Science.gov

Sample records for mitochondrial apoptotic pathways

  1. Carbon disulfide induces rat testicular injury via mitochondrial apoptotic pathway.

    PubMed

    Guo, Yinsheng; Wang, Wei; Dong, Yu; Zhang, Zhen; Zhou, Yijun; Chen, Guoyuan

    2014-08-01

    Carbon disulfide (CS2), one of the most important volatile organic chemicals, was shown to have serious impairment to male reproductive system. But the underline mechanism is still unclear. In the present study, we aim to investigate the male germ cell apoptosis induced by CS2 exposure alone and by co-administration with cyclosporin A (CsA), which is the inhibitor of membrane permeability transition pore (MPTP). It was shown that CS2 exposure impaired ultrastructure of germ cells, increased the numbers of apoptotic germ cells, accumulated intracellular level of calcium, elevated ROS level, and increased activities of complexes of respiratory chain. Meanwhile, exposure to CS2 dramatically decreased the mitochondrial transmembrane potential (ΔΨm) and levels of ATP and MPTP opening. Exposure to CS2 can also cause a significantly dose-dependent increase in the expression levels of Bax, Cytc, Caspase-9, and Caspase-3, but decreased the expression level of Bcl-2. Moreover, co-administration of CsA with CS2 can reverse or alleviate the above apoptotic damage effects of CS2 on testicular germ cells. Taken together, our findings suggested that CS2 can cause damage to testicular germ cells via mitochondrial apoptotic pathway, and MPTP play a crucial role in this process. PMID:24582363

  2. The Opa1-Dependent Mitochondrial Cristae Remodeling Pathway Controls Atrophic, Apoptotic, and Ischemic Tissue Damage

    PubMed Central

    Varanita, Tatiana; Soriano, Maria Eugenia; Romanello, Vanina; Zaglia, Tania; Quintana-Cabrera, Rubén; Semenzato, Martina; Menabò, Roberta; Costa, Veronica; Civiletto, Gabriele; Pesce, Paola; Viscomi, Carlo; Zeviani, Massimo; Di Lisa, Fabio; Mongillo, Marco; Sandri, Marco; Scorrano, Luca

    2015-01-01

    Summary Mitochondrial morphological and ultrastructural changes occur during apoptosis and autophagy, but whether they are relevant in vivo for tissue response to damage is unclear. Here we investigate the role of the optic atrophy 1 (OPA1)-dependent cristae remodeling pathway in vivo and provide evidence that it regulates the response of multiple tissues to apoptotic, necrotic, and atrophic stimuli. Genetic inhibition of the cristae remodeling pathway in vivo does not affect development, but protects mice from denervation-induced muscular atrophy, ischemic heart and brain damage, as well as hepatocellular apoptosis. Mechanistically, OPA1-dependent mitochondrial cristae stabilization increases mitochondrial respiratory efficiency and blunts mitochondrial dysfunction, cytochrome c release, and reactive oxygen species production. Our results indicate that the OPA1-dependent cristae remodeling pathway is a fundamental, targetable determinant of tissue damage in vivo. PMID:26039448

  3. BCDO2 acts as a carotenoid scavenger and gatekeeper for the mitochondrial apoptotic pathway

    PubMed Central

    Lobo, Glenn P.; Isken, Andrea; Hoff, Sylvia; Babino, Darwin; von Lintig, Johannes

    2012-01-01

    Carotenoids and their metabolites are widespread and exert key biological functions in living organisms. In vertebrates, the carotenoid oxygenase BCMO1 converts carotenoids such as β,β-carotene to retinoids, which are required for embryonic pattern formation and cell differentiation. Vertebrate genomes encode a structurally related protein named BCDO2 but its physiological function remains undefined. Here, we show that BCDO2 is expressed as an oxidative stress-regulated protein during zebrafish development. Targeted knockdown of this mitochondrial enzyme resulted in anemia at larval stages. Marker gene analysis and staining for hemoglobin revealed that erythropoiesis was not impaired but that erythrocytes underwent apoptosis in BCDO2-deficient larvae. To define the mechanism of this defect, we have analyzed the role of BCDO2 in human cell lines. We found that carotenoids caused oxidative stress in mitochondria that eventually led to cytochrome c release, proteolytic activation of caspase 3 and PARP1, and execution of the apoptotic pathway. Moreover, BCDO2 prevented this induction of the apoptotic pathway by carotenoids. Thus, our study identifying BCDO2 as a crucial protective component against oxidative stress establishes this enzyme as mitochondrial carotenoid scavenger and a gatekeeper of the intrinsic apoptotic pathway. PMID:22764054

  4. Intersectin-1s regulates the mitochondrial apoptotic pathway in endothelial cells.

    PubMed

    Predescu, Sanda A; Predescu, Dan N; Knezevic, Ivana; Klein, Irene K; Malik, Asrar B

    2007-06-01

    Intersectins (ITSNs) are multidomain adaptor proteins implicated in endocytosis, regulation of actin polymerization, and Ras/MAPK signaling. We have previously shown that ITSN-1s is required for caveolae fission and internalization in endothelial cells (ECs). In the present study, using small interfering RNA to knock down ITSN-1s protein expression, we demonstrate a novel role of ITSN-1s as a key antiapoptotic protein. Knockdown of ITSN-1s in ECs activated the mitochondrial pathway of apoptosis as determined by genomic DNA fragmentation, extensive mitochondrial fission, activation of the proapoptotic proteins BAK and BAX, and cytochrome c efflux from mitochondria. ITSN-1 knockdown acts as a proapoptotic signal that causes mitochondrial outer membrane permeabilization, dissipation of the mitochondrial membrane potential, and generation of reactive oxygen species. These effects were secondary to decreased activation of Erk1/2 and its direct activator MEK. Bcl-X(L) overexpression prevented BAX activation and the apoptotic ECs death induced by suppression of ITSN-1s. Our findings demonstrate a novel role of ITSN-1s as a negative regulator of the mitochondrial pathway-dependent apoptosis secondary to activation of the Erk1/2 survival signaling pathway. PMID:17405881

  5. Galectin-1 and Galectin-3 induce mitochondrial apoptotic pathway in Jurkat cells

    NASA Astrophysics Data System (ADS)

    Vasil'eva, O. A.; Isaeva, A. V.; Prokhorenko, T. S.; Zima, A. P.; Novitsky, V. V.

    2016-08-01

    Cellular malignant transformation is often accompanied by increased gene expression of low-molecular proteins of lectins family-galectins. But it is unknown how galectins promote tumor growth and malignization. Galectins-1 and galectin-3 are thought to be possible immunoregulators exerting their effects by regulating the balance of CD4+ lymphocytes. In addition it is known that tumor cells overexpressing galectins are capable of escaping immunological control, causing apoptosis of lymphocytes. The aim of the study is to investigate the role of galectin-1 and galectin-3 in the implementation of mitochondrial apoptotic pathway in Jurkat cells. Methods: Jurkat cells were used as a model for the study of T-lymphocytes. Jurkat cells were activated with antibodies to CD3 and CD28 and cultured with recombinant galectin-1 and -3. Apoptosis of Jurkat cells and depolarization of the mitochondrial membrane were assessed by flow cytometry. It was found that galectin-1 and galectin-3 have a dose-dependent pro-apoptotic effect on Jurkat cells in vitro and enlarge the number of cells with decreased mitochondrial membrane potential compared with intact cells.

  6. Genistein suppresses the mitochondrial apoptotic pathway in hippocampal neurons in rats with Alzheimer's disease

    PubMed Central

    Wang, Yan; Cai, Biao; Shao, Jing; Wang, Ting-ting; Cai, Run-ze; Ma, Chang-ju; Han, Tao; Du, Jun

    2016-01-01

    Genistein is effective against amyloid-β toxicity, but the underlying mechanisms are unclear. We hypothesized that genistein may protect neurons by inhibiting the mitochondrial apoptotic pathway, and thereby play a role in the prevention of Alzheimer’s disease. A rat model of Alzheimer’s disease was established by intraperitoneal injection of D-galactose and intracerebral injection of amyloid-β peptide (25–35). In the genistein treatment groups, a 7-day pretreatment with genistein (10, 30, 90 mg/kg) was given prior to establishing Alzheimer’s disease model, for 49 consecutive days. Terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling assay demonstrated a reduction in apoptosis in the hippocampus of rats treated with genistein. Western blot analysis showed that expression levels of capase-3, Bax and cytochrome c were decreased compared with the model group. Furthermore, immunohistochemical staining revealed reductions in cytochrome c and Bax immunoreactivity in these rats. Morris water maze revealed a substantial shortening of escape latency by genistein in Alzheimer’s disease rats. These findings suggest that genistein decreases neuronal loss in the hippocampus, and improves learning and memory ability. The neuroprotective effects of genistein are associated with the inhibition of the mitochondrial apoptotic pathway, as shown by its ability to reduce levels of caspase-3, Bax and cytochrome c.

  7. DIEPOXYBUTANE ACTIVATES THE MITOCHONDRIAL APOPTOTIC PATHWAY AND MEDIATES APOPTOSIS IN HUMAN LYMPHOBLASTS THROUGH OXIDATIVE STRESS

    PubMed Central

    Yadavilli, Sridevi; Martinez-Ceballos, Eduardo; Snowden-Aikens, Janana; Hurst, Angela; Joseph, Tranole; Albrecht, Thomas; Muganda, Perpetua M.

    2007-01-01

    Diepoxybutane (DEB) is the most potent metabolite of the environmental chemical 1, 3-butadiene (BD), which is prevalent in petrochemical industrial areas. BD is a known mutagen and human carcinogen, and possesses multi-systems organ toxicity. We recently reported that DEB-induced cell death in TK6 lymphoblasts was due to the occurrence of apoptosis, and not necrosis. In this study, we investigated the molecular mechanisms responsible for DEB-induced apoptosis in these cells. Bax and Bak were found to be over-expressed and activated, and the mitochondrial trans-membrane potential was attenuated in cells undergoing DEB-induced apoptosis. Cytochrome c was depleted from the mitochondria of TK6 cells undergoing apoptosis, and was released into the cytosol in Jurkat-T lymphoblasts exposed to the same concentrations of DEB. Executioner caspase 3 was deduced to be activated by initiator caspase 9. DEB induced reactive oxygen species (ROS) formation, and the ROS scavenger N-acetyl-L-cysteine effectively blocked DEB-induced apoptosis in TK6 cells. Collectively, these results demonstrate that the mitochondrial apoptotic pathway is activated to mediate DEB-induced apoptosis in human TK6 lymphoblasts. These results further demonstrate that DEB-induced apoptosis is also mediated by the DEB-induced generation of ROS. This is the first report to examine the mechanism of DEB-induced apoptosis in human lymphoblasts. PMID:17693053

  8. A novel prohibitin-binding compound induces the mitochondrial apoptotic pathway through NOXA and BIM upregulation.

    PubMed

    Moncunill-Massaguer, Cristina; Saura-Esteller, José; Pérez-Perarnau, Alba; Palmeri, Claudia Mariela; Núñez-Vázquez, Sonia; Cosialls, Ana M; González-Gironès, Diana M; Pomares, Helena; Korwitz, Anne; Preciado, Sara; Albericio, Fernando; Lavilla, Rodolfo; Pons, Gabriel; Langer, Thomas; Iglesias-Serret, Daniel; Gil, Joan

    2015-12-01

    We previously described diaryl trifluorothiazoline compound 1a (hereafter referred to as fluorizoline) as a first-in-class small molecule that induces p53-independent apoptosis in a wide range of tumor cell lines. Fluorizoline directly binds to prohibitin 1 and 2 (PHBs), two proteins involved in the regulation of several cellular processes, including apoptosis. Here we demonstrate that fluorizoline-induced apoptosis is mediated by PHBs, as cells depleted of these proteins are highly resistant to fluorizoline treatment. In addition, BAX and BAK are necessary for fluorizoline-induced cytotoxic effects, thereby proving that apoptosis occurs through the intrinsic pathway. Expression analysis revealed that fluorizoline induced the upregulation of Noxa and Bim mRNA levels, which was not observed in PHB-depleted MEFs. Finally, Noxa(-/-)/Bim(-/-) MEFs and NOXA-downregulated HeLa cells were resistant to fluorizoline-induced apoptosis. All together, these findings show that fluorizoline requires PHBs to execute the mitochondrial apoptotic pathway. PMID:26497683

  9. A novel prohibitin-binding compound induces the mitochondrial apoptotic pathway through NOXA and BIM upregulation

    PubMed Central

    Moncunill-Massaguer, Cristina; Saura-Esteller, José; Pérez-Perarnau, Alba; Palmeri, Claudia Mariela; Núñez-Vázquez, Sonia; Cosialls, Ana M.; González-Gironès, Diana M.; Pomares, Helena; Korwitz, Anne; Preciado, Sara; Albericio, Fernando; Lavilla, Rodolfo; Pons, Gabriel; Langer, Thomas; Iglesias-Serret, Daniel; Gil, Joan

    2015-01-01

    We previously described diaryl trifluorothiazoline compound 1a (hereafter referred to as fluorizoline) as a first-in-class small molecule that induces p53-independent apoptosis in a wide range of tumor cell lines. Fluorizoline directly binds to prohibitin 1 and 2 (PHBs), two proteins involved in the regulation of several cellular processes, including apoptosis. Here we demonstrate that fluorizoline-induced apoptosis is mediated by PHBs, as cells depleted of these proteins are highly resistant to fluorizoline treatment. In addition, BAX and BAK are necessary for fluorizoline-induced cytotoxic effects, thereby proving that apoptosis occurs through the intrinsic pathway. Expression analysis revealed that fluorizoline induced the upregulation of Noxa and Bim mRNA levels, which was not observed in PHB-depleted MEFs. Finally, Noxa−/−/Bim−/− MEFs and NOXA-downregulated HeLa cells were resistant to fluorizoline-induced apoptosis. All together, these findings show that fluorizoline requires PHBs to execute the mitochondrial apoptotic pathway. PMID:26497683

  10. The involvement of mitochondrial apoptotic pathway in eugenol-induced cell death in human glioblastoma cells.

    PubMed

    Liang, Wei-Zhe; Chou, Chiang-Ting; Hsu, Shu-Shong; Liao, Wei-Chuan; Shieh, Pochuen; Kuo, Daih-Huang; Tseng, Hui-Wen; Kuo, Chun-Chi; Jan, Chung-Ren

    2015-01-01

    Eugenol, a natural phenolic constituent of clove oil, has a wide range of applications in medicine as a local antiseptic and anesthetic. However, the effect of eugenol on human glioblastoma is unclear. This study examined whether eugenol elevated intracellular free Ca(2+) levels ([Ca(2+)]i) and induced apoptosis in DBTRG-05MG human glioblastoma cells. Eugenol evoked [Ca(2+)]i rises which were reduced by removing extracellular Ca(2+). Eugenol-induced [Ca(2+)]i rises were not altered by store-operated Ca(2+) channel blockers but were inhibited by the PKC inhibitor GF109203X and the transient receptor potential channel melastatin 8 (TRPM8) antagonist capsazepine. In Ca(2+)-free medium, pretreatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin (TG) or 2,5-di-tert-butylhydroquinone (BHQ) abolished eugenol-induced [Ca(2+)]i rises. The phospholipase C (PLC) inhibitor U73122 significantly inhibited eugenol-induced [Ca(2+)]i rises. Eugenol killed cells which were not reversed by prechelating cytosolic Ca(2+) with 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA-AM). Eugenol induced apoptosis through increasing reactive oxygen species (ROS) production, decreasing mitochondrial membrane potential, releasing cytochrome c and activating caspase-9/caspase-3. Together, in DBTRG-05MG cells, eugenol evoked [Ca(2+)]i rises by inducing PLC-dependent release of Ca(2+) from the endoplasmic reticulum and caused Ca(2+) influx possibly through TRPM8 or PKC-sensitive channels. Furthermore, eugenol induced the mitochondrial apoptotic pathway. PMID:25455450

  11. Sequence and expression variations in 23 genes involved in mitochondrial and non-mitochondrial apoptotic pathways and risk of oral leukoplakia and cancer.

    PubMed

    Datta, Sayantan; Ray, Anindita; Singh, Richa; Mondal, Pinaki; Basu, Analabha; De Sarkar, Navonil; Majumder, Mousumi; Maiti, Guruparasad; Baral, Aradhita; Jha, Ganga Nath; Mukhopadhyay, Indranil; Panda, Chinmay; Chowdhury, Shantanu; Ghosh, Saurabh; Roychoudhury, Susanta; Roy, Bidyut

    2015-11-01

    Oral cancer is usually preceded by pre-cancerous lesion and related to tobacco abuse. Tobacco carcinogens damage DNA and cells harboring such damaged DNA normally undergo apoptotic death, but cancer cells are exceptionally resistant to apoptosis. Here we studied association between sequence and expression variations in apoptotic pathway genes and risk of oral cancer and precancer. Ninety nine tag SNPs in 23 genes, involved in mitochondrial and non-mitochondrial apoptotic pathways, were genotyped in 525 cancer and 253 leukoplakia patients and 538 healthy controls using Illumina Golden Gate assay. Six SNPs (rs1473418 at BCL2; rs1950252 at BCL2L2; rs8190315 at BID; rs511044 at CASP1; rs2227310 at CASP7 and rs13010627 at CASP10) significantly modified risk of oral cancer but SNPs only at BCL2, CASP1and CASP10 modulated risk of leukoplakia. Combination of SNPs showed a steep increase in risk of cancer with increase in "effective" number of risk alleles. In silico analysis of published data set and our unpublished RNAseq data suggest that change in expression of BID and CASP7 may have affected risk of cancer. In conclusion, three SNPs, rs1473418 in BCL2, rs1950252 in BCL2L2 and rs511044 in CASP1, are being implicated for the first time in oral cancer. Since SNPs at BCL2, CASP1 and CASP10 modulated risk of both leukoplakia and cancer, so, they should be studied in more details for possible biomarkers in transition of leukoplakia to cancer. This study also implies importance of mitochondrial apoptotic pathway gene (such as BCL2) in progression of leukoplakia to oral cancer. PMID:26403071

  12. HSP27 Inhibits Homocysteine-Induced Endothelial Apoptosis by Modulation of ROS Production and Mitochondrial Caspase-Dependent Apoptotic Pathway

    PubMed Central

    Tian, Xin; Zhao, Lei; Song, Xianjing; Yan, Youyou; Liu, Ning; Li, Tianyi; Yan, Bingdi

    2016-01-01

    Objectives. Elevated plasma homocysteine (Hcy) could lead to endothelial dysfunction and is viewed as an independent risk factor for atherosclerosis. Heat shock protein 27 (HSP27), a small heat shock protein, is reported to exert protective effect against atherosclerosis. This study aims to investigate the protective effect of HSP27 against Hcy-induced endothelial cell apoptosis in human umbilical vein endothelial cells (HUVECs) and to determine the underlying mechanisms. Methods. Apoptosis, reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) of normal or HSP27-overexpressing HUVECs in the presence of Hcy were analyzed by flow cytometry. The mRNA and protein expression levels were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Results. We found that Hcy could induce cell apoptosis with corresponding decrease of nitric oxide (NO) level, increase of endothelin-1 (ET-1), intracellular adhesion molecule-1 (ICAM-1), vascular cellular adhesion molecule-1 (VCAM-1), and monocyte chemoattractant protein-1 (MCP-1) levels, elevation of ROS, and dissipation of MMP. In addition, HSP27 could protect the cell against Hcy-induced apoptosis and inhibit the effect of Hcy on HUVECs. Furthermore, HSP27 could increase the ratio of Bcl-2/Bax and inhibit caspase-3 activity. Conclusions. Therefore, we concluded that HSP27 played a protective role against Hcy-induced endothelial apoptosis through modulation of ROS production and the mitochondrial caspase-dependent apoptotic pathway. PMID:27190988

  13. Activation of the Mitochondrial Apoptotic Pathway Produces Reactive Oxygen Species and Oxidative Damage in Hepatocytes That Contribute to Liver Tumorigenesis.

    PubMed

    Hikita, Hayato; Kodama, Takahiro; Tanaka, Satoshi; Saito, Yoshinobu; Nozaki, Yasutoshi; Nakabori, Tasuku; Shimizu, Satoshi; Hayashi, Yoshito; Li, Wei; Shigekawa, Minoru; Sakamori, Ryotaro; Miyagi, Takuya; Hiramatsu, Naoki; Tatsumi, Tomohide; Takehara, Tetsuo

    2015-08-01

    Chronic hepatitis, including viral hepatitis and steatihepatitis, is a well-known high-risk condition for hepatocellular carcinoma. We previously reported that continuous hepatocyte apoptosis drives liver tumors in hepatocyte-specific Bcl-xL or Mcl-1 knockout mice. In this study, we further examine the underlying cellular mechanisms of generating tumors in apoptosis-prone liver. In cultured hepatocytes, the administration of ABT-737, a Bcl-xL/-2/-w inhibitor, led to production of reactive oxygen species (ROS) as well as activation of caspases. Mitochondria isolated from murine liver, upon administration of truncated-Bid, a proapoptotic Bcl-2 family protein, released cytochrome c and produced ROS, which was dependent on mitochondrial respiration. Hepatic apoptosis, regeneration, accumulation of oxidative damages, and tumorigenesis observed in hepatocyte-specific Mcl-1 knockout mice were substantially attenuated by further deficiency of Bax or Bid, suggesting that a balance of mitochondrial Bcl-2 family proteins governs generation of oxidative stress and other pathologies. Whole-exome sequencing clarified that C>A/G>T transversion, which is often caused by oxidative DNA damage in proliferating cells, was a frequently observed mutation pattern in liver tumors of Mcl-1 knockout mice. The administration of antioxidant L-N-acetylcysteine did not affect apoptosis, compensatory regeneration, or fibrotic responses but significantly reduced oxidative DNA damage and incidence and multiplicity of live tumors in Mcl-1 knockout mice. In conclusion, activation of the mitochondrial apoptotic pathway in hepatocytes accumulates intracellular oxidative damages, leading to liver tumorigenesis, independently of liver regeneration or fibrosis. This study supports a concept that antioxidant therapy may be useful for suppressing liver carcinogenesis in patients with chronic liver disease. PMID:26038117

  14. Mitochondrial and endoplasmic reticulum stress-induced apoptotic pathways are activated by 5-aminolevulinic acid-based photodynamic therapy in HL60 leukemia cells.

    PubMed

    Grebenová, Dana; Kuzelová, Katerina; Smetana, Karel; Pluskalová, Michaela; Cajthamlová, Hana; Marinov, Iuri; Fuchs, Ota; Soucek, Josef; Jarolím, Petr; Hrkal, Zbynek

    2003-02-01

    We studied the mechanism of the cytotoxic effects of 5-aminolevulinic acid-based photodynamic therapy (ALA-PDT; induction with 1 mM ALA for 4 h followed by a blue light dose of 18 J/cm(2)) on the human promyelocytic leukemia cell line HL60 using biochemical and electron microscopy methods. The disruption of mitochondrial membrane potential, deltapsi(m), was paralleled by a decrease in ATP level, unmasking of the mitochondrial antigen 7A6, release of cytochrome c into the cytoplasm, activation of caspases 9 and 3 and cleavage of poly(ADP-ribose) polymerase (PARP). This was followed by DNA fragmentation. These data suggest that ALA-PDT activates the mitochondrial apoptotic pathway. The level of endoplasmic reticulum Ca(2+)-binding chaperones ERp57 and ERp72 and of anti-apoptotic proteins Bcl-2 and Bcl-x(L) was decreased whereas that of Ca(2+)-binding protein calmodulin and the stress protein HSP60 was elevated following ALA-PDT. Inhibition of the initiator caspase 9, execution caspase 3 and Ca(2+)-dependent protease m-calpain, did not prevent DNA fragmentation. We conclude that, in our in vitro model, ALA-based photodynamic treatment initiates several signaling processes in HL60 cells that lead to rapidly progressing apoptosis, which is followed by slow necrosis. Two apoptotic processes proceed in parallel, one representing the mitochondrial pathway, the other involving disruption of calcium homeostasis and activation of the endoplasmic reticulum stress-mediated pathway. PMID:12633980

  15. Hyaluronan suppresses lidocaine-induced apoptosis of human chondrocytes in vitro by inhibiting the p53-dependent mitochondrial apoptotic pathway

    PubMed Central

    Lee, Yoon-Jin; Kim, Soo A; Lee, Sang-Han

    2016-01-01

    Aim: Intra-articular injection of local anesthetics (LAs) is a common procedure for therapeutic purposes. However, LAs have been found toxic to articular cartilage, and hyaluronan may attenuate this toxicity. In this study we investigated whether hyaluronan attenuated lidocaine-induced chondrotoxicity, and if so, to elucidate the underlying mechanisms. Methods: Human chondrocyte cell line SW1353 and newly isolated murine chondrocytes were incubated in culture medium containing hyaluronan and/or lidocaine for 72 h. Cell viability was evaluated using MTT assay. Cell apoptosis was detected with DAPI staining, caspase 3/7 activity assay and flow cytometry. Cell cycle distributions, ROS levels and mitochondrial membrane potential (ΔΨm) were determined using flow cytometry. The expression of p53 and p53-regulated gene products was measured with Western blotting. Results: Lidocaine (0.005%−0.03%) dose-dependently decreased the viability of SW1353 cells. This local anesthetic (0.015%, 0.025%) induced apoptosis, G2/M phase arrest and loss of ΔΨm, and markedly increased ROS production in SW1353 cells. Hyaluronan (50−800 μg/mL) alone did not affect the cell viability, but co-treatment with hyaluronan (200 μg/mL) significantly attenuated lidocaine-induced apoptosis and other abnormalities in SW1353 cells. Furthermore, co-treatment with lidocaine and hyaluronan significantly decreased the levels of p53 and its transcription targets Bax and p21 in SW1353 cells, although treatment with lidocaine alone did not significantly change these proteins. Similar results were obtained in ex vivo cultured murine chondrocytes. Conclusion: Hyaluronan suppresses lidocaine-induced apoptosis of human chondrocytes in vitro through inhibiting the p53-dependent mitochondrial apoptotic pathway. PMID:27041463

  16. Cytotoxicity of carteolol to human corneal epithelial cells by inducing apoptosis via triggering the Bcl-2 family protein-mediated mitochondrial pro-apoptotic pathway.

    PubMed

    Shan, Ming; Fan, Ting-Jun

    2016-09-01

    Carteolol is a frequently used nonselective β-adrenoceptor antagonist for glaucoma and ocular hypertension treatment, and its repeated/prolonged usage might be cytotoxic to the cornea, especially the outmost human corneal epithelium (HCEP). The aim of the present study was to characterize the cytotoxicity of carteolol to HCEP and its underlying cellular and molecular mechanisms using an in vitro model of HCEP cells. After HCEP cells were treated with carteolol at concentrations varying from 2% to 0.015625%, the cytotoxicity, apoptosis-inducing effect and pro-apoptotic pathway was investigated, respectively. Our results showed that carteolol at concentrations above 0.03125% induced time- and dose-dependent growth retardation, cytopathic morphological changes and viability decline of HCEP cells. Moreover, carteolol induced G1 phase arrest, plasma membrane permeability elevation, phosphatidylserine externalization, DNA fragmentation, and apoptotic body formation of HCEP cells. Furthermore, carteolol also induced activation of caspase-9 and -3, disruption of mitochondrial transmembrane potential, up-regulation the cytoplasmic amount of cytochrome c and apoptosis-inducing factor, and up-regulation of pro-apoptotic Bax and Bad, down-regulation of anti-apoptotic Bcl-2 and Bcl-xL. In conclusion, carteolol above 1/64 of its clinical therapeutic dosage has a time- and dose-dependent cytotoxicity to HCEP cells, which is achieved by inducing apoptosis via triggering Bcl-2 family protein-mediated mitochondrial pro-apoptotic pathway. PMID:27216471

  17. A Small Molecule That Protects the Integrity of the Electron Transfer Chain Blocks the Mitochondrial Apoptotic Pathway.

    PubMed

    Jiang, Xian; Li, Li; Ying, Zhengxin; Pan, Chenjie; Huang, Shaoqiang; Li, Lin; Dai, Miaomiao; Yan, Bo; Li, Ming; Jiang, Hui; Chen, She; Zhang, Zhiyuan; Wang, Xiaodong

    2016-07-21

    In response to apoptotic stimuli, mitochondria in mammalian cells release cytochrome c and other apoptogenic proteins, leading to the subsequent activation of caspases and apoptotic cell death. This process is promoted by the pro-apoptotic members of the Bcl-2 family of proteins, such as Bim and Bax, which, respectively, initiate and execute cytochrome c release from the mitochondria. Here we report the discovery of a small molecule that efficiently blocks Bim-induced apoptosis after Bax is activated on the mitochondria. The cellular target of this small molecule was identified to be the succinate dehydrogenase subunit B (SDHB) protein of complex II of the mitochondrial electron transfer chain (ETC). The molecule protects the integrity of the ETC and allows treated cells to continue to proliferate after apoptosis induction. Moreover, this molecule blocked dopaminergic neuron death and reversed Parkinson-like behavior in a rat model of Parkinson's disease. PMID:27447985

  18. A methoxy derivative of resveratrol analogue selectively induced activation of the mitochondrial apoptotic pathway in transformed fibroblasts

    PubMed Central

    Gosslau, A; Chen, M; Ho, Ci-T; Chen, K Y

    2005-01-01

    Resveratrol (R-3), a trihydroxy trans-stilbene from grape, inhibits multistage carcinogenesis in animal models. A resveratrol derivative 3,4,5,4′-tetrahydroxystilbene (R-4) exhibits potent growth inhibitory effect against transformed human cells. Here we report that 3,4,5,4′-tetramethoxystilbene (MR-4), converted from R-4, was more potent against cancer cell lines (WI38VA, IMR-90SV, HeLa, LNCaP, HT-29, and HepG2), but had almost no inhibitory effect on the growth of normal cells (WI38, IMR-90, BJ-T) at the concentrations tested. The IC50 value of MR-4 on the growth inhibition of transformed WI38VA human cells was 0.5 μM, as compared to the value of greater than 50 μM for the normal WI38 cells. Resveratrol, however, did not exhibit such clear differential effect and the IC50 value of R-3 for WI38VA cells was about 50 μM. The growth inhibitory effect of MR-4 correlated with the induction of apoptosis in the transformed cells. When normal WI38 cells and transformed WI38VA cells were compared, MR-4 induced increases of the Bax/Bcl-2 mRNA ratio, p53 and Bax protein level, activation of caspases, and DNA fragmentation in transformed, but not in normal cells. Further analysis revealed that MR-4 caused a rapid appearance of perinuclear aggregation of mitochondria in WI38VA but not in WI38 cells, suggesting that the mitochondria could serve as an early target of MR-4. R-3 also induced apoptosis and mitochondrial clustering but only at a much higher concentration, close to 500 μM. Taken together, the specific activation of the mitochondria-mediated apoptotic pathway could be a major reason for the striking differential growth inhibitory effect of MR-4. PMID:15668717

  19. Mitochondrial Apoptotic Pathway Is Activated by H2O2-Mediated Oxidative Stress in BmN-SWU1 Cells from Bombyx mori Ovary

    PubMed Central

    Chen, Peng; Hu, Yan-Fen; Wang, La; Xiao, Wen-Fu; Bao, Xi-Yan; Pan, Chun; Yi, Hua-Shan; Chen, Xiang-Yun; Pan, Min-Hui; Lu, Cheng

    2015-01-01

    Apoptosis is a known regulator of morphogenetic events. In mammals, the critical role of oxidative stress-induced apoptosis has been well-studied; however, in insects the role of oxidative stress in apoptosis is not clear. In a previous study, we showed that apoptosis-related genes are present in the silkworm Bombyx mori, an important lepidopteran insect model. In this study, we evaluated the effect of H2O2-induced oxidative stress on apoptosis, reactive oxygen species (ROS) levels, mitochondrial response, cytochrome c release and apoptosis-related gene expression in the BmN-SWU1 cell line from B. mori ovaries. Our results showed that BmN-SWU1 cells exposed to H2O2 showed cell protuberances, cytoplasmic condensation, apoptotic bodies, DNA ladder formation and caspase activities indicating apoptosis. H2O2-induced apoptosis also increased intracellular ROS level, changed mitochondrial distribution, reduced mitochondrial membrane potential and increased the release of cytochrome c from mitochondria. Furthermore, western blot analysis revealed a significant increase in p53 and cytochrome c expression, and a decrease in Bcl-2 expression compared to the controls. Moreover, quantitative real-time PCR (qRT-PCR) showed an increase in the transcript levels of BmICE, Bmapaf-1 and BmEndoG by 439.5%, 423.9% and 42.2%, respectively, after treatment with 1 μM H2O2 for 24 h. However, the transcript levels of Bmbuffy declined by 41.4% after 24 h of exposure to 1 μM H2O2. These results show that H2O2 treatment induced apoptosis in BmN-SWU1 cells via the mitochondrial apoptotic pathway. Further, it appears that oxidative stress induced by H2O2 activates both caspase-dependent and caspase-independent mitochondrial apoptotic pathways in silkworm cells. Taken together, these findings improve our knowledge of apoptosis in silkworm and the apoptotic pathways in insects. PMID:26225758

  20. Mitochondrial Apoptotic Pathway Is Activated by H2O2-Mediated Oxidative Stress in BmN-SWU1 Cells from Bombyx mori Ovary.

    PubMed

    Chen, Peng; Hu, Yan-Fen; Wang, La; Xiao, Wen-Fu; Bao, Xi-Yan; Pan, Chun; Yi, Hua-Shan; Chen, Xiang-Yun; Pan, Min-Hui; Lu, Cheng

    2015-01-01

    Apoptosis is a known regulator of morphogenetic events. In mammals, the critical role of oxidative stress-induced apoptosis has been well-studied; however, in insects the role of oxidative stress in apoptosis is not clear. In a previous study, we showed that apoptosis-related genes are present in the silkworm Bombyx mori, an important lepidopteran insect model. In this study, we evaluated the effect of H2O2-induced oxidative stress on apoptosis, reactive oxygen species (ROS) levels, mitochondrial response, cytochrome c release and apoptosis-related gene expression in the BmN-SWU1 cell line from B. mori ovaries. Our results showed that BmN-SWU1 cells exposed to H2O2 showed cell protuberances, cytoplasmic condensation, apoptotic bodies, DNA ladder formation and caspase activities indicating apoptosis. H2O2-induced apoptosis also increased intracellular ROS level, changed mitochondrial distribution, reduced mitochondrial membrane potential and increased the release of cytochrome c from mitochondria. Furthermore, western blot analysis revealed a significant increase in p53 and cytochrome c expression, and a decrease in Bcl-2 expression compared to the controls. Moreover, quantitative real-time PCR (qRT-PCR) showed an increase in the transcript levels of BmICE, Bmapaf-1 and BmEndoG by 439.5%, 423.9% and 42.2%, respectively, after treatment with 1 μM H2O2 for 24 h. However, the transcript levels of Bmbuffy declined by 41.4% after 24 h of exposure to 1 μM H2O2. These results show that H2O2 treatment induced apoptosis in BmN-SWU1 cells via the mitochondrial apoptotic pathway. Further, it appears that oxidative stress induced by H2O2 activates both caspase-dependent and caspase-independent mitochondrial apoptotic pathways in silkworm cells. Taken together, these findings improve our knowledge of apoptosis in silkworm and the apoptotic pathways in insects. PMID:26225758

  1. Sinulariolide induced hepatocellular carcinoma apoptosis through activation of mitochondrial-related apoptotic and PERK/eIF2α/ATF4/CHOP pathway.

    PubMed

    Chen, Yi-Jen; Su, Jui-Hsin; Tsao, Chia-Yu; Hung, Chun-Tzu; Chao, Hsiang-Hao; Lin, Jen-Jie; Liao, Ming-Hui; Yang, Zih-Yan; Huang, Han Hisang; Tsai, Feng-Jen; Weng, Shun-Hsiang; Wu, Yu-Jen

    2013-01-01

    Sinulariolide, an active compound isolated from the cultured soft coral Sinularia flexibilis, has potent anti-microbial and anti-tumorigenesis effects towards melanoma and bladder cancer cells. In this study, we investigated the effects of sinulariolide on hepatocellular carcinoma (HCC) cell growth and protein expression. Sinulariolide suppressed the proliferation and colony formation of HCC HA22T cells in a dose-dependent manner and induced both early and late apoptosis according to flow cytometry, Annexin V/PI stain and TUNEL/DAPI stain analyses. A mechanistic analysis demonstrated that sinulariolide-induced apoptosis was activated through a mitochondria-related pathway, showing up-regulation of Bax, Bad and AIF, and down- regulation of Bcl-2, Bcl-xL, MCl-1 and p-Bad. Sinulariolide treatment led to loss of the mitochondrial membrane potential, release of mitochondrial cytochrome c to the cytosol, and activation of both caspase-9 and caspase-3. Sinulariolide-induced apoptosis was significantly blocked by the caspase inhibitors Z-VAD-FMK and Z-DEVD-FMK. The increased expression of cleaved PARP also suggested that caspase-independent apoptotic pathway was involved. In the western blotting; the elevation of ER chaperones GRP78; GRP94; and CALR; as well as up-regulations of PERK/eIF2α/ATF4/CHOP; and diminished cell death with pre-treatment of eIF2α phosphatase inhibitor; salubrinal; implicated the involvement of ER stress-mediated PERK/eIF2α/ATF4/CHOP apoptotic pathway following sinulariolide treatment in hepatoma cells. The current study suggested sinulariolide-induced hepatoma cell cytotoxicity involved multiple apoptotic signal pathways. This may implicate that sinulariolide is a potential compound for the treatment of hepatocellular carcinoma. PMID:23973991

  2. RhoBTB2 (DBC2) functions as a multifunctional tumor suppressor in thyroid cancer cells via mitochondrial apoptotic pathway

    PubMed Central

    Wang, Chuan-Jiang; Yang, Dong; Luo, Ying-Wei

    2015-01-01

    Thyroid cancer is the most common endocrine malignancy worldwide. Tumor suppressor gene RhoBTB2 (also known as Deleted in Breast Cancer 2, DBC2) was observed in various carcinomas, however, no reports showed the effects of RhoBTB2 on thyroid cancer. In our study, we found that RhoBTB2 decreases proliferation, increases apoptosis, inhibits mobility, and induces mitochondria damage in SW579 cells through increased Bax and decreased Bcl-2 and Bcl-xL protein expression. The effects of RhoBTB2 on SW579 cells were inversed by using butin (an inhibitor of the mitochondrial apoptosis pathway). Our results suggest that RhoBTB2 suppresses the growth of SW579 cells through a mitochondrial apoptosis pathway. PMID:26131191

  3. Mucin 1 gene silencing inhibits the growth of SMMC-7721 human hepatoma cells through Bax-mediated mitochondrial and caspase-8-mediated death receptor apoptotic pathways

    PubMed Central

    YUAN, HONGYAN; WANG, JUAN; WANG, FENGLI; ZHANG, NANNAN; LI, QIONGSHU; XIE, FEI; CHEN, TANXIU; ZHAI, RUIPING; WANG, FANG; GUO, YINGYING; NI, WEIHUA; TAI, GUIXIANG

    2015-01-01

    Mucin 1 (MUC1) is an oncogene that has a crucial role in the pathogenesis and progression of the majority of epithelial malignant tumors. Our previous study demonstrated that MUC1 gene silencing inhibited the growth of SMMC-7721 cells in vitro and in vivo, however, whether this growth inhibition is associated with apoptotic cell death remains to be elucidated. In the present study, it was found that MUC1 gene silencing not only resulted in the inhibition of SMMC-7721 cell growth, determined using a clone formation assay in vitro and a tumor xenograft mouse model with an in vivo imaging system, but also induced apoptotic alterations in SMMC-7721 cells, determined using Hoechst 33342 staining, flow cytometry with an Annexin V-PE staining and a DNA ladder assay. Further investigation using western blotting revealed that cytochrome c was released from the mitochondria into the cytoplasm, and caspase-8 and caspase-9 were activated in MUC1 gene-silenced SMMC-7721 cells. The pro-apoptotic protein Bcl-2-associated X protein (Bax) and the tumor suppressor p53 were increased, while the anti-apoptotic protein B-cell lymphoma 2 was decreased in MUC1 gene-silenced cells. In addition, results from the co-immunoprecipitation experiments demonstrated that the MUC1 cytoplasmic tail can bind directly to Bax or caspase-8 and these interactions were reduced upon MUC1 gene silencing in SMMC-7721 cells. The above results indicate that MUC1 gene silencing induces growth inhibition in SMMC-7721 cells through Bax-mediated mitochondrial and caspase-8-mediated death receptor apoptotic pathways. PMID:26398332

  4. Zinc deficiency mediates alcohol-induced apoptotic cell death in the liver of rats through activating ER and mitochondrial cell death pathways

    PubMed Central

    Sun, Qian; Zhong, Wei; Zhang, Wenliang; Li, Qiong; Sun, Xiuhua; Tan, Xiaobing; Sun, Xinguo; Dong, Daoyin

    2015-01-01

    Hepatic zinc deficiency has been well documented in alcoholic patients, but the mechanisms by which zinc deficiency mediates cell death have not been well defined. The objectives of this study were to determine whether alcohol perturbs subcellular zinc homeostasis and how organelle zinc depletion may link with cell death pathways. Wistar rats were pair-fed with the Lieber-DeCarli control or ethanol diet for 5 mo. Chronic alcohol exposure significantly reduced zinc level in isolated hepatic endoplasmic reticulum (ER) and mitochondria. Among the detected zinc transporters, ER Zrt/Irt-like protein (ZIP)13 and mitochondrial ZIP8, which transport zinc from ER and mitochondria to cytosol, were significantly increased. Mitochondrial zinc transporter (ZnT) 4, which transports zinc from cytosol to mitochondria, was also increased. ER phosphorylated eukaryotic initiation factor 2α, activating transcription factor 4, and C/EBP homologous protein were significantly upregulated, and mitochondrial cytochrome c release and Bax insertion were detected in association with caspase-3 activation and apoptotic cell death. To define the role of zinc deficiency in ER and mitochondrial stress, H4IIEC3 cells were treated with 3 μM N,N,N′,N′-tetrakis (2-pyridylmethyl) ethylenediamine for 6 h with or without supplementation with zinc or N-acetylcysteine (NAC). The results demonstrated that zinc deprivation induced caspase-3 activation and apoptosis in association with ER and mitochondria dysfunction, which were inhibited by zinc as low as 10 μM but not by 2 mM NAC. These results suggest that chronic ethanol exposure induced in ER and mitochondrial zinc deficiency might activate intrinsic cell death signaling pathway, which could not be effectively rescued by antioxidant treatment. PMID:25767260

  5. Osteopontin-stimulated apoptosis in cardiac myocytes involves oxidative stress and mitochondrial death pathway: role of a pro-apoptotic protein BIK.

    PubMed

    Dalal, Suman; Zha, Qinqin; Singh, Mahipal; Singh, Krishna

    2016-07-01

    Increased osteopontin (OPN) expression in the heart, specifically in myocytes, associates with increased myocyte apoptosis and myocardial dysfunction. Recently, we provided evidence that OPN interacts with CD44 receptor, and induces myocyte apoptosis via the involvement of endoplasmic reticulum stress and mitochondrial death pathways. Here we tested the hypothesis that OPN induces oxidative stress in myocytes and the heart via the involvement of mitochondria and NADPH oxidase-4 (NOX-4). Treatment of adult rat ventricular myocytes (ARVMs) with OPN (20 nM) increased oxidative stress as analyzed by protein carbonylation, and intracellular reactive oxygen species (ROS) levels as analyzed by ROS detection kit and dichlorohydrofluorescein diacetate staining. Pretreatment with NAC (antioxidant), apocynin (NOX inhibitor), MnTBAP (superoxide dismutase mimetic), and mitochondrial KATP channel blockers (glibenclamide and 5-hydroxydecanoate) decreased OPN-stimulated ROS production, cytosolic cytochrome c levels, and apoptosis. OPN increased NOX-4 expression, while decreasing SOD-2 expression. OPN decreased mitochondrial membrane potential as measured by JC-1 staining, and induced mitochondrial abnormalities including swelling and reorganization of cristae as observed using transmission electron microscopy. OPN increased expression of BIK, a pro-apoptotic protein involved in reorganization of mitochondrial cristae. Expression of dominant-negative BIK decreased OPN-stimulated apoptosis. In vivo, OPN expression in cardiac myocyte-specific manner associated with increased protein carbonylation, and expression of NOX-4 and BIK. Thus, OPN induces oxidative stress via the involvement of mitochondria and NOX-4. It may affect mitochondrial morphology and integrity, at least in part, via the involvement of BIK. PMID:27262843

  6. Involvement of Bcl-xL degradation and mitochondrial-mediated apoptotic pathway in pyrrolizidine alkaloids-induced apoptosis in hepatocytes

    SciTech Connect

    Ji Lili; Chen Ying; Liu Tianyu; Wang Zhengtao

    2008-09-15

    Pyrrolizidine alkaloids (PAs) are natural hepatotoxins with worldwide distribution in more than 6000 high plants including medicinal herbs or teas. The aim of this study is to investigate the signal pathway involved in PAs-induced hepatotoxicity. Our results showed that clivorine, isolated from Ligularia hodgsonii Hook, decreased cell viability and induced apoptosis in L-02 cells and mouse hepatocytes. Western-blot results showed that clivorine induced caspase-3/-9 activation, mitochondrial release of cytochrome c and decreased anti-apoptotic Bcl-xL in a time (8-48 h)- and concentration (1-100 {mu}M)-dependent manner. Furthermore, inhibitors of pan-caspase, caspase-3 and caspase-9 significantly inhibited clivorine-induced apoptosis and rescued clivorine-decreased cell viability. Polyubiquitination of Bcl-xL was detected after incubation with 100 {mu}M clivorine for 40 h in the presence of proteasome specific inhibitor MG132, indicating possible degradation of Bcl-xL protein. Furthermore, pretreatment with MG132 or calpain inhibitor I for 2 h significantly enhanced clivorine-decreased Bcl-xL level and cell viability. All the other tested PAs such as senecionine, isoline and monocrotaline decreased mouse hepatocytes viability in a concentration-dependent manner. Clivorine (10 {mu}M) induced caspase-3 activation and decreased Bcl-xL was also confirmed in mouse hepatocytes. Meanwhile, another PA senecionine isolated from Senecio vulgaris L also induced apoptosis, caspase-3 activation and decreased Bcl-xL in mouse hepatocytes. In conclusion, our results suggest that PAs may share the same hepatotoxic signal pathway, which involves degradation of Bcl-xL protein and thus leading to the activation of mitochondrial-mediated apoptotic pathway.

  7. Topological Transitions in Mitochondrial Membranes controlled by Apoptotic Proteins

    NASA Astrophysics Data System (ADS)

    Hwee Lai, Ghee; Sanders, Lori K.; Mishra, Abhijit; Schmidt, Nathan W.; Wong, Gerard C. L.; Ivashyna, Olena; Schlesinger, Paul H.

    2010-03-01

    The Bcl-2 family comprises pro-apoptotic proteins, capable of permeabilizing the mitochondrial membrane, and anti-apoptotic members interacting in an antagonistic fashion to regulate programmed cell death (apoptosis). They offer potential therapeutic targets to re-engage cellular suicide in tumor cells but the extensive network of implicated protein-protein interactions has impeded full understanding of the decision pathway. We show, using synchrotron x-ray diffraction, that pro-apoptotic proteins interact with mitochondrial-like model membranes to generate saddle-splay (negative Gaussian) curvature topologically required for pore formation, while anti-apoptotic proteins can deactivate curvature generation by molecules drastically different from Bcl-2 family members and offer evidence for membrane-curvature mediated interactions general enough to affect very disparate systems.

  8. Taurine protects HK-2 cells from oxidized LDL-induced cytotoxicity via the ROS-mediated mitochondrial and p53-related apoptotic pathways

    SciTech Connect

    Chang, Chun-Yu; Shen, Chao-Yu; Kang, Chao-Kai; Sher, Yuh-Pyng; Sheu, Wayne H.-H.; Chang, Chia-Che; Lee, Tsung-Han

    2014-09-15

    Oxidized LDL (oxLDL) induces a pro-oxidative environment and promotes apoptosis, causing the progression of renal diseases in humans. Taurine is a semi-essential amino acid in mammals and has been shown to be a potent endogenous antioxidant. The kidney plays a pivotal role in maintaining the balance of taurine. However, the mechanisms underlying the protective effects of taurine against oxLDL-induced injury in renal epithelial cells have not been clarified. In the present study, we investigated the anti-apoptotic effects of taurine on human proximal tubular epithelial (HK-2) cells exposed to oxLDL and explored the related mechanisms. We observed that oxLDL increased the contents of ROS and of malondialdehyde (MDA), which is a lipid peroxidation by-product that acts as an indicator of the cellular oxidation status. In addition, oxLDL induced cell death and apoptosis in HK-2 cells. Pretreatment with taurine at 100 μM significantly attenuated the oxLDL-induced cytotoxicity. We determined that oxLDL triggered the phosphorylation of ERK and, in turn, the activation of p53 and other apoptosis-related events, including calcium accumulation, destabilization of the mitochondrial permeability and disruption of the balance between pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins. The malfunctions induced by oxLDL were effectively blocked by taurine. Thus, our results suggested that taurine exhibits potential therapeutic activity by preventing oxLDL-induced nephrotoxicity. The inhibition of oxLDL-induced epithelial apoptosis by taurine was at least partially due to its anti-oxidant activity and its ability to modulate the ERK and p53 apoptotic pathways. - Highlights: • Oxidized LDL induced cytotoxicity and apoptosis in HK-2 cells. • Pretreatment with taurine attenuated oxLDL-induced nephrotoxicity. • Taurine protected against renal damages through inhibition of ROS generation. • Taurine prevented apoptosis through modulation of the p53 phosphorylation.

  9. A cyclopalladated complex interacts with mitochondrial membrane thiol-groups and induces the apoptotic intrinsic pathway in murine and cisplatin-resistant human tumor cells

    PubMed Central

    2011-01-01

    Background Systemic therapy for cancer metastatic lesions is difficult and generally renders a poor clinical response. Structural analogs of cisplatin, the most widely used synthetic metal complexes, show toxic side-effects and tumor cell resistance. Recently, palladium complexes with increased stability are being investigated to circumvent these limitations, and a biphosphinic cyclopalladated complex {Pd2 [S(-)C2, N-dmpa]2 (μ-dppe)Cl2} named C7a efficiently controls the subcutaneous development of B16F10-Nex2 murine melanoma in syngeneic mice. Presently, we investigated the melanoma cell killing mechanism induced by C7a, and extended preclinical studies. Methods B16F10-Nex2 cells were treated in vitro with C7a in the presence/absence of DTT, and several parameters related to apoptosis induction were evaluated. Preclinical studies were performed, and mice were endovenously inoculated with B16F10-Nex2 cells, intraperitoneally treated with C7a, and lung metastatic nodules were counted. The cytotoxic effects and the respiratory metabolism were also determined in human tumor cell lines treated in vitro with C7a. Results Cyclopalladated complex interacts with thiol groups on the mitochondrial membrane proteins, causes dissipation of the mitochondrial membrane potential, and induces Bax translocation from the cytosol to mitochondria, colocalizing with a mitochondrial tracker. C7a also induced an increase in cytosolic calcium concentration, mainly from intracellular compartments, and a significant decrease in the ATP levels. Activation of effector caspases, chromatin condensation and DNA degradation, suggested that C7a activates the apoptotic intrinsic pathway in murine melanoma cells. In the preclinical studies, the C7a complex protected against murine metastatic melanoma and induced death in several human tumor cell lineages in vitro, including cisplatin-resistant ones. The mitochondria-dependent cell death was also induced by C7a in human tumor cells. Conclusions The

  10. Synthesis of Apoptotic New Quinazolinone-Based Compound and Identification of its Underlying Mitochondrial Signalling Pathway in Breast Cancer Cells.

