Science.gov

Sample records for mitochondrial dna deletion

  1. Mitochondrial DNA deletions in patients with chronic suppurative otitis media.

    PubMed

    Tatar, Arzu; Tasdemir, Sener; Sahin, Ibrahim; Bozoglu, Ceyda; Erdem, Haktan Bagis; Yoruk, Ozgur; Tatar, Abdulgani

    2016-09-01

    The aim of this study was to investigate the 4977 and 7400 bp deletions of mitochondrial DNA in patients with chronic suppurative otitis media and to indicate the possible association of mitochondrial DNA deletions with chronic suppurative otitis media. Thirty-six patients with chronic suppurative otitis media were randomly selected to assess the mitochondrial DNA deletions. Tympanomastoidectomy was applied for the treatment of chronic suppurative otitis media, and the curettage materials including middle ear tissues were collected. The 4977 and 7400 bp deletion regions and two control regions of mitochondrial DNA were assessed by using the four pair primers. DNA was extracted from middle ear tissues and peripheral blood samples of the patients, and then polymerase chain reactions (PCRs) were performed. PCR products were separated in 2 % agarose gel. Seventeen of 36 patients had the heterozygote 4977 bp deletion in the middle ear tissue but not in peripheral blood. There wasn't any patient who had the 7400 bp deletion in mtDNA of their middle ear tissue or peripheral blood tissue. The patients with the 4977 bp deletion had a longer duration of chronic suppurative otitis media and a higher level of hearing loss than the others (p < 0.01). Long time chronic suppurative otitis media and the reactive oxygen species can cause the mitochondrial DNA deletions and this may be a predisposing factor to sensorineural hearing loss in chronic suppurative otitis media. An antioxidant drug as a scavenger agent may be used in long-term chronic suppurative otitis media. PMID:26620342

  2. Developmental genetics of deleted mtDNA in mitochondrial oculomyopathy.

    PubMed

    Marzuki, S; Berkovic, S F; Saifuddin Noer, A; Kapsa, R M; Kalnins, R M; Byrne, E; Sasmono, T; Sudoyo, H

    1997-02-12

    Heteroplasmic populations of mtDNA, consisting of normal mtDNA and mtDNA with large deletions, are found in the skeletal muscle and other tissues of certain patients with mitochondrial respiratory chain deficiencies, particularly in those with the CPEO (chronic progressive external ophthalmoplegia) phenotype. To study the developmental genetics of this mitochondrial disorder, the distribution of the deleted mtDNA in a wide range of tissues of different embryonic origins (total 34 samples from 27 tissues obtained at autopsy) was investigated in a patient with the CPEO syndrome. Three species of partially deleted mtDNA were observed, with deletions of 2.3 kb, 5.0 kb and 6.4 kb. Their tissue distribution suggests that the mtDNA deletions have occurred very early during embryonic development, prior to the differentiation events that lead to the formation of the three primary embryonic germ layers, and that the partially deleted mtDNA species were segregated during development mainly to the skeletal muscle and to tissues of the central nervous system. PMID:9094043

  3. Functional Consequences of Mitochondrial DNA Deletions in Human Skin Fibroblasts

    PubMed Central

    Majora, Marc; Wittkampf, Tanja; Schuermann, Bianca; Schneider, Maren; Franke, Susanne; Grether-Beck, Susanne; Wilichowski, Ekkehard; Bernerd, Françoise; Schroeder, Peter; Krutmann, Jean

    2009-01-01

    Deletions within the mitochondrial DNA (mtDNA) are thought to contribute to extrinsic skin aging. To study the translation of mtDNA deletions into functional and structural changes in the skin, we seeded human skin fibroblasts into collagen gels to generate dermal equivalents. These cells were either derived from Kearns-Sayre syndrome (KSS) patients, who constitutively carry large amounts of the UV-inducible mitochondrial common deletion, or normal human volunteers. We found that KSS fibroblasts, in comparison with normal human fibroblasts, contracted the gels faster and more strongly, an effect that was dependent on reactive oxygen species. Gene expression and Western blot analysis revealed significant upregulation of lysyl oxidase (LOX) in KSS fibroblasts. Treatment with the specific LOX inhibitor β-aminopropionitrile decreased the contraction difference between KSS and normal human fibroblast equivalents. Also, addition of the antioxidant N-tert-butyl-α-phenylnitrone reduced the contraction difference by inhibiting collagen gel contraction in KSS fibroblasts, and both β-aminopropionitrile and N-tert-butyl-α-phenylnitrone diminished LOX activity. These data suggest a causal relationship between mtDNA deletions, reactive oxygen species production, and increased LOX activity that leads to increased contraction of collagen gels. Accordingly, increased LOX expression was also observed in vivo in photoaged human and mouse skin. Therefore, mtDNA deletions in human fibroblasts may lead to functional and structural alterations of the skin. PMID:19661442

  4. Accumulation of mitochondrial DNA deletions within dopaminergic neurons triggers neuroprotective mechanisms.

    PubMed

    Perier, Celine; Bender, Andreas; García-Arumí, Elena; Melià, Ma Jesus; Bové, Jordi; Laub, Christoph; Klopstock, Thomas; Elstner, Matthias; Mounsey, Ross B; Teismann, Peter; Prolla, Tomas; Andreu, Antoni L; Vila, Miquel

    2013-08-01

    Acquired alterations in mitochondrial DNA are believed to play a pathogenic role in Parkinson's disease. In particular, accumulation of mitochondrial DNA deletions has been observed in substantia nigra pars compacta dopaminergic neurons from patients with Parkinson's disease and aged individuals. Also, mutations in mitochondrial DNA polymerase gamma result in multiple mitochondrial DNA deletions that can be associated with levodopa-responsive parkinsonism and severe substantia nigra pars compacta dopaminergic neurodegeneration. However, whether mitochondrial DNA deletions play a causative role in the demise of dopaminergic neurons remains unknown. Here we assessed the potential pathogenic effects of mitochondrial DNA deletions on the dopaminergic nigrostriatal system by using mutant mice possessing a proofreading-deficient form of mitochondrial DNA polymerase gamma (POLGD257A), which results in a time-dependent accumulation of mitochondrial DNA deletions in several tissues, including the brain. In these animals, we assessed the occurrence of mitochondrial DNA deletions within individual substantia nigra pars compacta dopaminergic neurons, by laser capture microdissection and quantitative real-time polymerase chain reaction, and determined the potential deleterious effects of such mitochondrial DNA alterations on mitochondrial function and dopaminergic neuronal integrity, by cytochrome c oxidase histochemistry and quantitative morphology. Nigral dopaminergic neurons from POLGD257A mice accumulate mitochondrial DNA deletions to a similar extent (∼40-60%) as patients with Parkinson's disease and aged individuals. Despite such high levels of mitochondrial DNA deletions, the majority of substantia nigra pars compacta dopaminergic neurons from these animals did not exhibit mitochondrial dysfunction or degeneration. Only a few individual substantia nigra pars compacta neurons appeared as cytochrome c oxidase-negative, which exhibited higher levels of mitochondrial DNA

  5. Mitochondrial DNA with a large-scale deletion causes two distinct mitochondrial disease phenotypes in mice.

    PubMed

    Katada, Shun; Mito, Takayuki; Ogasawara, Emi; Hayashi, Jun-Ichi; Nakada, Kazuto

    2013-09-01

    Studies in patients have suggested that the clinical phenotypes of some mitochondrial diseases might transit from one disease to another (e.g., Pearson syndrome [PS] to Kearns-Sayre syndrome) in single individuals carrying mitochondrial (mt) DNA with a common deletion (ΔmtDNA), but there is no direct experimental evidence for this. To determine whether ΔmtDNA has the pathologic potential to induce multiple mitochondrial disease phenotypes, we used trans-mitochondrial mice with a heteroplasmic state of wild-type mtDNA and ΔmtDNA (mito-miceΔ). Late-stage embryos carrying ≥50% ΔmtDNA showed abnormal hematopoiesis and iron metabolism in livers that were partly similar to PS (PS-like phenotypes), although they did not express sideroblastic anemia that is a typical symptom of PS. More than half of the neonates with PS-like phenotypes died by 1 month after birth, whereas the rest showed a decrease of ΔmtDNA load in the affected tissues, peripheral blood and liver, and they recovered from PS-like phenotypes. The proportion of ΔmtDNA in various tissues of the surviving mito-miceΔ increased with time, and Kearns-Sayre syndrome-like phenotypes were expressed when the proportion of mtDNA in various tissues reached >70-80%. Our model mouse study clearly showed that a single ΔmtDNA was responsible for at least two distinct disease phenotypes at different ages and suggested that the level and dynamics of mtDNA load in affected tissues would be important for the onset and transition of mitochondrial disease phenotypes in mice. PMID:23853091

  6. Novel large-range mitochondrial DNA deletions and fatal multisystemic disorder with prominent hepatopathy

    SciTech Connect

    Bianchi, Marzia; Rizza, Teresa; Verrigni, Daniela; Martinelli, Diego; Tozzi, Giulia; Torraco, Alessandra; Piemonte, Fiorella; Dionisi-Vici, Carlo; Nobili, Valerio; Francalanci, Paola; Boldrini, Renata; Callea, Francesco; Santorelli, Filippo Maria; Bertini, Enrico; and others

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Expanded array of mtDNA deletions. Black-Right-Pointing-Pointer Pearson syndrome with prominent hepatopathy associated with single mtDNA deletions. Black-Right-Pointing-Pointer Detection of deletions in fibroblasts and blood avoids muscle and liver biopsy. Black-Right-Pointing-Pointer Look for mtDNA deletions before to study nuclear genes related to mtDNA depletion. -- Abstract: Hepatic involvement in mitochondrial cytopathies rarely manifests in adulthood, but is a common feature in children. Multiple OXPHOS enzyme defects in children with liver involvement are often associated with dramatically reduced amounts of mtDNA. We investigated two novel large scale deletions in two infants with a multisystem disorder and prominent hepatopathy. Amount of mtDNA deletions and protein content were measured in different post-mortem tissues. The highest levels of deleted mtDNA were in liver, kidney, pancreas of both patients. Moreover, mtDNA deletions were detected in cultured skin fibroblasts in both patients and in blood of one during life. Biochemical analysis showed impairment of mainly complex I enzyme activity. Patients manifesting multisystem disorders in childhood may harbour rare mtDNA deletions in multiple tissues. For these patients, less invasive blood specimens or cultured fibroblasts can be used for molecular diagnosis. Our data further expand the array of deletions in the mitochondrial genomes in association with liver failure. Thus analysis of mtDNA should be considered in the diagnosis of childhood-onset hepatopathies.

  7. ND5 is a hot-spot for multiple atypical mitochondrial DNA deletions in mitochondrial neurogastrointestinal encephalomyopathy.

    PubMed

    Nishigaki, Yutaka; Marti, Ramon; Hirano, Michio

    2004-01-01

    Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive multisystem disorder associated with depletion, multiple deletions and site-specific point mutations of mitochondrial DNA (mtDNA). MNGIE is caused by loss-of-function mutations in the gene encoding thymidine phosphorylase (TP; endothelial cell growth factor 1). Deficiency of TP leads to dramatically elevated levels of circulating thymidine and deoxyuridine. The alterations of pyrimidine nucleoside metabolism are hypothesized to cause imbalances of mitochondrial nucleotide pools that, in turn, may cause somatic alterations of mtDNA. We have now identified five major forms of mtDNA deletions in the skeletal muscle of MNGIE patients. While direct repeats and imperfectly homologous sequences appear to mediate the formation of mtDNA deletions, the nicotinamide adenine dinucleotide dehydrogenase 5 gene is a hot-spot for these rearrangements. A novel aspect of the mtDNA deletions in MNGIE is the presence of microdeletions at the imperfectly homologous breakpoints. PMID:14613972

  8. Increased mitochondrial DNA deletions in substantia nigra dopamine neurons of the aged rat.

    PubMed

    Parkinson, Gemma M; Dayas, Christopher V; Smith, Doug W

    2014-01-01

    The dopaminergic neurons of the substantia nigra (SN), which constitute the origin of the nigrostriatal system, are vulnerable to age-related degenerative processes. For example, in humans there is a relatively small age-related loss of neurons but a marked decline of the dopaminergic phenotype associated with impaired voluntary motor control. However, the mechanisms responsible for the dysfunction and degeneration of SN dopamine neurons remain poorly understood. One potential contributor is mitochondrial dysfunction, resulting from an increased abundance of mitochondrial DNA (mtDNA) mutations such as deletions. Human studies have identified relatively high levels of mtDNA deletions in these cells in both aging and Parkinson's disease (>35%), with a higher abundance of deletions (>60%) in individual neurons with mitochondrial dysfunction. However, it is unknown whether similar mtDNA mutations occur in other species such as the rat. In the present study, we quantified mtDNA deletion abundance in laser microdissected SN dopaminergic neurons from young and old F344 rats. Our results indicate that mtDNA deletions accumulated with age, with approximately 20% more mtDNA deletions in SN dopaminergic neurons from old compared to young animals. Thus, while rat SN dopaminergic neurons do accumulate mtDNA deletions with aging, this does not reflect the deletion burden in humans, and other mechanisms may be operating to compensate for age-related mtDNA damage in the rat SN dopaminergic neurons. PMID:25612740

  9. Mapping of heteroplasmic mitochondrial DNA deletions in Kearns-Sayre syndrome.

    PubMed Central

    Nelson, I; Degoul, F; Obermaier-Kusser, B; Romero, N; Borrone, C; Marsac, C; Vayssiere, J L; Gerbitz, K; Fardeau, M; Ponsot, G

    1989-01-01

    Kearns-Sayre syndrome (KSS) is a progressive neuromuscular disease characterised by ophtalmoplegia, cardiac bloc branch, pigmentary retinopathy associated with abnormal mitochondrial function. We have studied the mitochondrial DNA organization of patients presenting KSS and have found large deletions ranging from 3 to 8.5 kilobase pairs. DNA molecules containing deletion are accompanied by the presence of the normal sized mtDNA molecule forming heteroplasmic genomes. The deletions always map in the region which is potentially single stranded during mitochondrial DNA replication. The deletions differ in length and position between individuals but are similar within the different tissues of an individual suggesting that they arise during or before embryogenesis. Images PMID:2813058

  10. Deletion of conserved protein phosphatases reverses defects associated with mitochondrial DNA damage in Saccharomyces cerevisiae.

    PubMed

    Garipler, Görkem; Mutlu, Nebibe; Lack, Nathan A; Dunn, Cory D

    2014-01-28

    Mitochondrial biogenesis is regulated by signaling pathways sensitive to extracellular conditions and to the internal environment of the cell. Therefore, treatments for disease caused by mutation of mtDNA may emerge from studies of how signal transduction pathways command mitochondrial function. We have examined the role of phosphatases under the control of the conserved α4/Tap42 protein in cells lacking a mitochondrial genome. We found that deletion of protein phosphatase 2A (PP2A) or of protein phosphatase 6 (PP6) protects cells from the reduced proliferation, mitochondrial protein import defects, lower mitochondrial electrochemical potential, and nuclear transcriptional response associated with mtDNA damage. Moreover, PP2A or PP6 deletion allows viability of a sensitized yeast strain after mtDNA loss. Interestingly, the Saccharomyces cerevisiae ortholog of the mammalian AMP-activated protein kinase was required for the full benefits of PP6 deletion and also for proliferation of otherwise wild-type cells lacking mtDNA. Our work highlights the important role that nutrient-responsive signaling pathways can play in determining the response to mitochondrial dysfunction. PMID:24474773

  11. MPV17 Mutations Causing Adult-Onset Multisystemic Disorder With Multiple Mitochondrial DNA Deletions

    PubMed Central

    Garone, Caterina; Rubio, Juan Carlos; Calvo, Sarah E.; Naini, Ali; Tanji, Kurenai; DiMauro, Salvatore; Mootha, Vamsi K.; Hirano, Michio

    2014-01-01

    Objective To identify the cause of an adult-onset multisystemic disease with multiple deletions of mitochondrial DNA (mtDNA). Design Case report. Setting University hospitals. Patient A 65-year-old man with axonal sensorimotor peripheral neuropathy, ptosis, ophthalmoparesis, diabetes mellitus, exercise intolerance, steatohepatopathy, depression, parkinsonism, and gastrointestinal dysmotility. Results Skeletal muscle biopsy revealed ragged-red and cytochrome-c oxidase–deficient fibers, and Southern blot analysis showed multiple mtDNA deletions. No deletions were detected in fibroblasts, and the results of quantitative polymerase chain reaction showed that the amount of mtDNA was normal in both muscle and fibroblasts. Exome sequencing using a mitochondrial library revealed compound heterozygous MPV17 mutations (p.LysMet88-89MetLeu and p.Leu143*), a novel cause of mtDNA multiple deletions. Conclusions In addition to causing juvenile-onset disorders with mtDNA depletion, MPV17 mutations can cause adult-onset multisystemic disease with multiple mtDNA deletions. PMID:22964873

  12. Targeted enrichment and high-resolution digital profiling of mitochondrial DNA deletions in human brain.

    PubMed

    Taylor, Sean D; Ericson, Nolan G; Burton, Joshua N; Prolla, Tomas A; Silber, John R; Shendure, Jay; Bielas, Jason H

    2014-02-01

    Due largely to the inability to accurately quantify and characterize de novo deletion events, the mechanisms underpinning the pathogenic expansion of mtDNA deletions in aging and neuromuscular disorders remain poorly understood. Here, we outline and validate a new tool termed 'Digital Deletion Detection' (3D) that allows for high-resolution analysis of rare deletions occurring at frequencies as low as 1 × 10(-8) . 3D is a three-step process that includes targeted enrichment for deletion-bearing molecules, single-molecule partitioning of genomes into thousands of droplets for direct quantification via droplet digital PCR, and breakpoint characterization using massively parallel sequencing. Using 3D, we interrogated over 8 billion mitochondrial genomes to analyze the age-related dynamics of mtDNA deletions in human brain tissue. We demonstrate that the total deletion load increases with age, while the total number and diversity of unique deletions remain constant. Our data provide support for the hypothesis that expansion of pre-existing mutations is the primary factor contributing to age-related accumulation of mtDNA deletions. PMID:23911137

  13. An Asian-specific 9-bp deletion of mitochondrial DNA is frequently found in Polynesians.

    PubMed

    Hertzberg, M; Mickleson, K N; Serjeantson, S W; Prior, J F; Trent, R J

    1989-04-01

    One hundred fifty Polynesians from five different island groups (Samoans, Maoris, Niueans, Cook Islanders, and Tongans) were surveyed for the presence of an Asian-specific length mutation of mitochondrial (mt) DNA by using enzymatic amplification with thermostable Taq DNA polymerase. Ninety-three percent of Polynesians exhibited this 9-bp deletion, including 100% of Samoans, Maoris, and Niueans. The same deletion was also found in 8% of Tolais from New Britain and in 14% of coastal New Guineans. A deletion frequency of 82% in Fijians confirmed their ethnic affinity to Polynesians. In contrast, the deletion was absent in 30 New Guinea highlanders and 31 Australian aborigines, the only exception being an aborigine who also had the Southeast Asian triplicated zeta-globin gene rearrangement in his nuclear DNA. These data support the theories claiming that an independent group of pre-Polynesian ancestors who colonized into the Pacific were ultimately derived from east Asia. PMID:2929595

  14. Mitochondrial DNA deletion in a patient with combined features of Leigh and Pearson syndromes

    SciTech Connect

    Blok, R.B.; Thorburn, D.R.; Danks, D.M.

    1994-09-01

    We describe a heteroplasmic 4237 bp mitochondrial DNA (mtDNA) deletion in an 11 year old girl who has suffered from progressive illness since birth. She has some features of Leigh syndrome (global developmental delay with regression, brainstem dysfunction and lactic acidosis), together with other features suggestive of Pearson syndrome (history of pancytopenia and failure to thrive). The deletion was present at a level greater than 50% in skeletal muscle, but barely detectable in skin fibroblasts following Southern blot analysis, and only observed in blood following PCR analysis. The deletion spanned nt 9498 to nt 13734, and was flanked by a 12 bp direct repeat. Genes for cytochrome c oxidase subunit III, NADH dehydrogenase subunits 3, 4L, 4 and 5, and tRNAs for glycine, arginine, histidine, serine({sup AGY}) and leucine({sup CUN}) were deleted. Southern blotting also revealed an altered Apa I restriction site which was shown by sequence analysis to be caused by G{r_arrow}A nucleotide substitution at nt 1462 in the 12S rRNA gene. This was presumed to be a polymorphism. No abnormalities of mitochondrial ultrastructure, distribution or of respiratory chain enzyme complexes I-IV in skeletal muscle were observed. Mitochondrial disorders with clinical features overlapping more than one syndrome have been reported previously. This case further demonstrates the difficulty in correlating observed clinical features with a specific mitochondrial DNA mutation.

  15. Skeletal muscle mitochondrial DNA deletions are not increased in CuZn-superoxide dismutase deficient mice.

    PubMed

    Wanagat, Jonathan; Ahmadieh, Nazanin; Bielas, Jason H; Ericson, Nolan G; Van Remmen, Holly

    2015-01-01

    Mitochondrial DNA (mtDNA) deletion mutations are proposed contributors to aging-related muscle fiber loss and atrophy, but evidence of a causal role for these mutations in muscle aging is lacking. Elucidating the etiology of in vivo mtDNA deletion mutations will help to better understand and test the possible roles of these mutations in aging. The implication of mtDNA mutations in aging is based on the susceptibility of mtDNA to oxidative damage by reactive oxygen species (ROS) due to residing in mitochondria, the primary source of endogenous ROS. Cells possess many pathways for neutralizing ROSs, including a variety of superoxide dismutases (SOD). Mice lacking CuZnSOD (Sod1(-/-) mice) have high levels of oxidative damage in many tissues including skeletal muscle and are a model for testing the role of oxidative damage in the formation of mtDNA deletion mutations. The increased DNA oxidative damage in Sod1(-/-) mice is associated with increased mtDNA deletion mutations in a variety of tissues, but skeletal muscle mtDNA mutations have not been reported. We hypothesized that a life-long absence of mouse muscle CuZnSOD would increase mtDNA deletion mutation frequency and focal accumulation of these mutations in aging mouse skeletal muscle. Focal accumulations of mtDNA deletion mutations were detected by histochemical staining for cytochrome c oxidase (cytOX) activity and detection of cytOX-negative fibers, a marker of focal mtDNA mutation accumulation, within approximately 20,000 muscle fibers through a distance of 1000μm. Total DNA was extracted from intervening unstained sections and mtDNA deletion mutation frequency was measured by a droplet digital PCR. Droplet digital PCR quantification of mtDNA deletion mutations showed no difference in mtDNA deletion mutation frequency in Sod1(-/-) mouse muscle compared to wild-type mice and we observed no significant increase in the number of cytOX-negative muscle fibers, in Sod1(-/-) mice compared to wild-type mice. These

  16. Skeletal muscle mitochondrial DNA deletions are not increased in CuZn-superoxide dismutase deficient mice

    PubMed Central

    Wanagat, Jonathan; Ahmadieh, Nazanin; Bielas, Jason; Ericson, Nolan G.; Van Remmen, Holly

    2014-01-01

    Mitochondrial DNA (mtDNA) deletion mutations are proposed contributors to aging-related muscle fiber loss and atrophy, but evidence of a causal role for these mutations in muscle aging is lacking. Elucidating the etiology of in vivo mtDNA deletion mutations will help to better understand and test the possible roles of these mutations in aging. The implication of mtDNA mutations in aging is based on the susceptibility of mtDNA to oxidative damage by reactive oxygen species (ROS) due to residing in mitochondria, the primary source of endogenous ROS. Cells possess many pathways for neutralizing ROSs, including a variety of superoxide dismutases (SOD). Mice lacking CuZnSOD (Sod1−/− mice) have high levels of oxidative damage in many tissues including skeletal muscle and are a model for testing the role of oxidative damage in the formation of mtDNA deletion mutations. The increased DNA oxidative damage in Sod1−/− mice is associated with increased mtDNA deletion mutations in a variety of tissues, but skeletal muscle mtDNA mutations have not been reported. We hypothesized that a life-long absence of mouse muscle CuZnSOD would increase mtDNA deletion mutation frequency and focal accumulation of these mutations in aging mouse skeletal muscle. Focal accumulations of mtDNA deletion mutations were detected by histochemical staining for cytochrome c oxidase (cytOX) activity and detection of cytOX-negative fibers, a marker of focal mtDNA mutation accumulation, within approximately 20,000 muscle fibers through a distance of 1000 microns. Total DNA was extracted from intervening unstained sections and mtDNA deletion mutation frequency was measured by droplet digital PCR. Droplet digital PCR quantification of mtDNA deletion mutations showed no difference in mtDNA deletion mutation frequency in Sod1−/− mouse muscle compared to wild-type mice and we observed no significant increase in the number of cytOX-negative muscle fibers, in Sod1−/− mice compared to wild

  17. Deoxyribonucleotide pool imbalance stimulates deletions in HeLa cell mitochondrial DNA.

    PubMed

    Song, Shiwei; Wheeler, Linda J; Mathews, Christopher K

    2003-11-01

    Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder associated with multiple mutations in mitochondrial DNA, both deletions and point mutations, and mutations in the nuclear gene for thymidine phosphorylase. Spinazzola et al. (Spinazzola, A., Marti, R., Nishino, I., Andreu, A., Naini, A., Tadesse, S., Pela, I., Zammarchi, E., Donati, M., Oliver, J., and Hirano, M. (2001) J. Biol. Chem. 277, 4128-4133) showed that MNGIE patients have elevated circulating thymidine levels and they hypothesized that this generates imbalanced mitochondrial deoxyribonucleoside triphosphate (dNTP) pools, which in turn are responsible for mitochondrial (mt) DNA mutagenesis. We tested this hypothesis by culturing HeLa cells in medium supplemented with 50 microM thymidine. After 8-month growth, mtDNA in the thymidine-treated culture, but not the control, showed multiple deletions, as detected both by Southern blotting and by long extension polymerase chain reaction. After 4-h growth in thymidine-supplemented medium, we found the mitochondrial dTTP and dGTP pools to expand significantly, the dCTP pool to drop significantly, and the dATP pool to drop slightly. In whole-cell extracts, dTTP and dGTP pools also expanded, but somewhat less than in mitochondria. The dCTP pool shrank by about 50%, and the dATP pool was essentially unchanged. These results are discussed in terms of the recent report by Nishigaki et al. (Nishigaki, Y., Marti, R., Copeland, W. C., and Hirano, M. (2003) J. Clin. Invest. 111, 1913-1921) that most mitochondrial point mutations in MNGIE patients involve T --> C transitions in sequences containing two As to the 5' side of a T residue. Our finding of dTTP and dGTP elevations and dATP depletion in mitochondrial dNTP pools are consistent with a mutagenic mechanism involving T-G mispairing followed by a next-nucleotide effect involving T insertion opposite A. PMID:13679382

  18. Mitochondrial DNA deletions detected by Multiplex Ligation-dependent Probe Amplification.

    PubMed

    Mayorga, Lía; Laurito, Sergio R; Loos, Mariana A; Eiroa, Hernán D; de Pinho, Silvina; Lubieniecki, Fabiana; Arroyo, Hugo A; Pereyra, Marcela F; Kauffman, Marcelo A; Roqué, María

    2016-07-01

    The genetic diagnosis algorithm for mitochondrial (mt) diseases starts looking for deletions and common mutations in mtDNA. MtDNA's special features, such as large and variable genome copies, heteroplasmy, polymorphisms, and its duplication in the nuclear genome as pseudogenes (NUMTs), make it vulnerable to diagnostic misleading interpretations. Multiplex Ligation-dependent Probe Amplification (MLPA) is used to detect copy number variations in nuclear genes and its application on mtDNA has not been widely spread. We report three Kearns Sayre Syndrome patients and one Chronic Progressive External Ophthalmoplegia adult, whose diagnostic mtDNA deletions were detected by MLPA using a very low amount of DNA. This managed to "dilute" the NUMT interference as well as enhance MLPA's efficiency. By this report, we conclude that when MLPA is performed upon a reduced amount of DNA, it can detect effectively mtDNA deletions. We propose MLPA as a possible first step method in the diagnosis of mt diseases. PMID:26114318

  19. Prevalence of the 4977-bp and 4408-bp mitochondrial DNA deletions in mesenteric arteries from patients with colorectal cancer.

    PubMed

    Li, Tao; Chen, Gui-Lan; Lan, Huan; Mao, Liang; Zeng, Bo

    2016-09-01

    Mitochondrial DNA (mtDNA) deletions are found in many diseased tissues and lead to impairment of mitochondrial functions. In this study, we found wide presence of the common 4977-bp and a novel 4408-bp deletion in the mtDNA of mesenteric arteries from patients with colorectal cancer. These two deletions were also detected in samples from healthy individuals. The content of mtDNA with the 4977-bp deletion was significantly lower in healthy controls than cancer-associated samples, and there was no significant difference for the 4408-bp deletion between the two groups. These results suggest that mtDNA in blood vessels around cancer cells may be strongly affected by oxidative stress and tend to accumulate more large-scale variations. PMID:26332461

  20. Neuropathological signs of inflammation correlate with mitochondrial DNA deletions in mesial temporal lobe epilepsy.

    PubMed

    Volmering, Elisa; Niehusmann, Pitt; Peeva, Viktoriya; Grote, Alexander; Zsurka, Gábor; Altmüller, Janine; Nürnberg, Peter; Becker, Albert J; Schoch, Susanne; Elger, Christian E; Kunz, Wolfram S

    2016-08-01

    Accumulation of mitochondrial DNA (mtDNA) deletions has been proposed to be responsible for the presence of respiratory-deficient neurons in several CNS diseases. Deletions are thought to originate from double-strand breaks due to attack of reactive oxygen species (ROS) of putative inflammatory origin. In epileptogenesis, emerging evidence points to chronic inflammation as an important feature. Here we aimed to analyze the potential association of inflammation and mtDNA deletions in the hippocampal tissue of patients with mesial temporal lobe epilepsy (mTLE) and hippocampal sclerosis (HS). Hippocampal and parahippocampal tissue samples from 74 patients with drug-refractory mTLE served for mtDNA analysis by multiplex PCR as well as long-range PCR, single-molecule PCR and ultra-deep sequencing of mtDNA in selected samples. Patients were sub-classified according to neuropathological findings. Semi-quantitative assessment of neuronal cell loss was performed in the hippocampal regions CA1-CA4. Inflammatory infiltrates were quantified by cell counts in the CA1, CA3 and CA4 regions from well preserved hippocampal samples (n = 33). Samples with HS showed a significantly increased frequency of a 7436-bp mtDNA deletion (p < 0.0001) and a higher proportion of somatic G>T transversions compared to mTLE patients with different histopathology. Interestingly, the number of T-lymphocytes in the hippocampal CA1, CA3 and CA4 regions was, similar to the 7436-bp mtDNA deletion, significantly increased in samples with HS compared to other subgroups. Our findings show a coincidence of HS, increased somatic G>T transversions, the presence of a specific mtDNA deletion, and increased inflammatory infiltrates. These results support the hypothesis that chronic inflammation leads to mitochondrial dysfunction by ROS-mediated mtDNA mutagenesis which promotes epileptogenesis and neuronal cell loss in patients with mTLE and HS. PMID:26993140

  1. Increased mitochondrial DNA deletions and copy number in transfusion-dependent thalassemia

    PubMed Central

    Lal, Ashutosh; Gomez, Esteban; Calloway, Cassandra

    2016-01-01

    BACKGROUND Iron overload is the primary cause of morbidity in transfusion-dependent thalassemia. Increase in iron causes mitochondrial dysfunction under experimental conditions, but the occurrence and significance of mitochondrial damage is not understood in patients with thalassemia. METHODS Mitochondrial DNA (mtDNA) to nuclear DNA copy number (Mt/N) and frequency of the common 4977-bp mitochondrial deletion (ΔmtDNA4977) were quantified using a quantitative PCR assay on whole blood samples from 38 subjects with thalassemia who were receiving regular transfusions. RESULTS Compared with healthy controls, Mt/N and ΔmtDNA4977 frequency were elevated in thalassemia (P = 0.038 and P < 0.001, respectively). ΔmtDNA4977 was increased in the presence of either liver iron concentration > 15 mg/g dry-weight or splenectomy, with the highest levels observed in subjects who had both risk factors (P = 0.003). Myocardial iron (MRI T2* < 20 ms) was present in 0%, 22%, and 46% of subjects with ΔmtDNA4977 frequency < 20, 20–40, and > 40/1 × 107 mtDNA, respectively (P = 0.025). Subjects with Mt/N values below the group median had significantly lower Matsuda insulin sensitivity index (5.76 ± 0.53) compared with the high Mt/N group (9.11 ± 0.95, P = 0.008). CONCLUSION Individuals with transfusion-dependent thalassemia demonstrate age-related increase in mtDNA damage in leukocytes. These changes are markedly amplified by splenectomy and are associated with extrahepatic iron deposition. Elevated mtDNA damage in blood cells may predict the risk of iron-associated organ damage in thalassemia. PMID:27583305

  2. Multiple mitochondrial DNA deletions and persistent hyperthermia in a patient with Brachmann-de Lange phenotype

    SciTech Connect

    Melegh, B.; Bock, I.; Mehes, K.

