Science.gov

Sample records for mitochondria-targeted triphenylphosphonium-conjugated nitroxide

  1. Mitochondria targeting of non-peroxidizable triphenylphosphonium conjugated oleic acid protects mouse embryonic cells against apoptosis: Role of cardiolipin remodeling

    PubMed Central

    Tyurina, Yulia Y.; Tungekar, Muhammad A.; Jung, Mi-Yeon; Tyurin, Vladimir A.; Greenberger, Joel S.; Stoyanovsky, Detcho A.; Kagan, Valerian E.

    2012-01-01

    Peroxidation of cardiolipin in mitochondria is essential for the execution of apoptosis. We suggested that integration of oleic acid into cardiolipin generates non-oxidizable cardiolipin species hence protects cells against apoptosis. We synthesized mitochondria-targeted triphenylphosphonium oleic acid ester. Using lipidomics analysis we found that pretreatment of mouse embryonic cells with triphenylphosphonium oleic acid ester resulted in decreased contents of polyunsaturated cardiolipins and elevation of its species containing oleic acid residues. This caused suppression of apoptosis induced by actinomycin D. Triacsin C, an inhibitor of acyl-CoA synthase, blocked integration of oleic acid into cardiolipin and restored cell sensitivity to apoptosis. PMID:22210054

  2. The mitochondria-targeted nitroxide JP4-039 augments potentially lethal irradiation damage repair.

    PubMed

    Rajagopalan, Malolan S; Gupta, Kanika; Epperly, Michael W; Franicola, Darcy; Zhang, Xichen; Wang, Hong; Zhao, Hong; Tyurin, Vladimir A; Pierce, Joshua G; Kagan, Valerian E; Wipf, Peter; Kanai, Anthony J; Greenberger, Joel S

    2009-01-01

    It was unknown if a mitochondria-targeted nitroxide (JP4-039) could augment potentially lethal damage repair (PLDR) of cells in quiescence. We evaluated 32D cl 3 murine hematopoietic progenitor cells which were irradiated and then either centrifuged to pellets (to simulate PLDR conditions) or left in exponential growth for 0, 24, 48 or 72 h. Pelleted cells demonstrated cell cycle arrest with a greater percentage in the G(1)-phase than did exponentially growing cells. Irradiation survival curves demonstrated a significant radiation damage mitigation effect of JP4-039 over untreated cells in cells pelleted for 24 h. No significant radiation mitigation was detected if drugs were added 48 or 72 h after irradiation. Electron paramagnetic resonance spectroscopy demonstrated a greater concentration of JP4-039 in mitochondria of 24 h-pelleted cells than in exponentially growing cells. These results establish a potential role of mitochondria-targeted nitroxide drugs as mitigators of radiation damage to quiescent cells including stem cells. PMID:19779106

  3. A Mitochondria-Targeted Nitroxide/Hemigramicidin S Conjugate Protects Mouse Embryonic Cells Against Gamma Irradiation

    SciTech Connect

    Jiang Jianfei; Belikova, Natalia A.; Hoye, Adam T.; Zhao Qing; Epperly, Michael W.; Greenberger, Joel S.; Wipf, Peter; Kagan, Valerian E.

    2008-03-01

    Purpose: To evaluate the in vitro radioprotective effect of the mitochondria-targeted hemigramicidin S-conjugated 4-amino-2,2,6,6-tetramethyl-piperidine-N-oxyl (hemi-GS-TEMPO) 5-125 in {gamma}-irradiated mouse embryonic cells and adenovirus-12 SV40 hybrid virus transformed human bronchial epithelial cells BEAS-2B and explore the mechanisms involved in its radioprotective effect. Methods and Materials: Cells were incubated with 5-125 before (10 minutes) or after (1 hour) {gamma}-irradiation. Superoxide generation was determined by using dihydroethidium assay, and lipid oxidation was quantitated by using a fluorescence high-performance liquid chromatography-based Amplex Red assay. Apoptosis was characterized by evaluating the accumulation of cytochrome c in the cytosol and externalization of phosphatidylserine on the cell surface. Cell survival was measured by means of a clonogenic assay. Results: Treatment (before and after irradiation) of cells with 5-125 at low concentrations (5, 10, and 20 {mu}M) effectively suppressed {gamma}-irradiation-induced superoxide generation, cardiolipin oxidation, and delayed irradiation-induced apoptosis, evaluated by using cytochrome c release and phosphatidylserine externalization. Importantly, treatment with 5-125 increased the clonogenic survival rate of {gamma}-irradiated cells. In addition, 5-125 enhanced and prolonged {gamma}-irradiation-induced G{sub 2}/M phase arrest. Conclusions: Radioprotection/mitigation by hemi-GS-TEMPO likely is caused by its ability to act as an electron scavenger and prevent superoxide generation, attenuate cardiolipin oxidation in mitochondria, and hence prevent the release of proapoptotic factors from mitochondria. Other mechanisms, including cell-cycle arrest at the G{sub 2}/M phase, may contribute to the protection.

  4. A mitochondria-targeted inhibitor of cytochrome c peroxidase mitigates radiation induced death

    PubMed Central

    Atkinson, Jeffrey; Kapralov, Alexandr A.; Yanamala, Naveena; Tyurina, Yulia Y.; Amoscato, Andrew A.; Pearce, Linda; Peterson, Jim; Huang, Zhentai; Jiang, Jianfei; Samhan-Arias, Alejandro K.; Maeda, Akihiro; Feng, Weihong; Wasserloos, Karla; Belikova, Natalia A.; Tyurin, Vladimir A.; Wang, Hong; Fletcher, Jackie; Wang, Yongsheng; Vlasova, Irina I.; Klein-Seetharaman, Judith; Stoyanovsky, Detcho A.; Bayîr, Hülya; Pitt, Bruce R.; Epperly, Michael W.; Greenberger, Joel S.; Kagan, Valerian E.

    2013-01-01

    The risk of radionuclide release in terrorist acts or exposure of healthy tissue during radiotherapy demand potent radioprotectants/radiomitigators. Ionizing radiation induces cell death by initiating the selective peroxidation of cardiolipin in mitochondria by the peroxidase activity of its complex with cytochrome c leading to release of hemoprotein into the cytosol and commitment to the apoptotic program. Here we design and synthesize mitochondria-targeted triphenylphosphonium-conjugated imidazole-substituted oleic and stearic acids which blocked peroxidase activity of cytochrome c/cardiolipin complex by specifically binding to its heme-iron. We show that both compounds inhibit pro-apoptotic oxidative events, suppress cyt c release, prevent cell death, and protect mice against lethal doses of irradiation. Significant radioprotective/radiomitigative effects of imidazole-substituted oleic acid are observed after pretreatment of mice from 1 hr before through 24 hrs after the irradiation. PMID:21988913

  5. A mitochondria-targeted inhibitor of cytochrome c peroxidase mitigates radiation-induced death.

    PubMed

    Atkinson, Jeffrey; Kapralov, Alexandr A; Yanamala, Naveena; Tyurina, Yulia Y; Amoscato, Andrew A; Pearce, Linda; Peterson, Jim; Huang, Zhentai; Jiang, Jianfei; Samhan-Arias, Alejandro K; Maeda, Akihiro; Feng, Weihong; Wasserloos, Karla; Belikova, Natalia A; Tyurin, Vladimir A; Wang, Hong; Fletcher, Jackie; Wang, Yongsheng; Vlasova, Irina I; Klein-Seetharaman, Judith; Stoyanovsky, Detcho A; Bayîr, Hülya; Pitt, Bruce R; Epperly, Michael W; Greenberger, Joel S; Kagan, Valerian E

    2011-01-01

    The risk of radionuclide release in terrorist acts or exposure of healthy tissue during radiotherapy demand potent radioprotectants/radiomitigators. Ionizing radiation induces cell death by initiating the selective peroxidation of cardiolipin in mitochondria by the peroxidase activity of its complex with cytochrome c leading to release of haemoprotein into the cytosol and commitment to the apoptotic program. Here we design and synthesize mitochondria-targeted triphenylphosphonium-conjugated imidazole-substituted oleic and stearic acids that blocked peroxidase activity of cytochrome c/cardiolipin complex by specifically binding to its haem-iron. We show that both compounds inhibit pro-apoptotic oxidative events, suppress cyt c release, prevent cell death, and protect mice against lethal doses of irradiation. Significant radioprotective/radiomitigative effects of imidazole-substituted oleic acid are observed after pretreatment of mice from 1 h before through 24 h after the irradiation. PMID:21988913

  6. Ubiquinol and plastoquinol triphenylphosphonium conjugates can carry electrons through phospholipid membranes.

    PubMed

    Rokitskaya, Tatyana I; Murphy, Michael P; Skulachev, Vladimir P; Antonenko, Yuri N

    2016-10-01

    Many mitochondria-targeted antioxidants (MTAs) that comprise a quinol moiety covalently attached through an aliphatic carbon chain to the lipophilic triphenylphosphonium cation are widely used for evaluating the role of mitochondria in pathological processes involving oxidative stress. The potency of MTAs to carry electrons across biological membranes and thereby mediate transmembrane redox processes was unknown. To assess this, we measured the rate of ferricyanide reduction inside liposomes by external ascorbate. Here, we show that MTAs containing ubiquinone (MitoQ series) or plastoquinone (SkQ series) can carry electrons through lipid membranes, with the rate being inversely proportional to the length of the hydrocarbon linker group. Furthermore, this process was stimulated by the hydrophobic anion tetraphenylborate suggesting that permeation of the cationic MTA through the membrane was the rate-limiting step of the process. This conclusion was supported by the observation that the rate of MTA-induced electron transfer was insensitive to nigericin, in contrast to electron transfer mediated by neutral quinone derivatives. These findings indicate that MTAs can be utilized to transfer electrons across lipid membranes and this may be applicable to the study of the electron-transport chain in mitochondria and other natural membranes exhibiting redox processes. PMID:27182824

  7. MITOCHONDRIA-TARGETED CARDIOPROTECTION IN ALDOSTERONISM

    PubMed Central

    Shahbaz, Atta U.; Kamalov, German; Zhao, Wenyuan; Zhao, Tieqiang; Johnson, Patti L.; Sun, Yao; Bhattacharya, Syamal K.; Ahokas, Robert A.; Gerling, Ivan C.; Weber, Karl T.

    2010-01-01

    Chronic aldosterone/salt treatment (ALDOST) is accompanied by an adverse structural remodeling of myocardium that includes multiple foci of microscopic scarring representing morphologic footprints of cardiomyocyte necrosis. Our previous studies suggested that signal-transducer-effector pathway leading to necrotic cell death during ALDOST includes intramitochondrial Ca2+ overloading, together with an induction of oxidative stress and opening of the mitochondrial permeability transition pore (mPTP). To further validate this concept, we hypothesized mitochondria-targeted interventions will prove cardioprotective. Accordingly, 8-wk-old male Sprague-Dawley rats receiving 4 wks ALDOST were cotreated with either quercetin (Q), a flavonoid with mitochondrial antioxidant properties, or cyclosporine A (CsA), an mPTP inhibitor, and compared to ALDOST alone or untreated, age-/sex-matched controls. We monitored: mitochondrial free Ca2+ and biomarkers of oxidative stress, including 8-isoprostane and H2O2 production; mPTP opening; total Ca2+ in cardiac tissue; collagen volume fraction (CVF) to quantify replacement fibrosis, a biomarker of cardiomyocyte necrosis; and employed TUNEL assay to address apoptosis in coronal sections of ventricular myocardium. Compared to controls, at 4 wks ALDOST we found: a marked increase in mitochondrial H2O2 production and 8-isoprostane levels, an increased propensity for mPTP opening, and greater concentrations of mitochondrial free [Ca2+]m and total tissue Ca2+, coupled with a 5-fold rise in CVF without any TUNEL-based evidence of cardiomyocyte apoptosis. Each of these pathophysiologic responses to ALDOST were prevented by Q or CsA cotreatment. Thus, mitochondria play a central role in initiating the cellular-molecular pathway that leads to necrotic cell death and myocardial scarring. This destructive cycle can be interrupted and myocardium salvaged with its structure preserved by mitochondria-targeted cardioprotective strategies. PMID:20966765

  8. Polyphenols as mitochondria-targeted anticancer drugs.

    PubMed

    Gorlach, Sylwia; Fichna, Jakub; Lewandowska, Urszula

    2015-10-01

    Mitochondria are the respiratory and energetic centers of the cell where multiple intra- and extracellular signal transduction pathways converge leading to dysfunction of those organelles and, consequently, apoptotic or/and necrotic cell death. Mitochondria-targeted anticancer drugs are referred to as mitocans; they have recently been classified by Neuzil et al. (2013) according to their molecular mode of action into: hexokinase inhibitors; mimickers of the Bcl-2 homology-3 (BH3) domains; thiol redox inhibitors; deregulators of voltage-dependent anionic channel (VDAC)/adenine nucleotide translocase (ANT) complex; electron redox chain-targeting agents; lipophilic cations targeting the mitochondrial inner membrane; tricarboxylic acid cycle-targeting agents; and mitochondrial DNA-targeting agents. Polyphenols of plant origin and their synthetic or semisynthetic derivatives exhibit pleiotropic biological activities, including the above-mentioned modes of action characteristic of mitocans. Some of them have already been tested in clinical trials. Gossypol has served as a lead compound for developing more efficient BH3 mimetics such as ABT-737 and its orally available structural analog ABT-263 (Navitoclax). Furthermore, mitochondriotropic derivatives of phenolic compounds such as quercetin and resveratrol have been synthesized and reported to efficiently induce cancer cell death in vitro. PMID:26185003

  9. A mitochondria-targeted protonophoric uncoupler derived from fluorescein.

    PubMed

    Denisov, Stepan S; Kotova, Elena A; Plotnikov, Egor Y; Tikhonov, Artur A; Zorov, Dmitry B; Korshunova, Galina A; Antonenko, Yuri N

    2014-12-18

    Linking decyl-triphenyl-phosphonium to fluorescein yields a fluorescent probe that accumulates in energized mitochondria, facilitates proton transfer across membranes and stimulates mitochondrial respiration. This features a mitochondria-targeted uncoupler, being of potential interest for therapeutic use against oxidative stress-related diseases. PMID:25349923

  10. Mitochondria-targeted spin traps: synthesis, superoxide spin trapping, and mitochondrial uptake.

    PubMed

    Hardy, Micael; Poulhés, Florent; Rizzato, Egon; Rockenbauer, Antal; Banaszak, Karol; Karoui, Hakim; Lopez, Marcos; Zielonka, Jacek; Vasquez-Vivar, Jeannette; Sethumadhavan, Savitha; Kalyanaraman, Balaraman; Tordo, Paul; Ouari, Olivier

    2014-07-21

    Development of reliable methods and site-specific detection of free radicals is an active area of research. Here, we describe the synthesis and radical-trapping properties of new derivatives of DEPMPO and DIPPMPO, bearing a mitochondria-targeting triphenylphosphonium cationic moiety or guanidinium cationic group. All of the spin traps prepared have been observed to efficiently trap superoxide radical anions in a cell-free system. The superoxide spin adducts exhibited similar spectral properties, indicating no significant differences in the geometry of the cyclic nitroxide moieties of the spin adducts. The superoxide adduct stability was measured and observed to be highest (t1/2 = 73 min) for DIPPMPO nitrone linked to triphenylphosphonium moiety via a short carbon chain (Mito-DIPPMPO). The experimental results and DFT quantum chemical calculations indicate that the cationic property of the triphenylphosphonium group may be responsible for increased superoxide trapping efficiency and adduct stability of Mito-DIPPMPO, as compared to the DIPPMPO spin trap. The studies of uptake of the synthesized traps into isolated mitochondria indicated the importance of both cationic and lipophilic properties, with the DEPMPO nitrone linked to the triphenylphosphonium moiety via a long carbon chain (Mito10-DEPMPO) exhibiting the highest mitochondrial uptake. We conclude that, of the synthesized traps, Mito-DIPPMPO and Mito10-DEPMPO are the best candidates for potential mitochondria-specific spin traps for use in biologically relevant systems. PMID:24890552

  11. Mitochondria-targeted drug delivery system for cancer treatment.

    PubMed

    Chen, Zhi-Peng; Li, Man; Zhang, Liu-Jie; He, Jia-Yu; Wu, Li; Xiao, Yan-Yu; Duan, Jin-Ao; Cai, Ting; Li, Wei-Dong

    2016-07-01

    Mitochondria are one type of the major organelles in the cell, participating in a variety of important physiological and biochemical processes, such as tricarboxylic acid cycle, fatty acid metabolism and oxidative phosphorylation. Meanwhile, it also happens to be the key regulator of apoptosis by triggering the complex cell-death processes through a variety of mechanisms. Since it plays a pivotal role in cell-death, a mitochondria-targeted treatment strategy could be promising for cancer therapy. In this comprehensive review, we focused on the mechanisms of mitochondrial targeting and a variety of strategies to realize the purpose of mitochondrial targeting, including that based on the use of lipophilic cations, and mitochondrial targeting signal peptides (MTS) as well as cell-penetrating peptides (CPPs). Then on this basis we present some several developed strategies for multifunctional mitochondria-targeted agents so as to achieve the good anti-cancer therapeutic effects. PMID:26548930

  12. Mitochondria-Targeted Protective Compounds in Parkinson's and Alzheimer's Diseases

    PubMed Central

    Fernández-Moriano, Carlos; González-Burgos, Elena; Gómez-Serranillos, M. Pilar

    2015-01-01

    Mitochondria are cytoplasmic organelles that regulate both metabolic and apoptotic signaling pathways; their most highlighted functions include cellular energy generation in the form of adenosine triphosphate (ATP), regulation of cellular calcium homeostasis, balance between ROS production and detoxification, mediation of apoptosis cell death, and synthesis and metabolism of various key molecules. Consistent evidence suggests that mitochondrial failure is associated with early events in the pathogenesis of ageing-related neurodegenerative disorders including Parkinson's disease and Alzheimer's disease. Mitochondria-targeted protective compounds that prevent or minimize mitochondrial dysfunction constitute potential therapeutic strategies in the prevention and treatment of these central nervous system diseases. This paper provides an overview of the involvement of mitochondrial dysfunction in Parkinson's and Alzheimer's diseases, with particular attention to in vitro and in vivo studies on promising endogenous and exogenous mitochondria-targeted protective compounds. PMID:26064418

  13. Identification of nitroxide radioprotectors.

    PubMed

    Hahn, S M; Wilson, L; Krishna, C M; Liebmann, J; DeGraff, W; Gamson, J; Samuni, A; Venzon, D; Mitchell, J B

    1992-10-01

    The nitroxide Tempol, a stable free radical, has recently been shown to protect mammalian cells against several forms of oxidative stress including radiation-induced cytotoxicity. To extend this observation, six additional water-soluble nitroxides with different structural features were evaluated for potential radioprotective properties using Chinese hamster V79 cells and clonogenic assays. Nitroxides (10 mM) were added 10 min prior to radiation exposure and full radiation dose-response curves were determined. In addition to Tempol, five of the six nitroxides afforded in vitro radioprotection. The best protectors were found to be the positively charged nitroxides, Tempamine and 3-aminomethyl-PROXYL, with protection factors of 2.3 and 2.4, respectively, compared with Tempol, which had a protection factor of 1.3. 3-Carboxy-PROXYL, a negatively charged nitroxide, provided minimal protection. DNA binding characteristics as studied by nonequilibrium dialysis of DNA with each of the nitroxides demonstrated that Tempamine and 3-amino-methyl-PROXYL bound more strongly to DNA than did Tempol. Since DNA is assumed to be the target of radiation-induced cytotoxicity, differences in protection may be explained by variabilities in affinity of the protector for the target. This study establishes nitroxides as a general class of new nonthiol radioprotectors and suggests other parameters that may be exploited to find even better nitroxide-induced radioprotection. PMID:1410280

  14. A mitochondria-targeted derivative of ascorbate: MitoC

    PubMed Central

    Finichiu, Peter G.; Larsen, David S.; Evans, Cameron; Larsen, Lesley; Bright, Thomas P.; Robb, Ellen L.; Trnka, Jan; Prime, Tracy A.; James, Andrew M.; Smith, Robin A.J.; Murphy, Michael P.

    2015-01-01

    Mitochondrial oxidative damage contributes to a wide range of pathologies. One therapeutic strategy to treat these disorders is targeting antioxidants to mitochondria by conjugation to the lipophilic triphenylphosphonium (TPP) cation. To date only hydrophobic antioxidants have been targeted to mitochondria; however, extending this approach to hydrophilic antioxidants offers new therapeutic and research opportunities. Here we report the development and characterization of MitoC, a mitochondria-targeted version of the hydrophilic antioxidant ascorbate. We show that MitoC can be taken up by mitochondria, despite the polarity and acidity of ascorbate, by using a sufficiently hydrophobic link to the TPP moiety. MitoC reacts with a range of reactive species, and within mitochondria is rapidly recycled back to the active ascorbate moiety by the glutathione and thioredoxin systems. Because of this accumulation and recycling MitoC is an effective antioxidant against mitochondrial lipid peroxidation and also decreases aconitase inactivation by superoxide. These findings show that the incorporation of TPP function can be used to target polar and acidic compounds to mitochondria, opening up the delivery of a wide range of bioactive compounds. Furthermore, MitoC has therapeutic potential as a new mitochondria-targeted antioxidant, and is a useful tool to explore the role(s) of ascorbate within mitochondria. PMID:26453920

  15. A mitochondria-targeted derivative of ascorbate: MitoC.

    PubMed

    Finichiu, Peter G; Larsen, David S; Evans, Cameron; Larsen, Lesley; Bright, Thomas P; Robb, Ellen L; Trnka, Jan; Prime, Tracy A; James, Andrew M; Smith, Robin A J; Murphy, Michael P

    2015-12-01

    Mitochondrial oxidative damage contributes to a wide range of pathologies. One therapeutic strategy to treat these disorders is targeting antioxidants to mitochondria by conjugation to the lipophilic triphenylphosphonium (TPP) cation. To date only hydrophobic antioxidants have been targeted to mitochondria; however, extending this approach to hydrophilic antioxidants offers new therapeutic and research opportunities. Here we report the development and characterization of MitoC, a mitochondria-targeted version of the hydrophilic antioxidant ascorbate. We show that MitoC can be taken up by mitochondria, despite the polarity and acidity of ascorbate, by using a sufficiently hydrophobic link to the TPP moiety. MitoC reacts with a range of reactive species, and within mitochondria is rapidly recycled back to the active ascorbate moiety by the glutathione and thioredoxin systems. Because of this accumulation and recycling MitoC is an effective antioxidant against mitochondrial lipid peroxidation and also decreases aconitase inactivation by superoxide. These findings show that the incorporation of TPP function can be used to target polar and acidic compounds to mitochondria, opening up the delivery of a wide range of bioactive compounds. Furthermore, MitoC has therapeutic potential as a new mitochondria-targeted antioxidant, and is a useful tool to explore the role(s) of ascorbate within mitochondria. PMID:26453920

  16. Synthesis of triphenylphosphonium vitamin E derivatives as mitochondria-targeted antioxidants

    PubMed Central

    Jameson, Victoria J.A.; Cochemé, Helena M.; Logan, Angela; Hanton, Lyall R.; Smith, Robin A.J.; Murphy, Michael P.

    2015-01-01

    A series of mitochondria-targeted antioxidants comprising a lipophilic triphenylphosphonium cation attached to the antioxidant chroman moiety of vitamin E by an alkyl linker have been prepared. The synthesis of a series of mitochondria-targeted vitamin E derivatives with a range of alkyl linkers gave compounds of different hydrophobicities. This work will enable the dependence of antioxidant defence on hydrophobicity to be determined in vivo. PMID:26549895

  17. MITOCHONDRIA-TARGETED ANTIOXIDANTS FOR TREATMENT OF PARKINSON’S DISEASE: PRECLINICAL AND CLINICAL OUTCOMES

    PubMed Central

    Jin, Huajun; Kanthasamy, Arthi; Ghosh, Anamitra; Anantharam, Vellareddy; Kalyanaraman, Balaraman; Kanthasamy, Anumantha G.

    2013-01-01

    Parkinson’s disease (PD) is a progressive neurodegenerative disease in the elderly, and no cure or disease-modifying therapies exist. Several lines of evidence suggest that mitochondrial dysfunction and oxidative stress have a central role in the dopaminergic neurodegeneration of PD. In this context, mitochondria-targeted therapies that improve mitochondrial function may have great promise in the prevention and treatment of PD. In this review, we discuss the recent developments in mitochondria-targeted antioxidants and their potential beneficial effects as a therapy for ameliorating mitochondrial dysfunction in PD. PMID:24060637

  18. Enhanced Intracellular Hyperthermia Efficiency by Magnetic Nanoparticles Modified with Nucleus and Mitochondria Targeting Peptides.

    PubMed

    Wang, Xiaowen; Zhou, Jumei; Chen, Benke; Tang, Zhenghai; Zhang, Jieying; Li, Liya; Tang, Jintian

    2016-06-01

    In order to investigate whether cell organelle targeting peptide can transport magnetic nanoparticles (MNPs) into specific cell organelle, peptides bearing nuclear localization signal (NLS) or mitochondria targeting sequences were coagulated to MNPs. In vitro cytotoxicity study on the human liver cancer cells (HepG2) was tested by using MTT assay. Sub-cellular location of each peptide modified MNP (PEP-MNPs) was observed by transmission electron microscopy (TEM). The uptake of HepG2 cells growing in PEP-MNPs was measured by using ICP-OES. Magnetic induction heating efficacies of PEP-MNPs were analyzed by exposing the PEP-MNPs containing cells in an alternating magnetic field (AMF). It was demonstrated that PEP-MNPs were efficient agents for cancer nanothermotherapy with satisfactory biocompatibility. TEM showed that the fate of MNPs inside the cells depended on the peptide sequence attached to the particle surface. The uptake improvement was observed both in PEP-MNPs bearing NLS peptides and in PEP-MNPs bearing mitochondria targeting sequences. Virus original endocytosis sequence can enhance the uptake. MNP bearing mitochondria targeting sequence exerted a better magnetic induction hyperthermia performance comparing to that of NLS. Our investigation provides a strategy for fabrication cell organelle targeting magnetic nanoparticles. For instance, mitochondria targeting peptide conjugated MNPs for highly-efficiency magnetic nanothermotherapy and nuclear targeting peptides conjugated MNPs for gene magnetofection. PMID:27427753

  19. A Mitochondria-Targeted Photosensitizer Showing Improved Photodynamic Therapy Effects Under Hypoxia.

    PubMed

    Lv, Wen; Zhang, Zhang; Zhang, Kenneth Yin; Yang, Huiran; Liu, Shujuan; Xu, Aqiang; Guo, Song; Zhao, Qiang; Huang, Wei

    2016-08-16

    Organelle-targeted photosensitizers have been reported to be effective photodynamic therapy (PDT) agents. In this work, we designed and synthesized two iridium(III) complexes that specifically stain the mitochondria and lysosomes of living cells, respectively. Both complexes exhibited long-lived phosphorescence, which is sensitive to oxygen quenching. The photocytotoxicity of the complexes was evaluated under normoxic and hypoxic conditions. The results showed that HeLa cells treated with the mitochondria-targeted complex maintained a slower respiration rate, leading to a higher intracellular oxygen level under hypoxia. As a result, this complex exhibited an improved PDT effect compared to the lysosome-targeted complex, especially under hypoxia conditions, suggestive of a higher practicable potential of mitochondria-targeted PDT agents in cancer therapy. PMID:27381490

  20. Mitochondria-targeted penetrating cations as carriers of hydrophobic anions through lipid membranes.

    PubMed

    Rokitskaya, Tatyana I; Sumbatyan, Natalia V; Tashlitsky, Vadim N; Korshunova, Galina A; Antonenko, Yuri N; Skulachev, Vladimir P

    2010-09-01

    High negative electric potential inside mitochondria provides a driving force for mitochondria-targeted delivery of cargo molecules linked to hydrophobic penetrating cations. This principle is utilized in construction of mitochondria-targeted antioxidants (MTA) carrying quinone moieties which produce a number of health benefitting effects by protecting cells and organisms from oxidative stress. Here, a series of penetrating cations including MTA were shown to induce the release of the liposome-entrapped carboxyfluorescein anion (CF), but not of glucose or ATP. The ability to induce the leakage of CF from liposomes strongly depended on the number of carbon atoms in alkyl chain (n) of alkyltriphenylphosphonium and alkylrhodamine derivatives. In particular, the leakage of CF was maximal at n about 10-12 and substantially decreased at n=16. Organic anions (palmitate, oleate, laurylsulfate) competed with CF for the penetrating cation-induced efflux. The reduced activity of alkylrhodamines with n=16 or n=18 as compared to that with n=12 was ascribed to a lower rate of partitioning of the former into liposomal membranes, because electrical current relaxation studies on planar bilayer lipid membranes showed rather close translocation rate constants for alkylrhodamines with n=18 and n=12. Changes in the alkylrhodamine absorption spectra upon anion addition confirmed direct interaction between alkylrhodamines and the anion. Thus, mitochondria-targeted penetrating cations can serve as carriers of hydrophobic anions across bilayer lipid membranes. PMID:20510172

  1. Brain aging and mitochondria-targeted plastoquinone antioxidants of SkQ-type.

    PubMed

    Isaev, N K; Stelmashook, E V; Stelmashook, N N; Sharonova, I N; Skrebitsky, V G

    2013-03-01

    Normal brain aging leads to decrease in cognitive functions, shrink in brain volume, loss of nerve fibers and degenerating myelin, reduction in length and branching of dendrites, partial loss of synapses, and reduction in expression of genes that play central roles in synaptic plasticity, vesicular transport, and mitochondrial functioning. Impaired mitochondrial functions and mitochondrial reactive oxygen species can contribute to the damage of these genes in aging cerebral cortex. This review discusses the possibility of using mitochondria-targeted antioxidants to slow the processes of brain aging. PMID:23586724

  2. A novel bifunctional mitochondria-targeted anticancer agent with high selectivity for cancer cells.

    PubMed

    He, Huan; Li, Dong-Wei; Yang, Li-Yun; Fu, Li; Zhu, Xun-Jin; Wong, Wai-Kwok; Jiang, Feng-Lei; Liu, Yi

    2015-01-01

    Mitochondria have recently emerged as novel targets for cancer therapy due to its important roles in fundamental cellular function. Discovery of new chemotherapeutic agents that allow for simultaneous treatment and visualization of cancer is urgent. Herein, we demonstrate a novel bifunctional mitochondria-targeted anticancer agent (FPB), exhibiting both imaging capability and anticancer activity. It can selectively accumulate in mitochondria and induce cell apoptosis. Notably, it results in much higher toxicity toward cancer cells owing to much higher uptake by cancer cells. These features make it highly attractive in cancer imaging and treatment. PMID:26337336

  3. A novel bifunctional mitochondria-targeted anticancer agent with high selectivity for cancer cells

    PubMed Central

    He, Huan; Li, Dong-Wei; Yang, Li-Yun; Fu, Li; Zhu, Xun-Jin; Wong, Wai-Kwok; Jiang, Feng-Lei; Liu, Yi

    2015-01-01

    Mitochondria have recently emerged as novel targets for cancer therapy due to its important roles in fundamental cellular function. Discovery of new chemotherapeutic agents that allow for simultaneous treatment and visualization of cancer is urgent. Herein, we demonstrate a novel bifunctional mitochondria-targeted anticancer agent (FPB), exhibiting both imaging capability and anticancer activity. It can selectively accumulate in mitochondria and induce cell apoptosis. Notably, it results in much higher toxicity toward cancer cells owing to much higher uptake by cancer cells. These features make it highly attractive in cancer imaging and treatment. PMID:26337336

  4. The Analgesic Effect of the Mitochondria-Targeted Antioxidant SkQ1 in Pancreatic Inflammation

    PubMed Central

    Weniger, Maximilian; Reinelt, Leonard; Neumann, Jens; Holdt, Lesca; Ilmer, Matthias; Renz, Bernhard; Hartwig, Werner; Werner, Jens; Bazhin, Alexandr V.; D'Haese, Jan G.

    2016-01-01

    Background. Chronic pancreatitis is one of the main risk factors for pancreatic cancer. In acute and chronic pancreatitis, oxidative stress is thought to play a key role. In this respect, the recently described mitochondria-targeted antioxidant SkQ1 effectively scavenges reactive oxygen species at nanomolar concentrations. Therefore, we aimed to characterize the influence of SkQ1 on tissue injury and pain in acute and chronic pancreatitis. Methods. Both acute and chronic pancreatitis were induced in C57BL/6 mice by intraperitoneal cerulein injections and treatment with SkQ1 was carried out by peroral applications. Hyperalgesia was assessed by behavioral observation and measurement of abdominal mechanical sensitivity. Blood serum and pancreatic tissue were harvested for analysis of lipase and histology. Results. SkQ1 did not influence pain, serological, or histological parameters of tissue injury in acute pancreatitis. In chronic pancreatitis, a highly significant reduction of pain-related behavior (p < 0.0001) was evident, but histological grading revealed increased tissue injury in SkQ1-treated animals (p = 0.03). Conclusion. After SkQ1 treatment, tissue injury is not ameliorated in acute pancreatitis and increased in chronic pancreatitis. However, we show an analgesic effect in chronic pancreatitis. Further studies will need to elucidate the risks and benefits of mitochondria-targeted antioxidants as an analgesic. PMID:27274778

  5. Mitochondria-Targeted Peptide Reverses Mitochondrial Dysfunction and Cognitive Deficits in Sepsis-Associated Encephalopathy.

    PubMed

    Wu, Jing; Zhang, Mingqiang; Hao, Shuangying; Jia, Ming; Ji, Muhuo; Qiu, Lili; Sun, Xiaoyan; Yang, Jianjun; Li, Kuanyu

    2015-08-01

    Sepsis-associated encephalopathy (SAE) is associated with increased mortality, morbidity, and long-term cognitive impairments. Its pathophysiology remains to be determined and an effective pharmacologic treatment is lacking. The goal of this study was to investigate the effects of the mitochondria-targeted peptide SS-31 on mitochondrial function and cognitive deficits in SAE mice. C57BL/6 male mice were randomly divided into sham, sham + SS-31, cecal ligation and puncture (CLP), and CLP + SS-31 groups. Peptide SS-31 (5 mg/kg) was intraperitoneally administrated immediately after operation and afterwards once daily for six consecutive days. Surviving mice were subjected to behavioral tests and the hippocampus was collected for biochemical analysis 7 days after operation. The results showed that CLP resulted in high mortality rate and cognitive deficits, representative characteristics of SAE. A physiological mechanistic investigation revealed that mitochondrial function of hippocampus was severely impaired, coupled with reactive oxygen species (ROS) generation, triggering neuronal apoptosis and inflammation. Notably, administration of peptide SS-31 protected the integrity of mitochondria, reversed the mitochondrial dysfunction, inhibited the apoptosis resulting from the release of cytochrome c, diminished the response of inflammation, and ultimately reversed the behavior deficits in the SAE mice. In conclusion, our data demonstrate that daily treatment with mitochondria-targeted peptide SS-31 reduces mortality rate and ameliorates cognitive deficits, which is possibly through a mechanism of reversing mitochondrial dysfunction and partial inhibition of neuronal apoptosis and inflammation in the hippocampus of the SAE mice. PMID:25288156

  6. Coumarin-appended phosphorescent cyclometalated iridium(iii) complexes as mitochondria-targeted theranostic anticancer agents.

    PubMed

    Ye, Rui-Rong; Tan, Cai-Ping; Ji, Liang-Nian; Mao, Zong-Wan

    2016-08-16

    Theranostic anticancer agents incorporating anticancer properties with capabilities for real-time treatment assessment are appealing candidates for chemotherapy. The design of mitochondria-targeted cytotoxic drugs represents a promising approach to target tumors selectively and overcome resistance to current anticancer therapies. In this work, three coumarin-appended phosphorescent cyclometalated iridium(iii) complexes 1-3 have been explored as mitochondria-targeted theranostic anticancer agents. These complexes display rich photophysical properties, which facilitate the study of their intracellular fate. All three complexes can specifically target mitochondria and show much higher antiproliferative activities than cisplatin against various cancer cells including cisplatin-resistant cells. 1-3 can penetrate into human cervical carcinoma (HeLa) cells quickly and efficiently, and they can carry out theranostic functions by simultaneously inducing and monitoring the morphological changes in mitochondria. Mechanism studies show that 1-3 exert their anticancer efficacy by initiating a cascade of events related to mitochondrial dysfunction. Genome-wide transcriptional and Connectivity Map analyses reveal that the cytotoxicity of complex 3 is associated with pathways involved in mitochondrial dysfunction and apoptosis. PMID:27139504

  7. Mitochondria-Targeted Antioxidant SS-31 is a Potential Novel Ophthalmic Medication for Neuroprotection in Glaucoma.

    PubMed

    Pang, Yu; Wang, Chao; Yu, Ling

    2015-01-01

    Glaucoma is the second leading cause of irreversible blindness and a neurodegenerative disease with a complex pathogenesis. Increasing evidence suggests that oxidative stress and mitochondrial dysfunction have crucial roles in most neurodegenerative diseases such as glaucoma. The conventional clinical treatment for glaucoma is lowering the intraocular pressure (IOP). Some patients have normal IOP, whereas other patients appear to obtain adequate control of IOP after filtration surgery or medication. However, these patients still experience progressive visual field loss. Vision field loss in glaucoma is attributed to retinal ganglion cell (RGC) apoptosis. Many recent researches demonstrated that the link between mitochondrial dysfunction and oxidative stress was a major cause of RGCs apoptosis. How oxidative stress leads to RGCs apoptosis in glaucoma is unclear but may involve the neurotoxic effects of oxidative stress-induced mitochondrial dysfunction and/or damage from reactive oxygen species (ROS). Investigations are needed concerning the mitochondria as effective targets for potential therapeutic interventions to maintain mitochondrial function and reduce oxidative stress, and thereby delay or stop RGC loss and prolong visual function. The mitochondria-targeted antioxidant Szeto-Schiller (SS) peptide is a candidate molecule. Szeto-Schiller-31 (H-D-Arg-Dmt-Lys-Phe-NH2) is an attractive mitochondria-targeted antioxidant that can protect the mitochondria and RGCs against oxidative damage. Therefore, we suggest SS-31 as a novel neuroprotective ophthalmic drug for protecting RGCs in glaucoma. PMID:27350953

  8. Mitochondria-Targeted Analogues of Metformin Exhibit Enhanced Antiproliferative and Radiosensitizing Effects in Pancreatic Cancer Cells.

    PubMed

    Cheng, Gang; Zielonka, Jacek; Ouari, Olivier; Lopez, Marcos; McAllister, Donna; Boyle, Kathleen; Barrios, Christy S; Weber, James J; Johnson, Bryon D; Hardy, Micael; Dwinell, Michael B; Kalyanaraman, Balaraman

    2016-07-01

    Metformin (Met) is an approved antidiabetic drug currently being explored for repurposing in cancer treatment based on recent evidence of its apparent chemopreventive properties. Met is weakly cationic and targets the mitochondria to induce cytotoxic effects in tumor cells, albeit not very effectively. We hypothesized that increasing its mitochondria-targeting potential by attaching a positively charged lipophilic substituent would enhance the antitumor activity of Met. In pursuit of this question, we synthesized a set of mitochondria-targeted Met analogues (Mito-Mets) with varying alkyl chain lengths containing a triphenylphosphonium cation (TPP(+)). In particular, the analogue Mito-Met10, synthesized by attaching TPP(+) to Met via a 10-carbon aliphatic side chain, was nearly 1,000 times more efficacious than Met at inhibiting cell proliferation in pancreatic ductal adenocarcinoma (PDAC). Notably, in PDAC cells, Mito-Met10 potently inhibited mitochondrial complex I, stimulating superoxide and AMPK activation, but had no effect in nontransformed control cells. Moreover, Mito-Met10 potently triggered G1 cell-cycle phase arrest in PDAC cells, enhanced their radiosensitivity, and more potently abrogated PDAC growth in preclinical mouse models, compared with Met. Collectively, our findings show how improving the mitochondrial targeting of Met enhances its anticancer activities, including aggressive cancers like PDAC in great need of more effective therapeutic options. Cancer Res; 76(13); 3904-15. ©2016 AACR. PMID:27216187

  9. PK11195-chitosan-graft-polyethylenimine-modified SPION as a mitochondria-targeting gene carrier.

    PubMed

    Kim, You-Kyoung; Zhang, Mei; Lu, Jin-Jian; Xu, Fengguo; Chen, Bao-An; Xing, Lei; Jiang, Hu-Lin

    2016-06-01

    Superparamagnetic iron oxide nanoparticle (SPION) holds great potential as a gene delivery system due to its unique properties, such as good biocompatibility and non-invasive targeting ability. In this study, we modified SPION with chitosan-graft-PEI (CHI-g-PEI) and PK11195, to fabricate a mitochondria-targeting gene carrier, PK-CP-SPION. PK-CP-SPION manifested prominent physicochemical properties for magnetic guided gene delivery, and it could effectively condense and protect DNA at proper weight ratios. The in vitro cytotoxicity of PK-CP-SPIONs was mild. Under an external magnetic field, the transfection efficiency of PK-CP-SPIONs was comparable to PEI 25 K with shorter transfection time. PK11195 facilitated the specific accumulation of PK-CP-SPIONs in mitochondria, leading to the leakage of cytochrome c, the dissipation of mitochondrial membrane potential and subsequently the activation of mitochondria apoptosis pathway. These results indicated that with further development, PK-CP-SPIONs could serve as a multifunctional nanoplatform for magnetic targeting gene delivery and mitochondria-targeting therapy, leading enhanced therapeutic effect towards tumor cells. PMID:26390926

  10. A Powerful Mitochondria-Targeted Iron Chelator Affords High Photoprotection against Solar Ultraviolet A Radiation.

    PubMed

    Reelfs, Olivier; Abbate, Vincenzo; Hider, Robert C; Pourzand, Charareh

    2016-08-01

    Mitochondria are the principal destination for labile iron, making these organelles particularly susceptible to oxidative damage on exposure to ultraviolet A (UVA, 320-400 nm), the oxidizing component of sunlight. The labile iron-mediated oxidative damage caused by UVA to mitochondria leads to necrotic cell death via adenosine triphosphate depletion. Therefore, targeted removal of mitochondrial labile iron via highly specific tools from these organelles may be an effective approach to protect the skin cells against the harmful effects of UVA. In this work, we designed a mitochondria-targeted hexadentate (tricatechol-based) iron chelator linked to mitochondria-homing SS-like peptides. The photoprotective potential of this compound against UVA-induced oxidative damage and cell death was evaluated in cultured primary skin fibroblasts. Our results show that this compound provides unprecedented protection against UVA-induced mitochondrial damage, adenosine triphosphate depletion, and the ensuing necrotic cell death in skin fibroblasts, and this effect is fully related to its potent iron-chelating property in the organelle. This mitochondria-targeted iron chelator has therefore promising potential for skin photoprotection against the deleterious effects of the UVA component of sunlight. PMID:27109868

  11. Treatment Strategies that Enhance the Efficacy and Selectivity of Mitochondria-Targeted Anticancer Agents

    PubMed Central

    Modica-Napolitano, Josephine S.; Weissig, Volkmar

    2015-01-01

    Nearly a century has passed since Otto Warburg first observed high rates of aerobic glycolysis in a variety of tumor cell types and suggested that this phenomenon might be due to an impaired mitochondrial respiratory capacity in these cells. Subsequently, much has been written about the role of mitochondria in the initiation and/or progression of various forms of cancer, and the possibility of exploiting differences in mitochondrial structure and function between normal and malignant cells as targets for cancer chemotherapy. A number of mitochondria-targeted compounds have shown efficacy in selective cancer cell killing in pre-clinical and early clinical testing, including those that induce mitochondria permeability transition and apoptosis, metabolic inhibitors, and ROS regulators. To date, however, none has exhibited the standards for high selectivity and efficacy and low toxicity necessary to progress beyond phase III clinical trials and be used as a viable, single modality treatment option for human cancers. This review explores alternative treatment strategies that have been shown to enhance the efficacy and selectivity of mitochondria-targeted anticancer agents in vitro and in vivo, and may yet fulfill the clinical promise of exploiting the mitochondrion as a target for cancer chemotherapy. PMID:26230693

  12. Treatment Strategies that Enhance the Efficacy and Selectivity of Mitochondria-Targeted Anticancer Agents.

    PubMed

    Modica-Napolitano, Josephine S; Weissig, Volkmar

    2015-01-01

    Nearly a century has passed since Otto Warburg first observed high rates of aerobic glycolysis in a variety of tumor cell types and suggested that this phenomenon might be due to an impaired mitochondrial respiratory capacity in these cells. Subsequently, much has been written about the role of mitochondria in the initiation and/or progression of various forms of cancer, and the possibility of exploiting differences in mitochondrial structure and function between normal and malignant cells as targets for cancer chemotherapy. A number of mitochondria-targeted compounds have shown efficacy in selective cancer cell killing in pre-clinical and early clinical testing, including those that induce mitochondria permeability transition and apoptosis, metabolic inhibitors, and ROS regulators. To date, however, none has exhibited the standards for high selectivity and efficacy and low toxicity necessary to progress beyond phase III clinical trials and be used as a viable, single modality treatment option for human cancers. This review explores alternative treatment strategies that have been shown to enhance the efficacy and selectivity of mitochondria-targeted anticancer agents in vitro and in vivo, and may yet fulfill the clinical promise of exploiting the mitochondrion as a target for cancer chemotherapy. PMID:26230693

  13. Mitochondria-Targeted Antioxidant SS-31 is a Potential Novel Ophthalmic Medication for Neuroprotection in Glaucoma

    PubMed Central

    PANG, Yu; WANG, Chao; YU, Ling

    2015-01-01

    Glaucoma is the second leading cause of irreversible blindness and a neurodegenerative disease with a complex pathogenesis. Increasing evidence suggests that oxidative stress and mitochondrial dysfunction have crucial roles in most neurodegenerative diseases such as glaucoma. The conventional clinical treatment for glaucoma is lowering the intraocular pressure (IOP). Some patients have normal IOP, whereas other patients appear to obtain adequate control of IOP after filtration surgery or medication. However, these patients still experience progressive visual field loss. Vision field loss in glaucoma is attributed to retinal ganglion cell (RGC) apoptosis. Many recent researches demonstrated that the link between mitochondrial dysfunction and oxidative stress was a major cause of RGCs apoptosis. How oxidative stress leads to RGCs apoptosis in glaucoma is unclear but may involve the neurotoxic effects of oxidative stress-induced mitochondrial dysfunction and/or damage from reactive oxygen species (ROS). Investigations are needed concerning the mitochondria as effective targets for potential therapeutic interventions to maintain mitochondrial function and reduce oxidative stress, and thereby delay or stop RGC loss and prolong visual function. The mitochondria-targeted antioxidant Szeto-Schiller (SS) peptide is a candidate molecule. Szeto-Schiller-31 (H-D-Arg-Dmt-Lys-Phe-NH2) is an attractive mitochondria-targeted antioxidant that can protect the mitochondria and RGCs against oxidative damage. Therefore, we suggest SS-31 as a novel neuroprotective ophthalmic drug for protecting RGCs in glaucoma. PMID:27350953

  14. Mitochondria-targeted agents: Future perspectives of mitochondrial pharmaceutics in cardiovascular diseases

    PubMed Central

    Ajith, Thekkuttuparambil Ananthanarayanan; Jayakumar, Thankamani Gopinathan

    2014-01-01

    Mitochondria are one of the major sites for the generation of reactive oxygen species (ROS) as an undesirable side product of oxidative energy metabolism. Damaged mitochondria can augment the generation of ROS. Dysfunction of mitochondria increase the risk for a large number of human diseases, including cardiovascular diseases (CVDs). Heart failure (HF) following ischemic heart disease, infantile cardiomyopathy and cardiac hypertrophy associated with left ventricular dilations are some of the CVDs in which the role of mitochondrial oxidative stress has been reported. Advances in mitochondrial research during the last decade focused on the preservation of its function in the myocardium, which is vital for the cellular energy production. Experimental and clinical trials have been conducted using mitochondria-targeted molecules like: MnSOD mimetics, such as EUK-8, EUK-134 and MitoSOD; choline esters of glutathione and N-acetyl-L-cysteine; triphenylphosphonium ligated vitamin E, lipoic acid, plastoquinone and mitoCoQ10; and Szeto-Schiller (SS)- peptides (SS-02 and SS-31). Although many results are inconclusive, some of the findings, especially on CoQ10, are worthwhile. This review summarizes the role of mitochondria-targeted delivery of agents and their consequences in the control of HF. PMID:25349653

  15. Mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes.

    PubMed

    He, Quan; Harris, Nicole; Ren, Jun; Han, Xianlin

    2014-01-01

    Tafazzin, a mitochondrial acyltransferase, plays an important role in cardiolipin side chain remodeling. Previous studies have shown that dysfunction of tafazzin reduces cardiolipin content, impairs mitochondrial function, and causes dilated cardiomyopathy in Barth syndrome. Reactive oxygen species (ROS) have been implicated in the development of cardiomyopathy and are also the obligated byproducts of mitochondria. We hypothesized that tafazzin knockdown increases ROS production from mitochondria, and a mitochondria-targeted antioxidant prevents tafazzin knockdown induced mitochondrial and cardiac dysfunction. We employed cardiac myocytes transduced with an adenovirus containing tafazzin shRNA as a model to investigate the effects of the mitochondrial antioxidant, mito-Tempo. Knocking down tafazzin decreased steady state levels of cardiolipin and increased mitochondrial ROS. Treatment of cardiac myocytes with mito-Tempo normalized tafazzin knockdown enhanced mitochondrial ROS production and cellular ATP decline. Mito-Tempo also significantly abrogated tafazzin knockdown induced cardiac hypertrophy, contractile dysfunction, and cell death. We conclude that mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes and suggest mito-Tempo as a potential therapeutic for Barth syndrome and other dilated cardiomyopathies resulting from mitochondrial oxidative stress. PMID:25247053

  16. The Use of Mitochondria-Targeted Endonucleases to Manipulate mtDNA

    PubMed Central

    Bacman, Sandra R.; Williams, Sion L.; Pinto, Milena; Moraes, Carlos T.