    PubMed

    Zahedifard, Maryam; Faraj, Fadhil Lafta; Paydar, Mohammadjavad; Looi, Chung Yeng; Hasandarvish, Pouya; Hajrezaie, Maryam; Kamalidehghan, Behnam; Majid, Nazia Abdul; Khalifa, Shaden A M; Ali, Hapipah Mohd; Abdulla, Mahmood Ameen; El-Seedi, Hesham R

    2015-01-01

    The anti-carcinogenic effect of the new quinazolinone compound, named MMD, was tested on MCF-7 human breast cancer cell line. The synthesis of quinazolinone-based compounds attracted strong attention over the past few decades as an alternative mean to produce analogues of natural products. Quinazolinone compounds sharing the main principal core structures are currently introduced in the clinical trials and pharmaceutical markets as anti-cancer agents. Thus, it is of high clinical interest to identify a new drug that could be used to control the growth and expansion of cancer cells. Quinazolinone is a metabolite derivative resulting from the conjugation of 2-aminobenzoyhydrazide and 5-methoxy-2- hydroxybenzaldehyde based on condensation reactions. In the present study, we analysed the influence of MMD on breast cancer adenoma cell morphology, cell cycle arrest, DNA fragmentation, cytochrome c release and caspases activity. MCF-7 is a type of cell line representing the breast cancer adenoma cells that can be expanded and differentiated in culture. Using different in vitro strategies and specific antibodies, we demonstrate a novel role for MMD in the inhibition of cell proliferation and initiation of the programmed cell death. MMD was found to increase cytochrome c release from the mitochondria to the cytosol and this effect was enhanced over time with effective IC50 value of 5.85 ± 0.71 μg/mL detected in a 72-hours treatment. Additionally, MMD induced cell cycle arrest at G0/G1 phase and caused DNA fragmentation with obvious activation of caspase-9 and caspases-3/7. Our results demonstrate a novel role of MMD as an anti-proliferative agent and imply the involvement of mitochondrial intrinsic pathway in the observed apoptosis. PMID:25808938

  11. Puerarin attenuates glucocorticoid-induced apoptosis of hFOB1.19 cells through the JNK- and Akt-mediated mitochondrial apoptotic pathways.

    PubMed

    Yu, Dongdong; Mu, Shuai; Zhao, Danyang; Wang, Guangbin; Chen, Zhiguang; Ren, Hongfei; Fu, Qin

    2015-08-01

    Puerarin is an active component of Pueraria lobata, which is a commonly used Chinese herbal medicine for the treatment of osteoporosis. The present study aimed to evaluate the osteoprotective effect of puerarin on glucocorticoid (GC)-induced apoptosis of osteoblasts in vitro. The effects of puerarin on dexamethasone (DEX)-induced cell apoptosis were assessed using enzyme-linked immunosorbent assay and a terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, and found that the viability of hFOB1.19 cells was significantly increased following exposure to between 10(-6) and 10(-10) M puerarin, with a maximal anti-apoptotic effect at a concentration of 10(-8) M. In addition, compared with the control group, puerarin upregulated the transcription and protein levels of B-cell lymphoma-2 and downregulated B-cell-associated X protein in the hFOB1.19 cells. Puerarin attenuated the DEX-induced release of cytochrome c and cleavage of caspase-3, and treatment with puerarin inhibited the c-Jun N-terminal kinase (JNK) pathway and activated the phosphoinositide 3-kinase (PI3K)/Akt pathway in the hFOB1.19 cells. Furthermore, the Akt inhibitor, LY294002, partly eliminated the protective effect of puerarin on DEX-induced apoptosis, and puerarin combined with the JNK inhibitor, SP600125, suppressed DEX-induced apoptosis to a lesser extent than in the cells treated with SP600125 alone. These results suggested that the JNK and PI3K/Akt signaling pathways mediate the inhibitory effects of puerarin on apoptosis in the hFOB1.19 cells. In conclusion, puerarin prevented DEX-induced apoptosis of hFOB1.19 cells via inhibition of the JNK pathway and activation of the PI3K/Akt signaling pathway in the cells, dependent on the mitochondrial apoptotic pathway. These results support puerarin as a promising target in the treatment of GC-induced osteoporosis. PMID:26101183

  12. HIF-1α inhibition by 2-methoxyestradiol induces cell death via activation of the mitochondrial apoptotic pathway in acute myeloid leukemia.

    PubMed

    Zhe, Nana; Chen, Shuya; Zhou, Zhen; Liu, Ping; Lin, Xiaojing; Yu, Meisheng; Cheng, Bingqing; Zhang, Yaming; Wang, Jishi

    2016-06-01

    The bone marrow microenvironment plays an important role in the development and progression of AML. Leukemia stem cells are in a hypoxic condition, which induces the expression of HIF-1α. Aberrant activation of HIF-1α is implicated in the poor prognosis of patients with acute myeloid leukemia (AML). Herein, we investigated the expression of HIF-1α in AML and tested 2-methoxyestradiol (2ME2) as a candidate HIF-1α inhibitor for the treatment of AML. We found that HIF-1α was overexpressed in AML. HIF-1α suppression by 2ME2 significantly induced apoptosis of AML cells, and it outperformed traditional chemotherapy drugs such as cytarabine. At the same time, 2ME2 downregulated the transcriptional levels of VEGF, GLUT1 and HO-1 in cellular assays. Additionally, 2ME2 displayed antileukemia activity in bone marrow blasts from AML patients, but showed little effect on normal cells. 2ME2-induced activation of mitochondrial apoptotic pathway is mediated by reactive oxygen species (ROS), which decreased the slight effect of drug on normal cells. Our data show that supression of HIF-1α expression significantly reduced the survival of AML cell lines, suggesting that 2ME2 may represent a powerful therapeutic approach for patients with AML. PMID:27082496

  13. Involvement of the mitochondrial apoptotic pathway and nitric oxide synthase in dopaminergic neuronal death induced by 6-hydroxydopamine and lipopolysaccharide.

    PubMed

    Singh, Sarika; Kumar, Sachin; Dikshit, Madhu

    2010-01-01

    The primary pathology in Parkinson's disease patients is significant loss of dopaminergic neurons in the substantia nigra through multiple mechanisms. We previously have demonstrated the involvement of nitric oxide (NO) in the dopaminergic neurodegeneration induced by 6-hydroxydopamine (6-OHDA) and lipopolysaccharide (LPS) in rats. The present study was undertaken to investigate further the role of NO in the mitochondria-mediated apoptosis of dopaminergic neurons during the early time period after administration of 6-OHDA and LPS. Measurement of dopamine and its metabolites, TH immunolabeling, cytochrome-c release, mitochondrial complex-I and caspase-3 activity assessment was performed in both the 6-OHDA- and LPS-induced experimental models of Parkinson's disease. Significant decreases in dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), tyrosine hydroxylase (TH) immunolabeling and mitochondrial complex-I activity were observed, with increase in cytochrome-c release and caspase-3 activation. Dopmaine and its metabolite levels, mitochondrial complex-I activity and caspase-3 activity were significantly reversed with treatment of the NOS inhibitor, L-NAME. The reduction in the extent of cytochrome-c release responded variably to NOS inhibition in both the models. The results obtained suggest that NO contributes to mitochondria-mediated neuronal apoptosis in the dopaminergic neurodegeneration induced by 6-OHDA and LPS in rats. PMID:20594414

  14. Ethanol extract of Forsythia suspensa root induces apoptosis of esophageal carcinoma cells via the mitochondrial apoptotic pathway

    PubMed Central

    ZHAO, LIANMEI; YAN, XI; SHI, JUAN; REN, FENGZHI; LIU, LIHUA; SUN, SHIPING; SHAN, BAOEN

    2015-01-01

    Forsythia suspensa root is used in the treatment of fever and jaundice in Traditional Chinese Medicine. In the present study, the anti-tumor activity of the ethanolic extract of Forsythia suspensa root (FSREE) against esophageal carcinoma cells was investigated in vitro and in vivo and its anti-cancer mechanism was examined. The results revealed that FSREE, rather than Forsythia suspensa ethanolic extracts from the leaf (FSLEE) and fruit (FSFEE) exhibited marked anti-tumor activity towards human esophageal cancer cells. FSREE induced cancer cell apoptosis and growth arrest by downregulating B-cell lymphoma (Bcl)-2, Bcl-extra large and myeloid cell leukemia 1, while upregulating Bcl-2-associated X protein, Bcl-2 antagonist of cell death and phorbol-12-myristate-13-acetate-induced protein 1. This led to the activation of poly(ADP ribose) polymerase, caspase-3 and caspase-9, but not caspase-8. Furthermore, the anti-cancer activity of FSREE was associated with a decreased level of phosphorylated Janus kinase/signal transducer and activator of transcription 3 and extracellular-signal-regulated kinase signaling activity. It was also observed that the levels of cytochrome c were elevated in the cytoplasm, accounting for the loss of mitochondrial membrane potential in the TE-13 cells upon treatment with FSEER. In addition, FSEER inhibited the growth of esophageal cancer cells in xenograft models and no detectable toxicity was present in the lung or liver tissues. These observations provided further evidence of the anti-tumor effect of FSEER and may be of importance to further examine the potential role of Forsythia suspensa root as a therapeutic agent in esophageal carcinoma therapy. PMID:25373392

  15. Organization of the Mitochondrial Apoptotic BAK Pore

    PubMed Central

    Aluvila, Sreevidya; Mandal, Tirtha; Hustedt, Eric; Fajer, Peter; Choe, Jun Yong; Oh, Kyoung Joon

    2014-01-01

    The multidomain pro-apoptotic Bcl-2 family proteins BAK and BAX are believed to form large oligomeric pores in the mitochondrial outer membrane during apoptosis. Formation of these pores results in the release of apoptotic factors including cytochrome c from the intermembrane space into the cytoplasm, where they initiate the cascade of events that lead to cell death. Using the site-directed spin labeling method of electron paramagnetic resonance (EPR) spectroscopy, we have determined the conformational changes that occur in BAK when the protein targets to the membrane and forms pores. The data showed that helices α1 and α6 disengage from the rest of the domain, leaving helices α2-α5 as a folded unit. Helices α2-α5 were shown to form a dimeric structure, which is structurally homologous to the recently reported BAX “BH3-in-groove homodimer.” Furthermore, the EPR data and a chemical cross-linking study demonstrated the existence of a hitherto unknown interface between BAK BH3-in-groove homodimers in the oligomeric BAK. This novel interface involves the C termini of α3 and α5 helices. The results provide further insights into the organization of the BAK oligomeric pores by the BAK homodimers during mitochondrial apoptosis, enabling the proposal of a BAK-induced lipidic pore with the topography of a “worm hole.” PMID:24337568

  16. Zinc ferrite nanoparticles activate IL-1b, NFKB1, CCL21 and NOS2 signaling to induce mitochondrial dependent intrinsic apoptotic pathway in WISH cells

    SciTech Connect

    Saquib, Quaiser; Al-Khedhairy, Abdulaziz A.; Ahmad, Javed; Siddiqui, Maqsood A.; Dwivedi, Sourabh; Khan, Shams T.; Musarrat, Javed

    2013-12-01

    localization of NPs. • ZnFe{sub 2}O{sub 4}-NPs induce DNA damage and mitochondrial dysfunction in WISH cells. • ZnFe{sub 2}O{sub 4}-NPs activate inflammatory and oxidative stress signaling in WISH cells. • Elevation of p53, CASP 3, bax and bcl 2 genes affirms intrinsic apoptotic pathway.

  17. UVA1 radiation triggers two different final apoptotic pathways.

    PubMed

    Godar, D E

    1999-01-01

    Because ultraviolet-A1 (UVA1; 340-400 nm) radiation is used therapeutically, this in vitro study addressed the question "how does it work?" To begin addressing this question, UVA1 radiation was first established to reduce the survival of transformed T and B lymphocytes in a linear dose-dependent manner using clonogenic reproductive assays, and that cell death occurs by apoptosis using transmission electron microscopy, Annexin V, and flow cytometry. The primary mechanism was determined to be immediate pre-programmed cell death, an apoptotic mechanism that does not require protein synthesis post-insult, by quantifying the apoptotic cells over time in the absence or presence of a translation inhibitor. To explore how UVA1 radiation induces immediate pre-programmed cell death apoptosis, reactive oxygen species and mitochondrial activity were altered during exposure using a variety of agents, while a specific fluorescent probe, 5,5',6,6'tetrachloro- 1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide, was used to examine mitochondrial transmembrane depolarization. To show that UVA1 mediates singlet-oxygen damage to the mitochondrial membranes, X-rays, UVB (290-320 nm), 8-methoxypsoralen and UVA, vitamin K3, anti-Fas antibody, and blocking antibody were the negative controls, while rose bengal or protoporphyrin IX with visible light were the positive controls. Cyclosporine A, which inhibits the mitochondrial megapore from opening, was used with singlet-oxygen and superoxide-anion generators to distinguish between the two final apoptotic pathways. The collective results show that UVA1 radiation primarily mediates singlet-oxygen damage triggering immediate pre-programmed cell death apoptosis (T < 20 min) by immediately opening the cyclosporine A-sensitive ("S" site) mitochondrial megapore, while superoxide anions initiate another cyclosporine A-insensitive ("P" site) final apoptotic pathway. PMID:9886256

  18. Endoplasmic reticulum stress-induced apoptotic pathway and mitochondrial dysregulation in HeLa cells treated with dichloromethane extract of Dillenia suffruticosa

    PubMed Central

    Wan Nor Hafiza, Wan Abd Ghani; Yazan, Latifah Saiful; Tor, Yin Sim; Foo, Jhi Biau; Armania, Nurdin; Rahman, Heshu Sulaiman

    2016-01-01

    Ethyl acetate and dichloromethane extract of Dillenia suffruticosa (EADS and DCMDS, respectively) can be a potential anticancer agent. The effects of EADS and DCMDS on the growth of HeLa cervical cancer cells and the expression of apoptotic-related proteins had been investigated in vitro. Cytotoxicity of the extracts toward the cells was determined by 5-diphenyltetrazolium bromide assay, the effects on cell cycle progression and the mode of cell death were analyzed by flow cytometry technique, while the effects on apoptotic-related genes and proteins were evaluated by quantitative real-time polymerase chain reaction, and Western blot and enzyme-linked immunosorbent assay, respectively. Treatment with DCMDS inhibited (P < 0.05) proliferation and induced apoptosis in HeLa cells. The expression of cyclin B1 was downregulated that led to G2/M arrest in the cells after treatment with DCMDA. In summary, DCMDS induced apoptosis in HeLa cells via endoplasmic reticulum stress-induced apoptotic pathway and dysregulation of mitochondria. The data suggest the potential application of DCMDS in the treatment of cervical cancer. PMID:27041866

  19. Endoplasmic reticulum stress-induced apoptotic pathway and mitochondrial dysregulation in HeLa cells treated with dichloromethane extract of Dillenia suffruticosa.

    PubMed

    Wan Nor Hafiza, Wan Abd Ghani; Yazan, Latifah Saiful; Tor, Yin Sim; Foo, Jhi Biau; Armania, Nurdin; Rahman, Heshu Sulaiman

    2016-01-01

    Ethyl acetate and dichloromethane extract of Dillenia suffruticosa (EADS and DCMDS, respectively) can be a potential anticancer agent. The effects of EADS and DCMDS on the growth of HeLa cervical cancer cells and the expression of apoptotic-related proteins had been investigated in vitro. Cytotoxicity of the extracts toward the cells was determined by 5-diphenyltetrazolium bromide assay, the effects on cell cycle progression and the mode of cell death were analyzed by flow cytometry technique, while the effects on apoptotic-related genes and proteins were evaluated by quantitative real-time polymerase chain reaction, and Western blot and enzyme-linked immunosorbent assay, respectively. Treatment with DCMDS inhibited (P < 0.05) proliferation and induced apoptosis in HeLa cells. The expression of cyclin B1 was downregulated that led to G2/M arrest in the cells after treatment with DCMDA. In summary, DCMDS induced apoptosis in HeLa cells via endoplasmic reticulum stress-induced apoptotic pathway and dysregulation of mitochondria. The data suggest the potential application of DCMDS in the treatment of cervical cancer. PMID:27041866

  20. p66Shc mediates high-glucose and angiotensin II-induced oxidative stress renal tubular injury via mitochondrial-dependent apoptotic pathway

    PubMed Central

    Xiao, Li; Nie, Jing; Liu, Fu-you; Ling, Guang-hui; Zhu, Xue-jing; Tang, Wen-bin; Chen, Wen-cui; Xia, Yun-cheng; Zhan, Ming; Ma, Ming-ming; Peng, You-ming; Liu, Hong; Liu, Ying-hong; Kanwar, Yashpal S.

    2010-01-01

    p66Shc, a promoter of apoptosis, modulates oxidative stress response and cellular survival, but its role in the progression of diabetic nephropathy is relatively unknown. In this study, mechanisms by which p66Shc modulates high-glucose (HG)- or angiotensin (ANG) II-induced mitochondrial dysfunction were investigated in renal proximal tubular cells (HK-2 cells). Expression of p66Shc and its phosphorylated form (p-p66Shc, serine residue 36) and apoptosis were notably increased in renal tubules of diabetic mice, suggesting an increased reactive oxygen species production. In vitro, HG and ANG II led to an increased expression of total and p-p66Shc in HK-2 cells. These changes were accompanied with increased production of mitochondrial H2O2, reduced mitochondrial membrane potential, increased translocation of mitochondrial cytochrome c from mitochondria into cytosol, upregulation of the expression of caspase-9, and ultimately reduced cell survival. Overexpression of a dominant-negative Ser36 mutant p66Shc (p66ShcS36A) or treatment of p66Shc- or PKC-β-short interfering RNAs partially reversed these changes. Treatment of HK-2 cells with HG and ANG II also increased the protein-protein association between p-p66Shc and Pin1, an isomerase, in the cytosol, and with cytochrome c in the mitochondria. These interactions were partially disrupted with the treatment of PKC-β inhibitor or Pin1-short interfering RNA. These data suggest that p66Shc mediates HG- and ANG II-induced mitochondrial dysfunctions via PKC-β and Pin1-dependent pathways in renal tubular cells. PMID:20739391

  1. ER-Dependent Ca++-mediated Cytosolic ROS as an Effector for Induction of Mitochondrial Apoptotic and ATM-JNK Signal Pathways in Gallic Acid-treated Human Oral Cancer Cells.

    PubMed

    Lu, Yao-Cheng; Lin, Meng-Liang; Su, Hong-Lin; Chen, Shih-Shun

    2016-02-01

    Release of calcium (Ca(++)) from the endoplasmic reticulum (ER) has been proposed to be involved in induction of apoptosis by oxidative stress. Using inhibitor of ER Ca(++) release dantrolene and inhibitor of mitochondrial Ca(++) uptake Ru-360, we demonstrated that Ca(++) release from the ER was associated with generation of reactive oxygen species (ROS), loss of mitochondrial membrane potential, and apoptosis of human oral cancer (OC) cells induced by gallic acid (GA). Small interfering RNA-mediated suppression of protein kinase RNA-like endoplasmic reticulum kinase inhibited tunicamycin-induced induction of 78 kDa glucose-regulated protein, C/EBP homologous protein, pro-caspase-12 cleavage, cytosolic Ca(++) increase and apoptosis, but did not attenuate the increase in cytosolic Ca(++) level and apoptosis induced by GA. Ataxia telangiectasia mutated (ATM)-mediated c-Jun N-terminal kinase (JNK) phosphorylation and apoptosis by GA was blocked by dantrolene. The specificity of ROS-mediated ATM-JNK activation was confirmed by treatment with N-acetylcysteine, a ROS scavenger. Blockade of ATM activation by specific inhibitor KU55933, short hairpin RNA, or kinase-dead ATM overexpression suppressed JNK phosphorylation but did not completely inhibit cytosolic ROS production, mitochondrial cytochrome c release, pro-caspase-3 cleavage, and apoptosis induced by GA. Taken together, these results indicate that GA induces OC cell apoptosis by inducing the activation of mitochondrial apoptotic and ATM-JNK signal pathways, likely through ER Ca(++)-mediated ROS production. PMID:26851027

  2. Apoptotic effect of novel Schiff Based CdCl2(C14H21N3O2) complex is mediated via activation of the mitochondrial pathway in colon cancer cells

    PubMed Central

    Hajrezaie, Maryam; Paydar, Mohammadjavad; Looi, Chung Yeng; Moghadamtousi, Soheil Zorofchian; Hassandarvish, Pouya; Salga, Muhammad Saleh; Karimian, Hamed; Shams, Keivan; Zahedifard, Maryam; Majid, Nazia Abdul; Ali, Hapipah Mohd; Abdulla, Mahmood Ameen

    2015-01-01

    The development of metal-based agents has had a tremendous role in the present progress in cancer chemotherapy. One well-known example of metal-based agents is Schiff based metal complexes, which hold great promise for cancer therapy. Based on the potential of Schiff based complexes for the induction of apoptosis, this study aimed to examine the cytotoxic and apoptotic activity of a CdCl2(C14H21N3O2) complex on HT-29 cells. The complex exerted a potent suppressive effect on HT-29 cells with an IC50 value of 2.57 ± 0.39 after 72 h of treatment. The collapse of the mitochondrial membrane potential and the elevated release of cytochrome c from the mitochondria to the cytosol indicate the involvement of the intrinsic pathway in the induction of apoptosis. The role of the mitochondria-dependent apoptotic pathway was further proved by the significant activation of the initiator caspase-9 and the executioner caspases-3 and -7. In addition, the activation of caspase-8, which is associated with the suppression of NF-κB translocation to the nucleus, also revealed the involvement of the extrinsic pathway in the induced apoptosis. The results suggest that the CdCl2(C14H21N3O2) complex is able to induce the apoptosis of colon cancer cells and is a potential candidate for future cancer studies. PMID:25764970

  3. Glucose regulated protein 78 (GRP78) inhibits apoptosis and attentinutes chemosensitivity of gemcitabine in breast cancer cell via AKT/mitochondrial apoptotic pathway.

    PubMed

    Xie, Jie; Tao, Zhong-Hua; Zhao, Jiang; Li, Ting; Wu, Zheng-Hua; Zhang, Jin-Feng; Zhang, Jian; Hu, Xi-Chun

    2016-06-01

    The underlying mechanism of gemcitabine resistance during breast cancer treatment remains unclear. Glucose regulated protein 78 (GRP78) frequently triggered by anticancer agents, was substantially elevated in gemcitabine resistant sublines. Ectopic expression of GRP78 changes gemcitabine chemosensitivity and apoptosis levels in breast cancer cells. Further experiments showed an involvement of caspase 9, not caspase 8, in gemcitabine resistance and GRP78-mediated chemosensitivity, suggesting that mitochondria apoptotic pathway was activated by GRP78. This finding was further supported by the observations of AKT activation, Bcl-2 increase, Bax and Bim decrease. Conclusively, GRP78 plays a vital role in gemcitabine resistance and clinical strategy to improve gemcitabine efficacy in breast cancer by manipulating GRP78 should be explored. PMID:27012209

  4. Mangiferin Attenuates Diabetic Nephropathy by Inhibiting Oxidative Stress Mediated Signaling Cascade, TNFα Related and Mitochondrial Dependent Apoptotic Pathways in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Pal, Pabitra Bikash; Sinha, Krishnendu; Sil, Parames C.

    2014-01-01

    Oxidative stress plays a crucial role in the progression of diabetic nephropathy in hyperglycemic conditions. It has already been reported that mangiferin, a natural C-glucosyl xanthone and polyhydroxy polyphenol compound protects kidneys from diabetic nephropathy. However, little is known about the mechanism of its beneficial action in this pathophysiology. The present study, therefore, examines the detailed mechanism of the beneficial action of mangiferin on STZ-induced diabetic nephropathy in Wister rats as the working model. A significant increase in plasma glucose level, kidney to body weight ratio, glomerular hypertrophy and hydropic changes as well as enhanced nephrotoxicity related markers (BUN, plasma creatinine, uric acid and urinary albumin) were observed in the experimental animals. Furthermore, increased oxidative stress related parameters, increased ROS production and decreased the intracellular antioxidant defenses were detected in the kidney. Studies on the oxidative stress mediated signaling cascades in diabetic nephropathy demonstrated that PKC isoforms (PKCα, PKCβ and PKCε), MAPKs (p38, JNK and ERK1/2), transcription factor (NF-κB) and TGF-β1 pathways were involved in this pathophysiology. Besides, TNFα was released in this hyperglycemic condition, which in turn activated caspase 8, cleaved Bid to tBid and finally the mitochorndia-dependent apoptotic pathway. In addition, oxidative stress also disturbed the proapoptotic-antiapoptotic (Bax and Bcl-2) balance and activated mitochorndia-dependent apoptosis via caspase 9, caspase 3 and PARP cleavage. Mangiferin treatment, post to hyperglycemia, successfully inhibited all of these changes and protected the cells from apoptotic death. PMID:25233093

  5. Esculetin, a natural coumarin compound, evokes Ca(2+) movement and activation of Ca(2+)-associated mitochondrial apoptotic pathways that involved cell cycle arrest in ZR-75-1 human breast cancer cells.

    PubMed

    Chang, Hong-Tai; Chou, Chiang-Ting; Lin, You-Sheng; Shieh, Pochuen; Kuo, Daih-Huang; Jan, Chung-Ren; Liang, Wei-Zhe

    2016-04-01

    Esculetin (6,7-dihydroxycoumarin), a derivative of coumarin compound, is found in traditional medicinal herbs. It has been shown that esculetin triggers diverse cellular signal transduction pathways leading to regulation of physiology in different models. However, whether esculetin affects Ca(2+) homeostasis in breast cancer cells has not been explored. This study examined the underlying mechanism of cytotoxicity induced by esculetin and established the relationship between Ca(2+) signaling and cytotoxicity in human breast cancer cells. The results showed that esculetin induced concentration-dependent rises in the intracellular Ca(2+) concentration ([Ca(2+)]i) in ZR-75-1 (but not in MCF-7 and MDA-MB-231) human breast cancer cells. In ZR-75-1 cells, this Ca(2+) signal response was reduced by removing extracellular Ca(2+) and was inhibited by the store-operated Ca(2+) channel blocker 2-aminoethoxydiphenyl borate (2-APB). In Ca(2+)-free medium, pre-treatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin (TG) abolished esculetin-induced [Ca(2+)]i rises. Conversely, incubation with esculetin abolished TG-induced [Ca(2+)]i rises. Esculetin induced cytotoxicity that involved apoptosis, as supported by the reduction of mitochondrial membrane potential and the release of cytochrome c and the proteolytic activation of caspase-9/caspase-3, which were partially reversed by pre-chelating cytosolic Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA-AM). Moreover, esculetin increased the percentage of cells in G2/M phase and regulated the expressions of p53, p21, CDK1, and cyclin B1. Together, in ZR-75-1 cells, esculetin induced [Ca(2+)]i rises by releasing Ca(2+) from the ER and causing Ca(2+) influx through 2-APB-sensitive store-operated Ca(2+) entry. Furthermore, esculetin activated Ca(2+)-associated mitochondrial apoptotic pathways that involved G2/M cell cycle arrest. Graphical abstract The summary of esculetin

  6. Gallic acid induces apoptosis and enhances the anticancer effects of cisplatin in human small cell lung cancer H446 cell line via the ROS-dependent mitochondrial apoptotic pathway.

    PubMed

    Wang, Ruixuan; Ma, Lijie; Weng, Dan; Yao, Jiahui; Liu, Xueying; Jin, Faguang

    2016-05-01

    via the ROS-dependent mitochondrial apoptotic pathway. PMID:26987028

  7. Sulfiredoxin-1 protects against simulated ischaemia/reperfusion injury in cardiomyocyte by inhibiting PI3K/AKT-regulated mitochondrial apoptotic pathways

    PubMed Central

    Zhang, Jiankai; He, Zhangyou; Guo, Jinhua; Li, Zhe; Wang, Xiaohong; Yang, Chun; Cui, Xiaojun

    2016-01-01

    Reactive oxygen species (ROS)-triggered cardiac cell injury is recognized as the major contributor for the pathogenesis progression of ischaemic cardiovascular diseases. Sulfiredoxin-1 (Srx-1) is an endogenous antioxidant and exerts the crucial neuroprotective effects in cerebral ischaemia. However, its function and the underlying mechanism in ischaemic heart diseases remain poorly defined. Here, a dramatical decrease in Srx-1 was validated in H9c2 cardiomyocytes upon simulated ischaemia–reperfusion (SI/R) injury. Moreover, Srx-1 protected H9c2 cells from SI/R-injured injury as the evidences that Srx-1 up-regulation attenuated the inhibitory effects on cell viability, lactate dehydrogenase (LDH) and cell apoptosis upon SI/R treatment. Knockdown of Srx-1 accelerated cell injury upon SI/R. Mechanism assay corroborated that SI/R treatment noticeably aggravated the loss of mitochondrial membrane potential (Δψm), which was remarkably abated in Ad-Srx-1 groups. Importantly, Srx-1 elevation substantially reduced cytochrome c release, the activity of caspase-9 and caspase-3, accompany with the subsequent decrease in the cleavage of poly (ADP ribose) polymerase (PARP). Concomitantly, overexpression of Srx-1 also decreased the expression of pro-apoptosis protein Bax and increased anti-apoptotic Bcl-2 expression. Further analysis substantiated that Srx-1 treatment remarkably induced the activation of PI3K/AKT signalling. Preconditioning with LY294002 dramatically decreased Srx-1-enhanced cell resistance to SI/R injury. Importantly, LY294002 mitigated the inhibitory effects of Srx-1 on Δψm loss, cytochrome c release, caspase-9/3 activity, and the expression of Bcl-2 family. Together, these results suggested that Srx-1 might protect cardiomyocyte injury upon SI/R by suppressing PI3K/AKT-mediated mitochondria dependent apoptosis, revealing a promising therapeutic agent against ischaemic cardiovascular diseases. PMID:26992405

  8. Glycyrrhizic acid prevents ultraviolet-B-induced photodamage: a role for mitogen-activated protein kinases, nuclear factor kappa B and mitochondrial apoptotic pathway.

    PubMed

    Afnan, Quadri; Kaiser, Peerzada J; Rafiq, Rather A; Nazir, Lone A; Bhushan, Shashi; Bhardwaj, Subhash C; Sandhir, Rajat; Tasduq, Sheikh A

    2016-06-01

    Glycyrrhizic acid (GA), a natural triterpene, has received attention as an agent that has protective effects against chronic diseases including ultraviolet UV-B-induced skin photodamage. However, the mechanism of its protective effect remains elusive. Here, we used an immortalized human keratinocyte cell line (HaCaT) and a small animal model (BALB/c mice), to investigate the protective effects of GA against UV-B-induced oxidative damage, and additionally, delineated the molecular mechanisms involved in the UV-B-mediated inflammatory and apoptotic response. In the HaCaT cells, GA inhibited the UV-B-mediated increase in intracellular reactive oxygen species (ROS) and down-regulated the release of pro-inflammatory cytokines interleukin (IL)-1α, -1β and -6, tumor necrosis factor (TNF)-α and prostaglandin E2 (PGE2). GA inhibited UV-B-mediated activation of p38 and JNK MAP kinases, COX-2 expression and nuclear translocation of NF-κB. Furthermore, GA inhibited UV-B-mediated apoptosis by attenuating translocation of Bax from the cytosol to mitochondria, thus preserving mitochondrial integrity. GA-treated HaCaT cells also exhibited elevated antiapoptotic Bcl-2 protein, concomitant with reduced caspase-3 cleavage and decreased PARP-1 protein. In BALB/c mice, topical application of GA on dorsal skin exposed to UV-B irradiation protected against epidermal hyperplasia, lymphocyte infiltration and expression of several inflammatory proteins, p38, JNK, COX-2, NF-κB and ICAM-1. Based on the above findings, we conclude that GA protects against UV-B-mediated photodamage by inhibiting the signalling cascades triggered by oxidative stress, including MAPK/NF-κB activation, as well as apoptosis. Thus, GA has strong potential to be used as a therapeutic/cosmeceutical agent against photodamage. PMID:26836460

  9. Apoptotic pathways in pancreatic ductal adenocarcinoma

    PubMed Central

    Hamacher, Rainer; Schmid, Roland M; Saur, Dieter; Schneider, Günter

    2008-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most common causes of cancer related death. Despite the advances in understanding of the molecular pathogenesis, pancreatic cancer remains a major unsolved health problem. Overall, the 5-year survival rate is less than 5% demonstrating the insufficiency of current therapies. Most cytotoxic therapies induce apoptosis and PDAC cells have evolved a plethora of molecular mechanisms to assure survival. We will present anti-apoptotic strategies working at the level of the death receptors, the mitochondria or involving the caspase inhibitors of the IAP family. Furthermore, the survival function of the phosphotidylinositol-3' kinase (PI3K)/AKT- and NF-kappaB-pathways are illustrated. A detailed molecular knowledge of the anti-apoptotic mechanisms of PDAC cells will help to improve therapies for this dismal disease and therapeutic strategies targeting the programmed cell death machinery are in early preclinical and clinical development. PMID:18652674

  10. Costunolide induces G1/S phase arrest and activates mitochondrial-mediated apoptotic pathways in SK-MES 1 human lung squamous carcinoma cells

    PubMed Central

    HUA, PEIYAN; ZHANG, GUANGXIN; ZHANG, YIFAN; SUN, MEI; CUI, RANJI; LI, XIN; LI, BINGJIN; ZHANG, XINGYI

    2016-01-01

    Despite the availability of several therapeutic options, a safer and more effective modality strategy is required for the treatment of lung cancer. Costunolide, a sesquiterpene lactone which isolated from the Saussurea lappa, has potent anticancer properties. In the present study, the effects of costunolide on cell viability, the cell cycle and apoptosis in SK-MES-1 human lung squamous carcinoma cells were investigated. Costunolide induced morphological changes and inhibited growth of SK-MES-1 cells growth. Flow cytometric analysis data demonstrated that costunolide significantly induced apoptosis of SK-MES-1 cells and induced cell cycle arrest at G1/S phase in a dose-dependent manner. Through upregulation in the expression of p53 and Bax, and downregulation in the expression of Bcl-2 and activation of caspase-3, costunolide-induced apoptosis was confirmed by western blot analysis. In addition, the significant loss of mitochondrial membrane potential indicated that costunolide may induce apoptosis via the mitochondria-dependent pathway in SK-MES-1 cells. These results highlight the potential effects of costunolide as an anti-cancer agent in a human lung squamous carcinoma cell line. PMID:27073552

  11. [Sphingolipid-mediated apoptotic signaling pathways].

    PubMed

    Cuvillier, Olivier; Andrieu-Abadie, Nathalie; Ségui, Bruno; Malagarie-Cazenave, Sophie; Tardy, Claudine; Bonhoure, Elisabeth; Levade, Thierry

    2003-01-01

    Various sphingolipids are being viewed as bioactive molecules and/or second messengers. Among them, ceramide (or N-acylsphingosine) and sphingosine generally behave as pro-apoptotic mediators. Indeed, ceramide mediates the death signal initiated by numerous stress agents which either stimulate its de novo synthesis or activate sphingomyelinases that release ceramide from sphingomyelin. For instance, the early generation of ceramide promoted by TNF is mediated by a neutral sphingomyelinase the activity of which is regulated by the FAN adaptor protein, thereby controlling caspase activation and the cell death programme. In addition, the activity of this neutral sphingomyelinase is negatively modulated by caveolin, a major constituent of some membrane microdomains. The enzyme sphingosine kinase also plays a crucial role in apoptosis signalling by regulating the intracellular levels of two sphingolipids having opposite effects, namely the pro-apoptotic sphingosine and the anti-apoptotic sphingosine 1-phosphate molecule. Ceramide and sphingosine metabolism therefore appears as a pivotal regulatory pathway in the determination of cell fate. PMID:14708343

  12. The Modulation of Apoptotic Pathways by Gammaherpesviruses

    PubMed Central

    Banerjee, Shuvomoy; Uppal, Timsy; Strahan, Roxanne; Dabral, Prerna; Verma, Subhash C.

    2016-01-01

    Apoptosis or programmed cell death is a tightly regulated process fundamental for cellular development and elimination of damaged or infected cells during the maintenance of cellular homeostasis. It is also an important cellular defense mechanism against viral invasion. In many instances, abnormal regulation of apoptosis has been associated with a number of diseases, including cancer development. Following infection of host cells, persistent and oncogenic viruses such as the members of the Gammaherpesvirus family employ a number of different mechanisms to avoid the host cell’s “burglar” alarm and to alter the extrinsic and intrinsic apoptotic pathways by either deregulating the expressions of cellular signaling genes or by encoding the viral homologs of cellular genes. In this review, we summarize the recent findings on how gammaherpesviruses inhibit cellular apoptosis via virus-encoded proteins by mediating modification of numerous signal transduction pathways. We also list the key viral anti-apoptotic proteins that could be exploited as effective targets for novel antiviral therapies in order to stimulate apoptosis in different types of cancer cells. PMID:27199919

  13. Strong anticancer potential of nano-triterpenoid from Phytolacca decandra against A549 adenocarcinoma via a Ca(2+)-dependent mitochondrial apoptotic pathway.

    PubMed

    Das, Jayeeta; Das, Sreemanti; Paul, Avijit; Samadder, Asmita; Khuda-Bukhsh, Anisur Rahman

    2014-06-01

    We isolated a triterpenoid from an ethanolic extract of Phytolacca decandra and nanoencapsulated it with biodegradable nontoxic polymers of poly(lactide-co-glycolide) to examine if the nanoform of this hitherto unexplored betulinic-acid derivative (NdBA) could produce a stronger anticancer effect by rendering better drug bioavailability and targeted delivery than the nonencapsulated betulinic-acid derivative (dBA). The nanoparticles were characterized with the help of physicochemical and morphological studies involving dynamic light scattering and atomic force microscopy. A549 cancer cells were exposed to NdBA and dBA at the IC50 doses of 50 μg/mL and 100 μg/mL, respectively. Mitochondrial dysfunction-mediated apoptosis was determined by examining the changes in the intracellular calcium content, the reactive oxygen species accumulation, the cytochrome c release, the upregulation of Bcl-2-associated-X protein (Bax) and caspase 3, the downregulation of B cell lymphoma 2, and the mitochondrial membrane potential (ΔΨm) depolarization. Apoptosis was also verified by acridine orange staining observed under fluorescence microscopy and annexin V-fluorescein isothiocyanate/propidium iodide staining through flow cytometric studies. The levels of intracellular adenosine triphosphate/adenosine diphosphate ratio decreased, and the ATPase activity increased more strikingly in A549 cells exposed to NdBA than in A549 cells exposed to dBA. Overall results showed that both drugs directly target the mitochondrial oxidative phosphorylation system, with NdBA having a stronger effect, indicating NdBA to be a better candidate for the development of an anticancer drug for use against lung adenocarcinomas. PMID:24929458

  14. Evidence for a Novel, Caspase-8-Independent, Fas Death Domain-Mediated Apoptotic Pathway

    PubMed Central

    Katsanis, Emmanuel

    2004-01-01

    Certain caspase-8 null cell lines demonstrate resistance to Fas-induced apoptosis, indicating that the Fas/FasL apoptotic pathway may be caspase-8-dependent. Some reports, however, have shown that Fas induces cell death independent of caspase-8. Here we provide evidence for an alternative, caspase-8-independent, Fas death domain-mediated apoptotic pathway. Murine 12B1-D1 cells express procaspase-3, -8, and -9, which were activated upon the dimerization of Fas death domain. Bid was cleaved and mitochondrial transmembrane potential was disrupted in this apoptotic process. All apoptotic events were completely blocked by the broad-spectrum caspase inhibitor Z-VAD-FMK, but not by other peptide caspase inhibitors. Cyclosporin A (CsA), which inhibits mitochondrial transition pore permeability, blocked neither pore permeability disruption nor caspase activation. However, CsA plus caspase-8 inhibitor blocked all apoptotic events of 12B1-D1 induced by Fas death domain dimerization. Our data therefore suggest that there is a novel, caspase-8-independent, Z-VAD-FMK-inhibitable, apoptotic pathway in 12B1-D1 cells that targets mitochondria directly. PMID:15123887

  15. Activation of mitochondrial apoptotic pathway in mantle cell lymphoma: high sensitivity to mitoxantrone in cases with functional DNA-damage response genes.

    PubMed

    Ferrer, Ana; Marcé, Silvia; Bellosillo, Beatriz; Villamor, Neus; Bosch, Francesc; López-Guillermo, Armando; Espinet, Blanca; Solé, Francesc; Montserrat, Emili; Campo, Elias; Colomer, Dolors

    2004-11-25

    Mantle cell lymphoma (MCL) is a mature B-cell proliferation characterized by the presence of translocation t(11;14)(q13;q32), an aggressive clinical course, and poor response to chemotherapy. The majority of drugs currently used in the treatment of lymphoproliferative disorders induce cell death by triggering apoptosis, but few data concerning drug-induced apoptosis in MCL have been reported. We have analysed the mechanisms of drug-induced cell death in four cell lines with the t(11;14) and in primary cells from 10 patients with MCL. Mitoxantrone, a topoisomerase II inhibitor, induced a strong cytotoxic effect in three cell lines (JVM-2, REC-1, and Granta 519), and in primary MCL cells. This cytotoxic effect due to apoptosis induction was observed despite the presence of either p53 or ATM abnormalities. However, no cytotoxic effect was detected after incubation with DNA-damaging agents in the NCEB-1 cell line, carrying p53 and ATM alterations, despite the presence of functional mitochondrial machinery. These results support that mitoxantrone can be effective in the treatment of MCL but that this activity requires the integrity of functional DNA-damage response genes. PMID:15480431

  16. HDAC inhibitor misprocesses bantam oncomiRNA, but stimulates hid induced apoptotic pathway

    PubMed Central

    Bhadra, Utpal; Mondal, Tanmoy; Bag, Indira; Mukhopadhyay, Debasmita; Das, Paromita; Parida, Bibhuti B.; Mainkar, Prathama S.; Reddy, Chada Raji; Bhadra, Manika Pal

    2015-01-01

    Apoptosis or programmed cell death is critical for embryogenesis and tissue homeostasis. Uncontrolled apoptosis leads to different human disorders including immunodeficiency, autoimmune disorder and cancer. Several small molecules that control apoptosis have been identified. Here, we have shown the functional role of triazole derivative (DCPTN-PT) that acts as a potent HDAC inhibitor and mis-express proto onco microRNA (miRNA) bantam. To further understanding the mechanism of action of the molecule in apoptotic pathway, a series of experiments were also performed in Drosophila, a well known model organism in which the nature of human apoptosis is very analogous. DCPTN-PT mis processes bantam microRNA and alters its down regulatory target hid function and cleavage of Caspase-3 which in turn influence components of the mitochondrial apoptotic pathway in Drosophila. However regulatory microRNAs in other pro-apoptotic genes are not altered. Simultaneously, treatment of same molecule also affects the mitochondrial regulatory pathway in human tumour cell lines suggesting its conservative nature between fly and human. It is reasonable to propose that triazole derivative (DCPTN-PT) controls bantam oncomiRNA and increases hid induced apoptosis and is also able to influence mitochondrial apoptotic pathway. PMID:26442596

  17. Manganese induces mitochondrial dynamics impairment and apoptotic cell death: a study in human Gli36 cells.

    PubMed

    Alaimo, Agustina; Gorojod, Roxana M; Miglietta, Esteban A; Villarreal, Alejandro; Ramos, Alberto J; Kotler, Mónica L

    2013-10-25

    Manganese (Mn) is an essential trace element due to its participation in many physiological processes. However, overexposure to this metal leads to a neurological disorder known as Manganism whose clinical manifestations and molecular mechanisms resemble Parkinson's disease. Several lines of evidence implicate astrocytes as an early target of Mn neurotoxicity being the mitochondria the most affected organelles. The aim of this study was to investigate the possible mitochondrial dynamics alterations in Mn-exposed human astrocytes. Therefore, we employed Gli36 cells which express the astrocytic markers GFAP and S100B. We demonstrated that Mn triggers the mitochondrial apoptotic pathway revealed by increased Bax/Bcl-2 ratio, by the loss of mitochondrial membrane potential and by caspase-9 activation. This apoptotic program may be in turn responsible of caspase-3/7 activation, PARP-1 cleavage, chromatin condensation and fragmentation. In addition, we determined that Mn induces deregulation in mitochondria-shaping proteins (Opa-1, Mfn-2 and Drp-1) expression levels in parallel with the disruption of the mitochondrial network toward to an exacerbated fragmentation. Since mitochondrial dynamics is altered in several neurodegenerative diseases, these proteins could become future targets to be considered in Manganism treatment. PMID:24021799

  18. IF1 limits the apoptotic-signalling cascade by preventing mitochondrial remodelling

    PubMed Central

    Faccenda, D; Tan, C H; Seraphim, A; Duchen, M R; Campanella, M

    2013-01-01

    Mitochondrial structure has a central role both in energy conversion and in the regulation of cell death. We have previously shown that IF1 protects cells from necrotic cell death and supports cristae structure by promoting the oligomerisation of the F1Fo-ATPsynthase. As IF1 is upregulated in a large proportion of human cancers, we have here explored its contribution to the progression of apoptosis and report that an increased expression of IF1, relative to the F1Fo-ATPsynthase, protects cells from apoptotic death. We show that IF1 expression serves as a checkpoint for the release of Cytochrome c (Cyt c) and hence the completion of the apoptotic program. We show that the progression of apoptosis engages an amplification pathway mediated by: (i) Cyt c-dependent release of ER Ca2+, (ii) Ca2+-dependent recruitment of the GTPase Dynamin-related protein 1 (Drp1), (iii) Bax insertion into the outer mitochondrial membrane and (iv) further release of Cyt c. This pathway is accelerated by suppression of IF1 and delayed by its overexpression. IF1 overexpression is associated with the preservation of mitochondrial morphology and ultrastructure, consistent with a central role for IF1 as a determinant of the inner membrane architecture and with the role of mitochondrial ultrastructure in the regulation of Cyt c release. These data suggest that IF1 is an antiapoptotic and potentially tumorigenic factor and may be a valuable predictor of responsiveness to chemotherapy. PMID:23348567

  19. Activation of the Mitochondrial Apoptotic Signaling Platform during Rubella Virus Infection

    PubMed Central

    Claus, Claudia; Manssen, Lena; Hübner, Denise; Roßmark, Sarah; Bothe, Viktoria; Petzold, Alice; Große, Claudia; Reins, Mareen; Mankertz, Annette; Frey, Teryl K.; Liebert, Uwe G.

    2015-01-01

    Mitochondria- as well as p53-based signaling pathways are central for the execution of the intrinsic apoptotic cascade. Their contribution to rubella virus (RV)-induced apoptosis was addressed through time-specific evaluation of characteristic parameters such as permeabilization of the mitochondrial membrane and subsequent release of the pro-apoptotic proteins apoptosis-inducing factor (AIF) and cytochrome c from mitochondria. Additionally, expression and localization pattern of p53 and selected members of the multifunctional and stress-inducible cyclophilin family were examined. The application of pifithrin μ as an inhibitor of p53 shuttling to mitochondria reduced RV-induced cell death to an extent similar to that of the broad spectrum caspase inhibitor z-VAD-fmk (benzyloxycarbonyl-V-A-D-(OMe)-fmk). However, RV progeny generation was not altered. This indicates that, despite an increased survival rate of its cellular host, induction of apoptosis neither supports nor restricts RV replication. Moreover, some of the examined apoptotic markers were affected in a strain-specific manner and differed between the cell culture-adapted strains: Therien and the HPV77 vaccine on the one hand, and a clinical isolate on the other. In summary, the results presented indicate that the transcription-independent mitochondrial p53 program contributes to RV-induced apoptosis. PMID:26703711

  20. Activation of the Mitochondrial Apoptotic Signaling Platform during Rubella Virus Infection.

    PubMed

    Claus, Claudia; Manssen, Lena; Hübner, Denise; Roßmark, Sarah; Bothe, Viktoria; Petzold, Alice; Große, Claudia; Reins, Mareen; Mankertz, Annette; Frey, Teryl K; Liebert, Uwe G

    2015-12-01

    Mitochondria- as well as p53-based signaling pathways are central for the execution of the intrinsic apoptotic cascade. Their contribution to rubella virus (RV)-induced apoptosis was addressed through time-specific evaluation of characteristic parameters such as permeabilization of the mitochondrial membrane and subsequent release of the pro-apoptotic proteins apoptosis-inducing factor (AIF) and cytochrome c from mitochondria. Additionally, expression and localization pattern of p53 and selected members of the multifunctional and stress-inducible cyclophilin family were examined. The application of pifithrin μ as an inhibitor of p53 shuttling to mitochondria reduced RV-induced cell death to an extent similar to that of the broad spectrum caspase inhibitor z-VAD-fmk (benzyloxycarbonyl-V-A-D-(OMe)-fmk). However, RV progeny generation was not altered. This indicates that, despite an increased survival rate of its cellular host, induction of apoptosis neither supports nor restricts RV replication. Moreover, some of the examined apoptotic markers were affected in a strain-specific manner and differed between the cell culture-adapted strains: Therien and the HPV77 vaccine on the one hand, and a clinical isolate on the other. In summary, the results presented indicate that the transcription-independent mitochondrial p53 program contributes to RV-induced apoptosis. PMID:26703711

  1. Prometaphase arrest-dependent phosphorylation of Bcl-2 family proteins and activation of mitochondrial apoptotic pathway are associated with 17α-estradiol-induced apoptosis in human Jurkat T cells.

    PubMed

    Han, Cho Rong; Jun, Do Youn; Kim, Yoon Hee; Lee, Ji Young; Kim, Young Ho

    2013-10-01

    In Jurkat T cell clone (JT/Neo), G2/M arrest, apoptotic sub-G1 peak, mitochondrial membrane potential (Δψm) loss, and TUNEL-positive DNA fragmentation were induced following exposure to 17α-estradiol (17α-E2), whereas none of these events (except for G2/M arrest) were induced in Jurkat cells overexpressing Bcl-2 (JT/Bcl-2). Under these conditions, phosphorylation at Thr161 and dephosphorylation at Tyr15 of Cdk1, upregulation of cyclin B1 level, histone H1 phosphorylation, Cdc25C phosphorylation at Thr-48, Bcl-2 phosphorylation at Thr-56 and Ser-70, Mcl-1 phosphorylation, and Bim phosphorylation were detected in the presence of Bcl-2 overexpression. However, the 17α-E2-induced upregulation of Bak levels, activation of Bak, activation of caspase-3, and PARP degradation were abrogated by Bcl-2 overexpression. In the presence of the G1/S blocking agent hydroxyurea, 17α-E2 failed to induce G2/M arrest and all apoptotic events including Cdk1 activation and phosphorylation of Bcl-2, Mcl-1 and Bim. The 17α-E2-induced phosphorylation of Bcl-2 family proteins and mitochondrial apoptotic events were suppressed by a Cdk1 inhibitor but not by aurora A and aurora B kinase inhibitors. Immunofluorescence microscopic analysis showed that an aberrant bipolar microtubule array, incomplete chromosome congression at the metaphase plate, and prometaphase arrest, which was reversible, were the underlying factors for 17α-E2-induced mitotic arrest. The in vitro microtubule polymerization assay showed that 17α-E2 could directly inhibit microtubule formation. These results show that the apoptogenic activity of 17α-E2 was due to the impaired mitotic spindle assembly causing prometaphase arrest and prolonged Cdk1 activation, the phosphorylation of Bcl-2, Mcl-1 and Bim, and the activation of Bak and mitochondria-dependent caspase cascade. PMID:23707954

  2. Propofol inhibits burn injury-induced hyperpermeability through an apoptotic signal pathway in microvascular endothelial cells.

