Science.gov

Sample records for mitochondrial coi sequence

  1. Genetic identification and phylogenetic relationships of Indian clariids based on mitochondrial COI sequences.

    PubMed

    Devassy, Aneesha; Kumar, Raj; Shajitha, P P; John, Reshma; Padmakumar, K G; Basheer, V S; Gopalakrishnan, A; Mathew, Linu

    2016-09-01

    Mitochondrial cytochrome C Oxidase I (COI) sequence variation among the clariid fishes of India (Clarias magur, C. dussumieri and C. gariepinus) and their relationship with other representative clariids was studied in this work. Three species were sampled and together with 23 COI sequences from GenBank were used to reconstruct phylogenetic relationships in the family Clariidae. The study revealed two clades: one consisting of the African species with C. dussumieri, and the other of Asian species suggesting the prevalence of intra-continental diversification of catfishes. This study further revealed that the genus Clarias is monophyletic. For the COI gene, the interspecies genetic divergence ranged from 0.056 to 0.182. The mean genetic difference between C. dussumieri and other selected African species in this study is 12.1%. It was also observed that the morphological similarity of C. dussumieri and C. magur was not replicated in the genetic level. Clarias dussumieri was more close to African catfish C. gariepinus thus indicating the utility of COI phylogeny to identify the well-known African-Asian relationships within catfishes. The results also showed that C. magur and C. batrachus are genetically distinct from each other. PMID:26358817

  2. Mitochondrial COI sequences in mites: evidence for variations in base composition.

    PubMed

    Navajas, M; Fournier, D; Lagnel, J; Gutierrez, J; Boursot, P

    1996-11-01

    Studies of mitochondrial DNA sequences in a variety of animals have shown important differences between phyla, including differences in the genetic codes used, and varying constraints on base composition. In that respect, little is known of mites, an important and diversified group. We sequenced a portion (340 nt) of the cytochrome oxidase subunit I (COI) encoding gene in twenty species of phytophagous mites belonging to nine genera of the two families Tetranychidae and Tenuipalpidae. The mitochondrial genetic code used in mites appeared to be the same as in insects. As is generally also the case in insects, the mite sequences were very rich in A + T (75% on average), especially at the third codon position (94%). However, important variations of base composition were observed among mite species, one of them showing as little as 69% A + T. Variations of base composition occur mostly through synonymous transitions, and do not have detectable effects on polypeptide evolution in this group. PMID:8933179

  3. The phylogeny of the social wasp subfamily Polistinae: evidence from microsatellite flanking sequences, mitochondrial COI sequence, and morphological characters

    PubMed Central

    Arévalo, Elisabeth; Zhu, Yong; Carpenter, James M; Strassmann, Joan E

    2004-01-01

    Background Social wasps in the subfamily Polistinae (Hymenoptera: Vespidae) have been important in studies of the evolution of sociality, kin selection, and within colony conflicts of interest. These studies have generally been conducted within species, because a resolved phylogeny among species is lacking. We used nuclear DNA microsatellite flanking sequences, mitochondrial COI sequence, and morphological characters to generate a phylogeny for the Polistinae (Hymenoptera) using 69 species. Results Our phylogeny is largely concordant with previous phylogenies at higher levels, and is more resolved at the species level. Our results support the monophyly of the New World subgenera of Polistini, while the Old World subgenera are a paraphyletic group. All genera for which we had more than one exemplar were supported as monophyletic except Polybia which is not resolved, and may be paraphyletic. Conclusion The combination of DNA sequences from flanks of microsatellite repeats with mtCOI sequences and morphological characters proved to be useful characters establishing relationships among the different subgenera and species of the Polistini. This is the first detailed hypothesis for the species of this important group. PMID:15070433

  4. GLOBAL RELATIONSHIPS OF BEMISIA TABACI (HEMIPTERA: ALEYRODIDAE) REVEALED USING BAYESIAN ANALYSIS OF MITOCHONDRIAL COI DNA SEQUENCE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global phylogenetic relationships of the major races of B. tabaci remain unresolved thus a Bayesian phylogenetic technique was utilized to elucidate affinities. All COI DNA sequence data available in Genbank for B. tabaci world-wide (369 specimens) were obtained and the first well resolved phylogen...

  5. Molecular Phylogenetic Relationships of Flightless Beetles Belonging to the Genus Mesechthistatus Breuning, (Coleoptera: Cerambycidae) Inferred from Mitochondrial COI Gene Sequences.

    PubMed Central

    Nakamine, Hiroshi; Takeda, Makio

    2008-01-01

    The longicorn beetles belonging to the genus MesechthistatusBreuning., 1950 (Coleoptera: Cerambycidae) cannot fly since their hindwings are atrophied. This slows down gene flow between local populations. Currently, it is considered that the genus contains four endemic species from the eastern Honshu Is., Japan, M. binodosus, M. furciferus, M. taniguchii and M. fujisanus, that are distributed parapatrically. Sequence analyses of the cytochrome oxidase subunit I gene suggests that lineages of mitochondrial haplotypes split approximately in the same era. However, this result is not consistent with the monophyly of morphological species. The estimated evolutionary rate of the COI gene in other insects suggests that mitochondrial haplotypes of Mesechthistatus differentiated at the end of the Pliocene epoch during the Tertiary era.

  6. Phylogenetic relationship of the Brazilian isolates of the rat lungworm Angiostrongylus cantonensis (Nematoda: Metastrongylidae) employing mitochondrial COI gene sequence data

    PubMed Central

    2012-01-01

    Background The rat lungworm Angiostrongylus cantonensis can cause eosinophilic meningoencephalitis in humans. This nematode’s main definitive hosts are rodents and its intermediate hosts are snails. This parasite was first described in China and currently is dispersed across several Pacific islands, Asia, Australia, Africa, some Caribbean islands and most recently in the Americas. Here, we report the genetic variability among A. cantonensis isolates from different geographical locations in Brazil using mitochondrial cytochrome c oxidase subunit I (COI) gene sequences. Methods The isolates of A. cantonensis were obtained from distinct geographical locations of Brazil. Genomic DNAs were extracted, amplified by polymerase reaction, purified and sequenced. A partial sequence of COI gene was determined to assess their phylogenetic relationship. Results The sequences of A. cantonensis were monophyletic. We identified a distinct clade that included all isolates of A. cantonensis from Brazil and Asia based on eight distinct haplotypes (ac1, ac2, ac3, ac4, ac5, ac6, ac7 and ac8) from a previous study. Interestingly, the Brazilian haplotype ac5 is clustered with isolates from Japan, and the Brazilian haplotype ac8 from Rio de Janeiro, São Paulo, Pará and Pernambuco states formed a distinct clade. There is a divergent Brazilian haplotype, which we named ac9, closely related to Chinese haplotype ac6 and Japanese haplotype ac7. Conclusion The genetic variation observed among Brazilian isolates supports the hypothesis that the appearance of A. cantonensis in Brazil is likely a result of multiple introductions of parasite-carrying rats, transported on ships due to active commerce with Africa and Asia during the European colonization period. The rapid spread of the intermediate host, Achatina fulica, also seems to have contributed to the dispersion of this parasite and the infection of the definitive host in different Brazilian regions. PMID:23130987

  7. [Approach to Spodoptera (Lepidoptera: Noctuidae) phylogeny based on the sequence of the cytocrhome oxydase I (COI) mitochondrial gene].

    PubMed

    Saldamando, Clara Inés; Marquez, Edna Judith

    2012-09-01

    The genus Spodoptera includes 30 species of moths considered important pests worldwide, with a great representation in the Western Hemisphere. In general, Noctuidae species have morphological similarities that have caused some difficulties for assertive species identification by conventional methods. The purpose of this work was to generate an approach to the genus phylogeny from several species of the genus Spodoptera and the species Bombyx mori as an out group, with the use of molecular tools. For this, a total of 102 S. frugiperda larvae were obtained at random in corn, cotton, rice, grass and sorghum, during late 2006 and early 2009, from Colombia. We took ADN samples from the larval posterior part and we analyzed a fragment of 451 base pairs of the mitochondrial gene cytochrome oxydase I (COI), to produce a maximum likelihood (ML) tree by using 62 sequences (29 Colombian haplotypes were used). Our results showed a great genetic differentiation (K2 distances) amongst S. frugiperda haplotypes from Colombia and the United States, condition supported by the estimators obtained for haplotype diversity and polymorphism. The obtained ML tree clustered most of the species with bootstrapping values from 73-99% in the interior branches; with low values also observed in some of the branches. In addition, this tree clustered two species of the Eastern hemisphere (S littoralis and S. litura) and eight species of the Western hemisphere (S. androgea, S. dolichos, S. eridania, S. exigua, S. frugiperda, S. latifascia, S. ornithogalli and S. pulchella). In Colombia, S. frugiperda, S. ornithogalli and S. albula represent a group of species referred as "the Spodoptera complex" of cotton crops, and our work demonstrated that sequencing a fragment of the COI gene, allows researchers to differentiate the first two species, and thus it can be used as an alternative method to taxonomic keys based on morphology. Finally, the ML tree did not cluster S. frugiperda with S. ornithogalli

  8. Mitochondrial DNA diversity in the acanthocephalan Prosthenorchis elegans in Colombia based on cytochrome c oxidase I (COI) gene sequence

    PubMed Central

    Falla, Ana Carolina; Brieva, Claudia; Bloor, Paul

    2015-01-01

    Prosthenorchis elegans is a member of the Phylum Acanthocephala and is an important parasite affecting New World Primates in the wild in South America and in captivity around the world. It is of significant management concern due to its pathogenicity and mode of transmission through intermediate hosts. Current diagnosis of P. elegans is based on the detection of eggs by coprological examination. However, this technique lacks both specificity and sensitivity, since eggs of most members of the genus are morphologically indistinguishable and shed intermittently, making differential diagnosis difficult, and coprological examinations are often negative in animals severely infected at death. We examined sequence variation in 633 bp of mitochondrial DNA (mtDNA) cytochrome c oxidase I (COI) sequence in 37 isolates of P. elegans from New World monkeys (Saguinus leucopus and Cebus albifrons) in Colombia held in rescue centers and from the wild. Intraspecific divergence ranged from 0.0 to 1.6% and was comparable with corresponding values within other species of acanthocephalans. Furthermore, comparisons of patterns of sequence divergence within the Acanthocephala suggest that Prosthenorchis represents a separate genus within the Oligacanthorhynchida. Six distinct haplotypes were identified within P. elegans which grouped into one of two well-supported mtDNA haplogroups. No association between haplogroup/haplotype, holding facility and species was found. This information will help pave the way to the development of molecular-based diagnostic tools for the detection of P. elegans as well as furthering research into the life cycle, intermediate hosts and epidemiological aspects of the species. PMID:26759793

  9. Mitochondrial DNA diversity in the acanthocephalan Prosthenorchis elegans in Colombia based on cytochrome c oxidase I (COI) gene sequence.

    PubMed

    Falla, Ana Carolina; Brieva, Claudia; Bloor, Paul

    2015-12-01

    Prosthenorchis elegans is a member of the Phylum Acanthocephala and is an important parasite affecting New World Primates in the wild in South America and in captivity around the world. It is of significant management concern due to its pathogenicity and mode of transmission through intermediate hosts. Current diagnosis of P. elegans is based on the detection of eggs by coprological examination. However, this technique lacks both specificity and sensitivity, since eggs of most members of the genus are morphologically indistinguishable and shed intermittently, making differential diagnosis difficult, and coprological examinations are often negative in animals severely infected at death. We examined sequence variation in 633 bp of mitochondrial DNA (mtDNA) cytochrome c oxidase I (COI) sequence in 37 isolates of P. elegans from New World monkeys (Saguinus leucopus and Cebus albifrons) in Colombia held in rescue centers and from the wild. Intraspecific divergence ranged from 0.0 to 1.6% and was comparable with corresponding values within other species of acanthocephalans. Furthermore, comparisons of patterns of sequence divergence within the Acanthocephala suggest that Prosthenorchis represents a separate genus within the Oligacanthorhynchida. Six distinct haplotypes were identified within P. elegans which grouped into one of two well-supported mtDNA haplogroups. No association between haplogroup/haplotype, holding facility and species was found. This information will help pave the way to the development of molecular-based diagnostic tools for the detection of P. elegans as well as furthering research into the life cycle, intermediate hosts and epidemiological aspects of the species. PMID:26759793

  10. Carposina sasakii (Lepidoptera: Carposinidae) in its Native Range Consists of Two Sympatric Cryptic Lineages as Revealed by Mitochondrial COI Gene Sequences

    PubMed Central

    Wang, J.; Yu, Y.; Li, L.-L.; Guo, D.; Tao, Y.-L.; Chu, D.

    2015-01-01

    The genetic differentiation and genetic structure of the peach fruit moth, Carposina sasakii Matsumura (Lepidoptera: Carposinidae), was investigated in China, where the moth is native. The mitochondrial cytochrome c oxidase I (COI) gene of 180 individuals from 16 collections were sequenced and analyzed. The results showed that two sympatric and cryptic mtDNA lineages existed within C. sasakii in China. The genetic differentiation has significant correlation with the geographical distance, but has no evidence for host plant associations. Our results of haplotype distribution suggest that the C. sasakii individuals can naturally move between areas, while the movement of individuals between long-distance locations may be associated with human activities such as the transport of fruit. Finally, an mitochondrial COI gene PCR-RFLP method was developed to differentiate the two cryptic mtDNA lineages within C. sasakii, which provides rapid and reliable tool for the future research of the two lineages. PMID:26136498

  11. Genetic diversity and population structure of Eleutheronema rhadinum in the East and South China Seas revealed in mitochondrial COI sequences

    NASA Astrophysics Data System (ADS)

    Sun, Xinxu; Xu, Dongdong; Lou, Bao; Zhang, Tao; Xin, Jian; Guo, Yaoshi; Ma, Shilei

    2013-11-01

    Eleutheronema rhadinum is a potential commercial fisheries species and is subject to intense exploitation in China. Knowledge on the population structure of E. rhadinum in Chinese coastal waters, which is important for sustainable exploitation and proper resource management, is lacking. In the present study, the genetic diversity and population structure of E. rhadinum were evaluated using a 564-base pair fragment of the mitochondrial cytochrome c oxidase subunit I (COI) gene. A total of 76 specimens were collected from three localities around the East (Qidong and Zhoushan) and South China Seas (Zhuhai). Among these individuals, nine polymorphic sites were detected and 11 distinct haplotypes were defined. High levels of haplotype diversity ( h =0.759±0.035) and low levels of nucleotide diversity ( π= 0.001 98±0.003 26) were observed in these populations. Hierarchical analysis of molecular variance (AMOVA) indicated that 96.72% of the genetic variation occurred within the populations, whereas 3.28% occurred among populations. No significant genealogical branches or clusters were recognized on the neighbor-joining tree. Intra-group variation among populations was significant ( φ st=0.032 85, P<0.01). These results suggest that E. rhadinum populations in the East and South China Seas have developed divergent genetic structures. Tests of neutral evolution and mismatch distribution suggest that E. rhadinum may have experienced a population expansion. The present study provides basic information for the conservation and sustainable exploitation of this species.

  12. Population genetic structure of the parasitic nematode Camallanus cotti inferred from DNA sequences of ITS1 rDNA and the mitochondrial COI gene.

    PubMed

    Wu, Shan G; Wang, Gui T; Xi, Bing W; Xiong, Fan; Liu, Tao; Nie, Pin

    2009-10-14

    The population genetic structure of fish parasitic nematode, Camallanus cotti, collected from the Yangtze River, Pearl River and Minjiang River in China was investigated. From these parasites, the approximately 730 bp of the first internal transcribed spacer of ribosomal DNA (ITS1 rDNA) and the 428bp of mitochondrial cytochrome c oxidase subunit I (COI) gene were sequenced. For the ITS1 rDNA data set, highly significant Fst values and low rates of migration were detected between the Pearl River group and both the Yangtze River (Fst=0.70, P<0.00001; Nm=0.21) and Minjiang River (Fst=0.73, P<0.00001; Nm=0.18) groups, while low Fst value (Fst=0.018, P>0.05) and high rate of migration (Nm=28.42) were found between the Minjiang and the Yangtze rivers. When different host/locality populations (subpopulations) within each river were considered, subpopulations between the Yangtze River and Minjiang River had low Fst values (3.72), while Pearl River subpopulations were significantly different from the Yangtze River and Minjiang River subpopulations (Fst>or=0.59; Nm<1). The COI gene data set revealed a similar genetic structure. Both phylogenetic analyses and a statistical parsimony network grouped the Pearl River haplotypes into one phylogroup, while the Yangtze River and Minjiang River haplotypes formed a second group. These results suggested that the Yangtze River and Minjiang River subpopulations constituted a single reproductive pool that was distinct from the Pearl River subpopulations. In addition, the present study did not find host-related genetic differentiation occurring in the same drainage. PMID:19632785

  13. A molecular phylogeny of the marine mussel genus Perna (Bivalvia: Mytilidae) based on nuclear (ITS1&2) and mitochondrial (COI) DNA sequences.

    PubMed

    Wood, Ann R; Apte, Smita; MacAvoy, Elizabeth S; Gardner, Jonathan P A

    2007-08-01

    A molecular phylogeny is presented for marine mussels of the genus Perna, based on nuclear (ITS1,ITS2) and mitochondrial (COI) DNA sequence data. The three generally recognised species (Perna viridis, Perna perna and Perna canaliculus) and one putative species (Perna picta) were each sampled from several locations within their known geographic distributions. A range of phylogenetic analyses was used to investigate the current taxonomic assignments, evolutionary relationships and the biogeographical history of the genus. The different analyses produced similar, well supported topologies and verified the monophyly of the genus with respect to five mytilid outgroup species. P. perna (Atlantic), P. viridis (Indo-West Pacific), and P. canaliculus (New Zealand) each formed distinct clades, confirming their specific status. Putative P. picta from North Africa clustered within the P. perna clade and is not regarded as a separate species. P. perna and P. canaliculus were the most closely related of the three species. Possible biogeographic explanations for the present species distributions are evaluated. PMID:17292632

  14. Southeast Asian mouth-brooding Betta fighting fish (Teleostei: Perciformes) species and their phylogenetic relationships based on mitochondrial COI and nuclear ITS1 DNA sequences and analyses

    PubMed Central

    Panijpan, Bhinyo; Kowasupat, Chanon; Laosinchai, Parames; Ruenwongsa, Pintip; Phongdara, Amornrat; Senapin, Saengchan; Wanna, Warapond; Phiwsaiya, Kornsunee; Kühne, Jens; Fasquel, Frédéric

    2014-01-01

    Fighting fish species in the genus Betta are found in several Southeast Asian countries. Depending on the mode of paternal care for fertilized eggs and hatchlings, various species of the betta fish are classified as mouth brooders or nest builders whose members in turn have been grouped according to their similarities mainly in morphology. The mouth brooders as well as some nest builders involved in the present study include fishes discovered and identified subsequent to previous reports on species groupings and their positions on phylogenetic trees based on DNA sequences that differ from those used by us in this study. From the mitochondrial COI gene and nuclear ITS1 gene sequences and more accurate analyses we conclude that the following members of the mouth-brooding pairs, named differently previously, are virtually identical, viz the Betta prima–Betta pallida pair and Betta ferox–Betta apollon pair. The Betta simplex, hitherto believed to be one species, could possibly be genetically split into 2 distinct species. In addition, several other established type-locality fishes could harbor cryptic species as judged by genetic differences. Assignments of fish species to groups reported earlier may have to be altered somewhat by the present genetic findings. We propose here a new Betta fish phylogenetic tree which, albeit being similar to the previous ones, is clearly different from them. Our gene-based evidence also leads to assignments of some fishes to new species groups and alters the positions of some species on the new phylogenetic tree, thus implying different ancestral relationships. PMID:25606468

  15. Southeast Asian mouth-brooding Betta fighting fish (Teleostei: Perciformes) species and their phylogenetic relationships based on mitochondrial COI and nuclear ITS1 DNA sequences and analyses.

    PubMed

    Panijpan, Bhinyo; Kowasupat, Chanon; Laosinchai, Parames; Ruenwongsa, Pintip; Phongdara, Amornrat; Senapin, Saengchan; Wanna, Warapond; Phiwsaiya, Kornsunee; Kühne, Jens; Fasquel, Frédéric

    2014-12-01

    Fighting fish species in the genus Betta are found in several Southeast Asian countries. Depending on the mode of paternal care for fertilized eggs and hatchlings, various species of the betta fish are classified as mouth brooders or nest builders whose members in turn have been grouped according to their similarities mainly in morphology. The mouth brooders as well as some nest builders involved in the present study include fishes discovered and identified subsequent to previous reports on species groupings and their positions on phylogenetic trees based on DNA sequences that differ from those used by us in this study. From the mitochondrial COI gene and nuclear ITS1 gene sequences and more accurate analyses we conclude that the following members of the mouth-brooding pairs, named differently previously, are virtually identical, viz the Betta prima-Betta pallida pair and Betta ferox-Betta apollon pair. The Betta simplex, hitherto believed to be one species, could possibly be genetically split into 2 distinct species. In addition, several other established type-locality fishes could harbor cryptic species as judged by genetic differences. Assignments of fish species to groups reported earlier may have to be altered somewhat by the present genetic findings. We propose here a new Betta fish phylogenetic tree which, albeit being similar to the previous ones, is clearly different from them. Our gene-based evidence also leads to assignments of some fishes to new species groups and alters the positions of some species on the new phylogenetic tree, thus implying different ancestral relationships. PMID:25606468

  16. Biodiversity of the Betta smaragdina (Teleostei: Perciformes) in the northeast region of Thailand as determined by mitochondrial COI and nuclear ITS1 gene sequences.

    PubMed

    Kowasupat, Chanon; Panijpan, Bhinyo; Laosinchai, Parames; Ruenwongsa, Pintip; Phongdara, Amornrat; Wanna, Warapond; Senapin, Saengchan; Phiwsaiya, Kornsunee

    2014-12-01

    In Thailand, there are currently five recognized species members of the bubble-nesting Betta genus, namely Betta splendens, B. smaragdina, B. imbellis, B. mahachaiensis and B. siamorientalis. In 2010, we indicated the possibility, based on COI barcoding evidence, that there might be two additional species, albeit cryptic, related to the type-locality B. smaragdina in some provinces in the northeast of Thailand. In the present study, after a more extensive survey of the northeast, and phylogenetic analyses based on COI and ITS1 sequences, the B. smaragdina group may be composed of at least 3 cryptic species members. The phylogenetic positions of these B. smaragdina group members in the bubble-nesting bettas' tree together with those of their congeners have been consolidated by better DNA sequence quality and phylogenetic analyses. With a better supported tree, the species statuses of B. siamorientalis and the Cambodian B. smaragdina-like fish, B. stiktos, are also confirmed. PMID:25606392

  17. Identification of forensically important Sarcophaga species (Diptera: Sarcophagidae) using the mitochondrial COI gene.

    PubMed

    Jordaens, Kurt; Sonet, Gontran; Richet, René; Dupont, Erena; Braet, Yves; Desmyter, Stijn

    2013-03-01

    The identification of species of the forensically important genus Sarcophaga is very difficult and requires strong taxonomic expertise. In this study, we sequenced the mitochondrial cytochrome c oxidase subunit I (COI) gene of 126 specimens of 56 W European Sarcophaga species and added GenBank data to our database to yield a total dataset of 270 COI sequences from 99 Sarcophaga species to evaluate the COI gene as a molecular diagnostic tool for species identification in this genus. Using two simple criteria (Best Match, BM and Best Close Match, BCM), we showed that the identification success using a mini-barcode region of 127 bp was very low (80.7-82.5 %) and the use of this region is not recommended as a species identifier. In contrast, identification success was very high using the standard barcode region (658 bp) or using the entire COI region (1,535 bp) (98.2-99.3 %). Yet, there was a low interspecific sequence divergence (<2 %) in six species groups so that for 16 out of the 99 species (nine of which are of forensic importance), the use of COI barcodes as species identifier should be done with care. For these species, additional markers will be necessary to achieve a 100 % identification success. We further illustrate how such reference databases can improve local reference databases for forensic entomologists. PMID:22960880

  18. Pleistocene phylogeography and cryptic diversity of a tiger beetle, Calomera littoralis, in North-Eastern Mediterranean and Pontic regions inferred from mitochondrial COI gene sequences

    PubMed Central

    Rewicz, Tomasz; Płóciennik, Mateusz; Grabowski, Michał

    2016-01-01

    Background. Calomera littoralis is a Palearctic species, widely distributed in Europe; inhabiting predominantly its Atlantic, Mediterranean and Black Sea coastlines. Methods. Its phylogeography on the Balkan Peninsula and on the north-western Black Sea coast was inferred using a 697 bp long portion of the mitochondrial COI gene, amplified from 169 individuals collected on 43 localities. Results. The results revealed two genetically divergent groups/lineages, the southern one inhabiting both the Balkan Peninsula and the Pontic Region and the northern one found exclusively in the Pontic Region. Species delimitation based on DNA barcoding gap suggested an interspecific level of divergence between these groups. Multivariate analysis of eight male and female morphometric traits detected no difference between the groups, implying they may represent cryptic species. The Bayesian time-calibrated reconstruction of phylogeny suggested that the lineages diverged ca. 2.3 Ma, in early Pleistocene. Discussion. The presence of the two genetically divergent groups results most likely from contemporary isolation of the Pontic basin from the Mediterranean that broke the continuous strip of coastal habitats inhabited by C. littoralis. Demographic analyses indicated that both lineages have been in demographic and spatial expansion since ca. 0.15 Ma. It coincides with the terminal stage of MIS-6, i.e., Wartanian/Saalian glaciation, and beginning of MIS-5e, i.e., Eemian interglacial, during which, due to eustatic sea level rise, a wide connection between Mediterranean and the Pontic basin was re-established. This, along with re-appearance of coastal habitats could initiate north-east expansion of the southern lineage and its secondary contact with the northern one. The isolation of the Pontic basin from the Mediterranean during the Weichselian glaciation most likely did not have any effect on their phylogeography. PMID:27547517

  19. Pleistocene phylogeography and cryptic diversity of a tiger beetle, Calomera littoralis, in North-Eastern Mediterranean and Pontic regions inferred from mitochondrial COI gene sequences.

    PubMed

    Jaskuła, Radomir; Rewicz, Tomasz; Płóciennik, Mateusz; Grabowski, Michał

    2016-01-01

    Background. Calomera littoralis is a Palearctic species, widely distributed in Europe; inhabiting predominantly its Atlantic, Mediterranean and Black Sea coastlines. Methods. Its phylogeography on the Balkan Peninsula and on the north-western Black Sea coast was inferred using a 697 bp long portion of the mitochondrial COI gene, amplified from 169 individuals collected on 43 localities. Results. The results revealed two genetically divergent groups/lineages, the southern one inhabiting both the Balkan Peninsula and the Pontic Region and the northern one found exclusively in the Pontic Region. Species delimitation based on DNA barcoding gap suggested an interspecific level of divergence between these groups. Multivariate analysis of eight male and female morphometric traits detected no difference between the groups, implying they may represent cryptic species. The Bayesian time-calibrated reconstruction of phylogeny suggested that the lineages diverged ca. 2.3 Ma, in early Pleistocene. Discussion. The presence of the two genetically divergent groups results most likely from contemporary isolation of the Pontic basin from the Mediterranean that broke the continuous strip of coastal habitats inhabited by C. littoralis. Demographic analyses indicated that both lineages have been in demographic and spatial expansion since ca. 0.15 Ma. It coincides with the terminal stage of MIS-6, i.e., Wartanian/Saalian glaciation, and beginning of MIS-5e, i.e., Eemian interglacial, during which, due to eustatic sea level rise, a wide connection between Mediterranean and the Pontic basin was re-established. This, along with re-appearance of coastal habitats could initiate north-east expansion of the southern lineage and its secondary contact with the northern one. The isolation of the Pontic basin from the Mediterranean during the Weichselian glaciation most likely did not have any effect on their phylogeography. PMID:27547517

  20. Cytochrome Oxidase I (COI) sequence conservation and variation patterns in the yellowfin and longtail tunas.

    PubMed

    Kunal, Swaraj Priyaranjan; Kumar, Girish

    2013-01-01

    Tunas are commercially important fishery worldwide. There are at least 13 species of tuna belonging to three genera, out of which genus Thunnus has maximum eight species. On the basis of their availability, they can be characterised as oceanic such as Thunnus albacares (yellowfin tuna) or coastal such as Thunnus tonggol (longtail tuna). Although these two are different species, morphological differentiation can only be seen in mature individuals, hence misidentification may result in erroneous data set, which ultimately affect conservation strategies. The mitochondrial DNA cytochrome oxidase c subunit 1 (COI) gene is one of the most popular markers for population genetic and phylogeographic studies across the animal kingdom. The present study aims to study the sequence conservation and variation in mitochondrial Cytochrome Oxidase I (COI) between these two species of tuna. COI sequence analysis of yellowfin and longtail revealed the close relationship between them in Thunnus genera. The present study is the first direct comparison of mitochondrial COI sequences of these two tuna species. PMID:23649742

  1. Mitochondrial COI and nuclear RAG1 DNA sequences and analyses of specimens of the three morphologically established species in the genus Trichopsis (Perciformes: Osphronemidae) reveal new/cryptic species.

    PubMed

    Panijpan, Bhinyo; Laosinchai, Parames; Senapin, Saengchan; Kowasupat, Chanon; Ruenwongsa, Pintip; Kühne, Jens; Phiwsaiya, Kornsunee

    2015-06-01

    Air-breathing fish species of the genus Trichopsis have been reported in Cambodia, Lao PDR, Indonesia, Malaysia, Singapore, Thailand and Vietnam. It is only in Thailand that all three recognized species (Trichopsis vittata, Trichopsis schalleri and Trichopsis pumila), as judged by distinct external features, are found. Cambodia and Lao PDR harbor two species each. The present work involves first-time DNA sequencing and analysis based on mitochondrial (COI) and nuclear (RAG1) DNA of numerous specimens of these species and specimens of a controversial Phetchaburi (Thailand) fish population with a mixed outward appearance. In addition to confirming the morphologically clear-cut taxonomic division of the three fish species, our DNA results show that whereas the T. pumila populations form one single species, there are cryptic species in the T. vittata and T. schalleri populations and possibly a new one in the latter. Members of the putative Phetchaburi fish population have been proven to be hybrids between T. pumila and T. vittata. In addition, a new the phylogenetic tree indicating ancestral relationships is also presented. This study should generate further research to find new/cryptic species of the genus Trichopsis in all countries harboring the fish. PMID:25853058

  2. Mitochondrial COI and nuclear RAG1 DNA sequences and analyses of specimens of the three morphologically established species in the genus Trichopsis (Perciformes: Osphronemidae) reveal new/cryptic species

    PubMed Central

    Panijpan, Bhinyo; Laosinchai, Parames; Senapin, Saengchan; Kowasupat, Chanon; Ruenwongsa, Pintip; Kühne, Jens; Phiwsaiya, Kornsunee

    2015-01-01

    Air-breathing fish species of the genus Trichopsis have been reported in Cambodia, Lao PDR, Indonesia, Malaysia, Singapore, Thailand and Vietnam. It is only in Thailand that all three recognized species (Trichopsis vittata, Trichopsis schalleri and Trichopsis pumila), as judged by distinct external features, are found. Cambodia and Lao PDR harbor two species each. The present work involves first-time DNA sequencing and analysis based on mitochondrial (COI) and nuclear (RAG1) DNA of numerous specimens of these species and specimens of a controversial Phetchaburi (Thailand) fish population with a mixed outward appearance. In addition to confirming the morphologically clear-cut taxonomic division of the three fish species, our DNA results show that whereas the T. pumila populations form one single species, there are cryptic species in the T. vittata and T. schalleri populations and possibly a new one in the latter. Members of the putative Phetchaburi fish population have been proven to be hybrids between T. pumila and T. vittata. In addition, a new the phylogenetic tree indicating ancestral relationships is also presented. This study should generate further research to find new/cryptic species of the genus Trichopsis in all countries harboring the fish. PMID:25853058

  3. A diagnostic molecular marker for zebra mussels (Dreissena polymorpha) and potentially co-occurring bivalves: mitochondrial COI.

    PubMed

    Baldwin, B S; Black, M; Sanjur, O; Gustafson, R; Lutz, R A; Vrijenhoek, R C

    1996-03-01

    We report diagnostic differences in the nucleotide sequences of a 710-bp fragment of the mitochondrial cytochrome c oxidase subunit I gene (COI) from the zebra mussel (Dreissena polymorpha) and potentially co-occurring bivalves: the quagga mussel (Dreissena bugensis); the Asiatic clam (Corbicula fluminea), the dark false mussel (Mytilopsis leucophaeata), and the wedge clam (Rangia cuneata). The COI sequence of the deep-water "profunda" phenotype of the quagga mussel was nearly identical to that of shallow-water quagga mussels. Restriction fragment length polymorphisms (RFLPs) in this portion of COI produced species-specific differences in fragment numbers and sizes that could be used as diagnostic markers to distinguish the free-living larvae produced by these bivalves. PMID:8869514

  4. Molecular Identification of Paramecium bursaria Syngens and Studies on Geographic Distribution using Mitochondrial Cytochrome C Oxidase Subunit I (COI).

    PubMed

    Zagata, Patrycja; Greczek-Stachura, Magdalena; Tarcz, Sebastian; Rautian, Maria

    2015-01-01

    Paramecium bursaria is composed of five syngens that are morphologically indistinguishable but sexually isolated. The aim of the present study was to confirm by molecular methods (analyses of mitochondrial COI) the identification of P. bursaria syngens originating from different geographical locations. Phylograms constructed using both the neighbor-joining and maximum-likelihood methods based on a comparison of 34 sequences of P. bursaria strains and P. multimicronucleatum, P. caudatum and P.calkinsi strains used as outgroups revealed five clusters which correspond to results obtained previously by mating reaction. Our analysis shows the existence of 24 haplotypes for the COI gene sequence in the studied strains. The interspecies haplotype diversity was Hd = 0.967. We confirmed genetic differentiation between strains of P. bursaria and the occurrence of a correlation between geographical distribution and the correspondent syngen. PMID:26103689

  5. The Mycetophila ruficollis Meigen (Diptera, Mycetophilidae) group in Europe: elucidating species delimitation with COI and ITS2 sequence data

    PubMed Central

    Jürgenstein, Siiri; Kurina, Olavi; Põldmaa, Kadri

    2015-01-01

    Abstract European species of the Mycetophila ruficollis group are compared on the basis of morphology and sequences of mitochondrial cytochrome oxidase subunit one (COI) and the ITS2 region of nuclear ribosomal DNA. The study represents the first evaluation of morphology-based species delimitation of closely related fungus gnat species by applying molecular information. Detailed descriptions and illustrations of the male terminalia are presented along with a key for the identification of all nine European species of the group. Phylogenetic analyses of molecular data generally supported the morphological species discrimination. The barcoding region of COI superseded ITS2 rDNA in resolving species. In the COI barcoding region interspecific differences ranged from 2.9 to 10.6% and the intraspecific distance from 0.08 to 0.8%. Only COI data distinguished between the similar and closely related Mycetophila ichneumonea and Mycetophila uninotata of which the latter was observed to include cryptic species. The host range of some species is suggested to be narrower than previously considered and to depend on the forest type. Presented evidence indicates the importance of analysing sequence data of morphologically very similar mycetophages reared from identified host fungi for elucidating species delimitation as well as their geographic and host ranges. New country records, viz. Estonia for Mycetophila evanida, Georgia for Mycetophila ichneumonea, Mycetophila idonea and Mycetophila ruficollis, and Norway for Mycetophila strobli, widen the known distribution ranges of these species. PMID:26167119

  6. Twin Mitochondrial Sequence Analysis.

    PubMed

    Bouhlal, Yosr; Martinez, Selena; Gong, Henry; Dumas, Kevin; Shieh, Joseph T C

    2013-09-01

    When applying genome-wide sequencing technologies to disease investigation, it is increasingly important to resolve sequence variation in regions of the genome that may have homologous sequences. The human mitochondrial genome challenges interpretation given the potential for heteroplasmy, somatic variation, and homologous nuclear mitochondrial sequences (numts). Identical twins share the same mitochondrial DNA (mtDNA) from early life, but whether the mitochondrial sequence remains similar is unclear. We compared an adult monozygotic twin pair using high throughput-sequencing and evaluated variants with primer extension and mitochondrial pre-enrichment. Thirty-seven variants were shared between the twin individuals, and the variants were verified on the original genomic DNA. These studies support highly identical genetic sequence in this case. Certain low-level variant calls were of high quality and homology to the mitochondrial DNA, and they were further evaluated. When we assessed calls in pre-enriched mitochondrial DNA templates, we found that these may represent numts, which can be differentiated from mtDNA variation. We conclude that twin identity extends to mitochondrial DNA, and it is critical to differentiate between numts and mtDNA in genome sequencing, particularly since significant heteroplasmy could influence genome interpretation. Further studies on mtDNA and numts will aid in understanding how variation occurs and persists. PMID:24040623

  7. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents

    PubMed Central

    2013-01-01

    Introduction The PCR-based analysis of homologous genes has become one of the most powerful approaches for species detection and identification, particularly with the recent availability of Next Generation Sequencing platforms (NGS) making it possible to identify species composition from a broad range of environmental samples. Identifying species from these samples relies on the ability to match sequences with reference barcodes for taxonomic identification. Unfortunately, most studies of environmental samples have targeted ribosomal markers, despite the fact that the mitochondrial Cytochrome c Oxidase subunit I gene (COI) is by far the most widely available sequence region in public reference libraries. This is largely because the available versatile (“universal”) COI primers target the 658 barcoding region, whose size is considered too large for many NGS applications. Moreover, traditional barcoding primers are known to be poorly conserved across some taxonomic groups. Results We first design a new PCR primer within the highly variable mitochondrial COI region, the “mlCOIintF” primer. We then show that this newly designed forward primer combined with the “jgHCO2198” reverse primer to target a 313 bp fragment performs well across metazoan diversity, with higher success rates than versatile primer sets traditionally used for DNA barcoding (i.e. LCO1490/HCO2198). Finally, we demonstrate how the shorter COI fragment coupled with an efficient bioinformatics pipeline can be used to characterize species diversity from environmental samples by pyrosequencing. We examine the gut contents of three species of planktivorous and benthivorous coral reef fish (family: Apogonidae and Holocentridae). After the removal of dubious COI sequences, we obtained a total of 334 prey Operational Taxonomic Units (OTUs) belonging to 14 phyla from 16 fish guts. Of these, 52.5% matched a reference barcode (>98% sequence similarity) and an additional 32% could be assigned to a

  8. Molecular characterization of Opisthorchis noverca (Digenea: Opisthorchiidae) based on nuclear ribosomal ITS2 and mitochondrial COI genes.