    2014-01-01

    For more than a decade, mitochondria-targeted nucleases have been used to promote double-strand breaks in the mitochondrial genome. This was done in mitochondrial DNA (mtDNA) homoplasmic systems, where all mtDNA molecules can be affected, to create models of mitochondrial deficiencies. Alternatively, they were also used in a heteroplasmic model, where only a subset of the mtDNA molecules were substrates for cleavage. The latter approach showed that mitochondrial-targeted nucleases can reduce mtDNA haplotype loads in affected tissues, with clear implications for the treatment of patients with mitochondrial diseases. In the last few years, designer nucleases, such as ZFN and TALEN, have been adapted to cleave mtDNA, greatly expanding the potential therapeutic use. This chapter describes the techniques and approaches used to test these designer enzymes. PMID:25416366

  17. A mitochondria-targeted ratiometric two-photon fluorescent probe for biological zinc ions detection.

    PubMed

    Ning, Peng; Jiang, Jiacheng; Li, Longchun; Wang, Shuxin; Yu, Haizhu; Feng, Yan; Zhu, Manzhou; Zhang, Buchang; Yin, Hang; Guo, Qingxiang; Meng, Xiangming

    2016-03-15

    A mitochondria-targeted ratiometric two-photon fluorescent probe (Mito-MPVQ) for biological zinc ions detection was developed based on quinolone platform. Mito-MPVQ showed large red shifts (68 nm) and selective ratiometric signal upon Zn(2+) binding. The ratio of emission intensity (I488 nm/I420 nm) increases dramatically from 0.45 to 3.79 (ca. 8-fold). NMR titration and theoretical calculation confirmed the binding of Mito-MPVQ and Zn(2+). Mito-MPVQ also exhibited large two-photon absorption cross sections (150 GM) at nearly 720 nm and insensitivity to pH within the biologically relevant pH range. Cell imaging indicated that Mito-MPVQ could efficiently located in mitochondria and monitor mitochondrial Zn(2+) under two-photon excitation with low cytotoxicity. PMID:26528806

  18. Mitochondria-targeted peptide SS-31 attenuates renal injury via an antioxidant effect in diabetic nephropathy.

    PubMed

    Hou, Yanjuan; Li, Shuangcheng; Wu, Ming; Wei, Jinying; Ren, Yunzhuo; Du, Chunyang; Wu, Haijiang; Han, Caili; Duan, Huijun; Shi, Yonghong

    2016-03-15

    Oxidative stress is implicated in the pathogenesis of diabetic kidney injury. SS-31 is a mitochondria-targeted tetrapeptide that can scavenge reactive oxygen species (ROS). Here, we investigated the effect and molecular mechanism of mitochondria-targeted antioxidant peptide SS-31 on injuries in diabetic kidneys and mouse mesangial cells (MMCs) exposed to high-glucose (HG) ambience. CD-1 mice underwent uninephrectomy and streptozotocin treatment prior to receiving daily intraperitoneal injection of SS-31 for 8 wk. The diabetic mice treated with SS-31 had alleviated proteinuria, urinary 8-hydroxy-2-deoxyguanosine level, glomerular hypertrophy, and accumulation of renal fibronectin and collagen IV. SS-31 attenuated renal cell apoptosis and expression of Bax and reversed the expression of Bcl-2 in diabetic mice kidneys. Furthermore, SS-31 inhibited expression of transforming-growth factor (TGF)-β1, Nox4, and thioredoxin-interacting protein (TXNIP), as well as activation of p38 MAPK and CREB and NADPH oxidase activity in diabetic kidneys. In vitro experiments using MMCs revealed that SS-31 inhibited HG-mediated ROS generation, apoptosis, expression of cleaved caspase-3, Bax/Bcl-2 ratio, and cytochrome c (cyt c) release from mitochondria. SS-31 normalized mitochondrial potential (ΔΨm) and ATP alterations, and inhibited the expression of TGF-β1, Nox4, and TXNIP, as well as activation of p38 MAPK and CREB and NADPH oxidase activity in MMCs under HG conditions. SS-31 treatment also could reverse the reduction of thioredoxin (TRX) biologic activity and upregulate expression of thioredoxin 2 (TRX2) in MMCs under HG conditions. In conclusion, this study demonstrates a protective effect of SS-31 against HG-induced renal injury via an antioxidant mechanism in diabetic nephropathy. PMID:26719366

  19. Electrochemistry of nitronyl and imino nitroxides

    NASA Astrophysics Data System (ADS)

    Budnikova, Yu. G.; Gryaznova, T. V.; Kadirov, M. K.; Tret'yakov, E. V.; Kholin, K. V.; Ovcharenko, V. I.; Sagdeev, R. Z.; Sinyashin, O. G.

    2009-11-01

    Redox potentials of a wide group of azolyl-substituted nitronyl and imino nitroxides were determined by classic cyclic voltammetry (CV). Conclusions have been made for this group of compounds, and their peculiarities were emphasized in comparison with methyl-, phenyl-, iodo-, and cyano-substituted nitroxides.

  20. Mitochondria-Targeted Antioxidants: Future Perspectives in Kidney Ischemia Reperfusion Injury

    PubMed Central

    Kezic, Aleksandra; Spasojevic, Ivan; Lezaic, Visnja; Bajcetic, Milica

    2016-01-01

    Kidney ischemia/reperfusion injury emerges in various clinical settings as a great problem complicating the course and outcome. Ischemia/reperfusion injury is still an unsolved puzzle with a great diversity of investigational approaches, putting the focus on oxidative stress and mitochondria. Mitochondria are both sources and targets of ROS. They participate in initiation and progression of kidney ischemia/reperfusion injury linking oxidative stress, inflammation, and cell death. The dependence of kidney proximal tubule cells on oxidative mitochondrial metabolism makes them particularly prone to harmful effects of mitochondrial damage. The administration of antioxidants has been used as a way to prevent and treat kidney ischemia/reperfusion injury for a long time. Recently a new method based on mitochondria-targeted antioxidants has become the focus of interest. Here we review the current status of results achieved in numerous studies investigating these novel compounds in ischemia/reperfusion injury which specifically target mitochondria such as MitoQ, Szeto-Schiller (SS) peptides (Bendavia), SkQ1 and SkQR1, and superoxide dismutase mimics. Based on the favorable results obtained in the studies that have examined myocardial ischemia/reperfusion injury, ongoing clinical trials investigate the efficacy of some novel therapeutics in preventing myocardial infarct. This also implies future strategies in preventing kidney ischemia/reperfusion injury. PMID:27313826

  1. A mitochondria-targeted mass spectrometry probe to detect glyoxals: implications for diabetes☆

    PubMed Central

    Pun, Pamela Boon Li; Logan, Angela; Darley-Usmar, Victor; Chacko, Balu; Johnson, Michelle S.; Huang, Guang W.; Rogatti, Sebastian; Prime, Tracy A.; Methner, Carmen; Krieg, Thomas; Fearnley, Ian M.; Larsen, Lesley; Larsen, David S.; Menger, Katja E.; Collins, Yvonne; James, Andrew M.; Kumar, G.D. Kishore; Hartley, Richard C.; Smith, Robin A.J.; Murphy, Michael P.

    2014-01-01

    The glycation of protein and nucleic acids that occurs as a consequence of hyperglycemia disrupts cell function and contributes to many pathologies, including those associated with diabetes and aging. Intracellular glycation occurs after the generation of the reactive 1,2-dicarbonyls methylglyoxal and glyoxal, and disruption of mitochondrial function is associated with hyperglycemia. However, the contribution of these reactive dicarbonyls to mitochondrial damage in pathology is unclear owing to uncertainties about their levels within mitochondria in cells and in vivo. To address this we have developed a mitochondria-targeted reagent (MitoG) designed to assess the levels of mitochondrial dicarbonyls within cells. MitoG comprises a lipophilic triphenylphosphonium cationic function, which directs the molecules to mitochondria within cells, and an o-phenylenediamine moiety that reacts with dicarbonyls to give distinctive and stable products. The extent of accumulation of these diagnostic heterocyclic products can be readily and sensitively quantified by liquid chromatography–tandem mass spectrometry, enabling changes to be determined. Using the MitoG-based analysis we assessed the formation of methylglyoxal and glyoxal in response to hyperglycemia in cells in culture and in the Akita mouse model of diabetes in vivo. These findings indicated that the levels of methylglyoxal and glyoxal within mitochondria increase during hyperglycemia both in cells and in vivo, suggesting that they can contribute to the pathological mitochondrial dysfunction that occurs in diabetes and aging. PMID:24316194

  2. Mitochondria-targeted antioxidant preserves contractile properties and mitochondrial function of skeletal muscle in aged rats.

    PubMed

    Javadov, Sabzali; Jang, Sehwan; Rodriguez-Reyes, Natividad; Rodriguez-Zayas, Ana E; Soto Hernandez, Jessica; Krainz, Tanja; Wipf, Peter; Frontera, Walter

    2015-11-24

    Mitochondrial dysfunction plays a central role in the pathogenesis of sarcopenia associated with a loss of mass and activity of skeletal muscle. In addition to energy deprivation, increased mitochondrial ROS damage proteins and lipids in aged skeletal muscle. Therefore, prevention of mitochondrial ROS is important for potential therapeutic strategies to delay sarcopenia. This study elucidates the pharmacological efficiency of the new developed mitochondria-targeted ROS and electron scavenger, XJB-5-131 (XJB) to restore muscle contractility and mitochondrial function in aged skeletal muscle. Male adult (5-month old) and aged (29-month old) Fischer Brown Norway (F344/BN) rats were treated with XJB for four weeks and contractile properties of single skeletal muscle fibres and activity of mitochondrial ETC complexes were determined at the end of the treatment period. XJB-treated old rats showed higher muscle contractility associated with prevention of protein oxidation in both muscle homogenate and mitochondria compared with untreated counterparts. XJB-treated animals demonstrated a high activity of the respiratory complexes I, III, and IV with no changes in citrate synthase activity. These data demonstrate that mitochondrial ROS play a causal role in muscle weakness, and that a ROS scavenger specifically targeted to mitochondria can reverse age-related alterations of mitochondrial function and improve contractile properties in skeletal muscle. PMID:26415224

  3. Mitochondria Targeted Peptides Protect Against 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Neurotoxicity

    PubMed Central

    Yang, Lichuan; Zhao, Kesheng; Calingasan, Noel Y.; Luo, Guoxiong; Szeto, Hazel H.

    2009-01-01

    Abstract A large body of evidence suggests that mitochondrial dysfunction and oxidative damage play a role in the pathogenesis of Parkinson's disease (PD). A number of antioxidants have been effective in animal models of PD. We have developed a family of mitochondria-targeted peptides that can protect against mitochondrial swelling and apoptosis (SS peptides). In this study, we examined the ability of two peptides, SS-31 and SS-20, to protect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity in mice. SS-31 produced dose-dependent complete protection against loss of dopamine and its metabolites in striatum, as well as loss of tyrosine hydroxylase immunoreactive neurons in substantia nigra pars compacta. SS-20, which does not possess intrinsic ability in scavenging reactive oxygen species, also demonstrated significant neuroprotective effects on dopaminergic neurons of MPTP-treated mice. Both SS-31 and SS-20 were very potent (nM) in preventing MPP+ (1-methyl-4-phenylpyridinium)-induced cell death in cultured dopamine cells (SN4741). Studies with isolated mitochondria showed that both SS-31 and SS-20 prevented MPP+-induced inhibition of oxygen consumption and ATP production, and mitochondrial swelling. These findings provide strong evidence that these neuroprotective peptides, which target both mitochondrial dysfunction and oxidative damage, are a promising approach for the treatment of PD. Antioxid. Redox Signal. 11, 2095–2104. PMID:19203217

  4. Mitochondria-targeted antioxidant preserves contractile properties and mitochondrial function of skeletal muscle in aged rats

    PubMed Central

    Javadov, Sabzali; Jang, Sehwan; Rodriguez-Reyes, Natividad; Rodriguez-Zayas, Ana E.; Hernandez, Jessica Soto; Krainz, Tanja; Wipf, Peter; Frontera, Walter

    2015-01-01

    Mitochondrial dysfunction plays a central role in the pathogenesis of sarcopenia associated with a loss of mass and activity of skeletal muscle. In addition to energy deprivation, increased mitochondrial ROS damage proteins and lipids in aged skeletal muscle. Therefore, prevention of mitochondrial ROS is important for potential therapeutic strategies to delay sarcopenia. This study elucidates the pharmacological efficiency of the new developed mitochondria-targeted ROS and electron scavenger, XJB-5-131 (XJB) to restore muscle contractility and mitochondrial function in aged skeletal muscle. Male adult (5-month old) and aged (29-month old) Fischer Brown Norway (F344/BN) rats were treated with XJB for four weeks and contractile properties of single skeletal muscle fibres and activity of mitochondrial ETC complexes were determined at the end of the treatment period. XJB-treated old rats showed higher muscle contractility associated with prevention of protein oxidation in both muscle homogenate and mitochondria compared with untreated counterparts. XJB-treated animals demonstrated a high activity of the respiratory complexes I, III, and IV with no changes in citrate synthase activity. These data demonstrate that mitochondrial ROS play a causal role in muscle weakness, and that a ROS scavenger specifically targeted to mitochondria can reverse age-related alterations of mitochondrial function and improve contractile properties in skeletal muscle. PMID:26415224

  5. Mitochondria-Targeted Vitamin E Protects Skin from UVB-Irradiation

    PubMed Central

    Kim, Won-Serk; Kim, Ikyon; Kim, Wang-Kyun; Choi, Ju-Yeon; Kim, Doo Yeong; Moon, Sung-Guk; Min, Hyung-Keun; Song, Min-Kyu; Sung, Jong-Hyuk

    2016-01-01

    Mitochondria-targeted vitamin E (MVE) is designed to accumulate within mitochondria and is applied to decrease mitochondrial oxidative damage. However, the protective effects of MVE in skin cells have not been identified. We investigated the protective effect of MVE against UVB in dermal fibroblasts and immortalized human keratinocyte cell line (HaCaT). In addition, we studied the wound-healing effect of MVE in animal models. We found that MVE increased the proliferation and survival of fibroblasts at low concentration (i.e., nM ranges). In addition, MVE increased collagen production and downregulated matrix metalloproteinase1. MVE also increased the proliferation and survival of HaCaT cells. UVB increased reactive oxygen species (ROS) production in fibroblasts and HaCaT cells, while MVE decreased ROS production at low concentration. In an animal experiment, MVE accelerated wound healing from laser-induced skin damage. These results collectively suggest that low dose MVE protects skin from UVB irradiation. Therefore, MVE can be developed as a cosmetic raw material. PMID:26869457

  6. Mitochondria-Targeted Vitamin E Protects Skin from UVB-Irradiation.

    PubMed

    Kim, Won-Serk; Kim, Ikyon; Kim, Wang-Kyun; Choi, Ju-Yeon; Kim, Doo Yeong; Moon, Sung-Guk; Min, Hyung-Keun; Song, Min-Kyu; Sung, Jong-Hyuk

    2016-05-01

    Mitochondria-targeted vitamin E (MVE) is designed to accumulate within mitochondria and is applied to decrease mitochondrial oxidative damage. However, the protective effects of MVE in skin cells have not been identified. We investigated the protective effect of MVE against UVB in dermal fibroblasts and immortalized human keratinocyte cell line (HaCaT). In addition, we studied the wound-healing effect of MVE in animal models. We found that MVE increased the proliferation and survival of fibroblasts at low concentration (i.e., nM ranges). In addition, MVE increased collagen production and downregulated matrix metalloproteinase1. MVE also increased the proliferation and survival of HaCaT cells. UVB increased reactive oxygen species (ROS) production in fibroblasts and HaCaT cells, while MVE decreased ROS production at low concentration. In an animal experiment, MVE accelerated wound healing from laser-induced skin damage. These results collectively suggest that low dose MVE protects skin from UVB irradiation. Therefore, MVE can be developed as a cosmetic raw material. PMID:26869457

  7. Mitochondria-targeted antioxidant SkQ1 improves impaired dermal wound healing in old mice.

    PubMed

    Demyanenko, Ilya A; Popova, Ekaterina N; Zakharova, Vlada V; Ilyinskaya, Olga P; Vasilieva, Tamara V; Romashchenko, Valeria P; Fedorov, Artem V; Manskikh, Vasily N; Skulachev, Maxim V; Zinovkin, Roman A; Pletjushkina, Olga Yu; Skulachev, Vladimir P; Chernyak, Boris V

    2015-07-01

    The process of skin wound healing is delayed or impaired in aging animals. To investigate the possible role of mitochondrial reactive oxygen species (mtROS) in cutaneous wound healing of aged mice, we have applied the mitochondria-targeted antioxidant SkQ1. The SkQ1 treatment resulted in accelerated resolution of the inflammatory phase, formation of granulation tissue, vascularization and epithelization of the wounds. The wounds of SkQ1-treated mice contained increased amount of myofibroblasts which produce extracellular matrix proteins and growth factors mediating granulation tissue formation. This effect resembled SkQ1-induced differentiation of fibroblasts to myofibroblast, observed earlierin vitro. The Transforming Growth Factor beta (TGFb) produced by SkQ1-treated fibroblasts was found to stimulated motility of endothelial cells in vitro, an effect which may underlie pro-angiogenic action of SkQ1 in the wounds. In vitro experiments showed that SkQ1 prevented decomposition of VE-cadherin containing contacts and following increase in permeability of endothelial cells monolayer, induced by pro-inflammatory cytokine TNF. Prevention of excessive reaction of endothelium to the pro-inflammatory cytokine(s) might account for anti-inflammatory effect of SkQ1. Our findings point to an important role of mtROS in pathogenesis of age-related chronic wounds. PMID:26187706

  8. Mitochondria-targeted antioxidant SkQ1 improves impaired dermal wound healing in old mice

    PubMed Central

    Zakharova, Vlada V.; Ilyinskaya, Olga P.; Vasilieva, Tamara V.; Romashchenko, Valeria P.; Fedorov, Artem V.; Manskikh, Vasily N.; Skulachev, Maxim V.; Zinovkin, Roman A.; Pletjushkina, Olga Yu.; Skulachev, Vladimir P.; Chernyak, Boris V.

    2015-01-01

    The process of skin wound healing is delayed or impaired in aging animals. To investigate the possible role of mitochondrial reactive oxygen species (mtROS) in cutaneous wound healing of aged mice, we have applied the mitochondria-targeted antioxidant SkQ1. The SkQ1 treatment resulted in accelerated resolution of the inflammatory phase, formation of granulation tissue, vascularization and epithelization of the wounds. The wounds of SkQ1-treated mice contained increased amount of myofibroblasts which produce extracellular matrix proteins and growth factors mediating granulation tissue formation. This effect resembled SkQ1-induced differentiation of fibroblasts to myofibroblast, observed earlier in vitro. The Transforming Growth Factor beta (TGFβ)produced by SkQ1-treated fibroblasts was found to stimulated motility of endothelial cells in vitro, an effect which may underlie pro-angiogenic action of SkQ1 in the wounds. In vitro experiments showed that SkQ1 prevented decomposition of VE-cadherin containing contacts and following increase in permeability of endothelial cells monolayer, induced by pro-inflammatory cytokine TNF. Prevention of excessive reaction of endothelium to the pro-inflammatory cytokine(s) might account for anti-inflammatory effect of SkQ1. Our findings point to an important role of mtROS in pathogenesis of age-related chronic wounds. PMID:26187706

  9. Mitochondria-Targeted Antioxidants: Future Perspectives in Kidney Ischemia Reperfusion Injury.

    PubMed

    Kezic, Aleksandra; Spasojevic, Ivan; Lezaic, Visnja; Bajcetic, Milica

    2016-01-01

    Kidney ischemia/reperfusion injury emerges in various clinical settings as a great problem complicating the course and outcome. Ischemia/reperfusion injury is still an unsolved puzzle with a great diversity of investigational approaches, putting the focus on oxidative stress and mitochondria. Mitochondria are both sources and targets of ROS. They participate in initiation and progression of kidney ischemia/reperfusion injury linking oxidative stress, inflammation, and cell death. The dependence of kidney proximal tubule cells on oxidative mitochondrial metabolism makes them particularly prone to harmful effects of mitochondrial damage. The administration of antioxidants has been used as a way to prevent and treat kidney ischemia/reperfusion injury for a long time. Recently a new method based on mitochondria-targeted antioxidants has become the focus of interest. Here we review the current status of results achieved in numerous studies investigating these novel compounds in ischemia/reperfusion injury which specifically target mitochondria such as MitoQ, Szeto-Schiller (SS) peptides (Bendavia), SkQ1 and SkQR1, and superoxide dismutase mimics. Based on the favorable results obtained in the studies that have examined myocardial ischemia/reperfusion injury, ongoing clinical trials investigate the efficacy of some novel therapeutics in preventing myocardial infarct. This also implies future strategies in preventing kidney ischemia/reperfusion injury. PMID:27313826

  10. Structural modifications of mitochondria-targeted chlorambucil alter cell death mechanism but preserve MDR evasion.

    PubMed

    Jean, Sae Rin; Pereira, Mark P; Kelley, Shana O

    2014-08-01

    Multidrug resistance (MDR) remains one of the major obstacles in chemotherapy, potentially rendering a multitude of drugs ineffective. Previously, we have demonstrated that mitochondrial targeting of DNA damaging agents is a promising tool for evading a number of common resistance factors that are present in the nucleus or cytosol. In particular, mitochondria-targeted chlorambucil (mt-Cbl) has increased potency and activity against resistant cancer cells compared to the parent compound chlorambucil (Cbl). However, it was found that, due to its high reactivity, mt-Cbl induces a necrotic type of cell death via rapid nonspecific alkylation of mitochondrial proteins. Here, we demonstrate that by tuning the alkylating activity of mt-Cbl via chemical modification, the rate of generation of protein adducts can be reduced, resulting in a shift of the cell death mechanism from necrosis to a more controlled apoptotic pathway. Moreover, we demonstrate that all of the modified mt-Cbl compounds effectively evade MDR resulting from cytosolic GST-μ upregulation by rapidly accumulating in mitochondria, inducing cell death directly from within. In this study, we systematically elucidated the advantages and limitations of targeting alkylating agents with varying reactivity to mitochondria. PMID:24922525

  11. Ex vivo generation of functional immune cells by mitochondria-targeted photosensitization of cancer cells.

    PubMed

    Marrache, Sean; Tundup, Smanla; Harn, Donald A; Dhar, Shanta

    2015-01-01

    Stimulating the immune system for potent immune therapy against cancer is potentially a revolutionary method to eradicate cancer. Tumors stimulated with photosensitizers (PSs) not only kill cancer cells but also help to boost the immune system. We recently reported that tumor-associated antigens (TAAs) generated by delivery of a mitochondria-acting PS zinc phthalocyanine (ZnPc) to MCF-7 breast cancer cells followed by laser irradiation can lead to ex vivo stimulation of mouse bone marrow-derived dendritic cells (BMDCs). The antigens generated from the breast cancer cells were also found to cause significant DC maturation and the activated DCs were able to stimulate T cells to cytotoxic CD8(+) T cells. In this protocol, we describe methods to engineer a mitochondria-targeted biodegradable nanoparticle (NP) formulation, T-ZnPc-NPs for delivery of ZnPc to the mitochondria of MCF-7 cells, subsequent photodynamic therapy (PDT) using a long wavelength laser irradiation to produce TAAs, DC stimulation by the TAAs to secrete interferon-gamma (IFN-γ), and matured DC-driven T-cell activation. PMID:25634271

  12. Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore.

    PubMed

    Severin, Fedor F; Severina, Inna I; Antonenko, Yury N; Rokitskaya, Tatiana I; Cherepanov, Dmitry A; Mokhova, Elena N; Vyssokikh, Mikhail Yu; Pustovidko, Antonina V; Markova, Olga V; Yaguzhinsky, Lev S; Korshunova, Galina A; Sumbatyan, Nataliya V; Skulachev, Maxim V; Skulachev, Vladimir P

    2010-01-12

    A unique phenomenon of mitochondria-targeted protonophores is described. It consists in a transmembrane H(+)-conducting fatty acid cycling mediated by penetrating cations such as 10-(6'-plastoquinonyl)decyltriphenylphosphonium (SkQ1) or dodecyltriphenylphosphonium (C(12)TPP). The phenomenon has been modeled by molecular dynamics and directly proved by experiments on bilayer planar phospholipid membrane, liposomes, isolated mitochondria, and yeast cells. In bilayer planar phospholipid membrane, the concerted action of penetrating cations and fatty acids is found to result in conversion of a pH gradient (DeltapH) to a membrane potential (Deltapsi) of the Nernstian value (about 60 mV Deltapsi at DeltapH = 1). A hydrophobic cation with localized charge (cetyltrimethylammonium) failed to substitute for hydrophobic cations with delocalized charge. In isolated mitochondria, SkQ1 and C(12)TPP, but not cetyltrimethylammonium, potentiated fatty acid-induced (i) uncoupling of respiration and phosphorylation, and (ii) inhibition of H(2)O(2) formation. In intact yeast cells, C(12)TPP stimulated respiration regardless of the extracellular pH value, whereas a nontargeted protonophorous uncoupler (trifluoromethoxycarbonylcyanide phenylhydrazone) stimulated respiration at pH 5 but not at pH 3. Hydrophobic penetrating cations might be promising to treat obesity, senescence, and some kinds of cancer that require mitochondrial hyperpolarization. PMID:20080732

  13. Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore

    PubMed Central

    Severin, Fedor F.; Severina, Inna I.; Antonenko, Yury N.; Rokitskaya, Tatiana I.; Cherepanov, Dmitry A.; Mokhova, Elena N.; Vyssokikh, Mikhail Yu.; Pustovidko, Antonina V.; Markova, Olga V.; Yaguzhinsky, Lev S.; Korshunova, Galina A.; Sumbatyan, Nataliya V.; Skulachev, Maxim V.; Skulachev, Vladimir P.

    2010-01-01

    A unique phenomenon of mitochondria-targeted protonophores is described. It consists in a transmembrane H+-conducting fatty acid cycling mediated by penetrating cations such as 10-(6’-plastoquinonyl)decyltriphenylphosphonium (SkQ1) or dodecyltriphenylphosphonium (C12TPP). The phenomenon has been modeled by molecular dynamics and directly proved by experiments on bilayer planar phospholipid membrane, liposomes, isolated mitochondria, and yeast cells. In bilayer planar phospholipid membrane, the concerted action of penetrating cations and fatty acids is found to result in conversion of a pH gradient (ΔpH) to a membrane potential (Δψ) of the Nernstian value (about 60 mV Δψ at ΔpH = 1). A hydrophobic cation with localized charge (cetyltrimethylammonium) failed to substitute for hydrophobic cations with delocalized charge. In isolated mitochondria, SkQ1 and C12TPP, but not cetyltrimethylammonium, potentiated fatty acid-induced (i) uncoupling of respiration and phosphorylation, and (ii) inhibition of H2O2 formation. In intact yeast cells, C12TPP stimulated respiration regardless of the extracellular pH value, whereas a nontargeted protonophorous uncoupler (trifluoromethoxycarbonylcyanide phenylhydrazone) stimulated respiration at pH 5 but not at pH 3. Hydrophobic penetrating cations might be promising to treat obesity, senescence, and some kinds of cancer that require mitochondrial hyperpolarization. PMID:20080732

  14. Mitochondria-Targeted Antioxidant SS31 Prevents Amyloid Beta-Induced Mitochondrial Abnormalities and Synaptic Degeneration in Alzheimer's Disease.

    PubMed

    Calkins, Marcus J; Manczak, Maria; Reddy, P Hemachandra

    2012-01-01

    In neuronal systems, the health and activity of mitochondria and synapses are tightly coupled. For this reason, it has been postulated that mitochondrial abnormalities may, at least in part, drive neurodegeneration in conditions such as Alzheimer's disease (AD). Mounting evidence from multiple Alzheimer's disease cell and mouse models and postmortem brains suggest that loss of mitochondrial integrity may be a key factor that mediates synaptic loss. Therefore, the prevention or rescue of mitochondrial dysfunction may help delay or altogether prevent AD-associated neurodegeneration. Since mitochondrial health is heavily dependent on antioxidant defenses, researchers have begun to explore the use of mitochondria-targeted antioxidants as therapeutic tools to prevent neurodegenerative diseases. This review will highlight advances made using a model mitochondria-targeted antioxidant peptide, SS31, as a potential treatment for AD. PMID:23226091

  15. Mitochondria-targeted antioxidants do not prevent tumour necrosis factor-induced necrosis of L929 cells.

    PubMed

    Jarvis, Reagan M; Göttert, Jana; Murphy, Michael P; Ledgerwood, Elizabeth C

    2007-09-01

    Mitochondrial production of reactive oxygen species (ROS) is widely reported as a central effector during TNF-induced necrosis. The effect of a family of mitochondria-targeted antioxidants on TNF-induced necrosis of L929 cells was studied. While the commonly used lipid-soluble antioxidant BHA effectively protected cells from TNF-induced necrosis, the mitochondria-targeted antioxidants MitoQ(3), MitoQ(5), MitoQ(10) and MitoPBN had no effect on TNF-induced necrosis. Since BHA also acts as an uncoupler of mitochondrial membrane potential, two additional uncouplers were tested. FCCP and CCCP both provided dose-dependent inhibition of TNF-induced necrosis. In conclusion, the generation of mitochondrial ROS may not be necessary for TNF-induced necrosis. Instead, these results suggest alternative mitochondrial functions, such as a respiration-dependent process, are critical for necrotic death. PMID:17729122

  16. Pulsed EPR Imaging of Nitroxides in Mice

    PubMed Central

    Hyodo, Fuminori; Matsumoto, Shingo; Devasahayam, Nallathamby; Dharmaraj, Christopher; Subramanian, Sankaran; Mitchell, James B.; Krishna, Murali C.

    2012-01-01

    Nitroxides, unlike trityl radicals, have shorter T2s which until now were not detectable by time-domain Electron Paramagnetic Resonance (EPR) spectrometer at 300 MHz pulsed EPR since their phase memory times were shorter than the spectrometer recovery times. In the current version of the time-domain EPR spectrometer with improved spectrometer recovery times, we tested the feasibility of detecting signals from nitroxide radicals. Several nitroxides and the trityl radical Oxo63 were tested. Among the nitroxides evaluated, deuterated 15N-Tempone (15N-PDT) was found to have the longest T2. The signal intensity profile as a function of concentration of these agents was evaluated and a bi-phasic behavior was observed; beyond a nitroxide concentration of 1.5 mM, signal intensity was found to decrease as a result of self-broadening. Imaging experiments were carried out with 15N-PDT in solutions equilibrated with 0, 5, 10 and 21% oxygen using the Single Point Imaging (SPI) modality in EPR. The image intensity in these tubes was found to depend on the oxygen concentration which in turn influences the T2 of 15N-PDT. In vivo experiments were demonstrated with 15N-PDT in anesthetized mice where the distribution and metabolism of 15N-PDT could be monitored. This study, for the first time shows the capability to image a cell-permeable nitroxide in mice using pulsed EPR in the SPI modality. PMID:19157932

  17. The mitochondria-targeted antioxidant MitoQ attenuates liver fibrosis in mice

    PubMed Central

    Rehman, Hasibur; Liu, Qinlong; Krishnasamy, Yasodha; Shi, Zengdun; Ramshesh, Venkat K; Haque, Khujista; Schnellmann, Rick G; Murphy, Michael P; Lemasters, John J; Rockey, Don C; Zhong, Zhi

    2016-01-01

    Oxidative stress plays an essential role in liver fibrosis. This study investigated whether MitoQ, an orally active mitochondrial antioxidant, decreases liver fibrosis. Mice were injected with corn oil or carbon tetrachloride (CCl4, 1:3 dilution in corn oil; 1 µl/g, ip) once every 3 days for up to 6 weeks. 4-Hydroxynonenal adducts increased markedly after CCl4 treatment, indicating oxidative stress. MitoQ attenuated oxidative stress after CCl4. Collagen 1α1 mRNA and hydroxyproline increased markedly after CCl4 treatment, indicating increased collagen formation and deposition. CCl4 caused overt pericentral fibrosis as revealed by both the sirius red staining and second harmonic generation microscopy. MitoQ blunted fibrosis after CCl4. Profibrotic transforming growth factor-β1 (TGF-β1) mRNA and expression of smooth muscle α-actin, an indicator of hepatic stellate cell (HSC) activation, increased markedly after CCl4 treatment. Smad 2/3, the major mediator of TGF-β fibrogenic effects, was also activated after CCl4 treatment. MitoQ blunted HSC activation, TGF-β expression, and Smad2/3 activation after CCl4 treatment. MitoQ also decreased necrosis, apoptosis and inflammation after CCl4 treatment. In cultured HSCs, MitoQ decreased oxidative stress, inhibited HSC activation, TGF-β1 expression, Smad2/3 activation, and extracellular signal-regulated protein kinase activation. Taken together, these data indicate that mitochondrial reactive oxygen species play an important role in liver fibrosis and that mitochondria-targeted antioxidants are promising potential therapies for prevention and treatment of liver fibrosis. PMID:27186319

  18. The mitochondria-targeted antioxidant MitoQ attenuates liver fibrosis in mice.

    PubMed

    Rehman, Hasibur; Liu, Qinlong; Krishnasamy, Yasodha; Shi, Zengdun; Ramshesh, Venkat K; Haque, Khujista; Schnellmann, Rick G; Murphy, Michael P; Lemasters, John J; Rockey, Don C; Zhong, Zhi

    2016-01-01

    Oxidative stress plays an essential role in liver fibrosis. This study investigated whether MitoQ, an orally active mitochondrial antioxidant, decreases liver fibrosis. Mice were injected with corn oil or carbon tetrachloride (CCl4, 1:3 dilution in corn oil; 1 µl/g, ip) once every 3 days for up to 6 weeks. 4-Hydroxynonenal adducts increased markedly after CCl4 treatment, indicating oxidative stress. MitoQ attenuated oxidative stress after CCl4. Collagen 1α1 mRNA and hydroxyproline increased markedly after CCl4 treatment, indicating increased collagen formation and deposition. CCl4 caused overt pericentral fibrosis as revealed by both the sirius red staining and second harmonic generation microscopy. MitoQ blunted fibrosis after CCl4. Profibrotic transforming growth factor-β1 (TGF-β1) mRNA and expression of smooth muscle α-actin, an indicator of hepatic stellate cell (HSC) activation, increased markedly after CCl4 treatment. Smad 2/3, the major mediator of TGF-β fibrogenic effects, was also activated after CCl4 treatment. MitoQ blunted HSC activation, TGF-β expression, and Smad2/3 activation after CCl4 treatment. MitoQ also decreased necrosis, apoptosis and inflammation after CCl4 treatment. In cultured HSCs, MitoQ decreased oxidative stress, inhibited HSC activation, TGF-β1 expression, Smad2/3 activation, and extracellular signal-regulated protein kinase activation. Taken together, these data indicate that mitochondrial reactive oxygen species play an important role in liver fibrosis and that mitochondria-targeted antioxidants are promising potential therapies for prevention and treatment of liver fibrosis. PMID:27186319

  19. Reduction of early reperfusion injury with the mitochondria-targeting peptide bendavia.

    PubMed

    Brown, David A; Hale, Sharon L; Baines, Christopher P; del Rio, Carlos L; Hamlin, Robert L; Yueyama, Yukie; Kijtawornrat, Anusak; Yeh, Steve T; Frasier, Chad R; Stewart, Luke M; Moukdar, Fatiha; Shaikh, Saame Raza; Fisher-Wellman, Kelsey H; Neufer, P Darrell; Kloner, Robert A

    2014-01-01

    We recently showed that Bendavia, a novel mitochondria-targeting peptide, reduced infarction and no-reflow across several experimental models. The purpose of this study was to determine the therapeutic timing and mechanism of action that underlie Bendavia's cytoprotective property. In rabbits exposed to in vivo ischemia/reperfusion (30/180 min), Bendavia administered 20 minutes prior to reperfusion (0.05 mg/kg/h, intravenously) reduced myocardial infarct size by ∼50% when administered for either 1 or 3 hours of reperfusion. However, when Bendavia perfusion began just 10 minutes after the onset of reperfusion, the protection against infarction and no-reflow was completely lost, indicating that the mechanism of protection is occurring early in reperfusion. Experiments in isolated mouse liver mitochondria found no discernible effect of Bendavia on blocking the permeability transition pore, and studies in isolated heart mitochondria showed no effect of Bendavia on respiratory rates. As Bendavia significantly lowered reactive oxygen species (ROS) levels in isolated heart mitochondria, the ROS-scavenging capacity of Bendavia was compared to well-known ROS scavengers using in vitro (cell-free) systems that enzymatically generate ROS. Across doses ranging from 1 nmol/L to 1 mmol/L, Bendavia showed no discernible ROS-scavenging properties, clearly differentiating itself from prototypical scavengers. In conclusion, Bendavia is a promising candidate to reduce cardiac injury when present at the onset of reperfusion but not after reperfusion has already commenced. Given that both infarction and no-reflow are related to increased cellular ROS, Bendavia's protective mechanism of action likely involves reduced ROS generation (as opposed to augmented scavenging) by endothelial and myocyte mitochondria. PMID:24288396

  20. Mitochondria-targeted antioxidants and metabolic modulators as pharmacological interventions to slow ageing.

    PubMed

    Gruber, Jan; Fong, Sheng; Chen, Ce-Belle; Yoong, Sialee; Pastorin, Giorgia; Schaffer, Sebastian; Cheah, Irwin; Halliwell, Barry

    2013-01-01

    Populations in many nations today are rapidly ageing. This unprecedented demographic change represents one of the main challenges of our time. A defining property of the ageing process is a marked increase in the risk of mortality and morbidity with age. The incidence of cancer, cardiovascular and neurodegenerative diseases increases non-linearly, sometimes exponentially with age. One of the most important tasks in biogerontology is to develop interventions leading to an increase in healthy lifespan (health span), and a better understanding of basic mechanisms underlying the ageing process itself may lead to interventions able to delay or prevent many or even all age-dependent conditions. One of the putative basic mechanisms of ageing is age-dependent mitochondrial deterioration, closely associated with damage mediated by reactive oxygen species (ROS). Given the central role that mitochondria and mitochondrial dysfunction play not only in ageing but also in apoptosis, cancer, neurodegeneration and other age-related diseases there is great interest in approaches to protect mitochondria from ROS-mediated damage. In this review, we explore strategies of targeting mitochondria to reduce mitochondrial oxidative damage with the aim of preventing or delaying age-dependent decline in mitochondrial function and some of the resulting pathologies. We discuss mitochondria-targeted and -localized antioxidants (e.g.: MitoQ, SkQ, ergothioneine), mitochondrial metabolic modulators (e.g. dichloroacetic acid), and uncouplers (e.g.: uncoupling proteins, dinitrophenol) as well as some alternative future approaches for targeting compounds to the mitochondria, including advances from nanotechnology. PMID:23022622

  1. Cytotoxicity of mitochondria-targeted resveratrol derivatives: interactions with respiratory chain complexes and ATP synthase.

    PubMed

    Sassi, Nicola; Mattarei, Andrea; Azzolini, Michele; Szabo', Ildiko'; Paradisi, Cristina; Zoratti, Mario; Biasutto, Lucia

    2014-10-01

    We recently reported that mitochondria-targeted derivatives of resveratrol are cytotoxic in vitro, selectively inducing mostly necrotic death of fast-growing and tumoral cells when supplied in the low μM range (N. Sassi et al., Curr. Pharm. Des. 2014). Cytotoxicity is due to H2O2 produced upon accumulation of the compounds into mitochondria. We investigate here the mechanisms underlying ROS generation and mitochondrial depolarization caused by these agents. We find that they interact with the respiratory chain, especially complexes I and III, causing superoxide production. "Capping" free hydroxyls with acetyl or methyl groups increases their effectiveness as respiratory chain inhibitors, promoters of ROS generation and cytotoxic agents. Exposure to the compounds also induces an increase in the occurrence of short transient [Ca(2+)] "spikes" in the cells. This increase is unrelated to ROS production, and it is not the cause of cell death. These molecules furthermore inhibit the F0F1 ATPase. When added to oligomycin-treated cells, the acetylated/methylated ones cause a recovery of the cellular oxygen consumption rates depressed by oligomycin. Since a protonophoric futile cycle which might account for the uncoupling effect is impossible, we speculate that the compounds may cause the transformation of the ATP synthase and/or respiratory chain complex(es) into a conduit for uncoupled proton translocation. Only in the presence of excess oligomycin the most effective derivatives appear to induce the mitochondrial permeability transition (MPT) within the cells. This may be considered to provide circumstantial support for the idea that the ATP synthase is the molecular substrate for the MPT pore. PMID:24997425

  2. Toxicity of neurons treated with herbicides and neuroprotection by mitochondria-targeted antioxidant SS31.

    PubMed

    Reddy, Tejaswini P; Manczak, Maria; Calkins, Marcus J; Mao, Peizhong; Reddy, Arubala P; Shirendeb, Ulziibat; Park, Byung; Reddy, P Hemachandra

    2011-01-01

    The purpose of this study was to determine the neurotoxicity of two commonly used herbicides: picloram and triclopyr and the neuroprotective effects of the mitochondria-targeted antioxidant, SS31. Using mouse neuroblastoma (N2a) cells and primary neurons from C57BL/6 mice, we investigated the toxicity of these herbicides, and protective effects of SS1 peptide against picloram and triclopyr toxicity. We measured total RNA content, cell viability and mRNA expression of peroxiredoxins, neuroprotective genes, mitochondrial-encoded electron transport chain (ETC) genes in N2a cells treated with herbicides and SS31. Using primary neurons from C57BL/6 mice, neuronal survival was studied in neurons treated with herbicides, in neurons pretreated with SS31 plus treated with herbicides, neurons treated with SS31 alone, and untreated neurons. Significantly decreased total RNA content, and cell viability in N2a cells treated with picloram and triclopyr were found compared to untreated N2a cells. Decreased mRNA expression of neuroprotective genes, and ETC genes in cells treated with herbicides was found compared to untreated cells. Decreased mRNA expression of peroxiredoxins 1-6 in N2a cells treated with picloram was found, suggesting that picloram affects the antioxidant enzymes in N2a cells. Immunofluorescence analysis of primary neurons revealed that decreased neuronal branching and degenerating neurons in neurons treated with picloram and triclopyr. However, neurons pretreated with SS31 prevented degenerative process caused by herbicides. Based on these results, we propose that herbicides--picloram and triclopyr appear to damage neurons, and the SS31 peptide appears to protect neurons from herbicide toxicity. PMID:21318024

  3. Toxicity of Neurons Treated with Herbicides and Neuroprotection by Mitochondria-Targeted Antioxidant SS31

    PubMed Central

    Reddy, Tejaswini P.; Manczak, Maria; Calkins, Marcus J.; Mao, Peizhong; Reddy, Arubala P.; Shirendeb, Ulziibat; Park, Byung; Reddy, P. Hemachandra

    2011-01-01

    The purpose of this study was to determine the neurotoxicity of two commonly used herbicides: picloram and triclopyr and the neuroprotective effects of the mitochondria-targeted antioxidant, SS31. Using mouse neuroblastoma (N2a) cells and primary neurons from C57BL/6 mice, we investigated the toxicity of these herbicides, and protective effects of SS1 peptide against picloram and triclopyr toxicity. We measured total RNA content, cell viability and mRNA expression of peroxiredoxins, neuroprotective genes, mitochondrial-encoded electron transport chain (ETC) genes in N2a cells treated with herbicides and SS31. Using primary neurons from C57BL/6 mice, neuronal survival was studied in neurons treated with herbicides, in neurons pretreated with SS31 plus treated with herbicides, neurons treated with SS31 alone, and untreated neurons. Significantly decreased total RNA content, and cell viability in N2a cells treated with picloram and triclopyr were found compared to untreated N2a cells. Decreased mRNA expression of neuroprotective genes, and ETC genes in cells treated with herbicides was found compared to untreated cells. Decreased mRNA expression of peroxiredoxins 1–6 in N2a cells treated with picloram was found, suggesting that picloram affects the antioxidant enzymes in N2a cells. Immunofluorescence analysis of primary neurons revealed that decreased neuronal branching and degenerating neurons in neurons treated with picloram and triclopyr. However, neurons pretreated with SS31 prevented degenerative process caused by herbicides. Based on these results, we propose that herbicides—picloram and triclopyr appear to damage neurons, and the SS31 peptide appears to protect neurons from herbicide toxicity. PMID:21318024

  4. A high-resolution mitochondria-targeting ratiometric fluorescent probe for detection of the endogenous hypochlorous acid

    NASA Astrophysics Data System (ADS)

    Zhou, Liyi; Lu, Dan-Qing; Wang, Qianqian; Hu, Shunqin; Wang, Haifei; Sun, Hongyan; Zhang, Xiaobing

    2016-09-01

    Hypochlorite anion, one of the biologically important reactive oxygen species, plays an essential role in diverse normal biochemical functions and abnormal pathological processes. Herein, an efficient high-resolution mitochondria-targeting ratiometric fluorescent probe for hypochlorous acid detection has been designed, synthesized and characterized. It is easily synthesized by the condensation reaction (Cdbnd C) of a 2-(2-hydroxyphenyl) quinazolin-4(3H)-one fluorophore and a cyanine group (mitochondria-targeting), which made the whole molecular a large Stokes shift (210 nm) and the two well-resolved emission peaks separated by 140 nm. As a result, it is considered as a good candidate for high resolution hypochlorous acid imaging in live cells. The ratiometric fluorescent probe exhibited outstanding features of high sensitivity, high selectivity, rapid response time (within 50 s), and excellent mitochondria-targeting ability. Moreover, the probe can also be successfully applied to imaging endogenously hypochlorous acid in the mitochondria of living cells with low cytotoxicity, and high resolution.