    1996-10-02

    In a newborn boy with characteristics of Brachmann-de Lange syndrome (BDLS), high temperatures were observed on the second day after birth and recurred 2-6 times daily during the 7 months of the patient`s life. After, transient hypertonia hypotonia developed. In muscle biopsy specimen taken on the 51st day of life, serious and progressive distortion of mitochondria was observed. In several mitochondria the cristae structure was broken, other mitochondria were shrunken and the damage progressed towards further deterioration in other organelles. At several points between the myofibrils, amorphous material was seen, possibly debris of destroyed mitochondria. Most myofibrils seemed to be intact; however, in some areas myolytic signs were present. Analysis of the mitochondrial DNA (mtDNA) showed multiple deletions in skeletal and heart muscles, liver, lung and kidney. Since the mtDNA encodes several proteins of the respiratory complexes, the deleted mtDNA certainly affected the integrity of the mitochondrial oxidative phosphorylation process by synthesis of abnormal proteins. In the present case the hyperthermia may have been a result of the mtDNA damage. 13 refs.

  3. Simultaneous quantification of mitochondrial DNA copy number and deletion ratio: A multiplex real-time PCR assay

    PubMed Central

    Phillips, Nicole R.; Sprouse, Marc L.; Roby, Rhonda K.

    2014-01-01

    Mitochondrial dysfunction is implicated in a vast array of diseases and conditions, such as Alzheimer's disease, cancer, and aging. Alterations in mitochondrial DNA (mtDNA) may provide insight into the processes that either initiate or propagate this dysfunction. Here, we describe a unique multiplex assay which simultaneously provides assessments of mtDNA copy number and the proportion of genomes with common large deletions by targeting two mitochondrial sites and one nuclear locus. This probe-based, single-tube multiplex provides high specificity while eliminating well-to-well variability that results from assaying nuclear and mitochondrial targets individually. PMID:24463429

  4. A Novel Large-Scale Deletion of The Mitochondrial DNA of Spermatozoa of Men in North Iran

    PubMed Central

    Gholinezhad Chari, Maryam; Hosseinzadeh Colagar, Abasalt; Bidmeshkipour, Ali

    2015-01-01

    Background To investigate the level of correlation between large-scale deletions of the mitochondrial DNA (mtDNA) with defective sperm function. Materials and Methods In this analytic study, a total of 25 semen samples of the nor- mozoospermic infertile men from North of Iran were collected from the IVF center in an infertility clinic. The swim-up procedure was performed for the separation of spermatozoa into two groups; (normal motility group and abnormal motility group) by 2.0 ml of Ham’s F-10 medium and 1.0 ml of semen. After total DNA extraction, a long-range polymerase chain reaction (PCR) technique was used to determine the mtDNA deletions in human spermatozoa. Results The products of PCR analysis showed a common 4977 bp deletion and a novel 4866 bp deletion (flanked by a seven-nucleotide direct repeat of 5΄-ACCCCCT-3΄ within the deleted area) from the mtDNA of spermatozoa in both groups. However, the frequency of mtDNA deletions in abnormal motility group was significantly higher than the normal motility group (56, and 24% for 4866 bp-deleted mtDNA and, 52, and 28% for 4977 bp-deleted mtDNA, respectively). Conclusion It is suggested that large-scale deletions of the mtDNA is associated with poor sperm motility and may be a causative factor in the decline of fertility in men. PMID:25780528

  5. Mitochondrial DNA 4977-base pair common deletion in blood leukocytes and melanoma risk.

    PubMed

    Shen, Jie; Wan, Jie; Huff, Chad; Fang, Shenying; Lee, Jeffrey E; Zhao, Hua

    2016-05-01

    The 4977-base pair common deletion DmtDNA4977 is the most frequently observed mitochondrial DNA mutation in human tissues. Because mitochondrial DNA mutations are mainly caused by reactive oxygen species (ROS), and given that oxidative stress plays an important role in melanoma carcinogenesis, the investigation of DmtDNA4977 may be particularly relevant to the development of melanoma. In this study, we compared DmtDNA4977 levels in blood leukocytes from 206 melanoma patients and 219 healthy controls. Overall, melanoma cases had significantly higher levels of DmtDNA4977 than healthy controls (median: 0.60 vs 0.20, P = 0.008). The difference was evident among individuals who were older than 47 yrs, women, and had pigmentation risk factors (e.g., blond or red hair, blue eye, fair skin, light, or none tanning ability after prolonged sun exposure, and freckling in the sun as a child). The difference was also evident among those who had at least one lifetime sunburn with blistering and had no reported use of a sunlamp. Interestingly, among controls, DmtDNA4977 levels differed by phenotypic index and reported use of a sunlamp. In the risk assessment, increased levels of DmtDNA4977 were associated with a 1.23-fold increased risk of melanoma (odds ratio (OR): 1.23, 95% confidence interval (90% CI): 1.01, 1.50). A significant dose-response relationship was observed in quartile analysis (P = 0.001). In summary, our study suggests that high levels of DmtDNA4977 in blood leukocytes are associated with increased risk of melanoma and that association is affected by both pigmentation and personal history of sun exposure. PMID:26988264

  6. Association of large scale 4977-bp “common” deletions in sperm mitochondrial DNA with asthenozoospermia and oligoasthenoteratozoospermia

    PubMed Central

    Ambulkar, Prafulla S.; Chuadhari, Ajay R.; Pal, Asoke K.

    2016-01-01

    OBJECTIVE: To determine the association of large-scale mitochondrial DNA (mtDNA) deletions with abnormal sperm or abnormal flagellar movement of human spermatozoa in asthenozoospermia and oligoasthenoteratozoospermia (OAT) subjects using percoll gradients fractionation and long-range polymerase chain reaction (PCR). DESIGN: We investigated sixty infertile men and thirty normal healthy fertile controls. Of sixty infertile men, 39 were asthenozoospermia and 21 were OAT. MATERIALS AND METHODS: Percoll gradients discontinuous technique was used for separation of spermatozoa on the basis of their motility. Long-range PCR was used for detection of “common” 4977-bp deletions, and primer shift technique was used for confirmation of deletions. RESULTS: Overall fourteen subjects (14/60; 23.3%) of which eight (8/39; 20.5%) asthenozoospermia and six (6/21; 28.6%) OAT had shown deletions of 4977-bp. Deletions were more common (23.3%) in 40% fraction than 60% (11.6%) and 80% (5%) fractions. Sequencing results had shown deleted region of mtDNA. CONCLUSION: Abnormal spermatozoa had more number of mtDNA deletions than normal sperm, and abnormal spermatozoa had lost genes for the oxidative phosphorylation. Our findings suggest that large-scale 4977-bp mtDNA deletions in the spermatozoa from the infertile subjects cause the asthenozoospermic and OAT pathophysiological conditions in infertile males. PMID:27110076

  7. Origins and dispersal of the mitochondrial DNA region V 9 bp deletion and insertion in Nigeria and the Ivory Coast

    SciTech Connect

    Merriwether, D.A.; Huston, S.L.; Bunker, C.A.

    1994-09-01

    An intergenic region V Mitochondrial DNA (mtDNA) 9 bp deletion located between the genes for tRNA{sup LYS} and cytochrome oxidase II was discovered in a small percentage of Nigerian and Ivory Coast natives. Previously this deletion has been described as Asian-specific and has been reported throughout the New World, Asia, S.E. Asia, and the Pacific Islands at frequencies ranging from 0% to 100%. In the New World and the Pacific Islands, the deletion is almost always accompanied by an Hae III restriction site gain at nt 16517. All 9 occurrences of the deletion observed in Africa (from four different populations) co-occur with the Hae III 16517 site gain, indicating that the African deletion probably shares a common origin with the deletion described as {open_quotes}Asian-specific{close_quotes}. The deletion was found in Benin and Sokoto, Nigeria in 2/54 Edo Bini, 1/2 Edo Ishan, 3/99 Hausa, 0/18 Fulani, and 0/16 other Nigerians. The deletion was also detected in 3/115 Ivory Coast natives from Abidjan. A 9 bp insertion (triplication) was observed in 1/115 Ivory Coast natives. The triplicated individual also possessed the Hae III 16517 site gain. The fragment containing the African deletion was sequenced and found to be identical in sequence to the Asian deletion region. D-loop sequence of nts 15975 to 00048 revealed that 2 of the 3 Ivory Coast deleted individuals and 1 of the 6 Nigerians deleted (Hausa) had a T-C transition at nt position 16189 which is common in New World-deleted individuals. These results raise the possibility that the occurrence of this deletion predates the separation of Asian and African populations from a common ancestral populations, or that the deletion has occurred more than once in human evolution. Either explanation requires that caution be exercised when using the 9 bp deletion as a population marker.

  8. Mitochondrial DNA deletions sensitize cells to apoptosis at low heteroplasmy levels

    SciTech Connect

    Schoeler, S.; Szibor, R.; Gellerich, F.N.; Wartmann, T.; Mawrin, C.; Dietzmann, K.; Kirches, E. . E-mail: elmar.kirches@medizin.uni-magdeburg.de

    2005-06-24

    A heterogeneous group of multisystem disorders affecting various tissues and often including neuromuscular symptoms is caused by mutations of the mitochondrial genome, which codes 13 polypeptides of oxidative phosphorylation (OXPHOS) complexes and 22 tRNA genes needed for their translation. Since the link between OXPHOS dysfunction and clinical phenotype remains enigmatic in many diseases, a possible role of enhanced apoptosis is discussed besides bioenergetic crisis of affected cells. We analyzed the proapoptotic impact of the mitochondrial 5 kb common deletion (CD), affecting five tRNA genes, in transmitochondrial cybrid cell lines and found a slightly enhanced sensitivity to exogenous oxidative stress (H{sub 2}O{sub 2}) and a pronounced sensitization against death receptor stimulation (TRAIL) at a rather low CD heteroplasmy level of 22%. Mitochondrial deletions confer enhanced susceptibility against proapoptotic signals to proliferating cells, which might explain the elimination of deletions from hematopoietic stem cells.

  9. [Distribution of a deletion-insertion polymorphism in intergenic region V of mitochondrial DNA among the aboriginal population of Tuva].

    PubMed

    Golubenko, M V; Puzyrev, V P; Saliukov, V B; Kucher, A N; Sanchat, N O

    2000-03-01

    Mitochondrial DNA region V deletion-insertion polymorphism was examined in three Tuvinian populations inhabiting western, northeastern, and southeastern parts of the republic. The 9-bp deletion was characterized by nonrandom distribution across the Tuva territory: its frequency in the western population (13.37%) was statistically significantly higher than that in the northeastern (4.62%), and southeastern populations, as well as in Mongols, who are territorially and ethnically close to Tuvinians. The insertion mutation in the region V was detected with a frequency of about 3% in two out of the three populations tested. PMID:10779913

  10. The mitochondrial ND1 m.3337G>A mutation associated to multiple mitochondrial DNA deletions in a patient with Wolfram syndrome and cardiomyopathy

    SciTech Connect

    Mezghani, Najla; Mnif, Mouna; Mkaouar-Rebai, Emna; Kallel, Nozha; Salem, Ikhlass Haj; Charfi, Nadia; Abid, Mohamed; Fakhfakh, Faiza

    2011-07-29

    Highlights: {yields} We reported a patient with Wolfram syndrome and dilated cardiomyopathy. {yields} We detected the ND1 mitochondrial m.3337G>A mutation in 3 tested tissues (blood leukocytes, buccal mucosa and skeletal muscle). {yields} Long-range PCR amplification revealed the presence of multiple mitochondrial deletions in the skeletal muscle. {yields} The deletions remove several tRNA and protein-coding genes. -- Abstract: Wolfram syndrome (WFS) is a rare hereditary disorder also known as DIDMOAD (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness). It is a heterogeneous disease and full characterization of all clinical and biological features of this disorder is difficult. The wide spectrum of clinical expression, affecting several organs and tissues, and the similarity in phenotype between patients with Wolfram syndrome and those with certain types of respiratory chain diseases suggests mitochondrial DNA (mtDNA) involvement in Wolfram syndrome patients. We report a Tunisian patient with clinical features of moderate Wolfram syndrome including diabetes, dilated cardiomyopathy and neurological complications. The results showed the presence of the mitochondrial ND1 m.3337G>A mutation in almost homoplasmic form in 3 tested tissues of the proband (blood leukocytes, buccal mucosa and skeletal muscle). In addition, the long-range PCR amplifications revealed the presence of multiple deletions of the mitochondrial DNA extracted from the patient's skeletal muscle removing several tRNA and protein-coding genes. Our study reported a Tunisian patient with clinical features of moderate Wolfram syndrome associated with cardiomyopathy, in whom we detected the ND1 m.3337G>A mutation with mitochondrial multiple deletions.

  11. [A case of sensory ataxic neuropathy, dysarthria, and ophthalmoparesis with multiple mitochondrial DNA deletions].

    PubMed

    Tanaka, Koji; Tateishi, Takahisa; Kawamura, Nobutoshi; Ohyagi, Yasumasa; Urata, Michiyo; Kira, Jun-ichi

    2013-01-01

    mitochondrial DNA deletions in Japanese. PMID:23524600

  12. Mitochondrial DNA.

    ERIC Educational Resources Information Center

    Wright, Russell G.; Bottino, Paul J.

    1986-01-01

    Provides background information for teachers on mitochondrial DNA, pointing out that it may have once been a free-living organism. Includes a ready-to-duplicate exercise titled "Using Microchondrial DNA to Measure Evolutionary Distance." (JN)

  13. Mitochondrial DNA deletion mutations are concomitant with ragged red regions of individual, aged muscle fibers: analysis by laser-capture microdissection

    PubMed Central

    Cao, Zhengjin; Wanagat, Jonathan; McKiernan, Susan H.; Aiken, Judd M.

    2001-01-01

    Laser-capture microdissection was coupled with PCR to define the mitochondrial genotype of aged muscle fibers exhibiting mitochondrial enzymatic abnormalities. These electron transport system (ETS) abnormalities accumulate with age, are localized segmentally along muscle fibers, are associated with fiber atrophy and may contribute to age-related fiber loss. DNA extracted from single, 10 µm thick, ETS abnormal muscle fibers, as well as sections from normal fibers, served as templates for PCR-based deletion analysis. Large mitochondrial (mt) DNA deletion mutations (4.4–9.7 kb) were detected in all 29 ETS abnormal fibers analyzed. Deleted mtDNA genomes were detected only in the regions of the fibers with ETS abnormalities; adjacent phenotypically normal portions of the same fiber contained wild-type mtDNA. In addition, identical mtDNA deletion mutations were found within different sections of the same abnormal region. These findings demonstrate that large deletion mutations are associated with ETS abnormalities in aged rat muscle and that, within a fiber, deletion mutations are clonal. The displacement of wild-type mtDNAs with mutant mtDNAs results in concomitant mitochondrial enzymatic abnormalities, fiber atrophy and fiber breakage. PMID:11691938

  14. Decreased cytochrome-c oxidase activity and lack of age-related accumulation of mitochondrial DNA deletions in the brains of schizophrenics

    SciTech Connect

    Cavelier, L.; Jazin, E.E.; Eriksson, I.

    1995-09-01

    Defects in mitochondrial energy production have been implicated in several neurodegenerative disorders, such as Parkinson disease and amyotrophic lateral sclerosis. To study the contribution of mitochondrial defects to Alzheimer disease and schizophrenia, cytochrome-c oxidase (COX) activity and levels of the mtDNA{sup 4977} deletion in postmortem brain tissue specimens of patients were compared with those of asymptomatic age-matched controls. No difference in COX activity was observed between Alzheimer patients and controls in any of five brain regions investigated. In contrast, schizophrenic patients had a 63% reduction of the COX activity in the nucleus caudatus (P<0.0001) and a 43% reduction in the cortex gyrus frontalis (P<0.05) as compared to controls. The average levels of the mtDNA{sup 4977} deletion did not differ significantly between Alzheimer patients and controls, and the deletion followed similar modes of accumulation with age in the two groups. In contrast, no age-related accumulation of mtDNA deletions was found in schizophrenic patients. The reduction in COX activity in schizophrenic patients did not correlate with changes in the total amount of mtDNA or levels of the mtDNA{sup 4977} deletion. The lack of age-related accumulation of the mtDNA{sup 4977} deletion and reduction in COX activity suggest that a mitochondrial dysfunction may be involved in the pathogenesis of schizophrenia. 41 refs., 3 figs., 1 tab.

  15. Triplex real-time PCR--an improved method to detect a wide spectrum of mitochondrial DNA deletions in single cells.

    PubMed

    Rygiel, Karolina A; Grady, John P; Taylor, Robert W; Tuppen, Helen A L; Turnbull, Doug M

    2015-01-01

    Mitochondrial DNA (mtDNA) mutations are commonly found in the skeletal muscle of patients with mitochondrial disease, inflammatory myopathies and sarcopenia. The majority of these mutations are mtDNA deletions, which accumulate to high levels in individual muscle fibres causing a respiratory defect. Most mtDNA deletions are major arc deletions with breakpoints located between the origin of light strand (OL) and heavy strand (OH) replication within the major arc. However, under certain disease conditions, rarer, minor arc deletions are detected. Currently, there are few techniques which would allow the detection and quantification of both types of mtDNA deletions in single muscle fibres. We have designed a novel triplex real-time PCR assay which simultaneously amplifies the MT-ND4 gene in the major arc, the MT-ND1 gene in the minor arc, and the non-coding D-Loop region. We demonstrate that this assay is a highly sensitive and reliable tool for the detection and quantification of a broad range of major and minor arc mtDNA deletions with the potential to investigate the molecular pathogenesis in both research and diagnostic settings. PMID:25989140

  16. Neuromelanin, neurotransmitter status and brainstem location determine the differential vulnerability of catecholaminergic neurons to mitochondrial DNA deletions

    PubMed Central

    2011-01-01

    Background Deletions of the mitochondrial DNA (mtDNA) accumulate to high levels in dopaminergic neurons of the substantia nigra pars compacta (SNc) in normal aging and in patients with Parkinson's disease (PD). Human nigral neurons characteristically contain the pigment neuromelanin (NM), which is believed to alter the cellular redox-status. The impact of neuronal pigmentation, neurotransmitter status and brainstem location on the susceptibility to mtDNA damage remains unclear. We quantified mtDNA deletions (ΔmtDNA) in single pigmented and non-pigmented catecholaminergic, as well as non-catecholaminergic neurons of the human SNc, the ventral tegmental area (VTA) and the locus coeruleus (LC), using laser capture microdissection and single-cell real-time PCR. Results In healthy aged individuals, ΔmtDNA levels were highest in pigmented catecholaminergic neurons (25.2 ± 14.9%), followed by non-pigmented catecholamergic (18.0 ± 11.2%) and non-catecholaminergic neurons (12.3 ± 12.3%; p < 0.001). Within the catecholaminergic population, ΔmtDNA levels were highest in dopaminergic neurons of the SNc (33.9 ± 21.6%) followed by dopaminergic neurons of the VTA (21.9 ± 12.3%) and noradrenergic neurons of the LC (11.1 ± 11.4%; p < 0.001). In PD patients, there was a trend to an elevated mutation load in surviving non-pigmented nigral neurons (27.13 ± 16.73) compared to age-matched controls (19.15 ± 11.06; p = 0.052), but levels where similar in pigmented nigral neurons of PD patients (41.62 ± 19.61) and controls (41.80 ± 22.62). Conclusions Catecholaminergic brainstem neurons are differentially susceptible to mtDNA damage. Pigmented dopaminergic neurons of the SNc show the highest ΔmtDNA levels, possibly explaining the exceptional vulnerability of the nigro-striatal system in PD and aging. Although loss of pigmented noradrenergic LC neurons also is an early feature of PD pathology, mtDNA levels are not elevated in this nucleus in healthy controls. Thus, ΔmtDNA are

  17. The 4977 bp deletion of mitochondrial DNA in human skeletal muscle, heart and different areas of the brain: a useful biomarker or more?

    PubMed

    Meissner, Christoph; Bruse, Petra; Mohamed, Salaheldien Ali; Schulz, Anja; Warnk, Hanne; Storm, Thilo; Oehmichen, Manfred

    2008-07-01

    It has been suggested that deletions of mitochondrial DNA (mtDNA) are important players with regard to the ageing process. Since the early 1990s, the 4977 bp deletion has been studied in various tissues, especially in postmitotic tissues with high energy demand. Unfortunately, some of these studies included less than 10 subjects, so the aim of our study was to quantify reliably the deletion amount in nine different regions of human brain, heart and skeletal muscle in a cohort of 92 individuals. The basal ganglia contain the highest deletion amounts with values up to 2.93% and differences in deletion levels between early adolescence and older ages were up to three orders of magnitude. Values in frontal lobe were on average an order of magnitude lower, but lowest in cerebellar tissue where the amount was on average only 5 x 10(-3) of the basal ganglia. The deletion started to accumulate in iliopsoas muscle early in the fourth decade of life with values between 0.00019% and 0.0035% and was highest in a 102-year-old woman with 0.14%. In comparison to skeletal muscle, the overall abundance in heart muscle of the left ventricle was only one-third. The best linear logarithmic correlation between amount of the deletion and age was found in substantia nigra with r=0.87 (p<0.0005) followed by anterior wall of the left ventricle (r=0.82; p<0.0005). With regard to mitochondrial DNA damage, we propose to use the 4977 bp deletion as an ideal biomarker to discriminate between physiological ageing and accelerated ageing. The biological meaning of mitochondrial deletions in the process of ageing is under discussion, but there is experimental evidence that large-scale deletions impair the oxidative phosphorylation in single cells and sensitize these cells to undergo apoptosis. PMID:18439778

  18. What Is Mitochondrial DNA?

    MedlinePlus

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  19. [Mitochondrial disease and mitochondrial DNA depletion syndromes].

    PubMed

    Huang, Chin-Chang; Hsu, Chang-Huang

    2009-12-01

    Mitochondria is an intracellular double membrane-bound structure and it can provide energy for intracellular metabolism. The metabolism includes Krebs cycle, beta-oxidation and lipid synthesis. The density of mitochondria is different in various tissues dependent upon the demands of oxidative phosphorylation. Mitochondrial diseases can occur by defects either in mitochondrial DNA or nuclear DNA. Human mitochondrial DNA (mtDNA) encoding for 22 tRNAs, 2 rRNAs and 13 mRNAs that are translated in the mitochondria. Mitochondrial genetic diseases are most resulted from defects in the mtDNA which may be point mutations, deletions, or mitochondrial DNA depletion. These patterns of inheritance in mitochondrial diseases include sporadic, maternally inherited, or of Mendelian inheritance. Mitochondrial DNA depletion is caused by defects in the nuclear genes that are responsible for maintenance of integrity of mtDNA or deoxyribonucelotide pools and mtDNA biogenesis. The mtDNA depletion syndrome (MDS) includes the following categories: progressive external ophthalmoplegia (PEO), predominant myopathy, mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), sensory-ataxic neuropathy, dysarthria, and ophthalmoplegia (SANDO) and hepato-encephalopathy. The most common tissues or organs involved in MDS and related disorders include the brain, liver and muscles. These involved genes are divided into two groups including 1) DNA polymerase gamma (POLG, POLG2) and Twinkle genes whose products function directly at the mtDNA replication fork, and 2) adenine nucleotide translocator 1, thymidine phosphorylase, thymidine kinase 2, deoxyguanosine kinase, ADP-forming succinyl-CoA synthetase ligase, MPV17 whose products supply the mitochondria with deoxyribonucleotide triphosphate pools needed for mtDNA replication, and possible mutation in the RRM2B gene. The development has provided new information about the importance of the biosynthetic pathway of the nucleotides for mtDNA replication

  20. The coexistence of dynamin 2 mutation and multiple mitochondrial DNA (mtDNA) deletions in the background of severe cardiomyopathy and centronuclear myopathy.

    PubMed

    Gal, Aniko; Inczedy-Farkas, Gabriella; Pal, Endre; Remenyi, Viktoria; Bereznai, Benjamin; Geller, Laszlo; Szelid, Zsolt; Merkely, Bela; Molnar, Maria Judit

    2015-01-01

    Dynamin2 (DNM2) gene mutations may result in Charcot-Marie-Tooth disease and centronuclear myopathy. Here, we present a patient suffering from cardiomyopathy and centronuclear myopathy with repetitive discharges and mild axonal neuropathy due to DNM2 mutation. Detailed cardiological and neurological examinations, electrophysiological tests, muscle biopsy, and molecular genetic analysis were performed. The patient developed left bundle branch block at age 40 and was fitted with a pacemaker at the age of 43. The patient has severe heart failure, ptosis, strabism, facial and proximal muscle weakness. Electrophysiological investigations found myopathy, complex repetitive discharges, and axonal neuropathy. Skeletal muscle biopsy detected centronuclear myopathy and cytochrome C oxidase (COX) negative fibers. Genetic analysis detected a pathogenic c.1105C>T (p.R369W) DNM2 gene mutation and heteroplasmic multiple mitochondrial DNA (mtDNA) deletion. Our data broadens the phenotypic spectrum of DNM2 mutations. The presence of the multiple mtDNA deletions may provide new aspects to understanding the pathogenesis of multisystemic symptoms in patients with DNM2 mutations. PMID:25492887

  1. A novel mitochondrial DNA deletion in a patient with Pearson syndrome and neonatal diabetes mellitus provides insight into disease etiology, severity and progression.

    PubMed

    Chen, Xin-Yu; Zhao, Si-Yu; Wang, Yan; Wang, Dong; Dong, Chang-Hu; Yang, Ying; Wang, Zhi-Hua; Wu, Yuan-Ming

    2016-07-01

    Pearson syndrome (PS) is a rare, mitochondrial DNA (mtDNA) deletion disorder mainly affecting hematopoietic system and exocrine pancreas in early infancy, which is characterized by multi-organ involvement, variable manifestations and poor prognosis. Since the clinical complexity and uncertain outcome of PS, the ability to early diagnose and anticipate disease progression is of great clinical importance. We described a patient with severe anemia and hyperglycinemia at birth was diagnosed with neonatal diabetes mellitus, and later with PS. Genetic testing revealed that a novel mtDNA deletion existed in various non-invasive tissues from the patient. The disease course was monitored by mtDNA deletion heteroplasmy and mtDNA/nucleus DNA genome ratio in different tissues and at different time points, showing a potential genotype-phenotype correlation. Our findings suggest that for patient suspected for PS, it may be therapeutically important to first perform detailed mtDNA analysis on non-invasive tissues at the initial diagnosis and during disease progression. PMID:26016877

  2. Mitochondrial DNA control region sequence variation suggests an independent origin of an {open_quotes}Asian-specific{close_quotes} 9-bp deletion in Africans

    SciTech Connect

    Soodyall, H.; Redd, A.; Vigilant

    1994-09-01

    The intergenic noncoding region between the cytochrome oxidase II and lysyl tRNA genes of human mitochondrial DNA (mtDNA) is associated with two tandemly arranged copies of a 9-bp sequence. A deletion of one of these repeats has been found at varying frequencies in populations of Asian descent, and is commonly referred to as an {open_quotes}Asian-specific{close_quotes} marker. We report here that the 9-bp deletion is also found at a frequency of 10.2% (66/649) in some indigenous African populations, with frequencies of 28.6% (20/70) in Pygmies, 26.6% (12/45) in Malawians and 15.4% (31/199) in southeastern Bantu-speaking populations. The deletion was not found in 123 Khoisan individuals nor in 209 western Bantu-speaking individuals, with the exception of 3 individuals from one group that was admixed with Pygmies. Sequence analysis of the two hypervariable segments of the mtDNA control region reveals that the types associated with the African 9-bp deletion are different from those found in Asian-derived populations with the deletion. Phylogenetic analysis separates the {open_quotes}African{close_quotes} and {open_quotes}Asian{close_quotes} 9-bp deletion types into two different clusters which are statistically supported. Mismatch distributions based on the number of differences between pairs of mtDNA types are consistent with this separation. These findings strongly support the view that the 9-bp deletion originated independently in Africa and in Asia.

  3. Identification of a Mitochondrial DNA Polymerase Affecting Cardiotoxicity of Sunitinib Using a Genome-Wide Screening on S. pombe Deletion Library.

    PubMed

    Kim, Dong-Myung; Kim, Hanna; Yeon, Ji-Hyun; Lee, Ju-Hee; Park, Han-Oh

    2016-01-01

    Drug toxicity is a key issue for drug R&D, a fundamental challenge of which is to screen for the targets genome-wide. The anticancer tyrosine kinase inhibitor sunitinib is known to induce cardiotoxicity. Here, to understand the molecular insights of cardiotoxicity by sunitinib at the genome level, we used a genome-wide drug target screening technology (GPScreen) that measures drug-induced haploinsufficiency (DIH) in the fission yeast Schizosaccharomyces pombe genome-wide deletion library and found a mitochondrial DNA polymerase (POG1). In the results, sunitinib induced more severe cytotoxicity and mitochondrial damage in POG1-deleted heterozygous mutants compared to wild type (WT) of S. pombe. Furthermore, knockdown of the human ortholog POLG of S. pombe POG1 in human cells significantly increased the cytotoxicity of sunitinib. Notably, sunitinib dramatically decreased the levels of POLG mRNAs and proteins, of which downregulation was already known to induce mitochondrial damage of cardiomyocytes, causing cardiotoxicity. These results indicate that POLG might play a crucial role in mitochondrial damage as a gene of which expressional pathway is targeted by sunitinib for cardiotoxicity, and that genome-wide drug target screening with GPScreen can be applied to drug toxicity target discovery to understand the molecular insights regarding drug toxicity. PMID:26385865

  4. Restriction-deletion polymorphism of region V of mitochondrial DNA in several populations of native inhabitants of Siberia and the Far East

    SciTech Connect

    Ivanova, A.V.; Kazakovtseva, M.A.; Bibe, B.P.; Karafet, T.M.; Osipova, L.P.; Voevoda, M.I.; Avksentyuk, A.V.; Astakhova, T.I.; Shields, G.F.

    1994-11-01

    The distribution of a deletion and of an Ava II site in region V of mitochondrial DNA (mtDNA) was studied in five populations of native inhabitants of the Asian part of Russia, including Chukchi, Asian Eskimos, Evenks, Buryats, and Northern Sel`kups. A deletion with a frequency of 6.3% was found only in Buryats; in Chukchi and Eskimos the Ava II site was not found. A maximal frequency of 11.3% was observed in Evenks. A comparison with published data was conducted; it revealed a gradient of decreasing frequency of the deletion from southeast Asia to the north, with its complete absence in the circumpolar regions. In the territory of northeast Asia, all three mitotypes are found, formed by a combination of two polymorphic markers of mtDNA region V, which were found earlier in humans in the Americas. The data obtained necessitates a more detailed analysis of the population polymorphism of mtDNA in this region of Asia. 32 refs., 1 fig., 3 tabs.

  5. Link between Cancer and Alzheimer Disease via Oxidative Stress Induced by Nitric Oxide-Dependent Mitochondrial DNA Overproliferation and Deletion

    PubMed Central

    Obrenovich, Mark E.; Tabrez, Shams; Jabir, Nasimudeen R.; Reddy, V. Prakash; Li, Yi; Burnstock, Geoffrey; Cacabelos, Ramon; Kamal, Mohammad Amjad

    2013-01-01

    Nitric oxide- (NO-) dependent oxidative stress results in mitochondrial ultrastructural alterations and DNA damage in cases of Alzheimer disease (AD). However, little is known about these pathways in human cancers, especially during the development as well as the progression of primary brain tumors and metastatic colorectal cancer. One of the key features of tumors is the deficiency in tissue energy that accompanies mitochondrial lesions and formation of the hypoxic smaller sized mitochondria with ultrastructural abnormalities. We speculate that mitochondrial involvement may play a significant role in the etiopathogenesis of cancer. Recent studies also demonstrate a potential link between AD and cancer, and anticancer drugs are being explored for the inhibition of AD-like pathology in transgenic mice. Severity of the cancer growth, metastasis, and brain pathology in AD (in animal models that mimic human AD) correlate with the degree of mitochondrial ultrastructural abnormalities. Recent advances in the cell-cycle reentry of the terminally differentiated neuronal cells indicate that NO-dependent mitochondrial abnormal activities and mitotic cell division are not the only important pathogenic factors in pathogenesis of cancer and AD, but open a new window for the development of novel treatment strategies for these devastating diseases. PMID:23691268

  6. (Somatic mutations in nuclear and mitochondrial DNA)

    SciTech Connect

    Not Available

    1992-01-01

    The study is concerned the design of new assays that may detect rare somatic mutations in nuclear and mitochondrial DNA, which may increase upon exposure to mutagens, and thus become a marker of human exposure to such mutagens. Two assays for somatic mutation were presented, one for mitochondrial DNA deletions which was developed by the author, and one for deletions of the ADA gene which resides in the nucleus.

