z.; Cascio, D.; Hideg, K.; Hubbell, W.

    2008-01-01

    Site-directed spin labeling provides a means for exploring structure and dynamics in proteins. To interpret the complex EPR spectra that often arise, it is necessary to characterize the rotamers of the spin-labeled side chain and the interactions they make with the local environment in proteins of known structure. For this purpose, crystal structures have been determined for T4 lysozyme bearing a nitroxide side chain (R1) at the solvent-exposed helical sites 41 and 44 in the B helix. These sites are of particular interest in that the corresponding EPR spectra reveal two dynamic states of R1, one of which is relatively immobilized suggesting interactions of the nitroxide with the environment. The crystal structures together with the effect of mutagenesis of nearest neighbors on the motion of R1 suggest intrahelical interactions of 41R1 with the i + 4 residue and of 44R1 with the i + 1 residue. Such interactions appear to be specific to particular rotamers of the R1 side chain.

  19. Ultra-short laser-accelerated proton pulses have similar DNA-damaging effectiveness but produce less immediate nitroxidative stress than conventional proton beams

    PubMed Central

    Raschke, S.; Spickermann, S.; Toncian, T.; Swantusch, M.; Boeker, J.; Giesen, U.; Iliakis, G.; Willi, O.; Boege, F.

    2016-01-01

    Ultra-short proton pulses originating from laser-plasma accelerators can provide instantaneous dose rates at least 107-fold in excess of conventional, continuous proton beams. The impact of such extremely high proton dose rates on A549 human lung cancer cells was compared with conventionally accelerated protons and 90 keV X-rays. Between 0.2 and 2 Gy, the yield of DNA double strand breaks (foci of phosphorylated histone H2AX) was not significantly different between the two proton sources or proton irradiation and X-rays. Protein nitroxidation after 1 h judged by 3-nitrotyrosine generation was 2.5 and 5-fold higher in response to conventionally accelerated protons compared to laser-driven protons and X-rays, respectively. This difference was significant (p < 0.01) between 0.25 and 1 Gy. In conclusion, ultra-short proton pulses originating from laser-plasma accelerators have a similar DNA damaging potential as conventional proton beams, while inducing less immediate nitroxidative stress, which probably entails a distinct therapeutic potential. PMID:27578260

  20. Conversion of the 2,2,6,6-tetramethylpiperidine moiety to a 2,2-dimethylpyrrolidine by cytochrome P450: evidence for a mechanism involving nitroxide radicals and heme iron.

    PubMed

    Yin, Wenji; Mitra, Kaushik; Stearns, Ralph A; Baillie, Thomas A; Kumar, Sanjeev

    2004-05-11

    Earlier we described a novel cytochrome P450 (CYP) catalyzed metabolism of the 2,2,6,6-tetramethylpiperidine (2,2,6,6-TMPi) moiety in human liver microsomes to a ring-contracted 2,2-dimethylpyrrolidine (2,2-DMPy) [Yin, W., et al. (2003) Drug Metab. Dispos. 31, 215-223]. In the current report, evidence is provided for the involvement of 2,2,6,6-TMPi hydroxylamines and their one-electron oxidation products, the nitroxide radicals, as intermediates in this pathway. Nitroxide radicals could be converted to their corresponding 2,2-DMPy metabolites by "inactivated CYP3A4", as well as by a number of other heme proteins and hemin, suggesting that this is a heme-catalyzed process. The conversion of nitroxide radicals to the 2,2-DMPy products by CYP3A4 or hemin was accompanied by the generation of acetone in incubations, providing evidence that the three-carbon unit from 2,2,6,6-TMPi was lost as acetone. With one model 2,2,6,6-TMPi nitroxide radical, evidence for an alternate pathway, which resulted in the formation of an intermediate that incorporated two oxygen atoms from water of the incubation medium before collapsing to the 2,2-DMPy product, was also obtained. To account for both pathways, a mechanism involving interaction of the nitroxide radicals with heme iron (Fe(III)), followed by a homolytic scission of the N-O bond and transfer of the nitroxide oxygen to heme iron to form a perferryl-oxygen complex, is proposed. The nitrogen-centered 2,2,6,6-TMPi radical thus formed then precipitates the contraction of the piperidine ring via C2-C3 bond cleavage, and the resulting product further oxidizes to an exocyclic iminium ion (by the perferryl-oxygen complex); the latter may undergo capture by water from the incubation medium and eliminate the three-carbon unit via N-dealkylation. It remains to be determined whether this novel interaction of nitroxide radicals with heme iron has any relevance in regard to the known biological properties of these stable radical species

  1. High-field EPR and ESEEM investigation of the nitrogen quadrupole interaction of nitroxide spin labels in disordered solids: toward differentiation between polarity and proticity matrix effects on protein function.

    PubMed

    Savitsky, A; Dubinskii, A A; Plato, M; Grishin, Y A; Zimmermann, H; Möbius, K

    2008-07-31

    The combination of high-field electron paramagnetic resonance (EPR) with site-directed spin labeling (SDSL) techniques employing nitroxide radicals has turned out to be particularly powerful in revealing subtle changes of the polarity and proticity profiles in proteins enbedded in membranes. This information can be obtained by orientation-selective high-field EPR resolving principal components of the nitroxide Zeeman (g) and hyperfine ( A) tensors of the spin labels attached to specific molecular sites. In contrast to the g- and A-tensors, the (14)N ( I = 1) quadrupole interaction tensor of the nitroxide spin label has not been exploited in EPR for probing effects of the microenvironment of functional protein sites. In this work it is shown that the W-band (95 GHz) high-field electron spin echo envelope modulation (ESEEM) method is well suited for determining with high accuracy the (14)N quadrupole tensor principal components of a nitroxide spin label in disordered frozen solution. By W-band ESEEM the quadrupole components of a five-ring pyrroline-type nitroxide radical in glassy ortho-terphenyl and glycerol solutions have been determined. This radical is the headgroup of the MTS spin label widely used in SDSL protein studies. By DFT calulations and W-band ESEEM experiments it is demonstrated that the Q(yy) value is especially sensitive to the proticity and polarity of the nitroxide environment in H-bonding and nonbonding situations. The quadrupole tensor is shown to be rather insensitive to structural variations of the nitroxide label itself. When using Q(yy) as a testing probe of the environment, its ruggedness toward temperature changes represents an important advantage over the g xx and A(zz) parameters which are usually employed for probing matrix effects on the spin labeled molecular site. Thus, beyond measurenments of g xx and A(zz) of spin labeled protein sites in disordered solids, W-band high-field ESEEM studies of (14)N quadrupole interactions open a new

  2. Nitronyl nitroxides, a novel group of protective agents against oxidative stress in endothelial cells forming the blood-brain barrier.

    PubMed

    Blasig, I E; Mertsch, K; Haseloff, R F

    2002-11-01

    Nitronyl nitroxides (NN) effectively decompose free radicals (. As brain endothelium, forming the blood-brain barrier (BBB), is both the main source and the target of reactive species during cerebral oxidative stress, we studied the effect of NN on brain endothelial cells injured by the mediator of oxidative stress H(2)O(2) (. H(2)O(2) caused hydroxyl radical generation, lipid peroxidation, membrane dysfunction, membrane leak and cell death, concentration dependently. Due to 0.5 mM H(2)O(2), oxy-radical-induced membrane phospholipid peroxidation (malondialdehyde) increased to 0.61+/-0.04 nmol/mg protein vs control (0.32+/-0.03, p<0.05), cells lost cytosolic proteins into the medium and viability decreased to 28+/-2% of control (p<0.05). Permeability through the endothelial monolayer (measure for the tightness of the BBB) rose to 250+/-40% after 0.15 mM H(2)O(2) (p<0.001). Addition of 10 microM of the NN 5,5-dimethyl-2,4-diphenyl-4-methoxy-2-imidazoline-3-oxide-1-oxyl (NN-2), 1 mM phenylbutyl nitrone (PBN), or 10 microM of the lazaroid U83836E improved cell viability during incubation with 0.5 mM H(2)O(2) to 57+/-1%, 49+/-2%, and 42+/-3% (p<0.05, vs drug-free H(2)O(2) group). The permeability enhancement by 0.15 mM H(2)O(2) was reduced to 171+/-21%, 170+/-25%, and 118+/-32% (p<0.05 vs drug-free H(2)O(2) group). Generally, the assumption is supported that during cerebral oxidative stress the protection should also be directed to the cells of the BBB, which can be provided by antioxidative approaches. NN represent a new group of antioxdatively acting cytoprotectiva improving the survival and function of the endothelium against oxidative stress. PMID:12423670

  3. Effects of different detachment procedures on viability, nitroxide reduction kinetics and plasma membrane heterogeneity of V-79 cells.

    PubMed

    Batista, Urska; Garvas, Maja; Nemec, Marjana; Schara, Milan; Veranic, Peter; Koklic, Tilen

    2010-06-01

    Cell detachment procedures can cause severe damage to cells. Many studies require cells to be detached before measurements; therefore, research on cells that have been grown attached to the bottom of the culture dish and later detached represents a special problem with respect to the experimental results when the properties of cell membranes undergo small changes such as in spectroscopic studies of membrane permeability. We characterized the influence of three different detachment procedures: cell scraping by rubber policeman, trypsinization and a citrate buffer treatment on V-79 cells in the plateau phase of growth (arrested in G1). We have measured cell viability by a dye-exclusion test; nitroxide reduction kinetics and membrane fluidity by EPR (electron paramagnetic resonance) method using the lipophilic spin-probe MeFASL(10,3) (5-doxylpalmitoyl-methylester), which partitions mainly in cell membranes and the hydrophilic spin-probe TEMPONE (4-oxo-2,2,6,6-tetramethylpiperidine-1-oxyl). The resulting cell damage due to the detachment process was observed with SEM (scanning electron microscopy). We found out that cell viability was 91% for trypsin treatment, 85% for citrate treatment and 70% for cell scraping. Though the plasma membrane was mechanically damaged by scraping, the membrane domain structure was not significantly altered compared with other detachment methods. On the other hand, the spin-probe reduction rate, which depends both on the transport across plasma membrane as well as on metabolic properties of cells, was the highest for trypsin method, suggesting that metabolic rate was the least influenced. Only the reduction rate of trypsin-treated cells stayed unchanged after 4 h of stirring in suspension. These results suggest that, compared with scraping cells or using citrate buffer, the most suitable detachment method for V-79 cells is detachment by trypsin and keeping cells in the stirred cell suspension until measurement. This method provides the

  4. Preparation, characterization and magnetic behavior of a spin-labelled physical hydrogel containing a chiral cyclic nitroxide radical unit fixed inside the gelator molecule.

    PubMed

    Takemoto, Yusa; Yamamoto, Takayuki; Ikuma, Naohiko; Uchida, Yoshiaki; Suzuki, Katsuaki; Shimono, Satoshi; Takahashi, Hiroki; Sato, Nobuhiro; Oba, Yojiro; Inoue, Rintaro; Sugiyama, Masaaki; Tsue, Hirohito; Kato, Tatsuhisa; Yamauchi, Jun; Tamura, Rui

    2015-07-21

    An optically active amphiphilic nitroxide radical compound [(S,S,R)-], which contains a paramagnetic (2S,5S)-2,5-dimethyl-2,5-diphenylpyrrolidine-N-oxyl radical group fixed in the inner position together with a hydrophobic long alkyl chain and a hydrophilic (R)-alanine residue in the opposite terminal positions, was found to serve as a low-molecular-weight gelator in H2O to give rise to a spin-labelled physical hydrogel. Characterization of the hydrogel was performed by microscopic (SEM, TEM and AFM) techniques, XRD and SAXS measurements, and IR, UV and CD spectroscopies. The gel-sol transition temperature was determined by EPR spectral line-width (ΔHpp) analysis. Measurement of the temperature dependence of relative paramagnetic susceptibility (χrel) for the hydrogel and sol phases was achieved by means of the double-integration of VT-EPR spectra. PMID:26073537

  5. ESR lineshape and {sup 1}H spin-lattice relaxation dispersion in propylene glycol solutions of nitroxide radicals – Joint analysis

    SciTech Connect

    Kruk, D.; Hoffmann, S. K.; Goslar, J.; Lijewski, S.; Kubica-Misztal, A.; Korpała, A.; Oglodek, I.; Moscicki, J.; Kowalewski, J.; Rössler, E. A.

    2013-12-28

    Electron Spin Resonance (ESR) spectroscopy and Nuclear Magnetic Relaxation Dispersion (NMRD) experiments are reported for propylene glycol solutions of the nitroxide radical: 4-oxo-TEMPO-d{sub 16} containing {sup 15}N and {sup 14}N isotopes. The NMRD experiments refer to {sup 1}H spin-lattice relaxation measurements in a broad frequency range (10 kHz–20 MHz). A joint analysis of the ESR and NMRD data is performed. The ESR lineshapes give access to the nitrogen hyperfine tensor components and the rotational correlation time of the paramagnetic molecule. The NMRD data are interpreted in terms of the theory of paramagnetic relaxation enhancement in solutions of nitroxide radicals, recently presented by Kruk et al. [J. Chem. Phys. 138, 124506 (2013)]. The theory includes the effect of the electron spin relaxation on the {sup 1}H relaxation of the solvent. The {sup 1}H relaxation is caused by dipole-dipole interactions between the electron spin of the radical and the proton spins of the solvent molecules. These interactions are modulated by three dynamic processes: relative translational dynamics of the involved molecules, molecular rotation, and electron spin relaxation. The sensitivity to rotation originates from the non-central positions of the interacting spin in the molecules. The electronic relaxation is assumed to stem from the electron spin–nitrogen spin hyperfine coupling, modulated by rotation of the radical molecule. For the interpretation of the NMRD data, we use the nitrogen hyperfine coupling tensor obtained from ESR and fit the other relevant parameters. The consistency of the unified analysis of ESR and NMRD, evaluated by the agreement between the rotational correlation times obtained from ESR and NMRD, respectively, and the agreement of the translation diffusion coefficients with literature values obtained for pure propylene glycol, is demonstrated to be satisfactory.

  6. An experimental NEXAFS and computational TDDFT and ΔDFT study of the gas-phase core excitation spectra of nitroxide free radical TEMPO and its analogues.

    PubMed

    Ljubić, Ivan; Kivimäki, Antti; Coreno, Marcello

    2016-04-21

    Core-hole spectroscopy adds to the fundamental understanding of the electronic structure of stable nitroxide free radicals thus paving way for a sensible design of new analogues with desired functionalities. We study the gas-phase C 1s, N 1s and O 1s excitation spectra of three nitroxide free radicals - TEMPO and two of its amide-substituted analogues - using the experimental NEXAFS technique and the theoretical TDDFT and ΔDFT methods in the unrestricted setting. The short-range corrected SRC1-BLYP and SRC2-BLYP exchange-correlation functionals are used with TDDFT, and the standard B3LYP functional with ΔDFT. The TDDFT-based detailed spectral assignment includes the valence, mixed valence-Rydberg and Rydberg portions of the spectra from the onset of absorptions to the vicinity of the core-ionization thresholds. The relative overlaps between the experimental and TDDFT-modelled spectra are reasonably good, in the range of 0.7-0.8, 0.6-0.8, and 0.7-0.8 for the C 1s, N 1s, and O 1s spectra, respectively. The extent of spin contamination within the unrestricted framework and its effect on the accuracy of the calculated excitation energies and dipole intensities are discussed in detail. It is concluded that, despite the sizeable spin contamination, the presently used methods are capable of predicting the core-excitation spectra of comparatively large free radical species fairly reliably over a wide spectral range. PMID:27020039

  7. Dynamic, in vivo, real-time detection of retinal oxidative status in a model of elevated intraocular pressure using a novel, reversibly responsive, profluorescent nitroxide probe.

    PubMed

    Rayner, Cassie L; Gole, Glen A; Bottle, Steven E; Barnett, Nigel L

    2014-12-01

    Changes to the redox status of biological systems have been implicated in the pathogenesis of a wide variety of disorders including cancer, Ischemia-reperfusion (I/R) injury and neurodegeneration. In times of metabolic stress e.g. ischaemia/reperfusion, reactive oxygen species (ROS) production overwhelms the intrinsic antioxidant capacity of the cell, damaging vital cellular components. The ability to quantify ROS changes in vivo, is therefore essential to understanding their biological role. Here we evaluate the suitability of a novel reversible profluorescent probe containing a redox-sensitive nitroxide moiety (methyl ester tetraethylrhodamine nitroxide, ME-TRN), as an in vivo, real-time reporter of retinal oxidative status. The reversible nature of the probe's response offers the unique advantage of being able to monitor redox changes in both oxidizing and reducing directions in real time. After intravitreal administration of the ME-TRN probe, we induced ROS production in rat retina using an established model of complete, acute retinal ischaemia followed by reperfusion. After restoration of blood flow, retinas were imaged using a Micron III rodent fundus fluorescence imaging system, to quantify the redox-response of the probe. Fluorescent intensity declined during the first 60 min of reperfusion. The ROS-induced change in probe fluorescence was ameliorated with the retinal antioxidant, lutein. Fluorescence intensity in non-Ischemia eyes did not change significantly. This new probe and imaging technology provide a reversible and real-time response to oxidative changes and may allow the in vivo testing of antioxidant therapies of potential benefit to a range of diseases linked to oxidative stress. PMID:25447708

  8. Frequency Dependence of Electron Spin Relaxation Times in Aqueous Solution for a Nitronyl Nitroxide Radical and Per-deuterated-Tempone between 250 MHz and 34 GHz

    PubMed Central

    Biller, Joshua R.; Meyer, Virginia M.; Elajaili, Hanan; Rosen, Gerald M.; Eaton, Sandra S.; Eaton, Gareth R.

    2012-01-01

    Electron spin relaxation times of perdeuterated tempone (PDT) 1 and of a nitronyl nitroxide 2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl) 2 in aqueous solution at room temperature were measured by 2-pulse electron spin echo (T2) or 3-pulse inversion recovery (T1) in the frequency range of 250 MHz to 34 GHz. At 9 GHz values of T1 measured by long-pulse saturation recovery were in good agreement with values determined by inversion recovery. Below 9 GHz for 1 and below 1.5 GHz for 2, T1~ T2, as expected in the fast tumbling regime. At higher frequencies T2 was shorter than T1 due to incomplete motional averaging of g and A anisotropy. The frequency dependence of 1/T1 is modeled as the sum of spin rotation, modulation of g and A-anisotropy, and a thermally-activated process that has maximum contribution at about 1.5 GHz. The spin lattice relaxation times for the nitronyl nitroxide were longer than for PDT by a factor of about 2 at 34 GHz, decreasing to about a factor of 1.5 at 250 MHz. The rotational correlation times, τR are calculated to be 9 ps for 1 and about 25 ps for 2. The longer spin lattice relaxation times for 2 than for 1 at 9 and 34 GHz are due predominantly to smaller contributions from spin rotation that arise from slower tumbling. The smaller nitrogen hyperfine couplings for the nitronyl 2 than for 1 decrease the contribution to relaxation due to modulation of A anisotropy. However, at lower frequencies the slower tumbling of 2 results in a larger value of ωτR (ω is the resonance frequency) and larger values of the spectral density function, which enhances the contribution from modulation of anisotropic interactions for 2 to a greater extent than for 1. PMID:23123770

  9. Frequency dependence of electron spin relaxation times in aqueous solution for a nitronyl nitroxide radical and perdeuterated-tempone between 250 MHz and 34 GHz.

    PubMed

    Biller, Joshua R; Meyer, Virginia M; Elajaili, Hanan; Rosen, Gerald M; Eaton, Sandra S; Eaton, Gareth R

    2012-12-01

    Electron spin relaxation times of perdeuterated tempone (PDT) 1 and of a nitronyl nitroxide (2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl) 2 in aqueous solution at room temperature were measured by 2-pulse electron spin echo (T(2)) or 3-pulse inversion recovery (T(1)) in the frequency range of 250 MHz to 34 GHz. At 9 GHz values of T(1) measured by long-pulse saturation recovery were in good agreement with values determined by inversion recovery. Below 9 GHz for 1 and below 1.5 GHz for 2,T(1)~T(2), as expected in the fast tumbling regime. At higher frequencies T(2) was shorter than T(1) due to incomplete motional averaging of g and A anisotropy. The frequency dependence of 1/T(1) is modeled as the sum of spin rotation, modulation of g and A-anisotropy, and a thermally-activated process that has maximum contribution at about 1.5 GHz. The spin lattice relaxation times for the nitronyl nitroxide were longer than for PDT by a factor of about 2 at 34 GHz, decreasing to about a factor of 1.5 at 250 MHz. The rotational correlation times, τ(R) are calculated to be 9 ps for 1 and about 25 ps for 2. The longer spin lattice relaxation times for 2 than for 1 at 9 and 34 GHz are due predominantly to smaller contributions from spin rotation that arise from slower tumbling. The smaller nitrogen hyperfine couplings for the nitronyl 2 than for 1 decrease the contribution to relaxation due to modulation of A anisotropy. However, at lower frequencies the slower tumbling of 2 results in a larger value of ωτ(R) (ω is the resonance frequency) and larger values of the spectral density function, which enhances the contribution from modulation of anisotropic interactions for 2 to a greater extent than for 1. PMID:23123770

  10. Core-shell hybrid upconversion nanoparticles carrying stable nitroxide radicals as potential multifunctional nanoprobes for upconversion luminescence and magnetic resonance dual-modality imaging.

    PubMed

    Chen, Chuan; Kang, Ning; Xu, Ting; Wang, Dong; Ren, Lei; Guo, Xiangqun

    2015-03-12

    Nitroxide radicals, such as 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) and its derivatives, have recently been used as contrast agents for magnetic resonance imaging (MRI) and electron paramagnetic resonance imaging (EPRI). However, their rapid one-electron bioreduction to diamagnetic N-hydroxy species when administered intravenously has limited their use in in vivo applications. In this article, a new approach of silica coating for carrying stable radicals was proposed. A 4-carboxyl-TEMPO nitroxide radical was covalently linked with 3-aminopropyl-trimethoxysilane to produce a silanizing TEMPO radical. Utilizing a facile reaction based on the copolymerization of silanizing TEMPO radicals with tetraethyl orthosilicate in reverse microemulsion, a TEMPO radicals doped SiO2 nanostructure was synthesized and coated on the surface of NaYF4:Yb,Er/NaYF4 upconversion nanoparticles (UCNPs) to generate a novel multifunctional nanoprobe, PEGylated UCNP@TEMPO@SiO2 for upconversion luminescence (UCL) and magnetic resonance dual-modality imaging. The electron spin resonance (ESR) signals generated by the TEMPO@SiO2 show an enhanced reduction resistance property for a period of time of up to 1 h, even in the presence of 5 mM ascorbic acid. The longitudinal relaxivity of PEGylated UCNPs@TEMPO@SiO2 nanocomposites is about 10 times stronger than that for free TEMPO radicals. The core-shell NaYF4:Yb,Er/NaYF4 UCNPs synthesized by this modified user-friendly one-pot solvothermal strategy show a significant enhancement of UCL emission of up to 60 times more than the core NaYF4:Yb,Er. Furthermore, the PEGylated UCNP@TEMPO@SiO2 nanocomposites were further used as multifunctional nanoprobes to explore their performance in the UCL imaging of living cells and T1-weighted MRI in vitro and in vivo. PMID:25716884

  11. Core-shell hybrid upconversion nanoparticles carrying stable nitroxide radicals as potential multifunctional nanoprobes for upconversion luminescence and magnetic resonance dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Chen, Chuan; Kang, Ning; Xu, Ting; Wang, Dong; Ren, Lei; Guo, Xiangqun

    2015-03-01

    Nitroxide radicals, such as 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) and its derivatives, have recently been used as contrast agents for magnetic resonance imaging (MRI) and electron paramagnetic resonance imaging (EPRI). However, their rapid one-electron bioreduction to diamagnetic N-hydroxy species when administered intravenously has limited their use in in vivo applications. In this article, a new approach of silica coating for carrying stable radicals was proposed. A 4-carboxyl-TEMPO nitroxide radical was covalently linked with 3-aminopropyl-trimethoxysilane to produce a silanizing TEMPO radical. Utilizing a facile reaction based on the copolymerization of silanizing TEMPO radicals with tetraethyl orthosilicate in reverse microemulsion, a TEMPO radicals doped SiO2 nanostructure was synthesized and coated on the surface of NaYF4:Yb,Er/NaYF4 upconversion nanoparticles (UCNPs) to generate a novel multifunctional nanoprobe, PEGylated UCNP@TEMPO@SiO2 for upconversion luminescence (UCL) and magnetic resonance dual-modality imaging. The electron spin resonance (ESR) signals generated by the TEMPO@SiO2 show an enhanced reduction resistance property for a period of time of up to 1 h, even in the presence of 5 mM ascorbic acid. The longitudinal relaxivity of PEGylated UCNPs@TEMPO@SiO2 nanocomposites is about 10 times stronger than that for free TEMPO radicals. The core-shell NaYF4:Yb,Er/NaYF4 UCNPs synthesized by this modified user-friendly one-pot solvothermal strategy show a significant enhancement of UCL emission of up to 60 times more than the core NaYF4:Yb,Er. Furthermore, the PEGylated UCNP@TEMPO@SiO2 nanocomposites were further used as multifunctional nanoprobes to explore their performance in the UCL imaging of living cells and T1-weighted MRI in vitro and in vivo.Nitroxide radicals, such as 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) and its derivatives, have recently been used as contrast agents for magnetic resonance imaging (MRI) and electron

  12. Core-shell hybrid upconversion nanoparticles carrying stable nitroxide radicals as potential multifunctional nanoprobes for upconversion luminescence and magnetic resonance dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Chen, Chuan; Kang, Ning; Xu, Ting; Wang, Dong; Ren, Lei; Guo, Xiangqun

    2015-03-01

    Nitroxide radicals, such as 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) and its derivatives, have recently been used as contrast agents for magnetic resonance imaging (MRI) and electron paramagnetic resonance imaging (EPRI). However, their rapid one-electron bioreduction to diamagnetic N-hydroxy species when administered intravenously has limited their use in in vivo applications. In this article, a new approach of silica coating for carrying stable radicals was proposed. A 4-carboxyl-TEMPO nitroxide radical was covalently linked with 3-aminopropyl-trimethoxysilane to produce a silanizing TEMPO radical. Utilizing a facile reaction based on the copolymerization of silanizing TEMPO radicals with tetraethyl orthosilicate in reverse microemulsion, a TEMPO radicals doped SiO2 nanostructure was synthesized and coated on the surface of NaYF4:Yb,Er/NaYF4 upconversion nanoparticles (UCNPs) to generate a novel multifunctional nanoprobe, PEGylated UCNP@TEMPO@SiO2 for upconversion luminescence (UCL) and magnetic resonance dual-modality imaging. The electron spin resonance (ESR) signals generated by the TEMPO@SiO2 show an enhanced reduction resistance property for a period of time of up to 1 h, even in the presence of 5 mM ascorbic acid. The longitudinal relaxivity of PEGylated UCNPs@TEMPO@SiO2 nanocomposites is about 10 times stronger than that for free TEMPO radicals. The core-shell NaYF4:Yb,Er/NaYF4 UCNPs synthesized by this modified user-friendly one-pot solvothermal strategy show a significant enhancement of UCL emission of up to 60 times more than the core NaYF4:Yb,Er. Furthermore, the PEGylated UCNP@TEMPO@SiO2 nanocomposites were further used as multifunctional nanoprobes to explore their performance in the UCL imaging of living cells and T1-weighted MRI in vitro and in vivo.Nitroxide radicals, such as 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) and its derivatives, have recently been used as contrast agents for magnetic resonance imaging (MRI) and electron

  13. Supramolecular host-guest interaction of trityl-nitroxide biradicals with cyclodextrins: modulation of spin-spin interaction and redox sensitivity

    PubMed Central

    Tan, Xiaoli; Song, Yuguang; Liu, Huiqiang; Zhong, Qinwen; Rockenbauer, Antal; Villamena, Frederick A.; Zweier, Jay L.; Liu, Yangping

    2016-01-01

    Supramolecular host-guest interactions of trityl-nitroxide (TN) biradicals CT02-VT, CT02-AT and CT02-GT with methyl-β-cyclodextrin (M-β-CD), hydroxypropyl-β-cyclodextrin (H-β-CD) and γ-cyclodextrin (γ-CD) were investigated by EPR spectroscopy. In the presence of cyclodextrins (i.e., γ-CD, M-β-CD and H-β-CD), host-guest complexes of CT02-VT are formed where the nitroxide and linker parts possibly interact with the cyclodextrins’ cavities. Complexation with cyclodextrins leads to suppression of the intramolecular through-space spin-spin exchange coupling in CT02-VT, thus allowing determination of the through-bond spin-spin exchange coupling which was calculated to be 1.6 G using EPR simulations. Different types of cyclodextrins have variable binding affinity with CT02-VT with γ-CD (95 M−1) > M-β-CD (70 M−1) > H-β-CD (32 M−1). In addition, the effect of the linkers in TN biradicals on the host-guest interactions was also investigated. Among three TN biradicals studied, CT02-VT has the highest association constant with one designated cyclodextrin derivative. On the other hand, the complexes of CT02-GT (~ 22 G) and CT02-AT (7.7–9.0 G) with cyclodextrins have much higher through-bond spin-spin exchange couplings than that of CT02-VT (1.6 G) due to the shorter linkers than that of CT02-VT. Furthermore, the stability of TN biradicals towards ascorbate was significantly enhanced after the complexation with CDs, with an almost 2-time attenuation of the second-order rate constants for all the biradicals. Therefore, the supramolecular host-guest interactions with cyclodextrins will be an alternative method to modulate the magnitude of the spin-spin interactions and redox sensitivity of TN biradicals and the resulting complexes are promising as highly efficient DNP polarizing agents as well as EPR redox probes. PMID:26700002

  14. Supramolecular host-guest interaction of trityl-nitroxide biradicals with cyclodextrins: modulation of spin-spin interaction and redox sensitivity.

    PubMed

    Tan, Xiaoli; Song, Yuguang; Liu, Huiqiang; Zhong, Qinwen; Rockenbauer, Antal; Villamena, Frederick A; Zweier, Jay L; Liu, Yangping

    2016-02-01

    Supramolecular host-guest interactions of trityl-nitroxide (TN) biradicals CT02-VT, CT02-AT and CT02-GT with methyl-β-cyclodextrin (M-β-CD), hydroxypropyl-β-cyclodextrin (H-β-CD) and γ-cyclodextrin (γ-CD) were investigated by EPR spectroscopy. In the presence of cyclodextrins (i.e., γ-CD, M-β-CD and H-β-CD), host-guest complexes of CT02-VT are formed where the nitroxide and linker parts possibly interact with the cyclodextrins' cavities. Complexation with cyclodextrins leads to suppression of the intramolecular through-space spin-spin exchange coupling in CT02-VT, thus allowing the determination of the through-bond spin-spin exchange coupling which was calculated to be 1.6 G using EPR simulations. Different types of cyclodextrins have different binding affinities with CT02-VT in the order of γ-CD (95 M(-1)) > M-β-CD (70 M(-1)) > H-β-CD (32 M(-1)). In addition, the effect of the linkers in TN biradicals on the host-guest interactions was also investigated. Among the three TN biradicals studied, CT02-VT has the highest association constant with one designated cyclodextrin derivative. On the other hand, the complexes of CT02-GT (∼ 22 G) and CT02-AT (7.7-9.0 G) with cyclodextrins have much higher through-bond spin-spin exchange couplings than those of CT02-VT (1.6 G) due to the shorter linkers than those of CT02-VT. Furthermore, the stability of TN biradicals towards ascorbate was significantly enhanced after the complexation with CDs, with an almost 2-fold attenuation of the second-order rate constants for all the biradicals. Therefore, the supramolecular host-guest interactions with cyclodextrins will be an alternative method to modulate the magnitude of the spin-spin interactions and redox sensitivity of TN biradicals, and the resulting complexes are promising as highly efficient DNP polarizing agents as well as EPR redox probes. PMID:26700002

  15. Electron Spin Resonance Analysis of the Nitroxide Spin Label 2,2,6,6-Tetramethylpiperidone-N-Oxyl (Tempone) in Single Crystals of the Reduced Tempone Matrix

    PubMed Central

    Snipes, Wallace; Cupp, James; Cohn, Gerald; Keith, Alec

    1974-01-01

    The nitroxide spin label Tempone (2,2,6,6-tetramethylpiperidone-N-oxyl) can be reduced with ascorbic acid to give a nonparamagnetic species. Single crystals of reduced Tempone serve as a suitable host matrix to orient trace quantities of Tempone for ESR analysis. In these crystals the majority of the Tempone molecules are well-oriented, but a smaller fraction of the molecules tumble freely to give an isotropic electron spin resonance (ESR) spectrum. ESR transitions for the oriented molecules are saturated at much lower microwave power levels than for the tumbling molecules. For the oriented molecules, an analysis of the anisotropy of the spectroscopic splitting factor (g) gives principal values of g1 = 2.0094, g2 = 2.0061, g3 = 2.0021. The hyperfine coupling tensor is nearly axially symmetric, with principal values (in gauss) of A1 = 6.5, A2 = 6.7, A3 = 33.0. Within experimental error, the principal axis systems for the g tensor and the hyperfine tensor are identical. Comparison of the average values of g and A with the isotropic values of these parameters for Tempone in solvents of different polarity suggests a method for choosing the most appropriate tensor elements to be used for spin label experiments in various solvent systems. PMID:4359744

  16. First coordination compounds based on a bis(imino nitroxide) biradical and 4f metal ions: synthesis, crystal structures and magnetic properties.

    PubMed

    Reis, Samira G; Briganti, Matteo; Martins, Daniel O T A; Akpinar, Handan; Calancea, Sergiu; Guedes, Guilherme P; Soriano, Stéphane; Andruh, Marius; Cassaro, Rafael A A; Lahti, Paul M; Totti, Federico; Vaz, Maria G F

    2016-02-21

    The synthesis, crystal structures and magnetic properties of two families of heterospin complexes containing lanthanide ions and a bis(imino nitroxide) biradical (IPhIN = 1-iodo-3,5-bis(4',4',5',5'-tetramethyl-4',5'-dihydro-1H-imidazole-1'-oxyl)benzene) are reported: in [Ln2(hfac)6(IPhIN)(H2O)2] compounds, two lanthanide ions [Ln = Gd(III) (1) and Dy(III) (2)] are coordinated to the biradical, and in [Ln(hfac)3(IPhIN)(H2O)] compounds, one lanthanide ion (Ln = Tb(III) (3), Gd(III) (4) or Dy(III) (5)) is coordinated to the biradical. Ferromagnetic intramolecular magnetic interactions between Gd(III) and the biradical were found for 1 and 4, while intramolecular magnetic interactions between the radicals were ferro- and antiferromagnetic, respectively. Compound 2 shows a field induced slow relaxation of magnetization, which (under an external applied field of 2 kOe) exhibits an activation energy barrier of ΔE/kB = 27 K and a pre-exponential factor of 1.4 × 10(-8) s. To support the magnetic characterization of compound 3ab initio calculations were also performed. PMID:26751050

  17. Grafting of poly[(methyl methacrylate)-block-styrene] onto cellulose via nitroxide-mediated polymerization, and its polymer/clay nanocomposite.

    PubMed

    Karaj-Abad, Saber Ghasemi; Abbasian, Mojtaba; Jaymand, Mehdi

    2016-11-01

    For the first time, nitroxide-mediated polymerization (NMP) was used for synthesis of graft and block copolymers using cellulose (Cell) as a backbone, and polystyrene (PSt) and poly(methyl metacrylate) (PMMA) as the branches. For this purpose, Cell was acetylated by 2-bromoisobutyryl bromide (BrBiB), and then the bromine group was converted to 4-oxy-2,2,6,6-tetramethylpiperidin-1-oxyl group by a substitution nucleophilic reaction to afford a macroinitiator (Cell-TEMPOL). The macroinitiator obtained was subsequently used in controlled graft and block copolymerizations of St and MMA monomers to yield Cell-g-PSt and Cell-g-(PMMA-b-PSt). The chemical structures of all samples as representatives were characterized by FTIR and (1)H NMR spectroscopies. In addition, Cell-g-(PMMA-b-PSt)/organophilic montmorillonite nanocomposite was prepared through a solution intercalation method. TEM was used to evaluate the morphological behavior of the polymer-clay system. It was demonstrated that the addition of small percent of organophilic montmorillonite (O-MMT; 3wt.%) was enough to improve the thermal stability of the nanocomposite. PMID:27516276

  18. Differential effects of the mitochondrial uncoupling agent, 2,4-dinitrophenol, or the nitroxide antioxidant, Tempol, on synaptic or nonsynaptic mitochondria after spinal cord injury.

    PubMed

    Patel, Samir P; Sullivan, Patrick G; Pandya, Jignesh D; Rabchevsky, Alexander G

    2009-01-01

    We recently documented the progressive nature of mitochondrial dysfunction over 24 hr after contusion spinal cord injury (SCI), but the underlying mechanism has not been elucidated. We investigated the effects of targeting two distinct possible mechanisms of mitochondrial dysfunction by using the mitochondrial uncoupler 2,4-dinitrophenol (2,4-DNP) or the nitroxide antioxidant Tempol after contusion SCI in rats. A novel aspect of this study was that all assessments were made in both synaptosomal (neuronal)- and nonsynaptosomal (glial and neuronal soma)-derived mitochondria 24 hr after injury. Mitochondrial uncouplers target Ca(2+) cycling and subsequent reactive oxygen species production in mitochondria after injury. When 2,4-DNP was injected 15 and 30 min after injury, mitochondrial function was preserved in both populations compared with vehicle-treated rats, whereas 1 hr postinjury treatment was ineffective. Conversely, targeting peroxynitrite with Tempol failed to maintain normal bioenergetics in synaptic mitochondria, but was effective in nonsynaptic mitochondria when administered 15 min after injury. When administered at 15 and 30 min after injury, increased hydroxynonenal, 3-NT, and protein carbonyl levels were significantly reduced by 2,4-DNP, whereas Tempol only reduced 3-NT and protein carbonyls after SCI. Despite such antioxidant effects, only 2,4-DNP was effective in preventing mitochondrial dysfunction, indicating that mitochondrial Ca(2+) overload may be the key mechanism involved in acute mitochondrial damage after SCI. Collectively, our observations demonstrate the significant role that mitochondrial dysfunction plays in SCI neuropathology. Moreover, they indicate that combinatorial therapeutic approaches targeting different populations of mitochondria holds great potential in fostering neuroprotection after acute SCI. PMID:18709657

  19. Nitroxide antioxidant as a potential strategy to attenuate the oxidative/nitrosative stress induced by hydrogen peroxide plus nitric oxide in cultured neurons.

    PubMed

    Lee, Ching-Tien; Yu, Liang-En; Wang, Jiz-Yuh

    2016-04-01

    Oxidative/nitrosative stress contributes to the etiology of the neurological disorders, including ischemic stroke and chronic neurodegeneration. Neurotoxic modifications mediated by reactive oxygen species (ROS) or reactive nitrogen species (RNS) are closely associated with the destruction of key macromolecules and inactivation of antioxidant enzymes, which compromises antioxidant defenses. Approaches to expel ROS/RNS and alleviate toxic oxidative/nitrosative stress in neurons have not completely been defined. Here, we aimed to evaluate the efficacy of various antioxidants that serve as the neuroprotectors under a toxic stress created by ROS plus nitric oxide (NO). Sublytic concentrations of hydrogen peroxide (H2O2) plus NO donor S-nitroso-N-acetyl-D, l-penicillamine (SNAP) enabled to induce a toxic oxidative/nitrosative stress through activating both p38 MAPK and p53 cascades, and cause DNA damage and protein tyrosine nitration in primary neuronal cultures. After comparing six antioxidants, including superoxide dimutase (SOD), catalase, 2,2,6,6-tetramethyl-1-piperidinoxyl (TEMPO), N-acetylcysteine, dimethylthiourea, and uric acid, TEMPO was the superior antioxidant that comprehensively and efficaciously decreased H2O2 plus SNAP-evoked activation of stress cascades of p38 MAPK and p53, production of NO, ROS, and peroxynitrite, double-strand breaks of DNA, and nitration of protein tyrosine residues. SOD increased the peroxynitrite formation and was unable to reduce the level of protein nitration. All antioxidants tested, except SOD, effectively reduced neuronal damage and DNA breakage caused by the toxic H2O2/SNAP combination. In conclusion, these results suggest that TEMPO ensures excellent ROS/RNS clearance and stress-signaling inhibition, thus effectively rescuing neurons from ROS/H2O2 plus NO/SNAP-induced insult. This study reveals a potential strategy for nitroxide antioxidants as a therapeutic agent against oxidative/nitrosative neurotoxicity. PMID:26891889

  20. Amyloid beta peptides do not form peptide-derived free radicals spontaneously, but can enhance metal-catalyzed oxidation of hydroxylamines to nitroxides.

    PubMed

    Dikalov, S I; Vitek, M P; Maples, K R; Mason, R P

    1999-04-01

    Amyloid beta (Abeta) peptides play an important role in the pathogenesis of Alzheimer's disease. Free radical generation by Abeta peptides was suggested to be a key mechanism of their neurotoxicity. Reports that neurotoxic free radicals derived from Abeta-(1-40) and Abeta-(25-35) peptides react with the spin trap N-tert-butyl-alpha-phenylnitrone (PBN) to form a PBN/.Abeta peptide radical adduct with a specific triplet ESR signal assert that the peptide itself was the source of free radicals. We now report that three Abeta peptides, Abeta-(1-40), Abeta-(25-35), and Abeta-(40-1), do not yield radical adducts with PBN from the Oklahoma Medical Research Foundation (OMRF). In contrast to OMRF PBN, incubation of Sigma PBN in phosphate buffer without Abeta peptides produced a three-line ESR spectrum. It was shown that this nitroxide is di-tert-butylnitroxide and is formed in the Sigma PBN solution as a result of transition metal-catalyzed auto-oxidation of the respective hydroxylamine present as an impurity in the Sigma PBN. Under some conditions, incubation of PBN from Sigma with Abeta-(1-40) or Abeta-(25-35) can stimulate the formation of di-tert-butylnitroxide. It was shown that Abeta peptides enhanced oxidation of cyclic hydroxylamine 1-hydroxy-4-oxo-2,2,6, 6-tetramethylpiperidine (TEMPONE-H), which was strongly inhibited by the treatment of phosphate buffer with Chelex-100. It was shown that ferric and cupric ions are effective oxidants of TEMPONE-H. The data obtained allow us to conclude that under some conditions toxic Abeta peptides Abeta-(1-40) and Abeta-(25-35) enhance metal-catalyzed oxidation of hydroxylamine derivatives, but do not spontaneously form peptide-derived free radicals. PMID:10092619

  1. Intraoral Mitochondrial-Targeted GS-Nitroxide, JP4-039, Radioprotects Normal Tissue in Tumor-Bearing Radiosensitive Fancd2(-/-) (C57BL/6) Mice.

    PubMed

    Shinde, Ashwin; Berhane, Hebist; Rhieu, Byung Han; Kalash, Ronny; Xu, Karen; Goff, Julie; Epperly, Michael W; Franicola, Darcy; Zhang, Xichen; Dixon, Tracy; Shields, Donna; Wang, Hong; Wipf, Peter; Parmar, Kalindi; Guinan, Eva; Kagan, Valerian; Tyurin, Vladimir; Ferris, Robert L; Zhang, Xiaolan; Li, Song; Greenberger, Joel S

    2016-02-01

    We evaluated normal tissue specific radioprotection of the oral cavity in radiosensitive Fanconi Anemia (FA) Fancd2(-/-) mice with orally established tumors using mitochondrial-targeted GS-nitroxide (JP4-039). Adult (10-12 weeks old) Fancd2(+/+), Fancd2(+/-) and Fancd2(-/-) mice (C57BL/6 background) and subgroups with orally established TC-1 epithelial cell tumors received a single fraction of 28 Gy or four daily fractions of 8 Gy to the head and neck. Subgroups received JP4-039 in F15 emulsion (F15/JP4-039; 0.4 mg/mouse), 4-amino-Tempo in F15 emulsion (F15/4-amino-Tempo; 0.2 mg/mouse) or F15 emulsion alone prior to each irradiation. Oral mucosa of Fancd2(-/-) mice showed baseline elevated RNA transcripts for Sod2, p53, p21 and Rad51 (all P < 0.0012) and suppressed levels of Nfkb and Tgfb, (all P < 0.0020) compared with Fancd2(+/+) mice. The oral mucosa in tumor-bearing mice of all genotypes showed decreased levels of p53 and elevated Tgfb and Gadd45a (P ≤ 0.0001 for all three genotypes). Intraoral F15/JP4-039, but not F15/4-amino-Tempo, modulated radiation-induced normal tissue transcript elevation, ameliorated mucosal ulceration and reduced the depletion of antioxidant stores in oral cavity tissue of all genotypes, but did not radioprotect tumors. Mitochondrial targeting makes F15/JP4-039 an effective normal tissue radioprotector for Fancd2(-/-) mice, as well as wild-type mice. PMID:26789701

  2. Dynamics of 4-oxo-TEMPO-d16-(15)N nitroxide-propylene glycol system studied by ESR and ESE in liquid and glassy state in temperature range 10-295K.