  5. A high-resolution mitochondria-targeting ratiometric fluorescent probe for detection of the endogenous hypochlorous acid.

    PubMed

    Zhou, Liyi; Lu, Dan-Qing; Wang, Qianqian; Hu, Shunqin; Wang, Haifei; Sun, Hongyan; Zhang, Xiaobing

    2016-09-01

    Hypochlorite anion, one of the biologically important reactive oxygen species, plays an essential role in diverse normal biochemical functions and abnormal pathological processes. Herein, an efficient high-resolution mitochondria-targeting ratiometric fluorescent probe for hypochlorous acid detection has been designed, synthesized and characterized. It is easily synthesized by the condensation reaction (CC) of a 2-(2-hydroxyphenyl) quinazolin-4(3H)-one fluorophore and a cyanine group (mitochondria-targeting), which made the whole molecular a large Stokes shift (210nm) and the two well-resolved emission peaks separated by 140nm. As a result, it is considered as a good candidate for high resolution hypochlorous acid imaging in live cells. The ratiometric fluorescent probe exhibited outstanding features of high sensitivity, high selectivity, rapid response time (within 50s), and excellent mitochondria-targeting ability. Moreover, the probe can also be successfully applied to imaging endogenously hypochlorous acid in the mitochondria of living cells with low cytotoxicity, and high resolution. PMID:27236136

  6. Pulsed EPR imaging of nitroxides in mice.

    PubMed

    Hyodo, Fuminori; Matsumoto, Shingo; Devasahayam, Nallathamby; Dharmaraj, Christopher; Subramanian, Sankaran; Mitchell, James B; Krishna, Murali C

    2009-04-01

    Nitroxides, unlike trityl radicals, have shorter T(2)s which until now were not detectable in vivo by a time-domain pulsed Electron Paramagnetic Resonance (EPR) spectrometer at 300 MHz since their phase memory times were shorter than the spectrometer recovery times. In the current version of the time-domain EPR spectrometer with improved spectrometer recovery times, the feasibility of detecting signals from nitroxide radicals was tested. Among the nitroxides evaluated, deuterated (15)N-Tempone ((15)N-PDT) was found to have the longest T(2). The signal intensity profile as a function of concentration of these agents was evaluated and a biphasic behavior was observed; beyond a nitroxide concentration of 1.5mM, signal intensity was found to decrease as a result of self-broadening. Imaging experiments were carried out with (15)N-PDT in solutions equilibrated with 0%, 5%, 10%, and 21% oxygen using the single point imaging (SPI) modality in EPR. The image intensity in these tubes was found to depend on the oxygen concentration which in turn influences the T(2) of (15)N-PDT. In vivo experiments were demonstrated with (15)N-PDT in anesthetized mice where the distribution and metabolism of (15)N-PDT could be monitored. This study, for the first time shows the capability to image a cell-permeable nitroxide in mice using pulsed EPR in the SPI modality. PMID:19157932

  7. Protection against renal ischemia–reperfusion injury in vivo by the mitochondria targeted antioxidant MitoQ

    PubMed Central

    Dare, Anna J.; Bolton, Eleanor A.; Pettigrew, Gavin J.; Bradley, J. Andrew; Saeb-Parsy, Kourosh; Murphy, Michael P.

    2015-01-01

    Ischemia–reperfusion (IR) injury to the kidney occurs in a range of clinically important scenarios including hypotension, sepsis and in surgical procedures such as cardiac bypass surgery and kidney transplantation, leading to acute kidney injury (AKI). Mitochondrial oxidative damage is a significant contributor to the early phases of IR injury and may initiate a damaging inflammatory response. Here we assessed whether the mitochondria targeted antioxidant MitoQ could decrease oxidative damage during IR injury and thereby protect kidney function. To do this we exposed kidneys in mice to in vivo ischemia by bilaterally occluding the renal vessels followed by reperfusion for up to 24 h. This caused renal dysfunction, measured by decreased creatinine clearance, and increased markers of oxidative damage. Administering MitoQ to the mice intravenously 15 min prior to ischemia protected the kidney from damage and dysfunction. These data indicate that mitochondrial oxidative damage contributes to kidney IR injury and that mitochondria targeted antioxidants such as MitoQ are potential therapies for renal dysfunction due to IR injury. PMID:25965144

  8. Mitochondria-targeted antioxidant mitotempo protects mitochondrial function against amyloid beta toxicity in primary cultured mouse neurons.

    PubMed

    Hu, Hongtao; Li, Mo

    2016-09-01

    Mitochondrial defects including excess reactive oxygen species (ROS) production and compromised ATP generation are featured pathology in Alzheimer's disease (AD). Amyloid beta (Aβ)-mediated mitochondrial ROS overproduction disrupts intra-neuronal Redox balance, in turn exacerbating mitochondrial dysfunction leading to neuronal injury. Previous studies have found the beneficial effects of mitochondria-targeted antioxidants in preventing mitochondrial dysfunction and neuronal injury in AD animal and cell models, suggesting that mitochondrial ROS scavengers hold promise for the treatment of this neurological disorder. In this study, we have determined that mitotempo, a novel mitochondria-targeted antioxidant protects mitochondrial function from the toxicity of Aβ in primary cultured neurons. Our results showed that Aβ-promoted mitochondrial superoxide production and neuronal lipid oxidation were significantly suppressed by the application of mitotempo. Moreover, mitotempo also demonstrated protective effects on mitochondrial bioenergetics evidenced by preserved mitochondrial membrane potential, cytochrome c oxidase activity as well as ATP production. In addition, the Aβ-induced mitochondrial DNA (mtDNA) depletion and decreased expression levels of mtDNA replication-related DNA polymerase gamma (DNA pol γ) and Twinkle were substantially mitigated by mitotempo. Therefore, our study suggests that elimination of excess mitochondrial ROS rescues mitochondrial function in Aβ-insulted neruons; and mitotempo has the potential to be a promising therapeutic agent to protect mitochondrial and neuronal function in AD. PMID:27444386

  9. Ex vivo programming of dendritic cells by mitochondria-targeted nanoparticles to produce interferon-gamma for cancer immunotherapy.

    PubMed

    Marrache, Sean; Tundup, Smanla; Harn, Donald A; Dhar, Shanta

    2013-08-27

    One of the limitations for clinical applications of dendritic cell (DC)-based cancer immunotherapy is the low potency in generating tumor antigen specific T cell responses. We examined the immunotherapeutic potential of a mitochondria-targeted nanoparticle (NP) based on a biodegradable polymer and zinc phthalocyanine (ZnPc) photosensitizer (T-ZnPc-NPs). Here, we report that tumor antigens generated from treatment of breast cancer cells with T-ZnPc-NPs upon light stimulation activate DCs to produce high levels of interferon-gamma, an important cytokine considered as a product of T and natural killer cells. The remarkable ex vivo DC stimulation ability of this tumor cell supernatant is a result of an interleukin (IL)-12/IL-18 autocrine effect. These findings contribute to the understanding of how in situ light activation amplifies the host immune responses when NPs deliver the photosensitizer to the mitochondria and open up the possibility of using mitochondria-targeted-NP-treated, light-activated cancer cell supernatants as possible vaccines. PMID:23899410

  10. Methodology for use of mitochondria-targeted cations in the field of oxidative stress-related research.

    PubMed

    Vyssokikh, Mikhail Y; Antonenko, Yury N; Lyamzaev, Konstantin G; Rokitskaya, Tatyana I; Skulachev, Vladimir P

    2015-01-01

    For many pathological conditions, reactive oxygen species (ROS) generated in mitochondria are considered to have a role as a trigger. When mitochondrial ROS (mROS) are formed in the inner mitochondrial membrane, they initiate free radical-mediated chain reactions of lipid peroxidation and are thus especially damaging. The consequences of membrane damage are decreased electrical resistance of the membrane, oxidative damage to cardiolipin (a mitochondria specific lipid essential for functioning of respiratory chain proteins and H(+)-ATP synthase), and damage to mitochondrial DNA localized in close vicinity to the inner membrane, with consequent mitochondrial dysfunction and induction of apoptotic cascade and cell death. To target the starting point of such undesirable events, antioxidants conjugated with mitochondria-targeted, membrane-penetrating cations can be used to scavenge ROS inside mitochondria. The most demonstrative indications favoring this conclusion originate from recent discoveries of the in vivo effects of such cations belonging to the MitoQ and SkQ groups. Here we describe some essential methodological aspects of the application of mitochondria-targeted cations promising in treating oxidative stress-related pathologies. PMID:25634274

  11. Nitroxide delivery system for Nrf2 activation and skin protection.

    PubMed

    Ben Yehuda Greenwald, Maya; Frušić-Zlotkin, Marina; Soroka, Yoram; Sasson, Shmuel Ben; Bianco-Peled, Havazelet; Bitton, Ronit; Kohen, Ron

    2015-08-01

    Cyclic nitroxides are a large group of compounds composed of diverse stable radicals also known as synthetic antioxidants. Although nitroxides are valuable for use in several skin conditions, in in vivo conditions they have several drawbacks, such as nonspecific dispersion in normal tissue, preferential renal clearance and rapid reduction of the nitroxide to the corresponding hydroxylamine. However, these drawbacks can be easily addressed by encapsulating the nitroxides within microemulsions. This approach would allow nitroxide activity and therefore their valuable effects (e.g. activation of the Keap1-Nrf2-EpRE pathway) to continue. In this work, nitroxides were encapsulated in a microemulsion composed of biocompatible ingredients. The nanometric size and shape of the vehicle microemulsion and nitroxide microemulsion displayed high similarity, indicating that the stability of the microemulsions was preserved. Our studies demonstrated that nitroxide microemulsions were more potent inducers of the Keap1-Nrf2-EpRE pathway than the free nitroxides, causing the activation of phase II enzymes. Moreover, microemulsions containing nitroxides significantly reduced UVB-induced cytotoxicity in the skin. Understanding the mechanism of this improved activity may expand the usage of many other Nrf2 modulating molecules in encapsulated form, as a skin protection strategy against oxidative stress-related conditions. PMID:25986586

  12. Exchange and shuttling of electrons by nitroxide spin labels.

    PubMed

    Nettleton, D O; Morse, P D; Swartz, H M

    1989-06-01

    The ability of nitroxide spin labels to act as oxidizers of reduced nitroxides (hydroxylamines) in biological and model systems was demonstrated. All of the nitroxides tested were able to act as oxidizing agents with respect to hydroxylamine derivatives of nitroxides. The rates of these reactions were first order with respect to nitroxide concentration and with respect to hydroxylamine concentration, making the reaction second order overall. The second-order rate constants are reported for a number of these reactions. These reactions proceeded to an equilibrium state and the equilibrium constants for several combinations of reactants are presented. Both the rate constants and the equilibrium constants were found to be dependent on the ring structure of the nitroxide and hydroxylamine, with piperidines being reduced more easily and pyrrolidines and oxazolidines being oxidized more easily. All of the hydroxylamine derivatives were oxidized by air to their respective nitroxides, with the rate of this oxidation greater for pyrrolidines than for piperidines. Furthermore, hydroxylamines that are permeable to lipid bilayers were able to act as shuttles of reducing equivalents to liposome-encapsulated nitroxides that were otherwise inaccessible to reducing agents. This mechanism of shuttling of electrons was able to explain the relatively rapid reduction by cells of a nonpermeable nitroxide in the presence of a permeable nitroxide. PMID:2729999

  13. Nitroxides protect against peroxynitrite-induced nitration and oxidation.

    PubMed

    Sadowska-Bartosz, Izabela; Gajewska, Agnieszka; Skolimowski, Janusz; Szewczyk, Rafał; Bartosz, Grzegorz

    2015-12-01

    Nitroxides are promising compounds for prevention of undesired protein modifications. The aim of this study was to compare the efficiency of 11 nitroxides, derivatives of 2,2,6,6-tetramethylpiperidine-1-oxide (TEMPO) and 2,2,5,5-tetramethylpirrolidine-1-oxyl (PROXYL) in prevention of nitration and oxidation of model compounds and human serum albumin (HSA). Most nitroxides were very efficient in preventing loss of fluorescein fluorescence induced by peroxynitrite (PN) (IC50 in the nanomolar range) and preventing HSA nitration. The loss of fluorescein fluorescence was demonstrated to be due to nitration. Nitroxides were more effective in prevention nitration than oxidation reactions. They showed a concentration window for preventing dihydrorhodamine (DHR) 123 oxidation but exerted a prooxidant effect at both high and low concentrations. No prooxidant effect of nitroxides was seen in prevention of DHR123 oxidation induced by SIN-1. In all essays hydrophobic nitroxides (especially 4-nonylamido-TEMPO and 3-carbamolyl-dehydroPROXYL) showed the lowest efficiency. An exception was the prevention of thiol group oxidation by PN and SIN-1 where hydrophobic nitroxides were the most effective, apparently due to binding to the protein. Nitroxides showed low toxicity to MCF-7 cells. Most nitroxides, except for the most hydrophobic ones, protected cells from the cytotoxic action of SIN-1 and SIN-1-induced protein nitration. These results point to potential usefulness of nitroxides for prevention of PN-induced oxidation and, especially, nitration. PMID:26546694

  14. Design and Synthesis of a Mitochondria-Targeted Mimic of Glutathione Peroxidase, MitoEbselen-2, as a Radiation Mitigator

    PubMed Central

    2015-01-01

    Ionizing radiation (IR) triggers mitochondrial overproduction of H2O2 and accumulation of lipid hydroperoxides leading to the induction of apoptotic and necroptotic cell death pathways. Given the high catalytic efficiency of the seleno-enzyme glutathione peroxidase (Gpx) toward reduction of lipid hydroperoxides and H2O2, we tested the potential of mitochondria-targeted derivatives of ebselen to mitigate the deleterious effects of IR. We report that 2-[[2-[4-(3-oxo-1,2-benzoselenazol-2-yl)phenyl]acetyl]amino]ethyl-triphenyl-phosphonium chloride (MitoPeroxidase 2) was effective in reducing lipid hydroperoxides, preventing apoptotic cell death, and, when administered 24 h postirradiation, increased the survival of mice exposed to whole body γ-irradiation. PMID:25530831

  15. Identification of functionally important amino acid residues in the mitochondria targeting sequence of Hepatitis B virus X protein

    SciTech Connect

    Li, Sai Kam; Ho, Sai Fan; Tsui, Kwok Wing; Fung, Kwok Pui; Waye, M.Y. Mary

    2008-11-10

    Chronic hepatitis B virus (HBV) infection has been strongly associated with hepatocellular carcinoma (HCC) and the X protein (HBx) is thought to mediate the cellular changes associated with carcinogenesis. Recently, isolation of the hepatitis B virus integrants from HCC tissue by others have established the fact that the X gene is often truncated at its C-terminus. Expression of the GFP fusion proteins of HBx and its truncation mutants with a GFP tag in human liver cell-lines in this study revealed that the C-terminus of HBx is indispensable for its specific localization in the mitochondria. A crucial region of seven amino acids at the C-terminus has been mapped out in which the cysteine residue at position 115 serves as the most important residue for the subcellular localization. When cysteine 115 of HBx is mutated to alanine the mitochondria targeting property of HBx is abrogated.

  16. Novel mitochondria-targeted compounds composed of natural constituents: conjugates of plant alkaloids berberine and palmatine with plastoquinone.

    PubMed

    Chernyak, B V; Antonenko, Y N; Galimov, E R; Domnina, L V; Dugina, V B; Zvyagilskaya, R A; Ivanova, O Yu; Izyumov, D S; Lyamzaev, K G; Pustovidko, A V; Rokitskaya, T I; Rogov, A G; Severina, I I; Simonyan, R A; Skulachev, M V; Tashlitsky, V N; Titova, E V; Trendeleva, T A; Shagieva, G S

    2012-09-01

    Novel mitochondria-targeted compounds composed entirely of natural constituents have been synthesized and tested in model lipid membranes, in isolated mitochondria, and in living human cells in culture. Berberine and palmatine, penetrating cations of plant origin, were conjugated by nonyloxycarbonylmethyl residue with the plant electron carrier and antioxidant plastoquinone. These conjugates (SkQBerb, SkQPalm) and their analogs lacking the plastoquinol moiety (C10Berb and C10Palm) penetrated across planar bilayer phospholipid membrane in their cationic forms and accumulated in isolated mitochondria or in mitochondria in living human cells in culture. Reduced forms of SkQBerb and SkQPalm inhibited lipid peroxidation in isolated mitochondria at nanomolar concentrations. In isolated mitochondria and in living cells, the berberine and palmatine moieties were not reduced, so antioxidant activity belonged exclusively to the plastoquinol moiety. In human fibroblasts, nanomolar SkQBerb and SkQPalm prevented fragmentation of mitochondria and apoptosis induced by exogenous hydrogen peroxide. At higher concentrations, conjugates of berberine and palmatine induced proton transport mediated by free fatty acids both in model and in mitochondrial membrane. In mitochondria this process was facilitated by the adenine nucleotide carrier. As an example of application of the novel mitochondria-targeted antioxidants SkQBerb and SkQPalm to studies of signal transduction, we discuss induction of cell cycle arrest, differentiation, and morphological normalization of some tumor cells. We suggest that production of oxygen radicals in mitochondria is necessary for growth factors-MAP-kinase signaling, which supports proliferation and transformed phenotype. PMID:23157257

  17. Rapid-Scan EPR of Immobilized Nitroxides

    PubMed Central

    Yu, Zhelin; Quine, Richard W.; Rinard, George A.; Tseitlin, Mark; Elajaili, Hanan; Kathirvelu, Velavan; Clouston, Laura J.; Boratyński, Przemysław J.; Rajca, Andrzej; Stein, Richard; Mchaourab, Hassane; Eaton, Sandra S.; Eaton, Gareth R.

    2014-01-01

    X-band electron paramagnetic resonance spectra of immobilized nitroxides were obtained by rapid scan at 293 K. Scan widths were 155 G with 13.4 kHz scan frequency for 14N-perdeuterated tempone and for T4 lysozyme doubly spin labeled with an iodoacetamide spirocyclohexyl nitroxide and 100 G with 20.9 kHz scan frequency for 15N-perdeuterated tempone. These wide scans were made possible by modifications to our rapid-scan driver, scan coils made of Litz wire, and the placement of highly conducting aluminum plates on the poles of a Bruker 10" magnet to reduce resistive losses in the magnet pole faces. For the same data acquisition time, the signal-to-noise for the rapid-scan absorption spectra was about an order of magnitude higher than for continuous wave first-derivative spectra recorded with modulation amplitudes that do not broaden the lineshapes. PMID:25240151

  18. Rapid-scan EPR of immobilized nitroxides.

    PubMed

    Yu, Zhelin; Quine, Richard W; Rinard, George A; Tseitlin, Mark; Elajaili, Hanan; Kathirvelu, Velavan; Clouston, Laura J; Boratyński, Przemysław J; Rajca, Andrzej; Stein, Richard; Mchaourab, Hassane; Eaton, Sandra S; Eaton, Gareth R

    2014-10-01

    X-band electron paramagnetic resonance spectra of immobilized nitroxides were obtained by rapid scan at 293 K. Scan widths were 155 G with 13.4 kHz scan frequency for (14)N-perdeuterated tempone and for T4 lysozyme doubly spin labeled with an iodoacetamide spirocyclohexyl nitroxide and 100 G with 20.9 kHz scan frequency for (15)N-perdeuterated tempone. These wide scans were made possible by modifications to our rapid-scan driver, scan coils made of Litz wire, and the placement of highly conducting aluminum plates on the poles of a Bruker 10″ magnet to reduce resistive losses in the magnet pole faces. For the same data acquisition time, the signal-to-noise for the rapid-scan absorption spectra was about an order of magnitude higher than for continuous wave first-derivative spectra recorded with modulation amplitudes that do not broaden the lineshapes. PMID:25240151

  19. Nitroxide amide-BODIPY probe behavior in fibroblasts analyzed by advanced fluorescence microscopy.

    PubMed

    Liras, M; Simoncelli, S; Rivas-Aravena, A; García, O; Scaiano, J C; Alarcon, E I; Aspée, A

    2016-04-26

    A novel synthesized nitroxide amide-BODIPY prefluorescent probe was used to study cellular redox balance that modulates nitroxide/hydroxylamine ratio in cultured human fibroblasts. FLIM quantitatively differentiated between nitroxide states of the cytoplasm-localized probe imaged by TIRF, monitoring nitroxide depletion by hydrogen peroxide; eluding incorrect interpretation if only fluorescence intensity is considered. PMID:27065020

  20. BODIPY-Appended 2-(2-Pyridyl)benzimidazole Platinum(II) Catecholates for Mitochondria-Targeted Photocytotoxicity.

    PubMed

    Mitra, Koushambi; Gautam, Srishti; Kondaiah, Paturu; Chakravarty, Akhil R

    2016-09-01

    Platinum(II) complexes of the type [Pt(L)(cat)] (1 and 2), in which H2 cat is catechol and L represents two 2-(2-pyridyl)benzimidazole ligands with 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) pendants, were synthesized to achieve mitochondria-targeted photocytotoxicity. The complexes showed strong absorptions in the range λ=510-540 nm. Complex 1 exhibited intense emission at λ=525 nm in 1 % DMSO/water solution (fluorescence quantum yield of 0.06). Nanosecond transient absorption spectral features indicated an enhanced population of the triplet excited state in di-iodinated complex 2. The generation of singlet oxygen by complex 2 upon exposure to visible light, as evidenced from experiments with 1,3-diphenylisobenzofuran, is suitable for photodynamic therapy because of the remarkable photosensitizing ability. The complexes resulted in excellent photocytotoxicity in HaCaT cells (half maximal inhibitory concentration IC50 ≈3 μm, λ=400-700 nm, light dose=10 J cm(-2) ), but they remained non-toxic in the dark (IC50 >100 μm). Confocal microscopy images of 1 and Pt estimation from isolated mitochondria showed colocalization of the complexes in the mitochondria. Complex 2 displayed generation of reactive oxygen species induced by visible light, disruption of the mitochondrial membrane potential, and apoptosis. PMID:27465792

  1. Urushiol detection using a profluorescent nitroxide.

    PubMed

    Braslau, Rebecca; Rivera, Frank; Lilie, Erin; Cottman, MariEllen

    2013-01-18

    A method to visually detect minute amounts of urushiol, the toxic catechol from poison oak, poison ivy, and poison sumac, has been developed utilizing the reaction of a profluorescent nitroxide with the B-n-butylcatecholboronate ester formed in situ from urushiol and B-n-butylboronic acid. The resulting N-alkoxyamine is strongly fluorescent upon illumination with a fluorescent lamp, allowing the location of the toxic urushiol contamination to be visualized. This methodology constitutes the groundwork for the future development of a spray to detect urushiol to avoid contact dermatitis, as well as to detect catecholamines for biomedical applications. PMID:22900824

  2. Inhibition of myeloperoxidase-mediated hypochlorous acid production by nitroxides

    PubMed Central

    Rees, Martin D.; Bottle, Steven E.; Fairfull-Smith, Kathryn E.; Malle, Ernst; Whitelock, John M.; Davies, Michael J.

    2014-01-01

    Tissue damage resulting from the extracellular production of HOCl (hypochlorous acid) by the MPO (myeloperoxidase)-hydrogen peroxide-chloride system of activated phagocytes is implicated as a key event in the progression of a number of human inflammatory diseases. Consequently, there is considerable interest in the development of therapeutically useful MPO inhibitors. Nitroxides are well established antioxidant compounds of low toxicity that can attenuate oxidative damage in animal models of inflammatory disease. They are believed to exert protective effects principally by acting as superoxide dismutase mimetics or radical scavengers. However, we show here that nitroxides can also potently inhibit MPO-mediated HOCl production, with the nitroxide 4-aminoTEMPO inhibiting HOCl production by MPO and by neutrophils with IC50 values of approx. 1 and 6 μM respectively. Structure–activity relationships were determined for a range of aliphatic and aromatic nitroxides, and inhibition of oxidative damage to two biologically-important protein targets (albumin and perlecan) are demonstrated. Inhibition was shown to involve one-electron oxidation of the nitroxides by the compound I form of MPO and accumulation of compound II. Haem destruction was also observed with some nitroxides. Inhibition of neutrophil HOCl production by nitroxides was antagonized by neutrophil-derived superoxide, with this attributed to superoxide-mediated reduction of compound II. This effect was marginal with 4-aminoTEMPO, probably due to the efficient superoxide dismutase-mimetic activity of this nitroxide. Overall, these data indicate that nitroxides have considerable promise as therapeutic agents for the inhibition of MPO-mediated damage in inflammatory diseases. PMID:19379130

  3. Inactivation of renal mitochondrial respiratory complexes and manganese superoxide dismutase during sepsis: mitochondria-targeted antioxidant mitigates injury

    PubMed Central

    Patil, Naeem K.; Parajuli, Nirmala; Mayeux, Philip R.

    2014-01-01

    Acute kidney injury (AKI) is a complication of sepsis and leads to a high mortality rate. Human and animal studies suggest that mitochondrial dysfunction plays an important role in sepsis-induced multi-organ failure; however, the specific mitochondrial targets damaged during sepsis remain elusive. We used a clinically relevant cecal ligation and puncture (CLP) murine model of sepsis and assessed renal mitochondrial function using high-resolution respirometry, renal microcirculation using intravital microscopy, and renal function. CLP caused a time-dependent decrease in mitochondrial complex I and II/III respiration and reduced ATP. By 4 h after CLP, activity of manganese superoxide dismutase (MnSOD) was decreased by 50% and inhibition was sustained through 36 h. These events were associated with increased mitochondrial superoxide generation. We then evaluated whether the mitochondria-targeted antioxidant Mito-TEMPO could reverse renal mitochondrial dysfunction and attenuate sepsis-induced AKI. Mito-TEMPO (10 mg/kg) given at 6 h post-CLP decreased mitochondrial superoxide levels, protected complex I and II/III respiration, and restored MnSOD activity by 18 h. Mito-TEMPO also improved renal microcirculation and glomerular filtration rate. Importantly, even delayed therapy with a single dose of Mito-TEMPO significantly increased 96-h survival rate from 40% in untreated septic mice to 80%. Thus, sepsis causes sustained inactivation of three mitochondrial targets that can lead to increased mitochondrial superoxide. Importantly, even delayed therapy with Mito-TEMPO alleviated kidney injury, suggesting that it may be a promising approach to treat septic AKI. PMID:24500690

  4. Designing Inhibitors of Cytochrome c/Cardiolipin Peroxidase Complexes: Mitochondria-Targeted Imidazole-Substituted Fatty Acids

    PubMed Central

    Jiang, Jianfei; Bakan, Ahmet; Kapralov, Alexandr A.; Silva, K. Ishara; Huang, Zhentai; Amoscato, Andrew A.; Peterson, James; Garapati, Venkata Krishna; Saxena, Sunil; Bayir, Hülya; Atkinson, Jeffrey; Bahar, Ivet; Kagan, Valerian E.

    2014-01-01

    Mitochondria have emerged as the major regulatory platform responsible for coordination of numerous metabolic reactions as well as cell death processes, whereby the execution of intrinsic apoptosis includes the production of reactive oxygen species fueling oxidation of cardiolipin (CL) catalyzed by cytochrome (cyt) c. As this oxidation occurs within the peroxidase complex of cyt c with CL, the latter represents a promising target for the discovery and design of drugs with anti-apoptotic mechanism of action. In this work, we designed and synthesized a new group of mitochondria-targeted imidazole-substituted analogues of stearic acid TPP-n-ISA with different positions of the attached imidazole group on the fatty acid (n=6, 8, 10, 13 and 14). By using a combination of absorption spectroscopy and EPR protocols (continuous wave electron paramagnetic resonance, and electron spin echo envelope modulation) we demonstrated that TPP-n-ISA indeed were able to potently suppress CL induced structural re-arrangements in cyt c paving the way to its peroxidase competence. TPP-n-ISA analogues preserved the low spin hexa-coordinated heme iron state in cyt c/CL complexes whereby TPP-6-ISA displayed a significantly more effective preservation pattern than TPP-14-ISA. Elucidation of these intermolecular stabilization mechanisms of cyt c identified TPP-6-ISA as an effective inhibitor of the peroxidase function of cyt c/CL complexes with a significant anti-apoptotic potential realized in mouse embryonic cells exposed to ionizing irradiation. These experimental findings were detailed and supported by all atom molecular dynamics simulations. Based on the experimental data and computations predictions, we identified TPP-6-ISA as a candidate drug with optimized anti-apoptotic potency. PMID:24631490

  5. Inactivation of renal mitochondrial respiratory complexes and manganese superoxide dismutase during sepsis: mitochondria-targeted antioxidant mitigates injury.

    PubMed

    Patil, Naeem K; Parajuli, Nirmala; MacMillan-Crow, Lee Ann; Mayeux, Philip R

    2014-04-01

    Acute kidney injury (AKI) is a complication of sepsis and leads to a high mortality rate. Human and animal studies suggest that mitochondrial dysfunction plays an important role in sepsis-induced multi-organ failure; however, the specific mitochondrial targets damaged during sepsis remain elusive. We used a clinically relevant cecal ligation and puncture (CLP) murine model of sepsis and assessed renal mitochondrial function using high-resolution respirometry, renal microcirculation using intravital microscopy, and renal function. CLP caused a time-dependent decrease in mitochondrial complex I and II/III respiration and reduced ATP. By 4 h after CLP, activity of manganese superoxide dismutase (MnSOD) was decreased by 50% and inhibition was sustained through 36 h. These events were associated with increased mitochondrial superoxide generation. We then evaluated whether the mitochondria-targeted antioxidant Mito-TEMPO could reverse renal mitochondrial dysfunction and attenuate sepsis-induced AKI. Mito-TEMPO (10 mg/kg) given at 6 h post-CLP decreased mitochondrial superoxide levels, protected complex I and II/III respiration, and restored MnSOD activity by 18 h. Mito-TEMPO also improved renal microcirculation and glomerular filtration rate. Importantly, even delayed therapy with a single dose of Mito-TEMPO significantly increased 96-h survival rate from 40% in untreated septic mice to 80%. Thus, sepsis causes sustained inactivation of three mitochondrial targets that can lead to increased mitochondrial superoxide. Importantly, even delayed therapy with Mito-TEMPO alleviated kidney injury, suggesting that it may be a promising approach to treat septic AKI. PMID:24500690

  6. Mitochondria-targeted ROS scavenger improves post-ischemic recovery of cardiac function and attenuates mitochondrial abnormalities in aged rats

    PubMed Central

    Escobales, Nelson; Nuñez, Rebeca E.; Jang, Sehwan; Parodi-Rullan, Rebecca; Ayala-Peña, Sylvette; Sacher, Joshua R.; Skoda, Erin M.; Wipf, Peter; Frontera, Walter; Javadov, Sabzali

    2014-01-01

    Mitochondria-generated reactive oxygen species (ROS) play a crucial role in the pathogenesis of aging and age-associated diseases. In this study, we evaluated the effects of XJB-5-131 (XJB), a mitochondria-targeted ROS and electron scavenger, on cardiac resistance to ischemia-reperfusion (IR)-induced oxidative stress in aged rats. Male adult (5-month old, n=17) and aged (29-month old, n=19) Fischer Brown Norway (F344/BN) rats were randomly assigned to the following groups: adult (A), adult+XJB (AX), aged (O), and aged+XJB (OX). XJB was administered 3 times per week (3 mg/kg body weight, IP) for four weeks. At the end of the treatment period, cardiac function was continuously monitored in excised hearts using the Langendorff technique for 30 min, followed by 20-min of global ischemia, and 60-min reperfusion. XJB improved post-ischemic recovery of aged hearts, as evidenced by greater left ventricular developed-pressures and rate-pressure products than the untreated, aged-matched group. The state 3 respiration rates at complexes I, II and IV of mitochondria isolated from XJB-treated aged hearts were 57% (P<0.05), 25% (P<0.05) and 28% (P<0.05), respectively, higher than controls. Ca2+-induced swelling, an indicator of permeability transition pore opening, was reduced in mitochondria of XJB-treated aged rats. In addition, XJB significantly attenuated the H2O2-induced depolarization of the mitochondrial inner membrane as well as total and mitochondrial ROS levels in cultured cardiomyocytes. This study underlines the importance of mitochondrial ROS in aging-induced cardiac dysfunction and suggests that targeting mitochondrial ROS may be an effective therapeutic approach to protect the aged heart against IR injury. PMID:25451170

  7. Mitochondria-targeted ROS scavenger improves post-ischemic recovery of cardiac function and attenuates mitochondrial abnormalities in aged rats.

    PubMed

    Escobales, Nelson; Nuñez, Rebeca E; Jang, Sehwan; Parodi-Rullan, Rebecca; Ayala-Peña, Sylvette; Sacher, Joshua R; Skoda, Erin M; Wipf, Peter; Frontera, Walter; Javadov, Sabzali

    2014-12-01

    Mitochondria-generated reactive oxygen species (ROS) play a crucial role in the pathogenesis of aging and age-associated diseases. In this study, we evaluated the effects of XJB-5-131 (XJB), a mitochondria-targeted ROS and electron scavenger, on cardiac resistance to ischemia-reperfusion (IR)-induced oxidative stress in aged rats. Male adult (5-month old, n=17) and aged (29-month old, n=19) Fischer Brown Norway (F344/BN) rats were randomly assigned to the following groups: adult (A), adult+XJB (AX), aged (O), and aged+XJB (OX). XJB was administered 3 times per week (3mg/kg body weight, IP) for four weeks. At the end of the treatment period, cardiac function was continuously monitored in excised hearts using the Langendorff technique for 30 min, followed by 20 min of global ischemia, and 60-min reperfusion. XJB improved post-ischemic recovery of aged hearts, as evidenced by greater left ventricular developed-pressures and rate-pressure products than the untreated, aged-matched group. The state 3 respiration rates at complexes I, II and IV of mitochondria isolated from XJB-treated aged hearts were 57% (P<0.05), 25% (P<0.05) and 28% (P<0.05), respectively, higher than controls. Ca(2+)-induced swelling, an indicator of permeability transition pore opening, was reduced in the mitochondria of XJB-treated aged rats. In addition, XJB significantly attenuated the H2O2-induced depolarization of the mitochondrial inner membrane as well as the total and mitochondrial ROS levels in cultured cardiomyocytes. This study underlines the importance of mitochondrial ROS in aging-induced cardiac dysfunction and suggests that targeting mitochondrial ROS may be an effective therapeutic approach to protect the aged heart against IR injury. PMID:25451170

  8. How mitochondrial dysfunction affects zebrafish development and cardiovascular function: an in vivo model for testing mitochondria-targeted drugs

    PubMed Central

    Pinho, Brígida R; Santos, Miguel M; Fonseca-Silva, Anabela; Valentão, Patrícia; Andrade, Paula B; Oliveira, Jorge M A

    2013-01-01

    , it evidences zebrafish's potential for in vivo efficacy or toxicity screening of ubiquinone analogues or antiparasitic mitochondria-targeted drugs. PMID:23758163

  9. Designing inhibitors of cytochrome c/cardiolipin peroxidase complexes: mitochondria-targeted imidazole-substituted fatty acids.

    PubMed

    Jiang, Jianfei; Bakan, Ahmet; Kapralov, Alexandr A; Silva, K Ishara; Huang, Zhentai; Amoscato, Andrew A; Peterson, James; Garapati, Venkata Krishna; Saxena, Sunil; Bayir, Hülya; Atkinson, Jeffrey; Bahar, Ivet; Kagan, Valerian E

    2014-06-01

    Mitochondria have emerged as the major regulatory platform responsible for the coordination of numerous metabolic reactions as well as cell death processes, whereby the execution of intrinsic apoptosis includes the production of reactive oxygen species fueling oxidation of cardiolipin (CL) catalyzed by cytochrome (Cyt) c. As this oxidation occurs within the peroxidase complex of Cyt c with CL, the latter represents a promising target for the discovery and design of drugs with antiapoptotic mechanisms of action. In this work, we designed and synthesized a new group of mitochondria-targeted imidazole-substituted analogs of stearic acid TPP-n-ISAs with various positions of the attached imidazole group on the fatty acid (n = 6, 8, 10, 13, and 14). By using a combination of absorption spectroscopy and EPR protocols (continuous wave electron paramagnetic resonance and electron spin echo envelope modulation) we demonstrated that TPP-n-ISAs indeed were able to potently suppress CL-induced structural rearrangements in Cyt c, paving the way to its peroxidase competence. TPP-n-ISA analogs preserved the low-spin hexa-coordinated heme-iron state in Cyt c/CL complexes whereby TPP-6-ISA displayed a significantly more effective preservation pattern than TPP-14-ISA. Elucidation of these intermolecular stabilization mechanisms of Cyt c identified TPP-6-ISA as an effective inhibitor of the peroxidase function of Cyt c/CL complexes with a significant antiapoptotic potential realized in mouse embryonic cells exposed to ionizing irradiation. These experimental findings were detailed and supported by all-atom molecular dynamics simulations. Based on the experimental data and computation predictions, we identified TPP-6-ISA as a candidate drug with optimized antiapoptotic potency. PMID:24631490

  10. Mitochondria-targeting particles

    PubMed Central

    Wongrakpanich, Amaraporn; Geary, Sean M; Joiner, Mei-ling A; Anderson, Mark E; Salem, Aliasger K

    2015-01-01

    Mitochondria are a promising therapeutic target for the detection, prevention and treatment of various human diseases such as cancer, neurodegenerative diseases, ischemia-reperfusion injury, diabetes and obesity. To reach mitochondria, therapeutic molecules need to not only gain access to specific organs, but also to overcome multiple barriers such as the cell membrane and the outer and inner mitochondrial membranes. Cellular and mitochondrial barriers can be potentially overcome through the design of mitochondriotropic particulate carriers capable of transporting drug molecules selectively to mitochondria. These particulate carriers or vectors can be made from lipids (liposomes), biodegradable polymers, or metals, protecting the drug cargo from rapid elimination and degradation in vivo. Many formulations can be tailored to target mitochondria by the incorporation of mitochondriotropic agents onto the surface and can be manufactured to desired sizes and molecular charge. Here, we summarize recently reported strategies for delivering therapeutic molecules to mitochondria using various particle-based formulations. PMID:25490424

  11. Mitochondria-targeted Ogg1 and Aconitase-2 Prevent Oxidant-induced Mitochondrial DNA Damage in Alveolar Epithelial Cells*

    PubMed Central

    Kim, Seok-Jo; Cheresh, Paul; Williams, David; Cheng, Yuan; Ridge, Karen; Schumacker, Paul T.; Weitzman, Sigmund; Bohr, Vilhelm A.; Kamp, David W.

    2014-01-01

    Mitochondria-targeted human 8-oxoguanine DNA glycosylase (mt-hOgg1) and aconitase-2 (Aco-2) each reduce oxidant-induced alveolar epithelial cell (AEC) apoptosis, but it is unclear whether protection occurs by preventing AEC mitochondrial DNA (mtDNA) damage. Using quantitative PCR-based measurements of mitochondrial and nuclear DNA damage, mtDNA damage was preferentially noted in AEC after exposure to oxidative stress (e.g. amosite asbestos (5–25 μg/cm2) or H2O2 (100–250 μm)) for 24 h. Overexpression of wild-type mt-hOgg1 or mt-long α/β 317–323 hOgg1 mutant incapable of DNA repair (mt-hOgg1-Mut) each blocked A549 cell oxidant-induced mtDNA damage, mitochondrial p53 translocation, and intrinsic apoptosis as assessed by DNA fragmentation and cleaved caspase-9. In contrast, compared with controls, knockdown of Ogg1 (using Ogg1 shRNA in A549 cells or primary alveolar type 2 cells from ogg1−/− mice) augmented mtDNA lesions and intrinsic apoptosis at base line, and these effects were increased further after exposure to oxidative stress. Notably, overexpression of Aco-2 reduced oxidant-induced mtDNA lesions, mitochondrial p53 translocation, and apoptosis, whereas siRNA for Aco-2 (siAco-2) enhanced mtDNA damage, mitochondrial p53 translocation, and apoptosis. Finally, siAco-2 attenuated the protective effects of mt-hOgg1-Mut but not wild-type mt-hOgg1 against oxidant-induced mtDNA damage and apoptosis. Collectively, these data demonstrate a novel role for mt-hOgg1 and Aco-2 in preserving AEC mtDNA integrity, thereby preventing oxidant-induced mitochondrial dysfunction, p53 mitochondrial translocation, and intrinsic apoptosis. Furthermore, mt-hOgg1 chaperoning of Aco-2 in preventing oxidant-mediated mtDNA damage and apoptosis may afford an innovative target for the molecular events underlying oxidant-induced toxicity. PMID:24429287

  12. A molecular switch for targeting between endoplasmic reticulum (ER) and mitochondria: conversion of a mitochondria-targeting element into an ER-targeting signal in DAKAP1.

    PubMed

    Ma, Yuliang; Taylor, Susan S

    2008-04-25

    dAKAP1 (AKAP121, S-AKAP84), a dual specificity PKA scaffold protein, exists in several forms designated as a, b, c, and d. Whether dAKAP1 targets to endoplasmic reticulum (ER) or mitochondria depends on the presence of the N-terminal 33 amino acids (N1), and these N-terminal variants are generated by either alternative splicing and/or differential initiation of translation. The mitochondrial targeting motif, which is localized between residues 49 and 63, is comprised of a hydrophobic helix followed by positive charges ( Ma, Y., and Taylor, S. (2002) J. Biol. Chem. 277, 27328-27336 ). dAKAP1 is located on the cytosolic surface of mitochondria outer membrane and both smooth and rough ER membrane. A single residue, Asp(31), within the first 33 residues of dAKAP1b is required for ER targeting. Asp(31), which functions as a separate motif from the mitochondrial targeting signal, converts the mitochondrial-targeting signal into a bipartite ER-targeting signal, without destroying the mitochondria-targeting signal. Therefore dAKAP1 possesses a single targeting element capable of targeting to both mitochondria and ER, with the ER signal overlapping the mitochondria signal. The specificity of ER or mitochondria targeting is determined and switched by the availability of the negatively charged residue, Asp(31). PMID:18287098

  13. Mitochondrial impairments contribute to Spinocerebellar ataxia type 1 progression and can be ameliorated by the mitochondria-targeted antioxidant MitoQ.

    PubMed

    Stucki, David M; Ruegsegger, Céline; Steiner, Silvio; Radecke, Julika; Murphy, Michael P; Zuber, Benoît; Saxena, Smita

    2016-08-01

    Spinocerebellar ataxia type 1 (SCA1), due to an unstable polyglutamine expansion within the ubiquitously expressed Ataxin-1 protein, leads to the premature degeneration of Purkinje cells (PCs), decreasing motor coordination and causing death within 10-15 years of diagnosis. Currently, there are no therapies available to slow down disease progression. As secondary cellular impairments contributing to SCA1 progression are poorly understood, here, we focused on identifying those processes by performing a PC specific proteome profiling of Sca1(154Q/2Q) mice at a symptomatic stage. Mass spectrometry analysis revealed prominent alterations in mitochondrial proteins. Immunohistochemical and serial block-face scanning electron microscopy analyses confirmed that PCs underwent age-dependent alterations in mitochondrial morphology. Moreover, colorimetric assays demonstrated impairment of the electron transport chain complexes (ETC) and decrease in ATPase activity. Subsequently, we examined whether the mitochondria-targeted antioxidant MitoQ could restore mitochondrial dysfunction and prevent SCA1-associated pathology in Sca1(154Q/2Q) mice. MitoQ treatment both presymptomatically and when symptoms were evident ameliorated mitochondrial morphology and restored the activities of the ETC complexes. Notably, MitoQ slowed down the appearance of SCA1-linked neuropathology such as lack of motor coordination as well as prevented oxidative stress-induced DNA damage and PC loss. Our work identifies a central role for mitochondria in PC degeneration in SCA1 and provides evidence for the supportive use of mitochondria-targeted therapeutics in slowing down disease progression. PMID:27394174

  14. The β-phosphorus hyperfine coupling constant in nitroxides: 6. Solvent effects in non-cyclic nitroxides.

    PubMed

    Audran, Gérard; Bosco, Lionel; Nkolo, Paulin; Bikanga, Raphael; Brémond, Paul; Butscher, Teddy; Marque, Sylvain R A

    2016-04-12

    In two recent articles (Org. Biomol. Chem., 2015 and 2016), we showed that changes in the phosphorus hyperfine coupling constant aP at position β in β-phosphorylated nitroxides can be dramatic. Such changes were applied to the titration of water in organic solvents and conversely of organic solvents in water. One of the molecules tested was a non-cyclic nitroxide meaning that a thorough investigation of the solvent effect on the EPR hyperfine coupling constant is timely due. In this article, we show that the aP of persistent non-cyclic β-phosphorylated nitroxides decrease with the normalized polarity Reichardt's constant E(N)T. The Koppel-Palm and Kalmet-Abboud-Taft relationships were applied to gain deeper insight into the effects influencing aN and aP: polarity/polarizability, hydrogen bond donor properties, and the structuredness of the cybotactic region. PMID:26986555

  15. Nitroxides as redox probes of melanins: dark-induced and photoinduced changes in redox equilibria

    SciTech Connect

    Sarna, T.; Korytowski, W.; Sealy, R.C.