  7. Expanding Our Understanding of mtDNA Deletions.

    PubMed

    Picard, Martin; Vincent, Amy E; Turnbull, Doug M

    2016-07-12

    Clonal expansion of mtDNA deletions compromises mitochondrial function in human disease and aging, but how deleterious mtDNA genomes propagate has remained unclear. In this issue (Gitschlag et al., 2016) and in a recent Nature publication, C. elegans studies implicate the mitochondrial unfolded protein response (UPR(mt)) and offer mechanistic insights into this process. PMID:27411002

  8. Nuclear gene causing multiple mtDNA deletions in autosomal dominant ophthalmoplegia maps to a distinct chromosomal region - involvement of both nuclear and mitochondrial DNA in a single disorder

    SciTech Connect

    Suomalainen, A.; Kaukonen, J.; Timonen, R.

    1994-09-01

    Autosomal dominant progressive external ophthalmoplegia (adPEO) is a mitochondrial disease characterized by muscle weakness, most prominent in ocular muscles. The symptoms are caused by accumulation of multiple large deletions of mitochondrial DNA (mtDNA) in the tissues of the patient, especially in those tissues that are most dependent on oxidative metabolism: brain, skeletal muscle and heart. However, the disorder shows autosomal dominant way of transmission, suggesting a primary defect in a nuclear encoded protein, which only secondarily results in mtDNA deletions. The candidate genes could be those actively participating in the mtDNA replication, or those associated with oxidative metabolism and e.g. via overproduction or inefficient elimination of fire oxygen radicals fragmenting mtDNA. We applied random mapping approach to localize the autosomal adPEO gene locus in a large Finnish family. The affected subjects were identified by detection of multiple mtDNA deletions in the Southern blot analysis of DNA extracted from the muscle biopsy specimens. All the family members underwent muscle biopsy. After analysis of 248 highly polymorphic dinucleotide repeat markets dispersed throughout the genome we were able to assign the adPEO gene locus to a distinct chromosomal region with the maximum pairwise lod score of 4.52, recombination fraction 0.0. This is the first evidence that a mutation in a nuclear gene may interfere mtDNA. The pathogenesis of adPEO involves both the genomes: the primary nuclear gene defect leads to secondary mtDNA mutations that cause the symptoms of the patients.

  9. Asian-specific mitochondrial genome polymorphism (9-bp deletion) in Hungarian patients with mitochondrial disease.

    PubMed

    Pentelenyi, Klara; Remenyi, Viktoria; Gal, Aniko; Milley, Gyorgy Mate; Csosz, Aranka; Mende, Balazs Gusztav; Molnar, Maria Judit

    2016-05-01

    A 9-bp deletion of the mtDNA is known as an anthropological marker of people with East-Asian origin. This 9-bp mtDNA deletion was analyzed in 1073 Hungarians with suspected mitochondrial disease and in 468 healthy control individuals. Fourteen cases with the 9-bp deletion were found in the cohort of mitochondrial patients, and one individual from 468 controls. In six cases the 9-bp deletion was present together with pathogenic major deletions in the mitochondrial genome. In one patient we found a frame shift mutation in the D-loop region, and in another family a pathogenic m.8322 A > G mutation in the tRNA(Lys) gene. Although the 9-bp deletion is common in the populations of the Pacific region and Asia, it is present in the Hungarian population as well. This 9-bp deletion may induce instability of the mtDNA and may provoke the introduction of other pathogenic mutations. PMID:25242187

  10. Characterization of mitochondrial DNA in primary cardiomyopathies.

    PubMed

    Bobba, A; Giannattasio, S; Pucci, A; Lippolis, R; Camaschella, C; Marra, E

    1995-12-29

    With the aim of studying the involvement of the mitochondrial genome in the impairment of heart function, mitochondrial DNA was analyzed by modified primer shift-polymerase chain reaction in a panel of young patients affected by primary cardiomyopathies. Mitochondrial DNA molecules harboring the 7436 bp deletion were specifically found in cardiomyopathic patients as compared with a panel of control subjects. The 4977 bp deletion was commonly detected among the subjects analyzed whereas none of the specific tRNA gene point mutations generally associated with the cardiomyopathic trait were detected. The presence of the 7436 bp deletion as a consequence of a premature aging of the heart muscle, secondary to heart dysfunction, is discussed. PMID:8747493

  11. Analysis of the common deletions in the mitochondrial DNA is a sensitive biomarker detecting direct and non-targeted cellular effects of low dose ionizing radiation.

    PubMed

    Schilling-Tóth, Boglárka; Sándor, Nikolett; Kis, Eniko; Kadhim, Munira; Sáfrány, Géza; Hegyesi, Hargita

    2011-11-01

    One of the key issues of current radiation research is the biological effect of low doses. Unfortunately, low dose science is hampered by the unavailability of easily performable, reliable and sensitive quantitative biomarkers suitable detecting low frequency alterations in irradiated cells. We applied a quantitative real time polymerase chain reaction (qRT-PCR) based protocol detecting common deletions (CD) in the mitochondrial genome to assess direct and non-targeted effects of radiation in human fibroblasts. In directly irradiated (IR) cells CD increased with dose and was higher in radiosensitive cells. Investigating conditioned medium-mediated bystander effects we demonstrated that low and high (0.1 and 2Gy) doses induced similar levels of bystander responses and found individual differences in human fibroblasts. The bystander response was not related to the radiosensitivity of the cells. The importance of signal sending donor and signal receiving target cells was investigated by placing conditioned medium from a bystander response positive cell line (F11-hTERT) to bystander negative cells (S1-hTERT) and vice versa. The data indicated that signal sending cells are more important in the medium-mediated bystander effect than recipients. Finally, we followed long term effects in immortalized radiation sensitive (S1-hTERT) and normal (F11-hTERT) fibroblasts up to 63 days after IR. In F11-hTERT cells CD level was increased until 35 days after IR then reduced back to control level by day 49. In S1-hTERT cells the increased CD level was also normalized by day 42, however a second wave of increased CD incidence appeared by day 49 which was maintained up to day 63 after IR. This second CD wave might be the indication of radiation-induced instability in the mitochondrial genome of S1-hTERT cells. The data demonstrated that measuring CD in mtDNA by qRT-PCR is a reliable and sensitive biomarker to estimate radiation-induced direct and non-targeted effects. PMID:21843534

  12. Mitochondrial DNA, mitochondrial dysfunction, and cardiac manifestations.

    PubMed

    Lee, Sung Ryul; Kim, Nari; Noh, Yeonhee; Xu, Zhelong; Ko, Kyung Soo; Rhee, Byoung Doo; Han, Jin

    2016-01-01

    Mitochondria, the powerhouses of cells, have their own DNA (mtDNA). They regulate the transport of metabolites and ions, which determine cell physiology, survival, and death. Mitochondrial dysfunction, including impaired oxidative phosphorylation, preferentially affects heart function via imbalance of energy supply and demand. Recently, mitochondrial mutations and associated mitochondrial dysfunction were suggested as a causal factor of cardiac manifestations. Oxidative stress largely influences mtDNA stability due to oxidative modifications of mtDNA. Furthermore, the continuous replicative state of mtDNA and presence of minimal nucleoid structure render mitochondria vulnerable to oxidative damage and subsequent mutations, which impair mitochondrial functions. However, the occurrence of mtDNA heteroplasmy in the same mitochondrion or cell and presence of nuclear DNA-encoded mtDNA repair systems raise questions regarding whether oxidative stress-mediated mtDNA mutations are the major driving force in accumulation of mtDNA mutations. Here, we address the possible causes of mitochondrial DNA mutations and their involvement in cardiac manifestations. Current strategies for treatment related to mitochondrial mutations and/or dysfunction in cardiac manifestations are briefly discussed. PMID:27100514

  13. Mitochondrial intergenic COII/tRNA(Lys) 9-bp deletion, a biomarker for hepatocellular carcinoma?

    PubMed

    Ren, Weihua; Li, Yawei; Li, Rui; Feng, Hongbo; Wu, Shuangting; Mao, Yuhui; Huang, Lei

    2016-07-01

    The COII/tRNA(Lys) intergenic 9-bp deletion is one of the most commonly studied human mitochondrial DNA (mtDNA) polymorphisms. It consists of the loss of one of two tandemly repeated copies of the sequence CCCCCTCTA from a non-coding region located between cytochrome oxidase II (COII) and tRNA(Lys) gene. Most recently, case-control studies have shown a positive association between this deletion with hepatocellular cancer. In this study, we first performed a detailed analysis between this deletion and clinical diseases; moreover, we took the phylogenetic approach to examine the pathogenicity status of 9-bp deletion. PMID:26017042

  14. [Somatic mutations in nuclear and mitochondrial DNA]. Progress report

    SciTech Connect

    Not Available

    1992-09-01

    The study is concerned the design of new assays that may detect rare somatic mutations in nuclear and mitochondrial DNA, which may increase upon exposure to mutagens, and thus become a marker of human exposure to such mutagens. Two assays for somatic mutation were presented, one for mitochondrial DNA deletions which was developed by the author, and one for deletions of the ADA gene which resides in the nucleus.

  15. Mitochondrial Genome Deletion for Detection of Prostate Cancer — EDRN Public Portal

    Cancer.gov

    The Prostate Core Mitomic Test™ is based upon a 3.4 kb mitochondrial genome deletion (3.4 mtdelta) that was identified through PCR analysis of frozen prostate cancer samples. In cancer research it has been found that deletions in mitochondrial DNA can correlate with cellular changes that indicate development of cancer. This deletion includes the terminal 22 bases of MT-ND4L, all of MT-ND4, 3 tRNAs (histidine, serine 2, and leucine 2), and all except the terminal 24 bases of MT-ND5.

  16. Mitochondrial DNA Alterations and Reduced Mitochondrial Function in Aging

    PubMed Central

    Hebert, Sadie L.; Lanza, Ian R.; Nair, K. Sreekumaran

    2010-01-01

    Oxidative damage to mitochondrial DNA increases with aging. This damage has the potential to affect mitochondrial DNA replication and transcription which could alter the abundance or functionality of mitochondrial proteins. This review describes mitochondrial DNA alterations and changes in mitochondrial function that occur with aging. Age-related alterations in mitochondrial DNA as a possible contributor to the reduction in mitochondrial function are discussed. PMID:20307565

  17. The mutation rate of the human mtDNA deletion mtDNA{sup 4977}

    SciTech Connect

    Shenkar, R.; Navidi, W.; Tavare, S.

    1996-10-01

    The human mitochondrial mutation mtDNA{sup 4977} is a 4,977-bp deletion that originates between two 13-bp direct repeats. We grew 220 colonies of cells, each from a single human cell. For each colony, we counted the number of cells and amplified the DNA by PCR to test for the presence of a deletion. To estimate the mutation rate, we used a model that describes the relationship between the mutation rate and the probability that a colony of a given size will contain no mutants, taking into account such factors as possible mitochondrial turnover and mistyping due to PCR error. We estimate that the mutation rate for mtDNA{sup 4977} in cultured human cells is 5.95 x 10{sup {minus}8} per mitochondrial genome replication. This method can be applied to specific chromosomal, as well as mitochondrial, mutations. 17 refs., 1 fig., 1 tab.

  18. Prevalence of rare mitochondrial DNA mutations in mitochondrial disorders

    PubMed Central

    Bannwarth, Sylvie; Procaccio, Vincent; Lebre, Anne Sophie; Jardel, Claude; Chaussenot, Annabelle; Hoarau, Claire; Maoulida, Hassani; Charrier, Nathanaël; Gai, Xiaowu; Xie, Hongbo M; Ferre, Marc; Fragaki, Konstantina; Hardy, Gaëlle; Mousson de Camaret, Bénédicte; Marlin, Sandrine; Dhaenens, Claire Marie; Slama, Abdelhamid; Rocher, Christophe; Paul Bonnefont, Jean; Rötig, Agnès; Aoutil, Nadia; Gilleron, Mylène; Desquiret-Dumas, Valérie; Reynier, Pascal; Ceresuela, Jennifer; Jonard, Laurence; Devos, Aurore; Espil-Taris, Caroline; Martinez, Delphine; Gaignard, Pauline; Le Quan Sang, Kim-Hanh; Amati-Bonneau, Patrizia; Falk, Marni J; Florentz, Catherine; Chabrol, Brigitte; Durand-Zaleski, Isabelle; Paquis-Flucklinger, Véronique

    2013-01-01

    Abstract Background Mitochondrial DNA (mtDNA) diseases are rare disorders whose prevalence is estimated around 1 in 5000. Patients are usually tested only for deletions and for common mutations of mtDNA which account for 5–40% of cases, depending on the study. However, the prevalence of rare mtDNA mutations is not known. Methods We analysed the whole mtDNA in a cohort of 743 patients suspected of manifesting a mitochondrial disease, after excluding deletions and common mutations. Both heteroplasmic and homoplasmic variants were identified using two complementary strategies (Surveyor and MitoChip). Multiple correspondence analyses followed by hierarchical ascendant cluster process were used to explore relationships between clinical spectrum, age at onset and localisation of mutations. Results 7.4% of deleterious mutations and 22.4% of novel putative mutations were identified. Pathogenic heteroplasmic mutations were more frequent than homoplasmic mutations (4.6% vs 2.8%). Patients carrying deleterious mutations showed symptoms before 16 years of age in 67% of cases. Early onset disease (<1 year) was significantly associated with mutations in protein coding genes (mainly in complex I) while late onset disorders (>16 years) were associated with mutations in tRNA genes. MTND5 and MTND6 genes were identified as ‘hotspots’ of mutations, with Leigh syndrome accounting for the large majority of associated phenotypes. Conclusions Rare mitochondrial DNA mutations probably account for more than 7.4% of patients with respiratory chain deficiency. This study shows that a comprehensive analysis of mtDNA is essential, and should include young children, for an accurate diagnosis that is now accessible with the development of next generation sequencing technology. PMID:23847141

  19. Defects in Mitochondrial DNA Replication and Human Disease

    PubMed Central

    Copeland, William C.

    2011-01-01

    Mitochondrial DNA (mtDNA) is replicated by the DNA polymerase γ in concert with accessory proteins such as the mitochondrial DNA helicase, single stranded DNA binding protein, topoisomerase, and initiating factors. Nucleotide precursors for mtDNA replication arise from the mitochondrial salvage pathway originating from transport of nucleosides, or alternatively from cytoplasmic reduction of ribonucleotides. Defects in mtDNA replication or nucleotide metabolism can cause mitochondrial genetic diseases due to mtDNA deletions, point mutations, or depletion which ultimately cause loss of oxidative phosphorylation. These genetic diseases include mtDNA depletion syndromes (MDS) such as Alpers or early infantile hepatocerebral syndromes, and mtDNA deletion disorders, such as progressive external ophthalmoplegia (PEO), ataxia-neuropathy, or mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). This review focuses on our current knowledge of genetic defects of mtDNA replication (POLG, POLG2, C10orf2) and nucleotide metabolism (TYMP, TK2, DGOUK, and RRM2B) that cause instability of mtDNA and mitochondrial disease. PMID:22176657

  20. Mitochondrial DNA Damage and Diseases

    PubMed Central

    Singh, Gyanesh; Pachouri, U C; Khaidem, Devika Chanu; Kundu, Aman; Chopra, Chirag; Singh, Pushplata

    2015-01-01

    Various endogenous and environmental factors can cause mitochondrial DNA (mtDNA) damage.  One of the reasons for enhanced mtDNA damage could be its proximity to the source of oxidants, and lack of histone-like protective proteins. Moreover, mitochondria contain inadequate DNA repair pathways, and, diminished DNA repair capacity may be one of the factors responsible for high mutation frequency of the mtDNA. mtDNA damage might cause impaired mitochondrial function, and, unrepaired mtDNA damage has been frequently linked with several diseases. Exploration of mitochondrial perspective of diseases might lead to a better understanding of several diseases, and will certainly open new avenues for detection, cure, and prevention of ailments.

  1. Self-similar mitochondrial DNA.

    PubMed

    Oiwa, Nestor N; Glazier, James A

    2004-01-01

    We show that repeated sequences, like palindromes (local repetitions) and homologies between two different nucleotide sequences (motifs along the genome), compose a self-similar (fractal) pattern in mitochondrial DNA. This self-similarity comes from the looplike structures distributed along the genome. The looplike structures generate scaling laws in a pseudorandom DNA walk constructed from the sequence, called a Lévy flight. We measure the scaling laws from the generalized fractal dimension and singularity spectrum for mitochondrial DNA walks for 35 different species. In particular, we report characteristic loop distributions for mammal mitochondrial genomes. PMID:15371639

  2. Defects in mitochondrial DNA replication and human disease.

    PubMed

    Copeland, William C

    2012-01-01

    Mitochondrial DNA (mtDNA) is replicated by the DNA polymerase g in concert with accessory proteins such as the mtDNA helicase, single stranded DNA binding protein, topoisomerase, and initiating factors. Nucleotide precursors for mtDNA replication arise from the mitochondrial salvage pathway originating from transport of nucleosides, or alternatively from cytoplasmic reduction of ribonucleotides. Defects in mtDNA replication or nucleotide metabolism can cause mitochondrial genetic diseases due to mtDNA deletions, point mutations, or depletion which ultimately cause loss of oxidative phosphorylation. These genetic diseases include mtDNA depletion syndromes such as Alpers or early infantile hepatocerebral syndromes, and mtDNA deletion disorders, such as progressive external ophthalmoplegia (PEO), ataxia-neuropathy, or mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). This review focuses on our current knowledge of genetic defects of mtDNA replication (POLG, POLG2, C10orf2) and nucleotide metabolism (TYMP, TK2, DGOUK, and RRM2B) that cause instability of mtDNA and mitochondrial disease. PMID:22176657

  3. A novel mitochondrial DNA deletion in a patient with Kearns-Sayre syndrome: a late-onset of the fatal cardiac conduction deficit and cardiomyopathy accompanying long-term rGH treatment

    PubMed Central

    2013-01-01

    Background Kearns-Sayre Syndrome (KSS) is a multisystem disorder caused by a dysfunction of the oxidative phosphorylation system within mitochondria. Mitochondrial DNA (mtDNA) rearrangements are a key molecular feature of this disease, which manifest a broad phenotypic spectrum. Case presentation Here, we present a boy with KSS whose symptoms included cardiac conduction deficit, cardiomyopathy and growth hormone (GH) deficiency. The patient showed typical symptoms for KSS from early childhood (chronic progressive external ophthalmoplegia, retinopathy, short stature). Long-range PCR analysis disclosed a 7663-base pair heteroplasmic deletion in the mtDNA encompassing nucleotides 6340–14003. At 12 years of age, GH deficiency was recognized and recombinant growth hormone (rGH) therapy was started. At 15 years of age, a complete atrioventicular block was diagnosed and the patient received a pacemaker. During the following 6 months, progressive deterioration of the left ventricle was observed and an echocardiogram showed features of dilated cardiomyopathy. The rGH treatment was then discontinued at a final height of 163 cm. Unfortunately, due to multi-organ insufficiency and inflammation, the patient died at the age of 18 years. Conclusions The response to rGH therapy in the patient was very satisfactory. The large mtDNA deletion had no apparent impact on the response to rGH. Cardiac disturbances occurred as part of the syndrome and were not related to rGH therapy; however, the progression of the disease led to death. PMID:23421922

  4. Coenzyme Q addition to an n-6 PUFA-rich diet resembles benefits on age-related mitochondrial DNA deletion and oxidative stress of a MUFA-rich diet in rat heart.

    PubMed

    Quiles, José L; Pamplona, Reinald; Ramirez-Tortosa, M Carmen; Naudí, Alba; Portero-Otin, Manuel; Araujo-Nepomuceno, Eduardo; López-Frías, Magdalena; Battino, Maurizio; Ochoa, Julio J

    2010-01-01

    Age-related changes in cardiomyocytes reduce the capacity to recover from acute injury or to adapt during chronic disease in advanced age. N-6 polyunsaturated fatty acids (n-6PUFA) lead to higher lipid peroxidation during aging than the less oxidizable monounsaturated fatty acids (MUFA); and coenzyme Q (CoQ)-supplemented n-6PUFA lengthens the lifespan and reduces peroxidation in comparison to non-supplemented n-6PUFA. Here, lifelong feeding on MUFA, n-6PUFA, and n-6 PUFA+CoQ was compared regarding age-related alterations in rat heart. Less mitochondrial area and perimeter were reported for aged n-6 PUFA-fed animals while MUFA led to a higher density of mitochondrial cristae. Mitochondrial complexes and cytochrome c oxidase activity decreased with aging (except complex I and cytochrome c oxidase in n-6 PUFA+CoQ), while increased apoptosis-inducing factor was found with aging. MUFA led to lower mitochondrial DNA-deletion frequency. The lowest hydroperoxide levels for aged animals were found for n-6 PUFA+CoQ, which also showed lower concentrations than did n-6 PUFA. For protein oxidation, specific carbonyl compounds were lower in aged animals; meanwhile lipoxidation-derived protein-oxidation markers were higher. The results suggest that MUFA can protect mitochondria from age-related changes, and that CoQ supplementation to n-6 PUFA partially resembles MUFA benefits. Moreover, under our experimental conditions, lipid-derived oxidative damage appears to be more important than the pure protein-derived oxidative damage during aging. PMID:19948181

  5. Tracking Mitochondrial DNA In Situ.

    PubMed

    Ligasová, Anna; Koberna, Karel

    2016-01-01

    The methods of the detection of (1) non-labeled and (2) BrdU-labeled mitochondrial DNA (mtDNA) are described. They are based on the production of singlet oxygen by monovalent copper ions and the subsequent induction of DNA gaps. The ends of interrupted DNA serve as origins for the labeling of mtDNA by DNA polymerase I or they are utilized by exonuclease that degrades DNA strands, unmasking BrdU in BrdU-labeled DNA. Both methods are sensitive approaches without the need of additional enhancement of the signal or the use of highly sensitive optical systems. PMID:26530676

  6. Next-generation sequencing reveals deletions in mitochondrial mutants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cucumber mitochondria have three unique characteristics: paternal transmission, huge genome size, and mitochondrially encoded mosaic phenotypes. The cucumber mitochondrial DNA at 1.6 Mb is one of largest among angiosperms, and is divided into three chromosomes of 1.5 Mb, 84 Kb and 45 Kb. Paternally...

  7. Modeling of antigenomic therapy of mitochondrial diseases by mitochondrially addressed RNA targeting a pathogenic point mutation in mitochondrial DNA.

    PubMed

    Tonin, Yann; Heckel, Anne-Marie; Vysokikh, Mikhail; Dovydenko, Ilya; Meschaninova, Mariya; Rötig, Agnès; Munnich, Arnold; Venyaminova, Alya; Tarassov, Ivan; Entelis, Nina

    2014-05-01

    Defects in mitochondrial genome can cause a wide range of clinical disorders, mainly neuromuscular diseases. Presently, no efficient therapeutic treatment has been developed against this class of pathologies. Because most of deleterious mitochondrial mutations are heteroplasmic, meaning that wild type and mutated forms of mitochondrial DNA (mtDNA) coexist in the same cell, the shift in proportion between mutant and wild type molecules could restore mitochondrial functions. Recently, we developed mitochondrial RNA vectors that can be used to address anti-replicative oligoribonucleotides into human mitochondria and thus impact heteroplasmy level in cells bearing a large deletion in mtDNA. Here, we show that this strategy can be also applied to point mutations in mtDNA. We demonstrate that specifically designed RNA molecules containing structural determinants for mitochondrial import and 20-nucleotide sequence corresponding to the mutated region of mtDNA, are able to anneal selectively to the mutated mitochondrial genomes. After being imported into mitochondria of living human cells in culture, these RNA induced a decrease of the proportion of mtDNA molecules bearing a pathogenic point mutation in the mtDNA ND5 gene. PMID:24692550

  8. Mitochondrial DNA and Cancer Epidemiology Workshop

    Cancer.gov

    A workshop to review the state-of-the science in the mitochondrial DNA field and its use in cancer epidemiology, and to develop a concept for a research initiative on mitochondrial DNA and cancer epidemiology.

  9. Mitochondrial Efficiency-Dependent Viability of Saccharomyces cerevisiae Mutants Carrying Individual Electron Transport Chain Component Deletions.

    PubMed

    Kwon, Young-Yon; Choi, Kyung-Mi; Cho, ChangYeon; Lee, Cheol-Koo

    2015-12-31

    Mitochondria play a crucial role in eukaryotic cells; the mitochondrial electron transport chain (ETC) generates adenosine triphosphate (ATP), which serves as an energy source for numerous critical cellular activities. However, the ETC also generates deleterious reactive oxygen species (ROS) as a natural byproduct of oxidative phosphorylation. ROS are considered the major cause of aging because they damage proteins, lipids, and DNA by oxidation. We analyzed the chronological life span, growth phenotype, mitochondrial membrane potential (MMP), and intracellular ATP and mitochondrial superoxide levels of 33 single ETC component-deleted strains during the chronological aging process. Among the ETC mutant strains, 14 (sdh1Δ, sdh2Δ, sdh4Δ, cor1Δ, cyt1Δ, qcr7Δ, qcr8Δ, rip1Δ, cox6Δ, cox7Δ, cox9Δ, atp4Δ, atp7Δ, and atp17Δ) showed a significantly shorter life span. The deleted genes encode important elements of the ETC components succinate dehydrogenase (complex II) and cytochrome c oxidase (complex IV), and some of the deletions lead to structural instability of the membrane-F1F0-ATP synthase due to mutations in the stator stalk (complex V). These short-lived strains generated higher superoxide levels and produced lower ATP levels without alteration of MMP. In summary, ETC mutations decreased the life span of yeast due to impaired mitochondrial efficiency. PMID:26608359

  10. Mitochondrial DNA rearrangements in young onset parkinsonism: two case reports.

    PubMed

    Siciliano, G; Mancuso, M; Ceravolo, R; Lombardi, V; Iudice, A; Bonuccelli, U

    2001-11-01

    Parkinson's disease is a nosological entity of unknown origin for which, in some cases, a possible pathogenetic role for mitochondrial dysfunction has been postulated. Two young onset parkinsonian patients with mitochondrial DNA (mtDNA) deletions in skeletal muscle are reported on. Patient 1 also presented with increased blood creatine kinase and lactate concentrations and a family history which included a wide range of phenotypes affecting multiple systems. Patient 2 presented with multiple symmetric lipomatosis. Histopathological investigation showed ragged red fibres and COX negative fibres in muscle biopsies from both patients. The data support the hypothesis that mitochondrial DNA mutations may occur in some cases of parkinsonism, suggesting that a diagnosis of a mitochondrial disorder should be considered in the presence of consistent family history and clinical symptoms. PMID:11606686

  11. Complex mitochondrial DNA rearrangements in individual cells from patients with sporadic inclusion body myositis.

    PubMed

    Rygiel, Karolina A; Tuppen, Helen A; Grady, John P; Vincent, Amy; Blakely, Emma L; Reeve, Amy K; Taylor, Robert W; Picard, Martin; Miller, James; Turnbull, Doug M

    2016-06-20

    Mitochondrial DNA (mtDNA) rearrangements are an important cause of mitochondrial disease and age related mitochondrial dysfunction in tissues including brain and skeletal muscle. It is known that different mtDNA deletions accumulate in single cells, but the detailed nature of these rearrangements is still unknown. To evaluate this we used a complementary set of sensitive assays to explore the mtDNA rearrangements in individual cells from patients with sporadic inclusion body myositis, a late-onset inflammatory myopathy with prominent mitochondrial changes. We identified large-scale mtDNA deletions in individual muscle fibres with 20% of cytochrome c oxidase-deficient myofibres accumulating two or more mtDNA deletions. The majority of deletions removed only the major arc but ∼10% of all deletions extended into the minor arc removing the origin of light strand replication (OL) and a variable number of genes. Some mtDNA molecules contained two deletion sites. Additionally, we found evidence of mitochondrial genome duplications allowing replication and clonal expansion of these complex rearranged molecules. The extended spectrum of mtDNA rearrangements in single cells provides insight into the process of clonal expansion which is fundamental to our understanding of the role of mtDNA mutations in ageing and disease. PMID:27131788

  12. Complex mitochondrial DNA rearrangements in individual cells from patients with sporadic inclusion body myositis

    PubMed Central

    Rygiel, Karolina A.; Tuppen, Helen A.; Grady, John P.; Vincent, Amy; Blakely, Emma L.; Reeve, Amy K.; Taylor, Robert W.; Picard, Martin; Miller, James; Turnbull, Doug M.

    2016-01-01

    Mitochondrial DNA (mtDNA) rearrangements are an important cause of mitochondrial disease and age related mitochondrial dysfunction in tissues including brain and skeletal muscle. It is known that different mtDNA deletions accumulate in single cells, but the detailed nature of these rearrangements is still unknown. To evaluate this we used a complementary set of sensitive assays to explore the mtDNA rearrangements in individual cells from patients with sporadic inclusion body myositis, a late-onset inflammatory myopathy with prominent mitochondrial changes. We identified large-scale mtDNA deletions in individual muscle fibres with 20% of cytochrome c oxidase-deficient myofibres accumulating two or more mtDNA deletions. The majority of deletions removed only the major arc but ∼10% of all deletions extended into the minor arc removing the origin of light strand replication (OL) and a variable number of genes. Some mtDNA molecules contained two deletion sites. Additionally, we found evidence of mitochondrial genome duplications allowing replication and clonal expansion of these complex rearranged molecules. The extended spectrum of mtDNA rearrangements in single cells provides insight into the process of clonal expansion which is fundamental to our understanding of the role of mtDNA mutations in ageing and disease. PMID:27131788

  13. Mitochondrial DNA variation in Nicobarese Islanders.

    PubMed

    Prasad, B V; Ricker, C E; Watkins, W S; Dixon, M E; Rao, B B; Naidu, J M; Jorde, L B; Bamshad, M

    2001-10-01

    The aboriginal populations living in the Nicobar Islands are hypothesized to be descendants of people who were part of early human dispersals into Southeast Asia. However, analyses of ethnographic histories, languages, morphometric data, and protein polymorphisms have not yet resolved which worldwide populations are most closely related to the Nicobarese. Thus, to explore the origins and affinities of the Nicobar Islanders, we analyzed mitochondrial DNA (mtDNA) hypervariable region 1 sequence data from 33 Nicobarese Islanders and compared their mtDNA haplotypes to those of neighboring East Asians, mainland and island Southeast Asians, Indians, Australian aborigines, Pacific Islanders, and Africans. Unique Nicobarese mtDNA haplotypes, including five Nicobarese mtDNA haplotypes linked to the COII/tRNA(Lys) 9-bp deletion, are most closely related to mtDNA haplotypes from mainland Southeast Asian Mon-Kmer-speaking populations (e.g., Cambodians). Thus, the dispersal of southern Chinese into mainland Southeast Asia may have included a westward expansion and colonization of the islands of the Andaman Sea. PMID:11758691

  14. Digital PCR methods improve detection sensitivity and measurement precision of low abundance mtDNA deletions

    PubMed Central

    Belmonte, Frances R.; Martin, James L.; Frescura, Kristin; Damas, Joana; Pereira, Filipe; Tarnopolsky, Mark A.; Kaufman, Brett A.

    2016-01-01

    Mitochondrial DNA (mtDNA) mutations are a common cause of primary mitochondrial disorders, and have also been implicated in a broad collection of conditions, including aging, neurodegeneration, and cancer. Prevalent among these pathogenic variants are mtDNA deletions, which show a strong bias for the loss of sequence in the major arc between, but not including, the heavy and light strand origins of replication. Because individual mtDNA deletions can accumulate focally, occur with multiple mixed breakpoints, and in the presence of normal mtDNA sequences, methods that detect broad-spectrum mutations with enhanced sensitivity and limited costs have both research and clinical applications. In this study, we evaluated semi-quantitative and digital PCR-based methods of mtDNA deletion detection using double-stranded reference templates or biological samples. Our aim was to describe key experimental assay parameters that will enable the analysis of low levels or small differences in mtDNA deletion load during disease progression, with limited false-positive detection. We determined that the digital PCR method significantly improved mtDNA deletion detection sensitivity through absolute quantitation, improved precision and reduced assay standard error. PMID:27122135

  15. Defects associated with mitochondrial DNA damage can be mitigated by increased vacuolar pH in Saccharomyces cerevisiae.