    PubMed

    Goslar, Janina; Hoffmann, Stanislaw K; Lijewski, Stefan

    2016-08-01

    ESR spectra and electron spin relaxation of nitroxide radical in 4-oxo-TEMPO-d16-(15)N in propylene glycol were studied at X-band in the temperature range 10-295K. The spin-lattice relaxation in the liquid viscous state determined from the resonance line shape is governed by three mechanisms occurring during isotropic molecular reorientations. In the glassy state below 200K the spin-lattice relaxation, phase relaxation and electron spin echo envelope modulations (ESEEM) were studied by pulse spin echo technique using 2-pulse and 3-pulse induced signals. Electron spin-lattice relaxation is governed by a single non-phonon relaxation process produced by localized oscillators of energy 76cm(-1). Electron spin dephasing is dominated by a molecular motion producing a resonance-type peak in the temperature dependence of the dephasing rate around 120K. The origin of the peak is discussed and a simple method for the peak shape analysis is proposed, which gives the activation energy of a thermally activated motion Ea=7.8kJ/mol and correlation time τ0=10(-8)s. The spin echo amplitude is strongly modulated and FT spectrum contains a doublet of lines centered around the (2)D nuclei Zeeman frequency. The splitting into the doublet is discussed as due to a weak hyperfine coupling of nitroxide unpaired electron with deuterium of reorienting CD3 groups. PMID:27323281

  3. Dynamics of 4-oxo-TEMPO-d16-15N nitroxide-propylene glycol system studied by ESR and ESE in liquid and glassy state in temperature range 10-295 K

    NASA Astrophysics Data System (ADS)

    Goslar, Janina; Hoffmann, Stanislaw K.; Lijewski, Stefan

    2016-08-01

    ESR spectra and electron spin relaxation of nitroxide radical in 4-oxo-TEMPO-d16-15N in propylene glycol were studied at X-band in the temperature range 10-295 K. The spin-lattice relaxation in the liquid viscous state determined from the resonance line shape is governed by three mechanisms occurring during isotropic molecular reorientations. In the glassy state below 200 K the spin-lattice relaxation, phase relaxation and electron spin echo envelope modulations (ESEEM) were studied by pulse spin echo technique using 2-pulse and 3-pulse induced signals. Electron spin-lattice relaxation is governed by a single non-phonon relaxation process produced by localized oscillators of energy 76 cm-1. Electron spin dephasing is dominated by a molecular motion producing a resonance-type peak in the temperature dependence of the dephasing rate around 120 K. The origin of the peak is discussed and a simple method for the peak shape analysis is proposed, which gives the activation energy of a thermally activated motion Ea = 7.8 kJ/mol and correlation time τ0 = 10-8 s. The spin echo amplitude is strongly modulated and FT spectrum contains a doublet of lines centered around the 2D nuclei Zeeman frequency. The splitting into the doublet is discussed as due to a weak hyperfine coupling of nitroxide unpaired electron with deuterium of reorienting CD3 groups.

  4. Effect of gallium-porphyrin analogue ATX-70 on nitroxide formation from a cyclic secondary amine by ultrasound: on the mechanism of sonodynamic activation.

    PubMed

    Miyoshi, N; Misík, V; Fukuda, M; Riesz, P

    1995-08-01

    Sonodynamic therapy is a promising new modality for cancer treatment based on the synergistic effect on tumor cell killing by combination of a drug (typically a photosensitizer) and ultrasound. The mechanism of sonodynamic action was suggested to involve photoexcitation of the sensitizer by sonoluminescent light, with subsequent formation of singlet oxygen. In this work we studied the aqueous sonochemical reactions of the gallium-porphyrin derivative ATX-70, one of the most active sonodynamic agents found, using 50 kHz ultrasound. The experiments were carried out in the presence of 2,2,6,6-tetramethyl-4-piperidone hydrochloride (TMP), which reacts with singlet oxygen or .OH radicals to give the EPR-detectable nitroxide 2,2,6,6-tetramethyl-4-piperidone-N-oxyl (TMP-NO). Recently it has been suggested that the enhancement of TMP-NO yields in the presence of aqueous solutions of ATX-70 exposed to ultrasound was evidence for the formation of singlet oxygen in the system. Our results show that the surfactant cetyltrimethylammonium bromide (CTAB) can mimic the ATX-70-induced increase in the TMP-NO signal, but it fails to reproduce the behavior of ATX-70 in D2O: while the yields of TMP-NO in the presence of ATX-70 increase in D2O, the opposite effect was found with the surfactant CTAB. However, our data show that the increased TMP-NO yields in D2O are paralleled by an increased concentration of ATX-70 dimer, a form that is inactive in the photochemical generation of singlet oxygen. Our finding that the ATX-70-dependent enhancement of the TMP-NO signal was highest at approximately 20% O2, in both N2/O2 and argon/O2 mixtures, and decreased with increasing oxygen concentration is not compatible with the singlet oxygen mechanism. Finally, our results on the temperature dependence of the ATX-70-induced formation of TMP-NO are not consistent with the photochemical excitation of ATX-70 by sonoluminescent light: the ATX-70-dependent enhancement of TMP-NO signal increased with

  5. A graphene oxide based smart drug delivery system for tumor mitochondria-targeting photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Wei, Yanchun; Zhou, Feifan; Zhang, Da; Chen, Qun; Xing, Da

    2016-02-01

    Subcellular organelles play critical roles in cell survival. In this work, a novel photodynamic therapy (PDT) drug delivery and phototoxicity on/off nano-system based on graphene oxide (NGO) as the carrier is developed to implement subcellular targeting and attacking. To construct the nanodrug (PPa-NGO-mAb), NGO is modified with the integrin αvβ3 monoclonal antibody (mAb) for tumor targeting. Pyropheophorbide-a (PPa) conjugated with polyethylene-glycol is used to cover the surface of the NGO to induce phototoxicity. Polyethylene-glycol phospholipid is loaded to enhance water solubility. The results show that the phototoxicity of PPa on NGO can be switched on and off in organic and aqueous environments, respectively. The PPa-NGO-mAb assembly is able to effectively target the αvβ3-positive tumor cells with surface ligand and receptor recognition; once endocytosized by the cells, they are observed escaping from lysosomes and subsequently transferring to the mitochondria. In the mitochondria, the `on' state PPa-NGO-mAb performs its effective phototoxicity to kill cells. The biological and physical dual selections and on/off control of PPa-NGO-mAb significantly enhance mitochondria-mediated apoptosis of PDT. This smart system offers a potential alternative to drug delivery systems for cancer therapy.Subcellular organelles play critical roles in cell survival. In this work, a novel photodynamic therapy (PDT) drug delivery and phototoxicity on/off nano-system based on graphene oxide (NGO) as the carrier is developed to implement subcellular targeting and attacking. To construct the nanodrug (PPa-NGO-mAb), NGO is modified with the integrin αvβ3 monoclonal antibody (mAb) for tumor targeting. Pyropheophorbide-a (PPa) conjugated with polyethylene-glycol is used to cover the surface of the NGO to induce phototoxicity. Polyethylene-glycol phospholipid is loaded to enhance water solubility. The results show that the phototoxicity of PPa on NGO can be switched on and off in organic and aqueous environments, respectively. The PPa-NGO-mAb assembly is able to effectively target the αvβ3-positive tumor cells with surface ligand and receptor recognition; once endocytosized by the cells, they are observed escaping from lysosomes and subsequently transferring to the mitochondria. In the mitochondria, the `on' state PPa-NGO-mAb performs its effective phototoxicity to kill cells. The biological and physical dual selections and on/off control of PPa-NGO-mAb significantly enhance mitochondria-mediated apoptosis of PDT. This smart system offers a potential alternative to drug delivery systems for cancer therapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07785k

  6. Multimodal Upconversion Nanoplatform with a Mitochondria-Targeted Property for Improved Photodynamic Therapy of Cancer Cells.

    PubMed

    Zhang, Xiaoman; Ai, Fujin; Sun, Tianying; Wang, Feng; Zhu, Guangyu

    2016-04-18

    Upconversion nanoparticles (UCNPs) with the capacity to emit high-energy visible or UV light under low-energy near-infrared excitation have been extensively explored for biomedical applications including imaging and photodynamic therapy (PDT) against cancer. Enhanced cellular uptake and controlled subcellular localization of a UCNP-based PDT system are desired to broaden the biomedical applications of the system and to increase its PDT effect. Herein, we build a multimodal nanoplatform with enhanced therapeutic efficiency based on 808 nm excited NaYbF4:Nd@NaGdF4:Yb/Er@NaGdF4 core-shell-shell nanoparticles that have a minimized overheating effect. The photosensitizer pyropheophorbide a (Ppa) is loaded onto the nanoparticles capped with biocompatible polymers, and the nanoplatform is functionalized with transcriptional activator peptides as targeting moieties. Significantly increased cellular uptake of the nanoparticles and dramatically elevated photocytotoxicity are achieved. Remarkably, colocalization of Ppa with mitochondria, a crucial subcellular organelle as a target of PDT, is proven and quantified. The subsequent damage to mitochondria caused by this colocalization is also confirmed to be significant. Our work provides a comprehensively improved UCNP-based nanoplatform that maintains great biocompatibility but shows higher photocytotoxicity under irradiation and superior imaging capabilities, which increases the biomedical values of UCNPs as both nanoprobes and carriers of photosensitizers toward mitochondria for PDT. PMID:27049165

  7. Mitochondria-targeted antioxidant SkQ1 accelerates maturation in Campbell dwarf hamsters (Phodopus campbelli).

    PubMed

    Rogovin, K A; Khrushcheva, A M; Shekarova, O N; Ushakova, M V; Manskikh, V N; Vasilieva, N Yu

    2014-10-01

    We tested two hypotheses. 1) SkQ1 positively affects postnatal development of hamsters in litters born to parents receiving long-term SkQ1 treatment. 2) SkQ1 accelerates maturation of juvenile females receiving the antioxidant treatment from 10 days of age. Parental pairs were kept in an outdoor vivarium under conditions close to natural. At the age of 25 days, juvenile males in litters born to parents treated daily with SkQ1 (50 nmol/kg per os) had higher epididymis mass. Both the size of a litter and SkQ1 affected epididymis mass in young males. Both the litter size and SkQ1 affected uterus mass in 25-day-old females. Juvenile females who received SkQ1 treatment from 10 days of age demonstrated earlier opening of the vagina. This experiment was replicated with the same result. At the age of 2.5 months, virgin females treated with SkQ1 from the early age demonstrated higher ovary mass. PMID:25519069

  8. Cyclometalated iridium(III) complexes as mitochondria-targeted anticancer agents.

    PubMed

    Xiong, Kai; Chen, Yu; Ouyang, Cheng; Guan, Rui-Lin; Ji, Liang-Nian; Chao, Hui

    2016-06-01

    Four cyclometalated iridium(III) complexes [Ir(dfppy)2(L)](+) (dfppy = 2-(2,4-difluorophenyl)pyridine, L = 6-(pyridin-2-yl)-1,3,5-triazine-2,4-diamine, Ir1; 6-(isoquinolin-1-yl)-1,3,5-triazine-2,4-diamine, Ir2; 6-(quinolin-2-yl)-1,3,5-triazine-2,4-diamine, Ir3; 6-(isoquinolin-3-yl)-1,3,5-triazine-2,4-diamine, Ir4) have been synthesized and characterized. Distinct from cisplatin, Ir1-Ir4 could specifically target mitochondria and induced apoptosis against various cancer cell lines, especially for cisplatin resistant cells. ICP-MS results indicated that Ir1-Ir4 were taken up via different mechanism for cancer cells and normal cells, which resulted in their high selectivity. The structure-activity relationship and signaling pathways were also discussed. PMID:27039888

  9. Oxidative Stress and Mitochondrial Dysfunction across Broad-Ranging Pathologies: Toward Mitochondria-Targeted Clinical Strategies

    PubMed Central

    d'Ischia, Marco; Gadaleta, Maria Nicola; Pallardó, Federico V.; Petrović, Sandra; Tiano, Luca; Zatterale, Adriana

    2014-01-01

    Beyond the disorders recognized as mitochondrial diseases, abnormalities in function and/or ultrastructure of mitochondria have been reported in several unrelated pathologies. These encompass ageing, malformations, and a number of genetic or acquired diseases, as diabetes and cardiologic, haematologic, organ-specific (e.g., eye or liver), neurologic and psychiatric, autoimmune, and dermatologic disorders. The mechanistic grounds for mitochondrial dysfunction (MDF) along with the occurrence of oxidative stress (OS) have been investigated within the pathogenesis of individual disorders or in groups of interrelated disorders. We attempt to review broad-ranging pathologies that involve mitochondrial-specific deficiencies or rely on cytosol-derived prooxidant states or on autoimmune-induced mitochondrial damage. The established knowledge in these subjects warrants studies aimed at elucidating several open questions that are highlighted in the present review. The relevance of OS and MDF in different pathologies may establish the grounds for chemoprevention trials aimed at compensating OS/MDF by means of antioxidants and mitochondrial nutrients. PMID:24876913

  10. Derivatives of rhodamine 19 as mild mitochondria-targeted cationic uncouplers.

    PubMed

    Antonenko, Yuri N; Avetisyan, Armine V; Cherepanov, Dmitry A; Knorre, Dmitry A; Korshunova, Galina A; Markova, Olga V; Ojovan, Silvia M; Perevoshchikova, Irina V; Pustovidko, Antonina V; Rokitskaya, Tatyana I; Severina, Inna I; Simonyan, Ruben A; Smirnova, Ekaterina A; Sobko, Alexander A; Sumbatyan, Natalia V; Severin, Fedor F; Skulachev, Vladimir P

    2011-05-20

    A limited decrease in mitochondrial membrane potential can be beneficial for cells, especially under some pathological conditions, suggesting that mild uncouplers (protonophores) causing such an effect are promising candidates for therapeutic uses. The great majority of protonophores are weak acids capable of permeating across membranes in their neutral and anionic forms. In the present study, protonophorous activity of a series of derivatives of cationic rhodamine 19, including dodecylrhodamine (C(12)R1) and its conjugate with plastoquinone (SkQR1), was revealed using a variety of assays. Derivatives of rhodamine B, lacking dissociable protons, showed no protonophorous properties. In planar bilayer lipid membranes, separating two compartments differing in pH, diffusion potential of H(+) ions was generated in the presence of C(12)R1 and SkQR1. These compounds induced pH equilibration in liposomes loaded with the pH probe pyranine. C(12)R1 and SkQR1 partially stimulated respiration of rat liver mitochondria in State 4 and decreased their membrane potential. Also, C(12)R1 partially stimulated respiration of yeast cells but, unlike the anionic protonophore FCCP, did not suppress their growth. Loss of function of mitochondrial DNA in yeast (grande-petite transformation) is known to cause a major decrease in the mitochondrial membrane potential. We found that petite yeast cells are relatively more sensitive to the anionic uncouplers than to C(12)R1 compared with grande cells. Together, our data suggest that rhodamine 19-based cationic protonophores are self-limiting; their uncoupling activity is maximal at high membrane potential, but the activity decreases membrane potentials, which causes partial efflux of the uncouplers from mitochondria and, hence, prevents further membrane potential decrease. PMID:21454507

  11. Inhibition of oxidative hemolysis in erythrocytes by mitochondria-targeted antioxidants of SkQ series.

    PubMed

    Omarova, E O; Antonenko, Y N

    2014-02-01

    In the present work we studied the effect of antioxidants of the SkQ1 family (10-(6'-plastoquinonyl)decyltriphenylphosphonium) on the oxidative hemolysis of erythrocytes induced by a lipophilic free radical initiator 2,2'-azobis(2,4-dimethylvaleronitrile) (AMVN) and a water-soluble free radical initiator 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AAPH). SkQ1 was found to protect erythrocytes from hemolysis, 2 μM being the optimal concentration. Both the oxidized and reduced SkQ1 forms exhibited protective properties. Both forms of SkQ1 also inhibited lipid peroxidation in erythrocytes induced by the lipophilic free radical initiator AMVN as detected by accumulation of malondialdehyde. However, in the case of induction of erythrocyte oxidation by AAPH, the accumulation of malondialdehyde was not inhibited by SkQ1. In the case of AAPH-induced hemolysis, the rhodamine-containing analog SkQR1 exerted a comparable protective effect at the concentration of 0.2 μM. At higher SkQ1 and SkQR1 concentrations, the protective effect was smaller, which was attributed to the ability of these compounds to facilitate hemolysis in the absence of oxidative stress. We found that plastoquinone in the oxidized form of SkQ1 could be reduced by erythrocytes, which apparently accounted for its protective action. Thus, the protective effect of SkQ in erythrocytes, which lack mitochondria, proceeded at concentrations that are two to three orders of magnitude higher than those that were active in isolated mitochondria. PMID:24794729

  12. Derivatives of Rhodamine 19 as Mild Mitochondria-targeted Cationic Uncouplers*

    PubMed Central

    Antonenko, Yuri N.; Avetisyan, Armine V.; Cherepanov, Dmitry A.; Knorre, Dmitry A.; Korshunova, Galina A.; Markova, Olga V.; Ojovan, Silvia M.; Perevoshchikova, Irina V.; Pustovidko, Antonina V.; Rokitskaya, Tatyana I.; Severina, Inna I.; Simonyan, Ruben A.; Smirnova, Ekaterina A.; Sobko, Alexander A.; Sumbatyan, Natalia V.; Severin, Fedor F.; Skulachev, Vladimir P.

    2011-01-01

    A limited decrease in mitochondrial membrane potential can be beneficial for cells, especially under some pathological conditions, suggesting that mild uncouplers (protonophores) causing such an effect are promising candidates for therapeutic uses. The great majority of protonophores are weak acids capable of permeating across membranes in their neutral and anionic forms. In the present study, protonophorous activity of a series of derivatives of cationic rhodamine 19, including dodecylrhodamine (C12R1) and its conjugate with plastoquinone (SkQR1), was revealed using a variety of assays. Derivatives of rhodamine B, lacking dissociable protons, showed no protonophorous properties. In planar bilayer lipid membranes, separating two compartments differing in pH, diffusion potential of H+ ions was generated in the presence of C12R1 and SkQR1. These compounds induced pH equilibration in liposomes loaded with the pH probe pyranine. C12R1 and SkQR1 partially stimulated respiration of rat liver mitochondria in State 4 and decreased their membrane potential. Also, C12R1 partially stimulated respiration of yeast cells but, unlike the anionic protonophore FCCP, did not suppress their growth. Loss of function of mitochondrial DNA in yeast (grande-petite transformation) is known to cause a major decrease in the mitochondrial membrane potential. We found that petite yeast cells are relatively more sensitive to the anionic uncouplers than to C12R1 compared with grande cells. Together, our data suggest that rhodamine 19-based cationic protonophores are self-limiting; their uncoupling activity is maximal at high membrane potential, but the activity decreases membrane potentials, which causes partial efflux of the uncouplers from mitochondria and, hence, prevents further membrane potential decrease. PMID:21454507

  13. Mitochondrial Dysfunction and Oxidative Stress in Asthma: Implications for Mitochondria-Targeted Antioxidant Therapeutics

    PubMed Central

    Reddy, P. Hemachandra

    2011-01-01

    Asthma is a complex, inflammatory disorder characterized by airflow obstruction of variable degrees, bronchial hyper-responsiveness, and airway inflammation. Asthma is caused by environmental factors and a combination of genetic and environmental stimuli. Genetic studies have revealed that multiple loci are involved in the etiology of asthma. Recent cellular, molecular, and animal-model studies have revealed several cellular events that are involved in the progression of asthma, including: increased Th2 cytokines leading to the recruitment of inflammatory cells to the airway, and an increase in the production of reactive oxygen species and mitochondrial dysfunction in the activated inflammatory cells, leading to tissue injury in the bronchial epithelium. Further, aging and animal model studies have revealed that mitochondrial dysfunction and oxidative stress are involved and play a large role in asthma. Recent studies using experimental allergic asthmatic mouse models and peripheral cells and tissues from asthmatic humans have revealed antioxidants as promising treatments for people with asthma. This article summarizes the latest research findings on the involvement of inflammatory changes, and mitochondrial dysfunction/oxidative stress in the development and progression of asthma. This article also addresses the relationship between aging and age-related immunity in triggering asthma, the antioxidant therapeutic strategies in treating people with asthma. PMID:21461182

  14. Mitochondria-Targeted Fluorescent Probe for Imaging Hydrogen Peroxide in Living Cells.

    PubMed

    Xu, Jian; Zhang, Yan; Yu, Hui; Gao, Xudong; Shao, Shijun

    2016-01-19

    Hydrogen peroxide (H2O2), as a type of reactive oxygen species (ROS), can be endogenously produced from the mitochondrial electron transport chain in aerobic respiration and plays important roles in several physiological processes. However, the design and synthesis of fluorescent probes, which can detect mitochondrial H2O2 in living cells, still remain rare. Herein, we report the preparation of a novel cationic probe 1 (Mito-H2O2), which targets the mitochondria in living cells and is sensitive to the presence of H2O2. The probe Mito-H2O2 displays desired properties such as high specificity, "Turn-On" fluorescence response with suitable sensitivity, appreciable water solubility, and rapid response time (within 5 min). The sensing mechanism was confirmed by high-resolution mass spectroscopy analysis, and the mechanism of "Turn-On" fluorescent response was also determined using a density functional theory (DFT) calculation method. Moreover, as a biocompatible molecule, the probe Mito-H2O2 has been successfully applied for the detection of the intrinsically generated intracellular H2O2 in living cells, and the fluorescence colocalization studies indicate that the probe localizes solely in the mitochondria of HeLa cells. PMID:26695451

  15. Facilitation of Electron Transfer in the Presence of Mitochondria-Targeting Molecule SS31

    NASA Astrophysics Data System (ADS)

    Nosach, Tetiana; Ebrahim, Mark; Ren, Yuhang; Darrah, Shaun; Szeto, Hazel

    2010-03-01

    Electron transfer (ET) processes in mitochondria are very important for the production of adenosine triphosphate (ATP), the common source of the chemical energy. The inability to transfer electrons efficiently in mitochondrial ET chain plays a major role in age associated diseases, including diabetes and cancer. In this work, we used the time dependent absorption and photoluminescence spectroscopy to study the electron transfer kinetics along the ET chain of mitochondria. Our spectroscopic results suggest that SS31, a small peptide molecule targeting to the mitochondrial inner membrane, can facilitate electron transfer and increase ATP production. We show that SS31 targets cytochrome c to both increase the availability of state and also potentially reduce the energy barrier required to reduce cytochrome c.

  16. Triple-responsive Expansile Nanogel for Tumor and Mitochondria Targeted Photosensitizer Delivery

    PubMed Central

    He, Huacheng; Cattran, Alexander W.; Nguyen, Tu; Nieminen, Anna-Liisa

    2014-01-01

    A pH, thermal, and redox potential triple-responsive expansile nanogel system (TRN), which swells at acidic pH, temperature higher than its transition temperature, and reducing environment, has been developed. TRN quickly expands from 108 nm to over 1200 nm (in diameter), achieving more than 1000-fold size enlargement (in volume), within 2 h in a reducing environment at body temperature. Sigma-2 receptor targeting-ligand functionalized TRN can effectively target head and neck tumor, and help Pc 4 targeting mitochondria inside cancer cells to achieve enhanced photodynamic therapy efficacy. PMID:25154666

  17. A graphene oxide based smart drug delivery system for tumor mitochondria-targeting photodynamic therapy.

    PubMed

    Wei, Yanchun; Zhou, Feifan; Zhang, Da; Chen, Qun; Xing, Da

    2016-02-14

    Subcellular organelles play critical roles in cell survival. In this work, a novel photodynamic therapy (PDT) drug delivery and phototoxicity on/off nano-system based on graphene oxide (NGO) as the carrier is developed to implement subcellular targeting and attacking. To construct the nanodrug (PPa-NGO-mAb), NGO is modified with the integrin αvβ3 monoclonal antibody (mAb) for tumor targeting. Pyropheophorbide-a (PPa) conjugated with polyethylene-glycol is used to cover the surface of the NGO to induce phototoxicity. Polyethylene-glycol phospholipid is loaded to enhance water solubility. The results show that the phototoxicity of PPa on NGO can be switched on and off in organic and aqueous environments, respectively. The PPa-NGO-mAb assembly is able to effectively target the αvβ3-positive tumor cells with surface ligand and receptor recognition; once endocytosized by the cells, they are observed escaping from lysosomes and subsequently transferring to the mitochondria. In the mitochondria, the 'on' state PPa-NGO-mAb performs its effective phototoxicity to kill cells. The biological and physical dual selections and on/off control of PPa-NGO-mAb significantly enhance mitochondria-mediated apoptosis of PDT. This smart system offers a potential alternative to drug delivery systems for cancer therapy. PMID:26799192

  18. Amelioration of Radiation-Induced Oral Cavity Mucositis and Distant Bone Marrow Suppression in Fanconi Anemia Fancd2−/− (FVB/N) Mice by Intraoral GS-Nitroxide JP4-039

    PubMed Central

    Berhane, Hebist; Shinde, Ashwin; Kalash, Ronny; Xu, Karen; Epperly, Michael W.; Goff, Julie; Franicola, Darcy; Zhang, Xichen; Dixon, Tracy; Shields, Donna; Wang, Hong; Wipf, Peter; Li, Song; Gao, Xiang; Greenberger, Joel S.

    2014-01-01

    The altered DNA damage response pathway in patients with Fanconi anemia (FA) may increase the toxicity of clinical radiotherapy. We quantitated oral cavity mucositis in irradiated Fanconi anemia Fancd2−/− mice, comparing this to Fancd2+/− and Fancd2+/+ mice, and we measured distant bone marrow suppression and quantitated the effect of the intraoral radioprotector GS-nitroxide, JP4-039 in F15 emulsion. We found that FA mice were more susceptible to radiation injury and that protection from radiation injury by JP4-039/F15 was observed at all radiation doses. Adult 10–12-week-old mice, of FVB/N background Fancd2−/−, Fancd2+/− and Fancd2+/+ were head and neck irradiated with 24, 26, 28 or 30 Gy (large fraction sizes typical of stereotactic radiosurgery treatments) and subgroups received intraoral JP4-039 (0.4 mg/mouse in 100 μL F15 liposome emulsion) preirradiation. On day 2 or 5 postirradiation, mice were sacrificed, tongue tissue and femur marrow were excised for quantitation of radiation-induced stress response, inflammatory and antioxidant gene transcripts, histopathology and assay for femur marrow colony-forming hematopoietic progenitor cells. Fancd2−/− mice had a significantly higher percentage of oral mucosal ulceration at day 5 after 26 Gy irradiation (59.4 ± 8.2%) compared to control Fancd2+/+ mice (21.7 ± 2.9%, P = 0.0063). After 24 Gy irradiation, Fancd2−/− mice had a higher oral cavity percentage of tongue ulceration compared to Fancd2+/+ mice irradiated with higher doses of 26 Gy (P = 0.0123). Baseline and postirradiation oral cavity gene transcripts were altered in Fancd2−/− mice compared to Fancd2+/+ controls. Fancd2−/− mice had decreased baseline femur marrow CFU-GM, BFUe and CFU-GEMM, which further decreased after 24 or 26 Gy head and neck irradiation. These changes were not seen in head- and neck-irradiated Fancd2+/+ mice. In radiosensitive Fancd2−/− mice, biomarkers of both local oral cavity and distant marrow

  19. EPR Line Shifts and Line Shape Changes Due to Heisenberg Spin Exchange and Dipole-Dipole Interactions of Nitroxide Free Radicals in Liquids: 8. Further Experimental and Theoretical Efforts to Separate the Effects of the Two Interactions

    PubMed Central

    Peric, Mirna; Bales, Barney L; Peric, Miroslav

    2012-01-01

    The work in Part 6 of this series (J. Phys. Chem. A 2009, 113, 4930), addressing the task of separating the effects of Heisenberg spin exchange (HSE) and dipole-dipole (DD) interactions on EPR spectra of nitroxide spin probes in solution, is extended experimentally and theoretically. Comprehensive measurements of perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl (pDT) in squalane, a viscous alkane, paying special attention to lower temperatures and lower concentrations were carried out in an attempt to focus on DD, the lesser understood of the two interactions. Theoretically, the analysis has been extended to include the recent comprehensive treatment by Salikhov (Appl. Magn. Reson. 2010, 38, 237). In dilute solutions, both interactions (1) introduce a dispersion component, (2) broaden the lines, and (3) shift the lines. DD introduces a dispersion component proportional to the concentration and of opposite sign to that of HSE. Equations relating the EPR spectral parameters to the rate constants due HSE and DD have been derived. By employing non-linear least-squares fitting of theoretical spectra to a simple analytical function and the proposed equations, the contributions of the two interactions to items (1)–(3) may be quantified and compared with the same parameters obtained by fitting experimental spectra. This comparison supports the theory in its broad predictions, however, at low temperatures, the DD contribution to the experimental dispersion amplitude does not increase linearly with concentration. We are unable to deduce if this discrepancy is due to inadequate analysis of the experimental data or an incomplete theory. A key new aspect of the more comprehensive theory is that there is enough information in the experimental spectra to find items (1)–(3) due to both interactions; however, in principle, appeal must be made to a model of molecular diffusion to separate the two. The permanent diffusion model is used to illustrate the separation in this

  20. Electron paramagnetic resonance line shifts and line shape changes due to heisenberg spin exchange and dipole-dipole interactions of nitroxide free radicals in liquids 8. Further experimental and theoretical efforts to separate the effects of the two interactions.

    PubMed

    Peric, Mirna; Bales, Barney L; Peric, Miroslav

    2012-03-22

    The work in part 6 of this series (J. Phys. Chem. A 2009, 113, 4930), addressing the task of separating the effects of Heisenberg spin exchange (HSE) and dipole-dipole interactions (DD) on electron paramagnetic resonance (EPR) spectra of nitroxide spin probes in solution, is extended experimentally and theoretically. Comprehensive measurements of perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl (pDT) in squalane, a viscous alkane, paying special attention to lower temperatures and lower concentrations, were carried out in an attempt to focus on DD, the lesser understood of the two interactions. Theoretically, the analysis has been extended to include the recent comprehensive treatment by Salikhov (Appl. Magn. Reson. 2010, 38, 237). In dilute solutions, both interactions (1) introduce a dispersion component, (2) broaden the lines, and (3) shift the lines. DD introduces a dispersion component proportional to the concentration and of opposite sign to that of HSE. Equations relating the EPR spectral parameters to the rate constants due to HSE and DD have been derived. By employing nonlinear least-squares fitting of theoretical spectra to a simple analytical function and the proposed equations, the contributions of the two interactions to items 1-3 may be quantified and compared with the same parameters obtained by fitting experimental spectra. This comparison supports the theory in its broad predictions; however, at low temperatures, the DD contribution to the experimental dispersion amplitude does not increase linearly with concentration. We are unable to deduce whether this discrepancy is due to inadequate analysis of the experimental data or an incomplete theory. A new key aspect of the more comprehensive theory is that there is enough information in the experimental spectra to find items 1-3 due to both interactions; however, in principle, appeal must be made to a model of molecular diffusion to separate the two. The permanent diffusion model is used to

  1. Amelioration of radiation-induced oral cavity mucositis and distant bone marrow suppression in fanconi anemia Fancd2-/- (FVB/N) mice by intraoral GS-nitroxide JP4-039.

    PubMed

    Berhane, Hebist; Shinde, Ashwin; Kalash, Ronny; Xu, Karen; Epperly, Michael W; Goff, Julie; Franicola, Darcy; Zhang, Xichen; Dixon, Tracy; Shields, Donna; Wang, Hong; Wipf, Peter; Li, Song; Gao, Xiang; Greenberger, Joel S

    2014-07-01

    The altered DNA damage response pathway in patients with Fanconi anemia (FA) may increase the toxicity of clinical radiotherapy. We quantitated oral cavity mucositis in irradiated Fanconi anemia Fancd2(-/-) mice, comparing this to Fancd2(+/-) and Fancd2(+/+) mice, and we measured distant bone marrow suppression and quantitated the effect of the intraoral radioprotector GS-nitroxide, JP4-039 in F15 emulsion. We found that FA mice were more susceptible to radiation injury and that protection from radiation injury by JP4-039/F15 was observed at all radiation doses. Adult 10-12-week-old mice, of FVB/N background Fancd2(-/-), Fancd2(+/-) and Fancd2(+/+) were head and neck irradiated with 24, 26, 28 or 30 Gy (large fraction sizes typical of stereotactic radiosurgery treatments) and subgroups received intraoral JP4-039 (0.4 mg/mouse in 100 μL F15 liposome emulsion) preirradiation. On day 2 or 5 postirradiation, mice were sacrificed, tongue tissue and femur marrow were excised for quantitation of radiation-induced stress response, inflammatory and antioxidant gene transcripts, histopathology and assay for femur marrow colony-forming hematopoietic progenitor cells. Fancd2(-/-) mice had a significantly higher percentage of oral mucosal ulceration at day 5 after 26 Gy irradiation (59.4 ± 8.2%) compared to control Fancd2(+/+) mice (21.7 ± 2.9%, P = 0.0063). After 24 Gy irradiation, Fancd2(-/-) mice had a higher oral cavity percentage of tongue ulceration compared to Fancd2(+/+) mice irradiated with higher doses of 26 Gy (P = 0.0123). Baseline and postirradiation oral cavity gene transcripts were altered in Fancd2(-/-) mice compared to Fancd2(+/+) controls. Fancd2(-/-) mice had decreased baseline femur marrow CFU-GM, BFUe and CFU-GEMM, which further decreased after 24 or 26 Gy head and neck irradiation. These changes were not seen in head- and neck-irradiated Fancd2(+/+) mice. In radiosensitive Fancd2(-/-) mice, biomarkers of both local oral cavity and distant marrow

  2. Enhanced cytotoxicity to cancer cells by mitochondria-targeting MWCNTs containing platinum(IV) prodrug of cisplatin.

    PubMed

    Yoong, Sia Lee; Wong, Bin Sheng; Zhou, Qi Ling; Chin, Chee Fei; Li, Jian; Venkatesan, Thirumalai; Ho, Han Kiat; Yu, Victor; Ang, Wee Han; Pastorin, Giorgia

    2014-01-01

    Among the arsenal of nano-materials, carbon nanotubes (CNTs) are becoming more prominent due to favorable attributes including their unique shape, which promotes cellular-uptake, and large aspect-ratio that facilitates functionalization of bioactive molecules on their surface. In this study, multi-walled carbon nanotubes (MWCNTs) were functionalized with either mitochondrial-targeting fluorescent rhodamine-110 (MWCNT-Rho) or non-targeting fluorescein (MWCNT-Fluo). Despite structural similarities, MWCNT-Rho associated well with mitochondria (ca. 80% co-localization) in contrast to MWCNT-Fluo, which was poorly localized (ca. 21% co-localization). Additionally, MWCNT-Rho entrapping platinum(IV) pro-drug of cisplatin (PtBz) displayed enhanced potency (IC50 = 0.34 ± 0.07 μM) compared to a construct based on MWCNT-Fluo (IC50 ≥ 2.64 μM). Concurrently, preliminary in vitro toxicity evaluation revealed that empty MWCNT-Rho neither decreased cell viability significantly nor interfered with mitochondrial membrane-potential, while seemingly being partially expelled from cells. Due to its targeting capability and apparent lack of cytotoxicity, MWCNT-Rho complex was used to co-encapsulate PtBz and a chemo-potentiator, 3-bromopyruvate (BP), and the resulting MWCNT-Rho(PtBz+BP) construct demonstrated superior efficacy over PtBz free drug in several cancer cell lines tested. Importantly, a 2-fold decrease in mitochondrial potential was observed, implying that mitochondrial targeting of compounds indeed incurred additional intended damage to mitochondria. PMID:24140044

  3. Mitochondria-Targeting Chromogenic and Fluorescence Turn-On Probe for the Selective Detection of Cysteine by Caged Oxazolidinoindocyanine.

    PubMed

    Kim, Chae Yeong; Kang, Hyo Jin; Chung, Sang J; Kim, Hyun-Kyung; Na, Sang-Yun; Kim, Hae-Jo

    2016-07-19

    We report a chromogenic and fluorescence turn-on probe based on crotonoyl ester-functionalized oxazolidinoindole for the selective detection of cysteine in neutral buffer. The probe rapidly formed indocyanophenolate through the Michael addition and a subsequent cyclization reaction of cysteine, inducing both a dramatic bathochromic shift (>130 nm) and a large fluorescence turn-on response (F/F0 12) in the UV-vis and fluorescence spectra and affording a micromolar limit of detection (LOD = 5.0 μM) of cysteine in HEPES buffer. When cysteine was added, the probe exhibited a dual optical change with strong green fluorescence and dramatic red color by the oxazolidinoindole-to-hydroxyethylindolium transformation. Further cellular application of the probe was successfully performed for the mitochondrial imaging of HeLa cells. PMID:27367584

  4. Bioprotective carnitinoids: lipoic acid, butyrate, and mitochondria-targeting to treat radiation injury: mitochondrial drugs come of age.

    PubMed

    Steliou, Kosta; Faller, Douglas V; Pinkert, Carl A; Irwin, Michael H; Moos, Walter H

    2015-06-01

    Preclinical Research Given nuclear-power-plant incidents such as the 2011 Japanese Fukushima-Daiichi disaster, an urgent need for effective medicines to protect against and treat the harmful biological effects of radiation is evident. To address such a challenge, we describe potential strategies herein including mitochondrial and epigenetic-driven methods using lipoic and butyric acid ester conjugates of carnitine. The antioxidant and other therapeutically beneficial properties of this class of agents may protect against ionizing radiation and resultant mitochondrial dysfunction. Recent studies of the compounds described herein reveal the potential-although further research and development is required to prove the effectiveness of this approach-to provide field-ready radiation-protective drugs. PMID:26109467

  5. Novel mitochondria-targeted heat-soluble proteins identified in the anhydrobiotic Tardigrade improve osmotic tolerance of human cells.

    PubMed

    Tanaka, Sae; Tanaka, Junko; Miwa, Yoshihiro; Horikawa, Daiki D; Katayama, Toshiaki; Arakawa, Kazuharu; Toyoda, Atsushi; Kubo, Takeo; Kunieda, Takekazu

    2015-01-01

    Tardigrades are able to tolerate almost complete dehydration through transition to a metabolically inactive state, called "anhydrobiosis". Late Embryogenesis Abundant (LEA) proteins are heat-soluble proteins involved in the desiccation tolerance of many anhydrobiotic organisms. Tardigrades, Ramazzottius varieornatus, however, express predominantly tardigrade-unique heat-soluble proteins: CAHS (Cytoplasmic Abundant Heat Soluble) and SAHS (Secretory Abundant Heat Soluble) proteins, which are secreted or localized in most intracellular compartments, except the mitochondria. Although mitochondrial integrity is crucial to ensure cellular survival, protective molecules for mitochondria have remained elusive. Here, we identified two novel mitochondrial heat-soluble proteins, RvLEAM and MAHS (Mitochondrial Abundant Heat Soluble), as potent mitochondrial protectants from Ramazzottius varieornatus. RvLEAM is a group3 LEA protein and immunohistochemistry confirmed its mitochondrial localization in tardigrade cells. MAHS-green fluorescent protein fusion protein localized in human mitochondria and was heat-soluble in vitro, though no sequence similarity with other known proteins was found, and one region was conserved among tardigrades. Furthermore, we demonstrated that RvLEAM protein as well as MAHS protein improved the hyperosmotic tolerance of human cells. The findings of the present study revealed that tardigrade mitochondria contain at least two types of heat-soluble proteins that might have protective roles in water-deficient environments. PMID:25675104

  6. Novel Mitochondria-Targeted Heat-Soluble Proteins Identified in the Anhydrobiotic Tardigrade Improve Osmotic Tolerance of Human Cells

    PubMed Central

    Tanaka, Sae; Tanaka, Junko; Miwa, Yoshihiro; Horikawa, Daiki D.; Katayama, Toshiaki; Arakawa, Kazuharu; Toyoda, Atsushi; Kubo, Takeo; Kunieda, Takekazu

    2015-01-01

    Tardigrades are able to tolerate almost complete dehydration through transition to a metabolically inactive state, called “anhydrobiosis”. Late Embryogenesis Abundant (LEA) proteins are heat-soluble proteins involved in the desiccation tolerance of many anhydrobiotic organisms. Tardigrades, Ramazzottius varieornatus, however, express predominantly tardigrade-unique heat-soluble proteins: CAHS (Cytoplasmic Abundant Heat Soluble) and SAHS (Secretory Abundant Heat Soluble) proteins, which are secreted or localized in most intracellular compartments, except the mitochondria. Although mitochondrial integrity is crucial to ensure cellular survival, protective molecules for mitochondria have remained elusive. Here, we identified two novel mitochondrial heat-soluble proteins, RvLEAM and MAHS (Mitochondrial Abundant Heat Soluble), as potent mitochondrial protectants from Ramazzottius varieornatus. RvLEAM is a group3 LEA protein and immunohistochemistry confirmed its mitochondrial localization in tardigrade cells. MAHS-green fluorescent protein fusion protein localized in human mitochondria and was heat-soluble in vitro, though no sequence similarity with other known proteins was found, and one region was conserved among tardigrades. Furthermore, we demonstrated that RvLEAM protein as well as MAHS protein improved the hyperosmotic tolerance of human cells. The findings of the present study revealed that tardigrade mitochondria contain at least two types of heat-soluble proteins that might have protective roles in water-deficient environments. PMID:25675104

  7. Dichloroacetate, a selective mitochondria-targeting drug for oral squamous cell carcinoma: a metabolic perspective of treatment

    PubMed Central

    Ruggieri, Vitalba; Agriesti, Francesca; Scrima, Rosella; Laurenzana, Ilaria; Perrone, Donatella; Tataranni, Tiziana; Mazzoccoli, Carmela; Lo Muzio, Lorenzo; Capitanio, Nazzareno; Piccoli, Claudia

    2015-01-01

    Reprogramming of metabolism is a well-established property of cancer cells that is receiving growing attention as potential therapeutic target. Oral squamous cell carcinomas (OSCC) are aggressive and drugs-resistant human tumours displaying wide metabolic heterogeneity depending on their malignant genotype and stage of development. Dichloroacetate (DCA) is a specific inhibitor of the PDH-regulator PDK proved to foster mitochondrial oxidation of pyruvate. In this study we tested comparatively the effects of DCA on three different OSCC-derived cell lines, HSC-2, HSC-3, PE15. Characterization of the three cell lines unveiled for HSC-2 and HSC-3 a glycolysis-reliant metabolism whereas PE15 accomplished an efficient mitochondrial oxidative phosphorylation. DCA treatment of the three OSCC cell lines, at pharmacological concentrations, resulted in stimulation of the respiratory activity and caused a remarkably distinctive pro-apoptotic/cytostatic effect on HSC-2 and HSC-3. This was accompanied with a large remodeling of the mitochondrial network, never documented before, leading to organelle fragmentation and with enhanced production of reactive oxygen species. The data here presented indicate that the therapeutic efficacy of DCA may depend on the specific metabolic profile adopted by the cancer cells with those exhibiting a deficient mitochondrial oxidative phosphorylation resulting more sensitive to the drug treatment. PMID:25544754

  8. Mitochondria-targeted Triphenylamine Derivatives Activatable by Two-Photon Excitation for Triggering and Imaging Cell Apoptosis

    PubMed Central

    Chennoufi, Rahima; Bougherara, Houcine; Gagey-Eilstein, Nathalie; Dumat, Blaise; Henry, Etienne; Subra, Frédéric; Bury-Moné, Stéphanie; Mahuteau-Betzer, Florence; Tauc, Patrick; Teulade-Fichou, Marie-Paule; Deprez, Eric

    2016-01-01

    Photodynamic therapy (PDT) leads to cell death by using a combination of a photosensitizer and an external light source for the production of lethal doses of reactive oxygen species (ROS). Since a major limitation of PDT is the poor penetration of UV-visible light in tissues, there is a strong need for organic compounds whose activation is compatible with near-infrared excitation. Triphenylamines (TPAs) are fluorescent compounds, recently shown to efficiently trigger cell death upon visible light irradiation (458 nm), however outside the so-called optical/therapeutic window. Here, we report that TPAs target cytosolic organelles of living cells, mainly mitochondria, triggering a fast apoptosis upon two-photon excitation, thanks to their large two-photon absorption cross-sections in the 760–860 nm range. Direct ROS imaging in the cell context upon multiphoton excitation of TPA and three-color flow cytometric analysis showing phosphatidylserine externalization indicate that TPA photoactivation is primarily related to the mitochondrial apoptotic pathway via ROS production, although significant differences in the time courses of cell death-related events were observed, depending on the compound. TPAs represent a new class of water-soluble organic photosensitizers compatible with direct two-photon excitation, enabling simultaneous multiphoton fluorescence imaging of cell death since a concomitant subcellular TPA re-distribution occurs in apoptotic cells. PMID:26947258

  9. Functional ionic liquids induced the formation of mitochondria targeted fluorescent core-shell ellipsoidal nanoparticles with anticancer properties.