    PubMed

    Sahu, R; Biswal, D K; Roy, B; Tandon, V

    2016-09-01

    Opisthorchiasis is a public health problem in South-East Asian countries and Eastern Europe. The infection implicates mainly two species of Opisthorchis, namely O. viverrini and O. felineus, that occur mostly in fish-eating mammals and humans, although there are rare reports of human cases involving two other species, O. noverca and O. guayaquilensis. Opisthorchis noverca has been reported frequently in dogs and pigs from the Indian subcontinent, with rare reports from cattle and human subjects. With a view to supplementing morphology-based identification of this species, the present study aimed to provide molecular characterization of O. noverca, using rDNA internal transcribed spacer 2 (ITS2) and mitochondrial cytochrome oxidase I (mt COI) markers so as to determine its genetic correlation with other species of Opisthorchiidae, and also to generate a taxon-specific molecular marker based on the ITS2 region. The phylogenetic relationship between O. noverca and other species of the genus was determined using molecular sequence data. To strengthen the result, secondary structure sequence analyses of ITS2 with hemi-compensatory base changes (hCBCs), and amino acid sequence analyses, were also evaluated. Our results confirm that O. noverca is a distinct and valid species. PMID:26467395

  9. Mitochondrial COI and morphological evidence for host specificity of the black cherry aphids Myzus cerasi (Fabricius, 1775) collected from different cherry tree species in Europe (Hemiptera, Aphididae).

    PubMed

    Rakauskas, Rimantas; Havelka, Jekaterina; Zaremba, Audrius; Bernotienė, Rasa

    2014-01-01

    Partial sequences of the mitochondrial COI gene of forty eight European and two Turkish population samples of Myzus cerasi from different winter hosts (Prunus spp.) were subjected to phylogenetic analyses. The analysed M. cerasi samples emerged as paraphyletic relative to a Myzus borealis sample used as an out-group, and formed two major clades in neighbor joining, maximum parsimony, maximum likelihood and Bayesian inference trees, corresponding to subspecies living specifically on Prunus avium and P. cerasus. Multivariate discriminant analysis (method of canonical variates) was applied to find out if morphological variation of samples correlated with mitochondrial COI and host plant information. Mean scores on the first two canonical variables clustered samples fully in accordance with their COI haplotypes and host plants confirming the existence of two morphologically similar winter host - specific subspecies of M. cerasi in Europe. No single morphological character enabled satisfactory discrimination between apterous viviparous females of the two subspecies. A three-character linear discriminant function enabled 92.37% correct identification of apterous viviparous females of M. cerasi cerasi (n = 118) and 93.64% of M. cerasi pruniavium (n = 110). A key for the morphological identification of the two subspecies is presented and their taxonomic status is discussed. PMID:24715766

  10. Population genetic structure of Cheyletus malaccensis (Acari: Cheyletidae) in China based on mitochondrial COI and 12S rRNA genes.

    PubMed

    Yang, Xiaoqiang; Ye, Qingtian; Xin, Tianrong; Zou, Zhiwen; Xia, Bin

    2016-06-01

    Cheyletus malaccensis is a predatory mite widely distributed in grain storages. It has been regarded as an important biological control agent for pest mites. In this study, we investigated the population genetic structure of C. malaccensis distributed in China based on the partial regions of mitochondrial COI and 12S rRNA genes. We collected 256 individuals of C. malaccensis from stored grain in 34 sites of China. We detected 50 COI gene haplotypes and nine 12S rRNA gene haplotypes. There were three clades in the haplotype network and Bayesian and maximum parsimony phylogenetic trees based on COI sequences, and two based on 12S rRNA sequences. The clustering of haplotypes was not correlated with their geographical distributions. The analysis of molecular variance, AMOVA, indicated that the genetic differentiation between populations was relatively weak. The major genetic differentiation was found within populations. We suggest that the genetic structure of C. malaccensis observed in this study may be the result of long-term climate fluctuations and recent human disturbances. PMID:26947027

  11. Distinct genetic lineages of Bactrocera caudata (Insecta: Tephritidae) revealed by COI and 16S DNA sequences.

    PubMed

    Lim, Phaik-Eem; Tan, Ji; Suana, I Wayan; Eamsobhana, Praphathip; Yong, Hoi Sen

    2012-01-01

    The fruit fly Bactrocera caudata is a pest species of economic importance in Asia. Its larvae feed on the flowers of Cucurbitaceae such as Cucurbita moschata. To-date it is distinguished from related species based on morphological characters. Specimens of B. caudata from Peninsular Malaysia and Indonesia (Bali and Lombok) were analysed using the partial DNA sequences of cytochrome c oxidase subunit I (COI) and 16S rRNA genes. Both gene sequences revealed that B. caudata from Peninsular Malaysia was distinctly different from B. caudata of Bali and Lombok, without common haplotype between them. Phylogenetic analysis revealed two distinct clades, indicating distinct genetic lineage. The uncorrected 'p' distance for COI sequences between B. caudata of Malaysia-Thailand-China and B. caudata of Bali-Lombok was 5.65%, for 16S sequences from 2.76 to 2.99%, and for combined COI and 16S sequences 4.45 to 4.46%. The 'p' values are distinctly different from intraspecific 'p' distance (0-0.23%). Both the B. caudata lineages are distinctly separated from related species in the subgenus Zeugodacus - B. ascita, B. scutellata, B. ishigakiensis, B. diaphora, B. tau, B. cucurbitae, and B. depressa. Molecular phylogenetic analysis indicates that the B. caudata lineages are closely related to B. ascita sp. B, and form a clade with B. scutellata, B. ishigakiensis, B. diaphora and B. ascita sp. A. This study provides additional baseline for the phylogenetic relationships of Bactrocera fruit flies of the subgenus Zeugodacus. Both the COI and 16S genes could be useful markers for the molecular differentiation and phylogenetic analysis of tephritid fruit flies. PMID:22615962

  12. Distinct Genetic Lineages of Bactrocera caudata (Insecta: Tephritidae) Revealed by COI and 16S DNA Sequences

    PubMed Central

    Lim, Phaik-Eem; Tan, Ji; Suana, I. Wayan; Eamsobhana, Praphathip; Yong, Hoi Sen

    2012-01-01

    The fruit fly Bactrocera caudata is a pest species of economic importance in Asia. Its larvae feed on the flowers of Cucurbitaceae such as Cucurbita moschata. To-date it is distinguished from related species based on morphological characters. Specimens of B. caudata from Peninsular Malaysia and Indonesia (Bali and Lombok) were analysed using the partial DNA sequences of cytochrome c oxidase subunit I (COI) and 16S rRNA genes. Both gene sequences revealed that B. caudata from Peninsular Malaysia was distinctly different from B. caudata of Bali and Lombok, without common haplotype between them. Phylogenetic analysis revealed two distinct clades, indicating distinct genetic lineage. The uncorrected ‘p’ distance for COI sequences between B. caudata of Malaysia-Thailand-China and B. caudata of Bali-Lombok was 5.65%, for 16S sequences from 2.76 to 2.99%, and for combined COI and 16S sequences 4.45 to 4.46%. The ‘p’ values are distinctly different from intraspecific ‘p’ distance (0–0.23%). Both the B. caudata lineages are distinctly separated from related species in the subgenus Zeugodacus – B. ascita, B. scutellata, B. ishigakiensis, B. diaphora, B. tau, B. cucurbitae, and B. depressa. Molecular phylogenetic analysis indicates that the B. caudata lineages are closely related to B. ascita sp. B, and form a clade with B. scutellata, B. ishigakiensis, B. diaphora and B. ascita sp. A. This study provides additional baseline for the phylogenetic relationships of Bactrocera fruit flies of the subgenus Zeugodacus. Both the COI and 16S genes could be useful markers for the molecular differentiation and phylogenetic analysis of tephritid fruit flies. PMID:22615962

  13. Progress on resolving the Gonatocerus tuberculifemur complex: neither COI nor ITS2 sequence data alone can discriminate all the species within the complex, whereas, ISSR-PCR DNA fingerprinting can

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We utilized two molecular methods to aid in resolving the Gonatocerus tuberculifemur complex, potential glassy-winged sharpshooter (GWSS) biological control candidate agents from South America. The two methods used were DNA sequencing of both the mitochondrial cytochrome oxidase subunit 1 gene (COI...

  14. Application of COI barcode sequence for the identification of snake medicine (Zaocys).

    PubMed

    Cao, Shuping; Guo, Linong; Luo, Huiming; Yuan, Hang; Chen, Shuyun; Zheng, Jian; Lin, Ruichao

    2016-01-01

    Counterfeits in the medicine market make the authentication of snakes used for Chinese medicine a challenge to Chinese drug regulatory control agencies. This paper explores existing methods that can be used to quickly and accurately distinguish Zaocys (Z. dhumnades) from its counterfeits for routine identification of snake meats in food and drug control laboratories. In this research, the Cytochrome Oxidase I (COI) fragments of 51 samples from 17 species of snakes were amplified using Polymerase Chain Reaction (PCR) and sequenced. The inter- and intra-specific variations of COI sequences were analyzed and compared based on Kimura-2-parameter (K-2P) distances; the minimal interspecific K-2P distance was 0.0934, which was bigger than the maximum intraspecific K-2P distance in Z. dhumnades (0.0523), indicating that Zaocys can be separated from its counterfeits. The Neighbor-Joining (N-J) tree of the snakes was constructed and the results show that snakes of the same species cluster with 100% bootstrap values. Since the Zaocys and its counterfeits are of different species, they can be distinguished using the N-J tree method. Another 10 samples of Zaocys from markets and drug stores were identified at the species level, among which 5 samples were proven to be the counterfeits--Ptyas korros. PMID:24857374

  15. Phylogenetic relationship of Turkish Apis mellifera subspecies based on sequencing of mitochondrial cytochrome C oxidase I region.

    PubMed

    Özdil, F; İlhan, F

    2012-01-01

    Mitochondrial DNA sequence variation can be used to infer honey bee evolutionary relationships. We examined DNA sequence diversity in the cytochrome C oxidase I (COI or Cox1) gene segment of the mitochondrial genome in 112 samples of Apis mellifera from 15 different populations in Turkey. Six novel haplotypes were found for the COI gene segment. There were eight variable sites in the COI gene, although only three were parsimony-informative sites. The mean pairwise genetic distance was 0.3% for the COI gene segment. Neighbor-joining (NJ) trees of the COI gene segment were constructed with the published sequences of A. mellifera haplotypes that are available in GenBank; the genetic variation was compared among the different honeybee haplotypes. The NJ dendogram based on the COI sequences available in GenBank showed that Eastern European races were clustered together, whereas the Mellifera and Iberian haplotypes were clustered far apart. The haplotypes found in this study were clustered together with A. mellifera ligustica and some of the Greek honey bees (accession Nos. GU056169 and GU056170) found in NCBI GenBank database. This study expands the knowledge about the mitochondrial COI region and presents the first comprehensive sequence analysis of this region in Turkish honeybees. PMID:22614282

  16. Identification of cephalopod species from the North and Baltic Seas using morphology, COI and 18S rDNA sequences

    NASA Astrophysics Data System (ADS)

    Gebhardt, Katharina; Knebelsberger, Thomas

    2015-09-01

    We morphologically analyzed 79 cephalopod specimens from the North and Baltic Seas belonging to 13 separate species. Another 29 specimens showed morphological features of either Alloteuthis mediaor Alloteuthis subulata or were found to be in between. Reliable identification features to distinguish between A. media and A. subulata are currently not available. The analysis of the DNA barcoding region of the COI gene revealed intraspecific distances (uncorrected p) ranging from 0 to 2.13 % (average 0.1 %) and interspecific distances between 3.31 and 22 % (average 15.52 %). All species formed monophyletic clusters in a neighbor-joining analysis and were supported by bootstrap values of ≥99 %. All COI haplotypes belonging to the 29 Alloteuthis specimens were grouped in one cluster. Neither COI nor 18S rDNA sequences helped to distinguish between the different Alloteuthis morphotypes. For species identification purposes, we recommend the use of COI, as it showed higher bootstrap support of species clusters and less amplification and sequencing failure compared to 18S. Our data strongly support the assumption that the genus Alloteuthis is only represented by a single species, at least in the North Sea. It remained unclear whether this species is A. subulata or A. media. All COI sequences including important metadata were uploaded to the Barcode of Life Data Systems and can be used as reference library for the molecular identification of more than 50 % of the cephalopod fauna known from the North and Baltic Seas.

  17. The complete mitochondrial genome sequence of Beaufortia szechuanensis (Cypriniformes, Balitoridae).

    PubMed

    Wu, Jiayun; He, Yuxiao; Ren, Hongmei; Zhang, Yi; Du, Zongjun; Xie, Meng; Zhu, Guangxiang; Wang, Qin; Jiang, Yanzhi; He, Tao; Wen, Anxiang

    2016-07-01

    The Beaufortia szechuanensis is endemic to the upper reaches of Yangtze River in China. In this study, we successfully sequenced the mitochondrial genome of the B. szechuanensis, collected from the Qingyi River. The complete mitochondrial genome of B. szechuanensis was a circular molecule of 16,559 bp in length, containing 2 ribosomal RNA (rRNA) genes, 13 protein-coding genes, 22 transfer RNA (tRNA) genes, an origin of light-strand replication (OL) and a control region (D-loop). It is the first complete mitochondrial DNA data in the genus Beaufortia. The cytochrome c oxidase subunit I (COI) sequence of 14 species in Balitoridae was used for phylogenetic analysis. The topology demonstrated that the Balitoridae can be classified into two subfamilies, and the B. szechuanensis belongs to the subfamily Gastromyzoninae. PMID:25922961

  18. Genetic diversity in two Japanese flounder populations from China seas inferred using microsatellite markers and COI sequences

    NASA Astrophysics Data System (ADS)

    Xu, Dongdong; Li, Sanlei; Lou, Bao; Zhang, Yurong; Zhan, Wei; Shi, Huilai

    2012-07-01

    Japanese flounder is one of the most important commercial species in China; however, information on the genetic background of natural populations in China seas is scarce. The lack of genetic data has hampered fishery management and aquaculture development programs for this species. In the present study, we have analyzed the genetic diversity in natural populations of Japanese flounder sampled from the Yellow Sea (Qingdao population, QD) and East China Sea (Zhoushan population, ZS) using 10 polymorphic microsatellite loci and cytochrome c oxidase subunit I (COI) sequencing data. A total of 68 different alleles were observed over 10 microsatellite loci. The total number of alleles per locus ranged from 2 to 9, and the number of genotypes per locus ranged from 3 to 45. The observed heterozygosity and expected heterozygosity in QD were 0.733 and 0.779, respectively, and in ZS the heterozygosity values were 0.708 and 0.783, respectively. Significant departures from Hardy-Weinberg equilibrium were observed in 7 of the 10 microsatellite loci in each of the two populations. The COI sequencing analysis revealed 25 polymorphic sites and 15 haplotypes in the two populations. The haplotype diversity and nucleotide diversity in the QD population were 0.746±0.072 8 and 0.003 34±0.001 03 respectively, and in ZS population the genetic diversity values were 0.712±0.047 0 and 0.003 18±0.000 49, respectively. The microsatellite data ( F st =0.048 7, P <0.001) and mitochondrial DNA data ( F st =0.128, P <0.001) both revealed significant genetic differentiation between the two populations. The information on the genetic variation and differentiation in Japanese flounder obtained in this study could be used to set up suitable guidelines for the management and conservation of this species, as well as for managing artificial selection programs. In future studies, more geographically diverse stocks should be used to obtain a deeper understanding of the population structure of Japanese

  19. Simultaneous identification and DNA barcoding of six Eimeria species infecting turkeys using PCR primers targeting the mitochondrial cytochrome c oxidase subunit I (mtCOI) locus.

    PubMed

    Hafeez, Mian A; Shivaramaiah, Srichaitanya; Dorsey, Kristi Moore; Ogedengbe, Mosun E; El-Sherry, Shiem; Whale, Julia; Cobean, Julie; Barta, John R

    2015-05-01

    Species-specific PCR primers targeting the mitochondrial cytochrome c oxidase subunit I (mtCOI) locus were generated that allow for the specific identification of the most common Eimeria species infecting turkeys (i.e., Eimeria adenoeides, Eimeria meleagrimitis, Eimeria gallopavonis, Eimeria meleagridis, Eimeria dispersa, and Eimeria innocua). PCR reaction chemistries were optimized with respect to divalent cation (MgCl2) and dNTP concentrations, as well as PCR cycling conditions (particularly anneal temperature for primers). Genomic DNA samples from single oocyst-derived lines of six Eimeria species were tested to establish specificity and sensitivity of these newly designed primer pairs. A mixed 60-ng total DNA sample containing 10 ng of each of the six Eimeria species was used as DNA template to demonstrate specific amplification of the correct product using each of the species-specific primer pairs. Ten nanograms of each of the five non-target Eimeria species was pooled to provide a non-target, control DNA sample suitable to test the specificity of each primer pair. The amplifications of the COI region with species-specific primer pairs from pooled samples yielded products of expected sizes (209 to 1,012 bp) and no amplification of non-target Eimeria sp. DNA was detected using the non-target, control DNA samples. These primer pairs specific for Eimeria spp. of turkeys did not amplify any of the seven Eimeria species infecting chickens. The newly developed PCR primers can be used as a diagnostic tool capable of specifically identifying six turkey Eimeria species; additionally, sequencing of the PCR amplification products yields sequence-based genotyping data suitable for identification and molecular phylogenetics. PMID:25678350

  20. Phylogenetic affinities of Diplonema within the Euglenozoa as inferred from the SSU rRNA gene and partial COI protein sequences.

    PubMed

    Maslov, D A; Yasuhira, S; Simpson, L

    1999-03-01

    In order to shed light on the phylogenetic position of diplonemids within the phylum Euglenozoa, we have sequenced small subunit rRNA (SSU rRNA) genes from Diplonema (syn. Isonema) papillatum and Diplonema sp. We have also analyzed a partial sequence of the mitochondrial gene for cytochrome c oxidase subunit I from D. papillatum. With both markers, the maximum likelihood method favored a closer grouping of diplonemids with kinetoplastids, while the parsimony and distance suggested a closer relationship of diplonemids with euglenoids. In each case, the differences between the best tree and the alternative trees were small. The frequency of codon usage in the partial D. papillatum COI was different from both related groups; however, as is the case in kinetoplastids but not in Euglena, both the non-canonical UGA codon and the canonical UGG codon were used to encode tryptophan in Diplonema. PMID:10724517

  1. Evolutionary history and phylogenetic relationship between Auxis thazard and Auxis rochei inferred from COI sequences of mtDNA.

    PubMed

    Kumar, Girish; Kunal, Swaraj Priyaranjan; Shyama, S K

    2013-01-01

    Tunas of the genus Auxis are cosmopolitan species and the smallest members of the tribe Thunnini, the true tunas. In the present study, COI sequences of mtDNA were employed to examine the evolutionary history and phylogenetic relationship between A. thazard and A. rochei. A total of 29 COI sequences were retrieved from NCBI. Historic demographic analyses of sequence data showed that A. thazard has undergone sudden population expansion in the past while population size of A. rochei has been remain constant for long period. Non-significant value of Tajimas's D (P = 0.22400) and Fu's FS (P = 0.21400) test fail to reject the null hypothesis of neutral evolution for A. rochei. Phylogenetic analyses of nucleotide sequences demonstrated separate clusters for both species and are strongly supported by 98% bootstrap value. The results of the present study suggest the recent founding of A. thazard in world ocean while A. rochei represents the ancestral species. PMID:24084241

  2. Unraveling the sequence information in COI barcode to achieve higher taxon assignment based on Indian freshwater fishes.

    PubMed

    Chakraborty, Mohua; Ghosh, Sankar Kumar

    2015-04-01

    Efficacy of cytochrome c oxidase subunit I (COI) DNA barcode in higher taxon assignment is still under debate in spite of several attempts, using the conventional DNA barcoding methods, to assign higher taxa. Here we try to understand whether nucleotide and amino acid sequence in COI gene carry sufficient information to assign species to their higher taxonomic rank, using 160 species of Indian freshwater fishes. Our results reveal that with increase in the taxonomic rank, sequence conservation decreases for both nucleotides and amino acids. Order level exhibits lowest conservation with 50% of the nucleotides and amino acids being conserved. Among the variable sites, 30-50% were found to carry high information content within an order, while it was 70-80% within a family and 80-99% within a genus. High information content shows sites with almost conserved sequence but varying at one or two locations, which can be due to variations at species or population level. Thus, the potential of COI gene in higher taxon assignment is revealed with validation of ample inherent signals latent in the gene. PMID:24409929

  3. Unusually high genetic diversity in COI sequences of Chimarra obscura (Trichoptera: Philopotamidae)

    EPA Science Inventory

    Chimarra obscura (Walker 1852) is a philopotamid caddisfly found throughout much of North America. Using the COI DNA barcode locus, we have found unexpectedly high amounts of genetic diversity and distances within C. obscura. Of the approximately 150 specimens sampled, we have fo...

  4. Identification of a group of cryptic marine limpet species, Cellana karachiensis (Mollusca: Patellogastropoda) off Veraval coast, India, using mtDNA COI sequencing.

    PubMed

    Joseph, Sneha; Poriya, Paresh; Vakani, Bhavik; Singh, S P; Kundu, Rahul

    2016-01-01

    Present communication reports the phylogenetic relationship between three groups of a marine limpet having different color banding patterns using COI sequencing. Samples were sequenced for mtDNA COI gene using universal primer. Comparative BLAST revealed that all three types were around 99.59% identical with Cellana karachiensis, first record of this species from Indian coasts. Apart from the morphological variations, the mtDNA COI gene analysis revealed around 1% nucleotide variations between these three types. The observed dissimilarity in COI sequences was possibly too little to consider these types as three different species. The derivation of amino acid positions indicated that these types could possibly be a complex of three cryptic species of C. karachiensis. The study proposes that the Oman and Indian populations of C. karachiensis might have derived by allopatric speciation due to geographical isolation. The group of these three cryptic species, sharing same habitat between themselves, possibly showed sympatric speciation. PMID:25109628

  5. Determination of Opiinae parasitoids (Hymenoptera: Braconidae) associated with crop infesting Bactrocera spp. (Diptera: Tephritidae) using COI and Cyt b sequences

    NASA Astrophysics Data System (ADS)

    Shariff, Safiah; Yaakop, Salmah; Zain, Badrul Munir Md.

    2013-11-01

    Members of the Opiinae subfamily (Hymenoptera: Braconidae) are well known as important parasitoids of fruit fly larvae (Diptera: Tephritidae). They are widely used as biological control agents of fruit flies, especially the Bactrocera Macquart species that infest fruits. In this study, the larvae of fruit flies were collected from infested crops including star fruit, guava, wax apple and ridge gourd. The parasitized larvae were then reared under laboratory conditions until emergence of the adult parasitoids. Additionally, Malaise trap also was used to collect parasitoid species. The general concept of the multiplex PCR has been performed is to amplify two mitochondrial DNA markers, namely cytochrome oxidase subunit I (COI) and cytochrome b (Cyt b) simultaneously. Therefore, the lengthy process of reaction will be reduced. The status of the fruit fly species has also been confirmed by using COI marker on the early stage of the larvae. Maximum parsimony (MP) and Bayesian Inference (BI) were implemented to help and support the identification of Opiinae species. The result obtained from this study showed three parasitoid genera of the Opiinae viz. Fopius Wharton, Psyttalia Walker and Diachasmimorpha Viereck. Each genus has been determined by clustering together in a similar clade according to their infested crops. Therefore, accurate determination of parasitoids and the fruit fries species was highly useful and necessary for successful biological control of Bactrocera species.

  6. Genetic Population Structure of Thunnus albacares in the Central Pacific Ocean Based on mtDNA COI Gene Sequences.

    PubMed

    Li, Weiwen; Chen, Xinjun; Xu, Qianghua; Zhu, Jiangfeng; Dai, Xiaojie; Xu, Liuxiong

    2015-04-01

    Thunnus albacares is an important fishery species throughout the world. Polymorphisms of sequence variations in mtDNA COI genes were assessed to explore the genetic differentiations among 11 populations of T. albacares sampled from the central Pacific Ocean. Sixty-one mtDNA haplotypes and 38 variable sites were detected. Analysis of mtDNA COI sequences revealed that tuna from the 11 localities were characterized by moderately high haplotype diversity (h = 0.650 ± 0.040), while sequence divergence between haplotypes was relatively low (π = 0.00364 ± 0.00044). Analyses of molecular variance and FST analysis supported that significant genetic differentiations existed between some of the sampled populations. Tests of neutral evolution and mismatch distribution analysis suggested that T. albacares might have experienced a population expansion, which possibly occurred within the last 0.82 million years. Our study unraveled the genetic structure of the extant population of T. albacares and addressed the related fishery management issues including fishery stock identification and management. PMID:25854852

  7. Deep COI sequencing of standardized benthic samples unveils overlooked diversity of Jordanian coral reefs in the northern Red Sea.

    PubMed

    Al-Rshaidat, Mamoon M D; Snider, Allison; Rosebraugh, Sydney; Devine, Amanda M; Devine, Thomas D; Plaisance, Laetitia; Knowlton, Nancy; Leray, Matthieu

    2016-09-01

    High-throughput sequencing (HTS) of DNA barcodes (metabarcoding), particularly when combined with standardized sampling protocols, is one of the most promising approaches for censusing overlooked cryptic invertebrate communities. We present biodiversity estimates based on sequencing of the cytochrome c oxidase subunit 1 (COI) gene for coral reefs of the Gulf of Aqaba, a semi-enclosed system in the northern Red Sea. Samples were obtained from standardized sampling devices (Autonomous Reef Monitoring Structures (ARMS)) deployed for 18 months. DNA barcoding of non-sessile specimens >2 mm revealed 83 OTUs in six phyla, of which only 25% matched a reference sequence in public databases. Metabarcoding of the 2 mm - 500 μm and sessile bulk fractions revealed 1197 OTUs in 15 animal phyla, of which only 4.9% matched reference barcodes. These results highlight the scarcity of COI data for cryptobenthic organisms of the Red Sea. Compared with data obtained using similar methods, our results suggest that Gulf of Aqaba reefs are less diverse than two Pacific coral reefs but much more diverse than an Atlantic oyster reef at a similar latitude. The standardized approaches used here show promise for establishing baseline data on biodiversity, monitoring the impacts of environmental change, and quantifying patterns of diversity at regional and global scales. PMID:27584940

  8. Genetic divergence analysis of the Common Barn Owl Tyto alba (Scopoli, 1769) and the Short-eared Owl Asio flammeus (Pontoppidan, 1763) from southern Chile using COI sequence

    PubMed Central

    Colihueque, Nelson; Gantz, Alberto; Rau, Jaime Ricardo; Parraguez, Margarita

    2015-01-01

    Abstract In this paper new mitochondrial COI sequences of Common Barn Owl Tyto alba (Scopoli, 1769) and Short-eared Owl Asio flammeus (Pontoppidan, 1763) from southern Chile are reported and compared with sequences from other parts of the World. The intraspecific genetic divergence (mean p-distance) was 4.6 to 5.5% for the Common Barn Owl in comparison with specimens from northern Europe and Australasia and 3.1% for the Short-eared Owl with respect to samples from north America, northern Europe and northern Asia. Phylogenetic analyses revealed three distinctive groups for the Common Barn Owl: (i) South America (Chile and Argentina) plus Central and North America, (ii) northern Europe and (iii) Australasia, and two distinctive groups for the Short-eared Owl: (i) South America (Chile and Argentina) and (ii) north America plus northern Europe and northern Asia. The level of genetic divergence observed in both species exceeds the upper limit of intraspecific comparisons reported previously for Strigiformes. Therefore, this suggests that further research is needed to assess the taxonomic status, particularly for the Chilean populations that, to date, have been identified as belonging to these species through traditional taxonomy. PMID:26668551

  9. Genetic divergence analysis of the Common Barn Owl Tyto alba (Scopoli, 1769) and the Short-eared Owl Asio flammeus (Pontoppidan, 1763) from southern Chile using COI sequence.

    PubMed

    Colihueque, Nelson; Gantz, Alberto; Rau, Jaime Ricardo; Parraguez, Margarita

    2015-01-01

    In this paper new mitochondrial COI sequences of Common Barn Owl Tyto alba (Scopoli, 1769) and Short-eared Owl Asio flammeus (Pontoppidan, 1763) from southern Chile are reported and compared with sequences from other parts of the World. The intraspecific genetic divergence (mean p-distance) was 4.6 to 5.5% for the Common Barn Owl in comparison with specimens from northern Europe and Australasia and 3.1% for the Short-eared Owl with respect to samples from north America, northern Europe and northern Asia. Phylogenetic analyses revealed three distinctive groups for the Common Barn Owl: (i) South America (Chile and Argentina) plus Central and North America, (ii) northern Europe and (iii) Australasia, and two distinctive groups for the Short-eared Owl: (i) South America (Chile and Argentina) and (ii) north America plus northern Europe and northern Asia. The level of genetic divergence observed in both species exceeds the upper limit of intraspecific comparisons reported previously for Strigiformes. Therefore, this suggests that further research is needed to assess the taxonomic status, particularly for the Chilean populations that, to date, have been identified as belonging to these species through traditional taxonomy. PMID:26668551

  10. Biodiversity of the Betta smaragdina (Teleostei: Perciformes) in the northeast region of Thailand as determined by mitochondrial COI and nuclear ITS1 gene sequences☆

    PubMed Central

    Kowasupat, Chanon; Panijpan, Bhinyo; Laosinchai, Parames; Ruenwongsa, Pintip; Phongdara, Amornrat; Wanna, Warapond; Senapin, Saengchan; Phiwsaiya, Kornsunee

    2014-01-01

    In Thailand, there are currently five recognized species members of the bubble-nesting Betta genus, namely Betta splendens, B. smaragdina, B. imbellis, B. mahachaiensis and B. siamorientalis. In 2010, we indicated the possibility, based on COI barcoding evidence, that there might be two additional species, albeit cryptic, related to the type-locality B. smaragdina in some provinces in the northeast of Thailand. In the present study, after a more extensive survey of the northeast, and phylogenetic analyses based on COI and ITS1 sequences, the B. smaragdina group may be composed of at least 3 cryptic species members. The phylogenetic positions of these B. smaragdina group members in the bubble-nesting bettas' tree together with those of their congeners have been consolidated by better DNA sequence quality and phylogenetic analyses. With a better supported tree, the species statuses of B. siamorientalis and the Cambodian B. smaragdina-like fish, B. stiktos, are also confirmed. PMID:25606392

  11. Molecular differences in the mitochondrial cytochrome oxidase I (mtCOI) gene and development of a species-specific marker for onion thrips, Thrips tabaci Lindeman, and melon thrips, T. palmi Karny (Thysanoptera: Thripidae), vectors of tospoviruses (Bunyaviridae).

    PubMed

    Asokan, R; Krishna Kumar, N K; Kumar, Vikas; Ranganath, H R

    2007-10-01

    A quick and developmental-stage non-limiting method of the identification of vectors of tospoviruses, such as Thrips tabaci and T. palmi, is important in the study of vector transmission, insecticide resistance, biological control, etc. Morphological identification of these thrips vectors is often a stumbling block in the absence of a specialist and limited by polymorphism, sex, stage of development, etc. Molecular identification, on the other hand, is not hampered by the above factors and can easily be followed by a non-specialist with a little training. The mitochondrial cytochrome oxidase I (mtCOI) exhibits reliable inter-species variations as compared to the other markers. In this communication, we present the differences in the mtCOI partial sequence of morphologically identified specimens of T. tabaci and T. palmi collected from onion and watermelon, respectively. Species-specific markers, identified in this study, could successfully determine T. tabaci and T. palmi, which corroborated the morphological identification. Phylogenetic analyses showed that both T. tabaci and T. palmi formed different clades as compared to the other NCBI accessions. The implication of these variations in vector efficiency has to be investigated further. The result of this investigation is useful in the quick identification of T. tabaci and T. palmi, a critical factor in understanding the epidemiology of the tospoviruses, their management and also in quarantine. PMID:17916265

  12. Discrimination of two natural biocontrol agents in the Mediterranean region based on mitochondrial DNA sequencing data.

    PubMed

    Evangelou, V I; Bouga, M; Emmanouel, N G; Perdikis, D Ch; Papadoulis, G Th

    2013-12-01

    Macrolophus pygmaeus and M. melanotoma (Hemiptera: Miridae) are biological control agents used in greenhouse crops, the former preferring plants of the Solanaceae family and the latter the aster Dittrichia viscosa. The discrimination of these species is of high significance for effective biological pest control, but identification based on morphological characters of the host plant is not always reliable. In this study, sequencing analysis of mitochondrial gene segments 12S rDNA and COI has been combined with crossing experiments and morphological observations to develop new markers for Macrolophus spp. discrimination and to provide new data on their genetic variability. This is the first comprehensive research in Greece on M. pygmaeus and M. melanotoma genetic variability based on sequencing data from 12S rDNA and COI gene segments. The relationship of this variability to host plant preference must be investigated in an agricultural ecosystem. PMID:23839086

  13. The sequence and organization of complete mitochondrial genome of the yellowfin tuna, Thunnus albacares (Bonnaterre, 1788).

    PubMed

    Pang, Jiaohui; Cheng, Qiqun; Sun, Dandan; Zhang, Heng; Jin, Shaofei

    2016-09-01

    Yellowfin tuna (Thunnus albacares) is one of the most important economic fishes around the world. In the present study, we determined the complete mitochondrial DNA sequence and organization of T. albacares. The entire mitochondrial genome is a circular-molecule of 16,528 bp in length, which encodes 37 genes in all. These genes comprise 13 protein-coding genes (ATP6 and 8, COI-III, Cytb, ND1-6 and 4 L), 22 transfer RNA genes (tRNAs), and 2 ribosomal RNA genes (12S and 16S rRNAs). The complete mitochondrial genome sequence of T. albacares can provide basic information for the studies on molecular taxonomy and conservation genetics of teleost fishes. PMID:25707413

  14. First report on the occurrence of the comb pen shell, Atrina pectinata (Linnaeus, 1767) (Bivalvia: Pinnidae) in Ulleungdo Island in the East Sea: Ecology and molecular identification of the species using COI gene sequence

    NASA Astrophysics Data System (ADS)

    Yang, Hyun-Sung; Kang, Hyun-Sil; Park, Heung-Sik; Noh, Choong Hwan; Jeong, Eui-Young; Choi, Kwang-Sik

    2015-12-01

    Pen shell is one of the largest marine bivalves inhabiting shallow subtidal soft bottoms in the west Pacific and Indian Oceans. In Korea, the comb pen shell Atrina pectinata fisheries has been established on the south and west coasts. Recently, a pen shell population has been discovered from a subtidal sand flat (25-30 m depth) in Ulleungdo Island located in the East Sea of Korea, suggesting a potential shellfish resource in this area. In the present study, we first surveyed the population density and size of the unique pen shell using SCUBA, and identified the pen shell to species level using mitochondrial cytochrome oxidase I gene (COI) sequence. An underwater survey carried out from July to September 2013 revealed that populations of pen shell patched on subtidal sand flat at a depth of 20-25 m. Grain size analysis indicated that sand particles accounted for 99% of the 600 × 700 m sand flat. The underwater survey also indicated that density of the pen shell ranged between 6-19 ind/m2, with a mean of 11 ind/m2. Shell height (i.e. longest axis of the shell) of the pen shell on the sand flat varied between 17.2 cm to 28.8 cm, with a mean of 25.1 cm, and the age was estimated to range between 1.5-7.5 yrs, with a mean of 5 yr. COI DNA sequence obtained from the pen shell in this study showed 98.9-99.2% similarity to Atrina pectinata (Linnaeus 1767) reported from Japan. In the cluster analysis, the COI DNA sequence of the pen shells from Ulleungdo Island was grouped with A. pectinata reported from Japan and China, indicating that the pen shell discovered in this study was A. pectinata, commonly distributed on the west and south coasts of Korea.

  15. A preliminary phylogenetic analysis of Luidia (Paxillosida: Luidiidae) from Chinese waters with cytochrome oxidase subunit I (COI) sequences

    NASA Astrophysics Data System (ADS)

    Xiao, Ning; Liu, Ruiyu; Yuan, Shuai; Sha, Zhongli

    2013-09-01

    Luidia Forbes (Paxillosida: Luidiidae) are common soft bottom sea stars with 49 described species. Because of substantial morphological diversity, the taxonomy of the genus is complex and hasn't been resolved definitely. In order to resolve general taxonomic issues, and determine species boundaries and phylogenetic relationships within the genus Luidia, the sequences of cytochrome oxidase subunit I (COI) gene from 24 specimens of Luidia, belonging to eight taxa in Chinese waters, were studied. Three sequences of two species in genus Luidia from GenBank were used to analyze the phylogenetic relationships. The molecular phylogeny exhibited three main clades, each with strong bootstrap support: Clade A including Luidia quinaria from the Sea of Japan; Clade B including seven nominal species ( L. quinaria von Martens, L. yesoensis Goto, L. changi Liu, Liao and Li, L. orientalis Fisher, L. avicularia Fisher, L. longispina Sladen and L. hardwicki Gray) from Chinese waters; and Clade C including L. maculata Müller & Troschel from Chinese waters. Our molecular phylogeny results support the morphological Quinaria-Group and Alternata-Group assigned by Döderlein. Seven nominal species we sampled do not exhibit genetic distances that are large enough to recognize them as separate species. Cryptic species may exist in' Luidia quinaria' from the Yellow Sea and the Sea of Japan. Meaningful morphological characters need further investigation in Luidia.

  16. Universal COI primers for DNA barcoding amphibians.

    PubMed

    Che, Jing; Chen, Hong-Man; Yang, Jun-Xiao; Jin, Jie-Qiong; Jiang, Ke; Yuan, Zhi-Yong; Murphy, Robert W; Zhang, Ya-Ping

    2012-03-01

    DNA barcoding is a proven tool for the rapid and unambiguous identification of species, which is essential for many activities including the vouchering tissue samples in the genome 10K initiative, genealogical reconstructions, forensics and biodiversity surveys, among many other applications. A large-scale effort is underway to barcode all amphibian species using the universally sequenced DNA region, a partial fragment of mitochondrial cytochrome oxidase subunit I COI. This fragment is desirable because it appears to be superior to 16S for barcoding, at least for some groups of salamanders. The barcoding of amphibians is essential in part because many species are now endangered. Unfortunately, existing primers for COI often fail to achieve this goal. Herein, we report two new pairs of primers (➀, ➁) that in combination serve to universally amplify and sequence all three orders of Chinese amphibians as represented by 36 genera. This taxonomic diversity, which includes caecilians, salamanders and frogs, suggests that the new primer pairs will universally amplify COI for the vast majority species of amphibians. PMID:22145866

  17. Comparing COI and ITS as DNA Barcode Markers for Mushrooms and Allies (Agaricomycotina)

    PubMed Central

    Dentinger, Bryn T. M.; Didukh, Maryna Y.; Moncalvo, Jean-Marc

    2011-01-01

    DNA barcoding is an approach to rapidly identify species using short, standard genetic markers. The mitochondrial cytochrome oxidase I gene (COI) has been proposed as the universal barcode locus, but its utility for barcoding in mushrooms (ca. 20,000 species) has not been established. We succeeded in generating 167 partial COI sequences (∼450 bp) representing ∼100 morphospecies from ∼650 collections of Agaricomycotina using several sets of new primers. Large introns (∼1500 bp) at variable locations were detected in ∼5% of the sequences we obtained. We suspect that widespread presence of large introns is responsible for our low PCR success (∼30%) with this locus. We also sequenced the nuclear internal transcribed spacer rDNA regions (ITS) to compare with COI. Among the small proportion of taxa for which COI could be sequenced, COI and ITS perform similarly as a barcode. However, in a densely sampled set of closely related taxa, COI was less divergent than ITS and failed to distinguish all terminal clades. Given our results and the wealth of ITS data already available in public databases, we recommend that COI be abandoned in favor of ITS as the primary DNA barcode locus in mushrooms. PMID:21966418

  18. The complete mitochondrial genome sequence of Pterophyllum scalare (Cichliformes: Cichlidae).

    PubMed

    Wang, Guang-Peng; Min, Qiao; Si, Gui-Cai

    2016-07-01

    Pterophyllum scalare belongs in the family Cichlidae of Cichliformes. This species and its congeners are characterized by a compressed and disc-shaped body with dorsal and anal spiny rays increasing in length from anterior to posterior part of the fin. In this study, we determine and describe the complete mitogenome sequence of Pterophyllum scalare for the first time, which is 16,494 bp in length, and contains 37 genes, including 13 protein-coding genes, 2 rRNAs, 22 tRNAs, 1 origin of replication on the light-strand (OL) and a putative control region. The overall base composition is 27.5% A, 26.8% T, 30.1% C and 15.6% G, with a slight AT bias (54.3%). All protein-coding genes share the start codon ATG, except for COI that begins with GTG. These results are expected to provide useful molecular data for phylogenetic studies of Cichlidae and Cichliformes. Maximum Likelihood (ML) tree and Bayesian analyses based on partitioned nucleotide sequences of 12 mitochondrial protein-coding genes were constructed and both yielded trees with identical topologies. PMID:26017040

  19. A pilot study on the molecular phylogeny of Drepanoidea (Insecta: Lepidoptera) inferred from the nuclear gene EF-1alpha and the mitochondrial gene COI.