    PubMed

    Garipler, Görkem; Dunn, Cory D

    2013-05-01

    While searching for mutations that alleviate detrimental effects of mitochondrial DNA (mtDNA) damage, we found that disrupting vacuolar biogenesis permitted survival of a sensitized yeast background after mitochondrial genome loss. Furthermore, elevating vacuolar pH increases proliferation after mtDNA deletion and reverses the protein import defect of mitochondria lacking DNA. PMID:23502676

  16. Mitochondrial DNA Damage and its Consequences for Mitochondrial Gene Expression

    PubMed Central

    Cline, Susan D.

    2012-01-01

    How mitochondria process DNA damage and whether a change in the steady-state level of mitochondrial DNA damage (mtDNA) contributes to mitochondrial dysfunction are questions that fuel burgeoning areas of research into aging and disease pathogenesis. Over the past decade, researchers have identified and measured various forms of endogenous and environmental mtDNA damage and have elucidated mtDNA repair pathways. Interestingly, mitochondria do not appear to contain the full range of DNA repair mechanisms that operate in the nucleus, although mtDNA contains types of damage that are targets of each nuclear DNA repair pathway. The reduced repair capacity may, in part, explain the high mutation frequency of the mitochondrial chromosome. Since mtDNA replication is dependent on transcription, mtDNA damage may alter mitochondrial gene expression at three levels: by causing DNA polymerase γ nucleotide incorporation errors leading to mutations, by interfering with the priming of mtDNA replication by the mitochondrial RNA polymerase, or by inducing transcriptional mutagenesis or premature transcript termination. This review summarizes our current knowledge of mtDNA damage, its repair, and its effects on mtDNA integrity and gene expression. PMID:22728831

  17. Enhanced Deletion Formation by Aberrant DNA Replication in Escherichia Coli

    PubMed Central

    Saveson, C. J.; Lovett, S. T.

    1997-01-01

    Repeated genes and sequences are prone to genetic rearrangements including deletions. We have investigated deletion formation in Escherichia coli strains mutant for various replication functions. Deletion was selected between 787 base pair tandem repeats carried either on a ColE1-derived plasmid or on the E. coli chromosome. Only mutations in functions associated with DNA Polymerase III elevated deletion rates in our assays. Especially large increases were observed in strains mutant in dnaQ, the ε editing subunit of Pol III, and dnaB, the replication fork helicase. Mutations in several other functions also altered deletion formation: the α polymerase (dnaE), the γ clamp loader complex (holC, dnaX), and the β clamp (dnaN) subunits of Pol III and the primosomal proteins, dnaC and priA. Aberrant replication stimulated deletions through several pathways. Whereas the elevation in dnaB strains was mostly recA- and lexA-dependent, that in dnaQ strains was mostly recA- and lexA-independent. Deletion product analysis suggested that slipped mispairing, producing monomeric replicon products, may be preferentially increased in a dnaQ mutant and sister-strand exchange, producing dimeric replicon products, may be elevated in dnaE mutants. We conclude that aberrant Polymerase III replication can stimulate deletion events through several mechanisms of deletion and via both recA-dependent and independent pathways. PMID:9177997

  18. Thymidine phosphorylase mutations cause instability of mitochondrial DNA.

    PubMed

    Hirano, Michio; Lagier-Tourenne, Clotilde; Valentino, Maria L; Martí, Ramon; Nishigaki, Yutaka

    2005-07-18

    Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder characterized by ptosis and progressive external ophthalmoplegia, peripheral neuropathy, severe gastrointestinal dysmotility, cachexia and leukoencephalopathy. Muscle biopsies of MNGIE patients have revealed morphologically abnormal mitochondria and defects of respiratory chain enzymes. In addition, patients harbor depletion, multiple deletions, and point mutations of mitochondrial DNA (mtDNA). This disorder is caused by loss-of-function mutations in the gene encoding thymidine phosphorylase (TP) a cytosolic enzyme. In MNGIE patients, TP activity is very low or absent resulting in dramatically elevated levels of plasma thymidine and deoxyuridine. We have hypothesized that the increased levels of thymidine and deoxyuridine cause mitochondrial nucleotide pool imbalances that, in turn, generate mtDNA alterations. PMID:15975738

  19. Age-related human mtDNA deletions: A heterogeneous set of deletions arising at a single pair of directly repeated sequences

    SciTech Connect

    Baumer, A.; Zhang, C.; Linnane, A.W.; Nagley, P. )

    1994-04-01

    Deletions in mtDNA accumulate during the human aging process, arising from either intramolecular illegitimate recombination or strand slippage during replication, which results in subgenomic mtDNA molecules. The authors identify here two classes of mtDNA deletions - class A deletions, which are homogeneous at the breakpoints, with all subgenomic molecules therefore being identical in size, and class B deletions, which arise from a less stringent process that gives rise to heterogeneity at the breakpoints, with the subgenomic molecules being of slightly different sizes. A novel approach is described that offers a global overview of the populations of different deletions in individual tissues. It is based on PCR cycle-sequencing reactions that are carried out directly on mtDNA segments, amplified by PCR from total cellular DNA. The results show a clear size homogeneity of the subgenomic mtDNA molecules representative of class A, which carry a commonly detected 4,977-bp deletion occurring at a pair of 13-bp directly repeated sequences. In this case, precisely one copy of the repeat is retained in the subgenomic molecules. The authors then describe a class B situation comprising a family of at least nine closely related 8.04-kb deletions involving the same pair of 5-bp direct repeats. In this situation, the breakpoints differ at the base-pair level (8,037-8.048-bp deletions); the subgenomic molecules retain >1 copy, 1 copy, or <1 copy of the 5-bp repeat. In different tissues from either the same individual or among different individuals, there is a widely variable occurrence of particular deletions in the subgenomic mtDNA population within this class B set. Class B deletions offer a new approach for studying the accumulation of mtDNA deletions, thereby providing insight into the independent somatic origin of mutated mtDNA molecules, both in aging and in mitochondrial diseases. 42 refs., 4 figs., 2 tabs.

  20. Mitochondrial DNA Evolution in Mice

    PubMed Central

    Ferris, Stephen D.; Sage, Richard D.; Prager, Ellen M.; Ritte, Uzi; Wilson, Allan C.

    1983-01-01

    This study extends knowledge of mitochondrial DNA (mtDNA) diversity in mice to include 208 animals belonging to eight species in the subgenus Mus. Highly purified mtDNA from each has been subjected to high-resolution restriction mapping with respect to the known sequence of one mouse mtDNA. Variation attributed to base substitutions was encountered at about 200 of the 300 cleavage sites examined, and a length mutation was located in or near the displacement loop. The variability of different functional regions in this genome was as follows, from least to most: ribosomal RNA, transfer RNA, known proteins, displacement loop and unidentified reading frames.—Phylogenetic analysis confirmed the utility of the Sage and Marshall revision of mouse classification, according to which there are at least four species of commensal mice and three species of aboriginal mice in the complex that was formerly considered to be one species. The most thoroughly studied of these species is Mus domesticus, the house mouse of Western Europe and the Mediterranean region, which is the mitochondrial source of all 50 of the laboratory strains examined and of the representatives of wild house mice introduced by Europeans to North and South America during the past few hundred years.—The level of mtDNA variation among wild representatives of (M. musculus) and several other mammalian species. By contrast, among the many laboratory strains that are known or suspected to stem from the pet mouse trade, there is little interstrain variation, most strains having the "old inbred" type of domesticus mtDNA, whose frequency in the 145 wild mice examined is low, about 0.04. Also notable is the apparent homogeneity of mtDNA in domesticus races that have fixed six or more fused chromosomes and the close relationship of some of these mtDNAs to those of karyotypically normal mice.—In addition, this paper discusses fossil and other evidence for the view that in mice, as in many other mammals, the average

  1. Mitochondrial DNA: A Blind Spot in Neuroepigenetics

    PubMed Central

    Manev, Hari; Dzitoyeva, Svetlana; Chen, Hu

    2012-01-01

    Neuroepigenetics, which includes nuclear DNA modifications such as 5-methylcytosine and 5-hydoxymethylcytosine and modifications of nuclear proteins such as histones, is emerging as the leading field in molecular neuroscience. Historically, a functional role for epigenetic mechanisms, including in neuroepigenetics, has been sought in the area of the regulation of nuclear transcription. However, one important compartment of mammalian cell DNA, different from nuclear but equally important for physiological and pathological processes (including in the brain), mitochondrial DNA has for the most part not had a systematic epigenetic characterization. The importance of mitochondria and mitochondrial DNA (particularly its mutations) in central nervous system physiology and pathology has long been recognized. Only recently have mechanisms of mitochondrial DNA methylation and hydroxymethylation, including the discovery of mitochondrial DNA-methyltransferases and the presence and the functionality of 5-methylcytosine and 5-hydroxymethylcytosine in mitochondrial DNA (e.g., in modifying the transcription of mitochondrial genome), been unequivocally recognized as a part of mammalian mitochondrial physiology. Here we summarize for the first time evidence supporting the existence of these mechanisms and we propose the term “mitochondrial epigenetics” to be used when referring to them. Currently, neuroepigenetics does not include mitochondrial epigenetics - a gap that we expect to close in the near future. PMID:22639700

  2. Evolutionary history of the COII/tRNALys intergenic 9 base pair deletion in human mitochondrial DNAs from the Pacific.

    PubMed

    Redd, A J; Takezaki, N; Sherry, S T; McGarvey, S T; Sofro, A S; Stoneking, M

    1995-07-01

    Length changes in human mitochondrial DNA (mtDNA) are potentially useful markers for inferring the evolutionary history of populations. One such length change is a nine base pair (9-bp) deletion that is located in the intergenic region between the COII gene and the Lysine tRNA gene (COII/tRNALys intergenic region). This deletion has been used as a genetic marker to trace descent from peoples of East Asian origin. A geographic cline of the deletion frequency across modern Pacific Islander populations suggests that the deletion may be useful for tracing prehistoric Polynesian origins and affinities. Mitochondrial DNA sequence variation within two variable segments of the control region (CR) permits a number of inferences regarding the evolutionary history of the 9-bp deletion that cannot be determined from frequency data alone. We obtained CR sequences from 74 mtDNAs with the 9-bp deletion from Indonesia, coastal Papua New Guinea (PNG), and American Samoa. Phylogenetic and pairwise distribution analysis of these CR sequences pooled with previously published CR sequences reveals that the deletion arose independently in Africa and Asia and suggests possible multiple origins of the deletion in Asia. A clinal increase of the frequency of the 9-bp deletion across the three Pacific populations is associated with a decrease in CR sequence diversity, consistent with founder events. Furthermore, analysis of pairwise difference distributions indicates an expansion time of proto-Polynesians that began 5,500 yr ago from Southeast Asia. These results are consistent with the express train model of Polynesian origins. PMID:7659016

  3. Hepatitis B virus: DNA polymerase activity of deletion mutants.

    PubMed

    Kim, Y; Hong, Y B; Jung, G

    1999-02-01

    The hepadnavirus P gene product is a multifunctional protein with priming, DNA- and RNA-dependent DNA polymerase, and RNase H activities. Nested N- or C-terminal deletion mutations and deletions of domain(s) in human HBV polymerase have been made. Wild-type and deletion forms of MBP-fused HBV polymerase were expressed in E. coli, purified by amylose column chromatography, and the DNA-dependent DNA polymerase activities of the purified proteins were compared. Deletion of the terminal protein or spacer regions reduced enzyme activity to 70%, respectively. However, deletion of the RNase H domain affected polymerase activity more than that of the terminal protein or spacer region. The polymerase domain alone or the N-terminal deletion of the polymerase domain still exhibited enzymatic activity. In this report, it is demonstrated that the minimal domain for the polymerizing activity of the HBV polymerase is smaller than the polymerase domain. PMID:10205676

  4. Mitochondrial DNA repair: a novel therapeutic target for heart failure.

    PubMed

    Marín-García, José

    2016-09-01

    Mitochondria play a crucial role in a variety of cellular processes ranging from energy metabolism, generation of reactive oxygen species (ROS) and Ca(2+) handling to stress responses, cell survival and death. Malfunction of the organelle may contribute to the pathogenesis of neuromuscular, cancer, premature aging and cardiovascular diseases (CVD), including myocardial ischemia, cardiomyopathy and heart failure (HF). Mitochondria contain their own genome organized into DNA-protein complexes, called "mitochondrial nucleoids," along with multiprotein machineries, which promote mitochondrial DNA (mtDNA) replication, transcription and repair. Although the mammalian organelle possesses almost all known nuclear DNA repair pathways, including base excision repair, mismatch repair and recombinational repair, the proximity of mtDNA to the main sites of ROS production and the lack of protective histones may result in increased susceptibility to various types of mtDNA damage. These include accumulation of mtDNA point mutations and/or deletions and decreased mtDNA copy number, which will impair mitochondrial function and finally, may lead to CVD including HF. PMID:26940911

  5. Mitochondrial DNA disease—molecular insights and potential routes to a cure

    SciTech Connect

    Russell, Oliver; Turnbull, Doug

    2014-07-01

    Mitochondrial DNA diseases are common neurological conditions caused by mutations in the mitochondrial genome or nuclear genes responsible for its maintenance. Current treatments for these disorders are focussed on the management of the symptoms, rather than the correction of biochemical defects caused by the mutation. This review focuses on the molecular effects of mutations, the symptoms they cause and current work focusing on the development of targeted treatments for mitochondrial DNA disease. - Highlights: • We discuss several common disease causing mtDNA mutations. • We highlight recent work linking pathogenicity to deletion size and heteroplasmy. • We discuss recent advances in the development of targeted mtDNA disease treatments.

  6. Multiple mtDNA deletions features in autosomal dominant and recessive diseases suggest distinct pathogeneses.

    PubMed

    Carrozzo, R; Hirano, M; Fromenty, B; Casali, C; Santorelli, F M; Bonilla, E; DiMauro, S; Schon, E A; Miranda, A F

    1998-01-01

    Multiple mitochondrial DNA (mtDNA) deletions have been described in patients with autosomal dominant progressive external ophthalmoplegia (AD-PEO) and in autosomal recessive disorders including mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) and autosomal recessive cardiomyopathy ophthalmoplegia (ARCO). The pathogenic bases of these disorders are unknown. We studied three patients with AD-PEO and three patients with autosomal recessive (AR)-PEO (two patients with MNGIE and one patient with ARCO). Histochemistry and Southern blot analyses of DNA were performed in skeletal muscle from the patients. Muscle mtDNA was used to characterize the pattern and amounts of the multiple mtDNA rearrangements; PCR analysis was performed to obtain finer maps of the deleted regions in both conditions. The patients with AD-PEO had myopathic features; the patients with AR-PEO had multisystem disorders. The percentage of ragged-red and cytochrome c oxidase-negative fibers tended to be higher in muscle from the patients with AD-PEO (19% +/- 13.9, 29.7 +/- 26.3) than in muscle from the patients with AR-PEO (1.4% +/- 1.4, 3.3% +/- 3.2; p < 0.10). The sizes of the multiple mtDNA deletions ranged from approximately 4.0 to 10.0 kilobases in muscle from both groups of patients, and in both groups, we identified only deleted and no duplicated mtDNA molecules. Patients with AD-PEO harbored a greater proportion of deleted mtDNA species in muscle (31% +/- 5.3) than did patients with AR-PEO (9.7% +/- 9.1; p < 0.05). In the patients with AD-PEO, we identified a deletion that included the mtDNA heavy strand promoter (HSP) region, which had been previously described as the HSP deletion. The HSP deletion was not present in the patients with AR-PEO. Our findings show the clinical, histologic, and molecular genetic heterogeneity of these complex disorders. In particular, the proportions of multiple mtDNA deletions were higher in muscle samples from patients with AD-PEO than in those from

  7. Syndromes associated with mitochondrial DNA depletion

    PubMed Central

    2014-01-01

    Mitochondrial dysfunction accounts for a large group of inherited metabolic disorders most of which are due to a dysfunctional mitochondrial respiratory chain (MRC) and, consequently, deficient energy production. MRC function depends on the coordinated expression of both nuclear (nDNA) and mitochondrial (mtDNA) genomes. Thus, mitochondrial diseases can be caused by genetic defects in either the mitochondrial or the nuclear genome, or in the cross-talk between the two. This impaired cross-talk gives rise to so-called nuclear-mitochondrial intergenomic communication disorders, which result in loss or instability of the mitochondrial genome and, in turn, impaired maintenance of qualitative and quantitative mtDNA integrity. In children, most MRC disorders are associated with nuclear gene defects rather than alterations in the mtDNA itself. The mitochondrial DNA depletion syndromes (MDSs) are a clinically heterogeneous group of disorders with an autosomal recessive pattern of transmission that have onset in infancy or early childhood and are characterized by a reduced number of copies of mtDNA in affected tissues and organs. The MDSs can be divided into least four clinical presentations: hepatocerebral, myopathic, encephalomyopathic and neurogastrointestinal. The focus of this review is to offer an overview of these syndromes, listing the clinical phenotypes, together with their relative frequency, mutational spectrum, and possible insights for improving diagnostic strategies. PMID:24708634

  8. Mitochondrial DNA, restoring Beethovens music.

    PubMed

    Merheb, Maxime; Vaiedelich, Stéphane; Maniguet, Thiérry; Hänni, Catherine

    2016-01-01

    Great ancient composers have endured many obstacles and constraints which are very difficult to understand unless we perform the restoration process of ancient music. Species identification in leather used during manufacturing is the key step to start such a restoration process in order to produce a facsimile of a museum piano. Our study reveals the species identification in the leather covering the hammer head in a piano created by Erard in 1802. This is the last existing piano similar to the piano that Beethoven used with its leather preserved in its original state. The leather sample was not present in a homogeneous piece, yet combined with glue. Using a DNA extraction method that avoids PCR inhibitors; we discovered that sheep and cattle are the origin of the combination. To identify the species in the leather, we focused on the amounts of mitochondrial DNA in both leather and glue and results have led us to the conclusion that the leather used to cover the hammer head in this piano was made of cattle hide. PMID:24617463

  9. Genomic subtraction for cloning DNA corresponding to deletion mutations.

    PubMed Central

    Straus, D; Ausubel, F M

    1990-01-01

    We have developed a technique, called genomic subtraction, for isolating the DNA that is absent in deletion mutants. The method removes from wild-type DNA the sequences that are present in both the wild-type and the deletion mutant genomes. The DNA that corresponds to the deleted region remains. Enrichment for the deleted sequences is achieved by allowing a mixture of denatured wild-type and biotinylated mutant DNA to reassociate. After reassociation, the biotinylated sequences are removed by binding to avidin-coated beads. This subtraction process is then repeated several times. In each cycle we hybridize the unbound wild-type DNA from the previous round with fresh biotinylated deletion mutant DNA. The unbound DNA from the final cycle is ligated to adaptors and amplified by using one strand of the adaptor as a primer in the polymerase chain reaction. The amplified sequences can then be used to probe a genomic library. We applied genomic subtraction to a yeast strain that has a 5-kilobase deletion, corresponding to 1/4000th of the genome. In the experiment reported here, three rounds of subtraction were sufficient to accurately identify genomic clones containing sequences that are missing in the deletion mutant. We discuss the limitations and some potential applications of the method. Images PMID:2408039

  10. Mitochondrial DNA variants in obesity.

    PubMed

    Knoll, Nadja; Jarick, Ivonne; Volckmar, Anna-Lena; Klingenspor, Martin; Illig, Thomas; Grallert, Harald; Gieger, Christian; Wichmann, Heinz-Erich; Peters, Annette; Wiegand, Susanna; Biebermann, Heike; Fischer-Posovszky, Pamela; Wabitsch, Martin; Völzke, Henry; Nauck, Matthias; Teumer, Alexander; Rosskopf, Dieter; Rimmbach, Christian; Schreiber, Stefan; Jacobs, Gunnar; Lieb, Wolfgang; Franke, Andre; Hebebrand, Johannes; Hinney, Anke

    2014-01-01

    Heritability estimates for body mass index (BMI) variation are high. For mothers and their offspring higher BMI correlations have been described than for fathers. Variation(s) in the exclusively maternally inherited mitochondrial DNA (mtDNA) might contribute to this parental effect. Thirty-two to 40 mtDNA single nucleotide polymorphisms (SNPs) were available from genome-wide association study SNP arrays (Affymetrix 6.0). For discovery, we analyzed association in a case-control (CC) sample of 1,158 extremely obese children and adolescents and 435 lean adult controls. For independent confirmation, 7,014 population-based adults were analyzed as CC sample of n = 1,697 obese cases (BMI ≥ 30 kg/m2) and n = 2,373 normal weight and lean controls (BMI<25 kg/m2). SNPs were analyzed as single SNPs and haplogroups determined by HaploGrep. Fisher's two-sided exact test was used for association testing. Moreover, the D-loop was re-sequenced (Sanger) in 192 extremely obese children and adolescents and 192 lean adult controls. Association testing of detected variants was performed using Fisher's two-sided exact test. For discovery, nominal association with obesity was found for the frequent allele G of m.8994G/A (rs28358887, p = 0.002) located in ATP6. Haplogroup W was nominally overrepresented in the controls (p = 0.039). These findings could not be confirmed independently. For two of the 252 identified D-loop variants nominal association was detected (m.16292C/T, p = 0.007, m.16189T/C, p = 0.048). Only eight controls carried the m.16292T allele, five of whom belonged to haplogroup W that was initially enriched among these controls. m.16189T/C might create an uninterrupted poly-C tract located near a regulatory element involved in replication of mtDNA. Though follow-up of some D-loop variants still is conceivable, our hypothesis of a contribution of variation in the exclusively maternally inherited mtDNA to the observed larger correlations for BMI between mothers and their

  11. Mitochondrial DNA Variants in Obesity

    PubMed Central

    Knoll, Nadja; Jarick, Ivonne; Volckmar, Anna-Lena; Klingenspor, Martin; Illig, Thomas; Grallert, Harald; Gieger, Christian; Wichmann, Heinz-Erich; Peters, Annette; Wiegand, Susanna; Biebermann, Heike; Fischer-Posovszky, Pamela; Wabitsch, Martin; Völzke, Henry; Nauck, Matthias; Teumer, Alexander; Rosskopf, Dieter; Rimmbach, Christian; Schreiber, Stefan; Jacobs, Gunnar; Lieb, Wolfgang; Franke, Andre; Hebebrand, Johannes; Hinney, Anke

    2014-01-01

    Heritability estimates for body mass index (BMI) variation are high. For mothers and their offspring higher BMI correlations have been described than for fathers. Variation(s) in the exclusively maternally inherited mitochondrial DNA (mtDNA) might contribute to this parental effect. Thirty-two to 40 mtDNA single nucleotide polymorphisms (SNPs) were available from genome-wide association study SNP arrays (Affymetrix 6.0). For discovery, we analyzed association in a case-control (CC) sample of 1,158 extremely obese children and adolescents and 435 lean adult controls. For independent confirmation, 7,014 population-based adults were analyzed as CC sample of n = 1,697 obese cases (BMI≥30 kg/m2) and n = 2,373 normal weight and lean controls (BMI<25 kg/m2). SNPs were analyzed as single SNPs and haplogroups determined by HaploGrep. Fisher's two-sided exact test was used for association testing. Moreover, the D-loop was re-sequenced (Sanger) in 192 extremely obese children and adolescents and 192 lean adult controls. Association testing of detected variants was performed using Fisher's two-sided exact test. For discovery, nominal association with obesity was found for the frequent allele G of m.8994G/A (rs28358887, p = 0.002) located in ATP6. Haplogroup W was nominally overrepresented in the controls (p = 0.039). These findings could not be confirmed independently. For two of the 252 identified D-loop variants nominal association was detected (m.16292C/T, p = 0.007, m.16189T/C, p = 0.048). Only eight controls carried the m.16292T allele, five of whom belonged to haplogroup W that was initially enriched among these controls. m.16189T/C might create an uninterrupted poly-C tract located near a regulatory element involved in replication of mtDNA. Though follow-up of some D-loop variants still is conceivable, our hypothesis of a contribution of variation in the exclusively maternally inherited mtDNA to the observed larger correlations for BMI between

  12. Mitochondrial DNA plasticity is an essential inducer of tumorigenesis.

    PubMed

    Lee, W T Y; Cain, J E; Cuddihy, A; Johnson, J; Dickinson, A; Yeung, K-Y; Kumar, B; Johns, T G; Watkins, D N; Spencer, A; St John, J C

    2016-01-01

    Although mitochondrial DNA has been implicated in diseases such as cancer, its role remains to be defined. Using three models of tumorigenesis, namely glioblastoma multiforme, multiple myeloma and osteosarcoma, we show that mitochondrial DNA plays defining roles at early and late tumour progression. Specifically, tumour cells partially or completely depleted of mitochondrial DNA either restored their mitochondrial DNA content or actively recruited mitochondrial DNA, which affected the rate of tumorigenesis. Nevertheless, non-depleted tumour cells modulated mitochondrial DNA copy number at early and late progression in a mitochondrial DNA genotype-specific manner. In glioblastoma multiforme and osteosarcoma, this was coupled with loss and gain of mitochondrial DNA variants. Changes in mitochondrial DNA genotype affected tumour morphology and gene expression patterns at early and late progression. Importantly, this identified a subset of genes that are essential to early progression. Consequently, mitochondrial DNA and commonly expressed early tumour-specific genes provide novel targets against tumorigenesis. PMID:27551510

  13. Mitochondrial DNA plasticity is an essential inducer of tumorigenesis

    PubMed Central

    Lee, W T Y; Cain, J E; Cuddihy, A; Johnson, J; Dickinson, A; Yeung, K-Y; Kumar, B; Johns, T G; Watkins, D N; Spencer, A; St John, J C

    2016-01-01

    Although mitochondrial DNA has been implicated in diseases such as cancer, its role remains to be defined. Using three models of tumorigenesis, namely glioblastoma multiforme, multiple myeloma and osteosarcoma, we show that mitochondrial DNA plays defining roles at early and late tumour progression. Specifically, tumour cells partially or completely depleted of mitochondrial DNA either restored their mitochondrial DNA content or actively recruited mitochondrial DNA, which affected the rate of tumorigenesis. Nevertheless, non-depleted tumour cells modulated mitochondrial DNA copy number at early and late progression in a mitochondrial DNA genotype-specific manner. In glioblastoma multiforme and osteosarcoma, this was coupled with loss and gain of mitochondrial DNA variants. Changes in mitochondrial DNA genotype affected tumour morphology and gene expression patterns at early and late progression. Importantly, this identified a subset of genes that are essential to early progression. Consequently, mitochondrial DNA and commonly expressed early tumour-specific genes provide novel targets against tumorigenesis. PMID:27551510

  14. Borrowing nuclear DNA helicases to protect mitochondrial DNA.

    PubMed

    Ding, Lin; Liu, Yilun

    2015-01-01

    In normal cells, mitochondria are the primary organelles that generate energy, which is critical for cellular metabolism. Mitochondrial dysfunction, caused by mitochondrial DNA (mtDNA) mutations or an abnormal mtDNA copy number, is linked to a range of human diseases, including Alzheimer's disease, premature aging‎ and cancer. mtDNA resides in the mitochondrial lumen, and its duplication requires the mtDNA replicative helicase, Twinkle. In addition to Twinkle, many DNA helicases, which are encoded by the nuclear genome and are crucial for nuclear genome integrity, are transported into the mitochondrion to also function in mtDNA replication and repair. To date, these helicases include RecQ-like helicase 4 (RECQ4), petite integration frequency 1 (PIF1), DNA replication helicase/nuclease 2 (DNA2) and suppressor of var1 3-like protein 1 (SUV3). Although the nuclear functions of some of these DNA helicases have been extensively studied, the regulation of their mitochondrial transport and the mechanisms by which they contribute to mtDNA synthesis and maintenance remain largely unknown. In this review, we attempt to summarize recent research progress on the role of mammalian DNA helicases in mitochondrial genome maintenance and the effects on mitochondria-associated diseases. PMID:25984607

  15. Deletion of Mitochondrial Anchoring Protects Dysmyelinating Shiverer: Implications for Progressive MS

    PubMed Central

    Joshi, Dinesh C.; Zhang, Chuan-Li; Lin, Tien-Min; Gusain, Anchal; Harris, Melissa G.; Tree, Esther; Yin, Yewin; Wu, Connie; Sheng, Zu-Hang; Dempsey, Robert J; Fabry, Zsuzsanna

    2015-01-01

    The demyelinating disease multiple sclerosis (MS) has an early inflammatory phase followed by an incurable progressive phase with subdued inflammation and poorly understood neurodegenerative mechanism. In this study, we identified various parallelisms between progressive MS and the dysmyelinating mouse model Shiverer and then genetically deleted a major neuron-specific mitochondrial anchoring protein Syntaphilin (SNPH) from the mouse. Prevailing evidence suggests that deletion of SNPH is harmful in demyelination. Surprisingly, SNPH deletion produces striking benefits in the Shiverer by prolonging survival, reducing cerebellar damage, suppressing oxidative stress, and improving mitochondrial health. In contrast, SNPH deletion does not benefit clinical symptoms in experimental autoimmune encephalomyelitis (EAE), a model for early-phase MS. We propose that deleting mitochondrial anchoring is a novel, specific treatment for progressive MS. PMID:25834054

  16. Mitochondrial Disorders of DNA Polymerase γ Dysfunction

    PubMed Central

    Zhang, Linsheng; Chan, Sherine S. L.; Wolff, Daynna J.

    2011-01-01

    Context Primary mitochondrial dysfunction is one of the most common causes of inherited disorders predominantly involving the neuromuscular system. Advances in the molecular study of mitochondrial DNA have changed our vision and our approach to primary mitochondrial disorders. Many of the mitochondrial disorders are caused by mutations in nuclear genes and are inherited in an autosomal recessive pattern. Among the autosomal inherited mitochondrial disorders, those related to DNA polymerase γ dysfunction are the most common and the best studied. Understanding the molecular mechanisms and being familiar with the recent advances in laboratory diagnosis of this group of mitochondrial disorders are essential for pathologists to interpret abnormal histopathology and laboratory results and to suggest further studies for a definitive diagnosis. Objectives To help pathologists better understand the common clinical syndromes originating from mutations in DNA polymerase γ and its associated proteins and use the stepwise approach of clinical, laboratory, and pathologic diagnosis of these syndromes. Data Sources Review of pertinent published literature and relevant Internet databases. Conclusions Mitochondrial disorders are now better recognized with the development of molecular tests for clinical diagnosis. A cooperative effort among primary physicians, diagnostic pathologists, geneticists, and molecular biologists with expertise in mitochondrial disorders is required to reach a definitive diagnosis. PMID:21732785

  17. Role and Treatment of Mitochondrial DNA-Related Mitochondrial Dysfunction in Sporadic Neurodegenerative Diseases

    PubMed Central

    Swerdlow, Russell H.

    2012-01-01

    Several sporadic neurodegenerative diseases display phenomena that directly or indirectly relate to mitochondrial function. Data suggesting altered mitochondrial function in these diseases could arise from mitochondrial DNA (mtDNA) are reviewed. Approaches for manipulating mitochondrial function and minimizing the downstream consequences of mitochondrial dysfunction are discussed. PMID:21902672

  18. Age-related decrease in mtDNA content as a consequence of mtDNA 4977 bp deletion.

    PubMed

    Zabihi Diba, Leila; Mohaddes Ardebili, Seyed Mojtaba; Gharesouran, Jalal; Houshmand, Massoud

    2016-07-01

    As one of the most frequent somatic mutations accumulated during aging in human mitochondrial DNA, the 4977 bp deletion has intrigued scientific interest in recent years. Although many studies have shown a significant increase in the amount of 4977 bp deletion, the findings with respect to an age-dependent escalate of ΔmtDNA4977 bp in blood are still disputatious. Therefore, we investigated the presence of common deletion and mtDNA deletion level in whole blood samples of 100 old individuals (60-90 years). We detected the accumulation of common deletion in 46 old individuals. Consequently, there was statistically significant difference between the aged and young individuals in mitochondrial content (p = 0.01) and deletion levels ranged from 2% to 17% of the total mtDNA (mean: 10% ± 0.02%). We conclude that common deletion has decreased the mtDNA content; however, it is not clearly detectable in the blood as one of the fast replicating tissues comparing with tissues with low mitotic activity. PMID:26152346

  19. Increased frequency of deletions in the mitochondrial genome with age of Caenorhabditis elegans.

    PubMed Central

    Melov, S; Lithgow, G J; Fischer, D R; Tedesco, P M; Johnson, T E

    1995-01-01

    We have developed a long-extension-PCR strategy which amplifies approximately half of the mitochondrial genome (6.3 kb) of Caenorhabditis elegans using an individual worm as target. We analyzed three strains over their life span to assess the number of detectable deletions in the mitochondrial genome. Two of these strains are wild-type for life span while the third is mutant in the age-1 gene, approximately doubling its maximum life span. At the mean life span in wild-type strains, there was a significant difference between the frequency of deletions detected in the mitochondrial genome compared with the mean number of deletions in young animals. In addition, deletions in the mitochondrial genome occur at a significantly lower rate in age-1 mutants as compared with wild type. We cloned and identified the breakpoints of two deletions and found that one of the deletions had a direct repeat of 8 bp at the breakpoint. This is the largest single study (over 900 individual animals) characterizing the frequency of deletions in the mitochondrial genome as a function of age yet carried out. Images PMID:7753635

  20. Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions

    PubMed Central

    Tadi, Satish Kumar; Sebastian, Robin; Dahal, Sumedha; Babu, Ravi K.; Choudhary, Bibha; Raghavan, Sathees C.