    1985-05-15

    The interaction of nitroxide free radicals and their reduced products (hydroxylamines) with synthetic and natural melanins has been studied. Electron spin resonance spectroscopy was used to measure changes in radical concentration in the dark and during irradiation with visible or uv light. Some reduction of nitroxide occurs in the dark, and is reversible: the nitroxide can be completely regenerated by the one-electron oxidant ferricyanide. The kinetics of the process depend strongly on radical charge and pH. For positively charged nitroxides the rate is much faster than for either neutral or anionic radicals. At pH 10 the rate is about 20 times faster than at pH 5. Oxidation of hydroxylamine also can occur so that a redox equilibrium is established. The equilibrium constant has been estimated for the reaction between a nitroxide and melanin from autoxidation of 3,4-dihydroxyphenylalanine. Results are also dependent upon the type of melanin used and chemical modification (oxidation or reduction) of the melanin. Redox equilibria are altered during irradiation with either visible or uv light. Rapid oxidation of hydroxylamine to nitroxide is apparent, together with a slower reduction of nitroxide. Action spectra for these processes are related to those for melanin radical production and oxygen consumption in nitroxide-free melanin systems. Reduction of nitroxide is inhibited by oxygen, suggesting a competition between nitroxide and oxygen for photoinduced reducing equivalents.

  16. Mitochondria-targeted esculetin alleviates mitochondrial dysfunction by AMPK-mediated nitric oxide and SIRT3 regulation in endothelial cells: potential implications in atherosclerosis

    PubMed Central

    Karnewar, Santosh; Vasamsetti, Sathish Babu; Gopoju, Raja; Kanugula, Anantha Koteswararao; Ganji, Sai Krishna; Prabhakar, Sripadi; Rangaraj, Nandini; Tupperwar, Nitin; Kumar, Jerald Mahesh; Kotamraju, Srigiridhar

    2016-01-01

    Mitochondria-targeted compounds are emerging as a new class of drugs that can potentially alter the pathophysiology of those diseases where mitochondrial dysfunction plays a critical role. We have synthesized a novel mitochondria-targeted esculetin (Mito-Esc) with an aim to investigate its effect during oxidative stress-induced endothelial cell death and angiotensin (Ang)-II-induced atherosclerosis in ApoE−/− mice. Mito-Esc but not natural esculetin treatment significantly inhibited H2O2- and Ang-II-induced cell death in human aortic endothelial cells by enhancing NO production via AMPK-mediated eNOS phosphorylation. While L-NAME (NOS inhibitor) significantly abrogated Mito-Esc-mediated protective effects, Compound c (inhibitor of AMPK) significantly decreased Mito-Esc-mediated increase in NO production. Notably, Mito-Esc promoted mitochondrial biogenesis by enhancing SIRT3 expression through AMPK activation; and restored H2O2-induced inhibition of mitochondrial respiration. siSIRT3 treatment not only completely reversed Mito-Esc-mediated mitochondrial biogenetic marker expressions but also caused endothelial cell death. Furthermore, Mito-Esc administration to ApoE−/− mice greatly alleviated Ang-II-induced atheromatous plaque formation, monocyte infiltration and serum pro-inflammatory cytokines levels. We conclude that Mito-Esc is preferentially taken up by the mitochondria and preserves endothelial cell survival during oxidative stress by modulating NO generation via AMPK. Also, Mito-Esc-induced SIRT3 plays a pivotal role in mediating mitochondrial biogenesis and perhaps contributes to its anti-atherogenic effects. PMID:27063143

  17. Synthesis and functional survey of new Tacrine analogs modified with nitroxides or their precursors

    PubMed Central

    Kálai, Tamás; Altman, Robin; Maezawa, Izumi; Balog, Mária; Morisseau, Christophe; Petrlova, Jitka; Hammock, Bruce D.; Jin, Lee-Way; Trudell, James; Voss, John C.; Hideg, Kálmán

    2014-01-01

    A series of new Tacrine analogs modified with nitroxides or pre-nitroxides on 9-amino group via methylene or piperazine spacers were synthesized; the nitroxide or its precursors were incorporated into the Tacrine scaffold. The new compounds were tested for their hydroxyl radical and peroxyl radical scavenging ability, acetyl cholinesterase inhibitor activity and protection against Aβ-induced cytotoxicity. Based on these assays, we conclude that Tacrine analogs connected to five and six-membered nitroxides via piperazine spacers (9b, 9b/HCl and 12) exhibited the best activity, providing direction for further development of additional candidates with dual functionality (anti Alzheimer’s and antioxidant). PMID:24657571

  18. Nitroxide-loaded hexosomes provide MRI contrast in vivo.

    PubMed

    Bye, Nicole; Hutt, Oliver E; Hinton, Tracey M; Acharya, Durga P; Waddington, Lynne J; Moffat, Bradford A; Wright, David K; Wang, Hong X; Mulet, Xavier; Muir, Benjamin W

    2014-07-29

    The purpose of this work was to synthesize and screen, for their effectiveness to act as T1-enhancing magnetic resonance imaging (MRI) contrast agents, a small library of nitroxide lipids incorporated into cubic-phase lipid nanoparticles (cubosomes). The most effective nitroxide lipid was then formulated into lower-toxicity lipid nanoparticles (hexosomes), and effective MR contrast was observed in the aorta and spleen of live rats in vivo. This new class of lower-toxicity lipid nanoparticles allowed for higher relaxivities on the order of those of clinically used gadolinium complexes. The new hexosome formulation presented herein was significantly lower in toxicity and higher in relaxivity than cubosome formulations previously reported by us. PMID:24979524

  19. Polyoxometalate salts of cationic nitronyl nitroxide free radicals

    NASA Astrophysics Data System (ADS)

    Coronado, Eugenio; Giménez-Saiz, Carlos; Gómez-García, Carlos J.; Romero, Francisco M.

    2008-12-01

    The cationic nitronyl nitroxide free radical of the N-methylpyridinium type p-MepyNN + has been combined with [Mo 8O 26] 4- and Keggin [SiW 12O 40] 4- polyanions to afford salts ( p-MepyNN) 4[Mo 8O 26]·DMSO (DMSO = dimethylsulfoxide) ( 1) and ( p-MepyNN) 4[SiW 12O 40]·6DMF (DMF = dimethylformamide) ( 2). Herein, their structural and magnetic properties are described.

  20. Spin-polarized nitroxide radicals in organic glasses.

    SciTech Connect

    Tarasov, V. F.; Shkrob, I. A.; Trifunac, A. D.; Chemistry

    2002-01-01

    Nonequilibrium spin polarization formed in a stable nitroxide radical, 2,2,6,6-tetramethyl-1-piperidinyloxy (Tempo) due to the occurrence of Chemically Induced Dynamic Electron Polarization (CIDEP) in photoexcited molecular complexes of this radical with 1,4-benzoquinone, 1,4-naphthaquinone, 9,10-anthraquinone, and their derivatives is observed. These complexes occur spontaneously in low-temperature organic glasses (20-70 K) upon freezing the concentrated liquid solutions. The emissive net polarization in the nitroxide radical is observed 0.1-10 {mu}s after the photoexcitation of the p-quinone moiety. No degradation of the polarized magnetic resonance signal from Tempo after >104 excitation cycles was observed. This spin polarization is shown to be mainly due to a polarization transfer from the lowest triplet state of the p-quinone. This transfer is driven by the electron spin exchange interaction between the nitroxide radical and the triplet p-quinone; it occurs simultaneously with a spin-selective electronic relaxation of the photoexcited complex. The resulting mechanism combines the features of the electron spin polarization transfer (ESPT) and radical-triplet pair mechanisms (RTPM) in liquid. A theoretical model of such a mechanism is suggested.

  1. Nitroxide pharmaceutical development for age-related degeneration and disease

    PubMed Central

    Zarling, Jacob A.; Brunt, Vienna E.; Vallerga, Anne K.; Li, Weixing; Tao, Albert; Zarling, David A.; Minson, Christopher T.

    2015-01-01

    Nitroxide small molecule agents are in development as preventative or therapeutic pharmaceutical drugs for age-related macular degeneration (AMD) and cardiovascular disease, which are two major diseases of aging. These aging diseases are associated with patient genetics, smoking, diet, oxidative stress, and chronic inflammation. Nitroxide drugs preventing aging-, smoking-, high sugar or high fat diet-, or radiation- and other environmental-induced pathophysiological conditions in aging disease are reviewed. Tempol (TP), Tempol Hydroxylamine (TP-H), and TP-H prodrug (OT-551) are evaluated in (1) non-smokers versus smokers with cutaneous microvascular dysfunction, rapidly reversed by cutaneous TP; (2) elderly cancer patients at risk for radiation-induced skin burns or hair loss, prevented by topical TP; and (3) elderly smoker or non-smoker AMD patients at risk for vision loss, prevented by daily eye drops of OT-551. The human data indicates safety and efficacy for these nitroxide drugs. Both TP and TP-H topically penetrate and function in skin or mucosa, protecting and treating radiation burns and hair loss or smoking-induced cutaneous vascular dysfunction. TP and TP-H do not penetrate the cornea, while OT-551 does effectively penetrate and travels to the back of the eye, preserving visual acuity and preserving normal and low light luminance in dry AMD smokers and non-smoker patients. Topical, oral, or injectable drug formulations are discussed. PMID:26594225

  2. Oxoammonium cation intermediate in the nitroxide-catalyzed dismutation of superoxide.

    PubMed

    Krishna, M C; Grahame, D A; Samuni, A; Mitchell, J B; Russo, A

    1992-06-15

    Dismutation of superoxide has been shown previously to be catalyzed by stable nitroxide compounds. In the present study, the mechanism of superoxide (.O2-) dismutation by various five-membered ring and six-membered ring nitroxides was studied by electron paramagnetic resonance spectrometry, UV-visible spectrophotometry, cyclic voltammetry, and bulk electrolysis. Electron paramagnetic resonance signals from the carbocyclic nitroxide derivatives (piperidinyl, pyrrolidinyl, and pyrrolinyl) were unchanged when exposed to enzymatically generated .O2-, whereas, in the presence of .O2- and reducing agents such as NADH and NADPH, the nitroxides underwent reduction to their respective hydroxylamines. The reaction of 4-hydroxy-2,2,6,6-tetramethyl-1-hydroxypiperidine (Tempol-H) with .O2- was measured and, in agreement with earlier reports on related compounds, the rate was found to be too slow to be consistent with a mechanism of .O2- dismutation involving the hydroxylamine as an intermediate. Voltammetric analyses of the carbocyclic nitroxide derivatives revealed a reversible one-electron redox couple at positive potentials. In contrast, oxazolidine derivatives were irreversibly oxidized. At negative potentials, all of the nitroxides studied exhibited a broad, irreversible reductive wave. The rate of .O2- dismutation correlated with the reversible midpoint redox potential. Bulk electrolysis at positive potentials was found to generate a metastable oxidized form of the nitroxide. The results indicate that the dismutation of .O2- is catalyzed by the oxoammonium/nitroxide redox couple for carbocyclic nitroxide derivatives. In addition to the one-electron mitochondrial reduction pathway, the present results suggest the possibility that cellular bioreduction by a two-electron pathway may occur subsequent to oxidation of stable nitroxides. Furthermore, the cellular destruction of persistent spin adduct nitroxides might also be facilitated by a primary univalent oxidation. PMID

  3. Oxoammonium cation intermediate in the nitroxide-catalyzed dismutation of superoxide.

    PubMed Central

    Krishna, M C; Grahame, D A; Samuni, A; Mitchell, J B; Russo, A

    1992-01-01

    Dismutation of superoxide has been shown previously to be catalyzed by stable nitroxide compounds. In the present study, the mechanism of superoxide (.O2-) dismutation by various five-membered ring and six-membered ring nitroxides was studied by electron paramagnetic resonance spectrometry, UV-visible spectrophotometry, cyclic voltammetry, and bulk electrolysis. Electron paramagnetic resonance signals from the carbocyclic nitroxide derivatives (piperidinyl, pyrrolidinyl, and pyrrolinyl) were unchanged when exposed to enzymatically generated .O2-, whereas, in the presence of .O2- and reducing agents such as NADH and NADPH, the nitroxides underwent reduction to their respective hydroxylamines. The reaction of 4-hydroxy-2,2,6,6-tetramethyl-1-hydroxypiperidine (Tempol-H) with .O2- was measured and, in agreement with earlier reports on related compounds, the rate was found to be too slow to be consistent with a mechanism of .O2- dismutation involving the hydroxylamine as an intermediate. Voltammetric analyses of the carbocyclic nitroxide derivatives revealed a reversible one-electron redox couple at positive potentials. In contrast, oxazolidine derivatives were irreversibly oxidized. At negative potentials, all of the nitroxides studied exhibited a broad, irreversible reductive wave. The rate of .O2- dismutation correlated with the reversible midpoint redox potential. Bulk electrolysis at positive potentials was found to generate a metastable oxidized form of the nitroxide. The results indicate that the dismutation of .O2- is catalyzed by the oxoammonium/nitroxide redox couple for carbocyclic nitroxide derivatives. In addition to the one-electron mitochondrial reduction pathway, the present results suggest the possibility that cellular bioreduction by a two-electron pathway may occur subsequent to oxidation of stable nitroxides. Furthermore, the cellular destruction of persistent spin adduct nitroxides might also be facilitated by a primary univalent oxidation. PMID

  4. Saturation factor of nitroxide radicals in liquid DNP by pulsed ELDOR experiments.

    PubMed

    Türke, Maria-Teresa; Bennati, Marina

    2011-03-01

    We propose the use of the pulse electron double resonance (ELDOR) method to determine the effective saturation factor of nitroxide radicals for dynamic nuclear polarization (DNP) experiments in liquids. The obtained values for the nitroxide radical TEMPONE-D,(15)N at different concentrations are rationalized in terms of spin relaxation and are shown to fulfil the Overhauser theory. PMID:21264371

  5. Development of a mitochondria-based centrifugal ultrafiltration/liquid chromatography/mass spectrometry method for screening mitochondria-targeted bioactive constituents from complex matrixes: Herbal medicines as a case study.

    PubMed

    Yang, Xing-Xin; Xu, Feng; Wang, Dan; Yang, Zhi-Wei; Tan, Huan-Ran; Shang, Ming-Ying; Wang, Xuan; Cai, Shao-Qing

    2015-09-25

    Mitochondria are an important intracellular pharmacological target because damage to this organelle results in a variety of human disorders and because mitochondria are involved in complex processes such as energy generation, apoptosis and lipid metabolism. To expedite the search for natural bioactive compounds targeting mitochondria, we initially developed an efficient mitochondria-based screening method by combining centrifugal ultrafiltration (CU) with liquid chromatography/mass spectrometry (LC/MS), which is called screening method for mitochondria-targeted bioactive constituents (SM-MBC) and is compatible with the search of mitochondria-targeted compounds from complex matrixes such as herbal medicines extracts. Functionally active, structurally intact and pure mitochondria were obtained from rat myocardium using an optimized protocol for mitochondrial isolation comprising organelle release followed by differential and Nycodenz density gradient centrifugation. After evaluating the reliability of the method using thiabendazole (TZ), rotenone (RN), amiodarone (AR) and trimetazidine (TD) as positive controls, this method was successfully applied to screen bioactive constituents from extracts of Polygoni Cuspidati Rhizoma et Radix (PCRR) and Scutellariae Radix (SR). Nineteen active compounds were detected and identified by LC/MS, of which 17 were new mitochondria-targeted compounds. The activity of 9 of the 19 hit compounds was confirmed by in vitro pharmacological trials. These results demonstrate that SM-MBC can be used for the efficient screening of mitochondria-targeted constituents in complex preparations used to treat mitochondrial disorders, such as PCRR and SR. The results may be meaningful for an in-depth understanding of drug mechanism of action and drug discovery from medicinal herbs. PMID:26306914

  6. The mitochondria-targeted anti-oxidant MitoQ decreases ischemia-reperfusion injury in a murine syngeneic heart transplant model

    PubMed Central

    Dare, Anna J.; Logan, Angela; Prime, Tracy A.; Rogatti, Sebastian; Goddard, Martin; Bolton, Eleanor M.; Bradley, J. Andrew; Pettigrew, Gavin J.; Murphy, Michael P.; Saeb-Parsy, Kourosh

    2015-01-01

    Background Free radical production and mitochondrial dysfunction during cardiac graft reperfusion is a major factor in post-transplant ischemia-reperfusion (IR) injury, an important underlying cause of primary graft dysfunction. We therefore assessed the efficacy of the mitochondria-targeted anti-oxidant MitoQ in reducing IR injury in a murine heterotopic cardiac transplant model. Methods Hearts from C57BL/6 donor mice were flushed with storage solution alone, solution containing the anti-oxidant MitoQ, or solution containing the non–anti-oxidant decyltriphenylphosphonium control and exposed to short (30 minutes) or prolonged (4 hour) cold preservation before transplantation. Grafts were transplanted into C57BL/6 recipients and analyzed for mitochondrial reactive oxygen species production, oxidative damage, serum troponin, beating score, and inflammatory markers 120 minutes or 24 hours post-transplant. Results MitoQ was taken up by the heart during cold storage. Prolonged cold preservation of donor hearts before IR increased IR injury (troponin I, beating score) and mitochondrial reactive oxygen species, mitochondrial DNA damage, protein carbonyls, and pro-inflammatory cytokine release 24 hours after transplant. Administration of MitoQ to the donor heart in the storage solution protected against this IR injury by blocking graft oxidative damage and dampening the early pro-inflammatory response in the recipient. Conclusions IR after heart transplantation results in mitochondrial oxidative damage that is potentiated by cold ischemia. Supplementing donor graft perfusion with the anti-oxidant MitoQ before transplantation should be studied further to reduce IR-related free radical production, the innate immune response to IR injury, and subsequent donor cardiac injury. PMID:26140808

  7. Comparison of antioxidant activity between aromatic indolinonic nitroxides and natural and synthetic antioxidants.

    PubMed

    Damiani, Elisabetta; Belaid, Chokri; Carloni, Patricia; Greci, Lucedio

    2003-07-01

    In view of the possible employment of nitroxide compounds in various fields, it is important to know how they compare with other synthetic antioxidant compounds currently used in several industries and with naturally occurring antioxidants. To address this issue, the antioxidant activity of two aromatic indolinonic nitroxides synthesized by us was compared with both commercial phenolic antioxidants (BHT and BHA) and with natural phenolic antioxidants (alpha-hydroxytyrosol, tyrosol, caffeic acid, alpha-tocopherol). DPPH radical scavenging ability and the inhibition of both lipid and protein oxidation induced by the peroxyl-radical generator, AAPH, were evaluated. The results obtained show that overall: (i) the reduced forms of the nitroxide compounds are better scavengers of DPPH radical than butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BLT) but less efficient than the natural compounds; (ii) the nitroxides inhibit both linolenic acid micelles and bovine serum albumin (BSA) oxidation to similar extents as most of the other compounds in a concentration-dependent fashion. Since the aromatic nitroxides tested in this study are less toxic than BHT, these compounds may be regarded as potential, alternative sources for several applications. The mechanisms underlying the antioxidant activity of nitroxides were further confirmed by UV-Vis absorption spectroscopy experiments and macroscale reactions in the presence of radicals generated by thermolabile azo-compounds. Distribution coefficients in octanol/buffer of the nitroxides and the other compounds were also determined as a measure of lipophilicity. PMID:12911269

  8. Ionizable Nitroxides for Studying Local Electrostatic Properties of Lipid Bilayers and Protein Systems by EPR.

    PubMed

    Voinov, Maxim A; Smirnov, Alex I

    2015-01-01

    Electrostatic interactions are known to play a major role in the myriad of biochemical and biophysical processes. Here, we describe biophysical methods to probe local electrostatic potentials of proteins and lipid bilayer systems that are based on an observation of reversible protonation of nitroxides by electron paramagnetic resonance (EPR). Two types of probes are described: (1) methanethiosulfonate derivatives of protonatable nitroxides for highly specific covalent modification of the cysteine's sulfhydryl groups and (2) spin-labeled phospholipids with a protonatable nitroxide tethered to the polar head group. The probes of both types report on their ionization state through changes in magnetic parameters and degree of rotational averaging, thus, allowing the electrostatic contribution to the interfacial pKa of the nitroxide, and, therefore, the local electrostatic potential to be determined. Due to their small molecular volume, these probes cause a minimal perturbation to the protein or lipid system. Covalent attachment secures the position of the reporter nitroxides. Experimental procedures to characterize and calibrate these probes by EPR, and also the methods to analyze the EPR spectra by simulations are outlined. The ionizable nitroxide labels and the nitroxide-labeled phospholipids described so far cover an exceptionally wide range of ca. 2.5-7.0 pH units, making them suitable to study a broad range of biophysical phenomena, especially at the negatively charged lipid bilayer surfaces. The rationale for selecting proper electrostatically neutral interface for probe calibration, and examples of lipid bilayer surface potential studies, are also described. PMID:26477252

  9. Chemistry and Antihypertensive Effects of Tempol and Other Nitroxides

    PubMed Central

    WILCOX, CHRISTOPHER S.; PEARLMAN, ADAM

    2009-01-01

    Nitroxides can undergo one- or two-electron reduction reactions to hydroxylamines or oxammonium cations, respectively, which themselves are interconvertible, thereby providing redox metabolic actions. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (tempol) is the most extensively studied nitroxide. It is a cell membrane-permeable amphilite that dismutates superoxide catalytically, facilitates hydrogen peroxide metabolism by catalase-like actions, and limits formation of toxic hydroxyl radicals produced by Fenton reactions. It is broadly effective in detoxifying these reactive oxygen species in cell and animal studies. When administered intravenously to hypertensive rodent models, tempol caused rapid and reversible dose-dependent reductions in blood pressure in 22 of 26 studies. This was accompanied by vasodilation, increased nitric oxide activity, reduced sympathetic nervous system activity at central and peripheral sites, and enhanced potassium channel conductance in blood vessels and neurons. When administered orally or by infusion over days or weeks to hypertensive rodent models, it reduced blood pressure in 59 of 68 studies. This was accompanied by correction of salt sensitivity and endothelial dysfunction and reduced agonist-evoked oxidative stress and contractility of blood vessels, reduced renal vascular resistance, and increased renal tissue oxygen tension. Thus, tempol is broadly effective in reducing blood pressure, whether given by acute intravenous injection or by prolonged administration, in a wide range of rodent models of hypertension. PMID:19112152

  10. Effect of Sterical Shielding on the Redox Properties of Imidazoline and Imidazolidine Nitroxides.

    PubMed

    Kirilyuk, Igor A; Bobko, Andrey A; Semenov, Sergey V; Komarov, Denis A; Irtegova, Irina G; Grigor'ev, Igor A; Bagryanskaya, Elena

    2015-09-18

    The oxidant properties of the series of 2,2,5,5-tetraalkyl imidazoline and imidazolidine nitroxides were investigated. An increase in the number of bulky alkyl substituents leads to a decrease in the rate of reduction with ascorbate, which makes the electrochemical reduction potential more negative and shifts the equilibrium in the mixture of nitroxide and reference hydroxylamine (3-carboxy-1-hydroxy-2,2,5,5-tetramethylpyrrolidine-1-oxyl-1-(15)N) toward the starting compounds. The effect of structural factors on these reactions was analyzed by means of multiple regression using the Fujita steric constant Es and the inductive Hammett constant σI. Satisfactory statistical outputs were obtained in all of the biparameter correlations, denoting that the oxidant properties of the nitroxides are determined by steric and electronic effects of the substituents. The data imply that bulky substituents can stabilize nitroxide and/or destabilize hydroxylamine. PMID:26302173

  11. Chiral all-organic nitroxide biradical liquid crystals showing remarkably large positive magneto-LC effects.

    PubMed

    Suzuki, Katsuaki; Takemoto, Yusa; Takaoka, Shohei; Taguchi, Koji; Uchida, Yoshiaki; Mazhukin, Dmitrii G; Grigor'ev, Igor A; Tamura, Rui

    2016-03-11

    The liquid crystalline chiral nitroxide biradical (S,S,S,S)-3 synthesized has shown much larger 'positive magneto-LC effects' in the chiral nematic (N*) phase than the monoradical (S,S)-1. PMID:26871609

  12. Synthesis and Evaluation of Ciprofloxacin-Nitroxide Conjugates as Anti-Biofilm Agents.

    PubMed

    Verderosa, Anthony D; Mansour, Sarah C; de la Fuente-Núñez, César; Hancock, Robert E W; Fairfull-Smith, Kathryn E

    2016-01-01

    As bacterial biofilms are often refractory to conventional antimicrobials, the need for alternative and/or novel strategies for the treatment of biofilm related infections has become of paramount importance. Herein, we report the synthesis of novel hybrid molecules comprised of two different hindered nitroxides linked to the piperazinyl secondary amine of ciprofloxacin via a tertiary amine linker achieved utilising reductive amination. The corresponding methoxyamine derivatives were prepared alongside their radical-containing counterparts as controls. Subsequent biological evaluation of the hybrid compounds on preformed P. aeruginosa flow cell biofilms divulged significant dispersal and eradication abilities for ciprofloxacin-nitroxide hybrid compound 10 (up to 95% eradication of mature biofilms at 40 μM). Importantly, these hybrids represent the first dual-action antimicrobial-nitroxide agents, which harness the dispersal properties of the nitroxide moiety to circumvent the well-known resistance of biofilms to treatment with antimicrobial agents. PMID:27355936

  13. Photoinduced electron transfer from dialkyl nitroxides to halogenated solvents

    SciTech Connect

    Chateauneuf, J. ); Lusztyk, J.; Ingold, K.U. )

    1990-02-02

    Laser flash photolysis (LFP) at wavelengths within the charge-transfer absorption present in CCl{sub 4} solutions of 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) yields the oxoammonium chloride of TEMPO, 1 ({lambda}{sub max} = 460 nm), and the trichloromethyl radical in an essentially instantaneous ({le}18 ps) process. The primary photochemical event is an electron transfer from TEMPO to CCl{sub 4}, and this is followed by immediate decomposition of the CCl{sub 4}{sup {sm bullet}{minus}} radical anion to Cl{sup {minus}} and Cl{sub 3}C{sup {sm bullet}}. An independent synthesis of 1 confirmed that the absorption attributed to this species has been correctly assigned. The formation of Cl{sub 3}C{sup {sm bullet}} was inferred by its trapping by molecular oxygen. LFP of TEMPO in other halogenated solvents and of other nitroxides in halogenated solvents has confirmed the generality of these photoreactions.

  14. Conduction mechanism of nitronyl-nitroxide molecular magnetic compounds

    NASA Astrophysics Data System (ADS)

    Dotti, N.; Heintze, E.; Slota, M.; Hübner, R.; Wang, F.; Nuss, J.; Dressel, M.; Bogani, L.

    2016-04-01

    We investigate the conduction mechanisms of nitronyl-nitroxide (NIT) molecular radicals, as useful for the creation of nanoscopic molecular spintronic devices, finding that it does not correspond to standard Mott behavior, as previously postulated. We provide a complete investigation using transport measurements, low-energy, sub-THz spectroscopy and introducing differently substituted phenyl appendages. We show that a nontrivial surface-charge-limited regime is present in addition to the standard low-voltage Ohmic conductance. Scaling analysis allows one to determine all the main transport parameters for the compounds and highlights the presence of charge-trapping effects. Comparison among the different compounds shows the relevance of intermolecular stacking between the aromatic ring of the phenyl appendix and the NIT motif in the creation of useful electron transport channels. The importance of intermolecular pathways is further highlighted by electronic structure calculations, which clarify the nature of the electronic channels and their effect on the Mott character of the compounds.

  15. Use of nitroxide spin probes and electron paramagnetic resonance for assessing reducing power of beer. role of SH groups.

    PubMed

    Kocherginsky, Nikolai M; Kostetski, Yuri Yu; Smirnov, Alex I

    2005-02-23

    Intensity of EPR spectra of stable organic free radicals, nitroxides, is decreasing with time if the radicals are dissolved in beer. The process is determined by a chemical reaction of nitroxide reduction by components naturally present in beer. Kinetics can be described as a simple irreversible first order with respect to both nitroxide and one reducing agent. Effective concentration of the reducing agent and the corresponding reaction rate constant has been determined. It is demonstrated that the nitroxide reduction is sensitive to the presence of solvent-accessible SH groups of proteins present in beer. It is proposed that quantitative analysis of reduction kinetics of small water-soluble nitroxide radicals such as TEMPO and TEMPOL can be used to assess the reducing power of beer. The effect of accelerated aging of beer achieved at elevated temperatures on nitroxide reduction kinetics is demonstrated. PMID:15713019

  16. Further insights into the environmental effects on the computed hyperfine coupling constants of nitroxides in aqueous solution.

    PubMed

    Houriez, Céline; Ferré, Nicolas; Siri, Didier; Masella, Michel

    2009-11-12

    We investigated the main two factors influencing the mean hyperfine coupling constants of small nitroxide radicals in aqueous solution, i.e., the out-of-plane displacement of their nitrogen atom and the environmental effects (solvent effects), by means of the approach we previously developed and fine-tuned to study the solvation of the dimethyl nitroxide radical. Our methodology efficiently combines classical molecular dynamics based on a polarizable force field at the nanosecond scale and quantum mechanics/molecular mechanics (QM/MM) computations to account for the bulk instantaneous electrostatic environmental effect. Our method has been applied to five small nitroxides, namely methyl nitroxide, ethyl nitroxide, dimethyl nitroxide, di-tert-butyl nitroxide, and PROXYL. The theoretical nitrogen hyperfine coupling constant values for the five nitroxides in solution are in good agreement with experiment (difference of 0.3 G on average). Our approach showed that the solvent shift in nitroxide hyperfine coupling constants is almost constant whatever the nitroxide, and, particularly, whatever the nitroxide NO moiety's accessibility to the solvent. This result contrasts with earlier results derived from 10 ps scale trajectories based on Car-Parrinello molecular dynamics approach. However, we show that if we consider on average these latter results, they are in agreement with our conclusion. We also present an attempt to identify the origin of this result by analyzing the solvent contributions in terms of effects of the nitroxide first hydration shell and of the bulk, and by investigating the relation between these two contributions and the solvent structure at the vicinity of the NO moiety. PMID:19845322

  17. Differential protection by nitroxides and hydroxylamines to radiation-induced and metal ion-catalyzed oxidative damage.

    PubMed

    Xavier, Sandhya; Yamada, Ken-ichi; Samuni, Ayelet M; Samuni, Amram; DeGraff, William; Krishna, Murali C; Mitchell, James B

    2002-11-14

    Modulation of radiation- and metal ion-catalyzed oxidative-induced damage using plasmid DNA, genomic DNA, and cell survival, by three nitroxides and their corresponding hydroxylamines, were examined. The antioxidant property of each compound was independently determined by reacting supercoiled DNA with copper II/1,10-phenanthroline complex fueled by the products of hypoxanthine/xanthine oxidase (HX/XO) and noting the protective effect as assessed by agarose gel electrophoresis. The nitroxides and their corresponding hydroxylamines protected approximately to the same degree (33-47% relaxed form) when compared to 76.7% relaxed form in the absence of protectors. Likewise, protection by both the nitroxide and corresponding hydroxylamine were observed for Chinese hamster V79 cells exposed to hydrogen peroxide. In contrast, when plasmid DNA damage was induced by ionizing radiation (100 Gy), only nitroxides (10 mM) provide protection (32.4-38.5% relaxed form) when compared to radiation alone or in the presence of hydroxylamines (10 mM) (79.8% relaxed form). Nitroxide protection was concentration dependent. Radiation cell survival studies and DNA double-strand break (DBS) assessment (pulse field electrophoresis) showed that only the nitroxide protected or prevented damage, respectively. Collectively, the results show that nitroxides and hydroxylamines protect equally against the damage mediated by oxidants generated by the metal ion-catalyzed Haber-Weiss reaction, but only nitroxides protect against radiation damage, suggesting that nitroxides may more readily react with intermediate radical species produced by radiation than hydroxylamines. PMID:12399020

  18. Conformationally Constrained, Stable, Triplet Ground State (S = 1) Nitroxide Diradicals. Antiferromagnetic Chains of S = 1 Diradicals

    SciTech Connect

    Rajca, Andrzej; Takahashi, Masahiro; Pink, Maren; Spagnol, Gaelle; Rajca, Suchada

    2008-06-30

    Nitroxide diradicals, in which nitroxides are annelated to m-phenylene forming tricyclic benzobisoxazine-like structures, have been synthesized and characterized by X-ray crystallography, magnetic resonance (EPR and {sup 1}H NMR) spectroscopy, as well as magnetic studies in solution and in solid state. For the octamethyl derivative of benzobisoxazine nitroxide diradical, the conformationally constrained nitroxide moieties are coplanar with the m-phenylene, leading to large values of 2J (2J/k > 200 K in solution and 2J/k >> 300 K in the solid state). For the diradical, in which all ortho and para positions of the m-phenylene are sterically shielded, distortion of the nitroxide moieties from coplanarity is moderate, such that the singlet-triplet gaps remain large in both solution (2J/k > 200 K) and the solid state (2J/k {approx} 400-800 K), though an onset of thermal depopulation of the triplet ground state is detectable near room temperature. These diradicals have robust triplet ground states with strong ferromagnetic coupling and good stability at ambient conditions. Magnetic behavior of the nitroxide diradicals at low temperature is best fit to the model of one-dimensional S = 1 Heisenberg chains with intrachain antiferromagnetic coupling. The antiferromagnetic coupling between the S = 1 diradicals may be associated with the methyl nitroxide C-H {hor_ellipsis} O contacts, including nonclassical hydrogen bonds. These unprecedented organic S = 1 antiferromagnetic chains are highly isotropic, compared to those of the extensively studied Ni(II)-based chains.

  19. Do stable nitroxide radicals catalyze or inhibit the degradation of hyaluronic acid?

    PubMed

    Lurie, Ziva; Offer, Tal; Russo, Angelo; Samuni, Amram; Nitzan, Dorrit

    2003-07-15

    Reactive oxygen-derived species and particularly OH radicals can degrade hyaluronic acid (HA), resulting in a loss of viscosity and a subsequent decrease in its effectiveness as a joint-lubricating agent. The production of OH in the vicinity of HA can be catalyzed by bound redox-active metals, which participate in the Haber-Weiss reaction. Damage to HA can also occur as a result of hypochlorite formed by myeloperoxidase (MPO). The protective reagents commonly used to inhibit oxidative stress-induced degradation of HA include antioxidative enzymes, such as SOD and catalase, chelators that coordinate metal ions rendering them redox-inactive, and scavengers of radicals, such as OH, as well as nonradical reactive species. In recent years, stable cyclic nitroxides have also been widely used as effective antioxidants. In many cases, nitroxide antioxidants operate catalytically and mediate their protective effect through an exchange between their oxidized and reduced forms. It was anticipated, therefore, that nitroxides would protect HA from oxidative degradation as well. On the other hand, nitroxides serve as catalysts in many oxidation reactions of alcohols, sugars and polysaccharides, including hyalouronan. Such opposite effects of nitroxides on oxidative degradation are particularly intriguing and the aim of the present study was to examine their effect on HA when subjected to diverse forms of oxidative stress. The results indicate that nitroxides protect HA from OH radicals generated enzymatically or radiolytically. The protective effect is attributable neither to the scavenging of OH nor to the oxidation of reduced metal, but to the reaction of nitroxides with secondary carbohydrate radicals-most likely peroxyl radicals. PMID:12853073

  20. Ionizable Nitroxides for Studying Local Electrostatic Properties of Lipid Bilayers and Protein Systems by EPR

    PubMed Central

    Voinov, Maxim A.; Smirnov, Alex I.

    2016-01-01

    Electrostatic interactions are known to play one of the major roles in the myriad of biochemical and biophysical processes. In this Chapter we describe biophysical methods to probe local electrostatic potentials of proteins and lipid bilayer systems that is based on an observation of reversible protonation of nitroxides by EPR. Two types of the electrostatic probes are discussed. The first one includes methanethiosulfonate derivatives of protonatable nitroxides that could be used for highly specific covalent modification of the cysteine’s sulfhydryl groups. Such spin labels are very similar in magnetic parameters and chemical properties to conventional MTSL making them suitable for studying local electrostatic properties of protein-lipid interfaces. The second type of EPR probes is designed as spin-labeled phospholipids having a protonatable nitroxide tethered to the polar head group. The probes of both types report on their ionization state through changes in magnetic parameters and a degree of rotational averaging, thus, allowing one to determine the electrostatic contribution to the interfacial pKa of the nitroxide, and, therefore, determining the local electrostatic potential. Due to their small molecular volume these probes cause a minimal perturbation to the protein or lipid system while covalent attachment secure the position of the reporter nitroxides. Experimental procedures to characterize and calibrate these probes by EPR and also the methods to analyze the EPR spectra by least-squares simulations are also outlined. The ionizable nitroxide labels and the nitroxide-labeled phospholipids described so far cover an exceptionally wide pH range from ca. 2.5 to 7.0 pH units making them suitable to study a broad range of biophysical phenomena especially at the negatively charged lipid bilayer surfaces. The rationale for selecting proper electrostatically neutral interface for calibrating such probes and example of studying surface potential of lipid bilayer is

  1. Development of nitroxide radicals-containing polymer for scavenging reactive oxygen species from cigarette smoke

    NASA Astrophysics Data System (ADS)

    Yoshitomi, Toru; Kuramochi, Kazuhiro; Binh Vong, Long; Nagasaki, Yukio

    2014-06-01

    We developed a nitroxide radicals-containing polymer (NRP), which is composed of poly(4-methylstyrene) possessing nitroxide radicals as a side chain via amine linkage, to scavenge reactive oxygen species (ROS) from cigarette smoke. In this study, the NRP was coated onto cigarette filters and its ROS-scavenging activity from streaming cigarette smoke was evaluated. The intensity of electron spin resonance signals of the NRP in the filter decreased after exposure to cigarette smoke, indicating consumption of nitroxide radicals. To evaluate the ROS-scavenging activity of the NRP-coated filter, the amount of peroxy radicals in an extract of cigarette smoke was measured using UV-visible spectrophotometry and 1,1-diphenyl-2-picrylhydrazyl (DPPH). The absorbance of DPPH at 517 nm decreased with exposure to cigarette smoke. When NRP-coated filters were used, the decrease in the absorbance of DPPH was prevented. In contrast, both poly[4-(cyclohexylamino)methylstyrene]- and poly(acrylic acid)-coated filters, which have no nitroxide radical, did not show any effect, indicating that the nitroxide radicals in the NRP scavenge the ROS in cigarette smoke. As a result, the extract of cigarette smoke passed through the NRP-coated filter has a lower cellular toxicity than smoke passed through poly[4-(cyclohexylamino)methylstyrene]- and poly(acrylic acid)-coated filters. Accordingly, NRP is a promising material for ROS scavenging from cigarette smoke.

  2. Structural specifics of light-induced metastable states in copper(II)-nitroxide molecular magnets.

    PubMed

    Barskaya, I Yu; Veber, S L; Fokin, S V; Tretyakov, E V; Bagryanskaya, E G; Ovcharenko, V I; Fedin, M V

    2015-12-28

    Although light-induced magnetostructural switching in copper(II)-nitroxide molecular magnets Cu(hfac)2L(R) has been known for several years, structural characterization of metastable photoinduced states has not yet been accomplished due to significant technical demands. In this work we apply, for the first time, variable-temperature FTIR spectroscopy with photoexcitation to investigate the structural specifics of light-induced states in the Cu(hfac)2L(R) family represented by (i) Cu(hfac)2L(Me) comprising two-spin copper(II)-nitroxide clusters, and (ii) Cu(hfac)2L(Pr) comprising three-spin nitroxide-copper(II)-nitroxide clusters. The light-induced state of Cu(hfac)2L(Me) manifests the same set of vibrational bands as the corresponding thermally-induced state, implying their similar structures. For the second compound Cu(hfac)2L(Pr), the coordination environment of copper(II) is similar in light- and thermally-induced states, but distinct differences are found for packing of the peripheral n-propyl substituent of nitroxide. Thus, generally the structures of the corresponding thermally- and light-induced states in molecular magnets Cu(hfac)2L(R) might differ, and FTIR spectroscopy provides a useful approach for revealing and elucidating such differences. PMID:26571045

  3. Prediction of nitroxide hyperfine coupling constants in solution from combined nanosecond scale simulations and quantum computations

    NASA Astrophysics Data System (ADS)

    Houriez, Céline; Ferré, Nicolas; Masella, Michel; Siri, Didier

    2008-06-01

    We present a combined theoretical approach based on analyzing molecular dynamics trajectories (at the nanosecond scale) generated by use of classical polarizable force fields and on quantum calculations to compute averaged hyperfine coupling constants. That method is used to estimate the constant of a prototypical nitroxide: the dimethylnitroxide. The molecule is embedded during the simulations in a cubic box containing about 500 water molecules and the molecular dynamics is generated using periodic conditions. Once the trajectories are achieved, the nitroxide and its first hydration shell molecules are extracted, and the coupling constants are computed by considering the latter aggregates by means of quantum computations. However, all the water molecules of the bulk are also accounted for during those computations by means of the electrostatic potential fitted method. Our results exhibit that in order to predict accurate and reliable coupling constants, one needs to describe carefully the out-of-plane motion of the nitroxide nitrogen and to sample trajectories with a time interval of 400 fs at least to generate an uncorrelated large set of nitroxide structures. Compared to Car-Parrinello molecular dynamics techniques, our approach can be used readily to compute hyperfine coupling constants of large systems, such as nitroxides of great size interacting with macromolecules such as proteins or polymers.

  4. Prediction of nitroxide hyperfine coupling constants in solution from combined nanosecond scale simulations and quantum computations.

    PubMed

    Houriez, Céline; Ferré, Nicolas; Masella, Michel; Siri, Didier

    2008-06-28

    We present a combined theoretical approach based on analyzing molecular dynamics trajectories (at the nanosecond scale) generated by use of classical polarizable force fields and on quantum calculations to compute averaged hyperfine coupling constants. That method is used to estimate the constant of a prototypical nitroxide: the dimethylnitroxide. The molecule is embedded during the simulations in a cubic box containing about 500 water molecules and the molecular dynamics is generated using periodic conditions. Once the trajectories are achieved, the nitroxide and its first hydration shell molecules are extracted, and the coupling constants are computed by considering the latter aggregates by means of quantum computations. However, all the water molecules of the bulk are also accounted for during those computations by means of the electrostatic potential fitted method. Our results exhibit that in order to predict accurate and reliable coupling constants, one needs to describe carefully the out-of-plane motion of the nitroxide nitrogen and to sample trajectories with a time interval of 400 fs at least to generate an uncorrelated large set of nitroxide structures. Compared to Car-Parrinello molecular dynamics techniques, our approach can be used readily to compute hyperfine coupling constants of large systems, such as nitroxides of great size interacting with macromolecules such as proteins or polymers. PMID:18601346

  5. Structural and atoms-in-molecules analysis of hydrogen-bond network around nitroxides in liquid water.

    PubMed

    Houriez, Céline; Masella, Michel; Ferré, Nicolas

    2010-09-28

    In this study, we investigated the hydrogen-bond network patterns involving the NO moieties of five small nitroxides in liquid water by analyzing nanosecond scale molecular dynamics trajectories. To this end, we implemented two types of hydrogen-bond definitions, based on electronic structure, using Bader's atoms-in-molecules analysis and based on geometric criteria. In each definition framework, the nitroxide/water hydrogen-bond networks appear very variable from a nitroxide to another. Moreover, each definition clearly leads to a different picture of nitroxide hydration. For instance, the electronic structure-based definition predicts a number of hydrogen bonds around the nitroxide NO moiety usually larger than geometric structure-based ones. One particularly interesting result is that the strength of a nitroxide/water hydrogen bond does not depend on its linearity, leading us to question the relevance of geometric definition based on angular cutoffs to study this type of hydrogen bond. Moreover, none of the hydrogen-bond definitions we consider in the present study is able to quantitatively correlate the strength of nitroxide/water hydrogen-bond networks with the aqueous nitroxide spin properties. This clearly exhibits that the hydrogen-bonding concept is not reliable enough to draw quantitative conclusions concerning such properties. PMID:20886951

  6. Structural and atoms-in-molecules analysis of hydrogen-bond network around nitroxides in liquid water

    NASA Astrophysics Data System (ADS)

    Houriez, Céline; Masella, Michel; Ferré, Nicolas

    2010-09-01

    In this study, we investigated the hydrogen-bond network patterns involving the NO moieties of five small nitroxides in liquid water by analyzing nanosecond scale molecular dynamics trajectories. To this end, we implemented two types of hydrogen-bond definitions, based on electronic structure, using Bader's atoms-in-molecules analysis and based on geometric criteria. In each definition framework, the nitroxide/water hydrogen-bond networks appear very variable from a nitroxide to another. Moreover, each definition clearly leads to a different picture of nitroxide hydration. For instance, the electronic structure-based definition predicts a number of hydrogen bonds around the nitroxide NO moiety usually larger than geometric structure-based ones. One particularly interesting result is that the strength of a nitroxide/water hydrogen bond does not depend on its linearity, leading us to question the relevance of geometric definition based on angular cutoffs to study this type of hydrogen bond. Moreover, none of the hydrogen-bond definitions we consider in the present study is able to quantitatively correlate the strength of nitroxide/water hydrogen-bond networks with the aqueous nitroxide spin properties. This clearly exhibits that the hydrogen-bonding concept is not reliable enough to draw quantitative conclusions concerning such properties.

  7. Investigation of the inner environment of carbon nanotubes with a fullerene-nitroxide probe.

    PubMed

    Campestrini, Sandro; Corvaja, Carlo; De Nardi, Marco; Ducati, Caterina; Franco, Lorenzo; Maggini, Michele; Meneghetti, Moreno; Menna, Enzo; Ruaro, Giorgio

    2008-03-01

    A fulleropyrrolidine bearing a nitroxide free radical has been inserted into single-walled carbon nanotubes with the aid of supercritical CO2. Thanks to the encapsulated paramagnetic probes, it has been possible to detect and characterize the resulting peapod-like structure through electron paramagnetic resonance (EPR) spectroscopy. In particular, the analysis of spectral parameters derived from extensive EPR studies has elucidated the orientation and the residual rotational dynamics of the molecules embedded in the nanotubes. A limited anisotropic rotational freedom of the encapsulated fullerene nitroxide reveals a rather strong interaction of the probe with the surrounding nanotube walls. The interaction seems to involve the fullerene cage (as confirmed by Raman spectroscopy) and not the nitroxide moiety, whose EPR spectral characteristics, such as the isotropic hyperfine constant and the g-tensor, remain unaltered after encapsulation. PMID:18228238

  8. In vitro synthesis of nitroxide free radicals by hog liver microsomes

    SciTech Connect

    Valvis, I.I.; Lischick, D.; Shen, D.; Sofer, S.S. )

    1990-01-01

    The in vitro biooxidation of 4-hydroxy-2,2,6,6-tetra methylpiperidine (TEMP), 4-hydroxy-2,2,4,4-tetra methyl-1,3-oxazolidine (TEMO) and diphenylamine (DPA) by hog liver microsomes to their respective nitroxide free radicals, 4-hydroxy-2,2,6,6-tetra methylpiperidine-1-oxyl (TEMPO), 2,2,4,4-tetra methyl-1,3-oxazolidine-1-oxyl (TEMOO), and diphenylnitroxide (DPNO) has been investigated. For extending the life span of the liver microsomes, a calcium alginate immobilization procedure was used. The biooxidation rates of the above amines to their respective nitroxide metabolites were measured by means of oxygen uptake at 37 degrees C and pH 7.4. N-octylamine was found to be an activator in the biooxidation of the amines. The formation of the nitroxide radicals was identified by E.S.R. spectroscopy.