    PubMed

    Tian, K Y; Liu, X J; Xu, J D; Deng, L J; Wang, G

    2015-05-01

    Recent studies have revealed that an intrinsic apoptotic signaling cascade is involved in vascular hyperpermeability and endothelial barrier dysfunction. Propofol (2,6-diisopropylphenol) has also been reported to inhibit apoptotic signaling by regulating mitochondrial permeability transition pore (mPTP) opening and caspase-3 activation. Here, we investigated whether propofol could alleviate burn serum-induced endothelial hyperpermeability through the inhibition of the intrinsic apoptotic signaling cascade. Rat lung microvascular endothelial cells (RLMVECs) were pretreated with propofol at various concentrations, followed by stimulation with burn serum, obtained from burn-injury rats. Monolayer permeability was determined by transendothelial electrical resistance. Mitochondrial release of cytochrome C was measured by ELISA. Bax and Bcl-2 expression and mitochondrial release of second mitochondrial-derived activator of caspases (smac) were detected by Western blotting. Caspase-3 activity was assessed by fluorometric assay; mitochondrial membrane potential (Δψm) was determined with JC-1 (a potential-sensitive fluorescent dye). Intracellular ATP content was assayed using a commercial kit, and reactive oxygen species (ROS) were measured by dichlorodihydrofluorescein diacetate (DCFH-DA). Burn serum significantly increased monolayer permeability (P<0.05), and this effect could be inhibited by propofol (P<0.05). Compared with a sham treatment group, intrinsic apoptotic signaling activation - indicated by Bax overexpression, Bcl-2 downregulation, Δψm reduction, decreased intracellular ATP level, increased cytosolic cytochrome C and smac, and caspase-3 activation - was observed in the vehicle group. Propofol not only attenuated these alterations (P<0.05 for all), but also significantly decreased burn-induced ROS production (P<0.05). Propofol attenuated burn-induced RLMVEC monolayer hyperpermeability by regulating the intrinsic apoptotic signaling pathway. PMID:25760023

  3. Apoptotic pathways as a therapeutic target for colorectal cancer treatment

    PubMed Central

    Abraha, Aman M; Ketema, Ezra B

    2016-01-01

    Colorectal cancer is the second leading cause of death from cancer among adults. The disease begins as a benign adenomatous polyp, which develops into an advanced adenoma with high-grade dysplasia and then progresses to an invasive cancer. Appropriate apoptotic signaling is fundamentally important to preserve a healthy balance between cell death and cell survival and in maintaining genome integrity. Evasion of apoptotic pathway has been established as a prominent hallmark of several cancers. During colorectal cancer development, the balance between the rates of cell growth and apoptosis that maintains intestinal epithelial cell homeostasis gets progressively disturbed. Evidences are increasingly available to support the hypothesis that failure of apoptosis may be an important factor in the evolution of colorectal cancer and its poor response to chemotherapy and radiation. The other reason for targeting apoptotic pathway in the treatment of cancer is based on the observation that this process is deregulated in cancer cells but not in normal cells. As a result, colorectal cancer therapies designed to stimulate apoptosis in target cells would play a critical role in controlling its development and progression. A better understanding of the apoptotic signaling pathways, and the mechanisms by which cancer cells evade apoptotic death might lead to effective therapeutic strategies to inhibit cancer cell proliferation with minimal toxicity and high responses to chemotherapy. In this review, we analyzed the current understanding and future promises of apoptotic pathways as a therapeutic target in colorectal cancer treatment. PMID:27574550

  4. Apoptotic pathways as a therapeutic target for colorectal cancer treatment.

    PubMed

    Abraha, Aman M; Ketema, Ezra B

    2016-08-15

    Colorectal cancer is the second leading cause of death from cancer among adults. The disease begins as a benign adenomatous polyp, which develops into an advanced adenoma with high-grade dysplasia and then progresses to an invasive cancer. Appropriate apoptotic signaling is fundamentally important to preserve a healthy balance between cell death and cell survival and in maintaining genome integrity. Evasion of apoptotic pathway has been established as a prominent hallmark of several cancers. During colorectal cancer development, the balance between the rates of cell growth and apoptosis that maintains intestinal epithelial cell homeostasis gets progressively disturbed. Evidences are increasingly available to support the hypothesis that failure of apoptosis may be an important factor in the evolution of colorectal cancer and its poor response to chemotherapy and radiation. The other reason for targeting apoptotic pathway in the treatment of cancer is based on the observation that this process is deregulated in cancer cells but not in normal cells. As a result, colorectal cancer therapies designed to stimulate apoptosis in target cells would play a critical role in controlling its development and progression. A better understanding of the apoptotic signaling pathways, and the mechanisms by which cancer cells evade apoptotic death might lead to effective therapeutic strategies to inhibit cancer cell proliferation with minimal toxicity and high responses to chemotherapy. In this review, we analyzed the current understanding and future promises of apoptotic pathways as a therapeutic target in colorectal cancer treatment. PMID:27574550

  5. Impact of Antioxidants on Cardiolipin Oxidation in Liposomes: Why Mitochondrial Cardiolipin Serves as an Apoptotic Signal?

    PubMed Central

    Lokhmatikov, Alexey V.; Voskoboynikova, Natalia; Cherepanov, Dmitry A.; Skulachev, Maxim V.; Steinhoff, Heinz-Jürgen; Skulachev, Vladimir P.; Mulkidjanian, Armen Y.

    2016-01-01

    Molecules of mitochondrial cardiolipin (CL) get selectively oxidized upon oxidative stress, which triggers the intrinsic apoptotic pathway. In a chemical model most closely resembling the mitochondrial membrane—liposomes of pure bovine heart CL—we compared ubiquinol-10, ubiquinol-6, and alpha-tocopherol, the most widespread naturally occurring antioxidants, with man-made, quinol-based amphiphilic antioxidants. Lipid peroxidation was induced by addition of an azo initiator in the absence and presence of diverse antioxidants, respectively. The kinetics of CL oxidation was monitored via formation of conjugated dienes at 234 nm. We found that natural ubiquinols and ubiquinol-based amphiphilic antioxidants were equally efficient in protecting CL liposomes from peroxidation; the chromanol-based antioxidants, including alpha-tocopherol, were 2-3 times less efficient. Amphiphilic antioxidants, but not natural ubiquinols and alpha-tocopherol, were able, additionally, to protect the CL bilayer from oxidation by acting from the water phase. We suggest that the previously reported therapeutic efficiency of mitochondrially targeted amphiphilic antioxidants is owing to their ability to protect those CL molecules that are inaccessible to natural hydrophobic antioxidants, being trapped within respiratory supercomplexes. The high susceptibility of such occluded CL molecules to oxidation may have prompted their recruitment as apoptotic signaling molecules by nature. PMID:27313834

  6. USP30 deubiquitylates mitochondrial Parkin substrates and restricts apoptotic cell death.

    PubMed

    Liang, Jin-Rui; Martinez, Aitor; Lane, Jon D; Mayor, Ugo; Clague, Michael J; Urbé, Sylvie

    2015-05-01

    Mitochondria play a pivotal role in the orchestration of cell death pathways. Here, we show that the control of ubiquitin dynamics at mitochondria contributes to the regulation of apoptotic cell death. The unique mitochondrial deubiquitylase, USP30, opposes Parkin-dependent ubiquitylation of TOM20, and its depletion enhances depolarization-induced cell death in Parkin-overexpressing cells. Importantly, USP30 also regulates BAX/BAK-dependent apoptosis, and its depletion sensitizes cancer cells to BH3-mimetics. These results provide the first evidence for a fundamental role of USP30 in determining the threshold for mitochondrial cell death and suggest USP30 as a potential target for combinatorial anti-cancer therapy. PMID:25739811

  7. USP30 deubiquitylates mitochondrial Parkin substrates and restricts apoptotic cell death

    PubMed Central

    Liang, Jin-Rui; Martinez, Aitor; Lane, Jon D; Mayor, Ugo; Clague, Michael J; Urbé, Sylvie

    2015-01-01

    Mitochondria play a pivotal role in the orchestration of cell death pathways. Here, we show that the control of ubiquitin dynamics at mitochondria contributes to the regulation of apoptotic cell death. The unique mitochondrial deubiquitylase, USP30, opposes Parkin-dependent ubiquitylation of TOM20, and its depletion enhances depolarization-induced cell death in Parkin-overexpressing cells. Importantly, USP30 also regulates BAX/BAK-dependent apoptosis, and its depletion sensitizes cancer cells to BH3-mimetics. These results provide the first evidence for a fundamental role of USP30 in determining the threshold for mitochondrial cell death and suggest USP30 as a potential target for combinatorial anti-cancer therapy. PMID:25739811

  8. Tributyltin induces apoptotic signaling in hepatocytes through pathways involving the endoplasmic reticulum and mitochondria

    SciTech Connect

    Grondin, Melanie; Marion, Michel; Denizeau, Francine; Averill-Bates, Diana A. . E-mail: averill.diana@uqam.ca

    2007-07-01

    Tri-n-butyltin is a widespread environmental toxicant, which accumulates in the liver. This study investigates whether tri-n-butyltin induces pro-apoptotic signaling in rat liver hepatocytes through pathways involving the endoplasmic reticulum and mitochondria. Tri-n-butyltin activated the endoplasmic reticulum pathway of apoptosis, which was demonstrated by the activation of the protease calpain, its translocation to the plasma membrane, followed by cleavage of the calpain substrates, cytoskeletal protein vinculin, and caspase-12. Caspase-12 is localized to the cytoplasmic side of the endoplasmic reticulum and is involved in apoptosis mediated by the endoplasmic reticulum. Tri-n-butyltin also caused translocation of the pro-apoptotic proteins Bax and Bad from the cytosol to mitochondria, as well as changes in mitochondrial membrane permeability, events which can activate the mitochondrial death pathway. Tri-n-butyltin induced downstream apoptotic events in rat hepatocytes at the nuclear level, detected by chromatin condensation and by confocal microscopy using acridine orange. We investigated whether the tri-n-butyltin-induced pro-apoptotic events in hepatocytes could be linked to perturbation of intracellular calcium homeostasis, using confocal microscopy. Tri-n-butyltin caused changes in intracellular calcium distribution, which were similar to those induced by thapsigargin. Calcium was released from a subcellular compartment, which is likely to be the endoplasmic reticulum, into the cytosol. Cytosolic acidification, which is known to trigger apoptosis, also occurred and involved the Cl{sup -}/HCO{sub 3} {sup -} exchanger. Pro-apoptotic events in hepatocytes were inhibited by the calcium chelator, Bapta-AM, and by a calpain inhibitor, which suggests that changes in intracellular calcium homeostasis are involved in tri-n-butyltin-induced apoptotic signaling in rat hepatocytes.

  9. Investigation of the apoptotic pathway induced by benzimidazole-oxindole conjugates against human breast cancer cells MCF-7.

    PubMed

    Lakshma Nayak, Vadithe; Nagaseshadri, Bobburi; Vishnuvardhan, M V P S; Kamal, Ahmed

    2016-07-15

    In our previous studies, benzimidazole-oxindole conjugates were synthesized and evaluated by National Cancer Institute (NCI) for their cytotoxic activity and the new molecules like 5c and 5p were considered as potential leads. These conjugates arrested the cell cycle at G2/M phase and inhibited tubulin polymerization. These observations prompted us to investigate the apoptotic mechanism induced by these lead molecules against human breast cancer cells (MCF-7). Studies like measurement of mitochondrial membrane potential (ΔΨm), generation of reactive oxygen species (ROS) and Annexin V-FITC assay revealed that these compounds induced mitochondrial mediated (intrinsic apoptotic pathway) apoptosis in human breast cancer cells. It was further confirmed by western blot analysis of pro apoptotic protein Bax, anti apoptotic protein Bcl-2, cytochrome c release, caspase-9 activity and cleavage of PARP. PMID:27262596

  10. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA

    PubMed Central

    Rongvaux, Anthony; Jackson, Ruaidhrí; Harman, Christian C.D.; Li, Tuo; West, A. Phillip; de Zoete, Marcel R.; Wu, Youtong; Yordy, Brian; Lakhani, Saquib A.; Kuan, Chia-Yi; Taniguchi, Tadatsugu; Shadel, Gerald S.; Chen, Zhijian J.; Iwasaki, Akiko; Flavell, Richard A.

    2014-01-01

    The mechanism by which cells undergo death determines whether dying cells trigger inflammatory responses or remain immunologically silent. Mitochondria play a central role in the induction of cell death, as well as in immune signaling pathways. Here, we identify of a mechanism by which mitochondria and downstream pro-apoptotic caspases regulate the activation of antiviral immunity. In the absence of active caspases, mitochondrial outer membrane permeabilization by Bax and Bak results in the expression of type I interferons (IFNs). This induction is mediated by mitochondrial DNA-dependent activation of the cGAS/STING pathway and results in the establishment of a potent state of viral resistance. Our results show that mitochondria have the capacity to simultaneously expose a cell-intrinsic inducer of the IFN response, and to inactivate this response in a caspase-dependent manner. This mechanism provides a dual control, which determines whether mitochondria initiate an immunologically silent or a pro-inflammatory type of cell death. PMID:25525875

  11. Pre-B-cell colony-enhancing factor protects against apoptotic neuronal death and mitochondrial damage in ischemia.

    PubMed

    Wang, Xiaowan; Li, Hailong; Ding, Shinghua

    2016-01-01

    We previously demonstrated that Pre-B-cell colony-enhancing factor (PBEF), also known as nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in mammalian NAD(+) biosynthesis pathway, plays a brain and neuronal protective role in ischemic stroke. In this study, we further investigated the mechanism of its neuroprotective effect after ischemia in the primary cultured mouse cortical neurons. Using apoptotic cell death assay, fluorescent imaging, molecular biology, mitochondrial biogenesis measurements and Western blotting analysis, our results show that the overexpression of PBEF in neurons can significantly promote neuronal survival, reduce the translocation of apoptosis inducing factor (AIF) from mitochondria to nuclei and inhibit the activation of capase-3 after glutamate-induced excitotoxicity. We further found that the overexpression of PBEF can suppress glutamate-induced mitochondrial fragmentation, the loss of mitochondrial DNA (mtDNA) content and the reduction of PGC-1 and NRF-1 expressions. Furthermore, these beneficial effects by PBEF are dependent on its enzymatic activity of NAD(+) synthesis. In summary, our study demonstrated that PBEF ameliorates ischemia-induced neuronal death through inhibiting caspase-dependent and independent apoptotic signaling pathways and suppressing mitochondrial damage and dysfunction. Our study provides novel insights into the mechanisms underlying the neuroprotective effect of PBEF, and helps to identify potential targets for ischemic stroke therapy. PMID:27576732

  12. Pre-B-cell colony-enhancing factor protects against apoptotic neuronal death and mitochondrial damage in ischemia

    PubMed Central

    Wang, Xiaowan; Li, Hailong; Ding, Shinghua

    2016-01-01

    We previously demonstrated that Pre-B-cell colony-enhancing factor (PBEF), also known as nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in mammalian NAD+ biosynthesis pathway, plays a brain and neuronal protective role in ischemic stroke. In this study, we further investigated the mechanism of its neuroprotective effect after ischemia in the primary cultured mouse cortical neurons. Using apoptotic cell death assay, fluorescent imaging, molecular biology, mitochondrial biogenesis measurements and Western blotting analysis, our results show that the overexpression of PBEF in neurons can significantly promote neuronal survival, reduce the translocation of apoptosis inducing factor (AIF) from mitochondria to nuclei and inhibit the activation of capase-3 after glutamate-induced excitotoxicity. We further found that the overexpression of PBEF can suppress glutamate-induced mitochondrial fragmentation, the loss of mitochondrial DNA (mtDNA) content and the reduction of PGC-1 and NRF-1 expressions. Furthermore, these beneficial effects by PBEF are dependent on its enzymatic activity of NAD+ synthesis. In summary, our study demonstrated that PBEF ameliorates ischemia-induced neuronal death through inhibiting caspase-dependent and independent apoptotic signaling pathways and suppressing mitochondrial damage and dysfunction. Our study provides novel insights into the mechanisms underlying the neuroprotective effect of PBEF, and helps to identify potential targets for ischemic stroke therapy. PMID:27576732

  13. Induction of discrete apoptotic pathways by bromo-substituted indirubin derivatives in invasive breast cancer cells

    SciTech Connect

    Nicolaou, Katerina A.; Liapis, Vasilis; Evdokiou, Andreas; Constantinou, Constantina; Magiatis, Prokopios; Skaltsounis, Alex L.; Koumas, Laura; Costeas, Paul A.; Constantinou, Andreas I.

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer The effects of 6BIO and 7BIO are evaluated against five breast cancer cell lines. Black-Right-Pointing-Pointer 6BIO induces a caspase dependent apoptotic effect via the intrinsic pathway. Black-Right-Pointing-Pointer 7BIO promotes G{sub 2}/M cells cycle arrest. Black-Right-Pointing-Pointer 7BIO triggers a caspase-8 mediated apoptotic pathway. Black-Right-Pointing-Pointer 7BIO triggers and a caspase independent pathway. -- Abstract: Indirubin derivatives gained interest in recent years for their anticancer and antimetastatic properties. The objective of the present study was to evaluate and compare the anticancer properties of the two novel bromo-substituted derivatives 6-bromoindirubin-3 Prime -oxime (6BIO) and 7-bromoindirubin-3 Prime -oxime (7BIO) in five different breast cancer cell lines. Cell viability assays identified that 6BIO and 7BIO are most effective in preventing the proliferation of the MDA-MB-231-TXSA breast cancer cell line from a total of five breast cancer cell lined examined. In addition it was found that the two compounds induce apoptosis via different mechanisms. 6BIO induces caspase-dependent programmed cell death through the intrinsic (mitochondrial) caspase-9 pathway. 7BIO up-regulates p21 and promotes G{sub 2}/M cell cycle arrest which is subsequently followed by the activation of two different apoptotic pathways: (a) a pathway that involves the upregulation of DR4/DR5 and activation of caspase-8 and (b) a caspase independent pathway. In conclusion, this study provides important insights regarding the molecular pathways leading to cell cycle arrest and apoptosis by two indirubin derivatives that can find clinical applications in targeted cancer therapeutics.

  14. Prep1 directly regulates the intrinsic apoptotic pathway by controlling Bcl-XL levels.

    PubMed

    Micali, Nicola; Ferrai, Carmelo; Fernandez-Diaz, Luis C; Blasi, Francesco; Crippa, Massimo P

    2009-03-01

    The Prep1 homeodomain transcription factor is essential in embryonic development. Prep1 hypomorphic mutant mouse (Prep1(i/i)) embryos (embryonic day 9.5) display an increased terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling reaction compared to wild-type (WT) littermates. Prep1(i/i) mouse embryo fibroblasts (MEFs) show an increased basal level of annexin V binding activity, reduction of the mitochondrial-membrane potential, and increased caspase 9 and 3 activation, indicating increased apoptosis. Prep1(i/i) MEFs also respond faster than WT MEFs to genotoxic stress, indicating increased activation of the intrinsic apoptotic pathways. We did not observe an increase in p53 or an abnormal p53 response to apoptotic stimuli. However, hypomorphic MEFs have decreased endogenous levels of antiapoptotic Bcl-X(L) mRNA and protein, and Bcl-x overexpression rescues the defect of Prep1(i/i) MEFs. Using transient transfections and chromatin immunoprecipitation, we identified the Bcl-x promoter as a novel target of Prep1. Thus, Prep1 directly controls mitochondrial homeostasis (and the apoptotic potential) by modulating Bcl-x gene expression. PMID:19103748

  15. Cedrol induces autophagy and apoptotic cell death in A549 non-small cell lung carcinoma cells through the P13K/Akt signaling pathway, the loss of mitochondrial transmembrane potential and the generation of ROS.

    PubMed

    Zhang, Shi-Yi; Li, Xue-Bo; Hou, Sheng-Guang; Sun, Yao; Shi, Yi-Ran; Lin, Song-Sen

    2016-07-01

    The objective of the present study was to determine the anticancer effects of cedrol in A549 human non-small cell lung cancer cells by examining the effects of cedrol on apoptosis induction, the phosphatidylinositol 3'-kinase (PI3K)/Akt signaling pathway, autophagy, reactive oxygen species (ROS) generation and mitochondrial transmembrane potential (MTP). The anticancer effects of cedrol were examined using A549 human lung carcinoma cells as an in vitro model. Cell viability was determined using MTT and lactate dehydrogenase (LDH) assays, and an inverted phase contrast microscope was used to examine the morphological changes in these cells. Cedrol‑triggered autophagy was confirmed by transmission electron microscopy (TEM) analysis of the cells, as well as by western blot analysis of microtubule-associated protein light-chain 3 (LC3)B expression. Intracellular ROS generation was measured by flow cytometry using 5-(6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate (CM-DCFH2-DA) staining and MTP was measured using flow cytometry. The results demonstrated that cedrol reduced cell viability and induced cell apoptosis in a dose-dependent manner. Mechanistic evaluations indicated that cedrol induced apoptosis by reducing the MTP and by decreasing the levels of phosphorylated (p-)PI3K and p-Akt. Cedrol induced autophagy, which was confirmed by TEM analysis, by increasing intracellular ROS formation in a concentration-dependent manner, which was almost completely reversed by N-acetyl-L-cysteine (NAC) and tocopherol. Taken together, these findings reveal that cedrol inhibits cell proliferation and induces apoptosis in A549 cells through mitochondrial and PI3K/Akt signaling pathways. Our findings also reveal that cedrol induced pro-death autophagy by increasing intracellular ROS production. PMID:27177023

  16. The mitochondrial p53 pathway

    PubMed Central

    Vaseva, Angelina V.; Moll, Ute M.

    2010-01-01

    p53 is one of the most mutated tumor suppressors in human cancers and as such has been intensively studied for a long time. p53 is a major orchestrator of the cellular response to a broad array of stress types by regulating apoptosis, cell cycle arrest, senescence, DNA repair and genetic stability. For a long time it was thought that these functions of p53 solely rely on its function as a transcription factor, and numerous p53 target genes have been identified [1]. In the last 8 years however, a novel transcription-independent proapoptotic function mediated by the cytoplasmic pool of p53 has been revealed. p53 participates directly in the intrinsic apoptosis pathway by interacting with the multidomain members of the Bcl-2 family to induce mitochondrial outer membrane permeabilization. Our review will discuss these studies, focusing on recent advances in the field. PMID:19007744

  17. CGP57380 enhances efficacy of RAD001 in non-small cell lung cancer through abrogating mTOR inhibition-induced phosphorylation of eIF4E and activating mitochondrial apoptotic pathway.

    PubMed

    Wen, Qiuyuan; Wang, Weiyuan; Luo, Jiadi; Chu, Shuzhou; Chen, Lingjiao; Xu, Lina; Zang, Hongjing; Alnemah, Mohannad Ma; Ma, Jian; Fan, Songqing

    2016-05-10

    The mammalian target of rapamycin (mTOR) is a potentially important therapeutic target in a broad range of cancer types. mTOR inhibitors such as rapamycin and its analogs (rapalogs) have been proven effective as anticancer agents in non-small cell lung cancer (NSCLC), whereas they strongly enhance phosphorylation of eukaryotic translation initiation factor 4E (eIF4E) and activation of Akt, which cause resistance to mTOR-targeted therapy after an initial response. Rapamycin induces eIF4E phosphorylation by activating MAPK-interacting kinases (Mnks), and therefore targeting Mnk/eIF4E pathway represents a potential therapeutic strategy for the treatment of NSCLC. Here, our results showed that over-expression of p-Mnk1 and p-eIF4E was significantly associated with poor overall survival of NSCLC patients and high expression of p-Mnk1 might act as an independent prognostic biomarker for these patients. Meanwhile, inhibiting Mnk1 expression by Mnk inhibitor (CGP57380) could abrogate rapalogs (RAD001)-induced eIF4E phosphorylation and Akt activation. Furthermore, combination of CGP57380 and RAD001 could induce NSCLC cells apoptosis via activating intrinsic mitochondrial pathway, and exert synergistic antitumor efficacy both in vitro and in vivo. In conclusion, combination of targeting both mTOR and Mnk/eIF4E signaling pathways to enhance effectiveness of mTOR-targeted cancer therapy might be significant innovation for the personalized treatment of NSCLC. PMID:27050281

  18. Apoptosis Induction by 13-Acetoxyrolandrolide through the Mitochondrial Intrinsic Pathway

    PubMed Central

    Acuña, Ulyana Muñoz; Matthew, Susan; Pan, Li; Kinghorn, A. Douglas; Swanson, Steven M.; Carcache de Blanco, Esperanza J.

    2014-01-01

    The aim of this study was to evaluate the mechanisms of cytotoxicity of the sesquiterpene lactone 13-acetoxyrolandrolide, an NF-κB inhibitor that was previously isolated from Rolandra fruticosa. The effects associated with inhibition of the NFκB pathway included dose-dependent inhibition of the NF-κB subunit p65 (RelA) and inhibition of upstream mediators IKKβ and oncogenic K-Ras. The inhibitory concentration (IC50) of 13-acetoxyrolandrolide on K-Ras was 7.7 μM. The downstream effects of the inhibition of NF-κB activation were also investigated in vitro. After 24 h of treatment with 13-acetoxyrolandrolide, the mitochondrial transmembrane potential (ΔΨm) was depolarized in human colon cancer (HT-29) cells. The mitochondrial oxidative phosphorylation was also negatively affected and reduced levels of NAD(P)H were detected after 2 h of 13-acetoxyrolandrolide exposure. Furthermore, the expression of the pro-apoptotic protein caspase-3 increased in a concentration-dependent manner. Cell flow cytometry showed that 13-acetoxyrolandrolide induced cell cycle arrest at G1, suggesting that treated cells had undergone caspase-3-mediated apoptosis, suggesting negative effects on cancer cell proliferation. These results suggest that 13-acetoxyrolandrolide inhibits NF-κB and K-Ras as well as promotes cell death mediated through the mitochondrial apoptotic pathway. PMID:24338805

  19. Infrared radiation affects the mitochondrial pathway of apoptosis in human fibroblasts.

    PubMed

    Frank, Sandra; Oliver, Lisa; Lebreton-De Coster, Corinne; Moreau, Carole; Lecabellec, Marie-Thérèse; Michel, Laurence; Vallette, François M; Dubertret, Louis; Coulomb, Bernard

    2004-11-01

    We have previously observed that near-infrared (IR) pre-irradiation protects normal human dermal fibroblasts from ultraviolet (UV) cytotoxicity in vitro. Here, we show that IR pre-irradiation of human fibroblasts inhibited UVB activation of caspase-9 and -3, leading us to study early events in the mitochondrial apoptotic pathway after IR irradiation. IR irradiation led to a partial release of cytochrome c and Smac/Diablo but not apoptosis-inducing factor (AIF). This was accompanied by a slight but transient decrease in the mitochondrial membrane potential (Deltapsim) and by the insertion of Bax into mitochondrial membrane. Early apoptotic events in the mitochondrial pathway thus occurred after IR irradiation despite a lack of caspase-9 and -3 activation. This could be explained by the induction by IR of the expression of heat shock protein Hsp27, which is known to prevent apoptosome assembly. Furthermore, the balance between pro-apoptotic (i.e., Bax) and anti-apoptotic (i.e., Bcl-2 or Bcl-xL) proteins, which was rather pro-apoptotic after IR exposure, became anti-apoptotic 24 h later, suggesting a protective effect. Together, these actions could also contribute to prepare the cell to resist UVB-triggered apoptosis. Finally, isolated rat liver mitochondria-released cytochrome c in response to IR, demonstrating that mitochondria were a primary target of IR radiation. PMID:15482467

  20. Regulators in the apoptotic pathway during spermatogenesis: Killers or guards?

    PubMed

    Xu, Ya-Ru; Dong, Hong-Shan; Yang, Wan-Xi

    2016-05-15

    Apoptosis occurs at any time in the ontogeny of the testis, especially during the first wave of spermatogenesis. However, the exact mechanisms by which homeostasis of apoptosis and survival in GCs and mature sperm are orchestrated remain unclear. Three pathways during the process of apoptosis in mammals are discussed extensively. The three pathways are extrinsic pathway, mitochondrial pathway and endoplasmic reticulum pathway. Based on that, many factors, such as growth factors (SCF, FGF, TGF), hormones (FSH, LH, E2, MIS), partial oxygen pressure, and testis specific genes are involved in apoptosis and survival process. The pathways of apoptosis adopted by the GCs and sperm depend on the types of stimuli they receive. Diverse pathways are initiated in heat-stress induced apoptosis of GCs and the destiny of GCs suppressed by hyperglycemia is mainly regulated by a rheostat of total oxidants and anti-oxidants which leading to intrinsic pathway. In this review, we provide an overview of three classic pathways and important factors involved in the process of germ cell apoptosis and survival, and discuss the recent advances made in understanding of the molecular mechanisms of spermatogenic cells and sperm response to stress-inducers, such as heat stress and hyperglycemia. All the findings may provide clues to the control of male fertility or treating germ cell tumors and other testis associated pathological conditions, at the same time, a novel idea may result in devising much safer contraception with high efficiency. PMID:26861610

  1. Mevalonate Pathway Blockade, Mitochondrial Dysfunction and Autophagy: A Possible Link

    PubMed Central

    Tricarico, Paola Maura; Crovella, Sergio; Celsi, Fulvio

    2015-01-01

    The mevalonate pathway, crucial for cholesterol synthesis, plays a key role in multiple cellular processes. Deregulation of this pathway is also correlated with diminished protein prenylation, an important post-translational modification necessary to localize certain proteins, such as small GTPases, to membranes. Mevalonate pathway blockade has been linked to mitochondrial dysfunction: especially involving lower mitochondrial membrane potential and increased release of pro-apoptotic factors in cytosol. Furthermore a severe reduction of protein prenylation has also been associated with defective autophagy, possibly causing inflammasome activation and subsequent cell death. So, it is tempting to hypothesize a mechanism in which defective autophagy fails to remove damaged mitochondria, resulting in increased cell death. This mechanism could play a significant role in Mevalonate Kinase Deficiency, an autoinflammatory disease characterized by a defect in Mevalonate Kinase, a key enzyme of the mevalonate pathway. Patients carrying mutations in the MVK gene, encoding this enzyme, show increased inflammation and lower protein prenylation levels. This review aims at analysing the correlation between mevalonate pathway defects, mitochondrial dysfunction and defective autophagy, as well as inflammation, using Mevalonate Kinase Deficiency as a model to clarify the current pathogenetic hypothesis as the basis of the disease. PMID:26184189

  2. Poncirin Induces Apoptosis in AGS Human Gastric Cancer Cells through Extrinsic Apoptotic Pathway by up-Regulation of Fas Ligand

    PubMed Central

    Venkatarame Gowda Saralamma, Venu; Nagappan, Arulkumar; Hong, Gyeong Eun; Lee, Ho Jeong; Yumnam, Silvia; Raha, Suchismita; Heo, Jeong Doo; Lee, Sang Joon; Lee, Won Sup; Kim, Eun Hee; Kim, Gon Sup

    2015-01-01

    Poncirin, a natural bitter flavanone glycoside abundantly present in many species of citrus fruits, has various biological benefits such as anti-oxidant, anti-microbial, anti-inflammatory and anti-cancer activities. The anti-cancer mechanism of Poncirin remains elusive to date. In this study, we investigated the anti-cancer effects of Poncirin in AGS human gastric cancer cells (gastric adenocarcinoma). The results revealed that Poncirin could inhibit the proliferation of AGS cells in a dose-dependent manner. It was observed Poncirin induced accumulation of sub-G1 DNA content, apoptotic cell population, apoptotic bodies, chromatin condensation, and DNA fragmentation in a dose-dependent manner in AGS cells. The expression of Fas Ligand (FasL) protein was up-regulated dose dependently in Poncirin-treated AGS cells Moreover, Poncirin in AGS cells induced activation of Caspase-8 and -3, and subsequent cleavage of poly(ADP-ribose) polymerase (PARP). Inhibitor studies’ results confirm that the induction of caspase-dependent apoptotic cell death in Poncirin-treated AGS cells was led by the Fas death receptor. Interestingly, Poncirin did not show any effect on mitochondrial membrane potential (ΔΨm), pro-apoptotic proteins (Bax and Bak) and anti-apoptotic protein (Bcl-xL) in AGS-treated cells followed by no activation in the mitochondrial apoptotic protein caspase-9. This result suggests that the mitochondrial-mediated pathway is not involved in Poncirin-induced cell death in gastric cancer. These findings suggest that Poncirin has a potential anti-cancer effect via extrinsic pathway-mediated apoptosis, possibly making it a strong therapeutic agent for human gastric cancer. PMID:26393583

  3. [Effect of lidamycin on mitochondria initiated apoptotic pathway in human cancer cells].

    PubMed

    Qiu, Qiang; Wang, Zhen; Jiang, Jian-ming; Li, Dian-dong

    2007-02-01

    Although enediyne antibiotic lidamycin ( LDM) is a potent inducer of apoptosis, the underlying mechanisms of its apoptotic functions remain to be explored. Here, we aim to elucidate its possible mechanisms in mitochondria initiated apoptotic pathway involved in human BEL-7402 and MCF-7 cells. Cytochrome c released from mitchondria to cytosol fraction was detected by Western blotting. p53 and Bax, Bcl-2 expressions were detected by Western blotting and RT-PCR. MTT assay was used to detect cytotoxicity of LDM with or without caspase inhibitor z-VAD-fmk. After the BEL-7402 cells were exposed to 0. 1 micromol x L(-1) LDM within 6 h, the increase of cytochrome c in the cytosol and decrease in the mitochondria were observed when compared with untreated cells. The expression of Bax, an important proapoptotic member of the Bcl-2 family, increased gradually in the BEL-7402 cells after exposure to LDM of 0. 1 micromol x L (-1) for 2, 6, and 9 h, separately, while Bcl-2 increased at 2 and 6 h, and decreased at 9 h after LDM treatment. Enhanced protein expressions were parallel with respective increased mRNA level for Bax only, but not p53. Caspase inhibitor may inhibit partially the killing effects induced by LDM. Therefore we conclude that the rapid activation of mitochondrial pathway induced by LDM in tumor cells might contribute to its highly potent cytotoxicities. PMID:17518039

  4. Induction of inflammation by West Nile virus capsid through the caspase-9 apoptotic pathway.

    PubMed

    Yang, Joo-Sung; Ramanathan, Mathura P; Muthumani, Karuppiah; Choo, Andrew Y; Jin, Sung-Ha; Yu, Qian-Chun; Hwang, Daniel S; Choo, Daniel K; Lee, Mark D; Dang, Kesen; Tang, Waixing; Kim, J Joseph; Weiner, David B

    2002-12-01

    West Nile virus (WNV) is a member of the Flaviviridae family of vector-borne pathogens. Clinical signs of WNV infection include neurologic symptoms, limb weakness, and encephalitis, which can result in paralysis or death. We report that the WNV-capsid by itself induces rapid nuclear condensation and cell death in tissue culture. Apoptosis is induced through the mitochondrial pathway resulting in caspase-9 activation and downstream caspase-3 activation. Capsid gene delivery into the striatum of mouse brain or interskeletal muscle resulted in cell death and inflammation, likely through capsid-induced apoptosis in vivo. These studies demonstrate that the capsid protein of WNV may be responsible for aspects of viral pathogenesis through induction of the apoptotic cascade. PMID:12498651

  5. Mitochondrial Retrograde Signaling: Triggers, Pathways, and Outcomes

    PubMed Central

    da Cunha, Fernanda Marques; Torelli, Nicole Quesada; Kowaltowski, Alicia J.

    2015-01-01

    Mitochondria are essential organelles for eukaryotic homeostasis. Although these organelles possess their own DNA, the vast majority (>99%) of mitochondrial proteins are encoded in the nucleus. This situation makes systems that allow the communication between mitochondria and the nucleus a requirement not only to coordinate mitochondrial protein synthesis during biogenesis but also to communicate eventual mitochondrial malfunctions, triggering compensatory responses in the nucleus. Mitochondria-to-nucleus retrograde signaling has been described in various organisms, albeit with differences in effector pathways, molecules, and outcomes, as discussed in this review. PMID:26583058

  6. Overexpression of Amyloid- β Protein Precursor Induces Mitochondrial Oxidative Stress and Activates the Intrinsic Apoptotic Cascade

    PubMed Central

    Bartley, Matthew G.; Marquardt, Kristin; Kirchhof, Danielle; Wilkins, Heather M.; Patterson, David; Linseman, Daniel A.

    2015-01-01

    Alzheimer's disease (AD) is a debilitating cognitive disorder which is characterized pathologically by amyloid-β plaques and neurofibrillary tangles. Aberrant processing of amyloid beta protein precursor (AβPP) into amyloid-β fragments underlies the formation of senile plaques. Moreover, amyloid-β fragments, particularly Aβ42, exert direct toxic effects within neurons including the induction of mitochondrial oxidative stress (MOS). Interestingly, individuals with Down Syndrome (DS) frequently develop early onset AD as a major co-morbid phenotype. One hypothesis for AD associated with DS involves the overexpression of wild type (WT) AβPP protein, due to its location on chromosome 21. However, the mechanism by which the overexpression of WT AβPP might trigger MOS and induce cell death is presently unclear. Here we show that transient overexpression of DsRed2-tagged AβPP (WT) in CHO cells induces the activation of caspase-3 and nuclear fragmentation indicative of apoptosis. AβPP localizes to the mitochondrial fraction of transfected CHO cells and its overexpression causes glutathione (GSH)-sensitive opening of the mitochondrial permeability transition pore (mPTP) and cytochrome c release. MOS and intrinsic apoptosis induced by AβPP were significantly inhibited by the co-expression of Bcl-2 or treatment with either GSH or Boc, a pan-caspase inhibitor. Furthermore, the mPTP inhibitor, cyclosporin A, also significantly protected CHO cells from apoptosis induced by AβPP overexpression. Finally, co-treatment with a β-secretase inhibitor did not significantly protect CHO cells from AβPP overexpression and Aβ42 levels were undetectable in transfected CHO cells. Therefore, the mechanism of AβPP induced MOS and apoptosis is independent of the production of Aβ42. However, a γ-secretase inhibitor showed significant protection of the CHO cells against AβPP overexpression. Thus, suggesting a possible role of the AβPP intracellular domain in this apoptotic

  7. Mitochondrial Staining Allows Robust Elimination of Apoptotic and Damaged Cells during Cell Sorting

    PubMed Central

    Ponomarev, Eugeny D.; Tsytsykova, Alla; Armant, Myriam; Vorobjev, Ivan A.

    2014-01-01

    High-speed fluorescence-activated cell sorting is relevant for a plethora of applications, such as PCR-based techniques, microarrays, cloning, and propagation of selected cell populations. We suggest a simple cell-sorting technique to eliminate early and late apoptotic and necrotic cells, with good signal-to-noise ratio and a high-purity yield. The mitochondrial potential dye, TMRE (tetramethylrhodamine ethyl ester perchlorate), was used to separate viable and non-apoptotic cells from the cell sorting samples. TMRE staining is reversible and does not affect cell proliferation and viability. Sorted TMRE+ cells contained a negligible percentage of apoptotic and damaged cells and had a higher proliferative potential as compared with their counterpart cells, sorted on the basis of staining with DNA viability dye. This novel sorting technique using TMRE does not interfere with subsequent functional assays and is a method of choice for the enrichment of functionally active, unbiased cell populations. PMID:24394470

  8. Paraptosis triggers mitochondrial pathway-mediated apoptosis in Alzheimer's disease

    PubMed Central

    JIA, DONG-PEI; WANG, SONG; ZHANG, BAO-CHAO; FANG, FANG

    2015-01-01

    In previous years, increasing evidence has indicated that paraptosis and mitochondrial-mediated apoptosis may be associated with Alzheimer's disease (AD). However, the association between paraptosis and mitochondrial-mediated apoptosis, and the pathological processes underlying AD, remain elusive. In the present study, the β-amyloid precursor protein gene, and the gene mutations PS1M146L and L286V, were transfected to an SH-SY5Y cell line to establish an AD cell model. Subsequently, an MTT assay was used to examine the cell viability of the AD cell model, while a TUNEL assay was employed to observe the number of positively stained apoptotic cells. Cytoplasmic vacuolization was examined using light microscopy and images were photographed. Furthermore, western blot analysis was utilized to detect the expression of golden biomarkers of the mitochondrial pathway, including Bcl-2 and Bax. The paraptosis inhibitor, cycloheximide, was selected to treat the AD model cells in order to observe the association between paraptosis and mitochondrial-mediated apoptosis. The results indicated that the decrease in the cell viability of the AD cells was initiated at 24 h, as compared with the normal cells (P<0.05). TUNEL-positive stained cells were observed at 48 h, which was later compared with the cell death initiation. In addition, examination of cytoplasmic vacuolization using microscopy indicated that there were a small number of paraptosis cells present at 24 h. The expression levels of Bcl-2 was significantly decreased, while Bax was significantly increased at 48 h. Furthermore, cycloheximide treatment was demonstrated to significantly increase Bcl-2 expression, while decreasing Bax expression (P>0.05). In conclusion, the occurrence of paraptosis was demonstrated in the early pathological stages of AD, which may subsequently damage the mitochondria and trigger mitochondrial pathway-mediated apoptosis. Thus, paraptosis may trigger programmed cell death directly, or indirectly

  9. Protective effect of FGF21 on type 1 diabetes-induced testicular apoptotic cell death probably via both mitochondrial- and endoplasmic reticulum stress-dependent pathways in the mouse model.

    PubMed

    Jiang, Xin; Zhang, Chi; Xin, Ying; Huang, Zhifeng; Tan, Yi; Huang, Yadong; Wang, Yonggang; Feng, Wenke; Li, Xiaokun; Li, Wei; Qu, Yaqin; Cai, Lu

    2013-05-10

    Fibroblast growth factor 21 (FGF21) is a novel member identified and was reported to express predominantly in pancreas, liver and adipose tissue, and relatively less in other organs, such as the testis. However, the role of FGF21 in the testis has never been addressed. The present study examined FGF21 expression at mRNA level by real-time RT-PCR assay in the testis of fasting and non-fasting mice or mice with type 1 diabetes that was induced with streptozotocin. We also examined the effect of Fgf21 gene deletion or supplementation of the exogenous FGF21 on the testicular apoptotic cell death spontaneously or induced by type 1 diabetes in FGF21 knockout (FGF21-KO) mice. Deletion of Fgf21 gene does not affect testicular cell proliferation, but significantly increases the spontaneous incidence of testicular TUNEL positive cells with increases in the Bax/Bcl2 expression ratio and apoptosis-inducing factor (AIF) expression. Diabetes induced significant increases in testicular TUNEL positive cells, Bax/Bcl2 expression ratio, AIF expression, CHOP and cleaved caspase-12 expression, and oxidative damage, but did not change the expression of cleaved caspase-3 and caspase-8. Deletion of Fgf21 gene also significantly enhances diabetes-induced TUNEL positive cells along with the increased expression of Bax/Bcl2 ratio, AIF, CHOP, cleaved caspase-12, and oxidative damage, which was significantly prevented by the supplementation of exogenous FGF21. These results suggest that Fgf21 gene may involve in maintaining normal spermatogenesis and also protect the germ cells from diabetes-induced apoptotic cell death probably via the prevention of diabetes-induced oxidative damage. PMID:23499715

  10. Activation of intrinsic apoptotic signaling pathway in cancer cells by Cymbopogon citratus polysaccharide fractions.

    PubMed

    Thangam, Ramar; Sathuvan, Malairaj; Poongodi, Arasu; Suresh, Veeraperumal; Pazhanichamy, Kalailingam; Sivasubramanian, Srinivasan; Kanipandian, Nagarajan; Ganesan, Nalini; Rengasamy, Ramasamy; Thirumurugan, Ramasamy; Kannan, Soundarapandian

    2014-07-17

    Essential oils of Cymbopogon citratus were already reported to have wide ranging medical and industrial applications. However, information on polysaccharides from the plant and their anticancer activities are limited. In the present study, polysaccharides from C. citratus were extracted and fractionated by anion exchange and gel filtration chromatography. Two different polysaccharide fractions such as F1 and F2 were obtained, and these fractions were found to have distinct acidic polysaccharides as characterized by their molecular weight and sugar content. NMR spectral analysis revealed the presence of (1→4) linked b-d-Xylofuranose moiety in these polysaccharides. Using these polysaccharide fractions F1 and F2, anti-inflammatory and anticancer activities were evaluated against cancer cells in vitro and the mechanism of action of the polysaccharides in inducing apoptosis in cancer cells via intrinsic pathway was also proposed. Two different reproductive cancer cells such as Siha and LNCap were employed for in vitro studies on cytotoxicity, induction of apoptosis and apoptotic DNA fragmentation, changes in mitochondrial membrane potential, and profiles of gene and protein expression in response to treatment of cells by the polysaccharide fractions. These polysaccharide fractions exhibited potential cytotoxic and apoptotic effects on carcinoma cells, and they induced apoptosis in these cells through the events of up-regulation of caspase 3, down-regulation of bcl-2 family genes followed by cytochrome c release. PMID:24702929

  11. Effects of glycerol on apoptotic signaling pathways during boar spermatozoa cryopreservation.

    PubMed

    Zeng, Changjun; Tang, Keyi; He, Lian; Peng, Wenpei; Ding, Li; Fang, Donghui; Zhang, Yan

    2014-06-01

    Artificial insemination (AI) with post-thawed boar spermatozoa results in low farrowing rates and reduced litter sizes mainly due to cryoinjury or damages to spermatozoa during cryopreservation. Low viability and motility of post-thawed boar spermatozoa are highly associated with apoptosis during cryopreservation. Although glycerol is widely used a cryoprotectant (CPA) for boar spermatozoa cryopreservation, the mechanism and relationship between glycerol and apoptosis-related gene expression needs to be clarified. In this study, we treated boar spermatozoa with different concentrations of glycerol in lactose egg yolk (LEY) extender to evaluate the apoptosis-related gene expression and protease activities of caspases. These results show that: (1) low concentrations of glycerol (2% and 3%) were more suitable for boar spermatozoa cryopreservation; (2) apoptosis-related genes involved in intrinsic mitochondrial and extrinsic death receptor apoptotic signaling pathways were widely expressed in different concentrations of glycerol treated boar spermatozoa; (3) there was a significant positive correlation (r=0.840, P=0.037) between the percentage of Annexin V(+)/PI(+) staining spermatozoa and caspase-6/9 protease activity. In conclusion, 2% and 3% glycerol have the best anti-apoptotic effects, and the expression of Fas/FasL and Bcl-2/Bax have a strong correlation with spermatozoa parameters. PMID:24680861

  12. Cytotoxic activity of the novel heterocyclic compound G-11 is primarily mediated through intrinsic apoptotic pathway.

    PubMed

    Saleh, Ayman M; Aziz, Mohammad A; Abdou, Ibrahim M; Taha, Mutasem O; Al-Qudah, Mahmoud A; Abadleh, Mohammed M; Aljada, Ahmad; Rizvi, Syed A

    2016-07-01

    Natural and chemically synthesized heterocyclic compounds have been explored for their potential use as anticancer agents. We had synthesized non-natural heterocyclic analogs and evaluated their anti-tumor activity by measuring effect on cell proliferation and induction of apoptosis in different cell lines. Previously, we identified a pyrazole-containing compound (G-11) showing cytotoxic effect towards leukemia and lymphoma cell lines. In this study, we further investigated the mechanistic aspects of anticancer properties of G-11 in HL-60 cell line. We demonstrated that cytotoxic effect of G-11 is mediated by caspase-dependent apoptosis. However, the involvement of mitochondrial dysfunction induced by G-11 was independent of caspases. G-11 triggered generation of ROS, caused disruption of mitochondrial transmembrane potential, increased release of cytochrome c to the cytosol, and altered the expression of Bcl-2 and Bax proteins. These results suggest significant involvement of intrinsic apoptotic pathway. This study comprehensively details the possible mechanisms of action of a novel heterocyclic compound which could find its potential use as an anticancer agent. PMID:27154302

  13. Calcium/calmodulin-dependent protein kinase II links ER stress with Fas and mitochondrial apoptosis pathways

    PubMed Central

    Timmins, Jenelle M.; Ozcan, Lale; Seimon, Tracie A.; Li, Gang; Malagelada, Cristina; Backs, Johannes; Backs, Thea; Bassel-Duby, Rhonda; Olson, Eric N.; Anderson, Mark E.; Tabas, Ira

    2009-01-01

    ER stress–induced apoptosis is implicated in various pathological conditions, but the mechanisms linking ER stress–mediated signaling to downstream apoptotic pathways remain unclear. Using human and mouse cell culture and in vivo mouse models of ER stress–induced apoptosis, we have shown that cytosolic calcium resulting from ER stress induces expression of the Fas death receptor through a pathway involving calcium/calmodulin-dependent protein kinase IIγ (CaMKIIγ) and JNK. Remarkably, CaMKIIγ was also responsible for processes involved in mitochondrial-dependent apoptosis, including release of mitochondrial cytochrome c and loss of mitochondrial membrane potential. CaMKII-dependent apoptosis was also observed in a number of cultured human and mouse cells relevant to ER stress–induced pathology, including cultured macrophages, endothelial cells, and neuronal cells subjected to proapoptotic ER stress. Moreover, WT mice subjected to systemic ER stress showed evidence of macrophage mitochondrial dysfunction and apoptosis, renal epithelial cell apoptosis, and renal dysfunction, and these effects were markedly reduced in CaMKIIγ-deficient mice. These data support an integrated model in which CaMKII serves as a unifying link between ER stress and the Fas and mitochondrial apoptotic pathways. Our study also revealed what we believe to be a novel proapoptotic function for CaMKII, namely, promotion of mitochondrial calcium uptake. These findings raise the possibility that CaMKII inhibitors could be useful in preventing apoptosis in pathological settings involving ER stress–induced apoptosis. PMID:19741297

  14. Stimulation by pro-apoptotic valinomycin of cytosolic NADH/cytochrome c electron transport pathway-Effect of SH reagents.

    PubMed

    Lofrumento, Dario Domenico; La Piana, Gianluigi; Palmitessa, Valeria; Abbrescia, Daniela Isabel; Lofrumento, Nicola Elio

    2016-07-01

    Intrinsic and extrinsic apoptosis are both characterised by the presence of cytochrome c (cyto-c) in the cytosol. We present data on the extra-mitochondrial NADH oxidation catalysed by exogenous (cytosolic) cyto-c, as a possible answer to the paradox of apoptosis being an energy-dependent program but characterized by the impairment of the respiratory chain. The reduction of molecular oxygen induced by the cytosolic NADH/cyto-c pathway is coupled to the generation of an electrochemical proton gradient available for ATP synthesis. Original findings show that SH reagents inhibit the NADH/cyto-c system with a conformational change mechanism. The mitochondrial integrity-test of sulfite oxidase unequivocally demonstrates that this enzyme (120kDa) can be released outside but exogenous cyto-c (12.5kDa) does not permeate into mitochondria. Valinomycin at 2nM stimulates both the energy-dependent reversible mitochondrial swelling and the NADH/cyto-c oxidation pathway. The pro-apoptotic activity of valinomycin, as well as to the dissipation of membrane potential, can be also ascribed to the increased activity of the NADH/cyto-c oxidation pathway useful as an additional source of energy for apoptosis. It can be speculated that the activation of the NADH/cyto-c system coupled to valinomycin-induced mitochondrial osmotic swelling may represent a strategy to activate apoptosis in confined solid tumours. PMID:27129925

  15. Mcl-1 involvement in mitochondrial dynamics is associated with apoptotic cell death

    PubMed Central

    Morciano, Giampaolo; Giorgi, Carlotta; Balestra, Dario; Marchi, Saverio; Perrone, Daniela; Pinotti, Mirko; Pinton, Paolo

    2016-01-01

    The B-cell lymphoma-2 (Bcl-2) family proteins are critical regulators of apoptosis and consist of both proapoptotic and antiapoptotic factors. Within this family, the myeloid cell leukemia factor 1 (Mcl-1) protein exists in two forms as the result of alternative splicing. The long variant (Mcl-1L) acts as an antiapoptotic factor, whereas the short isoform (Mcl-1S) displays proapoptotic activity. In this study, using splice-switching antisense oligonucleotides (ASOs), we increased the synthesis of Mcl-1S, which induced a concurrent reduction of Mcl-1L, resulting in increased sensitivity of cancer cells to apoptotic stimuli. The Mcl-1 ASOs also induced mitochondrial hyperpolarization and a consequent increase in mitochondrial calcium (Ca2+) accumulation. The high Mcl-1S/L ratio correlated with significant hyperfusion of the entire mitochondrial network, which occurred in a dynamin-related protein (Drp1)–dependent manner. Our data indicate that the balance between the long and short variants of the Mcl-1 gene represents a key aspect of the regulation of mitochondrial physiology. We propose that the Mcl-1L/S balance is a novel regulatory factor controlling the mitochondrial fusion and fission machinery. PMID:26538029

  16. PINK1 protects against cell death induced by mitochondrial depolarization, by phosphorylating Bcl-xL and impairing its pro-apoptotic cleavage

    PubMed Central

    Arena, G; Gelmetti, V; Torosantucci, L; Vignone, D; Lamorte, G; De Rosa, P; Cilia, E; Jonas, E A; Valente, E M

    2013-01-01

    Mutations in the PINK1 gene are a frequent cause of autosomal recessive Parkinson's disease (PD). PINK1 encodes a mitochondrial kinase with neuroprotective activity, implicated in maintaining mitochondrial homeostasis and function. In concurrence with Parkin, PINK1 regulates mitochondrial trafficking and degradation of damaged mitochondria through mitophagy. Moreover, PINK1 can activate autophagy by interacting with the pro-autophagic protein Beclin-1. Here, we report that, upon mitochondrial depolarization, PINK1 interacts with and phosphorylates Bcl-xL, an anti-apoptotic protein also known to inhibit autophagy through its binding to Beclin-1. PINK1–Bcl-xL interaction does not interfere either with Beclin-1 release from Bcl-xL or the mitophagy pathway; rather it protects against cell death by hindering the pro-apoptotic cleavage of Bcl-xL. Our data provide a functional link between PINK1, Bcl-xL and apoptosis, suggesting a novel mechanism through which PINK1 regulates cell survival. This pathway could be relevant for the pathogenesis of PD as well as other diseases including cancer. PMID:23519076

  17. Manganese nanoparticle activates mitochondrial dependent apoptotic signaling and autophagy in dopaminergic neuronal cells

    SciTech Connect

    Afeseh Ngwa, Hilary; Kanthasamy, Arthi; Gu, Yan; Fang, Ning; Anantharam, Vellareddy; Kanthasamy, Anumantha G.