    PubMed

    Yang, Xia; Chen, Qiu-Yun; Li, Xiang; Gao, Jing

    2012-10-01

    A functional ionic liquid (IL) (IL=4-acetyl-N-butyl pyridinium hexafluorophosphate) was synthesized and conjugated with low toxicity of nanospheres (RBITC@SiO(2)), forming a new kind of fluorescent core-shell ellipsoidal RBITC@SiO(2)-IL nanoparticle. In vitro assay results indicate that particle shape plays an important role in cellular interactions with NPs. Furthermore, the positively charged ellipsoidal RBITC@SiO(2)-IL nanoparticles can enter into HeLa cells and induce the cells to condense, split and decrease on the oxygen consumption. The enhanced cell image and decrease of mitochondria potential indicate that the ellipsoidal RBITC@SiO(2)-IL nanoparticles could be uptaken by HeLa cells through mitochondria involved path. Experimental results give us a new path to design nano-medicines through ionic liquid modified silica nanoparticles to target mitochondria. PMID:22659209

  10. A mitochondria-targeted turn-on fluorescent probe for the detection of glutathione in living cells.

    PubMed

    Zhang, Jian; Bao, Xiaolong; Zhou, Junliang; Peng, Fangfang; Ren, Hang; Dong, Xiaochun; Zhao, Weili

    2016-11-15

    A novel turn-on red fluorescent BODIPY-based probe (Probe 1) for the detection of glutathione was developed. Such a probe carries a para-dinitrophenoxy benzyl pyridinium moiety at the meso position of a BODIPY dye as self-immolative linker. Probe 1 responds selectively to glutathione with the detection limit of 109nM over other amino acids, common metal ions, reactive oxygen species, reactive nitrogen species, and reactive sulfur species. A novel electrostatic interaction to modulate the SNAr attack of glutathione was believed to play significant role for the observed selective response to glutathione. The cleavage of dinitrophenyl ether by glutathione leads to the production of para-hydroxybenzyl moiety which is able to self-immolate through an intramolecular 1,4-elimination reaction to release the fluorescent BODIPY dye. The low toxic probe has been successfully used to detect mitochondrial glutathione in living cells. PMID:27176914

  11. Mitochondria-targeted drugs enhance Nlrp3 inflammasome-dependent IL-1β secretion in association with alterations on cellular redox and energy status

    PubMed Central

    Jabaut, Joshua; Ather, Jennifer L.; Taracanova, Alexandra; Poynter, Matthew E.; Ckless, Karina

    2013-01-01

    The Nlrp3 inflammasome is activated in response to an array of environmental and endogenous molecules leading to caspase-1-dependent IL-1β processing and secretion by myeloid cells. Several identified Nlrp3 inflammasome activators also trigger reactive oxygen species (ROS) production. However, the initial concept that NADPH oxidases are the primary source of ROS production during inflammasome activation is becoming less accepted. Therefore, the importance of mitochondrial-derived ROS has been recently explored. In this study, we explore the impact of mitochondria dysfunction and ROS production on Nlrp3 inflammasome stimulation and IL-1β secretion induced by serum amyloid A (SAA) in primary mouse peritoneal macrophages. To induce mitochondrial dysfunction, we utilized antimycin A, which blocks electron flow at complex III, and carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), a mitochondrial oxidative phosphorylation uncoupler. We also utilized a superoxide dismutase (SOD) mimetic, MnTBAP, which targets the mitochondria, as well as the broad spectrum antioxidants DPI (diphenyleneiodonium chloride) and ebselen. Our findings demonstrate that SAA alone induces mitochondrial ROS in a time-dependent manner. We observed that MnTBAP and ebselen blocked IL-1β secretion caused by SAA only when added prior to stimulation, and DPI augmented IL-1β secretion. Surprisingly, these effects were not directly related to intracellular or mitochondrial ROS levels. We also found that mitochondrial-targeted drugs increased IL-1β secretion regardless of their impact on mitochondrial function and ROS levels, suggesting that mitochondrial ROS-dependent and -independent mechanisms play a role in the Nlrp3 inflammasome - IL-1β secretion axis in SAA-stimulated cells. Finally, we found that FCCP significantly sustained the association of the Nlrp3 inflammasome complex, which could explain the most robust effect among the drugs tested in enhancing IL-1β secretion in SAA-treated cells. Overall, our data suggest that the Nlrp3 inflammasome - IL-1β secretion axis is a very highly-regulated inflammatory pathway that is not only susceptible to changes in mitochondrial or intracellular ROS, but also to changes in overall mitochondrial function. PMID:23376234

  12. Design and synthesis of a MAO-B-selectively activated prodrug based on MPTP: a mitochondria-targeting chemotherapeutic agent for treatment of human malignant gliomas.

    PubMed

    Sharpe, Martyn A; Han, Junyan; Baskin, Alexandra M; Baskin, David S

    2015-04-01

    Malignant gliomas, including glioblastomas, are extremely difficult to treat. The median survival for glioblastoma patients with optimal therapeutic intervention is 15 months. We developed a novel MAO-B-selectively activated prodrug, N,N-bis(2-chloroethyl)-2-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)propanamide (MP-MUS), for the treatment of gliomas based on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The design of neutral MP-MUS involved the use of a seeker molecule capable of binding to mitochondrial MAO-B, which is up-regulated ≥fourfold in glioma cells. Once the binding occurs, MP-MUS is converted into a positively charged moiety, P(+) -MUS, which accumulates inside mitochondria at a theoretical maximal value of 1000:1 gradient. The LD50 of MP-MUS against glioma cells is 75 μM, which is two- to threefold more potent than temozolomide, a primary drug for gliomas. Importantly, MP-MUS was found to be selectively toxic toward glioma cells. In the concentration range of 150-180 μM MP-MUS killed 90-95 % of glioma cells, but stimulated the growth of normal human astrocytes. Moreover, maturation of MP-MUS is highly dependent on MAO-B, and inhibition of MAO-B activity with selegiline protected human glioma cells from apoptosis. PMID:25677185

  13. The Immature Fiber Mutant Phenotype of Cotton (Gossypium hirsutum) Is Linked to a 22-bp Frame-Shift Deletion in a Mitochondria Targeted Pentatricopeptide Repeat Gene

    PubMed Central

    Thyssen, Gregory N.; Fang, David D.; Zeng, Linghe; Song, Xianliang; Delhom, Christopher D.; Condon, Tracy L.; Li, Ping; Kim, Hee Jin

    2016-01-01

    Cotton seed trichomes are the most important source of natural fibers globally. The major fiber thickness properties influence the price of the raw material, and the quality of the finished product. The recessive immature fiber (im) gene reduces the degree of fiber cell wall thickening by a process that was previously shown to involve mitochondrial function in allotetraploid Gossypium hirsutum. Here, we present the fine genetic mapping of the im locus, gene expression analysis of annotated proteins near the locus, and association analysis of the linked markers. Mapping-by-sequencing identified a 22-bp deletion in a pentatricopeptide repeat (PPR) gene that is completely linked to the immature fiber phenotype in 2837 F2 plants, and is absent from all 163 cultivated varieties tested, although other closely linked marker polymorphisms are prevalent in the diversity panel. This frame-shift mutation results in a transcript with two long open reading frames: one containing the N-terminal transit peptide that targets mitochondria, the other containing only the RNA-binding PPR domains, suggesting that a functional PPR protein cannot be targeted to mitochondria in the im mutant. Taken together, these results suggest that PPR gene Gh_A03G0489 is involved in the cotton fiber wall thickening process, and is a promising candidate gene at the im locus. Our findings expand our understanding of the molecular mechanisms that modulate cotton fiber fineness and maturity, and may facilitate the development of cotton varieties with superior fiber attributes. PMID:27172184

  14. The novel mitochondria-targeted antioxidant SkQ1 modulates angiogenesis and inflammatory micromilieu in a murine orthotopic model of pancreatic cancer.

    PubMed

    Bazhin, Alexandr V; Yang, Yuhui; D'Haese, Jan G; Werner, Jens; Philippov, Pavel P; Karakhanova, Svetlana

    2016-07-01

    Our understanding in the last few years about reactive oxygen species (ROS) has changed from being harmful substances to crucial intra- and extracellular messengers as well as important regulators controlling a wide spectrum of signaling pathways, including those in cancer immunology. Therefore, these multiple essential roles of ROS and especially of mitochondria-derived ROS in malignant transformation and cancer progression make them a promising target for anticancer therapy. Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers in the world. A link between ROS, antioxidants and the PDAC development and progression has been recently established. Therefore, usage of specific highly efficient antioxidants could bring an option for treatment and/or prevention of PDAC. 10-(6'-plastoquinonyl) decyltriphenylphosphonium (SkQ1) is a new antioxidant with the highest mitochondrion membrane penetrating ability and potent antioxidant capability. In this work, we investigated an impact of SkQ1 on tumor angiogenesis, immune micromilieu, and oncological parameters in the orthotopic Panc02 murine model of PDAC. We showed that in this model SkQ1 treatment leads to the elevation of pro-angiogenic factors and to building of mainly an anti-inflammatory cytokine milieu. On the cellular level we showed an increase in a percentage of memory T cells and a decrease in frequency on natural killer T (NKT) cells. At the same time, SkQ1 was ineffective in the improvement of oncological parameters of PDAC-bearing mice. New studies are needed to clarify the absence of therapeutic and/or prophylactic benefits of the antioxidant. PMID:26914404

  15. The Immature Fiber Mutant Phenotype of Cotton (Gossypium hirsutum) Is Linked to a 22-bp Frame-Shift Deletion in a Mitochondria Targeted Pentatricopeptide Repeat Gene.

    PubMed

    Thyssen, Gregory N; Fang, David D; Zeng, Linghe; Song, Xianliang; Delhom, Christopher D; Condon, Tracy L; Li, Ping; Kim, Hee Jin

    2016-01-01

    Cotton seed trichomes are the most important source of natural fibers globally. The major fiber thickness properties influence the price of the raw material, and the quality of the finished product. The recessive immature fiber (im) gene reduces the degree of fiber cell wall thickening by a process that was previously shown to involve mitochondrial function in allotetraploid Gossypium hirsutum Here, we present the fine genetic mapping of the im locus, gene expression analysis of annotated proteins near the locus, and association analysis of the linked markers. Mapping-by-sequencing identified a 22-bp deletion in a pentatricopeptide repeat (PPR) gene that is completely linked to the immature fiber phenotype in 2837 F2 plants, and is absent from all 163 cultivated varieties tested, although other closely linked marker polymorphisms are prevalent in the diversity panel. This frame-shift mutation results in a transcript with two long open reading frames: one containing the N-terminal transit peptide that targets mitochondria, the other containing only the RNA-binding PPR domains, suggesting that a functional PPR protein cannot be targeted to mitochondria in the im mutant. Taken together, these results suggest that PPR gene Gh_A03G0489 is involved in the cotton fiber wall thickening process, and is a promising candidate gene at the im locus. Our findings expand our understanding of the molecular mechanisms that modulate cotton fiber fineness and maturity, and may facilitate the development of cotton varieties with superior fiber attributes. PMID:27172184

  16. The Immature Fiber Mutant Phenotype of Cotton (Gossypium hirsutum) is Linked to a 22-bp Frame-shift Deletion in a Mitochondria Targeted Pentatricopeptide Repeat Gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton seed trichomes are the globally most important source of natural fibers. The major fiber thickness properties influence the price of the raw material and the quality of the finished product. The recessive immature fiber (im) gene reduces the degree of fiber cell wall thickening by a process...

  17. Electron paramagnetic resonance of nitroxide-doped magnetic fluids

    NASA Astrophysics Data System (ADS)

    Morais, P. C.; Alonso, A.; Silva, O.; Buske, N.

    2002-11-01

    Electron paramagnetic resonance was used to investigate surface-coated magnetite-based magnetic fluids doped with TEMPOL. Two magnetic fluid samples, having magnetite nanoparticles with average diameter of 94 Å and coated with different coating layers (lauric acid plus ethoxylated polyalcohol in one case and oleoylsarcosine in the other case), were doped with TEMPOL (6 mM and pH 7.4) and investigated as a function of the nanoparticle concentration. The resonance field and the resonance linewidth both scale linearly with the nanoparticle concentration.

  18. Synthesis of triphenylphosphonium phospholipid conjugates for the preparation of mitochondriotropic liposomes.

    PubMed

    Benien, Parul; Benein, Parul; Almuteri, Mohammed A; Mehanna, Ahmed S; D'Souza, Gerard G M

    2015-01-01

    Surface modification of liposomes with a ligand is facilitated by the conjugation of the ligand to a hydrophobic molecule that serves to anchor the ligand to the liposomal bilayer. We describe here a simple protocol to conjugate a triphenylphosphonium group to several commercially available functionalized phospholipids. The resulting triphenylphosphonium conjugated lipids can be used to prepare liposomes that preferentially associate with mitochondria when exposed to live mammalian cells in culture. PMID:25634266

  19. AP39, a Mitochondria-Targeted Hydrogen Sulfide Donor, Supports Cellular Bioenergetics and Protects against Alzheimer's Disease by Preserving Mitochondrial Function in APP/PS1 Mice and Neurons.

    PubMed

    Zhao, Feng-Li; Fang, Fang; Qiao, Pei-feng; Yan, Ning; Gao, Dan; Yan, Yong

    2016-01-01

    Increasing evidence suggests that mitochondrial functions are altered in AD and play an important role in AD pathogenesis. It has been established that H2S homeostasis is balanced in AD. The emerging mitochondrial roles of H2S include antioxidation, antiapoptosis, and the modulation of cellular bioenergetics. Here, using primary neurons from the well-characterized APP/PS1 transgenic mouse model, we studied the effects of AP39 (a newly synthesized mitochondrially targeted H2S donor) on mitochondrial function. AP39 increased intracellular H2S levels, mainly in mitochondrial regions. AP39 exerted dose-dependent effects on mitochondrial activity in APP/PS1 neurons, including increased cellular bioenergy metabolism and cell viability at low concentrations (25-100 nM) and decreased energy production and cell viability at a high concentration (250 nM). Furthermore, AP39 (100 nM) increased ATP levels, protected mitochondrial DNA, and decreased ROS generation. AP39 regulated mitochondrial dynamics, shifting from fission toward fusion. After 6 weeks, AP39 administration to APP/PS1 mice significantly ameliorated their spatial memory deficits in the Morris water maze and NORT and reduced Aβ deposition in their brains. Additionally, AP39 inhibited brain atrophy in APP/PS1 mice. Based on these results, AP39 was proposed as a promising drug candidate for AD treatment, and its anti-AD mechanism may involve protection against mitochondrial damage. PMID:27057285

  20. AP39, a Mitochondria-Targeted Hydrogen Sulfide Donor, Supports Cellular Bioenergetics and Protects against Alzheimer's Disease by Preserving Mitochondrial Function in APP/PS1 Mice and Neurons

    PubMed Central

    Zhao, Feng-li; Fang, Fang; Qiao, Pei-feng; Yan, Ning; Gao, Dan; Yan, Yong

    2016-01-01

    Increasing evidence suggests that mitochondrial functions are altered in AD and play an important role in AD pathogenesis. It has been established that H2S homeostasis is balanced in AD. The emerging mitochondrial roles of H2S include antioxidation, antiapoptosis, and the modulation of cellular bioenergetics. Here, using primary neurons from the well-characterized APP/PS1 transgenic mouse model, we studied the effects of AP39 (a newly synthesized mitochondrially targeted H2S donor) on mitochondrial function. AP39 increased intracellular H2S levels, mainly in mitochondrial regions. AP39 exerted dose-dependent effects on mitochondrial activity in APP/PS1 neurons, including increased cellular bioenergy metabolism and cell viability at low concentrations (25–100 nM) and decreased energy production and cell viability at a high concentration (250 nM). Furthermore, AP39 (100 nM) increased ATP levels, protected mitochondrial DNA, and decreased ROS generation. AP39 regulated mitochondrial dynamics, shifting from fission toward fusion. After 6 weeks, AP39 administration to APP/PS1 mice significantly ameliorated their spatial memory deficits in the Morris water maze and NORT and reduced Aβ deposition in their brains. Additionally, AP39 inhibited brain atrophy in APP/PS1 mice. Based on these results, AP39 was proposed as a promising drug candidate for AD treatment, and its anti-AD mechanism may involve protection against mitochondrial damage. PMID:27057285

  1. AP39, a novel mitochondria-targeted hydrogen sulfide donor, stimulates cellular bioenergetics, exerts cytoprotective effects and protects against the loss of mitochondrial DNA integrity in oxidatively stressed endothelial cells in vitro.

    PubMed

    Szczesny, Bartosz; Módis, Katalin; Yanagi, Kazunori; Coletta, Ciro; Le Trionnaire, Sophie; Perry, Alexis; Wood, Mark E; Whiteman, Matthew; Szabo, Csaba

    2014-09-15

    The purpose of the current study was to investigate the effect of the recently synthesized mitochondrially-targeted H2S donor, AP39 [(10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol-5yl)phenoxy)decyl) triphenylphosphonium bromide], on bioenergetics, viability, and mitochondrial DNA integrity in bEnd.3 murine microvascular endothelial cells in vitro, under normal conditions, and during oxidative stress. Intracellular H2S was assessed by the fluorescent dye 7-azido-4-methylcoumarin. For the measurement of bioenergetic function, the XF24 Extracellular Flux Analyzer was used. Cell viability was estimated by the combination of the MTT and LDH methods. Oxidative protein modifications were measured by the Oxyblot method. Reactive oxygen species production was monitored by the MitoSOX method. Mitochondrial and nuclear DNA integrity were assayed by the Long Amplicon PCR method. Oxidative stress was induced by addition of glucose oxidase. Addition of AP39 (30-300 nM) to bEnd.3 cells increased intracellular H2S levels, with a preferential response in the mitochondrial regions. AP39 exerted a concentration-dependent effect on mitochondrial activity, which consisted of a stimulation of mitochondrial electron transport and cellular bioenergetic function at lower concentrations (30-100 nM) and an inhibitory effect at the higher concentration of 300 nM. Under oxidative stress conditions induced by glucose oxidase, an increase in oxidative protein modification and an enhancement in MitoSOX oxidation was noted, coupled with an inhibition of cellular bioenergetic function and a reduction in cell viability. AP39 pretreatment attenuated these responses. Glucose oxidase induced a preferential damage to the mitochondrial DNA; AP39 (100 nM) pretreatment protected against it. In conclusion, the current paper documents antioxidant and cytoprotective effects of AP39 under oxidative stress conditions, including a protection against oxidative mitochondrial DNA damage. PMID:24755204

  2. Micellar cathodes from self-assembled nitroxide-containing block copolymers in battery electrolytes.

    PubMed

    Hauffman, Guillaume; Maguin, Quentin; Bourgeois, Jean-Pierre; Vlad, Alexandru; Gohy, Jean-François

    2014-01-01

    This contribution describes the synthesis of block copolymers containing electrochemically active blocks, their micellization, and finally their use as micellar cathodes in a lithium battery. The self-assembly of the synthesized poly(styrene)-block-poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate) (PS-b-PTMA) diblock copolymers is realized in a typical battery electrolyte made of 1 m lithium trifluoromethanesulfonate dissolved in a mixture of ethylene carbonate/diethyl carbonate/dimethyl carbonate(1:1:1, in volume). Dynamic light scattering and atomic force micro-scopy indicate the formation of well-defined spherical micelles with a PS core and a PTMA corona. The electrochemical properties of those micelles are further investigated. Cyclic voltammograms show a reversible redox reaction at 3.6 V (vs Li(+) /Li). The charge/discharge profiles indicate a flat and reversible plateau around 3.6 V (vs Li(+) /Li). Finally, the cycling performances of the micellar cathodes are demonstrated. Such self-assembled block copolymers open new opportunities for nanostructured organic radical batteries. PMID:24127365

  3. The Interactions between Imidazolium-Based Ionic Liquids and Stable Nitroxide Radical Species: A Theoretical Study.

    PubMed

    Zhang, Shaoze; Wang, Guimin; Lu, Yunxiang; Zhu, Weiliang; Peng, Changjun; Liu, Honglai

    2016-08-01

    In this work, the interactions between imidazolium-based ionic liquids and some stable radicals based on 2,2,6,6-tetramethylpiperidine-1-yloxyl (TEMPO) have been systematically investigated using density functional theory calculations at the level of M06-2x. Several different substitutions, such as hydrogen bonding formation substituent (OH) and ionic substituents (N(CH3)3(+) and OSO3(-)), are presented at the 4-position of the spin probe, which leads to additional hydrogen bonds or ionic interactions between these substitutions and ionic liquids. The interactions in the systems of the radicals containing ionic substitutions with ionic liquids are predicted much stronger than those in the systems of neutral radicals, resulting in a significant reduction of the mobility of ionic radicals in ionic liquids. To further understand the nature of these interactions, the natural bond order, atoms in molecules, noncovalent interaction index, electron density difference, energy decomposition analysis, and charge decomposition analysis schemes were employed. The additional ionic interactions between ionic radicals and counterions in ionic liquids are dominantly contributed from the electrostatic term, while the orbital interaction plays a major role in other interactions. The results reported herein are important to understand radical processes in ionic liquids and will be very useful in the design of task-specific ionic liquids to make the processes more efficient. PMID:27428048

  4. Revealing the Adsorption Mechanisms of Nitroxides on Ultrapure, Metallicity-Sorted Carbon Nanotubes

    PubMed Central

    2014-01-01

    Carbon nanotubes are a natural choice as gas sensor components given their high surface to volume ratio, electronic properties, and capability to mediate chemical reactions. However, a realistic assessment of the interaction of the tube wall and the adsorption processes during gas phase reactions has always been elusive. Making use of ultraclean single-walled carbon nanotubes, we have followed the adsorption kinetics of NO2 and found a physisorption mechanism. Additionally, the adsorption reaction directly depends on the metallic character of the samples. Franck–Condon satellites, hitherto undetected in nanotube–NOx systems, were resolved in the N 1s X-ray absorption signal, revealing a weak chemisorption, which is intrinsically related to NO dimer molecules. This has allowed us to identify that an additional signal observed in the higher binding energy region of the core level C 1s photoemission signal is due to the C=O species of ketene groups formed as reaction byproducts . This has been supported by density functional theory calculations. These results pave the way toward the optimization of nanotube-based sensors with tailored sensitivity and selectivity to different species at room temperature. PMID:24404865

  5. Slow magnetic relaxation in lanthanide complexes with chelating nitronyl nitroxide radical.

    PubMed

    Wang, Xiao-Ling; Li, Li-Cun; Liao, Dai-Zheng

    2010-06-01

    Two rare-earth radical complexes [Ln(hfac)(3)NIT-2Py].0.5C(7)H(16) [Ln = Tb (1), Dy (2)] have been synthesized and characterized structurally as well as magnetically. Both complexes are isomorphous, in which the NIT-2Py radical is coordinated to the Ln(III) ion in a chelating manner. Magnetic studies reveal that complex 1 shows a frequency-dependent, alternating-current magnetic susceptibility typical of a single-molecule magnet, whereas slow magnetic relaxation is observed in 2 under an applied direct-current field. PMID:20438100

  6. Rapid Dihydrogen Cleavage by Persistent Nitroxide Radicals under Frustrated Lewis Pair Conditions.

    PubMed

    Tao, Xin; Kehr, Gerald; Wang, Xiaowu; Daniliuc, Constantin G; Grimme, Stefan; Erker, Gerhard

    2016-07-01

    Persistent radicals undergo hydrogen atom abstraction reactions with a great variety of substrates, but not with dihydrogen. It has now been found that the TEMPO radical splits dihydrogen under mild conditions in the presence of the strong bulky B(C6 F5 )3 boron Lewis acid. The reaction is thought to proceed by a typical frustrated Lewis pair mechanism with the TEMPO radical acting as the active Lewis base. The reaction was analyzed by DFT, which indicates that no significant spin density on the hydrogen atoms is accumulated along the H2 splitting reaction path. PMID:27189745

  7. Synthesis and Characterization of Aluminum Complexes of Redox-Active Pyridyl Nitroxide Ligands.

    PubMed

    Poitras, Andrew M; Bogart, Justin A; Cole, Bren E; Carroll, Patrick J; Schelter, Eric J; Graves, Christopher R

    2015-11-16

    The aluminum complexes ((R)pyNO(-))2AlCl ((R)pyNO(-) = N-tert-butyl-N-(2-pyridyl)nitroxyl; R = H (1), CH3 (2), CF3 (3)) were prepared in 80-98% yield through the protonolysis reaction between the pyridyl hydroxylamine ligand precursors (R)pyNOH and dimethylaluminum chloride. Complex 1 was also prepared using a salt metathesis route in 92% yield. Complexes 1-3 were characterized using (1)H and (13)C NMR spectroscopies. Single-crystal X-ray diffraction analysis of the complexes revealed that 1-3 are isostructural, with the Al(III) cation in all cases being five coordinate with distorted square pyramidal geometries. The geometry of complex 1 was studied using DFT, which showed primarily ligand-based frontier molecular orbitals. Reaction of 1 with NaOt-Bu gave (pyNO(-))2AlOt-Bu (4), while reaction of 1 with AgBPh4 gave [(pyNO(-))2Al(THF)2][BPh4] (5) in 54% and 87% yields, respectively. Compounds 4 and 5 were both characterized using (1)H and (13)C NMR spectroscopies and compound 5 by X-ray diffraction. Complexes 1-5 were also characterized by UV-vis electronic absorption spectroscopy and electrochemistry. The cyclic voltammograms of the complexes show two separate oxidation process, the potentials of which are dependent on both the substitution pattern of the (R)pyNO(-) ligands and the anion that completes the aluminum coordination sphere. A correlation was determined between the chemical shift of the t-Bu of the (R)pyNO(-) ligand in the (1)H NMR spectroscopy and the potentials of the redox events for complexes 1-4. PMID:26513133

  8. EPR line shifts and line shape changes due to spin exchange of nitroxide-free radicals in liquids 4. Test of a method to measure re-encounter rates in liquids employing 15N and 14N nitroxide spin probes.

    PubMed

    Bales, Barney L; Meyer, Michelle; Smith, Steve; Peric, Miroslav

    2008-03-20

    EPR line shifts due to spin exchange of perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl (14N-PDT) in aqueous solutions and the same probe isotopically substituted with 15N (15N-PDT) were measured from 293 to 338 and 287 to 353 K, respectively. Nonlinear least-squares fits of the EPR spectra yielded the resonance fields of the nitrogen hyperfine lines to high precision from which the shifts were deduced. The shifts are described by two terms: one linear and the other quadratic in the electron spin-exchange frequency, omegae. The quadratic term is due to spin exchange that occurs when two spin probes diffuse together and collide. A linear term is predicted for spin exchanges that occur upon re-encounter of the same two probes while they occupy the same "cage" before diffusing apart. The quadratic term has no adjustable parameters, while the linear term has one: the mean time between re-encounters, tauRE. The theory is cast in terms of the spin-exchange-induced line broadening that can be measured from each spectrum independently of the line shifts, thereby removing the explicit dependence of omegae on the temperature and the spin-probe concentration. In this form, theoretically, the value of the linear term is about a factor of 2 larger for 15N-PDT than for 14N-PDT for all temperatures; however, tauRE must be the same. Experimentally, we find that both of these expectations are fulfilled, providing strong support that the linear term is indeed due to re-encounter collisions. Values of tauRE derived from 14N-PDT and 15N-PDT are of the same order of magnitude and show the same trend with temperature as a hydrodynamic estimate based on the Stokes-Einstein equation. PMID:18278887

  9. The spatial effect of protein deuteration on nitroxide spin-label relaxation: Implications for EPR distance measurement

    NASA Astrophysics Data System (ADS)

    El Mkami, Hassane; Ward, Richard; Bowman, Andrew; Owen-Hughes, Tom; Norman, David G.

    2014-11-01

    Pulsed electron-electron double resonance (PELDOR) coupled with site-directed spin labeling is a powerful technique for the elucidation of protein or nucleic acid, macromolecular structure and interactions. The intrinsic high sensitivity of electron paramagnetic resonance enables measurement on small quantities of bio-macromolecules, however short relaxation times impose a limit on the sensitivity and size of distances that can be measured using this technique. The persistence of the electron spin-echo, in the PELDOR experiment, is one of the most crucial limitations to distance measurement. At a temperature of around 50 K one of the predominant factors affecting persistence of an echo, and as such, the sensitivity and measurable distance between spin labels, is the electron spin echo dephasing time (Tm). It has become normal practice to use deuterated solvents to extend Tm and recently it has been demonstrated that deuteration of the underlying protein significantly extends Tm. Here we examine the spatial effect of segmental deuteration of the underlying protein, and also explore the concentration and temperature dependence of highly deuterated systems.

  10. Measurement of time-resolved oxygen concentration changes in photosynthetic systems by nitroxide-based EPR oximetry.

    PubMed

    Strzalka, K; Walczak, T; Sarna, T; Swartz, H M

    1990-09-01

    The application of recent developments of EPR oximetry to photosynthetic systems is described and used to study rapid processes in isolated thylakoid membranes from spinach and in intact photoautotrophic soybean cells. Using the peak heights of 15N perdeuterated Tempone and two microwave power levels oxygen evolution and consumption were measured. The method measured time-resolved oxygen concentration changes in the micromolar range. Oxygen evolution was linearly proportionate to the chlorophyl concentration of thylakoid membrane over the range studied (0-2 mg/ml). Oxygen evolution associated with single turnover light pulses was consistent with the four state model. The time (t1/2) to reach equilibrium of oxygen concentrations after a single turnover pulse was 0.4-0.5 ms, indicating that the evolution of oxygen coupled to the S4-S0 transition may be shorter than reported previously. The time for equilibrium of oxygen after single turnover pulses in soybean cells was relatively long (400 ms), which suggests that there are significant barriers to the free diffusion of oxygen in this system. The method also was used to study oxygen consumption by the electron transport chain of photosystem I and photosystem II. We conclude that EPR oximetry can provide quantitative and time-resolved data on oxygen concentrations with a sensitivity that is useful for studies of such systems. PMID:2168161

  11. Reactions of nitroxides 15. Cinnamates bearing a nitroxyl moiety synthesized using a Mizoroki–Heck cross-coupling reaction

    PubMed Central

    Huras, Bogumiła

    2015-01-01

    Summary Cinnamic acid derivatives bearing a nitroxyl moiety (2,2,6,6-tetramethyl-1-oxyl-4-piperidyl 3-E-aryl acrylates) were synthesized in 30–100% yield using a Mizoroki–Heck cross-coupling reaction between 4-acryloyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl and iodobenzene derivatives in the presence of palladium(II) acetate coordinated with a tri(o-tolyl)phosphine ligand immobilized in a polyurea matrix. PMID:26199672

  12. Reactions of nitroxides 15. Cinnamates bearing a nitroxyl moiety synthesized using a Mizoroki-Heck cross-coupling reaction.

    PubMed

    Zakrzewski, Jerzy; Huras, Bogumiła

    2015-01-01

    Cinnamic acid derivatives bearing a nitroxyl moiety (2,2,6,6-tetramethyl-1-oxyl-4-piperidyl 3-E-aryl acrylates) were synthesized in 30-100% yield using a Mizoroki-Heck cross-coupling reaction between 4-acryloyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl and iodobenzene derivatives in the presence of palladium(II) acetate coordinated with a tri(o-tolyl)phosphine ligand immobilized in a polyurea matrix. PMID:26199672

  13. Computer simulations of the electron spin resonance spectra of steroid and fatty acid nitroxide probes in bilayer systems

    NASA Astrophysics Data System (ADS)

    Eviatar, Hadass; van der Heide, Uulke A.; Levine, Yehudi K.

    1995-02-01

    Monte Carlo dynamics (MCD) techniques are used to simulate the orientational behavior and rotational motion of probe molecules in lipid bilayers. The trajectories of molecular orientations generated from the simulations are then used to calculate the order parameters and the orientational time correlation functions. The behavior of the time correlation functions is compared with the predictions of the rotational diffusion (RDM) and the compound motion (CM) models. The MCD trajectories are also used to produce electron-spin resonance (ESR) spectra, employing a recently developed time-domain algorithm. Two questions which have been the subject of debate in the literature are addressed. The first question concerns the discrepancy between the ability of motional models to describe ESR spectra and fluorescence depolarization measurements on rigid molecules in vesicles—while the RDM does an excellent job of fitting the former, the latter require the CM to describe them properly. It is argued that the key to resolving this lies in the fact that the ESR line shapes are sensitive to the tumbling motions of the long molecular axes as well as to rotational motions about them, while fluorescence anisotropy is blind for the latter. The rotation about the long molecular axis introduces a fast decay into the correlation functions in a way independent of the tumbling motion of the axis. The second question concerns the fidelity of reporting by fatty acid spin probes in lipid bilayers. It is shown that the motion of the bulky hydrophillic doxyl group does not, in fact, reflect the motion of the chains about it and consequently these spin probes cannot be considered good reporters for these applications.

  14. Kinetics of rapid covalent bond formation of aniline with humic acid: ESR investigations with nitroxide spin labels

    NASA Astrophysics Data System (ADS)

    Glinka, Kevin; Matthies, Michael; Theiling, Marius; Hideg, Kalman; Steinhoff, Heinz-Jürgen

    2016-04-01

    Sulfonamide antibiotics used in livestock farming are distributed to farmland by application of slurry as fertilizer. Previous work suggests rapid covalent binding of the aniline moiety to humic acids found in soil. In the current work, kinetics of this binding were measured in X-band EPR spectroscopy by incubating Leonardite humic acid (LHA) with a paramagnetic aniline spin label (anilino-NO (2,5,5-Trimethyl-2-(3-aminophenyl)pyrrolidin-1-oxyl)). Binding was detected by a pronounced broadening of the spectral lines after incubation of LHA with anilino-NO. The time evolution of the amplitude of this feature was used for determining the reaction kinetics. Single- and double-exponential models were fitted to the data obtained for modelling one or two first-order reactions. Reaction rates of 0.16 min-1 and 0.012 min-1, were found respectively. Addition of laccase peroxidase did not change the kinetics but significantly enhanced the reacting fraction of anilino-NO. This EPR-based method provides a technically simple and effective method for following rapid binding processes of a xenobiotic substance to humic acids.

  15. Calculation of electron paramagnetic resonance spectra from Brownian dynamics trajectories: application to nitroxide side chains in proteins.

    PubMed Central

    Steinhoff, H J; Hubbell, W L

    1996-01-01

    We present a method to simulate electron paramagnetic resonance spectra of spin-labeled proteins that explicitly includes the protein structure in the vicinity of the attached spin label. The method is applied to a spin-labeled polyleucine alpha-helix trimer. From short (6 ns) stochastic dynamics simulations of this trimer, an effective potential energy function is calculated. Interaction with secondary and tertiary structures determine the reorientational motion of the spin label side chains. After reduction to a single particle problem, long stochastic dynamic trajectories (700 ns) of the spin label side-chain reorientation are calculated from which the Lamor frequency trajectory and subsequently the electron paramagnetic resonance spectrum is determined. The simulated spectra agree well with experimental electron paramagnetic resonance spectra of bacteriorhodopsin mutants with spin labels in similar secondary and tertiary environments as in the polyleucine. Images FIGURE 1 PMID:8889196

  16. Brain redox imaging in the pentylenetetrazole (PTZ)-induced kindling model of epilepsy by using in vivo electron paramagnetic resonance and a nitroxide imaging probe.

    PubMed

    Emoto, Miho C; Yamato, Mayumi; Sato-Akaba, Hideo; Yamada, Ken-ichi; Fujii, Hirotada G

    2015-11-01

    Much evidence supports the idea that oxidative stress is involved in the pathogenesis of epilepsy, and therapeutic interventions with antioxidants are expected as adjunct antiepileptic therapy. The aims of this study were to non-invasively obtain spatially resolved redox data from control and pentylenetetrazole (PTZ)-induced kindled mouse brains by electron paramagnetic resonance (EPR) imaging and to visualize the brain regions that are sensitive to oxidative damage. After infusion of the redox-sensitive imaging probe 3-methoxycarbonyl-2,2,5,5-tetramethyl-piperidine-1-oxyl (MCP), a series of EPR images of PTZ-induced mouse heads were measured. Based on the pharmacokinetics of the reduction reaction of MCP in the mouse heads, the pixel-based rate constant of its reduction reaction was calculated as an index of redox status in vivo and mapped as a redox map. The obtained redox map showed heterogeneity in the redox status in PTZ-induced mouse brains compared with control. The co-registered image of the redox map and magnetic resonance imaging (MRI) for both control and PTZ-induced mice showed a clear change in the redox status around the hippocampus after PTZ. To examine the role of antioxidants on the brain redox status, the levels of antioxidants were measured in brain tissues of control and PTZ-induced mice. Significantly lower concentrations of glutathione in the hippocampus of PTZ-kindled mice were detected compared with control. From the results of both EPR imaging and the biochemical assay, the hippocampus was found to be susceptible to oxidative damage in the PTZ-induced animal model of epilepsy. PMID:26453762

  17. Using nitroxide spin labels. How to obtain T1e from continuous wave electron paramagnetic resonance spectra at all rotational rates.

    PubMed Central

    Haas, D A; Mailer, C; Robinson, B H

    1993-01-01

    Historically, the continuous wave electron paramagnetic resonance (CW-EPR) progressive saturation method has been used to obtain information on the spin-lattice relaxation time (T1e) and those processes, such as motion and spin exchange, that occur on a competitive timescale. For example, qualitative information on local dynamics and solvent accessibility of proteins and nucleic acids has been obtained by this method. However, making quantitative estimates of T1e from CW-EPR spectra have been frustrated by a lack of understanding of the role of T1e (and T2e) in the slow-motion regime. Theoretical simulation of the CW-EPR lineshapes in the slow-motion region under increasing power levels has been used in this work to test whether the saturation technique can produce quantitative estimates of the spin-lattice relaxation rates. A method is presented by which the correct T1e may be extracted from an analysis of the power-saturation rollover curve, regardless of the amount of inhomogeneous broadening or the rates of molecular reorientation. The range of motional correlation times from 10 to 200 ns should be optimal for extracting quantitative estimates of T1e values in spin-labeled biomolecules. The progressive-saturation rollover curve method should find wide application in those areas of biophysics where information on molecular interactions and solvent exposure as well as molecular reorientation rates are desired. PMID:8386009

  18. A ring to rule them all: a cyclic ketene acetal comonomer controls the nitroxide-mediated polymerization of methacrylates and confers tunable degradability.

    PubMed

    Delplace, Vianney; Guégain, Elise; Harrisson, Simon; Gigmes, Didier; Guillaneuf, Yohann; Nicolas, Julien

    2015-08-18

    2-Methylene-4-phenyl-1,3-dioxolane (MPDL) was successfully used as a controlling comonomer in NMP with oligo(ethylene glycol) methyl ether methacrylate (MeOEGMA) to prepare well-defined and degradable PEG-based P(MeOEGMA-co-MPDL) copolymers. The level of ester group incorporation is controlled, leading to reductions in molecular weight of up to 95% on hydrolysis. Neither the polymer nor its degradation products displayed cytoxicity. The method was also successfully applied to methyl methacrylate. PMID:26169193

  19. Water 1H relaxation dispersion analysis on a nitroxide radical provides information on the maximal signal enhancement in Overhauser dynamic nuclear polarization experiments.

    PubMed

    Bennati, Marina; Luchinat, Claudio; Parigi, Giacomo; Türke, Maria-Teresa

    2010-06-14

    Water (1)H relaxation rate measurements of (15)N-(2)H-TEMPONE solutions at temperatures ranging from 298 to 328 K have been performed as a function of magnetic field from 0.00023 to 9.4 T, corresponding to (1)H Larmor frequencies of 0.01 to 400 MHz. The relaxation profiles were analyzed according to the full theory for dipolar and contact relaxation, and used to estimate the coupling factor responsible for observed solution DNP effects. The experimental DNP enhancement at (1)H Larmor frequency of 15 MHz obtained by saturating one of the lines of the (15)N doublet is only ca. 20% lower than the limiting value predicted from the relaxation data, indicating that the experimental DNP setup is nearly optimal, the residual discrepancy arising from incomplete saturation of the other line. PMID:20458388

  20. EPR Line Shifts and Line Shape Changes Due to Spin Exchange of Nitroxide Free Radicals in Liquids 6. Separating Line Broadening due to Spin Exchange and Dipolar Interactions

    PubMed Central

    Bales, Barney L; Meyer, Michelle; Smith, Steve; Peric, Miroslav

    2009-01-01

    EPR spectra of perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl (PDT) are studied as functions of molar concentration, c, and temperature, T, in water and 70 wt% glycerol in water. The increase of the intrinsic linewidth averaged over the three hyperfine lines, 〈Btot〉, varies linearly with c with zero intercept in both solvents at all temperatures; therefore ddc〈Btot〉 is independent of c. The spin exchange induced dispersion, from which the spin exchange frequency, ωe, may be computed, increases linearly with 〈Btot〉, passing through the origin in water and in 70 % glycerol at high temperatures; however, at low temperatures, where dipolar interactions broaden the spectra, linearity does not prevail until 〈Btot〉 > 1 G due to a contribution of dipolar interactions to the dispersion. The broadening constant due to spin exchange, ddc〈Be〉, is found from the slope of the linear region, permitting a computation of the dipolar constant, ddcBdip=ddc〈Btot〉−ddc〈Be〉. Thus, the separation of concentration broadening into spin exchange and dipolar contributions is effected without having to appeal to some supposed temperature dependence of the two interactions. The fractional broadening by spin exchange, Ω(T), is near unity at high temperatures in both solvents, decreasing to zero in 70 % glycerol at 273 K. Ω(T) is a continuous function of the inverse rotational correlation time of PDT, but is discontinuous as a function of T/η where η is the shear viscosity. Ω(T) = 0.5, where spin exchange and dipolar interactions contribute equally to the linewidth occurs at T/η = 20 ± 1 K/cP in 70 % glycerol. Hydrodynamic predictions of ddc〈Be〉 via the Stokes-Einstein (SE) equation are remarkably accurate in 70 % glycerol comparable with the results in a series of alkanes. In water, ddc〈Be〉 is linear with T /η with zero intercept as required by the SE; however, with slope a factor of 0.73 smaller. ddc〈Bdip〉 is reasonably predicted by the SE only at very small values of η/T very quickly following an approximately logarithmic dependence rather that the linear prediction. Values of ddc〈Bdip〉 approach a plateau above η/T = 0.20 cP/K that is about one-half the solid state limit. Line shifts due to spin exchange are not yet useful to deduce values of Ω(T) due to a lack of knowledge of the time between re-encounters; however, they may be used to verify the values determined from line broadening and spin exchange induced dispersion. Some effects at low temperatures in 70% glycerol suggest that the effects of dipolar interaction are inadequately described by the widely accepted theory. PMID:19385676

  1. EPR line shifts and line shape changes due to spin exchange of nitroxide free radicals in liquids: 6. Separating line broadening due to spin exchange and dipolar interactions.

    PubMed

    Bales, Barney L; Meyer, Michelle; Smith, Steve; Peric, Miroslav

    2009-04-30

    EPR spectra of perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl (PDT) are studied as functions of molar concentration, c, and temperature, T, in water and 70 wt % glycerol in water. The increase of the intrinsic line width averaged over the three hyperfine lines, B(tot), varies linearly with c with zero intercept in both solvents at all temperatures; therefore dB(tot)/dc is independent of c. The spin exchange induced dispersion, from which the spin exchange frequency, omega(e), may be computed, increases linearly with B(tot), passing through the origin in water and in 70% glycerol at high temperatures; however, at low temperatures, where dipolar interactions broaden the spectra, linearity does not prevail until B(tot) > 1 G due to a contribution of dipolar interactions to the dispersion. The broadening constant due to spin exchange, dB(e)/dc, is found from the slope of the linear region, permitting a computation of the dipolar constant, dB(dip)/dc = dB(tot)/dc - dB(e)/dc. Thus, the separation of concentration broadening into spin exchange and dipolar contributions is effected without having to appeal to some supposed temperature dependence of the two interactions. The fractional broadening by spin exchange, Omega(T), is near unity at high temperatures in both solvents, decreasing to zero in 70% glycerol at 273 K. Omega(T) is a continuous function of the inverse rotational correlation time of PDT but is discontinuous as a function of T/eta where eta is the shear viscosity. Omega(T) = 0.5, where spin exchange and dipolar interactions contribute equally to the line width occurs at T/eta = 20 +/- 1 K/cP in 70% glycerol. Hydrodynamic predictions of dB(e)/dc via the Stokes-Einstein (SE) equation are remarkably accurate in 70% glycerol comparable with the results in a series of alkanes. In water, dB(e)/dc is linear with T/eta with zero intercept as required by the SE; however, with slope a factor of 0.73 smaller. dB(dip)/dc is reasonably predicted by the SE only at very small values of eta/T very quickly following an approximately logarithmic dependence rather that the linear prediction. Values of dB(dip)/dc approach a plateau above eta/T = 0.20 cP/K that is about one-half the solid state limit. Line shifts due to spin exchange are not yet useful to deduce values of Omega(T) due to a lack of knowledge of the time between re-encounters; however, they may be used to verify the values determined from line broadening and spin exchange induced dispersion. Some effects at low temperatures in 70% glycerol suggest that the effects of dipolar interaction are inadequately described by the widely accepted theory. PMID:19385676

  2. Two Strategies for the Development of Mitochondrial-Targeted Small Molecule Radiation Damage Mitigators

    PubMed Central

    Rwigema, Jean-Claude M.; Beck, Barbara; Wang, Wei; Doemling, Alexander; Epperly, Michael W.; Shields, Donna; Goff, Julie P.; Franicola, Darcy; Dixon, Tracy; Frantz, Marie-Céline; Wipf, Peter; Tyurina, Yulia; Kagan, Valerian E.; Wang, Hong; Greenberger, Joel S.