    PubMed

    Wu, C G; Han, H X; Xue, D Y

    2010-04-01

    A molecular phylogenetic study of the Drepanoidea based on the EF-1alpha sequences and combined EF-1alpha and COI sequences was carried out in order to infer higher classification at and above the subfamily level. The sample contained 14 taxa representing 13 genera recognized in the Drepanoidea. The results revealed that the Drepaninae, Thyatirinae and Cyclidiinae respectively form monophyletic groups. The sister relationship between the Drepaninae and the Thyatirinae was validated. The monophyly of the Cyclidiinae with the Drepaninae+Thyatirinae was supported robustly. Hypsomadius insignis and Oreta vatama within the traditional definition of the Drepaninae formed an individual clade with robust support (100%) and constitutes a sister relationship to a clade containing the rest of the Drepaninae in all the topologies, which means that the subfamily Oretinae of the Drepanidae should be restored. The family Drepanidae is divided into four subfamilies: Drepaninae, Oretinae, Thyatirinae and Cyclidiinae in this work. The family Epicopeiidae formed a monophyly with high bootstrap values. The result of combined analysis of EF-1alpha and COI showed that the Epicopeiidae have a closer phylogenetic relationship with the Geometridae than with the Drepanidae and belong to neither the Drepanoidea nor the Geometroidea. PMID:19580687

  20. Targeted exome sequencing of suspected mitochondrial disorders

    PubMed Central

    Lieber, Daniel S.; Calvo, Sarah E.; Shanahan, Kristy; Slate, Nancy G.; Liu, Shangtao; Hershman, Steven G.; Gold, Nina B.; Chapman, Brad A.; Thorburn, David R.; Berry, Gerard T.; Schmahmann, Jeremy D.; Borowsky, Mark L.; Mueller, David M.; Sims, Katherine B.

    2013-01-01

    Objective: To evaluate the utility of targeted exome sequencing for the molecular diagnosis of mitochondrial disorders, which exhibit marked phenotypic and genetic heterogeneity. Methods: We considered a diverse set of 102 patients with suspected mitochondrial disorders based on clinical, biochemical, and/or molecular findings, and whose disease ranged from mild to severe, with varying age at onset. We sequenced the mitochondrial genome (mtDNA) and the exons of 1,598 nuclear-encoded genes implicated in mitochondrial biology, mitochondrial disease, or monogenic disorders with phenotypic overlap. We prioritized variants likely to underlie disease and established molecular diagnoses in accordance with current clinical genetic guidelines. Results: Targeted exome sequencing yielded molecular diagnoses in established disease loci in 22% of cases, including 17 of 18 (94%) with prior molecular diagnoses and 5 of 84 (6%) without. The 5 new diagnoses implicated 2 genes associated with canonical mitochondrial disorders (NDUFV1, POLG2), and 3 genes known to underlie other neurologic disorders (DPYD, KARS, WFS1), underscoring the phenotypic and biochemical overlap with other inborn errors. We prioritized variants in an additional 26 patients, including recessive, X-linked, and mtDNA variants that were enriched 2-fold over background and await further support of pathogenicity. In one case, we modeled patient mutations in yeast to provide evidence that recessive mutations in ATP5A1 can underlie combined respiratory chain deficiency. Conclusion: The results demonstrate that targeted exome sequencing is an effective alternative to the sequential testing of mtDNA and individual nuclear genes as part of the investigation of mitochondrial disease. Our study underscores the ongoing challenge of variant interpretation in the clinical setting. PMID:23596069

  1. Next-generation sequencing for mitochondrial disorders

    PubMed Central

    Carroll, C J; Brilhante, V; Suomalainen, A

    2014-01-01

    A great deal of our understanding of mitochondrial function has come from studies of inherited mitochondrial diseases, but still majority of the patients lack molecular diagnosis. Furthermore, effective treatments for mitochondrial disorders do not exist. Development of therapies has been complicated by the fact that the diseases are extremely heterogeneous, and collecting large enough cohorts of similarly affected individuals to assess new therapies properly has been difficult. Next-generation sequencing technologies have in the last few years been shown to be an effective method for the genetic diagnosis of inherited mitochondrial diseases. Here we review the strategies and findings from studies applying next-generation sequencing methods for the genetic diagnosis of mitochondrial disorders. Detailed knowledge of molecular causes also enables collection of homogenous cohorts of patients for therapy trials, and therefore boosts development of intervention. Linked Articles This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:24138576

  2. Distribution of Mosquitoes in the South East of Argentina and First Report on the Analysis Based on 18S rDNA and COI Sequences

    PubMed Central

    Díaz-Nieto, Leonardo M.; Maciá, Arnaldo; Parisi, Gustavo; Farina, Juan L.; Vidal-Domínguez, María E.; Perotti, M. Alejandra; Berón, Corina M.

    2013-01-01

    Although Mar del Plata is the most important city on the Atlantic coast of Argentina, mosquitoes inhabiting such area are almost uncharacterized. To increase our knowledge in their distribution, we sampled specimens of natural populations. After the morphological identification based on taxonomic keys, sequences of DNA from small ribosomal subunit (18S rDNA) and cytochrome c oxidase I (COI) genes were obtained from native species and the phylogenetic analysis of these sequences were done. Fourteen species from the genera Uranotaenia, Culex, Ochlerotatus and Psorophora were found and identified. Our 18S rDNA and COI-based analysis indicates the relationships among groups at the supra-species level in concordance with mosquito taxonomy. The introduction and spread of vectors and diseases carried by them are not known in Mar del Plata, but some of the species found in this study were reported as pathogen vectors. PMID:24098700

  3. EST and mitochondrial DNA sequences support a distinct Pacific form of salmon louse, Lepeophtheirus salmonis.

    PubMed

    Yazawa, Ryosuke; Yasuike, Motoshige; Leong, Jong; von Schalburg, Kristian R; Cooper, Glenn A; Beetz-Sargent, Marianne; Robb, Adrienne; Davidson, William S; Jones, Simon R M; Koop, Ben F

    2008-01-01

    Nuclear deoxyribonucleic acid sequences from approximately 15,000 salmon louse expressed sequence tags (ESTs), the complete mitochondrial genome (16,148bp) of salmon louse, and 16S ribosomal ribonucleic acid (rRNA) and cytochrome oxidase subunit I (COI) genes from 68 salmon lice collected from Japan, Alaska, and western Canada support a Pacific lineage of Lepeophtheirus salmonis that is distinct from that occurring in the Atlantic Ocean. On average, nuclear genes are 3.2% different, the complete mitochondrial genome is 7.1% different, and 16S rRNA and COI genes are 4.2% and 6.1% different, respectively. Reduced genetic diversity within the Pacific form of L. salmonis is consistent with an introduction into the Pacific from the Atlantic Ocean. The level of divergence is consistent with the hypothesis that the Pacific form of L. salmonis coevolved with Pacific salmon (Onchorhynchus spp.) and the Atlantic form coevolved with Atlantic salmonids (Salmo spp.) independently for the last 2.5-11 million years. The level of genetic divergence coincides with the opportunity for migration of fish between the Atlantic and Pacific Ocean basins via the Arctic Ocean with the opening of the Bering Strait, approximately 5 million years ago. The genetic differences may help explain apparent differences in pathogenicity and environmental sensitivity documented for the Atlantic and Pacific forms of L. salmonis. PMID:18574633

  4. Mitochondrial DNA sequence variation in Drosophilid species (Diptera: Drosophilidae) along altitudinal gradient from Central Himalayan region of India.

    PubMed

    Sarswat, Manisha; Dewan, Saurabh; Fartyal, Rajendra Singh

    2016-06-01

    Central Himalayan region of India encompasses varied ecological habitats ranging from near tropics to the mid-elevation forests dominated by cool-temperate taxa. In past, we have reported several new records and novel species from Uttarakhand state of India. Here, we assessed genetic variations in three mitochondrial genes, namely, 16S rRNA, cytochrome c oxidase subunit I and cytochrome c oxidase subunit II (COI and COII) in 26 drosophilid species collected along altitudinal transect from 550 to 2700 m above mean sea level. In the present study, overall 543 sequences were generated, 82 for 16S rRNA, 238 for COI, 223 for COII with 21, 47 and 45 mitochondrial haplotypes for 16S rRNA, COI and COII genes, respectively. Almost all species were represented by 2-3 unique mitochondrial haplotypes, depicting a significant impact of environmental heterogeneity along altitudinal gradient on genetic diversity. Also for the first time, molecular data of some rare species like Drosophila mukteshwarensis, Liodrosophila nitida, Lordiphosa parantillaria, Lordiphosa ayarpathaensis, Scaptomyza himalayana, Scaptomyza tistai, Zaprionus grandis and Stegana minuta are provided to public domains through this study. PMID:27350680

  5. BAYESIAN PHYLOGENETIC ANALYSIS OF MITOCHONDRIAL COI DNA SEQUENCE FROM GLOBAL SAMPLES OF BEMISIA TABACI (HEMIPTERA: ALEYRODIDAE)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bemisia tabaci (Gen.)(Hemiptera: Aleyrodidae) is one of the most devastating agricultural pests worldwide and affects the yield of a broad range of agricultural, fiber, vegetable and ornamental crops. Global phylogenetic relationships of the major races of B. tabaci remain unresolved thus a Bayesi...

  6. Global relationships of Bemisia tabaci (Hemiptera: Aleyrodidae) revealed using Bayesian analysis of mitochondrial COI DNA sequence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bemisia tabaci (Gen.)(Hemiptera: Aleyrodidae) is a species complex that is one of the most devastating agricultural pests worldwide and affects a broad range of food, fiber and ornamental crops. Unfortunately, using parsimony and neighbor joining methods, global phylogenetic relationships of the ma...

  7. Sequencing and comparing whole mitochondrial genomes ofanimals

    SciTech Connect

    Boore, Jeffrey L.; Macey, J. Robert; Medina, Monica

    2005-04-22

    Comparing complete animal mitochondrial genome sequences is becoming increasingly common for phylogenetic reconstruction and as a model for genome evolution. Not only are they much more informative than shorter sequences of individual genes for inferring evolutionary relatedness, but these data also provide sets of genome-level characters, such as the relative arrangements of genes, that can be especially powerful. We describe here the protocols commonly used for physically isolating mtDNA, for amplifying these by PCR or RCA, for cloning,sequencing, assembly, validation, and gene annotation, and for comparing both sequences and gene arrangements. On several topics, we offer general observations based on our experiences to date with determining and comparing complete mtDNA sequences.

  8. Mitochondrial genome sequencing in atherosclerosis: what's next?

    PubMed

    Sazonova, Margarita A; Shkurat, Tatiana P; Demakova, Natalya A; Zhelankin, Andrey V; Barinova, Valeria A; Sobenin, Igor A; Orekhov, Alexander N

    2016-01-01

    Cardiovascular diseases are currently a basic cause of mortality in highly developed countries. The major reason for genesis and development of cardiovascular diseases is atherosclerosis. At the present time high technology methods of molecular genetic diagnostics can significantly simplify early presymptomatic recognition of patients with atherosclerosis, to detect risk groups and to perform a family analysis of this pathology. A Next-Generation Sequencing (NGS) technology can be characterized by high productivity and cheapness of full genome analysis of each DNA sample. We suppose that in the nearest future NGS methods will be widely used for scientific and diagnostic purposes, including personalized medicine. In the present review article literature data on using NGS technology were described in studying mitochondrial genome mutations associated with atherosclerosis and its risk factors, such as mitochondrial diabetes, mitochondrial cardiomyopathy, diabetic nephropathy and left ventricular hypertrophy. With the use of the NGS technology it proved to be possible to detect a range of homoplasmic and heteroplasmic mutations and mitochondrial genome haplogroups which are associated with these pathologies. Meanwhile some mutations and haplogroups were detected both in atherosclerosis and in its risk factors. It conveys the suggestion that there are common pathogenetic mechanisms causing these pathologies. What comes next? New paradigm of crosstalk between non-pharmaceutical (including molecular genetic) and true pharmaceutical approaches may be developed to fill the niche of effective and pathogenically targeted pretreatment and treatment of preclinical and subclinical atherosclerosis to avoid the development of chronic life-threatening disease. PMID:26561059

  9. Phylogeny of Thaumastodermatidae (Gastrotricha: Macrodasyida) Inferred from Nuclear and Mitochondrial Sequence Data

    PubMed Central

    Todaro, M. Antonio; Kånneby, Tobias; Dal Zotto, Matteo; Jondelius, Ulf

    2011-01-01

    Background Phylogenetic relationships within Gastrotricha are poorly known. Attempts to shed light on this subject using morphological traits have led to hypotheses lacking satisfactory statistical support; it seemed therefore that a different approach was needed. Methodology/Principal Findings In this paper we attempt to elucidate the relationships within the taxonomically vast family Thaumastodermatidae (Macrodasyida) using molecular sequence data. The study includes representatives of all the extant genera of the family and for the first time uses a multi-gene approach to infer evolutionary liaisons within Gastrotricha. The final data set comprises sequences of three genes (18S, 28S rDNA and COI mtDNA) from 41 species, including 29 thaumastodermatids, 11 non-thaumastodermatid macrodasyidans and a single chaetonotidan. Molecular data was analyzed as a combined set of 3 genes and as individual genes, using Bayesian and maximum likelihood approaches. Two different outgroups were used: Xenotrichula intermedia (Chaetonotida) and members of the putative basal Dactylopodola (Macrodasyida). Thaumastodermatidae and all other sampled macrodasyidan families were found monophyletic except for Cephalodasyidae. Within Thaumastodermatidae Diplodasyinae and Thaumastodermatinae are monophyletic and so are most genera. Oregodasys turns out to be the most basal group within Thaumastodermatinae in analyses of the concatenated data set as well as in analyses of the nuclear genes. Thaumastoderma appears as the sister taxon to the remaining species. Surprisingly, Tetranchyroderma is non-monophyletic in our analyses as one group of species clusters with Ptychostomella while another appears as the sister group of Pseudostomella. Conclusions/Significance Results in general agree with the current classification; however, a revision of the more derived thaumastodermatid taxa seems necessary. We also found that the ostensible COI sequences from several species do not conform to the general

  10. A COI Nonsynonymous Mutation as Diagnostic Tool for Intraspecific Discrimination in the European Anchovy Engraulis encrasicolus (Linnaeus)

    PubMed Central

    Pappalardo, Anna Maria; Federico, Concetta; Sabella, Giorgio; Saccone, Salvatore; Ferrito, Venera

    2015-01-01

    The European anchovy, Engraulis encrasicolus, is currently one of the principal target species for commercial fisheries in Europe. In this study, the mitochondrial Control Region (CR) and the Cytochrome Oxidase I (COI) mitochondrial gene were analyzed in 74 specimens of E. encrasicolus from four localities in the central Mediterranean. In both populations, the two markers revealed the presence of two main haplogroups, A and B, already detected in previous investigations of different classes of molecular markers. Both CR and COI markers consistently identified two haplogroups. The COI sequence analysis identified a non-synonymous transversion (T to G) at position 116 of the translated sequence, resulting in an amino acid change. All COI sequences of haplogroup A had an amino acid sequence with alanine in this position, while serine was present in the same position in haplogroup B. The two haplogroups A and B were also discriminated by the variable number of TACA elements at the 5’-end of the mitochondrial CR. The selection tests applied to the COI dataset revealed that codon 116 was not under positive selection, that seven amino acid changes were under purifying selection, and that two amino acids were under episodic positive selection. PMID:26599908

  11. Rapid and accurate taxonomic classification of insect (class Insecta) cytochrome c oxidase subunit 1 (COI) DNA barcode sequences using a naïve Bayesian classifier

    PubMed Central

    Porter, Teresita M; Gibson, Joel F; Shokralla, Shadi; Baird, Donald J; Golding, G Brian; Hajibabaei, Mehrdad

    2014-01-01

    Current methods to identify unknown insect (class Insecta) cytochrome c oxidase (COI barcode) sequences often rely on thresholds of distances that can be difficult to define, sequence similarity cut-offs, or monophyly. Some of the most commonly used metagenomic classification methods do not provide a measure of confidence for the taxonomic assignments they provide. The aim of this study was to use a naïve Bayesian classifier (Wang et al. Applied and Environmental Microbiology, 2007; 73: 5261) to automate taxonomic assignments for large batches of insect COI sequences such as data obtained from high-throughput environmental sequencing. This method provides rank-flexible taxonomic assignments with an associated bootstrap support value, and it is faster than the blast-based methods commonly used in environmental sequence surveys. We have developed and rigorously tested the performance of three different training sets using leave-one-out cross-validation, two field data sets, and targeted testing of Lepidoptera, Diptera and Mantodea sequences obtained from the Barcode of Life Data system. We found that type I error rates, incorrect taxonomic assignments with a high bootstrap support, were already relatively low but could be lowered further by ensuring that all query taxa are actually present in the reference database. Choosing bootstrap support cut-offs according to query length and summarizing taxonomic assignments to more inclusive ranks can also help to reduce error while retaining the maximum number of assignments. Additionally, we highlight gaps in the taxonomic and geographic representation of insects in public sequence databases that will require further work by taxonomists to improve the quality of assignments generated using any method.

  12. Genetic variation and population structure of hair crab (Erimacrus isenbeckii ) in Japan inferred from mitochondrial DNA sequence analysis.

    PubMed

    Azuma, Noriko; Kunihiro, Yasushi; Sasaki, Jun; Mihara, Eiji; Mihara, Yukio; Yasunaga, Tomoaki; Jin, Deuk-Hee; Abe, Syuiti

    2008-01-01

    Genetic variation and population structure of hair crab (Erimacrus isenbeckii) were examined using nucleotide sequence analysis of 580 base pairs (bp) in the 3' portion of the mitochondrial cytochrome c oxidase subunit I gene (COI) of 20 samples collected from 16 locales in Japan (the Hokkaido and Honshu Islands) and one in Korea. A total of 27 haplotypes was defined by 23 variable nucleotide sites in the examined COI region. Pairwise population F (ST) estimates and neighbor-joining tree inferred distinct genetic differentiation between the representative samples from the Pacific Ocean off the Eastern Hokkaido Island and the Sea of Japan, while others were intermediate between these two groups. AMOVA also showed a weak but significant differentiation among these three groups. The present results suggest a moderate population structure of hair crab, probably influenced by high gene flow between regional populations due to sea current dependent larval dispersal of this species. PMID:17955293

  13. Molecular phylogenetic analysis of Acridoidea (Orthoptera: Caelifera) based on mitochondrial cytochrome oxidase subunit sequences.

    PubMed

    Dong, Lijun; Shi, Jianping; Zhang, Xiaohong; Zhang, Yulong; Li, Xinjiang; Yin, Hong

    2015-01-01

    Phylogenetic relationships of Acridoidea were examined using mitochondrial cytochrome oxidase subunit sequences (COI, COII and COIII, total 2970bp). Fourteen grasshopper species of thirteen genera from seven families were sequenced to obtain mitochondrial genes data, along with twenty-two grasshopper species were obtained from the GenBank nucleotide database. The purpose of this study is to infer the phylogenetic relationships among families within Acridoidea and testing the monophyly of Acridoidea and each families of it. Phylogenic trees were reconstructed using Maximum Likelihood (ML) and Maximum Parsimony (MP) methods with Tettigonioidea and Gryllotalpoidea as outgroups. The putative initiation codon for COI is CCG in thirteen studied species and ATC in Bryodema luctuosum luctuosum. The 2970 bp concatenated sequences included 1431 conserved sites, 1539 variable sites, and 1216 parsimony-informative sites, the nucleotide compositions were significantly biased toward A and T (68.8%). The resulted phylogenetic trees supported the monophyly of Acridoidea, but did not entirely agree with the traditional morphology-based taxonomic system of grasshoppers within Acridoidea. The monophyly of three families of Acrididae, Catantopidae and Arcypteridae were not supported; Gomphoceridae and Arcypteridae were recovered together as a monophyletic group because of closer phylogenetic relationships; Pyrgomorphidae and Chrotogonidae have the same closer relationships; Pneumoridae, Pyrgomorphidae and Chrotogonidae were the most basal groups; while the taxonomic status of Pamphagidae, which was revealed as a monophyletic group, was not clear in this analysis. Moreover, the results indicate that a phylogeny inferred from the combination of several genes is more reliable than that from only a single gene sequence, and the third codon positions of protein coding genes can improve the topology and node supports of the phylogenetic trees. PMID:26624048

  14. Mitochondrial COI and 16sRNA Evidence for a Single Species Hypothesis of E. vitis, J. formosana and E. onukii in East Asia

    PubMed Central

    Fu, Jian-Yu; Han, Bao-Yu; Xiao, Qiang

    2014-01-01

    Tea green leafhopper is one of the most damaging tea pests in main tea production regions of East Asia. For lack of recognized morphological characters, the dominant species of tea green leafhoppers in Mainland China, Taiwan and Japan have always been named as Empoasca vitis Göthe, Jacobiasca formosana Paoli and Empoasca onukii MATSUDA, respectively. Furthermore, nothing is known about the genetic relationships among them. In this study, we collected six populations from Mainland China, four populations from Japan and one population from Taiwan, and examined the genetic distances in the COI and 16sRNA regions of mtDNA among them. The results showed that the genetic distances based on single gene or the combined sequences among eleven leafhopper populations were 0.3–1.2%, which were all less than the species boundary of 2%. Moreover, there were at least two haplotypes shared by two distinct populations from different regions. The phylogenetic analysis based on single gene or combined sets also supported that tea green leafhoppers from Mainland China, Taiwan and Japan were closely related to each other, and there were at least two specimens from different regions clustered ahead of those from the same region. Therefore, we propose that the view of recognizing the dominant species of tea green leafhoppers in three adjacent tea production regions of East Asia as different species is unreliable or questionable and suggest that they are a single species. PMID:25506929

  15. Mitochondrial COI and 16sRNA evidence for a single species hypothesis of E. vitis, J. formosana and E. onukii in East Asia.

    PubMed

    Fu, Jian-Yu; Han, Bao-Yu; Xiao, Qiang

    2014-01-01

    Tea green leafhopper is one of the most damaging tea pests in main tea production regions of East Asia. For lack of recognized morphological characters, the dominant species of tea green leafhoppers in Mainland China, Taiwan and Japan have always been named as Empoasca vitis Göthe, Jacobiasca formosana Paoli and Empoasca onukii MATSUDA, respectively. Furthermore, nothing is known about the genetic relationships among them. In this study, we collected six populations from Mainland China, four populations from Japan and one population from Taiwan, and examined the genetic distances in the COI and 16sRNA regions of mtDNA among them. The results showed that the genetic distances based on single gene or the combined sequences among eleven leafhopper populations were 0.3-1.2%, which were all less than the species boundary of 2%. Moreover, there were at least two haplotypes shared by two distinct populations from different regions. The phylogenetic analysis based on single gene or combined sets also supported that tea green leafhoppers from Mainland China, Taiwan and Japan were closely related to each other, and there were at least two specimens from different regions clustered ahead of those from the same region. Therefore, we propose that the view of recognizing the dominant species of tea green leafhoppers in three adjacent tea production regions of East Asia as different species is unreliable or questionable and suggest that they are a single species. PMID:25506929

  16. Sequencing mitochondrial DNA polymorphisms by hybridization

    SciTech Connect

    Chee, M.S.; Lockhart, D.J.; Hubbell, E.

    1994-09-01

    We have investigated the use of DNA chips for genetic analysis, using human mitochondrial DNA (mtDNA) as a model. The DNA chips are made up of ordered arrays of DNA oligonucleotide probes, synthesized on a glass substrate using photolithographic techniques. The synthesis site for each different probe is specifically addressed by illumination of the substrate through a photolithographic mask, achieving selective deprotection Nucleoside phosphoramidites bearing photolabile protecting groups are coupled only to exposed sites. Repeated cycles of deprotection and coupling generate all the probes in parallel. The set of 4{sup N} N-mer probes can be synthesized in only 4N steps. Any subset can be synthesized in 4N steps. Any subset can be synthesized in 4N or fewer steps. Sequences amplified from the D-loop region of human mitochondrial DNA (mtDNA) were fluorescently labelled and hybridized to DNA chips containing probes specific for mtDNA. Each nucleotide of a 1.3 kb region spanning the D loop is represented by four probes on the chip. Each probe has a different base at the position of interest: together they comprise a set of A, C, G and T probes which are otherwise identical. In principle, only one probe-target hybrid will be a perfect match. The other three will be single base mismatches. Fluorescence imaging of the hybridized chip allows quantification of hybridization signals. Heterozygous mixtures of sequences can also be characterized. We have developed software to quantitate and interpret the hybridization signals, and to call the sequence automatically. Results of sequence analysis of human mtDNAs will be presented.

  17. Molecular phylogeny of western Atlantic Farfantepenaeus and Litopenaeus shrimp based on mitochondrial 16S partial sequences.

    PubMed

    Maggioni, R; Rogers, A D; Maclean, N; D'Incao, F

    2001-01-01

    Partial sequences for the 16S rRNA mitochondrial gene were obtained from 10 penaeid shrimp species: Farfantepenaeus paulensis, F. brasiliensis, F. subtilis, F. duorarum, F. aztecus, Litopenaeus schmitti, L. setiferus, and Xiphopenaeus kroyeri from the western Atlantic and L. vannamei and L. stylirostris from the eastern Pacific. Sequences were also obtained from an undescribed morphotype of pink shrimp (morphotype II) usually identified as F. subtilis. The phylogeny resulting from the 16S partial sequences showed that these species form two well-supported monophyletic clades consistent with the two genera proposed in a recent systematic review of the suborder Dendrobranchiata. This contrasted with conclusions drawn from recent molecular phylogenetic work on penaeid shrimps based on partial sequences of the mitochondrial COI region that failed to support recent revisions of the Dendrobranchiata based on morphological analysis. Consistent differences observed in the sequences for morphotype II, coupled with previous allozyme data, support the conclusion that this is a previously undescribed species of Farfantepenaeus. PMID:11161743

  18. Simple sequence repeats in bryophyte mitochondrial genomes.

    PubMed

    Zhao, Chao-Xian; Zhu, Rui-Liang; Liu, Yang

    2016-01-01

    Simple sequence repeats (SSRs) are thought to be common in plant mitochondrial (mt) genomes, but have yet to be fully described for bryophytes. We screened the mt genomes of two liverworts (Marchantia polymorpha and Pleurozia purpurea), two mosses (Physcomitrella patens and Anomodon rugelii) and two hornworts (Phaeoceros laevis and Nothoceros aenigmaticus), and detected 475 SSRs. Some SSRs are found conserved during the evolution, among which except one exists in both liverworts and mosses, all others are shared only by the two liverworts, mosses or hornworts. SSRs are known as DNA tracts having high mutation rates; however, according to our observations, they still can evolve slowly. The conservativeness of these SSRs suggests that they are under strong selection and could play critical roles in maintaining the gene functions. PMID:24491104

  19. Phylogenetic relationships among Octopodidae species in coastal waters of China inferred from two mitochondrial DNA gene sequences.

    PubMed

    Lü, Z M; Cui, W T; Liu, L Q; Li, H M; Wu, C W

    2013-01-01

    Octopus in the family Octopodidae (Mollusca: Cephalopoda) has been generally recognized as a "catch-all" genus. The monophyly of octopus species in China's coastal waters has not yet been studied. In this paper, we inferred the phylogeny of 11 octopus species (family Octopodidae) in China's coastal waters using nucleotide sequences of two mitochondrial DNA genes: cytochrome c oxidase subunit I (COI) and 16S rRNA. Sequence analysis of both genes revealed that the 11 species of Octopodidae fell into four distinct groups, which were genetically distant from one another and exhibited identical phylogenetic resolution. The phylogenies indicated strongly that the genus Octopus in China's coastal waters is also not monophyletic, and it is therefore clear that the Octopodidae systematics in this area requires major revision. It is demonstrated that partial sequence information of both the mitochondrial genes 16S rRNA and COI could be used as diagnostic molecular markers in the identification and resolution of the taxonomic ambiguity of Octopodidae species. PMID:24085437

  20. COI barcode versus morphological identification of Culex (Culex) (Diptera: Culicidae) species: a case study using samples from Argentina and Brazil.

    PubMed

    Laurito, Magdalena; Oliveira, Tatiane M P de; Almirón, Walter Ricardo; Sallum, Maria Anice Mureb

    2013-01-01

    Sequences of the cytochrome c oxidase subunit I (COI) mitochondrial gene from adults of 22 Culex (Culex) species from Argentina and Brazil were employed to assess species identification and to test the usefulness of COI for barcoding using the best close match (BCM) algorithm. A pairwise Kimura two-parameter distance matrix including the mean intra and interspecific distances for 71 COI barcode sequences was constructed. Of the 12 COI lineages recovered in the Neighbour-joining topology, five confirmed recognised morphological species (Cx. acharistus, Cx. chidesteri, Cx. dolosus, Cx. lygrus and Cx. saltanensis) with intraspecific divergences lower than 1.75%. Cx. bilineatus is formally resurrected from the synonymy of Cx. dolosus. Cx. maxi , Cx. surinamensis and the Coronator group species included were clustered into an unresolved lineage. The intraspecific distance of Cx. pipiens (3%) was almost twice the interspecific between it and Cx. quinquefasciatus (1.6%). Regarding the BCM criteria, the COI barcode successfully identified 69% of all species. The rest of the sequences, approximately 10%, 18% and 3%, remained as ambiguously, mis and unidentified, respectively. The COI barcode does not contain enough information to distinguish Culex (Cux.) species. PMID:24473810

  1. COI barcode versus morphological identification of Culex ( Culex ) (Diptera: Culicidae) species: a case study using samples from Argentina and Brazil

    PubMed Central

    Laurito, Magdalena; de Oliveira, Tatiane MP; Almirón, Walter Ricardo; Sallum, Maria Anice Mureb

    2013-01-01

    Sequences of the cytochrome c oxidase subunit I (COI) mitochondrial gene from adults of 22 Culex ( Culex ) species from Argentina and Brazil were employed to assess species identification and to test the usefulness of COI for barcoding using the best close match (BCM) algorithm. A pairwise Kimura two-parameter distance matrix including the mean intra and interspecific distances for 71 COI barcode sequences was constructed. Of the 12 COI lineages recovered in the Neighbour-joining topology, five confirmed recognised morphological species ( Cx. acharistus , Cx. chidesteri , Cx. dolosus , Cx. lygrus and Cx. saltanensis ) with intraspecific divergences lower than 1.75%. Cx. bilineatus is formally resurrected from the synonymy of Cx. dolosus . Cx. maxi , Cx. surinamensis and the Coronator group species included were clustered into an unresolved lineage. The intraspecific distance of Cx. pipiens (3%) was almost twice the interspecific between it and Cx. quinquefasciatus (1.6%). Regarding the BCM criteria, the COI barcode successfully identified 69% of all species. The rest of the sequences, approximately 10%, 18% and 3%, remained as ambiguously, mis and unidentified, respectively. The COI barcode does not contain enough information to distinguish Culex ( Cux. ) species. PMID:24473810

  2. Sequencing and analysis of the complete mitochondrial genome in Anopheles culicifacies species B (Diptera: Culicidae).

    PubMed

    Hua, Ya-Qiong; Yan, Zhen-Tian; Fu, Wen-Bo; He, Qi-Yi; Zhou, Yong; Chen, Bin

    2016-07-01

    The complete mitochondrial genome sequence of Anopheles culicifacial species B was sequenced in this study. The length of the mitochondrial genome is 15 330 bp, which contains 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, and a non-coding control region. The gene order and the gene composition are consistent with those previously reported for other mosquito species. The initiation codon of the PCGs complies with the ATN rule except for COI using TCG and ND5 using GTG as a start codon, and the termination codon is TAA or imcomplete, an only T. The total base composition is 40.4% A, 38.1% T, 12.4% C, and 9.1% G. The phylogenetic tree based on the sequences of 13 protein-coding genes showed that these species were classified into two clades, corresponding to the subgenus Cellia and subgenus Nyssorhynchus. An. culicifacies species B of Myzomyia Series was clustered with An. gambiae of Pyretophorus Series with a high bootstrap value of 100%. The complete mitogenome data can provide a basis for molecular identification and phylogenetic studies of mosquito species. PMID:26114319

  3. The complete mitochondrial genome sequence of Plotosus japonicus (Siluriformes: Plotosidae) and phylogenetic studies of Siluriformes.

    PubMed

    Liu, Yan-Hua; Zhang, Ming-Hai

    2016-07-01

    In this study, we first determined and described the complete mitogenome sequence of Plotosus japonicus, which is a kind of marine fish widely distributed in Northwest Pacific. The complete mitogenome sequence is 16 472 bp in length, containing 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes, a putative control region (CR) and a light-strand replication origin (OL). The overall base composition is 31.9% A, 24.7% T, 27.7% C, 15.7% G, with a slight AT bias (56.6%), similar to other vertebrate mitochondrial genomes. All the protein-coding genes use the initiation codon ATG except COI uses GTG. Most of them have TAA or TAG as the stop codon, while COII and ND4 use AGA, COIII and Cytb use an incomplete stop codon TA or T. Maximum Likelihood (ML) tree and Bayesian analyses based on concatenated nucleotide sequences of 12 mitochondrial protein-coding genes were constructed and both yielded identical topologies. These results are expected to provide useful molecular data for species identification and further phylogenetic studies of Siluriformes. PMID:26122342

  4. Basal divergence of Eriophyoidea (Acariformes, Eupodina) inferred from combined partial COI and 28S gene sequences and CLSM genital anatomy.

    PubMed

    Chetverikov, P E; Cvrković, T; Makunin, A; Sukhareva, S; Vidović, B; Petanović, R

    2015-10-01

    Eriophyoids are an ancient group of highly miniaturized, morphologically simplified and diverse phytoparasitic mites. Their possible numerous host-switch events have been accompanied by considerable homoplastic evolution. Although several morphological cladistic and molecular phylogenetic studies attempted to reconstruct phylogeny of Eriophyoidea, the major lineages of eriophyoids, as well as the evolutionary relationships between them, are still poorly understood. New phylogenetically informative data have been provided by the recent discovery of the early derivative pentasetacine genus Loboquintus, and observations on the eriophyoid reproductive anatomy. Herein, we use COI and D1-2 rRNA data of 73 eriophyoid species (including early derivative pentasetacines) from Europe, the Americas and South Africa to reconstruct part of the phylogeny of the superfamily, and infer on the basal divergence of eriophyoid taxa. In addition, a comparative CLSM study of the female internal genitalia was undertaken in order to find putative apomorphies, which can be used to improve the taxonomy of Eriophyoidea. The following molecular clades, marked by differences in genital anatomy and prodorsal shield setation, were found in our analyses: Loboquintus(Pentasetacus((Eriophyidae + Diptilomiopidae)(Phytoptidae-1, Phytoptidae-2))). The results of this study suggest that the superfamily Eriophyoidea comprises basal paraphyletic pentasetacines (Loboquintus and Pentasetacus), and two large monophyletic groups: Eriophyidae s.l. [containing paraphyletic Eriophyidae sensu Amrine et al. 2003 (=Eriophyidae s.str.) and Diptilomiopidae sensu Amrine et al. 2003] and Phytoptidae s.l. [containing monophyletic Phytoptidae sensu Boczek et al. 1989 (=Phytoptidae s.str.) and Nalepellidae sensu Boczek et al. 1989]. Putative morphological apomorphies (including genital and gnathosomal characters) supporting the clades revealed in molecular analyses are briefly discussed. PMID:26126634

  5. The complete mitochondrial genome sequence of Hepatozoon catesbianae (Apicomplexa: Coccidia: Adeleorina), a blood parasite of the green frog, Lithobates (formerly Rana) clamitans.

    PubMed

    Leveille, Alexandre N; Ogedengbe, Mosun E; Hafeez, Mian A; Tu, Hsiang-Hsien Abby; Barta, John R

    2014-10-01

    A complete mitochondrial genome for the blood parasite Hepatozoon catesbianae (Alveolata; Apicomplexa; Coccidia; Adeleorina; Hepatozoidae) was obtained through PCR amplification and direct sequencing of resulting PCR products. The mitochondrial genome of H. catesbianae is 6,397 bp in length and contains 3 protein-coding genes (cytochrome c oxidase subunit I [COI]; cytochrome c oxidase subunit III [COIII]; and cytochrome B [CytB]). Sequence similarities to previously published mitochondrial genomes of other apicomplexan parasites permitted annotation of 23 putative rDNA fragments in the mitochondrial genome of H. catesbianae, 14 large subunit rDNA fragments, and 9 small subunit rDNA fragments. Sequences corresponding to rDNA fragments RNA5, RNA8, RNA11, and RNA19 of Plasmodium falciparum were not identified in the mitrochondrial genome sequence of H. catesbianae. Although the presence of 3 protein-coding regions and numerous putative rDNA fragments is a feature typical for apicomplexan mitochondrial genomes, the mitochondrial genome of H. catesbianae possesses a structure and gene organization that is distinct among the Apicomplexa. This is the first complete mitochondrial genome sequence obtained from any apicomplexan parasite in the suborder Adeleorina. PMID:24820055

  6. Molecular phylogeny and evolution of Scomber (Teleostei: Scombridae) based on mitochondrial and nuclear DNA sequences

    NASA Astrophysics Data System (ADS)

    Cheng, Jiao; Gao, Tianxiang; Miao, Zhenqing; Yanagimoto, Takashi

    2011-03-01

    A molecular phylogenetic analysis of the genus Scomber was conducted based on mitochondrial (COI, Cyt b and control region) and nuclear (5S rDNA) DNA sequence data in multigene perspective. A variety of phylogenetic analytic methods were used to clarify the current taxonomic Classification and to assess phylogenetic relationships and the evolutionary history of this genus. The present study produced a well-resolved phylogeny that strongly supported the monophyly of Scomber. We confirmed that S. japonicus and S. colias were genetically distinct. Although morphologically and ecologically similar to S. colias, the molecular data showed that S. japonicus has a greater molecular affinity with S. australasicus, which conflicts with the traditional taxonomy. This phylogenetic pattern was corroborated by the mtDNA data, but incompletely by the nuclear DNA data. Phylogenetic concordance between the mitochondrial and nuclear DNA regions for the basal nodes Supports an Atlantic origin for Scomber. The present-day geographic ranges of the species were compared with the resultant molecular phylogeny derived from partition Bayesian analyses of the combined data sets to evaluate possible dispersal routes of the genus. The present-day geographic distribution of Scomber species might be best ascribed to multiple dispersal events. In addition, our results suggest that phylogenies derived from multiple genes and long sequences exhibited improved phylogenetic resolution, from which we conclude that the phylogenetic reconstruction is a reliable representation of the evolutionary history of Scomber.