  9. Efficient Dynamic Nuclear Polarization at 800 MHz/527 GHz with Trityl-Nitroxide Biradicals.

    PubMed

    Mathies, Guinevere; Caporini, Marc A; Michaelis, Vladimir K; Liu, Yangping; Hu, Kan-Nian; Mance, Deni; Zweier, Jay L; Rosay, Melanie; Baldus, Marc; Griffin, Robert G

    2015-09-28

    Cross-effect (CE) dynamic nuclear polarization (DNP) is a rapidly developing technique that enhances the signal intensities in magic-angle spinning (MAS) NMR spectra. We report CE DNP experiments at 211, 600, and 800 MHz using a new series of biradical polarizing agents referred to as TEMTriPols, in which a nitroxide (TEMPO) and a trityl radical are chemically tethered. The TEMTriPol molecule with the optimal performance yields a record (1) H NMR signal enhancement of 65 at 800 MHz at a concentration of 10 mM in a glycerol/water solvent matrix. The CE DNP enhancement for the TEMTriPol biradicals does not decrease as the magnetic field is increased in the manner usually observed for bis-nitroxides. Instead, the relatively strong exchange interaction between the trityl and nitroxide moieties determines the magnetic field at which the optimum enhancement is observed. PMID:26268156

  10. Electron Paramagnetic Resonance Spectroscopy of Nitroxide-Labeled Calmodulin

    PubMed Central

    Bowman, Paula B.; Puett, David

    2014-01-01

    Calmodulin (CaM) is a highly conserved calcium-binding protein consisting of two homologous domains, each of which contains two EF-hands, that is known to bind well over 300 proteins and peptides. In most cases the (Ca2+)4-form of CaM leads to the activation of a key regulatory enzyme or protein in a myriad of biological processes. Using the nitroxide spin-labeling reagent, 3-(2-iodoacetamido)-2,2,5,5-tetramethyl-1-pyrrolidinyl oxyl, bovine brain CaM was modified at 2-3 methionines with retention of activity as judged by the activation of cyclic nucleotide phosphodiesterase. X-band electron paramagnetic resonance (EPR) spectroscopy was used to measure the spectral changes upon addition of Ca2+ to the apo-form of spin-labeled protein. A significant loss of spectral intensity, arising primarily from reductions in the heights of the low, intermediate, and high field peaks, accompanied Ca2+ binding. The midpoint of the Ca2+-mediated transition determined by EPR occurred at a higher Ca2+ concentration than that measured with circular dichroic spectroscopy and enzyme activation. Recent data have indicated that the transition from the apo-state of CaM to the fully saturated form, [Ca2+)4-CaM], contains a compact intermediate corresponding to [Ca2+)2-CaM], and the present results suggest that the spin probes are reporting on Ca2+ binding to the last two sites in the N-terminal domain, i.e. for the [Ca2+)2-CaM] → [Ca2+)4-CaM] transition in which the compact structure becomes more extended. EPR of CaM, spin-labeled at methionines, offers a different approach for studying Ca2+-mediated conformational changes and may emerge as a useful technique for monitoring interactions with target proteins. PMID:24718677

  11. A new model for Overhauser enhanced nuclear magnetic resonance using nitroxide radicals

    NASA Astrophysics Data System (ADS)

    Armstrong, Brandon D.; Han, Songi

    2007-09-01

    Nitroxide free radicals are the most commonly used source for dynamic nuclear polarization (DNP) enhanced nuclear magnetic resonance (NMR) experiments and are also exclusively employed as spin labels for electron spin resonance (ESR) spectroscopy of diamagnetic molecules and materials. Nitroxide free radicals have been shown to have strong dipolar coupling to H1 in water, and thus result in large DNP enhancement of H1 NMR signal via the well known Overhauser effect. The fundamental parameter in a DNP experiment is the coupling factor, since it ultimately determines the maximum NMR signal enhancements which can be achieved. Despite their widespread use, measurements of the coupling factor of nitroxide free radicals have been inconsistent, and current models have failed to successfully explain our experimental data. We found that the inconsistency in determining the coupling factor arises from not taking into account the characteristics of the ESR transitions, which are split into three (or two) lines due to the hyperfine coupling of the electron to the N14 nuclei (or N15) of the nitric oxide radical. Both intermolecular Heisenberg spin exchange interactions as well as intramolecular nitrogen nuclear spin relaxation mix the three (or two) ESR transitions. However, neither effect has been taken into account in any experimental studies on utilizing or quantifying the Overhauser driven DNP effects. The expected effect of Heisenberg spin exchange on Overhauser enhancements has already been theoretically predicted and observed by Bates and Drozdoski [J. Chem. Phys. 67, 4038 (1977)]. Here, we present a new model for quantifying Overhauser enhancements through nitroxide free radicals that includes both effects on mixing the ESR hyperfine states. This model predicts the maximum saturation factor to be considerably higher by the effect of nitrogen nuclear spin relaxation. Because intramolecular nitrogen spin relaxation is independent of the nitroxide concentration, this

  12. Room-temperature electron spin relaxation of nitroxides immobilized in trehalose: Effect of substituents adjacent to NO-group

    NASA Astrophysics Data System (ADS)

    Kuzhelev, Andrey A.; Strizhakov, Rodion K.; Krumkacheva, Olesya A.; Polienko, Yuliya F.; Morozov, Denis A.; Shevelev, Georgiy Yu.; Pyshnyi, Dmitrii V.; Kirilyuk, Igor A.; Fedin, Matvey V.; Bagryanskaya, Elena G.

    2016-05-01

    Trehalose has been recently promoted as efficient immobilizer of biomolecules for room-temperature EPR studies, including distance measurements between attached nitroxide spin labels. Generally, the structure of nitroxide influences the electron spin relaxation times, being crucial parameters for room-temperature pulse EPR measurements. Therefore, in this work we investigated a series of nitroxides with different substituents adjacent to NO-moiety including spirocyclohexane, spirocyclopentane, tetraethyl and tetramethyl groups. Electron spin relaxation times (T1, Tm) of these radicals immobilized in trehalose were measured at room temperature at X- and Q-bands (9/34 GHz). In addition, a comparison was made with the corresponding relaxation times in nitroxide-labeled DNA immobilized in trehalose. In all cases phase memory times Tm were close to 700 ns and did not essentially depend on structure of substituents. Comparison of temperature dependences of Tm at T = 80-300 K shows that the benefit of spirocyclohexane substituents well-known at medium temperatures (∼100-180 K) becomes negligible at 300 K. Therefore, unless there are specific interactions between spin labels and biomolecules, the room-temperature value of Tm in trehalose is weakly dependent on the structure of substituents adjacent to NO-moiety of nitroxide. The issues of specific interactions and stability of nitroxide labels in biological media might be more important for room temperature pulsed dipolar EPR than differences in intrinsic spin relaxation of radicals.

  13. Structural Origins of Nitroxide Side Chain Dynamics on Membrane Protein [alpha]-Helical Sites

    SciTech Connect

    Kroncke, Brett M.; Horanyi, Peter S.; Columbus, Linda

    2010-12-07

    Understanding the structure and dynamics of membrane proteins in their native, hydrophobic environment is important to understanding how these proteins function. EPR spectroscopy in combination with site-directed spin labeling (SDSL) can measure dynamics and structure of membrane proteins in their native lipid environment; however, until now the dynamics measured have been qualitative due to limited knowledge of the nitroxide spin label's intramolecular motion in the hydrophobic environment. Although several studies have elucidated the structural origins of EPR line shapes of water-soluble proteins, EPR spectra of nitroxide spin-labeled proteins in detergents or lipids have characteristic differences from their water-soluble counterparts, suggesting significant differences in the underlying molecular motion of the spin label between the two environments. To elucidate these differences, membrane-exposed {alpha}-helical sites of the leucine transporter, LeuT, from Aquifex aeolicus, were investigated using X-ray crystallography, mutational analysis, nitroxide side chain derivatives, and spectral simulations in order to obtain a motional model of the nitroxide. For each crystal structure, the nitroxide ring of a disulfide-linked spin label side chain (R1) is resolved and makes contacts with hydrophobic residues on the protein surface. The spin label at site I204 on LeuT makes a nontraditional hydrogen bond with the ortho-hydrogen on its nearest neighbor F208, whereas the spin label at site F177 makes multiple van der Waals contacts with a hydrophobic pocket formed with an adjacent helix. These results coupled with the spectral effect of mutating the i {+-} 3, 4 residues suggest that the spin label has a greater affinity for its local protein environment in the low dielectric than on a water-soluble protein surface. The simulations of the EPR spectra presented here suggest the spin label oscillates about the terminal bond nearest the ring while maintaining weak contact

  14. The palladium-catalysed copper-free Sonogashira coupling of isoindoline nitroxides: a convenient route to robust profluorescent carbon-carbon frameworks.

    PubMed

    Keddie, Daniel J; Fairfull-Smith, Kathryn E; Bottle, Steven E

    2008-09-01

    A series of novel acetylene-substituted isoindoline nitroxides were synthesised via palladium-catalysed copper-free Sonogashira coupling. These results demonstrate that the Sonogashira reaction is suitable for the generation of a wide range of aryl nitroxides of expanded structural variety. The novel aryl-iodide containing nitroxide, 5-iodo-1,1,3,3-tetramethylisoindolin-2-yloxyl, 3, was a key intermediate for this coupling, giving acetylene-substituted isoindoline nitroxides in high yield. Subsequent reaction of the deprotected ethynyl nitroxide 12 with iodinated polyaromatics furnished novel aromatic nitroxides with extended-conjugation. Such nitroxides have been described as profluorescent, as their quantum yields are significantly lower than those of the corresponding diamagnetic derivatives. The quantum yields of the naphthyl- and phenanthryl-acetylene isoindoline nitroxides (13 and 14) were found to be 200-fold and 65-fold less than the non-radical methoxyamine derivatives (23 and 24). Ethyne- and butadiyne-linked nitroxide dimers could also be synthesised by this cross coupling methodology. PMID:18698473

  15. Oxidation of Annelated Diarylamines: Analysis of Reaction Pathways to Nitroxide Diradical and Spirocyclic Products

    SciTech Connect

    Rajca, Andrzej; Shiraishi, Kouichi; Boraty; #324; ski, Przemyslaw J.; Pink, Maren; Miyasaka, Makoto; Rajca, Suchada

    2012-02-06

    Oxidation of diaryldiamine 2, a tetrahydrodiazapentacene derivative, provides diarylnitroxide diradical 1 accompanied by an intermediate nitroxide monoradical and a multitude of isolable diamagnetic products. DFT-computed tensors for EPR spectra and paramagnetic {sup 1}H NMR isotropic shifts for nitroxide diradical 1 show good agreement with the experimental EPR spectra in rigid matrices and paramagnetic {sup 1}H NMR spectra in solution, respectively. Examination of the diamagnetic products elucidates their formation via distinct pathways involving C-O bond-forming reactions, including Baeyer-Villiger-type oxidations. An unusual diiminoketone structure and two spirocyclic structures of the predominant diamagnetic products are confirmed by either X-ray crystallography or correlations between DFT-computed and experimental spectroscopic data such as {sup 1}H, {sup 13}C, and {sup 15}N NMR chemical shifts and electronic absorption spectra.

  16. Photostability enhancement of the pentacene derivative having two nitronyl nitroxide radical substituents.

    PubMed

    Shimizu, Akihiro; Ito, Akitaka; Teki, Yoshio

    2016-02-18

    Pentacene derivatives possessing nitronyl nitroxide radical substituents (1a and 1b) were synthesized, and their photochemical properties were evaluated. 1a with two radical substituents showed a remarkable enhancement of photostability compared with pentacene, 6,13-bis(triisopropylsilylethynyl)pentacene and the monoradical, 1b. This is understood due to the presence of the multiple deactivation pathways in the photoexcited states. PMID:26814191

  17. Rare Earth Metal Complexes of Bidentate Nitroxide Ligands: Synthesis and Electrochemistry.

    PubMed

    Kim, Jee Eon; Bogart, Justin A; Carroll, Patrick J; Schelter, Eric J

    2016-01-19

    We report rare earth metal complexes with tri- and bidentate ligands including strongly electron-donating nitroxide groups. The tridentate ligand 1,3,5-tris(2'-tert-butylhydroxylaminoaryl)benzene (H3arene-triNOx) was complexed to cerium(IV) in a 2:1 ligand-to-metal stoichiometry as Ce(Harene-triNOx)2 (1). Cyclic voltammetry of this compound showed stabilization of the tetravalent cerium cation with a Ce(IV/III) couple at E1/2 = -1.82 V versus Fc/Fc(+). On the basis of the uninvolvement of the third nitroxide group in the coordination chemistry with the cerium(IV) cation, the ligand system was redesigned toward a simpler bidentate mode, and a series of rare earth metal-arene-diNOx complexes were prepared with La(III), Ce(IV), Pr(III), Tb(III), and Y(III), [RE(arene-diNOx)2](-) ([2-RE](-), RE = La, Pr, Y, Tb) and Ce(IV)(arene-diNOx)2, where H2arene-diNOx = 1,3-bis(2'-tert-butylhydroxylaminoaryl)benzene. The core structures were isostructural throughout the series, with three nitroxide groups in η(2) binding modes and one κ(1) nitroxide group coordinated to the metal center in the solid state. In all cases except Ce(IV)(arene-diNOx)2, electrochemical analysis described two subsequent, ligand-based, quasi-reversible redox waves, indicating that a stable [N-O•] group was generated on the electrochemical time scale. Chemical oxidation of the terbium complex was performed, and isolation of the resulting complex, Tb(arene-diNOx)2·CH2Cl2 (3·CH2Cl2), confirmed the assignment of the cyclic voltammograms. Magnetic data showed no evidence of mixing between the Tb(III) states and the states of the open-shell ligand. PMID:26689656

  18. Acid Is Key to the Radical-Trapping Antioxidant Activity of Nitroxides.

    PubMed

    Haidasz, Evan A; Meng, Derek; Amorati, Riccardo; Baschieri, Andrea; Ingold, Keith U; Valgimigli, Luca; Pratt, Derek A

    2016-04-27

    Persistent dialkylnitroxides (e.g., 2,2,6,6-tetramethylpiperidin-1-oxyl, TEMPO) play a central role in the activity of hindered amine light stabilizers (HALS)-additives that inhibit the (photo)oxidative degradation of consumer and industrial products. The accepted mechanism of HALS comprises a catalytic cycle involving the rapid combination of a nitroxide with an alkyl radical to yield an alkoxyamine that subsequently reacts with a peroxyl radical to eventually re-form the nitroxide. Herein, we offer evidence in favor of an alternative reaction mechanism involving the acid-catalyzed reaction of a nitroxide with a peroxyl radical to yield an oxoammonium ion followed by electron transfer from an alkyl radical to the oxoammonium ion to re-form the nitroxide. In preliminary work, we showed that TEMPO reacts with peroxyl radicals at diffusion-controlled rates in the presence of acids. Now, we show that TEMPO can be regenerated from its oxoammonium ion by reaction with alkyl radicals. We have determined that this reaction, which has been proposed to be a key step in TEMPO-catalyzed synthetic transformations, occurs with k ∼ 1-3 × 10(10) M(-1) s(-1), thereby enabling it to compete with O2 for alkyl radicals. The addition of weak acids facilitates this reaction, whereas the addition of strong acids slows it by enabling back electron transfer. The chemistry is shown to occur in hydrocarbon autoxidations at elevated temperatures without added acid due to the in situ formation of carboxylic acids, accounting for the long-known catalytic radical-trapping antioxidant activity of TEMPO that prompted the development of HALS. PMID:27023326

  19. Using nitroxide decay to study the photooxidation kinetics of automotive topcoat enamels.

    PubMed

    Gerlock, J L; Bauer, D R; Mielewski, D F

    1990-01-01

    Free radical scavenging by nitroxide dopant is used to quantify the photoinitiation rate of free radicals in acrylic/melamine and polyester/urethane coatings during photolysis under "near ambient" exposure conditions. Photoinitiation rate measurements on weathered coatings reveal that acrylic/melamine coatings photooxidize non-autocatalytically, while polyester/urethane coatings photooxidize autocatalytically. The decomposition of hydroperoxide photolysis products by melamine crosslinker is claimed to account for this difference in photooxidation kinetics. PMID:2379865

  20. Simultaneous 280 MHz EPR imaging of rat organs during nitroxide free radical clearance.

    PubMed Central

    Alecci, M; Ferrari, M; Quaresima, V; Sotgiu, A; Ursini, C L

    1994-01-01

    A radio frequency (RF) (280 MHz) electron paramagnetic resonance (EPR) spectroscopy and imaging apparatus has been used to localize a pyrrolidine nitroxide free radical in the rat abdomen and thorax. The nitroxide 2,2.5.5,-tetramethylpyrrolidine-1-oxyl-3- carboxylic acid (PCA) had a whole body monoexponential decay with half-life of 13.3 +/- 0.7 (n = 4), 19.4 +/- 0.2 (n = 3), and 23 +/- 2 (n = 6) min for 1, 2, and 3 mmol/kg PCA, respectively. Up to seven one-dimensional longitudinal projections were collected on six rats in the presence of a 8 mT/m field gradient. With an injection dose of 3 mmol/kg, PCA half-lives were 19 +/- 1, 17 +/- 2, and 22 +/- 2 min (n = 6) in the lower abdomen, in the liver, and in the thorax, respectively. Thorax half-life was significantly longer than liver half-life. Sequential two-dimensional images of PCA distribution in a plane longitudinal to the rat body were obtained from eight spectra in the presence of a gradient of 12 mT/m (acquisition time 5 min; spatial resolution 8 mm). After 7 min, the nitroxide was detectable in the left side of the thorax area, but it was mostly localized in the liver. PCA was more uniformly distributed in the image collected after 17 min. Images FIGURE 4 PMID:7811942

  1. Syntheses, crystal structures, magnetic and luminescence properties of five novel lanthanide complexes of nitronyl nitroxide radical

    SciTech Connect

    Wang, Ya-Li; Gao, Yuan-Yuan; Ma, Yue; Wang, Qing-Lun; Li, Li-Cun; Liao, Dai-Zheng

    2013-06-01

    Five novel Ln(III) complexes based on a new nitronyl nitroxide radical have been synthesized, characterized structurally and magnetically: [Ln(hfac)₃(NITPh-3-Br-4-OMe)₂] (Ln(III)=Eu(1), Gd(2), Tb(3), Dy(4), Ho(5); hfac=hexafluoroacetylacetonate; and NITPh-3-Br-4-OMe=2-3´-Br-4´-methoxyphenyl-4,4,5,5 -tetramethylimidazoline-1-oxyl-3-oxide). The single-crystal structures analyses show that these complexes have similar mononuclear tri-spin structures, in which central Ln(III) ions are all eight coordinated by three hfac molecules and two NITPh-3-Br-4-OMe radicals. The variable-temperature magnetic susceptibility studies reveal the antiferromagnetic interactions between the paramagnetic ions (Ln(III) and radicals) in complexes 1, 2, 3 and 5 and ferromagnetic interaction in complex 4. The luminescence characterizations of complexes Eu(1), Tb(3) and Dy(4) are also studied in this paper. - Graphical abstract: Using a novel halogen phenyl-substituted nitronyl-nitroxide radical, we obtained and characterized five isostructural lanthanide mononuclear tri-spin compounds. Highlights: • A new halogen phenyl-substituted nitronyl-nitroxide radical was designed. • Five new Ln(III) radical complexes have been synthesized and characterized. • The reasonable evaluation the magnetic interactions between Ln(III) ions and radical is meaningful. • These complexes show good luminescent properties.

  2. Kinetic analysis of nitroxide radical formation under oxygenated photolysis: toward quantitative singlet oxygen topology.

    PubMed

    Zigler, David F; Ding, Eva Chuheng; Jarocha, Lauren E; Khatmullin, Renat R; DiPasquale, Vanessa M; Sykes, R Brendan; Tarasov, Valery F; Forbes, Malcolm D E

    2014-12-01

    Reaction kinetics for two sterically hindered secondary amines with singlet oxygen have been studied in detail. A water soluble porphyrin sensitizer, 5,10,15,20-tetrakis-(4-sulfunatophenyl)-21,23H-porphyrin (TPPS), was irradiated in oxygenated aqueous solutions containing either 2,2,6,6-tetramethylpiperidin-4-one (TMPD) or 4-[N,N,N-trimethyl-ammonium]-2,2,6,6-tetramethylpiperidinyl chloride (N-TMPCl). The resulting sensitization reaction produced singlet oxygen in high yield, ultimately leading to the formation of the corresponding nitroxide free radicals (R2NO) which were detected using steady-state electron paramagnetic resonance (EPR) spectroscopy. Careful actinometry and EPR calibration curves, coupled with a detailed kinetic analysis, led to a simple and compact expression relating the nitroxide quantum yield ΦR2NO (from the doubly-integrated EPR signal intensity) to the initial amine concentration [R2NH]i. With all other parameters held constant, a plot of ΦR2NOvs. [R2NH]i gave a straight line with a slope proportional to the rate constant for nitroxide formation, kR2NO. This establishment of a rigorous quantitative relationship between the EPR signal and the rate constant provides a mechanism for quantifying singlet oxygen production as a function of its topology in heterogeneous media. Implications for in vivo assessment of singlet oxygen topology are briefly discussed. PMID:25369860

  3. Site-Specific DNA Structural and Dynamic Features Revealed by Nucleotide-Independent Nitroxide Probes

    SciTech Connect

    Popova, Anna; Kalai, Tamas; Hideg, Kalman; Qin, Peter Z.

    2009-09-15

    In site-directed spin labeling, a covalently attached nitroxide probe containing a chemically inert unpaired electron is utilized to obtain information on the local environment of the parent macromolecule. Studies presented here examine the feasibility of probing local DNA structural and dynamic features using a class of nitroxide probes that are linked to chemically substituted phosphorothioate positions at the DNA backbone. Two members of this family, designated as R5 and R5a, were attached to eight different sites of a dodecameric DNA duplex without severely perturbing the native B-form conformation. Measured X-band electron paramagnetic resonance (EPR) spectra, which report on nitroxide rotational motions, were found to vary depending on the location of the label (e.g., duplex center vs termini) and the surrounding DNA sequence. This indicates that R5 and R5a can provide information on the DNA local environment at the level of an individual nucleotide. As these probes can be attached to arbitrary nucleotides within a nucleic acid sequence, they may provide a means to “scan” a given DNA molecule in order to interrogate its local structural and dynamic features.

  4. Discriminative EPR detection of NO and HNO by encapsulated nitronyl nitroxides

    PubMed Central

    Bobko, Andrey A.; Ivanov, Alexander; Khramtsov, Valery V.

    2014-01-01

    Nitric oxide, •NO, is one of the most important molecules in the biochemistry of living organisms. By contrast, nitroxyl, NO−, one-electron reduced analog of •NO which exists at physiological conditions in its protonated form, HNO, has been relatively overlooked. Recent data shows that HNO might be produced endogenously and display unique biological effects. However, there is a lack of specific and quantitative methods of detection of endogenous HNO production. Here we present a new method for discriminative •NO and HNO detection by nitronyl nitroxides (NNs) using electron paramagnetic resonance (EPR). It was found that NNs react with •NO and HNO with similar rate constants of about 104 M−1s−1 but yield different products: imino nitroxides and the hydroxylamine of imino nitroxides, correspondingly. An EPR approach for discriminative •NO and HNO detection using liposome-encapsulated NNs was developed. The membrane barrier of liposomes protects NNs against reduction in biological systems while is permeable to both analytes, •NO and HNO. The sensitivity of this approach for the detection of the rates of •NO/HNO generation is about 1 nM/s. The application of encapsulated NNs for real-time discriminative •NO/HNO detection might become a valuable tool in nitric oxide related studies. PMID:23136998

  5. Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools.

    PubMed

    James, Andrew M; Cochemé, Helena M; Smith, Robin A J; Murphy, Michael P

    2005-06-01

    Antioxidants, such as ubiquinones, are widely used in mitochondrial studies as both potential therapies and useful research tools. However, the effects of exogenous ubiquinones can be difficult to interpret because they can also be pro-oxidants or electron carriers that facilitate respiration. Recently we developed a mitochondria-targeted ubiquinone (MitoQ10) that accumulates within mitochondria. MitoQ10 has been used to prevent mitochondrial oxidative damage and to infer the involvement of mitochondrial reactive oxygen species in signaling pathways. However, uncertainties remain about the mitochondrial reduction of MitoQ10, its oxidation by the respiratory chain, and its pro-oxidant potential. Therefore, we compared MitoQ analogs of varying alkyl chain lengths (MitoQn, n = 3-15) with untargeted exogenous ubiquinones. We found that MitoQ10 could not restore respiration in ubiquinone-deficient mitochondria because oxidation of MitoQ analogs by complex III was minimal. Complex II and glycerol 3-phosphate dehydrogenase reduced MitoQ analogs, and the rate depended on chain length. Because of its rapid reduction and negligible oxidation, MitoQ10 is a more effective antioxidant against lipid peroxidation, peroxynitrite and superoxide. Paradoxically, exogenous ubiquinols also autoxidize to generate superoxide, but this requires their deprotonation in the aqueous phase. Consequently, in the presence of phospholipid bilayers, the rate of autoxidation is proportional to ubiquinol hydrophilicity. Superoxide production by MitoQ10 was insufficient to damage aconitase but did lead to hydrogen peroxide production and nitric oxide consumption, both of which may affect cell signaling pathways. Our results comprehensively describe the interaction of exogenous ubiquinones with mitochondria and have implications for their rational design and use as therapies and as research tools to probe mitochondrial function. PMID:15788391

  6. In vivo high-resolution magic angle spinning magnetic and electron paramagnetic resonance spectroscopic analysis of mitochondria-targeted peptide in Drosophila melanogaster with trauma-induced thoracic injury

    PubMed Central

    CONSTANTINOU, CATERINA; APIDIANAKIS, YIORGOS; PSYCHOGIOS, NIKOLAOS; RIGHI, VALERIA; MINDRINOS, MICHAEL N.; KHAN, NADEEM; SWARTZ, HAROLD M.; SZETO, HAZEL H.; TOMPKINS, RONALD G.; RAHME, LAURENCE G.; TZIKA, A. ARIA

    2016-01-01

    Trauma is the most common cause of mortality among individuals aged between 1 and 44 years and the third leading cause of mortality overall in the US. In this study, we examined the effects of trauma on the expression of genes in Drosophila melanogaster, a useful model for investigating genetics and physiology. After trauma was induced by a non-lethal needle puncture of the thorax, we observed the differential expression of genes encoding for mitochondrial uncoupling proteins, as well as those encoding for apoptosis-related and insulin signaling-related proteins, thus indicating muscle functional dysregulation. These results prompted us to examine the link between insulin signaling and mitochondrial dysfunction using in vivo nuclear magnetic resonance (NMR) with complementary electron paramagnetic resonance (EPR) spectroscopy. Trauma significantly increased insulin resistance biomarkers, and the NMR spectral profile of the aged flies with trauma-induced thoracic injury resembled that of insulin-resistant chico mutant flies. In addition, the mitochondrial redox status, as measured by EPR, was significantly altered following trauma, indicating mitochondrial uncoupling. A mitochondria-targeted compound, Szeto-Schiller (SS)-31 that promotes adenosine triphosphate (ATP) synthesis normalized the NMR spectral profile, as well as the mitochondrial redox status of the flies with trauma-induced thoracic injury, as assessed by EPR. Based on these findings, we propose a molecular mechanism responsible for trauma-related mortality and also propose that trauma sequelae in aging are linked to insulin signaling and mitochondrial dysfunction. Our findings further suggest that SS-31 attenuates trauma-associated pathological changes. PMID:26648055

  7. Pulsed electron-electron double resonance spectroscopy between a high-spin Mn(2+) ion and a nitroxide spin label.

    PubMed

    Akhmetzyanov, D; Plackmeyer, J; Endeward, B; Denysenkov, V; Prisner, T F

    2015-03-14

    Pulsed Electron-Electron Double Resonance (PELDOR) has attracted considerable attention for biomolecular applications, as it affords precise measurements of distances between pairs of spin labels in the range of 1.5-8 nm. Usually nitroxide moieties incorporated by site-directed spin labelling with cysteine residues are used as spin probes in protein systems. Recently, naturally occurring cofactors and metal ions have also been explored as paramagnetic spin species for such measurements. In this work we investigate the performance of PELDOR between a nitroxide spin label and a high-spin Mn(2+) ion in a synthetic model compound at Q-band (34 GHz) and G-band (180 GHz). We demonstrate that the distances obtained with high-frequency PELDOR are in good agreement with structural predictions. At Q-band frequencies experiments have been performed by probing either the high-spin Mn(2+) ion or the nitroxide spin label. At G-band frequencies we have been able to detect changes in the dipolar oscillation frequency, depending on the pump-probe positions across the g-tensor resolved nitroxide EPR spectrum. These changes result from the restricted mobility of the nitroxide spin label in the model compound. Our results demonstrate that the high-spin Mn(2+) ion can be used for precise distance measurements and open the doors for many biological applications, as naturally occurring Mg(2+) sites can be readily exchanged for Mn(2+). PMID:25669744

  8. Understanding the fundamentals of redox mediators in Li-O2 batteries: a case study on nitroxides.

    PubMed

    Bergner, Benjamin J; Hofmann, Christine; Schürmann, Adrian; Schröder, Daniel; Peppler, Klaus; Schreiner, Peter R; Janek, Jürgen

    2015-12-21

    The development of aprotic lithium-oxygen (Li-O2) batteries suffers from high charging overvoltages. Dissolved redox mediators, like nitroxides, providing increased energy efficiency and longer lifetime are promising tools to overcome this challenge. Since this auspicious concept is still in its infancy, the underlying chemical reactions as well as the impact of the different (electro)chemical parameters are poorly understood. Herein, we derive an electrochemical model for the charging reactions, which is validated by potentiostatic measurements. The model elucidates the impact of the major factors including basic cell parameters and the chemical properties of the redox mediator. The model is applied to the promising class of nitroxides, which is systematically investigated by using derivatives of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy), AZADO (2-azaadamantane-N-oxyl), and an azaphenalene based nitroxide. The nitroxides are electrochemically characterized by cyclic voltammetry and their performance as redox mediators is studied in Li-O2 batteries with an ether-based electrolyte. Based on the presented model, the charging profiles of the different nitroxide redox mediators are correlated with their molecular structures. PMID:26563563

  9. Mitochondria-targeting for improved photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Ngen, Ethel J.

    Photodynamic therapy (PDT) is an emerging cancer therapeutic modality, with great potential to selectively treat surface cancers, thus minimizing systemic side effects. In this dissertation, two approaches to deliver photosensitizers to mitochondria were investigated: 1) Reducing photosensitizer sizes to improve endocytosis and lysosomal localization. Upon irradiation the photosensitizers would then produce singlet oxygen which could rupture the lysosomal membrane releasing the lysosomally trapped photosensitizers to the cytosol, from where they could relocalize to mitochondria by passive diffusion (photochemical internalization). 2) Using delocalized lipophilic cationic dyes (DLCs) to exploit membrane potential differences between the cytoplasm and mitochondria in delivering photosensitizers to mitochondria. To investigate the effects of steric hindrance on mitochondrial localization and photodynamic response, a series of eight thiaporphyrins were studied. Two new thiaporphyrin analogues 6 and 8 with reduced steric hindrance at the 10- and 15- meso positions were studied in comparison to 5,20-diphenyl-10,15-bis[4 (carboxymethyleneoxy)-phenyl]-21,23-dithiaporphyrin 1, previously validated as a potential second generation photosensitizer. Although 6 showed an extraordinarily high uptake (7.6 times higher than 1), it was less potent than 1 (IC 50 = 0.18 muM versus 0.13 muM) even though they both showed similar sub-cellular localization patterns. This low potency was attributed to its high aggregation tendency in aqueous media (4 times higher than 1), which might have affected its ability to generate singlet oxygen in vitro . 8 on the other hand showed an even lower potency than 6 (2.28 vs 0.18 muM). However this was attributed to its low cellular uptake (20 times less than 6) and inefficient generation of singlet oxygen. Overall, although the structural modifications did improve the cellular uptake of 6, 6 was still less potent than the lead photosensitizers 1. Thus, other strategies to target mitochondria for improved photodynamic activity were investigated. In a continuing project, we evaluated the ability of delocalized lipophilic cationic dyes to deliver photosensitizers to mitochondria by exploiting the membrane potential difference between the cytoplasm and mitochondria. Two conjugates: a porphyrin--rhodamine B conjugate (TPP--Rh) and a porphyrin-acridine orange conjugate (TPP--AO), each possessing a single delocalized lipophilic cation, were designed and synthesized. The conjugates were synthesized by conjugating a monohydroxy porphyrin (TPP-OH) to rhodamine B (Rh B) and acridine orange base (AO), respectively, via saturated hydrocarbon linkers. To evaluate the efficiency of the conjugates as photosensitizers, their photophysical properties and in vitro photodynamic activities were studied in comparison to those of TPP-OH, the parent porphyrin photosensitizer. Although fluorescence energy transfer (FRET) was observed in the conjugates, they were capable of generating singlet oxygen at rates comparable to TPP-OH. In a final project, we evaluated the photophysical potential of TPP-Rh to act as a two-photon photosensitizer for PDT. Two-photon PDT is a rational approach used to improve light penetration through the skin. Rhodamine B is an effective two-photon chromophore and could significantly improve the two-photon absorption of the porphyrin photosensitizer in the TPP-Rh dyad system following energy transfer. Thus the porphyrin--rhodamine B dyad (TPP--Rh), previously demonstrated to preferentially accumulate in the mitochondria, was photophysically evaluated as a potential two-photon photosensitizer. To evaluate the efficiency of TPP-Rh as a two-photon photosensitizer, its two-photon photophysical properties were compared with those of its individual components (Rh B and TPP-OH). This included: the two-photon cross sections (sigma 2), RET kinetics and dynamics and rates of singlet oxygen generation. A FRET efficiency of ~99 % was observed from the Rh moiety (donor) to the TPP moiety (acceptor) of the system. This significantly enhanced the sigma 2 of TPP-Rh by ˜ 100 % (20 GM) compared to the parent TPP-OH. Furthermore, TPP-Rh produced singlet oxygen at a significantly faster rate than TPP-OH upon two-photon excitation. Thus, this indicates that conjugating photosensitizers to Rh B via short saturated hydrocarbon linkers could provide deeper tissue penetration, in addition to preferential mitochondrial accumulation for improved photodynamic response. (Abstract shortened by UMI.)

  10. Antioxidant and antitumor activity of trolox, trolox succinate, and α-tocopheryl succinate conjugates with nitroxides.

    PubMed

    Zakharova, Ol'ga D; Frolova, Tat'yana S; Yushkova, Yuliya V; Chernyak, Elena I; Pokrovsky, Andrei G; Pokrovsky, Mikhail A; Morozov, Sergei V; Sinitsina, Ol'ga I; Grigor'ev, Igor A; Nevinsky, Georgy A

    2016-10-21

    A possible ability of twelve new derivatives of known antioxidants trolox (TroH), trolox succinate (TroS), α-tocopheryl succinate (α-TOS) containing nitroxyl radicals (1-12) to protect bacterial cells from spontaneous and peroxide-induced mutagenesis and their cytotoxicity against six different tumor cells as well as two normal cells were investigated and compared with that for TroH, TroS, α-TOH, and α-TOS for the first time. In contrast to TroH and TroS, all nitroxide derivatives 1-12 demonstrated not only antioxidant properties, but also suppress the growth of human tumor cells: myeloma, mammary adenocarcinoma, hepatocarcinoma, T cells leukemia, histiocytic lymphoma, and T-cellular leucosis. The IC50 values (24 - ≥ 300 μM) depend significantly on the compounds and type of tumor cells. Some compounds were capable to inhibit the growth of normal mouse (LMTK) and hamster (AG17) fibroblast cells and demonstrate very different ratios in inhibition of various tumor and normal cell lines. Some nitroxide conjugates showed pronounced selectivity in suppressing the growth of several cancer cells. Overall, several compounds may be promising in parallel as antioxidants and as specific inhibitors of some tumor cells growth. Among considered spin labeled conjugates the most perspective derivatives as antioxidants and as antitumor agents are the compounds containing pyrrolidine nitroxides. In contrast to spin labeled TroH, TroS and α-TOS conjugates 1-12 succinyl derivatives 13-15 were inactive in inhibiting the growth of any tumor cells. It means that for suppressing the cancer cells the compounds should contain in their structures fragments of TroH, TroS or α-TOS. PMID:27344490

  11. Effects of mitochondria-targeted plastoquinone derivative antioxidant (SkQ1) on demography of free-breeding Campbell dwarf hamsters (Phodopus campbelli) kept in outdoor conditions. reproduction and lifespan: explanation in the framework of ultimate loads.

    PubMed

    Rogovin, K A; Khrushcheva, A M; Shekarova, O N; Ushakova, M V; Manskikh, V N; Sokolova, O V; Vasilieva, N Yu

    2014-10-01

    We studied demographic effects of the mitochondria-targeted antioxidant SkQ1 on free-breeding Campbell dwarf hamsters (Phodopus campbelli, Thomas, 1905, Rodentia, Cricetidae) in an outdoor vivarium with seasonally varying day length and temperatures. The animals were kept in pairs from their young age. We removed litters from parental cages at their age of 25 days. Experimental hamsters received daily 50 nmol/kg SkQ1 with water by oral dosing, whereas control animals received water. SkQ1 had no effect on the lifespan of either males or females in reproductive pairs. Mortality among females was higher than among males irrespective of SkQ1 treatment, this being related to higher costs of reproduction in females. However, SkQ1 accelerated breeding in pairs in the first half of the reproductive period of a year. Although there were no statistical differences in body mass of males and females between experimental and control animals during most of their life, SkQ1-receiving males had higher body mass at the end of their life. The opposite tendency was characteristic for old females. One-year-old males and females of the experimental and control groups showed no difference in intensity of immune response to sheep red blood cells. The dermal hypersensitivity response to phytohemagglutinin (test for T-cell immunity) was significantly higher in SkQ1-treated 1- and 1.5-year-old males. This was not true for females. There was a tendency toward increased density of the neutrophil population in blood in 1-year-old SkQ1-treated males. However, experimental males showed no difference from control males in the activity of the "peroxidase-endogenous hydrogen peroxide system" of neutrophils. The background level of stress estimated by the concentration of cortisol in blood serum was significantly lower in the SkQ1-treated males during autumn adaptive adjustment of the organism. A similar trend was also observed during the January frosts, when the background level of stress was

  12. Relaxation-based distance measurements between a nitroxide and a lanthanide spin label

    NASA Astrophysics Data System (ADS)

    Jäger, H.; Koch, A.; Maus, V.; Spiess, H. W.; Jeschke, G.

    2008-10-01

    Distance measurements by electron paramagnetic resonance techniques between labels attached to biomacromolecules provide structural information on systems that cannot be crystallized or are too large to be characterized by NMR methods. However, existing techniques are limited in their distance range and sensitivity. It is anticipated by theoretical considerations that these limits could be extended by measuring the enhancement of longitudinal relaxation of a nitroxide label due to a lanthanide complex label at cryogenic temperatures. The relaxivity of the dysprosium complex with the macrocyclic ligand DOTA can be determined without direct measurements of longitudinal relaxation rates of the lanthanide and without recourse to model compounds with well defined distance by analyzing the dependence of relaxation enhancement on either temperature or concentration in homogeneous glassy frozen solutions. Relaxivities determined by the two calibration techniques are in satisfying agreement with each other. Error sources for both techniques are examined. A distance of about 2.7 nm is measured in a model compound of the type nitroxide-spacer-lanthanide complex and is found in good agreement with the distance in a modeled structure. Theoretical considerations suggest that an increase of the upper distance limit requires measurements at lower fields and temperatures.

  13. Drug binding to the acetylcholine receptor: Nitroxide analogs of phencyclidine and a local anesthetic

    SciTech Connect

    Palma, A.L.

    1988-01-01

    The interaction of noncompetitive inhibitors (NCIs) with Torpedo californica native nicotinic acetylcholine receptor (nAChR) membranes was examined primarily by the technique of electron paramagnetic resonance (EPR) spectroscopy. The goal of this work being to define some of the physical characteristics for the site(s) of association between an NCI and the nAChR membrane. A nitroxide labeled analog of a quaternary amine local anesthetic, 2-(N,N-dimethyl-N-4-(2,2,6,6-tetramethylpiperidinoxyl)amino)-ethyl 4-hexyloxybenzoate iodide (C6SLMeI), displays a strongly immobilized EPR component when added to nAChR membranes in the presence of carbamylcholine (carb). To further this work, a nitroxide labeled analog of phencyclidine (PCP), a potent NCI, was synthesized. 4-phenyl-4-(1-piperidinyl)-2,2,6,6-tetramethylpiperidinoxyl (PPT) exhibited one-third the potency of PCP in inhibiting nAChR mediated ion flux, and from competition binding studies with ({sup 3}H)PCP displayed a K{sub D} of 0.21 {mu}M towards a carb desensitized nAChR and a K{sub 0.5} of 18 {mu}M for a resting {alpha}-bungarotoxin treated nAChR.

  14. Structure and dynamics of an imidazoline nitroxide side chain with strongly hindered internal motion in proteins

    NASA Astrophysics Data System (ADS)

    Toledo Warshaviak, Dora; Khramtsov, Valery V.; Cascio, Duilio; Altenbach, Christian; Hubbell, Wayne L.

    2013-07-01

    A disulfide-linked imidazoline nitroxide side chain (V1) has a similar and highly constrained internal motion at diverse topological sites in a protein, unlike that for the disulfide-linked pyrroline nitroxide side chain (R1) widely used in site directed spin labeling EPR. Crystal structures of V1 at two positions in a helix of T4 Lysozyme and quantum mechanical calculations suggest the source of the constraints as intra-side chain interactions of the disulfide sulfur atoms with both the protein backbone and the 3-nitrogen in the imidazoline ring. These interactions apparently limit the conformation of the side chain to one of only three possible rotamers, two of which are observed in the crystal structure. An inter-spin distance measurement in frozen solution using double electron-electron resonance (DEER) gives a value essentially identical to that determined from the crystal structure of the protein containing two copies of V1, indicating that lattice forces do not dictate the rotamers observed. Collectively, the results suggest the possibility of predetermining a unique rotamer of V1 in helical structures. In general, the reduced rotameric space of V1 compared to R1 should simplify interpretation of inter-spin distance information in terms of protein structure, while the highly constrained internal motion is expected to extend the dynamic range for characterizing large amplitude nanosecond backbone fluctuations.

  15. Fluorescent dye-labelled polymer synthesis by nitroxide mediated radical polymerization

    NASA Astrophysics Data System (ADS)

    Kollár, Jozef; Chmela, Štefan; Hrčková, Ľudmila; Hrdlovič, Pavol

    2012-07-01

    New applications of polymers at advanced technologies demand increased requirements on their properties. These properties are influenced by molecular as well as supramolecular structure. Controlled radical polymerization mediated by stable nitroxides (NMP) or substituted alkoxyamines offers simple method for preparation of polymers with programmable structure of macromolecules which possess remarkable better physical as well as chemical properties. They can be used as a macro initiators for the synthesis of block copolymers. At the present time it has been generally accepted that the extent of "livingness" is high for all conversions [1-4]. To verify this statement a series of fluorescent dye-labelled regulators has been synthesized, spectrally characterized and used as the mediators of styrene and n-butyl acrylate polymerization. Direct quantification of dormant species concentration (extent of livingness) and calculation of molar mass of marked polymers was performed by absorption and/or emission spectroscopy. Controlled radical polymerization mediated by stable nitroxides bearing fluorescence mark represents unconventional approach for monitoring and evaluation of mechanism and kinetics of polymerization process. Results indicate that the extent of livingness is strongly influenced by conversion as well as mediator concentration. There is a clear tendency toward to decreasing amount of dormant species with increasing monomer conversion. Moreover, lower mediator concentration decreases livingness of polymerization process.

  16. Synthesis, crystal structure, superoxide scavenging activity, anticancer and docking studies of novel adamantyl nitroxide derivatives

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao-he; Sun, Jin; Wang, Shan; Bu, Wei; Yao, Min-na; Gao, Kai; Song, Ying; Zhao, Jin-yi; Lu, Cheng-tao; Zhang, En-hu; Yang, Zhi-fu; Wen, Ai-dong

    2016-03-01

    A novel adamantyl nitroxide derivatives has been synthesized and characterized by IR, ESI-MS and elemental analysis. Quantum chemical calculations have also been performed to calculate the molecular geometry using density functional theory (B3LYP) with the 6-31G (d,p) basis set. The calculated results showed that the optimized geometry can well reproduce the crystal structure. The antioxidant and antiproliferative activity were evaluated by superoxide (NBT) and MTT assay. The adamantyl nitroxide derivatives exhibited stronger scavenging ability towards O2· - radicals when compared to Vitamin C, and demonstrated a remarked anticancer activity against all the tested cell lines, especially Bel-7404 cells with IC50 of 43.3 μM, compared to the positive control Sorafenib (IC50 = 92.0 μM). The results of molecular docking within EGFR using AutoDock confirmed that the titled compound favorably fitted into the ATP binding site of EGFR and would be a potential anticancer agent.

  17. Spatial aromatic fences of metal-organic frameworks for manipulating the electron spin of a fulleropyrrolidine nitroxide radical.