    2011-01-01

    Purpose To evaluate the effectiveness of mitigation of acute ionizing radiation damage by mitochondria-targeted small molecules. Materials and Methods We evaluated the nitroxide-linked alkene peptide isostere JP4-039, the nitric oxide synthase inhibitor-linked alkene peptide esostere MCF201-89, and the p53/mdm2/mdm4 inhibitor BEB55 in radiation mitigation by clonogenic survival curves with the murine hematopoietic progenitor cell line 32D cl 3, human bone marrow stromal (KM101) and pulmonary epithelial (IB3) cell line. The p53 dependent mechanism of action was tested with p53 +/+ and p53 −/− murine bone marrow stromal cell lines. C57BL/6 NHsd female mice were injected I.P. after 9.5 Gy total body irradiation (TBI) with JP4-039, MCF201-89, or BEB55 individually or in combination. Results Each drug, JP4-039, MCF201-89, or BEB55, individually or as a mixture of all 3 compounds, increased the survival of 32D cl 3 cells and IB3 cells significantly over control irradiated cells (p=0.0021, p=0.0011, p=0.0038, and p=0.0073, respectively), and (p=0.0193, p=0.0452, p=0.0017, and p=0.0019 respectively). KM101 cells were protected by individual drugs (p=0.0007, p=0.0235, p=0.0044, respectively). JP4-039 and MCF201-89 increased irradiation survival of both p53+/+ (p=0.0396 and p=0.0071, respectively) and p53−/− cells (p=0.0007 and p=0.0188 respectively), while BEB55 was ineffective with (p53−/−) cells. Drugs administered individually or as a mixtures of all 3 after TBI significantly increased mouse survival (p=0.0234, 0.0009, 0.0052 and 0.0167 respectively). Conclusion Mitochondrial targeting of small molecule radiation mitigators decreases irradiation-induced cell death in vitro and prolongs survival of lethally irradiated mice. PMID:21493014

  3. Mitochondria-specific Conjugated Polymer Nanoparticles

    PubMed Central

    Twomey, Megan; Mendez, Eladio; Manian, Rajesh Kumar

    2016-01-01

    Biodegradable conjugated polymer nanoparticles (CPNs) were prepared for high mitochondria targeting in live cancer cells. The degradable CPNs are nontoxic and specifically localized to mitochondria of live tumor cells through macropinocytosis followed by intracellular degradation and trafficking. PMID:26974193

  4. Reactions of nitroxides XIII: Synthesis of the Morita–Baylis–Hillman adducts bearing a nitroxyl moiety using 4-acryloyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl as a starting compound, and DABCO and quinuclidine as catalysts

    PubMed Central

    2012-01-01

    Summary The Morita–Baylis–Hillman adducts bearing a nitroxyl moiety were synthesized from 4-acryloyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl and aliphatic, aryl and heterocyclic aldehydes. PMID:23019486

  5. Magnetic resonance imaging of organic contrast agents in mice: capturing the whole-body redox landscape

    PubMed Central

    Davis, Ryan M.; Matsumoto, Shingo; Bernardo, Marcelino; Sowers, Anastasia; Matsumoto, Ken-Ichiro; Krishna, Murali C.; Mitchell, James B.

    2010-01-01

    Nitroxides are a class of stable free radicals that have several biomedical applications including radioprotection and non-invasive assessment of tissue redox status. For both of these applications, it is necessary to understand the in vivo biodistribution and reduction of nitroxides. In this study, magnetic resonance imaging was used to compare tissue accumulation (concentration) and reduction of two commonly studied nitroxides: the piperidine nitroxide Tempol and the pyrrolidine nitroxide 3-CP. It was found that 3-CP is reduced three to eleven times slower (depending on the tissue) than Tempol in vivo, and that maximum tissue concentration varies substantially between tissues (0.6 mM – 7.2 mM.) For a given tissue, the maximum concentration usually did not vary between the two nitroxides. Furthermore, using electron paramagnetic resonance (EPR) spectroscopy, it was shown that the nitroxide reduction rate depends only weakly on cellular pO2 in the oxygen range expected in vivo. These observations, taken with the marked variation in nitroxide reduction rates observed between tissues, suggest that tissue pO2 is not a major determinant of the nitroxide reduction rate in vivo. For the purpose of redox imaging, 3-CP was shown to be an optimal choice based on the achievable concentrations and bioreduction observed in vivo. PMID:21130158

  6. Triarylmethyl Labels: Toward Improving the Accuracy of EPR Nanoscale Distance Measurements in DNAs.

    PubMed

    Shevelev, Georgiy Yu; Krumkacheva, Olesya A; Lomzov, Alexander A; Kuzhelev, Andrey A; Trukhin, Dmitry V; Rogozhnikova, Olga Yu; Tormyshev, Victor M; Pyshnyi, Dmitrii V; Fedin, Matvey V; Bagryanskaya, Elena G

    2015-10-29

    Triarylmethyl (trityl, TAM) based spin labels represent a promising alternative to nitroxides for EPR distance measurements in biomolecules. Herewith, we report synthesis and comparative study of series of model DNA duplexes, 5'-spin-labeled with TAMs and nitroxides. We have found that the accuracy (width) of distance distributions obtained by double electron-electron resonance (DEER/PELDOR) strongly depends on the type of radical. Replacement of both nitroxides by TAMs in the same spin-labeled duplex allows narrowing of the distance distributions by a factor of 3. Replacement of one nitroxide by TAM (orthogonal labeling) leads to a less pronounced narrowing but at the same time gains sensitivity in DEER experiment due to efficient pumping on the narrow EPR line of TAM. Distance distributions in nitroxide/nitroxide pairs are influenced by the structure of the linker: the use of a short amine-based linker improves the accuracy by a factor of 2. At the same time, a negligible dependence on the linker length is found for the distribution width in TAM/TAM pairs. Molecular dynamics calculations indicate greater conformational disorder of nitroxide labels compared to TAM ones, thus rationalizing the experimentally observed trends. Thereby, we conclude that double spin-labeling using TAMs allows obtaining narrower spin-spin distance distributions and potentially more precise distances between labeling sites compared to traditional nitroxides. PMID:26011022

  7. Memory of spin polarization in triplet-doublet systems

    SciTech Connect

    Imamura, T.; Onitsuka, O.; Obi, K.

    1986-12-18

    The interaction between triplet molecules and nitroxide radicals is studied in solution by the time-resolved ESR technique. Spin polarization induced in the radical reflects that of the triplet molecule which is an encounter partner. The spin-polarized ESR signals observed in nitroxide radicals are interpreted in terms of electron and/or spin exchange mechanisms.

  8. Design of Redox/Radical Sensing Molecules via Nitrile Imine-Mediated Tetrazole-ene Cycloaddition (NITEC).

    PubMed

    Lederhose, Paul; Haworth, Naomi L; Thomas, Komba; Bottle, Steven E; Coote, Michelle L; Barner-Kowollik, Christopher; Blinco, James P

    2015-08-21

    The current study introduces a novel synthetic avenue for the preparation of profluorescent nitroxides via nitrile imine-mediated tetrazole-ene cycloaddition (NITEC). The photoinduced cycloaddition was performed under metal-free, mild conditions allowing the preparation of a library of the nitroxide functionalized pyrazolines and corresponding methoxyamines. High reaction rates and full conversion were observed, with the presence of the nitroxide having no significant impact on the cycloaddition performance. The formed products were investigated with respect to their photophysical properties in order to quantify their "switch on/off" behavior. The fluorescence quenching performance is strongly dependent on the distance between the chromophore and the free radical spin as demonstrated theoretically and experimentally. Highest levels of fluorescence quenching were achieved for pyrazolines with the nitroxide directly fused to the chromophore. Importantly, the pyrazoline profluorescent nitroxides were shown to efficiently act as sensors for redox/radical processes. PMID:26168007

  9. Assessing the Delivery of Molecules to the Mitochondrial Matrix Using Click Chemistry.

    PubMed

    Hoogewijs, Kurt; James, Andrew M; Smith, Robin A J; Gait, Michael J; Murphy, Michael P; Lightowlers, Robert N

    2016-07-15

    Mitochondria are central to health and disease, hence there is considerable interest in developing mitochondria-targeted therapies that require the delivery of peptides or nucleic acid oligomers. However, progress has been impeded by the lack of a measure of mitochondrial import of these molecules. Here, we address this need by quantitatively detecting molecules within the mitochondrial matrix. We used a mitochondria- targeted cyclooctyne (MitoOct) that accumulates several- hundredfold in the matrix, driven by the membrane potential. There, MitoOct reacts through click chemistry with an azide on the target molecule to form a diagnostic product that can be quantified by mass spectrometry. Because the membrane potential-dependent MitoOct concentration in the matrix is essential for conjugation, we can now determine definitively whether a putative mitochondrion-targeted molecule reaches the matrix. This "ClickIn" approach will facilitate development of mitochondria-targeted therapies. PMID:27124570

  10. ESR measurement of radical clearance in lung of whole mouse

    SciTech Connect

    Takeshita, K.; Utsumi, H.; Hamada, A. )

    1991-06-14

    Clearance of the nitroxide radicals, hydroxy-TEMPO and carboxy-PROxYL, in whole-mouse lung was directly measured by in vivo ESR. After injecting a nitroxide radical, distribution of the nitroxide radical all over the lung was confirmed by ESR imaging. The ESR signal of hydroxy-TEMPO was reduced in the lung and the clearance obeyed first-order kinetics, whereas the signal of carboxy-PROxYL remained constant. Comparison of the clearance rates of live and dead mice indicated the presence of 2 different clearance systems in the lung: loss of its paramagnetism in the lung, and transfer from alveolar to the blood circulation system.

  11. Synthesis and study of new paramagnetic resveratrol analogues.

    PubMed

    Kálai, Tamás; Borza, Erzsébet; Antus, Csenge; Radnai, Balázs; Gulyás-Fekete, Gergely; Fehér, Andrea; Sümegi, Balázs; Hideg, Kálmán

    2011-12-15

    New resveratrol analogues containing five- and six-membered nitroxides and isoindoline nitroxides were synthesized. These new compounds were compared to resveratrol based on their ABTS radical scavenging ability as well on their capacity to suppress inflammatory process in macrophages induced by lipopolysaccharides. The ABTS and ROS scavenging activities of new molecules were the same or weaker than that of resveratrol, but some of paramagnetic resveratrol derivatives suppressed nitrite and TNFα production more efficiently than resveratrol. Based on these results the new nitroxide and phenol containing hybrid molecules can be considered as new antioxidant and anti-inflammatory agents. PMID:22088309

  12. A low molecular weight antioxidant decreases weight and lowers tumor incidence.

    PubMed

    Mitchell, James B; Xavier, Sandhya; DeLuca, Anne M; Sowers, Anastasia L; Cook, John A; Krishna, Murali C; Hahn, Stephen M; Russo, Angelo

    2003-01-01

    Stable free radical nitroxides are potent antioxidants possessing superoxide dismutase- and catalase-mimetic activity that protect cells and animals against a variety of oxidative insults. Tempol, as a representative nitroxide, was evaluated for its influence on weight maintenance and spontaneous tumor incidence in C3H mice. Tempol administered in either the drinking water or food did not show any untoward effects and prevented animals from becoming obese. Tempol-treated animals' leptin levels were reduced. Long-term treatment with Tempol significantly decreased tumorigenesis when compared to controls (10 vs. 40%, respectively). Selected tissues from Tempol-treated animals exhibited elevated levels of mitochrondrial uncoupling protein-2 (UCP-2) and HSP70. The present data suggest that nitroxides upregulate UCP-2, obviate weight gain, and decrease age-related spontaneous tumor incidence. As a class, nitroxides may provide overall health benefits by contributing to decreased obesity and tumor incidence. PMID:12498984

  13. Electron spin resonance spectra of nitroxyl radicals

    NASA Astrophysics Data System (ADS)

    Botek, Edith; Zarycz, Natalia; Champagne, Benoît; Sciannaméa, Valérie; Detrembleur, Christophe

    2012-12-01

    Hyperfine coupling constants (HFCCs) of nitroxyl radicals were calculated using density functional theory (DFT) to address the structure of nitroxide intermediates in controlled radical polymerization. In a preliminary step, the reliability of different theoretical methods has been substantiated by comparing calculated HFCCs to experimental data for a set of acyclic and cyclic alkylnitroxyl radicals. In a second step this tested approach was applied to support experimental evidence of several nitroxide-mediated polymerization (NMP) reactions.

  14. Synthesis of analogs of the radiation mitigator JP4-039 and visualization of BODIPY derivatives in mitochondria

    PubMed Central

    Frantz, Marie-Céline; Skoda, Erin M.; Sacher, Joshua R.; Epperly, Michael W.; Goff, Julie P.; Greenberger, Joel S.

    2013-01-01

    JP4-039 is a lead structure in a series of nitroxide conjugates that are capable of accumulating in mitochondria and scavenging reactive oxygen species (ROS). To explore structure-activity relationships (SAR), new analogs with variable nitroxide moieties were prepared. Furthermore, fluorophore-tagged analogs were synthesized and provided the opportunity for visualization in mitochondria. All analogs were tested for radioprotective and radiomitigative effects in 32Dcl3 cells. PMID:23715589

  15. Synthesis of analogs of the radiation mitigator JP4-039 and visualization of BODIPY derivatives in mitochondria.

    PubMed

    Frantz, Marie-Céline; Skoda, Erin M; Sacher, Joshua R; Epperly, Michael W; Goff, Julie P; Greenberger, Joel S; Wipf, Peter

    2013-07-01

    JP4-039 is a lead structure in a series of nitroxide conjugates that are capable of accumulating in mitochondria and scavenging reactive oxygen species (ROS). To explore structure-activity relationships (SAR), new analogs with variable nitroxide moieties were prepared. Furthermore, fluorophore-tagged analogs were synthesized and provided the opportunity for visualization in mitochondria. All analogs were tested for radioprotective and radiomitigative effects in 32Dcl3 cells. PMID:23715589

  16. Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy.

    PubMed

    Yang, Yuhui; Karakhanova, Svetlana; Hartwig, Werner; D'Haese, Jan G; Philippov, Pavel P; Werner, Jens; Bazhin, Alexandr V

    2016-12-01

    Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and functionally from those in normal cells and participate actively in metabolic reprogramming. Mitochondria in cancer cells are characterized by reactive oxygen species (ROS) overproduction, which promotes cancer development by inducing genomic instability, modifying gene expression, and participating in signaling pathways. Mitochondrial and nuclear DNA mutations caused by oxidative damage that impair the oxidative phosphorylation process will result in further mitochondrial ROS production, completing the "vicious cycle" between mitochondria, ROS, genomic instability, and cancer development. The multiple essential roles of mitochondria have been utilized for designing novel mitochondria-targeted anticancer agents. Selective drug delivery to mitochondria helps to increase specificity and reduce toxicity of these agents. In order to reduce mitochondrial ROS production, mitochondria-targeted antioxidants can specifically accumulate in mitochondria by affiliating to a lipophilic penetrating cation and prevent mitochondria from oxidative damage. In consistence with the oncogenic role of ROS, mitochondria-targeted antioxidants are found to be effective in cancer prevention and anticancer therapy. A better understanding of the role played by mitochondria in cancer development will help to reveal more therapeutic targets, and will help to increase the activity and selectivity of mitochondria-targeted anticancer drugs. In this review we summarized the impact of mitochondria on cancer and gave summary about the possibilities to target mitochondria for anticancer therapies. J. Cell. Physiol. 231: 2570-2581, 2016. © 2016 Wiley Periodicals, Inc. PMID:26895995

  17. Molecular Rationale for Improved Dynamic Nuclear Polarization of Biomembranes.

    PubMed

    Smith, Adam N; Twahir, Umar T; Dubroca, Thierry; Fanucci, Gail E; Long, Joanna R

    2016-08-18

    Dynamic nuclear polarization (DNP) enhanced solid-state NMR can provide orders of magnitude in signal enhancement. One of the most important aspects of obtaining efficient DNP enhancements is the optimization of the paramagnetic polarization agents used. To date, the most utilized polarization agents are nitroxide biradicals. However, the efficiency of these polarization agents is diminished when used with samples other than small molecule model compounds. We recently demonstrated the effectiveness of nitroxide labeled lipids as polarization agents for lipids and a membrane embedded peptide. Here, we systematically characterize, via electron paramagnetic (EPR), the dynamics of and the dipolar couplings between nitroxide labeled lipids under conditions relevant to DNP applications. Complemented by DNP enhanced solid-state NMR measurements at 600 MHz/395 GHz, a molecular rationale for the efficiency of nitroxide labeled lipids as DNP polarization agents is developed. Specifically, optimal DNP enhancements are obtained when the nitroxide moiety is attached to the lipid choline headgroup and local nitroxide concentrations yield an average e(-)-e(-) dipolar coupling of 47 MHz. On the basis of these measurements, we propose a framework for development of DNP polarization agents optimal for membrane protein structure determination. PMID:27434371

  18. Spin label oximetry to assess extracellular oxygen during myocardial ischemia.

    PubMed

    Baker, J E; Froncisz, W; Joseph, J; Kalyanaraman, B

    1997-01-01

    We describe real-time measurement of myocardial oxygen consumption during ischemia in the intact heart. Measurement of extracellular oxygen concentration during myocardial ischemia by spin label oximetry has been limited by ischemia-induced reduction of the neutral, water-soluble nitroxide TEMPONE. We have overcome this problem by encapsulating the nitroxides. Isolated immature (7-10 d old) rabbit hearts (n = 8) were perfused aerobically within the cavity of a loop gap resonator with bicarbonate buffer containing an oxygen-sensitive, lipid-soluble nitroxide (14N-TEMPO laurate in FC-43 perfluorocarbon micelles) and a much less oxygen-sensitive and positively charged nitroxide (15N-TEMPO choline in multilamellar vesicles) as an internal standard. The ratio of the ESR signal amplitudes of these nitroxides was used as a sensitive index of oxygen concentration. Sequestration of the nitroxides decreased their reduction rate by ascorbate in comparison with nonsequestered nitroxides. Hearts were subjected to 60 min of global no-flow ischemia at 20 degrees C. Extracellular oxygen content (mean +/- SD) during aerobic perfusion was 1195 +/- 55 mumol/liter. The electron spin resonance signal from TEMPO laurate increased with the onset and progression of ischemia, consistent with a decrease in extracellular oxygen, while the signal for TEMPO choline was relatively unchanged. Extracellular oxygen content after 40 and 60 min of ischemia was reduced to 393 +/- 27 mumol/liter (p < .05) and 61 +/- 5 mumol/liter (p < .05), respectively. We conclude that spin-label oximetry can directly and precisely measure myocardial oxygen consumption at constant temperature during ischemia in the intact heart. PMID:8958135

  19. Singlet oxygen-trapping reaction as a method of (1)O2 detection: role of some reducing agents.

    PubMed

    Dzwigaj, S; Pezerat, H

    1995-08-01

    The production of singlet oxygen by H2O2 disproportionation and via the oxidation of H2O2 by NaOCl in a neutral medium was monitored by spin trapping with 2,2,6,6 tetramethyl-4-piperidone (TMPone). The singlet oxygen formed in both reactions oxidized 2,2,6,6 tetramethyl-4-piperidone to give nitroxide radicals. However the production of nitroxide radicals was relatively small considering the concentrations of H2O2 and NaOCl used in the reaction systems. Addition of electron donating agents: ascorbate, Fe2+ and desferrioxamine leads to an increase in the production of nitroxide radicals. We assumed that a very slow step of the reaction sequence, the homolytic breaking of the O-O bond of N-hydroperoxide (formed as an intermediate product during the reaction of 1O2 with TMPone) could be responsible for the relatively small production of nitroxide radicals. Electron donating agents added to the reaction system probably raise the rate of the hydroperoxide decomposition by allowing a more rapid heterolytic cleavage of the O-O bond leading to a greater production of nitroxide radicals. The largest effect was observed in the presence of desferrioxamine. Its participation in this process is proved by the concomitant appearance of desferrioxamine nitroxide radicals. The results obtained demonstrate that the method proposed by several authors and tested in this study to detect singlet oxygen is not convenient for precise quantitative studies. The reactivity of TMPone towards O2.-/HO2. and .OH has been also investigated. It has been found that both O2.-/HO2. and .OH radicals formed in a phosphate buffer solution (pH 7.4, 37 degrees C), respectively by a xanthine-oxidase/hypoxanthine system and via H2O2 UV irradiation, do not oxidize 2,2,6,6 tetramethyl-4-piperidone to nitroxide radicals. PMID:7581808

  20. Targeted delivery of doxorubicin to mitochondria using mesoporous silica nanoparticle nanocarriers

    NASA Astrophysics Data System (ADS)

    Qu, Qiuyu; Ma, Xing; Zhao, Yanli

    2015-10-01

    A lot of investigations have been conducted using mesoporous silica nanoparticles (MSNPs) functionalized with different targeting ligands in order to deliver various hydrophobic and hydrophilic drugs to targeted cancer cells. However, the utilization of MSNPs to deliver drug molecules to targeted subcellular organelles has been rarely reported. In this work, we applied targeting ligand-conjugated MSNPs with an average diameter of 80 nm to deliver the anticancer drug doxorubicin (DOX) to mitochondria. Triphenoylphosphonium (TPP) was functionalized on MSNPs as a mitochondria targeting ligand. Mitochondria targeting efficiency was demonstrated in HeLa cells by a co-localization study of mitochondria and functionalized MSNPs as well as by fluorescence analysis in isolated mitochondria. In addition, enhanced cancer cell killing efficacy was achieved when using DOX-loaded and TPP-functionalized MSNPs for mitochondria-targeted delivery. Lowered adenosine triphosphate (ATP) production and decreased mitochondrial membrane potential were observed, demonstrating the mitochondria dysfunction caused by delivered DOX. The positive results indicate promising application potential of MSNPs in targeted subcellular drug delivery.A lot of investigations have been conducted using mesoporous silica nanoparticles (MSNPs) functionalized with different targeting ligands in order to deliver various hydrophobic and hydrophilic drugs to targeted cancer cells. However, the utilization of MSNPs to deliver drug molecules to targeted subcellular organelles has been rarely reported. In this work, we applied targeting ligand-conjugated MSNPs with an average diameter of 80 nm to deliver the anticancer drug doxorubicin (DOX) to mitochondria. Triphenoylphosphonium (TPP) was functionalized on MSNPs as a mitochondria targeting ligand. Mitochondria targeting efficiency was demonstrated in HeLa cells by a co-localization study of mitochondria and functionalized MSNPs as well as by fluorescence analysis

  1. Monitoring redox-sensitive paramagnetic contrast agent by EPRI, OMRI and MRI

    NASA Astrophysics Data System (ADS)

    Hyodo, Fuminori; Murugesan, Ramachandran; Matsumoto, Ken-ichiro; Hyodo, Emi; Subramanian, Sankaran; Mitchell, James B.; Krishna, Murali C.

    2008-01-01

    A comparative study of tissue redox-status imaging using commonly used redox sensitive nitroxides has been carried out using electron paramagnetic resonance imaging (EPRI), Overhauser magnetic resonance imaging (OMRI) and conventional T 1-weighted magnetic resonance imaging, MRI. Imaging studies using phantoms of different nitroxides at different concentration levels showed that EPRI and OMRI sensitivities were found to be linearly dependent on line width of nitroxides up to 2 mM, and the enhancement in MRI intensity was linear up to 5 mM. The sensitivity and resolution of EPRI and OMRI images depended significantly on the line width of the nitroxides whereas the MRI images were almost independent of EPR line width. Reduction of the paramagnetic 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (3CP) by ascorbic acid (AsA) to the diamagnetic by hydroxylamine was monitored from a sequence of temporal images, acquired using the three imaging modalities. The decay rates determined by all the three modalities were found to be similar. However the results suggest that T 1-weighted MRI can monitor the redox status, in addition to providing detailed anatomical structure in a short time. Therefore, a combination of MRI with nitroxides as metabolically responsive contrast agents can be a useful technique for the in vivo imaging probing tissue redox status.

  2. Monitoring redox-sensitive paramagnetic contrast agent by EPRI, OMRI and MRI.

    PubMed

    Hyodo, Fuminori; Murugesan, Ramachandran; Matsumoto, Ken-ichiro; Hyodo, Emi; Subramanian, Sankaran; Mitchell, James B; Krishna, Murali C

    2008-01-01

    A comparative study of tissue redox-status imaging using commonly used redox sensitive nitroxides has been carried out using electron paramagnetic resonance imaging (EPRI), Overhauser magnetic resonance imaging (OMRI) and conventional T(1)-weighted magnetic resonance imaging, MRI. Imaging studies using phantoms of different nitroxides at different concentration levels showed that EPRI and OMRI sensitivities were found to be linearly dependent on line width of nitroxides up to 2 mM, and the enhancement in MRI intensity was linear up to 5 mM. The sensitivity and resolution of EPRI and OMRI images depended significantly on the line width of the nitroxides whereas the MRI images were almost independent of EPR line width. Reduction of the paramagnetic 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (3CP) by ascorbic acid (AsA) to the diamagnetic by hydroxylamine was monitored from a sequence of temporal images, acquired using the three imaging modalities. The decay rates determined by all the three modalities were found to be similar. However the results suggest that T(1)-weighted MRI can monitor the redox status, in addition to providing detailed anatomical structure in a short time. Therefore, a combination of MRI with nitroxides as metabolically responsive contrast agents can be a useful technique for the in vivo imaging probing tissue redox status. PMID:18006345

  3. Monitoring Redox-Sensitive Paramagnetic Contrast Agent by EPRI, OMRI and MRI

    PubMed Central

    Hyodo, Fuminori; Murugesan, Ramachandran; Matsumoto, Ken-ichiro; Hyodo, Emi; Subramanian, Sankaran; Mitchell, James B.; Krishna, Murali C.

    2008-01-01

    A comparative study of tissue redox-status imaging using commonly used redox sensitive nitroxides has been carried out using electron paramagnetic resonance imaging (EPRI), Overhauser magnetic resonance imaging (OMRI) and conventional T1-weighted magnetic resonance imaging, MRI. Imaging studies using phantoms of different nitroxides at different concentration levels showed that EPRI and OMRI sensitivities were found to be linearly dependent on line width of nitroxides up to 2 mM, and the enhancement in MRI intensity was linear up to 5 mM. The sensitivity and resolution of EPRI and OMRI images depended significantly on the line width of the nitroxides whereas the MRI images were almost independent of EPR line width. Reduction of the paramagnetic 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (3CP) by ascorbic acid (AsA) to the diamagnetic by hydroxylamine was monitored from a sequence of temporal images, acquired using the three imaging modalities. The decay rates determined by all the three modalities were found to be similar. However the results suggest that T1 weighted MRI can monitor the redox status, in addition to providing detailed anatomical structure in a short time. Therefore, a combination of MRI with nitroxides as metabolically responsive contrast agents can be a useful technique for the in vivo imaging probing tissue redox status. PMID:18006345

  4. Mitochondria in traumatic brain injury and mitochondrial-targeted multipotential therapeutic strategies

    PubMed Central

    Cheng, Gang; Kong, Rong-hua; Zhang, Lei-ming; Zhang, Jian-ning

    2012-01-01

    Traumatic brain injury (TBI) is a major health and socioeconomic problem throughout the world. It is a complicated pathological process that consists of primary insults and a secondary insult characterized by a set of biochemical cascades. The imbalance between a higher energy demand for repair of cell damage and decreased energy production led by mitochondrial dysfunction aggravates cell damage. At the cellular level, the main cause of the secondary deleterious cascades is cell damage that is centred in the mitochondria. Excitotoxicity, Ca2+ overload, reactive oxygen species (ROS), Bcl-2 family, caspases and apoptosis inducing factor (AIF) are the main participants in mitochondria-centred cell damage following TBI. Some preclinical and clinical results of mitochondria-targeted therapy show promise. Mitochondria- targeted multipotential therapeutic strategies offer new hope for the successful treatment of TBI and other acute brain injuries. PMID:23003569

  5. Global lipidomics identifies cardiolipin oxidation as a mitochondrial target for redox therapy of acute brain injury

    PubMed Central

    Ji, Jing; Kline, Anthony E; Amoscato, Andrew; Arias, Alejandro S; Sparvero, Louis J; Tyurin, Vladimir A; Tyurina, Yulia Y; Fink, Bruno; Manole, Mioara D; Puccio, Ava M; Okonkwo, David O; Cheng, Jeffrey P; Alexander, Henry; Clark, Robert SB; Kochanek, Patrick M; Wipf, Peter; Kagan, Valerian E; Bayýr, Hülya

    2013-01-01

    Brain contains a highly diversified complement of molecular species of a mitochondria-specific phospholipid, cardiolipin (CL), which - due to its polyunsaturation - can readily undergo oxygenation. Here, we used global lipidomics analysis in experimental traumatic brain injury (TBI) and showed that TBI was accompanied by oxidative consumption of polyunsaturated CL and accumulation of more than 150 new oxygenated molecular species in CL. RNAi-based manipulations of CL-synthase and CL levels conferred resistance of primary rat cortical neurons to mechanical stretch - an in vitro model of traumatic neuronal injury. By applying the novel brain permeable mitochondria-targeted electron-scavenger, we prevented CL oxygenation in the brain, achieved a substantial reduction in neuronal death both in vitro and in vivo, and markedly reduced behavioral deficits and cortical lesion volume. We conclude that CL oxygenation generates neuronal death signals and that its prevention by mitochondria-targeted small molecule inhibitors represents a new target for neuro-drug discovery. PMID:22922784

  6. Lipidomics identifies cardiolipin oxidation as a mitochondrial target for redox therapy of brain injury.

    PubMed

    Ji, Jing; Kline, Anthony E; Amoscato, Andrew; Samhan-Arias, Alejandro K; Sparvero, Louis J; Tyurin, Vladimir A; Tyurina, Yulia Y; Fink, Bruno; Manole, Mioara D; Puccio, Ava M; Okonkwo, David O; Cheng, Jeffrey P; Alexander, Henry; Clark, Robert S B; Kochanek, Patrick M; Wipf, Peter; Kagan, Valerian E; Bayır, Hülya

    2012-10-01

    The brain contains a highly diversified complement of molecular species of a mitochondria-specific phospholipid, cardiolipin, which, because of its polyunsaturation, can readily undergo oxygenation. Using global lipidomics analysis in experimental traumatic brain injury (TBI), we found that TBI was accompanied by oxidative consumption of polyunsaturated cardiolipin and the accumulation of more than 150 new oxygenated molecular species of cardiolipin. RNAi-based manipulations of cardiolipin synthase and cardiolipin levels conferred resistance to mechanical stretch, an in vitro model of traumatic neuronal injury, in primary rat cortical neurons. By applying a brain-permeable mitochondria-targeted electron scavenger, we prevented cardiolipin oxidation in the brain, achieved a substantial reduction in neuronal death both in vitro and in vivo, and markedly reduced behavioral deficits and cortical lesion volume. We conclude that cardiolipin oxygenation generates neuronal death signals and that prevention of it by mitochondria-targeted small molecule inhibitors represents a new target for neuro-drug discovery. PMID:22922784

  7. Gene introduction into the mitochondria of Arabidopsis thaliana via peptide-based carriers

    NASA Astrophysics Data System (ADS)

    Chuah, Jo-Ann; Yoshizumi, Takeshi; Kodama, Yutaka; Numata, Keiji

    2015-01-01

    Available methods in plant genetic transformation are nuclear and plastid transformations because similar procedures have not yet been established for the mitochondria. The double membrane and small size of the organelle, in addition to its large population in cells, are major obstacles in mitochondrial transfection. Here we report the intracellular delivery of exogenous DNA localized to the mitochondria of Arabidopsis thaliana using a combination of mitochondria-targeting peptide and cell-penetrating peptide. Low concentrations of peptides were sufficient to deliver DNA into the mitochondria and expression of imported DNA reached detectable levels within a short incubation period (12 h). We found that electrostatic interaction with the cell membrane is not a critical factor for complex internalization, instead, improved intracellular penetration of mitochondria-targeted complexes significantly enhanced gene transfer efficiency. Our results delineate a simple and effective peptide-based method, as a starting point for the development of more sophisticated plant mitochondrial transfection strategies.

  8. Core-shell nanoparticle-based peptide therapeutics and combined hyperthermia for enhanced cancer cell apoptosis.

    PubMed

    Shah, Birju P; Pasquale, Nicholas; De, Gejing; Tan, Tao; Ma, Jianjie; Lee, Ki-Bum

    2014-09-23

    Mitochondria-targeting peptides have garnered immense interest as potential chemotherapeutics in recent years. However, there is a clear need to develop strategies to overcome the critical limitations of peptides, such as poor solubility and the lack of target specificity, which impede their clinical applications. To this end, we report magnetic core-shell nanoparticle (MCNP)-mediated delivery of a mitochondria-targeting pro-apoptotic amphipathic tail-anchoring peptide (ATAP) to malignant brain and metastatic breast cancer cells. Conjugation of ATAP to the MCNPs significantly enhanced the chemotherapeutic efficacy of ATAP, while the presence of targeting ligands afforded selective delivery to cancer cells. Induction of MCNP-mediated hyperthermia further potentiated the efficacy of ATAP. In summary, a combination of MCNP-mediated ATAP delivery and subsequent hyperthermia resulted in an enhanced effect on mitochondrial dysfunction, thus resulting in increased cancer cell apoptosis. PMID:25133971

  9. Gene introduction into the mitochondria of Arabidopsis thaliana via peptide-based carriers

    PubMed Central

    Chuah, Jo-Ann; Yoshizumi, Takeshi; Kodama, Yutaka; Numata, Keiji

    2015-01-01

    Available methods in plant genetic transformation are nuclear and plastid transformations because similar procedures have not yet been established for the mitochondria. The double membrane and small size of the organelle, in addition to its large population in cells, are major obstacles in mitochondrial transfection. Here we report the intracellular delivery of exogenous DNA localized to the mitochondria of Arabidopsis thaliana using a combination of mitochondria-targeting peptide and cell-penetrating peptide. Low concentrations of peptides were sufficient to deliver DNA into the mitochondria and expression of imported DNA reached detectable levels within a short incubation period (12 h). We found that electrostatic interaction with the cell membrane is not a critical factor for complex internalization, instead, improved intracellular penetration of mitochondria-targeted complexes significantly enhanced gene transfer efficiency. Our results delineate a simple and effective peptide-based method, as a starting point for the development of more sophisticated plant mitochondrial transfection strategies. PMID:25583214

  10. Distance determination from dysprosium induced relaxation enhancement: a case study on membrane-inserted WALP23 polypeptides

    NASA Astrophysics Data System (ADS)

    Lueders, Petra; Razzaghi, Sahand; Jäger, Heidrun; Tschaggelar, René; Hemminga, Marcus A.; Yulikov, Maxim; Jeschke, Gunnar

    2013-10-01

    Membrane incorporated synthetic α-helical polypeptides labelled with Dy(III) chelate complexes and nitroxide radicals were studied by the inversion recovery (IR) technique and Dy(III)-nitroxide distances were obtained. A comparison of obtained distances with the previously reported Gd(III)-nitroxide double electron-electron resonance (DEER) calibration data was performed and revealed reliability of the IR-based technique for the distance determination in membrane-incorporated biomacromolecules. The presented distance determination technique is 'spectroscopically orthogonal' to DEER-based distance measurements and can be potentially combined with DEER to study multiply spin-labelled biomacromolecules. The key steps of the data processing, the types of obtained distance information and the areas of possible application of the technique are discussed.

  11. Mapping membrane protein backbone dynamics: a comparison of site-directed spin labeling with NMR 15N-relaxation measurements.

    PubMed

    Lo, Ryan H; Kroncke, Brett M; Solomon, Tsega L; Columbus, Linda

    2014-10-01

    The ability to detect nanosecond backbone dynamics with site-directed spin labeling (SDSL) in soluble proteins has been well established. However, for membrane proteins, the nitroxide appears to have more interactions with the protein surface, potentially hindering the sensitivity to backbone motions. To determine whether membrane protein backbone dynamics could be mapped with SDSL, a nitroxide was introduced at 55 independent sites in a model polytopic membrane protein, TM0026. Electron paramagnetic resonance spectral parameters were compared with NMR (15)N-relaxation data. Sequential scans revealed backbone dynamics with the same trends observed for the R1 relaxation rate, suggesting that nitroxide dynamics remain coupled to the backbone on membrane proteins. PMID:25296323

  12. Rejuvenating cellular respiration for optimizing respiratory function: targeting mitochondria.

    PubMed

    Agrawal, Anurag; Mabalirajan, Ulaganathan

    2016-01-15

    Altered bioenergetics with increased mitochondrial reactive oxygen species production and degradation of epithelial function are key aspects of pathogenesis in asthma and chronic obstructive pulmonary disease (COPD). This motif is not unique to obstructive airway disease, reported in related airway diseases such as bronchopulmonary dysplasia and parenchymal diseases such as pulmonary fibrosis. Similarly, mitochondrial dysfunction in vascular endothelium or skeletal muscles contributes to the development of pulmonary hypertension and systemic manifestations of lung disease. In experimental models of COPD or asthma, the use of mitochondria-targeted antioxidants, such as MitoQ, has substantially improved mitochondrial health and restored respiratory function. Modulation of noncoding RNA or protein regulators of mitochondrial biogenesis, dynamics, or degradation has been found to be effective in models of fibrosis, emphysema, asthma, and pulmonary hypertension. Transfer of healthy mitochondria to epithelial cells has been associated with remarkable therapeutic efficacy in models of acute lung injury and asthma. Together, these form a 3R model--repair, reprogramming, and replacement--for mitochondria-targeted therapies in lung disease. This review highlights the key role of mitochondrial function in lung health and disease, with a focus on asthma and COPD, and provides an overview of mitochondria-targeted strategies for rejuvenating cellular respiration and optimizing respiratory function in lung diseases. PMID:26566906

  13. Targeting of pro-apoptotic TLR adaptor SARM to mitochondria: definition of the critical region and residues in the signal sequence.

    PubMed

    Panneerselvam, Porkodi; Singh, Laishram Pradeepkumar; Ho, Bow; Chen, Jianzhu; Ding, Jeak Ling

    2012-03-01

    The fifth and the most well-conserved member of the TLR (Toll-like receptor) adaptor, SARM (sterile α- and HEAT/armadillo-motif-containing protein), has been reported to be an important mediator of apoptosis. However, the exact cellular localization of SARM with respect to its role is unclear. In the present study we show that SARM specifically co-localizes with mitochondria. Endogenous SARM is mainly found in the mitochondria. We demonstrate that the N-terminal 27 amino acids (S27) of SARM, which is hydrophobic and polybasic, acts as a mitochondria-targeting signal sequence, associating SARM to the mitochondria. The S27 peptide has an inherent ability to bind to lipids and mitochondria. This sequence effectively translocates the soluble EGFP (enhanced green fluorescence protein) reporter into the mitochondria. Positioning S27 downstream of the EGFP abrogates its mitochondria-targeting ability. Transmission electron microscopy confirms the ability of S27 to import EGFP into the mitochondria. Importantly, by mutagenesis study, we delineated the specificity of the mitochondria-targeting ability to the arginine residue at the 14th position. The R14A SARM mutant also showed reduced apoptotic potential when compared with the wild-type. Taken together, S27, which is a bona fide signal sequence that targets SARM to the mitochondria, explains the pro-apoptotic activity of SARM. PMID:22145856

  14. 1-[2-Hydroxy-3-octadecan-1'-oate]propyl-2'',2'',5'',5''-tetramethyl pyrolidine-N-oxyl-3''-carboxylate as a potential spin probe for membrane structure studies.

    PubMed

    Katoch, R; Trivedi, G K; Phadke, R S

    1999-12-01

    The synthesis of a new minimum steric perturbing proxyl nitroxide, which is a derivative of glycerol and contains a stearic acid moiety, has been carried out. Its localization in model membrane L-alpha-dipalmitoyl phosphatidyl choline (DPPC) was ascertained with the help of ESR, DSC, 1H and 31P NMR techniques. The nitroxide was used for detecting the changes in the phase transition temperature of the model membranes in the presence and absence of drugs. The permeation of the vasodilating drug epinephrine has also been studied using this spin label. The results prove the potential applicability of the new spin probe in the spin labeling of biomembranes. PMID:10658580

  15. Electron paramagnetic resonance studies of a viscous nematic liquid crystal: Evidence counter to a second-order phase change

    NASA Technical Reports Server (NTRS)

    Shutt, W. E.; Gelerinter, E.; Fryburg, G. C.; Sheley, C. F.

    1972-01-01

    The ordering in a viscous, nematic, liquid crystal was studied using vanadyl acetyl acetonate and several nitroxides as paramagnetic probes. The ordering curve for VAAC at both K-band and X-band shows a slope discontinuity at a reduced temperature of 0.85. This discontinuity is caused by the tumbling time of the VAAC becoming comparable with the hyperfine splitting. The slope discontinuity is not present in the ordering curves of the nitroxides. The results are taken as evidence counter to the presence of a second-order phase transition.

  16. 2,2-Diphenyl­benzo[c]quinoline-1-ox­yl

    PubMed Central

    Rizzoli, Corrado; Marku, Elda; Greci, Lucedio; Astolfi, Paola

    2009-01-01

    In the title compound, C25H18NO, a stable phenanthridinic nitroxide, the ring containing the nitroxide function assumes a twist-boat conformation and the dihedral angle formed by adjacent benzene rings is 21.78 (5)°. The phenyl substituents at position 2 are approximately orthogonal to each other, forming a dihedral angle of 81.04 (4)°. The crystal structure is stabilized by an intra­molecular C—H⋯O hydrogen bond and by C—H⋯π inter­actions. PMID:21583864

  17. Chemistry and biology of spin-trapping radicals associated with halocarbon metabolism in vitro and in vivo.

    PubMed Central

    Janzen, E G; Stronks, H J; Dubose, C M; Poyer, J L; McCay, P B

    1985-01-01

    The spin-trapping method is introduced and discussed. Some chemistry of nitroxides and nitrones is reviewed. Pattern recognition of ESR spectra of nitroxides is outlined. Factors controlling the magnitude of hyperfine splitting constants are mentioned. Methods of assigning spin adducts are listed. Review articles in the literature are referenced. Results in the electrochemical reduction of halocarbons are presented and some parallels with superoxide chemistry shown. Various speculative reactions are given. The in vitro and in vivo experiments where halocarbon radicals have been detected by spin trapping are reviewed and some new results reported. A comparison for different animals is added. PMID:3007086

  18. The products of the reduction of doxyl stearates in cells are hydroxylamines as shown by oxidation by 15N-perdeuterated Tempone.

    PubMed

    Chen, K; Swartz, H M

    1989-07-21

    The use of nitroxides in functional biological systems has increased greatly as it has become evident that such studies can provide valuable biophysical and metabolic data. This has led to a need to understand the nature of the metabolism of nitroxides and their products. This paper presents data indicating the value of 15N-perdeuterated Tempone specifically to indicate the amount of hydroxylamines that are present in a cellular system. Using this technique, we found that in the mammalian cells that we studied the principal or only products of reduction of doxyl stearates were the corresponding hydroxylamines. PMID:2546601

  19. Enhancement of Paramagnetic Relaxation by Photoexcited Gold Nanorods

    PubMed Central

    Wen, Tao; Wamer, Wayne G.; Subczynski, Witold K.; Hou, Shuai; Wu, Xiaochun; Yin, Jun-Jie

    2016-01-01

    Electron spin resonance (ESR) spectroscopy was used to investigate the switchable, light-dependent effects of gold nanorods (GNRs) on paramagnetic properties of nitroxide spin probes. The photoexcited GNRs enhanced the spin-spin and spin-lattice relaxations of nitroxide spin probes. It was shown that molecular oxygen plays the key role in this process. Our results demonstrate that ESR is a powerful tool for investigating the events following photoexcitation of GNRs. The novel light-controlled effects observed for GNRs on paramagnetic properties and activities of surrounding molecules have a number of significant applications where oxygen sensing and oxygen activity is important. PMID:27071507

  20. Molecular distances from dipolar coupled spin-labels: the global analysis of multifrequency continuous wave electron paramagnetic resonance data.