  7. Diagnosis of mitochondrial disorders by concomitant next-generation sequencing of the exome and mitochondrial genome

    PubMed Central

    Dinwiddie, Darrell L.; Smith, Laurie D.; Miller, Neil A.; Atherton, Andrea M.; Farrow, Emily G.; Strenk, Meghan E.; Soden, Sarah E.; Saunders, Carol J.; Kingsmore, Stephen F.

    2015-01-01

    Mitochondrial diseases are notoriously difficult to diagnose due to extreme locus and allelic heterogeneity, with both nuclear and mitochondrial genomes potentially liable. Using exome sequencing we demonstrate the ability to rapidly and cost effectively evaluate both the nuclear and mitochondrial genomes to obtain a molecular diagnosis for four patients with three distinct mitochondrial disorders. One patient was found to have Leigh syndrome due to a mutation in MT-ATP6, two affected siblings were discovered to be compound heterozygous for mutations in the NDUFV1 gene, which causes mitochondrial complex I deficiency, and one patient was found to have coenzyme Q10 deficiency due to compound heterozygous mutations in COQ2. In all cases conventional diagnostic testing failed to identify a molecular diagnosis. We suggest that additional studies should be conducted to evaluate exome sequencing as a primary diagnostic test for mitochondrial diseases, including those due to mtDNA mutations. PMID:23631824

  8. Complete Mitochondrial Genome Sequence of the Pezizomycete Pyronema confluens

    PubMed Central

    2016-01-01

    The complete mitochondrial genome of the ascomycete Pyronema confluens has been sequenced. The circular genome has a size of 191 kb and contains 48 protein-coding genes, 26 tRNA genes, and two rRNA genes. Of the protein-coding genes, 14 encode conserved mitochondrial proteins, and 31 encode predicted homing endonuclease genes. PMID:27174271

  9. PCR Primers for Metazoan Mitochondrial 12S Ribosomal DNA Sequences

    PubMed Central

    Machida, Ryuji J.; Kweskin, Matthew; Knowlton, Nancy

    2012-01-01

    Background Assessment of the biodiversity of communities of small organisms is most readily done using PCR-based analysis of environmental samples consisting of mixtures of individuals. Known as metagenetics, this approach has transformed understanding of microbial communities and is beginning to be applied to metazoans as well. Unlike microbial studies, where analysis of the 16S ribosomal DNA sequence is standard, the best gene for metazoan metagenetics is less clear. In this study we designed a set of PCR primers for the mitochondrial 12S ribosomal DNA sequence based on 64 complete mitochondrial genomes and then tested their efficacy. Methodology/Principal Findings A total of the 64 complete mitochondrial genome sequences representing all metazoan classes available in GenBank were downloaded using the NCBI Taxonomy Browser. Alignment of sequences was performed for the excised mitochondrial 12S ribosomal DNA sequences, and conserved regions were identified for all 64 mitochondrial genomes. These regions were used to design a primer pair that flanks a more variable region in the gene. Then all of the complete metazoan mitochondrial genomes available in NCBI's Organelle Genome Resources database were used to determine the percentage of taxa that would likely be amplified using these primers. Results suggest that these primers will amplify target sequences for many metazoans. Conclusions/Significance Newly designed 12S ribosomal DNA primers have considerable potential for metazoan metagenetic analysis because of their ability to amplify sequences from many metazoans. PMID:22536450

  10. The complete mitochondrial genome sequence of Emperor Penguins (Aptenodytes forsteri).

    PubMed

    Xu, Qiwu; Xia, Yan; Dang, Xiao; Chen, Xiaoli

    2016-09-01

    The emperor penguin (Aptenodytes forsteri) is the largest living species of penguin. Herein, we first reported the complete mitochondrial genome of emperor penguin. The mitochondrial genome is a circular molecule of 17 301 bp in length, consisting of 13 protein-coding genes, 22 tRNA genes, two rRNA, and one control region. To verify the accuracy and the utility of new determined mitogenome sequences, we constructed the species phylogenetic tree of emperor penguin together with 10 other closely species. This is the second complete mitochondrial genome of penguin, and this is going to be an important data to study mitochondrial evolution of birds. PMID:26403091

  11. Sequence analysis of the complete mitochondrial genome of Youxian sheldrake.

    PubMed

    He, Shao-Ping; Liu, Li-Li; Yu, Qi-Fang; Li, Si; He, Jian-Hua

    2016-01-01

    Youxian sheldrake is excellent native breeds in Hunan province in China. The complete mitochondrial (mt) genome sequence plays an important role in the accurate determination of phylogenetic relationships among metazoans. This is the first study to determine the complete mitochondrial genome sequence of Youxian sheldrake using PCR-based amplification and Sanger sequencing. The characteristic of the entire mitochondrial genome was analyzed in detail, the total length of the mitogenome is 16,605 bp, with the base composition of 29.21% A, 22.18% T, 32.84% C, 15.77% G in the Youxian sheldrake. It contained 2 ribosomal RNA genes, 13 protein-coding genes, 22 transfer RNA genes and a major non-coding control region (D-loop region). The complete mitochondrial genome sequence of Youxian sheldrake provided an important data for further study of the phylogenetics of poultry, and available data for the genetics and breeding. PMID:25090395

  12. Mitochondrial DNA sequence evolution in the Arctoidea.

    PubMed Central

    Zhang, Y P; Ryder, O A

    1993-01-01

    Some taxa in the superfamily Arctoidea, such as the giant panda and the lesser panda, have presented puzzles to taxonomists. In the present study, approximately 397 bases of the cytochrome b gene, 364 bases of the 12S rRNA gene, and 74 bases of the tRNA(Thr) and tRNA(Pro) genes from the giant panda, lesser panda, kinkajou, raccoon, coatimundi, and all species of the Ursidae were sequenced. The high transition/transversion ratios in cytochrome b and RNA genes prior to saturation suggest that the presumed transition bias may represent a trend for some mammalian lineages rather than strictly a primate phenomenon. Transversions in the 12S rRNA gene accumulate in arctoids at about half the rate reported for artiodactyls. Different arctoid lineages evolve at different rates: the kinkajou, a procyonid, evolves the fastest, 1.7-1.9 times faster than the slowest lineage that comprises the spectacled and polar bears. Generation-time effect can only partially explain the different rates of nucleotide substitution in arctoids. Our results based on parsimony analysis show that the giant panda is more closely related to bears than to the lesser panda; the lesser panda is neither closely related to bears nor to the New World procyonids. The kinkajou, raccoon, and coatimundi diverged from each other very early, even though they group together. The polar bear is closely related to the spectacled bear, and they began to diverge from a common mitochondrial ancestor approximately 2 million years ago. Relationships of the remaining five bear species are derived. PMID:8415740

  13. Mitochondrial DNA sequences in the nuclear genome of a locust.

    PubMed

    Gellissen, G; Bradfield, J Y; White, B N; Wyatt, G R

    The endosymbiotic theory of the origin of mitochondria is widely accepted, and implies that loss of genes from the mitochondria to the nucleus of eukaryotic cells has occurred over evolutionary time. However, evidence at the DNA sequence level for gene transfer between these organelles has so far been limited to a single example, the demonstration that a mitochondrial ATPase subunit gene of Neurospora crassa has an homologous partner in the nuclear genome. From a gene library of the insect, Locusta migratoria, we have now isolated two clones, representing separate fragments of nuclear DNA, which contain sequences homologous to the mitochondrial genes for ribosomal RNA, as well as regions of homology with highly repeated nuclear sequences. The results suggest the transfer of sequences between mitochondrial and nuclear genomes, followed by evolutionary divergence. PMID:6298629

  14. A novel mutation MT-COIII m.9267G>C and MT-COI m.5913G>A mutation in mitochondrial genes in a Tunisian family with maternally inherited diabetes and deafness (MIDD) associated with sever nephropathy

    SciTech Connect

    Tabebi, Mouna; Mkaouar-Rebai, Emna; Mnif, Mouna; Kallabi, Fakhri; Ben Mahmoud, Afif; Ben Saad, Wafa; Charfi, Nadia; Keskes-Ammar, Leila; Kamoun, Hassen; Abid, Mohamed; Fakhfakh, Faiza

    2015-04-10

    Mitochondrial diabetes (MD) is a heterogeneous disorder characterized by a chronic hyperglycemia, maternal transmission and its association with a bilateral hearing impairment. Several studies reported mutations in mitochondrial genes as potentially pathogenic for diabetes, since mitochondrial oxidative phosphorylation plays an important role in glucose-stimulated insulin secretion from beta cells. In the present report, we studied a Tunisian family with mitochondrial diabetes (MD) and deafness associated with nephropathy. The mutational analysis screening revealed the presence of a novel heteroplasmic mutation m.9276G>C in the mitochondrial COIII gene, detected in mtDNA extracted from leukocytes of a mother and her two daughters indicating that this mutation is maternally transmitted and suggest its implication in the observed phenotype. Bioinformatic tools showed that m.9267G>C mutation (p.A21P) is « deleterious » and it can modify the function and the stability of the MT-COIII protein by affecting the assembly of mitochondrial COX subunits and the translocation of protons then reducing the activity of the respective OXPHOS complexes of ATP synthesis. The nonsynonymous mutation (p.A21P) has not been reported before, it is the first mutation described in the COXIII gene which is related to insulin dependent mitochondrial diabetes and deafness and could be specific to the Tunisian population. The m.9267G>C mutation was present with a nonsynonymous inherited mitochondrial homoplasmic variation MT-COI m.5913 G>A (D4N) responsible of high blood pressure, a clinical feature detected in all explored patients. - Highlights: • MT-COX3 m.9267G>C (p.A21P), heteroplasmic substitution, is not reported in any database. • m.9267G>C can be responsible of the MIDD associated with nephropaty. • This substitution can modify the function and the stability of the MT-CO3 protein. • This substitution can modify MT-CO3 structure (2D and 3D). • MT-COX3 m.9267G>C is associated

  15. DNA Barcoding the Medusozoa using mtCOI

    NASA Astrophysics Data System (ADS)

    Ortman, Brian D.; Bucklin, Ann; Pagès, Francesc; Youngbluth, Marsh

    2010-12-01

    The Medusozoa are a clade within the Cnidaria comprising the classes Hydrozoa, Scyphozoa, and Cubozoa. Identification of medusozoan species is challenging, even for taxonomic experts, due to their fragile forms and complex, morphologically-distinct life history stages. In this study 231 sequences for a portion of the mitochondrial Cytochrome Oxidase I (mtCOI) gene were obtained from 95 species of Medusozoans including; 84 hydrozoans (61 siphonophores, eight anthomedusae, four leptomedusae, seven trachymedusae, and four narcomedusae), 10 scyphozoans (three coronatae, four semaeostomae, two rhizostomae, and one stauromedusae), and one cubozoan. This region of mtCOI has been used as a DNA barcode (i.e., a molecular character for species recognition and discrimination) for a diverse array of taxa, including some Cnidaria. Kimura 2-parameter (K2P) genetic distances between sequence variants within species ranged from 0 to 0.057 (mean 0.013). Within the 13 genera for which multiple species were available, K2P distance between congeneric species ranged from 0.056 to 0.381. A cluster diagram generated by Neighbor Joining (NJ) using K2P distances reliably clustered all barcodes of the same species with ≥99% bootstrap support, ensuring accurate identification of species. Intra- and inter-specific variation of the mtCOI gene for the Medusozoa are appropriate for this gene to be used as a DNA barcode for species-level identification, but not for phylogenetic analysis or taxonomic classification of unknown sequences at higher taxonomic levels. This study provides a set of molecular tools that can be used to address questions of speciation, biodiversity, life-history, and population boundaries in the Medusozoa.

  16. Phylogenetic Relationships of Japanese Auritibicen Species (Hemiptera: Cicadidae: Cryptotympanini) Inferred from Mitochondrial and Nuclear Gene Sequences.

    PubMed

    Sota, Teiji; Kojima, Takanori; Lee, Young June; Lin, Chung-Ping

    2016-08-01

    We investigated the phylogenetic relationships and divergence times within the genus Auritibicen(Cicadidae: Cicadinae: Cryptotympanini), analyzing five Japanese species (A. japonicus, A. bihamatus,A. kyushyuensis, A. esakii and A. flammatus) and three species from East Asian mainland and Taiwan (A. atrofasciatus, A. intermedius and A. chujoi) using mitochondrial cytochrome oxidase subunit I (COI) and nuclear elongation factor 1-alpha (EF-1a) gene sequences. Although the EF-1a gene tree did not resolve the relationships among these Auritibicen species, the trees based on COI gene and the combined data set showed that Japanese taxa comprised three distinct lineages: the individual species A. flammatus and A. bihamatus, and the A. japonicus group, comprising A. japonicus, A. esakii and A. kyushyuensis from Japan and A. intermedius from Korea. In A. kyushyuensis, which comprises three populations in Kyushu, western Honshu and Shikoku, the specimens from western Honshu and Shikoku were closely related to each other, but not to the specimen from Kyushu; instead, they were sister to the Korean A. intermedius. The incongruence between the gene tree and species tree necessitates further population genetic and morphological studies to confirm the classification and species status of the western Honshu and Shikoku populations of A. kyushyuensis, which were originally described as two independent species. Divergence time estimation suggested that the most recent common ancestor of Auritibicen species studied dated back to the late Pliocene and that the species of the A. japonicus group diverged during the mid Pleistocene. Thus, the Pleistocene climatic fluctuation may have promoted the divergence of the Auritibicen species. PMID:27498799

  17. The mitochondrial genome sequence of the Tasmanian tiger (Thylacinus cynocephalus)

    PubMed Central

    Miller, Webb; Drautz, Daniela I.; Janecka, Jan E.; Lesk, Arthur M.; Ratan, Aakrosh; Tomsho, Lynn P.; Packard, Mike; Zhang, Yeting; McClellan, Lindsay R.; Qi, Ji; Zhao, Fangqing; Gilbert, M. Thomas P.; Dalén, Love; Arsuaga, Juan Luis; Ericson, Per G.P.; Huson, Daniel H.; Helgen, Kristofer M.; Murphy, William J.; Götherström, Anders; Schuster, Stephan C.

    2009-01-01

    We report the first two complete mitochondrial genome sequences of the thylacine (Thylacinus cynocephalus), or so-called Tasmanian tiger, extinct since 1936. The thylacine's phylogenetic position within australidelphian marsupials has long been debated, and here we provide strong support for the thylacine's basal position in Dasyuromorphia, aided by mitochondrial genome sequence that we generated from the extant numbat (Myrmecobius fasciatus). Surprisingly, both of our thylacine sequences differ by 11%–15% from putative thylacine mitochondrial genes in GenBank, with one of our samples originating from a direct offspring of the previously sequenced individual. Our data sample each mitochondrial nucleotide an average of 50 times, thereby providing the first high-fidelity reference sequence for thylacine population genetics. Our two sequences differ in only five nucleotides out of 15,452, hinting at a very low genetic diversity shortly before extinction. Despite the samples’ heavy contamination with bacterial and human DNA and their temperate storage history, we estimate that as much as one-third of the total DNA in each sample is from the thylacine. The microbial content of the two thylacine samples was subjected to metagenomic analysis, and showed striking differences between a wild-captured individual and a born-in-captivity one. This study therefore adds to the growing evidence that extensive sequencing of museum collections is both feasible and desirable, and can yield complete genomes. PMID:19139089

  18. The mitochondrial genome sequence of the Tasmanian tiger (Thylacinus cynocephalus).

    PubMed

    Miller, Webb; Drautz, Daniela I; Janecka, Jan E; Lesk, Arthur M; Ratan, Aakrosh; Tomsho, Lynn P; Packard, Mike; Zhang, Yeting; McClellan, Lindsay R; Qi, Ji; Zhao, Fangqing; Gilbert, M Thomas P; Dalén, Love; Arsuaga, Juan Luis; Ericson, Per G P; Huson, Daniel H; Helgen, Kristofer M; Murphy, William J; Götherström, Anders; Schuster, Stephan C

    2009-02-01

    We report the first two complete mitochondrial genome sequences of the thylacine (Thylacinus cynocephalus), or so-called Tasmanian tiger, extinct since 1936. The thylacine's phylogenetic position within australidelphian marsupials has long been debated, and here we provide strong support for the thylacine's basal position in Dasyuromorphia, aided by mitochondrial genome sequence that we generated from the extant numbat (Myrmecobius fasciatus). Surprisingly, both of our thylacine sequences differ by 11%-15% from putative thylacine mitochondrial genes in GenBank, with one of our samples originating from a direct offspring of the previously sequenced individual. Our data sample each mitochondrial nucleotide an average of 50 times, thereby providing the first high-fidelity reference sequence for thylacine population genetics. Our two sequences differ in only five nucleotides out of 15,452, hinting at a very low genetic diversity shortly before extinction. Despite the samples' heavy contamination with bacterial and human DNA and their temperate storage history, we estimate that as much as one-third of the total DNA in each sample is from the thylacine. The microbial content of the two thylacine samples was subjected to metagenomic analysis, and showed striking differences between a wild-captured individual and a born-in-captivity one. This study therefore adds to the growing evidence that extensive sequencing of museum collections is both feasible and desirable, and can yield complete genomes. PMID:19139089

  19. Mitochondrial Genome Sequences Effectively Reveal the Phylogeny of Hylobates Gibbons

    PubMed Central

    Chan, Yi-Chiao; Roos, Christian; Inoue-Murayama, Miho; Inoue, Eiji; Shih, Chih-Chin; Pei, Kurtis Jai-Chyi; Vigilant, Linda

    2010-01-01

    Background Uniquely among hominoids, gibbons exist as multiple geographically contiguous taxa exhibiting distinctive behavioral, morphological, and karyotypic characteristics. However, our understanding of the evolutionary relationships of the various gibbons, especially among Hylobates species, is still limited because previous studies used limited taxon sampling or short mitochondrial DNA (mtDNA) sequences. Here we use mtDNA genome sequences to reconstruct gibbon phylogenetic relationships and reveal the pattern and timing of divergence events in gibbon evolutionary history. Methodology/Principal Findings We sequenced the mitochondrial genomes of 51 individuals representing 11 species belonging to three genera (Hylobates, Nomascus and Symphalangus) using the high-throughput 454 sequencing system with the parallel tagged sequencing approach. Three phylogenetic analyses (maximum likelihood, Bayesian analysis and neighbor-joining) depicted the gibbon phylogenetic relationships congruently and with strong support values. Most notably, we recover a well-supported phylogeny of the Hylobates gibbons. The estimation of divergence times using Bayesian analysis with relaxed clock model suggests a much more rapid speciation process in Hylobates than in Nomascus. Conclusions/Significance Use of more than 15 kb sequences of the mitochondrial genome provided more informative and robust data than previous studies of short mitochondrial segments (e.g., control region or cytochrome b) as shown by the reliable reconstruction of divergence patterns among Hylobates gibbons. Moreover, molecular dating of the mitogenomic divergence times implied that biogeographic change during the last five million years may be a factor promoting the speciation of Sundaland animals, including Hylobates species. PMID:21203450

  20. The complete mitochondrial genome sequence of an Isospora sp. (Eimeriidae, Eucoccidiorida, Coccidiasina, Apicomplexa) causing systemic coccidiosis in domestic Canaries (Serinus canaria Linn.).

    PubMed

    Ogedengbe, Mosun E; Brash, Marina; Barta, John R

    2016-09-01

    We report a complete mitochondrial genome sequence for an Isospora sp. causing systemic coccidiosis in canaries, Serinus canaria. The A + T rich (65.2%) genome was 6216 bp in length and possessed 3 protein-coding genes, (COI; COIII and CytB), 19 LSU and 14 SSU rDNA fragments, including 1 newly identified putative LSU fragment. Arrangement of coding regions was identical to that of available Eimeria sp. mt genomes and start codon usage for protein-coding genes was conventional. The similar mitochondrial genome sequences and structures of Isospora and Eimeria species confirm the close relationship between these eimeriid genera of apicomplexan parasites. PMID:25714148

  1. The complete mitochondrial genome sequence of Diaphorina citri (Hemiptera: Psyllidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The first complete mitochondrial genome (mitogenome) sequence of Asian citrus psyllid, Diaphorina citri (Hemiptera: Psyllidae), from Guangzhou, China is presented. The circular mitogenome is 14,996 bp in length with an A+T content of 74.5%, and contains 13 protein-coding genes (PCGs), 22 tRNA genes ...

  2. Mitochondrial control region sequences from an Egyptian population sample.

    PubMed

    Saunier, Jessica L; Irwin, Jodi A; Strouss, Katharine M; Ragab, Hisham; Sturk, Kimberly A; Parsons, Thomas J

    2009-06-01

    Entire mitochondrial control region data was generated for 277 unrelated Egyptian individuals. High-throughput robotics, a redundant sequencing approach, and several quality control checks were implemented to generate a high-quality database. The data presented here will augment the limited Egyptian mtDNA reference data currently available for forensic comparisons. PMID:19414160

  3. The complete mitochondrial genome sequence of the budgerigar, Melopsittacus undulatus.

    PubMed

    Guan, Xiaojing; Xu, Jun; Smith, Edward J

    2016-01-01

    Here, we describe the budgie's mitochondrial genome sequence, a resource that can facilitate this parrot's use as a model organism as well as for determining its phylogenetic relatedness to other parrots/Psittaciformes. The estimated total length of the sequence was 18,193 bp. In addition to the to the 13 protein and tRNA and rRNA coding regions, the sequence also includes a duplicated hypervariable region, a feature unique to only a few birds. The two hypervariable regions shared a sequence identity of about 86%. PMID:24660934

  4. COI Structural Analysis Presentation

    NASA Technical Reports Server (NTRS)

    Cline, Todd; Stahl, H. Philip (Technical Monitor)

    2001-01-01

    This report discusses the structural analysis of the Next Generation Space Telescope Mirror System Demonstrator (NMSD) developed by Composite Optics Incorporated (COI) in support of the Next Generation Space Telescope (NGST) project. The mirror was submitted to Marshall Space Flight Center (MSFC) for cryogenic testing and evaluation. Once at MSFC, the mirror was lowered to approximately 40 K and the optical surface distortions were measured. Alongside this experiment, an analytical model was developed and used to compare to the test results. A NASTRAN finite element model was provided by COI and a thermal model was developed from it. Using the thermal model, steady state nodal temperatures were calculated based on the predicted environment of the large cryogenic test chamber at MSFC. This temperature distribution was applied in the structural analysis to solve for the deflections of the optical surface. Finally, these deflections were submitted for optical analysis and comparison to the interferometer test data.

  5. Complete mitochondrial genome sequence of Grundulus bogotensis (Humboldt, 1821).

    PubMed

    Isaza, Juan P; Alzate, Juan F; Maldonado-Ocampo, Javier A

    2016-05-01

    The Grundulus bogotensis is an Endangered fish in Colombia. In this study, we report the complete mitochondrial DNA sequences of G. bogotensis. The entire genome comprised 17.123 bases and a GC content of 39.84%. The mitogenome sequence of G. bogotensis would contribute to better understand population genetics, and evolution of this lineage. Molecule was deposited at the GenBank database under the accession number KM677190. PMID:25405907

  6. Complete mitochondrial genome sequence of Romanogobio tenuicorpus (Amur whitefin gudgeon).

    PubMed

    Dong, Fang; Tong, Guang-Xiang; Kuang, You-Yi; Sun, Xiao-Wen

    2015-01-01

    Amur whitefin gudgeon (Romanogobio tenuicorpus) belongs to the family Cyprinidae, it is freshwater aquaculture species in China. In the report, we determined the complete mitochondrial genome sequence of Romanogobio tenuicorpus, which is 16,600 bp long circular molecule with 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and a control region, the conserved sequence blocks, CSB1, CSB2 and CSB3 were also detected. PMID:24409923

  7. Molecular phylogeny of Diabrotica beetles (Coleoptera: Chrysomelidae) inferred from analysis of combined mitochondrial and nuclear DNA sequences.

    PubMed

    Clark, T L; Meinke, L J; Foster, J E

    2001-08-01

    The phylogenetic relationships of thirteen Diabrotica (representing virgifera and fucata species groups) and two outgroup Acalymma beetle species (Coleoptera: Chrysomelidae) were inferred from the phylogenetic analysis of a combined data set of 1323 bp of mitochondrial DNA (mtDNA) cytochrome oxidase subunit 1 (COI) and the entire second internal transcribed spacer region (ITS-2) of nuclear ribosomal DNA of 362 characters. Species investigated were D. adelpha, D. balteata, D. barberi, D. cristata, D. lemniscata, D. longicornis, D. porracea, D. speciosa, D. undecimpunctata howardi, D. u. undecimpunctata, D. virgifera virgifera, D. v. zeae, D. viridula, and outgroup A. blandulum and A. vittatum. Maximum parsimony (MP), minimum evolution (ME), and maximum likelihood (ML) analyses of combined COI and ITS-2 sequences clearly place species into their traditional morphological species groups with MP and ME analyses resulting in identical topologies. Results generally confer with a prior work based on allozyme data, but within the virgifera species group, D. barberi and D. longicornis strongly resolve as sister taxa as well as monophyletic with the neotropical species, D. viridula, D. cristata and D. lemniscata also resolve as sister taxa. Both relationships are not in congruence with the prior allozyme-based hypothesis. Within the fucata species group, D. speciosa and D. balteata resolve as sister taxa. Results also strongly supported the D. virgifera and D. undecimpunctata subspecies complexes. Our proposed phylogeny provides some insight into current hypotheses regarding distribution status and evolution of various life history traits for Diabrotica. PMID:11520353

  8. Comparison of the northern snakehead (Channa argus) and blotched snakehead (Channa maculata) and their reciprocal hybrids (C. maculata ♀ × C. argus ♂ and C. argus ♀ × C. maculata ♂) based on complete mitochondrial DNA sequences.

    PubMed

    Xincheng, Zhang; Xinping, Zhu; Kunci, Chen; Jian, Zhao; Qing, Luo; Xiaoyou, Hong

    2015-01-01

    The complete mitochondrial DNA of Channa argus, Channa maculata, C. maculate ♀ × C. argus ♂ and C. argus ♀ × C. maculata ♂ were sequenced to characterize and compare their mitochondrial genomes. The lengths were 16,558, 16,559, 16,558 and 16,559 bp respectively. Start codon of 13 protein-coding genes was ATG, except that COI was GTG. The control region of the mitogenome were 907, 908, 907 and 908 bp in C. argus, C. maculata and their reciprocal hybrids (C. argus ♀ × C. maculata ♂ and C. maculate ♀ × C. argus ♂), respectively. PMID:24409853

  9. Population dynamics of the Bemisia tabaci B and Q biotypes as determined by microsatellite marker and mitochondrial COI sequence comparisons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The current understanding of Bemisia tabaci phylogenetics suggests that this organism exists as a cryptic species complex. This complex is composed of what are most commonly called biotypes, at least some of which appear to have pre and/or post zygotic barriers to hybridization. Numerous studies hav...

  10. THE PHYLOGENETIC RELATIONSHIPS OF WHALE-FALL VESICOMYID CLAMS BASED ON MITOCHONDRIAL COI DNA SEQUENCES. (U915626)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  11. Relationships and origin of endemic Lake Baikal gastropods (Caenogastropoda: Rissooidea) based on mitochondrial DNA sequences.

    PubMed

    Hausdorf, Bernhard; Röpstorf, Peter; Riedel, Frank

    2003-03-01

    The phylogenetic relationships and the origin of two groups of rissooid freshwater snails endemic to Lake Baikal were investigated using partial mitochondrial COI, 12S rDNA, and 16S rDNA sequences. The Baikalian Benedictiinae proved to be closely related to the Lithoglyphinae. According to a molecular clock estimate the two groups diverged in the Paleogene. The Benedictiinae might have evolved autochthonously in precursors of Lake Baikal. The Baikalian Baicaliidae are probably most closely related to the Amnicolidae and the Bithyniidae. These groups diverged at the latest during the Cretaceous. Thus the origin of the Baicaliidae predates the origin of the Baikal rift zone. The Baicaliidae evolved probably in other Central Asian freshwater reservoirs. However, the radiation of the extant Baicaliidae only started in the Neogene and might have occurred autochthonously in Lake Baikal. The conchological similarity of the Baicaliidae and the Pyrgulidae is due to convergence. The Pyrgulidae diverged from the common stem lineage of the other hydrobiid families at the latest in the Jurassic. The Bithyniidae is derived from hydrobiids and is related to the Amnicolidae. PMID:12644402

  12. Divergent RNA editing frequencies in hornwort mitochondrial nad5 sequences.

    PubMed

    Duff, R Joel

    2006-02-01

    Hornwort mitochondrial genomes have some of the highest rates of RNA editing among plants. Comparison of eleven partial mitochondrial nad5 genomic and cDNA sequences from diverse taxa of hornworts reveal 125 edited sites in only 1107 nt. No single sample exhibits more than half of these sites. Ten of the 11 hornwort taxa have between 35 and 54 edited sties each; whereas, the eleventh taxon, Leiosporoceros, which represents a potential sister taxa to all other hornworts, has only eight sites. Comparison of multiple cDNA sequences from several individuals reveals the presence of many immature transcripts showing the heterogonous nature of the progression of editing. Phylogenetic analyses of hornwort genomic and cDNAs sequences reveal that 65 of the 94 phylogenetically informative sites within the hornwort clade are edited positions. PMID:16376027

  13. The complete mitochondrial genome sequence of Mustela eversmannii (Carnivora: Mustelidae).

    PubMed

    Liu, Guangshuai; Yang, Xiufeng; Zhang, Honghai; Sun, Guolei; Zhao, Chao; Dou, Huashan

    2016-09-01

    In this study, the complete mitochondrial genome of Steppe polecat, Mustela eversmannii, was sequenced for the first time using muscle tissue. The mitochondrial genome is a circular molecule of 16 463 bp in length and overall base composition is A (32.7%), T (27.3%), C (26.1%), and G (13.9%), which indicates a strong A-T bias. A phylogenetic analysis on the basis of 13 protein-coding genes and two rRNA genes of 10 Mustela species' mitochondrial genomes using maximum likelihood (ML) and Bayesian inference (BI) demonstrated that these Mustela species were clustered into two clades and M. eversmannii was close to M. putorius. PMID:26367202

  14. The complete mitochondrial genome sequence of Aspergillus flavus.

    PubMed

    Yan, Zhengsong; Chen, Dan; Shen, Yiping; Ye, Baodong

    2016-07-01

    Aspergillus flavus is a haploid filamentous fungus that is common in the environment and has been implicated in human infections. The complete mitochondrial genome of A. flavus has been determined by high-throughput sequencing technology in this work. Our study revealed that the mitochondrial genome of A. flavus is 31,602 bp long, with an A + T content of 74.83%, which consists of a usual set of mitochondrial proteins and RNA genes, including large and small ribosomal RNAs, 15 proteins, and 20 tRNA genes and contains two introns. Notably, it also contains two hypothetical proteins without obvious homology to any known proteins. All structural genes are located on one strand and are apparently transcribed in one direction. Codon usage analysis indicated that all protein coding genes employ the standard fungal mitochondrial start and stop codons; and the nucleotide bias toward AT was also reflected in the codon usage. The complete mitochondrial genomes of A. flavus would be useful for future investigation of the genetic, evolution, and clinical identification of Aspergillus species. PMID:25922962

  15. Validation of three sympatric Thoracophelia species (Annelida: Opheliidae) from Dillon Beach, California using mitochondrial and nuclear DNA sequence data.

    PubMed

    Law, Chris J; Dorgan, Kelly M; Rouse, Greg W

    2013-01-01

    Thoracophelia (Annelida, Opheliidae) are burrowing deposit feeders generally found in the mid- to upper intertidal areas of sandy beaches. Thoracophelia mucronata (Treadwell, 1914) is found along the west coast of North America, including at Dillon Beach, CA. Two additional species, Thoracophelia dillonensis (Hartman, 1938) and T. williamsi (Hartman, 1938) were also described from this beach. These three sympatric species have been primarily distinguished by branchial morphology, and efforts to determine the validity of the species have been based on morphological, reproductive and ecological studies. Here we demonstrate using mitochondrial and nuclear DNA sequence data that these three species are valid. Mitochondrial Cytochrome c subunit 1 (COI) sequences show uncorrected interspecific distances of ~9-13%. We found no inter-specific differences in body color or in hemoglobin concentration, but found that reproductive males were pinkish-red in color and had lower hemoglobin concentrations than purplish-red reproductive females. PMID:24614448

  16. Complete mitochondrial genome sequence of Heliocidaris crassispina (Camarodonta, Echinometridae).

    PubMed

    Jung, Gila; Kim, Choong-Gon; Lee, Youn-Ho

    2016-07-01

    The whole mitochondrial genome sequence of sea urchin Heliocidaris crassispina of the family Echinometridae is determined for the first time in this study. The circular mitogenome (15,702 bp) consists of typical Camarodonta gene order and its components including 2 rRNA, 22 tRNA, 13 protein-coding genes and a control region. Phylogenetic analysis based on the 13 concatenated protein-coding gene sequences shows that H. crassispina is closer to the species of Strongylocentrotidae than Parechinidae, but the separation between H. crassispina and the Strongylocentrotid species occurred early in their evolution. The complete mitochondrial genome presented in this study is useful for inferring the phylogenetic relationship among the families of Echinidea sea urchins. PMID:26006289

  17. The complete mitochondrial genome sequence of Schizothorax lissolabiatus (Cypriniformes: Cyprinidae).

    PubMed

    Yue, Xingjian; Shi, Jinrong; Zou, Yuanchao; Wang, Bin

    2016-07-01

    Schizothorax lissolabiatus is a widely distributed fish species in Lancang River, Yuanjiang River, Pearl River, Nujiang River in China. The complete mitochondrial genome sequence of S. lissolabiatus from Yuanjiang River (the upper Red River) has been sequenced, which is 16,583 bp in length and contains 22 tRNA genes, 13 protein-coding genes, 2 rRNA genes and 2 main non-coding regions: origin of light-strand replication and control region. Except for eight tRNA and ND6 genes, most of the genes are encoded on the heavy strand. The length of mitochondrial genome, the order, composition and anticodons of all genes are exactly similar to that of S. dolichonema. The phylogenetic tree suggested S. prenanti, S. dolichonema and S. lissolabiatus may have closer affinities than other fish of the genus Schizothorax. PMID:25976234

  18. Complete mitochondrial genome sequence of Aoluguya reindeer (Rangifer tarandus).

    PubMed

    Ju, Yan; Liu, Huamiao; Rong, Min; Yang, Yifeng; Wei, Haijun; Shao, Yuanchen; Chen, Xiumin; Xing, Xiumei

    2016-05-01

    The complete mitochondria genome of the reindeer, Rangifer tarandus, was determined by accurate polymerase chain reaction. The entire genome is 16,357 bp in length and contains 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and a D-loop region, all of which are arranged in a typical vertebrate manner. The overall base composition of the reindeer's mitochondrial genome is 33.7% of A, 23.1% of C, 30.1% of T and 13.2%of G. A termination associated sequence and several conserved central sequence block domains were discovered within the control region. PMID:25469816

  19. Genetic variability of Taenia saginata inferred from mitochondrial DNA sequences.

    PubMed

    Rostami, Sima; Salavati, Reza; Beech, Robin N; Babaei, Zahra; Sharbatkhori, Mitra; Harandi, Majid Fasihi

    2015-04-01

    Taenia saginata is an important tapeworm, infecting humans in many parts of the world. The present study was undertaken to identify inter- and intraspecific variation of T. saginata isolated from cattle in different parts of Iran using two mitochondrial CO1 and 12S rRNA genes. Up to 105 bovine specimens of T. saginata were collected from 20 slaughterhouses in three provinces of Iran. DNA were extracted from the metacestode Cysticercus bovis. After PCR amplification, sequencing of CO1 and 12S rRNA genes were carried out and two phylogenetic analyses of the sequence data were generated by Bayesian inference on CO1 and 12S rRNA sequences. Sequence analyses of CO1 and 12S rRNA genes showed 11 and 29 representative profiles respectively. The level of pairwise nucleotide variation between individual haplotypes of CO1 gene was 0.3-2.4% while the overall nucleotide variation among all 11 haplotypes was 4.6%. For 12S rRNA sequence data, level of pairwise nucleotide variation was 0.2-2.5% and the overall nucleotide variation was determined as 5.8% among 29 haplotypes of 12S rRNA gene. Considerable genetic diversity was found in both mitochondrial genes particularly in 12S rRNA gene. PMID:25687521

  20. Patterns of Protein Evolution in Cytochrome c Oxidase 1 (COI) from the Class Arachnida

    PubMed Central

    Young, Monica R; Hebert, Paul D. N.