    2016-01-01

    Mitochondrial DNA (mtDNA) deletions are associated with various mitochondrial disorders. The deletions identified in humans are flanked by short, directly repeated mitochondrial DNA sequences; however, the mechanism of such DNA rearrangements has yet to be elucidated. In contrast to nuclear DNA (nDNA), mtDNA is more exposed to oxidative damage, which may result in double-strand breaks (DSBs). Although DSB repair in nDNA is well studied, repair mechanisms in mitochondria are not characterized. In the present study, we investigate the mechanisms of DSB repair in mitochondria using in vitro and ex vivo assays. Whereas classical NHEJ (C-NHEJ) is undetectable, microhomology-mediated alternative NHEJ efficiently repairs DSBs in mitochondria. Of interest, robust microhomology-mediated end joining (MMEJ) was observed with DNA substrates bearing 5-, 8-, 10-, 13-, 16-, 19-, and 22-nt microhomology. Furthermore, MMEJ efficiency was enhanced with an increase in the length of homology. Western blotting, immunoprecipitation, and protein inhibition assays suggest the involvement of CtIP, FEN1, MRE11, and PARP1 in mitochondrial MMEJ. Knockdown studies, in conjunction with other experiments, demonstrated that DNA ligase III, but not ligase IV or ligase I, is primarily responsible for the final sealing of DSBs during mitochondrial MMEJ. These observations highlight the central role of MMEJ in maintenance of mammalian mitochondrial genome integrity and is likely relevant for deletions observed in many human mitochondrial disorders. PMID:26609070

  1. Mitochondrial DNA mutations and breast tumorigenesis

    PubMed Central

    Yadav, Neelu; Chandra, Dhyan

    2013-01-01

    Breast cancer is a heterogeneous disease and genetic factors play an important role in its genesis. Although mutations in tumor suppressors and oncogenes encoded by the nuclear genome are known to play a critical role in breast tumorigenesis, the contribution of the mitochondrial genome to this process is unclear. Like the nuclear genome, the mitochondrial genome also encodes proteins critical for mitochondria functions such as oxidative phosphorylation (OXPHOS), which is known to be defective in cancer including breast cancer. Due to limited repair mechanisms compared to that for nuclear DNA (nDNA), mitochondrial DNA (mtDNA) is more susceptible to mutations. Thus changes in mitochondrial genes could also contribute to the development of breast cancer. In this review we discuss mtDNA mutations that affect OXPHOS. Continuous acquisition of mtDNA mutations and selection of advantageous mutations ultimately leads to generation of cells that propagate uncontrollably to form tumors. Since irreversible damage to OXPHOS leads to a shift in energy metabolism towards enhanced aerobic glycolysis in most cancers, mutations in mtDNA represent an early event during breast tumorigenesis, and thus may serve as potential biomarkers for early detection and prognosis of breast cancer. Because mtDNA mutations lead to defective OXPHOS, development of agents that target OXPHOS will provide specificity for preventative and therapeutic agents against breast cancer with minimal toxicity. PMID:24140413

  2. Deletion of the transcriptional regulator opi1p decreases cardiolipin content and disrupts mitochondrial metabolism in Saccharomyces cerevisiae.

    PubMed

    Luévano-Martínez, Luis Alberto; Appolinario, Patricia; Miyamoto, Sayuri; Uribe-Carvajal, Salvador; Kowaltowski, Alicia J

    2013-11-01

    Cardiolipin, the main anionic phospholipid in the inner mitochondrial membrane, provides shape, charge and osmotic support to this membrane due to its biophysical properties. In addition, it helps form respiratory supercomplexes and provides functionality to mitochondrial proteins. Defects in the biosynthesis or remodeling of cardiolipin have been related to severe diseases, such as Barth syndrome. Opi1p, a transcriptional repressor for most enzymes in phospholipid biosynthesis found in Saccharomyces cerevisiae, has been demonstrated not to affect the biosynthesis of this mitochondrial phospholipid. However, we found that opi1 deletion compromises mitochondrial metabolism producing severe respiratory defects. The mechanism producing this phenotype was explored and found to be a mitochondrial cardiolipin depletion of almost 50%, resulting in low cytochrome content and high mitochondrial DNA instability. The origin of this low cardiolipin content strongly correlated with the overproduction of inositol, an intrinsic phenotype of this mutation. Overall, our results show that adequate regulation of phospholipid synthesis is essential for the maintenance of mitochondrial function. PMID:23578934

  3. Mitochondrial DNA under siege in avian phylogeography.

    PubMed

    Zink, Robert M; Barrowclough, George F

    2008-05-01

    Mitochondrial DNA (mtDNA) has been the workhorse of research in phylogeography for almost two decades. However, concerns with basing evolutionary interpretations on mtDNA results alone have been voiced since the inception of such studies. Recently, some authors have suggested that the potential problems with mtDNA are so great that inferences about population structure and species limits are unwarranted unless corroborated by other evidence, usually in the form of nuclear gene data. Here we review the relative merits of mitochondrial and nuclear phylogeographical studies, using birds as an exemplar class of organisms. A review of population demographic and genetic theory indicates that mitochondrial and nuclear phylogeographical results ought to concur for both geographically unstructured populations and for populations that have long histories of isolation. However, a relatively common occurrence will be shallow, but geographically structured mtDNA trees--without nuclear gene corroboration--for populations with relatively shorter periods of isolation. This is expected because of the longer coalescence times of nuclear genes (approximately four times that of mtDNA); such cases do not contradict the mtDNA inference of recent isolation and evolutionary divergence. Rather, the nuclear markers are more lagging indicators of changes in population structure. A review of the recent literature on birds reveals the existence of relatively few cases in which nuclear markers contradict mitochondrial markers in a fashion not consistent with coalescent theory. Preliminary information from nuclear genes suggests that mtDNA patterns will prove to be robust indicators of patterns of population history and species limits. At equilibrium, mitochondrial loci are generally a more sensitive indicator of population structure than are nuclear loci, and mitochondrial estimates of F(ST)-like statistics are generally expected to exceed nuclear ones. Hence, invoking behavioural or ecological

  4. [Diseases caused by mutations in mitochondrial DNA].

    PubMed

    Wojewoda, Marta; Zabłocki, Krzysztof; Szczepanowska, Joanna

    2011-01-01

    Mitochondrial diseases associated with mutations within mitochondrial genome are a subgroup of metabolic disorders since their common consequence is reduced metabolic efficiency caused by impaired oxidative phophorylation and shortage of ATP. Although the vast majority of mitochondrial proteins (approximately 1500) is encoded by nuclear genome, mtDNA encodes 11 subunits of respiratory chain complexes, 2 subunits of ATP synthase, 22 tRNAs and 2 rRNAs. Up to now, more than 250 pathogenic mutations have been described within mtDNA. The most common are point mutations in genes encoding mitochondrial tRNAs such as 3243A-->G and 8344T-->G that cause, respectively, MELAS (mitochondrial encephalopathy, lactic acidosis and stroke-like episodes) or MIDD (maternally-inherited diabetes and deafness) and MERRF (myoclonic epilepsy with ragged red fibres) syndromes. There have been also found mutations in genes encoding subunits of ATP synthase such as 8993T-->G substitution associated with NARP (neuropathy, ataxia and retinitis pigmentosa) syndrome. It is worth to note that mitochondrial dysfunction can also be caused by mutations within nuclear genes coding for mitochondrial proteins. PMID:21913424

  5. Maintenance and Expression of Mammalian Mitochondrial DNA.

    PubMed

    Gustafsson, Claes M; Falkenberg, Maria; Larsson, Nils-Göran

    2016-06-01

    Mammalian mitochondrial DNA (mtDNA) encodes 13 proteins that are essential for the function of the oxidative phosphorylation system, which is composed of four respiratory-chain complexes and adenosine triphosphate (ATP) synthase. Remarkably, the maintenance and expression of mtDNA depend on the mitochondrial import of hundreds of nuclear-encoded proteins that control genome maintenance, replication, transcription, RNA maturation, and mitochondrial translation. The importance of this complex regulatory system is underscored by the identification of numerous mutations of nuclear genes that impair mtDNA maintenance and expression at different levels, causing human mitochondrial diseases with pleiotropic clinical manifestations. The basic scientific understanding of the mechanisms controlling mtDNA function has progressed considerably during the past few years, thanks to advances in biochemistry, genetics, and structural biology. The challenges for the future will be to understand how mtDNA maintenance and expression are regulated and to what extent direct intramitochondrial cross talk between different processes, such as transcription and translation, is important. PMID:27023847

  6. Mitochondrial encephalomyopathy and retinoblastoma explained by compound heterozygosity of SUCLA2 point mutation and 13q14 deletion

    PubMed Central

    Matilainen, Sanna; Isohanni, Pirjo; Euro, Liliya; Lönnqvist, Tuula; Pihko, Helena; Kivelä, Tero; Knuutila, Sakari; Suomalainen, Anu

    2015-01-01

    Mutations in SUCLA2, encoding the ß-subunit of succinyl-CoA synthetase of Krebs cycle, are one cause of mitochondrial DNA depletion syndrome. Patients have been reported to have severe progressive childhood-onset encephalomyopathy, and methylmalonic aciduria, often leading to death in childhood. We studied two families, with children manifesting with slowly progressive mitochondrial encephalomyopathy, hearing impairment and transient methylmalonic aciduria, without mtDNA depletion. The other family also showed dominant inheritance of bilateral retinoblastoma, which coexisted with mitochondrial encephalomyopathy in one patient. We found a variant in SUCLA2 leading to Asp333Gly change, homozygous in one patient and compound heterozygous in one. The latter patient also carried a deletion of 13q14 of the other allele, discovered with molecular karyotyping. The deletion spanned both SUCLA2 and RB1 gene regions, leading to manifestation of both mitochondrial disease and retinoblastoma. We made a homology model for human succinyl-CoA synthetase and used it for structure–function analysis of all reported pathogenic mutations in SUCLA2. On the basis of our model, all previously described mutations were predicted to result in decreased amounts of incorrectly assembled protein or disruption of ADP phosphorylation, explaining the severe early lethal manifestations. However, the Asp333Gly change was predicted to reduce the activity of the otherwise functional enzyme. On the basis of our findings, SUCLA2 mutations should be analyzed in patients with slowly progressive encephalomyopathy, even in the absence of methylmalonic aciduria or mitochondrial DNA depletion. In addition, an encephalomyopathy in a patient with retinoblastoma suggests mutations affecting SUCLA2. PMID:24986829

  7. NLRP3 deletion protects against renal fibrosis and attenuates mitochondrial abnormality in mouse with 5/6 nephrectomy.

    PubMed

    Gong, Wei; Mao, Song; Yu, Jing; Song, Jiayu; Jia, Zhanjun; Huang, Songming; Zhang, Aihua

    2016-05-15

    Progressive fibrosis in chronic kidney disease (CKD) is the well-recognized cause leading to the progressive loss of renal function. Emerging evidence indicated a pathogenic role of the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome in mediating kidney injury. However, the role of NLRP3 in the remnant kidney disease model is still undefined. The present study was undertaken to evaluate the function of NLRP3 in modulating renal fibrosis in a CKD model of 5/6 nephrectomy (5/6 Nx) and the potential involvement of mitochondrial dysfunction in the pathogenesis. Employing NLRP3(+/+) and NLRP3(-/-) mice with or without 5/6 Nx, we examined renal fibrotic response and mitochondrial function. Strikingly, tubulointerstitial fibrosis was remarkably attenuated in NLRP3(-/-) mice as evidenced by the blockade of extracellular matrix deposition. Meanwhile, renal tubular cells in NLRP3(-/-) mice maintained better mitochondrial morphology and higher mitochondrial DNA copy number, indicating an amelioration of mitochondrial abnormality. Moreover, NLRP3 deletion also blunted the severity of proteinuria and CKD-related hypertension. To further evaluate the direct role of NLRP3 in triggering fibrogenesis, mouse proximal tubular cells (PTCs) were subjected to transforming growth factor β1 (TGF-β1), and the cellular phenotypic changes were detected. As expected, TGF-β1-induced alterations of PTC phenotype were abolished by NLRP3 small interfering RNA, in line with a protection of mitochondrial function. Taken together, NLRP3 deletion protected against renal fibrosis in the 5/6 Nx disease model, possibly via inhibiting mitochondrial dysfunction. PMID:26887832

  8. [Progress of enzyme in mitochondrial DNA repair system].

    PubMed

    Zhu, Ke-Jun; Wang, Zhen-Cheng; Wang, Xue-Min

    2004-03-01

    Mitochondrial DNA (mtDNA) encodes subunits of the mitochondrial electron transport system and the rRNAs and tRNAs required for constructing the mitochondrial translational machinery. Each subunit encoded by mtDNA is essential for normal oxidative phosphorylation. Thus, integrity of the mtDNA is crucial for the survival of organisms. It has long been held that there is no DNA repair in mitochondria. But in recent years,a number of repair factors have been found in mitochondrial extracts, suggesting the presence of DNA repair in mitochondria. This review summarized recent progress of enzyme in mitochondrial DNA repair processes. PMID:15640002

  9. Persistent damage induces mitochondrial DNA degradation

    PubMed Central

    Shokolenko, Inna N.; Wilson, Glenn L.; Alexeyev, Mikhail F.

    2013-01-01

    Considerable progress has been made recently toward understanding the processes of mitochondrial DNA (mtDNA) damage and repair. However, a paucity of information still exists regarding the physiological effects of persistent mtDNA damage. This is due, in part, to experimental difficulties associated with targeting mtDNA for damage, while sparing nuclear DNA. Here, we characterize two systems designed for targeted mtDNA damage based on the inducible (Tet-ON) mitochondrial expression of the bacterial enzyme, exonuclease III, and the human enzyme, uracil-N-glyosylase containing the Y147A mutation. In both systems, damage was accompanied by degradation of mtDNA, which was detectable by six hours after induction of mutant uracil-N-glycosylase and by twelve hours after induction of exoIII. Unexpectedly, increases in the steady-state levels of single-strand lesions, which led to degradation, were small in absolute terms indicating that both abasic sites and single-strand gaps may be poorly tolerated in mtDNA. mtDNA degradation was accompanied by the loss of expression of mtDNA-encoded COX2. After withdrawal of the inducer, recovery from mtDNA depletion occurred faster in the system expressing exonuclease III, but in both systems reduced mtDNA levels persisted longer than 144h after doxycycline withdrawal. mtDNA degradation was followed by reduction and loss of respiration, decreased membrane potential, reduced cell viability, reduced intrinsic reactive oxygen species production, slowed proliferation, and changes in mitochondrial morphology (fragmentation of the mitochondrial network, rounding and “foaming” of the mitochondria). The mutagenic effects of abasic sites in mtDNA were low, which indicates that damaged mtDNA molecules may be degraded if not rapidly repaired. This study establishes, for the first time, that mtDNA degradation can be a direct and immediate consequence of persistent mtDNA damage and that increased ROS production is not an invariant consequence

  10. Mitochondrial DNA replacement versus nuclear DNA persistence

    NASA Astrophysics Data System (ADS)

    Serva, Maurizio

    2006-10-01

    In this paper we consider two populations whose generations are not overlapping and whose size is large. The number of males and females in both populations is constant. Any generation is replaced by a new one and any individual has two parents concerning nuclear DNA and a single one (the mother) concerning mtDNA. Moreover, at any generation some individuals migrate from the first population to the second. In a finite random time T, the mtDNA of the second population is completely replaced by the mtDNA of the first. In the same time, the nuclear DNA is not completely replaced and a fraction F of the ancient nuclear DNA persists. We compute both T and F. Since this study shows that complete replacement of mtDNA in a population is compatible with the persistence of a large fraction of nuclear DNA, it may have some relevance for the 'out of Africa'/multiregional debate in palaeoanthropology.

  11. Autosomal recessive Wolfram syndrome associated with an 8.5-kb mtDNA single deletion.

    PubMed Central

    Barrientos, A.; Casademont, J.; Saiz, A.; Cardellach, F.; Volpini, V.; Solans, A.; Tolosa, E.; Urbano-Marquez, A.; Estivill, X.; Nunes, V.

    1996-01-01

    Wolfram syndrome (MIM 222300) is characterized by optic atrophy, diabetes mellitus, diabetes insipidus, neurosensory hearing loss, urinary tract abnormalities, and neurological dysfunction. The association of clinical manifestations in tissues and organs unrelated functionally or embryologically suggested the possibility of a mitochondrial implication in the disease, which has been demonstrated in two sporadic cases. Nonetheless, familial studies suggested an autosomal recessive mode of transmission, and recent data demonstrated linkage with markers on the short arm of human chromosome 4. The patient reported here, as well as her parents and unaffected sister, carried a heteroplasmic 8.5-kb deletion in mtDNA. The deletion accounted for 23% of mitochondrial genomes in lymphocytes from the patient and approximately 5% in the tissues studied from members of her family. The presence of the deletion in the patient in a proportion higher than in her unaffected parents suggests a putative defect in a nuclear gene that acts at the mitochondrial level. Images Figure 3 Figure 4 Figure 5 PMID:8651280

  12. Autosomal recessive Wolfram syndrome associated with an 8.5 kb mtDNA single deletion

    SciTech Connect

    Barrientos, A.; Casademont, J.; Cardellach, F.

    1996-05-01

    Wolfram syndrome (MIM 222300) is characterized by optic atrophy, diabetes mellitus, diabetes insipidus, neurosensory hearing loss, urinary tract abnormalities, and neurological dysfunction. The association of clinical manifestations in tissues and organs unrelated functionally or embryologically suggested the possibility of a mitochondrial implication in the disease, which has been demonstrated in two sporadic cases. Nonetheless, familial studies suggested an autosomal recessive mode of transmission, and recent data demonstrated linkage with markers on the short arm of human chromosome 4. The patient reported here, as well as her parents and unaffected sister, carried a heteroplasmic 8.5-kb deletion in mtDNA. The deletion accounted for 23% of mitochondrial genomes in lymphocytes from the patient and {approximately}5% in the tissues studied from members of her family. The presence of the deletion in the patient in a proportion higher than in her unaffected parents suggests a putative defect in a nuclear gene that acts at the mitochondrial level. 39 refs., 6 figs., 3 tabs.

  13. XPD localizes in mitochondria and protects the mitochondrial genome from oxidative DNA damage

    PubMed Central

    Liu, Jing; Fang, Hongbo; Chi, Zhenfen; Wu, Zan; Wei, Di; Mo, Dongliang; Niu, Kaifeng; Balajee, Adayabalam S.; Hei, Tom K.; Nie, Linghu; Zhao, Yongliang

    2015-01-01

    Xeroderma pigmentosum group D (XPD/ERCC2) encodes an ATP-dependent helicase that plays essential roles in both transcription and nucleotide excision repair of nuclear DNA, however, whether or not XPD exerts similar functions in mitochondria remains elusive. In this study, we provide the first evidence that XPD is localized in the inner membrane of mitochondria, and cells under oxidative stress showed an enhanced recruitment of XPD into mitochondrial compartment. Furthermore, mitochondrial reactive oxygen species production and levels of oxidative stress-induced mitochondrial DNA (mtDNA) common deletion were significantly elevated, whereas capacity for oxidative damage repair of mtDNA was markedly reduced in both XPD-suppressed human osteosarcoma (U2OS) cells and XPD-deficient human fibroblasts. Immunoprecipitation-mass spectrometry analysis was used to identify interacting factor(s) with XPD and TUFM, a mitochondrial Tu translation elongation factor was detected to be physically interacted with XPD. Similar to the findings in XPD-deficient cells, mitochondrial common deletion and oxidative damage repair capacity in U2OS cells were found to be significantly altered after TUFM knock-down. Our findings clearly demonstrate that XPD plays crucial role(s) in protecting mitochondrial genome stability by facilitating an efficient repair of oxidative DNA damage in mitochondria. PMID:25969448

  14. Mitochondrial DNA copy number variation across human cancers

    PubMed Central

    Reznik, Ed; Miller, Martin L; Şenbabaoğlu, Yasin; Riaz, Nadeem; Sarungbam, Judy; Tickoo, Satish K; Al-Ahmadie, Hikmat A; Lee, William; Seshan, Venkatraman E; Hakimi, A Ari; Sander, Chris

    2016-01-01

    Mutations, deletions, and changes in copy number of mitochondrial DNA (mtDNA), are observed throughout cancers. Here, we survey mtDNA copy number variation across 22 tumor types profiled by The Cancer Genome Atlas project. We observe a tendency for some cancers, especially of the bladder, breast, and kidney, to be depleted of mtDNA, relative to matched normal tissue. Analysis of genetic context reveals an association between incidence of several somatic alterations, including IDH1 mutations in gliomas, and mtDNA content. In some but not all cancer types, mtDNA content is correlated with the expression of respiratory genes, and anti-correlated to the expression of immune response and cell-cycle genes. In tandem with immunohistochemical evidence, we find that some tumors may compensate for mtDNA depletion to sustain levels of respiratory proteins. Our results highlight the extent of mtDNA copy number variation in tumors and point to related therapeutic opportunities. DOI: http://dx.doi.org/10.7554/eLife.10769.001 PMID:26901439

  15. Recombination by sequence repeats with formation of suppressive or residual mitochondrial DNA in Neurospora

    SciTech Connect

    Almasan, A.; Mishra, N.C. )

    1991-09-01

    Recombination junctions of several Neurospora mitochondrial DNA (mtDNA) mutants and their revertants were identified. Their nucleotide sequences and putative secondary structures were determined in order to understand the nature of the elements involved in intramolecular recombination. Multiple deletions, involving the same portion of Neurospora mtDNA, were identified in six independently isolated mutants. A 9-nucleotide repeat element, CCCCNCCCC, was found to be involved in these and other Neurospora mitochondrial recombination events. The repeat elements were clustered as hot spots on the Neurospora mtDNA and were associated with palindromic DNA sequences. The palindromes have a potential to generate hairpin structures. A much lower free energy of the putative hairpins at the 5{prime} end of the recombination site, and the possible formation of non-B-DNA structure by polypyrimidine tracks, may be important in the initiation of recombination. Using PCR, the authors found low levels of a specific mitochondrial deletion in certain Neurospora mutants. Their presence in low amounts in a population with a much larger number of normal mtDNA is unexpected. Contrary to earlier belief, this finding supports the view that deleted, smaller DNA molecules are not always suppressive relative to normal mtDNAs.

  16. Depression-like episodes in mice harboring mtDNA deletions in paraventricular thalamus.

    PubMed

    Kasahara, T; Takata, A; Kato, T M; Kubota-Sakashita, M; Sawada, T; Kakita, A; Mizukami, H; Kaneda, D; Ozawa, K; Kato, T

    2016-01-01

    Depression is a common debilitating human disease whose etiology has defied decades of research. A critical bottleneck is the difficulty in modeling depressive episodes in animals. Here, we show that a transgenic mouse with chronic forebrain expression of a dominant negative mutant of Polg1, a mitochondrial DNA (mtDNA) polymerase, exhibits lethargic behavioral changes, which are associated with emotional, vegetative and psychomotor disturbances, and response to antidepression drug treatment. The results suggested a symptomatic similarity between the lethargic behavioral change that was recurrently and spontaneously experienced by the mutant mice and major depressive episode as defined by DSM-5. A comprehensive screen of mutant brain revealed a hotspot for mtDNA deletions and mitochondrial dysfunction in the paraventricular thalamic nucleus (PVT) with similar defects observed in postmortem brains of patients with mitochondrial disease with mood symptoms. Remarkably, the genetic inhibition of PVT synaptic output by Cre-loxP-dependent expression of tetanus toxin triggered de novo depression-like episodes. These findings identify a novel preclinical mouse model and brain area for major depressive episodes with mitochondrial dysfunction as its cellular mechanism. PMID:26481320

  17. Mitochondrial DNA hypomethylation in chrome plating workers.

    PubMed

    Yang, Linqing; Xia, Bo; Yang, Xueqin; Ding, Hong; Wu, Desheng; Zhang, Huimin; Jiang, Gaofeng; Liu, Jianjun; Zhuang, Zhixiong

    2016-01-22

    A matched case-control study was conducted to examine the relationship between chromium (Cr) exposure and variation in mitochondrial (mt) DNA methylation. We enrolled 29 pairs of subjects in this study; Cr exposure was confirmed in the cases by detecting blood Cr and other metal ion concentrations. DNA damage caused by Cr exposure was determined in terms of binucleated micronucleus frequency (BNMN) and mtDNA copy number. Finally, a Sequenom MassARRAY platform was applied to inspect the DNA methylation levels of mitochondrially encoded tRNA phenylalanine (MT-TF), mitochondrially encoded 12S RNA (MT-RNR1), and long interspersed nucleotide element-1 (LINE-1) genes. The blood Cr ion concentration and micronucleus frequency of the Cr-exposed group were higher than those of the control group, whereas the mtDNA copy number remained unchanged. The methylation levels of MT-TF and MT-RNR1 but not LINE-1 were significantly lower in Cr-exposed workers. Pearson correlation analysis showed that workers with higher blood Cr ion concentrations exhibited lower MT-TF and MT-RNR1 gene methylation, and multiple linear regression analysis indicated that CpG sites 1 and 2 in MT-TF and CpG site 6 in MT-RNR1 were affected. These results suggested that methylation level of mtDNA has the possibility of acting as an alternative effect biomarker for Cr exposure. PMID:26656300

  18. Mitochondrial myopathy associated with high levels of mitochondrial DNA harboring a 260 bp tandem duplication in the D-loop region

    SciTech Connect

    Manfredi, G.; Shanske, S.; Schon, E.A.

    1994-09-01

    Low levels of a 260 bp duplication in the D-loop of the mitochondrial DNA (mtDNA) were reported in some patients with mitochondrial disorders harboring large-scale mtDNA deletions. Because the same duplication was observed in unaffected mothers of these patients, it was suggested that the 260 bp duplication predispose mtDNA to deletion. More recently, PCR-levels of this duplication were also observed in a subgroup of normal Caucasions. To test the hypothesis that this genetic abnormality may be prevalent in patients with large-scale deletions of the mitochondrial genome, we used a semi-quantitative PCR protocol to search for the 260 by duplication in 34 patients with, and 35 without mtDNA deletions. Our results do not support the hypothesis that the 260 bp duplication precedes large-scale deletions of mtDNA. They suggest, however, that the duplication may be pathogenic per se, if its level reaches a specific threshold. We are presently trying to test this hypothesis, as well as the stability of the duplication, in a cell culture system.

  19. Mitochondrial DNA-deficient models and aging.

    PubMed

    Olgun, Abdullah; Akman, Serif

    2007-04-01

    Human mitochondrial DNA (mtDNA) encodes 13 subunits of oxidative phosphorylation (OXPHOS) enzyme complexes I, III, IV, and V except complex II. MtDNA is more sensitive to oxidative damage than nuclear DNA. MtDNA defects are involved in many pathologies including aging. Several mtDNA-deficient cell culture, yeast, and animal models were generated to study the role of mtDNA in many physiological processes. Ethidium bromide (EB), an agent that is known to inhibit mtDNA replication with a negligible effect on nuclear DNA, is generally used to generate mtDNA-deficient models. The antibiotics chloramphenicol and doxycycline, which were known to inhibit mitochondrial translation, were also used to generate the same phenotype. Cultured mtDNA-deficient cells need uridine and pyruvate to survive. At the organismal level, uridine can be supplemented, but pyruvate supplementation can cause a worser phenotype because of lactic acidosis. In C. elegans, EB, when used during larval development, increases life span, but decreases, when used after the beginning of adult stage. This should be kept in mind since mitochondria-related genes are generally detected in genome-wide screening studies for longevity. We believe that conditional knockout studies need to be carried out for these genes after reaching adulthood. MtDNA mutator mouse did not show an increase of free radical production. Therefore, the downstream phenomena to mtDNA defects are likely ineffective pyrimidine synthesis (dihydroorotate dehydrogenase, DHODH, needs a functional respiratory chain) and excess NADH (decreased NAD pool) in addition to free radicals. PMID:17460185

  20. Detection of deleted mitochondrial genomes in cytochrome-c oxidase-deficient muscle fibers of a patient with Kearns-Sayre syndrome

    SciTech Connect

    Mita, S.; Schmidt, B.; Schon, E.A.; DiMauro, S.; Bonilla, E. )

    1989-12-01

    Using in situ hybridization and immunocytochemistry, the authors studied a muscle biopsy sample from a patient with Kearns-Sayre syndrome (KSS) who had a deletion of mitochondrial DNA (mtDNA) and partial deficiency of cytochrome-c oxidase. They sought a relationship between COX deficiency and abnormalities of mtDNA at the single-fiber level. COX deficiency clearly correlated with a decrease of normal mtDNA and, conversely, deleted mtDNA was more abundant in COX-deficient fibers, especially ragged-red fibers. The distribution of mtRNA has a similar pattern, suggesting that deleted mtDNA is transcribed. Immunocytochemistry showed that the nuclear DNA-encoded subunit IV of COX was present but that the mtDNA-encoded subunit II was markedly diminished in COX-deficient ragged-red fibers. Because the mtDNA deletion in this patient did not comprise the gene encoding COX subunit II, COX deficiency may have resulted from lack of translation of mtRNA encoding all three mtDNA-encoded subunits of COX.

  1. Screening of mitochondrial mutations and insertion-deletion polymorphism in gestational diabetes mellitus in the Asian Indian population.

    PubMed

    Khan, Imran Ali; Shaik, Noor Ahmad; Pasupuleti, Nagarjuna; Chava, Srinivas; Jahan, Parveen; Hasan, Qurratulain; Rao, Pragna

    2015-05-01

    In this study we scrutinized the association between the A8344G/A3243G mutations and a 9-bp deletion polymorphism with gestational diabetes mellitus (GDM) in an Asian Indian population. The A3243G mutation in the mitochondrial tRNA(Leu(UUR)) causes mitochondrial encephalopathy myopathy, lactic acidosis, and stroke-like episodes (MELAS), while the A8344G mutation in tRNA(Lys) causes myoclonus epilepsy with ragged red fibers (MERRF). We screened 140 pregnant women diagnosed with GDM and 140 non-GDM participants for these mutations by PCR-RFLP analysis. Both A3243G and A8344G were associated with GDM (A3243: OR-3.667, 95% CI = 1.001-13.43, p = 0.03; A8344G: OR-11.00, 95% CI = 0.6026-200.8, p = 0.04). Mitochondrial DNA mutations contribute to the development of GDM. Our results conclude that mitochondrial mutations are associated with the GDM women in our population. Thus it is important to screen other mitochondrial mutations in the GDM women. PMID:25972744

  2. Restoration of normal embryogenesis by mitochondrial supplementation in pig oocytes exhibiting mitochondrial DNA deficiency

    PubMed Central

    Cagnone, Gael L. M.; Tsai, Te-Sha; Makanji, Yogeshwar; Matthews, Pamela; Gould, Jodee; Bonkowski, Michael S.; Elgass, Kirstin D.; Wong, Ashley S. A.; Wu, Lindsay E.; McKenzie, Matthew; Sinclair, David A.; John, Justin C. St.