    PubMed Central

    Hustedt, E J; Smirnov, A I; Laub, C F; Cobb, C E; Beth, A H

    1997-01-01

    For immobilized nitroxide spin-labels with a well-defined interprobe geometry, resolved dipolar splittings can be observed in continuous wave electron paramagnetic resonance (CW-EPR) spectra for interelectron distances as large as 30 A using perdeuterated probes. In this work, algorithms are developed for calculating CW-EPR spectra of immobilized, dipolar coupled nitroxides, and then used to define the limits of sensitivity to the interelectron distance as a function of geometry and microwave frequency. Secondly, the CW-EPR spectra of N epsilon-spin-labeled coenzyme NAD+ bound to microcrystalline, tetrameric glyceraldehyde-3-phosphate dehydrogenase (GAPDH) have been collected at 9.8, 34, and 94 GHz. These data have been analyzed, using a combination of simulated annealing and global analysis, to obtain a unique fit to the data. The values of the intermitroxide distance and the five angles defining the relative orientation of the two nitroxides are in reasonable agreement with a molecular model built from the known crystal structure. Finally, the effect of rigid body isotropic rotational diffusion on the CW-EPR spectra of dipolar coupled nitroxides has been investigated using an algorithm based on Brownian dynamics trajectories. These calculations demonstrate the sensitivity of CW-EPR spectra to dipolar coupling in the presence of rigid body rotational diffusion. PMID:9083690

  1. Molecular magnets based on metal complexes with spin-labeled imidazoles

    NASA Astrophysics Data System (ADS)

    Fursova, E.; Romanenko, G.; Ikorskii, V.; Ovcharenko, V.

    2004-04-01

    New heterospin systems based on Cu(II) and Mn(II) complexes with spin-labeled imidazol-4-yl derivatives were synthesized. Magneto-structural correlations inherent in their nature were investigated. Key words. Nitroxides metal complexes structure magnetic properties.

  2. Large-scale asymmetric synthesis of the bioprotective agent JP4-039 and analogs

    PubMed Central

    Frantz, Marie-Céline; Pierce, Joshua G.; Pierce, Joan M.; Kangying, Li; Qingwei, Wan; Johnson, Matthew; Wipf, Peter

    2011-01-01

    JP4-039 is a novel nitroxide conjugate capable of crossing lipid bilayer membranes and scavenging reactive oxygen species (ROS). An efficient and scalable one-pot hydrozirconation-transmetalation-imine addition methodology has been developed for its asymmetric preparation. Furthermore, this versatile methodology allows for the synthesis of cyclopropyl and fluorinated analogs of the parent lead structure. PMID:21452836

  3. Fluorescence probe for the convenient and sensitive detection of ascorbic acid

    PubMed Central

    Matsuoka, Yuta; Yamato, Mayumi; Yamada, Ken-ichi

    2016-01-01

    Ascorbic acid is an important antioxidant that plays an essential role in the biosynthesis of numerous bioactive substances. The detection of ascorbic acid has traditionally been achieved using high-performance liquid chromatography and absorption spectrophotometry assays. However, the development of fluorescence probes for this purpose is highly desired because they provide a much more convenient and highly sensitive technique for the detection of this material. OFF-ON-type fluorescent probes have been developed for the detection of non-fluorescent compounds. Photo-induced electron transfer and fluorescence resonance energy transfer are the two main fluorescence quenching mechanisms for the detection of ascorbic acid, and several fluorescence probes have been reported based on redox-responsive metals and quantum dots. Profluorescent nitroxide compounds have also been developed as non-metal organic fluorescence probes for ascorbic acid. These nitroxide systems have a stable unpaired electron and can therefore react with ascorbic acid and a strong fluorescence quencher. Furthermore, recent synthetic advances have allowed for the synthesis of α-substituted nitroxides with varying levels of reactivity towards ascorbic acid. In this review, we have discussed the design strategies used for the preparation of fluorescent probes for ascorbic acid, with particular emphasis on profluorescent nitroxides, which are unique radical-based redox-active fluorescent probes. PMID:26798193

  4. A paramagnetic molecular voltmeter.

    PubMed

    Surek, Jack T; Thomas, David D

    2008-01-01

    We have developed a general electron paramagnetic resonance (EPR) method to measure electrostatic potential at spin labels on proteins to millivolt accuracy. Electrostatic potential is fundamental to energy-transducing proteins like myosin, because molecular energy storage and retrieval is primarily electrostatic. Quantitative analysis of protein electrostatics demands a site-specific spectroscopic method sensitive to millivolt changes. Previous electrostatic potential studies on macromolecules fell short in sensitivity, accuracy and/or specificity. Our approach uses fast-relaxing charged and neutral paramagnetic relaxation agents (PRAs) to increase nitroxide spin label relaxation rate solely through collisional spin exchange. These PRAs were calibrated in experiments on small nitroxides of known structure and charge to account for differences in their relaxation efficiency. Nitroxide longitudinal (R(1)) and transverse (R(2)) relaxation rates were separated by applying lineshape analysis to progressive saturation spectra. The ratio of measured R(1) increases for each pair of charged and neutral PRAs measures the shift in local PRA concentration due to electrostatic potential. Voltage at the spin label is then calculated using the Boltzmann equation. Measured voltages for two small charged nitroxides agree with Debye-Hückel calculations. Voltage for spin-labeled myosin fragment S1 also agrees with calculation based on the pK shift of the reacted cysteine. PMID:17964835

  5. A Paramagnetic Molecular Voltmeter

    PubMed Central

    Surek, Jack T.; Thomas, David D.

    2008-01-01

    We have developed a general electron paramagnetic resonance (EPR) method to measure electrostatic potential at spin labels on proteins to millivolt accuracy. Electrostatic potential is fundamental to energy-transducing proteins like myosin, because molecular energy storage and retrieval is primarily electrostatic. Quantitative analysis of protein electrostatics demands a site-specific spectroscopic method sensitive to millivolt changes. Previous electrostatic potential studies on macromolecules fell short in sensitivity, accuracy and/or specificity. Our approach uses fast-relaxing charged and neutral paramagnetic relaxation agents (PRAs) to increase nitroxide spin label relaxation rate solely through collisional spin exchange. These PRAs were calibrated in experiments on small nitroxides of known structure and charge to account for differences in their relaxation efficiency. Nitroxide longitudinal (R1) and transverse (R2) relaxation rates were separated by applying lineshape analysis to progressive saturation spectra. The ratio of measured R1 increases for each pair of charged and neutral PRAs measures the shift in local PRA concentration due to electrostatic potential. Voltage at the spin label is then calculated using the Boltzmann equation. Measured voltages for two small charged nitroxides agree with Debye-Hückel calculations. Voltage for spin-labeled myosin fragment S1 also agrees with calculation based on the pK shift of the reacted cysteine. PMID:17964835

  6. Sonochemical activation of hematoporphyrin: an ESR study.

    PubMed

    Yumita, N; Nishigaki, R; Umemura, K; Morse, P D; Swartz, H M; Cain, C A; Umemura, S

    1994-05-01

    The production of 2,2,6,6-tetramethyl-4-piperidone-N-oxyl by reaction of 2,2,6,6-tetramethyl-4-piperidone (TMPone) with ultrasonically generated active species in oxygenated solutions of hematoporphyrin (Hp) was studied by electron spin resonance spectroscopy. The nitroxide production rate in air-saturated TMPone solutions in phosphate-buffered saline of pH 9.0 was significantly higher in the presence of Hp than in its absence. The enhancement of nitroxide production by Hp was significantly inhibited in the presence of sodium azide or histidine in the solution. The production rate with Hp was doubled by substitution of deuterium oxide, while the rate without Hp increased only modestly. These results suggest that a substantial amount of active oxygen can be generated by ultrasound in aqueous solutions of Hp. Since the production rate was not reduced by mannitol and no nitroxide was produced in nitrogen-saturated solutions, it appears that hydroxyl radicals do not account for a major portion of the active oxygen species which reacted with TMPone to yield a nitroxide. PMID:8183986

  7. PHOTOCHEMICAL PRODUCTION OF REACTIVE OXYGEN SPECIES BY CONSTITUENTS OF COLORED DISSOLVED ORGANIC MATTER AND COASTAL RIVER WATERS IN THE SOUTHEASTERN UNITED STATES

    EPA Science Inventory

    Using a previously developed method to measure OH production, formation rates were obtained for several water systems. Employing an amino-nitroxide probe and DMSO, an action
    spectrum for the product consistent with the production of OH by quinone moieties within humic material...

  8. Gd(3+) Spin Labels Report the Conformation and Solvent Accessibility of Solution and Vesicle-Bound Melittin.

    PubMed

    Manukovsky, Nurit; Frydman, Veronica; Goldfarb, Daniella

    2015-10-29

    Although Gd(3+)-based spin labels have been shown to be an alternative to nitroxides for double electron-electron resonance (DEER) distance measurements at high fields, their ability to provide solvent accessibility information, as nitroxides do, has not been explored. In addition, the effect of the label type on the measured distance distribution has not been sufficiently characterized. In this work, we extended the applicability of Gd(3+) spin labels to solvent accessibility measurements on a peptide in model membranes, namely, large unilamellar vesicles (LUVs) using W-band (2)H Mims electron-nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM) techniques and Gd(3+)-ADO3A-labeled melittin. In addition, we carried out Gd(3+)-Gd(3+) DEER distance measurements to probe the peptide conformation in solution and when bound to LUVs. A comparison with earlier results reported for the same system with nitroxide labels shows that, although in both cases the peptide binds parallel to the membrane surface, the Gd(3+)-ADO3A label tends to protrude from the membrane into the solvent, whereas the nitroxide does the opposite. This can be explained on the basis of the hydrophilicity of the Gd(3+)-ADO3A labels in contrast with the hydrophobicity of nitroxides. The distance distributions obtained from different labels are accordingly different, with the Gd(3+)-ADO3A yielding consistently broader distributions. These discrepancies are most pronounced when the peptide termini are labeled, which implies that such labeling positions may be inadvisible. PMID:26001213

  9. Targeting Mitochondria-Derived Reactive Oxygen Species to Reduce Epithelial Barrier Dysfunction and Colitis

    PubMed Central

    Wang, Arthur; Keita, Åsa V.; Phan, Van; McKay, Catherine M.; Schoultz, Ida; Lee, Joshua; Murphy, Michael P.; Fernando, Maria; Ronaghan, Natalie; Balce, Dale; Yates, Robin; Dicay, Michael; Beck, Paul L.; MacNaughton, Wallace K.; Söderholm, Johan D.; McKay, Derek M.

    2015-01-01

    Epithelial permeability is often increased in inflammatory bowel diseases. We hypothesized that perturbed mitochondrial function would cause barrier dysfunction and hence epithelial mitochondria could be targeted to treat intestinal inflammation. Mitochondrial dysfunction was induced in human colon-derived epithelial cell lines or colonic biopsy specimens using dinitrophenol, and barrier function was assessed by transepithelial flux of Escherichia coli with or without mitochondria-targeted antioxidant (MTA) cotreatment. The impact of mitochondria-targeted antioxidants on gut permeability and dextran sodium sulfate (DSS)–induced colitis in mice was tested. Mitochondrial superoxide evoked by dinitrophenol elicited significant internalization and translocation of E. coli across epithelia and control colonic biopsy specimens, which was more striking in Crohn’s disease biopsy specimens; the mitochondria-targeted antioxidant, MitoTEMPO, inhibited these barrier defects. Increased gut permeability and reduced epithelial mitochondrial voltage-dependent anion channel expression were observed 3 days after DSS. These changes and the severity of DSS-colitis were reduced by MitoTEMPO treatment. In vitro DSS-stimulated IL-8 production by epithelia was reduced by MitoTEMPO. Metabolic stress evokes significant penetration of commensal bacteria across the epithelium, which is mediated by mitochondria-derived superoxide acting as a signaling, not a cytotoxic, molecule. MitoTEMPO inhibited this barrier dysfunction and suppressed colitis in DSS-colitis, likely via enhancing barrier function and inhibiting proinflammatory cytokine production. These novel findings support consideration of MTAs in the maintenance of epithelial barrier function and the management of inflammatory bowel diseases. PMID:25034594

  10. Dysregulation of Glutamine Transporter SNAT1 in Rett Syndrome Microglia: A Mechanism for Mitochondrial Dysfunction and Neurotoxicity

    PubMed Central

    Jin, Lee-Way; Horiuchi, Makoto; Wulff, Heike; Liu, Xiao-Bo; Cortopassi, Gino A.; Erickson, Jeffrey D.

    2015-01-01

    Rett syndrome (RTT) is an autism spectrum disorder caused by loss-of-function mutations in the gene encoding MeCP2, an epigenetic modulator that binds the methyl CpG dinucleotide in target genes to regulate transcription. Previously, we and others reported a role of microglia in the pathophysiology of RTT. To understand the mechanism of microglia dysfunction in RTT, we identified a MeCP2 target gene, SLC38A1, which encodes a major glutamine transporter (SNAT1), and characterized its role in microglia. We found that MeCP2 acts as a microglia-specific transcriptional repressor of SNAT1. Because glutamine is mainly metabolized in the mitochondria, where it is used as an energy substrate and a precursor for glutamate production, we hypothesize that SNAT1 overexpression in MeCP2-deficient microglia would impair the glutamine homeostasis, resulting in mitochondrial dysfunction as well as microglial neurotoxicity because of glutamate overproduction. Supporting this hypothesis, we found that MeCP2 downregulation or SNAT1 overexpression in microglia resulted in (1) glutamine-dependent decrease in microglial viability, which was corroborated by reduced microglia counts in the brains of MECP2 knock-out mice; (2) proliferation of mitochondria and enhanced mitochondrial production of reactive oxygen species; (3) increased oxygen consumption but decreased ATP production (an energy-wasting state); and (4) overproduction of glutamate that caused NMDA receptor-dependent neurotoxicity. The abnormalities could be rectified by mitochondria-targeted expression of catalase and a mitochondria-targeted peptide antioxidant, Szeto-Schiller 31. Our results reveal a novel mechanism via which MeCP2 regulates bioenergetic pathways in microglia and suggest a therapeutic potential of mitochondria-targeted antioxidants for RTT. PMID:25673846

  11. Allylic Amines as Key Building Blocks in the Synthesis of (E)-Alkene Peptide Isosteres

    PubMed Central

    Skoda, Erin M.; Davis, Gary C.

    2012-01-01

    Nucleophilic imine additions with vinyl organometallics have developed into efficient, high yielding, and robust methodologies to generate structurally diverse allylic amines. We have used the hydrozirconation-transmetalation-imine addition protocol in the synthesis of allylic amine intermediates for peptide bond isosteres, phosphatase inhibitors, and mitochondria-targeted peptide mimetics. The gramicidin S-derived XJB-5-131 and JP4-039 and their analogs have been prepared on up to 160 g scale for preclinical studies. These (E)-alkene peptide isosteres adopt type II′ β-turn secondary structures and display impressive biological properties, including selective reactions with reactive oxygen species (ROS) and prevention of apoptosis. PMID:22323894

  12. Functionalized Nanosystems for Targeted Mitochondrial Delivery

    PubMed Central

    Durazo, Shelley A.; Kompella, Uday B.

    2011-01-01

    Mitochondrial dysfunction including oxidative stress and DNA mutations underlies the pathology of various diseases including Alzheimer’s disease and diabetes, necessitating the development of mitochondria targeted therapeutic agents. Nanotechnology offers unique tools and materials to target therapeutic agents to mitochondria. As discussed in this paper, a variety of functionalized nanosystems including polymeric and metallic nanoparticles as well as liposomes are more effective than plain drug and non-functionalized nanosystems in delivering therapeutic agents to mitochondria. Although the field is in its infancy, studies to date suggest the superior therapeutic activity of functionalized nanosystems for treating mitochondrial defects. PMID:22138492

  13. Structural Changes of a Doubly Spin-Labeled Chemically Driven Molecular Shuttle Probed by PELDOR Spectroscopy.

    PubMed

    Franchi, Paola; Bleve, Valentina; Mezzina, Elisabetta; Schäfer, Christian; Ragazzon, Giulio; Albertini, Marco; Carbonera, Donatella; Credi, Alberto; Di Valentin, Marilena; Lucarini, Marco

    2016-06-20

    Gaining detailed information on the structural rearrangements associated with stimuli-induced molecular movements is of utmost importance for understanding the operation of molecular machines. Pulsed electron-electron double resonance (PELDOR) was employed to monitor the geometrical changes arising upon chemical switching of a [2]rotaxane that behaves as an acid-base-controlled molecular shuttle. To this aim, the rotaxane was endowed with stable nitroxide radical units in both the ring and axle components. The combination of PELDOR data and molecular dynamic calculations indicates that in the investigated rotaxane, the ring displacement along the axle, caused by the addition of a base, does not alter significantly the distance between the nitroxide labels, but it is accompanied by a profound change in the geometry adopted by the macrocycle. PMID:27123774

  14. ESR Microscopy for Biological and Biomedical Applications

    PubMed Central

    Shin, C. S.; Dunnam, C. R.; Borbat, P. P.; Dzikovski, B.; Barth, E. D.; Halpern, H. J.; Freed, J. H.

    2011-01-01

    We report on electron-spin resonance microscopy (ESRM) providing sub-micron resolution (~700nm) with a high spin concentration sample, i.e. lithium phthalocyanine (LiPc) crystal. For biomedical applications of our ESRM, we have imaged samples containing rat basophilic leukemia (RBL) cells as well as cancerous tissue samples with a resolution of several microns using a water soluble spin probe, Trityl_OX063_d24. Phantom samples with the nitroxide spin label, 15N PDT, were also imaged to demonstrate that nitroxides, which are commonly used as spin labels, may also be used for ESRM applications. ESRM tissue imaging would therefore be valuable for diagnostic or therapeutic purposes. Also, ESRM can be used to study the motility or the metabolism of cells in various environments. With further modification and/or improvement of imaging probe and spectrometer instrumentation sub-micron biological images should be obtainable, thereby providing a useful tool for various biomedical applications. PMID:21984955

  15. Synthesis and characterization of amorphous mesoporous silica using TEMPO-functionalized amphiphilic templates

    NASA Astrophysics Data System (ADS)

    de Vries, Wilke; Doerenkamp, Carsten; Zeng, Zhaoyang; de Oliveira, Marcos; Niehaus, Oliver; Pöttgen, Rainer; Studer, Armido; Eckert, Hellmut

    2016-05-01

    Inorganic-organic hybrid materials based on amorphous mesoporous silica containing organized nitroxide radicals within its mesopores have been prepared using the micellar self-assembly of TEOS solutions containing the nitroxide functionalized amphiphile (4-(N,N-dimethyl-N-hexadecylammonium)-2,2,6,6-tetramethyl-piperidin-N-oxyl-iodide) (CAT-16). This template has been used both in its pure form and in various mixtures with cetyl trimethylammonium bromide (CTAB). The samples have been characterized by chemical analysis, N2 sorption studies, magnetic susceptibility measurements, and various spectroscopic methods. While electron paramagnetic resonance (EPR) spectra indicate that the strength of the intermolecular spin-spin interactions can be controlled via the CAT-16/CTAB ratio, nuclear magnetic resonance (NMR) data suggest that these interactions are too weak to facilitate cooperative magnetism.

  16. High-Frequency/High-field electron spin echo envelope modulation study of nitrogen hyperfine and quadrupole interactions on a disordered powder sample

    PubMed

    Bloess; Mobius; Prisner

    1998-09-01

    High-frequency/high-field (95 GHz/3.4 T) electron spin echo envelope modulation (ESEEM) experiments on single crystals and disordered samples of dianisyl-nitroxide (DANO) radicals are reported. At these high microwave frequencies (W-band), the anisotropic g-matrix of the nitroxide radical is resolved in the EPR spectrum. Additionally ESEEM modulations from other than nitrogen nuclei, such as protons, are highly suppressed at these frequencies, because they are too far from the cancellation condition for effective mixing of the nuclear spin functions. Therefore the nitrogen (14N) hyperfine and quadrupole coupling tensors could be determined without ambiguity from powder measurements. The results obtained were checked by ESEEM measurements on single crystals. Advantages and disadvantages of high-field ESEEM on nitrogen couplings are briefly discussed and compared with electron nuclear double resonance (ENDOR) and X-band ESEEM. Copyright 1998 Academic Press. PMID:9740727

  17. Determination of electrostatic potentials at biological interfaces using electron-electron double resonance.

    PubMed Central

    Shin, Y K; Hubbell, W L

    1992-01-01

    A new general method for the determination of electrostatic potentials at biological surfaces is presented. The approach is based on measurement of the collision frequency of a charged nitroxide in solution with a nitroxide fixed to the surface at the point of interest. The collision frequency is determined with 14N:15N double label electron-electron double resonance (ELDOR). As a test, the method is shown to give values for phospholipid bilayer surface potentials consistent with the Gouy-Chapman theory, a simple model shown by many independent tests to accurately describe charged, planar surfaces. In addition, the method is applied to determine the electrostatic potential near the surface of DNA. The results indicate that the potential is significantly smaller than that predicted from Poisson-Boltzmann analysis, but is in qualitative agreement with that predicted by Manning's theory of counter ion condensation. The method is readily extended to measurement of surface potentials of proteins. PMID:1319760

  18. A model system for investigating lineshape/structure correlations in RNA site-directed spin labeling☆

    PubMed Central

    Qin, Peter Z.; Iseri, Jennifer; Oki, Arisa

    2008-01-01

    In RNA site-directed spin labeling (SDSL) studies, structural and dynamic information at the individual RNA nucleotide level is derived from the observed electron paramagnetic resonance spectrum of a covalently attached nitroxide. A systematic approach for RNA SDSL is to establish a library that categorizes observed spectral lineshapes based on known RNA structures, thus enabling lineshape-based structure identification at any RNA site. To establish the first RNA SDSL library, selective secondary structure elements have been systematically engineered into a model RNA. Nitroxide lineshapes reporting features specific to each element were obtained utilizing a new avidin-tethering scheme for suppressing spectral effects due to uniform RNA tumbling. The data demonstrated two key features required for a SDSL library with a predicting power: (i) spectral divergence—distinctive lineshape for different elements; and (ii) spectral convergence—similar lineshape for the same element in different contexts. This sets the foundation for further RNA SDSL library development. PMID:16530169

  19. Apoptosis induction by aluminum phthalocyanine tetrasulfonate-based sonodynamic therapy in HL-60 cells

    NASA Astrophysics Data System (ADS)

    Iwase, Yumiko; Yumita, Nagahiko; Nishi, Koji; Kuwahara, Hiroyuki; Fukai, Toshio; Ikeda, Toshihiko; Chen, Fu-shih; Momose, Yasunori; Umemura, Shin-ichiro

    2015-07-01

    The present study aims to investigate sonodynamically-induced apoptosis using the phthalocyanine, chloroaluminum phthalocyanine tetrasulfonate (AlPcTS). HL-60 cells were exposed to ultrasound for up to 3 min in the absence and presence of AlPcTS. Apoptosis was analyzed by cell morphology, DNA fragmentation, and caspase-3 activity. Electron spin resonance was used to measure reactive oxygen species. The number of apoptotic cells showing membrane blebbing and cell shrinkage after combined treatment (ultrasound and AlPcTS) was significantly higher than following other treatments, including ultrasound alone and AlPcTS alone. Furthermore, DNA ladder formation, caspase-3 activation and enhanced nitroxide generation were observed in cells treated with ultrasound and AlPcTS. Sonodynamically induced apoptosis, caspase-3 activation, and nitroxide generation were significantly suppressed by histidine. The significant reduction by histidine indicated that ultrasonically generated reactive oxygen species, such as singlet oxygen, is an important mediator of sonodynamically-induced apoptosis.

  20. In vivo measurement of arterial and venous oxygenation in the rat using 3D spectral-spatial electron paramagnetic resonance imaging.

    PubMed

    Kuppusamy, P; Shankar, R A; Zweier, J L

    1998-07-01

    Electron paramagnetic resonance imaging (EPRI) instrumentation, enabling the performance of three-dimensional spectral-spatial images of free radicals, has been developed to study spatially defined differences in tissue metabolism and oxygenation. Using this instrumentation 3D images of nitroxides in rat tail were obtained. The images visualize the arterial and venous vasculature in the tail segment. Based on the exchange broadening influence of oxygen on the EPR linewidth of nitroxides, we performed localized oxygen measurements in the in vivo rat. An oxygen concentration of 300+/-30 microM was measured in the arteries and 50+/-20 microM in the veins. These results demonstrate the feasibility of performing in vivo, non-invasive measurements and mapping of localized oxygenation in small animals using spectral-spatial EPR imaging techniques. PMID:9703045

  1. Structural refinement from restrained-ensemble simulations based on EPR/DEER data: application to T4 lysozyme.

    PubMed

    Islam, Shahidul M; Stein, Richard A; McHaourab, Hassane S; Roux, Benoît

    2013-05-01

    DEER (double electron-electron resonance) is a powerful pulsed ESR (electron spin resonance) technique allowing the determination of distance histograms between pairs of nitroxide spin-labels linked to a protein in a native-like solution environment. However, exploiting the huge amount of information provided by ESR/DEER histograms to refine structural models is extremely challenging. In this study, a restrained ensemble (RE) molecular dynamics (MD) simulation methodology is developed to address this issue. In RE simulation, the spin-spin distance distribution histograms calculated from a multiple-copy MD simulation are enforced, via a global ensemble-based energy restraint, to match those obtained from ESR/DEER experiments. The RE simulation is applied to 51 ESR/DEER distance histogram data from spin-labels inserted at 37 different positions in T4 lysozyme (T4L). The rotamer population distribution along the five dihedral angles connecting the nitroxide ring to the protein backbone is determined and shown to be consistent with available information from X-ray crystallography. For the purpose of structural refinement, the concept of a simplified nitroxide dummy spin-label is designed and parametrized on the basis of these all-atom RE simulations with explicit solvent. It is demonstrated that RE simulations with the dummy nitroxide spin-labels imposing the ESR/DEER experimental distance distribution data are able to systematically correct and refine a series of distorted T4L structures, while simple harmonic distance restraints are unsuccessful. This computationally efficient approach allows experimental restraints from DEER experiments to be incorporated into RE simulations for efficient structural refinement. PMID:23510103

  2. Tris-(nitrato-κ(2)O,O')bis[4,4,5,5-tetra-methyl-2-(pyridin-2-yl-κN)imidazoline-1-oxyl 3-oxide-κO]holmium(III).

    PubMed

    Li, Dong-Jiao

    2012-05-01

    In the title compound, [Ho(NO(3))(3)(C(12)H(16)N(3)O(2))(2)], the Ho(III) ion is ten-coordinated in a distorted bicapped square-anti-prismatic environment by two N,O-bidentate nitronyl nitroxide radical ligands and three O,O'-bidentate nitrate anions. Complex mol-ecules are connected by C-H⋯O hydrogen bonds into a three-dimensional network. PMID:22590072

  3. A Single-Stranded Junction Modulates Nanosecond Motional Ordering of the Substrate Recognition Duplex of a Group I Ribozyme

    PubMed Central

    Nguyen, Phuong; Shi, Xuesong; Sigurdsson, Snorri Th.; Herschlag, Daniel

    2013-01-01

    Rigid spinning: Site-directed spin-labeling studies using a rigid nitroxide spin label (Ç) reveal that both length and sequence of a single-stranded junction (J1/2) modulate nanosecond motional ordering of the substrate-recognition duplex (P1) of the 120 kD group I ribozyme. The studies demonstrate an approach for experimental measurements of nanosecond dynamics in high-molecular-weight RNA complexes. PMID:23900919

  4. Determination of relative positions and localizations of paramagnetic probe molecules in liquid crystal by analysis of concentration broadening of EPR spectra

    NASA Astrophysics Data System (ADS)

    Pomogailo, Daria A.; Paramonov, Nikita A.; Chumakova, Natalia A.; Vorobiev, Andrey Kh.

    2016-07-01

    The angular dependences of concentration broadening of EPR spectra for nitroxide spin probes in liquid crystals were experimentally measured. The obvious angular dependence of the broadening found for oriented smectic liquid crystal HOPDOB proves the paired localization of the probe molecules. The numerical calculation of the angular dependence taking into account the magnetic dipolar and spin exchange interactions have been used for quantitative determination of position of probes in the pairs. The probable localization of the probes in the smectic layer is discussed.

  5. Interaction of Spin-Labeled Lipid Membranes with Transition Metal Ions

    PubMed Central

    2015-01-01

    The large values of spin relaxation enhancement (RE) for PC spin-labels in the phospholipid membrane induced by paramagnetic metal salts dissolved in the aqueous phase can be explained by Heisenberg spin exchange due to conformational fluctuations of the nitroxide group as a result of membrane fluidity, flexibility of lipid chains, and, possibly, amphiphilic nature of the nitroxide label. Whether the magnetic interaction occurs predominantly via Heisenberg spin exchange (Ni) or by the dipole–dipole (Gd) mechanism, it is essential for the paramagnetic ion to get into close proximity to the nitroxide moiety for efficient RE. For different salts of Ni the RE in phosphatidylcholine membranes follows the anionic Hofmeister series and reflects anion adsorption followed by anion-driven attraction of paramagnetic cations on the choline groups. This adsorption is higher for chaotropic ions, e.g., perchlorate. (A chaotropic agent is a molecule in water solution that can disrupt the hydrogen bonding network between water molecules.) However, there is no anionic dependence of RE for model membranes made from negatively charged lipids devoid of choline groups. We used Ni-induced RE to study the thermodynamics and electrostatics of ion/membrane interactions. We also studied the effect of membrane composition and the phase state on the RE values. In membranes with cholesterol a significant difference is observed between PC labels with nitroxide tethers long enough vs not long enough to reach deep into the membrane hydrophobic core behind the area of fused cholesterol rings. This study indicates one must be cautious in interpreting data obtained by PC labels in fluid membranes in terms of probing membrane properties at different immersion depths when it can be affected by paramagnetic species at the membrane surface. PMID:26490692

  6. Recyclable Crosslinked Polymer Networks via One-Step Controlled Radical Polymerization.

    PubMed

    Jin, Kailong; Li, Lingqiao; Torkelson, John M

    2016-08-01

    A nitroxide-mediated polymerization strategy allows one-step synthesis of recyclable crosslinked polymeric materials from any monomers or polymers that contain carbon-carbon double bonds amenable to radical polymerization. The resulting materials with dynamic covalent bonds can show full property recovery after multiple melt-reprocessing recycles. This one-step strategy provides for both robust, relatively sustainable recyclability of crosslinked polymers and design of networks for advanced technologies. PMID:27206061

  7. Quantification of superoxide radical production in thylakoid membrane using cyclic hydroxylamines.

    PubMed

    Kozuleva, Marina; Klenina, Irina; Mysin, Ivan; Kirilyuk, Igor; Opanasenko, Vera; Proskuryakov, Ivan; Ivanov, Boris

    2015-12-01

    Applicability of two lipophilic cyclic hydroxylamines (CHAs), CM-H and TMT-H, and two hydrophilic CHAs, CAT1-H and DCP-H, for detection of superoxide anion radical (O2(∙-)) produced by the thylakoid photosynthetic electron transfer chain (PETC) of higher plants under illumination has been studied. ESR spectrometry was applied for detection of the nitroxide radical originating due to CHAs oxidation by O2(∙-). CHAs and corresponding nitroxide radicals were shown to be involved in side reactions with PETC which could cause miscalculation of O2(∙-) production rate. Lipophilic CM-H was oxidized by PETC components, reducing the oxidized donor of Photosystem I, P700(+), while at the same concentration another lipophilic CHA, TMT-H, did not reduce P700(+). The nitroxide radical was able to accept electrons from components of the photosynthetic chain. Electrostatic interaction of stable cation CAT1-H with the membrane surface was suggested. Water-soluble superoxide dismutase (SOD) was added in order to suppress the reaction of CHA with O2(∙-) outside the membrane. SOD almost completely inhibited light-induced accumulation of DCP(∙), nitroxide radical derivative of hydrophilic DCP-H, in contrast to TMT(∙) accumulation. Based on the results showing that change in the thylakoid lumen pH and volume had minor effect on TMT(∙) accumulation, the reaction of TMT-H with O2(∙-) in the lumen was excluded. Addition of TMT-H to thylakoid suspension in the presence of SOD resulted in the increase in light-induced O2 uptake rate, that argued in favor of TMT-H ability to detect O2(∙-) produced within the membrane core. Thus, hydrophilic DCP-H and lipophilic TMT-H were shown to be usable for detection of O2(∙-) produced outside and within thylakoid membranes. PMID:26453925

  8. Activation of the anticancer drug CCNU into a free radical intermediate via UV irradiation--an ESR study.

    PubMed

    Raikov, Z D; Zheleva, A M; Raikova, E T

    1990-01-01

    We studied the formation of a free radical induced by UV irradiation of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) in benzene. It was determined a stable nitroxide radical by ESR spectroscopy. We confirmed that sterically hindered cyclic amine 2,2,6,6-tetramethyl-4-piperidone (TMPone) was transformed into a corresponding stable free nitroxyl radical during UV irradiation. When CCNU was present, the rate of free radical formation from TMPone increased considerably. PMID:1963416

  9. Decreased agonist-stimulated mitochondrial ATP production caused by a pathological reduction in endoplasmic reticulum calcium content in human complex I deficiency.

    PubMed

    Visch, Henk-Jan; Koopman, Werner J H; Leusink, Anouk; van Emst-de Vries, Sjenet E; van den Heuvel, Lambertus W P J; Willems, Peter H G M; Smeitink, Jan A M

    2006-01-01

    Although a large number of mutations causing malfunction of complex I (NADH:ubiquinone oxidoreductase) of the OXPHOS system is now known, their cell biological consequences remain obscure. We previously showed that the bradykinin (Bk)-induced increase in mitochondrial [ATP] ([ATP](M)) is significantly reduced in primary skin fibroblasts from a patient with an isolated complex I deficiency. The present work addresses the mechanism(s) underlying this impaired response. Luminometry of fibroblasts from 6 healthy subjects and 14 genetically characterized patients expressing mitochondria targeted luciferase revealed that the Bk-induced increase in [ATP](M) was significantly, but to a variable degree, decreased in 10 patients. The same variation was observed for the increases in mitochondrial [Ca(2+)] ([Ca(2+)](M)), measured with mitochondria targeted aequorin, and cytosolic [Ca(2+)] ([Ca(2+)](C)), measured with fura-2, and for the Ca(2+) content of the endoplasmic reticulum (ER), calculated from the increase in [Ca(2+)](C) evoked by thapsigargin, an inhibitor of the ER Ca(2+) ATPase. Regression analysis revealed that the increase in [ATP](M) was directly proportional to the increases in [Ca(2+)](C) and [Ca(2+)](M) and to the ER Ca(2+) content. Our findings provide evidence that a pathological reduction in ER Ca(2+) content is the direct cause of the impaired Bk-induced increase in [ATP](M) in human complex I deficiency. PMID:16213125

  10. Functional mesoporous silica nanoparticles (MSNs) for highly controllable drug release and synergistic therapy.

    PubMed

    Cheng, Yin-Jia; Zeng, Xuan; Cheng, Dong-Bing; Xu, Xiao-Ding; Zhang, Xian-Zheng; Zhuo, Ren-Xi; He, Feng

    2016-09-01

    Synergistic therapy involving two or more therapeutic agents with different anticancer mechanisms represents a promising approach to eradicate chemotherapy-refractory cancers. However, the preparation of a synergistic therapy platform generally involves complicated procedures to encapsulate different therapeutic agents and thereby increases the purification difficulty. In this work, we reported a simple but robust strategy to prepare a highly controllable drug delivery system (DDS) for synergistic cancer therapy. To construct this robust DDS, mesoporous silica nanoparticles (MSNs) were employed as a nanoplatform to encapsulate anticancer drug doxorubicin (DOX). After using a tumor-targeting cellular membrane-penetrating peptide (TCPP) and a mitochondria-targeting therapeutic peptide (TPP) to seal the surface pores via disulfide bonds, these newly developed MSNs can target cancer cells, penetrate cell membrane and rapidly release anticancer drug and mitochondria-targeted peptide in cytoplasm, inducing a remarkable synergistic anticancer effect. The new design concept reported here will promote the development of targeted and smart DDSs for synergistic cancer therapy. PMID:27182657

  11. Prooxidant Properties of p66shc Are Mediated by Mitochondria in Human Cells

    PubMed Central

    Galimov, Evgeny R.; Chernyak, Boris V.; Sidorenko, Alena S.; Tereshkova, Alesya V.; Chumakov, Peter M.

    2014-01-01

    p66shc is a protein product of an mRNA isoform of SHC1 gene that has a pro-oxidant and pro-apoptotic activity and is implicated in the aging process. Mitochondria were suggested as a major source of the p66shc-mediated production of reactive oxygen species (ROS), although the underlying mechanisms are poorly understood. We studied effects of p66shc on oxidative stress induced by hydrogen peroxide or by serum deprivation in human colon carcinoma cell line RKO and in diploid human dermal fibroblasts (HDFs). An shRNA-mediated knockdown of p66shc suppressed and an overexpression of a recombinant p66shc stimulated the production of ROS in the both models. This effect was not detected in the mitochondrial DNA-depleted ρ0-RKO cells that do not have the mitochondrial electron transport chain (ETC). The p66shc-dependent accumulation of mitochondrial ROS was detected with HyPer-mito, a mitochondria-targeted fluorescent protein sensor for hydrogen peroxide. The fragmentation of mitochondria induced by mitochondrial ROS was significantly reduced in the p66shc deficient RKO cells. Mitochondria-targeted antioxidants SkQ1 and SkQR1 also decreased the oxidative stress induced by hydrogen peroxide or by serum deprivation. Together the data indicate that the p66shc-dependant ROS production during oxidative stress has mitochondrial origin in human normal and cancer cells. PMID:24618848

  12. Re-Directing an Alkylating Agent to Mitochondria Alters Drug Target and Cell Death Mechanism

    PubMed Central

    Wisnovsky, Simon P.; Pereira, Mark P.; Wang, Xiaoming; Hurren, Rose; Parfitt, Jeremy; Larsen, Lesley; Smith, Robin A. J.; Murphy, Michael P.; Schimmer, Aaron D.; Kelley, Shana O.

    2013-01-01

    We have successfully delivered a reactive alkylating agent, chlorambucil (Cbl), to the mitochondria of mammalian cells. Here, we characterize the mechanism of cell death for mitochondria-targeted chlorambucil (mt-Cbl) in vitro and assess its efficacy in a xenograft mouse model of leukemia. Using a ρ° cell model, we show that mt-Cbl toxicity is not dependent on mitochondrial DNA damage. We also illustrate that re-targeting Cbl to mitochondria results in a shift in the cell death mechanism from apoptosis to necrosis, and that this behavior is a general feature of mitochondria-targeted Cbl. Despite the change in cell death mechanisms, we show that mt-Cbl is still effective in vivo and has an improved pharmacokinetic profile compared to the parent drug. These findings illustrate that mitochondrial rerouting changes the site of action of Cbl and also alters the cell death mechanism drastically without compromising in vivo efficacy. Thus, mitochondrial delivery allows the exploitation of Cbl as a promiscuous mitochondrial protein inhibitor with promising therapeutic potential. PMID:23585833

  13. Crosstalk between mitochondria and NADPH oxidases

    PubMed Central

    Dikalov, Sergey

    2011-01-01

    Reactive oxygen species (ROS) play an important role in physiological and pathological processes. In recent years, a feed-forward regulation of the ROS sources has been reported. The interaction between main cellular sources of ROS, such as mitochondria and NADPH oxidases, however, remain obscure. This work summarizes the latest findings on the role of crosstalk between mitochondria and NADPH oxidases in pathophysiological processes. Mitochondria have the highest levels of antioxidants in the cell and play an important role in the maintenance of cellular redox status, thereby acting as an ROS and redox sink and limiting NADPH oxidase activity. Mitochondria, however, are not only a target for ROS produced by NADPH oxidase but also a significant source of ROS, which under certain condition may stimulate NADPH oxidases. This crosstalk between mitochondria and NADPH oxidases, therefore, may represent a feed-forward vicious cycle of ROS production which can be pharmacologically targeted under conditions of oxidative stress. It has been demonstrated that mitochondria-targeted antioxidants break this vicious cycle, inhibiting ROS production by mitochondria and reducing NADPH oxidase activity. This may provide a novel strategy for treatment of many pathological conditions including aging, atherosclerosis, diabetes, hypertension and degenerative neurological disorders in which mitochondrial oxidative stress seems to play a role. It is conceivable that the use of mitochondria-targeted treatments would be effective in these conditions. PMID:21777669

  14. Evidence for genistein as a mitochondriotropic molecule.

    PubMed

    de Oliveira, Marcos Roberto

    2016-07-01

    Genistein (4',5,7-trihydroxyisoflavone; C15H10O5), an isoflavone, has been investigated as an anti-cancer agent due to its ability to trigger cell death (both intrinsic and extrinsic apoptotic pathways) in different cancer cells in vitro and in vivo. Furthermore, genistein has been viewed as a mitochondriotropic molecule due to the direct effects this isoflavone induces in mitochondria, such as modulation of enzymatic activity of components of the oxidative phosphorylation system. Apoptosis triggering may also be mediated by genistein through activation of the mitochondria-dependent pathway by a mechanism associated with mitochondrial dysfunction (i.e., disruption of the mitochondrial membrane potential - MMP, release of cytochrome c, activation of the apoptosome, among others). Efforts have been made in order to elucidate how genistein coordinate these biochemical phenomena. Nonetheless, some areas of the mitochondria-associated research (mitochondrial biogenesis, redox biology of mitochondria, and mitochondria-associated bioenergetic parameters) need to be explored regarding the role of genistein as a mitochondria-targeted agent. This is a pharmacologically relevant issue due to the possibility of using genistein as a mitochondria-targeted drug in cases of cancer, neurodegeneration, cardiovascular, and endocrine disease, for example. The present review aims to describe, compare, and discuss relevant data about the effects of genistein upon mitochondria. PMID:27223841

  15. Use of Electron Paramagnetic Resonance Spectroscopy to Evaluate the Redox State In Vivo

    PubMed Central

    SWARTZ, HAROLD M.; KHAN, NADEEM; KHRAMTSOV, VALERY V.

    2009-01-01

    The aim of this article is to provide an overview of how electron paramagnetic resonance (EPR) can be used to measure redox-related parameters in vivo. The values of this approach include that the measurements are made under fully physiological conditions, and some of the measurements cannot be made by other means. Three complementary approaches are used with in vivo EPR: the rate of reduction or reactions of nitroxides, spin trapping of free radicals, and measurements of thiols. All three approaches already have produced unique and useful information. The measurement of the rate of decrease of nitroxides technically is the simplest, but difficult to interpret because the measured parameter, reduction in the intensity of the nitroxide signal, can occur by several different mechanisms. In vivo spin trapping can provide direct evidence for the occurrence of specific free radicals in vivo and reflect relative changes, but accurate absolute quantification remains challenging. The measurement of thiols in vivo also appears likely to be useful, but its development as an in vivo technique is at an early stage. It seems likely that the use of in vivo EPR to measure redox processes will become an increasingly utilized and valuable tool. PMID:17678441

  16. Use of paramagnetic chelated metal derivatives of polysaccharides and spin-labeled polysaccharides as contrast agents in magnetic resonance imaging

    SciTech Connect

    Bligh, S.W.; Harding, C.T.; Sadler, P.J.; Bulman, R.A.; Bydder, G.M.; Pennock, J.M.; Kelly, J.D.; Latham, I.A.; Marriott, J.A. )

    1991-02-01

    Soluble and insoluble polysaccharides were derivatized with diethylenetriaminepentaacetic acid (DTPA) and/or spin-labeled with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO). Polysaccharides derivatized with DTPA were prepared via cyanogen bromide activation, coupling to a diamine linker, and to DTPA anhydride. Spin-labeled polysaccharides were also prepared via cyanogen bromide activation. The extent of derivatization for dextran (18 kDa) was about 120 glucose units per DTPA, and for cellulose and starch about 15-30 units per DTPA. For spin-labeled polysaccharides, the average loading ranged from 1 nitroxide per 16 glucose units for starch to 181 for dextran (82 kDa). These derivatized paramagnetic polysaccharides were shown to be more effective relaxants than the small paramagnetic molecules alone. Both soluble and insoluble polysaccharide-linker-DTPA-Gd(3) complexes were effectively cleared from the body (rats) after oral administration. After intravenous administration, the biodistribution of dextran-linker-DTPA-Gd(3) complexes differed significantly from that of GdDTPA. Reduction of the nitroxide by ascorbic acid was retarded in the polysaccharide derivatives, particularly in starch derivatized with both nitroxide and linker-DTPA-Cu(2). These agents showed contrast enhancement in the gastrointestinal tract of rabbits.

  17. Laser-Induced Magnetic Dipole Spectroscopy.

    PubMed

    Hintze, Christian; Bücker, Dennis; Domingo Köhler, Silvia; Jeschke, Gunnar; Drescher, Malte

    2016-06-16

    Pulse electron paramagnetic resonance measurements of nanometer scale distance distributions have proven highly effective in structural studies. They exploit the magnetic dipole-dipole coupling between spin labels site-specifically attached to macromolecules. The most commonly applied technique is double electron-electron resonance (DEER, also called pulsed electron double resonance (PELDOR)). Here we present the new technique of laser-induced magnetic dipole (LaserIMD) spectroscopy based on optical switching of the dipole-dipole coupling. In a proof of concept experiment on a model peptide, we find, already at a low quantum yield of triplet excitation, the same sensitivity for measuring the distance between a porphyrin and a nitroxide label as in a DEER measurement between two nitroxide labels. On the heme protein cytochrome C, we demonstrate that LaserIMD allows for distance measurements between a heme prosthetic group and a nitroxide label, although the heme triplet state is not directly observable by an electron spin echo. PMID:27163749

  18. A method for distance determination in proteins using a designed metal ion binding site and site-directed spin labeling: evaluation with T4 lysozyme.