    2011-11-15

    The production of man-made nanoparticles for various modern applications has increased exponentially in recent years, but the potential health effects of most nanoparticles are not well characterized. Unfortunately, in vitro nanoparticle toxicity studies are extremely limited by yet unresolved problems relating to dosimetry. In the present study, we systematically characterized manganese (Mn) nanoparticle sizes and examined the nanoparticle-induced oxidative signaling in dopaminergic neuronal cells. Differential interference contrast (DIC) microscopy and transmission electron microscopy (TEM) studies revealed that Mn nanoparticles range in size from single nanoparticles ({approx} 25 nM) to larger agglomerates when in treatment media. Manganese nanoparticles were effectively internalized in N27 dopaminergic neuronal cells, and they induced a time-dependent upregulation of the transporter protein transferrin. Exposure to 25-400 {mu}g/mL Mn nanoparticles induced cell death in a time- and dose-dependent manner. Mn nanoparticles also significantly increased ROS, accompanied by a caspase-mediated proteolytic cleavage of proapoptotic protein kinase C{delta} (PKC{delta}), as well as activation loop phosphorylation. Blocking Mn nanoparticle-induced ROS failed to protect against the neurotoxic effects, suggesting the involvement of other pathways. Further mechanistic studies revealed changes in Beclin 1 and LC3, indicating that Mn nanoparticles induce autophagy. Primary mesencephalic neuron exposure to Mn nanoparticles induced loss of TH positive dopaminergic neurons and neuronal processes. Collectively, our results suggest that Mn nanoparticles effectively enter dopaminergic neuronal cells and exert neurotoxic effects by activating an apoptotic signaling pathway and autophagy, emphasizing the need for assessing possible health risks associated with an increased use of Mn nanoparticles in modern applications. -- Highlights: Black-Right-Pointing-Pointer Mn nanoparticles

  18. Important role of energy-dependent mitochondrial pathways in cultured rat cardiac myocyte apoptosis.

    PubMed

    Shiraishi, J; Tatsumi, T; Keira, N; Akashi, K; Mano, A; Yamanaka, S; Matoba, S; Asayama, J; Yaoi, T; Fushiki, S; Fliss, H; Nakagawa, M

    2001-10-01

    Recent studies have suggested that apoptosis and necrosis share common features in their signaling pathway and that apoptosis requires intracellular ATP for its mitochondrial/apoptotic protease-activating factor-1 suicide cascade. The present study was, therefore, designed to examine the role of intracellular energy levels in determining the form of cell death in cardiac myocytes. Neonatal rat cardiac myocytes were first incubated for 1 h in glucose-free medium containing oligomycin to achieve metabolic inhibition. The cells were then incubated for another 4 h in similar medium containing staurosporine and graded concentrations of glucose to manipulate intracellular ATP levels. Under ATP-depleting conditions, the cell death caused by staurosporine was primarily necrotic, as determined by creatine kinase release and nuclear staining with ethidium homodimer-1. However, under ATP-replenishing conditions, staurosporine increased the percentage of apoptotic cells, as determined by nuclear morphology and DNA fragmentation. Caspase-3 activation by staurosporine was also ATP dependent. However, loss of mitochondrial transmembrane potential (DeltaPsi(m)), Bax translocation, and cytochrome c release were observed in both apoptotic and necrotic cells. Moreover, cyclosporin A, an inhibitor of mitochondrial permeability transition, attenuated staurosporine-induced apoptosis and necrosis through the inhibition of DeltaPsi(m) reduction, cytochrome c release, and caspase-3 activation. Our data therefore suggest that staurosporine induces cell demise through a mitochondrial death signaling pathway and that the presence of intracellular ATP favors a shift from necrosis to apoptosis through caspase activation. PMID:11557554

  19. Apoptotic cells trigger a membrane-initiated pathway to increase ABCA1.

    PubMed

    Fond, Aaron M; Lee, Chang Sup; Schulman, Ira G; Kiss, Robert S; Ravichandran, Kodi S

    2015-07-01

    Macrophages clear millions of apoptotic cells daily and, during this process, take up large quantities of cholesterol. The membrane transporter ABCA1 is a key player in cholesterol efflux from macrophages and has been shown via human genetic studies to provide protection against cardiovascular disease. How the apoptotic cell clearance process is linked to macrophage ABCA1 expression is not known. Here, we identified a plasma membrane-initiated signaling pathway that drives a rapid upregulation of ABCA1 mRNA and protein. This pathway involves the phagocytic receptor brain-specific angiogenesis inhibitor 1 (BAI1), which recognizes phosphatidylserine on apoptotic cells, and the intracellular signaling intermediates engulfment cell motility 1 (ELMO1) and Rac1, as ABCA1 induction was attenuated in primary macrophages from mice lacking these molecules. Moreover, this apoptotic cell-initiated pathway functioned independently of the liver X receptor (LXR) sterol-sensing machinery that is known to regulate ABCA1 expression and cholesterol efflux. When placed on a high-fat diet, mice lacking BAI1 had increased numbers of apoptotic cells in their aortic roots, which correlated with altered lipid profiles. In contrast, macrophages from engineered mice with transgenic BAI1 overexpression showed greater ABCA1 induction in response to apoptotic cells compared with those from control animals. Collectively, these data identify a membrane-initiated pathway that is triggered by apoptotic cells to enhance ABCA1 within engulfing phagocytes and with functional consequences in vivo. PMID:26075824

  20. Apoptotic cells trigger a membrane-initiated pathway to increase ABCA1

    PubMed Central

    Fond, Aaron M.; Lee, Chang Sup; Schulman, Ira G.; Kiss, Robert S.; Ravichandran, Kodi S.

    2015-01-01

    Macrophages clear millions of apoptotic cells daily and, during this process, take up large quantities of cholesterol. The membrane transporter ABCA1 is a key player in cholesterol efflux from macrophages and has been shown via human genetic studies to provide protection against cardiovascular disease. How the apoptotic cell clearance process is linked to macrophage ABCA1 expression is not known. Here, we identified a plasma membrane–initiated signaling pathway that drives a rapid upregulation of ABCA1 mRNA and protein. This pathway involves the phagocytic receptor brain-specific angiogenesis inhibitor 1 (BAI1), which recognizes phosphatidylserine on apoptotic cells, and the intracellular signaling intermediates engulfment cell motility 1 (ELMO1) and Rac1, as ABCA1 induction was attenuated in primary macrophages from mice lacking these molecules. Moreover, this apoptotic cell–initiated pathway functioned independently of the liver X receptor (LXR) sterol–sensing machinery that is known to regulate ABCA1 expression and cholesterol efflux. When placed on a high-fat diet, mice lacking BAI1 had increased numbers of apoptotic cells in their aortic roots, which correlated with altered lipid profiles. In contrast, macrophages from engineered mice with transgenic BAI1 overexpression showed greater ABCA1 induction in response to apoptotic cells compared with those from control animals. Collectively, these data identify a membrane-initiated pathway that is triggered by apoptotic cells to enhance ABCA1 within engulfing phagocytes and with functional consequences in vivo. PMID:26075824

  1. Physical exercise improves brain cortex and cerebellum mitochondrial bioenergetics and alters apoptotic, dynamic and auto(mito)phagy markers.

    PubMed

    Marques-Aleixo, I; Santos-Alves, E; Balça, M M; Rizo-Roca, D; Moreira, P I; Oliveira, P J; Magalhães, J; Ascensão, A

    2015-08-20

    We here investigate the effects of two exercise modalities (endurance treadmill training-TM and voluntary free-wheel activity-FW) on the brain cortex and cerebellum mitochondrial bioenergetics, permeability transition pore (mPTP), oxidative stress, as well as on proteins involved in mitochondrial biogenesis, apoptosis, and quality control. Eighteen male rats were assigned to sedentary-SED, TM and FW groups. Behavioral alterations and ex vivo brain mitochondrial function endpoints were assessed. Proteins involved in oxidative phosphorylation (OXPHOS, including the adenine nucleotide translocator), oxidative stress markers and regulatory proteins (SIRT3, p66shc, UCP2, carbonyls, MDA, -SH, aconitase, Mn-SOD), as well as proteins involved in mitochondrial biogenesis (PGC1α, TFAM) were evaluated. Apoptotic signaling was measured through quantifying caspase 3, 8 and 9-like activities, Bax, Bcl2, CypD, and cofilin expression. Mitochondrial dynamics (Mfn1/2, OPA1 and DRP1) and auto(mito)phagy (LC3II, Beclin1, Pink1, Parkin, p62)-related proteins were also measured by Western blotting. Only the TM exercise group showed increased spontaneous alternation and exploratory activity. Both exercise regimens improved mitochondrial respiratory activity, increased OXPHOS complexes I, III and V subunits in both brain subareas and decreased oxidative stress markers. Increased resistance to mPTP and decreased apoptotic signaling were observed in the brain cortex from TM and in the cerebellum from TM and FW groups. Also, exercise increased the expression of proteins involved in mitochondrial biogenesis, autophagy and fusion, simultaneous with decreased expression of mitochondrial fission-related protein DRP1. In conclusion, physical exercise improves brain cortex and cerebellum mitochondrial function, decreasing oxidative stress and apoptotic related markers. It is also possible that favorable alterations in mitochondrial biogenesis, dynamics and autophagy signaling induced by exercise

  2. Mitochondrial dysfunction: a crucial event in okadaic acid (ICV) induced memory impairment and apoptotic cell death in rat brain.

    PubMed

    Kamat, Pradeep K; Tota, Santoshkumar; Shukla, Rakesh; Ali, Shakir; Najmi, Abul Kalam; Nath, Chandishwar

    2011-12-01

    Mitochondrial abnormalities have been identified in a large proportion of neurodegenerative diseases. Recently we have reported that intracerebroventricular (ICV) administration of okadaic acid (OKA) causes memory impairment in rat. However involvement of mitochondrial function in OKA induced memory impairment and neuronal damage has not been determined. OKA (200 ng) was administered by ICV route. After 13th day of OKA administration memory function was evaluated by Morris Water Maze test. Following completion of behavioral studies on 16th day, mitochondrial membrane potential, Ca(2+) and reactive oxygen species were evaluated in mitochondrial preparation of cortex, hippocampus, striatum and cerebellum of rat brain. While ATP, mitochondrial activity, lipid peroxidation and nitrite were investigated in synaptosomal preparation of rat brain areas. The activities and mRNA expression of apoptotic factors, caspase-3 and caspase-9, were studied in rat brain regions. The neuronal damage was also confirmed by histopathological study. OKA treated rats showed memory impairment including increased Ca(2+) and reactive oxygen species and decreased mitochondrial membrane potential, ATP and mitochondrial activity in mitochondrial preparation. There was a significant increase in lipid peroxidation and nitrite in synaptosomal preparations. Preventive treatment daily for 13 days with antidementic drugs, donepezil (5 mg/kg, p.o) and memantine (10 mg/kg, p.o), significantly attenuated OKA induced mitochondrial dysfunction, apoptotic cell death, memory impairment and histological changes. Mitochondrial dysfunction appeared as a key factor in OKA induced memory impairment and apoptotic cell death. This study indicates that clinically used antidementic drugs are effective against OKA induced adverse changes at behavioral, cellular, and histological levels and mitochondrial dysfunction. PMID:21893081

  3. B cell receptor cross-linking triggers a caspase-8-dependent apoptotic pathway that is independent of the death effector domain of Fas-associated death domain protein.

    PubMed

    Besnault, L; Schrantz, N; Auffredou, M T; Leca, G; Bourgeade, M F; Vazquez, A

    2001-07-15

    We have previously reported that B cell receptors, depending on the degree to which they are cross-linked, can promote apoptosis in various human B cell types. In this study, we show that B cell receptors can trigger two apoptotic pathways according to cross-linking and that these pathways control mitochondrial activation in human Burkitt's lymphoma cells. Whereas soluble anti-mu Ab triggers caspase-independent mitochondrial activation, cross-linked anti-mu Ab induces an apoptotic response associated with a caspase-dependent loss of mitochondrial transmembrane potential. This B cell receptor-mediated caspase-dependent mitochondrial activation is associated with caspase-8 activation. We show here that caspase-8 inhibitors strongly decrease cross-linking-dependent B cell receptor-mediated apoptosis in Burkitt's lymphoma BL41 cells. These inhibitors act upstream from the mitochondria as they prevented the loss of mitochondrial membrane potential observed in B cell receptor-treated BL41 cells. Caspase-8 activation in these cells was also evident from the detection of cleaved fragments of caspase-8 and the cleavage of specific substrates, including Bid. Our data show that cross-linked B cell receptors induced an apoptotic pathway involving sequential caspase-8 activation, loss of mitochondrial membrane potential, and the activation of caspase-9 and caspase-3. Cells expressing a dominant negative mutant of Fas-associated death domain protein were sensitive to cross-linked B cell receptor-induced caspase-8 activation and apoptosis; therefore, this caspase-8 activation was independent of the death effector domain of Fas-associated death domain protein. PMID:11441077

  4. Assembly of Bak homodimers into higher order homooligomers in the mitochondrial apoptotic pore

    PubMed Central

    Mandal, Tirtha; Shin, Seungjin; Aluvila, Sreevidya; Chen, Hui-Chen; Grieve, Carter; Choe, Jun-Yong; Cheng, Emily H.; Hustedt, Eric J.; Oh, Kyoung Joon

    2016-01-01

    In mitochondrial apoptosis, Bak is activated by death signals to form pores of unknown structure on the mitochondrial outer membrane via homooligomerization. Cytochrome c and other apoptotic factors are released from the intermembrane space through these pores, initiating downstream apoptosis events. Using chemical crosslinking and double electron electron resonance (DEER)-derived distance measurements between specific structural elements in Bak, here we clarify how the Bak pore is assembled. We propose that previously described BH3-in-groove homodimers (BGH) are juxtaposed via the ‘α3/α5’ interface, in which the C-termini of helices α3 and α5 are in close proximity between two neighboring Bak homodimers. This interface is observed concomitantly with the well-known ‘α6:α6’ interface. We also mapped the contacts between Bak homodimers and the lipid bilayer based on EPR spectroscopy topology studies. Our results suggest a model for the lipidic Bak pore, whereby the mitochondrial targeting C-terminal helix does not change topology to accommodate the lining of the pore lumen by BGH. PMID:27488021

  5. Assembly of Bak homodimers into higher order homooligomers in the mitochondrial apoptotic pore.

    PubMed

    Mandal, Tirtha; Shin, Seungjin; Aluvila, Sreevidya; Chen, Hui-Chen; Grieve, Carter; Choe, Jun-Yong; Cheng, Emily H; Hustedt, Eric J; Oh, Kyoung Joon

    2016-01-01

    In mitochondrial apoptosis, Bak is activated by death signals to form pores of unknown structure on the mitochondrial outer membrane via homooligomerization. Cytochrome c and other apoptotic factors are released from the intermembrane space through these pores, initiating downstream apoptosis events. Using chemical crosslinking and double electron electron resonance (DEER)-derived distance measurements between specific structural elements in Bak, here we clarify how the Bak pore is assembled. We propose that previously described BH3-in-groove homodimers (BGH) are juxtaposed via the 'α3/α5' interface, in which the C-termini of helices α3 and α5 are in close proximity between two neighboring Bak homodimers. This interface is observed concomitantly with the well-known 'α6:α6' interface. We also mapped the contacts between Bak homodimers and the lipid bilayer based on EPR spectroscopy topology studies. Our results suggest a model for the lipidic Bak pore, whereby the mitochondrial targeting C-terminal helix does not change topology to accommodate the lining of the pore lumen by BGH. PMID:27488021

  6. Enhanced apoptotic cancer cell killing after Foscan photodynamic therapy combined with fenretinide via de novo sphingolipid biosynthesis pathway.

    PubMed

    Boppana, Nithin B; DeLor, Jeremy S; Van Buren, Eric; Bielawska, Alicja; Bielawski, Jacek; Pierce, Jason S; Korbelik, Mladen; Separovic, Duska

    2016-06-01

    We and others have shown that stresses, including photodynamic therapy (PDT), can disrupt the de novo sphingolipid biosynthesis pathway, leading to changes in the levels of sphingolipids, and subsequently, modulation of cell death. The de novo sphingolipid biosynthesis pathway includes a ceramide synthase-dependent reaction, giving rise to dihydroceramide, which is then converted in a desaturase-dependent reaction to ceramide. In this study we tested the hypothesis that combining Foscan-mediated PDT with desaturase inhibitor fenretinide (HPR) enhances cancer cell killing. We discovered that by subjecting SCC19 cells, a human head and neck squamous cell carcinoma cell line, to PDT+HPR resulted in enhanced accumulation of C16-dihydroceramide, not ceramide. Concomitantly, mitochondrial depolarization was enhanced by the combined treatment. Enhanced activation of caspase-3 after PDT+HPR was inhibited by FB. Enhanced clonogenic cell death after the combination was sensitive to FB, as well as Bcl2- and caspase inhibitors. Treatment of mouse SCCVII squamous cell carcinoma tumors with PDT+HPR resulted in improved long-term tumor cures. Overall, our data showed that combining PDT with HPR enhanced apoptotic cancer cell killing and antitumor efficacy of PDT. The data suggest the involvement of the de novo sphingolipid biosynthesis pathway in enhanced apoptotic cell killing after PDT+HPR, and identify the combination as a novel more effective anticancer treatment than either treatment alone. PMID:27085050

  7. Mitochondrial Cell Death Pathways in Caenorhabiditis elegans.

    PubMed

    Seervi, Mahendra; Xue, Ding

    2015-01-01

    Programmed cell death is an evolutionarily conserved process essential for animal development and tissue homeostasis. Mitochondria have been demonstrated to play a central role in regulating both the activation and the execution of apoptosis. In particular, mitochondria release multiple proapoptotic factors from its intermembrane space, leading to both caspase-dependent and -independent cell death. Despite the pivotal roles of invertebrate animal models, Caenorhabiditis elegans and Drosophila melanogaster, in deciphering conserved pathways and mechanisms of programmed cell death, the importance of mitochondria to apoptosis of invertebrates remains elusive and largely unexplored. Recent studies have corroborated significant association between mitochondria and apoptosis in C. elegans, making it a thrust area of investigations. In this review, we detail the roles of mitochondrial proteins in mediating execution of cell death in C. elegans, including chromosome fragmentation, phosphatidylserine externalization, and elimination of mitochondria, and discuss the potential roles of mitochondria in the activation of C. elegans cell death. The combination of traditional powerful genetic tools and the emergence of the multiple new reverse genetic techniques, including the highly efficient CRISPR/Cas9 gene-editing method, should make C. elegans an ideal animal model for analyzing mitochondrial cell death pathways and associated regulatory mechanisms. PMID:26431563

  8. Crosstalk between tumor suppressors p53 and PKCδ: Execution of the intrinsic apoptotic pathways.

    PubMed

    Dashzeveg, Nurmaa; Yoshida, Kiyotsugu

    2016-07-28

    p53 and PKCδ are tumor suppressors that execute apoptotic mechanisms in response to various cellular stresses. p53 is a transcription factor that is frequently mutated in human cancers; it regulates apoptosis in transcription-dependent and -independent ways in response to genotoxic stresses. PKCδ is a serine/threonine protein kinase and mutated in human cancers. Available evidence shows that PKCδ activates p53 by direct and/or indirect mechanisms. Moreover, PKCδ is also implicated in the transcriptional regulation of p53 in response to DNA damage. Recent findings demonstrated that p53, in turn, binds onto the PKCδ promoter and induces its expression upon DNA damage to facilitate apoptosis. Both p53 and PKCδ are associated with the apoptotic mechanisms in the mitochondria by regulating Bcl-2 family proteins to provide mitochondrial outer membrane permeabilization. This review discusses the crosstalk between p53 and PKCδ in the context of apoptotic cell death and cancer therapy. PMID:27130668

  9. Role of Kv1.3 mitochondrial potassium channel in apoptotic signalling in lymphocytes.

    PubMed

    Gulbins, Erich; Sassi, Nicola; Grassmè, Heike; Zoratti, Mario; Szabò, Ildikò

    2010-01-01

    Mitochondria have been shown to play a pivotal role in apoptotic signalling in various cell types. We have recently reported that in lymphocytes the voltage-gated potassium channel Kv1.3, known to reside in the plasma membrane, is active also in the inner mitochondrial membrane. Upon induction of apoptosis, outer-membrane inserted Bax binds to and inhibits Kv1.3 resulting in hyperpolarization, an increase in reactive oxygen species production and cytochrome c release. In cells lacking Kv1.3 these events do not take place. Here, we present new data which further corroborates an important role of this channel in the sequence of events leading to Bax-induced cytochrome c release. Recombinant Kv1.3, when pre-incubated with Bax, prevents the actions of Bax at the level of mitochondria. Furthermore, we report the presence of Kv1.3 protein in mitochondria from PC3 and MCF-7 cancer cells, suggesting that this channel might play a role in the apoptotic signalling not only in lymphocytes but also in other cells. PMID:20114030

  10. Plasma-activated medium induces A549 cell injury via a spiral apoptotic cascade involving the mitochondrial-nuclear network.

    PubMed

    Adachi, Tetsuo; Tanaka, Hiromasa; Nonomura, Saho; Hara, Hirokazu; Kondo, Shin-ichi; Hori, Masaru

    2015-02-01

    Plasma medicine is a rapidly expanding new field of interdisciplinary research that combines physics, chemistry, biology, and medicine. Nonthermal atmospheric pressure plasma can be applied to living cells and tissues and has emerged as a novel technology for cancer therapy. Plasma has recently been shown to affect cells not only directly, but also by indirect treatment with previously prepared plasma-activated medium (PAM). The objective of this study was to demonstrate the inhibitory effects of PAM on A549 cell survival and elucidate the signaling mechanisms responsible for cell death. PAM maintained its ability to suppress cell viability for at least 1 week when stored at -80°C. The severity of PAM-triggered cell injury depended on the kind of culture medium used to prepare the PAM, especially that with or without pyruvate. Hydrogen peroxide (H2O2) and/or its derived or cooperating reactive oxygen species reduced the mitochondrial membrane potential, downregulated the expression of the antiapoptotic protein Bcl2, activated poly(ADP-ribose) polymerase-1, and released apoptosis-inducing factor from mitochondria with endoplasmic reticulum stress. However, the activation of caspase 3/7 and attenuation of cell viability by the addition of caspase inhibitor were not observed. The accumulation of adenine 5'-diphosphoribose as a product of the above reactions activated transient receptor potential melastatin 2, which elevated intracellular Ca(2+) levels and subsequently led to cell death. These results demonstrated that H2O2 and/or other reactive species in PAM disturbed the mitochondrial-nuclear network in cancer cells through a caspase-independent apoptotic pathway. Moreover, damage to the plasma membrane by H2O2-cooperating charged species not only induced apoptosis, but also increased its permeability to extracellular reactive species. These phenomena were also detected in PAM-treated HepG2 and MCF-7 cells. PMID:25433364

  11. Stevioside induced ROS-mediated apoptosis through mitochondrial pathway in human breast cancer cell line MCF-7.

    PubMed

    Paul, S; Sengupta, S; Bandyopadhyay, T K; Bhattacharyya, A

    2012-01-01

    Stevioside is a diterpene glycoside found in the leaf of Stevia rebaudiana, a traditional oriental medicinal herb, which has been shown to have various biological and ethno-medicinal activities including antitumor activity. In this study, we investigated the effects of stevioside on the cytotoxicity, induction of apoptosis, and the putative pathways of its action in human breast cancer cells (MCF-7). For the analysis of apoptotic pathway, measurement of reactive oxygen species (ROS) and assessment of mitochondrial transmembrane potential (MTP) were achieved. We showed that stevioside was a potent inducer of apoptosis and it conveyed the apoptotic signal via intracellular ROS generation; thereby inducing change in MTP and induction of mitochondrial mediated apoptotic pathway. Taken together, our data indicated that stevioside induces the ROS-mediated mitochondrial permeability transition and results in the increased expression of apoptotic proteins such as Bax, Bcl-2 and Caspase-9. Effect of stevioside on stress-related transcription factors like NF-E2-related factor-2 opens up a new vista for further studies. This is the first report on the mechanism of the antibreast cancer (in vitro) activity of stevioside. PMID:23061910

  12. Ethanol promotes T cell apoptosis through the mitochondrial pathway

    PubMed Central

    Kapasi, Aditi A; Patel, Geeta; Goenka, Anuj; Nahar, Nilay; Modi, Neeraj; Bhaskaran, Madhu; Reddy, Krishna; Franki, Nicholas; Patel, Jaimita; Singhal, Pravin C

    2003-01-01

    Clinical reports suggest that acute ethanol intoxication is often associated with lymphopenia. Previously, ethanol was reported to invoke thymocyte apoptosis. We studied the effect of ethanol on T cell apoptosis. In addition, we evaluated the molecular mechanism of ethanol-induced T cell apoptosis. Human T cells harvested from healthy subjects after an alcohol drinking binge showed enhanced T cell apoptosis (before, 0·4 ± 0·2% versus after, 19·6 ± 2·5% apoptotic lymphocytes/field; P < 0·001). In in vitro studies, ethanol in a concentration of 50 mm and higher enhanced the apoptosis of Jurkat cells. DNA isolated from ethanol-treated Jurkat cells displayed integer multiples of 180 base pairs. Ethanol decreased Jurkat cell expression of Bcl-2, whereas ethanol increased Jurkat cell expression of Bax. Jurkat cells treated with ethanol also showed translocation of cytochrome C into cytosol. Moreover, a caspase-9 inhibitor partially inhibited ethanol-induced Jurkat cell apoptosis. In in vivo studies, after binge drinking, T cell expression of Bcl-2 also decreased. In addition, binge drinking induced the cleavage of caspase-3, suggesting activation of caspase-3 in T cells. These results suggest that ethanol promotes T cell apoptosis through the activation of intrinsic or mitochondrial pathway. PMID:12603597

  13. Reduction of apoptosis through the mitochondrial pathway by the administration of acetyl-L-carnitine to mouse fibroblasts in culture

    SciTech Connect

    Pillich, Rudolf Tito; Scarsella, Gianfranco; Risuleo, Gianfranco . E-mail: gianfranco.risuleo@uniroma1.it

    2005-05-15

    It is shown in literature that stress, such as deprivation of trophic factors and hypoxia, induces apoptosis in cultured cells and in tissues. In light of these results, we explored the possibility of protecting cells from programmed death by improving the metabolism of the mitochondrion. To this end, acetyl-L-carnitine was administered at various concentrations under conditions of serum deprivation. The choice of this drug was based on the accepted notion that acetyl-L-carnitine is able to stabilize mitochondrial membranes and to increase the supply of energy to the organelle. The results presented here indicate that the drug protects cells from apoptotic death: this is demonstrated by a lower positivity to the TUNEL reaction and by a strong reduction of the apoptotic DNA ladder in serum-deprived cells. The involvement of the mitochondrial apoptotic pathway was assessed by cytochrome C release and immunoreactivity to caspase 3. Moreover, acetyl-L-carnitine stimulates cell proliferation.

  14. Apoptosis and apoptotic pathway in actinic prurigo by immunohistochemistry

    PubMed Central

    Cuevas-González, Juan-Carlos; García-Vázquez, Francisco-Javier; Rodríguez-Lobato, Erika; Farfán-Morales, José-Eduardo

    2016-01-01

    Background Actinic prurigo (AP) is an idiopathic photodermatosis, this entity requires exposure to UV-B and -A to develop lesions. Apoptosis is a physiological death program that can be initiated by a permanently active mechanism (extrinsic pathway) or irreparable damage (intrinsic pathway). Material and Methods Descriptive study, the sample size comprised 64 paraffin blocks of tissue with a diagnosis of AP. In H&E-stained slides, the diagnosis of AP was corroborated, and 1-µm-thick sections were processed for immunohistochemistry (IHC). A database was constructed with SPSS version 20, Inc., Chicago, IL, USA, and descriptive statistics were analyzed by X2 test and comparison of means. Results A total of 64 cases were processed, of which 40 (62.5%) were cheilitis AP and 24 (37.5%) were AP in the skin. Of the 40 cheilitis samples, 27 were positive for Bcl-2 and caspase 3 (67.5%), p53 was expressed in 30 (75%). Of the skin lesions,p53 and caspase 3 were expressed in 18 of 24 cases (75%), and 13 were positive for Bcl-2 (54%). Conclusions We propose that apoptosis is the last step in the type IV subtype a-b hypersensitivity response-activation of the intrinsic pathway indicates that external factors, such as UV-A and -B are the trigger. Key words:Apoptosis, actinic prurigo, cheilitis actinic prurigo. PMID:26615506

  15. Unraveling Biochemical Pathways Affected by Mitochondrial Dysfunctions Using Metabolomic Approaches

    PubMed Central

    Demine, Stéphane; Reddy, Nagabushana; Renard, Patricia; Raes, Martine; Arnould, Thierry

    2014-01-01

    Mitochondrial dysfunction(s) (MDs) can be defined as alterations in the mitochondria, including mitochondrial uncoupling, mitochondrial depolarization, inhibition of the mitochondrial respiratory chain, mitochondrial network fragmentation, mitochondrial or nuclear DNA mutations and the mitochondrial accumulation of protein aggregates. All these MDs are known to alter the capacity of ATP production and are observed in several pathological states/diseases, including cancer, obesity, muscle and neurological disorders. The induction of MDs can also alter the secretion of several metabolites, reactive oxygen species production and modify several cell-signalling pathways to resolve the mitochondrial dysfunction or ultimately trigger cell death. Many metabolites, such as fatty acids and derived compounds, could be secreted into the blood stream by cells suffering from mitochondrial alterations. In this review, we summarize how a mitochondrial uncoupling can modify metabolites, the signalling pathways and transcription factors involved in this process. We describe how to identify the causes or consequences of mitochondrial dysfunction using metabolomics (liquid and gas chromatography associated with mass spectrometry analysis, NMR spectroscopy) in the obesity and insulin resistance thematic. PMID:25257998

  16. Proteasome Impairment Induces Recovery of Mitochondrial Membrane Potential and an Alternative Pathway of Mitochondrial Fusion

    PubMed Central

    Shirozu, Ryohei; Yashiroda, Hideki

    2015-01-01

    Mitochondria are vital and highly dynamic organelles that continuously fuse and divide to maintain mitochondrial quality. Mitochondrial dysfunction impairs cellular integrity and is known to be associated with various human diseases. However, the mechanism by which the quality of mitochondria is maintained remains largely unexplored. Here we show that impaired proteasome function recovers the growth of yeast cells lacking Fzo1, a pivotal protein for mitochondrial fusion. Decreased proteasome activity increased the mitochondrial oxidoreductase protein Mia40 and the ratio of the short isoform of mitochondrial intermembrane protein Mgm1 (s-Mgm1) to the long isoform (l-Mgm1). The increase in Mia40 restored mitochondrial membrane potential, while the increase in the s-Mgm1/l-Mgm1 ratio promoted mitochondrial fusion in an Fzo1-independent manner. Our findings demonstrate a new pathway for mitochondrial quality control that is induced by proteasome impairment. PMID:26552703

  17. Antitumor effects of traditional Chinese medicine targeting the cellular apoptotic pathway

    PubMed Central

    Xu, Huanli; Zhao, Xin; Liu, Xiaohui; Xu, Pingxiang; Zhang, Keming; Lin, Xiukun

    2015-01-01

    Defects in apoptosis are common phenomena in many types of cancer and are also a critical step in tumorigenesis. Targeting the apoptotic pathway has been considered an intriguing strategy for cancer therapy. Traditional Chinese medicine (TCM) has been used in the People’s Republic of China for thousands of years, and many of the medicines have been confirmed to be effective in the treatment of a number of tumors. With increasing cancer rates worldwide, the antitumor effects of TCMs have attracted more and more attention globally. Many of the TCMs have been shown to have antitumor activity through multiple targets, and apoptosis pathway-related targets have been extensively studied and defined to be promising. This review focuses on several antitumor TCMs, especially those with clinical efficacy, based on their effects on the apoptotic signaling pathway. The problems with and prospects of development of TCMs as anticancer agents are also presented. PMID:26056434

  18. Atorvastatin induced hepatic oxidative stress and apoptotic damage via MAPKs, mitochondria, calpain and caspase12 dependent pathways.

    PubMed

    Pal, Sankhadeep; Ghosh, Manoranjan; Ghosh, Shatadal; Bhattacharyya, Sudip; Sil, Parames C

    2015-09-01

    Atorvastatin (ATO), a 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor, is used widely for the treatment of hypercholesterolemia and hypertriglyceridemia. Application of this drug has now been made somehow limited because of ATO associated several acute and chronic side effects. The present study has been carried out to investigate the dose-dependent hepatic tissue toxicity in ATO induced oxidative impairment and cell death in mice. Administration of ATO enhanced ALT, ALP level, increased reactive oxygen species (ROS) production and altered the pro oxidant-antioxidant status of liver by reducing intracellular GSH level, anti-oxidant enzymes activities and increasing intracellular lipid peroxidation. Our experimental evidence suggests that ATO markedly decreased mitochondrial membrane potential, disturbed the Bcl-2 family protein balance, enhanced cytochrome c release in the cytosol, increased the levels of Apaf1, caspase-9, -3, cleaved PARP protein and ultimately led to apoptotic cell death. Besides, ATO distinctly increased the phosphorylation of p38, JNK, and ERK MAPKs, enhanced Caspase12 and calpain level. Histological studies also support the dose-dependent toxic effect of ATO in these organs pathophysiology. These results reveal that ATO induces hepatic tissue toxicity via MAPKs, mitochondria and ER dependent signaling pathway, in which calcium ions and ROS act as the pivotal mediators of the apoptotic signaling. PMID:26051349

  19. BAD-mediated apoptotic pathway is associated with human cancer development

    PubMed Central

    STICKLES, XIAOMANG B; MARCHION, DOUGLAS C; BICAKU, ELONA; SAWAH, ENTIDHAR AL; ABBASI, FOROUGH; XIONG, YIN; ZGHEIB, NADIM BOU; BOAC, BERNADETTE M; ORR, BRIAN C; JUDSON, PATRICIA L; BERRY, AMY; HAKAM, ARDESHIR; WENHAM, ROBERT M; APTE, SACHIN M; BERGLUND, ANDERS E; LANCASTER, JOHNATHAN M

    2015-01-01

    The malignant transformation of normal cells is caused in part by aberrant gene expression disrupting the regulation of cell proliferation, apoptosis, senescence and DNA repair. Evidence suggests that the Bcl-2 antagonist of cell death (BAD)-mediated apoptotic pathway influences cancer chemoresistance. In the present study, we explored the role of the BAD-mediated apoptotic pathway in the development and progression of cancer. Using principal component analysis to derive a numeric score representing pathway expression, we evaluated clinico-genomic datasets (n=427) from corresponding normal, pre-invasive and invasive cancers of different types, such as ovarian, endometrial, breast and colon cancers in order to determine the associations between the BAD-mediated apoptotic pathway and cancer development. Immunofluorescence was used to compare the expression levels of phosphorylated BAD [pBAD (serine-112, -136 and -155)] in immortalized normal and invasive ovarian, colon and breast cancer cells. The expression of the BAD-mediated apoptotic pathway phosphatase, PP2C, was evaluated by RT-qPCR in the normal and ovarian cancer tissue samples. The growth-promoting effects of pBAD protein levels in the immortalized normal and cancer cells were assessed using siRNA depletion experiments with MTS assays. The expression of the BAD-mediated apoptotic pathway was associated with the development and/or progression of ovarian (n=106, p<0.001), breast (n=185, p<0.0008; n=61, p=0.04), colon (n=22, p<0.001) and endometrial (n=33, p<0.001) cancers, as well as with ovarian endometriosis (n=20, p<0.001). Higher pBAD protein levels were observed in the cancer cells compared to the immortalized normal cells, whereas PP2C gene expression was lower in the cancer compared to the ovarian tumor tissue samples (n=76, p<0.001). The increased pBAD protein levels after the depletion of PP2C conferred a growth advantage to the immortalized normal and cancer cells. The BAD-mediated apoptotic pathway

  20. The JAK2/STAT3 and mitochondrial pathways are essential for quercetin nanoliposome-induced C6 glioma cell death

    PubMed Central

    Wang, G; Wang, J J; Chen, X L; Du, S M; Li, D S; Pei, Z J; Lan, H; Wu, L B

    2013-01-01

    The formulation of quercetin nanoliposomes (QUE-NLs) has been shown to enhance QUE antitumor activity in C6 glioma cells. At high concentrations, QUE-NLs induce necrotic cell death. In this study, we probed the molecular mechanisms of QUE-NL-induced C6 glioma cell death and examined whether QUE-NL-induced programmed cell death involved Bcl-2 family and mitochondrial pathway through STAT3 signal transduction pathway. Downregulation of Bcl-2 and the overexpression of Bax by QUE-NL supported the involvement of Bcl-2 family proteins upstream of C6 glioma cell death. In addition, the activation of JAK2 and STAT3 were altered following exposure to QUE-NLs in C6 glioma cells, suggesting that QUE-NLs downregulated Bcl-2 mRNAs expression and enhanced the expression of mitochondrial mRNAs through STAT3-mediated signaling pathways either via direct or indirect mechanisms. There are several components such as ROS, mitochondrial, and Bcl-2 family shared by the necrotic and apoptotic pathways. Our studies indicate that the signaling cross point of the mitochondrial pathway and the JAK2/STAT3 signaling pathway in C6 glioma cell death is modulated by QUE-NLs. In conclusion, regulation of JAK2/STAT3 and ROS-mediated mitochondrial pathway agonists alone or in combination with treatment by QUE-NLs could be a more effective method of treating chemical-resistant glioma. PMID:23907460

  1. Modulation of Apoptotic Pathways of Macrophages by Surface-Functionalized Multi-Walled Carbon Nanotubes

    PubMed Central

    Jiang, Yuanqin; Zhang, Honggang; Wang, Yange; Chen, Min; Ye, Shefang; Hou, Zhenqing; Ren, Lei

    2013-01-01

    Biomedical applications of carbon nanotubes (CNTs) often involve improving their hydrophilicity and dispersion in biological media by modifying them through noncovalent or covalent functionalization. However, the potential adverse effects of surface-functionalized CNTs have not been well characterized. In this study, we functionalized multi-walled CNTs (MWCNTs) via carboxylation, to produce MWCNTs-COOH, and via poly (ethylene glycol) linking, to produce MWCNTs-PEG. We used these functionalized MWCNTs to study the effect of surface functionalization on MWCNTs-induced toxicity to macrophages, and elucidate the underlying mechanisms of action. Our results revealed that MWCNTs-PEG were less cytotoxic and were associated with less apoptotic cell death of macrophages than MWCNTs-COOH. Additionally, MWCNTs-PEG induced less generation of reactive oxygen species (ROS) involving less activation of NADPH oxidase compared with MWCNTs-COOH, as evidenced by membrane translocation of p47phox and p67phox in macrophages. The less cytotoxic and apoptotic effect of MWCNTs-PEG compared with MWCNTs-COOH resulted from the lower cellular uptake of MWCNTs-PEG, which resulted in less activation of oxidative stress-responsive pathways, such as p38 mitogen-activated protein kinases (MAPK) and nuclear factor (NF)-κB. These results demonstrate that surface functionalization of CNTs may alter ROS-mediated cytotoxic and apoptotic response by modulating apoptotic signaling pathways. Our study thus provides new insights into the molecular basis for the surface properties affecting CNTs toxicity. PMID:23755279

  2. Multiple Pathways Influence Mitochondrial Inheritance in Budding Yeast

    PubMed Central

    Frederick, Rebecca L.; Okamoto, Koji; Shaw, Janet M.

    2008-01-01

    Yeast mitochondria form a branched tubular network. Mitochondrial inheritance is tightly coupled with bud emergence, ensuring that daughter cells receive mitochondria from mother cells during division. Proteins reported to influence mitochondrial inheritance include the mitochondrial rho (Miro) GTPase Gem1p, Mmr1p, and Ypt11p. A synthetic genetic array (SGA) screen revealed interactions between gem1Δ and deletions of genes that affect mitochondrial function or inheritance, including mmr1Δ. Synthetic sickness of gem1Δ mmr1Δ double mutants correlated with defective mitochondrial inheritance by large buds. Additional studies demonstrated that GEM1, MMR1, and YPT11 each contribute to mitochondrial inheritance. Mitochondrial accumulation in buds caused by overexpression of either Mmr1p or Ypt11p did not depend on Gem1p, indicating these three proteins function independently. Physical linkage of mitochondria with the endoplasmic reticulum (ER) has led to speculation that distribution of these two organelles is coordinated. We show that yeast mitochondrial inheritance is not required for inheritance or spreading of cortical ER in the bud. Moreover, Ypt11p overexpression, but not Mmr1p overexpression, caused ER accumulation in the bud, revealing a potential role for Ypt11p in ER distribution. This study demonstrates that multiple pathways influence mitochondrial inheritance in yeast and that Miro GTPases have conserved roles in mitochondrial distribution. PMID:18245340

  3. Chronic Cigarette Smoke Extract Treatment Selects For Apoptotic Dysfunction and Mitochondrial mutations in Minimally Transformed Oral Keratinocytes

    PubMed Central

    Chang, Steven S.; Jiang, Wei Wen; Smith, Ian; Glazer, Chad; Sun, Wen-Yue; Mithani, Suhail; Califano, Joseph A.

    2009-01-01

    Cigarette smoke demonstrates a carcinogenic effect through chronic exposure, not acute exposures. However, current cell line models study only the acute effects of cigarette smoke. Using a cell line model, we compared the effects of acute versus chronic cigarette-smoke-extract (CSE) on mitochondria in minimally-transformed oral keratinocytes (OKF6). OKF6 cells were treated with varying concentrations of CSE for 6-months. Cells were analyzed monthly by flow cytometry for mitochondrial-membrane-potential (MMP), cytochrome-c release, caspase-3 activation and viability after CSE-exposure. At each time point the same assays were performed after 24hrs of valinomycin (MMP depolarizing agent) treatment. The mitochondrial-DNA of chronically CSE-treated cells was sequenced. After 6-months of CSE-treatment, the cells were increasingly resistant to CSE-mediated and valinomycin induced cell death. In addition, chronic CSE-treatment caused chronic depolarization of MMP, cytochrome c release, and caspase activation. Cells grown in the presence of only CSE vapor also exhibited the same resistance and chronic baseline apoptotic activation. Mitochondrial DNA sequencing found that chronic CSE treated cells had more amino acid changing mitochondrial mutations than acutely treated cells. CSE treatment of normal cells select for apoptotic dysfunction as well as mitochondrial mutations. These findings suggest that chronic tobacco exposure induce carcinogenesis via selection of apoptosis resistance and mitochondrial mutation in addition to previously known genotoxic effects that were found by acute treatments. Chronic models of tobacco exposure on upper aerodigestive epithelia may be more insightful than models of acute exposure in studying head and neck carcinogenesis PMID:19634139

  4. Rilmenidine suppresses proliferation and promotes apoptosis via the mitochondrial pathway in human leukemic K562 cells.

    PubMed

    Srdic-Rajic, Tatjana; Nikolic, Katarina; Cavic, Milena; Djokic, Ivana; Gemovic, Branislava; Perovic, Vladimir; Veljkovic, Nevena

    2016-01-01

    Imidazoline I1 receptor signaling is associated with pathways that regulate cell viability leading to varied cell-type specific phenotypes. We demonstrated that the antihypertensive drug rilmenidine, a selective imidazoline I1 receptor agonist, modulates proliferation and stimulates the proapoptotic protein Bax thus inducing the perturbation of the mitochondrial pathway and apoptosis in human leukemic K562 cells. Rilmenidine acts through a mechanism which involves deactivation of Ras/MAP kinases ERK, p38 and JNK. Moreover, rilmenidine renders K562 cells, which are particularly resistant to chemotherapeutic agents, susceptible to the DNA damaging drug doxorubicin. The rilmenidine co-treatment with doxorubicin reverses G2/M arrest and triggers apoptotic response to DNA damage. Our data offer new insights into the pathways associated with imidazoline I1 receptor activation in K562 cells suggesting rilmenidine as a valuable tool to deepen our understanding of imidazoline I1 receptor signaling in hematologic malignancies and to search for medicinally active agents. PMID:26598394

  5. Attenuation of Magnesium Sulfate on CoCl₂-Induced Cell Death by Activating ERK1/2/MAPK and Inhibiting HIF-1α via Mitochondrial Apoptotic Signaling Suppression in a Neuronal Cell Line.

    PubMed

    Huang, Chih-Yang; Hsieh, You-Liang; Ju, Da-Tong; Lin, Chien-Chung; Kuo, Chia-Hua; Liou, Yi-Fan; Ho, Tsung-Jung; Tsai, Chang-Hai; Tsai, Fuu-Jen; Lin, Jing-Ying

    2015-08-31

    Magnesium sulfate (MgSO₄) ameliorates hypoxia/ischemia-induced neuronal apoptosis in a rat model. This study aimed to investigate the mechanisms governing the anti-apoptotic effect of MgSO₄ on cobalt chloride (CoCl₂)-exposed NB41A3 mouse neuroblastoma cells. MgSO₄ increased the viability of NB41A3 cells treated with CoCl₂ in a dose-dependent manner. MgSO₄ treatment was shown to lead to an increase in the anti-apoptotic Bcl-2 family proteins, with a concomitant decrease in the pro-apoptotic proteins. MgSO₄ also attenuated the CoCl₂-induced disruption of mitochondrial membrane potential (ΔΨ(m)) and reduced the release of cytochrome c form the mitochondria to the cytosol. Furthermore, exposure to CoCl₂ caused activation of the hypoxia-inducible factor 1α (HIF-1α). On the other hand, MgSO₄ markedly reduced CoCl₂-induced HIF-1α activation and suppressed HIF-1α downstream protein BNIP3. MgSO₄ treatment induced ERK1/2 activation and attenuated CoCl₂-induced activation of p38 and JNK. Addition of the ERK1/2 inhibitor U0126 significantly reduced the ability of MgSO₄ to protect neurons from CoCl₂-induced mitochondrial apoptotic events. However, incubation of cultures with the p38 and JNK inhibitors did not significantly affect MgSO₄-mediated neuroprotection. MgSO₄ appears to suppress CoCl₂-induced NB41A3 cell death by activating ERK1/2/ MAPK pathways, which further modulates the role of Bcl-2 family proteins and mitochondria in NB41A3 cells. Our data suggest that MgSO₄ may act as a survival factor that preserves mitochondrial integrity and inhibits apoptotic pathways. PMID:26211648

  6. Molecular adaptations of apoptotic pathways and signaling partners in the cerebral cortex of human cocaine addicts and cocaine-treated rats.

    PubMed

    Alvaro-Bartolomé, M; La Harpe, R; Callado, L F; Meana, J J; García-Sevilla, J A

    2011-11-24

    Cocaine induces apoptotic effects in cultured cells and in the developing brain, but the aberrant activation of cell death in the adult brain remains inconclusive, especially in humans. This postmortem human brain study examined the status of canonical apoptotic pathways, signaling partners, and the cleavage of poly(ADP-ribose) polymerase-1 (PARP-1), a sensor of DNA damage, in prefrontal cortex (PFC) of a small but well-characterized cohort of cocaine abusers (n=10). For comparison, the chosen targets were also quantified in the cerebral cortex of cocaine-treated rats. In the PFC of cocaine abusers, FS7-associated cell surface antigen (Fas) receptor aggregates and Fas-associated death domain (FADD) adaptor were reduced (-26% and -66%, respectively) as well as the content of mitochondrial cytochrome c (-61%). In the same brain samples of cocaine abusers, the proteolytic cleavage of PARP-1 was increased (+39%). Nuclear PARP-1 degradation, possibly a consequence of increased mitochondrial oxidative stress, involved the activation of apoptosis-inducing factor (AIF) and not that of caspase-3. In the PFC of cocaine abusers, several signaling molecules associated with cocaine/dopamine and/or apoptotic pathways were not significantly altered, with the exception of anti-apoptotic truncated DARPP-32 (t-DARPP), a truncated isoform of dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32), whose content was decreased (-28%). Chronic exposure to cocaine in rats, including withdrawal for 3 days, did not alter Fas-FADD receptor complex, cytochrome c, caspase-3/fragments, AIF, PARP-1 cleavage, and associated signaling in the cerebral cortex. Chronic cocaine and abstinence, however, increased the content of t-DARPP (+39% and +47%) in rat brain cortex. The major findings indicate that cocaine addiction in humans is not associated with abnormal activation of extrinsic and intrinsic apoptotic pathways in PFC. The downregulation of Fas-FADD receptor complex and cytochrome c

  7. Fermented Brown Rice Extract Causes Apoptotic Death of Human Acute Lymphoblastic Leukemia Cells via Death Receptor Pathway.

    PubMed

    Horie, Yukiko; Nemoto, Hideyuki; Itoh, Mari; Kosaka, Hiroaki; Morita, Kyoji

    2016-04-01

    Mixture of brown rice and rice bran fermented with Aspergillus oryzae, designated as FBRA, has been reported to reveal anti-carcinogenic and anti-inflammatory effects in rodents. Then, to test its potential anti-cancer activity, the aqueous extract was prepared from FBRA powder, and the effect of this extract on human acute lymphoblastic leukemia Jurkat cells was directly examined. The exposure to FBRA extract reduced the cell viability in a concentration- and time-dependent manner. The reduction of the cell viability was accompanied by the DNA fragmentation, and partially restored by treatment with pan-caspase inhibitor. Further studies showed that FBRA extract induced the cleavage of caspase-8, -9, and -3, and decreased Bcl-2 protein expression. Moreover, the expression of tBid, DR5, and Fas proteins was enhanced by FBRA extract, and the pretreatment with caspase-8 inhibitor, but not caspase-9 inhibitor, restored the reduction of the cell viability induced by FBRA extract. These findings suggested that FBRA extract could induce the apoptotic death of human acute lymphoblastic leukemia cells probably through mainly the death receptor-mediated pathway and supplementarily through the tBid-mediated mitochondrial pathway, proposing the possibility that FBRA was a potential functional food beneficial to patients with hematological cancer. PMID:26769704

  8. The BARD1 BRCT domain contributes to p53 binding, cytoplasmic and mitochondrial localization, and apoptotic function.

    PubMed

    Tembe, Varsha; Martino-Echarri, Estefania; Marzec, Kamila A; Mok, Myth T S; Brodie, Kirsty M; Mills, Kate; Lei, Ying; DeFazio, Anna; Rizos, Helen; Kettle, Emma; Boadle, Ross; Henderson, Beric R

    2015-09-01

    BARD1 is a breast cancer tumor suppressor with multiple domains and functions. BARD1 comprises a tandem BRCT domain at the C-terminus, and this sequence has been reported to target BARD1 to distinct subcellular locations such as nuclear DNA breakage sites and the centrosome through binding to regulatory proteins such as HP1 and OLA1, respectively. We now identify the BRCT domain as a binding site for p53. We first confirmed previous reports that endogenous BARD1 binds to p53 by immunoprecipitation assay, and further show that BARD1/p53 complexes locate at mitochondria suggesting a cellular location for p53 regulation of BARD1 apoptotic activity. We used a proximity ligation assay to map three distinct p53 binding sequences in human BARD1, ranging from weak (425-525) and modest (525-567) to strong (551-777 comprising BRCT domains). Deletion of the BRCT sequence caused major defects in the ability of BARD1 to (1) bind p53, (2) localize to the cytoplasm and mitochondria, and (3) induce Bax oligomerization and apoptosis. Our data suggest that BARD1 can move to mitochondria independent of p53, but subsequently associates with p53 to induce Bax clustering in part by decreasing mitochondrial Bcl-2 levels. We therefore identify a role for the BRCT domain in stimulating BARD1 nuclear export and mitochondrial localization, and in assembling mitochondrial BARD1/p53 complexes to regulate specific activities such as apoptotic function. PMID:26022179

  9. The cytotoxic and pro-apoptotic effects of phenylephrine on corneal stromal cells via a mitochondrion-dependent pathway both in vitro and in vivo.