    2015-01-01

    Because sequence information is now available for the 648bp barcode region of cytochrome c oxidase 1 (COI) from more than 400,000 animal species, this gene segment can be used to probe patterns of mitochondrial evolution. The present study examines levels of amino acid substitution and the frequency of indels in COI from 4177 species of arachnids, including representatives from all 16 orders and 43% of its families (267/625). It examines divergences at three taxonomic levels—among members of each order to an outgroup, among families in each order and among BINs, a species proxy, in each family. Order Distances vary fourfold (0.10–0.39), while the mean of the Family Distances for the ten orders ranges fivefold (0.07–0.35). BIN Distances show great variation, ranging from 0.01 or less in 12 families to more than 0.25 in eight families. Patterns of amino acid substitution in COI are generally congruent with previously reported variation in nucleotide substitution rates in arachnids, but provide some new insights, such as clear rate acceleration in the Opiliones. By revealing a strong association between elevated rates of nucleotide and amino acid substitution, this study builds evidence for the selective importance of the rate variation among arachnid lineages. Moreover, it establishes that groups whose COI genes have elevated levels of amino acid substitution also regularly possess indels, a dramatic form of protein reconfiguration. Overall, this study suggests that the mitochondrial genome of some arachnid groups is dynamic with high rates of amino acid substitution and frequent indels, while it is ‘locked down’ in others. Dynamic genomes are most prevalent in arachnids with short generation times, but the possible impact of breeding system deserves investigation since many of the rapidly evolving lineages reproduce by haplodiploidy, a mode of reproduction absent in ‘locked down’ taxa. PMID:26308206

  1. Exome Sequencing Identifies Mitochondrial Alanyl-tRNA Synthetase Mutations in Infantile Mitochondrial Cardiomyopathy

    PubMed Central

    Götz, Alexandra; Tyynismaa, Henna; Euro, Liliya; Ellonen, Pekka; Hyötyläinen, Tuulia; Ojala, Tiina; Hämäläinen, Riikka H.; Tommiska, Johanna; Raivio, Taneli; Oresic, Matej; Karikoski, Riitta; Tammela, Outi; Simola, Kalle O.J.; Paetau, Anders; Tyni, Tiina; Suomalainen, Anu

    2011-01-01

    Infantile cardiomyopathies are devastating fatal disorders of the neonatal period or the first year of life. Mitochondrial dysfunction is a common cause of this group of diseases, but the underlying gene defects have been characterized in only a minority of cases, because tissue specificity of the manifestation hampers functional cloning and the heterogeneity of causative factors hinders collection of informative family materials. We sequenced the exome of a patient who died at the age of 10 months of hypertrophic mitochondrial cardiomyopathy with combined cardiac respiratory chain complex I and IV deficiency. Rigorous data analysis allowed us to identify a homozygous missense mutation in AARS2, which we showed to encode the mitochondrial alanyl-tRNA synthetase (mtAlaRS). Two siblings from another family, both of whom died perinatally of hypertrophic cardiomyopathy, had the same mutation, compound heterozygous with another missense mutation. Protein structure modeling of mtAlaRS suggested that one of the mutations affected a unique tRNA recognition site in the editing domain, leading to incorrect tRNA aminoacylation, whereas the second mutation severely disturbed the catalytic function, preventing tRNA aminoacylation. We show here that mutations in AARS2 cause perinatal or infantile cardiomyopathy with near-total combined mitochondrial respiratory chain deficiency in the heart. Our results indicate that exome sequencing is a powerful tool for identifying mutations in single patients and allows recognition of the genetic background in single-gene disorders of variable clinical manifestation and tissue-specific disease. Furthermore, we show that mitochondrial disorders extend to prenatal life and are an important cause of early infantile cardiac failure. PMID:21549344

  2. Mitochondrial DNA sequences from a 7000-year old brain.

    PubMed Central

    Pääbo, S; Gifford, J A; Wilson, A C

    1988-01-01

    Pieces of mitochondrial DNA from a 7000-year-old human brain were amplified by the polymerase chain reaction and sequenced. Albumin and high concentrations of polymerase were required to overcome a factor in the brain extract that inhibits amplification. For this and other sources of ancient DNA, we find an extreme inverse dependence of the amplification efficiency on the length of the sequence to be amplified. This property of ancient DNA distinguishes it from modern DNA and thus provides a new criterion of authenticity for use in research on ancient DNA. The brain is from an individual recently excavated from Little Salt Spring in southwestern Florida and the anthropologically informative sequences it yielded are the first obtained from archaeologically retrieved remains. The sequences show that this ancient individual belonged to a mitochondrial lineage that is rare in the Old World and not previously known to exist among Native Americans. Our finding brings to three the number of maternal lineages known to have been involved in the prehistoric colonization of the New World. Images PMID:3186445

  3. The complete mitochondrial genome sequence of Schizopygopsis anteroventris (Cypriniformes: Cyprinidae).

    PubMed

    Liang, Yangyang; Chen, Yifeng; Li, Chunhua; He, Dekui

    2016-09-01

    Schizopygopsis anteroventris (Cyprinidae: Schizothoracinae) is an ecologically and economically important cyprinid endemic to Qinghai-Tibet Plateau, China. In this study, we sequenced the complete mitochondrial genome of S. anteroventris by DNA sequencing based on PCR fragments. The mitogenome of S. anteroventris is 16,620 in length, containing 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and two non-coding regions: the control region (D-loop) and the origin of light-strand replication (OL). The gene order in the mitogenome is identical with common vertebrate form. The complete mitogenome sequence is useful for further genetic studies, phylogenetic analysis and resource protection of S. anteroventris. PMID:25791361

  4. Comparison of mitochondrial genome sequences of pangolins (Mammalia, Pholidota).

    PubMed

    Hassanin, Alexandre; Hugot, Jean-Pierre; van Vuuren, Bettine Jansen

    2015-04-01

    The complete mitochondrial genome was sequenced for three species of pangolins, Manis javanica, Phataginus tricuspis, and Smutsia temminckii, and comparisons were made with two other species, Manis pentadactyla and Phataginus tetradactyla. The genome of Manidae contains the 37 genes found in a typical mammalian genome, and the structure of the control region is highly conserved among species. In Manis, the overall base composition differs from that found in African genera. Phylogenetic analyses support the monophyly of the genera Manis, Phataginus, and Smutsia, as well as the basal division between Maninae and Smutsiinae. Comparisons with GenBank sequences reveal that the reference genomes of M. pentadactyla and P. tetradactyla (accession numbers NC_016008 and NC_004027) were sequenced from misidentified taxa, and that a new species of tree pangolin should be described in Gabon. PMID:25746396

  5. Mitochondrial restriction fragment length polymorphism (RFLP) and sequence variation among closely related avian species and the genetic characterization of hybrid Dendroica warblers.

    PubMed

    Lovette, I J; Bermingham, E; Rohwer, S; Wood, C

    1999-09-01

    To address several interconnected goals, we used mitochondrial DNA (mtDNA) sequences to explore evolutionary relationships among four potentially hybridizing taxa in a North American avian superspecies (Dendroica occidentalis, D. townsendi, D. virens, and D. nigrescens). We first compared the results of a previous restriction fragment length polymorphism (RFLP)-based study with 1453 nucleotides from the mitochondrial cytochrome oxidase subunit I (COI), ATP-synthase 6 (ATPase 6), and ATP-synthase 8 (ATPase 8) genes. Separate phylogenetic analyses of the RFLP and sequence data provided identical and well-supported hierarchical species-level reconstructions that grouped occidentalis and townsendi as sister taxa. We then explored several general features of mitochondrial evolution via a comparison of the RFLP and sequence data sets. Qualitative rate differences that seemed evident in highly autocorrelated comparisons of RFLP vs. sequence pairwise distances were not supported when autocorrelation was removed. We also noted a high variance in corresponding RFLP and sequence distances after the removal of autocorrelation effects. This variance suggests that caution should be used when combining RFLP and sequence-based data in studies that require the large-scale synthesis of divergence estimates drawn from sources employing different molecular techniques. Finally, we used our parallel RFLP and sequence data to design and validate a rapid and inexpensive polymerase chain reaction-RFLP (PCR-RFLP) protocol for determining species-specific mitochondrial haplotypes. This PCR-RFLP technique will be applied in ongoing studies of the occidentalis/townsendi hybrid zone, where the historic and geographical complexity of the interbreeding populations necessitates the genotyping of thousands of individual warblers. PMID:10564448

  6. The Complete Mitochondrial Genome Sequence of the Planthopper, Sivaloka damnosus

    PubMed Central

    Song, Nan; Liang, Ai-Ping; Ma, Chuan

    2010-01-01

    The complete mitochondrial genome (mitogenome) sequence was determined from the plant hopper, Sivaloka damnosus Chow and Lu (Hemiptera: Issidae), a representative of the insect family Issidae. The genome is a circular molecule of 15,287 bp with a total A+T content of 76.5%. The gene content, order, and structure are identical to that in Drosophila melanogaster, which is considered ancestral for insects. All 13 protein-coding genes of the S. damnosus mitogenome have a putative inframe ATR methionine or ATT isoleucine codons as start signals. The usual termination codons (TAA and TAG) were found in 11 protein-coding genes. However, atp6, and nad4 have incomplete termination codons. All tRNAs show stable canonical clover-leaf structures similar to other insect mitochondrial tRNAs, except for tRNASer(AGN), which has a reduced DHU arm. The A+T-rich region or putative control region includes two extensive repeat regions. The first repeat region is composed of two sets of complicated repeat units, and these repetitive sequences are arranged alternately; the second contains ten 20 bp tandemly repetitive sequences. In the phylogenetic analyses based on protein-coding genes, Cicadomorpha is a sister to Fulgoromorpha+Sternorrhyncha, and Heteroptera is a sister to all other Hemiptera. PMID:20673194

  7. The complete mitochondrial genome sequence of Shrew Gymnure, Neotetracus sinensis.

    PubMed

    Lu, Lu; Tu, Feiyun; Yan, Chaochao; Zhang, Xiuyue; Yue, Bisong; Zeng, Tao

    2013-06-01

    The Shrew Gymnure Neotetracus sinensis belongs to family Erinaceidae, and distributes in China, Myanmar, and northern Vietnam. In this study, the whole mitochondrial genome of N. sinensis was first sequenced and characterized. The genome is 16,982 bases in length. Bayesian inference and maximum likelihood methods were used to construct phylogenetic trees based on 12 concatenated protein-coding genes on the heavy strand. Phylogenetic analyses further confirm the subfamily Galericinae diverged prior to the subfamily Erinaceinae, support the species N. sinensis was in distinct genus Neotetracus rather than Hylomys, and N. sinensis diverged later than Echinosorex gymnura. PMID:23206249

  8. Nuclear and mitochondrial DNA sequences from two Denisovan individuals

    PubMed Central

    Sawyer, Susanna; Renaud, Gabriel; Viola, Bence; Hublin, Jean-Jacques; Gansauge, Marie-Theres; Shunkov, Michael V.; Derevianko, Anatoly P.; Prüfer, Kay; Pääbo, Svante

    2015-01-01

    Denisovans, a sister group of Neandertals, have been described on the basis of a nuclear genome sequence from a finger phalanx (Denisova 3) found in Denisova Cave in the Altai Mountains. The only other Denisovan specimen described to date is a molar (Denisova 4) found at the same site. This tooth carries a mtDNA sequence similar to that of Denisova 3. Here we present nuclear DNA sequences from Denisova 4 and a morphological description, as well as mitochondrial and nuclear DNA sequence data, from another molar (Denisova 8) found in Denisova Cave in 2010. This new molar is similar to Denisova 4 in being very large and lacking traits typical of Neandertals and modern humans. Nuclear DNA sequences from the two molars form a clade with Denisova 3. The mtDNA of Denisova 8 is more diverged and has accumulated fewer substitutions than the mtDNAs of the other two specimens, suggesting Denisovans were present in the region over an extended period. The nuclear DNA sequence diversity among the three Denisovans is comparable to that among six Neandertals, but lower than that among present-day humans. PMID:26630009

  9. Nuclear and mitochondrial DNA sequences from two Denisovan individuals.

    PubMed

    Sawyer, Susanna; Renaud, Gabriel; Viola, Bence; Hublin, Jean-Jacques; Gansauge, Marie-Theres; Shunkov, Michael V; Derevianko, Anatoly P; Prüfer, Kay; Kelso, Janet; Pääbo, Svante

    2015-12-22

    Denisovans, a sister group of Neandertals, have been described on the basis of a nuclear genome sequence from a finger phalanx (Denisova 3) found in Denisova Cave in the Altai Mountains. The only other Denisovan specimen described to date is a molar (Denisova 4) found at the same site. This tooth carries a mtDNA sequence similar to that of Denisova 3. Here we present nuclear DNA sequences from Denisova 4 and a morphological description, as well as mitochondrial and nuclear DNA sequence data, from another molar (Denisova 8) found in Denisova Cave in 2010. This new molar is similar to Denisova 4 in being very large and lacking traits typical of Neandertals and modern humans. Nuclear DNA sequences from the two molars form a clade with Denisova 3. The mtDNA of Denisova 8 is more diverged and has accumulated fewer substitutions than the mtDNAs of the other two specimens, suggesting Denisovans were present in the region over an extended period. The nuclear DNA sequence diversity among the three Denisovans is comparable to that among six Neandertals, but lower than that among present-day humans. PMID:26630009

  10. A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing

    PubMed Central

    Green, Richard E.; Malaspinas, Anna-Sapfo; Krause, Johannes; Briggs, Adrian W.; Johnson, Philip L. F.; Uhler, Caroline; Meyer, Matthias; Good, Jeffrey M.; Maricic, Tomislav; Stenzel, Udo; Prüfer, Kay; Siebauer, Michael; Burbano, Hernán A.; Ronan, Michael; Rothberg, Jonathan M.; Egholm, Michael; Rudan, Pavao; Brajković, Dejana; Kućan, Željko; Gušić, Ivan; Wikström, Mårten; Laakkonen, Liisa; Kelso, Janet; Slatkin, Montgomery; Pääbo, Svante

    2008-01-01

    Summary A complete mitochondrial (mt) genome sequence was reconstructed from a 38,000-year-old Neandertal individual using 8,341 mtDNA sequences identified among 4.8 Gb of DNA generated from ~0.3 grams of bone. Analysis of the assembled sequence unequivocally establishes that the Neandertal mtDNA falls outside the variation of extant human mtDNAs and allows an estimate of the divergence date between the two mtDNA lineages of 660,000±140,000 years. Of the 13 proteins encoded in the mtDNA, subunit 2 of cytochrome c oxidase of the mitochondrial electron transport chain has experienced the largest number of amino acid substitutions in human ancestors since the separation from Neandertals. There is evidence that purifying selection in the Neandertal mtDNA was reduced compared to other primate lineages suggesting that the effective population size of Neandertals was small. PMID:18692465

  11. The complete mitochondrial genome sequence of Heteromycteris japonicus (Pleuronectiformes: Soleidae).

    PubMed

    Shi, Wei; Jiang, Jin-Xia; Miao, Xian-Guang; Kong, Xiao-Yu

    2014-08-01

    The bamboo sole Heteromycteris japonicus (Pleuronectiformes: Soleidae) is characterized by both eyes on the right side of the body and a rostral hook. In this article, the complete mitochondrial genome sequence of this sole was first determined. The total length is 17,111 bp, including 13 protein-coding genes, 22 tRNA genes and 2 rRNA genes (12 S and 16 S), as well as a putative control region and a putative L-strand replication origin (OL). Gene contents, locations and arrangements are identical to those of typical bony fishes. Overall base composition of the mitogenome is 29.2%, 27.5%, 16.3% and 27.1% for A, C, G and T, with a high A + T content (56.3%). The determination of H. japonicus mitogenome sequence could contribute to understanding the systematic evolution of the genus Heteromycteris and further phylogenetic study on Soleidae and Pleuronectiformes. PMID:23808925

  12. The complete mitochondrial genome sequence of Brachirus orientalis (Pleuronectiformes: Soleidae).

    PubMed

    Shi, Wei; Gong, Li; Wang, Shu-Ying; Kong, Xiao-Yu

    2016-01-01

    The oriental sole Brachirus orientalis (Pleuronectiformes: Soleidae) is characterized by both eyes on the right side of the body and orbicular-ovate body. In this paper, the complete mitochondrial genome sequence of this sole was first determined. The total length is 16,602 bp, including 13 protein-coding genes, 22 tRNA genes, and 2 rRNA genes (12S and 16S), as well as a putative control region and a putative L-strand replication origin (OL). Gene contents, locations, and arrangements are identical to those of typical bony fishes. Overall base composition of the mitogenome is 30.4%, 28.6%, 15.3%, and 25.7% for A, C, G, and T, with a high A + T content (56.1%). The determination of B. orientalis complete mitogenome sequence could contribute to phylogenetic study on Soleidae and Pleuronectiformes. PMID:24845451

  13. The complete mitochondrial genome sequence of Malus hupehensis var. pinyiensis.

    PubMed

    Duan, Naibin; Sun, Honghe; Wang, Nan; Fei, Zhangjun; Chen, Xuesen

    2016-07-01

    The complete mitochondrial genome sequence of Malus hupehensis var. pinyiensis, a widely used apple rootstock, was determined using the Illumina high-throughput sequencing approach. The genome is 422,555 bp in length and has a GC content of 45.21%. It is separated by a pair of inverted repeats of 32,504 bp, to form a large single copy region of 213,055 bp and a small single copy region of 144,492 bp. The genome contains 38 protein-coding genes, four pseudogenes, 25 tRNA genes, and three rRNA genes. The genome is 25,608 bp longer than that of M. domestica, and several structural variations between these two mitogenomes were detected. PMID:26539696

  14. The complete mitochondrial genome sequence of Chuanchia labiosa (Cypriniformes: Cyprinidae).

    PubMed

    He, Dekui; Li, Chunhua; Tao, Juan; Chen, Yifeng

    2016-05-01

    Chuanchia labiosa Herzenstein, 1891 (Cyprinidae: Schizothoracinae) is the sole species of genus Chuanchia and is endemic to China. This species plays an important role in the upper reaches of the Yellow River and has been listed in both the China Red Data Book of Endangered Animal and the China Species Red List. In this study, the complete mitochondrial DNA genome sequence of C. labiosa was determined. The mitogenome is 16,705 bp in length, including 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and two non-coding regions. Overall basic composition of mitochondrial genome of C. labiosa is 28.39% for A, 27.16% for T, 26.09% for C, and 18.36% for G with a slightly high A + T content (55.55%). The complete mitogenome sequence of C. labiosa would be useful for stock evaluation and further conservation genetic studies for this endangered species. PMID:25208160

  15. The complete mitochondrial genome of Hydra vulgaris (Hydroida: Hydridae).

    PubMed

    Pan, Hong-Chun; Fang, Hong-Yan; Li, Shi-Wei; Liu, Jun-Hong; Wang, Ying; Wang, An-Tai

    2014-12-01

    The complete mitochondrial genome of Hydra vulgaris (Hydroida: Hydridae) is composed of two linear DNA molecules. The mitochondrial DNA (mtDNA) molecule 1 is 8010 bp long and contains six protein-coding genes, large subunit rRNA, methionine and tryptophan tRNAs, two pseudogenes consisting respectively of a partial copy of COI, and terminal sequences at two ends of the linear mtDNA, while the mtDNA molecule 2 is 7576 bp long and contains seven protein-coding genes, small subunit rRNA, methionine tRNA, a pseudogene consisting of a partial copy of COI and terminal sequences at two ends of the linear mtDNA. COI gene begins with GTG as start codon, whereas other 12 protein-coding genes start with a typical ATG initiation codon. In addition, all protein-coding genes are terminated with TAA as stop codon. PMID:23841615

  16. Cloning, expression and characterization of COI1 gene (AsCOI1) from Aquilaria sinensis (Lour.) Gilg

    PubMed Central

    Liao, Yongcui; Wei, Jianhe; Xu, Yanhong; Zhang, Zheng

    2015-01-01

    Aquilaria sinensis, a kind of typically wounding-induced medicinal plant with a great economical value, is widely used in the production of traditional Chinese medicine, perfume and incense. Coronatine-insensitive protein 1 (COI1) acts as a receptor in jasmonate (JA) signaling pathway, and regulates the expression of JA-responsive genes in plant defense. However, little is known about the COI1 gene in A. sinensis. Here, based on the transcriptome data, a full-length cDNA sequence of COI1 (termed as AsCOI1) was firstly cloned by RT–PCR and rapid-amplification of cDNA ends (RACE) strategies. AsCOI1 is 2330 bp in length (GenBank accession No. KM189194), and contains a complete open frame (ORF) of 1839 bp. The deduced protein was composed of 612 amino acids, with a predicted molecular weight of 68.93 kDa and an isoelectric point of 6.56, and was predicted to possess F-box and LRRs domains. Combining bioinformatics prediction with subcellular localization experiment analysis, AsCOI1 was appeared to locate in nucleus. AsCOI1 gene was highly expressed in roots and stems, the major organs of agarwood formation. Methyl jasmonate (MeJA), mechanical wounding and heat stress could significantly induce the expression level of AsCOI1 gene. AsCOI1 is an early wound-responsive gene, and it likely plays some role in agarwood formation. PMID:26579478

  17. Cloning, expression and characterization of COI1 gene (AsCOI1) from Aquilaria sinensis (Lour.) Gilg.

    PubMed

    Liao, Yongcui; Wei, Jianhe; Xu, Yanhong; Zhang, Zheng

    2015-09-01

    Aquilaria sinensis, a kind of typically wounding-induced medicinal plant with a great economical value, is widely used in the production of traditional Chinese medicine, perfume and incense. Coronatine-insensitive protein 1 (COI1) acts as a receptor in jasmonate (JA) signaling pathway, and regulates the expression of JA-responsive genes in plant defense. However, little is known about the COI1 gene in A. sinensis. Here, based on the transcriptome data, a full-length cDNA sequence of COI1 (termed as AsCOI1) was firstly cloned by RT-PCR and rapid-amplification of cDNA ends (RACE) strategies. AsCOI1 is 2330 bp in length (GenBank accession No. KM189194), and contains a complete open frame (ORF) of 1839 bp. The deduced protein was composed of 612 amino acids, with a predicted molecular weight of 68.93 kDa and an isoelectric point of 6.56, and was predicted to possess F-box and LRRs domains. Combining bioinformatics prediction with subcellular localization experiment analysis, AsCOI1 was appeared to locate in nucleus. AsCOI1 gene was highly expressed in roots and stems, the major organs of agarwood formation. Methyl jasmonate (MeJA), mechanical wounding and heat stress could significantly induce the expression level of AsCOI1 gene. AsCOI1 is an early wound-responsive gene, and it likely plays some role in agarwood formation. PMID:26579478

  18. The Effectiveness of Three Regions in Mitochondrial Genome for Aphid DNA Barcoding: A Case in Lachininae

    PubMed Central

    Chen, Rui; Jiang, Li-Yun; Qiao, Ge-Xia

    2012-01-01

    Background The mitochondrial gene COI has been widely used by taxonomists as a standard DNA barcode sequence for the identification of many animal species. However, the COI region is of limited use for identifying certain species and is not efficiently amplified by PCR in all animal taxa. To evaluate the utility of COI as a DNA barcode and to identify other barcode genes, we chose the aphid subfamily Lachninae (Hemiptera: Aphididae) as the focus of our study. We compared the results obtained using COI with two other mitochondrial genes, COII and Cytb. In addition, we propose a new method to improve the efficiency of species identification using DNA barcoding. Methodology/Principal Findings Three mitochondrial genes (COI, COII and Cytb) were sequenced and were used in the identification of over 80 species of Lachninae. The COI and COII genes demonstrated a greater PCR amplification efficiency than Cytb. Species identification using COII sequences had a higher frequency of success (96.9% in “best match” and 90.8% in “best close match”) and yielded lower intra- and higher interspecific genetic divergence values than the other two markers. The use of “tag barcodes” is a new approach that involves attaching a species-specific tag to the standard DNA barcode. With this method, the “barcoding overlap” can be nearly eliminated. As a result, we were able to increase the identification success rate from 83.9% to 95.2% by using COI and the “best close match” technique. Conclusions/Significance A COII-based identification system should be more effective in identifying lachnine species than COI or Cytb. However, the Cytb gene is an effective marker for the study of aphid population genetics due to its high sequence diversity. Furthermore, the use of “tag barcodes” can improve the accuracy of DNA barcoding identification by reducing or removing the overlap between intra- and inter-specific genetic divergence values. PMID:23056258

  19. Complete mitochondrial genome sequence of Heteropneustes fossilis obtained by paired end next generation sequencing.

    PubMed

    Sahoo, Lakshman; Kumar, Santosh; Das, Sofia P; Patnaik, Siddhi; Bit, Amrita; Sundaray, Jitendra Kumar; Jayasankar, P; Das, Paramananda

    2016-07-01

    In the present study, the complete mitochondrial genome sequence of Heteropneustes fossilis is reported using massive parallel sequence technology. The complete mitogenome of H. fossilis is obtained by de novo assembly of paired end Illumina sequences using CLC Genomics Workbench version 7.0.4, which is 16,489 bp in length. It comprised of 13 protein- coding genes, 22 tRNAs, 2 rRNA genes and a putative control region along with the gene order and organization, being similar to most of vertebrates. The mitogenome in the present study has 99% similarity to the complete mitogneome sequence of H. Fossilis, as reported earlier. Phylogenetic analysis of Siluriformes depicted that Heteropneustids were closer to Clariids. The mitogenome sequence of H. fossilis contributes better understanding of population genetics, phylogenetics and evolution of Indian catfish species. PMID:26016883

  20. A revised molecular phylogeny of the globally distributed hawkmoth genus Hyles (Lepidoptera: Sphingidae), based on mitochondrial and nuclear DNA sequences.

    PubMed

    Hundsdoerfer, Anna K; Rubinoff, Daniel; Attié, Marc; Wink, Michael; Kitching, Ian J

    2009-09-01

    The hawkmoth genus Hyles comprises some 29 species with a global distribution. In this study, we augment the previous taxon sampling with more species and add sequences from a nuclear gene to produce a refined phylogenetic hypothesis. A total evidence reconstruction based on Bayesian analysis of the combined mitochondrial (COI, t-RNA-Leu, COII; 2284 bp) and nuclear (EF1alpha; 773 bp) sequences is discussed and compared with the results from separate analyses of the two genes. The total evidence phylogeny corroborates many of the phylogenetic relationships previously postulated within the genus. In addition, the hitherto unsampled enigmatic species Hyles biguttata from Madagascar appears as sister group to Hyles livornicoides from Australia, although support for the relationship is relatively weak. The high level of differentiation of Hyles perkinsi from H. calida (both Hawaii), and the status of these two as sister species, is corroborated by both sources of sequence data. However, their phylogenetic position when mt DNA sequences alone are considered differs markedly from that under total evidence. The previously postulated relationships within the Hyles euphorbiae complex (HEC) s.s. are largely corroborated, but H. dahlii is now more closely related and the HEC s.l. is redefined to include H. zygophylli and H. stroehlei (two species that had not been studied previously using molecular data) and to exclude H. siehei and H. hippophaes. The nuclear sequences alone are insufficiently variable to fully resolve all lineages and the phylogeny suggests that nuclear gene swapping and incomplete lineage sorting have occurred implying recent divergence. The results from the total evidence analysis provide a phylogenetic hypothesis that both corroborates and complements the previous biogeographic scenario, and provides new insights into the origins of several of the included taxa. PMID:19482093

  1. Identification of Sequences Encoding Symbiodinium minutum Mitochondrial Proteins

    PubMed Central

    Butterfield, Erin R.; Howe, Christopher J.; Nisbet, R. Ellen R.

    2016-01-01

    The dinoflagellates are an extremely diverse group of algae closely related to the Apicomplexa and the ciliates. Much work has previously been undertaken to determine the presence of various biochemical pathways within dinoflagellate mitochondria. However, these studies were unable to identify several key transcripts including those encoding proteins involved in the pyruvate dehydrogenase complex, iron–sulfur cluster biosynthesis, and protein import. Here, we analyze the draft nuclear genome of the dinoflagellate Symbiodinium minutum, as well as RNAseq data to identify nuclear genes encoding mitochondrial proteins. The results confirm the presence of a complete tricarboxylic acid cycle in the dinoflagellates. Results also demonstrate the difficulties in using the genome sequence for the identification of genes due to the large number of introns, but show that it is highly useful for the determination of gene duplication events. PMID:26798115

  2. [Nucleotide sequence determination of yeast mitochondrial phenylalanine-tRNA].

    PubMed

    Martin, R; Sibler, A P; Schneller, J M; Keith, G; Stahl, A J; Dirheimer, G

    1978-10-01

    The primary structure of mitochondrial tRNAPhe from Saccharomyces cerevisiae, purified by two-dimensional polyacrylamide gel electrophoresis, was determined using, standard procedures on in vivo 32P-labeled tRNA, as well as the new 5'-end postlabeling techniques. We propose a cloverleaf model which allows for tertiary interaction between cytosine in position 46 and guanine in position 15 and maximizes base pairing in the psi C stem, thus excluding the uracile in position 50 from base pairing in the psi C stem. Comparison of the primary structure of this tRNA with all other known procaryotic, chloroplastic or cytoplasmic tRNAsPhe sequences does not lead to any conclusion about the endosymbiotic theory of mitochondria evolution. PMID:103657

  3. Identification of Sequences Encoding Symbiodinium minutum Mitochondrial Proteins.

    PubMed

    Butterfield, Erin R; Howe, Christopher J; Nisbet, R Ellen R

    2016-02-01

    The dinoflagellates are an extremely diverse group of algae closely related to the Apicomplexa and the ciliates. Much work has previously been undertaken to determine the presence of various biochemical pathways within dinoflagellate mitochondria. However, these studies were unable to identify several key transcripts including those encoding proteins involved in the pyruvate dehydrogenase complex, iron-sulfur cluster biosynthesis, and protein import. Here, we analyze the draft nuclear genome of the dinoflagellate Symbiodinium minutum, as well as RNAseq data to identify nuclear genes encoding mitochondrial proteins. The results confirm the presence of a complete tricarboxylic acid cycle in the dinoflagellates. Results also demonstrate the difficulties in using the genome sequence for the identification of genes due to the large number of introns, but show that it is highly useful for the determination of gene duplication events. PMID:26798115

  4. The complete mitochondrial genome sequence of Herzensteinia microcephalus (Cypriniformes: Cyprinidae).

    PubMed

    Li, Chunhua; Chen, Yifeng; Liu, Chunlong; Juan, Tao; He, Dekui

    2016-05-01

    Herzensteinia microcephalus (Herzenstein, 1891) is the highest naturally occurring cyprinid in the world, and inhabits rivers in the Tibetan Plateau at elevations of 4500-5200 m. Few studies on this species have been contributed. In this study, we got the mitochondrial genome sequences of H. microcephalus. The mitogenome of H. microcephalus is16,726 in length, which includes 13 protein-coding genes, 22 tRNA genes, two rRNA genes and two non-coding regions: control region (D-loop) and origin of light-strand replication (OL). The overall nucleotide base composition is 28.41% for A, 27.16% for T, 26.04% for C and 18.38% for G. This study can provide important molecular theory basis for carrying out the study on the genetics, phylogeny and adaptive evolution of Herzensteinia. PMID:25431822

  5. Mitochondrial DNA Sequence Analysis - Validation and Use for Forensic Casework.

    PubMed

    Holland, M M; Parsons, T J

    1999-06-01

    With the discovery of the polymerase chain reaction (PCR) in the mid-1980's, the last in a series of critical molecular biology techniques (to include the isolation of DNA from human and non-human biological material, and primary sequence analysis of DNA) had been developed to rapidly analyze minute quantities of mitochondrial DNA (mtDNA). This was especially true for mtDNA isolated from challenged sources, such as ancient or aged skeletal material and hair shafts. One of the beneficiaries of this work has been the forensic community. Over the last decade, a significant amount of research has been conducted to develop PCR-based sequencing assays for the mtDNA control region (CR), which have subsequently been used to further characterize the CR. As a result, the reliability of these assays has been investigated, the limitations of the procedures have been determined, and critical aspects of the analysis process have been identified, so that careful control and monitoring will provide the basis for reliable testing. With the application of these assays to forensic identification casework, mtDNA sequence analysis has been properly validated, and is a reliable procedure for the examination of biological evidence encountered in forensic criminalistic cases. PMID:26255820

  6. The complete mitochondrial genome sequence of Eimeria magna (Apicomplexa: Coccidia).

    PubMed

    Tian, Si-Qin; Cui, Ping; Fang, Su-Fang; Liu, Guo-Hua; Wang, Chun-Ren; Zhu, Xing-Quan

    2015-01-01

    In the present study, we determined the complete mitochondrial DNA (mtDNA) sequence of Eimeria magna from rabbits for the first time, and compared its gene contents and genome organizations with that of seven Eimeria spp. from domestic chickens. The size of the complete mt genome sequence of E. magna is 6249 bp, which consists of 3 protein-coding genes (cytb, cox1 and cox3), 12 gene fragments for the large subunit (LSU) rRNA, and 7 gene fragments for the small subunit (SSU) rRNA, without transfer RNA genes, in accordance with that of Eimeria spp. from chickens. The putative direction of translation for three genes (cytb, cox1 and cox3) was the same as those of Eimeria species from domestic chickens. The content of A + T is 65.16% for E. magna mt genome (29.73% A, 35.43% T, 17.09 G and 17.75% C). The E. magna mt genome sequence provides novel mtDNA markers for studying the molecular epidemiology and population genetics of Eimeria spp. and has implications for the molecular diagnosis and control of rabbit coccidiosis. PMID:24328820

  7. A 454 sequencing approach to dipteran mitochondrial genome research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The availability of complete mitochondrial genome data for Diptera, one of the largest Metazoan orders, in public databases is limited. Herein, we generated the complete or nearly complete mitochondrial genomes for Cochliomyia hominivorax, Haematobia irritans, Phormia regina and Sarcophaga crassipa...

  8. Low-depth shotgun sequencing resolves complete mitochondrial genome sequence of Labeo rohita.

    PubMed

    Das, Sofia P; Bit, Amrita; Patnaik, Siddhi; Sahoo, L; Meher, P K; Jayasankar, P; Saha, T M; Patel, A B; Patel, Namrata; Koringa, P; Joshi, C G; Agarwal, Suyash; Pandey, Manmohan; Srivastava, Shreya; Kushwaha, B; Kumar, Ravindra; Nagpure, N S; Iquebal, M A; Jaiswal, Sarika; Kumar, Dinesh; Jena, J K; Das, P

    2016-09-01

    Labeo rohita, popularly known as rohu, is a widely cultured species in whole Indian subcontinent. In the present study, we used in-silico approach to resolve complete mitochondrial genome of rohu. Low-depth shotgun sequencing using Roche 454 GS FLX (Branford, Connecticut, USA) followed by de novo assembly in CLC Genomics Workbench version 7.0.4 (Aarhus, Denmark) revealed the complete mitogenome of L. rohita to be 16 606 bp long (accession No. KR185963). It comprised of 13 protein-coding genes, 22 tRNAs, 2 rRNAs and 1 putative control region. The gene order and organization are similar to most vertebrates. The mitogenome in the present investigation has 99% similarity with that of previously reported mitogenomes of rohu and this is also evident from the phylogenetic study using maximum-likelihood (ML) tree method. This study was done to determine the feasibility, accuracy and reliability of low-depth sequence data obtained from NGS platform as compared to the Sanger sequencing. Thus, NGS technology has proven to be competent and a rapid in-silico alternative to resolve the complete mitochondrial genome sequence, thereby reducing labors and time. PMID:26260184

  9. COI barcodes and phylogeny of doves (Columbidae family).

    PubMed

    Khan, Haseeb Ahmad; Arif, Ibrahim Abdulwahid

    2013-12-01

    Cytochrome oxidase subunit I (COI) gene has been recognized as an authentic tool for species identification. Besides its potential barcoding capacity, COI sequences have also been used for inferring the phylogeny. Phylogenetic relationships among genera of Columbidae (pigeons and doves family) have not been fully resolved because of scarce sampling of taxa and limited availability of sequence data. In this study, we have evaluated the efficiency of COI barcodes for species identification and phylogenetic analysis of various doves. We sequenced the 693 bp region of COI gene of three species of doves including Oena capensis, Streptopelia decaocto, and Streptopelia senegalensis. After retrieving the relevant sequences from the GenBank, the entire data-set of 85 sequences represented 25 dove species from 11 different genera of the family Columbidae. The COI sequences of four species including Chalcophaps indica (two specimens), Columbina inca (five specimens), Geopelia striata (three specimens), and Macropygia phasianella (three specimens) were identical. The mean intraspecific base differences ranged from 0 to 37 while the P-distances ranged between 0 and 0.058. For most of the species, the P-distances were ≤ 0.008. Phylogenetic analysis differentiated the taxa into three major clusters. One of the clusters grouped five genera including Claravis, Columbina, Gallicolumba, Geopelia, and Geotrygon. The remaining two clusters grouped three genera each including Chalcophaps, Oena, and Turtur in one cluster and Macropygia, Streptopelia, and Zenaida in another cluster. Further sub-clustering clearly separated all the genera into individual clusters except two discrepancies for the genera Streptopelia and Turtur. Species-level cladistics clearly separated all the species into distinctive clades. In conclusion, COI barcoding is a powerful tool for species identification with added information on phylogenetic inference. The finding of this study will help to understand the

  10. Phylogenetic Analysis of the Spider Mite Sub-Family Tetranychinae (Acari: Tetranychidae) Based on the Mitochondrial COI Gene and the 18S and the 5′ End of the 28S rRNA Genes Indicates That Several Genera Are Polyphyletic

    PubMed Central

    Matsuda, Tomoko; Morishita, Maiko; Hinomoto, Norihide; Gotoh, Tetsuo

    2014-01-01

    The spider mite sub-family Tetranychinae includes many agricultural pests. The internal transcribed spacer (ITS) region of nuclear ribosomal RNA genes and the cytochrome c oxidase subunit I (COI) gene of mitochondrial DNA have been used for species identification and phylogenetic reconstruction within the sub-family Tetranychinae, although they have not always been successful. The 18S and 28S rRNA genes should be more suitable for resolving higher levels of phylogeny, such as tribes or genera of Tetranychinae because these genes evolve more slowly and are made up of conserved regions and divergent domains. Therefore, we used both the 18S (1,825–1,901 bp) and 28S (the 5′ end of 646–743 bp) rRNA genes to infer phylogenetic relationships within the sub-family Tetranychinae with a focus on the tribe Tetranychini. Then, we compared the phylogenetic tree of the 18S and 28S genes with that of the mitochondrial COI gene (618 bp). As observed in previous studies, our phylogeny based on the COI gene was not resolved because of the low bootstrap values for most nodes of the tree. On the other hand, our phylogenetic tree of the 18S and 28S genes revealed several well-supported clades within the sub-family Tetranychinae. The 18S and 28S phylogenetic trees suggest that the tribes Bryobiini, Petrobiini and Eurytetranychini are monophyletic and that the tribe Tetranychini is polyphyletic. At the genus level, six genera for which more than two species were sampled appear to be monophyletic, while four genera (Oligonychus, Tetranychus, Schizotetranychus and Eotetranychus) appear to be polyphyletic. The topology presented here does not fully agree with the current morphology-based taxonomy, so that the diagnostic morphological characters of Tetranychinae need to be reconsidered. PMID:25289639

  11. A Molecular Phylogeny of Hemiptera Inferred from Mitochondrial Genome Sequences

    PubMed Central

    Song, Nan; Liang, Ai-Ping; Bu, Cui-Ping

    2012-01-01

    Classically, Hemiptera is comprised of two suborders: Homoptera and Heteroptera. Homoptera includes Cicadomorpha, Fulgoromorpha and Sternorrhyncha. However, according to previous molecular phylogenetic studies based on 18S rDNA, Fulgoromorpha has a closer relationship to Heteroptera than to other hemipterans, leaving Homoptera as paraphyletic. Therefore, the position of Fulgoromorpha is important for studying phylogenetic structure of Hemiptera. We inferred the evolutionary affiliations of twenty-five superfamilies of Hemiptera using mitochondrial protein-coding genes and rRNAs. We sequenced three mitogenomes, from Pyrops candelaria, Lycorma delicatula and Ricania marginalis, representing two additional families in Fulgoromorpha. Pyrops and Lycorma are representatives of an additional major family Fulgoridae in Fulgoromorpha, whereas Ricania is a second representative of the highly derived clade Ricaniidae. The organization and size of these mitogenomes are similar to those of the sequenced fulgoroid species. Our consensus phylogeny of Hemiptera largely supported the relationships (((Fulgoromorpha,Sternorrhyncha),Cicadomorpha),Heteroptera), and thus supported the classic phylogeny of Hemiptera. Selection of optimal evolutionary models (exclusion and inclusion of two rRNA genes or of third codon positions of protein-coding genes) demonstrated that rapidly evolving and saturated sites should be removed from the analyses. PMID:23144967

  12. Mitochondrial sequence variation in the Guahibo Amerindian population from Venezuela.

    PubMed

    Vona, Giuseppe; Falchi, Alessandra; Moral, Pedro; Calò, Carla M; Varesi, Laurent

    2005-07-01

    New data were obtained on mitochondrial DNA (mtDNA) from Guahibo from Venezuela, a group so far not studied using molecular data. A population sample (n = 59) was analyzed for mtDNA variation in two control-region hypervariable segments (HV1 and HV2) by sequencing. The presence or absence of a 9-bp polymorphism in the COII/tRNA(Lys) region was studied by direct amplification and electrophoretic identification. Thirty-eight variable sites were detected in regions HV1 and HV2, defining 26 mtDNA lineages; 23.7% of these were present in a single individual. The 9-bp deletion was found in 3.39% of individuals. Nucleotide and haplotype diversities were relatively high compared with other New World populations. The identified sequence haplotypes were classified into four major haplogroups (A-D) according to previous studies, with high frequencies for A (47.46%) and C (49.15%), low frequency for B (3.39%), and an absence of D. PMID:15558610

  13. Mitochondrial sequences show diverse evolutionary histories of African hominoids.

    PubMed

    Gagneux, P; Wills, C; Gerloff, U; Tautz, D; Morin, P A; Boesch, C; Fruth, B; Hohmann, G; Ryder, O A; Woodruff, D S

    1999-04-27

    Phylogenetic trees for the four extant species of African hominoids are presented, based on mtDNA control region-1 sequences from 1,158 unique haplotypes. We include 83 new haplotypes of western chimpanzees and bonobos. Phylogenetic analysis of this enlarged database, which takes intraspecific geographic variability into account, reveals different patterns of evolution among species and great heterogeneity in species-level variation. Several chimpanzee and bonobo clades (and even single social groups) have retained substantially more mitochondrial variation than is seen in the entire human species. Among the 811 human haplotypes, those that branch off early are predominantly but not exclusively African. Neighbor joining trees provide strong evidence that eastern chimpanzee and human clades have experienced reduced effective population sizes, the latter apparently since the Homo sapiens-neanderthalensis split. Application of topiary pruning resolves ambiguities in the phylogenetic tree that are attributable to homoplasies in the data set. The diverse patterns of mtDNA sequence variation seen in today's hominoid taxa probably reflect historical differences in ecological plasticity, female-biased dispersal, range fragmentation over differing periods of time, and competition among social groups. These results are relevant to the origin of zoonotic diseases, including HIV-1, and call into question some aspects of the current taxonomic treatment and conservation management of gorillas and chimpanzees. PMID:10220421

  14. Why barcode? High-throughput multiplex sequencing of mitochondrial genomes for molecular systematics

    PubMed Central

    Timmermans, M. J. T. N.; Dodsworth, S.; Culverwell, C. L.; Bocak, L.; Ahrens, D.; Littlewood, D. T. J.; Pons, J.; Vogler, A. P.