    PubMed Central

    Voss, J; Salwiński, L; Kaback, H R; Hubbell, W L

    1995-01-01

    The use of molecular genetics to introduce both a metal ion binding site and a nitroxide spin label into the same protein opens the use of paramagnetic metalnitroxyl interactions to estimate intramolecular distances in a wide variety of proteins. In this report, a His-Xaa3-His metal ion binding motif was introduced at the N terminus of the long interdomain helix of T4 lysozyme (Lys-65 --> His/Gln-69 --> His) of three mutants, each containing a single nitroxide-labeled cysteine residue at position 71, 76, or 80. The results show that Cu(II)-induced relaxation effects on the nitroxide can be quantitatively analyzed in terms of interspin distance in the range of 10-25 A using Redfield theory, as first suggested by Leigh [Leigh, J.S. (1970) J. Chem. Phys. 52, 2608-2612]. Of particular interest is the observation that distances can be determined both under rigid lattice conditions in frozen solution and in the presence of motion of the spins at room temperature under physiological conditions. The method should be particularly attractive for investigating structure in membrane proteins that are difficult to crystallize. In the accompanying paper, the technique is applied to a polytopic membrane protein, lactose permease. Images Fig. 1 PMID:8618888

  19. Intracellular hypoxia of tumor tissue estimated by noninvasive electron paramagnetic resonance oximetry technique using paramagnetic probes.

    PubMed

    Matsumoto, Atsuko; Matsumoto, Ken-ichiro; Matsumoto, Shingo; Hyodo, Fuminori; Sowers, Anastasia L; Koscielniak, Janusz W; Devasahayam, Nallathamby; Subramanian, Sankaran; Mitchell, James B; Krishna, Murali C

    2011-01-01

    Electron paramagnetic resonance (EPR) oximetry at 700 MHz operating frequency employing a surface coil resonator is used to assess tissue partial pressure of oxygen (pO(2)) using paramagnetic media whose linewidth and decay constant are related to oxygen concentration. Differences in extracellular and intracellular pO(2) in squamous cell carcinoma (SCC) tumor tissue were tested using several types of water-soluble paramagnetic media, which localize extracellularly or permeate through the cell membrane. The nitroxide carboxy-PROXYL (CxP) can only be distributed in blood plasma and extracellular fluids whereas the nitroxides carbamoyl-PROXYL (CmP) and TEMPOL (TPL) can permeate cell membranes and localize intracellularly. EPR signal decay constant and the linewidth of the intravenously administered nitroxides in SCC tumor tissues implanted in mouse thigh and the contralateral normal muscle of healthy mice breathing gases with different pO(2) were compared. The pO(2) in the blood can depend on the oxygen content in the breathing gas while tissue pO(2) was not directly influenced by pO(2) in the breathing gas. The decay constants of CmP and TPL in tumor tissue were significantly larger than in the normal muscles, and lower linewidths of CmP and TPL in tumor tissue was observed. The SCC tumor showed intracellular hypoxia even though the extracellular pO(2) is similar to normal tissue in the peripheral region. PMID:21212532

  20. PEDOT Radical Polymer with Synergetic Redox and Electrical Properties

    PubMed Central

    2015-01-01

    The development of new redox polymers is being boosted by the increasing interest in the area of energy and health. The development of new polymers is needed to further advance new applications or improve the performance of actual devices such as batteries, supercapacitors, or drug delivery systems. Here we show the synthesis and characterization of a new polymer which combines the present most successful conjugated polymer backbone and the most successful redox active side group, i.e., poly(3,4-ethylenedioxythiophene) (PEDOT), and a nitroxide stable radical. First, a derivative of the 3,4-ethylenedioxythiophene (EDOT) molecule with side nitroxide stable radical group (TEMPO) was synthesized. The electrochemical polymerization of the PEDOT-TEMPO monomer was investigated in detail using cyclic voltammetry, potential step, and constant current methods. Monomer and polymer were characterized by NMR, FTIR, matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS), electron spin resonance (ESR) spectroscopy, elemental analysis, cyclic voltammetry, and four-point probe conductivity. The new PEDOT-TEMPO radical polymer combines the electronic conductivity of the conjugated polythiophene backbone and redox properties of the nitroxide group. As an example of application, this redox active polymer was used as a conductive binder in lithium ion batteries. Good cycling stability with high Coulombic efficiency and increased cyclability at different rates were obtained using this polymer as a replacement of two ingredients: conductive carbon additive and polymeric binders. PMID:26877892

  1. Side chain mobility and ligand interactions of the G strand of tear lipocalins by site-directed spin labeling.

    PubMed

    Glasgow, B J; Gasymov, O K; Abduragimov, A R; Yusifov, T N; Altenbach, C; Hubbell, W L

    1999-10-12

    Side chain mobility, accessibility, and backbone motion were studied by site-directed spin labeling of sequential cysteine mutants of the G strand in tear lipocalins (TL). A nitroxide scan between residues 98 and 105 revealed the alternating periodicity of mobility and accessibility to NiEDDA and oxygen, characteristic of a beta-strand. Residue 99 was the most inaccessible to NiEDDA and oxygen. EPR spectra with the fast relaxing agent, K(3)Fe(CN)(6), exhibited two nitroxide populations for most residues. The motionally constrained population was relatively less accessible to K(3)Fe(CN)(6) because of dynamic tertiary contact, probably with side chain residues of adjacent strands. With increasing concentrations of sucrose, the spectral contribution of the immobile component was greater, indicating a larger population with tertiary contact. Increased concentrations of sucrose also resulted in a restriction of mobility of spin-labeled fatty acids which were bound within the TL cavity. The data suggest that sucrose enhanced ligand affinity by slowing the backbone motion of the lipocalin. The correlation time of an MTSL derivative (I) attached to F99C resulted in the lack of side chain motion and therefore reflects the overall rotation of the TL complex. The correlation time of F99C in tears (13.5 ns) was the same as that in buffer and indicates that TL exists as a dimer under native conditions. TL-spin-labeled ligand complexes have a shorter correlation time than the protein alone, indicating that the fatty acids are not rigidly anchored in the cavity, but move within the pocket. This segmental motion of the ligand was modulated by protein backbone fluctuations. Accessibility studies with oxygen and NiEDDA were performed to determine the orientation and depth of a series of fatty acid derivatives in the cavity of TL. Fatty acids are oriented with the hydrocarbon tail buried in the cavity and the carboxyl group oriented toward the mouth. In general, the mobility of the

  2. Peptide-based carbon nanotubes for mitochondrial targeting.

    PubMed

    Battigelli, Alessia; Russier, Julie; Venturelli, Enrica; Fabbro, Chiara; Petronilli, Valeria; Bernardi, Paolo; Da Ros, Tatiana; Prato, Maurizio; Bianco, Alberto

    2013-10-01

    In the present study, we report the design and synthesis of peptide-based-multi-walled carbon nanotubes (MWCNTs) to target mitochondria. Targeting these intracellular organelles might open the way to develop alternative systems to address diseases related to genetic mutations in mitochondrial (mt)-DNA, by delivering therapeutic oligonucleotides. The first step towards mitochondrial delivery of this type of nucleic acid was to target MWCNTs to mitochondria by covalent functionalization with a well-known endogenous mitochondrial targeting sequence (MTS). The subcellular localization of the conjugates, which were fluorescently labeled, in murine RAW 264.7 macrophages and human HeLa cells was then studied using different microscopy techniques, such as wide-field epifluorescence microscopy, confocal laser scanning microscopy (CLSM) and transmission electron microscopy (TEM). The localization of the MTS-MWCNT conjugates into mitochondria was further confirmed by analyzing the isolated organelles using TEM. PMID:23903095

  3. Visible Light-Controlled Nitric Oxide Release from Hindered Nitrobenzene Derivatives for Specific Modulation of Mitochondrial Dynamics.

    PubMed

    Kitamura, Kai; Kawaguchi, Mitsuyasu; Ieda, Naoya; Miyata, Naoki; Nakagawa, Hidehiko

    2016-05-20

    Nitric oxide (NO) is a physiological signaling molecule, whose biological production is precisely regulated at the subcellular level. Here, we describe the design, synthesis, and evaluation of novel mitochondria-targeted NO releasers, Rol-DNB-mor and Rol-DNB-pyr, that are photocontrollable not only in the UV wavelength range but also in the biologically favorable visible wavelength range (530-590 nm). These caged NO compounds consist of a hindered nitrobenzene as the NO-releasing moiety and a rhodamine chromophore. Their NO-release properties were characterized by an electron spin resonance (ESR) spin trapping method and fluorometric analysis using NO probes, and their mitochondrial localization in live cells was confirmed by costaining. Furthermore, we demonstrated visible light control of mitochondrial fragmentation via activation of dynamin-related protein 1 (Drp1) by means of precisely controlled NO delivery into mitochondria of cultured HEK293 cells, utilizing Rol-DNB-pyr. PMID:26878937

  4. Mitochondria and Arrhythmias

    PubMed Central

    Yang, Kai-Chien; Bonini, Marcelo G.; Dudley, Samuel C.

    2014-01-01

    Mitochondria are essential to providing ATP thereby satisfying the energy demand of the incessant electrical activity and contractile action of cardiac muscle. Emerging evidence indicates that mitochondrial dysfunction can adversely impact cardiac electrical functioning by impairing the intracellular ion homeostasis and membrane excitability through reduced ATP production and excessive reactive oxidative species (ROS) generation, resulting in increased propensity to cardiac arrhythmias. In this review, the molecular mechanisms linking mitochondrial dysfunction to cardiac arrhythmias are discussed with an emphasis on the impact of increased mitochondrial ROS on the cardiac ion channels and transporters that are critical to maintaining normal electromechanical functioning of the cardiomyocytes. The potential of using mitochondria-targeted antioxidants as a novel anti-arrhythmia therapy is highlighted. PMID:24713422

  5. Mitochondrial-Targeted Two-Photon Fluorescent Probes for Zinc Ions, H2O2, and Thiols in Living Tissues

    PubMed Central

    Kim, Hwan Myung; Cho, Bong Rae

    2013-01-01

    Mitochondria provide the energy of the cells and are the primary site of oxygen consumption and the major source of reactive oxygen species. In mitochondria, metal ions and glutathione play vital roles in maintaining their structure and the redox environment. To understand their roles in mitochondria, it is crucial to monitor each of these chemical species in the mitochondria at the cell, tissue, and organism levels. An ideal tool for such purpose is the use of two-photon microscopy (TPM). Until recently, however, there has been no report on the two-photon (TP) probes suitable for such applications. In this paper, we summarize the mitochondria-targeted TP probes for Zn2+, H2O2, and thiols, as well as their bioimaging applications. PMID:23431410

  6. A Simple BODIPY-Based Viscosity Probe for Imaging of Cellular Viscosity in Live Cells.

    PubMed

    Su, Dongdong; Teoh, Chai Lean; Gao, Nengyue; Xu, Qing-Hua; Chang, Young-Tae

    2016-01-01

    Intracellular viscosity is a fundamental physical parameter that indicates the functioning of cells. In this work, we developed a simple boron-dipyrromethene (BODIPY)-based probe, BTV, for cellular mitochondria viscosity imaging by coupling a simple BODIPY rotor with a mitochondria-targeting unit. The BTV exhibited a significant fluorescence intensity enhancement of more than 100-fold as the solvent viscosity increased. Also, the probe showed a direct linear relationship between the fluorescence lifetime and the media viscosity, which makes it possible to trace the change of the medium viscosity. Furthermore, it was demonstrated that BTV could achieve practical applicability in the monitoring of mitochondrial viscosity changes in live cells through fluorescence lifetime imaging microscopy (FLIM). PMID:27589762

  7. Molecular Engineering of Aqueous Soluble Triarylboron-Compound-Based Two-Photon Fluorescent Probe for Mitochondria H2S with Analyte-Induced Finite Aggregation and Excellent Membrane Permeability.

    PubMed

    Liu, Jun; Guo, Xudong; Hu, Rui; Liu, Xinyang; Wang, Shuangqing; Li, Shayu; Li, Yi; Yang, Guoqiang

    2016-01-01

    Hydrogen sulfide (H2S) is a multifunctional signaling molecule that participates in many important biological processes. Herein, by functionalizing triarylboron with cyclen and diphenylamine, we synthesized TAB-1, TAB-2, and TAB-3 for H2S recongnization by rational design of molecular structures. Among them, aqueous soluble TAB-2 possesses excellent properties, including large two-photon action cross section, membrane permeability and can effectively complex with Cu(2+). The complex of TAB-2-Cu(2+) can selectively detect H2S with an instant response and mitochondria targeted. Moreover, the H2S-induced finite aggregation of indicators enhances their photostability and causes variation of the fluorescence lifetime. TAB-2-Cu(2+) has also been successfully applied for the mitochondria H2S imaging in NIH/3T3 fibroblast cells by TPM and FLIM. PMID:26634883

  8. Phototherapy-treated apoptotic tumor cells induce pro-inflammatory cytokines production in macrophage

    NASA Astrophysics Data System (ADS)

    Lu, Cuixia; Wei, Yanchun; Xing, Da

    2014-09-01

    Our previous studies have demonstrated that as a mitochondria-targeting cancer phototherapy, high fluence low-power laser irradiation (HF-LPLI) induces mitochondrial superoxide anion burst, resulting in oxidative damage to tumor cells. In this study, we further explored the immunological effects of HF-LPLI-induced apoptotic tumor cells. When macrophages were co-incubated with apoptotic cells induced by HF-LPLI, we observed the increased levels of TNF-α secretion and NO production in macrophages. Further experiments showed that NF-κB was activated in macrophages after co-incubation with HF-LPLI-induced apoptotic cells, and inhibition of NF-κB activity by pyrrolidinedithiocarbamic acid (PDTC) reduced the elevated levels of TNF-α secretion and NO production. These data indicate that HF-LPLI-induced apoptotic tumor cells induce the secretion of pro-inflammatory cytokines in macrophages, which may be helpful for better understanding the biological effects of cancer phototherapy.

  9. A reversible and highly selective fluorescence "on-off-on" probe for detecting nickel ion in the mitochondria of living cells.

    PubMed

    Yu, Tingting; Tian, Xiaohe; Li, Hong; Li, Wei; Zhu, Weiju; Zhou, Hongping; Tian, Yupeng; Wu, Jieying

    2016-08-15

    A simple molecular fluorescent probe L has been designed, synthesized and characterized. The probe upon interaction with different metals ions show high selectivity and sensitivity for Ni(2+) through fluorescence "turn-off" response in acetonitrile, and the fluorescence could be recovered when chelating agent TPEN is added in this system, viz an "on-off-on" process. Its recognition mechanism has been established by fluorescence spectra, (1)H NMR study. Moreover, to further explore its utility in biological system, L is selected as a probe for Ni(2+) indicator in live cells and shows sensitivity on Ni(2+) intracellular distribution. Fluorescence co-localization studies demonstrate that L is a specific mitochondria-targeted fluorescent probe with excellent cell membrane permeability. Furthermore, a rapidly reversible fluorescence imaging of probe L detecting Ni(2+) in the mitochondria is successfully achieved. These facts would make this probe a great potential for detecting Ni(2+) in biology. PMID:27043479

  10. An experimental approach to study the function of mitochondria in cardiomyopathy

    PubMed Central

    Chung, Youn Wook; Kang, Seok-Min

    2015-01-01

    Cardiomyopathy is an inherited or acquired disease of the myocardium, which can result in severe ventricular dysfunction. Mitochondrial dysfunction is involved in the pathological process of cardiomyopathy. Many dysfunctions in cardiac mitochondria are consequences of mutations in nuclear or mitochondrial DNA followed by alterations in transcriptional regulation, mitochondrial protein function, and mitochondrial dynamics and energetics, presenting with associated multisystem mitochondrial disorders. To ensure correct diagnosis and optimal management of mitochondrial dysfunction in cardiomyopathy caused by multiple pathogenesis, multidisciplinary approaches are required, and to integrate between clinical and basic sciences, ideal translational models are needed. In this review, we will focus on experimental models to provide insights into basic mitochondrial physiology and detailed underlying mechanisms of cardiomyopathy and current mitochondria-targeted therapies for cardiomyopathy. [BMB Reports 2015; 48(10): 541-548] PMID:26198095

  11. Mitochondrial, acidic, and cytosolic pHs determination by ³¹P NMR spectroscopy: design of new sensitive targeted pH probes.

    PubMed

    Culcasi, Marcel; Thétiot-Laurent, Sophie; Atteia, Ariane; Pietri, Sylvia

    2015-01-01

    (31)P nuclear magnetic resonance (NMR) is a unique technique to monitor noninvasively the energetics of living systems at real time through the detection of a variety of phosphorylated metabolites. Using adequately designed α-aminophosphonates as external probes, we have shown earlier that (31)P NMR can also give access simultaneously to the accurate pH of cytosolic and acidic compartments in normal and stressed cultured cells or isolated perfused organs, a feature that was not possible using endogenous inorganic phosphate as the probe. More recently, we obtained a series of derivatives of these new pH probes that incorporate a triphenylphosphonium cation as a specific vector to the mitochondrion. Here, we describe the synthesis, (31)P NMR pH titrating properties in buffers, and application in cultures of the green alga Chlamydomonas reinhardtii of two of these mitochondria-targeted pH probes in comparison with one nonvectorized, yet still informative α-aminophosphonate. PMID:25634273

  12. Mitochondrial dysfunction and neurodegeneration in multiple sclerosis

    PubMed Central

    Su, Kimmy; Bourdette, Dennis; Forte, Michael

    2013-01-01

    Multiple sclerosis (MS) has traditionally been considered an autoimmune inflammatory disorder leading to demyelination and clinical debilitation as evidenced by our current standard anti-inflammatory and immunosuppressive treatment regimens. While these approaches do control the frequency of clinical relapses, they do not prevent the progressive functional decline that plagues many people with MS. Many avenues of research indicate that a neurodegenerative process may also play a significant role in MS from the early stages of disease, and one of the current hypotheses identifies mitochondrial dysfunction as a key contributing mechanism. We have hypothesized that pathological permeability transition pore (PTP) opening mediated by reactive oxygen species (ROS) and calcium dysregulation is central to mitochondrial dysfunction and neurodegeneration in MS. This focused review highlights recent evidence supporting this hypothesis, with particular emphasis on our in vitro and in vivo work with the mitochondria-targeted redox enzyme p66ShcA. PMID:23898299

  13. Derivatives of the cationic plant alkaloids berberine and palmatine amplify protonophorous activity of fatty acids in model membranes and mitochondria.

    PubMed

    Pustovidko, Antonina V; Rokitskaya, Tatiana I; Severina, Inna I; Simonyan, Ruben A; Trendeleva, Tatiana A; Lyamzaev, Konstantin G; Antonenko, Yuri N; Rogov, Anton G; Zvyagilskaya, Renata A; Skulachev, Vladimir P; Chernyak, Boris V

    2013-09-01

    Previously it has been shown by our group that berberine and palmatine, penetrating cations of plant origin, when conjugated with plastoquinone (SkQBerb and SkQPalm), can accumulate in isolated mitochondria or in mitochondria of living cells and effectively protect them from oxidative damage. In the present work, we demonstrate that SkQBerb, SkQPalm, and their analogs lacking the plastoquinone moiety (C10Berb and C10Palm) operate as mitochondria-targeted compounds facilitating protonophorous effect of free fatty acids. These compounds induce proton transport mediated by small concentrations of added fatty acids both in planar and liposomal model lipid membranes. In mitochondria, such an effect can be carried out by endogenous fatty acids and the adenine nucleotide translocase. PMID:23026390

  14. Hierarchical targeted hepatocyte mitochondrial multifunctional chitosan nanoparticles for anticancer drug delivery.

    PubMed

    Chen, Zhipeng; Zhang, Liujie; Song, Yang; He, Jiayu; Wu, Li; Zhao, Can; Xiao, Yanyu; Li, Wei; Cai, Baochang; Cheng, Haibo; Li, Weidong

    2015-06-01

    The overwhelming majority of drugs exert their pharmacological effects after reaching their target sites of action, however, these target sites are mainly located in the cytosol or intracellular organelles. Consequently, delivering drugs to the specific organelle is the key to achieve maximum therapeutic effects and minimum side-effects. In the work reported here, we designed, synthesized, and evaluated a novel mitochondrial-targeted multifunctional nanoparticles (MNPs) based on chitosan derivatives according to the physiological environment of the tumor and the requirement of mitochondrial targeting drug delivery. The intelligent chitosan nanoparticles possess various functions such as stealth, hepatocyte targeting, multistage pH-response, lysosomal escape and mitochondrial targeting, which lead to targeted drug release after the progressively shedding of functional groups, thus realize the efficient intracellular delivery and mitochondrial localization, inhibit the growth of tumor, elevate the antitumor efficacy, and reduce the toxicity of anticancer drugs. It provides a safe and efficient nanocarrier platform for mitochondria targeting anticancer drug delivery. PMID:25818430

  15. Binding of DNA with Abf2p Increases Efficiency of DNA Uptake by Isolated Mitochondria.

    PubMed

    Samoilova, E O; Krasheninnikov, I A; Vinogradova, E N; Kamenski, P A; Levitskii, S A

    2016-07-01

    Mutations in mitochondrial DNA often lead to severe hereditary diseases that are virtually resistant to symptomatic treatment. During the recent decades, many efforts were made to develop gene therapy approaches for treatment of such diseases using nucleic acid delivery into the organelles. The possibility of DNA import into mitochondria has been shown, but this process has low efficiency. In the present work, we demonstrate that the efficiency of DNA import can be significantly increased by preforming its complex with a mitochondria-targeted protein nonspecifically binding with DNA. As a model protein, we used the yeast protein Abf2p. In addition, we measured the length of the DNA site for binding this protein and the dissociation constant of the corresponding DNA-protein complex. Our data can serve as a basis for development of novel, highly efficient approaches for suppressing mutations in the mitochondrial genome. PMID:27449618

  16. Mitochondria: a therapeutic target in acute kidney injury.

    PubMed

    Ishimoto, Yu; Inagi, Reiko

    2016-07-01

    Acute kidney injury (AKI) is a common clinical entity that is associated with high mortality and morbidity. It is a risk factor for the development and progression of chronic kidney disease. Presently, no effective treatment for AKI is available, and novel therapeutic approaches are desperately needed. Accumulating evidence highlights mitochondrial dysfunction as an important factor in the pathogenesis of AKI. Recent advances in our understanding of the molecules involved in mitochondrial biogenesis, fusion/fission, mitophagy and their pathophysiological roles will lead to the development of drugs that target mitochondria for the treatment of various diseases, including AKI. In this review, we summarize current knowledge of the contribution of mitochondria-related pathophysiology in AKI and the prospective benefits of mitochondria-targeting therapeutic approaches against AKI. PMID:26333547

  17. Thymic Involution in Ontogenesis: Role in Aging Program.

    PubMed

    Shilovsky, G A; Feniouk, B A; Skulachev, V P

    2015-12-01

    In most mammals, involution of the thymus occurs with aging. In this issue of Biochemistry (Moscow) devoted to phenoptosis, A. V. Khalyavkin considered involution of a thymus as an example of the program of development and further--of proliferation control and prevention of tumor growth. However, in animals devoid of a thymus (e.g. naked mice), stimulation of carcinogenesis, but not its prevention was observed. In this report, we focus on the involution of the thymus as a manifestation of the aging program (slow phenoptosis). We also consider methods of reversal/arrest of this program at different levels of organization of life (cell, tissue, and organism) including surgical manipulations, hormonal effects, genetic techniques, as well as the use of conventional and mitochondria-targeted antioxidants. We conclude that programmed aging (at least on the model of age-dependent thymic atrophy) can be inhibited. PMID:26638690

  18. Mitochondria as a Drug Target in Ischemic Heart Disease and Cardiomyopathy

    PubMed Central

    Walters, Andrew M; Porter, George A; Brookes, Paul S.

    2012-01-01

    Ischemic heart disease (IHD) is a significant cause of morbidity and mortality in Western society. Although interventions such as thrombolysis and percutaneous coronary intervention (PCI) have proven efficacious in ischemia and reperfusion (IR) injury, the underlying pathologic process of IHD, laboratory studies suggest further protection is possible, and an expansive research effort is aimed at bringing new therapeutic options to the clinic. Mitochondrial dysfunction plays a key role in the pathogenesis of IR injury and cardiomyopathy (CM). However, despite promising mitochondria-targeted drugs emerging from the lab, very few have successfully completed clinical trials. As such, the mitochondrion is a potential untapped target for new IHD and CM therapies. Notably, there are a number of overlapping therapies for both these diseases, and as such novel therapeutic options for one condition may find use in the other. This review summarizes efforts to date in targeting mitochondria for IHD and CM therapy, and outlines emerging drug targets in this field. PMID:23065345

  19. A near-infrared multifunctional fluorescent probe with an inherent tumor-targeting property for bioimaging.

    PubMed

    Zhao, Xu; Li, Yang; Jin, Di; Xing, Yuzhi; Yan, Xilong; Chen, Ligong

    2015-07-25

    A mitochondria-targeting probe, by conjugating a quaternary ammonium cation with glucosamine modified pH-activated cyanine, was designed and synthesized. This probe has excellent selectivity and sensitivity toward pH, stability, cellular membrane permeability and low cytotoxicity. Owing to the acidic feature of tumors and the more negative mitochondrial membrane potential of tumor cells than that of normal cells, this probe can selectively accumulate in tumor cells and light up its fluorescence. It has been successfully applied for in vivo tumor imaging with a high signal-to-noise ratio. Moreover, this multifunctional switchable sensor was also employed for the fluorescent imaging of the fluctuation of intracellular pH in HeLa cells. PMID:26104217

  20. Mitochondrion: A Promising Target for Nanoparticle-Based Vaccine Delivery Systems

    PubMed Central

    Wen, Ru; Umeano, Afoma C.; Francis, Lily; Sharma, Nivita; Tundup, Smanla; Dhar, Shanta

    2016-01-01

    Vaccination is one of the most popular technologies in disease prevention and eradication. It is promising to improve immunization efficiency by using vectors and/or adjuvant delivery systems. Nanoparticle (NP)-based delivery systems have attracted increasing interest due to enhancement of antigen uptake via prevention of vaccine degradation in the biological environment and the intrinsic immune-stimulatory properties of the materials. Mitochondria play paramount roles in cell life and death and are promising targets for vaccine delivery systems to effectively induce immune responses. In this review, we focus on NPs-based delivery systems with surfaces that can be manipulated by using mitochondria targeting moieties for intervention in health and disease. PMID:27258316

  1. [Dmt(1)]DALDA analogues modified with tyrosine analogues at position 1.

    PubMed

    Cai, Yunxin; Lu, Dandan; Chen, Zhen; Ding, Yi; Chung, Nga N; Li, Tingyou; Schiller, Peter W

    2016-08-01

    Analogues of [Dmt(1)]DALDA (H-Dmt-d-Arg-Phe-Lys-NH2; Dmt=2',6'-dimethyltyrosine), a potent μ opioid agonist peptide with mitochondria-targeted antioxidant activity were prepared by replacing Dmt with various 2',6'-dialkylated Tyr analogues, including 2',4',6'-trimethyltyrosine (Tmt), 2'-ethyl-6'-methyltyrosine (Emt), 2'-isopropyl-6'-methyltyrosine (Imt) and 2',6'-diethyltyrosine (Det). All compounds were selective μ opioid agonists and the Tmt(1)-, Emt(1) and Det(1)-analogues showed subnanomolar μ opioid receptor binding affinities. The Tmt(1)- and Emt(1)-analogues showed improved antioxidant activity compared to the Dmt(1)-parent peptide in the DPPH radical-scavenging capacity assay, and thus are of interest as drug candidates for neuropathic pain treatment. PMID:27301366

  2. N-Heterocyclic Carbene-Polyethylenimine Platinum Complexes with Potent in Vitro and in Vivo Antitumor Efficacy.

    PubMed

    Chekkat, Neila; Dahm, Georges; Chardon, Edith; Wantz, May; Sitz, Justine; Decossas, Marion; Lambert, Olivier; Frisch, Benoit; Rubbiani, Riccardo; Gasser, Gilles; Guichard, Gilles; Fournel, Sylvie; Bellemin-Laponnaz, Stéphane

    2016-08-17

    The current interest for platinum N-heterocyclic carbene complexes in cancer research stems from their impressive toxicity reported against a range of different human cancer cells. To date, the demonstration of their in vivo efficacy relative to that of established platinum-based drugs has not been specifically addressed. Here, we introduce an innovative approach to increase the NHC-Pt complex potency whereby multiple NHC-Pt(II) complexes are coordinated along a polyethylenimine polymer (PEI) chain. We show that such NHC-Pt(II)-PEI conjugates induce human cancer cell death in vitro and in vivo in a xenograft mouse model with no observable side effects in contrast to oxaliplatin. Additional studies indicate nucleus and mitochondria targeting and suggest various mechanisms of action compared to classical platinum-based anticancer drugs. PMID:27459208

  3. Low Concentrations of Uncouplers of Oxidative Phosphorylation Prevent Inflammatory Activation of Endothelial Cells by Tumor Necrosis Factor.

    PubMed

    Romaschenko, V P; Zinovkin, R A; Galkin, I I; Zakharova, V V; Panteleeva, A A; Tokarchuk, A V; Lyamzaev, K G; Pletjushkina, O Yu; Chernyak, B V; Popova, E N

    2015-05-01

    In endothelial cells, mitochondria play an important regulatory role in physiology as well as in pathophysiology related to excessive inflammation. We have studied the effect of low doses of mitochondrial uncouplers on inflammatory activation of endothelial cells using the classic uncouplers 2,4-dinitrophenol and 4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazole, as well as the mitochondria-targeted cationic uncoupler dodecyltriphenylphosphonium (C12TPP). All of these uncouplers suppressed the expression of E-selectin, adhesion molecules ICAM1 and VCAM1, as well as the adhesion of neutrophils to endothelium induced by tumor necrosis factor (TNF). The antiinflammatory action of the uncouplers was at least partially mediated by the inhibition of NFκB activation due to a decrease in phosphorylation of the inhibitory subunit IκBα. The dynamic concentration range for the inhibition of ICAM1 expression by C12TPP was three orders of magnitude higher compared to the classic uncouplers. Probably, the decrease in membrane potential inhibited the accumulation of penetrating cations into mitochondria, thus lowering the uncoupling activity and preventing further loss of mitochondrial potential. Membrane potential recovery after the removal of the uncouplers did not abolish its antiinflammatory action. Thus, mild uncoupling could induce TNF resistance in endothelial cells. We found no significant stimulation of mitochondrial biogenesis or autophagy by the uncouplers. However, we observed a decrease in the relative amount of fragmented mitochondria. The latter may significantly change the signaling properties of mitochondria. Earlier we showed that both classic and mitochondria-targeted antioxidants inhibited the TNF-induced NFκB-dependent activation of endothelium. The present data suggest that the antiinflammatory effect of mild uncoupling is related to its antioxidant action. PMID:26071781

  4. Mitochondria Oxidative Stress, Connexin43 Remodeling, and Sudden Arrhythmic Death

    PubMed Central

    Sovari, Ali A.; Rutledge, Cody A.; Jeong, Euy-Myoung; Dolmatova, Elena; Arasu, Divya; Liu, Hong; Vahdani, Nooshin; Gu, Lianzhi; Zandieh, Shadi; Xiao, Lei; Bonini, Marcelo G.; Duffy, Heather S.; Dudley, Samuel C.

    2013-01-01

    Background Previously, we showed a mouse model (ACE8/8) of cardiac renin-angiotensin system (RAS) activation has a high rate of spontaneous ventricular tachycardia (VT) and sudden cardiac death (SCD) secondary to a reduction in connexin43 (Cx43) level. Angiotensin-II activation increases reactive oxygen species (ROS) production, and ACE8/8 mice show increased cardiac ROS. We sought to determine the source of ROS and if ROS played a role in the arrhythmogenesis. Methods and Results Wild-type and ACE8/8 mice with and without two weeks of treatment with L-NIO (nitric oxide synthase inhibitor), sepiapterin (precursor of tetrahydrobiopterin), MitoTEMPO (mitochondria-targeted antioxidant), TEMPOL (a general antioxidant), apocynin (NADPH oxidase inhibitor), allopurinol (xanthine oxidase inhibitor), and ACE8/8 crossed with P67 dominant negative mice to inhibit the NADPH oxidase were studied. Western blotting, detection of mitochondrial ROS by MitoSOX Red, electron microscopy, immunohistochemistry, fluorescent dye diffusion technique for functional assessment of Cx43, telemetry monitoring, and in-vivo electrophysiology studies were performed. Treatment with MitoTEMPO reduced SCD in ACE8/8 mice (from 74% to 18%, P<0.005), decreased spontaneous ventricular premature beats, decreased VT inducibility (from 90% to 17%, P<0.05), diminished elevated mitochondrial ROS to the control level, prevented structural damage to mitochondria, resulted in 2.6 fold increase in Cx43 level at the gap junctions, and corrected gap junction conduction. None of the other antioxidant therapies prevented VT and SCD in ACE8/8 mice. Conclusions Mitochondrial oxidative stress plays a central role in angiotensin II-induced gap junction remodeling and arrhythmia. Mitochondria-targeted antioxidants may be effective antiarrhythmic drugs in cases of RAS activation. PMID:23559673

  5. Mitochondrial Cyclophilin D in Vascular Oxidative Stress and Hypertension.

    PubMed

    Itani, Hana A; Dikalova, Anna E; McMaster, William G; Nazarewicz, Rafal R; Bikineyeva, Alfiya T; Harrison, David G; Dikalov, Sergey I

    2016-06-01

    Vascular superoxide (O˙2 (-)) and inflammation contribute to hypertension. The mitochondria are an important source of O˙2 (-); however, the regulation of mitochondrial O˙2 (-) and the antihypertensive potential of targeting the mitochondria remain poorly defined. Angiotensin II and inflammatory cytokines, such as interleukin 17A and tumor necrosis factor-α (TNFα) significantly contribute to hypertension. We hypothesized that angiotensin II and cytokines co-operatively induce cyclophilin D (CypD)-dependent mitochondrial O˙2 (-) production in hypertension. We tested whether CypD inhibition attenuates endothelial oxidative stress and reduces hypertension. CypD depletion in CypD(-/-) mice prevents overproduction of mitochondrial O˙2 (-) in angiotensin II-infused mice, attenuates hypertension by 20 mm Hg, and improves vascular relaxation compared with wild-type C57Bl/6J mice. Treatment of hypertensive mice with the specific CypD inhibitor Sanglifehrin A reduces blood pressure by 28 mm Hg, inhibits production of mitochondrial O˙2 (-) by 40%, and improves vascular relaxation. Angiotensin II-induced hypertension was associated with CypD redox activation by S-glutathionylation, and expression of the mitochondria-targeted H2O2 scavenger, catalase, abolished CypD S-glutathionylation, prevented stimulation mitochondrial O˙2 (-), and attenuated hypertension. The functional role of cytokine-angiotensin II interplay was confirmed by co-operative stimulation of mitochondrial O˙2 (-) by 3-fold in cultured endothelial cells and impairment of aortic relaxation incubated with combination of angiotensin II, interleukin 17A, and tumor necrosis factor-α which was prevented by CypD depletion or expression of mitochondria-targeted SOD2 and catalase. These data support a novel role of CypD in hypertension and demonstrate that targeting CypD decreases mitochondrial O˙2 (-), improves vascular relaxation, and reduces hypertension. PMID:27067720

  6. Oxidative stress–induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease

    PubMed Central

    Wiegman, Coen H.; Michaeloudes, Charalambos; Haji, Gulammehdi; Narang, Priyanka; Clarke, Colin J.; Russell, Kirsty E.; Bao, Wuping; Pavlidis, Stelios; Barnes, Peter J.; Kanerva, Justin; Bittner, Anton; Rao, Navin; Murphy, Michael P.; Kirkham, Paul A.; Chung, Kian Fan; Adcock, Ian M.; Brightling, Christopher E.; Davies, Donna E.; Finch, Donna K.; Fisher, Andrew J.; Gaw, Alasdair; Knox, Alan J.; Mayer, Ruth J.; Polkey, Michael; Salmon, Michael; Singh, David

    2015-01-01

    Background Inflammation and oxidative stress play critical roles in patients with chronic obstructive pulmonary disease (COPD). Mitochondrial oxidative stress might be involved in driving the oxidative stress–induced pathology. Objective We sought to determine the effects of oxidative stress on mitochondrial function in the pathophysiology of airway inflammation in ozone-exposed mice and human airway smooth muscle (ASM) cells. Methods Mice were exposed to ozone, and lung inflammation, airway hyperresponsiveness (AHR), and mitochondrial function were determined. Human ASM cells were isolated from bronchial biopsy specimens from healthy subjects, smokers, and patients with COPD. Inflammation and mitochondrial function in mice and human ASM cells were measured with and without the presence of the mitochondria-targeted antioxidant MitoQ. Results Mice exposed to ozone, a source of oxidative stress, had lung inflammation and AHR associated with mitochondrial dysfunction and reflected by decreased mitochondrial membrane potential (ΔΨm), increased mitochondrial oxidative stress, and reduced mitochondrial complex I, III, and V expression. Reversal of mitochondrial dysfunction by the mitochondria-targeted antioxidant MitoQ reduced inflammation and AHR. ASM cells from patients with COPD have reduced ΔΨm, adenosine triphosphate content, complex expression, basal and maximum respiration levels, and respiratory reserve capacity compared with those from healthy control subjects, whereas mitochondrial reactive oxygen species (ROS) levels were increased. Healthy smokers were intermediate between healthy nonsmokers and patients with COPD. Hydrogen peroxide induced mitochondrial dysfunction in ASM cells from healthy subjects. MitoQ and Tiron inhibited TGF-β–induced ASM cell proliferation and CXCL8 release. Conclusions Mitochondrial dysfunction in patients with COPD is associated with excessive mitochondrial ROS levels, which contribute to enhanced inflammation and cell

  7. Sensitivity to Low-Dose/Low-LET Ionizing Radiation in Mammalian Cells Harboring Mutations in Succinate Dehydrogenase Subunit C is Governed by Mitochondria-Derived Reactive Oxygen Species

    PubMed Central

    Aykin-Burns, Nukhet; Slane, Benjamin G.; Liu, Annie T. Y.; Owens, Kjerstin M.; O'Malley, Malinda S.; Smith, Brian J.; Domann, Frederick E.; Spitz, Douglas R.

    2011-01-01

    It has been hypothesized that ionizing radiation-induced disruptions in mitochondrial O2 metabolism lead to persistent heritable increases in steady-state levels of intracellular superoxide (O2•−) and hydrogen peroxide (H2O2) that contribute to the biological effects of radiation. Hamster fibroblasts (B9 cells) expressing a mutation in the gene coding for the mitochondrial electron transport chain protein succinate dehydrogenase subunit C (SDHC) demonstrate increases in steady-state levels of O2•− and H2O2. When B9 cells were exposed to low-dose/low-LET radiation (5–50 cGy), they displayed significantly increased clonogenic cell killing compared with parental cells. Clones derived from B9 cells overexpressing a wild-type human SDHC (T4, T8) demonstrated significantly increased surviving fractions after exposure to 5–50 cGy relative to B9 vector controls. In addition, pretreatment with polyethylene glycol-conjugated CuZn superoxide dismutase and catalase as well as adenoviral-mediated overexpression of MnSOD and/or mitochondria-targeted catalase resulted in significantly increased survival of B9 cells exposed to 10 cGy ionizing radiation relative to vector controls. Adenoviral-mediated overexpression of either MnSOD or mitochondria-targeted catalase alone was equally as effective as when both were combined. These results show that mammalian cells over expressing mutations in SDHC demonstrate low-dose/low-LET radiation sensitization that is mediated by increased levels of O2•− and H2O2. These results also support the hypothesis that mitochondrial O2•− and H2O2 originating from SDH are capable of playing a role in low-dose ionizing radiation-induced biological responses. PMID:21268708

  8. Novel penetrating cations for targeting mitochondria.

    PubMed

    Chernyak, Boris V; Antonenko, Yuri N; Domnina, Lidia V; Ivanova, Olga Yu; Lyamzaev, Konstantin G; Pustovidko, Antonina V; Rokitskaya, Tatiana I; Severina, Inna I; Simonyan, Ruben A; Trendeleva, Tatiana A; Zvyagilskaya, Renata A

    2013-01-01

    Novel penetrating cations were used for the design of mitochondria-targeted compounds and tested in model lipid membranes, in isolated mitochondria and in living human cells in culture. Rhodamine-19, berberine and palmatine were conjugated by aliphatic linkers with plastoquinone possessing antioxidant activity. These conjugates (SkQR1,SkQBerb, SkQPalm) and their analogs lacking plastoquinol moiety (C12R1,C10Berb and C10Palm) penetrated bilayer phospholipid membrane in their cationic forms and accumulated in isolated mitochondria or in mitochondria of living cells due to membrane potential negative inside. Reduced forms of SkQR1, SkQBerb and SkQPalm inhibited lipid peroxidation in isolated mitochondria at nanomolar concentrations. In human fibroblasts SkQR1, SkQBerb and SkQPalm prevented fragmentation of mitochondria and apoptosis induced by hydrogen peroxide. SkQR1 was effective at subnanomolar concentrations while SkQberb, SkQPalm and SkQ1 (prototypic conjugate of plastoquinone with dodecyltriphenylphosphonium) were effective at 10-times higher concentrations. The aliphatic conjugates of berberine and palmatine (as well as the conjugates of triphenylphosphonium) induced proton transport mediated by free fatty acids (FA) both in the model and mitochondrial membrane. In mitochondria this process was facilitated by the adenine nucleotide carrier. In contrast to the other cationic conjugates, SkQR1 and C12R1 induced FA-independent proton conductivity due to protonation/deprotonation of the rhodamine residue. This property in combination with the antioxidant activity probably makes rhodamine conjugates highly effective in protection against oxidative stress. The novel cationic conjugates described here are promising candidates for drugs against various pathologies and aging as mitochondria-targeted antioxidants and selective mild uncouplers. PMID:23092317

  9. Peptide-based carbon nanotubes for mitochondrial targeting

    NASA Astrophysics Data System (ADS)

    Battigelli, Alessia; Russier, Julie; Venturelli, Enrica; Fabbro, Chiara; Petronilli, Valeria; Bernardi, Paolo; da Ros, Tatiana; Prato, Maurizio; Bianco, Alberto

    2013-09-01

    In the present study, we report the design and synthesis of peptide-based-multi-walled carbon nanotubes (MWCNTs) to target mitochondria. Targeting these intracellular organelles might open the way to develop alternative systems to address diseases related to genetic mutations in mitochondrial (mt)-DNA, by delivering therapeutic oligonucleotides. The first step towards mitochondrial delivery of this type of nucleic acid was to target MWCNTs to mitochondria by covalent functionalization with a well-known endogenous mitochondrial targeting sequence (MTS). The subcellular localization of the conjugates, which were fluorescently labeled, in murine RAW 264.7 macrophages and human HeLa cells was then studied using different microscopy techniques, such as wide-field epifluorescence microscopy, confocal laser scanning microscopy (CLSM) and transmission electron microscopy (TEM). The localization of the MTS-MWCNT conjugates into mitochondria was further confirmed by analyzing the isolated organelles using TEM.In the present study, we report the design and synthesis of peptide-based-multi-walled carbon nanotubes (MWCNTs) to target mitochondria. Targeting these intracellular organelles might open the way to develop alternative systems to address diseases related to genetic mutations in mitochondrial (mt)-DNA, by delivering therapeutic oligonucleotides. The first step towards mitochondrial delivery of this type of nucleic acid was to target MWCNTs to mitochondria by covalent functionalization with a well-known endogenous mitochondrial targeting sequence (MTS). The subcellular localization of the conjugates, which were fluorescently labeled, in murine RAW 264.7 macrophages and human HeLa cells was then studied using different microscopy techniques, such as wide-field epifluorescence microscopy, confocal laser scanning microscopy (CLSM) and transmission electron microscopy (TEM). The localization of the MTS-MWCNT conjugates into mitochondria was further confirmed by analyzing the

  10. An unusual TOM20/TOM22 bypass mechanism for the mitochondrial targeting of cytochrome P450 proteins containing N-terminal chimeric signals.