    PubMed

    Zhao, Jun; Qiu, Yue; Tian, Cheng-Lei; Fan, Ting-Jun

    2016-08-01

    Phenylephrine (PHE), a selective α1-adrenergic receptor agonist, is often used as a decongestant for mydriasis prior to cataract surgery, and its abuse might be cytotoxic to the cornea and result in blurred vision. However, the cytotoxicity of PHE to the cornea and its cellular and molecular mechanisms remain unknown. To provide references for secure medication and prospective therapeutic interventions of PHE, we investigated the cytotoxicity of PHE to corneal stroma and its possible mechanisms using an in vitro model of human corneal stromal (HCS) cells and an in vivo model of cat keratocytes. We found that PHE, above the concentration of 0.0781125% (1/128 of its clinical therapeutic dosage), had a dose- and time-dependent cytotoxicity to HCS cells by inducing morphological abnormality and viability decline, as well as S phase arrest. Moreover, PHE induced apoptosis of HCS cells by inducing plasma membrane permeability elevation, phosphatidylserine externalization, DNA fragmentation and apoptotic body formation. Furthermore, PHE could induce activations of caspase-3 and -9, disruption of mitochondrial transmembrane potential, downregulation of anti-apoptotic Bcl-xL, upregulation of pro-apoptotic Bax, along with upregulation of cytoplasmic cytochrome c and apoptosis-inducing factor. The cytotoxic and pro-apoptotic effects of PHE were also proven by the induced apoptotic-like ultrastructural alterations of keratocytes in vivo. Taken together, our results suggest that PHE has a significant cytotoxicity to corneal stroma cells both in vitro and in vivo by inducing cell apoptosis, and the pro-apoptotic effect of PHE is achieved via a Bcl-2 family proteins-mediated mitochondrion-dependent pathway. PMID:27344612

  10. Oridonin induces apoptosis through the mitochondrial pathway in human gastric cancer SGC-7901 cells.

    PubMed

    Gao, Shiyong; Tan, Huixin; Zhu, Nan; Gao, Haiyu; Lv, Chunyu; Gang, Jian; Ji, Yubin

    2016-06-01

    Oridonin is one of the most important antitumor active ingredients of Rabdosia rubescens. Recently published studies from our laboratory have demonstrated that oridonin was able to arrest human gastric cancer SGC-7901 cells at G2/M phase. However, little is known about inducing apoptosis in gastric cancer. The aim of this study was to investigate the effect of oridonin on antineoplastic capability of SGC-7901 cells and the detailed molecular mechanism of oridonin-mediated intrinsic pathway of apoptosis. Cell proliferation was assessed by MTT assay while apoptosis induced by oridonin was determined by Hoechst 33342 staining assay and Annexin V/PI double staining assay. Early apoptotic rate was stained by Annexin V/PI and detected by flow cytometry. Apoptosis pathway was analyzed by western blot analysis of Bcl-2, Bax, cytochrome c and caspase-3 expression. The results showed that oridonin was able to inhibit the SGC-7901 cell proliferation, the 50% growth inhibition (IC50) was 22.74 µM. Oridonin could induce cell apoptosis of SGC-7901 cells and the early apoptotic rates induced by 0, 20, 40, 80 µmol/l oridonin were 1.53±0.67, 3.33±0.29, 84.80±0.82 and 96.43±0.51%, respectively. Western blot analysis revealed that oridonin downregulated Bcl-2 protein (the anti-apoptotic factor) and upregulated Bax protein (pro-apoptotic factor), eventually leading to a reduction in the ratio of Bcl-2/Bax proteins. Furthermore, oridonin induced the release of cytochrome c from the mitochondria to the cytosol and the activation of caspase-3. Taken together, the current study suggested that oridonin induced apoptosis in SGC-7901 cells via the mitochondrial signal pathway, which may represent one of the major mechanisms of oridonin-mediated apoptosis in SGC-7901 cells. PMID:27082253

  11. Simian virus 40 infection triggers a balanced network that includes apoptotic, survival, and stress pathways.

    PubMed

    Butin-Israeli, Veronika; Drayman, Nir; Oppenheim, Ariella

    2010-04-01

    The infection process by simian virus 40 (SV40) and entry of its genome into nondividing cells are only partly understood. Infection begins by binding to GM1 receptors at the cell surface, cellular entry via caveolar invaginations, and trafficking to the endoplasmic reticulum, where the virus disassembles. To gain a deeper insight into the contribution of host functions to this process, we studied cellular signaling elicited by the infecting virus. Signaling proteins were detected by Western blotting and immunofluorescence staining. The study was assisted by a preliminary proteomic screen. The contribution of signaling proteins to the infection process was evaluated using specific inhibitors. We found that CV-1 cells respond to SV40 infection by activating poly(ADP-ribose) polymerase 1 (PARP-1)-mediated apoptotic signaling, which is arrested by the Akt-1 survival pathway and stress response. A single key regulator orchestrating the three pathways is phospholipase C-gamma (PLCgamma). The counteracting apoptotic and survival pathways are robustly balanced as the infected cells neither undergo apoptosis nor proliferate. Surprisingly, we have found that the apoptotic pathway, including activation of PARP-1 and caspases, is absolutely required for the infection to proceed. Thus, SV40 hijacks the host defense to promote its infection. Activities of PLCgamma and Akt-1 are also required, and their inhibition abrogates the infection. Notably, this signaling network is activated hours before T antigen is expressed. Experiments with recombinant empty capsids, devoid of DNA, indicated that the major capsid protein VP1 alone triggers this early signaling network. The emerging robust signaling network reflects a delicate evolutionary balance between attack and defense in the host-virus relationship. PMID:20089643

  12. Ginsenoside Rd Attenuates Myocardial Ischemia/Reperfusion Injury via Akt/GSK-3β Signaling and Inhibition of the Mitochondria-Dependent Apoptotic Pathway

    PubMed Central

    Wang, Xiaoliang; Lau, Waynebond; Wang, Yajing; Xing, Yuan; Zhang, Xing; Ma, Xinliang; Gao, Feng

    2013-01-01

    Evidence suggests Ginsenoside Rd (GSRd), a biologically active extract from the medical plant Panax Ginseng, exerts antioxidant effect, decreasing reactive oxygen species (ROS) formation. Current study determined the effect of GSRd on myocardial ischemia/reperfusion (MI/R) injury (a pathological condition where ROS production is significantly increased) and investigated the underlying mechanisms. The current study utilized an in vivo rat model of MI/R injury and an in vitro neonatal rat cardiomyocyte (NRC) model of simulated ischemia/reperfusion (SI/R) injury. Infarct size was measured by Evans blue/TTC double staining. NRC injury was determined by MTT and lactate dehydrogenase (LDH) leakage assay. ROS accumulation and apoptosis were assessed by flow cytometry. Mitochondrial membrane potential (MMP) was determined by 5, 5′, 6, 6′-tetrachloro-1, 1′, 3, 3′-tetrathylbenzimidazol carbocyanine iodide (JC-1). Cytosolic translocation of mitochondrial cytochrome c and expression of caspase-9, caspase-3, Bcl-2 family proteins, and phosphorylated Akt and GSK-3β were determined by western blot. Pretreatment with GSRd (50 mg/kg) significantly augmented rat cardiac function, as evidenced by increased left ventricular ejection fraction (LVEF) and ±dP/dt. GSRd reduced myocardial infarct size, apoptotic cell death, and blood creatine kinase/lactate dehydrogenase levels after MI/R. In NRCs, GSRd (10 µM) inhibited SI/R-induced ROS generation (P<0.01), decreased cellular apoptosis, stabilized the mitochondrial membrane potential (MMP), and attenuated cytosolic translocation of mitochondrial cytochrome c. GSRd inhibited activation of caspase-9 and caspase-3, increased the phosphorylated Akt and GSK-3β, and increased the Bcl-2/Bax ratio. Together, these data demonstrate GSRd mediated cardioprotective effect against MI/R–induced apoptosis via a mitochondrial-dependent apoptotic pathway. PMID:23976968

  13. Targeting the apoptotic pathway with BCL-2 inhibitors sensitizes primary chronic lymphocytic leukemia cells to vesicular stomatitis virus-induced oncolysis.

    PubMed

    Tumilasci, Vanessa Fonseca; Olière, Stephanie; Nguyên, Thi Lien-Ahn; Shamy, April; Bell, John; Hiscott, John

    2008-09-01

    Chronic lymphocytic leukemia (CLL) is characterized by clonal accumulation of CD5(+) CD19(+) B lymphocytes that are arrested in the G(0)/G(1) phase of the cell cycle and fail to undergo apoptosis because of overexpression of the antiapoptotic B-cell CLL/lymphoma 2 (BCL-2) protein. Oncolytic viruses, such as vesicular stomatitis virus (VSV), have emerged as potential anticancer agents that selectively target and kill malignant cells via the intrinsic mitochondrial pathway. Although primary CLL cells are largely resistant to VSV oncolysis, we postulated that targeting the apoptotic pathway via inhibition of BCL-2 may sensitize CLL cells to VSV oncolysis. In the present study, we examined the capacity of EM20-25--a small-molecule antagonist of the BCL-2 protein--to overcome CLL resistance to VSV oncolysis. We demonstrate a synergistic effect of the two agents in primary ex vivo CLL cells (combination index of 0.5; P < 0.0001). In a direct comparison of peripheral blood mononuclear cells from healthy volunteers with primary CLL, the two agents combined showed a therapeutic index of 19-fold; furthermore, the combination of VSV and EM20-25 increased apoptotic cell death in Karpas-422 and Granta-519 B-lymphoma cell lines (P < 0.005) via the intrinsic mitochondrial pathway. Mechanistically, EM20-25 blocked the ability of the BCL-2 protein to dimerize with proapoptotic BAX protein, thus sensitizing CLL to VSV oncolytic stress. Together, these data indicate that the use of BCL-2 inhibitors may improve VSV oncolysis in treatment-resistant hematological malignancies, such as CLL, with characterized defects in the apoptotic response. PMID:18579592

  14. Tat-NOL3 protects against hippocampal neuronal cell death induced by oxidative stress through the regulation of apoptotic pathways.

    PubMed

    Sohn, Eun Jeong; Shin, Min Jea; Eum, Won Sik; Kim, Dae Won; Yong, Ji In; Ryu, Eun Ji; Park, Jung Hwan; Cho, Su Bin; Cha, Hyun Ju; Kim, Sang Jin; Yeo, Hyeon Ji; Yeo, Eun Ji; Choi, Yeon Joo; Im, Seung Kwon; Kweon, Hae Young; Kim, Duk-Soo; Yu, Yeon Hee; Cho, Sung-Woo; Park, Meeyoung; Park, Jinseu; Cho, Yong-Jun; Choi, Soo Young

    2016-07-01

    Oxidative stress-induced apoptosis is associated with neuronal cell death and ischemia. The NOL3 [nucleolar protein 3 (apoptosis repressor with CARD domain)] protein protects against oxidative stress-induced cell death. However, the protective mechanism responsible for this effect as well as the effects of NOL3 against oxidative stress in ischemia remain unclear. Thus, we examined the protective effects of NOL3 protein on hydrogen peroxide (H2O2)-induced oxidative stress and the mechanism responsible for these effects in hippocampal neuronal HT22 cells and in an animal model of forebrain ischemia using Tat-fused NOL3 protein (Tat-NOL3). Purified Tat-NOL3 protein transduced into the H2O2-exposed HT22 cells and inhibited the production of reactive oxygen species (ROS), DNA fragmentation and reduced mitochondrial membrane potential (ΔΨm). In addition, Tat-NOL3 prevented neuronal cell death through the regulation of apoptotic signaling pathways including Bax, Bcl-2, caspase-2, -3 and -8, PARP and p53. In addition, Tat-NOL3 protein transduced into the animal brains and significantly protected against neuronal cell death in the CA1 region of the hippocampus by regulating the activation of microglia and astrocytes. Taken together, these findings demonstrate that Tat-NOL3 protein protects against oxidative stress-induced neuronal cell death by regulating oxidative stress and by acting as an anti-apoptotic protein. Thus, we suggest that Tat-NOL3 represents a potential therapeutic agent for protection against ischemic brain injury. PMID:27221790

  15. Arsenic trioxide induces oxidative stress, DNA damage, and mitochondrial pathway of apoptosis in human leukemia (HL-60) cells

    PubMed Central

    2014-01-01

    Background Acute promyelocytic leukemia (APL) is a subtype of acute myeloid leukemia (AML), which accounts for approximately 10% of all acute myloid leukemia cases. It is a blood cancer that is formed by chromosomal mutation. Each year in the United States, APL affects about 1,500 patients of all age groups and causes approximately 1.2% of cancer deaths. Arsenic trioxide (ATO) has been used successfully for treatment of APL patients, and both induction and consolidated therapy have resulted in complete remission. Recently published studies from our laboratory have demonstrated that ATO pharmacology as an anti-leukemic drug is associated with cytotoxic and genotoxic effects in leukemia cells. Methods In the present study, we further investigated the detailed molecular mechanism of ATO-mediated intrinsic pathway of apoptosis; using HL-60 cells as a test model. Oxidative stress was assessed by spectrophotometric measurements of MDA and GSH levels while genotoxicity was determined by single cell gel electrophoresis (Comet assay). Apoptosis pathway was analyzed by Western blot analysis of Bax, Bcl2 and caspase 3 expression, as well as immunocytochemistry and confocal imaging of Bax and Cyt c translocation and mitochondrial membrane potential depolarization. Results ATO significantly (p < 0.05) induces oxidative stress, DNA damage, and caspase 3 activityin HL-60 cells in a dose-dependent manner. It also activated the intrinsic pathway of apoptosis by significantly modulating (p < 0.05) the expression and translocation of apoptotic molecules and decreasing the mitochondrial membrane potential in leukemia cells. Conclusion Taken together, our research demonstrated that ATO induces mitochondrial pathway of apoptosis in HL-60 cells. This apoptotic signaling is modulated via oxidative stress, DNA damage, and change in mitochondrial membrane potential, translocation and upregulation of apoptotic proteins leading programmed cell death. PMID:24887205

  16. Gemfibrozil pretreatment resulted in a sexually dimorphic outcome in the rat models of global cerebral ischemia-reperfusion via modulation of mitochondrial pro-survival and apoptotic cell death factors as well as MAPKs.

    PubMed

    Mohagheghi, Fatemeh; Ahmadiani, Abolhassan; Rahmani, Behrouz; Moradi, Fatemeh; Romond, Nathalie; Khalaj, Leila

    2013-07-01

    Inducers of mitochondrial biogenesis are widely under investigation for use in a novel therapeutic approach in neurodegenerative disorders. The ability of Gemfibrozil, a fibrate, is investigated for the first time to modulate mitochondrial pro-survival factors involved in the mitochondrial biogenesis signaling pathway, including peroxisome proliferator-activated receptor coactivator-1α (PGC-1α), nuclear respiratory factor (NRF-1), and mitochondrial transcription factor A (TFAM) in the brain. Gemfibozil is clinically administered to control hyperlipidemia. It secondarily prevents cardiovascular events such as cardiac arrest in susceptible patients. In this study, pretreatment of animals with gemfibrozil prior to ischemia-reperfusion (I/R) resulted in a sexually dimorphic outcome. While the expression of NRF-1 and TFAM were induced in gemfibrozil-pretreated met-estrous females, they were suppressed in males. Gemfibrozil also proved to be neuroprotective in met-estrous females, as it inhibited caspase-dependent apoptosis while in males it led to hippocampal neurodegeneration via activation of both the caspase-dependent and caspase-independent apoptosis. In the mitogen-activated protein kinase (MAPKs) pathway, gemfibrozil pretreatment induced the expression of extracellular signal-regulated kinases (ERK1/2) in met-estrous females and reduced it in males. These findings correlatively point to the sexual-dimorphic effects of gemfibrozil in global cerebral I/R context by affecting important factors involved in the mitochondrial biogenesis, MAPKs, and apoptotic cell death pathways. PMID:23288702

  17. Over-expression of mitochondrial ferritin affects the JAK2/STAT5 pathway in K562 cells and causes mitochondrial iron accumulation

    PubMed Central

    Santambrogio, Paolo; Erba, Benedetta Gaia; Campanella, Alessandro; Cozzi, Anna; Causarano, Vincenza; Cremonesi, Laura; Gallì, Anna; Della Porta, Matteo Giovanni; Invernizzi, Rosangela; Levi, Sonia

    2011-01-01

    Background Mitochondrial ferritin is a nuclear encoded iron-storage protein localized in mitochondria. It has anti-oxidant properties related to its ferroxidase activity, and it is able to sequester iron avidly into the organelle. The protein has a tissue-specific pattern of expression and is also highly expressed in sideroblasts of patients affected by hereditary sideroblastic anemia and by refractory anemia with ringed sideroblasts. The present study examined whether mitochondrial ferritin has a role in the pathogenesis of these diseases. Design and Methods We analyzed the effect of mitochondrial ferritin over-expression on the JAK2/STAT5 pathway, on iron metabolism and on heme synthesis in erythroleukemic cell lines. Furthermore its effect on apoptosis was evaluated on human erythroid progenitors. Results Data revealed that a high level of mitochondrial ferritin reduced reactive oxygen species and Stat5 phosphorylation while promoting mitochondrial iron loading and cytosolic iron starvation. The decline of Stat5 phosphorylation induced a decrease of the level of anti-apoptotic Bcl-xL transcript compared to that in control cells; however, transferrin receptor 1 transcript increased due to the activation of the iron responsive element/iron regulatory protein machinery. Also, high expression of mitochondrial ferritin increased apoptosis, limited heme synthesis and promoted the formation of Perls-positive granules, identified by electron microscopy as iron granules in mitochondria. Conclusions Our results provide evidence suggesting that Stat5-dependent transcriptional regulation is displaced by strong cytosolic iron starvation status induced by mitochondrial ferritin. The protein interferes with JAK2/STAT5 pathways and with the mechanism of mitochondrial iron accumulation. PMID:21712541

  18. Mitochondrial Respiratory Pathways Inhibition in Rhizopus oryzae Potentiates Activity of Posaconazole and Itraconazole via Apoptosis

    PubMed Central

    Shirazi, Fazal; Kontoyiannis, Dimitrios P.

    2013-01-01

    The incidence of mucormycosis has increased drastically in immunocompromised patients. Also the array of targets whose inhibition results in Mucorales death is limited. Recently, researchers identified mitochondria as important regulators of detoxification and virulence mechanisms in fungi. In this context, targeting the mitochondrial respiratory chain may provide a new platform for antifungal development. We hypothesized that targeting respiratory pathways potentiates triazoles activity via apoptosis. We found that simultaneous administration of antimycin A (AA) and benzohydroxamate (BHAM), inhibitors of classical and alternative mitochondrial pathways respectively, resulted in potent activity of posaconazole (PCZ) and itraconazole (ICZ) against Rhizopus oryzae. We observed cellular changes characteristic of apoptosis in R. oryzae cells treated with PCZ or ICZ in combination with AA and BHAM. The fungicidal activity of this combination against R. oryzae was correlated with intracellular reactive oxygen species accumulation (ROS), phosphatidylserine externalization, mitochondrial membrane depolarization, and increased caspase like activity. DNA fragmentation and condensation assays also revealed apoptosis of R. oryzae cells. These apoptotic features were prevented by the addition of the ROS scavenger N-acetyl-cysteine. Taken together, these findings suggest that the use of PCZ or ICZ in combination with AA and BHAM makes R. oryzae exquisitely sensitive to treatment with triazoles via apoptosis. This strategy may serve as a new model for the development of improved or novel antifungal agents. PMID:23696824

  19. Evolution of mitochondrial cell death pathway: Proapoptotic role of HtrA2/Omi in Drosophila

    SciTech Connect

    Igaki, Tatsushi; Suzuki, Yasuyuki; Tokushige, Naoko; Aonuma, Hiroka; Takahashi, Ryosuke . E-mail: ryosuket@kuhp.kyoto-u.ac.jp; Miura, Masayuki . E-mail: miura@mol.f.u-tokyo.ac.jp

    2007-05-18

    Despite the essential role of mitochondria in a variety of mammalian cell death processes, the involvement of mitochondrial pathway in Drosophila cell death has remained unclear. To address this, we cloned and characterized DmHtrA2, a Drosophila homolog of a mitochondrial serine protease HtrA2/Omi. We show that DmHtrA2 normally resides in mitochondria and is up-regulated by UV-irradiation. Upon receipt of apoptotic stimuli, DmHtrA2 is translocated to extramitochondrial compartment; however, unlike its mammalian counterpart, the extramitochondrial DmHtrA2 does not diffuse throughout the cytosol but stays near the mitochondria. RNAi-mediated knock-down of DmHtrA2 in larvae or adult flies results in a resistance to stress stimuli. DmHtrA2 specifically cleaves Drosophila inhibitor-of-apoptosis protein 1 (DIAP1), a cellular caspase inhibitor, and induces cell death both in vitro and in vivo as potent as other fly cell death proteins. Our observations suggest that DmHtrA2 promotes cell death through a cleavage of DIAP1 in the vicinity of mitochondria, which may represent a prototype of mitochondrial cell death pathway in evolution.

  20. Mitochondrial respiratory pathways inhibition in Rhizopus oryzae potentiates activity of posaconazole and itraconazole via apoptosis.

    PubMed

    Shirazi, Fazal; Kontoyiannis, Dimitrios P

    2013-01-01

    The incidence of mucormycosis has increased drastically in immunocompromised patients. Also the array of targets whose inhibition results in Mucorales death is limited. Recently, researchers identified mitochondria as important regulators of detoxification and virulence mechanisms in fungi. In this context, targeting the mitochondrial respiratory chain may provide a new platform for antifungal development. We hypothesized that targeting respiratory pathways potentiates triazoles activity via apoptosis. We found that simultaneous administration of antimycin A (AA) and benzohydroxamate (BHAM), inhibitors of classical and alternative mitochondrial pathways respectively, resulted in potent activity of posaconazole (PCZ) and itraconazole (ICZ) against Rhizopus oryzae. We observed cellular changes characteristic of apoptosis in R. oryzae cells treated with PCZ or ICZ in combination with AA and BHAM. The fungicidal activity of this combination against R. oryzae was correlated with intracellular reactive oxygen species accumulation (ROS), phosphatidylserine externalization, mitochondrial membrane depolarization, and increased caspase like activity. DNA fragmentation and condensation assays also revealed apoptosis of R. oryzae cells. These apoptotic features were prevented by the addition of the ROS scavenger N-acetyl-cysteine. Taken together, these findings suggest that the use of PCZ or ICZ in combination with AA and BHAM makes R. oryzae exquisitely sensitive to treatment with triazoles via apoptosis. This strategy may serve as a new model for the development of improved or novel antifungal agents. PMID:23696824

  1. Mitochondrial translocation of APE1 relies on the MIA pathway.

    PubMed

    Barchiesi, Arianna; Wasilewski, Michal; Chacinska, Agnieszka; Tell, Gianluca; Vascotto, Carlo

    2015-06-23

    APE1 is a multifunctional protein with a fundamental role in repairing nuclear and mitochondrial DNA lesions caused by oxidative and alkylating agents. Unfortunately, comprehensions of the mechanisms regulating APE1 intracellular trafficking are still fragmentary and contrasting. Recent data demonstrate that APE1 interacts with the mitochondrial import and assembly protein Mia40 suggesting the involvement of a redox-assisted mechanism, dependent on the disulfide transfer system, to be responsible of APE1 trafficking into the mitochondria. The MIA pathway is an import machinery that uses a redox system for cysteine enriched proteins to drive them in this compartment. It is composed by two main proteins: Mia40 is the oxidoreductase that catalyzes the formation of the disulfide bonds in the substrate, while ALR reoxidizes Mia40 after the import. In this study, we demonstrated that: (i) APE1 and Mia40 interact through disulfide bond formation; and (ii) Mia40 expression levels directly affect APE1's mitochondrial translocation and, consequently, play a role in the maintenance of mitochondrial DNA integrity. In summary, our data strongly support the hypothesis of a redox-assisted mechanism, dependent on Mia40, in controlling APE1 translocation into the mitochondrial inner membrane space and thus highlight the role of this protein transport pathway in the maintenance of mitochondrial DNA stability and cell survival. PMID:25956655

  2. Pomegranate peel extract polyphenols induced apoptosis in human hepatoma cells by mitochondrial pathway.

    PubMed

    Song, Bingbing; Li, Jia; Li, Jianke

    2016-07-01

    This study was aimed to investigate the influence of pomegranate peel polyphenols (PPPs) on the proliferation and apoptosis of HepG2 cells (a kind of human hepatoma cells) and the related mechanism. The inverted fluorescence microscope and the flow cytometer (FCM) were used to test the changes of the cellular morphology, cell cycle, apoptosis, reactive oxygen species (ROS) and mitochondrial transmembrane potential (Δψm). The kit was used to measure the activities of caspase-3/9, and Western Blot was used to detect the expressions of apoptosis-associated proteins including p53, Bcl-2/Bax, Cyt-c and PARP. The results showed that the cells cycle of HepG2 arrested at the S-phase by PPPs and the amount of the early apoptotic cells and ROS level were increased obviously, the level of Cyt-c and the activity of Caspase-3/9 markedly were also increased by PPPs, as well as the ratio of Bax/Bcl-2 and the protein expressions of P53. It was concluded that PPPs could inhibit the growth of HepG2 cells by blocking the cell cycle and inducing the mitochondrial apoptotic pathway in a dose-dependent manner. PMID:27120393

  3. Genetic modulation of apoptotic pathways fails to alter disease course in tripeptidyl-peptidase 1 deficient mice.

    PubMed

    Kim, Kwi-Hye; Sleat, David E; Bernard, Ora; Lobel, Peter

    2009-03-27

    Late-infantile neuronal ceroid lipofuscinosis (LINCL) is a fatal, incurable neurodegenerative disease of children caused by the loss of the lysosomal protein tripeptidyl-peptidase 1 (TPP1). Previous studies have suggested that Bcl-2-dependent apoptotic pathways are involved in neuronal cell death in LINCL patients and, as a result, anti-apoptotic treatments that increase Bcl-2 activity have been proposed as a potential therapeutic approach. In this study, we have directly investigated whether targeting anti-apoptotic pathways may be of value in LINCL in a mouse model of this disease that lacks TPP1 and which recapitulates many aspect of the human disease, including a greatly shortened life-span. Our approach was to genetically modify apoptotic pathways and determine the effects of these changes on the severe neurodegenerative phenotype of the LINCL mouse. LINCL mice were generated that either lacked the pro-apoptotic p53 or had increased levels of anti-apoptotic Bcl-2, changes that would exacerbate or ameliorate neuronal death, respectively, should pathways involving these proteins be important. Neither modification affected the shortened life-span of the LINCL mouse. These results suggest that either neuronal death in LINCL does not occur via apoptosis or that it occurs via apoptotic pathways not involving p53 or Bcl-2. Alternatively, pathways involving p53 and/or Bcl-2 may be involved in neuronal death under normal circumstances but may not be the only routes to this end. Importantly, our findings suggest that targeting pathways of cell death involving p53 or Bcl-2 do not represent useful directions for developing effective treatment. PMID:19429009

  4. Potential of apoptotic pathway-targeted cancer therapeutic research: Where do we stand?

    PubMed Central

    Baig, S; Seevasant, I; Mohamad, J; Mukheem, A; Huri, H Z; Kamarul, T

    2016-01-01

    Underneath the intricacy of every cancer lies mysterious events that impel the tumour cell and its posterity into abnormal growth and tissue invasion. Oncogenic mutations disturb the regulatory circuits responsible for the governance of versatile cellular functions, permitting tumour cells to endure deregulated proliferation, resist to proapoptotic insults, invade and erode normal tissues and above all escape apoptosis. This disruption of apoptosis has been highly implicated in various malignancies and has been exploited as an anticancer strategy. Owing to the fact that apoptosis causes minimal inflammation and damage to the tissue, apoptotic cell death-based therapy has been the centre of attraction for the development of anticancer drugs. Increased understanding of the molecular pathways underlying apoptosis has enabled scientists to establish unique approaches targeting apoptosis pathways in cancer therapeutics. In this review, we reconnoitre the two major pathways (intrinsic and extrinsic) targeted cancer therapeutics, steering toward chief modulators of these pathways, such as B-cell lymphoma 2 protein family members (pro- and antiapoptotic), inhibitor of apoptosis proteins, and the foremost thespian of extrinsic pathway regulator, tumour necrosis factor-related apoptosis-inducing agent. Together, we also will have a look from clinical perspective to address the agents (drugs) and therapeutic strategies adopted to target these specific proteins/pathways that have entered clinical trials. PMID:26775709

  5. A novel pathway for phagosome maturation during engulfment of apoptotic cells

    PubMed Central

    Kinchen, Jason M.; Doukoumetzidis, Kimon; Almendinger, Johann; Stergiou, Lilli; Tosello-Trampont, Annie; Sifri, Costi D.; Hengartner, Michael O.; Ravichandran, Kodi S.

    2010-01-01

    The efficient removal of apoptotic cells is critical for the physiological well-being of the organism1â4; defects in corpse removal have been linked to autoimmune disease4, 5. While several players regulating the early steps of corpse recognition and internalization have been characterized6, the molecules and mechanisms relevant to the subsequent processing of the internalized corpses are poorly understood. Here, we identify a novel pathway for the processing of internalized apoptotic cells in C. elegans and in mammals. First, we show that RAB-5 and RAB-7 are sequentially recruited to phagosomes containing apoptotic corpses as they mature within phagocytes, and that both proteins are required for efficient corpse clearance. We then used targeted genetic screens to identify players regulating the recruitment and/or retention of Rab5 and Rab7 to phagosomes. Seven members of the HOPS complex (a Rab7 activator/effector complex) were required for Rab7 localization or retention on phagosomes. In an effort to identify factors that regulate Rab5 recruitment, we undertook an unbiased reverse genetic screen and identified 61 genes potentially required for corpse removal. In-depth analysis of two candidate genes, vps-34 and dyn-1/dynamin, showed accumulation of internalized, but undegraded corpses within abnormal phagosomes that are defective in RAB-5 recruitment. Using a series of genetic and biochemical experiments in worms and mammalian cells, we ordered these proteins in a pathway, with DYN-1 functioning upstream of VPS-34, in the recruitment/retention of Rab5 to the nascent phagosome. Further, we identified a novel biochemical complex containing Vps34, dynamin and Rab5GDP, providing a mechanism for Rab5 recruitment to the nascent phagosome. PMID:18425118

  6. 4SC-202 activates ASK1-dependent mitochondrial apoptosis pathway to inhibit hepatocellular carcinoma cells.

    PubMed

    Fu, Meili; Wan, Fuqiang; Li, Zhengling; Zhang, Fenghua

    2016-03-01

    The aim of the present study is to investigate the potential anti-hepatocellular carcinoma (HCC) cell activity by 4SC-202, a novel class I HDAC inhibitor (HDACi). The associated signaling mechanisms were also analyzed. We showed that 4SC-202 treatment induced potent cytotoxic and proliferation-inhibitory activities against established HCC cell lines (HepG2, HepB3, SMMC-7721) and patient-derived primary HCC cells. Further, adding 4SC-202 in HCC cells activated mitochondrial apoptosis pathway, which was evidenced by mitochondrial permeability transition pore (mPTP) opening, cytochrome C cytosol release and caspase-3/-9 activation. Inhibition of this apoptosis pathway, by caspase-3/-9 inhibitors, mPTP blockers, or by shRNA-mediated knockdown of cyclophilin-D (Cyp-D, a key component of mPTP), significantly attenuated 4SC-202-induced HCC cell death and apoptosis. Reversely, over-expression of Cyp-D enhanced 4SC-202's sensitivity in HCC cells. Further studies showed that 4SC-202 induced apoptosis signal-regulating kinase 1 (ASK1) activation, causing it translocation to mitochondria and physical association with Cyp-D. This mitochondrial ASK1-Cyp-D complexation appeared required for mediating 4SC-202-induced apoptosis activation. ASK1 stable knockdown by targeted-shRNAs largely inhibited 4SC-202-induced mPTP opening, cytochrome C release, and following HCC cell apoptotic death. Together, we suggest that 4SC-202 activates ASK1-dependent mitochondrial apoptosis pathway to potently inhibit human HCC cells. PMID:26773495

  7. Discovery of Sulfonamidebenzamides as Selective Apoptotic CHOP Pathway Activators of the Unfolded Protein Response

    PubMed Central

    2015-01-01

    Cellular proteins that fail to fold properly result in inactive or disfunctional proteins that can have toxic functions. The unfolded protein response (UPR) is a two-tiered cellular mechanism initiated by eukaryotic cells that have accumulated misfolded proteins within the endoplasmic reticulum (ER). An adaptive pathway facilitates the clearance of the undesired proteins; however, if overwhelmed, cells trigger apoptosis by upregulating transcription factors such as C/EBP-homologous protein (CHOP). A high throughput screen was performed directed at identifying compounds that selectively upregulate the apoptotic CHOP pathway while avoiding adaptive signaling cascades, resulting in a sulfonamidebenzamide chemotype that was optimized. These efforts produced a potent and selective CHOP inducer (AC50 = 0.8 μM; XBP1 > 80 μM), which was efficacious in both mouse embryonic fibroblast cells and a human oral squamous cell cancer cell line, and demonstrated antiproliferative effects for multiple cancer cell lines in the NCI-60 panel. PMID:25530830

  8. Mitochondrial pathway of apoptosis is ancestral in metazoans

    PubMed Central

    Bender, Cheryl E.; Fitzgerald, Patrick; Tait, Stephen W. G.; Llambi, Fabien; McStay, Gavin P.; Tupper, Douglas O.; Pellettieri, Jason; Alvarado, Alejandro Sánchez; Salvesen, Guy S.; Green, Douglas R.

    2012-01-01

    The mitochondrial pathway of apoptosis is the major mechanism of physiological cell death in vertebrates. In this pathway, proapoptotic members of the Bcl-2 family cause mitochondrial outer membrane permeabilization (MOMP), allowing the release of cytochrome c, which interacts with Apaf-1 to trigger caspase activation and apoptosis. Despite conservation of Bcl-2, Apaf-1, and caspases in invertebrate phyla, the existence of the mitochondrial pathway in any invertebrate is, at best, controversial. Here we show that apoptosis in a lophotrochozoan, planaria (phylum Platyhelminthes), is associated with MOMP and that cytochrome c triggers caspase activation in cytosolic extracts from these animals. Further, planarian Bcl-2 family proteins can induce and/or regulate cell death in yeast and can replace Bcl-2 proteins in mammalian cells to regulate MOMP. These results suggest that the mitochondrial pathway of apoptosis in animals predates the emergence of the vertebrates but was lost in some lineages (e.g., nematodes). In further support of this hypothesis, we surveyed the ability of cytochrome c to trigger caspase activation in cytosolic extracts from a variety of organisms and found this effect in cytosolic extracts from invertebrate deuterostomes (phylum Echinodermata). PMID:22416118

  9. Biliverdin reductase/bilirubin mediates the anti-apoptotic effect of hypoxia in pulmonary arterial smooth muscle cells through ERK1/2 pathway

    SciTech Connect

    Song, Shasha; Wang, Shuang; Ma, Jun; Yao, Lan; Xing, Hao; Zhang, Lei; Liao, Lin; Zhu, Daling

    2013-08-01

    Inhibition of pulmonary arterial smooth muscle cell (PASMC) apoptosis induced by hypoxia plays an important role in pulmonary arterial remodeling leading to aggravate hypoxic pulmonary arterial hypertension. However, the mechanisms of hypoxia acting on PASMC apoptosis remain exclusive. Biliverdin reductase (BVR) has many essential biologic roles in physiological and pathological processes. Nevertheless, it is unclear whether the hypoxia-induced inhibition on PASMC apoptosis is mediated by BVR. In the present work, we found BVR majorly localized in PASMCs and was up-regulated in levels of protein and mRNA by hypoxia. Then we studied the contribution of BVR to anti-apoptotic response of hypoxia in PASMCs. Our results showed that siBVR, blocking generation of bilirubin, reversed the effect of hypoxia on enhancing cell survival and apoptotic protein (Bcl-2, procasepase-9, procasepase-3) expression, preventing nuclear shrinkage, DNA fragmentation and mitochondrial depolarization in starved PASMCs, which were recovered by exogenous bilirubin. Moreover, the inhibitory effect of bilirubin on PASMC apoptosis under hypoxic condition was blocked by the inhibitor of ERK1/2 pathway. Taken together, our data indicate that BVR contributes to the inhibitory process of hypoxia on PASMC apoptosis, which is mediated by bilirubin through ERK1/2 pathway. Highlights: • BVR expresses in PASMC and is up-regulated by hypoxia in protein and mRNA levels. • BVR/bilirubin contribute to the inhibitive process of hypoxia on PASMC apoptosis. • Bilirubin protects PASMC from apoptosis under hypoxia via ERK1/2 pathway.

  10. mitochondrial pathway for biosynthesis of lipid mediators

    PubMed Central

    Tyurina, Yulia Y.; Poloyac, Samuel M.; Tyurin, Vladimir A.; Kapralov, Alexander A.; Jiang, Jianfei; Anthonymuthu, Tamil Selvan; Kapralova, Valentina I.; Vikulina, Anna S.; Jung, Mi-Yeon; Epperly, Michael W.; Mohammadyani, Dariush; Klein-Seetharaman, Judith; Jackson, Travis C.; Kochanek, Patrick M.; Pitt, Bruce R.; Greenberger, Joel S.; Vladimirov, Yury A.; Bayır, Hülya; Kagan, Valerian E.

    2014-01-01

    The central role of mitochondria in metabolic pathways and in cell death mechanisms requires sophisticated signaling systems. Essential in this signaling process is an array of lipid mediators derived from polyunsaturated fatty acids. However, the molecular machinery for the production of oxygenated polyunsaturated fatty acids is localized in the cytosol and their biosynthesis has not been identified in mitochondria. Here we report that a range of diversified polyunsaturated molecular species derived from a mitochondria-specific phospholipid, cardiolipin, are oxidized by the intermembrane space hemoprotein, cytochrome c. We show that an assortment of oxygenated cardiolipin species undergoes phospholipase A2-catalyzed hydrolysis thus generating multiple oxygenated fatty acids, including well known lipid mediators. This represents a new biosynthetic pathway for lipid mediators. We demonstrate that this pathway including oxidation of polyunsaturated cardiolipins and accumulation of their hydrolysis products – oxygenated linoleic, arachidonic acids and monolyso-cardiolipins – is activated in vivo after acute tissue injury. PMID:24848241

  11. Upregulation of extrinsic apoptotic pathway in curcumin-mediated antiproliferative effect on human pancreatic carcinogenesis.

    PubMed

    Youns, Mahmoud; Fathy, Gihan Mahmoud

    2013-12-01

    Pancreatic cancer is one of the most lethal human cancers, with almost identical incidence and mortality rates. Curcumin, derived from the rhizome of Curcuma longa, has a long history of use as coloring agent and for a wide variety of disorders. Here, the antiproliferative activity of curcumin and its modulatory effect on gene expression of pancreatic cancer cell lines were investigated. The effect of curcumin on cellular proliferation and viability was monitored by sulphurhodamine B assay. Apoptotic effect was evaluated by flow cytometry and further confirmed by measuring amount of cytoplasmic histone-associated DNA fragments. Analysis of gene expression was performed with and without curcumin treatment using microarray expression profiling techniques. Array results were confirmed by real-time PCR. ingenuity pathway analysis (IPA) has been used to classify the list of differentially expressed genes and to indentify common biomarkergenes modulating the chemopreventive effect of curcumin. Results showed that curcumin induces growth arrest and apoptosis in pancreatic cancer cell lines. Its effect was more obvious on the highly COX-2 expressing cell line. Additionally, the expression of 366 and 356 cancer-related genes, involved in regulation of apoptosis, cell cycle, metastasis, was significantly altered after curcumin treatment in BxPC-3 and MiaPaCa-2 cells, respectively. Our results suggested that up-regulation of the extrinsic apoptotic pathway was among signaling pathways modulating the growth inhibitory effects of curcumin on pancreatic cancer cells. Curcumin effect was mediated through activation of TNFR, CASP 8, CASP3, BID, BAX, and down-regulation of NFκB, NDRG 1, and BCL2L10 genes. PMID:23794119

  12. The study of the Oxytropis kansuensis-induced apoptotic pathway in the cerebrum of SD rats

    PubMed Central

    2013-01-01

    Background Locoweeds cause significant livestock poisoning and economic loss all over the world. Animals can develop locoism, a chronic neurological disease, after grazing on locoweeds. Oxytropis kansuensis is a variety of locoweed that contains swainsonine as its main toxic ingredient. The purpose of this study was to investigate the apoptotic pathway induced in the cerebrum by swainsonine. Results Twenty-four Sprague-Dawley rats were randomly divided into four groups (experimental groups I, II, III and a control group) and 6 SD rats of each group were feed in 3 cages separately. Rats were penned as groups and fed with feeds containing 15% (SW content 0.03‰), 30% (SW content 0.06‰), or 45% (SW content 0.09‰) O. kansuensis for experimental groups I, II, and III, respectively, or complete feed in the case of the control group. One hundred and nineteen days after poisoning, and all rats showed neurological disorders at different degrees, which were considered to be successful established a chronic poisoning model of O. kansuensis. rats were sacrificed and the expression of Fas, FasL, Bcl-2, Bax as well as cleaved caspase-3, -8 and -9 proteins in brain tissues were detected by Western blot. The results showed that SW treatment up-regulated Fas and Fas ligand (FasL) (P < 0.05), and that there was an increase in Bax and a decrease in Bcl-2 protein (P < 0.01). Moreover, SW treatment significantly increases the activation of caspase-3, 8 and -9, the key effectors in apoptosis pathway (P < 0.01). Conclusion Our data suggest that SW induces apoptosis in cells of the brain through death receptor and mitochondria-mediated, caspase-dependent apoptotic pathways in the brain tissue of SD rats. PMID:24148892

  13. Methane attenuates retinal ischemia/reperfusion injury via anti-oxidative and anti-apoptotic pathways.

    PubMed

    Liu, Lin; Sun, Qinglei; Wang, Ruobing; Chen, Zeli; Wu, Jiangchun; Xia, Fangzhou; Fan, Xian-Qun

    2016-09-01

    Retinal ischemia/reperfusion injury (IRI) may cause incurable visual impairment due to neural regeneration limits. Methane was shown to exert a protective effect against IRI in many organs. This study aims to explore the possible protective effects of methane-rich saline against retinal IRI in rat. Retinal IRI was performed on the right eyes of male Sprague-Dawley rats, which were immediately injected intraperitoneally with methane-saturated saline (25ml/kg). At one week after surgery, the number of retinal ganglion cells (RGCs), total retinal thickness, visual function were measured by hematoxylin and eosin staining, FluoroGold anterograde labeling and flash visual evoked potentials. The levels of 8-hydroxy-2-deoxyguanosine (8-OHdG), 4-Hydroxy-2-nonenal (4-HNE), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), caspase-3, caspase-9, B cell lymphoma/leukemia-2 (Bcl-2) and Bcl-2 associated X protein (Bax) in retinas were assessed by immunofluorescence staining, enzyme-linked immunosorbent assay and quantitative polymerase chain reaction. As expected, methane treatment significantly improved the retinal IRI-induced RGC loss, total retinal layer thinning and visual dysfunction. Moreover, methane treatment significantly reduced the levels of oxidative stress biomarkers (8-OHdG, 4-HNE, MDA) and increased the antioxidant enzyme activities (SOD, CAT, GPx) in the retinas with IRI. Meanwhile, methane treatment significantly increased the anti-apoptotic gene (Bcl-2) expression and decreased the pro-apoptotic gene (Bax) expression, accompanied by the suppression of caspase-3 and caspase-9 activity. Thus, these data demonstrated that methane can exert a neuroprotective role against retinal IRI through anti-oxidative and anti-apoptotic pathways. PMID:27208496

  14. Anti-apoptotic role of the sonic hedgehog signaling pathway in the proliferation of ameloblastoma

    PubMed Central

    KANDA, SHIORI; MITSUYASU, TAKESHI; NAKAO, YU; KAWANO, SHINTARO; GOTO, YUICHI; MATSUBARA, RYOTA; NAKAMURA, SEIJI

    2013-01-01

    Sonic hedgehog (SHH) signaling pathway is crucial to growth and patterning during organogenesis. Aberrant activation of the SHH signaling pathway can result in tumor formation. We examined the expression of SHH signaling molecules and investigated the involvement of the SHH pathway in the proliferation of ameloblastoma, the most common benign tumor of the jaws. We used immunohistochemistry on ameloblastoma specimens and immunocytochemistry and reverse transcription-PCR on the ameloblastoma cell line AM-1. We also used the inhibitors of SHH signaling, SHH neutralizing antibody and cyclopamine, to assess the effects of SHH on the proliferation of AM-1 cells. We detected expression of SHH, patched, GLI1, GLI2 and GLI3 in the ameloblastoma specimens and AM-1 cells. The proliferation of these cells was significantly inhibited in the presence of SHH neutralizing antibody or cyclopamine; this was confirmed by BrdU incorporation assays. Furthermore, in the presence of SHH neutralizing antibody, nuclear translocation of GLI1 and GLI2 was abolished, apoptosis was induced, BCL-2 expression decreased and BAX expression increased. Our results suggest that the SHH signaling pathway is constitutively active in ameloblastoma and plays an anti-apoptotic role in the proliferation of ameloblastoma cells through autocrine loop stimulation. PMID:23835807

  15. Cd-Induced Apoptosis through the Mitochondrial Pathway in the Hepatopancreas of the Freshwater Crab Sinopotamon henanense

    PubMed Central

    Liu, Dongmei; Yang, Jian; Li, Yingjun; Zhang, Meng; Wang, Lan

    2013-01-01

    Cd is one of the most common pollutants in the environment that also induces the apoptosis. To explore the mechanism of apoptosis in the hepatopancreas, freshwater crab S. henanense were treated with 0, 3.56, 7.12, 14.25, 28.49 and 56.98 mg/L Cd for 72 h. Apoptosis was noticeable in every treatment group and necrosis was observed clearly in the high concentration Cd groups. Classical apoptotic bodies were found by transmission electronic microscopy, which revealed chromatin condensation under nuclear membrane and mitochondrial membrane rupture. An increasing number of autolysosomes, damaged rough endoplamic reticulum and Golgi complex were observed as the Cd concentration increase. Brown colored apoptotic cells were detected by the TUNEL test in all Cd-treatment groups. The apoptosis index increased following the elevation of Cd concentration and got 32.9% in the highest Cd group. Caspase-9 and caspase-3 activities increased in the lower Cd treatment groups but no changes in the higher Cd concentration groups (comparing to the control group). The activity of caspase-8 did not change significantly. No significant change in the content of mitochondrial cytochrome c (cyt c) in Cd exposed groups except the decrease in the 56.98 mg/L group. In crabs treated with 3.56, 7.12 and 14.25 mg/L Cd, hyperpolarization of mitochondrial membrane potential (Δψm) significantly increased. These results implied that apoptosis in the hepatopancreas induced by Cd occurrs through the mitochondrial caspase-dependent pathway. However, whether there are other apoptotic pathways needs to be studied further. PMID:23894343

  16. Effects of 10-hydroxycamptothecin on intrinsic mitochondrial pathway in silkworm BmN-SWU1 cells.

    PubMed

    Pan, Chun; Hu, Yan-Fen; Song, Juan; Yi, Hua-Shan; Wang, La; Yang, Yi-Ying; Wang, Yong-Ping; Zhang, Man; Pan, Min-Hui; Lu, Cheng

    2016-02-01

    10-Hydroxycamptothecin (HCPT), a plant alkaloid isolated from Camptotheca acuminate, is known as a planted-derived insecticide, however, the specific mechanism in insect cells is still unclear. In this study, we treated the ovarian cell line of the silkworm, BmN-SWU1, with different HCPT doses for durations ranging from 0 to 72h. The apoptosis morphology was evident after 72h of incubation and included cell protuberance, concentrated cytoplasm and apoptotic bodies. We observed DNA fragmentation and cell apoptosis after HCPT treatment. The disruption of mitochondrial distribution, activation of the intracellular mitochondrial permeability transition pore, and release of cytochrome c during HCPT-induced apoptosis in dose and time-dependent manner indicate the involvement of mitochondria in BmN-SWU1 cells. Caspase-9 and -3 activities increased gradually with the duration of incubation time. In conclusion, HCPT has a significant effect to initiate the intrinsic mitochondrial pathway in silkworm cells, providing a theoretical basis for better application of plant-derived insecticide in pest control. PMID:26821653

  17. Towards the small and the beautiful: a small dibromotyrosine derivative from Pseudoceratina sp. sponge exhibits potent apoptotic effect through targeting IKK/NFκB signaling pathway.