    PubMed

    Cao, Jiamei; Feng, Yongqiang; Zhou, Shengju; Sun, Xiaofeng; Wang, Taishan; Wang, Chunru; Li, Hongguang

    2016-07-28

    The electron spin properties of a fulleropyrrolidine nitroxide radical incarcerated in the pores of MOF-177 and MIL-53 respectively were investigated for the first time. It was found that the spatial confinement effect and intramolecular interactions in these two solid-state spin systems lead to dramatically distinctive spin dynamics. PMID:27356865

  18. A Novel Nitronyl Nitroxide with Salicylic Acid Framework Attenuates Pain Hypersensitivity and Ectopic Neuronal Discharges in Radicular Low Back Pain

    PubMed Central

    Han, Wen-Juan; Chen, Lei; Wang, Hai-Bo; Liu, Xiang-Zeng; Hu, San-Jue; Sun, Xiao-Li; Luo, Ceng

    2015-01-01

    Evidence has accumulated that reactive oxygen species and inflammation play crucial roles in the development of chronic pain, including radicular low back pain. Nonsteroid anti-inflammatory drugs (NSAIDs), for example, salicylic acid, aspirin, provided analgesic effects in various types of pain. However, long-term use of these drugs causes unwanted side effects, which limits their implication. Stable nitronyl (NIT) nitroxide radicals have been extensively studied as a unique and interesting class of new antioxidants for protection against oxidative damage. The present study synthesized a novel NIT nitroxide radical with salicylic acid framework (SANR) to provide synergistic effect of both antioxidation and antiinflammation. We demonstrated for the first time that both acute and repeated SANR treatment exerted dramatic analgesic effect in radicular low back pain mimicked by chronic compression of dorsal root ganglion in rats. This analgesic potency was more potent than that produced by classical NSAIDs aspirin and traditional nitroxide radical Tempol alone. Furthermore, SANR-induced behavioral analgesia is found to be mediated, at least in partial, by a reduction of ectopic spontaneous discharges in injured DRG neurons. Therefore, the synthesized NIT nitroxide radical coupling with salicylic acid framework may represent a novel potential therapeutic candidate for treatment of chronic pain, including radicular low back pain. PMID:26609438

  19. Interaction of poly(ethylene oxide) with the sodium dodecyl sulfate micelle interface studied with nitroxide spin probes

    SciTech Connect

    Kang, Y.S.; Kevan, L. )

    1994-08-04

    Electron spin resonance (ESR) line widths of 5-, 7-, 12-, and 16-doxylstearic acid (x-DSA) and tempo nitroxides versus the concentration of poly(ethylene oxide) (PEO) in sodium dodecyl sulfate (SDS) micelles show different trends. The ESR line widths of 5-, 7-, and 16-DSA increase with increasing concentration of PEO, which is interpreted as due to increasing viscosity in the environment of the nitroxide spin probe. The tempo and 12-DSA line widths were independent of the concentration of PEO. The line width showed the highest value for 5-DSA and the lowest value of tempo. The line width of x-DSA decreases from 5-DSA to a minimum value for 12-DSA and then increases somewhat for 16-DSA. This is interpreted as bending of the alkyl chain to provide different locations for the nitroxide moiety relative to the micelle interface. The relative distances of the nitroxide moiety of [chi]-DSA from deuterated water at the SDS micelle interface was measured by deuterium electron spin echo modulation. The distances increased from 5-DSA to 12-DSA and then decreased for 16-DSA. The interpretation of the DSR line width trend is supported by the deuterium modulation depth trend. 28 refs., 5 figs., 2 tabs.

  20. Distance determination between low-spin ferric haem and nitroxide spin label using DEER: the neuroglobin case

    NASA Astrophysics Data System (ADS)

    Ezhevskaya, M.; Bordignon, E.; Polyhach, Y.; Moens, L.; Dewilde, S.; Jeschke, G.; Van Doorslaer, S.

    2013-10-01

    This work demonstrates for the first time the feasibility of using double electron-electron resonance (DEER) to determine the inter-spin distance between nitroxide spin labels and low-spin (S = 1/2) ferric haem centres. For these means, two human neuroglobin variants were spin labelled leading to singly labelled haem proteins with the nitroxide label on one of the natural Cys residues (Cys55 or Cys120). Room-temperature electron paramagnetic resonance was used to characterise the mobility of the nitroxide labels and X- and Q-band DEER experiments were performed to detect nitroxide-haem distances. Effects of residual nuclear modulations in the DEER traces were carefully evaluated. The DEER-derived distances were compared with theoretical predictions from an X-ray diffraction structure of human neuroglobin using a rotamer library approach as well as with distance information obtained from electron relaxation measurements. The structural biological implications of the spin-labelled side chains' dynamics and of the obtained distances are also discussed.

  1. Characterization of redox activity in resting and activated mast cells by reduction and reoxidation of lipophilic nitroxides.

    PubMed

    Suzuki-Nishimura, T; Swartz, H M

    1998-10-01

    1. We measured redox systems in resting and activated rat peritoneal mast cells under anoxia by using the redox metabolism of free doxyl stearic acid (5DS) and phosphatidylcholine with two 5DS molecules esterified to the glycerol (di5DSPC). 2. In the absence of oxygen, 5DS and di5DSPC were reduced to the corresponding hydroxylamines by resting mast cells, with apparent first-order kinetics of 0.085 and 0.078/min, respectively. 3. The activation of mast cells induced by compound 48/80 and bradykinin did not affect the rates of reduction of the nitroxides, and therefore the activation appeared not to be closely coupled to the redox system of these cells; this finding implies that ischemia is unlikely to affect histamine release from mast cells. 4. The oxidation of the nitroxides by the mast cells was very fast and may be nonenzymatic. 5. We concluded that nitroxides can be useful probes of redox metabolism in the mast cells but, because the characteristics of the cellular reduction-reoxidation systems differed from that of other cells, the use of this approach in other cells will require careful characterization of the redox metabolism of nitroxides in those cells. PMID:9792226

  2. PELDOR measurements on a nitroxide-labeled Cu(II) porphyrin: orientation selection, spin-density distribution, and conformational flexibility.

    PubMed

    Bode, Bela E; Plackmeyer, Jörn; Prisner, Thomas F; Schiemann, Olav

    2008-06-12

    Metal ions are functionally or structurally important centers in metalloproteins or RNAs, which makes them interesting targets for spectroscopic investigations. In combination with site-directed spin labeling, pulsed electron-electron double resonance (PELDOR or DEER) could be a well-suited method to characterize and localize them. Here, we report on the synthesis, full characterization, and PELDOR study of a copper(II) porphyrin/nitroxide model system. The X-band PELDOR time traces contain besides the distance information a convolution of orientational selectivity, conformational flexibility, exchange coupling, and spin density distribution, which can be deconvoluted by experiments with different frequency offsets and simulations. The simulations are based on the known experimental and spin Hamiltonian parameters and make use of a geometric model as employed for structurally similar bis-nitroxides and spin density parameters as obtained from density functional theory calculations. It is found that orientation selection with respect to dipolar angles is only weakly resolvable at X-band frequencies due to the large nitrogen hyperfine coupling of the copper porphyrin. On the other hand, the PELDOR time traces reveal a much faster oscillation damping than observed for structurally similar bis-nitroxides, which is mainly assigned to a small distribution in exchange couplings J. Taking the effects of orientation selectivity, distribution in J, and spin density distribution into account leads finally to a narrow distance distribution caused solely by the flexibility of the structure, which is in agreement with distributions from known bis-nitroxides of similar structure. Thus, X-band PELDOR measurements at different frequency offsets in combination with explicit time trace simulations allow for distinguishing between structural models and quantitative interpretation of copper-nitroxide PELDOR data gives access to localization of copper(II) ions. PMID:18491846

  3. Brain nuclear magnetic resonance imaging enhanced by a paramagnetic nitroxide contrast agent: preliminary report. [Dogs

    SciTech Connect

    Brasch, R.C.; Nitecki, D.E.; Brant-Zawadzki, M.; Enzmann, D.R.; Wesbey, G.E.; Tozer, T.N.; Tuck, L.D.; Cann, C.E.; Fike, J.R.; Sheldon, P.

    1983-11-01

    Contrast-enhancing agents for demonstrating abnormalities of the blood-brain barrier may extend the diagnostic utility of proton nuclear magnetic resonance (NMR) imaging. TES, a nitroxide stable free radical derivative, was tested as a central nervous system contrast enhancer in dogs with experimentally induced unilateral cerebritis or radiation cerebral damage. After intravenous injection of TES, the normal brain showed no change in NMR appearance, but areas of disease demonstrated a dramatic increase (up to 45%) in spin-echo intensity and a decrease in T/sub 1/, relaxation times. The areas of disease defined by TES enhancement were either not evident on the nonenhanced NMR images or were better defined after contrast administration. In-depth tests of toxicity, stability, and metabolism of this promising NMR contrast agent are now in progress.

  4. Spatial distribution of phases during gradual magnetostructural transitions in copper(II)-nitroxide based molecular magnets.

    PubMed

    Fedin, Matvey V; Veber, Sergey L; Bagryanskaya, Elena G; Romanenko, Galina V; Ovcharenko, Victor I

    2015-11-21

    Copper(ii)-nitroxide based molecular magnets Cu(hfac)2L(R) exhibit thermally-induced transitions between high- and low-temperature (HT/LT) magnetostructural states. In this work we report the first study on the spatial distribution of HT/LT phases during gradual transitions in these compounds. We explore the possibility of domain formation at intermediate temperatures, which has never been addressed before. For this purpose, we reexamine the available electron paramagnetic resonance (EPR) and X-ray diffraction data, and perform numerical calculations of EPR spectra for different models of exchange-coupled networks. A thorough analysis shows that during gradual transitions, molecular magnets Cu(hfac)2L(R) represent solid solutions of disordered HT and LT phases, and the formation of single-phase domains larger than a few nanometers in size is unlikely. PMID:26461851

  5. Imaging of Nitroxides at 250 MHz using Rapid-Scan Electron Paramagnetic Resonance

    PubMed Central

    Biller, Joshua R.; Tseitlin, Mark; Quine, Richard W.; Rinard, George A.; Weismiller, Hilary A.; Elajaili, Hanan; Rosen, Gerald M.; Kao, Joseph P. Y.; Eaton, Sandra S.; Eaton, Gareth R.

    2014-01-01

    Projections for 2D spectral-spatial images were obtained by continuous wave and rapid-scan electron paramagnetic resonance using a bimodal cross-loop resonator at 251 MHz. The phantom consisted of three 4 mm tubes containing different 15N,2H-substituted nitroxides. Rapid-scan and continuous wave images were obtained with 5 min total acquisition times. For comparison, images also were obtained with 29 s acquisition time for rapid scan and 15 min for continuous wave. Relative to continuous wave projections obtained for the same data acquisition time, rapid-scan projections had significantly less low-frequency noise and substantially higher signal-to-noise at higher gradients. Because of the improved image quality for the same data acquisition time, linewidths could be determined more accurately from the rapid-scan images than from the continuous wave images. PMID:24650729

  6. Translational diffusion in paramagnetic liquids by 1H NMR relaxometry: Nitroxide radicals in solution

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Korpała, A.; Kubica, A.; Meier, R.; Rössler, E. A.; Moscicki, J.

    2013-01-01

    For nitroxide radicals in solution one can identify three frequency regimes in which 1H spin-lattice relaxation rate of solvent molecules depend linearly on square root of the 1H resonance frequency. Combining a recently developed theory of nuclear (proton) spin-lattice relaxation in solutions of nitroxide radicals [D. Kruk et al., J. Chem. Phys. 137, 044512 (2012)], 10.1063/1.4736854 with properties of the spectral density function associated with translational dynamics, relationships between the corresponding linear changes of the relaxation rate (for 14N spin probes) and relative translational diffusion coefficient of the solvent and solute molecules have been derived (in analogy to 15N spin probes [E. Belorizky et al., J. Phys. Chem. A 102, 3674 (1998)], 10.1021/jp980397h). This method allows a simple and straightforward determination of diffusion coefficients in spin-labeled systems, by means of 1H nuclear magnetic resonance (NMR) relaxometry. The approach has thoroughly been tested by applying to a large set of experimental data—1H spin-lattice relaxation dispersion results for solutions of different viscosity (decalin, glycerol, propylene glycol) of 14N and 15N spin probes. The experiments have been performed versus temperature (to cover a broad range of translational diffusion coefficients) using field cycling spectrometer which covers three decades in 1H resonance frequency, 10 kHz-20 MHz. The limitations of NMR relaxometry caused by the time scale of the translational dynamics as well as electron spin relaxation have been discussed. It has been shown that for spin-labeled systems NMR relaxometry gives access to considerably faster diffusion processes than for diamagnetic systems.

  7. Exchange Coupling Mediated Through-Bonds and Through-Space in Conformationally-Constrained Polyradical Scaffolds: Calix[4]arene Nitroxide Tetraradicals And Diradical

    PubMed Central

    Rajca, Andrzej; Mukherjee, Sumit; Pink, Maren; Rajca, Suchada

    2008-01-01

    Calix[4]arenes constrained to 1,3-alternate conformation and functionalized at the upper rim with four and two tert-butylnitroxides have been synthesized, and characterized by X-ray crystallography, magnetic resonance (EPR and 1H NMR) spectroscopy, and magnetic studies. The 1,3-alternate nitroxide tetraradical and diradical provide unique polyradical scaffolds for dissection of the through-bond and through-space intramolecular exchange couplings. In addition, detailed magnetic studies of the previously reported calix[4]arene nitroxide tetraradical, which possesses cone conformation in solution, reveal conformational dependence of exchange coupling. Through-bond coupling between the adjacent nitroxide radicals is mediated by the nitroxide-m-phenylene-CH2-m-phenylene-nitroxide coupling pathway, and through-space coupling is found between the diagonal nitroxide radicals at the conformationally-constrained N···N distance of 5–6 Å. Magnetic studies of the calix[4]arene polyradical scaffolds in frozen solutions show that the through-bond exchange coupling in the 1,3-alternate calix[4]arene tetraradical is antiferromagnetic, while that in cone calix[4]arene tetraradical is ferromagnetic. The through-space exchange couplings are antiferromagnetic in both cone and 1,3-alternate calix[4]arene tetraradical, as well as in the 1,3-alternate calix[4]arene diradical. The exchange coupling constants (|J/k|) are of the order of 1 Kelvin. PMID:17031963

  8. Nitroxides as anti-biofilm compounds for the treatment of Pseudomonas aeruginosa and mixed-culture biofilms.

    PubMed

    Alexander, Stefanie-Ann; Kyi, Caroline; Schiesser, Carl H

    2015-04-28

    A series of 23 nitroxides () was tested for biofilm modulatory activity using a crystal violet staining technique. 3-(Dodecane-1-thiyl)-4-(hydroxymethyl)-2,2,5,5-tetramethyl-1-pyrrolinoxyl () was found to significantly suppress biofilm formation and elicit dispersal events in both Pseudomonas aeruginosa and mixed-culture biofilms. Twitching and swarming motilities were enhanced by nitroxide , leaving the planktonic-specific swimming motility unaffected and suggesting that the mechanism of -mediated biofilm modulation is linked to the hyperactivation of surface-associated cell motilities. Preliminary structure-activity relationship studies identify the dodecanethiyl chain, hydroxymethyl substituent and the free radical moiety to be structural features pertinent to the anti-biofilm activity of . PMID:25804546

  9. Cytochrome P450-2E1 promotes aging-related hepatic steatosis, apoptosis and fibrosis through increased nitroxidative stress.

    PubMed

    Abdelmegeed, Mohamed A; Choi, Youngshim; Ha, Seung-Kwon; Song, Byoung-Joon

    2016-02-01

    The role of ethanol-inducible cytochrome P450-2E1 (CYP2E1) in promoting aging-dependent hepatic disease is unknown and thus was investigated in this study. Young (7 weeks) and aged female (16 months old) wild-type (WT) and Cyp2e1-null mice were used in this study to evaluate age-dependent changes in liver histology, steatosis, apoptosis, fibrosis and many nitroxidative stress parameters. Liver histology showed that aged WT mice exhibited markedly elevated hepatocyte vacuolation, ballooning degeneration, and inflammatory cell infiltration compared to all other groups. These changes were accompanied with significantly higher hepatic triglyceride and serum cholesterol in aged WT mice although serum ALT and insulin resistance were not significantly altered. Aged WT mice showed the highest rates of hepatocyte apoptosis and hepatic fibrosis. Further, the highest levels of hepatic hydrogen peroxide, lipid peroxidation, protein carbonylation, nitration, and oxidative DNA damage were observed in aged WT mice. These increases in the aged WT mice were accompanied by increased levels of mitochondrial nitroxidative stress and alteration of mitochondrial complex III and IV proteins in aged WT mice, although hepatic ATP levels seems to be unchanged. In contrast, the aging-related nitroxidative changes were very low in aged Cyp2e1-null mice. These results suggest that CYP2E1 is important in causing aging-dependent hepatic steatosis, apoptosis and fibrosis possibly through increasing nitroxidative stress and that CYP2E1 could be a potential target for translational research in preventing aging-related liver disease. PMID:26703967

  10. Synthesis of a novel adamantyl nitroxide derivative with potent anti-hepatoma activity in vitro and in vivo

    PubMed Central

    Sun, Jin; Wang, Shan; Bu, Wei; Wei, Meng-Ying; Li, Wei-Wei; Yao, Min-Na; Ma, Zhong-Ying; Lu, Cheng-Tao; Li, Hui-Hui; Hu, Na-Ping; Zhang, En-Hu; Yang, Guo-Dong; Wen, Ai-Dong; Zhu, Xiao-He

    2016-01-01

    In this study, a novel adamantyl nitroxide derivative was synthesized and its antitumor activities in vitro and in vivo were investigated. The adamantyl nitroxide derivative 4 displayed a potent anticancer activity against all the tested human hepatoma cells, especially with IC50 of 68.1 μM in Bel-7404 cells, compared to the positive control 5-FU (IC50=607.7 μM). The significant inhibition of cell growth was also observed in xenograft mouse model, with low toxicity. Compound 4 suppressed the cell migration and invasion, induced the G2/M phase arrest. Further mechanistic studies revealed that compound 4 induced cell death, which was accompanied with damaging mitochondria, increasing the generation of intracellular reactive oxygen species, cleavages of caspase-9 and caspase-3, as well as activations of Bax and Bcl-2. These results confirmed that adamantyl nitroxide derivative exhibited selective antitumor activities via mitochondrial apoptosis pathway in Bel-7404 cells, and would be a potential anticancer agent for liver cancer. PMID:27429843

  11. In vivo evaluation of different alterations of redox status by studying pharmacokinetics of nitroxides using magnetic resonance techniques

    PubMed Central

    Bačić, Goran; Pavićević, Aleksandra; Peyrot, Fabienne

    2015-01-01

    Free radicals, particularly reactive oxygen species (ROS), are involved in various pathologies, injuries related to radiation, ischemia-reperfusion or ageing. Unfortunately, it is virtually impossible to directly detect free radicals in vivo, but the redox status of the whole organism or particular organ can be studied in vivo by using magnetic resonance techniques (EPR and MRI) and paramagnetic stable free radicals – nitroxides. Here we review results obtained in vivo following the pharmacokinetics of nitroxides on experimental animals (and a few in humans) under various conditions. The focus was on conditions where the redox status has been altered by induced diseases or harmful agents, clearly demonstrating that various EPR/MRI/nitroxide combinations can reliably detect metabolically induced changes in the redox status of organs. These findings can improve our understanding of oxidative stress and provide a basis for studying the effectiveness of interventions aimed to modulate oxidative stress. Also, we anticipate that the in vivo EPR/MRI approach in studying the redox status can play a vital role in the clinical management of various pathologies in the years to come providing the development of adequate equipment and probes. PMID:26827126

  12. In vivo evaluation of different alterations of redox status by studying pharmacokinetics of nitroxides using magnetic resonance techniques.

    PubMed

    Bačić, Goran; Pavićević, Aleksandra; Peyrot, Fabienne

    2016-08-01

    Free radicals, particularly reactive oxygen species (ROS), are involved in various pathologies, injuries related to radiation, ischemia-reperfusion or ageing. Unfortunately, it is virtually impossible to directly detect free radicals in vivo, but the redox status of the whole organism or particular organ can be studied in vivo by using magnetic resonance techniques (EPR and MRI) and paramagnetic stable free radicals - nitroxides. Here we review results obtained in vivo following the pharmacokinetics of nitroxides on experimental animals (and a few in humans) under various conditions. The focus was on conditions where the redox status has been altered by induced diseases or harmful agents, clearly demonstrating that various EPR/MRI/nitroxide combinations can reliably detect metabolically induced changes in the redox status of organs. These findings can improve our understanding of oxidative stress and provide a basis for studying the effectiveness of interventions aimed to modulate oxidative stress. Also, we anticipate that the in vivo EPR/MRI approach in studying the redox status can play a vital role in the clinical management of various pathologies in the years to come providing the development of adequate equipment and probes. PMID:26827126

  13. Synthesis of a Novel Nitronyl Nitroxide Radical and Determination of its Protective Effects Against Infrasound-Induced Injury.

    PubMed

    Wang, Haibo; Wang, Jin; Yang, Qi; Zhang, Xinwei; Gao, Peng; Xu, Shenglong; Sun, XiaoLi; Wang, YuKun

    2015-07-01

    Infrasound causes functional disorders and structural injury to the central nervous system. However, few anti-infrasound drugs exist, and they are inefficient. Nitronyl nitroxide radicals have been reported to be good antioxidants that act as superoxide dismutase mimics and directly react with reactive oxygen species, such as ·OH, H2O2, and O 2 (∙) -. Our previous research showed that the nitronyl nitroxide radical L-NNNBP has good protective effects against β-amyloid deposition and memory deficits in an AD rat model of APP/PS1. The objective of the present study was to find a new group of anti-infrasound drugs and determine the underlying pharmacological actions of nitronyl nitroxide radicals against infrasound-induced neuronal impairment in vivo. We synthesized a new stable nitronyl nitroxide radical, NRbt, and characterized its crystal structure. The results of the anti-oxidative damage effects of NRbt and the positive control drug tempol showed that they could significantly increase the SOD activity, CAT activity and GSH level and decrease the MDA level in rat hippocampi compared with infrasound exposure without pretreatment. Moreover, the ability of NRbt to regulate the activity or level of these biochemical markers was better than that of tempol. Our results showed that both NRbt and tempol significantly protected against the learning and memory impairments induced by infrasound exposure in a Morris water maze, but there were no significant differences in the path length or escape latency between the rats in the tempol group and the three NRbt groups (P > 0.05). In addition, the infrasound-induced neuronal apoptosis in rat hippocampi was significantly suppressed by NRbt and tempol. The results demonstrated that compared with the infrasound exposure group, the expression of Bcl-2 was up-regulated and the expressions of Bax and caspase-3 were down-regulated in rats pretreated with NRbt (40 mg/kg) or tempol (40 mg/kg). These results showed that the newly

  14. Synthesis and fluorescence properties of six fluorescein-nitroxide radical hybrid-compounds.

    PubMed

    Sato, Shingo; Endo, Susumu; Kurokawa, Yusuke; Yamaguchi, Masaki; Nagai, Akio; Ito, Tomohiro; Ogata, Tateaki

    2016-12-01

    Six fluorescein-nitroxide radical hybrid-compounds (2ab, 3ab, 4, and 5) were synthesized by the condensation of 5- or 6-carboxy-fluorescein and 4-amino-TEMPO (2ab), 5- or 6-aminofluorescein and 4-carboxy-TEMPO (3ab), and fluorescein and 4-carboxy-TEMPO (4), or by reaction of the 3-hydroxyl group of fluorescein with DPROXYL-3-ylmethyl methanesulfonate (5). Fluorescence intensities (around 520nm) after reduction of the radical increased to 1.43-, 1.38-, and 1.61-folds for 2a, 2b and 3b respectively; 3a alone exhibited a decrease in intensity on reduction. Since 4 was readily solvolyzed in PBS or even methanol to afford fluorescein and 4-carboxy-TEMPO, its fluorescence change could not be measured. Hybrid compound 5 containing an ether-linkage between the fluorescein phenol and 3-hydroxymethyl-DPROXYL hydroxyl centers, was stable and on reduction, showed a maximum increase (3.21-fold) in relative fluorescence intensity in PBS (pH5.0), despite its remarkably low absolute fluorescence intensity. PMID:27337053

  15. EELS Analysis of Nylon 6 Nanofibers Reinforced with Nitroxide-Functionalized Graphene Oxide.

    PubMed

    Leyva-Porras, César; Ornelas-Gutiérrez, C; Miki-Yoshida, M; Avila-Vega, Yazmín I; Macossay, Javier; Bonilla-Cruz, José

    2014-01-01

    A detailed analysis by transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) of nitroxide-functionalized graphene oxide layers (GOFT) dispersed in Nylon 6 nanofibers is reported herein. The functionalization and exfoliation process of graphite oxide to GOFT was confirmed by TEM using electron diffraction patterns (EDP), wherein 1 to 4 graphene layers of GOFT were observed. The distribution and alignment of GOFT layers within a sample of Nylon 6 nanofiber reveals that GOFT platelets are mainly within the fiber, but some were partially protruding from it. Furthermore, Nylon 6 nanofibers exhibit an average diameter of 225 nm with several microns in length. GOFT platelets embedded into the fiber, the pristine fiber, and amorphous carbon were analyzed by EELS where each spectra [corresponding to the carbon edge (C-K)] exhibited changes in the fine structure, allowing a clear distinction between: i) GOFT single-layers, ii) Nylon-6 nanofibers, and iii) the carbon substrate. EELS analysis is presented here for the first time as a powerful tool to identify functionalized graphene single-layers (< 4 layers of GOFT) into a Nylon 6 nanofiber composite. PMID:24634536

  16. EELS Analysis of Nylon 6 Nanofibers Reinforced with Nitroxide-Functionalized Graphene Oxide

    PubMed Central

    Leyva-Porras, César; Ornelas-Gutiérrez, C.; Miki-Yoshida, M.; Avila-Vega, Yazmín I.; Macossay, Javier; Bonilla-Cruz, José

    2014-01-01

    A detailed analysis by transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) of nitroxide-functionalized graphene oxide layers (GOFT) dispersed in Nylon 6 nanofibers is reported herein. The functionalization and exfoliation process of graphite oxide to GOFT was confirmed by TEM using electron diffraction patterns (EDP), wherein 1 to 4 graphene layers of GOFT were observed. The distribution and alignment of GOFT layers within a sample of Nylon 6 nanofiber reveals that GOFT platelets are mainly within the fiber, but some were partially protruding from it. Furthermore, Nylon 6 nanofibers exhibit an average diameter of 225 nm with several microns in length. GOFT platelets embedded into the fiber, the pristine fiber, and amorphous carbon were analyzed by EELS where each spectra [corresponding to the carbon edge (C-K)] exhibited changes in the fine structure, allowing a clear distinction between: i) GOFT single-layers, ii) Nylon-6 nanofibers, and iii) the carbon substrate. EELS analysis is presented here for the first time as a powerful tool to identify functionalized graphene single-layers (< 4 layers of GOFT) into a Nylon 6 nanofiber composite. PMID:24634536

  17. Stabilization of reactive nitroxides using invasomes to allow prolonged electron paramagnetic resonance measurements.

    PubMed

    Haag, S F; Taskoparan, B; Bittl, R; Teutloff, C; Wenzel, R; Fahr, A; Chen, M; Lademann, J; Schäfer-Korting, M; Meinke, M C

    2011-01-01

    The detection of the antioxidative capacity of the skin is of great practical relevance since free radicals are involved in many skin damaging processes, including aging and inflammation. The nitroxide TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxyl) in combination with electron paramagnetic resonance spectroscopy was found suitable for measuring the antioxidative capacity since its reaction with reducing agents is considerably fast. Yet, in order to achieve longer measurement times, e.g. in inflammatory skin diseases, the stabilizing effect of an invasome (ultraflexible vesicle/liposome) suspension with TEMPO was investigated ex vivo on porcine skin and in vivo on human skin. Invasomes increased the measurement time ex vivo 2-fold and the reduction was significantly slowed down in vivo, which is due to membrane-associated and therefore protected TEMPO. Furthermore, TEMPO accumulation in the membrane phase as well as the decreasing polarity of the ultimate surroundings of TEMPO during skin penetration explains the stabilizing effect. Thus, an invasome suspension with TEMPO exhibits stabilizing effects ex vivo and in vivo. PMID:21822032

  18. Nitroxide TEMPO: a genotoxic and oxidative stress inducer in cultured cells.

    PubMed

    Guo, Xiaoqing; Mittelstaedt, Roberta A; Guo, Lei; Shaddock, Joseph G; Heflich, Robert H; Bigger, Anita H; Moore, Martha M; Mei, Nan

    2013-08-01

    2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) is a low molecular weight nitroxide and stable free radical. In this study, we investigated the cytotoxicity and genotoxicity of TEMPO in mammalian cells using the mouse lymphoma assay (MLA) and in vitro micronucleus assay. In the absence of metabolic activation (S9), 3mM TEMPO produced significant cytotoxicity and marginal mutagenicity in the MLA; in the presence of S9, treatment of mouse lymphoma cells with 1-2mM TEMPO resulted in dose-dependent decreases of the relative total growth and increases in mutant frequency. Treatment of TK6 human lymphoblastoid cells with 0.9-2.3mM TEMPO increased the frequency of both micronuclei (a marker for clastogenicity) and hypodiploid nuclei (a marker of aneugenicity) in a dose-dependent manner; greater responses were produced in the presence of S9. Within the dose range tested, TEMPO induced reactive oxygen species and decreased glutathione levels in mouse lymphoma cells. In addition, the majority of TEMPO-induced mutants had loss of heterozygosity at the Tk locus, with allele loss of ⩽34Mbp. These results indicate that TEMPO is mutagenic in the MLA and induces micronuclei and hypodiploid nuclei in TK6 cells. Oxidative stress may account for part of the genotoxicity induced by TEMPO in both cell lines. PMID:23517621

  19. Radiobiologic Effects of GS-Nitroxide (JP4-039)on the Hematopoietic Syndrome

    PubMed Central

    GOFF, JULIE P.; EPPERLY, MICHAEL W.; DIXON, TRACY; WANG, HONG; FRANICOLA, DARCY; SHIELDS, DONNA; WIPF, PETER; LI, SONG; GAO, XIANG; GREENBERGER, JOEL S.

    2011-01-01

    Background/Aim Total-body irradiation (TBI) doses in the range of 2–8 Gy are associated with a drop in peripheral blood counts, decreased bone marrow cellularity, and hematopoietic syndrome. Radiation mitigators must be safe for individuals likely to recover spontaneously. Materials and Methods Female C57BL/6HNsd mice exposed to 9.0 and 9.15 Gy TBI, received intraperitoneal (10 mg/kg) JP4-039, a novel radiation mitigator, 24 hours after irradiation and were followed for hematopoietic recovery. Results Irradiated mice showed reduced peripheral blood lymphocytes and neutrophils and bone marrow cellularity at day 5. Serum electrolytes, liver and renal function tests showed no deleterious effect of JP4-039-after irradiation, and no reduction in survival compared to irradiated controls. Marrow recovery measured as cellularity, and hematopoietic colony-forming cells including primitive granulocyte-erythroid-megakaryocyte-monocytes (GEMM), reached pre-irradiation levels by day 30 in JP4-039 treated groups. Mice receiving single or multiple administrations of JP4-039 showed an early return of CFU-GEMM. Conclusion JP4-039 (GS-Nitroxide) is a safe radiation mitigator in mice warranting studies in larger animals and potentially a Phase I Clinical Trial. PMID:21576404

  20. Effects of tempol and redox-cycling nitroxides in models of oxidative stress

    PubMed Central

    Wilcox, Christopher S.

    2010-01-01

    Tempol is a redox cycling nitroxide that promotes the metabolism of many reactive oxygen species (ROS) and improves nitric oxide bioavailability. It has been studied extensively in animal models of oxidative stress. Tempol has been shown to preserve mitochondria against oxidative damage and improve tissue oxygenation. Tempol improved insulin responsiveness in models of diabetes mellitus and improved the dyslipidemia, reduced the weight gain and prevented diastolic dysfunction and heart failure in fat-fed models of the metabolic syndrome. Tempol protected many organs, including the heart and brain, from ischemia/reperfusion damage. Tempol prevented podocyte damage, glomerulosclerosis, proteinuria and progressive loss of renal function in models of salt and mineralocorticosteroid excess. It reduced brain or spinal cord damage after ischemia or trauma and exerted a spinal analgesic action. Tempol improved survival in several models of shock. It protected normal cells from radiation while maintaining radiation sensitivity of tumor cells. Its paradoxical pro-oxidant action in tumor cells accounted for a reduction in spontaneous tumor formation. Tempol was effective in some models of neurodegeneration. Thus, tempol has been effective in preventing several of the adverse consequences of oxidative stress and inflammation that underlie radiation damage and many of the diseases associated with aging. Indeed, tempol given from birth prolonged the life span of normal mice. However, presently tempol has been used only in human subjects as a topical agent to prevent radiation-induced alopecia. PMID:20153367

  1. Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress.

    PubMed

    Akbar, Mohammed; Essa, Musthafa Mohamed; Daradkeh, Ghazi; Abdelmegeed, Mohamed A; Choi, Youngshim; Mahmood, Lubna; Song, Byoung-Joon

    2016-04-15

    Mitochondria are important for providing cellular energy ATP through the oxidative phosphorylation pathway. They are also critical in regulating many cellular functions including the fatty acid oxidation, the metabolism of glutamate and urea, the anti-oxidant defense, and the apoptosis pathway. Mitochondria are an important source of reactive oxygen species leaked from the electron transport chain while they are susceptible to oxidative damage, leading to mitochondrial dysfunction and tissue injury. In fact, impaired mitochondrial function is commonly observed in many types of neurodegenerative diseases, including Alzheimer's disease, Parkinson׳s disease, Huntington׳s disease, alcoholic dementia, brain ischemia-reperfusion related injury, and others, although many of these neurological disorders have unique etiological factors. Mitochondrial dysfunction under many pathological conditions is likely to be promoted by increased nitroxidative stress, which can stimulate post-translational modifications (PTMs) of mitochondrial proteins and/or oxidative damage to mitochondrial DNA and lipids. Furthermore, recent studies have demonstrated that various antioxidants, including naturally occurring flavonoids and polyphenols as well as synthetic compounds, can block the formation of reactive oxygen and/or nitrogen species, and thus ultimately prevent the PTMs of many proteins with improved disease conditions. Therefore, the present review is aimed to describe the recent research developments in the molecular mechanisms for mitochondrial dysfunction and tissue injury in neurodegenerative diseases and discuss translational research opportunities. PMID:26883165

  2. Large molecular weight nitroxide biradicals providing efficient dynamic nuclear polarization at temperatures up to 200 K.

    PubMed

    Zagdoun, Alexandre; Casano, Gilles; Ouari, Olivier; Schwarzwälder, Martin; Rossini, Aaron J; Aussenac, Fabien; Yulikov, Maxim; Jeschke, Gunnar; Copéret, Christophe; Lesage, Anne; Tordo, Paul; Emsley, Lyndon

    2013-08-28

    A series of seven functionalized nitroxide biradicals (the bTbK biradical and six derivatives) are investigated as exogenous polarization sources for dynamic nuclear polarization (DNP) solid-state NMR at 9.4 T and with ca. 100 K sample temperatures. The impact of electron relaxation times on the DNP enhancement (ε) is examined, and we observe that longer inversion recovery and phase memory relaxation times provide larger ε. All radicals are tested in both bulk 1,1,2,2-tetrachloroethane solutions and in mesoporous materials, and the difference in ε between the two cases is discussed. The impact of the sample temperature and magic angle spinning frequency on ε is investigated for several radicals each characterized by a range of electron relaxation times. In particular, TEKPol, a bulky derivative of bTbK with a molecular weight of 905 g·mol(-1), is presented. Its high-saturation factor makes it a very efficient polarizing agent for DNP, yielding unprecedented proton enhancements of over 200 in both bulk and materials samples at 9.4 T and 100 K. TEKPol also yields encouraging enhancements of 33 at 180 K and 12 at 200 K, suggesting that with the continued improvement of radicals large ε may be obtained at higher temperatures. PMID:23961876

  3. Theoretical study of the photochemical initiation in nitroxide-mediated photopolymerization.

    PubMed

    Huix-Rotllant, Miquel; Ferré, Nicolas

    2014-06-26

    Nitroxide-mediated photopolymerization (NMP(2)) is a promising novel route to initiate radical polymerization. In NMP(2), alkoxyamines bounded to a monomer are attached to a chromophore. Upon light absorption, the excitation energy is transferred from the chromophore to the alkoxyamine moiety, inducing the cleavage of the oxygen-carbon bond and thus initiating the polymerization. The NMP(2) mechanism depends strongly on several factors like the type of chromophore, the monomer, the connectivity pattern, etc. This complexity makes it difficult to design new NMP(2) initiators with increased polymerization efficiency and selectivity. In the present article, we characterize by means of quantum mechanical calculations the main steps of the NMP(2) initiation for alkoxyamines attached to aromatic ketones. We show how the excitation energy can be transferred from the chromophore to the alkoxyamine moiety, and present two easily computed parameters which can account for the selectivity of the O-C bond photocleaveage. Finally, using results obtained for a series of isomers, we give some rules that may help the design of more efficient NMP(2) initiators. PMID:24922558

  4. Synthesis of 14N and 15N-labeled trityl-nitroxide biradicals with strong spin-spin interaction and improved sensitivity to redox status and oxygen

    PubMed Central

    Liu, Yangping; Villamena, Frederick A.; Song, Yuguang; Sun, Jian; Rockenbauer, Antal

    2014-01-01

    Simultaneous evaluation redox status and oxygenation in biological systems is of great importance for the understanding of biological functions. Electron paramagnetic resonance spectroscopy coupled with the use of the nitroxide radicals have been an indispensable technique for this application but are still limited by its low oxygen sensitivity, and low EPR resolution in part due to the moderately broad EPR triplet and spin quenching through bioreduction. In this study, we showed that these drawbacks can be overcome through the use of trityl-nitroxide biradicals allowing for the simultaneous measurement of redox status and oxygenation. A new trityl-nitroxide biradical TNN14 composed of a pyrrolidinyl-nitroxide and a trityl, and its isotopically labeled 15N analogue TNN15 were synthesized and characterized. Both biradicals exhibited much stronger spin-spin interaction with J > 400 G than the previous synthesized trityl-nitroxide biradicals TN1 (~160 G) and TN2 (~52 G) with longer linker chain length. The enhanced stability of TNN14 was evaluated using ascorbate as reductant and the effect of different types of cyclodextrins on its stability in the presence of ascorbate was also investigated. Both biradicals are sensitive to redox status, and their corresponding trityl-hydroxylamines resulting from the reduction of the biradicals by ascorbate share the same oxygen sensitivity. Of note is that the 15N-labeled TNN15-H with an EPR doublet exhibits improved EPR signal amplitude as compared to TNN14-H with an EPR triplet. In addition, cyclic voltammetric studies verify the characteristic electrochemical behaviors of the trityl-nitroxide biradicals. PMID:21028905

  5. Astrocytes expressing mutant SOD1 and TDP43 trigger motoneuron death that is mediated via sodium channels and nitroxidative stress

    PubMed Central

    Rojas, Fabiola; Cortes, Nicole; Abarzua, Sebastian; Dyrda, Agnieszka; van Zundert, Brigitte

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal paralytic disorder caused by dysfunction and degeneration of motor neurons. Multiple disease-causing mutations, including in the genes for SOD1 and TDP-43, have been identified in ALS. Astrocytes expressing mutant SOD1 are strongly implicated in the pathogenesis of ALS: we have shown that media conditioned by astrocytes carrying mutant SOD1G93A contains toxic factor(s) that kill motoneurons by activating voltage-sensitive sodium (Nav) channels. In contrast, a recent study suggests that astrocytes expressing mutated TDP43 contribute to ALS pathology, but do so via cell-autonomous processes and lack non-cell-autonomous toxicity. Here we investigate whether astrocytes that express diverse ALS-causing mutations release toxic factor(s) that induce motoneuron death, and if so, whether they do so via a common pathogenic pathway. We exposed primary cultures of wild-type spinal cord cells to conditioned medium derived from astrocytes (ACM) that express SOD1 (ACM-SOD1G93A and ACM-SOD1G86R) or TDP43 (ACM-TDP43A315T) mutants; we show that such exposure rapidly (within 30–60 min) increases dichlorofluorescein (DCF) fluorescence (indicative of nitroxidative stress) and leads to extensive motoneuron-specific death within a few days. Co-application of the diverse ACMs with anti-oxidants Trolox or esculetin (but not with resveratrol) strongly improves motoneuron survival. We also find that co-incubation of the cultures in the ACMs with Nav channel blockers (including mexiletine, spermidine, or riluzole) prevents both intracellular nitroxidative stress and motoneuron death. Together, our data document that two completely unrelated ALS models lead to the death of motoneuron via non-cell-autonomous processes, and show that astrocytes expressing mutations in SOD1 and TDP43 trigger such cell death through a common pathogenic pathway that involves nitroxidative stress, induced at least in part by Nav channel activity. PMID:24570655

  6. Quenching of the perylene fluorophore by stable nitroxide radical-containing macromolecules.

    PubMed

    Hughes, Barbara K; Braunecker, Wade A; Ferguson, Andrew J; Kemper, Travis W; Larsen, Ross E; Gennett, Thomas

    2014-10-30

    Stable nitroxide radical bearing organic polymer materials are attracting much attention for their application as next generation energy storage materials. A greater understanding of the inherent charge transfer mechanisms in such systems will ultimately be paramount to further advancements in the understanding of both intrafilm and interfacial ion- and electron-transfer reactions. This work is focused on advancing the fundamental understanding of these dynamic charge transfer properties by exploiting the fact that these species are efficient fluorescence quenchers. We systematically incorporated fluorescent perylene dyes into solutions containing the 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) radical and controlled their interaction by binding the TEMPO moiety into macromolecules with varying morphologies (e.g., chain length, density of radical pendant groups). In the case of the model compound, 4-oxo-TEMPO, quenching of the perylene excited state was found to be dominated by a dynamic (collisional) process, with a contribution from an apparent static process that is described by an ∼2 nm quenching sphere of action. When we incorporated the TEMPO unit into a macromolecule, the quenching behavior was altered significantly. The results can be described by using two models: (A) a collisional quenching process that becomes less efficient, presumably due to a reduction in the diffusion constant of the quenching entity, with a quenching sphere of action similar to 4-oxo-TEMPO or (B) a collisional quenching process that becomes more efficient as the radius of interaction grows larger with increasing oligomer length. This is the first study that definitively illustrates that fluorophore quenching by a polymer system cannot be explained using merely a classical Stern-Volmer approach but rather necessitates a more complex model. PMID:25329883

  7. Dynamics of intramolecular spin exchange interaction of a nitronyl nitroxide diradical in solution and on surfaces.

    PubMed

    Lloveras, V; Badetti, E; Veciana, J; Vidal-Gancedo, J

    2016-03-01

    In this paper we report the study of the dynamics of a thermally modulated intramolecular spin exchange interaction of a novel diradical nitronyl nitroxide-substituted disulfide in solution and when it is grafted on a gold surface. The structure of this diradical was designed to have flexible chains leading to intramolecular collisions and hence spin exchange interaction, and with an appropriate binding group to be grafted on the gold surface to study its behavior on the surface. In solution, this diradical shows a strong spin exchange interaction between both radicals which is modulated by temperature, but also gold nanoparticles (AuNPs) functionalized with this diradical permit investigation of such a phenomenon in surface-grafted radicals. The spin-labelled AuNP synthesis was optimized to obtain high coverage of spin labels to lead to high spin exchange interaction. The obtained AuNPs were studied by Electron Paramagnetic Resonance (EPR), UV-Vis, and IR spectroscopies, HR-TEM microscopy, Cyclic Voltammetry (CV), Energy Dispersive X-ray analysis (EDX) and Thermogravimetric Analysis (TGA). This inorganic-organic hybrid material also showed dipolar interactions between its radicals which were confirmed by the appearance in the EPR spectra of an |Δms| = 2 transition at half-field. This signal gives direct evidence of the presence of a high-spin state and permitted us to study the nature of the magnetic coupling between the spins which was found to be antiferromagnetic. Self-Assembled Monolayers (SAMs) of these radicals on the Au (111) substrate were also prepared and studied by contact angle, X-Ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), Cyclic Voltammetry and EPR. The magnetic as well as the electrochemical properties of the hybrid surfaces were studied and compared with the properties of this diradical in solution. Analogies between the properties of AuNPs with high coverage of radicals and those of SAM were

  8. E1 of α-ketoglutarate dehydrogenase defends Mycobacterium tuberculosis against glutamate anaplerosis and nitroxidative stress

    PubMed Central

    Maksymiuk, Christina; Balakrishnan, Anand; Bryk, Ruslana; Rhee, Kyu Y.; Nathan, Carl F.

    2015-01-01

    Enzymes of central carbon metabolism (CCM) in Mycobacterium tuberculosis (Mtb) make an important contribution to the pathogen’s virulence. Evidence is emerging that some of these enzymes are not simply playing the metabolic roles for which they are annotated, but can protect the pathogen via additional functions. Here, we found that deficiency of 2-hydroxy-3-oxoadipate synthase (HOAS), the E1 component of the α-ketoglutarate (α-KG) dehydrogenase complex (KDHC), did not lead to general metabolic perturbation or growth impairment of Mtb, but only to the specific inability to cope with glutamate anaplerosis and nitroxidative stress. In the former role, HOAS acts to prevent accumulation of aldehydes, including growth-inhibitory succinate semialdehyde (SSA). In the latter role, HOAS can participate in an alternative four-component peroxidase system, HOAS/dihydrolipoyl acetyl transferase (DlaT)/alkylhydroperoxide reductase colorless subunit gene (ahpC)-neighboring subunit (AhpD)/AhpC, using α-KG as a previously undescribed source of electrons for reductase action. Thus, instead of a canonical role in CCM, the E1 component of Mtb’s KDHC serves key roles in situational defense that contribute to its requirement for virulence in the host. We also show that pyruvate decarboxylase (AceE), the E1 component of pyruvate dehydrogenase (PDHC), can participate in AceE/DlaT/AhpD/AhpC, using pyruvate as a source of electrons for reductase action. Identification of these systems leads us to suggest that Mtb can recruit components of its CCM for reactive nitrogen defense using central carbon metabolites. PMID:26430237

  9. Redox properties of the nitronyl nitroxide antioxidants studied via their reactions with nitroxyl (HNO) and ferrocyanide

    PubMed Central

    Bobko, Andrey A.; Khramtsov, Valery V.

    2016-01-01

    Nitronyl nitroxides (NNs) are the paramagnetic probes that capable of scavenging physiologically relevant reactive oxygen (ROS) and nitrogen (RNS) species, namely superoxide, nitric oxide (NO) and nitroxyl (HNO). NNs are increasingly considered as potent antioxidants and potential therapeutic agents. Understanding redox chemistry of the NNs is important for their use as antioxidants and as paramagnetic probes for discriminative detection of NO and HNO by electron paramagnetic resonance (EPR) spectroscopy. Here we investigated the redox properties of the two most commonly used NNs, including determination of the equilibrium and rate constants of their reduction by HNO and ferrocyanide, and reduction potential of the couple NN/hydroxylamine of NN (hNN). The rate constants of the reaction of the NNs with HNO were found to be equal to (1-2)×104 M-1s-1 being close to the rate constants of scavenging superoxide and NO by NNs. The reduction potential of the NNs and iminonitroxides (INs, product of NNs reaction with NO) were calculated based on their reaction constants with ferrocyanide. The obtained values of the reduction potential for NN/hNN ( E0′≈285mV) and IN/hIN ( E0′≈495mV) are close to the corresponding values for vitamin c and vitamin e, correspondingly. The “balanced” scavenging rates of the NNs towards superoxide, NO and HNO, and their low reduction potential being thermodynamically close to the bottom of the pecking order of oxidizing radicals, might be important factors contributing into their antioxidant activity. PMID:25789760

  10. Conformations of Human Telomeric G-Quadruplex Studied Using a Nucleotide-Independent Nitroxide Label.

    PubMed

    Zhang, Xiaojun; Xu, Cui-Xia; Di Felice, Rosa; Sponer, Jiri; Islam, Barira; Stadlbauer, Petr; Ding, Yuan; Mao, Lingling; Mao, Zong-Wan; Qin, Peter Z

    2016-01-19

    Guanine-rich oligonucleotides can form a unique G-quadruplex (GQ) structure with stacking units of four guanine bases organized in a plane through Hoogsteen bonding. GQ structures have been detected in vivo and shown to exert their roles in maintaining genome integrity and regulating gene expression. Understanding GQ conformation is important for understanding its inherent biological role and for devising strategies to control and manipulate functions based on targeting GQ. Although a number of biophysical methods have been used to investigate structure and dynamics of GQs, our understanding is far from complete. As such, this work explores the use of the site-directed spin labeling technique, complemented by molecular dynamics simulations, for investigating GQ conformations. A nucleotide-independent nitroxide label (R5), which has been previously applied for probing conformations of noncoding RNA and DNA duplexes, is attached to multiple sites in a 22-nucleotide DNA strand derived from the human telomeric sequence (hTel-22) that is known to form GQ. The R5 labels are shown to minimally impact GQ folding, and inter-R5 distances measured using double electron-electron resonance spectroscopy are shown to adequately distinguish the different topological conformations of hTel-22 and report variations in their occupancies in response to changes of the environment variables such as salt, crowding agent, and small molecule ligand. The work demonstrates that the R5 label is able to probe GQ conformation and establishes the base for using R5 to study more complex sequences, such as those that may potentially form multimeric GQs in long telomeric repeats. PMID:26678746

  11. Dipolar Coupling between Nitroxide Spin Labels: The Development and Application of a Tether-in-a-Cone Model

    PubMed Central

    Hustedt, Eric J.; Stein, Richard A.; Sethaphong, Latsavongsakda; Brandon, Suzanne; Zhou, Zheng; DeSensi, Susan C.