    PubMed

    Anandatheerthavarada, Hindupur K; Sepuri, Naresh Babu V; Biswas, Gopa; Avadhani, Narayan G

    2008-07-11

    Previously we showed that xenobiotic-inducible cytochrome P450 (CYP) proteins are bimodally targeted to the endoplasmic reticulum and mitochondria. In the present study, we investigated the mechanism of delivery of chimeric signal-containing CYP proteins to the peripheral and channel-forming mitochondrial outer membrane translocases (TOMs). CYP+33/1A1 and CYP2B1 did not require peripheral TOM70, TOM20, or TOM22 for translocation through the channel-forming TOM40 protein. In contrast, CYP+5/1A1 and CYP2E1 were able to bypass TOM20 and TOM22 but required TOM70. CYP27, which contains a canonical cleavable mitochondrial signal, required all of the peripheral TOMs for its mitochondrial translocation. We investigated the underlying mechanisms of bypass of peripheral TOMs by CYPs with chimeric signals. The results suggested that interaction of CYPs with Hsp70, a cytosolic chaperone involved in the mitochondrial import, alone was sufficient for the recognition of chimeric signals by peripheral TOMs. However, sequential interaction of chimeric signal-containing CYPs with Hsp70 and Hsp90 resulted in the bypass of peripheral TOMs, whereas CYP27 interacted only with Hsp70 and was not able to bypass peripheral TOMs. Our results also show that delivery of chimeric signal-containing client proteins by Hsp90 required the cytosol-exposed N-terminal 143 amino acids of TOM40. TOM40 devoid of this domain was unable to bind CYP proteins. These results suggest that, compared with the unimodal mitochondria-targeting signals, the chimeric mitochondria-targeting signals are highly evolved and dynamic in nature. PMID:18480056

  11. Polynitroxyl-albumin (PNA) plus tempol attenuate lung capillary leak elicited by prolonged intestinal ischemia and reperfusion(1).

    PubMed

    Zhang, S; Li, H; Ma, L; Trimble, C E; Kuppusamy, P; Hsia, C J; Carden, D L

    2000-07-01

    Stable nitroxyl radicals (nitroxides) are potential antioxidant drugs, and we have previously reported that linking nitroxide to biological macromolecules can improve therapeutic activity in at least two ways. First, polynitroxylated compounds such as polynitroxyl human serum albumin (PNA) are a novel class of high molecular weight, extracellular antioxidants. Second, compounds such as PNA can prolong the half-life of free (unbound, low molecular weight) nitroxides such as 4-hydroxy-2,2,6, 6-tetramethylpiperidine-N-oxyl (Tempol) in vivo. Unlike PNA, Tempol can readily access the intracellular compartment. Thus PNA can act alone in the extracellular compartment, or in concert with Tempol, to provide additional antioxidant protection within cells. In this study, we compared the abilities of PNA, Tempol, and the combination of PNA + Tempol to prevent lung microvascular injury secondary to prolonged gut ischemia (I, 120 min) and reperfusion (R, 20 min) in the rat. Pulmonary capillary filtration coefficient (K(f,c)) and lung neutrophil retention (tissue myeloperoxidase activity, MPO) were measured in normal, isolated rat lungs perfused with blood harvested from I/R rats. Blood donor rats were treated with drug during ischemia. Gut I/R resulted in a marked increase in pulmonary capillary coefficient and lung MPO. PNA + Tempol, but not PNA alone or Tempol alone, at the doses used, prevented the development of lung leak. None of the treatments had an effect on lung neutrophil retention. Anti-inflammatory therapeutic activity appeared to correlate with blood Tempol level: in the presence of PNA, blood Tempol levels were maintained in the 50-100 microM range vs. essentially undetectable levels shortly after Tempol was administered alone. In this model of lung injury secondary to prolonged gut I/R, lung capillary leak was prevented when the membrane-permeable compound Tempol was maintained in its active, free radical state by PNA. PMID:10962204

  12. Long-Range Distance Measurements in Proteins at Physiological Temperatures Using Saturation Recovery EPR Spectroscopy

    PubMed Central

    2015-01-01

    Site-directed spin labeling in combination with EPR is a powerful method for providing distances on the nm scale in biological systems. The most popular strategy, double electron–electron resonance (DEER), is carried out at cryogenic temperatures (50–80 K) to increase the short spin–spin relaxation time (T2) upon which the technique relies. A challenge is to measure long-range distances (20–60 Å) in proteins near physiological temperatures. Toward this goal we are investigating an alternative approach based on the distance-dependent enhancement of spin–lattice relaxation rate (T1–1) of a nitroxide spin label by a paramagnetic metal. With a commonly used nitroxide side chain (R1) and Cu2+, it has been found that interspin distances ≤25 Å can be determined in this way (Jun et al. Biochemistry2006, 45, 11666). Here, the upper limit of the accessible distance is extended to ≈40 Å using spin labels with long T1, a high-affinity 5-residue Cu2+ binding loop inserted into the protein sequence, and pulsed saturation recovery to measure relaxation enhancement. Time-domain Cu2+ electron paramagnetic resonance, quantum mechanical calculations, and molecular dynamics simulations provide information on the structure and geometry of the Cu2+ loop and indicate that the metal ion is well-localized in the protein. An important aspect of these studies is that both Cu2+/nitroxide DEER at cryogenic temperatures and T1 relaxation measurements at room temperature can be carried out on the same sample, allowing both validation of the relaxation method and assessment of the effect of freezing on protein structure. PMID:25290172

  13. Tempol moderately extends survival in a hSOD1(G93A) ALS rat model by inhibiting neuronal cell loss, oxidative damage and levels of non-native hSOD1(G93A) forms.

    PubMed

    Linares, Edlaine; Seixas, Luciana V; dos Prazeres, Janaina N; Ladd, Fernando V L; Ladd, Aliny A B L; Coppi, Antonio A; Augusto, Ohara

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive dysfunction and death of motor neurons by mechanisms that remain unclear. Evidence indicates that oxidative mechanisms contribute to ALS pathology, but classical antioxidants have not performed well in clinical trials. Cyclic nitroxides are an alternative worth exploring because they are multifunctional antioxidants that display low toxicity in vivo. Here, we examine the effects of the cyclic nitroxide tempol (4-hydroxy-2,2,6,6-tetramethyl piperidine-1-oxyl) on ALS onset and progression in transgenic female rats over-expressing the mutant hSOD1(G93A) . Starting at 7 weeks of age, a high dose of tempol (155 mg/day/rat) in the rat´s drinking water had marginal effects on the disease onset but decelerated disease progression and extended survival by 9 days. In addition, tempol protected spinal cord tissues as monitored by the number of neuronal cells, and the reducing capability and levels of carbonylated proteins and non-native hSOD1 forms in spinal cord homogenates. Intraperitoneal tempol (26 mg/rat, 3 times/week) extended survival by 17 days. This group of rats, however, diverted to a decelerated disease progression. Therefore, it was inconclusive whether the higher protective effect of the lower i.p. dose was due to higher tempol bioavailability, decelerated disease development or both. Collectively, the results show that tempol moderately extends the survival of ALS rats while protecting their cellular and molecular structures against damage. Thus, the results provide proof that cyclic nitroxides are alternatives worth to be further tested in animal models of ALS. PMID:23405225

  14. Tempol Moderately Extends Survival in a hSOD1G93A ALS Rat Model by Inhibiting Neuronal Cell Loss, Oxidative Damage and Levels of Non-Native hSOD1G93A Forms

    PubMed Central

    Linares, Edlaine; Seixas, Luciana V.; dos Prazeres, Janaina N.; Ladd, Fernando V. L.; Ladd, Aliny A. B. L.; Coppi, Antonio A.; Augusto, Ohara

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive dysfunction and death of motor neurons by mechanisms that remain unclear. Evidence indicates that oxidative mechanisms contribute to ALS pathology, but classical antioxidants have not performed well in clinical trials. Cyclic nitroxides are an alternative worth exploring because they are multifunctional antioxidants that display low toxicity in vivo. Here, we examine the effects of the cyclic nitroxide tempol (4-hydroxy-2,2,6,6-tetramethyl piperidine-1-oxyl) on ALS onset and progression in transgenic female rats over-expressing the mutant hSOD1G93A . Starting at 7 weeks of age, a high dose of tempol (155 mg/day/rat) in the rat´s drinking water had marginal effects on the disease onset but decelerated disease progression and extended survival by 9 days. In addition, tempol protected spinal cord tissues as monitored by the number of neuronal cells, and the reducing capability and levels of carbonylated proteins and non-native hSOD1 forms in spinal cord homogenates. Intraperitoneal tempol (26 mg/rat, 3 times/week) extended survival by 17 days. This group of rats, however, diverted to a decelerated disease progression. Therefore, it was inconclusive whether the higher protective effect of the lower i.p. dose was due to higher tempol bioavailability, decelerated disease development or both. Collectively, the results show that tempol moderately extends the survival of ALS rats while protecting their cellular and molecular structures against damage. Thus, the results provide proof that cyclic nitroxides are alternatives worth to be further tested in animal models of ALS. PMID:23405225

  15. Study of the mode of action of some nitrodiphenyl ethers.

    PubMed

    Piekarski, D; Potier, P; Giannotti, C

    1990-01-01

    Nitrosoderivatives of the nitrodiphenyl ether herbicides (nitrofen, bifenox) have been studied. UV irradiation in different organic solvents gives degradation products. In buffered aqueous media, in the presence of chloroplasts and spin traps such as DMPO, hydroxy and peroxy radicals have been characterized. In organic media and in the presence of spin traps such as DMPO, PBN, 4-POBN, solvent radicals (.CHCl2, .CCl3, .CH2 [symbol: see text]) have been formed. Nitro-derivatives have been studied under UV irradiation and in the presence of tetramethylethylene (TME), alkenylhydroxylamines are formed which autoxidize in nitroxide radicals. The formation of the stable nitroxide radical occurs in the dark process after continuous irradiation. The intensity of the signal decreases strongly when a new irradiation is applied. Radical species, with analogous ESR spectral characteristics are formed on reaction with nitrodiphenyl ethers and fatty acids. The reactivity of these herbicides in micellar media (SDS, Brij 35, and CTAB) has been investigated. The kinetics of formation of the ESR signal corresponding to the photoreduction of the nitrodiphenyl ether in the presence of TME behave differently in a micellar environment as compared to solution. The intensity of the formation of the nitroxide increases under irradiation and decreases in the dark; the rotational correlation time tau c has been determined for each type of micelle. Synthetic nitrosodiphenyl ether made by the reduction of nitrodiphenyl ether using hydrogen gas and PtO2 as a catalyst gives the corresponding amine, which is oxidized with meta-chloroperbenzoic acid (m.CPBA). The nitrosodiphenyl ether in the presence of soja azolectin liposome containing a fluorescent probe has been analysed.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2165990

  16. Adiabatic and fast passage ultra-wideband inversion in pulsed EPR

    NASA Astrophysics Data System (ADS)

    Doll, Andrin; Pribitzer, Stephan; Tschaggelar, René; Jeschke, Gunnar

    2013-05-01

    We demonstrate that adiabatic and fast passage ultra-wideband (UWB) pulses can achieve inversion over several hundreds of MHz and thus enhance the measurement sensitivity, as shown by two selected experiments. Technically, frequency-swept pulses are generated by a 12 GS/s arbitrary waveform generator and upconverted to X-band frequencies. This pulsed UWB source is utilized as an incoherent channel in an ordinary pulsed EPR spectrometer. We discuss experimental methodologies and modeling techniques to account for the response of the resonator, which can strongly limit the excitation bandwidth of the entire non-linear excitation chain. Aided by these procedures, pulses compensated for bandwidth or variations in group delay reveal enhanced inversion efficiency. The degree of bandwidth compensation is shown to depend critically on the time available for excitation. As a result, we demonstrate optimized inversion recovery and double electron electron resonance (DEER) experiments. First, virtually complete inversion of the nitroxide spectrum with an adiabatic pulse of 128 ns length is achieved. Consequently, spectral diffusion between inverted and non-inverted spins is largely suppressed and the observation bandwidth can be increased to increase measurement sensitivity. Second, DEER is performed on a terpyridine-based copper (II) complex with a nitroxide-copper distance of 2.5 nm. As previously demonstrated on this complex, when pumping copper spins and observing nitroxide spins, the modulation depth is severely limited by the excitation bandwidth of the pump pulse. By using fast passage UWB pulses with a maximum length of 64 ns, we achieve up to threefold enhancement of the modulation depth. Associated artifacts in distance distributions when increasing the bandwidth of the pump pulse are shown to be small.

  17. Mapping Local Protein Electrostatics by EPR of pH-Sensitive Thiol-Specific Nitroxide† ¶

    PubMed Central

    Voinov, Maxim A.; Ruuge, Andres; Reznikov, Vladimir A.; Grigor’ev, Igor A.; Smirnov, Alex I.

    2013-01-01

    A first thiol-specific pH-sensitive nitroxide spin label of the imidazolidine series -methanethiosulfonic acid S-(1-oxyl-2,2,3,5,5-pentamethylimidazolidin-4-ylmethyl) ester (IMTSL) - has been synthesized and characterized. X- (9 GHz) and W-band (94 GHz) EPR spectral parameters of the new spin label in its free form and covalently attached to an amino acid cysteine and a tripeptide glutathione were studied as a function of pH and solvent polarity. pKa value of protonatable tertiary amino group of the spin label was found to be unaffected by other ionizable groups present in side chains of unstructured small peptides. The W-band EPR spectra were shown to allow for pKa determination from precise g-factor measurements. Is has been demonstrated that high accuracy of pKa determination for pH-sensitive nitroxides could be achieved regardless the frequency of measurements or the regime of spin exchange: fast at X-band and slow at W-band. IMTSL was found to react specifically with a model protein - iso-1-cytochrome c from yeast Saccharomyces cerevisiae - giving EPR spectra very similar to those of the most commonly employed cysteine-specific label MTSL. CD data indicated no perturbations to the overall protein structure upon IMTSL labeling. It was found that for IMTSL, giso correlates linearly with Aiso but the slopes are different for the neutral and charged forms of the nitroxide. This finding was attributed to the solvent effects on the spin density at the oxygen atom of the N–O group and on the excitation energy of the oxygen lone-pair orbital. PMID:18426227

  18. Effect of the carboxylate salt on the C--ON bond homolysis of SG1-based alkoxyamines.

    PubMed

    Bertin, Denis; Gigmes, Didier; Marque, Sylvain R A; Siri, Didier; Tordo, Paul; Trappo, Gregory

    2008-02-01

    Alkoxyamines and persistent nitroxides are important regulators of the nitroxide mediated radical polymerization (NMP). Since the polymerization time decreases with increasing values of the homolysis rate constant (kd) for the C--ON bond between the polymer chain and the nitroxide moiety, the factors influencing kd are of considerable interest. Environmentally friendly polymerization methods, such as NMP in emulsion medium, have now been developed. The success of the polymerization depends not only on the strength of the C--ON bond but also on the solubility of the initiator/controller alkoxyamines, which control the nucleation. Various salts of SG1-based alkoxyamines (S+-OOCCMeH-SG1) labelled 1 a-f, where S+=Li+ (a), Na+ (b), K+ (c), nBu3HN+ (d), NH4+ (e), and nBu4N+ (f) are prepared, all of which are soluble in most organic solvents (e.g. pentane, dichlomethane, benzene, ethanol, etc.) as well as in water. Their kd values, which are measured in tert-butylbenzene, reveal unexpected behaviors depending on the diastereoisomers. For the RR/SS diatereoisomers (i.e. slowly homolyzing isomers), kd was not found to be sensitive to any of the salts, whereas for the RS/SR diastereoisomers (i.e. quickly homolyzing isomers), kd is observed to decrease to a greater or lesser extent depending on the type of salt. The conformations of the diastereoisomers of several salts are determined by means of DFT calculations, and the orbital interactions are studied by natural bond orbital (NBO) analysis. PMID:18200479

  19. Calculation of Double-Quantum-Coherence Two-dimensional Spectra: Distance Measurements and Orientational Correlations

    PubMed Central

    Misra, Sushil K.; Borbat, Peter P.; Freed, Jack H.

    2009-01-01

    The double quantum coherence (DQC) echo signal for two coupled nitroxides separated by distances ≳10 Å, is calculated rigorously for the six-pulse sequence. Successive application of six pulses on the initial density matrix, with appropriate inter-pulse time evolution and coherence pathway selection leaves only the coherent pathways of interest. The amplitude of the echo signal following the last π pulse can be used to obtain a one-dimensional dipolar spectrum (Pake doublet), and the echo envelope can be used to construct the two-dimensional DQC spectrum. The calculations are carried out using the product space spanned by the two electron-spin magnetic quantum numbers m1, m2 and the two nuclear-spin magnetic quantum numbers M1, M2, describing e.g. two coupled nitroxides in bilabeled proteins. The density matrix is subjected to a cascade of unitary transformations taking into account dipolar and electron exchange interactions during each pulse and during the evolution in the absence of a pulse. The unitary transformations use the eigensystem of the effective spin-Hamiltonians obtained by numerical matrix diagonalization. Simulations are carried out for a range of dipolar interactions, D, and microwave magnetic field strength B for both fixed and random orientations of the two 14N (and 15N) nitroxides. Relaxation effects were not included. Several examples of one- and two-dimensional Fourier transforms of the time domain signals vs. dipolar evolution and spin-echo envelope time variables are shown for illustration. Comparisons are made between 1D rigorous simulations and analytical approximations. The rigorous simulations presented here provide insights into DQC ESR spectroscopy, they serve as a standard to evaluate the results of approximate theories, and they can be employed to plan future DQC experiments. PMID:20161423

  20. Tempol inhibits neutrophil and hydrogen peroxide-mediated DNA damage.

    PubMed

    Hahn, S M; Mitchell, J B; Shacter, E

    1997-01-01

    Inflammatory conditions characterized by neutrophil activation are associated with a variety of chronic diseases. Reactive oxygen species are produced by activated neutrophils and produce DNA damage which may lead to tissue damage. Previous studies have shown that activated murine neutrophils induce DNA strand breaks in a target plasmacytoma cell, RIMPC 2394. We studied the effect of a water soluble nitroxide anti-oxidant, Tempol, on murine neutrophil induction of DNA strand breaks in this system. Murine neutrophils were isolated from the peritoneal cavity of BALB/cAn mice after an i.p. injection of pristane oil. Neutrophils were activated by the phorbol ester PMA and co-incubated with RIMPC 2394 cells. Control alkaline elution studies revealed progressive DNA strand breaks in RIMPC cells with time. The addition of Tempol to the incubation mixture prevented DNA damage in a dose dependent fashion. Five mM Tempol provided complete protection. Tempol protection against DNA strand breaks was similar for both stimulated neutrophils and exogenously added hydrogen peroxide. Measurement of hydrogen peroxide produced by stimulated neutrophils demonstrated that Tempol did not decrease hydrogen peroxide concentration. Oxidation of reduced metals, thereby interfering with the production of hydroxyl radical, is the most likely mechanism of nitroxide protection, although superoxide dismutase (SOD) like activity and scavenging of carbon-based free radicals may also account for a portion of the observed protection. The anti-oxidant activity of Tempol inhibited DNA damage by activated neutrophils. The nitroxides as a class of compounds may have a role in the investigation and modification of inflammatory conditions. PMID:9378367

  1. Spin-labelled photo-cytotoxic diazido platinum(iv) anticancer complex.

    PubMed

    Venkatesh, V; Wedge, Christopher J; Romero-Canelón, Isolda; Habtemariam, Abraha; Sadler, Peter J

    2016-08-16

    We report the synthesis and characterisation of the nitroxide spin-labelled photoactivatable Pt(iv) prodrug trans,trans,trans-[Pt(N3)2(OH)(OCOCH2CH2CONH-TEMPO)(Py)2] (Pt-TEMPO, where TEMPO = 2,2,6,6-tetramethylpiperidine 1-oxyl). Irradiation with blue visible light gave rise to Pt(ii) and azidyl as well as nitroxyl radicals. Pt-TEMPO exhibited low toxicity in the dark, but on photoactivation was as active towards human ovarian cancer cells as the clinical photosensitizer chlorpromazine and much more active than the anticancer drug cisplatin under the conditions used. PMID:27189101

  2. Glutathione: new roles in redox signaling for an old antioxidant.

    PubMed

    Aquilano, Katia; Baldelli, Sara; Ciriolo, Maria R

    2014-01-01

    The physiological roles played by the tripeptide glutathione have greatly advanced over the past decades superimposing the research on free radicals, oxidative stress and, more recently, redox signaling. In particular, GSH is involved in nutrient metabolism, antioxidant defense, and regulation of cellular metabolic functions ranging from gene expression, DNA and protein synthesis to signal transduction, cell proliferation and apoptosis. This review will be focused on the role of GSH in cell signaling by analysing the more recent advancements about its capability to modulate nitroxidative stress, autophagy, and viral infection. PMID:25206336

  3. Glutathione: new roles in redox signaling for an old antioxidant

    PubMed Central

    Aquilano, Katia; Baldelli, Sara; Ciriolo, Maria R.

    2014-01-01

    The physiological roles played by the tripeptide glutathione have greatly advanced over the past decades superimposing the research on free radicals, oxidative stress and, more recently, redox signaling. In particular, GSH is involved in nutrient metabolism, antioxidant defense, and regulation of cellular metabolic functions ranging from gene expression, DNA and protein synthesis to signal transduction, cell proliferation and apoptosis. This review will be focused on the role of GSH in cell signaling by analysing the more recent advancements about its capability to modulate nitroxidative stress, autophagy, and viral infection. PMID:25206336

  4. Dynamic nuclear polarization of membrane proteins: covalently bound spin-labels at protein-protein interfaces.

    PubMed

    Wylie, Benjamin J; Dzikovski, Boris G; Pawsey, Shane; Caporini, Marc; Rosay, Melanie; Freed, Jack H; McDermott, Ann E

    2015-04-01

    We demonstrate that dynamic nuclear polarization of membrane proteins in lipid bilayers may be achieved using a novel polarizing agent: pairs of spin labels covalently bound to a protein of interest interacting at an intermolecular interaction surface. For gramicidin A, nitroxide tags attached to the N-terminal intermolecular interface region become proximal only when bimolecular channels forms in the membrane. We obtained signal enhancements of sixfold for the dimeric protein. The enhancement effect was comparable to that of a doubly tagged sample of gramicidin C, with intramolecular spin pairs. This approach could be a powerful and selective means for signal enhancement in membrane proteins, and for recognizing intermolecular interfaces. PMID:25828256

  5. Investigating the structure of the factor B vWF-A domain/CD55 protein-protein complex using DEER spectroscopy: successes and pitfalls

    NASA Astrophysics Data System (ADS)

    Lovett, Janet E.; Abbott, Rachel J. M.; Roversi, Pietro; Johnson, Steven; Caesar, Joseph J. E.; Doria, Marianna; Jeschke, Gunnar; Timmel, Christiane R.; Lea, Susan M.

    2013-10-01

    The electron paramagnetic resonance technique of double electron-electron resonance (DEER) was used to measure nanometre-scale distances between nitroxide spin labels attached to the complement regulatory protein CD55 (also known as decay accelerating factor) and the von Willebrand factor A (vWF-A) domain of factor B. Following a thorough assessment of the quality of the data, distances obtained from good-quality measurements are compared to predicted distances from a previously hypothesised model for the complex and are found to be incompatible. The success of using these distances as restraints in multi-body docking routines is presented critically.

  6. Loading and release of internally self-assembled emulsions embedded in a magnetic hydrogel

    NASA Astrophysics Data System (ADS)

    Milošević, Irena; Guillot, Samuel; Tadić, Marin; Duttine, Mathieu; Duguet, Etienne; Pierzchala, Katarzyna; Sienkiewicz, Andrzej; Forró, László; Saboungi, Marie-Louise

    2014-01-01

    We have investigated drug loading and release from thermosensitive gel emulsions with external triggering by an alternating magnetic field (AMF) for on-demand drug delivery. Superparamagnetic iron oxide nanoparticles dispersed in gel emulsions were used to study the loading and release capabilities, with the stable nitroxide radical 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) serving as the model drug. AMF activation gave similar results to temperature activation in a water bath at 37 °C, showing that the principal effect of the AMF is a temperature increase without burst release. These results suggest that the system could play an important role in the development of advanced drug delivery.

  7. Peptide ligation from alkoxyamine based radical addition.

    PubMed

    Trimaille, Thomas; Autissier, Laurent; Rakotonirina, Mamy Daniel; Guillaneuf, Yohann; Villard, Claude; Bertin, Denis; Gigmes, Didier; Mabrouk, Kamel

    2014-03-14

    Intermolecular radical 1,2-addition (IRA) of N-tert-butyl-N-(1-diethylphosphono-2,2-dimethylpropyl)aminoxyl (SG1) based alkoxyamines onto activated olefins is used as a tool for peptide ligation. This strategy relies on simple peptide pre-derivatization to obtain (i) a SG1 nitroxide functionalized resin peptide at its N-terminus (SG1-peptide alkoxyamine), (ii) a vinyl functionalized peptide (either at its C-terminus or N-terminus), and does not require any coupling agents. PMID:24476638

  8. Cardiovascular and Hepatic Toxicity of Cocaine: Potential Beneficial Effects of Modulators of Oxidative Stress

    PubMed Central

    Graziani, Manuela; Antonilli, Letizia; Togna, Anna Rita; Grassi, Maria Caterina; Badiani, Aldo; Saso, Luciano

    2016-01-01

    Oxidative stress (OS) is thought to play an important role in the pharmacological and toxic effects of various drugs of abuse. Herein we review the literature on the mechanisms responsible for the cardiovascular and hepatic toxicity of cocaine with special focus on OS-related mechanisms. We also review the preclinical and clinical literature concerning the putative therapeutic effects of OS modulators (such as N-acetylcysteine, superoxide dismutase mimetics, nitroxides and nitrones, NADPH oxidase inhibitors, xanthine oxidase inhibitors, and mitochondriotropic antioxidants) for the treatment of cocaine toxicity. We conclude that available OS modulators do not appear to have clinical efficacy. PMID:26823954

  9. Investigating the structure of the factor B vWF-A domain/CD55 protein–protein complex using DEER spectroscopy: successes and pitfalls

    PubMed Central

    Lovett, Janet E.; Abbott, Rachel J.M.; Roversi, Pietro; Johnson, Steven; Caesar, Joseph J.E.; Doria, Marianna; Jeschke, Gunnar; Timmel, Christiane R.; Lea, Susan M.

    2013-01-01

    The electron paramagnetic resonance technique of double electron-electron resonance (DEER) was used to measure nanometre-scale distances between nitroxide spin labels attached to the complement regulatory protein CD55 (also known as decay accelerating factor) and the von Willebrand factor A (vWF-A) domain of factor B. Following a thorough assessment of the quality of the data, distances obtained from good-quality measurements are compared to predicted distances from a previously hypothesised model for the complex and are found to be incompatible. The success of using these distances as restraints in multi-body docking routines is presented critically. PMID:24954957

  10. Novel paramagnetic AT1 receptor antagonists.

    PubMed

    Tan, Nichole P H; Taylor, Michelle K; Bottle, Steven E; Wright, Christine E; Ziogas, James; White, Jonathan M; Schiesser, Carl H; Jani, Nitya V

    2011-11-28

    Novel paramagnetic selective angiotensin AT(1) receptor antagonists (sartans) bearing nitroxides (3, 4) have been prepared and their pharmacology evaluated in vitro as well as in vivo. Compounds 3, 4 proved to be effective sartans with pK(B) estimates in the range 6.2-9.1. In addition, the sodium salt (11) of 4 (R = Bu) is able to protect against vascular injury in hypertensive rats as determined by its ability to attenuate the development of intimal thickening caused by balloon injury of the carotid artery. PMID:21963998

  11. Magnetic Resonance Spectra and Statistical Geometry.

    PubMed

    Earle, Keith A; Mainali, Laxman; Sahu, Indra Dev; Schneider, David J

    2010-01-01

    Methods of statistical geometry are introduced which allow one to estimate, on the basis of computable criteria, the conditions under which maximally informative data may be collected. We note the important role of constraints which introduce curvature into parameter space and discuss the appropriate mathematical tools for treating curvature effects. Channel capacity, a term from communication theory, is suggested as a useful figure of merit for estimating the information content of spectra in the presence of noise. The tools introduced here are applied to the case of a model nitroxide system as a concrete example, but we stress that the methods described here are of general utility. PMID:20730032

  12. Electron spin resonance of spin-labeled lipid assemblies and proteins.

    PubMed

    Guzzi, Rita; Bartucci, Rosa

    2015-08-15

    Spin-label electron spin resonance (ESR) spectroscopy is a valuable means to study molecular mobility and interactions in biological systems. This paper deals with conventional, continuous wave ESR of nitroxide spin-labels at 9-GHz providing an introduction to the basic principles of the technique and applications to self-assembled lipid aggregates and proteins. Emphasis is given to segmental lipid chain order and rotational dynamics of lipid structures, environmental polarity of membranes and proteins, structure and conformational dynamics of proteins. PMID:26116378

  13. Ab initio molecular dynamics simulation of aqueous solution of nitric oxide in different formal oxidation states

    NASA Astrophysics Data System (ADS)

    Venâncio, Mateus F.; Rocha, Willian R.

    2015-10-01

    Ab initio molecular dynamics simulations were used to investigate the early chemical events involved in the dynamics of nitric oxide (NOrad), nitrosonium cation (NO+) and nitroxide anion (NO-) in aqueous solution. The NO+ ion is very reactive in aqueous solution having a lifetime of ∼4 × 10-13 s, which is shorter than the value of 3 × 10-10 s predicted experimentally. The NO+ reacts generating the nitrous acid as an intermediate and the NO2- ion as the final product. The dynamics of NOrad revealed the reversibly formation of a transient anion radical species HONOrad -.

  14. Magnetic Resonance Spectra and Statistical Geometry

    PubMed Central

    Mainali, Laxman; Sahu, Indra Dev; Schneider, David J.

    2010-01-01

    Methods of statistical geometry are introduced which allow one to estimate, on the basis of computable criteria, the conditions under which maximally informative data may be collected. We note the important role of constraints which introduce curvature into parameter space and discuss the appropriate mathematical tools for treating curvature effects. Channel capacity, a term from communication theory, is suggested as a useful figure of merit for estimating the information content of spectra in the presence of noise. The tools introduced here are applied to the case of a model nitroxide system as a concrete example, but we stress that the methods described here are of general utility. PMID:20730032

  15. Gamma and pulse radiolysis investigation of the reaction of desferrioxamine with superoxide anions.

    PubMed

    Sabourault, D; Ribiere, C; Nordmann, R; Houee-Levin, C; Ferradini, C

    1989-12-01

    The kinetic scheme of the reaction of desferrioxamine (DFO) with O2-. was studied using pulse and gamma-radiolysis. The rate constant k(O2-. + DFO) is equal to 1.3 +/- 0.1 x 10(6) dm3 mol-1s-1 at pH 7.4. Studying the competition between DFO and ferricytochrome-c for O2-. generated by gamma-radiolysis, we observed that the nitroxide free radical resulting from the reaction of O2-. with DFO and the product(s) resulting from the decay of this nitroxide radical act inversely towards the cytochrome-c-Fe3+/cytochrome-c-Fe2+ redox couple. This explains the discrepancy between our value of k(O2-. + DFO) and the one measured previously using ferricytochrome-c for the detection of O2-. The reported results show that DFO acts as a powerful O2-. scavenger, and that the products resulting from the reaction of DFO with O2-. can initiate oxidative and/or reductive reactions that should be taken into account in interpreting the effects of DFO in vitro and in vivo. PMID:2574220

  16. Toward increased concentration sensitivity for continuous wave EPR investigations of spin-labeled biological macromolecules at high fields.

    PubMed

    Song, Likai; Liu, Zhanglong; Kaur, Pavanjeet; Esquiaqui, Jackie M; Hunter, Robert I; Hill, Stephen; Smith, Graham M; Fanucci, Gail E

    2016-04-01

    High-field, high-frequency electron paramagnetic resonance (EPR) spectroscopy at W-(∼94GHz) and D-band (∼140GHz) is important for investigating the conformational dynamics of flexible biological macromolecules because this frequency range has increased spectral sensitivity to nitroxide motion over the 100ps to 2ns regime. However, low concentration sensitivity remains a roadblock for studying aqueous samples at high magnetic fields. Here, we examine the sensitivity of a non-resonant thin-layer cylindrical sample holder, coupled to a quasi-optical induction-mode W-band EPR spectrometer (HiPER), for continuous wave (CW) EPR analyses of: (i) the aqueous nitroxide standard, TEMPO; (ii) the unstructured to α-helical transition of a model IDP protein; and (iii) the base-stacking transition in a kink-turn motif of a large 232nt RNA. For sample volumes of ∼50μL, concentration sensitivities of 2-20μM were achieved, representing a ∼10-fold enhancement compared to a cylindrical TE011 resonator on a commercial Bruker W-band spectrometer. These results therefore highlight the sensitivity of the thin-layer sample holders employed in HiPER for spin-labeling studies of biological macromolecules at high fields, where applications can extend to other systems that are facilitated by the modest sample volumes and ease of sample loading and geometry. PMID:26923151

  17. Solid-state EPR strategies for the structural characterization of paramagnetic NO adducts of frustrated Lewis pairs (FLPs)

    SciTech Connect

    Oliveira, Marcos de; Magon, Claudio José; Wiegand, Thomas; Elmer, Lisa-Maria; Sajid, Muhammad; Kehr, Gerald; Erker, Gerhard; Eckert, Hellmut

    2015-03-28

    Anisotropic interactions present in three new nitroxide radicals prepared by N,N addition of NO to various borane-phosphane frustrated Lewis pairs (FLPs) have been characterized by continuous-wave (cw) and pulsed X-band EPR spectroscopies in solid FLP-hydroxylamine matrices at 100 K. Anisotropic g-tensor values and {sup 11}B, {sup 14}N, and {sup 31}P hyperfine coupling tensor components have been extracted from continuous-wave lineshape analyses, electron spin echo envelope modulation (ESEEM), and hyperfine sublevel correlation spectroscopy (HYSCORE) experiments with the help of computer simulation techniques. Suitable fitting constraints are developed on the basis of density functional theory (DFT) calculations. These calculations reveal that different from the situation in standard nitroxide radicals (TEMPO), the g-tensors are non-coincident with any of the nuclear hyperfine interaction tensors. The determination of these interaction parameters turns out to be successful, as the cw- and pulse EPR experiments are highly complementary in informational content. While the continuous-wave lineshape is largely influenced by the anisotropic hyperfine coupling to {sup 14}N and {sup 31}P, the ESEEM and HYSCORE spectra contain important information about the {sup 11}B hyperfine coupling and nuclear electric quadrupolar interaction. The set of cw- and pulsed EPR experiments, with fitting constraints developed by DFT calculations, defines an efficient strategy for the structural analysis of paramagnetic FLP adducts.

  18. Phospholipid bilayer relaxation dynamics as revealed by the pulsed electron-electron double resonance of spin labels

    NASA Astrophysics Data System (ADS)

    Syryamina, V. N.; Dzuba, S. A.

    2012-10-01

    Electron paramagnetic resonance (EPR) spectroscopy in the form of pulsed electron-electron double resonance (ELDOR) was applied to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) phospholipid bilayers containing lipids that were spin-labeled at different carbon positions along the lipid acyl chain. Pulsed ELDOR detects motionally induced spin flips of nitrogen nuclei in the nitroxide spin labels, which manifests itself as magnetization transfer (MT) in the nitroxide EPR spectrum. The MT effect was observed over a wide temperature range (100-225 K) on a microsecond time scale. In line with a previous study on molecular glasses [N. P. Isaev and S. A. Dzuba, J. Chem. Phys. 135, 094508 (2011), 10.1063/1.3633241], the motions that induce MT effect were suggested to have the same nature as those in dielectric secondary (β) Johari-Goldstein fast relaxation. The results were compared with literature dielectric relaxation data for POPC bilayers, revealing some common features. Molecular motions resulting in MT are faster for deeper spin labels in the membrane interior. The addition of cholesterol to the bilayer suppresses the lipid motions near the steroid nucleus and accelerates the lipid motions beyond the steroid nucleus, in the bilayer interior. This finding was attributed to the lipid acyl chains being more ordered near the steroid nucleus and less ordered in the bilayer interior. The motions are absent in dry lipids, indicating that the motions are determined by intermolecular interactions in the bilayer.

  19. Gd(III) complexes for electron-electron dipolar spectroscopy: Effects of deuteration, pH and zero field splitting.

    PubMed

    Garbuio, Luca; Zimmermann, Kaspar; Häussinger, Daniel; Yulikov, Maxim

    2015-10-01

    Spectral parameters of Gd(III) complexes are intimately linked to the performance of the Gd(III)-nitroxide or Gd(III)-Gd(III) double electron-electron resonance (DEER or PELDOR) techniques, as well as to that of relaxation induced dipolar modulation enhancement (RIDME) spectroscopy with Gd(III) ions. These techniques are of interest for applications in structural biology, since they can selectively detect site-to-site distances in biomolecules or biomolecular complexes in the nanometer range. Here we report relaxation properties, echo detected EPR spectra, as well as the magnitude of the echo reduction effect in Gd(III)-nitroxide DEER for a series of Gadolinium(III) complexes with chelating agents derived from tetraazacyclododecane. We observed that solvent deuteration does not only lengthen the relaxation times of Gd(III) centers but also weakens the DEER echo reduction effect. Both of these phenomena lead to an improved signal-to-noise ratios or, alternatively, longer accessible distance range in pulse EPR measurements. The presented data enrich the knowledge on paramagnetic Gd(III) chelate complexes in frozen solutions, and can help optimize the experimental conditions for most types of the pulse measurements of the electron-electron dipolar interactions. PMID:26342680

  20. Conformationally restricted isoindoline-derived spin labels in duplex DNA: distances and rotational flexibility by pulsed electron-electron double resonance spectroscopy.

    PubMed

    Gophane, Dnyaneshwar B; Endeward, Burkhard; Prisner, Thomas F; Sigurdsson, Snorri Th

    2014-11-24

    Three structurally related isoindoline-derived spin labels that have different mobilities were incorporated into duplex DNA to systematically study the effect of motion on orientation-dependent pulsed electron-electron double resonance (PELDOR) measurements. To that end, a new nitroxide spin label, (ExIm)U, was synthesized and incorporated into DNA oligonucleotides. (ExIm)U is the first example of a conformationally unambiguous spin label for nucleic acids, in which the nitroxide N-O bond lies on the same axis as the three single bonds used to attach the otherwise rigid isoindoline-based spin label to a uridine base. Continuous-wave (CW) EPR measurements of (ExIm)U confirm a very high rotational mobility of the spin label in duplex DNA relative to the structurally related spin label (Im)U, which has restricted mobility due to an intramolecular hydrogen bond. The X-band CW-EPR spectra of (ExIm)U can be used to identify mismatches in duplex DNA. PELDOR distance measurements between pairs of the spin labels (Im)U, (Ox)U, and (ExIm)U in duplex DNA showed a strong angular dependence for (Im)U, a medium dependence for (Ox)U, and no orientation effect for (ExIm)U. Thus, precise distances can be extracted from (ExIm)U without having to take orientational effects into account. PMID:25296640

  1. Inhibition of matrix metalloproteinase-2 by PARP inhibitors

    PubMed Central

    Nicolescu, Adrian C.; Holt, Andrew; Kandasamy, Arulmozhi D.; Pacher, Pal; Schulz, Richard

    2009-01-01

    Matrix metalloproteinase-2 (MMP-2), a ubiquitously expressed zinc-dependent endopeptidase, and poly(ADP-ribosyl) polymerase (PARP), a nuclear enzyme regulating DNA repair, are activated by nitroxidative stress associated with various pathologies. As MMP-2 plays a detrimental role in heart injuries resulting from enhanced nitroxidative stress, where PARP and MMP inhibitors are beneficial, we hypothesized that PARP inhibitors may affect MMP-2 activity. Using substrate degradation assays to determine MMP-2 activity we found that four PARP inhibitors (3-AB, PJ-34, 5-AIQ, and EB-47) inhibited 64 kDa MMP-2 in a concentration-dependent manner. The IC50 values of PJ-34 and 5-AIQ were in the high micromolar range and comparable to those of known MMP-2 inhibitors doxycycline, minocycline or o-phenanthroline, whereas those for 3-AB and EB-47 were in the millimolar range. Co-incubation of PARP inhibitors with doxycycline showed an additive inhibition of MMP-2 that was significant for 3-AB alone. These data demonstrate that the protective effects of some PARP inhibitors may include inhibition of MMP-2 activity. PMID:19619515

  2. Gd(III) complexes for electron-electron dipolar spectroscopy: Effects of deuteration, pH and zero field splitting

    NASA Astrophysics Data System (ADS)

    Garbuio, Luca; Zimmermann, Kaspar; Häussinger, Daniel; Yulikov, Maxim

    2015-10-01

    Spectral parameters of Gd(III) complexes are intimately linked to the performance of the Gd(III)-nitroxide or Gd(III)-Gd(III) double electron-electron resonance (DEER or PELDOR) techniques, as well as to that of relaxation induced dipolar modulation enhancement (RIDME) spectroscopy with Gd(III) ions. These techniques are of interest for applications in structural biology, since they can selectively detect site-to-site distances in biomolecules or biomolecular complexes in the nanometer range. Here we report relaxation properties, echo detected EPR spectra, as well as the magnitude of the echo reduction effect in Gd(III)-nitroxide DEER for a series of Gadolinium(III) complexes with chelating agents derived from tetraazacyclododecane. We observed that solvent deuteration does not only lengthen the relaxation times of Gd(III) centers but also weakens the DEER echo reduction effect. Both of these phenomena lead to an improved signal-to-noise ratios or, alternatively, longer accessible distance range in pulse EPR measurements. The presented data enrich the knowledge on paramagnetic Gd(III) chelate complexes in frozen solutions, and can help optimize the experimental conditions for most types of the pulse measurements of the electron-electron dipolar interactions.

  3. Background-free in-vivo Imaging of Vitamin C using Time-gateable Responsive Probe

    PubMed Central

    Song, Bo; Ye, Zhiqing; Yang, Yajie; Ma, Hua; Zheng, Xianlin; Jin, Dayong; Yuan, Jingli

    2015-01-01

    Sensitive optical imaging of active biomolecules in the living organism requires both a molecular probe specifically responsive to the target and a high-contrast approach to remove the background interference from autofluorescence and light scatterings. Here, a responsive probe for ascorbic acid (vitamin C) has been developed by conjugating two nitroxide radicals with a long-lived luminescent europium complex. The nitroxide radical withholds the probe on its “off” state (barely luminescent), until the presence of vitamin C will switch on the probe by forming its hydroxylamine derivative. The probe showed a linear response to vitamin C concentration with a detection limit of 9.1 nM, two orders of magnitude lower than that achieved using electrochemical methods. Time-gated luminescence microscopy (TGLM) method has further enabled real-time, specific and background-free monitoring of cellular uptake or endogenous production of vitamin C, and mapping of vitamin C in living Daphnia magna. This work suggests a rational design of lanthanide complexes for background-free small animal imaging of biologically functional molecules. PMID:26373894

  4. Probing framework-guest interactions in phenylene-bridged periodic mesoporous organosilica using spin-probe EPR.

    PubMed

    Lin, Feng; Meng, Xiangyan; Mertens, Myrjam; Cool, Pegie; Van Doorslaer, Sabine

    2014-11-01

    The pore walls of phenylene-bridged periodic mesoporous organosilicas (B-PMOs) can be crystal-like or amorphous depending on the synthesis conditions. Here, spin-probe electron paramagnetic resonance (EPR) is used to monitor the adsorption of nitroxide radicals on three types of B-PMO with varying pore size and wall characteristics. Nitroxide radicals with varying polarity are chosen as probes to mimic guest molecules with different properties. The study shows that the B-PMO materials with amorphous walls allow an overall better adsorption of the spin probes than the one with crystalline walls, independent of the nature of the spin probe. The effect of hydration of the guest-host system on the mobility of the spin probe molecule depends more on the nature of the spin probe than on the B-PMO material. Comparison of the spin-probe adsorption on B-PMOs and ethylene-bridged PMO materials shows the sensitivity of the mobility of the guest molecule to the nature of the organic group. PMID:25231242

  5. Cyclic M2(RL)2 coordination complexes of 5-(3-[N-tert-Butyl-N-aminoxyl]phenyl)pyrimidine with paramagnetic transition metal dications.