    PubMed

    Su, Jui-Hsin; Chen, Yu-Cheng; El-Shazly, Mohamed; Du, Ying-Chi; Su, Chiang-Wen; Tsao, Chia-Wei; Liu, Li-Lian; Chou, Yalan; Chang, Wen-Been; Su, Yin-Di; Chiang, Michael Y; Yeh, Yao-Tsung; Lu, Mei-Chin

    2013-09-01

    A dibromotyrosine derivative, (1'R,5'S,6'S)-2-(3',5'-dibromo-1',6'-dihydroxy-4'-oxocyclohex-2'-enyl) acetonitrile (DT), was isolated from the sponge Pseudoceratina sp., and was found to exhibit a significant cytotoxic activity against leukemia K562 cells. Despite the large number of the isolated bromotyrosine derivatives, studies focusing on their biological mechanism of action are scarce. In the current study we designed a set of experiments to reveal the underlying mechanism of DT cytotoxic activity against K562 cells. First, the results of MTT cytotoxic and the annexin V-FITC/PI apoptotic assays, indicated that the DT cytotoxic activity is mediated through induction of apoptosis. This effect was also supported by caspases-3 and -9 activation as well as PARP cleavage. DT induced generation of reactive oxygen species (ROS) and the disruption of mitochondrial membrane potential (MMP) as indicated by flow cytometric assay. The involvement of ROS generation in the apoptotic activity of DT was further corroborated by the pretreatment of K562 cells with N-acetyl-cysteine (NAC), a ROS scavenger, which prevented apoptosis and the disruption of MMP induced by DT. Results of cell-free system assay suggested that DT can act as a topoisomerase II catalytic inhibitor, unlike the clinical anticancer drug, etoposide, which acts as a topoisomerase poison. Additionally, we found that DT treatment can block IKK/NFκB pathway and activate PI3K/Akt pathway. These findings suggest that the cytotoxic effect of DT is associated with mitochondrial dysfunction-dependent apoptosis which is mediated through oxidative stress. Therefore, DT represents an interesting reference point for the development of new cytotoxic agent targeting IKK/NFκB pathway. PMID:24065159

  18. Towards the Small and the Beautiful: A Small Dibromotyrosine Derivative from Pseudoceratina sp. Sponge Exhibits Potent Apoptotic Effect through Targeting IKK/NFκB Signaling Pathway

    PubMed Central

    Su, Jui-Hsin; Chen, Yu-Cheng; El-Shazly, Mohamed; Du, Ying-Chi; Su, Chiang-Wen; Tsao, Chia-Wei; Liu, Li-Lian; Chou, Yalan; Chang, Wen-Been; Su, Yin-Di; Chiang, Michael Y.; Yeh, Yao-Tsung; Lu, Mei-Chin

    2013-01-01

    A dibromotyrosine derivative, (1′R,5′S,6′S)-2-(3′,5′-dibromo-1′,6′-dihydroxy-4′-oxocyclohex-2′-enyl) acetonitrile (DT), was isolated from the sponge Pseudoceratina sp., and was found to exhibit a significant cytotoxic activity against leukemia K562 cells. Despite the large number of the isolated bromotyrosine derivatives, studies focusing on their biological mechanism of action are scarce. In the current study we designed a set of experiments to reveal the underlying mechanism of DT cytotoxic activity against K562 cells. First, the results of MTT cytotoxic and the annexin V-FITC/PI apoptotic assays, indicated that the DT cytotoxic activity is mediated through induction of apoptosis. This effect was also supported by caspases-3 and -9 activation as well as PARP cleavage. DT induced generation of reactive oxygen species (ROS) and the disruption of mitochondrial membrane potential (MMP) as indicated by flow cytometric assay. The involvement of ROS generation in the apoptotic activity of DT was further corroborated by the pretreatment of K562 cells with N-acetyl-cysteine (NAC), a ROS scavenger, which prevented apoptosis and the disruption of MMP induced by DT. Results of cell-free system assay suggested that DT can act as a topoisomerase II catalytic inhibitor, unlike the clinical anticancer drug, etoposide, which acts as a topoisomerase poison. Additionally, we found that DT treatment can block IKK/NFκB pathway and activate PI3K/Akt pathway. These findings suggest that the cytotoxic effect of DT is associated with mitochondrial dysfunction-dependent apoptosis which is mediated through oxidative stress. Therefore, DT represents an interesting reference point for the development of new cytotoxic agent targeting IKK/NFκB pathway. PMID:24065159

  19. A new pathway for mitochondrial quality control: mitochondrial-derived vesicles

    PubMed Central

    Sugiura, Ayumu; McLelland, Gian-Luca; Fon, Edward A; McBride, Heidi M

    2014-01-01

    The last decade has been marked by tremendous progress in our understanding of the cell biology of mitochondria, with the identification of molecules and mechanisms that regulate their fusion, fission, motility, and the architectural transitions within the inner membrane. More importantly, the manipulation of these machineries in tissues has provided links between mitochondrial dynamics and physiology. Indeed, just as the proteins required for fusion and fission were identified, they were quickly linked to both rare and common human diseases. This highlighted the critical importance of this emerging field to medicine, with new hopes of finding drugable targets for numerous pathologies, from neurodegenerative diseases to inflammation and cancer. In the midst of these exciting new discoveries, an unexpected new aspect of mitochondrial cell biology has been uncovered; the generation of small vesicular carriers that transport mitochondrial proteins and lipids to other intracellular organelles. These mitochondrial-derived vesicles (MDVs) were first found to transport a mitochondrial outer membrane protein MAPL to a subpopulation of peroxisomes. However, other MDVs did not target peroxisomes and instead fused with the late endosome, or multivesicular body. The Parkinson's disease-associated proteins Vps35, Parkin, and PINK1 are involved in the biogenesis of a subset of these MDVs, linking this novel trafficking pathway to human disease. In this review, we outline what has been learned about the mechanisms and functional importance of MDV transport and speculate on the greater impact of these pathways in cellular physiology. PMID:25107473

  20. Phloroglucinol induces apoptosis via apoptotic signaling pathways in HT-29 colon cancer cells

    PubMed Central

    KANG, MI-HYE; KIM, IN-HYE; NAM, TAEK-JEO NG

    2014-01-01

    Phloroglucinol is a polyphenolic compound that is used to treat and prevent several human diseases, as it exerts beneficial biological activities, including anti-oxidant, anti-inflammatory and anticancer properties. The aim of the present study was to investigate the effects of phloroglucinol on apoptotic signaling pathways in HT-29 colon cancer cells. The results indicated that phloroglucinol suppressed cell viability and induced apoptosis in HT-29 cells in a concentration-dependent manner. Phloroglucinol treatment of HT-29 cells resulted in characteristic apoptosis-related changes: altered Bcl-2 family proteins, cytochrome c release, and activation of caspase-3 and caspase-8. This study also showed that proteins involved in apoptosis were stimulated by treatment with phloroglucinol. These findings demonstrated that phloroglucinol exerts anticancer activity in HT-29 colon cancer cells through induction of apoptosis. PMID:25070748

  1. Investigation of the effects of 2.1 GHz microwave radiation on mitochondrial membrane potential (ΔΨm), apoptotic activity and cell viability in human breast fibroblast cells.

    PubMed

    Esmekaya, Meric Arda; Seyhan, Nesrin; Kayhan, Handan; Tuysuz, Mehmet Zahid; Kurşun, Ayşe Canseven; Yağcı, Münci

    2013-01-01

    In the present study we aimed to investigate the effects of 2.1 GHz Wideband Code Division Multiple Access (W-CDMA) modulated Microwave (MW) Radiation on cell survival and apoptotic activity of human breast fibroblast cells. The cell cultures were exposed to W-CDMA modulated MW at 2.1 GHz at a SAR level of 0.607 W/kg for 4 and 24 h. The cell viability was assessed by MTT [3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] method. The percentage of apoptotic cells was analyzed by Annexin V-FITC and PI staining. 5,5',6,6'-Tetrachloro-1,1',3,3'- tetraethylbenzimidazolcarbocyanine iodide (JC-1) was used to measure Mitochondrial Membrane Potential (ΔΨm). sFasL and Fas/APO-1 protein levels were determined by ELISA method. 2.1 GHz MW radiation was shown to be able to inhibit cell proliferation and induce apoptosis in human breast fibroblast cells. The cell viability of MW-exposed cells was decreased significantly. The percentages of Annexin V-FITC positive cells were higher in MW groups. ΔΨm was decreased significantly due to MW radiation exposure. However, neither sFas nor FasL level was significantly changed in MW-exposed fibroblast cells. The results of this study showed that 2.1 GHz W-CDMA modulated MW radiation-induced apoptotic cell death via the mitochondrial pathway. PMID:23723005

  2. MAVS-MKK7-JNK2 Defines a Novel Apoptotic Signaling Pathway during Viral Infection

    PubMed Central

    Li, Senlin; Tang, Yijun; Wei, Bo; Yu, Huansha; Wang, Chen

    2014-01-01

    Viral infection induces innate immunity and apoptosis. Apoptosis is an effective means to sacrifice virus-infected host cells and therefore restrict the spread of pathogens. However, the underlying mechanisms of this process are still poorly understood. Here, we show that the mitochondrial antiviral signaling protein (MAVS/VISA/Cardif/IPS-1) is critical for SeV (Sendai virus)-induced apoptosis. MAVS specifically activates c-Jun N-terminal kinase 2 (JNK2) but not other MAP kinases. Jnk2−/− cells, but not Jnk1−/− cells, are unable to initiate virus-induced apoptosis and SeV further fails to trigger apoptosis in MAPK kinase 7 (MKK7) knockout (Mkk7−/−) cells. Mechanistically, MAVS recruits MKK7 onto mitochondria via its 3D domain, which subsequently phosphorylates JNK2 and thus activates the apoptosis pathway. Consistently, Jnk2−/− mice, but not Jnk1−/− mice, display marked inflammatory injury in lung and liver after viral challenge. Collectively, we have identified a novel signaling pathway, involving MAVS-MKK7-JNK2, which mediates virus-induced apoptosis and highlights the indispensable role of mitochondrial outer membrane in host defenses. PMID:24651600

  3. In vitro analysis of the role of the mitochondrial apoptosis pathway in CSBE therapy against human gastric cancer

    PubMed Central

    JI, YU-BIN; YU, LEI

    2015-01-01

    The caper plant (Capparis spinosa L.) was a common Uyghur folk medicine, and is a member of the Capparidaceae family. In a previous study, the n-butanol extract of C. spinosa L. (CSBE) was demonstrated to exert anti-tumor activity; however, the underlying mechanism is currently not understood. The present study aimed to elucidate the mechanism underlying the CSBE-induced mitochondrial apoptotic pathway, in order to investigate the anti-tumor effects of this plant extract. CSBE-induced apoptosis of the SGC-7901 human gastric cancer cell line was observed, and alterations in the expression levels and localization of initiators, markers, and executors of the mitochondrial apoptosis pathway were analyzed. Following treatment of SGC-7901 cells with CBSE, proliferation was inhibited and apoptosis was induced; and these effects were associated with mitochondrial membrane potential disruption, cytochrome c release into the cytoplasm, and caspase-9 and caspase-3 activation. CSBE may have induced SGC-7901 cell apoptosis by upregulating the expression of B-cell lymphoma-2 (BCL-2)-associated X protein, and downregulating the expression of BCL-2. The results of the present study suggested that CSBE may induce SGC-7901 cell apoptosis via activation of the mitochondrial apoptosis pathway. PMID:26668648

  4. The Pivotal Role of the Mitochondrial Amidoxime Reducing Component 2 in Protecting Human Cells against Apoptotic Effects of the Base Analog N6-Hydroxylaminopurine*

    PubMed Central

    Plitzko, Birte; Havemeyer, Antje; Kunze, Thomas; Clement, Bernd

    2015-01-01

    N-Hydroxylated nucleobases and nucleosides as N-hydroxylaminopurine (HAP) or N-hydroxyadenosine (HAPR) may be generated endogenously in the course of cell metabolism by cytochrome P450, by oxidative stress or by a deviating nucleotide biosynthesis. These compounds have shown to be toxic and mutagenic for procaryotic and eucaryotic cells. For DNA replication fidelity it is therefore of great importance that organisms exhibit effective mechanisms to remove such non-canonical base analogs from DNA precursor pools. In vitro, the molybdoenzymes mitochondrial amidoxime reducing component 1 and 2 (mARC1 and mARC2) have shown to be capable of reducing N-hydroxylated base analogs and nucleoside analogs to the corresponding canonical nucleobases and nucleosides upon reconstitution with the electron transport proteins cytochrome b5 and NADH-cytochrome b5 reductase. By RNAi-mediated down-regulation of mARC in human cell lines the mARC-dependent N-reductive detoxication of HAP in cell metabolism could be demonstrated. For HAPR, on the other hand, the reduction to adenosine seems to be of less significance in the detoxication pathway of human cells as HAPR is primarily metabolized to inosine by direct dehydroxylamination catalyzed by adenosine deaminase. Furthermore, the effect of mARC knockdown on sensitivity of human cells to HAP was examined by flow cytometric quantification of apoptotic cell death and detection of poly (ADP-ribose) polymerase (PARP) cleavage. mARC2 was shown to protect HeLa cells against the apoptotic effects of the base analog, whereas the involvement of mARC1 in reductive detoxication of HAP does not seem to be pivotal. PMID:25713076

  5. The pivotal role of the mitochondrial amidoxime reducing component 2 in protecting human cells against apoptotic effects of the base analog N6-hydroxylaminopurine.

    PubMed

    Plitzko, Birte; Havemeyer, Antje; Kunze, Thomas; Clement, Bernd

    2015-04-17

    N-Hydroxylated nucleobases and nucleosides as N-hydroxylaminopurine (HAP) or N-hydroxyadenosine (HAPR) may be generated endogenously in the course of cell metabolism by cytochrome P450, by oxidative stress or by a deviating nucleotide biosynthesis. These compounds have shown to be toxic and mutagenic for procaryotic and eucaryotic cells. For DNA replication fidelity it is therefore of great importance that organisms exhibit effective mechanisms to remove such non-canonical base analogs from DNA precursor pools. In vitro, the molybdoenzymes mitochondrial amidoxime reducing component 1 and 2 (mARC1 and mARC2) have shown to be capable of reducing N-hydroxylated base analogs and nucleoside analogs to the corresponding canonical nucleobases and nucleosides upon reconstitution with the electron transport proteins cytochrome b5 and NADH-cytochrome b5 reductase. By RNAi-mediated down-regulation of mARC in human cell lines the mARC-dependent N-reductive detoxication of HAP in cell metabolism could be demonstrated. For HAPR, on the other hand, the reduction to adenosine seems to be of less significance in the detoxication pathway of human cells as HAPR is primarily metabolized to inosine by direct dehydroxylamination catalyzed by adenosine deaminase. Furthermore, the effect of mARC knockdown on sensitivity of human cells to HAP was examined by flow cytometric quantification of apoptotic cell death and detection of poly (ADP-ribose) polymerase (PARP) cleavage. mARC2 was shown to protect HeLa cells against the apoptotic effects of the base analog, whereas the involvement of mARC1 in reductive detoxication of HAP does not seem to be pivotal. PMID:25713076

  6. 2-Hydroxyethyl methacrylate-induced apoptosis through the ATM- and p53-dependent intrinsic mitochondrial pathway.

    PubMed

    Schweikl, Helmut; Petzel, Christine; Bolay, Carola; Hiller, Karl-Anton; Buchalla, Wolfgang; Krifka, Stephanie

    2014-03-01

    Resin monomers of dental composites like 2-hydroxyethyl methacrylate (HEMA) disturb cell functions including responses of the innate immune system, mineralization and differentiation of dental pulp-derived cells, or induce cell death via apoptosis. The induction of apoptosis is related to the availability of the antioxidant glutathione, although a detailed understanding of the signaling pathways is still unknown. The present study provides insight into the causal relationship between oxidative stress, oxidative DNA damage, and the specific signaling pathway leading to HEMA-induced apoptosis in RAW264.7 mouse macrophages. The differential expression of the antioxidative enzymes superoxide dismutase, glutathione peroxidase, and catalase in HEMA-exposed cells indicated oxidative stress, which was associated with the cleavage of pro-caspase 3 as a critical apoptosis executioner. A 2-fold increase in the amount of mitochondrial superoxide anions after a 24 h exposure to HEMA (6-8 mM) was paralleled by a considerable decrease in the mitochondrial membrane potential (MMP). Additionally, expression of proteins critical for the signaling of apoptosis through the intrinsic mitochondrial pathway was detected. Transcription-dependent and transcription-independent mechanisms of p53-regulated apoptosis were activated, and p53 was translocated from the cytosol to mitochondria. HEMA-induced transcriptional activity of p53 was indicated by increased levels of PUMA localized to mitochondria as a potent inducer of apoptosis. The expression of Bcl-xL and Bax suggested that cells responded to stress caused by HEMA via the activation of a complicated and antagonistic machinery of pro- and anti-apoptotic Bcl-2 family members. A HEMA-induced and oxidative stress-sensitive delay of the cell cycle, indicating a DNA damage response, occurred independent of the influence of KU55399, a potent inhibitor of ATM (ataxia-telangiectasia mutated) activity. However, ATM, a protein kinase which

  7. Erastin Disrupts Mitochondrial Permeability Transition Pore (mPTP) and Induces Apoptotic Death of Colorectal Cancer Cells

    PubMed Central

    Huo, Haizhong; Zhou, Zhiyuan; Qin, Jian; Liu, Wenyong; Wang, Bing; Gu, Yan

    2016-01-01

    We here evaluated the potential anti-colorectal cancer activity by erastin, a voltage-dependent anion channel (VDAC)-binding compound. Our in vitro studies showed that erastin exerted potent cytotoxic effects against multiple human colorectal cancer cell lines, possibly via inducing oxidative stress and caspase-9 dependent cell apoptosis. Further, mitochondrial permeability transition pore (mPTP) opening was observed in erastin-treated cancer cells, which was evidenced by VDAC-1 and cyclophilin-D (Cyp-D) association, mitochondrial depolarization, and cytochrome C release. Caspase inhibitors, the ROS scavenger MnTBAP, and mPTP blockers (sanglifehrin A, cyclosporin A and bongkrekic acid), as well as shRNA-mediated knockdown of VDAC-1, all significantly attenuated erastin-induced cytotoxicity and apoptosis in colorectal cancer cells. On the other hand, over-expression of VDAC-1 augmented erastin-induced ROS production, mPTP opening, and colorectal cancer cell apoptosis. In vivo studies showed that intraperitoneal injection of erastin at well-tolerated doses dramatically inhibited HT-29 xenograft growth in severe combined immunodeficient (SCID) mice. Together, these results demonstrate that erastin is cytotoxic and pro-apoptotic to colorectal cancer cells. Erastin may be further investigated as a novel anti-colorectal cancer agent. PMID:27171435

  8. Taurine prevents arsenic-induced cardiac oxidative stress and apoptotic damage: Role of NF-{kappa}B, p38 and JNK MAPK pathway

    SciTech Connect

    Ghosh, Jyotirmoy; Das, Joydeep; Manna, Prasenjit

    2009-10-01

    Cardiac dysfunction is a major cause of morbidity and mortality worldwide due to its complex pathogenesis. However, little is known about the mechanism of arsenic-induced cardiac abnormalities and the use of antioxidants as the possible protective agents in this pathophysiology. Conditionally essential amino acid, taurine, accounts for 25% to 50% of the amino acid pool in myocardium and possesses antioxidant properties. The present study has, therefore, been carried out to investigate the underlying mechanism of the beneficial role of taurine in arsenic-induced cardiac oxidative damage and cell death. Arsenic reduced cardiomyocyte viability, increased reactive oxygen species (ROS) production and intracellular calcium overload, and induced apoptotic cell death by mitochondrial dependent caspase-3 activation and poly-ADP ribose polymerase (PARP) cleavage. These changes due to arsenic exposure were found to be associated with increased IKK and NF-{kappa}B (p65) phosphorylation. Pre-exposure of myocytes to an IKK inhibitor (PS-1145) prevented As-induced caspase-3 and PARP cleavage. Arsenic also markedly increased the activity of p38 and JNK MAPKs, but not ERK to that extent. Pre-treatment with SP600125 (JNK inhibitor) and SB203580 (p38 MAPK inhibitor) attenuated NF-{kappa}B and IKK phosphorylation indicating that p38 and JNK MAPKs are mainly involved in arsenic-induced NF-{kappa}B activation. Taurine treatment suppressed these apoptotic actions, suggesting that its protective role in arsenic-induced cardiomyocyte apoptosis is mediated by attenuation of p38 and JNK MAPK signaling pathways. Similarly, arsenic intoxication altered a number of biomarkers related to cardiac oxidative stress and other apoptotic indices in vivo and taurine supplementation could reduce it. Results suggest that taurine prevented arsenic-induced myocardial pathophysiology, attenuated NF-{kappa}B activation via IKK, p38 and JNK MAPK signaling pathways and could possibly provide a protection

  9. Rasagiline and selegiline suppress calcium efflux from mitochondria by PK11195-induced opening of mitochondrial permeability transition pore: a novel anti-apoptotic function for neuroprotection.

    PubMed

    Wu, Yuqiu; Kazumura, Kimiko; Maruyama, Wakako; Osawa, Toshihiko; Naoi, Makoto

    2015-10-01

    Rasagiline and selegiline, inhibitors of type B monoamine oxidase (MAO-B), protect neurons from cell death in cellular and animal models. Suppression of mitochondrial membrane permeabilization and subsequent activation of apoptosis cascade, and induction of anti-apoptotic, pro-survival genes are proposed to contribute the anti-apoptotic function. Rasagiline suppresses neurotoxin- and oxidative stress-induced membrane permeabilization in isolated mitochondria, but the mechanism has been not fully clarified. In this paper, regulation of the mitochondrial permeability transition pore by rasagiline and selegiline was examined in apoptosis induced by PK11195, a ligand of the outer membrane translocator protein 18 kDa (TSPO) in SH-SY5Y cells. The pore opening was quantitatively measured using a simultaneous monitoring system for calcium (Ca(2+)) and superoxide (O2(-)) (Ishibashi et al. in Biochem Biophys Res Commun 344:571-580, 2006). The association of the pore opening with Ca(2+) efflux and ROS increase was proved by the inhibition of Bcl-2 overexpression and cyclosporine A treatment. Potency to release Ca(2+) was correlated with the cytotoxicity of TSPO antagonists, PK11195, FGIN-1-27 and protoporphyrin IX, whereas a TSPO agonist, 4-chloro-diazepamine, did not significantly increase Ca(2+) or cause cell death. Rasagiline and selegiline inhibited mitochondrial Ca(2+) efflux through the mitochondrial permeability transition pore dose dependently. Ca(2+) efflux was confirmed as the initial signal in mitochondrial apoptotic cascade, and the suppression of Ca(2+) efflux may account for the neuroprotective function of rasagiline and selegiline. The quantitative measurement of Ca(2+) efflux can be applied to determine anti-apoptotic activity of neuroprotective compounds. The role of mitochondrial Ca(2+) release in neuronal death and also in neuroprotection by MAO-B inhibitors is discussed. PMID:25863936

  10. A polysaccharide from pumpkin induces apoptosis of HepG2 cells by activation of mitochondrial pathway.

    PubMed

    Shen, Weixi; Guan, Yuanyuan; Wang, Jingfang; Hu, Yu; Tan, Qian; Song, Xiaowei; Jin, Yinghua; Liu, Ying; Zhang, Yanqiao

    2016-04-01

    Purified white polysaccharide (PPW) is a homogenous polysaccharide isolated from pumpkin, with an average molecular weight of 34 kDa. In this study, we aimed at examining the anti-proliferative activity of PPW against hepatocellular carcinoma (HCC) HepG2 cells and the underlying mechanisms. We found that PPW-induced inhibition of cell proliferation in HepG2 cells was associated with the induction of apoptosis. Exposure of HepG2 cells to PPW (100, 200, and 400 μg/mL) resulted in a loss of mitochondrial membrane potential (Δψm) and the release of cytochrome c from the mitochondria to the cytosol. Also, Western blot analysis revealed dose-dependent increase of pro-apoptotic Bax protein and decrease of anti-apoptotic Bcl-2 protein in PPW-treated cells. Besides, caspase-9 and caspase-3 activities were also enhanced in HepG2 cells followed by PPW treatment. Additionally, the cleavage of poly (ADP-ribose) polymerase (PARP) was observed in PPW-treated HepG2 cells, which altogether account for apoptotic cell death. These results suggested that PPW-induced apoptosis involved a caspase-3-mediated mitochondrial pathway and may have potential as a cancer chemopreventive and therapeutic agent for the prevention and treatment of HCC. PMID:26555544

  11. Huperzine A attenuates hepatic ischemia reperfusion injury via anti-oxidative and anti-apoptotic pathways.

    PubMed

    Xu, Zhe; Wang, Yang

    2014-08-01

    Hepatic ischemia reperfusion (HI/R) injury may occur during liver transplantation and remains a serious concern in clinical practice. Huperzine A (HupA), an alkaloid isolated from the Chinese traditional medicine Huperzia serrata, has been demonstrated to possess anti‑oxidative and anti‑apoptotic properties. In the present study, a rat model of HI/R was established by clamping the hepatic artery, the hepatoportal vein and the bile duct with a vascular clamp for 30 min followed by reperfusion for 6 h under anesthesia. HupA was injected into the tail vein 5 min prior to the induction of HI/R at doses of 167 and 500 µg/kg. The histopathological assessment of the liver was performed using hematoxylin and eosin staining. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were assayed in the serum samples. The tissue levels of superoxide dismutase (SOD), catalase (CAT), malondiadehyde (MDA) and glutathione (GSH) were also measured spectrophotometrically. Furthermore, the protein expression of caspase‑3, Bcl‑2 and Bax in hepatic tissues was detected via western blot analysis. Treatment of Wistar rats with HupA at doses of 167 and 500 µg/kg markedly attenuated HI/R injury as observed histologically. In addition, the significant reductions of serum ALT and AST were observed in HupA‑treated ischemic rats. Furthermore, HupA treatment enhanced the activity of hepatic tissue SOD, CAT and GSH, but decreased the MDA tissue content. Western blot analysis revealed elevated levels of Bcl‑2 expression but decreased Bax and caspase‑3 tissue expression at the protein level in the HupA‑treated group. The present data suggest that HupA attenuates the HI/R injury of rats through its anti‑oxidative and anti‑apoptotic signaling pathways. PMID:24888717

  12. Targeting the hypoxia inducible factor pathway with mitochondrial uncouplers.

    PubMed

    Thomas, Rusha; Kim, Myoung H

    2007-02-01

    Hypoxia inducible factor-1 (HIF-1) is central to most adaptation responses of tumors to hypoxia, and consists of a hypoxia inducible HIF-1alpha or -2alpha subunit, and a constitutively expressed HIF-1beta subunit. Previously, mitochondrial uncouplers, rottlerin and FCCP, were shown to increase the rate of cellular O(2 )consumption. In this study, we determined that mitochondrial uncouplers, rottlerin and FCCP, significantly decreased hypoxic as well as normoxic HIF-1 transcriptional activity which was in part mediated by down-regulation of the oxygen labile HIF-1alpha and HIF-2alpha protein levels in PC-3 and DU-145 prostate cancer cells. Our results also revealed that mitochondrial uncouplers decreased the expression of HIF target genes, VEGF and VEGF receptor-2. Taken together, our results indicate that functional mitochondria are important in HIF-1alpha and HIF-2alpha protein stability and transcriptional activity during normoxia as well as in hypoxia, and that mitochondrial uncouplers may be useful in the inhibition of HIF pathway in tumors. PMID:16924414

  13. Mitochondrial function in ageing: coordination with signalling and transcriptional pathways.

    PubMed

    Yin, Fei; Sancheti, Harsh; Liu, Zhigang; Cadenas, Enrique

    2016-04-15

    Mitochondrial dysfunction entailing decreased energy-transducing capacity and perturbed redox homeostasis is an early and sometimes initiating event in ageing and age-related disorders involving tissues with high metabolic rate such as brain, liver and heart. In the central nervous system (CNS), recent findings from our and other groups suggest that the mitochondrion-centred hypometabolism is a key feature of ageing brains and Alzheimer's disease. This hypometabolic state is manifested by lowered neuronal glucose uptake, metabolic shift in the astrocytes, and alternations in mitochondrial tricarboxylic acid cycle function. Similarly, in liver and adipose tissue, mitochondrial capacity around glucose and fatty acid metabolism and thermogenesis is found to decline with age and is implicated in age-related metabolic disorders such as obesity and type 2 diabetes mellitus. These mitochondrion-related disorders in peripheral tissues can impact on brain functions through metabolic, hormonal and inflammatory signals. At the cellular level, studies in CNS and non-CNS tissues support the notion that instead of being viewed as autonomous organelles, mitochondria are part of a dynamic network with close interactions with other cellular components through energy- or redox-sensitive cytosolic kinase signalling and transcriptional pathways. Hence, it would be critical to further understand the molecular mechanisms involved in the communication between mitochondria and the rest of the cell. Therapeutic strategies that effectively preserves or improve mitochondrial function by targeting key component of these signalling cascades could represent a novel direction for numerous mitochondrion-implicated, age-related disorders. PMID:26293414

  14. Grape seed proanthocyanidins induce apoptosis through the mitochondrial pathway in nasopharyngeal carcinoma CNE-2 cells.

    PubMed

    Yao, Kai; Shao, Jingjing; Zhou, Keyuan; Qiu, Haitao; Cao, Fengxiang; Li, Caihong; Dai, De

    2016-08-01

    Although modern radiotherapy offers excellent local control in the treatment of nasopharyngeal carcinoma (NPC), current therapeutic decisions remain burdensome due to the frequency of local recurrence and treatment failure at distant sites. One potential and promising strategy for the prevention or treatment of cancers is the use of bioactive components of plant origin, including dietary plant products. Herein, we studied one class of these bioactive compounds, grape seed proanthocyanidins (GSPs), and explored their effect on NPC CNE-2 cells, as well as the primary mechanism underlying this effect. Our results revealed that treatment of human NPC CNE-2 cells with GSPs reduced cell viability in a dose- and time-dependent manner, and moreover, markedly induced cell cycle arrest at the G2/M phase, leading to induction of apoptosis. In addition, we found that the underlying mechanism was associated with increased expression of the pro-apoptotic protein Bax, decreased expression of the anti-apoptotic proteins Bcl-2 and Bcl-xL, upregulation of cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase (PRAP) protein, and the loss of mitochondrial membrane potential (MMP) (Δψm). Furthermore, GSPs upregulated the Bcl-2 homology 3 (BH3)-only proteins, Bim and Bad, in a concentration-dependent manner. Taken together, these data supported our hypothesis that, in human NPC CNE-2 cells, GSPs could induce apoptosis through the mitochondrial pathway and ultimately reduce cell viability. Collectively, the results discussed above provide substantive evidence for the potential of GSPs as an effective bioactive phytochemical for the treatment of NPC. PMID:27277418

  15. Methyl angolensate, a natural tetranortriterpenoid induces intrinsic apoptotic pathway in leukemic cells.

    PubMed

    Chiruvella, Kishore K; Kari, Vijayalakshmi; Choudhary, Bibha; Nambiar, Mridula; Ghanta, Rama Gopal; Raghavan, Sathees C

    2008-12-10

    Methyl angolensate (MA), a natural tetranortriterpenoid, purified from Soymida febrifuga is examined for the first time for its anticancer properties. We find that MA inhibits growth of T-cell leukemia and chronic myelogenous leukemia cells in a time- and dose-dependent manner. Accumulation of cells in the subG1 peak, annexin V binding and DNA fragmentation suggested induction of apoptosis. Besides, upregulation of BAD (proapoptotic) and downregulation of BCL2 (antiapoptotic) gene products further supported induction of apoptosis. Loss of mitochondrial membrane potential, activation of caspase 9, caspase 3, cleavage of PARP, downregulation of Ku70/80 and phosphorylation of MAP kinases suggested that MA could induce intrinsic pathway of apoptosis in leukemic cells. PMID:19022252

  16. Curcumin induces apoptotic cell death of activated human CD4+ T cells via increasing endoplasmic reticulum stress and mitochondrial dysfunction.

    PubMed

    Zheng, Min; Zhang, Qinggao; Joe, Yeonsoo; Lee, Bong Hee; Ryu, Do Gon; Kwon, Kang Beom; Ryter, Stefan W; Chung, Hun Taeg

    2013-03-01

    Curcumin, a natural polyphenolic antioxidant compound, exerts well-known anti-inflammatory and immunomodulatory effects, the latter which can influence the activation of immune cells including T cells. Furthermore, curcumin can inhibit the expression of pro-inflammatory cytokines and chemokines, through suppression of the NF-κB signaling pathway. The beneficial effects of curcumin in diseases such as arthritis, allergy, asthma, atherosclerosis, diabetes and cancer may be due to its immunomodulatory properties. We studied the potential of curcumin to modulate CD4+ T cells-mediated autoimmune disease, by examining the effects of this compound on human CD4+ lymphocyte activation. Stimulation of human T cells with PHA or CD3/CD28 induced IL-2 mRNA expression and activated the endoplasmic reticulum (ER) stress response. The treatment of T cells with curcumin induced the unfolded protein response (UPR) signaling pathway, initiated by the phosphorylation of PERK and IRE1. Furthermore, curcumin increased the expression of the ER stress associated transcriptional factors XBP-1, cleaved p50ATF6α and C/EBP homologous protein (CHOP) in human CD4+ and Jurkat T cells. In PHA-activated T cells, curcumin further enhanced PHA-induced CHOP expression and reduced the expression of the anti-apoptotic protein Bcl-2. Finally, curcumin treatment induced apoptotic cell death in activated T cells via eliciting an excessive ER stress response, which was reversed by the ER-stress inhibitor 4-phenylbutyric acid or transfection with CHOP-specific siRNA. These results suggest that curcumin can impact both ER stress and mitochondria functional pathways, and thereby could be used as a promising therapy in the context of Th1-mediated autoimmune diseases. PMID:23415873

  17. Memantine blocks mitochondrial OPA1 and cytochrome c release, and subsequent apoptotic cell death in glaucomatous retina

    PubMed Central

    Ju, Won-Kyu; Kim, Keun-Young; Angert, Mila; Duong-Polk, Karen X.; Lindsey, James D.; Ellisman, Mark H.; Weinreb, Robert N.

    2009-01-01

    Purpose To determine whether intraocular pressure (IOP) elevation alters OPA1 expression and triggers OPA1 release, as well as whether the uncompetitive N-methyl-D-aspartate (NMDA) glutamate receptor antagonist memantine blocks OPA1 release and subsequent apoptotic cell death in glaucomatous DBA/2J mouse retina. Methods Preglaucomatous DBA/2J mice received memantine (5 mg/kg, i.p. injection, twice a day for 3 months) and IOP in the eyes was measured monthly. RGC loss was counted following Fluoro-Gold labeling. OPA1, Dnm1, Bcl-2 and Bax mRNA were measured by Taqman qPCR. OPA1 protein was assessed by immunohistochemistry and Western blot. Apoptotic cell death was assessed by TUNEL staining. Results Memantine treatment significantly increased RGC survival in glaucomatous DBA/2J mice. Memantine treatment increased the 75 kDa OPA1 isoform but did not alter the 80 and 90 kDa isoforms. The isoforms of OPA1 were significantly increased in the cytosol of the vehicle-treated glaucomatous retinas but were significantly decreased in memantine-treated glaucomatous retinas. OPA1 immunoreactivity was decreased in the photoreceptors of both vehicle- and memantine-treated glaucomatous retinas but was increased in the outer plexiform layer of only the memantine-treated glaucomatous retinas. Memantine blocked apoptotic cell death in the GCL, increased Bcl-2 gene expression, and decreased Bax gene expression. Conclusions OPA1 release from mitochondria in glaucomatous mouse retina is inhibited by blockade of glutamate receptor activation. Because this OPA1 effect was accompanied by increased Bcl-2 expression, decreased Bax expression and apoptosis blockade, glutamate receptor activation in the glaucomatous retina may involve a distinct mitochondria-mediated cell death pathway. PMID:18936150

  18. Potent antitumor efficacy of ST13 for colorectal cancer mediated by oncolytic adenovirus via mitochondrial apoptotic cell death.

    PubMed

    Yang, Min; Cao, Xin; Yu, Ming Can; Gu, Jin Fa; Shen, Zong Hou; Ding, Miao; Yu, De Bing; Zheng, Shu; Liu, Xin yuan

    2008-04-01

    ST13 is a cofactor of heat shock protein 70 (Hsp70). To date, all data since the discovery of ST13 in 1993 until more recent studies in 2007 have proved that ST13 is downregulated in tumors and it was proposed to be a tumor suppressor gene, but no work reported its antitumor effect and apoptotic mechanism. In the work described in this paper, ST13 was inserted into ZD55, an oncolytic adenovirus with the E1B 55-kDa gene deleted, to form ZD55-ST13, which exerts an excellent antitumor effect in vitro and in an animal model of colorectal carcinoma SW620 xenograft. ZD55-ST13 inhibited tumor cells 100-fold more than Ad-ST13 and ZD55-EGFP in vitro. However, ZD55-ST13 showed no damage of normal fibroblast MRC5 cells. In exploring the mechanism of ZD55-ST13 in tumor cell killing, we found that ZD55-ST13-infected SW620 cells formed apoptotic bodies and presented obvious apoptosis phenomena. ZD55-ST13 induced the upregulation of Hsp70, the downregulation of antiapoptotic gene Bcl-2, and the release of cytochrome c. Cytochrome c triggered apoptosis by activating caspase-9 and caspase-3, which cleave the enzyme poly(ADP-ribose) polymerase in ZD55-ST13-infected SW620 cells. In summary, overexpressed ST13 as mediated by oncolytic adenovirus could exert potent antitumor activity via the intrinsic apoptotic pathway and has the potential to become a novel therapeutic for colorectal cancer gene therapy. PMID:18355116

  19. Manumycin A induces apoptosis in malignant pleural mesothelioma through regulation of Sp1 and activation of the mitochondria-related apoptotic pathway.

    PubMed

    Kim, Ka Hwi; Chae, Jung-Il; Oh, Hana; Cho, Jin Hyoung; Lee, Ra-Ham; Yoon, Goo; Cho, Seung-Sik; Cho, Young-Sik; Lee, Mee-Hyun; Liu, Kangdong; Lee, Hyun-Jeong; Shim, Jung-Hyun

    2016-07-01

    Manumycin A (Manu A) is a natural product isolated from Streptomyces parvulus and has been reported to have anti-carcinogenic and anti-biotic properties. However, neither its molecular mechanism nor its molecular targets are well understood. Thus, the aim of the present study was to explore the possibility that Manu A has cancer preventive and chemotherapeutic effects on malignant pleural mesothelioma (MPM) through regulation of Sp1 and induction of mitochondrial cell death pathway. Manu A inhibited the cell viability of MSTO-211H and H28 cells in a concentration‑dependent manner as determined by MTS assay. IC50 values were calculated as 8.3 and 4.3 µM in the MSTO-311H and H28 cells following 48 h incubation, respectively. Manu A induced a significant increase in apoptotic indices as shown by DAPI staining, Annexin V assay, multi-caspase activity and mitochondrial membrane potential assay. The downregulation of Sp1 mRNA and protein expression by Manu A led to apoptosis by suppressing Sp1-regulated proteins (cyclin D1, Mcl-1 and survivin). Manu A decreased the protein levels of BID, Bcl-xL and PARP while it increased Bax levels. Manu A caused depolarization of the mitochondrial membrane with induction of CHOP, DR4 and DR5. Our results demonstrated that Manu A exerted anticancer effects by inducing apoptosis via inhibition of the Sp1-related signaling pathway in human MPM. PMID:27176604

  20. BL-038, a Benzofuran Derivative, Induces Cell Apoptosis in Human Chondrosarcoma Cells through Reactive Oxygen Species/Mitochondrial Dysfunction and the Caspases Dependent Pathway.

    PubMed

    Liu, Ju-Fang; Chen, Chien-Yu; Chen, Hsien-Te; Chang, Chih-Shiang; Tang, Chih-Hsin

    2016-01-01

    Chondrosarcoma is a highly malignant cartilage-forming bone tumor that has the capacity to invade locally and cause distant metastasis. Moreover, chondrosarcoma is intrinsically resistant to conventional chemotherapy or radiotherapy. The novel benzofuran derivative, BL-038 (2-amino-3-(2,6-dichlorophenyl)-6-(4-methoxyphenyl)benzofuran-4-yl acetate), has been evaluated for its anticancer effects in human chondrosarcoma cells. BL-038 caused cell apoptosis in two human chondrosarcoma cell lines, JJ012 and SW1353, but not in primary chondrocytes. Treatment of chondrosarcoma with BL-038 also induced reactive oxygen species (ROS) production. Furthermore, BL-038 decreased mitochondrial membrane potential (MMP) and changed mitochondrial-related apoptosis, by downregulating the anti-apoptotic activity members (Bcl-2, Bcl-xL) and upregulating pro-apoptotic members (Bax, Bak) of the B-cell lymphoma 2 (Bcl-2) family of proteins, key regulators of the apoptotic machinery in cells. These results demonstrate that in human chondrosarcoma cells, the apoptotic and cytotoxic effects of BL-038 are mediated by the intrinsic mitochondria-mediated apoptotic pathway, which in turn causes the release of cytochrome c, the activation of caspase-9 and caspase-3, and the cleavage of poly (ADP-ribose) polymerase (PARP), to elicit apoptosis response. Our results show that the benzofuran derivative BL-038 induces apoptosis in chondrosarcoma cells. PMID:27618007

  1. Src kinase modulates the apoptotic p53 pathway by altering HIPK2 localization

    PubMed Central

    Polonio-Vallon, Tilman; Kirkpatrick, Joanna; Krijgsveld, Jeroen; Hofmann, Thomas G

    2014-01-01

    Non-receptor tyrosine kinase Src is a master regulator of cell proliferation. Hyperactive Src is a potent oncogene and a driver of cellular transformation and carcinogenesis. Homeodomain-interacting protein kinase 2 (HIPK2) is a tumor suppressor mediating growth suppression and apoptosis upon genotoxic stress through phosphorylation of p53 at Ser46. Here we show that Src phosphorylates HIPK2 and changes its subcellular localization. Using mass spectrometry we identified 9 Src-mediated Tyr-phosphorylation sites within HIPK2, 5 of them positioned in the kinase domain. By means of a phosphorylation-specific antibody we confirm that Src mediates phosphorylation of HIPK2 at Tyr354. We demonstrate that ectopic expression of Src increases the half-life of HIPK2 by interfering with Siah-1-mediated HIPK2 degradation. Moreover, we find that hyperactive Src binds HIPK2 and redistributes HIPK2 from the cell nucleus to the cytoplasm, where both kinases partially colocalize. Accordingly, we find that hyperactive Src decreases chemotherapeutic drug-induced p53 Ser46 phosphorylation and apoptosis activation. Together, our results suggest that Src kinase suppresses the apoptotic p53 pathway by phosphorylating HIPK2 and relocalizing the kinase to the cytoplasm. PMID:24196445

  2. Src kinase modulates the apoptotic p53 pathway by altering HIPK2 localization.

    PubMed

    Polonio-Vallon, Tilman; Kirkpatrick, Joanna; Krijgsveld, Jeroen; Hofmann, Thomas G

    2014-01-01

    Non-receptor tyrosine kinase Src is a master regulator of cell proliferation. Hyperactive Src is a potent oncogene and a driver of cellular transformation and carcinogenesis. Homeodomain-interacting protein kinase 2 (HIPK2) is a tumor suppressor mediating growth suppression and apoptosis upon genotoxic stress through phosphorylation of p53 at Ser46. Here we show that Src phosphorylates HIPK2 and changes its subcellular localization. Using mass spectrometry we identified 9 Src-mediated Tyr-phosphorylation sites within HIPK2, 5 of them positioned in the kinase domain. By means of a phosphorylation-specific antibody we confirm that Src mediates phosphorylation of HIPK2 at Tyr354. We demonstrate that ectopic expression of Src increases the half-life of HIPK2 by interfering with Siah-1-mediated HIPK2 degradation. Moreover, we find that hyperactive Src binds HIPK2 and redistributes HIPK2 from the cell nucleus to the cytoplasm, where both kinases partially colocalize. Accordingly, we find that hyperactive Src decreases chemotherapeutic drug-induced p53 Ser46 phosphorylation and apoptosis activation. Together, our results suggest that Src kinase suppresses the apoptotic p53 pathway by phosphorylating HIPK2 and relocalizing the kinase to the cytoplasm. PMID:24196445

  3. Mitochondrial pathways in sarcopenia of aging and disuse muscle atrophy

    PubMed Central

    Calvani, Riccardo; Joseph, Anna-Maria; Adhihetty, Peter J.; Miccheli, Alfredo; Bossola, Maurizio; Leeuwenburgh, Christiaan; Bernabei, Roberto; Marzetti, Emanuele

    2014-01-01

    Muscle loss during aging and disuse is a highly prevalent and disabling condition, but knowledge about cellular pathways mediating muscle atrophy is still limited. Given the postmitotic nature of skeletal myocytes, the maintenance of cellular homeostasis relies on the efficiency of cellular quality control mechanisms. In this scenario, alterations in mitochondrial function are considered a major factor underlying sarcopenia and muscle atrophy. Damaged mitochondria are not only less bioenergetically efficient, but also generate increased amounts of reactive oxygen species, interfere with cellular quality control mechanisms, and display a greater propensity to trigger apoptosis. Thus, mitochondria stand at the crossroad of signaling pathways that regulate skeletal myocyte function and viability. Studies on these pathways have sometimes provided unexpected and counterintuitive results, which suggests that they are organized into a complex, heterarchical network that is currently insufficiently understood. Untangling the complexity of such a network will likely provide clinicians with novel and highly effective therapeutics to counter the muscle loss associated with aging and disuse. In this review, we summarize the current knowledge on the mechanisms whereby mitochondrial dysfunction intervenes in the pathogenesis of sarcopenia and disuse atrophy, and highlight the prospect of targeting specific processes to treat these conditions. PMID:23154422

  4. Metabolomics for undergraduates: Identification and pathway assignment of mitochondrial metabolites.

    PubMed

    Marques, Ana Patrícia; Serralheiro, Maria Luisa; Ferreira, António E N; Freire, Ana Ponces; Cordeiro, Carlos; Silva, Marta Sousa

    2016-01-01

    Metabolomics is a key discipline in systems biology, together with genomics, transcriptomics, and proteomics. In this omics cascade, the metabolome represents the biochemical products that arise from cellular processes and is often regarded as the final response of a biological system to environmental or genetic changes. The overall screening approach to identify all the metabolites in a given biological system is called metabolic fingerprinting. Using high-resolution and high-mass accuracy mass spectrometry, large metabolome coverage, sensitivity, and specificity can be attained. Although the theoretical concepts of this methodology are usually provided in life-science programs, hands-on laboratory experiments are not usually accessible to undergraduate students. Even if the instruments are available, there are not simple laboratory protocols created specifically for teaching metabolomics. We designed a straightforward hands-on laboratory experiment to introduce students to this methodology, relating it to biochemical knowledge through metabolic pathway mapping of the identified metabolites. This study focuses on mitochondrial metabolomics since mitochondria have a well-known, medium-sized cellular sub-metabolome. These features facilitate both data processing and pathway mapping. In this experiment, students isolate mitochondria from potatoes, extract the metabolites, and analyze them by high-resolution mass spectrometry (using an FT-ICR mass spectrometer). The resulting mass list is submitted to an online program for metabolite identification, and compounds associated with mitochondrial pathways can be highlighted in a metabolic network map. PMID:26537432

  5. Involvement of ER stress and activation of apoptotic pathways in fisetin induced cytotoxicity in human melanoma.

    PubMed

    Syed, Deeba N; Lall, Rahul K; Chamcheu, Jean Christopher; Haidar, Omar; Mukhtar, Hasan

    2014-12-01

    The prognosis of malignant melanoma remains poor in spite of recent advances in therapeutic strategies for the deadly disease. Fisetin, a dietary flavonoid is currently being investigated for its growth inhibitory properties in various cancer models. We previously showed that fisetin inhibited melanoma growth in vitro and in vivo. Here, we evaluated the molecular basis of fisetin induced cytotoxicity in metastatic human melanoma cells. Fisetin treatment induced endoplasmic reticulum (ER) stress in highly aggressive A375 and 451Lu human melanoma cells, as revealed by up-regulation of ER stress markers including IRE1α, XBP1s, ATF4 and GRP78. Time course analysis indicated that the ER stress was associated with activation of the extrinsic and intrinsic apoptotic pathways. Fisetin treated 2-D melanoma cultures displayed autophagic response concomitant with induction of apoptosis. Prolonged treatment (16days) with fisetin in a 3-D reconstituted melanoma model resulted in inhibition of melanoma progression with significant apoptosis, as evidenced by increased staining of cleaved Caspase-3 in the treated constructs. However, no difference in the expression of autophagic marker LC-3 was noted between treated and control groups. Fisetin treatment to 2-D melanoma cultures resulted in phosphorylation and activation of the multifunctional AMP-activated protein kinase (AMPK) involved in the regulation of diverse cellular processes, including autophagy and apoptosis. Silencing of AMPK failed to prevent cell death indicating that fisetin induced cytotoxicity is mediated through both AMPK-dependent and -independent mechanisms. Taken together, our studies confirm apoptosis as the primary mechanism through which fisetin inhibits melanoma cell growth and that activation of both extrinsic and intrinsic pathways contributes to fisetin induced cytotoxicity. PMID:25016296

  6. Involvement of ER stress and activation of apoptotic pathways in fisetin induced cytotoxicity in human melanoma

    PubMed Central

    Chamcheu, Jean Christopher; Haidar, Omar; Mukhtar, Hasan

    2014-01-01

    The prognosis of malignant melanoma remains poor in spite of recent advances in therapeutic strategies for the deadly disease. Fisetin, a dietary flavonoid is currently being investigated for its growth inhibitory properties in various cancer models. We previously showed that fisetin inhibited melanoma growth in vitro and in vivo. Here, we evaluated the molecular basis of fisetin induced cytoxicity in metastatic human melanoma cells. Fisetin treatment induced endoplasmic reticulum (ER) stress in highly aggressive A375 and 451Lu human melanoma cells, as revealed by up- regulation of ER stress markers including IRE1α, XBP1s, ATF4 and GRP78. Time course analysis indicated that the ER stress was associated with activation of the extrinsic and intrinsic apoptotic pathways. Fisetin treated 2-D melanoma cultures displayed autophagic response concomitant with induction of apoptosis. Prolonged treatment (16 days) with fisetin in a 3-D reconstituted melanoma model resulted in inhibition of melanoma progression with significant apoptosis, as evidenced by increased staining of cleaved Caspase-3 in the treated constructs. However, no difference in the expression of autophagic marker LC-3 was noted between treated and control groups. Fisetin treatment to 2-D melanoma cultures resulted in phosphorylation and activation of the multifunctional AMPK-activated protein kinase (AMPK) involved in the regulation of diverse cellular processes, including autophagy and apoptosis. Silencing of AMPK failed to prevent cell death indicating that fisetin induced cytotoxicity is mediated through both AMPK-dependent and -independent mechanisms. Taken together, our studies confirm apoptosis as the primary mechanism through which fisetin inhibits melanoma cell growth and that activation of both extrinsic and intrinsic pathways contributes to fisetin induced cytotoxicity. PMID:25016296

  7. Diallyl disulfide attenuated carbon ion irradiation-induced apoptosis in mouse testis through changing the ratio of Tap73/ΔNp73 via mitochondrial pathway

    PubMed Central

    Di, Cui-xia; Han, Lu; Zhang, Hong; Xu, Shuai; Mao, Ai-hong; Sun, Chao; Liu, Yang; Si, Jing; Li, Hong-yan; Zhou, Xin; Liu, Bing; Miao, Guo-ying

    2015-01-01

    Diallyl disulfide (DADS), a major organosulfur compound derived from garlic, has various biological properties, including anti-cancer effects. However, the protective mechanism of DADS against radiation-induced mouse testis cell apoptosis has not been elucidated. In this study, the magnitude of radiation effects evoked by carbon ion irradiation was marked by morphology changes, significant rise in apoptotic cells, activation expression of p53, up regulation the ratio of pro-apoptotic Tap73/anti-apoptotic ΔNp73, as well as alterations of crucial mediator of the mitochondrial pathway. Interestingly, pretreatment with DADS attenuated carbon ion irradiation-induced morphology damages and apoptotic cells. Additionally, DADS elevated radiation-induced p53 and p21 expression, suggesting that p53 might be involved in the inhibition of cell cycle progression through up regulation of p21. Furthermore, administration with DADS prevented radiation-induced Tap73/ΔNp73 expression and consequently down regulated Bax/Bcl-2 ratio, cytochrome c release and caspase-3 expression, indicating that the balance between Tap73 and ΔNp73 had potential to activate p53 responsive genes. Thus, our results showed that radio protection effect of DADS on mouse testis is mediated by blocking apoptosis through changing the ratio of Tap73/ΔNp73 via mitochondrial pathway, suggesting that DADS could be used as a potential radio protection agent for the testis against heavy-ion radiation. PMID:26526304

  8. Diallyl disulfide attenuated carbon ion irradiation-induced apoptosis in mouse testis through changing the ratio of Tap73/ΔNp73 via mitochondrial pathway.