    2010-01-01

    Mitochondrial genome sequences are important markers for phylogenetics but taxon sampling remains sporadic because of the great effort and cost required to acquire full-length sequences. Here, we demonstrate a simple, cost-effective way to sequence the full complement of protein coding mitochondrial genes from pooled samples using the 454/Roche platform. Multiplexing was achieved without the need for expensive indexing tags (‘barcodes’). The method was trialled with a set of long-range polymerase chain reaction (PCR) fragments from 30 species of Coleoptera (beetles) sequenced in a 1/16th sector of a sequencing plate. Long contigs were produced from the pooled sequences with sequencing depths ranging from ∼10 to 100× per contig. Species identity of individual contigs was established via three ‘bait’ sequences matching disparate parts of the mitochondrial genome obtained by conventional PCR and Sanger sequencing. This proved that assembly of contigs from the sequencing pool was correct. Our study produced sequences for 21 nearly complete and seven partial sets of protein coding mitochondrial genes. Combined with existing sequences for 25 taxa, an improved estimate of basal relationships in Coleoptera was obtained. The procedure could be employed routinely for mitochondrial genome sequencing at the species level, to provide improved species ‘barcodes’ that currently use the cox1 gene only. PMID:20876691

  15. Aminoglycoside-induced and non-syndromic hearing loss is associated with the G7444A mutation in the mitochondrial COI/tRNA{sup Ser(UCN)} genes in two Chinese families

    SciTech Connect

    Zhu Yi; Liao Zhisu; Li Zhiyuan; Chen Jianfu; Qian Yaping; Tang Xiaowen; Wang Jindan; Yang Li; Li Ronghua; Ji Jinzhang; Choo, Daniel I. |; Lu Jianxin . E-mail: jx@mail.wz.zj.cn; Guan Minxin |||. E-mail: min-xin.guan@chmcc.org

    2006-04-14

    We report here the clinical, genetic, and molecular characterization of two Chinese families with aminoglycoside induced and non-syndromic hearing impairment. Clinical and genetic evaluations revealed the variable severity and age-of-onset in hearing impairment in these families. Strikingly, there were extremely low penetrances of hearing impairment in these Chinese families. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the distinct sets of mtDNA polymorphism, in addition to the identical G7444A mutation associated with hearing loss. Indeed, the G7444A mutation in the CO1 gene and the precursor of tRNA{sup Ser(UCN)} gene is present in homoplasmy only in the maternal lineage of those pedigrees but not other members of these families and 164 Chinese controls. Their mitochondrial genomes belong to the Eastern Asian haplogroups C5a and D4a, respectively. In fact, the occurrence of the G7444A mutation in these several genetically unrelated subjects affected by hearing impairment strongly indicates that this mutation is involved in the pathogenesis of hearing impairment. However, there was the absence of other functionally significant mtDNA mutations in two Chinese pedigrees carrying the G7444A mutation. Therefore, nuclear modifier gene(s) or aminoglycoside(s) may play a role in the phenotypic expression of the deafness-associated G7444A mutation in these Chinese pedigrees.

  16. The complete mitochondrial genome sequence of Sua-type cytoplasmic male sterility of tobacco (Nicotiana tabacum).

    PubMed

    Li, Fengxia; Yang, Aiguo; Lv, Jing; Gong, Daping; Sun, Yuhe

    2016-07-01

    To uncover the cytoplasmic male sterility (CMS)-associated mitochondrial genes of tobacco (Nicotiana tabacum), we determined the complete nucleotide sequence of Sua-CMS mitochondrial genome. The Sua-CMS mtDNA sequence is 522,731 bp in length and contains 34 protein-coding genes, 25 transfer RNA (tRNA) genes, and three ribosomal RNA (rRNA) genes. The nucleotide sequence data of 34 protein-coding genes of 14 mitochondrial genomes were used for constructing the phylogenetic tree. The results showed that Nicotiana tabacum Sua-CMS exhibits most close relationship with other solanaceae species. PMID:27158790

  17. Evidence of a Native Northwest Atlantic COI Haplotype Clade in the Cryptogenic Colonial Ascidian Botryllus schlosseri.

    PubMed

    Yund, Philip O; Collins, Catherine; Johnson, Sheri L

    2015-06-01

    The colonial ascidian Botryllus schlosseri should be considered cryptogenic (i.e., not definitively classified as either native or introduced) in the Northwest Atlantic. Although all the evidence is quite circumstantial, over the last 15 years most research groups have accepted the scenario of human-mediated dispersal and classified B. schlosseri as introduced; others have continued to consider it native or cryptogenic. We address the invasion status of this species by adding 174 sequences to the growing worldwide database for the mitochondrial gene cytochrome c oxidase subunit I (COI) and analyzing 1077 sequences to compare genetic diversity of one clade of haplotypes in the Northwest Atlantic with two hypothesized source regions (the Northeast Atlantic and Mediterranean). Our results lead us to reject the prevailing view of the directionality of transport across the Atlantic. We argue that the genetic diversity patterns at COI are far more consistent with the existence of at least one haplotype clade in the Northwest Atlantic (and possibly a second) that substantially pre-dates human colonization from Europe, with this native North American clade subsequently introduced to three sites in Northeast Atlantic and Mediterranean waters. However, we agree with past researchers that some sites in the Northwest Atlantic have more recently been invaded by alien haplotypes, so that some populations are currently composed of a mixture of native and invader haplotypes. PMID:26124447

  18. Novel genetic diversity within Anopheles punctimacula s.l.: phylogenetic discrepancy between the Barcode cytochrome c oxidase I (COI) gene and the rDNA second internal transcribed spacer (ITS2).

    PubMed

    Loaiza, Jose R; Scott, Marilyn E; Bermingham, Eldredge; Sanjur, Oris I; Rovira, Jose R; Dutari, Larissa C; Linton, Yvonne-Marie; Bickersmith, Sara; Conn, Jan E

    2013-10-01

    Anopheles punctimacula s.l. is a regional malaria vector in parts of Central America, but its role in transmission is controversial due to its unresolved taxonomic status. Two cryptic species, An. malefactor and An. calderoni, have been previously confused with this taxon, and evidence for further genetic differentiation has been proposed. In the present study we collected and morphologically identified adult female mosquitoes of An. punctimacula s.l. from 10 localities across Panama and one in Costa Rica. DNA sequences from three molecular regions, the three prime end of the mitochondrial cytochrome c oxidase I gene (3' COI), the Barcode region in the five prime end of the COI (5' COI), and the rDNA second internal transcribed spacer (ITS2) were used to test the hypothesis of new molecular lineages within An. punctimacula s.l. Phylogenetic analyses using the 3' COI depicted six highly supported molecular lineages (A-F), none of which was An. malefactor. In contrast, phylogenetic inference with the 5' COI demonstrated paraphyly. Tree topologies based on the combined COI regions and ITS2 sequence data supported the same six lineages as the 3' COI alone. As a whole this evidence suggests that An. punctimacula s.l. comprises two geographically isolated lineages, but it is not clear whether these are true species. The phylogenetic structure of the An. punctimacula cluster as well as that of other unknown lineages (C type I vs C type II; D vs E) appears to be driven by geographic partition, because members of these assemblages did not overlap spatially. We report An. malefactor for the first time in Costa Rica, but our data do not support the presence of An. calderoni in Panama. PMID:23806568

  19. Novel genetic diversity within Anopheles punctimacula s.l.: Phylogenetic discrepancy between the Barcode cytochrome c oxidase I (COI) gene and the rDNA second internal transcribed spacer (ITS2)

    PubMed Central

    Loaiza, Jose R.; Scott, Marilyn E.; Bermingham, Eldredge; Sanjur, Oris I.; Rovira, Jose R.; Dutari, Larissa C.; Linton, Yvonne-Marie; Bickersmith, Sara; Conn, Jan E.

    2013-01-01

    Anopheles punctimacula s.l. is a regional malaria vector in parts of Central America, but its role in transmission is controversial due to its unresolved taxonomic status. Two cryptic species, An. malefactor and An. calderoni, have been previously confused with this taxon, and evidence for further genetic differentiation has been proposed. In the present study we collected and morphologically identified adult female mosquitoes of An. punctimacula s.l. from 10 localities across Panama and one in Costa Rica. DNA sequences from three molecular regions, the three prime end of the mitochondrial cytochrome c oxidase I gene (3´ COI), the Barcode region in the five prime end of the COI (5´ COI), and the rDNA second internal transcribed spacer (ITS2) were used to test the hypothesis of new molecular lineages within An. punctimacula s.l. Phylogenetic analyses using the 3´ COI depicted six highly supported molecular lineages (A–F), none of which was An. malefactor. In contrast, phylogenetic inference with the 5´ COI demonstrated paraphyly. Tree topologies based on the combined COI regions and ITS2 sequence data supported the same six lineages as the 3´ COI alone. As a whole this evidence suggests that An. punctimacula s.l. comprises two geographically isolated lineages, but it is not clear whether these are true species. The phylogenetic structure of the An. punctimacula cluster as well as that of other unknown lineages (C type I vs C type II; D vs E) appears to be driven by geographic partition, because members of these assemblages did not overlap spatially. We report An. malefactor for the first time in Costa Rica, but our data do not support the presence of An. calderoni in Panama. PMID:23806568

  20. The complete mitochondrial genome sequence of Platypharodon extremus (Cypriniformes: Cyprinidae).

    PubMed

    Li, Chunhua; Xiong, Wen; Chen, Yifeng; He, Dekui

    2016-05-01

    Platypharodon extremus Herzenstein, 1891 (Cyprinidae: Schizothoracinae), is a monotypic genus species only found in the Qinghai-Tibet plateau of China. Due to human disturbance and related environmental change since the 1950s, the population of P. extremus declined rapidly. As a result, it was listed in the China Red Data Book of Endangered Animal and the China's Protected Species Priority List. There exist very limited researches done on P. extremus. The poor understanding of this species limits the effective protection on this species. Here, we determined the complete mitochondrial DNA sequence of P. extremus. The results show that the mitogenome is 16,651 bp in length, which includes 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and two non-coding regions: control region (D-loop) and origin of light-strand replication (OL). These baseline mitogenomic data provided by this study will facilitate the studies on P. extremus in genetics, developmental biology and conservation biology in the future. PMID:25231713

  1. The complete mitochondrial genome sequence of Hemibagrus sp. (Siluriformes: Bagridae).

    PubMed

    Hao, Rong-Chao; Wang, Guo-Hua

    2016-05-01

    At present, the phylogenetic and taxonomic positions of Bagridae and Siluriformes have long been unclear. In this paper, we sequenced and annotated the complete mitogenome of Hemibagrus sp. The total length was 16,529 bp, and was typically consist of 37 genes, including 13 protein-coding genes, 2 rRNAs, 22 tRNA, a light-strand replication origin (OL) and a single large control region (CR). Except for eight tRNA and ND6 genes, all other mitochondrial genes were encoded on the heavy strand (H-strand). The gene content, organization and arrangement were identical to that of a typical bony fish. The overall base composition was 26.5%, 26.8%, 31.7% and 15.0% for T, C, A and G, respectively, with a slight bias on AT content (58.2%). This information could not only contribute to provide useful molecular data for the species identification, but also to further taxonomic and phylogenetic studies of Hemibagrus and Bagridae. PMID:25319292

  2. Mitochondrial control-region sequence variation in aboriginal Australians.

    PubMed

    van Holst Pellekaan, S; Frommer, M; Sved, J; Boettcher, B

    1998-02-01

    The mitochondrial D-loop hypervariable segment 1 (mt HVS1) between nucleotides 15997 and 16377 has been examined in aboriginal Australian people from the Darling River region of New South Wales (riverine) and from Yuendumu in central Australia (desert). Forty-seven unique HVS1 types were identified, varying at 49 nucleotide positions. Pairwise analysis by calculation of BEPPI (between population proportion index) reveals statistically significant structure in the populations, although some identical HVS1 types are seen in the two contrasting regions. mt HVS1 types may reflect more-ancient distributions than do linguistic diversity and other culturally distinguishing attributes. Comparison with sequences from five published global studies reveals that these Australians demonstrate greatest divergence from some Africans, least from Papua New Guinea highlanders, and only slightly more from some Pacific groups (Indonesian, Asian, Samoan, and coastal Papua New Guinea), although the HVS1 types vary at different nucleotide sites. Construction of a median network, displaying three main groups, suggests that several hypervariable nucleotide sites within the HVS1 are likely to have undergone mutation independently, making phylogenetic comparison with global samples by conventional methods difficult. Specific nucleotide-site variants are major separators in median networks constructed from Australian HVS1 types alone and for one global selection. The distribution of these, requiring extended study, suggests that they may be signatures of different groups of prehistoric colonizers into Australia, for which the time of colonization remains elusive. PMID:9463317

  3. The complete mitochondrial genome sequence of Tylototriton taliangensis (Amphibia: Caudata).

    PubMed

    Jiang, Ye; Li, Ziyuan; Liu, Jiabin; Li, Yan; Ni, Qingyong; Yao, Yongfang; Xu, Huailiang; Li, Ying; Zhang, Mingwang

    2016-07-01

    Tylototriton taliangensis was listed as a Near Threatened amphibian in IUCN red list. In this study, we sequenced the complete mitochondrial (mt) genome of this species (GenBank: KP979646) and found it contains 16,265 base pairs, which encode 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNA), 2 ribosomal RNA genes (rRNA) and 1 control region (CR). We also found that almost all PCGs and tRNA genes are located on the H-strand, except for ND6 subunit gene and eight tRNA genes, which were distributed on the L-strand. The PCGs used "ATG" and "GTG" as the start codon, while used four types of stop codons. Almost all tRNA genes were folded into typical cloverleaf secondary structures. The L-strand replication origin (OL) and a non-coding region were also found. The new mitogenomic phylogenetic tree confirms the reciprocally monophyly of the genus Tylototriton, Echinotriton and Pleurodeles with high bootstrap value. The present study will provide information for future studies on the conservation genetics and phylogeny of this species and its relatives. PMID:26024138

  4. Sequence analysis of mitochondrial DNA hypervariable regions using infrared fluorescence detection.

    PubMed

    Steffens, D L; Roy, R

    1998-06-01

    The non-coding region of the mitochondrial genome provides an attractive target for human forensic identification studies. Two hypervariable (HV) regions, each approximately 250-350 bp in length, contain the majority of mitochondrial DNA (mtDNA) sequence variability among different individuals. Various approaches to determine mtDNA sequence were evaluated utilizing highly sensitive infrared (IR) fluorescence detection. HV regions were amplified either together or separately and cycle-sequenced using a Thermo Sequenase protocol. An M13 universal primer sequence tail covalently attached to the 5' terminus of an amplification primer facilitated electrophoretic analysis and direct sequencing of the amplification products using IR detection. PMID:9631201

  5. The History of Slavs Inferred from Complete Mitochondrial Genome Sequences

    PubMed Central

    Mielnik-Sikorska, Marta; Daca, Patrycja; Malyarchuk, Boris; Derenko, Miroslava; Skonieczna, Katarzyna; Perkova, Maria; Dobosz, Tadeusz; Grzybowski, Tomasz

    2013-01-01

    To shed more light on the processes leading to crystallization of a Slavic identity, we investigated variability of complete mitochondrial genomes belonging to haplogroups H5 and H6 (63 mtDNA genomes) from the populations of Eastern and Western Slavs, including new samples of Poles, Ukrainians and Czechs presented here. Molecular dating implies formation of H5 approximately 11.5–16 thousand years ago (kya) in the areas of southern Europe. Within ancient haplogroup H6, dated at around 15–28 kya, there is a subhaplogroup H6c, which probably survived the last glaciation in Europe and has undergone expansion only 3–4 kya, together with the ancestors of some European groups, including the Slavs, because H6c has been detected in Czechs, Poles and Slovaks. Detailed analysis of complete mtDNAs allowed us to identify a number of lineages that seem specific for Central and Eastern Europe (H5a1f, H5a2, H5a1r, H5a1s, H5b4, H5e1a, H5u1, some subbranches of H5a1a and H6a1a9). Some of them could possibly be traced back to at least ∼4 kya, which indicates that some of the ancestors of today's Slavs (Poles, Czechs, Slovaks, Ukrainians and Russians) inhabited areas of Central and Eastern Europe much earlier than it was estimated on the basis of archaeological and historical data. We also sequenced entire mitochondrial genomes of several non-European lineages (A, C, D, G, L) found in contemporary populations of Poland and Ukraine. The analysis of these haplogroups confirms the presence of Siberian (C5c1, A8a1) and Ashkenazi-specific (L2a1l2a) mtDNA lineages in Slavic populations. Moreover, we were able to pinpoint some lineages which could possibly reflect the relatively recent contacts of Slavs with nomadic Altaic peoples (C4a1a, G2a, D5a2a1a1). PMID:23342138

  6. Repetitive sequences in the crocodilian mitochondrial control region: poly-A sequences and heteroplasmic tandem repeats.

    PubMed

    Ray, David A; Densmore, Llewellyn D

    2003-06-01

    Heteroplasmic tandem repeats in the mitochondrial control region have been documented in a wide variety of vertebrate species. We have examined the control region from 11 species in the family Crocodylidae and identified two different types of heteroplasmic repetitive sequences in the conserved sequence block (CSB) domain-an extensive poly-A tract that appears to be involved in the formation of secondary structure and a series of tandem repeats located downstream ranging from approximately 50 to approximately 80 bp in length. We describe this portion of the crocodylian control region in detail and focus on members of the family Crocodylidae. We then address the origins of the tandemly repeated sequences in this family and suggest hypotheses to explain possible mechanisms of expansion/contraction of the sequences. We have also examined control region sequences from Alligator and Caiman and offer hypotheses for the origin of tandem repeats found in those taxa. Finally, we present a brief analysis of intraindividual and interindividual haplotype variation by examining representatives of Morelet's crocodile (Crocodylus moreletii). PMID:12716979

  7. Next-generation sequencing reveals deletions in mitochondrial mutants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cucumber mitochondria have three unique characteristics: paternal transmission, huge genome size, and mitochondrially encoded mosaic phenotypes. The cucumber mitochondrial DNA at 1.6 Mb is one of largest among angiosperms, and is divided into three chromosomes of 1.5 Mb, 84 Kb and 45 Kb. Paternally...

  8. Complete mitochondrial genome sequence of the Asian golden cat, Catopuma temminckii.

    PubMed

    Huang, Kui-Hua; Deng, Jia-Bo; Yu, Jian-Qiu; Cai, Zhi-Gang; Liu, Yu-Liang; Peng, Rui

    2016-09-01

    In this study, the mitochondrial genome of Asian golden cat (Catopuma temminckii) is sequenced. The mitochondrial genome was 16,985 bp long, including 13 protein-coding genes, 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes, 1 control region and 1 origin of light-strand replication. The overall base composition of the mitochondrial genome was 32.76% A, 27.49 % T, 25.75 % C, and 13.99 % G. The complete mitochondrial genome of Catopuma temminckii could contribute to understanding taxonomic status and phylogenetic relationship of genus Catopuma. PMID:25630725

  9. The complete sequence of the mitochondrial genome of Sandu black pig (Sus Scrofa).

    PubMed

    Wang, Ling-Yu; Xu, Dong; Ma, Hai-Ming

    2016-05-01

    Sandu black pig is one of the native breed in Guizhou province in China. The total length of mitochondrial genome of Sandu black pig is 16,741 bp. Mitochondrial genome contains a major non-coding control region (D-Loop region), 2 ribosomal RNA genes, 13 protein-coding genes (PCGs) and 22 transfer RNA genes. This is the first report of the complete mitochondrial genome sequence about Sandu black pig. The mitochondrial genome data of Sandu black pig presented is useful novel markers for further studying the population genetics of sus scrofa. PMID:25259459

  10. The mitochondrial targeting sequence tilts the balance between mitochondrial and cytosolic dual localization.

    PubMed

    Regev-Rudzki, Neta; Yogev, Ohad; Pines, Ophry

    2008-07-15

    Dual localization of proteins in the cell has appeared in recent years to be a more abundant phenomenon than previously reported. One of the mechanisms by which a single translation product is distributed between two compartments, involves retrograde movement of a subset of processed molecules back through the organelle-membrane. Here, we investigated the specific contribution of the mitochondrial targeting sequence (MTS), as a cis element, in the distribution of two proteins, aconitase and fumarase. Whereas the cytosolic presence of fumarase is obvious, the cytosolic amount of aconitase is minute. Therefore, we created (1) MTS-exchange mutants, exchanging the MTS of aconitase and fumarase with each other as well as with those of other proteins and, (2) a set of single mutations, limited to the MTS of these proteins. Distribution of both proteins is affected by mutations, a fact particularly evident for aconitase, which displays extraordinary amounts of processed protein in the cytosol. Thus, we show for the first time, that the MTS has an additional role beyond targeting: it determines the level of retrograde movement of proteins back into the cytosol. Our results suggest that the translocation rate and folding of proteins during import into mitochondria determines the extent to which molecules are withdrawn back into the cytosol. PMID:18577574

  11. A database of mitochondrial DNA hypervariable regions I and II sequences of individuals from Slovakia.

    PubMed

    Lehocký, Ivan; Baldovic, Marian; Kádasi, Ludevít; Metspalu, Ene

    2008-09-01

    In order to identify polymorphic positions and to determine their frequencies and the frequency of haplotypes in the human mitochondrial control region, two hypervariable regions (HV1 and HV2) of the mitochondrial DNA (mtDNA) of 374 unrelated individuals from Slovakia were amplified and sequenced. Sequence comparison led to the identification of 284 mitochondrial lineages as defined by 163 variable sites. Genetic diversity (GD) was estimated at 0.997 and the probability of two randomly selected individuals from population having identical mtDNA types (random match probability, RMP) for the both regions is 0.60%. PMID:19083829

  12. A protocol for isolating insect mitochondrial genomes: a case study of NUMT in Melipona flavolineata (Hymenoptera: Apidae).

    PubMed

    Françoso, Elaine; Gomes, Fernando; Arias, Maria Cristina

    2016-07-01

    Nuclear mitochondrial DNA insertions (NUMTs) are mitochondrial DNA sequences that have been transferred into the nucleus and are recognized by the presence of indels and stop codons. Although NUMTs have been identified in a diverse range of species, their discovery was frequently accidental. Here, our initial goal was to develop and standardize a simple method for isolating NUMTs from the nuclear genome of a single bee. Subsequently, we tested our new protocol by determining whether the indels and stop codons of the cytochrome c oxidase subunit I (COI) sequence of Melipona flavolineata are of nuclear origin. The new protocol successfully demonstrated the presence of a COI NUMT. In addition to NUMT investigations, the protocol described here will also be very useful for studying mitochondrial mutations related to diseases and for sequencing complete mitochondrial genomes with high read coverage by Next-Generation technology. PMID:26061343

  13. Linear Plasmids and the Rate of Sequence Evolution in Plant Mitochondrial Genomes.

    PubMed

    Warren, Jessica M; Simmons, Mark P; Wu, Zhiqiang; Sloan, Daniel B

    2016-02-01

    The mitochondrial genomes of flowering plants experience frequent insertions of foreign sequences, including linear plasmids that also exist in standalone forms within mitochondria, but the history and phylogenetic distribution of plasmid insertions is not well known. Taking advantage of the increased availability of plant mitochondrial genome sequences, we performed phylogenetic analyses to reconstruct the evolutionary history of these plasmids and plasmid-derived insertions. Mitochondrial genomes from multiple land plant lineages (including liverworts, lycophytes, ferns, and gymnosperms) include fragmented remnants from ancient plasmid insertions. Such insertions are much more recent and widespread in angiosperms, in which approximately 75% of sequenced mitochondrial genomes contain identifiable plasmid insertions. Although conflicts between plasmid and angiosperm phylogenies provide clear evidence of repeated horizontal transfers, we were still able to detect significant phylogenetic concordance, indicating that mitochondrial plasmids have also experienced sustained periods of (effectively) vertical transmission in angiosperms. The observed levels of sequence divergence in plasmid-derived genes suggest that nucleotide substitution rates in these plasmids, which often encode their own viral-like DNA polymerases, are orders of magnitude higher than in mitochondrial chromosomes. Based on these results, we hypothesize that the periodic incorporation of mitochondrial genes into plasmids contributes to the remarkable heterogeneity in substitution rates among genes that has recently been discovered in some angiosperm mitochondrial genomes. In support of this hypothesis, we show that the recently acquired ψtrnP-trnW gene region in a maize linear plasmid is evolving significantly faster than homologous sequences that have been retained in the mitochondrial chromosome in closely related grasses. PMID:26759362

  14. Linear Plasmids and the Rate of Sequence Evolution in Plant Mitochondrial Genomes

    PubMed Central

    Warren, Jessica M.; Simmons, Mark P.; Wu, Zhiqiang; Sloan, Daniel B.

    2016-01-01

    The mitochondrial genomes of flowering plants experience frequent insertions of foreign sequences, including linear plasmids that also exist in standalone forms within mitochondria, but the history and phylogenetic distribution of plasmid insertions is not well known. Taking advantage of the increased availability of plant mitochondrial genome sequences, we performed phylogenetic analyses to reconstruct the evolutionary history of these plasmids and plasmid-derived insertions. Mitochondrial genomes from multiple land plant lineages (including liverworts, lycophytes, ferns, and gymnosperms) include fragmented remnants from ancient plasmid insertions. Such insertions are much more recent and widespread in angiosperms, in which approximately 75% of sequenced mitochondrial genomes contain identifiable plasmid insertions. Although conflicts between plasmid and angiosperm phylogenies provide clear evidence of repeated horizontal transfers, we were still able to detect significant phylogenetic concordance, indicating that mitochondrial plasmids have also experienced sustained periods of (effectively) vertical transmission in angiosperms. The observed levels of sequence divergence in plasmid-derived genes suggest that nucleotide substitution rates in these plasmids, which often encode their own viral-like DNA polymerases, are orders of magnitude higher than in mitochondrial chromosomes. Based on these results, we hypothesize that the periodic incorporation of mitochondrial genes into plasmids contributes to the remarkable heterogeneity in substitution rates among genes that has recently been discovered in some angiosperm mitochondrial genomes. In support of this hypothesis, we show that the recently acquired ψtrnP-trnW gene region in a maize linear plasmid is evolving significantly faster than homologous sequences that have been retained in the mitochondrial chromosome in closely related grasses. PMID:26759362

  15. The Large Mitochondrial Genome of Symbiodinium minutum Reveals Conserved Noncoding Sequences between Dinoflagellates and Apicomplexans

    PubMed Central

    Shoguchi, Eiichi; Shinzato, Chuya; Hisata, Kanako; Satoh, Nori; Mungpakdee, Sutada

    2015-01-01

    Even though mitochondrial genomes, which characterize eukaryotic cells, were first discovered more than 50 years ago, mitochondrial genomics remains an important topic in molecular biology and genome sciences. The Phylum Alveolata comprises three major groups (ciliates, apicomplexans, and dinoflagellates), the mitochondrial genomes of which have diverged widely. Even though the gene content of dinoflagellate mitochondrial genomes is reportedly comparable to that of apicomplexans, the highly fragmented and rearranged genome structures of dinoflagellates have frustrated whole genomic analysis. Consequently, noncoding sequences and gene arrangements of dinoflagellate mitochondrial genomes have not been well characterized. Here we report that the continuous assembled genome (∼326 kb) of the dinoflagellate, Symbiodinium minutum, is AT-rich (∼64.3%) and that it contains three protein-coding genes. Based upon in silico analysis, the remaining 99% of the genome comprises transcriptomic noncoding sequences. RNA edited sites and unique, possible start and stop codons clarify conserved regions among dinoflagellates. Our massive transcriptome analysis shows that almost all regions of the genome are transcribed, including 27 possible fragmented ribosomal RNA genes and 12 uncharacterized small RNAs that are similar to mitochondrial RNA genes of the malarial parasite, Plasmodium falciparum. Gene map comparisons show that gene order is only slightly conserved between S. minutum and P. falciparum. However, small RNAs and intergenic sequences share sequence similarities with P. falciparum, suggesting that the function of noncoding sequences has been preserved despite development of very different genome structures. PMID:26199191

  16. The Large Mitochondrial Genome of Symbiodinium minutum Reveals Conserved Noncoding Sequences between Dinoflagellates and Apicomplexans.

    PubMed

    Shoguchi, Eiichi; Shinzato, Chuya; Hisata, Kanako; Satoh, Nori; Mungpakdee, Sutada

    2015-08-01

    Even though mitochondrial genomes, which characterize eukaryotic cells, were first discovered more than 50 years ago, mitochondrial genomics remains an important topic in molecular biology and genome sciences. The Phylum Alveolata comprises three major groups (ciliates, apicomplexans, and dinoflagellates), the mitochondrial genomes of which have diverged widely. Even though the gene content of dinoflagellate mitochondrial genomes is reportedly comparable to that of apicomplexans, the highly fragmented and rearranged genome structures of dinoflagellates have frustrated whole genomic analysis. Consequently, noncoding sequences and gene arrangements of dinoflagellate mitochondrial genomes have not been well characterized. Here we report that the continuous assembled genome (∼326 kb) of the dinoflagellate, Symbiodinium minutum, is AT-rich (∼64.3%) and that it contains three protein-coding genes. Based upon in silico analysis, the remaining 99% of the genome comprises transcriptomic noncoding sequences. RNA edited sites and unique, possible start and stop codons clarify conserved regions among dinoflagellates. Our massive transcriptome analysis shows that almost all regions of the genome are transcribed, including 27 possible fragmented ribosomal RNA genes and 12 uncharacterized small RNAs that are similar to mitochondrial RNA genes of the malarial parasite, Plasmodium falciparum. Gene map comparisons show that gene order is only slightly conserved between S. minutum and P. falciparum. However, small RNAs and intergenic sequences share sequence similarities with P. falciparum, suggesting that the function of noncoding sequences has been preserved despite development of very different genome structures. PMID:26199191

  17. Single-Molecule LATE-PCR Analysis of Human Mitochondrial Genomic Sequence Variations

    PubMed Central

    Osborne, Adam; Reis, Arthur H.; Bach, Loren; Wangh, Lawrence J.

    2009-01-01

    It is thought that changes in mitochondrial DNA are associated with many degenerative diseases, including Alzheimer's and diabetes. Much of the evidence, however, depends on correlating disease states with changing levels of heteroplasmy within populations of mitochondrial genomes, rather than individual mitochondrial genomes. Thus these measurements are likely to either overestimate the extent of heteroplasmy due to technical artifacts, or underestimate the actual level of heteroplasmy because only the most abundant changes are observable. In contrast, Single Molecule (SM) LATE-PCR analysis achieves efficient amplification of single-stranded amplicons from single target molecules. The product molecules, in turn, can be accurately sequenced using a convenient Dilute-‘N’-Go protocol, as shown here. Using these novel technologies we have rigorously analyzed levels of mitochondrial genome heteroplasmy found in single hair shafts of healthy adult individuals. Two of the single molecule sequences (7% of the samples) were found to contain mutations. Most of the mtDNA sequence changes, however, were due to the presence of laboratory contaminants. Amplification and sequencing errors did not result in mis-identification of mutations. We conclude that SM-LATE-PCR in combination with Dilute-‘N’-Go Sequencing are convenient technologies for detecting infrequent mutations in mitochondrial genomes, provided great care is taken to control and document contamination. We plan to use these technologies in the future to look for age, drug, and disease related mitochondrial genome changes in model systems and clinical samples. PMID:19461959

  18. Complete mitochondrial genome sequences of three Crocodylus species and their comparison within the Order Crocodylia.

    PubMed

    Meganathan, P R; Dubey, Bhawna; Batzer, Mark A; Ray, David A; Haque, Ikramul

    2011-06-01

    Crocodylus is the largest genus within the Order Crocodylia consisting of eleven species. This paper reports the complete mitochondrial genome sequences of three Crocodylus species, Crocodylus moreletii, Crocodylus johnstoni and Crocodylus palustris, and compares the newly obtained mitochondrial DNA sequences with other crocodilians, available in the public databases. The mitochondrial genomes of C. moreletii, C. johnstoni and C. palustris are 16,827 bp, 16,851 bp and 16,852 bp in length, respectively. These mitochondrial genomes consist of 13 protein coding genes, two ribosomal RNA genes, 22 transfer RNA genes and a non-coding region. The mitochondrial genomes of all the Crocodylus species, studied herein show identical characteristics in terms of nucleotide composition and codon usage, suggestive of the existence of analogous evolutionary patterns within the genus, Crocodylus. The synonymous and non-synonymous substitution rates for all the protein coding genes of Crocodylus were observed in between 0.001 and 0.275 which reveal the prevalence of purifying selection in these genes. The phylogenetic analyses based on complete mitochondrial DNA data substantiate the previously established crocodilian phylogeny. This study provides a better understanding of the crocodilian mitochondrial genome and the data described herein will prove useful for future studies concerning crocodilian mitochondrial genome evolution. PMID:21310220

  19. Median network analysis of defectively sequenced entire mitochondrial genomes from early and contemporary disease studies.

    PubMed

    Bandelt, Hans-Jürgen; Yao, Yong-Gang; Bravi, Claudio M; Salas, Antonio; Kivisild, Toomas

    2009-03-01

    Sequence analysis of the mitochondrial genome has become a routine method in the study of mitochondrial diseases. Quite often, the sequencing efforts in the search of pathogenic or disease-associated mutations are affected by technical and interpretive problems, caused by sample mix-up, contamination, biochemical problems, incomplete sequencing, misdocumentation and insufficient reference to previously published data. To assess data quality in case studies of mitochondrial diseases, it is recommended to compare any mtDNA sequence under consideration to their phylogenetically closest lineages available in the Web. The median network method has proven useful for visualizing potential problems with the data. We contrast some early reports of complete mtDNA sequences to more recent total mtDNA sequencing efforts in studies of various mitochondrial diseases. We conclude that the quality of complete mtDNA sequences generated in the medical field in the past few years is somewhat unsatisfactory and may even fall behind that of pioneer manual sequencing in the early nineties. Our study provides a paradigm for an a posteriori evaluation of sequence quality and for detection of potential problems with inferring a pathogenic status of a particular mutation. PMID:19322152

  20. Mitochondrial Genome Sequence and Expression Profiling for the Legume Pod Borer Maruca vitrata (Lepidoptera: Crambidae)

    PubMed Central

    Margam, Venu M.; Coates, Brad S.; Hellmich, Richard L.; Agunbiade, Tolulope; Seufferheld, Manfredo J.; Sun, Weilin; Ba, Malick N.; Sanon, Antoine; Binso-Dabire, Clementine L.; Baoua, Ibrahim; Ishiyaku, Mohammad F.; Covas, Fernando G.; Srinivasan, Ramasamy; Armstrong, Joel; Murdock, Larry L.; Pittendrigh, Barry R.

    2011-01-01

    We report the assembly of the 14,054 bp near complete sequencing of the mitochondrial genome of the legume pod borer (LPB), Maruca vitrata (Lepidoptera: Crambidae), which we subsequently used to estimate divergence and relationships within the lepidopteran lineage. The arrangement and orientation of the 13 protein-coding, 2 rRNA, and 19 tRNA genes sequenced was typical of insect mitochondrial DNA sequences described to date. The sequence contained a high A+T content of 80.1% and a bias for the use of codons with A or T nucleotides in the 3rd position. Transcript mapping with midgut and salivary gland ESTs for mitochondrial genome annotation showed that translation from protein-coding genes initiates and terminates at standard mitochondrial codons, except for the coxI gene, which may start from an arginine CGA codon. The genomic copy of coxII terminates at a T nucleotide, and a proposed polyadenylation mechanism for completion of the TAA stop codon was confirmed by comparisons to EST data. EST contig data further showed that mature M. vitrata mitochondrial transcripts are monocistronic, except for bicistronic transcripts for overlapping genes nd4/nd4L and nd6/cytb, and a tricistronic transcript for atp8/atp6/coxIII. This processing of polycistronic mitochondrial transcripts adheres to the tRNA punctuated cleavage mechanism, whereby mature transcripts are cleaved only at intervening tRNA gene sequences. In contrast, the tricistronic atp8/atp6/coxIII in Drosophila is present as separate atp8/atp6 and coxIII transcripts despite the lack of an intervening tRNA. Our results indicate that mitochondrial processing mechanisms vary between arthropod species, and that it is crucial to use transcriptional information to obtain full annotation of mitochondrial genomes. PMID:21311752

  1. The past, present and future of mitochondrial genomics: have we sequenced enough mtDNAs?

    PubMed

    Smith, David Roy

    2016-01-01

    The year 2014 saw more than a thousand new mitochondrial genome sequences deposited in GenBank-an almost 15% increase from the previous year. Hundreds of peer-reviewed articles accompanied these genomes, making mitochondrial DNAs (mtDNAs) the most sequenced and reported type of eukaryotic chromosome. These mtDNA data have advanced a wide range of scientific fields, from forensics to anthropology to medicine to molecular evolution. But for many biological lineages, mtDNAs are so well sampled that newly published genomes are arguably no longer contributing significantly to the progression of science, and in some cases they are tying up valuable resources, particularly journal editors and referees. Is it time to acknowledge that as a research community we have published enough mitochondrial genome papers? Here, I address this question, exploring the history, milestones and impacts of mitochondrial genomics, the benefits and drawbacks of continuing to publish mtDNAs at a high rate and what the future may hold for such an important and popular genetic marker. I highlight groups for which mtDNAs are still poorly sampled, thus meriting further investigation, and recommend that more energy be spent characterizing aspects of mitochondrial genomes apart from the DNA sequence, such as their chromosomal and transcriptional architectures. Ultimately, one should be mindful before writing a mitochondrial genome paper. Consider perhaps sending the sequence directly to GenBank instead, and be sure to annotate it correctly before submission. PMID:26117139

  2. The past, present and future of mitochondrial genomics: have we sequenced enough mtDNAs?

    PubMed Central

    2016-01-01

    The year 2014 saw more than a thousand new mitochondrial genome sequences deposited in GenBank—an almost 15% increase from the previous year. Hundreds of peer-reviewed articles accompanied these genomes, making mitochondrial DNAs (mtDNAs) the most sequenced and reported type of eukaryotic chromosome. These mtDNA data have advanced a wide range of scientific fields, from forensics to anthropology to medicine to molecular evolution. But for many biological lineages, mtDNAs are so well sampled that newly published genomes are arguably no longer contributing significantly to the progression of science, and in some cases they are tying up valuable resources, particularly journal editors and referees. Is it time to acknowledge that as a research community we have published enough mitochondrial genome papers? Here, I address this question, exploring the history, milestones and impacts of mitochondrial genomics, the benefits and drawbacks of continuing to publish mtDNAs at a high rate and what the future may hold for such an important and popular genetic marker. I highlight groups for which mtDNAs are still poorly sampled, thus meriting further investigation, and recommend that more energy be spent characterizing aspects of mitochondrial genomes apart from the DNA sequence, such as their chromosomal and transcriptional architectures. Ultimately, one should be mindful before writing a mitochondrial genome paper. Consider perhaps sending the sequence directly to GenBank instead, and be sure to annotate it correctly before submission. PMID:26117139

  3. Tripartite mitochondrial genome of spinach: physical structure, mitochondrial gene mapping, and locations of transposed chloroplast DNA sequences.