    2006-01-01

    A tether-in-a-cone model is developed for the simulation of electron paramagnetic resonance spectra of dipolar coupled nitroxide spin labels attached to tethers statically disordered within cones of variable halfwidth. In this model, the nitroxides adopt a range of interprobe distances and orientations. The aim is to develop tools for determining both the distance distribution and the relative orientation of the labels from experimental spectra. Simulations demonstrate the sensitivity of electron paramagnetic resonance spectra to the orientation of the cones as a function of cone halfwidth and other parameters. For small cone halfwidths (<∼40°), simulated spectra are strongly dependent on the relative orientation of the cones. For larger cone halfwidths, spectra become independent of cone orientation. Tether-in-a-cone model simulations are analyzed using a convolution approach based on Fourier transforms. Spectra obtained by the Fourier convolution method more closely fit the tether-in-a-cone simulations as the halfwidth of the cone increases. The Fourier convolution method gives a reasonable estimate of the correct average distance, though the distance distribution obtained can be significantly distorted. Finally, the tether-in-a-cone model is successfully used to analyze experimental spectra from T4 lysozyme. These results demonstrate the utility of the model and highlight directions for further development. PMID:16214868

  12. Amelioration of Radiation Esophagitis by Orally Administered p53/Mdm2/Mdm4 Inhibitor (BEB55) or GS-Nitroxide

    PubMed Central

    KIM, HYUN; BERNARD, MARK E.; EPPERLY, MICHAEL W.; SHEN, HONGMEI; AMOSCATO, ANDREW; DIXON, TRACY M.; DOEMLING, ALEXANDER S.; LI, SONG; GAO, XIANG; WIPF, PETER; WANG, HONG; ZHANG, XICHEN; KAGAN, VALERIAN E.; GREENBERGER, JOEL S.

    2012-01-01

    Background/Aim Esophagitis is a significant toxicity of radiation therapy for lung cancer. In this study, reduction of irradiation esophagitis in mice, by orally administered p53/Mdm2/Mdm4 inhibitor, BEB55, or the GS-nitroxide, JP4-039, was evaluated. Materials and Methods BEB55 or JP4-039 in F15 (liposomal) formulation was administered intraesophageally to C57BL/6 mice prior to thoracic irradiation of 29 Gy × 1 or 11.5 Gy × 4 thoracic irradiation. Progenitor cells were sorted from excised esophagus, and nitroxide was quantified, by electron paramagnetic resonance (EPR). Mice with Lewis lung carcinoma (3LL) orthotopic lung tumors were treated with BEB55 or JP4-039 prior to 20 Gy to determine if the drugs would protect the tumor cells from radiation. Results Intraesophageal BEB55 and JP4-039 compared to formulation alone increased survival after single fraction (p=0.0209 and 0.0384, respectively) and four fraction thoracic irradiation (p=0.0241 and 0.0388, respectively). JP4-039 was detected in esophagus, liver, bone marrow, and orthotopic Lewis lung carcinoma (3LL) tumor. There was no significant radiation protection of lung tumors by BEB55 or JP4-039 compared to formulation only as assessed by survival (p=0.3021 and 0.3693, respectively). Thus, BEB55 and JP4-039 safely ameliorate radiation esophagitis in mice. PMID:22021675

  13. Intraesophageal Administration of GS-Nitroxide (JP4-039) Protects Against Ionizing Irradiation-induced Esophagitis

    PubMed Central

    EPPERLY, MICHAEL W.; GOFF, JULIE P.; LI, SONG; GAO, XIANG; WIPF, PETER; DIXON, TRACY; WANG, HONG; FRANICOLA, DARCY; SHEN, HONGMEI; RWIGEMA, JEAN-CLAUDE M.; KAGAN, VALERIAN; BERNARD, MARK; GREENBERGER, JOEL S.

    2012-01-01

    Background/Aim This study evaluated esophageal radioprotection by the Gramicidin S (GS) derived-nitroxide, JP4-039, a mitochondrial targeting peptide-isostere covalently-linked to 4-amino-Tempo, delivered in a novel swallowed oil-based (F15) formulation. Materials and Methods C57BL/6HNsd female mice received intraesophageal F15 formulation containing JP4-039 (4 mg/ml in 100 μl volumes) 10 minutes before 28 or 29 Gy upper body irradiation compared to MnSOD-PL (100 μl containing 100 μg plasmid) 24 hours prior to irradiation. Subgroups received 1×107 C57BL/6HNsd, GFP+ male bone marrow cells intravenously 5 days after irradiation. Results JP4-039/F15 or MnSOD-PL increased survival compared to irradiated controls (p<0.0001 for either). Marrow injection further increased survival (p=0.0462 and 0.0351, respectively). Esophagi removed at 1, 3, 7, 14, 24, or 60 days showed bone marrow-derived cells in the esophagi. Conclusion Intraesophageal GS-nitroxide radioprotection is mediated primarily through recovery of endogenous esophageal progenitor cells. PMID:21164038

  14. Synthesis and evaluation of nitroxide-based oligoradicals for low-temperature dynamic nuclear polarization in solid state NMR

    NASA Astrophysics Data System (ADS)

    Yau, Wai-Ming; Thurber, Kent R.; Tycko, Robert

    2014-07-01

    We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25-30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2-6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92-128 for cross-polarized 13C NMR signals from 15N,13C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6-3.8 s for 1H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute 13C NMR signal amplitudes and build-up times, are approximately 2-4 times lower than with the best triradicals.

  15. Nitroxidative chemistry interferes with fluorescent probe chemistry: implications for nitric oxide detection using 2,3-diaminonaphthalene.

    PubMed

    Hu, Teh-Min; Chiu, Shih-Jiuan; Hsu, Yu-Ming

    2014-08-22

    Simultaneous production of nitric oxide (NO) and superoxide generates peroxynitrite and causes nitroxidative stress. The fluorometric method for NO detection is based on the formation of a fluorescent product from the reaction of a nonfluorescent probe molecule with NO-derived nitrosating species. Here, we present an example of how nitroxidative chemistry could interact with fluorescent probe chemistry. 2,3-Naphthotriazole (NAT) is the NO-derived fluorescent product of 2,3-diaminonaphthalene (DAN), a commonly used NO-detecting molecule. We show that NO/superoxide cogeneration, and particularly peroxynitrite, mediates the chemical decomposition of NAT. Moreover, the extent of NAT decomposition depends on the relative fluxes of NO and superoxide; the maximum effect being reached at almost equivalent generation rates for both radicals. The rate constant for the reaction of NAT with peroxynitrite was determined to be 2.2×10(3)M(-1)s(-1). Further, various peroxynitrite scavengers were shown to effectively inhibit NO/superoxide- and peroxynitrite-mediated decomposition of NAT. Taken together, the present study suggests that the interference of a fluorometric NO assay can be originated from the interaction between the final fluorescent product and the formed reactive nitrogen and oxygen species. PMID:25078618

  16. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves

    PubMed Central

    Thurber, Kent R.; Tycko, Robert

    2014-01-01

    We report solid state 13C and 1H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, 1H and cross-polarized 13C NMR signals from 15N,13C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations. PMID:24832263

  17. W-band orientation selective DEER measurements on a Gd3+/nitroxide mixed-labeled protein dimer with a dual mode cavity

    NASA Astrophysics Data System (ADS)

    Kaminker, Ilia; Tkach, Igor; Manukovsky, Nurit; Huber, Thomas; Yagi, Hiromasa; Otting, Gottfried; Bennati, Marina; Goldfarb, Daniella

    2013-02-01

    Double electron-electron resonance (DEER) at W-band (95 GHz) was applied to measure the distance between a pair of nitroxide and Gd3+ chelate spin labels, about 6 nm apart, in a homodimer of the protein ERp29. While high-field DEER measurements on systems with such mixed labels can be highly attractive in terms of sensitivity and the potential to access long distances, a major difficulty arises from the large frequency spacing (about 700 MHz) between the narrow, intense signal of the Gd3+ central transition and the nitroxide signal. This is particularly problematic when using standard single-mode cavities. Here we show that a novel dual-mode cavity that matches this large frequency separation dramatically increases the sensitivity of DEER measurements, allowing evolution times as long as 12 μs in a protein. This opens the possibility of accessing distances of 8 nm and longer. In addition, orientation selection can be resolved and analyzed, thus providing additional structural information. In the case of W-band DEER on a Gd3+-nitroxide pair, only two angles and their distributions have to be determined, which is a much simpler problem to solve than the five angles and their distributions associated with two nitroxide spin labels.

  18. 1,3-Alternate calix[4]arene nitronyl nitroxide tetraradical and diradical: synthesis, X-ray crystallography, paramagnetic NMR spectroscopy, EPR spectroscopy, and magnetic studies

    SciTech Connect

    Rajca, Andrzej; Pink, Maren; Mukherjee, Sumit; Rajca, Suchada; Das, Kausik

    2008-04-02

    Calix[4]arenes constrained to 1,3-alternate conformation and functionalized at the upper rim with four and two nitronyl nitroxides have been synthesized, and characterized by X-ray crystallography, magnetic resonance (EPR and {sup 1}H NMR) spectroscopy, and magnetic studies. Such calix[4]arene tetraradicals and diradicals provide scaffolds for through-bond and through-space intramolecular exchange couplings.

  19. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves

    SciTech Connect

    Thurber, Kent R. Tycko, Robert

    2014-05-14

    We report solid state {sup 13}C and {sup 1}H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, {sup 1}H and cross-polarized {sup 13}C NMR signals from {sup 15}N,{sup 13}C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T{sub 1e} is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.

  20. A collision gradient method to determine the immersion depth of nitroxides in lipid bilayers: application to spin-labeled mutants of bacteriorhodopsin.

    PubMed Central

    Altenbach, C; Greenhalgh, D A; Khorana, H G; Hubbell, W L

    1994-01-01

    Ten mutants of bacteriorhodopsin, each containing a single cysteine residue regularly spaced along helix D and facing the lipid bilayer, were derivatized with a nitroxide spin label. Collision rates of the nitroxide with apolar oxygen increased with distance from the membrane/solution interface. Collision rates with polar metal ion complexes decreased over the same distance. Although the collision rates depend on steric constraints imposed by the local protein structure and on the depth in the membrane, the ratio of the collision rate of oxygen to those of a polar metal ion complex is independent of structural features of the protein. The logarithm of the ratio is a linear function of depth within the membrane. Calibration of this ratio parameter with spin-labeled phospholipids allows localization of the individual nitroxides, and hence the bacteriorhodopsin molecule, relative to the plane of the phosphate groups of the bilayer. The spacing between residues is consistent with the pitch of an alpha-helix. These results provide a general strategy for determining the immersion depth of nitroxides in bilayers. Images PMID:8127863

  1. Two tri-spin complexes based on gadolinium and nitronyl nitroxide radicals: Structure and ferromagnetic interactions

    SciTech Connect

    Zhou Na; Ma Yue; Wang Chao; Xu Gongfeng; Tang Jinkui; Yan Shiping; Liao Daizheng

    2010-04-15

    Three Radical-Ln(III)-Radical complexes based on nitronyl nitroxide radicals have been synthesized, structurally and magnetically characterized: [Gd(hfac){sub 3}(NITPhOEt){sub 2}] (1) (hfac=hexafluoroacetylacetonate, and NITPhOEt=4'-ethoxy-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide), [Gd(hfac){sub 3}(NITPhOCH{sub 2}Ph){sub 2}] (2) (NITPhOCH{sub 2}Ph=4'-benzyloxy-phenyl-4,4,5, 5-tetramethylimidazoline-1-oxyl-3-oxide) and [Lu(hfac){sub 3}(NITPhOCH{sub 2}Ph){sub 2}] (3). The X-ray crystal structure analyses show that the structures of the three compounds are similar and all consist of the isolated molecules, in which central ions Gd{sup III} or Lu{sup III} are coordinated by six oxygen atoms from three hfac and two oxygen atoms from nitronyl radicals. The magnetic studies show that in both of the two Gd{sup III} complexes, there are ferromagnetic Gd{sup III}-Rad interactions and antiferro-magnetic Rad-Rad interactions in the molecules (with J{sub Rad-Gd}=0.27 cm{sup -1}, j{sub Rad-Rad}=-2.97 cm{sup -1} for 1: and J{sub Rad-Gd}=0.62 cm{sup -1}, j{sub Rad-Rad}=-7.01 cm{sup -1} for 2). An analogous complex of [Lu(hfac){sub 3} (NITPhOCH{sub 2}Ph){sub 2}] (3) containing diamagnetic Lu{sup III} ions has also been introduced for further demonstrating the nature of magnetic coupling between radicals. - Graphical abstract: Two tri-spin complexes based on gadolinium-radical have been synthesized and characterized, the magnetic studies show that in the two complexes the Gd-radical interaction is ferromagnetic and the radical-radical interaction is antiferromagnetic. An analogous complex containing the diamagnetic Lu{sup III} ions has also been synthesized to further demonstrate the nature of the magnetic coupling between radicals.

  2. GS-nitroxide (JP4-039)-mediated radioprotection of human Fanconi anemia cell lines.

    PubMed

    Bernard, Mark E; Kim, Hyun; Berhane, Hebist; Epperly, Michael W; Franicola, Darcy; Zhang, Xichen; Houghton, Frank; Shields, Donna; Wang, Hong; Bakkenist, Christopher J; Frantz, Marie-Celine; Forbeck, Erin M; Goff, Julie P; Wipf, Peter; Greenberger, Joel S

    2011-11-01

    Fanconi anemia (FA) is an inherited disorder characterized by defective DNA repair and cellular sensitivity to DNA crosslinking agents. Clinically, FA is associated with high risk for marrow failure, leukemia and head and neck squamous cell carcinoma (HNSCC). Radiosensitivity in FA patients compromises the use of total-body irradiation for hematopoietic stem cell transplantation and radiation therapy for HNSCC. A radioprotector for the surrounding tissue would therefore be very valuable during radiotherapy for HNSCC. Clonogenic radiation survival curves were determined for pre- or postirradiation treatment with the parent nitroxide Tempol or JP4-039 in cells of four FA patient-derived cell lines and two transgene-corrected subclonal lines. FancG(-/-) (PD326) and FancD2(-/-) (PD20F) patient lines were more sensitive to the DNA crosslinking agent mitomycin C (MMC) than their transgene-restored subclonal cell lines (both P < 0.0001). FancD2(-/-) cells were more radiosensitive than the transgene restored subclonal cell line (ñ = 2.0 ± 0.7 and 4.7 ± 2.2, respectively, P = 0.03). In contrast, FancG(-/-) cells were radioresistant relative to the transgene-restored subclonal cell line (ñ = 9.4 ± 1.5 and 2.2 ± 05, respectively, P = 0.001). DNA strand breaks measured by the comet assay correlated with radiosensitivity. Cell lines from a Fanc-C and Fanc-A patients showed radiosensitivity similar to that of Fanc-D2(-/-) cells. A fluorophore-tagged JP4-039 (BODIPY-FL) analog targeted the mitochondria of the cell lines. Preirradiation or postirradiation treatment with JP4-039 at a lower concentration than Tempol significantly increased the radioresistance and stabilized the antioxidant stores of all cell lines. Tempol increased the toxicity of MMC in FancD2(-/-) cells. These data provide support for the potential clinical use of JP4-039 for normal tissue radioprotection during chemoradiotherapy in FA patients. PMID:21939290

  3. GS-Nitroxide (JP4-039)-Mediated Radioprotection of Human Fanconi Anemia Cell Lines

    PubMed Central

    Bernard, Mark E.; Kim, Hyun; Berhane, Hebist; Epperly, Michael W.; Franicola, Darcy; Zhang, Xichen; Houghton, Frank; Shields, Donna; Wang, Hong; Bakkenist, Christopher J.; Frantz, Marie-Celine; Forbeck, Erin M.; Goff, Julie P.; Wipf, Peter; Greenberger, Joel S.

    2011-01-01

    Fanconi anemia (FA) is an inherited disorder characterized by defective DNA repair and cellular sensitivity to DNA crosslinking agents. Clinically, FA is associated with high risk for marrow failure, leukemia and head and neck squamous cell carcinoma (HNSCC). Radiosensitivity in FA patients compromises the use of total-body irradiation for hematopoietic stem cell transplantation and radiation therapy for HNSCC. A radioprotector for the surrounding tissue would therefore be very valuable during radiotherapy for HNSCC. Clonogenic radiation survival curves were determined for pre- or postirradiation treatment with the parent nitroxide Tempol or JP4-039 in cells of four FA patient-derived cell lines and two transgene-corrected subclonal lines. FancG–/– (PD326) and FancD2–/– (PD20F) patient lines were more sensitive to the DNA crosslinking agent mitomycin C (MMC) than their transgene-restored subclonal cell lines (both P < 0.0001). FancD2–/– cells were more radiosensitive than the transgene restored subclonal cell line (ñ = 2.0 ± 0.7 and 4.7 ± 2.2, respectively, P = 0.03). In contrast, FancG–/– cells were radioresistant relative to the transgene-restored subclonal cell line (ñ = 9.4 ± 1.5 and 2.2 ± 05, respectively, P = 0.001). DNA strand breaks measured by the comet assay correlated with radiosensitivity. Cell lines from a Fanc-C and Fanc-A patients showed radiosensitivity similar to that of Fanc-D2–/– cells. A fluorophore-tagged JP4-039 (BODIPY-FL) analog targeted the mitochondria of the cell lines. Preirradiation or postirradiation treatment with JP4-039 at a lower concentration than Tempol significantly increased the radioresistance and stabilized the antioxidant stores of all cell lines. Tempol increased the toxicity of MMC in FancD2–/– cells. These data provide support for the potential clinical use of JP4-039 for normal tissue radioprotection during chemoradiotherapy in FA patients. PMID:21939290

  4. Nitroxide spin exchange due to re-encounter collisions in a series of n-alkanes.

    PubMed

    Kurban, Mark R; Peric, Miroslav; Bales, Barney L

    2008-08-14

    Bimolecular collisions between perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-l-oxyl molecules in three alkanes have been studied by measuring the electron paramagnetic resonance (EPR) spectral changes induced by spin exchange. We define an "encounter" to be a first-time collision followed by a series of re-encounters prior to the diffusing pair's escaping each other's presence. The present work stems from a recent proposal [B. L. Bales et al., J. Phys. Chem. A 107, 9086 (2003)] that an unexpected linear dependence of the spin-exchange-induced EPR line shifts on spin-exchange frequency can be explained by re-encounters of the same probe pair during one encounter. By employing nonlinear least-squares fitting, full use of the information available from the spectral changes allows us to study encounters and re-encounters separately. The encounter rate constants appear to be dominated by hydrodynamic forces, forming a common curve for hexane, decane, and hexadecane when plotted against T/eta, where eta is the shear viscosity. Unexpectedly, encounters are not dependent on the ratio mu = a/a(s), where a and a(s) are the van der Waals radii of the nitroxide probe and the solvent, respectively. It is argued that the near coincidence of the resulting encounter rate constant with the hydrodynamic prediction is likely due to a near cancellation of terms in the general diffusion coefficient. Thus, the semblance of hydrodynamic behavior is coincidental rather than intrinsic. In contrast, the mean times between re-encounters do depend on the relative sizes of probe and solvent. For hexane at lower temperatures, the Stokes-Einstein equation apparently describes re-encounters well; however, at higher temperatures and for decane and hexadecane, departures from the hydrodynamic prediction become larger as mu becomes smaller. This is in qualitative agreement with the theory of microscopic diffusion of Hynes et al. [J. Chem. Phys. 70, 1456 (1979)]. These departures are well

  5. Nitroxide spin exchange due to re-encounter collisions in a series of n-alkanes

    PubMed Central

    Kurban, Mark R.; Peric, Miroslav; Bales, Barney L.

    2008-01-01

    Bimolecular collisions between perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-l-oxyl molecules in three alkanes have been studied by measuring the electron paramagnetic resonance (EPR) spectral changes induced by spin exchange. We define an “encounter” to be a first-time collision followed by a series of re-encounters prior to the diffusing pair’s escaping each other’s presence. The present work stems from a recent proposal [B. L. Bales , J. Phys. Chem. A 107, 9086 (2003)] that an unexpected linear dependence of the spin-exchange-induced EPR line shifts on spin-exchange frequency can be explained by re-encounters of the same probe pair during one encounter. By employing nonlinear least-squares fitting, full use of the information available from the spectral changes allows us to study encounters and re-encounters separately. The encounter rate constants appear to be dominated by hydrodynamic forces, forming a common curve for hexane, decane, and hexadecane when plotted against T∕η, where η is the shear viscosity. Unexpectedly, encounters are not dependent on the ratio μ=a∕as, where a and as are the van der Waals radii of the nitroxide probe and the solvent, respectively. It is argued that the near coincidence of the resulting encounter rate constant with the hydrodynamic prediction is likely due to a near cancellation of terms in the general diffusion coefficient. Thus, the semblance of hydrodynamic behavior is coincidental rather than intrinsic. In contrast, the mean times between re-encounters do depend on the relative sizes of probe and solvent. For hexane at lower temperatures, the Stokes–Einstein equation apparently describes re-encounters well; however, at higher temperatures and for decane and hexadecane, departures from the hydrodynamic prediction become larger as μ becomes smaller. This is in qualitative agreement with the theory of microscopic diffusion of Hynes [J. Chem. Phys. 70, 1456 (1979)]. These departures are well correlated

  6. Distance measurements across randomly distributed nitroxide probes from the temperature dependence of the electron spin phase memory time at 240 GHz.

    PubMed

    Edwards, Devin T; Takahashi, Susumu; Sherwin, Mark S; Han, Songi

    2012-10-01

    At 8.5 T, the polarization of an ensemble of electron spins is essentially 100% at 2 K, and decreases to 30% at 20 K. The strong temperature dependence of the electron spin polarization between 2 and 20 K leads to the phenomenon of spin bath quenching: temporal fluctuations of the dipolar magnetic fields associated with the energy-conserving spin "flip-flop" process are quenched as the temperature of the spin bath is lowered to the point of nearly complete spin polarization. This work uses pulsed electron paramagnetic resonance (EPR) at 240 GHz to investigate the effects of spin bath quenching on the phase memory times (T(M)) of randomly-distributed ensembles of nitroxide molecules below 20 K at 8.5 T. For a given electron spin concentration, a characteristic, dipolar flip-flop rate (W) is extracted by fitting the temperature dependence of T(M) to a simple model of decoherence driven by the spin flip-flop process. In frozen solutions of 4-Amino-TEMPO, a stable nitroxide radical in a deuterated water-glass, a calibration is used to quantify average spin-spin distances as large as r=6.6 nm from the dipolar flip-flop rate. For longer distances, nuclear spin fluctuations, which are not frozen out, begin to dominate over the electron spin flip-flop processes, placing an effective ceiling on this method for nitroxide molecules. For a bulk solution with a three-dimensional distribution of nitroxide molecules at concentration n, we find W∝n∝1/r(3), which is consistent with magnetic dipolar spin interactions. Alternatively, we observe W∝n(32) for nitroxides tethered to a quasi two-dimensional surface of large (Ø∼200 nm), unilamellar, lipid vesicles, demonstrating that the quantification of spin bath quenching can also be used to discern the geometry of molecular assembly or organization. PMID:22975249

  7. Distance measurements across randomly distributed nitroxide probes from the temperature dependence of the electron spin phase memory time at 240 GHz

    NASA Astrophysics Data System (ADS)

    Edwards, Devin T.; Takahashi, Susumu; Sherwin, Mark S.; Han, Songi

    2012-10-01

    At 8.5 T, the polarization of an ensemble of electron spins is essentially 100% at 2 K, and decreases to 30% at 20 K. The strong temperature dependence of the electron spin polarization between 2 and 20 K leads to the phenomenon of spin bath quenching: temporal fluctuations of the dipolar magnetic fields associated with the energy-conserving spin "flip-flop" process are quenched as the temperature of the spin bath is lowered to the point of nearly complete spin polarization. This work uses pulsed electron paramagnetic resonance (EPR) at 240 GHz to investigate the effects of spin bath quenching on the phase memory times (TM) of randomly-distributed ensembles of nitroxide molecules below 20 K at 8.5 T. For a given electron spin concentration, a characteristic, dipolar flip-flop rate (W) is extracted by fitting the temperature dependence of TM to a simple model of decoherence driven by the spin flip-flop process. In frozen solutions of 4-Amino-TEMPO, a stable nitroxide radical in a deuterated water-glass, a calibration is used to quantify average spin-spin distances as large as r¯=6.6 nm from the dipolar flip-flop rate. For longer distances, nuclear spin fluctuations, which are not frozen out, begin to dominate over the electron spin flip-flop processes, placing an effective ceiling on this method for nitroxide molecules. For a bulk solution with a three-dimensional distribution of nitroxide molecules at concentration n, we find W∝n∝1/r, which is consistent with magnetic dipolar spin interactions. Alternatively, we observe W∝n for nitroxides tethered to a quasi two-dimensional surface of large (Ø ˜ 200 nm), unilamellar, lipid vesicles, demonstrating that the quantification of spin bath quenching can also be used to discern the geometry of molecular assembly or organization.

  8. Oxidant stress in malaria as probed by stable nitroxide radicals in erythrocytes infected with Plasmodium berghei. The effects of primaquine and chloroquine.

    PubMed

    Deslauriers, R; Butler, K; Smith, I C

    1987-12-10

    Erythrocytes from normal mice and mice infected with the malarial parasite Plasmodium berghei reduce the water-soluble spin probes 2,2,6,6-tetramethylpiperidine-4-hydroxy-N-oxyl (TEMPOL), 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) and 2,2,6,6-tetramethylpiperidine-4-keto-N-oxyl (TEMPONE) at similar rates under both air and N2 atmospheres. The ESR signal of the lipid-soluble spin probe 5-doxyl-stearate is stable on incorporation into erythrocytes from normal mice. In contrast, parasitized red cells reduce this nitroxide probe, at a rate which increases with the level of parasitemia. Inhibitors of electron transport such as KCN and NaN3, increase the rate of reduction. We propose that nitroxide reduction occurs via the electron transport chain in the parasite. The antimalarial drug primaquine causes reduction of both water-soluble and lipid-soluble spin probes. This action of primaquine is independent of its ability to release H2O2 from oxyhemoglobin, and is ascribed to the ability of primaquine to accelerate flux through the hexose monophosphate shunt. The increased production of NADPH results in increased rates of reduction of the nitroxide radicals. Methylene blue, which also increases flux through the shunt, is even more effective than primaquine at reducing the nitroxides. Chloroquine has no such effect. Parasitized mice treated with chloroquine six hours prior to ESR measurements show less nitroxide reducing capacity than do untreated mice. Chloroquine is known to decrease flux through the hexose monophosphate shunt. The metabolic influences of the two antimalarial drugs are, thus, quite different. PMID:3315005

  9. Dynamics of intramolecular spin exchange interaction of a nitronyl nitroxide diradical in solution and on surfaces

    NASA Astrophysics Data System (ADS)

    Lloveras, V.; Badetti, E.; Veciana, J.; Vidal-Gancedo, J.

    2016-02-01

    In this paper we report the study of the dynamics of a thermally modulated intramolecular spin exchange interaction of a novel diradical nitronyl nitroxide-substituted disulfide in solution and when it is grafted on a gold surface. The structure of this diradical was designed to have flexible chains leading to intramolecular collisions and hence spin exchange interaction, and with an appropriate binding group to be grafted on the gold surface to study its behavior on the surface. In solution, this diradical shows a strong spin exchange interaction between both radicals which is modulated by temperature, but also gold nanoparticles (AuNPs) functionalized with this diradical permit investigation of such a phenomenon in surface-grafted radicals. The spin-labelled AuNP synthesis was optimized to obtain high coverage of spin labels to lead to high spin exchange interaction. The obtained AuNPs were studied by Electron Paramagnetic Resonance (EPR), UV-Vis, and IR spectroscopies, HR-TEM microscopy, Cyclic Voltammetry (CV), Energy Dispersive X-ray analysis (EDX) and Thermogravimetric Analysis (TGA). This inorganic-organic hybrid material also showed dipolar interactions between its radicals which were confirmed by the appearance in the EPR spectra of an |Δms| = 2 transition at half-field. This signal gives direct evidence of the presence of a high-spin state and permitted us to study the nature of the magnetic coupling between the spins which was found to be antiferromagnetic. Self-Assembled Monolayers (SAMs) of these radicals on the Au (111) substrate were also prepared and studied by contact angle, X-Ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), Cyclic Voltammetry and EPR. The magnetic as well as the electrochemical properties of the hybrid surfaces were studied and compared with the properties of this diradical in solution. Analogies between the properties of AuNPs with high coverage of radicals and those of SAM were

  10. DEER Sensitivity between Iron Centers and Nitroxides in Heme-Containing Proteins Improves Dramatically Using Broadband, High-Field EPR.

    PubMed

    Motion, Claire L; Lovett, Janet E; Bell, Stacey; Cassidy, Scott L; Cruickshank, Paul A S; Bolton, David R; Hunter, Robert I; El Mkami, Hassane; Van Doorslaer, Sabine; Smith, Graham M

    2016-04-21

    This work demonstrates the feasibility of making sensitive nanometer distance measurements between Fe(III) heme centers and nitroxide spin labels in proteins using the double electron-electron resonance (DEER) pulsed EPR technique at 94 GHz. Techniques to measure accurately long distances in many classes of heme proteins using DEER are currently strongly limited by sensitivity. In this paper we demonstrate sensitivity gains of more than 30 times compared with previous lower frequency (X-band) DEER measurements on both human neuroglobin and sperm whale myoglobin. This is achieved by taking advantage of recent instrumental advances, employing wideband excitation techniques based on composite pulses and exploiting more favorable relaxation properties of low-spin Fe(III) in high magnetic fields. This gain in sensitivity potentially allows the DEER technique to be routinely used as a sensitive probe of structure and conformation in the large number of heme and many other metalloproteins. PMID:27035368

  11. Selective High-Resolution Detection of Membrane Protein-Ligand Interaction in Native Membranes Using Trityl-Nitroxide PELDOR.

    PubMed

    Joseph, Benesh; Tormyshev, Victor M; Rogozhnikova, Olga Yu; Akhmetzyanov, Dmitry; Bagryanskaya, Elena G; Prisner, Thomas F

    2016-09-12

    The orchestrated interaction of transmembrane proteins with other molecules mediates several crucial biological processes. Detergent solubilization may significantly alter or even abolish such hetero-oligomeric interactions, which makes observing them at high resolution in their native environment technically challenging. Dipolar electron paramagnetic resonance (EPR) techniques such as pulsed electro-electron double resonance (PELDOR) can provide very precise distances within biomolecules. To concurrently determine the inter-subunit interaction and the intra-subunit conformational changes in hetero-oligomeric complexes, a combination of different spin labels is required. Orthogonal spin labeling using a triarylmethyl (TAM) label in combination with a nitroxide label is used to detect protein-ligand interactions in native lipid bilayers. This approach provides a higher sensitivity and total selectivity and will greatly facilitate the investigation of multimeric transmembrane complexes employing different spin labels in the native lipid environment. PMID:27511025

  12. DEER Sensitivity between Iron Centers and Nitroxides in Heme-Containing Proteins Improves Dramatically Using Broadband, High-Field EPR

    PubMed Central

    2016-01-01

    This work demonstrates the feasibility of making sensitive nanometer distance measurements between Fe(III) heme centers and nitroxide spin labels in proteins using the double electron–electron resonance (DEER) pulsed EPR technique at 94 GHz. Techniques to measure accurately long distances in many classes of heme proteins using DEER are currently strongly limited by sensitivity. In this paper we demonstrate sensitivity gains of more than 30 times compared with previous lower frequency (X-band) DEER measurements on both human neuroglobin and sperm whale myoglobin. This is achieved by taking advantage of recent instrumental advances, employing wideband excitation techniques based on composite pulses and exploiting more favorable relaxation properties of low-spin Fe(III) in high magnetic fields. This gain in sensitivity potentially allows the DEER technique to be routinely used as a sensitive probe of structure and conformation in the large number of heme and many other metalloproteins. PMID:27035368

  13. Three new mononuclear tri-spin lanthanide-nitronyl nitroxide radical compounds: syntheses, structures and magnetic properties.

    PubMed

    Li, Lei-Lei; Liu, Shuang; Zhang, Yuan; Shi, Wei; Cheng, Peng

    2015-04-01

    Based on the nitronyl nitroxide radical, 2-(4-(methoxycarbonyl)phenyl)-4,4,5,5-tetramethylimidazolin-1-oxyl-3-oxide (1, NITPhCOOMe), and three mononuclear tri-spin compounds [Ln(hfac)3(NITPhCOOMe)2] (Ln = Gd (2), Tb (3), Dy (4); hfac = hexafluoroacetylacetonate) are successfully synthesized and fully characterized. Compounds 2 and 4 are isostructural and crystallize in the C2/c space group, while compound 3 crystallizes in the P2₁/c space group. For compounds 2-4, the central metal ions are all eight-coordinate in distorted triangular dodecahedral LnO8 coordination geometry (D(2d) symmetry) completed by three bischelate hfac(-) ligands and two monodentate radicals. Magnetic studies show that radical 1 undertakes the transition from the paramagnetic state to 3D antiferromagnetic ordering at 4.2 K. In addition, compound 3 exhibits field-induced single-molecule magnet (SMM) behavior. PMID:25730400

  14. Mechanistic insight into aerobic alcohol oxidation using NOx-nitroxide catalysis based on catalyst structure-activity relationships.

    PubMed

    Shibuya, Masatoshi; Nagasawa, Shota; Osada, Yuji; Iwabuchi, Yoshiharu

    2014-11-01

    The mechanism of an NOx-assisted, nitroxide(nitroxyl radical)-catalyzed aerobic oxidation of alcohols was investigated using a set of sterically and electronically modified nitroxides (i.e., TEMPO, AZADO (1), 5-F-AZADO (2), 5,7-DiF-AZADO (3), 5-MeO-AZADO (4), 5,7-DiMeO-AZADO (5), oxa-AZADO (6), TsN-AZADO (7), and DiAZADO (8)). The motivation for the present study stemmed from our previous observation that the introduction of an F atom at a remote position from the nitroxyl radical moiety on the azaadamantane nucleus effectively enhanced the catalytic activity under typical NOx-mediated aerobic-oxidation conditions. The kinetic profiles of the azaadamantane-N-oxyl-[AZADO (1)-, 5-F-AZADO (2)-, and 5,7-DiF-AZADO (3)]-catalyzed aerobic oxidations were closely investigated, revealing that AZADO (1) showed a high initial reaction rate compared to 5-F-AZADO (2) and 5,7-DiF-AZADO (3); however, AZADO-catalyzed oxidation exhibited a marked slowdown, resulting in ∼90% conversion, whereas 5-F-AZADO-catalyzed oxidation smoothly reached completion without a marked slowdown. The reasons for the marked slowdown and the role of the fluoro group are discussed. Oxa-AZADO (6), TsN-AZADO (7), and DiAZADO (8) were designed and synthesized to confirm their comparable catalytic efficiency to that of 5-F-AZADO (2), providing supporting evidence for the electronic effect on the catalytic efficiency of the heteroatoms under NOx-assisted aerobic-oxidation conditions. PMID:25286356

  15. High sensitivity and versatility of the DEER experiment on nitroxide radical pairs at Q-band frequencies.

    PubMed

    Polyhach, Yevhen; Bordignon, Enrica; Tschaggelar, René; Gandra, Sandhya; Godt, Adelheid; Jeschke, Gunnar

    2012-08-14

    Measurement of distances with the Double Electron-Electron Resonance (DEER) experiment at X-band frequencies using a pair of nitroxides as spin labels is a popular biophysical tool for studying function-related conformational dynamics of proteins. The technique is intrinsically highly precise and can potentially access the range from 1.5 to 6-10 nm. However, DEER performance drops strongly when relaxation rates of the nitroxide spin labels are high and available material quantities are low, which is usually the case for membrane proteins reconstituted into liposomes. This leads to elevated noise levels, very long measurement times, reduced precision, and a decrease of the longest accessible distances. Here we quantify the performance improvement that can be achieved at Q-band frequencies (34.5 GHz) using a high-power spectrometer. More than an order of magnitude gain in sensitivity is obtained with a homebuilt setup equipped with a 150 W TWT amplifier by using oversized samples. The broadband excitation enabled by the high power ensures that orientation selection can be suppressed in most cases, which facilitates extraction of distance distributions. By varying pulse lengths, Q-band DEER can be switched between orientationally non-selective and selective regimes. Because of suppression of nuclear modulations from matrix protons and deuterons, analysis of the Q-band data is greatly simplified, particularly in cases of very small DEER modulation depth due to low binding affinity between proteins forming a complex or low labelling efficiency. Finally, we demonstrate that a commercial Q-band spectrometer can be readily adjusted to the high-power operation. PMID:22751953

  16. ESR lineshape and 1H spin-lattice relaxation dispersion in propylene glycol solutions of nitroxide radicals - Joint analysis

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Hoffmann, S. K.; Goslar, J.; Lijewski, S.; Kubica-Misztal, A.; Korpała, A.; Oglodek, I.; Kowalewski, J.; Rössler, E. A.; Moscicki, J.

    2013-12-01

    Electron Spin Resonance (ESR) spectroscopy and Nuclear Magnetic Relaxation Dispersion (NMRD) experiments are reported for propylene glycol solutions of the nitroxide radical: 4-oxo-TEMPO-d16 containing 15N and 14N isotopes. The NMRD experiments refer to 1H spin-lattice relaxation measurements in a broad frequency range (10 kHz-20 MHz). A joint analysis of the ESR and NMRD data is performed. The ESR lineshapes give access to the nitrogen hyperfine tensor components and the rotational correlation time of the paramagnetic molecule. The NMRD data are interpreted in terms of the theory of paramagnetic relaxation enhancement in solutions of nitroxide radicals, recently presented by Kruk et al. [J. Chem. Phys. 138, 124506 (2013)]. The theory includes the effect of the electron spin relaxation on the 1H relaxation of the solvent. The 1H relaxation is caused by dipole-dipole interactions between the electron spin of the radical and the proton spins of the solvent molecules. These interactions are modulated by three dynamic processes: relative translational dynamics of the involved molecules, molecular rotation, and electron spin relaxation. The sensitivity to rotation originates from the non-central positions of the interacting spin in the molecules. The electronic relaxation is assumed to stem from the electron spin-nitrogen spin hyperfine coupling, modulated by rotation of the radical molecule. For the interpretation of the NMRD data, we use the nitrogen hyperfine coupling tensor obtained from ESR and fit the other relevant parameters. The consistency of the unified analysis of ESR and NMRD, evaluated by the agreement between the rotational correlation times obtained from ESR and NMRD, respectively, and the agreement of the translation diffusion coefficients with literature values obtained for pure propylene glycol, is demonstrated to be satisfactory.

  17. Generation of reactive oxygen species in the anterior eye segment. Synergistic codrugs of N-acetylcarnosine lubricant eye drops and mitochondria-targeted antioxidant act as a powerful therapeutic platform for the treatment of cataracts and primary open-angle glaucoma.

    PubMed

    Babizhayev, Mark A

    2016-12-01

    Senile cataract is a clouding of the lens in the aging eye leading to a decrease in vision. Symptoms may include faded colors, blurry vision, halos around light, trouble with bright lights, and trouble seeing at night. This may result in trouble driving, reading, or recognizing faces. Cataracts are the cause of half of blindness and 33% of visual impairment worldwide. Cataracts result from the deposition of aggregated proteins in the eye lens and lens fiber cells plasma membrane damage which causes clouding of the lens, light scattering, and obstruction of vision. ROS induced damage in the lens cell may consist of oxidation of proteins, DNA damage and/or lipid peroxidation, all of which have been implicated in cataractogenesis. The inner eye pressure (also called intraocular pressure or IOP) rises because the correct amount of fluid can't drain out of the eye. With primary open-angle glaucoma, the entrances to the drainage canals are clear and should be working correctly. The clogging problem occurs further inside the drainage canals, similar to a clogged pipe below the drain in a sink. The excessive oxidative damage is a major factor of the ocular diseases because the mitochondrial respiratory chain in mitochondria of the vital cells is a significant source of the damaging reactive oxygen species superoxide and hydrogen peroxide. However, despite the clinical importance of mitochondrial oxidative damage, antioxidants have been of limited therapeutic success. This may be because the antioxidants are not selectively taken up by mitochondria, but instead are dispersed throughout the body, ocular tissues and fluids' moieties. This work is an attempt to integrate how mitochondrial reactive oxygen species (ROS) are altered in the aging eye, along with those protective and repair therapeutic systems believed to regulate ROS levels in ocular tissues and how damage to these systems contributes to age-onset eye disease and cataract formation. Mitochondria-targeted

  18. Long-lived frequency shifts observed in a magnetic resonance force microscope experiment following microwave irradiation of a nitroxide spin probe

    SciTech Connect

    Chen, Lei; Longenecker, Jonilyn G.; Moore, Eric W.; Marohn, John A.

    2013-04-01

    We introduce a spin-modulation protocol for force-gradient detection of magnetic resonance that enables the real-time readout of longitudinal magnetization in an electron spin resonance experiment involving fast-relaxing spins. We applied this method to observe a prompt change in longitudinal magnetization following the microwave irradiation of a nitroxide-doped perdeuterated polystyrene film having an electron spin-lattice relaxation time of T{sub 1}{approx}1ms. The protocol allowed us to discover a large, long-lived cantilever frequency shift. Based on its magnitude, lifetime, and field dependence, we tentatively attribute this persistent signal to deuteron spin magnetization created via transfer of polarization from nitroxide spins.

  19. Single and double nitroxide labeled bis(terpyridine)-copper(II): influence of orientation selectivity and multispin effects on PELDOR and RIDME.

    PubMed

    Meyer, Andreas; Abdullin, Dinar; Schnakenburg, Gregor; Schiemann, Olav

    2016-04-01

    A rigid, nitroxide substituted terpyridine ligand has been used to synthesize hetero- and homoleptic bis-terpyridine complexes of copper(II). The homoleptic complex represents a three-spin system, while the metal ion in the heteroleptic complex is in average bound to one nitroxide bearing ligand. Both complexes are used as model systems for EPR distance measurements using pulsed electron-electron double resonance (PELDOR or DEER) and relaxation induced dipolar modulation enhancement (RIDME) sequences. The results of both methods are analyzed using detailed geometric data obtained from the crystal structure of the homoleptic complex as well as information concerning ligand scrambling and the electronic structure of the copper center. In addition, both methods are compared with respect to their sensitivity, the extent of orientation selectivity and the influence of multispin effects. PMID:26975335

  20. A resonance enhancement of the phase relaxation in the electron spin echo of nitroxide covalently attached to cytochrome c

    NASA Astrophysics Data System (ADS)

    Hilczer, W.; Goslar, J.; Gramza, M.; Hoffmann, S. K.; Blicharski, W.; Osyczka, A.; Turyna, B.; Froncisz, W.

    1995-12-01

    The spin lattice T1 and phase memory TM relaxation times were measured by an electron spin echo technique for the nitroxide spin label attached covalently to horse heart cytochrome c below 80 K for oxidized (Fe 3+) and reduced (Fe 2+) samples. T1 decreases on heating and below 10 K is governed by the direct relaxation process for the reduced sample. The spin-lattice relaxation is enhanced by a cross-relaxation to Fe 3+ in an oxidized sample. In the TM temperature dependence an unusual deep minimum appears at about 25 K. This resonance type effect which vanishes completely for the reduced sample is due to a coupling to the Fe 3+ spins. The spin-lattice relaxation rate of Fe 3+ is comparable to the TM of nitroxide at low temperature producing a minimum in TM when the Ti value corresponds to the spin packet width of excited spins.

  1. Direct measurement of nitroxide pharmacokinetics in isolated hearts situated in a low-frequency electron spin resonance spectrometer: implications for spin trapping and in vivo oxymetry.

    PubMed Central

    Rosen, G M; Halpern, H J; Brunsting, L A; Spencer, D P; Strauss, K E; Bowman, M K; Wechsler, A S

    1988-01-01

    The pharmacokinetics of two nitroxides were investigated in isolated rat hearts situated in a low-frequency electron spin resonance spectrometer. The spin labels 2,2,3,3,5,5-hexamethyl-1-pyrrolidinyloxy and 3-carboxy-2,2,5,5-tetramethyl-1-pyrrolidinyloxy were chosen for their physiochemical analogy to the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and its corresponding spin-trapped adduct, 2-hydroxy-5,5-dimethyl-1-pyrrolidinyloxy (DMPO-OH). The bioreductive rates of the two nitroxides were measured during constant perfusion as well as during ischemia and are discussed in terms of a two-compartment pharmacokinetic model. These data provide information necessary to the design and application of spin traps to detect oxy radicals during reperfusion of ischemic tissue and suggest the feasibility of monitoring free-radical processes in intact, functioning mammalian tissues by using a low-frequency electron spin resonance spectrometer. Images PMID:2845421

  2. Computer-based prediction of mitochondria-targeting peptides.

    PubMed

    Martelli, Pier Luigi; Savojardo, Castrense; Fariselli, Piero; Tasco, Gianluca; Casadio, Rita

    2015-01-01

    Computational methods are invaluable when protein sequences, directly derived from genomic data, need functional and structural annotation. Subcellular localization is a feature necessary for understanding the protein role and the compartment where the mature protein is active and very difficult to characterize experimentally. Mitochondrial proteins encoded on the cytosolic ribosomes carry specific patterns in the precursor sequence from where it is possible to recognize a peptide targeting the protein to its final destination. Here we discuss to which extent it is feasible to develop computational methods for detecting mitochondrial targeting peptides in the precursor sequences and benchmark our and other methods on the human mitochondrial proteins endowed with experimentally characterized targeting peptides. Furthermore, we illustrate our newly implemented web server and its usage on the whole human proteome in order to infer mitochondrial targeting peptides, their cleavage sites, and whether the targeting peptide regions contain or not arginine-rich recurrent motifs. By this, we add some other 2,800 human proteins to the 124 ones already experimentally annotated with a mitochondrial targeting peptide. PMID:25631024

  3. Tempicol-2 (4-hydroxy-4-(2-picolyl)-2,2,6,6-tetramethylpiperidine-1-oxyl), a stable free radical, is a novel member of nitroxide class of antioxidants and anticancer agents.