    PubMed

    Di, Cui-xia; Han, Lu; Zhang, Hong; Xu, Shuai; Mao, Ai-hong; Sun, Chao; Liu, Yang; Si, Jing; Li, Hong-yan; Zhou, Xin; Liu, Bing; Miao, Guo-ying

    2015-01-01

    Diallyl disulfide (DADS), a major organosulfur compound derived from garlic, has various biological properties, including anti-cancer effects. However, the protective mechanism of DADS against radiation-induced mouse testis cell apoptosis has not been elucidated. In this study, the magnitude of radiation effects evoked by carbon ion irradiation was marked by morphology changes, significant rise in apoptotic cells, activation expression of p53, up regulation the ratio of pro-apoptotic Tap73/anti-apoptotic ΔNp73, as well as alterations of crucial mediator of the mitochondrial pathway. Interestingly, pretreatment with DADS attenuated carbon ion irradiation-induced morphology damages and apoptotic cells. Additionally, DADS elevated radiation-induced p53 and p21 expression, suggesting that p53 might be involved in the inhibition of cell cycle progression through up regulation of p21. Furthermore, administration with DADS prevented radiation-induced Tap73/ΔNp73 expression and consequently down regulated Bax/Bcl-2 ratio, cytochrome c release and caspase-3 expression, indicating that the balance between Tap73 and ΔNp73 had potential to activate p53 responsive genes. Thus, our results showed that radio protection effect of DADS on mouse testis is mediated by blocking apoptosis through changing the ratio of Tap73/ΔNp73 via mitochondrial pathway, suggesting that DADS could be used as a potential radio protection agent for the testis against heavy-ion radiation. PMID:26526304

  9. Polysaccharide from Pleurotus nebrodensis induces apoptosis via a mitochondrial pathway in HepG2 cells.

    PubMed

    Cui, Haiyan; Wu, Shufen; Sun, Yanping; Wang, Tiantian; Li, Zhenjing; Chen, Mianhua; Wang, Changlu

    2016-01-01

    A novel alkali extractable polysaccharide (designated as PNA-2) was purified from Pleurotus nebrodensis and the effects of purified PNA-2 on the proliferation and apoptosis of human hepatic cancer cells (HepG2) were investigated in this study. The results of a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay indicated that PNA-2 inhibited the proliferation of HepG2 cells by apoptosis induction, which was also characterized using scanning electron microscopy (SEM). Moreover, the expression of apoptosis-associated mRNA, proteins and the cell-cycle arrest at the G0/G1 phase was determined using RT-qPCR, Western blot and flow cytometry, respectively. A notable inhibition of the migration rate of PNA-2-treated HepG2 cells was observed using a cell scratch assay. DNA damage was observed using a comet assay and AO/EB staining in HepG2 cells, which were exposed to PNA-2. Induction of the mitochondria-mediated intrinsic apoptotic pathway by PNA-2 was indicated by the loss of mitochondrial membrane potential (ΔΨm), Bcl-2 dysregulation and cytochrome c release. All the results suggested that the mitochondria-mediated intrinsic apoptotic pathway could be involved in PNA-2-mediated apoptosis of human liver carcinoma cells HepG2. Finally, the results indicated that PNA-2 significantly suppressed tumor growth in HepG2 tumor-bearing mice, indicating that PNA-2 may be developed as a candidate drug or functional food factor to prevent or treat liver cancer. PMID:26506946

  10. AS-2, a novel inhibitor of p53-dependent apoptosis, prevents apoptotic mitochondrial dysfunction in a transcription-independent manner and protects mice from a lethal dose of ionizing radiation.

    PubMed

    Morita, Akinori; Ariyasu, Shinya; Wang, Bing; Asanuma, Tetsuo; Onoda, Takayoshi; Sawa, Akiko; Tanaka, Kaoru; Takahashi, Ippei; Togami, Shotaro; Nenoi, Mitsuru; Inaba, Toshiya; Aoki, Shin

    2014-08-01

    In a previous study, we reported that some tetradentate zinc(II) chelators inhibit p53 through the denaturation of its zinc-requiring structure but a chelator, Bispicen, a potent inhibitor of in vitro apoptosis, failed to show any efficient radioprotective effect against irradiated mice because the toxicity of the chelator to mice. The unsuitability of using tetradentate chelators as radioprotectors prompted us to undertake a more extensive search for p53-inhibiting agents that are weaker zinc(II) chelators and therefore less toxic. Here, we show that an 8-hydroxyquinoline (8HQ) derivative, AS-2, suppresses p53-dependent apoptosis through a transcription-independent mechanism. A mechanistic study using cells with different p53 characteristics revealed that the suppressive effect of AS-2 on apoptosis is specifically mediated through p53. In addition, AS-2 was less effective in preventing p53-mediated transcription-dependent events than pifithrin-μ (PFTμ), an inhibitor of transcription-independent apoptosis by p53. Fluorescence visualization of the extranuclear distribution of AS-2 also supports that it is ineffective on the transcription-dependent pathway. Further investigations revealed that AS-2 suppressed mitochondrial apoptotic events, such as the mitochondrial release of intermembrane proteins and the loss of mitochondrial membrane potential, although AS-2 resulted in an increase in the mitochondrial translocation of p53 as opposed to the decrease of cytosolic p53, and did not affect the apoptotic interaction of p53 with Bcl-2. AS-2 also protected mice that had been exposed to a lethal dose of ionizing radiation. Our findings indicate that some types of bidentate 8HQ chelators could serve as radioprotectors with no substantial toxicity in vivo. PMID:25026551

  11. Secondary Metabolites from Endophytic Fungus Penicillium pinophilum Induce ROS-Mediated Apoptosis through Mitochondrial Pathway in Pancreatic Cancer Cells.

    PubMed

    Koul, Mytre; Meena, Samdarshi; Kumar, Ashok; Sharma, Parduman Raj; Singamaneni, Venugopal; Riyaz-Ul-Hassan, Syed; Hamid, Abid; Chaubey, Asha; Prabhakar, Anil; Gupta, Prasoon; Singh, Shashank

    2016-03-01

    The endophytic fungus strain MRCJ-326, isolated from Allium schoenoprasum, which is also known as Snow Mountain Garlic or Kashmiri garlic, was identified as Penicillium pinophilum on the basis of morphological characteristics and internal transcribed spacer region nucleotide sequence analysis. The endophytic fungus extract was subjected to 2D-SEPBOX bioactivity-guided fractionation and purification. The anthraquinone class of the bioactive secondary metabolites were isolated and characterized as oxyskyrin (1), skyrin (2), dicatenarin (3), and 1,6,8-trihydroxy-3-hydroxy methylanthraquinone (4) by spectral analysis. Dicatenarin and skyrin showed marked growth inhibition against the NCI60/ATCC panel of human cancer cell lines with least IC50 values of 12 µg/mL and 27 µg/mL, respectively, against the human pancreatic cancer (MIA PaCa-2) cell line. The phenolic hydroxyl group in anthraquinones plays a crucial role in the oxidative process and bioactivity. Mechanistically, these compounds, i.e., dicatenarin and skyrin, significantly induce apoptosis and transmit the apoptotic signal via intracellular reactive oxygen species generation, thereby inducing a change in the mitochondrial transmembrane potential and induction of the mitochondrial-mediated apoptotic pathway. Our data indicated that dicatenarin and skyrin induce reactive oxygen species-mediated mitochondrial permeability transition and resulted in an increased induction of caspase-3 apoptotic proteins in human pancreatic cancer (MIA PaCa-2) cells. Dicatenarin showed a more pronounced cytotoxic/proapopotic effect than skyrin due to the presence of an additional phenolic hydroxyl group at C-4, which increases oxidative reactive oxygen species generation. This is the first report from P. pinophilum secreating these cytotoxic/proapoptotic secondary metabolites. PMID:26848704

  12. Dodecyl gallate induces apoptosis by upregulating the caspase-dependent apoptotic pathway and inhibiting the expression of anti-apoptotic Bcl-2 family proteins in human osteosarcoma cells

    PubMed Central

    CHENG, CHUN-HSIANG; CHENG, YEN-PO; CHANG, ING-LIN; CHEN, HSIN-YAO; WU, CHIA-CHIEH; HSIEH, CHEN-PU

    2016-01-01

    Dodecyl gallate (DG) is a gallic acid ester that has been shown to inhibit tumor growth. The aim of this study was to investigate the mechanism by which DG induces antiproliferative and apoptotic effects in MG-63 human osteosarcoma cells. Dose- and time-dependent cytotoxic effects of DG were determined using an MTT assay. The results showed that the half-maximal inhibitory concentration (IC50) of DG in MG-63 cells was 31.15 µM at 24 h, 10.66 µM at 48 h, and 9.06 µM at 72 h. Flow cytometric analysis demonstrated that exposure to 20 and 40 µM DG resulted in an increase in the sub-G1 phase population and in S-phase cell cycle arrest. Furthermore, western blot analysis of apoptosis-related protein expression revealed an increase in the activation of caspases 8 and 3, cleavage of poly (ADPribose) polymerase (PARP), and disruption of mitochondrial membrane permeability was measured by flow cytometry. An increase in the Bax/Bcl-2 ratio and a decrease in the expression of inhibitor of apoptosis protein (IAP) family members, namely X-linked inhibitor of apoptosis protein and survivin, were also observed following DG treatment. These data provide insight into the molecular mechanisms governing the ability of DG to induce apoptosis in human osteosarcoma cells in vitro. PMID:26707422

  13. Lithospermic acid B protects beta-cells from cytokine-induced apoptosis by alleviating apoptotic pathways and activating anti-apoptotic pathways of Nrf2-HO-1 and Sirt1

    SciTech Connect

    Lee, Byung-Wan; Chun, Sung Wan; Kim, Soo Hyun; Lee, Yongho; Kang, Eun Seok; Cha, Bong-Soo; Lee, Hyun Chul

    2011-04-01

    Lithospermic acid B (LAB) has been reported to protect OLETF rats, an established type 2 diabetic animal model, from the development of diabetes-related vascular complications. We investigated whether magnesium lithospermate B (LAB) has a protective role under cytokine-induced apoptosis in INS-1 cells in vitro and whether it slows the development of diabetes in OLETF rats in vivo. Pretreatment with 50 {mu}M LAB significantly reduced the 1000 U/mL INF-{gamma} and 100 U/mL IL-1{beta}-induced INS-1 cell death. LAB significantly alleviated cytokine-induced phosphorylations of p38 and JNK in accordance with a decrease in cleaved caspase-3 activity in beta-cells. LAB also protected against the cytokine-induced caspase-3 apoptotic pathway via significant activation of Nrf2-HO (heme-oxigenase)-1 and Sirt1 expression. OLETF rats treated with 40 mg/kg/day LAB showed a significant improvement in glucose tolerance compared to untreated OLETF control rats in vivo. Our results suggest that the cytoprotective effects of LAB on pancreatic {beta}-cells are related with both alleviating apoptotic pathways and activating anti-apoptotic pathways of Nrf2-HO-1 and Sirt1.

  14. MiADMSA reverses impaired mitochondrial energy metabolism and neuronal apoptotic cell death after arsenic exposure in rats

    SciTech Connect

    Dwivedi, Nidhi; Mehta, Ashish; Yadav, Abhishek; Binukumar, B.K.; Gill, Kiran Dip; Flora, Swaran J.S.

    2011-11-15

    Arsenicosis, due to contaminated drinking water, is a serious health hazard in terms of morbidity and mortality. Arsenic induced free radicals generated are known to cause cellular apoptosis through mitochondrial driven pathway. In the present study, we investigated the effect of arsenic interactions with various complexes of the electron transport chain and attempted to evaluate if there was any complex preference of arsenic that could trigger apoptosis. We also evaluated if chelation with monoisoamyl dimercaptosuccinic acid (MiADMSA) could reverse these detrimental effects. Our results indicate that arsenic exposure induced free radical generation in rat neuronal cells, which diminished mitochondrial potential and enzyme activities of all the complexes of the electron transport chain. Moreover, these complexes showed differential responses towards arsenic. These early events along with diminished ATP levels could be co-related with the later events of cytosolic migration of cytochrome c, altered bax/bcl{sub 2} ratio, and increased caspase 3 activity. Although MiADMSA could reverse most of these arsenic-induced altered variables to various extents, DNA damage remained unaffected. Our study for the first time demonstrates the differential effect of arsenic on the complexes leading to deficits in bioenergetics leading to apoptosis in rat brain. However, more in depth studies are warranted for better understanding of arsenic interactions with the mitochondria. -- Research highlights: Black-Right-Pointing-Pointer Arsenic impairs mitochondrial energy metabolism leading to neuronal apoptosis. Black-Right-Pointing-Pointer Arsenic differentially affects mitochondrial complexes, I - III and IV being more sensitive than complex II. Black-Right-Pointing-Pointer Arsenic-induced apoptosis initiates through ROS generation or impaired [Ca{sup 2+}]i homeostasis. Black-Right-Pointing-Pointer MiADMSA reverses arsenic toxicity via intracellular arsenic- chelation, antioxidant

  15. Levosimendan suppresses oxidative injury, apoptotic signaling and mitochondrial degeneration in streptozotocin-induced diabetic cardiomyopathy.

    PubMed

    Akhtar, Md Sayeed; Pillai, Krishna Kolappa; Hassan, Quamrul; Ansari, Shahid Husain; Ali, Javed; Akhtar, Mohammed; Najmi, Abul Kalam

    2016-01-01

    Diabetic cardiomyopathy plays a major role in morbidity and mortality among cardiovascular disorder-related complications. This study was designed to explore long-term benefits of Levosimendan (LEVO) along with Ramipril and Insulin. Diabetic cardiomyopathy was induced using streptozotocin (STZ) at the dose of 25 mg/kg/body weight/day for three consecutive days in Wistar rats. Rats were randomly divided into 10 groups and treatments were started after 2 weeks of STZ administration. A gradual but severe hyperglycemia ((§§§)p < 0.001) was observed in all STZ-treated groups except those received insulin (2  U/day). LEVO alone and in combination with Ramipril and Insulin normalized (**p < 0.01) mean arterial pressure and heart rate, restored catalase, superoxide dismutase, malondialdehyde, glutathione level and also attenuated (***p < 0.001) the raised serum levels of creatine kinase-heart type, lactate dehydrogenase, tumor necrosis factor-alpha, C-reactive protein, and caspase-3 level in heart tissue altered after STZ treatment. Myofibril degeneration, mitochondrial fibrosis and vacuolization occurred after STZ treatment, were also reversed by LEVO in combination with Ramipril and Insulin. The combination of LEVO with Ramipril and Insulin improved hemodynamic functions, maintained cardiac enzymes and ameliorated myofibril damage in diabetic cardiomyopathy. PMID:26207881

  16. Polygala tenuifolia polysaccharide PTP induced apoptosis in ovarian cancer cells via a mitochondrial pathway.

    PubMed

    Zhang, Fubin; Song, Xiaowei; Li, Li; Wang, Jingfang; Lin, Leyuan; Li, Cong; Li, Hongtao; Lv, Yanju; Jin, Yinghua; Liu, Ying; Hu, Yu; Xin, Tao

    2015-04-01

    One purified polysaccharide protein tyrosine phosphatase (PTP) was isolated from the roots of Polygala tenuifolia. The aim of the present study is to investigate the antitumor effect of PTP on human ovarian cancer OVCAR-3 cells and explore the molecular mechanism of the action involved. The results of MTT assay and apoptosis detection assay showed that PTP inhibited cellular proliferation of OVCAR-3 cells and induced apoptotic cellular death via arresting cell circle at the G0/G1 phase. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis identified that bcl-2 gradually decreased at both transcription and protein levels after PTP treatment for 48 h in OVCAR-3 cells, while those of bax, cytochrome c, caspase-3, and caspase-9 increased. In addition, the low expression of NF-κB in PTP-treated OVCAR-3 cells would trigger the extrinsic pathway of programmed cell death signaling in tumor cells. These results together suggest that PTP may induce apoptosis of OVCAR-3 cells through a mitochondrial pathway. PMID:25501282

  17. Enhanced Hsp70 expression protects against acute lung injury by modulating apoptotic pathways.

    PubMed

    Aschkenasy, Gabriella; Bromberg, Zohar; Raj, Nichelle; Deutschman, Clifford S; Weiss, Yoram G

    2011-01-01

    The Acute respiratory distress syndrome (ARDS) is a highly lethal inflammatory lung disorder. Apoptosis plays a key role in its pathogenesis. We showed that an adenovirus expressing the 70 kDa heat shock protein Hsp70 (AdHSP) protected against sepsis-induced lung injury. In this study we tested the hypothesis that AdHSP attenuates apoptosis in sepsis-induced lung injury. Sepsis was induced in rats via cecal ligation and double puncture (2CLP). At the time of 2CLP PBS, AdHSP or AdGFP (an adenoviral vector expressing green fluorescent protein) were injected into the tracheas of septic rats. 48 hours later, lungs were isolated. One lung was fixed for TUNEL staining and immunohistochemistry. The other was homogenized to isolate cytosolic and nuclear protein. Immunoblotting, gel filtration and co-immunoprecipitation were performed in these extracts. In separate experiments MLE-12 cells were incubated with medium, AdHSP or AdGFP. Cells were stimulated with TNFα. Cytosolic and nuclear proteins were isolated. These were subjected to immunoblotting, co-immunoprecipitation and a caspase-3 activity assay. TUNEL assay demonstrated that AdHSP reduced alveolar cell apoptosis. This was confirmed by immunohistochemical detection of caspase 3 abundance. In lung isolated from septic animals, immunoblotting, co-immunoprecipitation and gel filtration studies revealed an increase in cytoplasmic complexes containing caspases 3, 8 and 9. AdHSP disrupted these complexes. We propose that Hsp70 impairs apoptotic cellular pathways via interactions with caspases. Disruption of large complexes resulted in stabilization of lower molecular weight complexes, thereby, reducing nuclear caspase-3. Prevention of apoptosis in lung injury may preserve alveolar cells and aid in recovery. PMID:22132083

  18. Overexpression of long non-coding RNA PVT1 in ovarian cancer cells promotes cisplatin resistance by regulating apoptotic pathways.

    PubMed

    Liu, Enling; Liu, Zheng; Zhou, Yuxiu; Mi, Ruoran; Wang, Dehua

    2015-01-01

    Ovarian cancer is the most lethal gynecologic malignancy. Cisplatin is a very effective cancer chemotherapy drug, but cisplatin resistance is a crucial problem of therapy failure. Overexpression of PVT1 has been demonstrated in ovarian cancer. The mRNA level of PVT1 in ovarian cancer tissues of cisplatin-resistant patients and cisplatin-sensitive patients, cisplatin-resistant cells SKOV-3/DDP and A2780/DDP, cisplatin-sensitive cells SKOV-3 and A2780 were determined by qRT-PCR. The influence of the knockdown or overexpression of PVT1 on cisplatin resistance was measured by measuring the cytotoxicity of cisplatin and the apoptotic rate of ovarian cancer cells was detected by CCK-8 assay and flow cytometry, respectively. The mRNA levels and protein expression of TGF-β1, Smad4, p-Smad4 and Caspase-3 in apoptotic pathways were determined. The mRNA level of PVT1 was significantly higher in ovarian cancer tissues of cisplatin-resistant patients and cisplatin-resistant cells. SKOV-3/DDP and A2780/DDP cell viability and the percentage of apoptotic cells after transfection with PVT-1 siRNA and treated with cisplatin was markedly lower and higher than the control, respectively. Moreover, the overexpression of PVT1 exhibited the anti-apoptotic property in SKOV-3 and A2780 cells after transfection with LV-PVT1-GFP and treated with cisplatin. The mRNA levels and protein expression of TGF-β1, p-Smad4 and Caspase-3 were much higher in cisplatin-resistant cells transfected with siPVT1. Overexpression of LncRNA PVT1 in ovarian cancer promotes cisplatin resistance by regulating apoptotic pathways. PMID:26884974

  19. Inorganic mercury causes pancreatic beta-cell death via the oxidative stress-induced apoptotic and necrotic pathways

    SciTech Connect

    Chen Yawen; Huang Chunfa; Yang Chingyao; Yen Chengchieh; Tsai Kehsung; Liu Shinghwa

    2010-03-15

    Mercury is a well-known highly toxic metal. In this study, we characterize and investigate the cytotoxicity and its possible mechanisms of inorganic mercury in pancreatic beta-cells. Mercury chloride (HgCl{sub 2}) dose-dependently decreased the function of insulin secretion and cell viability in pancreatic beta-cell-derived HIT-T15 cells and isolated mouse pancreatic islets. HgCl{sub 2} significantly increased ROS formation in HIT-T15 cells. Antioxidant N-acetylcysteine effectively reversed HgCl{sub 2}-induced insulin secretion dysfunction in HIT-T15 cells and isolated mouse pancreatic islets. Moreover, HgCl{sub 2} increased sub-G1 hypodiploids and annexin-V binding in HIT-T15 cells, indicating that HgCl{sub 2} possessed ability in apoptosis induction. HgCl{sub 2} also displayed several features of mitochondria-dependent apoptotic signals including disruption of the mitochondrial membrane potential, increase of mitochondrial cytochrome c release and activations of poly (ADP-ribose) polymerase (PARP) and caspase 3. Exposure of HIT-T15 cells to HgCl{sub 2} could significantly increase both apoptotic and necrotic cell populations by acridine orange/ethidium bromide dual staining. Meanwhile, HgCl{sub 2} could also trigger the depletion of intracellular ATP levels and increase the LDH release from HIT-T15 cells. These HgCl{sub 2}-induced cell death-related signals could be significantly reversed by N-acetylcysteine. The intracellular mercury levels were markedly elevated in HgCl{sub 2}-treated HIT-T15 cells. Taken together, these results suggest that HgCl{sub 2}-induced oxidative stress causes pancreatic beta-cell dysfunction and cytotoxicity involved the co-existence of apoptotic and necrotic cell death.

  20. Beginnings of a good apoptotic meal: the find-me and eat-me signaling pathways.

    PubMed

    Ravichandran, Kodi S

    2011-10-28

    Prompt and efficient clearance of apoptotic cells is necessary to prevent secondary necrosis of dying cells and to avoid immune responses to autoantigens. Recent studies have shed light on how apoptotic cells through soluble "find-me" signals advertise their presence to phagocytes at the earliest stages of cell death. Phagocytes sense the find-me signal gradient, and in turn the presence of dying cells, and migrate to their vicinity. The apoptotic cells also expose specific "eat-me" signals on their surface that are recognized by phagocytes through specific engulfment receptors. This review covers the recent progress in the areas of find-me and eat-me signals and how these relate to prompt and immunologically silent clearance of apoptotic cells. PMID:22035837

  1. Beginnings of a good apoptotic meal: the find-me and eat-me signaling pathways

    PubMed Central

    Ravichandran, Kodi S.

    2011-01-01

    Prompt and efficient clearance of apoptotic cells is necessary to prevent secondary necrosis of dying cells, and to avoid immune responses to autoantigens. Recent studies have shed light on how apoptotic cells through soluble ‘find-me signals’ advertise their presence to phagocytes at the earliest stages of cell death. Phagocytes sense the find-me signal gradient, and in turn the presence of dying cells, and migrate to their vicinity. The apoptotic cells also expose specific eat-me signals on their surface that are recognized by phagocytes through specific engulfment receptors. This review covers the recent progress in the areas of find-me and eat-me signals, and how these relate to prompt and immunologically silent clearance of apoptotic cells. PMID:22035837

  2. Cordycepin enhances cisplatin apoptotic effect through caspase/MAPK pathways in human head and neck tumor cells

    PubMed Central

    Chen, Ying-Hui; Wang, Jo-Yu; Pan, Bo-Syong; Mu, Yi-Fen; Lai, Meng-Shao; So, Edmund Cheung; Wong, Thian-Sze; Huang, Bu-Miin

    2013-01-01

    Purpose The present study aims to investigate whether the combination treatment of cordycepin (an extracted pure compound from Cordyceps sinensis) and cisplatin (a platinum-based chemotherapy drug) has better apoptotic effect in head and neck squamous cell carcinoma (HNSCC). Methods The apoptotic influences of cordycepin and/or cisplatin treatments to human OC3, OEC-M1, and FaDu HNSCC cells were investigated by morphological observations, viability assay, flow cytometry assay, and Western blotting methods. Results Data showed that the cell death phenomenon increased as the dosage of cordycepin or cisplatin increased, and it appeared more in cordycepin plus cisplatin cotreatment among three cell lines. Cell survival rates significantly decreased as the dosage of cordycepin or cisplatin increased, and the better apoptotic effects were observed in cotreatment. Cell cycle analysis further demonstrated that percentages of subG1 cells in cordycepin or cisplatin treatments significantly increased, suggesting that cells underwent apoptosis, and cordycepin plus cisplatin induced many more subG1 cells. Furthermore, cordycepin or cisplatin induced caspase-8, caspase-9, caspase-3, and poly adenosine diphosphate-ribose polymerase protein cleavages, and stimulated c-Jun NH2-terminal kinase, extracellular signal-regulated kinase, and p38 protein phosphorylations. Moreover, cordycepin plus cisplatin cotreatment significantly activated those proteins with much better effects among three cell lines. Conclusion Cordycepin plus cisplatin have better apoptotic effect by activating caspase activation with possible MAPK pathway involvement in HNSCC cells. PMID:23926438

  3. Mechanisms of andrographolide-induced platelet apoptosis in human platelets: regulatory roles of the extrinsic apoptotic pathway.

    PubMed

    Lien, Li-Ming; Su, Cheng-Chen; Hsu, Wen-Hsien; Lu, Wan-Jung; Chung, Chi-Li; Yen, Ting-Lin; Chiu, Hou-Chang; Sheu, Joen-Rong; Lin, Kuan-Hung

    2013-11-01

    Andrographolide, a novel nuclear factor-κB (NF-κB) inhibitor, is isolated from the leaves of Andrographis paniculata. Platelet activation is relevant to a variety of coronary heart diseases. Our recent studies revealed that andrographolide possesses potent antiplatelet activity by inhibition of the p38 MAPK/(●) HO-NF-κB-ERK2 cascade. Although platelets are anucleated cells, apoptotic machinery apparatus recently has been found to regulate platelet activation and limit platelet lifespan. Therefore, we further investigated the regulatory effects of andrographolide on platelet apoptotic events. In this study, apoptotic signaling events for caspase-3, -8, and Bid were time (10-60 min)- and dose (25-100 μΜ)-dependently activated by andrographolide in human platelets. Andrographolide could also disrupt mitrochondrial membrane potential. In addition, caspase-8 inhibitor (z-IETD-fmk, 50 μΜ) was found to reverse andrographolide-induced caspase-8 activation, whereas the antagonistic anti-Fas receptor (ZB4, 500 ng/mL) and anti-tumor necrosis factor-R1 (H398, 10 µg/mL) monoclonal antibodies did not. In conclusion, this study for the first time demonstrated that andrographolide might limit platelet lifespan by initiating the caspase-8-dependent extrinsic apoptotic pathway, in spite of no direct evidence that death receptors are involved in this process proved. Overall, the various medicinal properties of andrographolide suggest its potential value in treating patients with thromboembolic disorders. PMID:23292890

  4. A new view of the lethal apoptotic pore.

    PubMed

    Basañez, Gorka; Soane, Lucian; Hardwick, J Marie

    2012-01-01

    Cell death by apoptosis is indispensable for proper development and tissue homeostasis in all multicellular organisms, and its deregulation plays a key role in cancer and many other diseases. A crucial event in apoptosis is the formation of protein-permeable pores in the outer mitochondrial membrane that release cytochrome c and other apoptosis-promoting factors into the cytosol. Research efforts over the past two decades have established that apoptotic pores require BCL-2 family proteins, with the proapoptotic BAX-type proteins being direct effectors of pore formation. Accumulating evidence indicates that other cellular components also cooperate with BCL-2 family members to regulate the apoptotic pore. Despite this knowledge, the molecular pathway leading to apoptotic pore formation at the outer mitochondrial membrane and the precise nature of this outer membrane pore remain enigmatic. In this issue of PLOS Biology, Kushnareva and colleagues describe a novel kinetic analysis of the dynamics of BAX-dependent apoptotic pore formation recapitulated in native mitochondrial outer membranes. Their study reveals the existence of a hitherto unknown outer mitochondrial membrane factor that is critical for BAX-mediated apoptotic pore formation, and challenges the currently popular view that the apoptotic pore is a purely proteinaceous multimeric assembly of BAX proteins. It also supports the notion that membrane remodeling events are implicated in the formation of a lipid-containing apoptotic pore. PMID:23049484

  5. Apoptosis induced by farrerol in human gastric cancer SGC-7901 cells through the mitochondrial-mediated pathway.

    PubMed

    Liu, Enli; Liang, Taigang; Wang, Xiaojian; Ban, Shurong; Han, Lingge; Li, Qingshan

    2015-09-01

    Farrerol, a typical flavanone isolated from the Chinese medicinal plant Rhododendron dauricum L., has been found to show various biological activities. However, to the best of our knowledge, its inhibitory actions against cancer cells have not been reported as yet. Therefore, the present study aimed to investigate the cytotoxic and apoptotic effects of farrerol on human gastric cancer SGC-7901 cells. Farrerol showed a 50% inhibition of SGC-7901 cell growth at a concentration of 40.4 μmol/l for 24 h according to MTT assays. The cell morphology results indicated that SGC-7901 cells treated with farrerol showed several features of apoptotic cell death, which was also confirmed by the Annexin-V FITC/PI double-staining assay. Further studies showed that farrerol treatment induced the attenuation of mitochondrial membrane potential, accompanied by the release of Cyt-c and the activation of caspase-9 and caspase-3. Furthermore, farrerol decreased the gene expression of Bcl-2, whereas the gene expression level of Bax was found to increase after farrerol treatment. These combined results indicated that farrerol can induce apoptosis through a mitochondrial-mediated pathway. PMID:26061993

  6. Induction of apoptosis in HL-60 cells through the ROS-mediated mitochondrial pathway by ramentaceone from Drosera aliciae.

    PubMed

    Kawiak, Anna; Zawacka-Pankau, Joanna; Wasilewska, Aleksandra; Stasilojc, Grzegorz; Bigda, Jacek; Lojkowska, Ewa

    2012-01-27

    Ramentaceone (1) is a naphthoquinone constituent of Drosera aliciae that exhibits potent cytotoxic activity against various tumor cell lines. However, its molecular mechanism of cell death induction has still not been determined. The present study demonstrates that 1 induces apoptosis in human leukemia HL-60 cells. Typical morphological and biochemical features of apoptosis were observed in 1-treated cells. Compound 1 induced a concentration-dependent increase in the sub-G1 fraction of the cell cycle. A decrease in the mitochondrial transmembrane potential (ΔΨm) was also observed. Furthermore, 1 reduced the ratio of anti-apoptotic Bcl-2 to pro-apoptotic Bax and Bak, induced cytochrome c release, and increased the activity of caspase 3. The generation of reactive oxygen species (ROS) was detected in 1-treated HL-60 cells, which was attenuated by the pretreatment of cells with a free radical scavenger, N-acetylcysteine (NAC). NAC also prevented the increase of the sub-G1 fraction induced by 1. These results indicate that ramentaceone induces cell death through the ROS-mediated mitochondrial pathway. PMID:22250825

  7. Phellinus linteus polysaccharide extracts increase the mitochondrial membrane potential and cause apoptotic death of THP-1 monocytes

    PubMed Central

    2013-01-01

    Background The differentiation resp. death of human monocytic THP-1 cells induced by polysaccharide extracts of the medicinal mushrooms Phellinus linteus, Agaricus bisporus and Agaricus brasiliensis have been studied. This study aims to identify leads for the causal effects of these mushroom components on cell differentiation and death. Methods THP-1 cells were treated with different polysaccharide extracts of mushrooms and controls. Morphological effects were observed by light microscopy. Flow cytometry was applied to follow the cell differentiation by cell cycle shifts after staining with propidium iodide, changes of mitochondrial membrane potential after incubation with JC-1, and occurrence of intracellular reactive oxygen species after incubation with hydroethidine. Principal component analysis of the data was performed to evaluate the cellular effects of the different treatments. Results P. linteus polysaccharide extracts induced dose-dependent apoptosis of THP-1 cells within 24 h, while A. bisporus and A. brasiliensis polysaccharide extracts caused differentiation into macrophages. A pure P. linteus polysaccharide had no effect. Apoptosis was inhibited by preincubating THP-1 cells with human serum. The principal component analysis revealed that P. linteus, A. bisporus and A. brasiliensis polysaccharide extracts increased reactive oxygen species production. Both A. bisporus and A. brasiliensis polysaccharide extracts decreased the mitochondrial membrane potential, while this was increased by P. linteus polysaccharide extracts. Conclusions P. linteus polysaccharide extracts caused apoptosis of THP-1 monocytes while A. bisporus and A. brasiliensis polysaccharide extracts caused these cells to differentiate into macrophages. The protective effects of human serum suggested that P. linteus polysaccharide extract induced apoptosis by extrinsic pathway, i.e. by binding to the TRAIL receptor. The mitochondrial membrane potential together with reactive oxygen species

  8. Molecular profiles of Quadriceps muscle in myostatin-null mice reveal PI3K and apoptotic pathways as myostatin targets

    PubMed Central

    Chelh, Ilham; Meunier, Bruno; Picard, Brigitte; Reecy, Mark James; Chevalier, Catherine; Hocquette, Jean-François; Cassar-Malek, Isabelle

    2009-01-01

    Background Myostatin (MSTN), a member of the TGF-β superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations in the MSTN gene are responsible for the development of a hypermuscular phenotype. In this study, we performed transcriptomic and proteomic analyses to detect altered expression/abundance of genes and proteins. These differentially expressed genes and proteins may represent new molecular targets of MSTN and could be involved in the regulation of skeletal muscle mass. Results Transcriptomic analysis of the Quadriceps muscles of 5-week-old MSTN-null mice (n = 4) and their controls (n = 4) was carried out using microarray (human and murine oligonucleotide sequences) of 6,473 genes expressed in muscle. Proteomic profiles were analysed using two-dimensional gel electrophoresis coupled with mass spectrometry. Comparison of the transcriptomic profiles revealed 192 up- and 245 down- regulated genes. Genes involved in the PI3K pathway, insulin/IGF pathway, carbohydrate metabolism and apoptosis regulation were up-regulated. Genes belonging to canonical Wnt, calcium signalling pathways and cytokine-receptor cytokine interaction were down-regulated. Comparison of the protein profiles revealed 20 up- and 18 down-regulated proteins spots. Knockout of the MSTN gene was associated with up-regulation of proteins involved in glycolytic shift of the muscles and down-regulation of proteins involved in oxidative energy metabolism. In addition, an increased abundance of survival/anti-apoptotic factors were observed. Conclusion All together, these results showed a differential expression of genes and proteins related to the muscle energy metabolism and cell survival/anti-apoptotic pathway (e.g. DJ-1, PINK1, 14-3-3ε protein, TCTP/GSK-3β). They revealed the PI3K and apoptotic pathways as MSTN targets and are in favour of a role of MSTN as a modulator of cell survival in vivo. PMID:19397818

  9. Deltamethrin-induced oxidative stress and mitochondrial caspase-dependent signaling pathways in murine splenocytes.

    PubMed

    Kumar, Anoop; Sasmal, D; Bhaskar, Amand; Mukhopadhyay, Kunal; Thakur, Aman; Sharma, Neelima

    2016-07-01

    Deltamethrin (DLM) is a well-known pyrethroid insecticide used extensively in pest control. Exposure to DLM has been demonstrated to cause apoptosis in various cells. However, the immunotoxic effects of DLM on mammalian system and its mechanism is still an open question to be explored. To explore these effects, this study has been designed to first observe the interactions of DLM to immune cell receptors and its effects on the immune system. The docking score revealed that DLM has strong binding affinity toward the CD45 and CD28 receptors. In vitro study revealed that DLM induces apoptosis in murine splenocytes in a concentration-dependent manner. The earliest markers of apoptosis such as enhanced reactive oxygen species and caspase 3 activation are evident as early as 1 h by 25 and 50 µM DLM. Western blot analysis demonstrated that p38 MAP kinase and Bax expression is increased in a concentration-dependent manner, whereas Bcl 2 expression is significantly reduced after 3 h of DLM treatment. Glutathione depletion has been also observed at 3 and 6 h by 25 and 50 µM concentration of DLM. Flow cytometry results imply that the fraction of hypodiploid cells has gradually increased with all the concentrations of DLM at 18 h. N-acetyl cysteine effectively reduces the percentage of apoptotic cells, which is increased by DLM. In contrast, buthionine sulfoxamine causes an elevation in the percentage of apoptotic cells. Phenotyping data imply the effect of DLM toxicity in murine splenocytes. In brief, the study demonstrates that DLM causes apoptosis through its interaction with CD45 and CD28 receptors, leading to oxidative stress and activation of the mitochondrial caspase-dependent pathways which ultimately affects the immune functions. This study provides mechanistic information by which DLM causes toxicity in murine splenocytes. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 808-819, 2016. PMID:25534813

  10. AS-2, a novel inhibitor of p53-dependent apoptosis, prevents apoptotic mitochondrial dysfunction in a transcription-independent manner and protects mice from a lethal dose of ionizing radiation

    SciTech Connect

    Morita, Akinori; Ariyasu, Shinya; Wang, Bing; Asanuma, Tetsuo; Onoda, Takayoshi; Sawa, Akiko; Tanaka, Kaoru; Takahashi, Ippei; Togami, Shotaro; Nenoi, Mitsuru; Inaba, Toshiya; Aoki, Shin

    2014-08-08

    Highlights: • A bidentate HQ derivative, AS-2, suppresses p53-dependent apoptosis by DNA damage. • AS-2 does not significantly affect nuclear p53 response. • UV-excited blue emission of AS-2 clearly showed its extranuclear localization. • AS-2 prevents mitochondrial dysfunction despite the increase of mitochondrial p53. • AS-2 protects mice from a radiation dose that causes lethal hematopoietic syndrome. - Abstract: In a previous study, we reported that some tetradentate zinc(II) chelators inhibit p53 through the denaturation of its zinc-requiring structure but a chelator, Bispicen, a potent inhibitor of in vitro apoptosis, failed to show any efficient radioprotective effect against irradiated mice because the toxicity of the chelator to mice. The unsuitability of using tetradentate chelators as radioprotectors prompted us to undertake a more extensive search for p53-inhibiting agents that are weaker zinc(II) chelators and therefore less toxic. Here, we show that an 8-hydroxyquinoline (8HQ) derivative, AS-2, suppresses p53-dependent apoptosis through a transcription-independent mechanism. A mechanistic study using cells with different p53 characteristics revealed that the suppressive effect of AS-2 on apoptosis is specifically mediated through p53. In addition, AS-2 was less effective in preventing p53-mediated transcription-dependent events than pifithrin-μ (PFTμ), an inhibitor of transcription-independent apoptosis by p53. Fluorescence visualization of the extranuclear distribution of AS-2 also supports that it is ineffective on the transcription-dependent pathway. Further investigations revealed that AS-2 suppressed mitochondrial apoptotic events, such as the mitochondrial release of intermembrane proteins and the loss of mitochondrial membrane potential, although AS-2 resulted in an increase in the mitochondrial translocation of p53 as opposed to the decrease of cytosolic p53, and did not affect the apoptotic interaction of p53 with Bcl-2. AS-2 also

  11. MiR-1180 promotes apoptotic resistance to human hepatocellular carcinoma via activation of NF-κB signaling pathway

    PubMed Central

    Tan, Guosheng; Wu, Linwei; Tan, Jinfu; Zhang, Bing; Tai, William Chi-shing; Xiong, Shiqiu; Chen, Wei; Yang, Jianyong; Li, Heping

    2016-01-01

    Apoptosis resistance in human hepatocellular carcinoma (HCC) is a significant factor in carcinogenesis. Therefore, understanding the molecular mechanisms involved in apoptosis resistance is crucial for developing anticancer therapies. Importantly, small non-coding microRNAs (miRNAs) have been reported as key biomarkers for detecting tumour onset and progression. In the present study, we demonstrate that miR-1180 is upregulated in HCC. Ectopic expression of miR-1180 has an anti-apoptotic effect in HCC, while miR-1180 inhibition increases cell apoptosis, both in vitro and in vivo. Moreover, our results show that miR-1180 directly targets key inhibitors of the nuclear factor (NF)-κB signaling pathway (i.e., OTUD7B and TNIP2) and the pro-apoptotic Bcl-2 associated death promoter (BAD) protein by post-transcriptional downregulation. Therefore, the anti-apoptotic function of miR-1180 in HCC may occur through NF-κB pathway activation via downregulation of its negative regulators. In conclusion, our study reveals the critical role of miR-1180 during apoptosis resistance in HCC. PMID:26928365

  12. Reversal of Cytosolic One-Carbon Flux Compensates for Loss of the Mitochondrial Folate Pathway.

    PubMed

    Ducker, Gregory S; Chen, Li; Morscher, Raphael J; Ghergurovich, Jonathan M; Esposito, Mark; Teng, Xin; Kang, Yibin; Rabinowitz, Joshua D

    2016-06-14

    One-carbon (1C) units for purine and thymidine synthesis can be generated from serine by cytosolic or mitochondrial folate metabolism. The mitochondrial 1C pathway is consistently overexpressed in cancer. Here, we show that most but not all proliferating mammalian cell lines use the mitochondrial pathway as the default for making 1C units. Clustered regularly interspaced short palindromic repeats (CRISPR)-mediated mitochondrial pathway knockout activates cytosolic 1C-unit production. This reversal in cytosolic flux is triggered by depletion of a single metabolite, 10-formyl-tetrahydrofolate (10-formyl-THF), and enables rapid cell growth in nutrient-replete conditions. Loss of the mitochondrial pathway, however, renders cells dependent on extracellular serine to make 1C units and on extracellular glycine to make glutathione. HCT-116 colon cancer xenografts lacking mitochondrial 1C pathway activity generate the 1C units required for growth by cytosolic serine catabolism. Loss of both pathways precludes xenograft formation. Thus, either mitochondrial or cytosolic 1C metabolism can support tumorigenesis, with the mitochondrial pathway required in nutrient-poor conditions. PMID:27211901

  13. Phosphorylation of ASPP2 by RAS/MAPK Pathway Is Critical for Its Full Pro-Apoptotic Function

    PubMed Central

    Slee, Elizabeth; Lu, Xin

    2013-01-01

    We reported recently that apoptosis-stimulating protein of p53 (ASPP) 2, an activator of p53, co-operates with oncogenic RAS to enhance the transcription and apoptotic function of p53. However, the detailed mechanism remains unknown. Here we show that ASPP2 is a novel substrate of mitogen-activated protein kinase (MAPK). Phosphorylation of ASPP2 by MAPK is required for RAS-induced increased binding to p53 and increased transactivation of pro-apoptotic genes. In contrast, an ASPP2 phosphorylation mutant exhibits reduced p53 binding and fails to enhance transactivation and apoptosis. Thus phosphorylation of ASPP2 by RAS/MAPK pathway provides a novel link between RAS and p53 in regulating apoptosis. PMID:24312625

  14. Dietary anthocyanins protect endothelial cells against peroxynitrite-induced mitochondrial apoptosis pathway and Bax nuclear translocation: an in vitro approach.

    PubMed

    Paixão, Joana; Dinis, Teresa C P; Almeida, Leonor M

    2011-10-01

    Anthocyanins have received increasing attention because of their relatively high intake in humans and wide range of potential health-promoting effects, including anti-atherogenic properties. Evidences support their vascular protective effects but the involved molecular mechanisms have not been well clarified. The endothelium seems to have a central role in atherogenesis and apoptosis is emerging as a crucial event in this disease progression. Following our previous work on the biochemical pathways underlying peroxynitrite-triggered apoptosis in endothelial cells, here we investigated potential mechanisms responsible for the cytoprotective actions of three common anthocyanins, namely cyanidin- delphinidin- and pelargonidin-3-glucoside, against this process. Beyond their antioxidant properties, all these flavonoids, possessing either catecholic or monophenolic structures, were able to counteract peroxynitrite-induced apoptotic effects in endothelial cells through the inhibition of several crucial signaling cascades. Actually, pre-incubation of cells with 25 μM anthocyanins prevented them from peroxynitrite-mediated apoptosis, which was evaluated by the loss of mitochondrial membrane potential, caspases-9 and-3 activation, the increase in cytoplasmatic Bax levels and the inactivation of the PI3 K/Akt pathway. Moreover, they counteracted the translocation of Bax into the nucleus, as observed by immunocytochemistry and immunoblot, an event shown for the first time in endothelial cells apoptotic process. Such cellular actions could not be inferred from their in vitro antioxidant properties. These results suggest a potential role of dietary anthocyanins in the modulation of several apoptotic signaling pathways triggered by peroxynitrite in endothelial cells, supporting mechanistically their health benefits in the context of prevention of endothelial dysfunction and, ultimately, of atherosclerosis. PMID:21785847

  15. Parthenolide induces apoptosis by activating the mitochondrial and death receptor pathways and inhibits FAK-mediated cell invasion.

    PubMed

    Kwak, Sang Won; Park, Eon Sub; Lee, Chung Soo

    2014-01-01

    The natural product parthenolide induces apoptosis in cancer cells. However, the mechanism of apoptosis in ovarian cancer cells exposed to parthenolide is not clear. In addition, it is unclear whether parthenolide-induced apoptosis is mediated by the formation of reactive oxygen species and the depletion of GSH contents, and the effect of parthenolide on the invasion and migration of human epithelial ovarian cancer cells has not been studied. Therefore, we investigated the effects of parthenolide exposure on apoptosis, cell adhesion, and migration using the human epithelial ovarian carcinoma cell lines OVCAR-3 and SK-OV-3. The results suggest that parthenolide may induce apoptotic cell death in ovarian carcinoma cell lines by activating the mitochondrial pathway and the caspase-8- and Bid-dependent pathways. The apoptotic effect of parthenolide appears to be mediated by the formation of reactive oxygen species and the depletion of GSH. Parthenolide inhibited fetal bovine serum-induced cell adhesion and migration of OVCAR-3 cells, possibly through the suppression the focal adhesion kinase-dependent activation of cytoskeletal-associated components. Therefore, parthenolide might be beneficial in the treatment of epithelial ovarian adenocarcinoma and combination therapy. PMID:24065392

  16. Activated Protein C Protects Myocardium Via Activation of Anti-apoptotic Pathways of Survival in Ischemia-reperfused Rat Heart

    PubMed Central

    Ding, Jia-Wang; Yang, Jun; Liu, Zhao-Qi; Zhang, Yan; Yang, Jian; Li, Song; Li, Li

    2010-01-01

    Activated protein C (APC) is known to be beneficial on ischemia reperfusion injury in myocardium. However, the protection mechanism of APC is not fully understood. The purpose of this study was to investigate the effects and possible mechanisms of APC on myocardial ischemic damage. Artificially ventilated anaesthetized Sprague-Dawley rats were subjected to a 30 min of left anterior descending coronary artery occlusion followed by 2 hr of reperfusion. Rats were randomly divided into four groups; Sham, I/R, APC preconditioning and postconditioning group. Myocardial infarct size, apoptosis index, the phosphorylation of ERK1/2, Bcl-2, Bax and cytochrome c genes and proteins were assessed. In APC-administrated rat hearts, regardless of the timing of administration, infarct size was consistently reduced compared to ischemia/reperfusion (I/R) rats. APC improved the expression of ERK1/2 and anti-apoptotic protein Bcl-2 which were significantly reduced in the I/R rats. APC reduced the expression of pro-apoptotic genes, Bax and cytochrome c. These findings suggest that APC produces cardioprotective effect by preserving the expression of proteins and genes involved in anti-apoptotic pathways, regardless of the timing of administration. PMID:21060750

  17. The effector caspases drICE and dcp-1 have partially overlapping functions in the apoptotic pathway in Drosophila

    PubMed Central

    Xu, D; Wang, Y; Willecke, R; Chen, Z; Ding, T; Bergmann, A

    2008-01-01

    Caspases are essential components of the apoptotic machinery in both vertebrates and invertebrates. Here, we report the isolation of a mutant allele of the Drosophila effector caspase drICE as a strong suppressor of hid- (head involution defective-) induced apoptosis. This mutant was used to determine the apoptotic role of drICE. Our data are consistent with an important function of drICE for developmental and irradiation-induced cell death. Epistatic analysis suggests that drICE acts genetically downstream of Drosophila inhibitor of apoptosis protein 1 (Diap1). However, although cell death is significantly reduced in drICE mutants in all assays, it is not completely blocked. A double-mutant analysis between drICE and death caspase-1 (dcp-1), another effector caspase, reveals that some cells (type I) strictly require drICE for apoptosis, whereas other cells (type II) require either drICE or dcp-1. Thus, these data demonstrate a barely appreciated complexity in the apoptotic pathway, and are consistent with current models about effector caspase regulation in both vertebrates and invertebrates. PMID:16645642

  18. The effector caspases drICE and dcp-1 have partially overlapping functions in the apoptotic pathway in Drosophila.

    PubMed

    Xu, D; Wang, Y; Willecke, R; Chen, Z; Ding, T; Bergmann, A

    2006-10-01

    Caspases are essential components of the apoptotic machinery in both vertebrates and invertebrates. Here, we report the isolation of a mutant allele of the Drosophila effector caspase drICE as a strong suppressor of hid- (head involution defective-) induced apoptosis. This mutant was used to determine the apoptotic role of drICE. Our data are consistent with an important function of drICE for developmental and irradiation-induced cell death. Epistatic analysis suggests that drICE acts genetically downstream of Drosophila inhibitor of apoptosis protein 1 (Diap1). However, although cell death is significantly reduced in drICE mutants in all assays, it is not completely blocked. A double-mutant analysis between drICE and death caspase-1 (dcp-1), another effector caspase, reveals that some cells (type I) strictly require drICE for apoptosis, whereas other cells (type II) require either drICE or dcp-1. Thus, these data demonstrate a barely appreciated complexity in the apoptotic pathway, and are consistent with current models about effector caspase regulation in both vertebrates and invertebrates. PMID:16645642

  19. Oxidized low-density lipoprotein induces apoptotic insults to mouse cerebral endothelial cells via a Bax-mitochondria-caspase protease pathway

    SciTech Connect

    Chen, T.-G.; Chen, T.-L.; Chang, H.-C.; Tai, Y.-T.; Cherng, Y.-G.; Chang, Y.-T.; Chen, R.-M. . E-mail: rmchen@tmu.edu.tw

    2007-02-15

    Cerebral endothelial cells (CECs) are crucial components of the blood-brain barrier. Oxidized low-density lipoprotein (oxLDL) can induce cell injuries. In this study, we attempted to evaluate the effects of oxLDL on mouse CECs and its possible mechanisms. Mouse CECs were isolated from brain tissues and identified by immunocytochemical staining of vimentin and Factor VIII. oxLDL was prepared from LDL oxidation by copper sulfate. Exposure of mouse CECs to oxLDL decreased cell viability in concentration- and time-dependent manners. oxLDL time-dependently caused shrinkage of cell morphologies. Administration of oxLDL to CECs induced DNA fragmentation in concentration- and time-dependent manners. Analysis of the cell cycle revealed that oxLDL concentration- and time-dependently increased the proportion of CECs which underwent apoptosis. Analysis of confocal microscopy and immunoblot revealed that oxLDL significantly increased cellular and mitochondrial Bax levels as well as the translocation of this proapoptotic protein from the cytoplasm to mitochondria. In parallel with the increase in the levels and translocation of Bax, oxLDL time-dependently decreased the mitochondrial membrane potential. Exposure of mouse CECs to oxLDL decreased the amounts of mitochondrial cytochrome c, but enhanced cytosolic cytochrome c levels. The amounts of intracellular reactive oxygen species were significantly augmented after oxLDL administration. Sequentially, oxLDL increased activities of caspase-9, -3, and -6 in time-dependent manners. Pretreatment with Z-VEID-FMK, an inhibitor of caspase-6, significantly decreased caspase-6 activity and the oxLDL-induced DNA fragmentation and cell apoptosis. This study showed that oxLDL induces apoptotic insults to CECs via signal-transducing events, including enhancing Bax translocation, mitochondrial dysfunction, cytochrome c release, increases in intracellular reactive oxygen species, and cascade activation of caspase-9, -3, and -6. Therefore, ox

  20. Oxidized low-density lipoprotein induces apoptotic insults to mouse cerebral endothelial cells via a Bax-mitochondria-caspase protease pathway.