    PubMed Central

    Stern, D B; Palmer, J D

    1986-01-01

    A complete physical map of the spinach mitochondrial genome has been established. The entire sequence content of 327 kilobase pairs (kb) is postulated to occur as a single circular molecule. Two directly repeated elements of approximately 6 kb, located on this "master chromosome", are proposed to participate in an intragenomic recombination event that reversibly generates two "subgenomic" circles of 93 kb and 234 kb. The positions of protein and ribosomal RNA-encoding genes, determined by heterologous filter hybridizations, are scattered throughout the genome, with duplicate 26S rRNA genes located partially or entirely within the 6 kb repeat elements. Filter hybridizations between spinach mitochondrial DNA and cloned segments of spinach chloroplast DNA reveal at least twelve dispersed regions of inter-organellar sequence homology. Images PMID:3016660

  4. Complete genome sequence of mitochondrial DNA (mtDNA) of Chlorella sorokiniana.

    PubMed

    Orsini, Massimiliano; Costelli, Cristina; Malavasi, Veronica; Cusano, Roberto; Concas, Alessandro; Angius, Andrea; Cao, Giacomo

    2016-01-01

    The complete sequence of mitochondrial genome of the Chlorella sorokiniana strain (SAG 111-8 k) is presented in this work. Within the Chlorella genus, it represents the second species with a complete sequenced and annotated mitochondrial genome (GenBank accession no. KM241869). The genome consists of circular chromosomes of 52,528 bp and encodes a total of 31 protein coding genes, 3 rRNAs and 26 tRNAs. The overall AT contents of the C. sorokiniana mtDNA is 70.89%, while the coding sequence is of 97.4%. PMID:25186028

  5. Complete mitochondrial genome sequence of the heart failure model of cardiomyopathic Syrian hamster (Mesocricetus auratus).

    PubMed

    Hu, Bo; Liu, Dong-Xing; Zhang, Yu-Qing; Song, Jian-Tao; Ji, Xian-Fei; Hou, Zhi-Qiang; Zhang, Zhen-Hai

    2016-05-01

    In this study we sequenced the complete mitochondrial genome sequencing of a heart failure model of cardiomyopathic Syrian hamster (Mesocricetus auratus) for the first time. The total length of the mitogenome was 16,267 bp. It harbored 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and 1 non-coding control region. PMID:25469817

  6. The mitochondrial genome sequence of a diabetes disease Rattus norvegicus Wistar strain.

    PubMed

    Tang, Yu-Xiao; Dong, Yao-Zhong; Wang, Ji-Chang; Meng, Xiao-Mei

    2016-05-01

    We sequenced a diabetic Rattus norvegicus Wistar strain mitochondrial genome for the first time (GenBank Accession No. KM114608). Its mitogenome was 16,311 bp and coding 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes. This mitogenome sequence will provide definite genetic information for diabetes disease. PMID:25317643

  7. A Cost-Effective Approach to Sequence Hundreds of Complete Mitochondrial Genomes.

    PubMed

    Nunez, Joaquin C B; Oleksiak, Marjorie F

    2016-01-01

    We present a cost-effective approach to sequence whole mitochondrial genomes for hundreds of individuals. Our approach uses small reaction volumes and unmodified (non-phosphorylated) barcoded adaptors to minimize reagent costs. We demonstrate our approach by sequencing 383 Fundulus sp. mitochondrial genomes (192 F. heteroclitus and 191 F. majalis). Prior to sequencing, we amplified the mitochondrial genomes using 4-5 custom-made, overlapping primer pairs, and sequencing was performed on an Illumina HiSeq 2500 platform. After removing low quality and short sequences, 2.9 million and 2.8 million reads were generated for F. heteroclitus and F. majalis respectively. Individual genomes were assembled for each species by mapping barcoded reads to a reference genome. For F. majalis, the reference genome was built de novo. On average, individual consensus sequences had high coverage: 61-fold for F. heteroclitus and 57-fold for F. majalis. The approach discussed in this paper is optimized for sequencing mitochondrial genomes on an Illumina platform. However, with the proper modifications, this approach could be easily applied to other small genomes and sequencing platforms. PMID:27505419

  8. Mitochondrial genome sequences and comparative genomics of Phytophthora ramorum and P. sojae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complete sequences of the mitochondrial genomes of the oomycetes Phytophthora ramorum and P. sojae were determined during the course of their complete nuclear genome sequencing (Tyler et al. 2006). Both are circular, with sizes of 39,314 bp for P. ramorum and 42,977 bp for P. sojae. Each contain...

  9. A Cost-Effective Approach to Sequence Hundreds of Complete Mitochondrial Genomes

    PubMed Central

    Oleksiak, Marjorie F.

    2016-01-01

    We present a cost-effective approach to sequence whole mitochondrial genomes for hundreds of individuals. Our approach uses small reaction volumes and unmodified (non-phosphorylated) barcoded adaptors to minimize reagent costs. We demonstrate our approach by sequencing 383 Fundulus sp. mitochondrial genomes (192 F. heteroclitus and 191 F. majalis). Prior to sequencing, we amplified the mitochondrial genomes using 4–5 custom-made, overlapping primer pairs, and sequencing was performed on an Illumina HiSeq 2500 platform. After removing low quality and short sequences, 2.9 million and 2.8 million reads were generated for F. heteroclitus and F. majalis respectively. Individual genomes were assembled for each species by mapping barcoded reads to a reference genome. For F. majalis, the reference genome was built de novo. On average, individual consensus sequences had high coverage: 61-fold for F. heteroclitus and 57-fold for F. majalis. The approach discussed in this paper is optimized for sequencing mitochondrial genomes on an Illumina platform. However, with the proper modifications, this approach could be easily applied to other small genomes and sequencing platforms. PMID:27505419

  10. A molecular approach to the genus Alburnoides using COI sequences data set and the description of a new species, A. damghani, from the Damghan River system (the Dasht-e Kavir Basin, Iran) (Actinopterygii, Cyprinidae)

    PubMed Central

    Roudbar, Arash Jouladeh; Eagderi, Soheil; Esmaeili, Hamid Reza; Coad, Brian W.; Bogutskaya, Nina

    2016-01-01

    Abstract The molecular status of nine species of the genus Alburnoides from different river drainages in Iran and additionally by seven species from Europe was assessed. mtDNA COI gene sequences from freshly collected specimens and available NCBI data revealed four major phylogenetic lineages. Based on the results, a distinct taxon from the Cheshmeh Ali (Ali Spring), a Damghan River tributary in the endorheic Dasht-e Kavir basin, northern Iran, which is the closest sister to Alburnoides namaki (Namak Lake basin) + Alburnoides coadi (Nam River in the endorheic Dasht-e Kavir basin) is considered as a new species, Alburnoides damghani sp. n. It is distinguished from other Alburnoides species in Iran by a combination of character states including: a weakly-developed, variably-scaled, ventral keel from completely scaleless to completely scaled, a short snout with the tip of the mouth cleft on a level with the lower margin of the pupil or slightly lower, a small eye (eye horizontal diameter slightly to markedly less than interorbital width), commonly 8½ branched dorsal-fin rays, commonly 11−12½ branched anal-fin rays, 40−46(47) total lateral-line scales, 2.5–4.2 or 2.5–4.1 pharyngeal teeth, gill rakers short and widely spaced, 6−8 in total, 39−41 (commonly 40), total vertebrae, (19)20(21) abdominal vertebrae, 19−21 (most commonly 20) caudal vertebrae, abdominal vertebral region most commonly equal to or longer than caudal region, and most common vertebral formulae 20+20 and 21+19. PMID:27110204

  11. Molecular diversification of Trichuris spp. from Sigmodontinae (Cricetidae) rodents from Argentina based on mitochondrial DNA sequences.

    PubMed

    Callejón, Rocío; Robles, María Del Rosario; Panei, Carlos Javier; Cutillas, Cristina

    2016-08-01

    A molecular phylogenetic hypothesis is presented for the genus Trichuris based on sequence data from mitochondrial cytochrome c oxidase 1 (cox1) and cytochrome b (cob). The taxa consisted of nine populations of whipworm from five species of Sigmodontinae rodents from Argentina. Bayesian Inference, Maximum Parsimony, and Maximum Likelihood methods were used to infer phylogenies for each gene separately but also for the combined mitochondrial data and the combined mitochondrial and nuclear dataset. Phylogenetic results based on cox1 and cob mitochondrial DNA (mtDNA) revealed three clades strongly resolved corresponding to three different species (Trichuris navonae, Trichuris bainae, and Trichuris pardinasi) showing phylogeographic variation, but relationships among Trichuris species were poorly resolved. Phylogenetic reconstruction based on concatenated sequences had greater phylogenetic resolution for delimiting species and populations intra-specific of Trichuris than those based on partitioned genes. Thus, populations of T. bainae and T. pardinasi could be affected by geographical factors and co-divergence parasite-host. PMID:27083190

  12. DmTTF, a novel mitochondrial transcription termination factor that recognises two sequences of Drosophila melanogaster mitochondrial DNA

    PubMed Central

    Roberti, Marina; Polosa, Paola Loguercio; Bruni, Francesco; Musicco, Clara; Gadaleta, Maria Nicola; Cantatore, Palmiro

    2003-01-01

    Using a combination of bioinformatic and molecular biology approaches a Drosophila melanogaster protein, DmTTF, has been identified, which exhibits sequence and structural similarity with two mitochondrial transcription termination factors, mTERF (human) and mtDBP (sea urchin). Import/processing assays indicate that DmTTF is synthesised as a precursor of 410 amino acids and is imported into mitochondria, giving rise to a mature product of 366 residues. Band-shift and DNase I protection experiments show that DmTTF binds two homologous, short, non-coding sequences of Drosophila mitochondrial DNA, located at the 3′ end of blocks of genes transcribed on opposite strands. The location of the target sequences coincides with that of two of the putative transcription termination sites previously hypothesised. These results indicate that DmTTF is the termination factor of mitochondrial transcription in Drosophila. The existence of two DmTTF binding sites might serve not only to stop transcription but also to control the overlapping of a large number of transcripts generated by the peculiar transcription mechanism operating in this organism. PMID:12626700

  13. Developing diagnostic SNP panels for the identification of true fruit flies (Diptera: Tephritidae) within the limits of COI-based species delimitation

    PubMed Central

    2013-01-01

    Background Rapid and reliable identification of quarantine pests is essential for plant inspection services to prevent introduction of invasive species. For insects, this may be a serious problem when dealing with morphologically similar cryptic species complexes and early developmental stages that lack distinctive characters useful for taxonomic identification. DNA based barcoding could solve many of these problems. The standard barcode fragment, an approx. 650 base pairs long sequence of the 5′end of the mitochondrial cytochrome oxidase I (COI), enables differentiation of a very wide range of arthropods. However, problems remain in some taxa, such as Tephritidae, where recent genetic differentiation among some of the described species hinders accurate molecular discrimination. Results In order to explore the full species discrimination potential of COI, we sequenced the barcoding region of the COI gene of a range of economically important Tephritid species and complemented these data with all GenBank and BOLD entries for the systematic group available as of January 2012. We explored the limits of species delimitation of this barcode fragment among 193 putative Tephritid species and established operational taxonomic units (OTUs), between which discrimination is reliably possible. Furthermore, to enable future development of rapid diagnostic assays based on this sequence information, we characterized all single nucleotide polymorphisms (SNPs) and established “near-minimal” sets of SNPs that differentiate among all included OTUs with at least three and four SNPs, respectively. Conclusions We found that although several species cannot be differentiated based on the genetic diversity observed in COI and hence form composite OTUs, 85% of all OTUs correspond to described species. Because our SNP panels are developed based on all currently available sequence information and rely on a minimal pairwise difference of three SNPs, they are highly reliable and hence

  14. Complete mitochondrial genome sequence of a Hungarian red deer (Cervus elaphus hippelaphus) from high-throughput sequencing data and its phylogenetic position within the family Cervidae.

    PubMed

    Frank, Krisztián; Barta, Endre; Bana, Nóra Á; Nagy, János; Horn, Péter; Orosz, László; Stéger, Viktor

    2016-06-01

    Recently, there has been considerable interest in genetic differentiation in the Cervidae family. A common tool used to determine genetic variation in different species, breeds and populations is mitochondrial DNA analysis, which can be used to estimate phylogenetic relationships among animal taxa and for molecular phylogenetic evolution analysis. With the development of sequencing technology, more and more mitochondrial sequences have been made available in public databases, including whole mitochondrial DNA sequences. These data have been used for phylogenetic analysis of animal species, and for studies of evolutionary processes. We determined the complete mitochondrial genome of a Central European red deer, Cervus elaphus hippelaphus, from Hungary by a next generation sequencing technology. The mitochondrial genome is 16 354 bp in length and contains 13 protein-coding genes, two rRNA genes, 22 tRNA genes and a control region, all of which are arranged similar as in other vertebrates. We made phylogenetic analyses with the new sequence and 76 available mitochondrial sequences of Cervidae, using Bos taurus mitochondrial sequence as outgroup. We used 'neighbor joining' and 'maximum likelihood' methods on whole mitochondrial genome sequences; the consensus phylogenetic trees supported monophyly of the family Cervidae; it was divided into two subfamilies, Cervinae and Capreolinae, and five tribes, Cervini, Muntiacini, Alceini, Odocoileini, and Capreolini. The evolutionary structure of the family Cervidae can be reconstructed by phylogenetic analysis based on whole mitochondrial genomes; which method could be used broadly in phylogenetic evolutionary analysis of animal taxa. PMID:27165525

  15. Mitochondrial Genome Sequences of Nematocera (Lower Diptera): Evidence of Rearrangement following a Complete Genome Duplication in a Winter Crane Fly

    PubMed Central

    Beckenbach, Andrew T.

    2012-01-01

    The complete mitochondrial DNA sequences of eight representatives of lower Diptera, suborder Nematocera, along with nearly complete sequences from two other species, are presented. These taxa represent eight families not previously represented by complete mitochondrial DNA sequences. Most of the sequences retain the ancestral dipteran mitochondrial gene arrangement, while one sequence, that of the midge Arachnocampa flava (family Keroplatidae), has an inversion of the trnE gene. The most unusual result is the extensive rearrangement of the mitochondrial genome of a winter crane fly, Paracladura trichoptera (family Trichocera). The pattern of rearrangement indicates that the mechanism of rearrangement involved a tandem duplication of the entire mitochondrial genome, followed by random and nonrandom loss of one copy of each gene. Another winter crane fly retains the ancestral diperan gene arrangement. A preliminary mitochondrial phylogeny of the Diptera is also presented. PMID:22155689

  16. Gene organization and complete sequence of the mitochondrial genome of Linwu mallard.

    PubMed

    Tian, Ke-Xiong; Liu, Li-Li; Yu, Qi-Fang; He, Shao-Ping; He, Jian-Hua

    2016-01-01

    Linwu mallard is an excellent native breeds from Hunan province in China. This is the first study to determine the complete mitochondrial genome sequence of L. mallard using PCR-based amplification and Sanger sequencing. The characteristic of the entire mitochondrial genome was analyzed in detail, with the base composition of 29.19% A, 22.19% T, 32.83% C, 15.79% G in the L. mallard (16,605 bp in length). It contained 2 ribosomal RNA genes, 13 protein-coding genes, 22 transfer RNA genes and a major non-coding control region (D-loop region). The complete mitochondrial genome sequence of L. mallard will be useful for the phylogenetics of poultry, and be available as basic data for the genetics and breeding. PMID:24938102

  17. Determination and analysis of the complete mitochondrial genome sequence of Taoyuan chicken.

    PubMed

    Liu, Li-Li; Xie, Hong-Bing; Yu, Qi-Fang; He, Shao-Ping; He, Jian-Hua

    2016-01-01

    Taoyuan chicken is excellent native breeds in China. This study firstly determined the complete mitochondrial genome sequence of Taoyuan chicken using PCR-based amplification and Sanger sequencing. The characteristic of the entire mitochondrial genome was analyzed in detail, with the base composition of 30.26% A, 23.79% T, 32.44% C, 13.50% G in the Taoyuan chicken (16,784 bp in length). It contained 2 ribosomal RNA genes, 13 protein-coding genes, 22 transfer RNA genes and a major non-coding control region (D-loop region). The complete mitochondrial genome sequence of Taoyuan chicken will be useful for the phylogenetics of poultry, and be available as basic data for the genetics and breeding. PMID:24617480

  18. Sequencing and analysis of complete mitochondrial genome of Niviventer fulvescens (Muridae).

    PubMed

    Yong, Bin; Wei, Haixue; Jia, Qiang; Chen, Shunde

    2016-09-01

    The complete mitochondrial genome was sequenced and annotated newly from an individual of Niviventer fulvescens (Muridae) from Sichuan province. The total length of the N. fulvescens mitogenome is 16 296 bp and contains 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and a control region, with a base composition of 34.3%A, 29.1%T, 24.2%C and 12.4%G. The nucleotide sequence data of 12 heavy-strand protein-coding genes of N. fulvescens and other 18 rodents were used for mitochondrial genome phylogenetic analyses. Bayesian phylogenetic tree demonstrated the genus Niviventer was embedded within the genus Leopoldamys, although three Niviventer species constituted a monophyletic group. More complete mitochondrial genome sequences are required to illuminate the molecular phylogenetic relationship between Niviventer and Leopoldamys. PMID:26329164

  19. The complete mitochondrial genome sequence of Margaritiana dahurica Middendorff.

    PubMed

    Yang, Shoubao; Mi, Zhongxiang; Tao, Gang; Liu, Xiaofeng; Wei, Min; Wang, Heng

    2015-01-01

    In this study, the total mitochondrial genome of a freshwater pearl mussel Margaritiana dahurica Middendorff (Eulamellibranchia: Margaritanidae) was first determined. The genome is 16,112 bp in length. It consists of 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 1 HORF. The overall nucleotide composition of the H-strand of M. dahurica Middendorff mitochondrial genome is A: 37.85%, G: 13.22%, T: 23.74% and C: 25.19%, respectively, with an A + T rich feature (61.59%). These results provide useful information to further study of the molecular systematics, species identification and conservation genetics of M. dahurica Middendorff. PMID:24617476

  20. Use of yeast nuclear DNA sequences to define the mitochondrial RNA polymerase promoter in vitro.

    PubMed Central

    Marczynski, G T; Schultz, P W; Jaehning, J A

    1989-01-01

    We have extended an earlier observation that the TATA box for the nuclear GAL10 gene serves as a promoter for the mitochondrial RNA polymerase in in vitro transcription reactions (C. S. Winkley, M. J. Keller, and J. A. Jaehning, J. Biol. Chem. 260:14214-14223, 1985). In this work, we demonstrate that other nuclear genes also have upstream sequences that function in vitro as mitochondrial RNA polymerase promoters. These genes include the GAL7 and MEL1 genes, which are regulated in concert with the GAL10 gene, the sigma repetitive element, and the 2 microns plasmid origin of replication. We used in vitro transcription reactions to test a large number of nuclear DNA sequences that contain critical mitochondrial promoter sequences as defined by Biswas et al. (T. K. Biswas, J. C. Edwards, M. Rabinowitz, and G. S. Getz, J. Biol. Chem. 262:13690-13696, 1987). The results of these experiments allowed us to extend the definition of essential promoter elements. This extended sequence, -ACTATAAACGatcATAG-, was frequently found in the upstream regulatory regions of nuclear genes. On the basis of these observations, we hypothesized that either (i) a catalytic RNA polymerase related to the mitochondrial enzyme functions in the nucleus of the yeast cell or (ii) a DNA sequence recognition factor is shared by the two genetic compartments. By using cells deficient in the catalytic core of the mitochondrial RNA polymerase (rpo41-) and sensitive assays for transcripts initiating from the nuclear promoter sequences, we have conclusively ruled out a role for the catalytic RNA polymerase in synthesizing transcripts from all of the nuclear sequences analyzed. The possibility that a DNA sequence recognition factor functions in both the nucleus and the mitochondria remains to be tested. Images PMID:2677667

  1. Insect mitochondrial genomics: the complete mitochondrial genome sequence of the meadow spittlebug Philaenus spumarius (Hemiptera: Auchenorrhyncha: Cercopoidae).

    PubMed

    Stewart, James Bruce; Beckenbach, Andrew T

    2005-02-01

    We present the complete mitochondrial genome sequence of the meadow spittlebug Philaenus spumarius (Auchenorrhyncha: Cercopoidae). This contribution represents the second mitochondrial genome from the Hemiptera and the second of the three hemipteran suborders sampled. The genome is a circular molecule of 16 324 bp with a total A+T content of 77.0% and 76.7% for coding regions only. The gene content, order, and structure are consistent with the Drosophila yakuba genome structure (Clary and Wolstenholme 1985) and the hypothesized ancestral arthropod genome arrangement (Crease 1999). Nucleotide composition and codon usage are near the means observed in other insect mitochondria sequenced to date but have a higher A+T richness compared with the other hemipteran example, the kissing bug Triatoma dimidiata (Dotson and Beard. 2001. Insect Mol. Biol. 10: 205-215). The major noncoding region (the A+T rich region or putative control region) between the small ribosomal subunit and the tRNAIle gene includes two extensive repeat regions. The first repeat region includes 19 tandem repeats of a 46-bp sequence, whereas the second contains a longer sequence (146 bp) tandemly repeated four times. PMID:15729396

  2. Sequencing of complete mitochondrial genome of brown algal Saccharina sp. ye-W.

    PubMed

    Wang, Shuai; Fan, Xiao; Xu, Dong; Zhang, Xiaowen; Miao, Yu; Xu, Le; Ye, Naihao

    2016-07-01

    The complete sequence (37 657 bp) of the mitochondrial DNA (mtDNA) of the Saccharina sp. ye-W was determined using Illumina sequencing data. The genome contains 38 protein-coding genes (PCG), three ribosomal RNA (rRNA), 25 transfer RNA (tRNA) genes that are typical of Saccharina mtDNA. Phylogenetic analysis based on the mitochondrial genomes of brown algae indicated that Saccharina sp. ye-W and Saccharina longissima, Saccharina japonica are the most closely related species, which strongly supports their close phylogenetic affinity. PMID:26153752

  3. The First Complete Mitochondrial Genome Sequences for Stomatopod Crustaceans: Implications for Phylogeny

    SciTech Connect

    Swinstrom, Kirsten; Caldwell, Roy; Fourcade, H. Matthew; Boore, Jeffrey L.

    2005-09-07

    We report the first complete mitochondrial genome sequences of stomatopods and compare their features to each other and to those of other crustaceans. Phylogenetic analyses of the concatenated mitochondrial protein-coding sequences were used to explore relationships within the Stomatopoda, within the malacostracan crustaceans, and among crustaceans and insects. Although these analyses support the monophyly of both Malacostraca and, within it, Stomatopoda, it also confirms the view of a paraphyletic Crustacea, with Malacostraca being more closely related to insects than to the branchiopod crustaceans.

  4. Sequencing of complete mitochondrial genome of brown algal Saccharina sp. ye-F.

    PubMed

    Fan, Xiao; Wang, Shuai; Xu, Dong; Zhang, Xiaowen; Xu, Le; Miao, Yu; Ye, Naihao

    2016-09-01

    The complete sequence (37 657 bp) of the mitochondrial DNA (mtDNA) of the Saccharina sp. ye-F was determined using Illumina sequencing data (Illumina Inc., San Diego, CA). The genome contains 38 protein-coding genes (PCG), three ribosomal RNA (rRNA), and 25 transfer RNA (tRNA) genes that are typical of Saccharina mtDNA. A phylogenetic analysis based on the mitochondrial genomes of brown algae indicated that Saccharina sp. ye-F and Saccharina longissima, Saccharina japonica are the most closely related species, which strongly supports their close phylogenetic affinity. PMID:26358639

  5. The complete mitochondrial genome sequence of the Tibetan red fox (Vulpes vulpes montana).

    PubMed

    Zhang, Jin; Zhang, Honghai; Zhao, Chao; Chen, Lei; Sha, Weilai; Liu, Guangshuai

    2015-01-01

    In this study, the complete mitochondrial genome of the Tibetan red fox (Vulpes Vulpes montana) was sequenced for the first time using blood samples obtained from a wild female red fox captured from Lhasa in Tibet, China. Qinghai--Tibet Plateau is the highest plateau in the world with an average elevation above 3500 m. Sequence analysis showed it contains 12S rRNA gene, 16S rRNA gene, 22 tRNA genes, 13 protein-coding genes and 1 control region (CR). The variable tandem repeats in CR is the main reason of the length variability of mitochondrial genome among canide animals. PMID:24456141

  6. Complete mitochondrial genome sequence of northeastern sika deer (Cervus nippon hortulorum).

    PubMed

    Shao, Yuanchen; Zha, Daiming; Xing, Xiumei; Su, Weilin; Liu, Huamiao; Zhang, Ranran

    2016-01-01

    The complete mitochondrial genome of the northeastern sika deer, Cervus nippon hortulorum, was determined by accurate polymerase chain reaction. The entire genome is 16,434 bp in length and contains 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and 1 control region, all of which are arranged in a typical vertebrate manner. The overall base composition of the northeastern sika deer's mitochondrial genome is 33.3% of A, 24.5% of C, 28.7% of T and 13.5% of G. A termination associated sequence and several conserved central sequence block domains were discovered within the control region. PMID:24660928

  7. Complete mitochondrial genome sequence of tarim red deer (Cervus elaphus yarkandensis).

    PubMed

    Shao, Yuanchen; Xing, Xiumei; Zha, Daiming; Yang, Fuhe

    2016-01-01

    The complete mitochondrial genome of the tarim red deer, Cervus elaphus yarkandensis, was determined by accurate polymerase chain reaction. The entire genome was 16,351 bp in length and contained 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and 1 control region, all of which were arranged in a typical vertebrate manner. The overall base composition of the northeast sika deer's mitochondrial genome was 33.3% of A, 24.4% of C, 28.9% of T and 13.4% of G. A termination-associated sequence and several conserved central sequence block domains were discovered within the control region. PMID:24438284

  8. Targeted multiplex next-generation sequencing: advances in techniques of mitochondrial and nuclear DNA sequencing for population genomics.

    PubMed

    Hancock-Hanser, Brittany L; Frey, Amy; Leslie, Matthew S; Dutton, Peter H; Archer, Frederick I; Morin, Phillip A

    2013-03-01

    Next-generation sequencing (NGS) is emerging as an efficient and cost-effective tool in population genomic analyses of nonmodel organisms, allowing simultaneous resequencing of many regions of multi-genomic DNA from multiplexed samples. Here, we detail our synthesis of protocols for targeted resequencing of mitochondrial and nuclear loci by generating indexed genomic libraries for multiplexing up to 100 individuals in a single sequencing pool, and then enriching the pooled library using custom DNA capture arrays. Our use of DNA sequence from one species to capture and enrich the sequencing libraries of another species (i.e. cross-species DNA capture) indicates that efficient enrichment occurs when sequences are up to about 12% divergent, allowing us to take advantage of genomic information in one species to sequence orthologous regions in related species. In addition to a complete mitochondrial genome on each array, we have included between 43 and 118 nuclear loci for low-coverage sequencing of between 18 kb and 87 kb of DNA sequence per individual for single nucleotide polymorphisms discovery from 50 to 100 individuals in a single sequencing lane. Using this method, we have generated a total of over 500 whole mitochondrial genomes from seven cetacean species and green sea turtles. The greater variation detected in mitogenomes relative to short mtDNA sequences is helping to resolve genetic structure ranging from geographic to species-level differences. These NGS and analysis techniques have allowed for simultaneous population genomic studies of mtDNA and nDNA with greater genomic coverage and phylogeographic resolution than has previously been possible in marine mammals and turtles. PMID:23351075

  9. Morphological identification and COI barcodes of adult flies help determine species identities of chironomid larvae (Diptera, Chironomidae).

    PubMed

    Failla, A J; Vasquez, A A; Hudson, P; Fujimoto, M; Ram, J L

    2016-02-01

    Establishing reliable methods for the identification of benthic chironomid communities is important due to their significant contribution to biomass, ecology and the aquatic food web. Immature larval specimens are more difficult to identify to species level by traditional morphological methods than their fully developed adult counterparts, and few keys are available to identify the larval species. In order to develop molecular criteria to identify species of chironomid larvae, larval and adult chironomids from Western Lake Erie were subjected to both molecular and morphological taxonomic analysis. Mitochondrial cytochrome c oxidase I (COI) barcode sequences of 33 adults that were identified to species level by morphological methods were grouped with COI sequences of 189 larvae in a neighbor-joining taxon-ID tree. Most of these larvae could be identified only to genus level by morphological taxonomy (only 22 of the 189 sequenced larvae could be identified to species level). The taxon-ID tree of larval sequences had 45 operational taxonomic units (OTUs, defined as clusters with >97% identity or individual sequences differing from nearest neighbors by >3%; supported by analysis of all larval pairwise differences), of which seven could be identified to species or 'species group' level by larval morphology. Reference sequences from the GenBank and BOLD databases assigned six larval OTUs with presumptive species level identifications and confirmed one previously assigned species level identification. Sequences from morphologically identified adults in the present study grouped with and further classified the identity of 13 larval OTUs. The use of morphological identification and subsequent DNA barcoding of adult chironomids proved to be beneficial in revealing possible species level identifications of larval specimens. Sequence data from this study also contribute to currently inadequate public databases relevant to the Great Lakes region, while the neighbor

  10. Morphological identification and COI barcodes of adult flies help determine species identities of chironomid larvae (Diptera, Chironomidae)

    USGS Publications Warehouse

    Failla, Andrew Joseph; Vasquez, Adrian Amelio; Hudson, Patrick L.; Fujimoto, Masanori; Ram, Jeffrey L.

    2016-01-01

    Establishing reliable methods for the identification of benthic chironomid communities is important due to their significant contribution to biomass, ecology and the aquatic food web. Immature larval specimens are more difficult to identify to species level by traditional morphological methods than their fully developed adult counterparts, and few keys are available to identify the larval species. In order to develop molecular criteria to identify species of chironomid larvae, larval and adult chironomids from Western Lake Erie were subjected to both molecular and morphological taxonomic analysis. Mitochondrial cytochrome c oxidase I (COI) barcode sequences of 33 adults that were identified to species level by morphological methods were grouped with COI sequences of 189 larvae in a neighbor-joining taxon-ID tree. Most of these larvae could be identified only to genus level by morphological taxonomy (only 22 of the 189 sequenced larvae could be identified to species level). The taxon-ID tree of larval sequences had 45 operational taxonomic units (OTUs, defined as clusters with >97% identity or individual sequences differing from nearest neighbors by >3%; supported by analysis of all larval pairwise differences), of which seven could be identified to species or ‘species group’ level by larval morphology. Reference sequences from the GenBank and BOLD databases assigned six larval OTUs with presumptive species level identifications and confirmed one previously assigned species level identification. Sequences from morphologically identified adults in the present study grouped with and further classified the identity of 13 larval OTUs. The use of morphological identification and subsequent DNA barcoding of adult chironomids proved to be beneficial in revealing possible species level identifications of larval specimens. Sequence data from this study also contribute to currently inadequate public databases relevant to the Great Lakes region, while the neighbor

  11. Overview of worldwide diversity of Diaphorina citri Kuwayama mitochondrial cytochrome oxidase 1 haplotypes: two Old World lineages and a New World invasion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We utilized a Bayesian phylogenetic technique to resolve global relationships of Diaphorina citri populations. This is the first global phylogenetic study of D. citri. New mitochondrial primers were designed from an EST library and an 821 base pair region of the COI was amplified and sequenced. The ...

  12. Improved DNA barcoding method for Bemisia tabaci and related Aleyrodidae: Development of universal and Bemisia tabaci biotype-specific mitochondrial cytochrome c oxidase I polymerase chain reaction primers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whitefly is the common name of heteropteran insects that comprise the Aleyrodidae family composed of over 160 genera and 1500 different species. The mitochondrial cytochome c oxidase I (mtCOI) sequence has been used extensively in whitefly phylogenetic comparisons and in biotype identification of th...

  13. The complete sequence of the mitochondrial genome of Dahuabai pig (SusScrofa).

    PubMed

    Mao-Liang, Ran; He, Jun; Yang, An-Qi; Li, Zhi; Dong, Lian-Hua; Chen, Bin

    2016-05-01

    Dahuabai pig is one of the most important indigenous breed of the Guangzhou province of China. It is the first time that the complete mitochondrial genome sequence of Dahuabai pig is reported in this work, which is determined through the PCR-based method. The total length of the mitognome is 16,709 bp, which contains a control region (D-loop region), 2 ribosomal RNA genes, 13 protein-coding genes and 22 tRNA genes. The total base composition of Dahuabai pig mitochondrial genome is 34.68% for A, 26.20% for C, 25.81% for T and 13.32% for G, in the order A > C > T > G. The complete mitochondrial genome of Dahuabai pig provides an important data in studying mitochondrial DNA's role in the process of metabolism and programmed cell death. PMID:25423516

  14. Pairwise Comparisons of Mitochondrial DNA Sequences in Subdivided Populations and Implications for Early Human Evolution

    PubMed Central

    Marjoram, P.; Donnelly, P.

    1994-01-01

    We consider the effect on the distribution of pairwise differences between mitochondrial DNA sequences of the incorporation into the underlying population genetics model of two particular effects that seem realistic for human populations. The first is that the population size was roughly constant before growing to its current level. The second is that the population is geographically subdivided rather than panmictic. In each case these features tend to encourage multimodal distributions of pairwise differences, in contrast to existing, unimodal datasets. We argue that population genetics models currently used to analyze such data may thus fail to reflect important features of human mitochondrial DNA evolution. These may include selection on the mitochondrial genome, more realistic mutation mechanisms, or special population or migration dynamics. Particularly in view of the variability inherent in the single available human mitochondrial genealogy, it is argued that until these effects are better understood, inferences from such data should be rather cautious. PMID:8150290

  15. The complete mitochondrial genome of Cheilinus undulates based on high-throughput sequencing technique.

    PubMed

    Han, Yulong; Chen, Guohua; Luo, Jian; Wen, Xin; Li, Wenshen; Wang, Jun

    2016-05-01

    Cheilinus undulatus is a Critically Endangered ocean fish, which is also a higher level predator in coral reef. The complete mitochondrial genome of Cheilinus undulatus has been sequenced by high-throughput sequencing technology. According to the results, the mitochondrial genome of Cheilinus undulatus is 17,184 bp long and consists of 38 protein-coding genes, 2 rRNA genes, 22 tRNA genes and a control region. The nucleotides compositions of the light strand are 27.62% of A, 24.82% of T, 16.66% of G and 30.90% of C. With the exception of ND6 and 8 tRNA genes, all other mitochondrial genes are encoded on the heavy strand. C. undulates mitochondrial genome contains a 568 bp sequences that is a non-coding DNA domain. No homology sequence had been found through BLAST in GenBank. The sequences are probably characteristic species marker of C. undulates. PMID:25329275

  16. Interspecific Comparison and annotation of two complete mitochondrial genome sequences from the plant pathogenic fungus Mycosphaerella graminicola

    SciTech Connect

    Millenbaugh, Bonnie A; Pangilinan, Jasmyn L.; Torriani, Stefano F.F.; Goodwin, Stephen B.; Kema, Gert H.J.; McDonald, Bruce A.

    2007-12-07

    The mitochondrial genomes of two isolates of the wheat pathogen Mycosphaerella graminicola were sequenced completely and compared to identify polymorphic regions. This organism is of interest because it is phylogenetically distant from other fungi with sequenced mitochondrial genomes and it has shown discordant patterns of nuclear and mitochondrial diversity. The mitochondrial genome of M. graminicola is a circular molecule of approximately 43,960 bp containing the typical genes coding for 14 proteins related to oxidative phosphorylation, one RNA polymerase, two rRNA genes and a set of 27 tRNAs. The mitochondrial DNA of M. graminicola lacks the gene encoding the putative ribosomal protein (rps5-like), commonly found in fungal mitochondrial genomes. Most of the tRNA genes were clustered with a gene order conserved with many other ascomycetes. A sample of thirty-five additional strains representing the known global mt diversity was partially sequenced to measure overall mitochondrial variability within the species. Little variation was found, confirming previous RFLP-based findings of low mitochondrial diversity. The mitochondrial sequence of M. graminicola is the first reported from the family Mycosphaerellaceae or the order Capnodiales. The sequence also provides a tool to better understand the development of fungicide resistance and the conflicting pattern of high nuclear and low mitochondrial diversity in global populations of this fungus.