    2016-01-01

    An increasing number of women fail to achieve pregnancy due to either failed fertilization or embryo arrest during preimplantation development. This often results from decreased oocyte quality. Indeed, reduced mitochondrial DNA copy number (mitochondrial DNA deficiency) may disrupt oocyte quality in some women. To overcome mitochondrial DNA deficiency, whilst maintaining genetic identity, we supplemented pig oocytes selected for mitochondrial DNA deficiency, reduced cytoplasmic maturation and lower developmental competence, with autologous populations of mitochondrial isolate at fertilization. Supplementation increased development to blastocyst, the final stage of preimplantation development, and promoted mitochondrial DNA replication prior to embryonic genome activation in mitochondrial DNA deficient oocytes but not in oocytes with normal levels of mitochondrial DNA. Blastocysts exhibited transcriptome profiles more closely resembling those of blastocysts from developmentally competent oocytes. Furthermore, mitochondrial supplementation reduced gene expression patterns associated with metabolic disorders that were identified in blastocysts from mitochondrial DNA deficient oocytes. These results demonstrate the importance of the oocyte’s mitochondrial DNA investment in fertilization outcome and subsequent embryo development to mitochondrial DNA deficient oocytes. PMID:26987907

  3. Transcription-dependent DNA transactions in the mitochondrial genome of a yeast hypersuppressive petite mutant.

    PubMed

    Van Dyck, E; Clayton, D A

    1998-05-01

    Mitochondrial DNA (mtDNA) of Saccharomyces cerevisiae contains highly conserved sequences, called rep/ori, that are associated with several aspects of its metabolism. These rep/ori sequences confer the transmission advantage exhibited by a class of deletion mutants called hypersuppressive petite mutants. In addition, because they share features with the mitochondrial leading-strand DNA replication origin of mammals, rep/ori sequences have also been proposed to participate in mtDNA replication initiation. Like the mammalian origins, where transcription is used as a priming mechanism for DNA synthesis, yeast rep/ori sequences contain an active promoter. Although transcription is required for maintenance of wild-type mtDNA in yeast, the role of the rep/ori promoter as a cis-acting element involved in the replication of wild-type mtDNA is unclear, since mitochondrial deletion mutants need neither transcription nor a rep/ori sequence to maintain their genome. Similarly, transcription from the rep/ori promoter does not seem to be necessary for biased inheritance of mtDNA. As a step to elucidate the function of the rep/ori promoter, we have attempted to detect transcription-dependent DNA transactions in the mtDNA of a hypersuppressive petite mutant. We have examined the mtDNA of the well-characterized petite mutant a-1/1R/Z1, whose repeat unit shelters the rep/ori sequence ori1, in strains carrying either wild-type or null alleles of the nuclear genes encoding the mitochondrial transcription apparatus. Complex DNA transactions were detected that take place around GC-cluster C, an evolutionarily conserved GC-rich sequence block immediately downstream from the rep/ori promoter. These transactions are strictly dependent upon mitochondrial transcription. PMID:9566917

  4. Atherosclerotic lesions and mitochondria DNA deletions in brain microvessels: implication in the pathogenesis of Alzheimer's disease.

    PubMed

    Aliev, Gjumrakch; Gasimov, Eldar; Obrenovich, Mark E; Fischbach, Kathryn; Shenk, Justin C; Smith, Mark A; Perry, George

    2008-01-01

    The pathogenesis that is primarily responsible for Alzheimer's disease (AD) and cerebrovascular accidents (CVA) appears to involve chronic hypoperfusion. We studied the ultrastructural features of vascular lesions and mitochondria in brain vascular wall cells from human AD biopsy samples and two transgenic mouse models of AD, yeast artificial chromosome (YAC) and C57B6/SJL Tg (+), which overexpress human amyloid beta precursor protein (AbetaPP). In situ hybridization using probes for normal and 5 kb deleted human and mouse mitochondrial DNA (mtDNA) was performed along with immunocytochemistry using antibodies against the Abeta peptide processed from AbetaPP, 8-hydroxy-2'-guanosine (8OHG), and cytochrome c oxidase (COX). More amyloid deposition, oxidative stress markers as well as mitochondrial DNA deletions and structural abnormalities were present in the vascular walls of the human AD samples and the AbetaPP-YAC and C57B6/SJL Tg (+) transgenic mice compared to age-matched controls. Ultrastructural damage in perivascular cells highly correlated with endothelial lesions in all samples. Therefore, pharmacological interventions, directed at correcting the chronic hypoperfusion state, may change the natural course of the development of dementing neurodegeneration. PMID:18827923

  5. Quantification of human mitochondrial DNA using synthesized DNA standards.

    PubMed

    Kavlick, Mark F; Lawrence, Helen S; Merritt, R Travis; Fisher, Constance; Isenberg, Alice; Robertson, James M; Budowle, Bruce

    2011-11-01

    Successful mitochondrial DNA (mtDNA) forensic analysis depends on sufficient quantity and quality of mtDNA. A real-time quantitative PCR assay was developed to assess such characteristics in a DNA sample, which utilizes a duplex, synthetic DNA to ensure optimal quality assurance and quality control. The assay's 105-base pair target sequence facilitates amplification of degraded DNA and is minimally homologous to nonhuman mtDNA. The primers and probe hybridize to a region that has relatively few sequence polymorphisms. The assay can also identify the presence of PCR inhibitors and thus indicate the need for sample repurification. The results show that the assay provides information down to 10 copies and provides a dynamic range spanning seven orders of magnitude. Additional experiments demonstrated that as few as 300 mtDNA copies resulted in successful hypervariable region amplification, information that permits sample conservation and optimized downstream PCR testing. The assay described is rapid, reliable, and robust. PMID:21883207

  6. PCR-Based Analysis of Mitochondrial DNA Copy Number, Mitochondrial DNA Damage, and Nuclear DNA Damage.

    PubMed

    Gonzalez-Hunt, Claudia P; Rooney, John P; Ryde, Ian T; Anbalagan, Charumathi; Joglekar, Rashmi; Meyer, Joel N

    2016-01-01

    Because of the role that DNA damage and depletion play in human disease, it is important to develop and improve tools to assess these endpoints. This unit describes PCR-based methods to measure nuclear and mitochondrial DNA damage and copy number. Long amplicon quantitative polymerase chain reaction (LA-QPCR) is used to detect DNA damage by measuring the number of polymerase-inhibiting lesions present based on the amount of PCR amplification; real-time PCR (RT-PCR) is used to calculate genome content. In this unit, we provide step-by-step instructions to perform these assays in Homo sapiens, Mus musculus, Rattus norvegicus, Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, Oryzias latipes, Fundulus grandis, and Fundulus heteroclitus, and discuss the advantages and disadvantages of these assays. PMID:26828332

  7. PCR-based analysis of mitochondrial DNA copy number, mitochondrial DNA damage, and nuclear DNA damage

    PubMed Central

    Gonzalez-Hunt, Claudia P.; Rooney, John P.; Ryde, Ian T.; Anbalagan, Charumathi; Joglekar, Rashmi

    2016-01-01

    Because of the role DNA damage and depletion play in human disease, it is important to develop and improve tools to assess these endpoints. This unit describes PCR-based methods to measure nuclear and mitochondrial DNA damage and copy number. Long amplicon quantitative polymerase chain reaction (LA-QPCR) is used to detect DNA damage by measuring the number of polymerase-inhibiting lesions present based on the amount of PCR amplification; real-time PCR (RT-PCR) is used to calculate genome content. In this unit we provide step-by-step instructions to perform these assays in Homo sapiens, Mus musculus, Rattus norvegicus, Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, Oryzias latipes, Fundulus grandis, and Fundulus heteroclitus, and discuss the advantages and disadvantages of these assays. PMID:26828332

  8. Buccal swab analysis of mitochondrial enzyme deficiency and DNA defects in a child with suspected myoclonic epilepsy and ragged red fibers (MERRF).

    PubMed

    Yorns, William R; Valencia, Ignacio; Jayaraman, Aditya; Sheth, Sudip; Legido, Agustin; Goldenthal, Michael J

    2012-03-01

    The authors describe mitochondrial studies in a 6-year-old patient with a seizure disorder that can be seen in myoclonic epilepsy and ragged red fibers. Using a recently developed noninvasive approach, analysis of buccal mitochondrial enzyme function revealed severe respiratory complex I and IV deficiencies in the patient. In addition, analysis of buccal mitochondrial DNA showed significant amounts of the common 5 kb and 7.4 kb mitochondrial DNA deletions, also detectable in blood. This study suggests that a buccal swab approach can be used to informatively examine mitochondrial dysfunction in children with seizures and may be applicable to screening mitochondrial disease with other clinical presentations. PMID:22114216

  9. Retrospective assessment of the most common mitochondrial DNA mutations in a large Hungarian cohort of suspect mitochondrial cases.

    PubMed

    Remenyi, Viktoria; Inczedy-Farkas, Gabriella; Komlosi, Katalin; Horvath, Rita; Maasz, Anita; Janicsek, Ingrid; Pentelenyi, Klara; Gal, Aniko; Karcagi, Veronika; Melegh, Bela; Molnar, Maria Judit

    2015-08-01

    Prevalence estimations for mitochondrial disorders still vary widely and only few epidemiologic studies have been carried out so far. With the present work we aim to give a comprehensive overview about frequencies of the most common mitochondrial mutations in Hungarian patients. A total of 1328 patients were tested between 1999 and 2012. Among them, 882 were screened for the m.3243A > G, m.8344A > G, m.8993T > C/G mutations and deletions, 446 for LHON primary mutations. The mutation frequency in our cohort was 2.61% for the m.3243A > G, 1.47% for the m.8344A > G, 17.94% for Leber's Hereditary Optic Neuropathy (m.3460G > A, m.11778G > A, m.14484T > C) and 0.45% for the m.8993T > C/G substitutions. Single mtDNA deletions were detected in 14.97%, while multiple deletions in 6.01% of the cases. The mutation frequency in Hungarian patients suggestive of mitochondrial disease was similar to other Caucasian populations. Further retrospective studies of different populations are needed in order to accurately assess the importance of mitochondrial diseases and manage these patients. PMID:24438288

  10. Mitochondrial DNA Content and Lung Cancer Risk

    PubMed Central

    Bonner, Matthew R.; Shen, Min; Liu, Chin-San; DiVita, Margaret; He, Xingzhou; Lan, Qing

    2010-01-01

    Smoky coal contains polycyclic aromatic hydrocarbons (PAHs) and has been strongly implicated in etiology of lung cancer in Xuan Wei, China. While PAHs have been demonstrated to form bulky adducts in nuclear DNA, they have a 90-fold greater affinity for mitochondrial DNA (mtDNA). To compensate for mitochondrial dysfunction or damage, mtDNA content is thought to increase. We conducted a population-based case-control study of lung cancer in Xuan Wei, China hypothesizing that mtDNA content is associated with lung cancer risk. Cases (n = 122) and controls (n = 121) were individually matched on age (±2yrs), sex, village of residence, and type of heating/cooking fuel currently used. Lifetime smoky coal use and potential confounders were determined with questionnaires. mtDNA was extracted from sputum and content was determined with quantitative RT-PCR. Odds ratios (OR) and 95% confidence intervals (95% CI) were calculated with unconditional logistic regression. mtDNA content was dichotomized at the median based on the distribution among the controls. mtDNA content > 157 was associated with a 2-fold increase in lung cancer risk (OR = 1.8; 95% CI = 1.0–3.2) compared with those with ≤157 copies. Risk was higher among those >57 years of age compared with those ≤ 57 years (p interaction = 0.01). In summary, mtDNA content was positively associated with lung cancer risk. Furthermore, there was some evidence that mtDNA content was more strongly associated with lung cancer risk among older individuals. However, due to the small sample size, additional studies are needed to evaluate these associations. PMID:18691788

  11. Mitochondrial DNA haplotype predicts deafness risk

    SciTech Connect

    Hutchin, T.; Cortopassi, G.

    1995-12-18

    Since mitochondrial DNA (mtDNA) does not recombine in humans, once deleterious variation arises within a particular mtDNA clone it remains linked to that clonal type. An A to G mutation at mtDNA position 1555 confers matrilineal deafness among Asians and others. Two major mtDNA types (I and II) have been defined in Asians by D-loop sequencing. We have determined the D-loop sequence of 8 unrelated deaf Asians bearing the 1555G mutation, and find that 7 are of type II, whereas only one is of type I. Thus the frequency of the 1555G mutation is higher in type II mtDNA than type I (P = 0.035, binomial test), and persons with type II mtDNA are more likely to become deaf. Type II mtDNAs are rare in the Caucasian population, which may explain the rarity of this form of deafness in the United States. Negative Darwinian selection is expected to rapidly eliminate mtDNAs bearing severely deleterious mutations; but mildly deleterious mutations whose phenotype is expressed after reproduction should persist on the mtDNA background in which they arose. Thus determination of mtDNA clonal type has the potential to predict human risk for diseases that are the result of mildly deleterious mtDNA mutations which confer a post-reproductive phenotype. 4 refs., 1 fig.

  12. Restriction endonuclease analysis of leukocyte mitochondrial DNA in Leber's optic atrophy.

    PubMed Central

    Holt, I J; Miller, D H; Harding, A E

    1988-01-01

    In order to test the hypothesis that Leber's optic atrophy may be caused by mutation of the mitochondrial (mt) genome, restriction fragment length polymorphism in leukocyte mt DNA was studied in 16 patients with Leber's optic atrophy, 28 of their unaffected matrilineal relatives, and 35 normal control subjects. No differences in restriction fragment patterns were observed between affected and unaffected individuals in the same maternal line, and there was no evidence of major deletion of mt DNA in patients. This study provides no positive evidence of mitochondrial inheritance in Leber's optic atrophy but does not exclude it. PMID:2905730

  13. Mitochondrial DNA Rearrangement Spectrum in Brain Tissue of Alzheimer’s Disease: Analysis of 13 Cases

    PubMed Central

    Chen, Yucai; Liu, Changsheng; Parker, William Davis; Chen, Hongyi; Beach, Thomas G.; Liu, Xinhua; Serrano, Geidy E.; Lu, Yanfen; Huang, Jianjun; Yang, Kunfang; Wang, Chunmei

    2016-01-01

    Background Mitochondrial dysfunction may play a central role in the pathologic process of Alzheimer’s disease (AD), but there is still a scarcity of data that directly links the pathology of AD with the alteration of mitochondrial DNA. This study aimed to provide a comprehensive assessment of mtDNA rearrangement events in AD brain tissue. Patients and Methods Postmortem frozen human brain cerebral cortex samples were obtained from the Banner Sun Health Research Institute Brain and Body Donation Program, Sun City, AZ. Mitochondria were isolated and direct sequence by using MiSeq®, and analyzed by relative software. Results Three types of mitochondrial DNA (mtDNA) rearrangements have been seen in post mortem human brain tissue from patients with AD and age matched control. These observed rearrangements include a deletion, F-type rearrangement, and R-type rearrangement. We detected a high level of mtDNA rearrangement in brain tissue from cognitively normal subjects, as well as the patients with Alzheimer's disease (AD). The rate of rearrangements was calculated by dividing the number of positive rearrangements by the coverage depth. The rearrangement rate was significantly higher in AD brain tissue than in control brain tissue (17.9%versus 6.7%; p = 0.0052). Of specific types of rearrangement, deletions were markedly increased in AD (9.2% versus 2.3%; p = 0.0005). Conclusions Our data showed that failure of mitochondrial DNA in AD brain might be important etiology of AD pathology. PMID:27299301

  14. Analysis of common mitochondrial DNA mutations by allele-specific oligonucleotide and Southern blot hybridization.

    PubMed

    Tang, Sha; Halberg, Michelle C; Floyd, Kristen C; Wang, Jing

    2012-01-01

    Mitochondrial disorders are clinically and genetically heterogeneous. There are a set of recurrent point mutations in the mitochondrial DNA (mtDNA) that are responsible for common mitochondrial diseases, including MELAS (mitochondrial encephalopathy, lactic acidosis, stroke-like episodes), MERRF (myoclonic epilepsy and ragged red fibers), LHON (Leber's hereditary optic neuropathy), NARP (neuropathy, ataxia, retinitis pigmentosa), and Leigh syndrome. Most of the pathogenic mtDNA point mutations are present in the heteroplasmic state, meaning that the wild-type and mutant-containing mtDNA molecules are coexisting. Clinical heterogeneity may be due to the degree of mutant load (heteroplasmy) and distribution of heteroplasmic mutations in affected tissues. Additionally, Kearns-Sayre syndrome and Pearson syndrome are caused by large mtDNA deletions. In this chapter, we describe a multiplex PCR/allele-specific oligonucleotide (ASO) hybridization method for the screening of 13 common point mutations. This method allows the detection of low percentage of mutant heteroplasmy. In addition, a nonradioactive Southern blot hybridization protocol for the analysis of mtDNA large deletions is also described. PMID:22215554

  15. Sequencing mitochondrial DNA polymorphisms by hybridization

    SciTech Connect

    Chee, M.S.; Lockhart, D.J.; Hubbell, E.

    1994-09-01

    We have investigated the use of DNA chips for genetic analysis, using human mitochondrial DNA (mtDNA) as a model. The DNA chips are made up of ordered arrays of DNA oligonucleotide probes, synthesized on a glass substrate using photolithographic techniques. The synthesis site for each different probe is specifically addressed by illumination of the substrate through a photolithographic mask, achieving selective deprotection Nucleoside phosphoramidites bearing photolabile protecting groups are coupled only to exposed sites. Repeated cycles of deprotection and coupling generate all the probes in parallel. The set of 4{sup N} N-mer probes can be synthesized in only 4N steps. Any subset can be synthesized in 4N steps. Any subset can be synthesized in 4N or fewer steps. Sequences amplified from the D-loop region of human mitochondrial DNA (mtDNA) were fluorescently labelled and hybridized to DNA chips containing probes specific for mtDNA. Each nucleotide of a 1.3 kb region spanning the D loop is represented by four probes on the chip. Each probe has a different base at the position of interest: together they comprise a set of A, C, G and T probes which are otherwise identical. In principle, only one probe-target hybrid will be a perfect match. The other three will be single base mismatches. Fluorescence imaging of the hybridized chip allows quantification of hybridization signals. Heterozygous mixtures of sequences can also be characterized. We have developed software to quantitate and interpret the hybridization signals, and to call the sequence automatically. Results of sequence analysis of human mtDNAs will be presented.

  16. Thymidine kinase 2 enzyme kinetics elucidate the mechanism of thymidine-induced mitochondrial DNA depletion.

    PubMed

    Sun, Ren; Wang, Liya

    2014-10-01

    Mitochondrial thymidine kinase 2 (TK2) is a nuclear gene-encoded protein, synthesized in the cytosol and subsequently translocated into the mitochondrial matrix, where it catalyzes the phosphorylation of thymidine (dT) and deoxycytidine (dC). The kinetics of dT phosphorylation exhibits negative cooperativity, but dC phosphorylation follows hyperbolic Michaelis-Menten kinetics. The two substrates compete with each other in that dT is a competitive inhibitor of dC phosphorylation, while dC acts as a noncompetitive inhibitor of dT phosphorylation. In addition, TK2 is feedback inhibited by dTTP and dCTP. TK2 also phosphorylates a number of pyrimidine nucleoside analogues used in antiviral and anticancer therapy and thus plays an important role in mitochondrial toxicities caused by nucleoside analogues. Deficiency in TK2 activity due to genetic alterations causes devastating mitochondrial diseases, which are characterized by mitochondrial DNA (mtDNA) depletion or multiple deletions in the affected tissues. Severe TK2 deficiency is associated with early-onset fatal mitochondrial DNA depletion syndrome, while less severe deficiencies result in late-onset phenotypes. In this review, studies of the enzyme kinetic behavior of TK2 enzyme variants are used to explain the mechanism of mtDNA depletion caused by TK2 mutations, thymidine overload due to thymidine phosphorylase deficiency, and mitochondrial toxicity caused by antiviral thymidine analogues. PMID:25215937

  17. Higher plant mitochondrial DNA: Genomes, genes, mutants, transcription, translation

    SciTech Connect

    Not Available

    1986-01-01

    This volume contains brief summaries of 63 presentations given at the International Workshop on Higher Plant Mitochondrial DNA. The presentations are organized into topical discussions addressing plant genomes, mitochondrial genes, cytoplasmic male sterility, transcription, translation, plasmids and tissue culture. (DT)

  18. In vivo rearrangement of mitochondrial DNA in Saccharomyces cerevisiae.

    PubMed Central

    Clark-Walker, G D

    1989-01-01

    A revertant (SPR1) from a high-frequency petite strain of Saccharomyces cerevisiae has been shown by mapping and sequence analysis to have a rearranged mitochondrial genome. In vivo rearrangement has occurred through a subgenomic-recombination pathway involving the initial formation of subgenomic molecules in nascent petite mutants, recombination between these molecules to form an intermediate with direct repeats, and subsequent excision of the resident or symposed duplication to yield a molecule with three novel junctions and a changed gene order. Sequencing of the novel junctions shows that intramolecular recombination in each case occurs by means of G + C-rich short direct repeats of 40-51 base pairs. Mapping and sequence analysis also reveal that the SPR1 mitochondrial genome lacks three sectors of the wild-type molecule of 4.4, 1.7, and 0.5 kilobases. Each of these sectors occurs in nontemplate, base-biased DNA, that is over 90% A + T. Absence of these sectors together with a rearranged gene order does not appear to affect the phenotype of SPR1, as colony morphology and growth rate on a number of different substrates are not detectably different from the wild type. Lack of phenotypic change suggests that mitochondrial gene expression has not been noticeably disrupted in SPR1 despite deletion of the consensus nonomer promoter upstream from the glutamic acid tRNA gene. Dispensability of DNA sectors and the presence of recombinogenic short, direct repeats are mandatory features of the subgenomic-recombination pathway for creating rearrangements in baker's yeast mtDNA. It is proposed that, in other organisms, organelle genomes containing these elements may undergo rearrangement by the same steps. Images PMID:2682661

  19. Barriers to male transmission of mitochondrial DNA in sperm development.

    PubMed

    DeLuca, Steven Z; O'Farrell, Patrick H

    2012-03-13

    Across the eukaryotic phylogeny, offspring usually inherit their mitochondrial genome from only one of two parents: in animals, the female. Although mechanisms that eliminate paternally derived mitochondria from the zygote have been sought, the developmental stage at which paternal transmission of mitochondrial DNA is restricted is unknown in most animals. Here, we show that the mitochondria of mature Drosophila sperm lack DNA, and we uncover two processes that eliminate mitochondrial DNA during spermatogenesis. Visualization of mitochondrial DNA nucleoids revealed their abrupt disappearance from developing spermatids in a process requiring the mitochondrial nuclease, Endonuclease G. In Endonuclease G mutants, persisting nucleoids are swept out of spermatids by a cellular remodeling process that trims and shapes spermatid tails. Our results show that mitochondrial DNA is eliminated during spermatogenesis, thereby removing the capacity of sperm to transmit the mitochondrial genome to the next generation. PMID:22421049

  20. Tissue mitochondrial DNA changes. A stochastic system.

    PubMed

    Kopsidas, G; Kovalenko, S A; Heffernan, D R; Yarovaya, N; Kramarova, L; Stojanovski, D; Borg, J; Islam, M M; Caragounis, A; Linnane, A W

    2000-06-01

    Several lines of evidence support the view that the bioenergetic function of the mitochondria in postmitotic tissue deteriorates during normal aging. Skeletal muscle is one such tissue that undergoes age-related fiber loss and atrophy and an age-associated rise in the number of cytochrome c oxidase (COX) deficient fibers. With such metabolic pressure placed on skeletal muscle it would be an obvious advantage to supplement the cellular requirement for energy by up-regulating glycolysis, and alternative pathway for energy synthesis. Analysis of rat skeletal muscle utilizing antibodies directed against key enzymes involved in glycolysis has provided evidence of an age-associated increase in the enzymes involved in glycolysis. Fructose-6-phosphate kinase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, and pyruvate kinase protein levels appeared to increase in the soleus, gracilis, and quadriceps muscle from aged rats. The increase in the level of these proteins appeared to correlate to a corresponding decrease in the amount of cytochrome c oxidase protein measured in the same tissue. Together these results are interpreted to represent a general upregulation of glycolysis that occurs in response to the age-associated decrease in mitochondrial energy capacity. Mitochondrial DNA (mtDNA) damage and mutations may accumulate with advancing age until they reach a threshold level were they impinge on the bioenergy capacity of the cell or tissue. Evidence indicates that mtDNA from the skeletal muscle of both aged rats and humans not only undergoes changes at the nucleotide sequence level (mutations and DNA damage), but also undergoes modifications at the tertiary level to generate unique age-related conformational mtDNA species. One particular age-related conformational form was only detected in aged rat tissues with high demands on respiration, specifically in heart, kidney, soleus muscle, and, to a lesser extent, the quadriceps muscle. The age-related form was not

  1. Assignment of two mitochondrially synthesized polypeptides to human mitochondrial DNA and their use in the study of intracellular mitochondrial interaction

    SciTech Connect

    Oliver, N.A.; Wallace, D.C.

    1982-01-01

    Two mitochondrially synthesized marker polypeptides, MV-1 and MV-2, were found in human HeLa and HT1080 cells. These were assigned to the mitochondrial DNA in HeLa-HT1080 hybrids and hybrids by demonstrating their linkage to cytoplasmic genetic markers. These markers include mitochondrial DNA restriction site polymorphisms and resistance to chloramphenicol, an inhibitor of mitochondrial protein synthesis. In the absence of chloramphenicol, the expression of MV-1 and MV-2 in hybrids and hybrids was found to be directly proportional to the ratio of the parental mitochondrial DNAs. In the presence of chloramphenicol, the marker polypeptide linked to the chloramphenicol-sensitive mitochondrial DNA continued to be expressed. This demonstrated that resistant and sensitive mitochondrial DNAs can cooperate within a cell for gene expression and that the CAP-resistant allele was dominant or codominant to sensitive. Such cooperation suggests that mitochondrial DNAs can be exchanged between mitochondria.

  2. Mitochondrial DNA Toxicity in Forebrain Neurons Causes Apoptosis, Neurodegeneration, and Impaired Behavior ▿

    PubMed Central

    Lauritzen, Knut H.; Moldestad, Olve; Eide, Lars; Carlsen, Harald; Nesse, Gaute; Storm, Johan F.; Mansuy, Isabelle M.; Bergersen, Linda H.; Klungland, Arne

    2010-01-01

    Mitochondrial dysfunction underlying changes in neurodegenerative diseases is often associated with apoptosis and a progressive loss of neurons, and damage to the mitochondrial genome is proposed to be involved in such pathologies. In the present study we designed a mouse model that allows us to specifically induce mitochondrial DNA toxicity in the forebrain neurons of adult mice. This is achieved by CaMKIIα-regulated inducible expression of a mutated version of the mitochondrial UNG DNA repair enzyme (mutUNG1). This enzyme is capable of removing thymine from the mitochondrial genome. We demonstrate that a continual generation of apyrimidinic sites causes apoptosis and neuronal death. These defects are associated with behavioral alterations characterized by increased locomotor activity, impaired cognitive abilities, and lack of anxietylike responses. In summary, whereas mitochondrial base substitution and deletions previously have been shown to correlate with premature and natural aging, respectively, we show that a high level of apyrimidinic sites lead to mitochondrial DNA cytotoxicity, which causes apoptosis, followed by neurodegeneration. PMID:20065039

  3. Evaluation of gastrointestinal mtDNA depletion in mitochondrial neurogastrointestinal encephalomyopathy (MNGIE).

    PubMed

    Giordano, Carla; d'Amati, Giulia

    2011-01-01

    Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a rare disease characterized by severe gastro-intestinal (GI) dysmotility caused by mutations in the thymidine phosphorylase gene. Thymidine phosphorylase (TP) is involved in the control of the pyrimidine nucleoside pool of the cell. Reduced TP activity induces nucleotide pool imbalances that in turn affect both the rate and fidelity of mtDNA replication, leading to multiple deletions and depletion of mtDNA. By using laser capture microdissection and quantitative real-time-polymerase chain reaction technique, we showed that depletion of mitochondrial DNA (mtDNA) is the most prominent molecular defect in the gut wall of MNGIE patients. Depletion affects severely the smooth muscle cells of muscularis propria and the skeletal muscle component of the upper esophagus, while ganglion cells of the myenteric plexus show only a milder mtDNA reduction. PMID:21761307

  4. Mitochondrial DNA perspective of Serbian genetic diversity.

    PubMed

    Davidovic, Slobodan; Malyarchuk, Boris; Aleksic, Jelena M; Derenko, Miroslava; Topalovic, Vladanka; Litvinov, Andrey; Stevanovic, Milena; Kovacevic-Grujicic, Natasa

    2015-03-01

    Although south-Slavic populations have been studied to date from various aspects, the population of Serbia, occupying the central part of the Balkan Peninsula, is still genetically understudied at least at the level of mitochondrial DNA (mtDNA) variation. We analyzed polymorphisms of the first and the second mtDNA hypervariable segments (HVS-I and HVS-II) and informative coding-region markers in 139 Serbians to shed more light on their mtDNA variability, and used available data on other Slavic and neighboring non-Slavic populations to assess their interrelations in a broader European context. The contemporary Serbian mtDNA profile is consistent with the general European maternal landscape having a substantial proportion of shared haplotypes with eastern, central, and southern European populations. Serbian population was characterized as an important link between easternmost and westernmost south-Slavic populations due to the observed lack of genetic differentiation with all other south-Slavic populations and its geographical positioning within the Balkan Peninsula. An increased heterogeneity of south Slavs, most likely mirroring turbulent demographic events within the Balkan Peninsula over time (i.e., frequent admixture and differential introgression of various gene pools), and a marked geographical stratification of Slavs to south-, east-, and west-Slavic groups, were also found. A phylogeographic analyses of 20 completely sequenced Serbian mitochondrial genomes revealed not only the presence of mtDNA lineages predominantly found within the Slavic gene pool (U4a2a*, U4a2a1, U4a2c, U4a2g, HV10), supporting a common Slavic origin, but also lineages that may have originated within the southern Europe (H5*, H5e1, H5a1v) and the Balkan Peninsula in particular (H6a2b and L2a1k). PMID:25418795

  5. Mitochondrial DNA depletion and thymidine phosphate pool dynamics in a cellular model of mitochondrial neurogastrointestinal encephalomyopathy.