    PubMed

    Baskett, Martha; Lahti, Paul M; Paduan-Filho, Armando; Oliveira, Nei F

    2005-09-19

    5-(3-(N-tert-Butyl-N-aminoxyl)phenyl)pyrimidine (RL = 3NITPhPyrim) forms isostructural cyclic M2(RL)2 cyclic dimers with M(hfac)2 (M = Mn, Co, Cu; hfac = hexafluoroacetylacetonate). Mn2(hfac)4(RL)2 exhibits strong antiferromagnetic Mn-RL exchange, with weak ferromagnetic exchange (0.7 cm(-1)) between Mn-RL units that is consistent with a spin polarization exchange mechanism. The magnetic moment of Co2(hfac)4(RL)2 at higher temperatures is consistent with strongly antiferromagnetic exchange within the Co-NIT units and tends toward zero below 50 K at lower magnetic fields. Cu2(hfac)4(RL)2 shows more complex behavior, with no high-temperature plateau in chiT(T) up to 300 K but a monotonic decrease down to about 100 K. The Cu(II)-nitroxide bonds decrease by 0.2-0.3 A over the same temperature range, corresponding to a change of nitroxide coordination from axial to equatorial. This thermally reversible Jahn-Teller distortion leads to a thermally induced spin state conversion from a high-spin, paramagnetic state at higher temperature to a low-spin state at lower temperature. This spin state conversion is accompanied by a reversible solid-state thermochromic change between dull yellow-brown at room temperature and green at 77 K. PMID:16156631

  6. Background-free in-vivo Imaging of Vitamin C using Time-gateable Responsive Probe.

    PubMed

    Song, Bo; Ye, Zhiqing; Yang, Yajie; Ma, Hua; Zheng, Xianlin; Jin, Dayong; Yuan, Jingli

    2015-01-01

    Sensitive optical imaging of active biomolecules in the living organism requires both a molecular probe specifically responsive to the target and a high-contrast approach to remove the background interference from autofluorescence and light scatterings. Here, a responsive probe for ascorbic acid (vitamin C) has been developed by conjugating two nitroxide radicals with a long-lived luminescent europium complex. The nitroxide radical withholds the probe on its "off" state (barely luminescent), until the presence of vitamin C will switch on the probe by forming its hydroxylamine derivative. The probe showed a linear response to vitamin C concentration with a detection limit of 9.1 nM, two orders of magnitude lower than that achieved using electrochemical methods. Time-gated luminescence microscopy (TGLM) method has further enabled real-time, specific and background-free monitoring of cellular uptake or endogenous production of vitamin C, and mapping of vitamin C in living Daphnia magna. This work suggests a rational design of lanthanide complexes for background-free small animal imaging of biologically functional molecules. PMID:26373894

  7. Redox nanoparticle increases the chemotherapeutic efficiency of pioglitazone and suppresses its toxic side effects.

    PubMed

    Thangavel, Sindhu; Yoshitomi, Toru; Sakharkar, Meena Kishore; Nagasaki, Yukio

    2016-08-01

    Pioglitazone is a widely used anti-diabetic drug that induces cytotoxicity in cancer cells; however, its clinical use is questioned due to its associated liver toxicity caused by increased oxidative stress. We therefore employed nitroxide-radical containing nanoparticle, termed redox nanoparticle (RNP(N)) which is an effective scavenger of reactive oxygen species (ROS) as a drug carrier. RNP(N) encapsulation increased pioglitazone solubility, thus increasing cellular uptake of encapsulated pioglitazone which reduced the dose required to induce toxicity in prostate cancer cell lines. Investigation of in vitro molecular mechanism of pioglitazone revealed that both apoptosis and cell cycle arrest were involved in tumor cell death. In addition, intravenously administered pioglitazone-loaded RNP(N) produced significant tumor volume reduction in vivo due to enhanced permeation and retention effect. Most importantly, oxidative damage caused by pioglitazone in the liver was significantly suppressed by pioglitazone-loaded RNP(N) due to the presence of nitroxide radicals. It is interesting to note that oral administration of encapsulated pioglitazone, and co-administration of RNP(N) and pioglitazone, i.e., no encapsulation of pioglitazone in RNP(N) also significantly contributed to suppression of the liver injury. Therefore, use of RNP(N) either as an adjuvant or as a carrier for drugs with severe side effects is a promising chemotherapeutic strategy. PMID:27235996

  8. Selective detection of the rotational dynamics of the protein-associated lipid hydrocarbon chains in sarcoplasmic reticulum membranes.

    PubMed Central

    Squier, T C; Thomas, D D

    1989-01-01

    We have developed a saturation transfer EPR (ST-EPR) method to measure selectively the rotational dynamics of those lipids that are motionally restricted by integral membrane proteins and have applied this methodology to measure lipid-protein interactions in native sarcoplasmic reticulum (SR) membranes. This analysis involves the measurement of spectral saturation using a series of six stearic acid spin labels that are labeled with a nitroxide at different carbon atom positions. A large amount of spectral saturation is observed for spin labels in native SR membranes, but not for spin labels in dispersions of extracted SR lipids, implying that the motional properties of those lipids interacting with the Ca-ATPase, i.e., the boundary or annular lipid, can be directly measured without the need for spectral subtraction procedures. A comparison of the motional properties of the restricted lipid, measured by ST-EPR, with those measured by digital subtraction of conventional EPR spectra qualitatively agree, for in both cases the Ca-ATPase restricts the rotational mobility of a population of lipids, whose rotational mobility increases as the nitroxide is positioned toward the center of the bilayer. However, the ability of ST-EPR to directly measure the motionally restricted lipid in a model-independent means provides the greater precision necessary to measure small changes in the rotational dynamics of the lipid at the protein-lipid interface, providing a valuable tool in clarifying the relationship between the physical nature of the protein-lipid interface and membrane function. PMID:2554990

  9. ESR study of MMA polymerization by a peroxide/amine system: bone cement formation.

    PubMed

    Oldfield, F F; Yasuda, H K

    1999-03-15

    Electron spin resonance (ESR) spectroscopy was used to gain insight at the molecular level into the curing of bone cement. Methyl methacrylate was polymerized using a N,N-dimethyl-p-toluidine (TD)/benzoyl peroxide (BPO) redox system in the presence of polymethyl methacrylate (PMMA) powder. The conventional nine-line ESR spectrum for the growing polymer radical was detected at the gel stage of polymerization. While the optimum free radical concentration was observed near the equimolar amine/BPO concentration, excess amine led to a change in the chemical structure of the trapped radical and inhibited the polymerization process. At a high amine/BPO ratio the nine-line signal disappeared and a three-line nitroxide-based radical appeared. The appearance of this nitroxide signal seems to depend on the amine/BPO molar ratio and on the presence of PMMA. An excess amount of amine with respect to BPO was found to inhibit the polymerization process. When BPO was removed, the system still polymerized but with a longer gelation time and a lower radical concentration. These results demonstrate that trapped free radicals in the bulk polymerization of MMA convert to polymeric peroxides that act as initiators in bone cement. When the accelerator 4-dimethylamino phenethyl alcohol (TDOH) was used, a higher radical concentration was observed in the polymerizing system. TDOH shows potential for being a more effective accelerator than TD for bone cement curing. PMID:10397948

  10. Pulsed electron-electron double-resonance determination of spin-label distances and orientations on the tetrameric potassium ion channel KcsA.

    PubMed

    Endeward, Burkhard; Butterwick, Joel A; MacKinnon, Roderick; Prisner, Thomas F

    2009-10-28

    Pulsed electron-electron double-resonance (PELDOR) measurements are presented from the potassium ion channel KcsA both solubilized in detergent and reconstituted in lipids. Site-directed spin-labeling using (1-oxyl-2,2,5,5-tetramethyl-3-pyrrolin-3-yl)methyl methanethiosulfonate was performed with a R64C mutant of the protein. The orientations of the spin-labels in the tetramer were determined by PELDOR experiments performed at two magnetic field strengths (0.3 T/X-band and 1.2 T/Q-band) and variable probe frequency. Quantitative simulation of the PELDOR data supports a strongly restricted nitroxide, oriented at an angle of 65 degrees relative to the central channel axis. In general, poorer quality PELDOR data were obtained from membrane-reconstituted preparations compared to soluble proteins or detergent-solubilized samples. One reason for this is the reduced transverse spin relaxation time T(2) of nitroxides due to crowding of tetramers within the membrane that occurs even at low protein to lipid ratios. This reduced T(2) can be overcome by reconstituting mixtures of unlabeled and labeled proteins, yielding high-quality PELDOR data. Identical PELDOR oscillation frequencies and their dependencies on the probe frequency were observed in the detergent and membrane-reconstituted preparations, indicating that the position and orientation of the spin-labels are the same in both environments. PMID:19919160

  11. The Influence of Spin-Labeled Fluorene Compounds on the Assembly and Toxicity of the Aβ Peptide

    PubMed Central

    Petrlova, Jitka; Kálai, Tamás; Maezawa, Izumi; Altman, Robin; Harishchandra, Ghimire; Hong, Hyun-Seok; Bricarello, Daniel A.; Parikh, Atul N.; Lorigan, Gary A.; Jin, Lee-Way; Hideg, Kálmán; Voss, John C.

    2012-01-01

    Background The deposition and oligomerization of amyloid β (Aβ) peptide plays a key role in the pathogenesis of Alzheimer's disease (AD). Aβ peptide arises from cleavage of the membrane-associated domain of the amyloid precursor protein (APP) by β and γ secretases. Several lines of evidence point to the soluble Aβ oligomer (AβO) as the primary neurotoxic species in the etiology of AD. Recently, we have demonstrated that a class of fluorene molecules specifically disrupts the AβO species. Methodology/Principal Findings To achieve a better understanding of the mechanism of action of this disruptive ability, we extend the application of electron paramagnetic resonance (EPR) spectroscopy of site-directed spin labels in the Aβ peptide to investigate the binding and influence of fluorene compounds on AβO structure and dynamics. In addition, we have synthesized a spin-labeled fluorene (SLF) containing a pyrroline nitroxide group that provides both increased cell protection against AβO toxicity and a route to directly observe the binding of the fluorene to the AβO assembly. We also evaluate the ability of fluorenes to target multiple pathological processes involved in the neurodegenerative cascade, such as their ability to block AβO toxicity, scavenge free radicals and diminish the formation of intracellular AβO species. Conclusions Fluorene modified with pyrroline nitroxide may be especially useful in counteracting Aβ peptide toxicity, because they posses both antioxidant properties and the ability to disrupt AβO species. PMID:22558151

  12. Very high frequency electron paramagnetic resonance of 2,2,6,6-tetramethyl-1-piperidinyloxy in 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine liposomes: partitioning and molecular dynamics.

    PubMed Central

    Smirnov, A I; Smirnova, T I; Morse, P D

    1995-01-01

    Partitioning and molecular dynamics of 2,2,6,6,-tetramethylpiperedine-1-oxyl (TEMPO) nitroxide radicals in large unilamellar liposomes (LUV) composed from 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine were investigated by using very high frequency electron paramagnetic resonance (EPR) spectroscopy. Experiments carried out at a microwave frequency of 94.3 GHz completely resolved the TEMPO EPR spectrum in the aqueous and hydrocarbon phases. An accurate computer simulation method combined with Levenberg-Marquardt optimization was used to analyze the TEMPO EPR spectra in both phases. Spectral parameters extracted from the simulations gave the actual partitioning of the TEMPO probe between the LUV hydrocarbon and aqueous phases and allowed analysis of picosecond rotational dynamics of the probe in the LUV hydrocarbon phase. In very high frequency EPR experiments, phase transitions in the LUV-TEMPO system were observed as sharp changes in both partitioning and rotational correlation times of the TEMPO probe. The phase transition temperatures (40.5 +/- 0.2 and 32.7 +/- 0.5 degrees C) are in agreement with previously reported differential scanning microcalorimetry data. Spectral line widths were analyzed by using existing theoretical expressions for motionally narrowed nitroxide spectra. It was found that the motion of the small, nearly spherical, TEMPO probe can be well described by anisotropic Brownian diffusion in isotropic media and is not restricted by the much larger hydrocarbon chains existing in ripple structure (P beta') or fluid bilayer structure (L alpha) phases. PMID:7647239

  13. Design and synthesis of digitally encoded polymers that can be decoded and erased

    PubMed Central

    Roy, Raj Kumar; Meszynska, Anna; Laure, Chloé; Charles, Laurence; Verchin, Claire; Lutz, Jean-François

    2015-01-01

    Biopolymers such as DNA store information in their chains using controlled sequences of monomers. Here we describe a non-natural information-containing macromolecule that can store and retrieve digital information. Monodisperse sequence-encoded poly(alkoxyamine amide)s were synthesized using an iterative strategy employing two chemoselective steps: the reaction of a primary amine with an acid anhydride and the radical coupling of a carbon-centred radical with a nitroxide. A binary code was implemented in the polymer chains using three monomers: one nitroxide spacer and two interchangeable anhydrides defined as 0-bit and 1-bit. This methodology allows encryption of any desired sequence in the chains. Moreover, the formed sequences are easy to decode using tandem mass spectrometry. Indeed, these polymers follow predictable fragmentation pathways that can be easily deciphered. Moreover, poly(alkoxyamine amide)s are thermolabile. Thus, the digital information encrypted in the chains can be erased by heating the polymers in the solid state or in solution. PMID:26006165

  14. Solid-state EPR strategies for the structural characterization of paramagnetic NO adducts of frustrated Lewis pairs (FLPs)

    NASA Astrophysics Data System (ADS)

    de Oliveira, Marcos; Wiegand, Thomas; Elmer, Lisa-Maria; Sajid, Muhammad; Kehr, Gerald; Erker, Gerhard; Magon, Claudio José; Eckert, Hellmut

    2015-03-01

    Anisotropic interactions present in three new nitroxide radicals prepared by N,N addition of NO to various borane-phosphane frustrated Lewis pairs (FLPs) have been characterized by continuous-wave (cw) and pulsed X-band EPR spectroscopies in solid FLP-hydroxylamine matrices at 100 K. Anisotropic g-tensor values and 11B, 14N, and 31P hyperfine coupling tensor components have been extracted from continuous-wave lineshape analyses, electron spin echo envelope modulation (ESEEM), and hyperfine sublevel correlation spectroscopy (HYSCORE) experiments with the help of computer simulation techniques. Suitable fitting constraints are developed on the basis of density functional theory (DFT) calculations. These calculations reveal that different from the situation in standard nitroxide radicals (TEMPO), the g-tensors are non-coincident with any of the nuclear hyperfine interaction tensors. The determination of these interaction parameters turns out to be successful, as the cw- and pulse EPR experiments are highly complementary in informational content. While the continuous-wave lineshape is largely influenced by the anisotropic hyperfine coupling to 14N and 31P, the ESEEM and HYSCORE spectra contain important information about the 11B hyperfine coupling and nuclear electric quadrupolar interaction. The set of cw- and pulsed EPR experiments, with fitting constraints developed by DFT calculations, defines an efficient strategy for the structural analysis of paramagnetic FLP adducts.

  15. Design and synthesis of digitally encoded polymers that can be decoded and erased

    NASA Astrophysics Data System (ADS)

    Roy, Raj Kumar; Meszynska, Anna; Laure, Chloé; Charles, Laurence; Verchin, Claire; Lutz, Jean-François

    2015-05-01

    Biopolymers such as DNA store information in their chains using controlled sequences of monomers. Here we describe a non-natural information-containing macromolecule that can store and retrieve digital information. Monodisperse sequence-encoded poly(alkoxyamine amide)s were synthesized using an iterative strategy employing two chemoselective steps: the reaction of a primary amine with an acid anhydride and the radical coupling of a carbon-centred radical with a nitroxide. A binary code was implemented in the polymer chains using three monomers: one nitroxide spacer and two interchangeable anhydrides defined as 0-bit and 1-bit. This methodology allows encryption of any desired sequence in the chains. Moreover, the formed sequences are easy to decode using tandem mass spectrometry. Indeed, these polymers follow predictable fragmentation pathways that can be easily deciphered. Moreover, poly(alkoxyamine amide)s are thermolabile. Thus, the digital information encrypted in the chains can be erased by heating the polymers in the solid state or in solution.

  16. Recovery of Cognitive Dysfunction via Orally Administered Redox-Polymer Nanotherapeutics in SAMP8 Mice

    PubMed Central

    Vong, Long Binh; Imaizumi, Natsuka; Ozaki, Yuki; Nagasaki, Yukio

    2015-01-01

    Excessively generated reactive oxygen species are associated with age-related neurodegenerative diseases. We investigated whether scavenging of reactive oxygen species in the brain by orally administered redox nanoparticles, prepared by self-assembly of redox polymers possessing antioxidant nitroxide radicals, facilitates the recovery of cognition in 17-week-old senescence-accelerated prone (SAMP8) mice. The redox polymer was delivered to the brain after oral administration of redox nanoparticles via a disintegration of the nanoparticles in the stomach and absorption of the redox polymer at small intestine to the blood. After treatment for one month, levels of oxidative stress in the brain of SAMP8 mice were remarkably reduced by treatment with redox nanoparticles, compared to that observed with low-molecular-weight nitroxide radicals, resulting in the amelioration of cognitive impairment with increased numbers of surviving neurons. Additionally, treatment by redox nanoparticles did not show any detectable toxicity. These findings indicate the potential of redox polymer nanotherapeutics for treatment of the neurodegenerative diseases. PMID:25955022

  17. Design of high-performance anti-adhesion agent using injectable gel with an anti-oxidative stress function.

    PubMed

    Nakagawa, Hiroyuki; Matsumoto, Yoko; Matsumoto, Yu; Miwa, Yoshihiro; Nagasaki, Yukio

    2015-11-01

    Postsurgical tissue adhesion formation caused by inflammation and oxidative stress is one of the serious issues because it induces severe clinical disorders. In this study, we designed redox injectable gel (RIG) which covalently possesses nitroxide radicals as a reactive oxygen species (ROS) scavenger for high performance anti-adhesion agent. The redox flower micelles exhibiting gelation under physiological conditions were prepared by a polyion complex (PIC) between polyamine-PEG-polyamine triblock copolymer possessing nitroxide radicals as a side chain of polyamine segments and poly(acrylic acid). RIG showed prolonged local retention in the abdominal cavity of the mice, which was monitored by in vivo imaging system (IVIS). Compared with a commercial anti-adhesion agent (Seprafilm(®), Genzyme, Cambridge, MA), RIG dramatically inhibited the formation of tissue adhesions via a combination of physical separation and biological elimination of generated ROS in talc-induced adhesion model mice. Treatment with RIG suppressed inflammatory cytokines and neutrophil invasion, suppressing the increase in peritoneal membrane thickness. It is also emphasized that RIG suppressed the increase of white blood cells level, indicating that the present RIG treatment effectively prevents diffusion of local inflammation to entire body. These findings indicate that RIG has a great potential as a high performance anti-adhesion agent. PMID:26288251

  18. Strategies for discovery of small molecule radiation protectors and radiation mitigators.

    PubMed

    Greenberger, Joel S; Clump, David; Kagan, Valerian; Bayir, Hülya; Lazo, John S; Wipf, Peter; Li, Song; Gao, Xiang; Epperly, Michael W

    2011-01-01

    Mitochondrial targeted radiation damage protectors (delivered prior to irradiation) and mitigators (delivered after irradiation, but before the appearance of symptoms associated with radiation syndrome) have been a recent focus in drug discovery for (1) normal tissue radiation protection during fractionated radiotherapy, and (2) radiation terrorism counter measures. Several categories of such molecules have been discovered: nitroxide-linked hybrid molecules, including GS-nitroxide, GS-nitric oxide synthase inhibitors, p53/mdm2/mdm4 inhibitors, and pharmaceutical agents including inhibitors of the phosphoinositide-3-kinase pathway and the anti-seizure medicine, carbamazepine. Evaluation of potential new radiation dose modifying molecules to protect normal tissue includes: clonogenic radiation survival curves, assays for apoptosis and DNA repair, and irradiation-induced depletion of antioxidant stores. Studies of organ specific radioprotection and in total body irradiation-induced hematopoietic syndrome in the mouse model for protection/mitigation facilitate rational means by which to move candidate small molecule drugs along the drug discovery pipeline into clinical development. PMID:22655254

  19. Pulsed Electron-Electron Double Resonance Determination of Spin Label Distances and Orientations on the Tetrameric Potassium Ion Channel KcsA

    PubMed Central

    Endeward, Burkhard; Butterwick, Joel A.; MacKinnon, Roderick; Prisner, Thomas F.

    2009-01-01

    Pulsed Electron-Electron Double Resonance (PELDOR) measurements are presented from the potassium ion channel KcsA both solubilized in detergent and reconstituted in lipids. Site-directed spin labeling using MTSL was performed with a R64C mutant of the protein. The orientations of the spin labels in the tetramer were determined by PELDOR experiments performed at two magnetic field strengths (0.3 T / X-band and 1.2 T / Q-band) and variable probe frequency. Quantitative simulation of the PELDOR data supports a strongly restricted nitroxide, oriented at an angle of 65 degrees relative to the central channel axis. In general, poorer quality PELDOR data was obtained from membrane-reconstituted preparations compared to soluble proteins or detergent-solubilized samples. One reason for this is the reduced transverse spin relaxation time T2 of nitroxides due to crowding of tetramers within the membrane that occurs even at low protein to lipid ratios. This reduced T2 can be overcome by reconstituting mixtures of unlabeled and labeled proteins, yielding high-quality PELDOR data. Identical PELDOR oscillation frequencies and their dependencies on the probe frequency were observed in the detergent and membrane-reconstituted preparations indicating that the position and orientation of the spin labels are the same in both environments. PMID:19919160

  20. Toward increased concentration sensitivity for continuous wave EPR investigations of spin-labeled biological macromolecules at high fields

    NASA Astrophysics Data System (ADS)

    Song, Likai; Liu, Zhanglong; Kaur, Pavanjeet; Esquiaqui, Jackie M.; Hunter, Robert I.; Hill, Stephen; Smith, Graham M.; Fanucci, Gail E.

    2016-04-01

    High-field, high-frequency electron paramagnetic resonance (EPR) spectroscopy at W-(∼94 GHz) and D-band (∼140 GHz) is important for investigating the conformational dynamics of flexible biological macromolecules because this frequency range has increased spectral sensitivity to nitroxide motion over the 100 ps to 2 ns regime. However, low concentration sensitivity remains a roadblock for studying aqueous samples at high magnetic fields. Here, we examine the sensitivity of a non-resonant thin-layer cylindrical sample holder, coupled to a quasi-optical induction-mode W-band EPR spectrometer (HiPER), for continuous wave (CW) EPR analyses of: (i) the aqueous nitroxide standard, TEMPO; (ii) the unstructured to α-helical transition of a model IDP protein; and (iii) the base-stacking transition in a kink-turn motif of a large 232 nt RNA. For sample volumes of ∼50 μL, concentration sensitivities of 2-20 μM were achieved, representing a ∼10-fold enhancement compared to a cylindrical TE011 resonator on a commercial Bruker W-band spectrometer. These results therefore highlight the sensitivity of the thin-layer sample holders employed in HiPER for spin-labeling studies of biological macromolecules at high fields, where applications can extend to other systems that are facilitated by the modest sample volumes and ease of sample loading and geometry.

  1. Design and synthesis of digitally encoded polymers that can be decoded and erased.

    PubMed

    Roy, Raj Kumar; Meszynska, Anna; Laure, Chloé; Charles, Laurence; Verchin, Claire; Lutz, Jean-François

    2015-01-01

    Biopolymers such as DNA store information in their chains using controlled sequences of monomers. Here we describe a non-natural information-containing macromolecule that can store and retrieve digital information. Monodisperse sequence-encoded poly(alkoxyamine amide)s were synthesized using an iterative strategy employing two chemoselective steps: the reaction of a primary amine with an acid anhydride and the radical coupling of a carbon-centred radical with a nitroxide. A binary code was implemented in the polymer chains using three monomers: one nitroxide spacer and two interchangeable anhydrides defined as 0-bit and 1-bit. This methodology allows encryption of any desired sequence in the chains. Moreover, the formed sequences are easy to decode using tandem mass spectrometry. Indeed, these polymers follow predictable fragmentation pathways that can be easily deciphered. Moreover, poly(alkoxyamine amide)s are thermolabile. Thus, the digital information encrypted in the chains can be erased by heating the polymers in the solid state or in solution. PMID:26006165

  2. Horseradish peroxidase catalyzed nitric oxide formation from hydroxyurea.

    PubMed

    Huang, Jinming; Sommers, Erin M; Kim-Shapiro, Daniel B; King, S Bruce

    2002-04-01

    Hydroxyurea represents an approved treatment for sickle cell anemia and a number of cancers. Chemiluminescence and electron paramagnetic resonance spectroscopic studies show horseradish peroxidase catalyzes the formation of nitric oxide from hydroxyurea in the presence of hydrogen peroxide. Gas chromatographic headspace analysis and infrared spectroscopy also reveal the production of nitrous oxide in this reaction, which provides evidence for nitroxyl, the one-electron reduced form of nitric oxide. These reactions also generate carbon dioxide, ammonia, nitrite, and nitrate. None of these products form within 1 h in the absence of hydrogen peroxide or horseradish peroxidase. Electron paramagnetic resonance spectroscopy and trapping studies show the intermediacy of a nitroxide radical and a C-nitroso species during this reaction. Absorption spectroscopy indicates that both compounds I and II of horseradish peroxidase act as one-electron oxidants of hydroxyurea. Nitroxyl, generated from Angeli's salt, reacts with ferric horseradish peroxidase to produce a ferrous horseradish peroxidase-nitric oxide complex. Electron paramagnetic resonance experiments with a nitric oxide specific trap reveal that horseradish peroxidase is capable of oxidizing nitroxyl to nitric oxide. A mechanistic model that includes the observed nitroxide radical and C-nitroso compound intermediates has been forwarded to explain the observed product distribution. These studies suggest that direct nitric oxide producing reactions of hydroxyurea and peroxidases may contribute to the overall pharmacological properties of this drug. PMID:11916434

  3. Tailoring of Polarizing Agents in the bTurea Series for Cross-Effect Dynamic Nuclear Polarization in Aqueous Media.

    PubMed

    Sauvée, Claire; Casano, Gilles; Abel, Sébastien; Rockenbauer, Antal; Akhmetzyanov, Dimitry; Karoui, Hakim; Siri, Didier; Aussenac, Fabien; Maas, Werner; Weber, Ralph T; Prisner, Thomas; Rosay, Mélanie; Tordo, Paul; Ouari, Olivier

    2016-04-11

    A series of 18 nitroxide biradicals derived from bTurea has been prepared, and their enhancement factors ɛ ((1)H) in cross-effect dynamic nuclear polarization (CE DNP) NMR experiments at 9.4 and 14.1 T and 100 K in a DNP-optimized glycerol/water matrix ("DNP juice") have been studied. We observe that ɛ ((1)H) is strongly correlated with the substituents on the polarizing agents, and its trend is discussed in terms of different molecular parameters: solubility, average e-e distance, relative orientation of the nitroxide moieties, and electron spin relaxation times. We show that too short an e-e distance or too long a T1e can dramatically limit ɛ ((1)H). Our study also shows that the molecular structure of AMUPol is not optimal and its ɛ ((1)H) could be further improved through stronger interaction with the glassy matrix and a better orientation of the TEMPO moieties. A new AMUPol derivative introduced here provides a better ɛ ((1)H) than AMUPol itself (by a factor of ca. 1.2). PMID:26992052

  4. Strategies for Discovery of Small Molecule Radiation Protectors and Radiation Mitigators

    PubMed Central

    Greenberger, Joel S.; Clump, David; Kagan, Valerian; Bayir, Hülya; Lazo, John S.; Wipf, Peter; Li, Song; Gao, Xiang; Epperly, Michael W.

    2011-01-01

    Mitochondrial targeted radiation damage protectors (delivered prior to irradiation) and mitigators (delivered after irradiation, but before the appearance of symptoms associated with radiation syndrome) have been a recent focus in drug discovery for (1) normal tissue radiation protection during fractionated radiotherapy, and (2) radiation terrorism counter measures. Several categories of such molecules have been discovered: nitroxide-linked hybrid molecules, including GS-nitroxide, GS-nitric oxide synthase inhibitors, p53/mdm2/mdm4 inhibitors, and pharmaceutical agents including inhibitors of the phosphoinositide-3-kinase pathway and the anti-seizure medicine, carbamazepine. Evaluation of potential new radiation dose modifying molecules to protect normal tissue includes: clonogenic radiation survival curves, assays for apoptosis and DNA repair, and irradiation-induced depletion of antioxidant stores. Studies of organ specific radioprotection and in total body irradiation-induced hematopoietic syndrome in the mouse model for protection/mitigation facilitate rational means by which to move candidate small molecule drugs along the drug discovery pipeline into clinical development. PMID:22655254

  5. Metabolism of the stable nitroxyl radical 4-oxo-2,2,6, 6-tetramethylpiperidine-N-oxyl (TEMPONE).

    PubMed

    Kroll, C; Borchert, H H

    1999-04-01

    The formation of new metabolites of the stable nitroxyl radical 4-oxo-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPONE) inside the isolated perfused rat liver was examined. The paramagnetic 4-hydroxy derivative (TEMPOL) and the diamagnetic 1,4-dihydroxy derivative were found to be the major metabolites besides the well-known corresponding hydroxylamine of TEMPONE. No reoxidation of the hydroxyl group in the 4-position was observed. The conversion of nitroxides to the sterically hindered secondary amines remains speculative. A redox cycle of nitroxide and hydroxylamine including the secondary amines is discussed. For the first time the biotransformation of the stable nitroxyl radical TEMPONE detected by means of GC and GC-MS has been examined and new metabolites have been described, i.e. the newly discussed metabolites have to be considered for the interpretation of electron paramagnetic resonance (EPR), magnetic resonance imaging (MRI) and dynamic nuclear polarization (DNP) measurements on using the spin probe TEMPONE. PMID:10072473

  6. The effect of oxygen at physiological levels on the detection of free radical intermediates by electron paramagnetic resonance.

    PubMed

    Krishna, M C; Samuni, A

    1993-01-01

    It is well known that oxygen enhances the relaxation of free radical EPR probes through spin lattice and Heisenberg spin-spin interactions with consequent effect on the line height and width. The two relaxation processes have opposing effects on the signal heights and depend on the concentration of oxygen, the incident microwave power, and the presence of other paramagnetic species. During EPR studies of chemical, biochemical, and cellular processes involving free radicals, molecular oxygen has significant magnetic influence on the EPR signal intensity of the free radical species under investigation in addition to affecting the rates of production of the primary species and the stability of the spin adduct nitroxides. These effects are often overlooked and can cause artifacts and lead to erroneous interpretation. In the present study, the effects of oxygen and ferricyanide on the EPR signal height of stable and persistent spin adduct nitroxides at commonly employed microwave powers were examined. The results show that under commonly adopted EPR spectrometer instrumental conditions, artifactual changes in the EPR signal of spin adducts occur and the best way to avoid them is by keeping the oxygen level constant using a gas-permeable cell. PMID:8396553

  7. A comparative ESR study of some paramagnetic materials as probes for the noninvasive measurement of dissolved oxygen in biological systems.

    PubMed

    Inoue, M; Utsumi, H; Kirino, Y

    1994-11-01

    The ESR properties of three types of paramagnetic material, active charcoal, fusinite and a stable nitroxide radical 4-oxo-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPONE), were examined in order to evaluate their suitability as probes to measure dissolved intra- and extra-cellular oxygen. Although, with changes in oxygen concentration, a greater change in the linewidth of ESR signals was observed with fusinite or active charcoal, it took a long time (15 min for active charcoal and more than 6 h for fusinite) for equilibrium to be achieved. On the other hand, equilibrium was reached very rapidly in the case of the TEMPONE spectra although the sensitivity to changes in oxygen concentration was only moderate. Furthermore, since lipid bilayers are permeable to TEMPONE, this compound can be used to measure intracellular oxygen concentration when employed in combination with membrane-impermeable spin-broadening reagents which act on ESR signals arising from extracellular probes. A perdeuterated derivative of TEMPONE is useful in that it gives a greater signal-to-noise ratio and greater sensitivity to changes in oxygen concentration. In conclusion, active charcoal is suitable as a probe for extracellular oxygen in a system where changes are slow, while nitroxide is a versatile probe for measuring rapidly changing intra- and extra-cellular oxygen concentrations. PMID:7859334

  8. Charge separation in photoredox reactions. Final report

    SciTech Connect

    Kevan, L.

    1993-07-15

    The structural aspects controlling charge separation in molecular photoionization reactions in organized molecular assemblies involving micelles, reverse micelles and vesicles are being studied by optical and electron magnetic resonance techniques including the time domain technique of deuterium electron spin echo modulation (ESEM) and matrix proton electron nuclear double resonance (ENDOR) to measure weak electron-nuclear dipolar interactions. ESEM and matrix ENDOR are particularly well adapted to the study of disordered systems as exemplified by micelles and vesicles. The photoionization yields of alkylphenothiazines in micelles and vesicles have been shown to depend on the alkyl chain length and to correlate with relative distances from the surfactant assembly interface measured by deuterium ESEM and matrix proton ENDOR. The photoionization of alkylmethylviologens versus alkyl chain length has also been studied in vesicles, micelles and reverse micelles. Nitroxide spin probes have been used to study the degree of water penetration into mixed ionic/nonionic poly(ethylene oxide) and cationic/anionic micelles by using ESEM methods and selectively deuterated surfactants. The effect of urea interaction at micellar interfaces on the interface hydration has also been evaluated by studying nitroxide probes with ESEM.

  9. Pyridine-2,6-diyl dinitroxides as room-temperature triplet ligands

    NASA Astrophysics Data System (ADS)

    Kawakami, Hinako; Tonegawa, Asato; Ishida, Takayuki

    2016-02-01

    We have proposed tert-butyl 2-pyridyl nitroxide radicals as a promising paramagnetic chelating ligand, where the direct radical-metal bond leads to strong magnetic interaction. We successfully synthesized and isolated PyBN derivatives (pyridine-2,6-diyl bis(tert-butyl nitroxides)). The molecular and crystal structures of the target biradicals, MesPyBN, AntPyBN and tBuOPyBN were determined from the X-ray crystal structure analysis, which possess mesityl, 9-anthryl and tert-butoxy groups at the 5-position of the pyridine ring, respectively. The ground triplet state was characterized by means of SQUID susceptometry for each compound. On heating, the χmT values of all the PyBN derivatives increased and reached a plateau at ca. 1.0 cm3 K mol-1 at 300 K. It implies that biradicals behaved as triplet molecules even at room temperature, or 2J/kB >> 300 K. From the decay monitored in solution electron-spin resonance spectroscopy, MesPyBN was the most persistent, while tBuOPyBN was the most reactive, of the three.

  10. Resolving Conformational and Rotameric Exchange in Spin-Labeled Proteins Using Saturation Recovery EPR

    PubMed Central

    Bridges, Michael D.; Hideg, Kálmán

    2010-01-01

    The function of many proteins involves equilibria between conformational substates, and to elucidate mechanisms of function it is essential to have experimental tools to detect the presence of conformational substates and to determine the time scale of exchange between them. Site-directed spin labeling (SDSL) has the potential to serve this purpose. In proteins containing a nitroxide side chain (R1), multicomponent electron paramagnetic resonance (EPR) spectra can arise either from equilibria involving different conformational substates or rotamers of R1. To employ SDSL to uniquely identify conformational equilibria, it is thus essential to distinguish between these origins of multicomponent spectra. Here we show that this is possible based on the time scale for exchange of the nitroxide between distinct environments that give rise to multicomponent EPR spectra; rotamer exchange for R1 lies in the ≈0.1–1 μs range, while conformational exchange is at least an order of magnitude slower. The time scales of exchange events are determined by saturation recovery EPR, and in favorable cases, the exchange rate constants between substates with lifetimes of approximately 1–70 μs can be estimated by the approach. PMID:20157634

  11. TEMPO Monolayers on Si(100) Electrodes: Electrostatic Effects by the Electrolyte and Semiconductor Space-Charge on the Electroactivity of a Persistent Radical.

    PubMed

    Zhang, Long; Vogel, Yan Boris; Noble, Benjamin B; Gonçales, Vinicius R; Darwish, Nadim; Brun, Anton Le; Gooding, J Justin; Wallace, Gordon G; Coote, Michelle L; Ciampi, Simone

    2016-08-01

    This work demonstrates the effect of electrostatic interactions on the electroactivity of a persistent organic free radical. This was achieved by chemisorption of molecules of 4-azido-2,2,6,6-tetramethyl-1-piperdinyloxy (4-azido-TEMPO) onto monolayer-modified Si(100) electrodes using a two-step chemical procedure to preserve the open-shell state and hence the electroactivity of the nitroxide radical. Kinetic and thermodynamic parameters for the surface electrochemical reaction are investigated experimentally and analyzed with the aid of electrochemical digital simulations and quantum-chemical calculations of a theoretical model of the tethered TEMPO system. Interactions between the electrolyte anions and the TEMPO grafted on highly doped, i.e., metallic, electrodes can be tuned to predictably manipulate the oxidizing power of surface nitroxide/oxoammonium redox couple, hence showing the practical importance of the electrostatics on the electrolyte side of the radical monolayer. Conversely, for monolayers prepared on the poorly doped electrodes, the electrostatic interactions between the tethered TEMPO units and the semiconductor-side, i.e., space-charge, become dominant and result in drastic kinetic changes to the electroactivity of the radical monolayer as well as electrochemical nonidealities that can be explained as an increase in the self-interaction "a" parameter that leads to the Frumkin isotherm. PMID:27373457

  12. Room-Temperature Distance Measurements of Immobilized Spin-Labeled Protein by DEER/PELDOR

    PubMed Central

    Meyer, Virginia; Swanson, Michael A.; Clouston, Laura J.; Boratyński, Przemysław J.; Stein, Richard A.; Mchaourab, Hassane S.; Rajca, Andrzej; Eaton, Sandra S.; Eaton, Gareth R.

    2015-01-01

    Nitroxide spin labels are used for double electron-electron resonance (DEER) measurements of distances between sites in biomolecules. Rotation of gem-dimethyls in commonly used nitroxides causes spin echo dephasing times (Tm) to be too short to perform DEER measurements at temperatures between ∼80 and 295 K, even in immobilized samples. A spirocyclohexyl spin label has been prepared that has longer Tm between 80 and 295 K in immobilized samples than conventional labels. Two of the spirocyclohexyl labels were attached to sites on T4 lysozyme introduced by site-directed spin labeling. Interspin distances up to ∼4 nm were measured by DEER at temperatures up to 160 K in water/glycerol glasses. In a glassy trehalose matrix the Tm for the doubly labeled T4 lysozyme was long enough to measure an interspin distance of 3.2 nm at 295 K, which could not be measured for the same protein labeled with the conventional 1-oxyl-2,2,5,5-tetramethyl-3-pyrroline-3-(methyl)methanethio-sulfonate label. PMID:25762332

  13. Orthogonal Synthesis of "Easy-to-Read" Information-Containing Polymers Using Phosphoramidite and Radical Coupling Steps.

    PubMed

    Cavallo, Gianni; Al Ouahabi, Abdelaziz; Oswald, Laurence; Charles, Laurence; Lutz, Jean-François

    2016-08-01

    A new orthogonal solid-phase iterative strategy is proposed for the synthesis of sequence-coded polymers. This approach relies on the use of two successive chemoselective steps: (i) phosphoramidite coupling, and (ii) radical-radical coupling. These repeated steps can be performed using two different types of building blocks, i.e. a phosphoramidite monomer that also contains an alkyl bromide and a hydroxy-functionalized nitroxide. The phosphoramidite and the hydroxy group are reacted in step (i), thus leading to a phosphite that is oxidized in situ into a phosphate bond. The alkyl bromide is activated by copper bromide in step (ii) to afford a carbon-centered radical that is spin-trapped in situ by the nitroxide. The iterative repetition of these steps allow synthesis of uniform polymers, as evidenced by high-resolution electrospray mass spectrometry. Moreover, binary information could be easily implemented in the polymers using different types of phosphoramidite monomers in step (i). Interestingly, it was found that the formed information-containing polymers are very easy to sequence by tandem mass spectrometry due to the presence of easily cleavable alkoxyamine bonds formed in step (ii). PMID:27454229

  14. Dynamics, Surface Electrostatics and Phase Properties of Nanoscale Curved Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Koolivand, Amir

    Surface electrostatic potential of a lipid bilayer governs many vital functions of living cells. Several classes of proteins are known of exhibiting strong binding preferences to curved lipid bilayer surfaces. In this project we employed electron paramagnetic resonance (EPR) of a recently introduced phospholipid (IMTSL-PTE) bearing a pH-sensitive nitroxide covalently attached to the lipid head group to measure the surface electrostatics of the lipid membrane and nanopore-confined lipid bilayers as a function of the bilayer curvature. The pKa of the ionizable group of this lipid-based spin probe is reporting on the bilayer surface electrostatics potential by changes in the EPR spectra. Specifically, both rotational dynamics and magnetic parameters of the nitroxide are affected by the probe protonation. Effect of curvature on the surface electrostatic potential and dynamics of lipid bilayer was studied for POPG and DMPG unilamellar vesicles (ULVs). It was found that the magnitude of the negative surface electrostatic potential increased upon decrease in the vesicle diameter for the bilayers in the fluid phase; however, no significant changes were observed for DMPG ULVs in a gel phase. We speculate that biologically relevant fluid bilayer phase allows for a larger variability in the lipid packing density in the lipid polar head group region than a more ordered gel phase and it is likely that the lipid flip-flop is responsible for pH equilibration of IMTSL-PTE. The kinetic EPR study of nitroxide reduction showed that the rate of flip-flop is in the order of 10-5 s-1. The flip-flop rate constant increases when vesicle size deceases. Oxygen permeability measured by X-ban EPR decreases in higher curved vesicles---an observation that is consistent with a tighter packing in smaller vesicles. Partitioning of a small nitroxide molecule TEMPO into ULVs was measured by X-band (9 GHz) and W-band (95 GHz) EPR spectroscopy. The partitioning coefficient of this probe in the lipid

  15. Targeting mitochondrial reactive oxygen species to modulate hypoxia-induced pulmonary hypertension.

    PubMed

    Adesina, Sherry E; Kang, Bum-Yong; Bijli, Kaiser M; Ma, Jing; Cheng, Juan; Murphy, Tamara C; Michael Hart, C; Sutliff, Roy L

    2015-10-01

    Pulmonary hypertension (PH) is characterized by increased pulmonary vascular remodeling, resistance, and pressures. Reactive oxygen species (ROS) contribute to PH-associated vascular dysfunction. NADPH oxidases (Nox) and mitochondria are major sources of superoxide (O(2)(•-)) and hydrogen peroxide (H(2)O(2)) in pulmonary vascular cells. Hypoxia, a common stimulus of PH, increases Nox expression and mitochondrial ROS (mtROS) production. The interactions between these two sources of ROS generation continue to be defined. We hypothesized that mitochondria-derived O(2)(•-) (mtO(2)(•-)) and H(2)O(2) (mtH(2)O(2)) increase Nox expression to promote PH pathogenesis and that mitochondria-targeted antioxidants can reduce mtROS, Nox expression, and hypoxia-induced PH. Exposure of human pulmonary artery endothelial cells to hypoxia for 72 h increased mtO(2)(•-) and mtH(2)O(2). To assess the contribution of mtO(2)(•-) and mtH(2)O(2) to hypoxia-induced PH, mice that overexpress superoxide dismutase 2 (Tg(hSOD2)) or mitochondria-targeted catalase (MCAT) were exposed to normoxia (21% O(2)) or hypoxia (10% O(2)) for three weeks. Compared with hypoxic control mice, MCAT mice developed smaller hypoxia-induced increases in RVSP, α-SMA staining, extracellular H(2)O(2) (Amplex Red), Nox2 and Nox4 (qRT-PCR and Western blot), or cyclinD1 and PCNA (Western blot). In contrast, Tg(hSOD2) mice experienced exacerbated responses to hypoxia. These studies demonstrate that hypoxia increases mtO(2)(•-) and mtH(2)O(2). Targeting mtH(2)O(2) attenuates PH pathogenesis, whereas targeting mtO(2)(•-) exacerbates PH. These differences in PH pathogenesis were mirrored by RVSP, vessel muscularization, levels of Nox2 and Nox4, proliferation, and H(2)O(2) release. These studies suggest that targeted reductions in mtH(2)O(2) generation may be particularly effective in preventing hypoxia-induced PH. PMID:26073127

  16. HIV antiretroviral drug combination induces endothelial mitochondrial dysfunction and reactive oxygen species production, but not apoptosis

    SciTech Connect

    Jiang Bo; Hebert, Valeria Y.; Li, Yuchi; Mathis, J. Michael; Alexander, J. Steven; Dugas, Tammy R.

    2007-10-01

    Numerous reports now indicate that HIV patients administered long-term antiretroviral therapy (ART) are at a greater risk for developing cardiovascular diseases. Endothelial dysfunction is an initiating event in atherogenesis and may contribute to HIV-associated atherosclerosis. We previously reported that ART induces direct endothelial dysfunction in rodents. In vitro treatment of human umbilical vein endothelial cells (HUVEC) with ART indicated endothelial mitochondrial dysfunction and a significant increase in the production of reactive oxygen species (ROS). In this study, we determined whether ART-induced endothelial dysfunction is mediated via mitochondria-derived ROS and whether this mitochondrial injury culminates in endothelial cell apoptosis. Two major components of ART combination therapy, a nucleoside reverse transcriptase inhibitor and a protease inhibitor, were tested, using AZT and indinavir as representatives for each. Microscopy utilizing fluorescent indicators of ROS and mitochondria demonstrated the mitochondrial localization of ART-induced ROS. MnTBAP, a cell-permeable metalloporphyrin antioxidant, abolished ART-induced ROS production. As a final step in confirming the mitochondrial origin of the ART-induced ROS, HUVEC were transduced with a cytosolic- compared to a mitochondria-targeted catalase. Transduction with the mitochondria-targeted catalase was more effective than cytoplasmic catalase in inhibiting the ROS and 8-isoprostane (8-iso-PGF{sub 2{alpha}}) produced after