  17. Mitochondrial DNA and nuclear DNA from normal rat liver have a common sequence.

    PubMed Central

    Hadler, H I; Dimitrijevic, B; Mahalingam, R

    1983-01-01

    Although Pst I does not cut the circular mitochondrial genome of the rat, BamHI generates from this genome two unequal fragments of DNA. Each of these fragments was cloned in pBR322. Nuclear DNA was digested from rat liver singly or doubly with Pst I and BamHI, and it was demonstrated that nuclear DNA shared a common sequence with the larger mitochondrial DNA BamHI fragment. The cloned larger mitochondrial DNA fragment was further subdivided with HindIII into four pieces that were labeled and then used to probe the double-digested nuclear DNA. The hybridization data showed that the common sequence is less than 3 kilobase pairs long and lies within the part of the mitochondrial genome containing the D-loop and a portion of the rRNA genes. It therefore appears that, as in lower eukaryotes, there are shared sequences between the nuclear and mitochondrial genomes in mammals. Images PMID:6579536

  18. Complete nucleotide sequence of the mitochondrial genome of a salamander, Mertensiella luschani.

    PubMed

    Zardoya, Rafael; Malaga-Trillo, Edward; Veith, Michael; Meyer, Axel

    2003-10-23

    The complete nucleotide sequence (16,650 bp) of the mitochondrial genome of the salamander Mertensiella luschani (Caudata, Amphibia) was determined. This molecule conforms to the consensus vertebrate mitochondrial gene order. However, it is characterized by a long non-coding intervening sequence with two 124-bp repeats between the tRNA(Thr) and tRNA(Pro) genes. The new sequence data were used to reconstruct a phylogeny of jawed vertebrates. Phylogenetic analyses of all mitochondrial protein-coding genes at the amino acid level recovered a robust vertebrate tree in which lungfishes are the closest living relatives of tetrapods, salamanders and frogs are grouped together to the exclusion of caecilians (the Batrachia hypothesis) in a monophyletic amphibian clade, turtles show diapsid affinities and are placed as sister group of crocodiles+birds, and the marsupials are grouped together with monotremes and basal to placental mammals. The deduced phylogeny was used to characterize the molecular evolution of vertebrate mitochondrial proteins. Amino acid frequencies were analyzed across the main lineages of jawed vertebrates, and leucine and cysteine were found to be the most and least abundant amino acids in mitochondrial proteins, respectively. Patterns of amino acid replacements were conserved among vertebrates. Overall, cartilaginous fishes showed the least variation in amino acid frequencies and replacements. Constancy of rates of evolution among the main lineages of jawed vertebrates was rejected. PMID:14604788

  19. Comparison of whole mitochondrial genome sequences from two clades of the invasive ascidian, Didemnum vexillum.

    PubMed

    Smith, Kirsty F; Abbott, Cathryn L; Saito, Yasunori; Fidler, Andrew E

    2015-02-01

    The mitochondria are the main source of cellular energy production and have an important role in development, fertility, and thermal limitations. Adaptive mitochondrial DNA mutations have the potential to be of great importance in determining aspects of the life history of an organism. Phylogenetic analyses of the globally invasive marine ascidian Didemnum vexillum using the mitochondrial cytochrome c oxidase 1 (COX1) coding region, revealed two distinct clades. Representatives of one clade (denoted by 'B') are geographically restricted to D. vexillum's native region (north-west Pacific Ocean, including Japan), whereas members of the other clade (denoted by 'A') have been introduced and become invasive in temperate coastal areas around the world. Persistence of clade B's restricted distribution may reflect it being inherently less invasive than clade A. To investigate this we sought to determine if the two clades differ significantly in other mitochondrial genes of functional significance, specifically, alterations in amino acids encoded in mitochondrial enzyme subunits. Differences in functional mitochondrial genes could indicate an increased ability for clade A colonies to tolerate a wider range of environmental temperature. Full mitochondrial genomic sequences from D. vexillum clades A and B were obtained and they predict significant sequence differences in genes encoding for enzymes involved in oxidative phosphorylation. Diversity levels were relatively high and showed divergence across almost all genes, with p-distance values between the two clades indicating recent divergence. Both clades showed an excess of rare variants, which is consistent with balancing selection or a recent population expansion. Results presented here will inform future research focusing on examining the functional properties of the corresponding mitochondrial respiration enzymes, of A and B clade enzymes. By comparing closely related taxa that have differing distributions it is possible

  20. Molecular Phylogeny of a tick, Ixodes granulatus (Acari: Ixodidae) based on cytochrome oxidase subunit I (COI) marker

    NASA Astrophysics Data System (ADS)

    Lah, Ernieenor Faraliana Che; Yaakop, Salmah; Ahamad, Mariana; George, Ernna; Nor, Shukor Md

    2014-09-01

    Identification of a local species of tick, Ixodes granulatus from the family Ixodidae is essential because it has potential to be vector for spotted fever group (SFG) rickettsia and tick thypus. The aim of this study is to portray the relationships among several populations of I. granulatus collected from different species of animal hosts and localities in Peninsular Malaysia. Polymerase Chain Reaction was conducted by amplifying mitochondrial DNA marker, namely cytochrome oxidase subunit I (COI) sequences from 15 individual ticks that attached to five different hosts caught from three different localities. Confirmation of the species identity was accomplished using BLAST program. Neighbor-joining (NJ) and Maximum Parsimony (MP) tree based on COI sequences were constructed by using PAUP 4.0b10 to identify the relationship among species. The result of this study showed a high genetic heterogeneity between I. granulatus and other species of the same genus (7.2-23.7%). Furthermore, a low intraspecific variation was observed among the species of I. granulatus collected from different localities (0-3.7%). This study produced the first establishment of molecular marker for clarifying genetic species variation and diversity of local I. granulatus tick which contribute to the control of tick-borne infections.

  1. Intraspecific comparison and annotation of two complete mitochondrial genome sequences from the plant pathogenic fungus Mycosphaerella graminicola

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mitochondrial genomes of two isolates of the wheat pathogen Mycosphaerella graminicola were sequenced completely and compared to identify polymorphic regions. This organism is of interest because it is phylogenetically distant from other fungi with sequenced mitochondrial genomes and it has show...

  2. Increased Inter-Colony Fusion Rates Are Associated with Reduced COI Haplotype Diversity in an Invasive Colonial Ascidian Didemnum vexillum

    PubMed Central

    Smith, Kirsty F.; Stefaniak, Lauren; Saito, Yasunori; Gemmill, Chrissen E. C.; Cary, S. Craig; Fidler, Andrew E.

    2012-01-01

    Considerable progress in our understanding of the population genetic changes associated with biological invasions has been made over the past decade. Using selectively neutral loci, it has been established that reductions in genetic diversity, reflecting founder effects, have occurred during the establishment of some invasive populations. However, some colonial organisms may actually gain an ecological advantage from reduced genetic diversity because of the associated reduction in inter-colony conflict. Here we report population genetic analyses, along with colony fusion experiments, for a highly invasive colonial ascidian, Didemnum vexillum. Analyses based on mitochondrial cytochrome oxidase I (COI) partial coding sequences revealed two distinct D. vexillum clades. One COI clade appears to be restricted to the probable native region (i.e., north-west Pacific Ocean), while the other clade is present in widely dispersed temperate coastal waters around the world. This clade structure was supported by 18S ribosomal DNA (rDNA) sequence data, which revealed a one base-pair difference between the two clades. Recently established populations of D. vexillum in New Zealand displayed greatly reduced COI genetic diversity when compared with D. vexillum in Japan. In association with this reduction in genetic diversity was a significantly higher inter-colony fusion rate between randomly paired New Zealand D. vexillum colonies (80%, standard deviation ±18%) when compared with colonies found in Japan (27%, standard deviation ±15%). The results of this study add to growing evidence that for colonial organisms reductions in population level genetic diversity may alter colony interaction dynamics and enhance the invasive potential of newly colonizing species. PMID:22303442

  3. The complete mitochondrial genome sequence of Symphysodon discus Heckel (1840).

    PubMed

    Yu, Yongliang; Chen, Zaizhong; Li, Zhongpu; Wang, Lei; Luo, Xiaoxi; Gao, Jianzhong

    2016-07-01

    The complete mitochondrial genome of Symphysodon discus Heckel was 16 544 bp in length, consisting of 22 tRNA genes, 13 protein-coding genes, 2 ribosomal rRNA genes, and a control region or displacement loop (D-loop). With the exception of 8 tRNAs and ND6 genes, the others were encoded on H-strand. The base composition on H-strand was 30.04% C, 28.39% A, 26.49% T and 15.07% G, exhibiting an A + T rich pattern. The codon usage was consistent with the other vertebrate mitochondrial pattern, i.e. start codon is ATG or GTG and stop codons are TAA, TAG or T- -. Stop codon TAG was only found in the ND6. There were 8 regions of gene overlapped with the length of 26 bp in total and 12 intergenic spacer regions (99 bp in total). PMID:26288117

  4. Filling the gap - COI barcode resolution in eastern Palearctic birds

    PubMed Central

    2009-01-01

    Background The Palearctic region supports relatively few avian species, yet recent molecular studies have revealed that cryptic lineages likely still persist unrecognized. A broad survey of cytochrome c oxidase I (COI) sequences, or DNA barcodes, can aid on this front by providing molecular diagnostics for species assignment. Barcodes have already been extensively surveyed in the Nearctic, which provides an interesting comparison to this region; faunal interchange between these regions has been very dynamic. We explored COI sequence divergence within and between species of Palearctic birds, including samples from Russia, Kazakhstan, and Mongolia. As of yet, there is no consensus on the best method to analyze barcode data. We used this opportunity to compare and contrast three different methods routinely employed in barcoding studies: clustering-based, distance-based, and character-based methods. Results We produced COI sequences from 1,674 specimens representing 398 Palearctic species. These were merged with published COI sequences from North American congeners, creating a final dataset of 2,523 sequences for 599 species. Ninety-six percent of the species analyzed could be accurately identified using one or a combination of the methods employed. Most species could be rapidly assigned using the cluster-based or distance-based approach alone. For a few select groups of species, the character-based method offered an additional level of resolution. Of the five groups of indistinguishable species, most were pairs, save for a larger group comprising the herring gull complex. Up to 44 species exhibited deep intraspecific divergences, many of which corresponded to previously described phylogeographic patterns and endemism hotspots. Conclusion COI sequence divergence within eastern Palearctic birds is largely consistent with that observed in birds from other temperate regions. Sequence variation is primarily congruent with taxonomic boundaries; deviations from this trend

  5. The complete sequence of mitochondrial genome of Wuzhishan pig (Sus Scrofa).

    PubMed

    Chai, Yu-Lan; Xu, Dong; Ma, Hai-Ming

    2016-01-01

    In the present study, we sequenced the complete mitochondrial genome of Wuzhishan pig, which was 16,741 bp in size and had a nucleotide composition in A and T (60.46%). The genome consisted of a major non-coding control region (D-loop region) and 37 genes, including 2 ribosomal RNA (rRNA) genes, 13 protein-coding genes (PCGs), and 22 transfer RNA (tRNA) genes. The genes in the mitochondrial genomes of Wuzhishan pig used three kinds of initiation codons (ATA, ATG, and GTG) and four kinds of termination codons (TAA, AGA, TAG, and an incomplete termination codons T-). The complete mitochondrial genome sequence of Wuzhishan pig provides an important data set for further study on genetic mechanism. PMID:26490573

  6. Inferring patterns in mitochondrial DNA sequences through hypercube independent spanning trees.

    PubMed

    da Silva, Eduardo Sant' Ana; Pedrini, Helio

    2016-03-01

    Given a graph G, a set of spanning trees rooted at a vertex r of G is said vertex/edge independent if, for each vertex v of G, v≠r, the paths of r to v in any pair of trees are vertex/edge disjoint. Independent spanning trees (ISTs) provide a number of advantages in data broadcasting due to their fault tolerant properties. For this reason, some studies have addressed the issue by providing mechanisms for constructing independent spanning trees efficiently. In this work, we investigate how to construct independent spanning trees on hypercubes, which are generated based upon spanning binomial trees, and how to use them to predict mitochondrial DNA sequence parts through paths on the hypercube. The prediction works both for inferring mitochondrial DNA sequences comprised of six bases as well as infer anomalies that probably should not belong to the mitochondrial DNA standard. PMID:26802544

  7. Sequencing and analysis of the whole mitochondrial genome of a variegated racerunner from Taklamakan Desert.

    PubMed

    Zhou, Tianhe; Wan, Xiaoqin; Guo, Xianguang

    2016-07-01

    The whole mitochondrial genome of a variegated racerunner (Eremias vermiculata) from the Taklamakan Desert was determined using polymerase chain reaction and directly sequenced with a primer walking method. The mitogenome sequence was 19 796 bp in size, containing 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and a control region (D-loop), which is similar to the typical mtDNA of vertebrates. Mitochondrial genomes analyses using maximum parsimony and Bayesian analyses yielded identical phylogenetic trees, indicating a close phylogenetic affinity of the seven Eremias species. Monophyly of the genus Eremias and E. vermiculata was recovered. The mitogenome presented here will contribute to the examination of genetic differentiation for E. vermiculata and understanding of the mitochondrial DNA evolution in Eremias. PMID:26153740

  8. The mitochondrial genome of Anopheles quadrimaculatus species A: complete nucleotide sequence and gene organization.

    PubMed

    Mitchell, S E; Cockburn, A F; Seawright, J A

    1993-12-01

    The complete sequence (15,455 bp) of the mitochondrial DNA of the mosquito Anopheles quadrimaculatus species A is reported. This genome is compact and very A+T rich (77.4% A+T). It contains genes for 2 ribosomal RNAs (rRNAs), 22 transfer RNAs (tRNAs), and 13 subunits of the mitochondrial inner membrane respiratory complexes. The gene arrangement is the same as in Drosophila yakuba, except that the positions of two contiguous tRNAs are reversed and a third tRNA is transcribed from the complementary strand. Protein-coding genes, rRNAs, and most tRNAs were similar to D. yakuba. Two tRNAs had nonstandard secondary structures comparable with those of nematode mitochondrial tRNAs. The very small putative control region (625 bp) contains no sequence motifs similar to those used in vertebrates and other insects for initiation of transcription and replication. PMID:8112570

  9. Complete genome sequence of the mitochondrial DNA of the sparkling enope squid, Watasenia scintillans.

    PubMed

    Hayashi, Keiko; Kawai, Yuri L; Yura, Kei; Yoshida, Masa-Aki; Ogura, Atsushi; Hata, Kenichiro; Nakabayashi, Kazuhiko; Okamura, Kohji

    2016-05-01

    The sparkling enope squid, Watasenia scintillans, is a deep-sea mollusk inhabiting the western part of the Pacific Ocean. It has the peculiar ability to illuminate its body without the involvement of other organisms. In this study, we extracted the brain DNA from a single squid female caught in the Japan Sea and determined the complete genome sequence of its mitochondrial DNA using the Illumina sequencing platform. The circular sequence is 20,089 bp in length. Using the next-generation sequencing data, we also estimated the mean copy number of mitochondria per cell in the brain to be 108 by comparing the depths of the read data in the nuclear and mitochondrial genomes. The haploid genome size was calculated to be 4.78 Gb. Six heteroplasmy sites were also identified, together with their allele frequencies, in this individual. Our methodology is shown to be useful in mitochondrion-related studies. PMID:25329271

  10. Draft Plastid and Mitochondrial Genome Sequences from Antarctic Alga Prasiola crispa.

    PubMed

    Carvalho, Evelise Leis; Wallau, Gabriel da Luz; Rangel, Darlene Lopes; Machado, Laís Ceschini; da Silva, Alexandre Freitas; da Silva, Luiz Fernando Duarte; Macedo, Pablo Echeverria; Pereira, Antonio Batista; Victoria, Filipe de Carvalho; Boldo, Juliano Tomazzoni; Dal Belo, Cháriston André; Pinto, Paulo Marcos

    2015-01-01

    The organelle genomes of the Antarctic alga Prasiola crispa (Lightfoot) Kützing have been sequenced. The plastid and mitochondrial genomes have a total length of 196,502 bp and 89,819 bp, respectively. These genomes have 19 putative photosynthesis-related genes and 17 oxidative metabolism-related genes, respectively. PMID:26450727

  11. Complete mitochondrial genome sequence of a phytophagous ladybird beetle, Henosepilachna pusillanima (Mulsant) (Coleoptera: Coccinellidae).

    PubMed

    Behere, G T; Firake, D M; Tay, W T; Azad Thakur, N S; Ngachan, S V

    2016-01-01

    Ladybird beetles are generally considered as agriculturally beneficial insects, but the ladybird beetles in the coleopteran subfamily Epilachninae are phytophagous and major plant feeding pest species which causes severe economic losses to cucurbitaceous and solanaceous crops. Henosepilachna pusillanima (Mulsant) is one of the important pest species of ladybird beetle. In this report, we sequenced and characterized the complete mitochondrial genome of H. pusillanima. For sequencing of the complete mitochondrial genome, we used the Ion Torrent sequencing platform. The complete circular mitochondrial genome of the H. pusillanima was determined to be 16,216 bp long. There were totally 13 protein coding genes, 22 transfer RNA, 2 ribosomal RNA and a control (A + T-rich) region estimated to be 1690 bp. The gene arrangement and orientations of assembled mitogenome were identical to the reported predatory ladybird beetle Coccinella septempunctata L. This is the first completely sequenced coleopteran mitochondrial genome from the beetle subfamily Epilachninae from India. Data generated in this study will benefit future comparative genomics studies for understanding the evolutionary relationships between predatory and phytophagous coccinellid beetles. PMID:24617459

  12. Mitochondrial genome sequence and expression profiling for the legume pod borer Maruca vitrata (Lepidoptera: Crambidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report on the assembly of the 14,146 base pairs (bp) near complete mitochondrial sequencing of the legume pod borer (LPB), Maruca vitrata (Lepidoptera: Crambidae), which was used to estimate divergence and relationships within the lepidopteran lineage. Arrangement and orientation of 13 protein c...

  13. Draft Plastid and Mitochondrial Genome Sequences from Antarctic Alga Prasiola crispa

    PubMed Central

    Carvalho, Evelise Leis; Wallau, Gabriel da Luz; Rangel, Darlene Lopes; Machado, Laís Ceschini; da Silva, Alexandre Freitas; da Silva, Luiz Fernando Duarte; Macedo, Pablo Echeverria; Pereira, Antonio Batista; Victoria, Filipe de Carvalho; Boldo, Juliano Tomazzoni; Dal Belo, Cháriston André

    2015-01-01

    The organelle genomes of the Antarctic alga Prasiola crispa (Lightfoot) Kützing have been sequenced. The plastid and mitochondrial genomes have a total length of 196,502 bp and 89,819 bp, respectively. These genomes have 19 putative photosynthesis-related genes and 17 oxidative metabolism-related genes, respectively. PMID:26450727

  14. Mitochondrial Genome Sequence of the Galápagos Endemic Land Snail Naesiotus nux

    PubMed Central

    Hunter, Samuel S.; Settles, Matthew L.; New, Daniel D.; Parent, Christine E.

    2016-01-01

    We report herein the draft mitochondrial genome sequence of Naesiotus nux, a Galápagos endemic land snail species of the genus Naesiotus. The circular genome is 15 kb and encodes 13 protein-coding genes, 2 rRNA genes, and 21 tRNA genes. PMID:26798085

  15. Solving a sequencing problem in the vertebrate mitochondrial control region using phylogenetic comparisons.

    PubMed

    Feinstein, Julie; Cracraft, Joel

    2004-01-01

    The mitochondrial control region (mtCR) of the bird-of-paradise, Phonygammus keraudrenii, the Trumpet Manucode, contains a unique arrangement of homopolymers and short tandem repeats. Homopolymers occur within a few hundred bases of each other, trapping sequence information between unsequenceable barriers. A comparative strategy, involving other manucode species, allowed the prediction of primer sites in the inaccessible region. The method is suggested for similar sequencing problems. PMID:15621664

  16. A Complete Mitochondrial Genome Sequence from a Mesolithic Wild Aurochs (Bos primigenius)

    PubMed Central

    McGettigan, Paul A.; Lohan, Amanda J.; Murphy, Alison; Finlay, Emma K.; Shapiro, Beth; Chamberlain, Andrew T.; Richards, Martin B.; Bradley, Daniel G.; Loftus, Brendan J.; MacHugh, David E.

    2010-01-01

    Background The derivation of domestic cattle from the extinct wild aurochs (Bos primigenius) has been well-documented by archaeological and genetic studies. Genetic studies point towards the Neolithic Near East as the centre of origin for Bos taurus, with some lines of evidence suggesting possible, albeit rare, genetic contributions from locally domesticated wild aurochsen across Eurasia. Inferences from these investigations have been based largely on the analysis of partial mitochondrial DNA sequences generated from modern animals, with limited sequence data from ancient aurochsen samples. Recent developments in DNA sequencing technologies, however, are affording new opportunities for the examination of genetic material retrieved from extinct species, providing new insight into their evolutionary history. Here we present DNA sequence analysis of the first complete mitochondrial genome (16,338 base pairs) from an archaeologically-verified and exceptionally-well preserved aurochs bone sample. Methodology DNA extracts were generated from an aurochs humerus bone sample recovered from a cave site located in Derbyshire, England and radiocarbon-dated to 6,738±68 calibrated years before present. These extracts were prepared for both Sanger and next generation DNA sequencing technologies (Illumina Genome Analyzer). In total, 289.9 megabases (22.48%) of the post-filtered DNA sequences generated using the Illumina Genome Analyzer from this sample mapped with confidence to the bovine genome. A consensus B. primigenius mitochondrial genome sequence was constructed and was analysed alongside all available complete bovine mitochondrial genome sequences. Conclusions For all nucleotide positions where both Sanger and Illumina Genome Analyzer sequencing methods gave high-confidence calls, no discrepancies were observed. Sequence analysis reveals evidence of heteroplasmy in this sample and places this mitochondrial genome sequence securely within a previously identified aurochsen

  17. Complete mitochondrial genome sequence of Piaractus mesopotamicus (Holmberg, 1887).

    PubMed

    Pimentel, Juliana da Silva Martins; Carmo, Anderson Oliveira do; Maciel, Danielle de Cássia Lima; Siqueira, Flávia de Faria; Kalapothakis, Evanguedes

    2016-05-01

    The migratory species Piaractus Mesopotamicus, popularly known as the pacu, was determined to have a complete mitochondrial genome of 16,722 bp with 45% GC content. The genome contained 13 protein-coding genes (PCGs), 2 rRNA genes, 22 tRNA genes, and a 1048 bp Control Region (D-loop). Almost all the PCGs used the standard ATG start codon, except for Cox1 that used a GTG start codon. Five of the 13 PCGs had a TAA stop codon, two had the incomplete stop codon TA- (Atp6 and Cox3), and five had the incomplete stop codon T-- (Nd2, Cox2, Nd3, Nd4, and Cytb). AGG was the stop codon of Cox1. PMID:25319283

  18. Complete mitochondrial genome sequence of Brycon orbignyanus (Characiformes, Bryconidae).

    PubMed

    Siqueira, Flávia de Faria; Carmo, Anderson Oliveira do; Pimentel, Juliana da Silva Martins; Kalapothakis, Evanguedes

    2016-05-01

    We report the whole mitochondrial genome of the Brycon orbignyanus, commonly known as the piracanjuba. The mitogenome was determined to be a circular, 16,800 bp DNA molecule, containing 13 protein-coding genes (PCGs), 2 rRNA genes, 22 tRNA genes and one 1160 bp noncoding control region. Twelve of the PCGs were located on the heavy strand, and one PCG (Nd6) was located on the light strand. The most common start codon was ATG; however, the Cox1 gene displayed the GTG start codon. Seven PCGs had incomplete stop codons: specifically, Cox2, Cox3, Nd3, Nd4, and Cytb contained the T- - codon, and Nd2 and Atp6 contained the TA- codon. The Cox1 gene contained the AGG stop codon. PMID:25329263

  19. Pronounced population genetic differentiation in the rock bream Oplegnathus fasciatus inferred from mitochondrial DNA sequences.

    PubMed

    Xiao, Yongshuang; Li, Jun; Ren, Guijing; Ma, Daoyuan; Wang, Yanfeng; Xiao, ZhiZhong; Xu, Shihong

    2016-05-01

    The population genetic structure of the rock bream (Oplegnathus fasciatus) along the coastal waters of China was estimated based on three mtDNA fragments (D-loop, COI, and Cytb). A total of 112 polymorphic sites were checked, which defined 63 haplotypes. A pattern with high levels of haplotype diversity (hCOI = 0.886 ± 0.034, hCytb = 0.874 ± 0.023) and low levels of nucleotide diversity (лCOI = 0.009 ± 0.005, лCytb = 0.006 ± 0.003) was detected based on the COI and Cytb fragments, and high levels of genetic diversity (hD-loop = 0.995 ± 0.007, лD-loop = 0.021 ± 0.011) were detected from the mtDNA D-loop. The population genetic diversity of O. fasciatus in south China was significantly higher than those of north China. Three genealogical clades were checked in the O. fasciatus populations based on the NJ and MST analyses of mtDNA COI gene sequence, and the genetic distances among the clades ranged from 0.018 to 0.025. Significant population genetic differentiation was also checked based on the Fst (0.331, p = 0.000) and exact p (0.000) test analyses. No significant population differentiations were checked based on mtDNA D-loop and Cytb fragments. Using a variety of phylogenetic methods, coalescent reasoning, and molecular dating interpreted in conjunction with paleoclimatic and physiographic evidences, we inferred that the genetic make-up of extant populations of O. fasciatus was shaped by Pleistocene environmental impacts on the historical demography of this species. Coalescent analyses (neutrality tests, mismatch distribution analysis, and Bayesian skyline analyses) showed that the species along coastline of China has experienced population expansions originated in its most recent history at about 169-175 kya before present. PMID:25427804

  20. Next Generation Sequencing to Characterize Mitochondrial Genomic DNA Heteroplasmy

    PubMed Central

    Huang, Taosheng

    2015-01-01

    This protocol is to describe the methodology to characterize mitochondria DNA (mtDNA) heteroplasmy with parallel sequencing. Mitochondria play a very important role in important cellular functions. Each eukaryotic cell contains hundreds of mitochondria with hundreds of mitochondria genomes. The mutant mtDNA and the wild type may co-exist as heteroplasmy, and cause human disease. The purpose of this methodology is to simultaneously determine mtDNA sequence and to quantify the heteroplasmy level. The protocol includes two-fragment mitochondria genome DNA PCR amplification. The PCR product is then mixed at an equimolar ratio. The samples will be barcoded and sequenced with high-throughput next-generation sequencing technology. We found that this technology is highly sensitive, specific, and accurate in determining mtDNA mutations and the degree of heteroplasmic level. PMID:21975941

  1. High-Throughput Sequencing of Complete Mitochondrial Genomes.

    PubMed

    Briscoe, Andrew George; Hopkins, Kevin Peter; Waeschenbach, Andrea

    2016-01-01

    Next-generation sequencing has revolutionized mitogenomics, turning a cottage industry into a high throughput process. This chapter outlines methodologies used to sequence, assemble, and annotate mitogenomes of non-model organisms using Illumina sequencing technology, utilizing either long-range PCR amplicons or gDNA as starting template. Instructions are given on how to extract DNA, conduct long-range PCR amplifications, generate short Sanger barcode tag sequences, prepare equimolar sample pools, construct and assess quality library preparations, assemble Illumina reads using either seeded reference mapping or de novo assembly, and annotate mitogenomes in the absence of an automated pipeline. Notes and recommendations, derived from our own experience, are given throughout this chapter. PMID:27460369

  2. Highly conserved D-loop-like nuclear mitochondrial sequences (Numts) in tiger (Panthera tigris).

    PubMed

    Zhang, Wenping; Zhang, Zhihe; Shen, Fujun; Hou, Rong; Lv, Xiaoping; Yue, Bisong

    2006-08-01

    Using oligonucleotide primers designed to match hypervariable segments I (HVS-1) of Panthera tigris mitochondrial DNA (mtDNA), we amplified two different PCR products (500 bp and 287 bp) in the tiger (Panthera tigris), but got only one PCR product (287 bp) in the leopard (Panthera pardus). Sequence analyses indicated that the sequence of 287 bp was a D-loop-like nuclear mitochondrial sequence (Numts), indicating a nuclear transfer that occurred approximately 4.8-17 million years ago in the tiger and 4.6-16 million years ago in the leopard. Although the mtDNA D-loop sequence has a rapid rate of evolution, the 287-bp Numts are highly conserved; they are nearly identical in tiger subspecies and only 1.742% different between tiger and leopard. Thus, such sequences represent molecular 'fossils' that can shed light on evolution of the mitochondrial genome and may be the most appropriate outgroup for phylogenetic analysis. This is also proved by comparing the phylogenetic trees reconstructed using the D-loop sequence of snow leopard and the 287-bp Numts as outgroup. PMID:17072079

  3. Mitochondrial genome sequences reveal evolutionary relationships of the Phytophthora Ic clade species

    PubMed Central

    Lassiter, Erica S.; Russ, Carsten; Nusbaum, Chad; Zeng, Qiandong; Saville, Amanda; Olarte, Rodrigo; Carbone, Ignazio; Hu, Chia-Hui; Seguin-Orlando, Andaine; Samaniego, Jose A; Thorne, Jeffrey L.; Ristaino, Jean B.

    2015-01-01

    Phytophthora infestans is one of the most destructive plant pathogens of potato and tomato globally. The pathogen is closely related to four other Phytophthora species including P. phaseoli, P. ipomoeae, P. mirabilis, and P. andina that are important pathogens of other wild and domesticated hosts. P. andina is an interspecific hybrid between P. infestans and an unknown Phytophthora species. We have sequenced mitochondrial genomes of the sister species of P. infestans in order to resolve the evolutionary relationships within the clade. Phylogenetic analysis indicates that the P. phaseoli mitochondrial lineage is basal within the clade. P. mirabilis and P. ipomoeae are sister lineages and share a common ancestor with the Ic mitochondrial lineage of P. andina. These lineages in turn are sister to the P. infestans and P. andina Ia mitochondrial lineages. The P. andina Ic lineage diverged much earlier than the P. andina Ia mitochondrial lineage and P. infestans. The presence of two mitochondrial lineages in P. andina supports the hybrid nature of this species. The ancestral state of the P. andina Ic lineage in the tree and its occurrence only in the Andean regions of Ecuador, Colombia and Peru suggests further sampling in the Americasis warranted to understand the distribution of this species hybrid in nature. PMID:25754775

  4. Mitochondrial genome sequences reveal evolutionary relationships of the Phytophthora 1c clade species.

    PubMed

    Lassiter, Erica S; Russ, Carsten; Nusbaum, Chad; Zeng, Qiandong; Saville, Amanda C; Olarte, Rodrigo A; Carbone, Ignazio; Hu, Chia-Hui; Seguin-Orlando, Andaine; Samaniego, Jose A; Thorne, Jeffrey L; Ristaino, Jean B

    2015-11-01

    Phytophthora infestans is one of the most destructive plant pathogens of potato and tomato globally. The pathogen is closely related to four other Phytophthora species in the 1c clade including P. phaseoli, P. ipomoeae, P. mirabilis and P. andina that are important pathogens of other wild and domesticated hosts. P. andina is an interspecific hybrid between P. infestans and an unknown Phytophthora species. We have sequenced mitochondrial genomes of the sister species of P. infestans and examined the evolutionary relationships within the clade. Phylogenetic analysis indicates that the P. phaseoli mitochondrial lineage is basal within the clade. P. mirabilis and P. ipomoeae are sister lineages and share a common ancestor with the Ic mitochondrial lineage of P. andina. These lineages in turn are sister to the P. infestans and P. andina Ia mitochondrial lineages. The P. andina Ic lineage diverged much earlier than the P. andina Ia mitochondrial lineage and P. infestans. The presence of two mitochondrial lineages in P. andina supports the hybrid nature of this species. The ancestral state of the P. andina Ic lineage in the tree and its occurrence only in the Andean regions of Ecuador, Colombia and Peru suggests that the origin of this species hybrid in nature may occur there. PMID:25754775

  5. Complete mitochondrial genome sequence of the polychaete annelidPlatynereis dumerilii

    SciTech Connect

    Boore, Jeffrey L.

    2004-08-15

    Complete mitochondrial genome sequences are now available for 126 metazoans (see Boore 1999; Mitochondrial Genomics link at http://www.jgi.doe.gov), but the taxonomic representation is highly biased. For example, 80 are from a single phylum, Chordata, and show little variation for many molecular features. Arthropoda is represented by 16 taxa, Mollusca by eight, and Echinodermata by five, with only 17 others from the remaining {approx}30 metazoan phyla. With few exceptions (see Wolstenholme 1992 and Boore 1999) these are circular DNA molecules, about 16 kb in size, and encode the same set of 37 genes. A variety of non-standard names are sometimes used for animal mitochondrial genes; see Boore (1999) for gene nomenclature and a table of synonyms. Mitochondrial genome comparisons serve as a model of genome evolution. In this system, much smaller and simpler than that of the nucleus, are all of the same factors of genome evolution, where one may find tractable the changes in tRNA structure, base composition, genetic code, gene arrangement, etc. Further, patterns of mitochondrial gene rearrangements are an exceptionally reliable indicator of phylogenetic relationships (Smith et al.1993; Boore et al. 1995; Boore, Lavrov, and Brown 1998; Boore and Brown 1998, 2000; Dowton 1999; Stechmann and Schlegel 1999; Kurabayashi and Ueshima 2000). To these ends, we are sampling further the variation among major animal groups in features of their mitochondrial genomes.

  6. Mitochondrial Genome Sequences of Spirometra erinaceieuropaei and S. decipiens (Cestoidea: Diphyllobothriidae)

    PubMed Central

    Eom, Keeseon S.; Park, Hansol; Lee, Dongmin; Choe, Seongjun; Kim, Kyu-Heon; Jeon, Hyeong-Kyu

    2015-01-01

    The present study was performed to compare the mitochondrial genomes between 2 Spirometra tapeworms, Spirometra erinaceieuropaei and Spirometra decipiens (Cestoidea: Diphyllobothriidae), which larval stages are important etiological agents of sparganosis in humans. For each species, the full mitochondrial genome was amplified in 8 overlapping fragments using total genomic DNA purified from a single worm as the template. The mitochondrial genomes were 13,643 bp (S. erinaceieuropaei) and 13,641 bp (S. decipiens) in length and contained 36 genes; 12 protein-coding genes, 2 ribosomal RNA (rRNA, small and large subunits), and 22 transfer RNAs (tRNAs). The 12 protein-coding genes constituted 10,083 bp (S. erinaceieuropaei) and 10,086 bp (S. decipiens) of their respective mitochondrial genomes. The tRNA genes, ranging in length from 56 to 70 bp, were identified based on putative secondary structures such as the typical cloverleaf shape. A total of 23 intergenic sequences, varying from 1 to 204 bp in size, were interspersed in S. erinaceieuropaei (total, 504 bp) and S. decipiens (total, 496 bp) mtDNA. The 12 protein-coding genes of S. erinaceieuropaei and S. decipiens differed by 12.4%, whereas the overall difference in mtDNA sequence between S. erinaceieuropaei and S. decipiens was 12.9%. Thus, from the standpoint of the mitochondrial genome, S. decipiens represents a valid species that can be distinguished from S. erinaceieuropaei. PMID:26323844

  7. Limpets of the genus Cellana (Patellogastropoda) from Pakistan, North Arabian Sea: species identification based on DNA sequencing.

    PubMed

    Zafar, Fatima Hayat Shaheen; Ayub, Zarrien; Begum, Samar; Siddiqui, Ghazala; Roberts, David

    2016-07-01

    The true limpets are found in the intertidal zone of the rocky shores of Pakistan, North Arabian Sea. Partial sequence of the mitochondrial cytochrome oxidase I was used to estimate the degree of genetic differentiation among the morphological forms of Cellana, which were considered as three separate species earlier in Pakistan. The study revealed that the three morphs of Cellana on COI sequence generated a single haplotype and matched with the COI sequence of Cellana karachiensis. This point out the phenotypic plasticity between the proposed species. PMID:26065851

  8. Identification and characterization of the mitochondrial targeting sequence and mechanism in human citrate synthase.

    PubMed

    Cheng, Tsung-Lin; Liao, Ching-Chun; Tsai, Wen-Hui; Lin, Chin-Chih; Yeh, Chin-Wei; Teng, Chiao-Fang; Chang, Wen-Tsan

    2009-08-01

    Citrate synthase (CS), the first and rate-limiting enzyme of the tricarboxylic acid (TCA) cycle, plays a decisive role in regulating energy generation of mitochondrial respiration. Most mitochondrial proteins are synthesized in the cytoplasm as preproteins with an amino (N)-terminal mitochondrial targeting sequence (MTS) that directs mitochondria-specific sorting of the preprotein. However, the MTS and targeting mechanism of the human CS protein are not fully characterized. The human CS gene is a single nuclear gene which transcribes into two mRNA variants, isoform a (CSa) and b (CSb), by alternative splicing of exon 2. CSa encodes 466 amino acids, including a putative N-terminal MTS, while CSb expresses 400 residues with a shorter N terminus, lacking the MTS. Our results indicated that CSa is localized in the mitochondria and the N-terminal 27 amino acids, including a well-conserved RXY downward arrow (S/A) motif (the RHAS sequence), can efficiently target the enhanced green fluorescent protein (EGFP) into the mitochondria. Furthermore, site-directed mutagenesis analysis of the conserved basic amino acids and serine/threonine residues revealed that the R9 residue is essential but all serine/threonine residues are dispensable in the mitochondrial targeting function. Moreover, RNA interference (RNAi)-mediated gene silencing of the preprotein import receptors, including TOM20, TOM22, and TOM70, showed that all three preprotein import receptors are required for transporting CSa into the mitochondria. In conclusion, we have experimentally identified the mitochondrial targeting sequence of human CSa and elucidated its targeting mechanism. These results provide an important basis for the study of mitochondrial dysfunction due to aberrant CSa trafficking. PMID:19479947

  9. Phylogeny, species limits, and biogeography of the Brazilian lizards of the genus Eurolophosaurus (Squamata: Tropiduridae) as inferred from mitochondrial DNA sequences.

    PubMed

    Passoni, José Carlos; Benozzati, Maria Lúcia; Rodrigues, Miguel Trefaut

    2008-02-01

    Phylogenetic relationships and divergence times for 10 populations of the three recognized "species" of Brazilian lizards of genus Eurolophosaurus were estimated from 1229bp of cyt b, COI, 12S, and 16S rRNA mitochondrial gene segments. Eurolophosaurus is monophyletic and the basal split within the genus separates E. divaricatus from a clade comprising E. amathites and E. nanuzae. Three populations of E. divaricatus, which occurs along the western bank of Rio São Francisco, were consistently grouped together. On the east bank of the river, E. amathites and E. nanuzae from state of Bahia were recovered as the sister group of E. nanuzae populations from state of Minas Gerais. The paraphyly of E. nanuzae and the high divergence levels among populations of E. divaricatus strongly suggest that species limits in Eurolophosaurus should be revised. Even considering an extreme evolutionary rate of 2.8% sequence divergence per million years for the four gene segments analyzed together, E. divaricatus would have separated from the two other species by at least 5.5my ago, and E. amathites from E. nanuzae populations from Bahia and Minas Gerais, respectively, by 1.5 and 3.5my. The paleolacustrine hypothesis and changes in the course of the river potentially explain faunal divergence in the area, but divergences are much older than previously admitted. PMID:18082430

  10. Complete mitochondrial genome of a hybrid strain of the domesticated silkworm (Qiufeng × Baiyu).

    PubMed

    Li, Fengbo; Zhang, Huixian; Liu, Peigang; Wang, Yongqiang; Meng, Zhiqi

    2016-05-01

    The hybrid strain of the domesticated silkworm (Qiufeng × Baiyu) is one of the most popular commercial silkworm varieties in China. In this study, we reported its complete mitochondrial genome sequence for the first time. The 15,680 bp long genome contains 37 genes (13 protein-coding genes [PCGs], 2 rRNA genes, and 22 tRNA genes) and 1 major non-coding A + T-rich region, with the typical arrangement found in Lepidoptera. All PCGs started with typical ATN codons except for COI, which began with CGA. Eleven PCGs have complete stop codons, whereas COI and COII end with a single T. The 495 bp long A + T-rich region harbors the conserved sequence features typically found in lepidopteran insects. The complete mitochondrial genome sequence of Qiufeng × Baiyu provides an important data source for further study on the mechanism of silkworm domestication. PMID:25319289