    PubMed

    Pontarin, Giovanna; Ferraro, Paola; Valentino, Maria L; Hirano, Michio; Reichard, Peter; Bianchi, Vera

    2006-08-11

    Mitochondrial (mt) neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disease associated with depletion, deletions, and point mutations of mtDNA. Patients lack a functional thymidine phosphorylase and their plasma contains high concentrations of thymidine and deoxyuridine; elevation of the corresponding triphosphates probably impairs normal mtDNA replication and repair. To study metabolic events leading to MNGIE we used as model systems skin and lung fibroblasts cultured in the presence of thymidine and/or deoxyuridine at concentrations close to those in the plasma of the patients, a more than 100-fold excess relative to controls. The two deoxynucleosides increased the mt and cytosolic dTTP pools of skin fibroblasts almost 2-fold in cycling cells and 8-fold in quiescent cells. During up to a two-month incubation of quiescent fibroblasts with thymidine (but not with deoxyuridine), mtDNA decreased to approximately 50% without showing deletions or point mutations. When we removed thymidine, but maintained the quiescent state, mtDNA recovered rapidly. With thymidine in the medium, the dTTP pool of quiescent cells turned over rapidly at a rate depending on the concentration of thymidine, due to increased degradation and resynthesis of dTMP in a substrate (=futile) cycle between thymidine kinase and 5'-deoxyribonucleotidase. The cycle limited the expansion of the dTTP pool at the expense of ATP hydrolysis. We propose that the substrate cycle represents a regulatory mechanism to protect cells from harmful increases of dTTP. Thus MNGIE patients may increase their consumption of ATP to counteract an unlimited expansion of the dTTP pool caused by circulating thymidine. PMID:16774911

  6. Site-specific somatic mitochondrial DNA point mutations in patients with thymidine phosphorylase deficiency

    PubMed Central

    Nishigaki, Yutaka; Martí, Ramon; Copeland, William C.; Hirano, Michio

    2003-01-01

    Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder caused by loss-of-function mutations in the gene encoding thymidine phosphorylase (TP). This deficiency of TP leads to increased circulating levels of thymidine (deoxythymidine, dThd) and deoxyuridine (dUrd) and has been associated with multiple deletions and depletion of mitochondrial DNA (mtDNA). Here we describe 36 point mutations in mtDNA of tissues and cultured cells from MNGIE patients. Thirty-one mtDNA point mutations (86%) were T-to-C transitions, and of these, 25 were preceded by 5′-AA sequences. In addition, we identified a single base-pair mtDNA deletion and a TT-to-AA mutation. Next-nucleotide effects and dislocation mutagenesis may contribute to the formation of these mutations. These results provide the first demonstration that alterations of nucleoside metabolism can induce multiple sequence-specific point mutations in humans. We hypothesize that, in patients with TP deficiency, increased levels of dThd and dUrd cause mitochondrial nucleotide pool imbalances, which, in turn, lead to mtDNA abnormalities including site-specific point mutations. PMID:12813027

  7. Site-specific somatic mitochondrial DNA point mutations in patients with thymidine phosphorylase deficiency.

    PubMed

    Nishigaki, Yutaka; Martí, Ramon; Copeland, William C; Hirano, Michio

    2003-06-01

    Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder caused by loss-of-function mutations in the gene encoding thymidine phosphorylase (TP). This deficiency of TP leads to increased circulating levels of thymidine (deoxythymidine, dThd) and deoxyuridine (dUrd) and has been associated with multiple deletions and depletion of mitochondrial DNA (mtDNA). Here we describe 36 point mutations in mtDNA of tissues and cultured cells from MNGIE patients. Thirty-one mtDNA point mutations (86%) were T-to-C transitions, and of these, 25 were preceded by 5'-AA sequences. In addition, we identified a single base-pair mtDNA deletion and a TT-to-AA mutation. Next-nucleotide effects and dislocation mutagenesis may contribute to the formation of these mutations. These results provide the first demonstration that alterations of nucleoside metabolism can induce multiple sequence-specific point mutations in humans. We hypothesize that, in patients with TP deficiency, increased levels of dThd and dUrd cause mitochondrial nucleotide pool imbalances, which, in turn, lead to mtDNA abnormalities including site-specific point mutations. PMID:12813027

  8. Recent stable insertion of mitochondrial DNA into an Arabidopsis polyubiquitin gene by nonhomologous recombination.

    PubMed

    Sun, C W; Callis, J

    1993-01-01

    Sequence analysis of a newly identified polyubiquitin gene (UBQ13) from the Columbia ecotype of Arabidopsis thaliana revealed that the gene contained a 3.9-kb insertion in the coding region. All subclones of the 3.9-kb insert hybridized to isolated mitochondrial DNA. The insert was found to consist of at least two, possibly three, distinct DNA segments from the mitochondrial genome. A 590-bp region of the insert is nearly identical to the Arabidopsis mitochondrial nad1 gene. UBQ13 restriction fragments in total cellular DNA from ecotypes Ler, No-0, Be-0, WS, and RLD were identified and, with the exception of Be-0, their sizes were equivalent to that predicted from the corresponding ecotype Columbia UBQ13 restriction fragment without the mitochondrial insert. Isolation by polymerase chain reaction and sequence determination of UBQ13 sequences from the other ecotypes showed that all lacked the mitochondrial insert. All ecotypes examined, except Columbia, contain intact open reading frames in the region of the insert, including four ubiquitin codons which Columbia lacks. This indicates that the mitochondrial DNA in UBQ13 in ecotype Columbia is the result of an integration event that occurred after speciation of Arabidopsis rather than a deletion event that occurred in all ecotypes except Columbia. This stable movement of mitochondrial DNA to the nucleus is so recent that there are few nucleotide changes subsequent to the transfer event. This allows for precise analysis of the sequences involved and elucidation of the possible mechanism. The presence of intron sequences in the transferred nucleic acid indicates that DNA was the transfer intermediate. The lack of sequence identity between the integrating sequence and the target site, represented by the other Arabidopsis ecotypes, suggests that integration occurred via nonhomologus recombination. This nuclear/organellar gene transfer event is strikingly similar to the experimentally accessible process of nuclear

  9. Loss-of-function mutations in MGME1 impair mtDNA replication and cause multi-systemic mitochondrial disease

    PubMed Central

    Kornblum, Cornelia; Nicholls, Thomas J; Haack, Tobias B.; Schöler, Susanne; Peeva, Viktoriya; Danhauser, Katharina; Hallmann, Kerstin; Zsurka, Gábor; Rorbach, Joanna; Iuso, Arcangela; Wieland, Thomas; Sciacco, Monica; Ronchi, Dario; Comi, Giacomo P.; Moggio, Maurizio; Quinzii, Catarina M.; DiMauro, Salvatore; Calvo, Sarah E.; Mootha, Vamsi K.; Klopstock, Thomas; Strom, Tim M.; Meitinger, Thomas; Minczuk, Michal; Kunz, Wolfram S.; Prokisch, Holger

    2013-01-01

    Known disease mechanisms in mitochondrial DNA (mtDNA) maintenance disorders alter either the mitochondrial replication machinery (POLG1, POLG22 and C10orf23) or the biosynthesis pathways of deoxyribonucleoside 5′-triphosphates for mtDNA synthesis4–11. However, in many of these disorders, the underlying genetic defect has not yet been discovered. Here, we identified homozygous nonsense and missense mutations in the orphan gene C20orf72 in three families with a mitochondrial syndrome characterized by external ophthalmoplegia, emaciation, and respiratory failure. Muscle biopsies showed mtDNA depletion and multiple mtDNA deletions. C20orf72, hereafter MGME1 (mitochondrial genome maintenance exonuclease 1), encodes a mitochondrial RecB-type exonuclease belonging to the PD-(D/E)XK nuclease superfamily. We demonstrate that MGME1 cleaves single-stranded DNA and processes DNA flap substrates. Upon chemically induced mtDNA depletion, patient fibroblasts fail to repopulate. They also accumulate intermediates of stalled replication and show increased levels of 7S DNA, as do MGME1-depleted cells. Hence, we show that MGME1-mediated mtDNA processing is essential for mitochondrial genome maintenance. PMID:23313956

  10. Acceptance of domestic cat mitochondrial DNA in a criminal proceeding.

    PubMed

    Lyons, Leslie A; Grahn, Robert A; Kun, Teri J; Netzel, Linda R; Wictum, Elizabeth E; Halverson, Joy L

    2014-11-01

    Shed hair from domestic animals readily adheres to clothing and other contact items, providing a source of transfer evidence for criminal investigations. Mitochondrial DNA is often the only option for DNA analysis of shed hair. Human mitochondrial DNA analysis has been accepted in the US court system since 1996. The murder trial of the State of Missouri versus Henry L. Polk, Jr. represents the first legal proceeding where cat mitochondrial DNA analysis was introduced into evidence. The mitochondrial DNA evidence was initially considered inadmissible due to concerns about the cat dataset and the scientific acceptance of the marker. Those concerns were subsequently addressed, and the evidence was deemed admissible. This report reviews the case in regards to the cat biological evidence and its ultimate admission as generally accepted and reliable. Expansion and saturation analysis of the cat mitochondrial DNA control region dataset supported the initial interpretation of the evidence. PMID:25086413

  11. Irc3 is a mitochondrial DNA branch migration enzyme

    PubMed Central

    Gaidutšik, Ilja; Sedman, Tiina; Sillamaa, Sirelin; Sedman, Juhan

    2016-01-01

    Integrity of mitochondrial DNA (mtDNA) is essential for cellular energy metabolism. In the budding yeast Saccharomyces cerevisiae, a large number of nuclear genes influence the stability of mitochondrial genome; however, most corresponding gene products act indirectly and the actual molecular mechanisms of mtDNA inheritance remain poorly characterized. Recently, we found that a Superfamily II helicase Irc3 is required for the maintenance of mitochondrial genome integrity. Here we show that Irc3 is a mitochondrial DNA branch migration enzyme. Irc3 modulates mtDNA metabolic intermediates by preferential binding and unwinding Holliday junctions and replication fork structures. Furthermore, we demonstrate that the loss of Irc3 can be complemented with mitochondrially targeted RecG of Escherichia coli. We suggest that Irc3 could support the stability of mtDNA by stimulating fork regression and branch migration or by inhibiting the formation of irregular branched molecules. PMID:27194389

  12. Irc3 is a mitochondrial DNA branch migration enzyme.

    PubMed

    Gaidutšik, Ilja; Sedman, Tiina; Sillamaa, Sirelin; Sedman, Juhan

    2016-01-01

    Integrity of mitochondrial DNA (mtDNA) is essential for cellular energy metabolism. In the budding yeast Saccharomyces cerevisiae, a large number of nuclear genes influence the stability of mitochondrial genome; however, most corresponding gene products act indirectly and the actual molecular mechanisms of mtDNA inheritance remain poorly characterized. Recently, we found that a Superfamily II helicase Irc3 is required for the maintenance of mitochondrial genome integrity. Here we show that Irc3 is a mitochondrial DNA branch migration enzyme. Irc3 modulates mtDNA metabolic intermediates by preferential binding and unwinding Holliday junctions and replication fork structures. Furthermore, we demonstrate that the loss of Irc3 can be complemented with mitochondrially targeted RecG of Escherichia coli. We suggest that Irc3 could support the stability of mtDNA by stimulating fork regression and branch migration or by inhibiting the formation of irregular branched molecules. PMID:27194389

  13. Acceptance of Domestic Cat Mitochondrial DNA in a Criminal Proceeding

    PubMed Central

    Lyons, Leslie A.; Grahn, Robert A.; Kun, Teri J.; Netzel, Linda R.; Wictum, Elizabeth E.; Halverson, Joy L.

    2014-01-01

    Shed hair from domestic animals readily adheres to clothing and other contact items, providing a source of transfer evidence for criminal investigations. Mitochondrial DNA is often the only option for DNA analysis of shed hair. Human mitochondrial DNA analysis has been accepted in the US court system since 1996. The murder trial of the State of Missouri versus Henry L. Polk, Jr. represents the first legal proceeding where cat mitochondrial DNA analysis was introduced into evidence. The mitochondrial DNA evidence was initially considered inadmissible due to concerns about the cat dataset and the scientific acceptance of the marker. Those concerns were subsequently addressed, and the evidence was deemed admissible. This report reviews the case in regards to the cat biological evidence and its ultimate admission as generally accepted and reliable. Expansion and saturation analysis of the cat mitochondrial DNA control region dataset supported the initial interpretation of the evidence. PMID:25086413

  14. Genetics Home Reference: MPV17-related hepatocerebral mitochondrial DNA depletion syndrome

    MedlinePlus

    ... mitochondrial DNA depletion syndrome MPV17-related hepatocerebral mitochondrial DNA depletion syndrome Enable Javascript to view the expand/ ... All Close All Description MPV17 -related hepatocerebral mitochondrial DNA depletion syndrome is an inherited disorder that can ...

  15. Urinary mitochondrial DNA is a biomarker of mitochondrial disruption and renal dysfunction in acute kidney injury

    PubMed Central

    Whitaker, Ryan M.; Stallons, L. Jay; Kneff, Joshua E.; Alge, Joseph L.; Harmon, Jennifer L.; Rahn, Jennifer J.; Arthur, John M.; Beeson, Craig C.; Chan, Sherine L.; Schnellmann, Rick G.

    2015-01-01

    Recent studies show the importance of mitochondrial dysfunction in the initiation and progression of acute kidney injury (AKI). However, no biomarkers exist linking renal injury to mitochondrial function and integrity. To this end, we evaluated urinary mitochondrial DNA (UmtDNA) as a biomarker of renal injury and function in humans with AKI following cardiac surgery. mtDNA was isolated from the urine of patients following cardiac surgery and quantified by qPCR. Patients were stratified into no AKI, stable AKI and progressive AKI groups based on Acute Kidney Injury Network (AKIN) staging. UmtDNA was elevated in progressive AKI patients, and was associated with progression of patients with AKI at collection to higher AKIN stages. To evaluate the relationship of UmtDNA to measures of renal mitochondrial integrity in AKI, mice were subjected to sham surgery or varying degrees of ischemia followed by 24 hours of reperfusion. UmtDNA increased in mice after 10-15 minutes of ischemia and positively correlated with ischemia time. Furthermore, UmtDNA was predictive of AKI in the mouse model. Finally, UmtDNA levels were negatively correlated with renal cortical mtDNA and mitochondrial gene expression. These translational studies demonstrate that UmtDNA is associated with recovery from AKI following cardiac surgery by serving as an indicator of mitochondrial integrity. Thus, UmtDNA may serve as valuable biomarker for the development of mitochondrial targeted therapies in AKI. PMID:26287315

  16. Mitochondrial DNA: impacting central and peripheral nervous systems

    PubMed Central

    Carelli, Valerio

    2014-01-01

    Because of their high-energy metabolism, neurons are highly dependent on mitochondria, which generate cellular ATP through oxidative phosphorylation. The mitochondrial genome encodes for critical components of the oxidative phosphorylation pathway machinery, and therefore mutations in mitochondrial DNA (mtDNA) cause energy production defects that frequently have severe neurological manifestations. Here, we review the principles of mitochondrial genetics and focus on prototypical mitochondrial diseases to illustrate how primary defects in mtDNA or secondary defects in mtDNA due to nuclear genome mutations can cause prominent neurological and multisystem features. In addition, we discuss the pathophysiological mechanisms underlying mitochondrial diseases, the cellular mechanisms that protect mitochondrial integrity, and the prospects for therapy. PMID:25521375

  17. Mitochondrial DNA damage induced autophagy, cell death, and disease

    PubMed Central

    Van Houten, Bennett; Hunter, Senyene E.; Meyer, Joel N.

    2016-01-01

    Mammalian mitochondria contain multiple small genomes. While these organelles have efficient base excision removal of oxidative DNA lesions and alkylation damage, many DNA repair systems that work on nuclear DNA damage are not active in mitochondria. What is the fate of DNA damage in the mitochondria that cannot be repaired or that overwhelms the repair system? Some forms of mitochondrial DNA damage can apparently trigger mitochondrial DNA destruction, either via direct degradation or through specific forms of autophagy, such as mitophagy. However, accumulation of certain types of mitochondrial damage, in the absence of DNA ligase III (Lig3) or exonuclease G (EXOG), enzymes required for repair, can directly trigger cell death. This review examines the cellular effects of persistent damage to mitochondrial genomes and discusses the very different cell fates that occur in response to different kinds of damage. PMID:26709760

  18. Evolutionary tree for apes and humans based on cleavage maps of mitochondrial DNA.

    PubMed Central

    Ferris, S D; Wilson, A C; Brown, W M

    1981-01-01

    The high rate of evolution of mitochondrial DNA makes this molecule suitable for genealogical research on such closely related species as humans and apes. Because previous approaches failed to establish the branching order of the lineages leading to humans, gorillas, and chimpanzees, we compared human mitochondrial DNA to mitochondrial DNA from five species of ape (common chimpanzee, pygmy chimpanzee, gorilla, orangutan, and gibbon). About 50 restriction endonuclease cleavage sites were mapped in each mitochondrial DNA, and the six maps were aligned with respect to 11 invariant positions. Differences among the maps were evident at 121 positions. Both conserved and variable sites are widely dispersed in the mitochondrial genome. Besides site differences, ascribed to point mutations, there is evidence for one rearrangement: the gorilla map is shorter than the other owing to the deletion of 95 base pairs near the origin of replication. The parsimony method of deriving all six maps from a common ancestor produced a genealogical tree in which the common and pygmy chimpanzee maps are the most closely related pair; the closest relative of this pair is the gorilla map; most closely related to this trio is the human map. This tree is only slightly more parsimonious than some alternative trees. Although this study has given a magnified view of the genetic differences among humans and apes, the possibility of a three-way split among the lineages leading to humans, gorillas, and chimpanzees still deserves serious consideration. Images PMID:6264476

  19. Mitochondrial DNA copy number and replication in reprogramming and differentiation.

    PubMed

    St John, Justin C

    2016-04-01

    Until recently, it was thought that the role of the mitochondrial genome was confined to encoding key proteins that generate ATP through the process of oxidative phosphorylation in the electron transfer chain. However, with increasing new evidence, it is apparent that the mitochondrial genome has a major role to play in a number of diseases and phenotypes. For example, mitochondrial variants and copy number have been implicated in the processes of fertilisation outcome and development and the onset of tumorigenesis. On the other hand, mitochondrial DNA (mtDNA) haplotypes have been implicated in a variety of diseases and most likely account for the adaptation that our ancestors achieved in order that they were fit for their environments. The mechanisms, which enable the mitochondrial genome to either protect or promote the disease phenotype, require further elucidation. However, there appears to be significant 'crosstalk' between the chromosomal and mitochondrial genomes that enable this to take place. One such mechanism is the regulation of DNA methylation by mitochondrial DNA, which is often perturbed in reprogrammed cells that have undergone dedifferentiation and affects mitochondrial DNA copy number. Furthermore, it appears that the mitochondrial genome interacts with the chromosomal genome to regulate the transcription of key genes at certain stages during development. Additionally, the mitochondrial genome can accumulate a series of mtDNA variants, which can lead to diseases such as cancer. It is likely that a combination of certain mitochondrial variants and aberrant patterns of mtDNA copy number could indeed account for many diseases that have previously been unaccounted for. This review focuses on the role that the mitochondrial genome plays especially during early stages of development and in cancer. PMID:26827792

  20. Tissue-specific modulation of mitochondrial DNA segregation by a defect in mitochondrial division.

    PubMed

    Jokinen, Riikka; Marttinen, Paula; Stewart, James B; Neil Dear, T; Battersby, Brendan J

    2016-02-15

    Mitochondria are dynamic organelles that divide and fuse by remodeling an outer and inner membrane in response to developmental, physiological and stress stimuli. These events are coordinated by conserved dynamin-related GTPases. The dynamics of mitochondrial morphology require coordination with mitochondrial DNA (mtDNA) to ensure faithful genome transmission, however, this process remains poorly understood. Mitochondrial division is linked to the segregation of mtDNA but how it affects cases of mtDNA heteroplasmy, where two or more mtDNA variants/mutations co-exist in a cell, is unknown. Segregation of heteroplasmic human pathogenic mtDNA mutations is a critical factor in the onset and severity of human mitochondrial diseases. Here, we investigated the coupling of mitochondrial morphology to the transmission and segregation of mtDNA in mammals by taking advantage of two genetically modified mouse models: one with a dominant-negative mutation in the dynamin-related protein 1 (Drp1 or Dnm1l) that impairs mitochondrial fission and the other, heteroplasmic mice segregating two neutral mtDNA haplotypes (BALB and NZB). We show a tissue-specific response to mtDNA segregation from a defect in mitochondrial fission. Only mtDNA segregation in the hematopoietic compartment is modulated from impaired Dnm1l function. In contrast, no effect was observed in other tissues arising from the three germ layers during development and in mtDNA transmission through the female germline. Our data suggest a robust organization of a heteroplasmic mtDNA segregating unit across mammalian cell types that can overcome impaired mitochondrial division to ensure faithful transmission of the mitochondrial genome. PMID:26681804

  1. Mitochondrial DNA damage and efficiency of ATP biosynthesis: mathematical model.

    PubMed

    Beregovskaya, N; Maiboroda, R

    1995-01-21

    The role of mitochondrial DNA (mtDNA) damage in ageing processes and in malignant transformation of a cell is discussed. A mathematical model of the mtDNA population in a cell and in tissue is constructed. The model describes the effects of mtDNA damages accumulated during ageing and some features of malignant transformation and regeneration. PMID:7891454

  2. mtDNA Deletion in an Iranian Infant with Pearson Marrow Syndrome

    PubMed Central

    Arzanian, Mohammad Taghi; Eghbali, Aziz; Karimzade, Parvaneh; Ahmadi, Mitra; Houshmand, Massoud; Rezaei, Nima

    2010-01-01

    Background Pearson syndrome (PS) is a rare multisystem mitochondrial disorder of hematopoietic system, characterized by refractory sideroblastic anemia, pancytopenia, exocrine pancreatic insufficiency, and variable neurologic, hepatic, renal, and endocrine failure. Case Presentation We describe a six-month-old female infant with Pearson marrow syndrome who presented with neurological manifestations. She had several episodes of seizures. Hematopoietic abnormalities were macrocytic anemia and neutropenia. Bone marrow aspiration revealed a cellular marrow with marked vacuolization of erythroid and myeloid precursors. Analysis of mtDNA in peripheral blood showed 8.5 kb deletion that was compatible with the diagnosis of PS. Conclusion PS should be considered in infants with neurologic diseases, in patients with cytopenias, and also in patients with acidosis or refractory anemia. PMID:23056691

  3. Mitochondrial Citrate Transporter-dependent Metabolic Signature in the 22q11.2 Deletion Syndrome.

    PubMed

    Napoli, Eleonora; Tassone, Flora; Wong, Sarah; Angkustsiri, Kathleen; Simon, Tony J; Song, Gyu; Giulivi, Cecilia

    2015-09-18

    The congenital disorder 22q11.2 deletion syndrome (22qDS), characterized by a hemizygous deletion of 1.5-3 Mb on chromosome 22 at locus 11.2, is the most common microdeletion disorder (estimated prevalence of 1 in 4000) and the second risk factor for schizophrenia. Nine of ∼30 genes involved in 22qDS have the potential of disrupting mitochondrial metabolism (COMT, UFD1L, DGCR8, MRPL40, PRODH, SLC25A1, TXNRD2, T10, and ZDHHC8). Deficits in bioenergetics during early postnatal brain development could set the basis for a disrupted neuronal metabolism or synaptic signaling, partly explaining the higher incidence in developmental and behavioral deficits in these individuals. Here, we investigated whether mitochondrial outcomes and metabolites from 22qDS children segregated with the altered dosage of one or several of these mitochondrial genes contributing to 22qDS etiology and/or morbidity. Plasma metabolomics, lymphocytic mitochondrial outcomes, and epigenetics (histone H3 Lys-4 trimethylation and 5-methylcytosine) were evaluated in samples from 11 22qDS children and 13 age- and sex-matched neurotypically developing controls. Metabolite differences between 22qDS children and controls reflected a shift from oxidative phosphorylation to glycolysis (higher lactate/pyruvate ratios) accompanied by an increase in reductive carboxylation of α-ketoglutarate (increased concentrations of 2-hydroxyglutaric acid, cholesterol, and fatty acids). Altered metabolism in 22qDS reflected a critical role for the haploinsufficiency of the mitochondrial citrate transporter SLC25A1, further enhanced by HIF-1α, MYC, and metabolite controls. This comprehensive profiling served to clarify the biochemistry of this disease underlying its broad, complex phenotype. PMID:26221035

  4. Mitochondrial DNA D-loop hypervariable regions: Czech population data.

    PubMed

    Vanecek, T; Vorel, F; Sip, M

    2004-02-01

    In order to identify polymorphic sites and to find out their frequencies and the frequency of haplotypes, the complete D-loop of mitochondrial DNA (mtDNA) from 93 unrelated Czech Caucasians was sequenced. Sequence comparison showed that 85 haplotypes were found and of these 78 were unique, 6 were observed twice and 1 was observed three times. Genetic diversity (GD) was estimated at 0.999 and the probability of two randomly selected sequences matching (random match probability, RMP) at 1.2%. Additionally these calculations were carried out for hypervariable regions 1, 2 (HV1, HV2), for the area between HV1 and HV2 and for the area of the hypervariable region HV3. The average number of nucleotide differences (ANND) was established to be 10.2 for the complete D-loop. The majority of sequence variations were substitutions, particularly transitions. Deletions were found only in the region where HV3 is situated and insertions in the same place and in poly-C tracts between positions 303 and 315 in HV2. A high degree of length heteroplasmy was found especially in the regions of poly-C tracts between positions 16184 and 16193 in HV1 and between positions 303 and 315 in HV2. Position heteroplasmies were found in two cases. PMID:14593483

  5. Reduction of nuclear encoded enzymes of mitochondrial energy metabolism in cells devoid of mitochondrial DNA.

    PubMed

    Mueller, Edith E; Mayr, Johannes A; Zimmermann, Franz A; Feichtinger, René G; Stanger, Olaf; Sperl, Wolfgang; Kofler, Barbara

    2012-01-20

    Mitochondrial DNA (mtDNA) depletion syndromes are generally associated with reduced activities of oxidative phosphorylation (OXPHOS) enzymes that contain subunits encoded by mtDNA. Conversely, entirely nuclear encoded mitochondrial enzymes in these syndromes, such as the tricarboxylic acid cycle enzyme citrate synthase (CS) and OXPHOS complex II, usually exhibit normal or compensatory enhanced activities. Here we report that a human cell line devoid of mtDNA (HEK293 ρ(0) cells) has diminished activities of both complex II and CS. This finding indicates the existence of a feedback mechanism in ρ(0) cells that downregulates the expression of entirely nuclear encoded components of mitochondrial energy metabolism. PMID:22222373

  6. Lewy body pathology is associated with mitochondrial DNA damage in Parkinson's disease.

    PubMed

    Müller, Sarina K; Bender, Andreas; Laub, Christoph; Högen, Tobias; Schlaudraff, Falk; Liss, Birgit; Klopstock, Thomas; Elstner, Matthias

    2013-09-01

    Mitochondrial dysfunction has been strongly implicated in the pathogenesis of Parkinson's disease (PD) and Alzheimer's disease (AD), but its relation to protein aggregation is unclear. PD is characterized by synuclein aggregation (i.e., Lewy body [LB] formation). In AD, the abnormal accumulation of tau protein forms neurofibrillary tangles. In this study, we laser-dissected LB-positive and -negative neurons from the substantia nigra of postmortem PD brains, and tau-positive and -negative hippocampal neurons from AD brains. We quantified mitochondrial DNA deletions in relation to the cellular phenotype and in comparison with age-matched controls. Deletion levels were highest in LB-positive neurons of PD brains (40.5 ± 16.8%), followed by LB-negative neurons of PD cases (31.8 ± 14.4%) and control subjects (25.6 ± 17.5%; analysis of variance p < 0.005). In hippocampal neurons, deletion levels were 25%-30%, independent of disease status and neurofibrillary tangles. The presented findings imply increased mitochondrial DNA damage in LB-positive midbrain neurons, but do not support a direct causative link of respiratory chain dysfunction and protein aggregation. PMID:23566333

  7. Glom is a novel mitochondrial DNA packaging protein in Physarum polycephalum and causes intense chromatin condensation without suppressing DNA functions.

    PubMed

    Sasaki, Narie; Kuroiwa, Haruko; Nishitani, Chikako; Takano, Hiroyoshi; Higashiyama, Tetsuya; Kobayashi, Tamaki; Shirai, Yuki; Sakai, Atsushi; Kawano, Shigeyuki; Murakami-Murofushi, Kimiko; Kuroiwa, Tsuneyoshi

    2003-12-01

    Mitochondrial DNA (mtDNA) is packed into highly organized structures called mitochondrial nucleoids (mt-nucleoids). To understand the organization of mtDNA and the overall regulation of its genetic activity within the mt-nucleoids, we identified and characterized a novel mtDNA packaging protein, termed Glom (a protein inducing agglomeration of mitochondrial chromosome), from highly condensed mt-nucleoids of the true slime mold, Physarum polycephalum. This protein could bind to the entire mtDNA and package mtDNA into a highly condensed state in vitro. Immunostaining analysis showed that Glom specifically localized throughout the mt-nucleoid. Deduced amino acid sequence revealed that Glom has a lysine-rich region with proline-rich domain in the N-terminal half and two HMG boxes in C-terminal half. Deletion analysis of Glom revealed that the lysine-rich region was sufficient for the intense mtDNA condensation in vitro. When the recombinant Glom proteins containing the lysine-rich region were expressed in Escherichia coli, the condensed nucleoid structures were observed in E. coli. Such in vivo condensation did not interfere with transcription or replication of E. coli chromosome and the proline-rich domain was essential to keep those genetic activities. The expression of Glom also complemented the E. coli mutant lacking the bacterial histone-like protein HU and the HMG-boxes region of Glom was important for the complementation. Our results suggest that Glom is a new mitochondrial histone-like protein having a property to cause intense DNA condensation without suppressing DNA functions. PMID:12960433

  8. Proteomic Dissection of the Mitochondrial DNA Metabolism Apparatus in Arabidopsis

    SciTech Connect

    SAlly A. Mackenzie

    2004-01-06

    This study involves the investigation of nuclear genetic components that regulate mitochondrial genome behavior in higher plants. The approach utilizes the advanced plant model system of Arabidopsis thaliana to identify and functionally characterize multiple components of the mitochondrial DNA replication, recombination and mismatch repair system and their interaction partners. The rationale for the research stems from the central importance of mitochondria to overall cellular metabolism and the essential nature of the mitochondrial genome to mitochondrial function. Relatively little is understood about mitochondrial DNA maintenance and transmission in higher eukaryotes, and the higher plant mitochondrial genome displays unique properties and behavior. This investigation has revealed at least three important properties of plant mitochondrial DNA metabolism components. (1) Many are dual targeted to mitochondrial and chloroplasts by novel mechanisms, suggesting that the mitochondria a nd chloroplast share their genome maintenance apparatus. (2)The MSH1 gene, originating as a component of mismatch repair, has evolved uniquely in plants to participate in differential replication of the mitochondrial genome. (3) This mitochondrial differential replication process, termed substoichiometric shifting and also involving a RecA-related gene, appears to represent an adaptive mechanism to expand plant reproductive capacity and is likely present throughout the plant kingdom.

  9. Mitochondrial regulation of cancer associated nuclear DNA methylation

    SciTech Connect

    Xie Chenghui; Naito, Akihiro; Mizumachi, Takatsugu; Evans, Teresa T.; Douglas, Michael G.; Cooney, Craig A.; Fan Chunyang; Higuchi, Masahiro

    2007-12-21

    The onset and progression of cancer is associated with the methylation-dependent silencing of specific genes, however, the mechanism and its regulation have not been established. We previously demonstrated that reduction of mitochondrial DNA content induces cancer progression. Here we found that mitochondrial DNA-deficient LN{rho}0-8 activates the hypermethylation of the nuclear DNA promoters including the promoter CpG islands of the endothelin B receptor, O{sup 6}-methylguanine-DNA methyltransferase, and E-cadherin. These are unmethylated and the corresponding gene products are expressed in the parental LNCaP containing mitochondrial DNA. The absence of mitochondrial DNA induced DNA methyltransferase 1 expression which was responsible for the methylation patterns observed. Inhibition of DNA methyltransferase eliminated hypermethylation and expressed gene products in LN{rho}0-8. These studies demonstrate loss or reduction of mitochondrial DNA resulted in the induction of DNA methyltransferase 1, hypermethylation of the promoters of endothelin B receptor, O{sup 6}-methylguanine-DNA methyltransferase, and E-cadherin, and reduction of the corresponding gene products.

  10. Mitochondrial DNA haplogroups modify the risk of osteoarthritis by altering mitochondrial function and intracellular mitochondrial signals.

    PubMed

    Fang, Hezhi; Zhang, Fengjiao; Li, Fengjie; Shi, Hao; Ma, Lin; Du, Miaomiao; You, Yanting; Qiu, Ruyi; Nie, Hezhongrong; Shen, Lijun; Bai, Yidong; Lyu, Jianxin

    2016-04-01

    Haplogroup G predisposes one to an increased risk of osteoarthritis (OA) occurrence, while haplogroup B4 is a protective factor against OA onset. However, the underlying mechanism is not known. Here, by using trans-mitochondrial technology, we demonstrate that the activity levels of mitochondrial respiratory chain complex I and III are higher in G cybrids than in haplogroup B4. Increased mitochondrial oxidative phosphorylation (OXPHOS) promotes mitochondrial-related ATP generation in G cybrids, thereby shifting the ATP generation from glycolysis to OXPHOS. Furthermore, we found that lower glycolysis in G cybrids decreased cell viability under hypoxia (1% O2) compared with B4 cybrids. In contrast, G cybrids have a lower NAD(+)/NADH ratio and less generation of reactive oxygen species (ROS) under both hypoxic (1% O2) and normoxic (20% O2) conditions than B4 cybrids, indicating that mitochondrial-mediated signaling pathways (retrograde signaling) differ between these cybrids. Gene expression profiling of G and B4 cybrids using next-generation sequencing technology showed that 404 of 575 differentially expressed genes (DEGs) between G and B4 cybrids are enriched in 17 pathways, of which 11 pathways participate in OA. Quantitative reverse transcription PCR (qRT-PCR) analyses confirmed that G cybrids had lower glycolysis activity than B4 cybrids. In addition, we confirmed that the rheumatoid arthritis pathway was over-activated in G cybrids, although the remaining 9 pathways were not further tested by qRT-PCR. In conclusion, our findings indicate that mtDNA haplogroup G may increase the risk of OA by shifting the metabolic profile from glycolysis to OXPHOS and by over-activating OA-related signaling pathways. PMID:26705675

  11. Human mitochondrial DNA: roles of inherited and somatic mutations

    PubMed Central

    Schon, Eric A.; DiMauro, Salvatore; Hirano, Michio

    2014-01-01

    Mutations in the human mitochondrial genome are known to cause an array of diverse disorders, most of which are maternally inherited, and all of which are associated with defects in oxidative energy metabolism. It is now emerging that somatic mutations in mitochondrial DNA (mtDNA) are also linked to other complex traits, including neurodegenerative diseases, ageing and cancer. Here we discuss insights into the roles of mtDNA mutations in a wide variety of diseases, highlighting the interesting genetic characteristics of the mitochondrial genome and challenges in studying its contribution to pathogenesis. PMID:23154810

  12. Gene therapy for the treatment of mitochondrial DNA disorders.

    PubMed

    Taylor, Robert W

    2005-02-01

    Despite recent epidemiological studies confirming that mitochondrial respiratory chain disorders due to mutations in either the mitochondrial or nuclear genome are amongst the most common inherited human diseases, realistic therapeutic strategies for these patients remain limited. The disappointing response to various vitamins, cofactors and electron acceptors that have been administered to patients in an attempt to bypass the underlying respiratory chain defect, coupled with the complexities of human mitochondrial genetics, means that novel and innovative means are required to offer realistic treatments. Several 'gene therapy' strategies have therefore been proposed to treat patients with pathogenic mitochondrial DNA mutations, and although these are not without their own inherent problems, several exciting approaches promise much in the near future. This review will provide a basic background to mitochondrial genetics and mitochondrial DNA disorders before introducing the various strategies being tested in vitro at present, in cell culture and animal models, and, in the example of therapeutic exercise, in patients themselves. PMID:15757380

  13. Gastrointestinal dysmotility in mitochondrial neurogastrointestinal encephalomyopathy is caused by mitochondrial DNA depletion.