    PubMed

    Metodiewa, D; Skolimowski, J; Kochman, A; Gwozdzinski, K; Głebska, J

    1998-01-01

    As a part of our studies on the chemical, biochemical and pharmacological characteristics of the newly synthesized antioxidants, nitroxide derivatives, we designed a novel nitroxide, named Tempicol-2. Its capacity to act as antioxidant of potential pharmacological application was tested in three model systems: xanthine/xanthine oxidase, iron- and ascorbate Fenton reaction(s) and gamma-radiolysis. The antioxidant properties of Tempicol-2 as a function of concentration were compared with those previously characterized nitroxide derivatives Tempace and Rutoxyl which we had synthesized. The possibility of one-electron reduction of the novel substance by ascorbic acid was also examined and compared. The ability of Tempicol-2 to act as anticancer agent in vivo was also investigated in pharmacologic tests. The administration of Tempicol-2 to rats bearing 3 day-old Yoshida Sarcoma (promotion phase) led to both growth inhibition and the induction of apoptotic cells(s) death, comparable to the effects of Tempace and Rutoxyl under the same experimental conditions. Our results confirmed the suggested involvement of free radicals in the pathogenesis of model. Yoshida Sarcoma, thus indicating that anticancer activity of the investigated nitroxides may indirectly involve an antioxidant mechanism. The results reported here are encouraging as we find a limited correlation between the molecular redox properties, structure of nitroxides and their antitumor action. Tempicol-2, similarly to Tempace and Rutoxyl, is a promising antioxidant which can induce apoptosis, thus providing the basis for further investigations of the concentration and phase-dependent effects and the exact mechanisms of nitroxide(s) apoptotic action using cell line(s) model. PMID:9568105

  4. Evaluation of glucose-linked nitroxide radicals for use as an in vivo spin-label probe.

    PubMed

    Sato, Shingo; Yamaguchi, Masaki; Nagai, Akio; Onuma, Ryo; Saito, Misaki; Sugawara, Rina; Shinohara, Sayaka; Okabe, Eriko; Ito, Tomohiro; Ogata, Tateaki

    2014-04-24

    In vivo incorporation and reduction abilities of 4-carboxy-2,2,6,6-tetramethylpiperidine-1-oxyl (4-carboxy-TEMPO) (1), 3-carboxy-2,2,5,5-tetramethylpyrroline-1-oxyl (3-carboxy-dehydro-PROXYL, 3-carboxy-DPRO) (2), 4-hydroxy-TEMPO and 3-hydroxymethyl-DPRO O-β-D-glucosides (3 and 5), and newly designed forms of 6-O-(TEMPO-4-carbonyl and DPRO-3-carbonyl)-D-glucose (4 and 6) were evaluated using white radish sprouts. For each of these compounds, electron spin resonance (ESR) spectrometry was used to measure two effects: the rate of in vitro reduction via the addition of ascorbic acid; and, the rate of successful incorporation into radish sprouts for a reduction to the corresponding hydroxyl amine. DPRO-radicals 2, 5, and 6 were detected significantly more than TEMPO-radicals 1, 3, and 4 in vitro and in vivo for both experiments. Four glucose-linked nitroxide radicals were reduced faster than the glucose-non-linked ones in the in vitro experiment, but were nonetheless detected more each time in radish sprouts due to the absorbability. Glucose ester-linked radicals 4 and 6 were detected more than glycosides 3 and 5, which suggests that glucose ester-linked DPRO-radical 6 is the best for use as a spin-label probe that a plant will incorporate. PMID:24508871

  5. Small molecule GS-nitroxide ameliorates ionizing irradiation-induced delay in bone wound healing in a novel murine model.

    PubMed

    Gokhale, Abhay; Rwigema, Jean-Claude; Epperly, Michael W; Glowacki, Julie; Wang, Hong; Wipf, Peter; Goff, Julie P; Dixon, Tracy; Patrene, Ken; Greenberger, Joel S

    2010-01-01

    We studied radioprotection and mitigation by mitochondrial-targeted Tempol (GS-nitroxide, JP4-039), in a mouse injury/irradiation model of combined injury (fracture/irradiation). Right hind legs of control C57BL/6NHsd female mice, mice pretreated with MnSOD-PL, JP4-039, or with amifostine were irradiated with single and fractionated doses of 0 to 20 Gy. Twenty-four hours later, unicortical holes were drilled into the tibiae of both hind legs; at intervals, tibias were excised, radiographed, and processed for histology. Bone wounds irradiated to 20 or 30 Gy showed delayed healing at 21 to 28 days. Treatment with JP4-039 MnSOD-PL or amifostine, before or after single fraction 20 Gy or during fractionated irradiation followed by drilling accelerated wound healing at days 21 and 28. Orthotopic 3LL tumors were not protected by JP4-039 or amifostine. In nonirradiated mice, pretreatment with JP4-039 accelerated bone wound healing. This test system should be useful for the development of new small molecule radioprotectors. PMID:20668303

  6. Homoleptic Ce(III) and Ce(IV) Nitroxide Complexes: Significant Stabilization of the 4+ Oxidation State

    SciTech Connect

    Bogart, Justin A.; Lewis, Andrew J.; Medling, Scott A.; Piro, Nicholas A.; Carroll, Patrick J.; Booth, Corwin H.; Schelter, Eric J.

    2014-06-25

    Electrochemical experiments performed on the complex Ce-IV[2-((BuNO)-Bu-t)py](4), where [2-((BuNO)-Bu-t)py](-) = N-tert-butyl-N-2-pyridylnitroxide, indicate a 2.51 V stabilization of the 4+ oxidation state of Ce compared to [(Bu4N)-Bu-n](2)[Ce(NO3)(6)] in acetonitrile and a 2.95 V stabilization compared to the standard potential for the ion under aqueous conditions. Density functional theory calculations suggest that this preference for the higher oxidation state is a result of the tetrakis(nitroxide) ligand framework at the Ce cation, which allows for effective electron donation into, and partial covalent overlap with, vacant 4f orbitals with delta symmetry. The results speak to the behavior of CeO2 and related solid solutions in oxygen uptake and transport applications, in particular an inherent local character of bonding that stabilizes the 4+ oxidation state. The results indicate a cerium(IV) complex that has been stabilized to an unprecedented degree through tuning of its ligand-field environment.

  7. Observation of steric hindrance effect controlling crystal packing structures and physical properties in three new isomeric nitronyl nitroxide radicals

    NASA Astrophysics Data System (ADS)

    Zhao, Hai-Rong; Sun, Jia-Sen; Sui, Yun-Xia; Ren, Xiao-Ming; Yao, Bin-Qian; Shen, Lin-Jiang; Meng, Qing-Jin

    2009-07-01

    Three isomeric nitronyl nitroxide radical compounds, 2-[ n-( N-benzyl)pyridinium]-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide bromide ( n = 2, 3 and 4 for 1, 2 and 3, respectively), have been synthesized and structurally characterized. The influence of steric hindrance on the molecular packing structures and physical properties has been observed. In the radical 1, such steric hindrance leads to a folding conformation of the imidazoline and benzene rings and the intramolecular C-H…π interaction between the methyl group and the benzene ring. There is no such effect in 2 and 3. In crystal of 2, there are the intermolecular C-H…π between methyl groups and benzene ring and intermolecular π…π stacking interaction between pyridine and benzene rings. Crystal of 2 with a chiral space group P2 12 12 1 shows the SHG response about 0.4 times as that of urea. In crystal of 3, there are three symmetry-independent radical molecules, which form an unusually six-membered supramolecular ring via intermolecular O…π interactions. For the solid sample of 3, the X-band EPR exhibits an axially symmetric signal and magnetic susceptibility data suggest intermolecular antiferromagnetic (AFM) coupling interactions and very weak intermolecular ferromagnetic (FM) coupling interactions which is more likely caused by magnetic anisotropy, while measurements of both 1 and 2 show isotropic X-band EPR signals and simple Currie-Weiss magnetic behavior.

  8. Spin density in a triazole-nitronyl-nitroxide radical presenting linear ferromagnetic interactions: role of hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Gillon, Béatrice; Aebersold, Michael A.; Kahn, Olivier; Pardi, Luca; Delley, Bernard

    1999-11-01

    The compound 2-{3-[4-methyl-1,2,4-triazolyl]}-4,4,5,5,-tetramethylimidazoline-1-oxyl-3-oxide, abbreviated as Metrz-Nit, crystallizes in the non-centrosymmetric space group P2 12 12 1. The investigation of the magnetic properties has revealed the occurrence of intermolecular ferromagnetic interactions. The crystal structure has been refined by neutron diffraction at 11 K. The spin density distribution has been determined from polarized neutron diffraction experiments carried out at 1.5 K under a magnetic field of 5 T. As expected, the main contributions of the spin distribution have been observed in the 2p π orbitals of the nitrogen and oxygen atoms of the two NO groups, and a significant negative spin population has been detected on the sp 2 carbon atom of the nitronyl nitroxide moiety. The spin distribution is slightly dissymmetrical, so that the sp 3 carbon atoms in α-position of the nitro nitrogen atoms carry spin populations of opposite signs. Concerning the triazole ring, the main spin population, of negative sign, has been found on the nitrogen atom occupying the 3-position. The carbon atom of the methyl group attached to the 4-position has been also found to carry a significant negative spin population. The spin populations on the hydrogen atoms have been determined. These experimental data have been compared to the results of LSD calculations performed on an isolated molecule. The role of intermolecular interactions in the spin distribution has been discussed.

  9. Synthesis and crystal structure of oxalato-bridged dicopper(II) complex with reduced imino nitroxide radicals

    NASA Astrophysics Data System (ADS)

    Li, Licun; Liao, Daizheng; Bai, Lingjun; Jiang, Zonghui; Yan, Shiping

    2001-07-01

    A new oxalato-bridged dicopper(II) complex [Cu 2(μ-C 2O 4)(Him2-py) 2(NO 3) 2]CH 3OH has been synthesized and its crystal structure determined by X-ray diffraction methods. The imino nitroxide 2-(2'-pyridyl)-4,4,5,5-tetramethyl-4,5-dihydro-1 H-imidazolyl-1-oxyl(im2-py) is reduced in the reaction to yield 2-(2'-pyridyl)-4,4,5,5-tetramethyl-4,5-dihydro-1 H-imidazolyl-1-hydroxy(Him2-py). The structure consists of centrosymmetric [Cu 2(μ-C 2O 4)(Him2-py) 2(NO 3) 2] and one solvent methanol molecule. Each Cu(II) ion is in a distorted tetragonal pyramid environment: two nitrogen atoms from Him2-py, two oxygen atoms from the oxalate ion in the basal plane and one oxygen atom from the nitrato group in the axial position.

  10. Comparing continuous wave progressive saturation EPR and time domain saturation recovery EPR over the entire motional range of nitroxide spin labels.

    PubMed

    Nielsen, Robert D; Canaan, Stephane; Gladden, James A; Gelb, Michael H; Mailer, Colin; Robinson, Bruce H

    2004-07-01

    The measurement of spin-lattice relaxation rates from spin labels, such as nitroxides, in the presence and absence of spin relaxants provides information that is useful for determining biomolecular properties such as nucleic acid dynamics and the interaction of proteins with membranes. We compare X-band continuous wave (CW) and pulsed or time domain (TD) EPR methods for obtaining spin-lattice relaxation rates of spin labels across the entire range of rotational motion to which relaxation rates are sensitive. Model nitroxides and spin-labeled biological species are used to illustrate the potential complications that arise in extracting relaxation data under conditions typical to biological experiments. The effect of super hyperfine (SHF) structure is investigated for both CW and TD spectra. First and second harmonic absorption and dispersion CW spectra of the nitroxide spin label, TEMPOL, are all fit simultaneously to a model of SHF structure over a range of microwave amplitudes. The CW spectra are novel because all harmonics and microwave phases were acquired simultaneously using our homebuilt CW/TD spectrometer. The effect of the SHF structure on the pulsed free induction decay (FID) and pulsed saturation recovery spectrum is shown for both protonated and deuterated TEMPOL. We present novel pulsed saturation recovery measurements on biological molecules, including spin-lattice relaxation rates of spin-labeled proteins and spin-labeled double-stranded DNA. The impact of structure and dynamics on relaxation rates are discussed in the context of each of these examples. Collisional relaxation rates with oxygen and transition metal paramagnetic relaxants are extracted using both continuous wave and time domain methods. The extent of the errors inherent in the CW method and the advantages of pulsed methods for unambiguously measuring collisional relaxation rates are discussed. Spin-lattice relaxation rates, determined by both CW and pulsed methods, are used to determine

  11. A Copper-Nitroxide Adduct Exhibiting Separate Single Crystal-to-Single Crystal Polymerization-Depolymerization and Spin Crossover Transitions.

    PubMed

    Ovcharenko, Victor; Fokin, Sergey; Chubakova, Elvina; Romanenko, Galina; Bogomyakov, Artem; Dobrokhotova, Zhanna; Lukzen, Nikita; Morozov, Vitaly; Petrova, Marina; Petrova, Maria; Zueva, Ekaterina; Rozentsveig, Igor; Rudyakova, Elena; Levkovskaya, Galina; Sagdeev, Renad

    2016-06-20

    A complex cascade of solid-state processes initiated by variation of temperature was found for the heterospin complex [Cu(hfac)2L(Me/Et)] formed in the reaction of copper(II) hexafluoroacetylacetonate [Cu(hfac)2] with stable nitronyl nitroxide 2-(1-methyl-3-ethyl-1H-pyrazol-4-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl (L(Me/Et)). The cooling of the compound below 260 K initiated a solid-state chemical reaction, which led to a depolymerization of chains and formation of a pair heterospin complex [Cu(hfac)2L(Me/Et)2][[Cu(hfac)2]3L(Me/Et)2]. Further decrease in temperature below 144 K led to a spin transition accompanied by a drastic decrease in the effective magnetic moment from 2.52 to 2.24 μB. When the compound was heated, the order of effects was reversed: at first, the magnetic moment abruptly increased, and then the molecular fragments of the pair cluster united into polymer chains. Two hysteresis loops correspond to this cascade of temperature-induced structural transformations on the experimental dependence μeff(T): one at high (T↑ = 283 K and T↓ = 260 K) and the other at low (T↑ = 161 K, T↓ = 144 K) temperature. The spin transitions were also recorded for the [[Cu(hfac)2]3L(Bu/Et)2] and [[Cu(hfac)2]5L(Bu/Et)4] molecular complexes, which are models of the trinuclear fragment of the {[Cu(hfac)2]3L(Me/Et)2} pair cluster. PMID:27227270

  12. Growth and structure of rapid thermal silicon oxides and nitroxides studied by spectroellipsometry and Auger electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Gonon, N.; Gagnaire, A.; Barbier, D.; Glachant, A.

    1994-11-01

    Rapid thermal oxidation of Czochralski-grown silicon in either O2 or N2O atmospheres have been studied using spectroellipsometry and Auger electron spectroscopy. Multiwavelength ellipsometric data were processed in order to separately derive the thickness and refractive indexes of rapid thermal dielectrics. Results revealed a significant increase of the mean refractive index as the film thickness falls below 20 nm for both O2 or N2O oxidant species. A multilayer structure including an about 0.3-nm-thick interfacial region of either SiO(x) or nitroxide in the case of O2 and N2O growth, respectively, followed by a densified SiO2 layer, was found to accurately fit the experimental data. The interfacial region together with the densified state of SiO2 close to the interface suggest a dielectric structure in agreement with the continuous random network model proposed for classical thermal oxides. Auger electron spectroscopy analysis confirmed the presence of noncrystalline Si-Si bonds in the interfacial region, mostly in the case of thin oxides grown in O2. It was speculated that the initial fast growth regime was due to a transient oxygen supersaturation in the interfacial region. Besides, the self-limiting growth in N2O was confirmed and explained in agreement with several recently published data, by the early formation of a very thin nitride or oxynitride membrane in the highly densified oxide beneath the interface. The beneficial effect of direct nitrogen incorporation by rapid thermal oxidation in N2O instead of O2 for the electrical behavior of metal-oxide-semiconductor capacitors is likely a better SiO2/Si lattice accommodation through the reduction of stresses and Si-Si bonds in the interfacial region of the dielectric.

  13. Pressure effects on an organic radical ferromagnet: 2,5-difluorophenyl-α- nitronyl nitroxide

    NASA Astrophysics Data System (ADS)

    Mito, M.; Deguchi, H.; Tanimoto, T.; Kawae, T.; Nakatsuji, S.; Morimoto, H.; Anzai, H.; Nakao, H.; Murakami, Y.; Takeda, K.

    2003-01-01

    Raising a transition temperature (Tc) in organic radical ferromagnets is a desire for material scientists. We investigated the pressure effects on an organic radical ferromagnet 2,5-difluorophenyl-α-nitronyl nitroxide (2,5-DFPNN), which has a ferromagnetic transition at 0.45 K. The hydrostatic pressure effects were investigated through measurements of ac magnetic susceptibility (χ) up to P=1.7 GPa, heat capacity (Cp) up to P=1.5 GPa, and powder x-ray diffraction up to P=4.7 GPa. Furthermore, ac magnetic susceptibility under nonhydrostatic pressure was also measured in the pressure region up to 10.0 GPa. As for 2,5-DFPNN, we observed the pressure-induced enhancement of Tc as dTc/dP=7.9×10-2 K/GPa [Tc(P=1.5 GPa)=0.57 K], while other prototypes, the β phase of p-NPNN and p-Cl-C6H4-CH=N-TEMPO show the negative pressure effects. The results for the Cp and the crystal structural analysis suggest that the magnetic dimension of the short-range order developing above Tc transforms from one dimension (a axis) to two dimensions (ac plane) under high pressure. This increase of the magnetic dimension probably promotes to increase Tc. The ferromagnetic signal of χ, however, decreases with increasing pressure, and finally disappears for P⩾5.0 GPa. The decrease seems to originate from the decrease of the ferromagnetic interaction along the b axis. Similar instability of organic ferromagnetic long range order against pressure has been observed for the β phase of p-NPNN and p-Cl-C6H4-CH=N-TEMPO.

  14. Nitroxide free radical clearance in the live rat monitored by radio-frequency CW-EPR and PEDRI

    NASA Astrophysics Data System (ADS)

    Alecci, Marcello; Seimenis, Ioannis; McCallum, Stephen J.; Lurie, David J.; Foster, Margaret A.

    1998-07-01

    The use of RF (100 to 300 MHz) PEDRI and CW-EPR techniques allows the in vivo study of large animals such as whole rats and rabbits. Recently a PEDRI instrument was modified to also allow CW-EPR spectroscopy with samples of similar size and under the same experimental conditions. In the present study, this CW-EPR and PEDRI apparatus was used to assess the feasibility of the detection of a pyrrolidine nitroxide free radical (2,2,5,5,-tetramethylpyrrolidine-1-oxyl-3-carboxylic acid, PCA) in the abdomen of rats. In particular, we have shown that after the PCA administration ( b.w.): (i) the PCA EPR linewidth does not show line broadening due to concentration effects; (ii) a similar PCA up-take phase is observed by EPR and PEDRI; and (iii) the PCA half-lives in the whole abdomen of rats measured with the CW-EPR (, , n = 10) and PEDRI (, , n = 4) techniques were not significantly different ( p>0.05). These results show, for the first time, that information about PCA pharmacokinetics obtained by CW-EPR is the same as that from PEDRI under the same experimental conditions.

  15. Ultra-short laser-accelerated proton pulses have similar DNA-damaging effectiveness but produce less immediate nitroxidative stress than conventional proton beams

    PubMed Central

    Raschke, S.; Spickermann, S.; Toncian, T.; Swantusch, M.; Boeker, J.; Giesen, U.; Iliakis, G.; Willi, O.; Boege, F.

    2016-01-01

    Ultra-short proton pulses originating from laser-plasma accelerators can provide instantaneous dose rates at least 107-fold in excess of conventional, continuous proton beams. The impact of such extremely high proton dose rates on A549 human lung cancer cells was compared with conventionally accelerated protons and 90 keV X-rays. Between 0.2 and 2 Gy, the yield of DNA double strand breaks (foci of phosphorylated histone H2AX) was not significantly different between the two proton sources or proton irradiation and X-rays. Protein nitroxidation after 1 h judged by 3-nitrotyrosine generation was 2.5 and 5-fold higher in response to conventionally accelerated protons compared to laser-driven protons and X-rays, respectively. This difference was significant (p < 0.01) between 0.25 and 1 Gy. In conclusion, ultra-short proton pulses originating from laser-plasma accelerators have a similar DNA damaging potential as conventional proton beams, while inducing less immediate nitroxidative stress, which probably entails a distinct therapeutic potential. PMID:27578260

  16. The application of profluorescent nitroxides to detect reactive oxygen species derived from combustion-generated particulate matter: Cigarette smoke - A case study

    NASA Astrophysics Data System (ADS)

    Miljevic, B.; Fairfull-Smith, K. E.; Bottle, S. E.; Ristovski, Z. D.

    2010-06-01

    Reactive oxygen species (ROS) and related free radicals are considered to be key factors underpinning the various adverse health effects associated with exposure to ambient particulate matter. Therefore, measurement of ROS is a crucial factor for assessing the potential toxicity of particles. In this work, a novel profluorescent nitroxide, BPEAnit, was investigated as a probe for detecting particle-derived ROS. BPEAnit has a very low fluorescence emission due to inherent quenching by the nitroxide group, but upon radical trapping or redox activity, a strong fluorescence is observed. BPEAnit was tested for detection of ROS present in mainstream and sidestream cigarette smoke. In the case of mainstream cigarette smoke, there was a linear increase in fluorescence intensity with an increasing number of cigarette puffs, equivalent to an average of 101 nmol ROS per cigarette based on the number of moles of the probe reacted. Sidestream cigarette smoke sampled from an environmental chamber exposed BPEAnit to much lower concentrations of particles, but still resulted in a clearly detectible increase in fluorescence intensity with sampling time. It was calculated that the amount of ROS was equivalent to 50 ± 2 nmol per mg of particulate matter; however, this value decreased with ageing of the particles in the chamber. Overall, BPEAnit was shown to provide a sensitive response related to the oxidative capacity of the particulate matter. These findings present a good basis for employing the new BPEAnit probe for the investigation of particle-related ROS generated from cigarette smoke as well as from other combustion sources.

  17. Ultra-short laser-accelerated proton pulses have similar DNA-damaging effectiveness but produce less immediate nitroxidative stress than conventional proton beams.

    PubMed

    Raschke, S; Spickermann, S; Toncian, T; Swantusch, M; Boeker, J; Giesen, U; Iliakis, G; Willi, O; Boege, F

    2016-01-01

    Ultra-short proton pulses originating from laser-plasma accelerators can provide instantaneous dose rates at least 10(7)-fold in excess of conventional, continuous proton beams. The impact of such extremely high proton dose rates on A549 human lung cancer cells was compared with conventionally accelerated protons and 90 keV X-rays. Between 0.2 and 2 Gy, the yield of DNA double strand breaks (foci of phosphorylated histone H2AX) was not significantly different between the two proton sources or proton irradiation and X-rays. Protein nitroxidation after 1 h judged by 3-nitrotyrosine generation was 2.5 and 5-fold higher in response to conventionally accelerated protons compared to laser-driven protons and X-rays, respectively. This difference was significant (p < 0.01) between 0.25 and 1 Gy. In conclusion, ultra-short proton pulses originating from laser-plasma accelerators have a similar DNA damaging potential as conventional proton beams, while inducing less immediate nitroxidative stress, which probably entails a distinct therapeutic potential. PMID:27578260

  18. Structural Determinants of Nitroxide Motion in Spin-labeled Proteins: Tertiary Contact and Solvent-inaccessible Sties in Helix G of T4 Lysozyme

    SciTech Connect

    Guo,Z.; Cascio, D.; Hideg, K.; Kalai, T.; Hubbell, W.

    2007-01-01

    A nitroxide side chain (R1) has been substituted at single sites along a helix-turn-helix motif in T4 lysozyme (residues 114-135). Together with previously published data, the new sites reported complete a continuous scan through the motif. Mutants with R1 at sites 115 and 118 were selected for crystallographic analysis to identify the structural origins of the corresponding two-component EPR spectra. At 115, R1 is shown to occupy two rotamers in the room temperature crystal structure, one of which has not been previously reported. The two components in the EPR spectrum apparently arise from differential interactions of the two rotamers with the surrounding structure, the most important of which is a hydrophobic interaction of the nitroxide ring. Interestingly, the crystal structure at 100 K reveals a single rotamer, emphasizing the possibility of rotamer selection in low-temperature crystal structures. Residue 118 is at a solvent-inaccessible site in the protein core, and the structure of 118R1, the first reported for the R1 side chain at a buried site, reveals how the side chain is accommodated in an overpacked core.

  19. Structural Determinants of Nitroxide Motion in Spin-Labeled Proteins: Solvent-Exposed Sites in Helix B of T4 Lysozyme

    SciTech Connect

    Guo,Z.; Cascio, D.; Hideg, K.; Hubbell, W.

    2008-01-01

    Site-directed spin labeling provides a means for exploring structure and dynamics in proteins. To interpret the complex EPR spectra that often arise, it is necessary to characterize the rotamers of the spin-labeled side chain and the interactions they make with the local environment in proteins of known structure. For this purpose, crystal structures have been determined for T4 lysozyme bearing a nitroxide side chain (R1) at the solvent-exposed helical sites 41 and 44 in the B helix. These sites are of particular interest in that the corresponding EPR spectra reveal two dynamic states of R1, one of which is relatively immobilized suggesting interactions of the nitroxide with the environment. The crystal structures together with the effect of mutagenesis of nearest neighbors on the motion of R1 suggest intrahelical interactions of 41R1 with the i + 4 residue and of 44R1 with the i + 1 residue. Such interactions appear to be specific to particular rotamers of the R1 side chain.

  20. Conversion of the 2,2,6,6-tetramethylpiperidine moiety to a 2,2-dimethylpyrrolidine by cytochrome P450: evidence for a mechanism involving nitroxide radicals and heme iron.

    PubMed

    Yin, Wenji; Mitra, Kaushik; Stearns, Ralph A; Baillie, Thomas A; Kumar, Sanjeev

    2004-05-11

    Earlier we described a novel cytochrome P450 (CYP) catalyzed metabolism of the 2,2,6,6-tetramethylpiperidine (2,2,6,6-TMPi) moiety in human liver microsomes to a ring-contracted 2,2-dimethylpyrrolidine (2,2-DMPy) [Yin, W., et al. (2003) Drug Metab. Dispos. 31, 215-223]. In the current report, evidence is provided for the involvement of 2,2,6,6-TMPi hydroxylamines and their one-electron oxidation products, the nitroxide radicals, as intermediates in this pathway. Nitroxide radicals could be converted to their corresponding 2,2-DMPy metabolites by "inactivated CYP3A4", as well as by a number of other heme proteins and hemin, suggesting that this is a heme-catalyzed process. The conversion of nitroxide radicals to the 2,2-DMPy products by CYP3A4 or hemin was accompanied by the generation of acetone in incubations, providing evidence that the three-carbon unit from 2,2,6,6-TMPi was lost as acetone. With one model 2,2,6,6-TMPi nitroxide radical, evidence for an alternate pathway, which resulted in the formation of an intermediate that incorporated two oxygen atoms from water of the incubation medium before collapsing to the 2,2-DMPy product, was also obtained. To account for both pathways, a mechanism involving interaction of the nitroxide radicals with heme iron (Fe(III)), followed by a homolytic scission of the N-O bond and transfer of the nitroxide oxygen to heme iron to form a perferryl-oxygen complex, is proposed. The nitrogen-centered 2,2,6,6-TMPi radical thus formed then precipitates the contraction of the piperidine ring via C2-C3 bond cleavage, and the resulting product further oxidizes to an exocyclic iminium ion (by the perferryl-oxygen complex); the latter may undergo capture by water from the incubation medium and eliminate the three-carbon unit via N-dealkylation. It remains to be determined whether this novel interaction of nitroxide radicals with heme iron has any relevance in regard to the known biological properties of these stable radical species

  1. High-field EPR and ESEEM investigation of the nitrogen quadrupole interaction of nitroxide spin labels in disordered solids: toward differentiation between polarity and proticity matrix effects on protein function.

    PubMed

    Savitsky, A; Dubinskii, A A; Plato, M; Grishin, Y A; Zimmermann, H; Möbius, K

    2008-07-31

    The combination of high-field electron paramagnetic resonance (EPR) with site-directed spin labeling (SDSL) techniques employing nitroxide radicals has turned out to be particularly powerful in revealing subtle changes of the polarity and proticity profiles in proteins enbedded in membranes. This information can be obtained by orientation-selective high-field EPR resolving principal components of the nitroxide Zeeman (g) and hyperfine ( A) tensors of the spin labels attached to specific molecular sites. In contrast to the g- and A-tensors, the (14)N ( I = 1) quadrupole interaction tensor of the nitroxide spin label has not been exploited in EPR for probing effects of the microenvironment of functional protein sites. In this work it is shown that the W-band (95 GHz) high-field electron spin echo envelope modulation (ESEEM) method is well suited for determining with high accuracy the (14)N quadrupole tensor principal components of a nitroxide spin label in disordered frozen solution. By W-band ESEEM the quadrupole components of a five-ring pyrroline-type nitroxide radical in glassy ortho-terphenyl and glycerol solutions have been determined. This radical is the headgroup of the MTS spin label widely used in SDSL protein studies. By DFT calulations and W-band ESEEM experiments it is demonstrated that the Q(yy) value is especially sensitive to the proticity and polarity of the nitroxide environment in H-bonding and nonbonding situations. The quadrupole tensor is shown to be rather insensitive to structural variations of the nitroxide label itself. When using Q(yy) as a testing probe of the environment, its ruggedness toward temperature changes represents an important advantage over the g xx and A(zz) parameters which are usually employed for probing matrix effects on the spin labeled molecular site. Thus, beyond measurenments of g xx and A(zz) of spin labeled protein sites in disordered solids, W-band high-field ESEEM studies of (14)N quadrupole interactions open a new

  2. Nitronyl nitroxides, a novel group of protective agents against oxidative stress in endothelial cells forming the blood-brain barrier.

    PubMed

    Blasig, I E; Mertsch, K; Haseloff, R F

    2002-11-01

    Nitronyl nitroxides (NN) effectively decompose free radicals (. As brain endothelium, forming the blood-brain barrier (BBB), is both the main source and the target of reactive species during cerebral oxidative stress, we studied the effect of NN on brain endothelial cells injured by the mediator of oxidative stress H(2)O(2) (. H(2)O(2) caused hydroxyl radical generation, lipid peroxidation, membrane dysfunction, membrane leak and cell death, concentration dependently. Due to 0.5 mM H(2)O(2), oxy-radical-induced membrane phospholipid peroxidation (malondialdehyde) increased to 0.61+/-0.04 nmol/mg protein vs control (0.32+/-0.03, p<0.05), cells lost cytosolic proteins into the medium and viability decreased to 28+/-2% of control (p<0.05). Permeability through the endothelial monolayer (measure for the tightness of the BBB) rose to 250+/-40% after 0.15 mM H(2)O(2) (p<0.001). Addition of 10 microM of the NN 5,5-dimethyl-2,4-diphenyl-4-methoxy-2-imidazoline-3-oxide-1-oxyl (NN-2), 1 mM phenylbutyl nitrone (PBN), or 10 microM of the lazaroid U83836E improved cell viability during incubation with 0.5 mM H(2)O(2) to 57+/-1%, 49+/-2%, and 42+/-3% (p<0.05, vs drug-free H(2)O(2) group). The permeability enhancement by 0.15 mM H(2)O(2) was reduced to 171+/-21%, 170+/-25%, and 118+/-32% (p<0.05 vs drug-free H(2)O(2) group). Generally, the assumption is supported that during cerebral oxidative stress the protection should also be directed to the cells of the BBB, which can be provided by antioxidative approaches. NN represent a new group of antioxdatively acting cytoprotectiva improving the survival and function of the endothelium against oxidative stress. PMID:12423670

  3. Effects of different detachment procedures on viability, nitroxide reduction kinetics and plasma membrane heterogeneity of V-79 cells.

    PubMed

    Batista, Urska; Garvas, Maja; Nemec, Marjana; Schara, Milan; Veranic, Peter; Koklic, Tilen

    2010-06-01

    Cell detachment procedures can cause severe damage to cells. Many studies require cells to be detached before measurements; therefore, research on cells that have been grown attached to the bottom of the culture dish and later detached represents a special problem with respect to the experimental results when the properties of cell membranes undergo small changes such as in spectroscopic studies of membrane permeability. We characterized the influence of three different detachment procedures: cell scraping by rubber policeman, trypsinization and a citrate buffer treatment on V-79 cells in the plateau phase of growth (arrested in G1). We have measured cell viability by a dye-exclusion test; nitroxide reduction kinetics and membrane fluidity by EPR (electron paramagnetic resonance) method using the lipophilic spin-probe MeFASL(10,3) (5-doxylpalmitoyl-methylester), which partitions mainly in cell membranes and the hydrophilic spin-probe TEMPONE (4-oxo-2,2,6,6-tetramethylpiperidine-1-oxyl). The resulting cell damage due to the detachment process was observed with SEM (scanning electron microscopy). We found out that cell viability was 91% for trypsin treatment, 85% for citrate treatment and 70% for cell scraping. Though the plasma membrane was mechanically damaged by scraping, the membrane domain structure was not significantly altered compared with other detachment methods. On the other hand, the spin-probe reduction rate, which depends both on the transport across plasma membrane as well as on metabolic properties of cells, was the highest for trypsin method, suggesting that metabolic rate was the least influenced. Only the reduction rate of trypsin-treated cells stayed unchanged after 4 h of stirring in suspension. These results suggest that, compared with scraping cells or using citrate buffer, the most suitable detachment method for V-79 cells is detachment by trypsin and keeping cells in the stirred cell suspension until measurement. This method provides the

  4. Preparation, characterization and magnetic behavior of a spin-labelled physical hydrogel containing a chiral cyclic nitroxide radical unit fixed inside the gelator molecule.

    PubMed

    Takemoto, Yusa; Yamamoto, Takayuki; Ikuma, Naohiko; Uchida, Yoshiaki; Suzuki, Katsuaki; Shimono, Satoshi; Takahashi, Hiroki; Sato, Nobuhiro; Oba, Yojiro; Inoue, Rintaro; Sugiyama, Masaaki; Tsue, Hirohito; Kato, Tatsuhisa; Yamauchi, Jun; Tamura, Rui

    2015-07-21

    An optically active amphiphilic nitroxide radical compound [(S,S,R)-], which contains a paramagnetic (2S,5S)-2,5-dimethyl-2,5-diphenylpyrrolidine-N-oxyl radical group fixed in the inner position together with a hydrophobic long alkyl chain and a hydrophilic (R)-alanine residue in the opposite terminal positions, was found to serve as a low-molecular-weight gelator in H2O to give rise to a spin-labelled physical hydrogel. Characterization of the hydrogel was performed by microscopic (SEM, TEM and AFM) techniques, XRD and SAXS measurements, and IR, UV and CD spectroscopies. The gel-sol transition temperature was determined by EPR spectral line-width (ΔHpp) analysis. Measurement of the temperature dependence of relative paramagnetic susceptibility (χrel) for the hydrogel and sol phases was achieved by means of the double-integration of VT-EPR spectra. PMID:26073537

  5. Dynamic, in vivo, real-time detection of retinal oxidative status in a model of elevated intraocular pressure using a novel, reversibly responsive, profluorescent nitroxide probe.

    PubMed

    Rayner, Cassie L; Gole, Glen A; Bottle, Steven E; Barnett, Nigel L

    2014-12-01

    Changes to the redox status of biological systems have been implicated in the pathogenesis of a wide variety of disorders including cancer, Ischemia-reperfusion (I/R) injury and neurodegeneration. In times of metabolic stress e.g. ischaemia/reperfusion, reactive oxygen species (ROS) production overwhelms the intrinsic antioxidant capacity of the cell, damaging vital cellular components. The ability to quantify ROS changes in vivo, is therefore essential to understanding their biological role. Here we evaluate the suitability of a novel reversible profluorescent probe containing a redox-sensitive nitroxide moiety (methyl ester tetraethylrhodamine nitroxide, ME-TRN), as an in vivo, real-time reporter of retinal oxidative status. The reversible nature of the probe's response offers the unique advantage of being able to monitor redox changes in both oxidizing and reducing directions in real time. After intravitreal administration of the ME-TRN probe, we induced ROS production in rat retina using an established model of complete, acute retinal ischaemia followed by reperfusion. After restoration of blood flow, retinas were imaged using a Micron III rodent fundus fluorescence imaging system, to quantify the redox-response of the probe. Fluorescent intensity declined during the first 60 min of reperfusion. The ROS-induced change in probe fluorescence was ameliorated with the retinal antioxidant, lutein. Fluorescence intensity in non-Ischemia eyes did not change significantly. This new probe and imaging technology provide a reversible and real-time response to oxidative changes and may allow the in vivo testing of antioxidant therapies of potential benefit to a range of diseases linked to oxidative stress. PMID:25447708

  6. ESR lineshape and {sup 1}H spin-lattice relaxation dispersion in propylene glycol solutions of nitroxide radicals – Joint analysis

    SciTech Connect

    Kruk, D.; Hoffmann, S. K.; Goslar, J.; Lijewski, S.; Kubica-Misztal, A.; Korpała, A.; Oglodek, I.; Moscicki, J.; Kowalewski, J.; Rössler, E. A.

    2013-12-28

    Electron Spin Resonance (ESR) spectroscopy and Nuclear Magnetic Relaxation Dispersion (NMRD) experiments are reported for propylene glycol solutions of the nitroxide radical: 4-oxo-TEMPO-d{sub 16} containing {sup 15}N and {sup 14}N isotopes. The NMRD experiments refer to {sup 1}H spin-lattice relaxation measurements in a broad frequency range (10 kHz–20 MHz). A joint analysis of the ESR and NMRD data is performed. The ESR lineshapes give access to the nitrogen hyperfine tensor components and the rotational correlation time of the paramagnetic molecule. The NMRD data are interpreted in terms of the theory of paramagnetic relaxation enhancement in solutions of nitroxide radicals, recently presented by Kruk et al. [J. Chem. Phys. 138, 124506 (2013)]. The theory includes the effect of the electron spin relaxation on the {sup 1}H relaxation of the solvent. The {sup 1}H relaxation is caused by dipole-dipole interactions between the electron spin of the radical and the proton spins of the solvent molecules. These interactions are modulated by three dynamic processes: relative translational dynamics of the involved molecules, molecular rotation, and electron spin relaxation. The sensitivity to rotation originates from the non-central positions of the interacting spin in the molecules. The electronic relaxation is assumed to stem from the electron spin–nitrogen spin hyperfine coupling, modulated by rotation of the radical molecule. For the interpretation of the NMRD data, we use the nitrogen hyperfine coupling tensor obtained from ESR and fit the other relevant parameters. The consistency of the unified analysis of ESR and NMRD, evaluated by the agreement between the rotational correlation times obtained from ESR and NMRD, respectively, and the agreement of the translation diffusion coefficients with literature values obtained for pure propylene glycol, is demonstrated to be satisfactory.

  7. An experimental NEXAFS and computational TDDFT and ΔDFT study of the gas-phase core excitation spectra of nitroxide free radical TEMPO and its analogues.

    PubMed

    Ljubić, Ivan; Kivimäki, Antti; Coreno, Marcello

    2016-04-21

    Core-hole spectroscopy adds to the fundamental understanding of the electronic structure of stable nitroxide free radicals thus paving way for a sensible design of new analogues with desired functionalities. We study the gas-phase C 1s, N 1s and O 1s excitation spectra of three nitroxide free radicals - TEMPO and two of its amide-substituted analogues - using the experimental NEXAFS technique and the theoretical TDDFT and ΔDFT methods in the unrestricted setting. The short-range corrected SRC1-BLYP and SRC2-BLYP exchange-correlation functionals are used with TDDFT, and the standard B3LYP functional with ΔDFT. The TDDFT-based detailed spectral assignment includes the valence, mixed valence-Rydberg and Rydberg portions of the spectra from the onset of absorptions to the vicinity of the core-ionization thresholds. The relative overlaps between the experimental and TDDFT-modelled spectra are reasonably good, in the range of 0.7-0.8, 0.6-0.8, and 0.7-0.8 for the C 1s, N 1s, and O 1s spectra, respectively. The extent of spin contamination within the unrestricted framework and its effect on the accuracy of the calculated excitation energies and dipole intensities are discussed in detail. It is concluded that, despite the sizeable spin contamination, the presently used methods are capable of predicting the core-excitation spectra of comparatively large free radical species fairly reliably over a wide spectral range. PMID:27020039

  8. Frequency Dependence of Electron Spin Relaxation Times in Aqueous Solution for a Nitronyl Nitroxide Radical and Per-deuterated-Tempone between 250 MHz and 34 GHz

    PubMed Central

    Biller, Joshua R.; Meyer, Virginia M.; Elajaili, Hanan; Rosen, Gerald M.; Eaton, Sandra S.; Eaton, Gareth R.

    2012-01-01

    Electron spin relaxation times of perdeuterated tempone (PDT) 1 and of a nitronyl nitroxide 2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl) 2 in aqueous solution at room temperature were measured by 2-pulse electron spin echo (T2) or 3-pulse inversion recovery (T1) in the frequency range of 250 MHz to 34 GHz. At 9 GHz values of T1 measured by long-pulse saturation recovery were in good agreement with values determined by inversion recovery. Below 9 GHz for 1 and below 1.5 GHz for 2, T1~ T2, as expected in the fast tumbling regime. At higher frequencies T2 was shorter than T1 due to incomplete motional averaging of g and A anisotropy. The frequency dependence of 1/T1 is modeled as the sum of spin rotation, modulation of g and A-anisotropy, and a thermally-activated process that has maximum contribution at about 1.5 GHz. The spin lattice relaxation times for the nitronyl nitroxide were longer than for PDT by a factor of about 2 at 34 GHz, decreasing to about a factor of 1.5 at 250 MHz. The rotational correlation times, τR are calculated to be 9 ps for 1 and about 25 ps for 2. The longer spin lattice relaxation times for 2 than for 1 at 9 and 34 GHz are due predominantly to smaller contributions from spin rotation that arise from slower tumbling. The smaller nitrogen hyperfine couplings for the nitronyl 2 than for 1 decrease the contribution to relaxation due to modulation of A anisotropy. However, at lower frequencies the slower tumbling of 2 results in a larger value of ωτR (ω is the resonance frequency) and larger values of the spectral density function, which enhances the contribution from modulation of anisotropic interactions for 2 to a greater extent than for 1. PMID:23123770

  9. Frequency dependence of electron spin relaxation times in aqueous solution for a nitronyl nitroxide radical and perdeuterated-tempone between 250 MHz and 34 GHz.

    PubMed

    Biller, Joshua R; Meyer, Virginia M; Elajaili, Hanan; Rosen, Gerald M; Eaton, Sandra S; Eaton, Gareth R

    2012-12-01

    Electron spin relaxation times of perdeuterated tempone (PDT) 1 and of a nitronyl nitroxide (2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl) 2 in aqueous solution at room temperature were measured by 2-pulse electron spin echo (T(2)) or 3-pulse inversion recovery (T(1)) in the frequency range of 250 MHz to 34 GHz. At 9 GHz values of T(1) measured by long-pulse saturation recovery were in good agreement with values determined by inversion recovery. Below 9 GHz for 1 and below 1.5 GHz for 2,T(1)~T(2), as expected in the fast tumbling regime. At higher frequencies T(2) was shorter than T(1) due to incomplete motional averaging of g and A anisotropy. The frequency dependence of 1/T(1) is modeled as the sum of spin rotation, modulation of g and A-anisotropy, and a thermally-activated process that has maximum contribution at about 1.5 GHz. The spin lattice relaxation times for the nitronyl nitroxide were longer than for PDT by a factor of about 2 at 34 GHz, decreasing to about a factor of 1.5 at 250 MHz. The rotational correlation times, τ(R) are calculated to be 9 ps for 1 and about 25 ps for 2. The longer spin lattice relaxation times for 2 than for 1 at 9 and 34 GHz are due predominantly to smaller contributions from spin rotation that arise from slower tumbling. The smaller nitrogen hyperfine couplings for the nitronyl 2 than for 1 decrease the contribution to relaxation due to modulation of A anisotropy. However, at lower frequencies the slower tumbling of 2 results in a larger value of ωτ(R) (ω is the resonance frequency) and larger values of the spectral density function, which enhances the contribution from modulation of anisotropic interactions for 2 to a greater extent than for 1. PMID:23123770

  10. Core-shell hybrid upconversion nanoparticles carrying stable nitroxide radicals as potential multifunctional nanoprobes for upconversion luminescence and magnetic resonance dual-modality imaging.

    PubMed

    Chen, Chuan; Kang, Ning; Xu, Ting; Wang, Dong; Ren, Lei; Guo, Xiangqun

    2015-03-12

    Nitroxide radicals, such as 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) and its derivatives, have recently been used as contrast agents for magnetic resonance imaging (MRI) and electron paramagnetic resonance imaging (EPRI). However, their rapid one-electron bioreduction to diamagnetic N-hydroxy species when administered intravenously has limited their use in in vivo applications. In this article, a new approach of silica coating for carrying stable radicals was proposed. A 4-carboxyl-TEMPO nitroxide radical was covalently linked with 3-aminopropyl-trimethoxysilane to produce a silanizing TEMPO radical. Utilizing a facile reaction based on the copolymerization of silanizing TEMPO radicals with tetraethyl orthosilicate in reverse microemulsion, a TEMPO radicals doped SiO2 nanostructure was synthesized and coated on the surface of NaYF4:Yb,Er/NaYF4 upconversion nanoparticles (UCNPs) to generate a novel multifunctional nanoprobe, PEGylated UCNP@TEMPO@SiO2 for upconversion luminescence (UCL) and magnetic resonance dual-modality imaging. The electron spin resonance (ESR) signals generated by the TEMPO@SiO2 show an enhanced reduction resistance property for a period of time of up to 1 h, even in the presence of 5 mM ascorbic acid. The longitudinal relaxivity of PEGylated UCNPs@TEMPO@SiO2 nanocomposites is about 10 times stronger than that for free TEMPO radicals. The core-shell NaYF4:Yb,Er/NaYF4 UCNPs synthesized by this modified user-friendly one-pot solvothermal strategy show a significant enhancement of UCL emission of up to 60 times more than the core NaYF4:Yb,Er. Furthermore, the PEGylated UCNP@TEMPO@SiO2 nanocomposites were further used as multifunctional nanoprobes to explore their performance in the UCL imaging of living cells and T1-weighted MRI in vitro and in vivo. PMID:25716884