    PubMed

    Chen, Tyng-Guey; Chen, Ta-Liang; Chang, Huai-Chia; Tai, Yu-Ting; Cherng, Yih-Giun; Chang, Ya-Ting; Chen, Ruei-Ming

    2007-02-15

    Cerebral endothelial cells (CECs) are crucial components of the blood-brain barrier. Oxidized low-density lipoprotein (oxLDL) can induce cell injuries. In this study, we attempted to evaluate the effects of oxLDL on mouse CECs and its possible mechanisms. Mouse CECs were isolated from brain tissues and identified by immunocytochemical staining of vimentin and Factor VIII. oxLDL was prepared from LDL oxidation by copper sulfate. Exposure of mouse CECs to oxLDL decreased cell viability in concentration- and time-dependent manners. oxLDL time-dependently caused shrinkage of cell morphologies. Administration of oxLDL to CECs induced DNA fragmentation in concentration- and time-dependent manners. Analysis of the cell cycle revealed that oxLDL concentration- and time-dependently increased the proportion of CECs which underwent apoptosis. Analysis of confocal microscopy and immunoblot revealed that oxLDL significantly increased cellular and mitochondrial Bax levels as well as the translocation of this proapoptotic protein from the cytoplasm to mitochondria. In parallel with the increase in the levels and translocation of Bax, oxLDL time-dependently decreased the mitochondrial membrane potential. Exposure of mouse CECs to oxLDL decreased the amounts of mitochondrial cytochrome c, but enhanced cytosolic cytochrome c levels. The amounts of intracellular reactive oxygen species were significantly augmented after oxLDL administration. Sequentially, oxLDL increased activities of caspase-9, -3, and -6 in time-dependent manners. Pretreatment with Z-VEID-FMK, an inhibitor of caspase-6, significantly decreased caspase-6 activity and the oxLDL-induced DNA fragmentation and cell apoptosis. This study showed that oxLDL induces apoptotic insults to CECs via signal-transducing events, including enhancing Bax translocation, mitochondrial dysfunction, cytochrome c release, increases in intracellular reactive oxygen species, and cascade activation of caspase-9, -3, and -6. Therefore, ox

  1. Fucoidan Derived from Undaria pinnatifida Induces Apoptosis in Human Hepatocellular Carcinoma SMMC-7721 Cells via the ROS-Mediated Mitochondrial Pathway

    PubMed Central

    Yang, Lili; Wang, Peisheng; Wang, Huaxin; Li, Qiaomei; Teng, Hongming; Liu, Zhichao; Yang, Wenbo; Hou, Lin; Zou, Xiangyang

    2013-01-01

    Fucoidans, fucose-enriched sulfated polysaccharides isolated from brown algae and marine invertebrates, have been shown to exert anticancer activity in several types of human cancer, including leukemia and breast cancer and in lung adenocarcinoma cells. In the present study, the anticancer activity of the fucoidan extracted from the brown seaweed Undaria pinnatifida was investigated in human hepatocellular carcinoma SMMC-7721 cells, and the underlying mechanisms of action were investigated. SMMC-7721 cells exposed to fucoidan displayed growth inhibition and several typical features of apoptotic cells, such as chromatin condensation and marginalization, a decrease in the number of mitochondria, and in mitochondrial swelling and vacuolation. Fucoidan-induced cell death was associated with depletion of reduced glutathione (GSH), accumulation of high intracellular levels of reactive oxygen species (ROS), and accompanied by damage to the mitochondrial ultrastructure, depolarization of the mitochondrial membrane potential (MMP, Δψm) and caspase activation. Moreover, fucoidan led to altered expression of factors related to apoptosis, including downregulating Livin and XIAP mRNA, which are members of the inhibitor of apoptotic protein (IAP) family, and increased the Bax-to-Bcl-2 ratio. These findings suggest that fucoidan isolated from U. pinnatifida induced apoptosis in SMMC-7721 cells via the ROS-mediated mitochondrial pathway. PMID:23752353

  2. 13-acetoxysarcocrassolide induces apoptosis on human gastric carcinoma cells through mitochondria-related apoptotic pathways: p38/JNK activation and PI3K/AKT suppression.

    PubMed

    Su, Ching-Chyuan; Chen, Jeff Yi-Fu; Din, Zhong-Hao; Su, Jui-Hsin; Yang, Zih-Yan; Chen, Yi-Jen; Wang, Robert Y L; Wu, Yu-Jen

    2014-10-01

    13-acetoxysarcocrassolide (13-AC), an active compound isolated from cultured Formosa soft coral Sarcophyton crassocaule, was found to possess anti-proliferative and apoptosis-inducing activities against AGS (human gastric adenocarcinoma cells) gastric carcinoma cells. The anti-tumor effects of 13-AC were determined by MTT assay, colony formation assessment, cell wound-healing assay, TUNEL/4,6-Diamidino-2-phenylindole (DAPI) staining, Annexin V-fluorescein isothiocyanate/propidium iodide (PI) staining and flow cytometry. 13-AC inhibited the growth and migration of gastric carcinoma cells in a dose-dependent manner and induced both early and late apoptosis as assessed by flow cytometer analysis. 13-AC-induced apoptosis was confirmed through observation of a change in ΔΨm, up-regulated expression levels of Bax and Bad proteins, down-regulated expression levels of Bcl-2, Bcl-xl and Mcl-1 proteins, and the activation of caspase-3, caspase-9, p38 and JNK. Furthermore, inhibition of p38 and JNK activity by pretreatment with SB03580 (a p38-specific inhibitor) and SP600125 (a JNK-specific inhibitor) led to rescue of the cell cytotoxicity of 13-AC-treated AGS cells, indicating that the p38 and the JNK pathways are also involved in the 13-AC-induced cell apoptosis. Together, these results suggest that 13-AC induces cell apoptosis against gastric cancer cells through triggering of the mitochondrial-dependent apoptotic pathway as well as activation of the p38 and JNK pathways. PMID:25342459

  3. Involvement of caspase-12-dependent apoptotic pathway in ionic radiocontrast urografin-induced renal tubular cell injury

    SciTech Connect

    Wu, Cheng Tien; Weng, Te I.; Chen, Li Ping; Chiang, Chih Kang; Liu, Shing Hwa

    2013-01-01

    Contrast medium (CM) induces a direct toxic effect on renal tubular cells. This toxic effect subjects in the disorder of CM-induced nephropathy. Our previous work has demonstrated that CM shows to activate the endoplasmic reticulum (ER)-related adaptive unfolding protein response (UPR) activators. Glucose-regulated protein 78 (GRP78)/eukaryotic initiation factor 2α (eIF2α)-related pathways play a protective role during the urografin (an ionic CM)-induced renal tubular injury. However, the involvement of ER stress-related apoptotic signals in the urografin-induced renal tubular cell injury remains unclear. Here, we examined by the in vivo and in vitro experiments to explore whether ER stress-regulated pro-apoptotic activators participate in urografin-induced renal injury. Urografin induced renal tubular dilation, tubular cells detachment, and necrosis in the kidneys of rats. The tubular apoptosis, ER stress-related pro-apoptotic transcriptional factors, and kidney injury marker-1 (kim-1) were also conspicuously up-regulated in urografin-treated rats. Furthermore, treatment of normal rat kidney (NRK)-52E tubular cells with urografin augmented the expressions of activating transcription factor-6 (ATF-6), C/EBP homologous protein (CHOP), Bax, caspase-12, JNK, and inositol-requiring enzyme (IRE) 1 signals. Urografin-induced renal tubular cell apoptosis was not reversed by the inhibitors of ATF-6, JNK signals or CHOP siRNA transfection, but it could be partially reversed by the inhibitor of caspase-12. Taken together, the present results and our previous findings suggest that exposure of CM/urografin activates the ER stress-regulated survival- and apoptosis-related signaling pathways in renal tubular cells. Caspase-12-dependent apoptotic pathway may be partially involved in the urografin-induced nephropathy. -- Highlights: ► Ionic contrast medium-urografin induces renal tubular cell apoptosis. ► Urografin induces the ER stress-regulated survival and apoptosis

  4. Rapamycin, an mTOR inhibitor, induced apoptosis via independent mitochondrial and death receptor pathway in retinoblastoma Y79 cell

    PubMed Central

    Wang, Yan-Dong; Su, Yong-Jing; Li, Jian-Ying; Yao, Xiang-Chao; Liang, Guang-Jiang

    2015-01-01

    Rapamycin is helpful in the treatment of certain cancers by inhibiting mTOR (mammalian target of rapamycin) pathway. Here, rapamycin mediated apoptosis were investigated in human retinoblastoma Y79 cells. The MTT assay showed that the IC50 value of rapamycin against Y79 cells was 0.136 ± 0.032 μmol/L. Flow cytometry analysis indicated that the percentage of apoptotic cells was increased from 2.16 ± 0.41% to 12.24 ± 3.10%, 20.16 ± 4.22%, and 31.32 ± 5.78% after 0.1, 0.2, and 0.4 μmol/L rapamycin or without rapamycin treatment for 48 hours. Flow cytometry analysis showed that rapamycin induced mitochondrial membrane potential (∆Ψm) collapse in Y79 cells in a concentration-dependent manner. Western blot assay showed that rapamycin led to release of cytochrome c from mitochondrial membranes to cytosol. Further Western blot assays showed that rapamycin induced activation of caspase-9 and caspase-8 and the cleavage of caspase-3. Rapamycin induced cleavages of caspase-3 and apoptosis was inhibited by both Z-LETD-FMK and Z-IETD-FMK treatment. Together, all these results illustrated that rapamycin induced apoptosis in human retinoblastoma Y79 cells involvement of both intrinsic and extrinsic pathways. PMID:26379864

  5. Britannin, a sesquiterpene lactone, inhibits proliferation and induces apoptosis through the mitochondrial signaling pathway in human breast cancer cells.

    PubMed

    Hamzeloo-Moghadam, Maryam; Aghaei, Mahmoud; Fallahian, Faranak; Jafari, Seyyed Mehdi; Dolati, Masoumeh; Abdolmohammadi, Mohammad Hossein; Hajiahmadi, Sima; Esmaeili, Somayeh

    2015-02-01

    Induction of apoptosis in cancer cells can be a promising treatment method in cancer therapy. Naturally derived products had drawn growing attention as agent in cancer therapy. The main target of anticancer drugs may be distinct, but eventually, they lead to identical cell death pathway, which is apoptosis. Here, we indicated that britannin, a sesquiterpene lactone isolated from Asteraceae family, has antiproliferative activity on the MCF-7 and MDA-MB-468 human breast cancer cells. Annexin V/propidium iodide (PI) staining, Hoechst 33258 staining, and caspase-3/9 activity assay confirmed that britannin is able to induce apoptosis in MCF-7 and MDA-MB-468 cells. The Western blot analysis showed that the expression of Bcl-2 was noticeably decreased in response to britannin treatment, while the expression of Bax protein was increased, which were positively correlated with elevated expression of p53. Moreover, britannin also increased reactive oxygen species (ROS) generation which in turn triggered the loss of mitochondrial transmembrane potential (ΔΨm) and the subsequent release of cytochrome c from mitochondria into cytosol. Taken together, these results suggest that britannin inhibits growth of MCF-7 and MDA-MB-468 breast cancer cells through the activation of the mitochondrial apoptotic pathway and may potentially serve as an agent for breast cancer therapy. PMID:25342596

  6. Mitochondrial Gene Expression Profiles and Metabolic Pathways in the Amygdala Associated with Exaggerated Fear in an Animal Model of PTSD

    PubMed Central

    Li, He; Li, Xin; Smerin, Stanley E.; Zhang, Lei; Jia, Min; Xing, Guoqiang; Su, Yan A.; Wen, Jillian; Benedek, David; Ursano, Robert

    2014-01-01

    The metabolic mechanisms underlying the development of exaggerated fear in post-traumatic stress disorder (PTSD) are not well defined. In the present study, alteration in the expression of genes associated with mitochondrial function in the amygdala of an animal model of PTSD was determined. Amygdala tissue samples were excised from 10 non-stressed control rats and 10 stressed rats, 14 days post-stress treatment. Total RNA was isolated, cDNA was synthesized, and gene expression levels were determined using a cDNA microarray. During the development of the exaggerated fear associated with PTSD, 48 genes were found to be significantly upregulated and 37 were significantly downregulated in the amygdala complex based on stringent criteria (p < 0.01). Ingenuity pathway analysis revealed up- or downregulation in the amygdala complex of four signaling networks – one associated with inflammatory and apoptotic pathways, one with immune mediators and metabolism, one with transcriptional factors, and one with chromatin remodeling. Thus, informatics of a neuronal gene array allowed us to determine the expression profile of mitochondrial genes in the amygdala complex of an animal model of PTSD. The result is a further understanding of the metabolic and neuronal signaling mechanisms associated with delayed and exaggerated fear. PMID:25295026

  7. The PINK1-Parkin pathway is involved in the regulation of mitochondrial remodeling process

    SciTech Connect

    Park, Jeehye; Lee, Gina; Chung, Jongkyeong

    2009-01-16

    The two Parkinson's disease (PD) genes, PTEN-induced kinase 1 (PINK1) and parkin, are linked in a common pathway which affects mitochondrial integrity and function. However, it is still not known what this pathway does in the mitochondria. Therefore, we investigated its physiological function in Drosophila. Because Drosophila PINK1 and parkin mutants show changes in mitochondrial morphology in both indirect flight muscles and dopaminergic neurons, we here investigated whether the PINK1-Parkin pathway genetically interacts with the regulators of mitochondrial fusion and fission such as Drp1, which promotes mitochondrial fission, and Opa1 or Marf, which induces mitochondrial fusion. Surprisingly, DrosophilaPINK1 and parkin mutant phenotypes were markedly suppressed by overexpression of Drp1 or downregulation of Opa1 or Marf, indicating that the PINK1-Parkin pathway regulates mitochondrial remodeling process in the direction of promoting mitochondrial fission. Therefore, we strongly suggest that mitochondrial fusion and fission process could be a prominent therapeutic target for the treatment of PD.

  8. Targeting the mitochondrial apoptotic pathway: a preferred approach in hematologic malignancies?

    PubMed Central

    Brinkmann, K; Kashkar, H

    2014-01-01

    Acquired resistance toward apoptosis represents one of the hallmarks of human cancer and a major cause of the inefficacy of most anticancer treatment regimens. Based on its ability to inhibit apoptosis, the B-cell lymphoma/leukemia 2 (Bcl-2) protein family has garnered the most attention as a promising therapeutic target in cancer. Accordingly, efforts have lately been focused on the development of drugs targeting Bcl-2 proteins with considerable therapeutic success, particularly in hematologic malignancies. Here, we review the previous studies and highlight the pivotal role of the Bcl-2 protein family in the homeostasis of hematologic tissue compartment. This knowledge provides more insight into why some cancers are more sensitive to Bcl-2 targeting than others and will foster the clinical evaluation of Bcl-2-targeting strategies in cancer by avoiding severe on-target side effects in the development of healthy tissues. PMID:24603326

  9. Withania somnifera alleviates parkinsonian phenotypes by inhibiting apoptotic pathways in dopaminergic neurons.

    PubMed

    Prakash, Jay; Chouhan, Shikha; Yadav, Satyndra Kumar; Westfall, Susan; Rai, Sachchida Nand; Singh, Surya Pratap

    2014-12-01

    Maneb (MB) and paraquat (PQ) are environmental toxins that have been experimentally used to induce selective damage of dopaminergic neurons leading to the development of Parkinson's disease (PD). Although the mechanism of this selective neuronal toxicity in not fully understood, oxidative stress has been linked to the pathogenesis of PD. The present study investigates the mechanisms of neuroprotection elicited by Withania somnifera (Ws), a herb traditionally recognized by the Indian system of medicine, Ayurveda. An ethanolic root extract of Ws was co-treated with the MB-PQ induced mouse model of PD and was shown to significantly rescue canonical indicators of PD including compromised locomotor activity, reduced dopamine in the substantia nigra and various aspects of oxidative damage. In particular, Ws reduced the expression of iNOS, a measure of oxidative stress. Ws also significantly improved the MB + PQ mediated induction of a pro-apoptotic state by reducing Bax and inducing Bcl-2 protein expression, respectively. Finally, Ws reduced expression of the pro-inflammatory marker of astrocyte activation, GFAP. Altogether, the present study suggests that Ws treatment provides nigrostriatal dopaminergic neuroprotection against MB-PQ induced Parkinsonism by the modulation of oxidative stress and apoptotic machinery possibly accounting for the behavioural effects. PMID:25403619

  10. Myristicin from nutmeg induces apoptosis via the mitochondrial pathway and down regulates genes of the DNA damage response pathways in human leukaemia K562 cells.

    PubMed

    Martins, Célia; Doran, Carolina; Silva, Inês C; Miranda, Claudia; Rueff, José; Rodrigues, António S

    2014-07-25

    Myristicin, an allylbenzene, is a major active component of various spices, such as nutmeg and cinnamon, plants from the Umbelliferae family or in some essential oils, such as oils of clove or marjoram. Human exposure to myristicin is low but widespread due to consumption of these spices and essential oils, added to food (e.g. cola drinks) or in traditional medicine. Occasionally high dose exposure occurs, leading to various clinical symptoms, however the molecular mechanisms underlying them are unknown. Our previous studies revealed that myristicin is not genotoxic and yet presented apoptotic activity. Therefore, in this work we assessed the apoptotic mechanisms induced by myristicin in human leukaemia cells. In order to gain further insight on the potential of myristicin to modulate gene expression we also analysed alterations in expression of 84 genes associated with the DNA damage response pathway. The results obtained show that myristicin can induce apoptosis as characterised by alterations in the mitochondrial membrane potential, cytochrome c release, caspase-3 activation, PARP-cleavage and DNA fragmentation. The gene expression profile revealed an overall down regulation of DNA damage response genes after exposure to myristicin, with significant under-expression of genes associated with nucleotide excision repair (ERCC1), double strand break repair (RAD50, RAD51) and DNA damage signalling (ATM) and stress response (GADD45A, GADD45G). On the whole, we demonstrate that myristicin can alter mitochondrial membrane function, induce apoptosis and modulate gene expression in human leukaemia K562 cells. This study provides further detail on the molecular mechanisms underlying the biological activity of myristicin. PMID:24792648

  11. Corosolic acid analogue, a natural triterpenoid saponin, induces apoptosis on human hepatocarcinoma cells through mitochondrial pathway in vitro.

    PubMed

    Qu, Liping; Zhang, Huiqing; Yang, Yanlong; Yang, Geliang; Xin, Hailiang; Ling, Changquan

    2016-08-01

    Context 2a,-3a,-24-Trihydroxyurs-12-en-28-oic acid (TEO, a corosolic acid analogue) is a triterpenoid saponin isolated from Actinidia valvata Dunn (Actinidiaceae), a well-known traditional Chinese medicine. Objective This study investigated the anti-proliferation and inducing apoptosis effects of TEO in three human hepatocellular carcinoma (HCC) cell lines. Materials and methods Cytotoxic activity of TEO was determined by the MTT assay at various concentrations from 2.5 to 40 μg/mL in BEL-7402, BEL-7404 and SMMC-7721 cell lines. Cell morphology was assessed by acridine orange/ethidium bromide and 4'-6-diamidino-2-phenylindole dihydrochloride staining and fluorescence microscopy. Cell-cycle distribution and DNA damage were determined by flow cytometry and comet assay. Mitochondrial dysfunction was assessed by JC-1 staining and transmission electron microscopy. Apoptosis changes were explored by Western blot, TNF-α and caspase-3, -8, -9 assays. Results TEO exhibited inhibition effects on BEL-7402, BEL-7404 and SMMC-7721 cells treated for 24 h, the IC50 values were 34.6, 30.8 and 30.5 μg/mL, respectively. TEO (40 μg/mL)-treated three cell lines increased by more than 21% in the G1 phase and presented the morphological change and DNA damage. TEO also declined the mitochondrial membrane potential and altered mitochondrial ultra-structure. Furthermore, caspase-3, caspase-8, caspase-9 and TNF-α were also activated. Mechanism investigation showed that TEO could decrease anti-apoptotic Bcl-2 protein expression, increase proapoptotic Bax and Bid proteins expressions and increase Bax/Bcl-2 ratio. Conclusion Our results demonstrate for the first time that TEO inhibited growth of HCC cell lines and induced G1 phase arrest. Moreover, proapoptotic effects of TEO were mediated through the activation of TNF-α, caspases and mitochondrial pathway. PMID:26810384

  12. METHOTREXATE AND MYOTREXATE INDUCE APOPTOSIS IN HUMAN MYOMA FIBROBLASTS (T hES CELL LINE) VIA MITOCHONDRIAL PATHWAY.

    PubMed

    Kastratović, Tatjana; Arsenijević, Slobodan; Matović, Zoran; Mitrović, Marina; Nikolić, Ivana; Milosavljević, Zoran; Protrka, Zoran; Šorak, Marija; Đurić, Janko

    2015-01-01

    Uterine leiomyomas (fibroids) are the most common benign tumors in women of reproductive age. Although the local application of low doses of methotrexate (MTX) is used as an effective treatment of the myomas, myotrexate could be a promising new drug. This study investigated the cytotoxic and apoptotic effects of both MTX and myotrexate in human fibroblasts derived from the uterine fibroids (T hES cell line). The myotrexate adduct is an aqueous solution of MTX and L-arginine. Cells were treated with a graded concentrations of both MTX and myothrexate (0.1-16 µM) for 24 h. The cytotoxicity was assayed by MTT test, apoptosis was evaluated by Annexin V-FITC assay and their possible role in apoptosis was determined by immnu- flourescence. Both MTX and myotrexate induced apoptosis in T hES cells in a dose dependent manner (p < 0.001). Myotrexate significantly increased the percentage of AnnexinV positive cells, BAX/Bcl-2 ratio and subsequent caspase-3 activation compared to the MTX treated cells (p < 0.05). Both MTX or myotrexate treatment showed a diffuse staining of cytochrome c indicating its release from mitochondria to the cytosol, suggesting that their mechanisms of action most likely involves the mitochondrial apoptotic pathway. PMID:26642654

  13. E. adenophorum Induces Cell Cycle and Apoptosis of Renal Cells through Mitochondrial Pathway and Caspase Activation in Saanen Goat

    PubMed Central

    Hu, Yanchun; Luo, Biao; Wu, Lei; Qiao, Yan; Mo, Quan; Xu, Ruiguang; Zhou, Yancheng; Ren, Zhihua; Zuo, Zhicai; Deng, Junliang; Peng, Guangneng; He, Wei; Wei, Yahui

    2015-01-01

    The cytotoxicity effects of E. adenophorum on cell cycle and apoptosis of renal cells in Saanen goat was evaluated by TUNEL, DAPI, AO/EB staining, DNA fragmentation assay, Caspase activity, Western-blot, qRT-PCR and flow cytometry analysis. 16 saanen goats randomly divided into four groups were fed on 0%, 40%, 60% and 80% E. adenophorum diets. The Results showed that E. adenophorum induced typical apoptotic features of renal cells. E. adenophorum significantly suppressed renal cells viability, caused cell cycle activity arrest and induced typical apoptotic features in a dose-dependent manner. However, the protein levels of Fas/FasL, Bid and caspase-8 did not appear significant changes in the process of E. adenophorum-induced apoptosis. Moreover, E. adenophorum administration slightly decreased Bcl-2 expression, promoted Bax translocation to mitochondria, triggered the release of Cyt c from mitochondria into cytosol and activated caspase-9, -3, and cleaved PARP. The mitochondrial p53 translocation was significantly activated, accompanied by a significant increase in the loss of ΔΨm, Cyt c release and caspase-9 activation. Above all, these data suggest that E. adenophorum induces renal cells apoptosis via the activation of mitochondria-mediated apoptosis pathway in renal cells. These findings may provide new insights to understand the mechanisms involved in E. adenophorum-caused cytotoxicity of renal cells. PMID:26382060

  14. Hsp90 is involved in apoptosis of Candida albicans by regulating the calcineurin-caspase apoptotic pathway.

    PubMed

    Dai, BaoDi; Wang, Yan; Li, DeDong; Xu, Yi; Liang, RongMei; Zhao, LanXue; Cao, YongBing; Jia, JianHui; Jiang, YuanYing

    2012-01-01

    Candida albicans is the most common human fungal pathogen. Recent evidence has revealed the occurrence of apoptosis in C. albicans that is inducible by environmental stresses such as hydrogen peroxide, acetic acid, and amphotericin B. Apoptosis is regulated by the calcineurin-caspase pathway in C. albicans, and calcineurin is under the control of Hsp90 in echinocandin resistance. However, the role of Hsp90 in apoptosis of C. albicans remains unclear. In this study, we investigated the role of Hsp90 in apoptosis of C. albicans by using an Hsp90-compromised strain tetO-HSP90/hsp90 and found that upon apoptotic stimuli, including hydrogen peroxide, acetic acid or amphotericin B treatment, less apoptosis occurred, less ROS was produced, and more cells survived in the Hsp90-compromised strain compared with the Hsp90/Hsp90 wild-type strain. In addition, Hsp90-compromised cells were defective in up-regulating caspase-encoding gene CaMCA1 expression and activating caspase activity upon the apoptotic stimuli. Investigations on the relationship between Hsp90 and calcineurin revealed that activation of calcineurin could up-regulate apoptosis but could not further down-regulate apoptosis in Hsp90-compromised cells, indicating that calcineurin was downstream of Hsp90. Hsp90 inhibitor geldanamycin (GdA) could further decrease the apoptosis in calcineurin-pathway-defect strains, indicating that compromising Hsp90 function had a stronger effect than compromising calcineurin function on apoptosis. Collectively, this study demonstrated that compromised Hsp90 reduced apoptosis in C. albicans, partially through downregulating the calcineurin-caspase pathway. PMID:23028789

  15. Highly efficient synthetic iron-dependent nucleases activate both intrinsic and extrinsic apoptotic death pathways in leukemia cancer cells.

    PubMed

    Horn, Adolfo; Fernandes, Christiane; Parrilha, Gabrieli L; Kanashiro, Milton M; Borges, Franz V; de Melo, Edésio J T; Schenk, Gerhard; Terenzi, Hernán; Pich, Claus T

    2013-11-01

    The nuclease activity and the cytotoxicity toward human leukemia cancer cells of iron complexes, [Fe(HPClNOL)Cl2]NO3 (1), [Cl(HPClNOL)Fe(μ-O)Fe(HPClNOL)Cl]Cl2·2H2O (2), and [(SO4)(HPClNOL)Fe(μ-O)Fe(HPClNOL)(SO4)]·6H2O (3) (HPClNOL=1-(bis-pyridin-2-ylmethyl-amino)-3-chloropropan-2-ol), were investigated. Each complex was able to promote plasmid DNA cleavage and change the supercoiled form of the plasmid to circular and linear ones. Kinetic data revealed that (1), (2) and (3) increase the rate of DNA hydrolysis about 278, 192 and 339 million-fold, respectively. The activity of the complexes was inhibited by distamycin, indicating that they interact with the minor groove of the DNA. The cytotoxic activity of the complexes toward U937, HL-60, Jukart and THP-1 leukemia cancer cells was studied employing 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), fluorescence and electronic transmission microscopies, flow cytometry and a cytochrome C release assay. Compound (2) has the highest activity toward cancer cells and is the least toxic for normal ones (i.e. peripheral blood mononuclear cells (PBMCs)). In contrast, compound (1) is the least active toward cancer cells but displays the highest toxicity toward normal cells. Transmission electronic microscopy indicates that cell death shows features typical of apoptotic cells, which was confirmed using the annexin V-FITC/PI (fluorescein isothiocyanate/propidium iodide) assay. Furthermore, our data demonstrate that at an early stage during the treatment with complex (2) mitochondria lose their transmembrane potential, resulting in cytochrome C release. A quantification of caspases 3, 9 (intrinsic apoptosis pathway) and caspase 8 (extrinsic apoptosis pathway) indicated that both the intrinsic (via mitochondria) and extrinsic (via death receptors) pathways are involved in the apoptotic stimuli. PMID:23933562

  16. Astaxanthin inhibits apoptosis in alveolar epithelial cells type II in vivo and in vitro through the ROS-dependent mitochondrial signalling pathway

    PubMed Central

    Song, Xiaodong; Wang, Bingsi; Lin, Shengcui; Jing, Lili; Mao, Cuiping; Xu, Pan; Lv, Changjun; Liu, Wen; Zuo, Ji

    2014-01-01

    Oxidative stress is an important molecular mechanism underlying lung fibrosis. The mitochondrion is a major organelle for oxidative stress in cells. Therefore, blocking the mitochondrial signalling pathway may be the best therapeutic manoeuver to ameliorate lung fibrosis. Astaxanthin (AST) is an excellent antioxidant, but no study has addressed the pathway of AST against pulmonary oxidative stress and free radicals by the mitochondrion-mediated signalling pathway. In this study, we investigated the antioxidative effects of AST against H2O2- or bleomycin (BLM)-induced mitochondrial dysfunction and reactive oxygen species (ROS) production in alveolar epithelial cells type II (AECs-II) in vivo and in vitro. Our data show that AST blocks H2O2- or BLM-induced ROS generation and dose-dependent apoptosis in AECs-II, as characterized by changes in cell and mitochondria morphology, translocation of apoptotic proteins, inhibition of cytochrome c (Cyt c) release, and the activation of caspase-9, caspase-3, Nrf-2 and other cytoprotective genes. These data suggest that AST inhibits apoptosis in AECs-II cells through the ROS-dependent mitochondrial signalling pathway and may be of potential therapeutic value in lung fibrosis treatment. PMID:25215580

  17. Hydrogen peroxide induces apoptosis via a mitochondrial pathway in chondrocytes

    NASA Astrophysics Data System (ADS)

    Zhuang, Cai-ping; Liang, Qian; Wang, Xiao-ping; Chen, Tong-sheng

    2012-03-01

    The degenerative joint disease such as osteoarthritis (OA) is closely associated with the death of chondrocytes in apoptosis fashion. Hydrogen peroxide (H2O2), higher expression following acute damage in OA patients, has been shown to be up-regulated during apoptosis in a bulk of experimental models. This study was aimed to explore the mechanism of H2O2-induced rabbit chondrocytes apoptosis. Articular cartilage was biopsied from the joints of 6 weeks old New Zealand rabbits. Cell Counting Kit (CCK-8) assay was used to assess the inhibitory effect of H2O2 on cell viability. H2O2 treatment induced a remarkable reduction of cell viability. We used flow cytometry to assess the form of cell death with Annexin-V/PI double staining, and found that H2O2 treatment induced apoptosis in a dose-and time-dependent manner. Exposure of chondrocytes to 1.5 mM of H2O2 for 2 h induced a burst apoptosis that can be alleviated by N-acetyl cysteine (NAC) pretreatment, an anti-oxidant amino-acid derivative. Loss of mitochondria membrane potential (▵Ψm) was evaluated using confocal microscopy imaging and flow cytometry (FCM). H2O2 treatment induced a marked reduction of ▵Ψm, and the abrupt disappearance of ▵Ψm occurred within 5 minutes. These results indicate that H2O2 induces a rapid apoptosis via a mitochondrial pathway in rabbit chondrocytes.

  18. Global Proteomics and Pathway Analysis of Pressure-overload Induced Heart Failure and Its Attenuation by Mitochondrial Targeted Peptides

    PubMed Central

    Dai, Dao-Fu; Hsieh, Edward J.; Chen, Tony; Menendez, Lorena G.; Basisty, Nathan B.; Tsai, Lauren; Beyer, Richard P.; Crispin, David A.; Shulman, Nicholas J.; Szeto, Hazel H.; Tian, Rong; MacCoss, Michael J.; Rabinovitch, Peter S.

    2013-01-01

    Background We investigated the protective effects of mitochondrial-targeted antioxidant and protective peptides, SS31 and SS20, on cardiac function, proteomic remodeling and signaling pathways. Methods and Results We applied an improved label-free shotgun proteomics approach to evaluate the global proteomics changes in transverse aortic constriction (TAC) induced heart failure, and the associated signaling pathway changes using Ingenuity Pathway Analysis (IPA). We found 538 proteins significantly changed after TAC, which mapped to 53 pathways. The top pathways were in the categories of actin cytoskeleton, mitochondrial function, intermediate metabolism, glycolysis / gluconeogenesis and citrate cycle. Concomitant treatment with SS31 ameliorated the congestive heart failure phenotypes and mitochondrial damage induced by TAC, in parallel with global attenuation of mitochondrial proteome changes, with an average of 84% protection of mitochondrial and 69% of non-mitochondrial protein changes. This included significant amelioration of All the IPA pathways noted above. SS20 had only modest effects on heart failure and this tracked with only partial attenuation of global proteomics changes; furthermore, while actin cytoskeleton pathways were significantly protected in SS20, mitochondrial and metabolic pathways essentially were not. Conclusions This study elucidates the signaling pathways significantly changed in pressure-overload induced heart failure. The global attenuation of TAC-induced proteomic alterations by the mitochondrial targeted peptide SS-31 suggests that perturbed mitochondrial function may be an upstream signal to many of pathway alterations in TAC and supports the potential clinical application of mitochondrial-targeted peptide drugs for the treatment heart failure. PMID:23935006

  19. Apoptosis of human cholangiocarcinoma cell lines induced by β-escin through mitochondrial caspase-dependent pathway.

    PubMed

    Shen, Dong-Yan; Kang, Jin-He; Song, Wei; Zhang, Wen-Qing; Li, Wen-Gang; Zhao, Yan; Chen, Qing-Xi

    2011-10-01

    The study aimed to evaluate the effects of β-escin on human cholangiocarcinoma cell lines (QBC939, Sk-ChA-1 and MZ-ChA-1) and to explore its mechanisms. Cell growth, cell cycle and apoptosis were investigated, respectively, by MTT assay, single PI and FITC/PI double-staining flow cytometry, and fluorescence microscopy. The protein expression was determined by western blotting. The study revealed that β-escin inhibited cholangiocarcinoma cell growth in a dose- and time-dependent manner, and the cell cycle of QBC939 and Sk-ChA-1 cells was arrested in the G2/M phase, and MZ-ChA-1 cells in G1 phase. Apoptosis of the three cholangiocarcinoma cell lines induced by β-escin was associated with the collapse of the mitochondrial membrane potential and the activation of caspase-3. The apoptotic effect of β-escin was suppressed by pancaspase inhibitor z-VAD-fmk. Molecular dissection revealed that the antiapoptotic protein bcl-2 was down-regulated after cholangiocarcinoma cell lines were treated with β-escin, while the protein levels of bax and p53 were unchanged. Apoptosis was accompanied by an increase in reactive oxygen species (ROS). These results suggest that β-escin induces apoptosis of cholangiocarcinoma cells through an intrinsic mitochondrial caspase-dependent pathway, and the increase in the bax/bcl-2 ratio and ROS may play important roles in β-escin-induced apoptosis of cholangiocarcinoma cells. PMID:21394804

  20. Allicin sensitizes hepatocellular cancer cells to anti-tumor activity of 5-fluorouracil through ROS-mediated mitochondrial pathway.

    PubMed

    Zou, Xuejing; Liang, Jiyun; Sun, Jingyuan; Hu, Xiaoyun; Lei, Ling; Wu, Dehua; Liu, Li

    2016-08-01

    Drug resistance and hepatic dysfunction are the two major factors that limit the application of chemotherapy for hepatocellular carcinoma (HCC). It has been reported that allicin has the hepatic protective effect and antitumor activity. Hence allicin may be an ideal enhancer to chemotherapy regimen of HCC. In the present study, we demonstrated that allicin enhanced 5-fluorouracil (5-FU) inducing cytotoxicity in HCC cells. In vivo experiment, combined treatment group with allicin (5 mg/kg/d; every two days for 3 weeks) and 5-FU (20 mg/kg/d; 5 consecutive days) showed a dramatic inhibitory effect on the growth of HCC xenograft tumors in nude mice. The co-treatment group showed highly apoptotic level compared with 5-FU treated alone. Cells combined treatment with allicin and 5-FU increased intracellular reactive oxygen species (ROS) level, reduced mitochondrial membrane potential (ΔΨm), activated caspase-3 and PARP, and down-regulated Bcl-2 compared with DMSO, allicin and 5-FU treated alone. Moreover, the increase of activated caspase-3 and PARP was blocked by the ROS inhibitor antioxidant N-acetyl cysteine (NAC). In conclusion, this is the first study to demonstrate that allicin sensitized HCC cells to 5-FU induced apoptosis through ROS-mediated mitochondrial pathway. These results provided evidences for the combination used of allicin and 5-FU as a novel chemotherapy regimen in HCC. PMID:27177453

  1. Radiation Sensitivity in a Preclinical Mouse Model of Medulloblastoma Relies on the Function of the Intrinsic Apoptotic Pathway.

    PubMed

    Crowther, Andrew J; Ocasio, Jennifer K; Fang, Fang; Meidinger, Jessica; Wu, Jaclyn; Deal, Allison M; Chang, Sha X; Yuan, Hong; Schmid, Ralf; Davis, Ian; Gershon, Timothy R

    2016-06-01

    While treatments that induce DNA damage are commonly used as anticancer therapies, the mechanisms through which DNA damage produces a therapeutic response are incompletely understood. Here we have tested whether medulloblastomas must be competent for apoptosis to be sensitive to radiotherapy. Whether apoptosis is required for radiation sensitivity has been controversial. Medulloblastoma, the most common malignant brain tumor in children, is a biologically heterogeneous set of tumors typically sensitive to radiation and chemotherapy; 80% of medulloblastoma patients survive long-term after treatment. We used functional genetic studies to determine whether the intrinsic apoptotic pathway is required for radiation to produce a therapeutic response in mice with primary, Shh-driven medulloblastoma. We found that cranial radiation extended the survival of medulloblastoma-bearing mice and induced widespread apoptosis. Expression analysis and conditional deletion studies showed that Trp53 (p53) was the predominant transcriptional regulator activated by radiation and was strictly required for treatment response. Deletion of Bax, which blocked apoptosis downstream of p53, was sufficient to render tumors radiation resistant. In apoptosis-incompetent, Bax-deleted tumors, radiation activated p53-dependent transcription without provoking cell death and caused two discrete populations to emerge. Most radiated tumor cells underwent terminal differentiation. Perivascular cells, however, quickly resumed proliferation despite p53 activation, behaved as stem cells, and rapidly drove recurrence. These data show that radiation must induce apoptosis in tumor stem cells to be effective. Mutations that disable the intrinsic apoptotic pathways are sufficient to impart radiation resistance. We suggest that medulloblastomas are typically sensitive to DNA-damaging therapies, because they retain apoptosis competence. Cancer Res; 76(11); 3211-23. ©2016 AACR. PMID:27197166

  2. Induction of apoptosis by the tropical seaweed Pylaiella littoralis in HT-29 cells via the mitochondrial and MAPK pathways

    NASA Astrophysics Data System (ADS)

    Ye, Bo-Ram; Kim, Junseong; Kim, Min-Sun; Jang, Jiyi; Oh, Chulhong; Kang, Do-Hyung; Qian, Zhong-Ji; Jung, Won-Kyo; Choi, Il-Whan; Heo, Soo-Jin

    2013-12-01

    We demonstrated that an extract from Pylaiella littoralis, collected from the Federate States of Micronesia (FSM), could inhibit the proliferation of tumor cells. P. littoralis extract (PLE) showed anti-proliferative activities in the tumorigenic cells tested, ranging from 20.2% to 67.9%. The highest inhibitory activity, in HT-29 cells, was selected for further experiments. PLE showed no cytotoxic effect in normal cells and inhibited the growth of HT-29 cells depending on concentration and incubation time. PLE-treated HT-29 cells showed the typical morphological characteristics of apoptosis, such as apoptotic body formation and DNA fragmentation. PLE also induced mitochondrial membrane potential depolarization and resulted in increased mitochondrial membrane permeability, compared with untreated cells. PLE decreased Bcl-2 protein and increased Bax protein expression, activating caspase-3 and poly (ADP-ribose) polymerase (PARP) expression via the caspase pathway. PLE also increased the phosphorylation of c-Jun N-terminal kinase (JNK), p38, and extracellular signal-regulated kinase (ERK), and it reduced cell viability in treatment cells with specific inhibitors such as PD98059 (a specific inhibitor of ERK), SP600125 (a specific inbibitor of JNK), and SB 203580 (a specific inbibitor of p38 MAPK). via the the mitogen-activated protein kinases (MAPKs) pathway. These results suggest that PLE inhibits the proliferation of HT-29 cells by affecting the caspase and MAPK pathways involved in the induction of apoptosis. Thus, we suggest that P. littoralis extract might be potential candidate agents for the treatment of human colorectal cancer.

  3. Droxinostat, a Histone Deacetylase Inhibitor, Induces Apoptosis in Hepatocellular Carcinoma Cell Lines via Activation of the Mitochondrial Pathway and Downregulation of FLIP1

    PubMed Central

    Liu, Jing; Li, Guangming; Wang, Xiang; Wang, Liang; Zhao, Rui; Wang, Juanxia; Kong, Yin; Ding, Jie; Li, Juan; Zhang, Lingyi

    2016-01-01

    Background: The current chemotherapeutic outcomes for hepatocellular carcinoma (HCC) are not encouraging, and long-term survival of this patient group remains poor. Recent studies have demonstrated the utility of histone deacetylase inhibitors that can disrupt cell proliferation and survival in HCC management. However, the effects of droxinostat, a type of histone deacetylase inhibitor, on HCC remain to be established. Methods: The effects of droxinostat on HCC cell lines SMMC-7721 and HepG2 were investigated. Histone acetylation and apoptosis-modulating proteins were assessed via Western blot. Proliferation was examined with 3-(4, 5 dimetyl-2-thiazolyl)-2, 5-diphenyl 2H-tetrazolium bromide, cell proliferation, and real-time cell viability assays, and apoptosis with flow cytometry. Results: Droxinostat inhibited proliferation and colony formation of the HCC cell lines examined. Hepatoma cell death was induced through activation of the mitochondrial apoptotic pathway and downregulation of FLIP expression. Droxinostat suppressed histone deacetylase (HDAC) 3 expression and promoted acetylation of histones H3 and H4. Knockdown of HDAC3 induced hepatoma cell apoptosis and histone H3 and H4 acetylation. Conclusions: Droxinostat suppresses HDAC3 expression and induces histone acetylation and HCC cell death through activation of the mitochondrial apoptotic pathway and downregulation of FLIP, supporting its potential application in the treatment of HCC. PMID:26947884

  4. T cell-specific inhibition of multiple apoptotic pathways blocks negative selection and causes autoimmunity

    PubMed Central

    Burger, Megan L; Leung, Kenneth K; Bennett, Margaux J; Winoto, Astar

    2014-01-01

    T cell self-tolerance is thought to involve peripheral tolerance and negative selection, involving apoptosis of autoreactive thymocytes. However, evidence supporting an essential role for negative selection is limited. Loss of Bim, a Bcl-2 BH3-only protein essential for thymocyte apoptosis, rarely results in autoimmunity on the C57BL/6 background. Mice with T cell-specific over-expression of Bcl-2, that blocks multiple BH3-only proteins, are also largely normal. The nuclear receptor Nur77, also implicated in negative selection, might function redundantly to promote apoptosis by associating with Bcl-2 and exposing its potentially pro-apoptotic BH3 domain. Here, we report that T cell-specific expression of a Bcl2 BH3 mutant transgene results in enhanced rescue of thymocytes from negative selection. Concomitantly, Treg development is increased. However, aged BH3 mutant mice progressively accumulate activated, autoreactive T cells, culminating in development of multi-organ autoimmunity and lethality. These data provide strong evidence that negative selection is crucial for establishing T cell tolerance. DOI: http://dx.doi.org/10.7554/eLife.03468.001 PMID:25182415

  5. Cardiac arrest triggers hippocampal neuronal death through autophagic and apoptotic pathways.

    PubMed

    Cui, Derong; Shang, Hanbing; Zhang, Xiaoli; Jiang, Wei; Jia, Xiaofeng

    2016-01-01

    The mechanism of neuronal death induced by ischemic injury remains unknown. We investigated whether autophagy and p53 signaling played a role in the apoptosis of hippocampal neurons following global cerebral ischemia-reperfusion (I/R) injury, in a rat model of 8-min asphyxial cardiac arrest (CA) and resuscitation. Increased autophagosome numbers, expression of lysosomal cathepsin B, cathepsin D, Beclin-1, and microtubule-associated protein light chain 3 (LC3) suggested autophagy in hippocampal cells. The expression of tumor suppressor protein 53 (p53) and its target genes: Bax, p53-upregulated modulator of apoptosis (PUMA), and damage-regulated autophagy modulator (DRAM) were upregulated following CA. The p53-specific inhibitor pifithrin-α (PFT-α) significantly reduced the expression of pro-apoptotic proteins (Bax and PUMA) and autophagic proteins (LC3-II and DRAM) that generally increase following CA. PFT-α also reduced hippocampal neuronal damage following CA. Similarly, 3-methyladenine (3-MA), which inhibits autophagy and bafilomycin A1 (BFA), which inhibits lysosomes, significantly inhibited hippocampal neuronal damage after CA. These results indicate that CA affects both autophagy and apoptosis, partially mediated by p53. Autophagy plays a significant role in hippocampal neuronal death induced by cerebral I/R following asphyxial-CA. PMID:27273382

  6. Cardiac arrest triggers hippocampal neuronal death through autophagic and apoptotic pathways

    PubMed Central

    Cui, Derong; Shang, Hanbing; Zhang, Xiaoli; Jiang, Wei; Jia, Xiaofeng

    2016-01-01

    The mechanism of neuronal death induced by ischemic injury remains unknown. We investigated whether autophagy and p53 signaling played a role in the apoptosis of hippocampal neurons following global cerebral ischemia-reperfusion (I/R) injury, in a rat model of 8-min asphyxial cardiac arrest (CA) and resuscitation. Increased autophagosome numbers, expression of lysosomal cathepsin B, cathepsin D, Beclin-1, and microtubule-associated protein light chain 3 (LC3) suggested autophagy in hippocampal cells. The expression of tumor suppressor protein 53 (p53) and its target genes: Bax, p53-upregulated modulator of apoptosis (PUMA), and damage-regulated autophagy modulator (DRAM) were upregulated following CA. The p53-specific inhibitor pifithrin-α (PFT-α) significantly reduced the expression of pro-apoptotic proteins (Bax and PUMA) and autophagic proteins (LC3-II and DRAM) that generally increase following CA. PFT-α also reduced hippocampal neuronal damage following CA. Similarly, 3-methyladenine (3-MA), which inhibits autophagy and bafilomycin A1 (BFA), which inhibits lysosomes, significantly inhibited hippocampal neuronal damage after CA. These results indicate that CA affects both autophagy and apoptosis, partially mediated by p53. Autophagy plays a significant role in hippocampal neuronal death induced by cerebral I/R following asphyxial-CA. PMID:27273382

  7. Peroxisome proliferator-activated receptor gamma up-regulates the Bcl-2 anti-apoptotic protein in neurons and induces mitochondrial stabilization and protection against oxidative stress and apoptosis.

    PubMed

    Fuenzalida, Karen; Quintanilla, Rodrigo; Ramos, Patricio; Piderit, Daniela; Fuentealba, Rodrigo A; Martinez, Gabriela; Inestrosa, Nibaldo C; Bronfman, Miguel

    2007-12-21

    Peroxisome proliferator-activated receptor gamma (PPARgamma) has been proposed as a therapeutic target for neurodegenerative diseases because of its anti-inflammatory action in glial cells. However, PPARgamma agonists preventbeta-amyloid (Abeta)-induced neurodegeneration in hippocampal neurons, and PPARgamma is activated by the nerve growth factor (NGF) survival pathway, suggesting a neuroprotective anti-inflammatory independent action. Here we show that the PPARgamma agonist rosiglitazone (RGZ) protects hippocampal and dorsal root ganglion neurons against Abeta-induced mitochondrial damage and NGF deprivation-induced apoptosis, respectively, and promotes PC12 cell survival. In neurons and in PC12 cells RGZ protective effects are associated with increased expression of the Bcl-2 anti-apoptotic protein. NGF-differentiated PC12 neuronal cells constitutively overexpressing PPARgamma are resistant to Abeta-induced apoptosis and morphological changes and show functionally intact mitochondria and no increase in reactive oxygen species when challenged with up to 50 microM H2O2. Conversely, cells expressing a dominant negative mutant of PPARgamma show increased Abeta-induced apoptosis and disruption of neuronal-like morphology and are highly sensitive to oxidative stress-induced impairment of mitochondrial function. Cells overexpressing PPARgamma present a 4- to 5-fold increase in Bcl-2 protein content, whereas in dominant negative PPARgamma-expressing cells, Bcl-2 is barely detected. Bcl-2 knockdown by small interfering RNA in cells overexpressing PPARgamma results in increased sensitivity to Abeta and oxidative stress, further suggesting that Bcl-2 up-regulation mediates PPARgamma protective effects. PPARgamma prosurvival action is independent of the signal-regulated MAPK or the Akt prosurvival pathways. Altogether, these data suggest that PPARgamma supports survival in neurons in part through a mechanism involving increased expression of Bcl-2. PMID:17965419

  8. Quantitative Profiling of DNA Damage and Apoptotic Pathways in UV Damaged Cells Using PTMScan Direct

    PubMed Central

    Stokes, Matthew P.; Silva, Jeffrey C.; Jia, Xiaoying; Lee, Kimberly A.; Polakiewicz, Roberto D.; Comb, Michael J.

    2013-01-01

    Traditional methods for analysis of peptides using liquid chromatography and tandem mass spectrometry (LC-MS/MS) lack the specificity to comprehensively monitor specific biological processes due to the inherent duty cycle limitations of the MS instrument and the stochastic nature of the analytical platform. PTMScan Direct is a novel, antibody-based method that allows quantitative LC-MS/MS profiling of specific peptides from proteins that reside in the same signaling pathway. New PTMScan Direct reagents have been produced that target peptides from proteins involved in DNA Damage/Cell Cycle and Apoptosis/Autophagy pathways. Together, the reagents provide access to 438 sites on 237 proteins in these signaling cascades. These reagents have been used to profile the response to UV damage of DNA in human cell lines. UV damage was shown to activate canonical DNA damage response pathways through ATM/ATR-dependent signaling, stress response pathways and induce the initiation of apoptosis, as assessed by an increase in the abundance of peptides corresponding to cleaved, activated caspases. These data demonstrate the utility of PTMScan Direct as a multiplexed assay for profiling specific cellular responses to various stimuli, such as UV damage of DNA. PMID:23344034

  9. Constitutive p53 heightens mitochondrial apoptotic priming and favors cell death induction by BH3 mimetic inhibitors of BCL-xL.

    PubMed

    Le Pen, J; Laurent, M; Sarosiek, K; Vuillier, C; Gautier, F; Montessuit, S; Martinou, J C; Letaï, A; Braun, F; Juin, P P

    2016-01-01

    Proapoptotic molecules directly targeting the BCL-2 family network are promising anticancer therapeutics, but an understanding of the cellular stress signals that render them effective is still elusive. We show here that the tumor suppressor p53, at least in part by transcription independent mechanisms, contributes to cell death induction and full activation of BAX by BH3 mimetic inhibitors of BCL-xL. In addition to mildly facilitating the ability of compounds to derepress BAX from BCL-xL, p53 also provides a death signal downstream of anti-apoptotic proteins inhibition. This death signal cooperates with BH3-induced activation of BAX and it is independent from PUMA, as enhanced p53 can substitute for PUMA to promote BAX activation in response to BH3 mimetics. The acute sensitivity of mitochondrial priming to p53 revealed here is likely to be critical for the clinical use of BH3 mimetics. PMID:26844698

  10. Ochratoxin a inhibits mouse embryonic development by activating a mitochondrion-dependent apoptotic signaling pathway.

    PubMed

    Hsuuw, Yan-Der; Chan, Wen-Hsiung; Yu, Jau-Song

    2013-01-01

    Ochratoxin A (OTA), a mycotoxin found in many foods worldwide, causes nephrotoxicity, hepatotoxicity, and immunotoxicity, both in vitro and in vivo. In the present study, we explored the cytotoxic effects exerted by OTA on the blastocyst stage of mouse embryos, on subsequent embryonic attachment, on outgrowth in vitro, and following in vivo implantation via embryo transfer. Mouse blastocysts were incubated with or without OTA (1, 5, or 10 μM) for 24 h. Cell proliferation and growth were investigated using dual differential staining; apoptosis was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay; and embryo implantation and post-implantation development were assessed by examination of in vitro growth and the outcome of in vivo embryo transfer, respectively. Blastocysts treated with 10 μM OTA displayed a significantly increased level of apoptosis and a reduction in total cell number. Interestingly, we observed no marked difference in implantation success rate between OTA-pretreated and control blastocysts either during in vitro embryonic development (following implantation in a fibronectin-coated culture dish) or after in vivo embryo transfer. However, in vitro treatment with 10 μM OTA was associated with increased resorption of post-implantation embryos by the mouse uterus, and decreased fetal weight upon embryo transfer. Our results collectively indicate that in vitro exposure to OTA triggers apoptosis and retards early post-implantation development after transfer of embryos to host mice. In addition, OTA induces apoptosis-mediated injury of mouse blastocysts, via reactive oxygen species (ROS) generation, and promotes mitochondrion-dependent apoptotic signaling processes that impair subsequent embryonic development. PMID:23296271