    PubMed

    Giordano, Carla; Sebastiani, Mariangela; De Giorgio, Roberto; Travaglini, Claudia; Tancredi, Andrea; Valentino, Maria Lucia; Bellan, Marzio; Cossarizza, Andrea; Hirano, Michio; d'Amati, Giulia; Carelli, Valerio

    2008-10-01

    Chronic intestinal pseudo-obstruction is a life-threatening condition of unknown pathogenic mechanisms. Chronic intestinal pseudo-obstruction can be a feature of mitochondrial disorders, such as mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), a rare autosomal-recessive syndrome, resulting from mutations in the thymidine phosphorylase gene. MNGIE patients show elevated circulating levels of thymidine and deoxyuridine, and accumulate somatic mitochondrial DNA (mtDNA) defects. The present study aimed to clarify the molecular basis of chronic intestinal pseudo-obstruction in MNGIE. Using laser capture microdissection, we correlated the histopathological features with mtDNA defects in different tissues from the gastrointestinal wall of five MNGIE and ten control patients. We found mtDNA depletion, mitochondrial proliferation, and smooth cell atrophy in the external layer of the muscularis propria, in the stomach and in the small intestine of MNGIE patients. In controls, the lowest amounts of mtDNA were present at the same sites, as compared with other layers of the gastrointestinal wall. We also observed mitochondrial proliferation and mtDNA depletion in small vessel endothelial and smooth muscle cells. Thus, visceral mitochondrial myopathy likely causes gastrointestinal dysmotility in MNGIE patients. The low baseline abundance of mtDNA molecules may predispose smooth muscle cells of the muscularis propria external layer to the toxic effects of thymidine and deoxyuridine, and exposure to high circulating levels of nucleosides may account for the mtDNA depletion observed in the small vessel wall. PMID:18787099

  14. Selfish Mitochondrial DNA Proliferates and Diversifies in Small, but not Large, Experimental Populations of Caenorhabditis briggsae

    PubMed Central

    Phillips, Wendy S.; Coleman-Hulbert, Anna L.; Weiss, Emily S.; Howe, Dana K.; Ping, Sita; Wernick, Riana I.; Estes, Suzanne; Denver, Dee R.

    2015-01-01

    Evolutionary interactions across levels of biological organization contribute to a variety of fundamental processes including genome evolution, reproductive mode transitions, species diversification, and extinction. Evolutionary theory predicts that so-called “selfish” genetic elements will proliferate when the host effective population size (Ne) is small, but direct tests of this prediction remain few. We analyzed the evolutionary dynamics of deletion-containing mitochondrial DNA (ΔmtDNA) molecules, previously characterized as selfish elements, in six different natural strains of the nematode Caenorhabditis briggsae allowed to undergo experimental evolution in a range of population sizes (N = 1, 10, 100, and 1,000) for a maximum of 50 generations. Mitochondrial DNA (mtDNA) was analyzed for replicate lineages at each five-generation time point. Ten different ΔmtDNA molecule types were observed and characterized across generations in the experimental populations. Consistent with predictions from evolutionary theory, lab lines evolved in small-population sizes (e.g., nematode N = 1) were more susceptible to accumulation of high levels of preexisting ΔmtDNA compared with those evolved in larger populations. New ΔmtDNA elements were observed to increase in frequency and persist across time points, but almost exclusively at small population sizes. In some cases, ΔmtDNA levels decreased across generations when population size was large (nematode N = 1,000). Different natural strains of C. briggsae varied in their susceptibilities to ΔmtDNA accumulation, owing in part to preexisting compensatory mtDNA alleles in some strains that prevent deletion formation. This analysis directly demonstrates that the evolutionary trajectories of ΔmtDNA elements depend upon the population-genetic environments and molecular-genetic features of their hosts. PMID:26108490

  15. Mitochondrial DNA phylogeography of the Norway rat.

    PubMed

    Song, Ying; Lan, Zhenjiang; Kohn, Michael H

    2014-01-01

    Central Eastern Asia, foremost the area bordering northern China and Mongolia, has been thought to be the geographic region where Norway rats (Rattus norvegicus) have originated. However recent fossil analyses pointed to their origin in southern China. Moreover, whereas analyses of fossils dated the species' origin as ∼ 1.2-1.6 million years ago (Mya), molecular analyses yielded ∼ 0.5-2.9 Mya. Here, to study the geographic origin of the Norway rat and its spread across the globe we analyzed new and all published mitochondrial DNA cytochrome-b (cyt-b; N = 156) and D-loop (N = 212) sequences representing wild rats from four continents and select inbred strains. Our results are consistent with an origin of the Norway rat in southern China ∼ 1.3 Mya, subsequent prehistoric differentiation and spread in China and Asia from an initially weakly structured ancestral population, followed by further spread and differentiation across the globe during historic times. The recent spreading occurred mostly from derived European populations rather than from archaic Asian populations. We trace laboratory strains to wild lineages from Europe and North America and these represent a subset of the diversity of the rat; leaving Asian lineages largely untapped as a resource for biomedical models. By studying rats from Europe we made the observation that mtDNA diversity cannot be interpreted without consideration of pest control and, possibly, the evolution of rodenticide resistance. However, demographic models explored by forward-time simulations cannot fully explain the low mtDNA diversity of European rats and lack of haplotype sharing with their source from Asia. Comprehensive nuclear marker analyses of a larger sample of Norway rats representing the world are needed to better resolve the evolutionary history of wild rats and of laboratory rats, as well as to better understand the evolution of anticoagulant resistance. PMID:24586325

  16. Mitochondrial DNA Phylogeography of the Norway Rat

    PubMed Central

    Song, Ying; Lan, Zhenjiang; Kohn, Michael H.

    2014-01-01

    Central Eastern Asia, foremost the area bordering northern China and Mongolia, has been thought to be the geographic region where Norway rats (Rattus norvegicus) have originated. However recent fossil analyses pointed to their origin in southern China. Moreover, whereas analyses of fossils dated the species' origin as ∼1.2–1.6 million years ago (Mya), molecular analyses yielded ∼0.5–2.9 Mya. Here, to study the geographic origin of the Norway rat and its spread across the globe we analyzed new and all published mitochondrial DNA cytochrome-b (cyt-b; N = 156) and D-loop (N = 212) sequences representing wild rats from four continents and select inbred strains. Our results are consistent with an origin of the Norway rat in southern China ∼1.3 Mya, subsequent prehistoric differentiation and spread in China and Asia from an initially weakly structured ancestral population, followed by further spread and differentiation across the globe during historic times. The recent spreading occurred mostly from derived European populations rather than from archaic Asian populations. We trace laboratory strains to wild lineages from Europe and North America and these represent a subset of the diversity of the rat; leaving Asian lineages largely untapped as a resource for biomedical models. By studying rats from Europe we made the observation that mtDNA diversity cannot be interpreted without consideration of pest control and, possibly, the evolution of rodenticide resistance. However, demographic models explored by forward-time simulations cannot fully explain the low mtDNA diversity of European rats and lack of haplotype sharing with their source from Asia. Comprehensive nuclear marker analyses of a larger sample of Norway rats representing the world are needed to better resolve the evolutionary history of wild rats and of laboratory rats, as well as to better understand the evolution of anticoagulant resistance. PMID:24586325

  17. Mitochondrial DNA structure in the Arabian Peninsula

    PubMed Central

    2008-01-01

    Background Two potential migratory routes followed by modern humans to colonize Eurasia from Africa have been proposed. These are the two natural passageways that connect both continents: the northern route through the Sinai Peninsula and the southern route across the Bab al Mandab strait. Recent archaeological and genetic evidence have favored a unique southern coastal route. Under this scenario, the study of the population genetic structure of the Arabian Peninsula, the first step out of Africa, to search for primary genetic links between Africa and Eurasia, is crucial. The haploid and maternally inherited mitochondrial DNA (mtDNA) molecule has been the most used genetic marker to identify and to relate lineages with clear geographic origins, as the African Ls and the Eurasian M and N that have a common root with the Africans L3. Results To assess the role of the Arabian Peninsula in the southern route, we genetically analyzed 553 Saudi Arabs using partial (546) and complete mtDNA (7) sequencing, and compared the lineages obtained with those present in Africa, the Near East, central, east and southeast Asia and Australasia. The results showed that the Arabian Peninsula has received substantial gene flow from Africa (20%), detected by the presence of L, M1 and U6 lineages; that an 18% of the Arabian Peninsula lineages have a clear eastern provenance, mainly represented by U lineages; but also by Indian M lineages and rare M links with Central Asia, Indonesia and even Australia. However, the bulk (62%) of the Arabian lineages has a Northern source. Conclusion Although there is evidence of Neolithic and more recent expansions in the Arabian Peninsula, mainly detected by (preHV)1 and J1b lineages, the lack of primitive autochthonous M and N sequences, suggests that this area has been more a receptor of human migrations, including historic ones, from Africa, India, Indonesia and even Australia, than a demographic expansion center along the proposed southern coastal

  18. Sephardic signature in haplogroup T mitochondrial DNA

    PubMed Central

    Bedford, Felice L

    2012-01-01

    A rare combination of mutations within mitochondrial DNA subhaplogroup T2e is identified as affiliated with Sephardic Jews, a group that has received relatively little attention. Four investigations were pursued: Search of the motif in 250 000 control region records across 8 databases, comparison of frequencies of T subhaplogroups (T1, T2b, T2c, T2e, T4, T*) across 11 diverse populations, creation of a phylogenic median-joining network from public T2e control region entries, and analysis of one Sephardic mitochondrial full genomic sequence with the motif. It was found that the rare motif belonged only to Sephardic descendents (Turkey, Bulgaria), to inhabitants of North American regions known for secret Spanish–Jewish colonization, or were consistent with Sephardic ancestry. The incidence of subhaplogroup T2e decreased from the Western Arabian Peninsula to Italy to Spain and into Western Europe. The ratio of sister subhaplogroups T2e to T2b was found to vary 40-fold across populations from a low in the British Isles to a high in Saudi Arabia with the ratio in Sephardim more similar to Saudi Arabia, Egypt, and Italy than to hosts Spain and Portugal. Coding region mutations of 2308G and 14499T may locate the Sephardic signature within T2e, but additional samples and reworking of current T2e phylogenetic branch structure is needed. The Sephardic Turkish community has a less pronounced founder effect than some Ashkenazi groups considered singly (eg, Polish), but other comparisons of interest await comparable averaging. Registries of signatures will benefit the study of populations with a large number of smaller-size founders. PMID:22108605

  19. Oxidative DNA damage stalls the human mitochondrial replisome

    PubMed Central

    Stojkovič, Gorazd; Makarova, Alena V.; Wanrooij, Paulina H.; Forslund, Josefin; Burgers, Peter M.; Wanrooij, Sjoerd

    2016-01-01

    Oxidative stress is capable of causing damage to various cellular constituents, including DNA. There is however limited knowledge on how oxidative stress influences mitochondrial DNA and its replication. Here, we have used purified mtDNA replication proteins, i.e. DNA polymerase γ holoenzyme, the mitochondrial single-stranded DNA binding protein mtSSB, the replicative helicase Twinkle and the proposed mitochondrial translesion synthesis polymerase PrimPol to study lesion bypass synthesis on oxidative damage-containing DNA templates. Our studies were carried out at dNTP levels representative of those prevailing either in cycling or in non-dividing cells. At dNTP concentrations that mimic those in cycling cells, the replication machinery showed substantial stalling at sites of damage, and these problems were further exacerbated at the lower dNTP concentrations present in resting cells. PrimPol, the translesion synthesis polymerase identified inside mammalian mitochondria, did not promote mtDNA replication fork bypass of the damage. This argues against a conventional role for PrimPol as a mitochondrial translesion synthesis DNA polymerase for oxidative DNA damage; however, we show that Twinkle, the mtDNA replicative helicase, is able to stimulate PrimPol DNA synthesis in vitro, suggestive of an as yet unidentified role of PrimPol in mtDNA metabolism. PMID:27364318

  20. Mitochondrial common deletion, a potential biomarker for cancer occurrence, is selected against in cancer background: a meta-analysis of 38 studies.

    PubMed

    Nie, Hezhongrong; Shu, Hongying; Vartak, Rasika; Milstein, Amanda Claire; Mo, Yalin; Hu, Xiaoqin; Fang, Hezhi; Shen, Lijun; Ding, Zhinan; Lu, Jianxin; Bai, Yidong

    2013-01-01

    Mitochondrial dysfunction has been long proposed to play a major role in tumorigenesis. Mitochondrial DNA (mtDNA) mutations, especially the mtDNA 4,977 bp deletion has been found in patients of various types of cancer. In order to comprehend the mtDNA 4,977 bp deletion status in various cancer types, we performed a meta-analysis composed of 33 publications, in which a total of 1613 cancer cases, 1516 adjacent normals and 638 healthy controls were included. When all studies were pooled, we found that cancerous tissue carried a lower mtDNA 4,977 bp deletion frequency than adjacent non-cancerous tissue (OR = 0.43, 95% CI = 0.20-0.92, P = 0.03 for heterogeneity test, I(2) = 91.5%) among various types of cancer. In the stratified analysis by cancer type the deletion frequency was even lower in tumor tissue than in adjacent normal tissue of breast cancer (OR = 0.19, 95% CI = 0.06-0.61, P = 0.005 for heterogeneity test, I(2)= 82.7%). Interestingly, this observation became more significant in the stratified studies with larger sample sizes (OR = 0.70, 95% CI = 0.58-0.86, P = 0.0005 for heterogeneity test, I(2) = 95.1%). Furthermore, when compared with the normal tissue from the matched healthy controls, increased deletion frequencies were observed in both adjacent non-cancerous tissue (OR = 3.02, 95% CI = 2.13-4.28, P<0.00001 for heterogeneity test, I(2)= 53.7%), and cancerous tissue (OR = 1.36, 95% CI = 1.04-1.77, P = 0.02 for heterogeneity test, I(2)= 83.5%). This meta-analysis suggests that the mtDNA 4,977 bp deletion is often found in cancerous tissue and thus has the potential to be a biomarker for cancer occurrence in the tissue, but at the same time being selected against in various types of carcinoma tissues. Larger and better-designed studies are still warranted to confirm these findings. PMID:23861839

  1. Uniparental Inheritance and Replacement of Mitochondrial DNA in Neurospora Tetrasperma

    PubMed Central

    Lee, S. B.; Taylor, J. W.

    1993-01-01

    This study tested mechanisms proposed for maternal uniparental mitochondrial inheritance in Neurospora: (1) exclusion of conidial mitochondria by the specialized female reproductive structure, trichogyne, due to mating locus heterokaryon incompatibility and (2) mitochondrial input bias favoring the larger trichogyne over the smaller conidium. These mechanisms were tested by determining the modes of mitochondrial DNA (mtDNA) inheritance and transmission in the absence of mating locus heterokaryon incompatibility following crosses of uninucleate strains of Neurospora tetrasperma with trichogyne (trichogyne inoculated by conidia) and without trichogyne (hyphal fusion). Maternal uniparental mitochondrial inheritance was observed in 136 single ascospore progeny following both mating with and without trichogyne using mtDNA restriction fragment length polymorphisms to distinguish parental types. This suggests that maternal mitochondrial inheritance following hyphal fusions is due to some mechanism other than those that implicate the trichogyne. Following hyphal fusion, mututally exclusive nuclear migration permitted investigation of reciprocal interactions. Regardless of which strain accepted nuclei following seven replicate hyphal fusion matings, acceptor mtDNA was the only type detected in 34 hyphal plug and tip samples taken from the contact and acceptor zones. No intracellular mtDNA mixtures were detected. Surprisingly, 3 days following hyphal fusion, acceptor mtDNA replaced donor mtDNA throughout the entire colony. To our knowledge, this is the first report of complete mitochondrial replacement during mating in a filamentous fungus. PMID:8104158

  2. Microangiopathy in the cerebellum of patients with mitochondrial DNA disease

    PubMed Central

    Lax, Nichola Z.; Pienaar, Ilse S.; Reeve, Amy K.; Hepplewhite, Philippa D.; Jaros, Evelyn; Taylor, Robert W.; Kalaria, Raj N.

    2012-01-01

    Neuropathological findings in mitochondrial DNA disease vary and are often dependent on the type of mitochondrial DNA defect. Many reports document neuronal cell loss, demyelination, gliosis and necrotic lesions in post-mortem material. However, previous studies highlight vascular abnormalities in patients harbouring mitochondrial DNA defects, particularly in those with the m.3243A>G mutation in whom stroke-like events are part of the mitochondrial encephalopathy lactic acidosis and stroke-like episodes syndrome. We investigated microangiopathic changes in the cerebellum of 16 genetically and clinically well-defined patients. Respiratory chain deficiency, high levels of mutated mitochondrial DNA and increased mitochondrial mass were present within the smooth muscle cells and endothelial cells comprising the vessel wall in patients. These changes were not limited to those harbouring the m.3243A>G mutation frequently associated with mitochondrial encephalopathy, lactic acidosis and stroke-like episodes, but were documented in patients harbouring m.8344A>G and autosomal recessive polymerase (DNA directed), gamma (POLG) mutations. In 8 of the 16 patients, multiple ischaemic-like lesions occurred in the cerebellar cortex suggestive of vascular smooth muscle cell dysfunction. Indeed, changes in vascular smooth muscle and endothelium distribution and cell size are indicative of vascular cell loss. We found evidence of blood–brain barrier breakdown characterized by plasma protein extravasation following fibrinogen and IgG immunohistochemistry. Reduced immunofluorescence was also observed using markers for endothelial tight junctions providing further evidence in support of blood–brain barrier breakdown. Understanding the structural and functional changes occurring in central nervous system microvessels in patients harbouring mitochondrial DNA defects will provide an important insight into mechanisms of neurodegeneration in mitochondrial DNA disease. Since therapeutic

  3. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease

    PubMed Central

    Schaefer, Andrew M.; Ng, Yi; Gomez, Nicholas; Blakely, Emma L.; Alston, Charlotte L.; Feeney, Catherine; Horvath, Rita; Yu‐Wai‐Man, Patrick; Chinnery, Patrick F.; Taylor, Robert W.; Turnbull, Douglass M.; McFarland, Robert

    2015-01-01

    Objective The prevalence of mitochondrial disease has proven difficult to establish, predominantly as a result of clinical and genetic heterogeneity. The phenotypic spectrum of mitochondrial disease has expanded significantly since the original reports that associated classic clinical syndromes with mitochondrial DNA (mtDNA) rearrangements and point mutations. The revolution in genetic technologies has allowed interrogation of the nuclear genome in a manner that has dramatically improved the diagnosis of mitochondrial disorders. We comprehensively assessed the prevalence of all forms of adult mitochondrial disease to include pathogenic mutations in both nuclear and mtDNA. Methods Adults with suspected mitochondrial disease in the North East of England were referred to a single neurology center from 1990 to 2014. For the midyear period of 2011, we evaluated the minimum prevalence of symptomatic nuclear DNA mutations and symptomatic and asymptomatic mtDNA mutations causing mitochondrial diseases. Results The minimum prevalence rate for mtDNA mutations was 1 in 5,000 (20 per 100,000), comparable with our previously published prevalence rates. In this population, nuclear mutations were responsible for clinically overt adult mitochondrial disease in 2.9 per 100,000 adults. Interpretation Combined, our data confirm that the total prevalence of adult mitochondrial disease, including pathogenic mutations of both the mitochondrial and nuclear genomes (≈1 in 4,300), is among the commonest adult forms of inherited neurological disorders. These figures hold important implications for the evaluation of interventions, provision of evidence‐based health policies, and planning of future services. Ann Neurol 2015 Ann Neurol 2015;77:753–759 PMID:25652200

  4. Validation of Mitochondrial Gene Delivery in Liver and Skeletal Muscle via Hydrodynamic Injection Using an Artificial Mitochondrial Reporter DNA Vector.

    PubMed

    Yasuzaki, Yukari; Yamada, Yuma; Ishikawa, Takuya; Harashima, Hideyoshi

    2015-12-01

    For successful mitochondrial transgene expression, two independent processes, i.e., developing a mitochondrial gene delivery system and construction of DNA vector to achieve mitochondrial gene expression, are required. To date, very few studies dealing with mitochondrial gene delivery have been reported and, in most cases, transgene expression was not validated, because the construction of a reporter DNA vector for mitochondrial gene expression is the bottleneck. In this study, mitochondrial transgene expression by the in vivo mitochondrial gene delivery of an artificial mitochondrial reporter DNA vector via hydrodynamic injection is demonstrated. In the procedure, a large volume of naked plasmid DNA (pDNA) is rapidly injected. We designed and constructed pHSP-mtLuc (CGG) as a mitochondrial reporter DNA vector that possesses a mitochondrial heavy strand promoter (HSP) and an artificial mitochondrial genome with the reporter NanoLuc (Nluc) luciferase gene that records adjustments to the mitochondrial codon system. We delivered the pDNA into mouse liver mitochondria by hydrodynamic injection, and detected exogenous mRNA in the liver using reverse transcription PCR analysis. The hydrodynamic injection of pHSP-mtLuc (CGG) resulted in the expression of the Nluc luciferase protein in liver and skeletal muscle. Our mitochondrial transgene expression reporter system would contribute to mitochondrial gene therapy and further studies directed at mitochondrial molecular biology. PMID:26567847

  5. Atherosclerotic lesions and mitochondria DNA deletions in brain microvessels: Implication in the pathogenesis of Alzheimer’s disease

    PubMed Central

    Aliev, Gjumrakch; Gasimov, Eldar; Obrenovich, Mark E; Fischbach, Kathryn; Shenk, Justin C; Smith, Mark A; Perry, George

    2008-01-01

    The pathogenesis that is primarily responsible for Alzheimer’s disease (AD) and cerebrovascular accidents (CVA) appears to involve chronic hypoperfusion. We studied the ultrastructural features of vascular lesions and mitochondria in brain vascular wall cells from human AD biopsy samples and two transgenic mouse models of AD, yeast artificial chromosome (YAC) and C57B6/SJL Tg (+), which overexpress human amyloid beta precursor protein (AβPP). In situ hybridization using probes for normal and 5 kb deleted human and mouse mitochondrial DNA (mtDNA) was performed along with immunocytochemistry using antibodies against the Aβ peptide processed from AβPP, 8-hydroxy-2’-guanosine (8OHG), and cytochrome c oxidase (COX). More amyloid deposition, oxidative stress markers as well as mitochondrial DNA deletions and structural abnormalities were present in the vascular walls of the human AD samples and the AβPP-YAC and C57B6/SJL Tg (+) transgenic mice compared to age-matched controls. Ultrastructural damage in perivascular cells highly correlated with endothelial lesions in all samples. Therefore, pharmacological interventions, directed at correcting the chronic hypoperfusion state, may change the natural course of the development of dementing neurodegeneration. PMID:18827923

  6. Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing.

    PubMed

    Latorre-Pellicer, Ana; Moreno-Loshuertos, Raquel; Lechuga-Vieco, Ana Victoria; Sánchez-Cabo, Fátima; Torroja, Carlos; Acín-Pérez, Rebeca; Calvo, Enrique; Aix, Esther; González-Guerra, Andrés; Logan, Angela; Bernad-Miana, María Luisa; Romanos, Eduardo; Cruz, Raquel; Cogliati, Sara; Sobrino, Beatriz; Carracedo, Ángel; Pérez-Martos, Acisclo; Fernández-Silva, Patricio; Ruíz-Cabello, Jesús; Murphy, Michael P; Flores, Ignacio; Vázquez, Jesús; Enríquez, José Antonio

    2016-07-28

    Human mitochondrial DNA (mtDNA) shows extensive within population sequence variability. Many studies suggest that mtDNA variants may be associated with ageing or diseases, although mechanistic evidence at the molecular level is lacking. Mitochondrial replacement has the potential to prevent transmission of disease-causing oocyte mtDNA. However, extension of this technology requires a comprehensive understanding of the physiological relevance of mtDNA sequence variability and its match with the nuclear-encoded mitochondrial genes. Studies in conplastic animals allow comparison of individuals with the same nuclear genome but different mtDNA variants, and have provided both supporting and refuting evidence that mtDNA variation influences organismal physiology. However, most of these studies did not confirm the conplastic status, focused on younger animals, and did not investigate the full range of physiological and phenotypic variability likely to be influenced by mitochondria. Here we systematically characterized conplastic mice throughout their lifespan using transcriptomic, proteomic,metabolomic, biochemical, physiological and phenotyping studies. We show that mtDNA haplotype profoundly influences mitochondrial proteostasis and reactive oxygen species generation,insulin signalling, obesity, and ageing parameters including telomere shortening and mitochondrial dysfunction, resulting in profound differences in health longevity between conplastic strains. PMID:27383793

  7. Direct Estimation of the Mitochondrial DNA Mutation Rate in Drosophila melanogaster

    PubMed Central

    Haag-Liautard, Cathy; Coffey, Nicole; Houle, David; Lynch, Michael; Charlesworth, Brian; Keightley, Peter D

    2008-01-01

    Mitochondrial DNA (mtDNA) variants are widely used in evolutionary genetics as markers for population history and to estimate divergence times among taxa. Inferences of species history are generally based on phylogenetic comparisons, which assume that molecular evolution is clock-like. Between-species comparisons have also been used to estimate the mutation rate, using sites that are thought to evolve neutrally. We directly estimated the mtDNA mutation rate by scanning the mitochondrial genome of Drosophila melanogaster lines that had undergone approximately 200 generations of spontaneous mutation accumulation (MA). We detected a total of 28 point mutations and eight insertion-deletion (indel) mutations, yielding an estimate for the single-nucleotide mutation rate of 6.2 × 10−8 per site per fly generation. Most mutations were heteroplasmic within a line, and their frequency distribution suggests that the effective number of mitochondrial genomes transmitted per female per generation is about 30. We observed repeated occurrences of some indel mutations, suggesting that indel mutational hotspots are common. Among the point mutations, there is a large excess of G→A mutations on the major strand (the sense strand for the majority of mitochondrial genes). These mutations tend to occur at nonsynonymous sites of protein-coding genes, and they are expected to be deleterious, so do not become fixed between species. The overall mtDNA mutation rate per base pair per fly generation in Drosophila is estimated to be about 10× higher than the nuclear mutation rate, but the mitochondrial major strand G→A mutation rate is about 70× higher than the nuclear rate. Silent sites are substantially more strongly biased towards A and T than nonsynonymous sites, consistent with the extreme mutation bias towards A+T. Strand-asymmetric mutation bias, coupled with selection to maintain specific nonsynonymous bases, therefore provides an explanation for the extreme base composition of

  8. CpG methylation patterns of human mitochondrial DNA

    PubMed Central

    Liu, Baojing; Du, Qingqing; Chen, Lu; Fu, Guangping; Li, Shujin; Fu, Lihong; Zhang, Xiaojing; Ma, Chunling; Bin, Cong

    2016-01-01

    The epigenetic modification of mitochondrial DNA (mtDNA) is still in controversy. To clarify this point, we applied the gold standard method for DNA methylation, bisulfite pyrosequencing, to examine human mtDNA methylation status. Before bisulfite conversion, BamHI was used to digest DNA to open the loop of mtDNA. The results demonstrated that the linear mtDNA had significantly higher bisulfite conversion efficiency compared with circular mtDNA. Furthermore, the methylation values obtained from linear mtDNA were significantly lower than that of circular mtDNA, which was verified by SEQUENOM MassARRAY. The above impacts of circular structure were also observed in lung DNA samples but not in saliva DNA samples. Mitochondrial genome methylation of blood samples and saliva samples from 14 unrelated individuals was detected. The detected regions covered 83 CpG sites across mtDNA including D-loop, 12 S rRNA, 16 S rRNA, ND1, COXI, ND3, ND4, ND5, CYTB. We found that the average methylation levels of nine regions were all less than 2% for both sample types. In conclusion, our findings firstly show that the circular structure of mtDNA affects bisulfite conversion efficiency, which leads to overestimation of mtDNA methylation values. CpG methylation in human mtDNA is a very rare event at most DNA regions. PMID:26996456

  9. CpG methylation patterns of human mitochondrial DNA.

    PubMed

    Liu, Baojing; Du, Qingqing; Chen, Lu; Fu, Guangping; Li, Shujin; Fu, Lihong; Zhang, Xiaojing; Ma, Chunling; Bin, Cong

    2016-01-01

    The epigenetic modification of mitochondrial DNA (mtDNA) is still in controversy. To clarify this point, we applied the gold standard method for DNA methylation, bisulfite pyrosequencing, to examine human mtDNA methylation status. Before bisulfite conversion, BamHI was used to digest DNA to open the loop of mtDNA. The results demonstrated that the linear mtDNA had significantly higher bisulfite conversion efficiency compared with circular mtDNA. Furthermore, the methylation values obtained from linear mtDNA were significantly lower than that of circular mtDNA, which was verified by SEQUENOM MassARRAY. The above impacts of circular structure were also observed in lung DNA samples but not in saliva DNA samples. Mitochondrial genome methylation of blood samples and saliva samples from 14 unrelated individuals was detected. The detected regions covered 83 CpG sites across mtDNA including D-loop, 12 S rRNA, 16 S rRNA, ND1, COXI, ND3, ND4, ND5, CYTB. We found that the average methylation levels of nine regions were all less than 2% for both sample types. In conclusion, our findings firstly show that the circular structure of mtDNA affects bisulfite conversion efficiency, which leads to overestimation of mtDNA methylation values. CpG methylation in human mtDNA is a very rare event at most DNA regions. PMID:26996456

  10. α7 Nicotinic Acetylcholine Receptor Signaling Inhibits Inflammasome Activation by Preventing Mitochondrial DNA Release

    PubMed Central

    Lu, Ben; Kwan, Kevin; Levine, Yaakov A; Olofsson, Peder S; Yang, Huan; Li, Jianhua; Joshi, Sonia; Wang, Haichao; Andersson, Ulf; Chavan, Sangeeta S; Tracey, Kevin J

    2014-01-01

    The mammalian immune system and the nervous system coevolved under the influence of cellular and environmental stress. Cellular stress is associated with changes in immunity and activation of the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome, a key component of innate immunity. Here we show that α7 nicotinic acetylcholine receptor (α7 nAchR)-signaling inhibits inflammasome activation and prevents release of mitochondrial DNA, an NLRP3 ligand. Cholinergic receptor agonists or vagus nerve stimulation significantly inhibits inflammasome activation, whereas genetic deletion of α7 nAchR significantly enhances inflammasome activation. Acetylcholine accumulates in macrophage cytoplasm after adenosine triphosphate (ATP) stimulation in an α7 nAchR-independent manner. Acetylcholine significantly attenuated calcium or hydrogen oxide–induced mitochondrial damage and mitochondrial DNA release. Together, these findings reveal a novel neurotransmitter-mediated signaling pathway: acetylcholine translocates into the cytoplasm of immune cells during inflammation and inhibits NLRP3 inflammasome activation by preventing mitochondrial DNA release. PMID:24849809

  11. Interaction of mitochondrial presequences with DnaK and mitochondrial hsp70.

    PubMed

    Zhang, X P; Elofsson, A; Andreu, D; Glaser, E

    1999-04-23

    Mitochondrial heat shock protein 70 (mt-hsp70) functions as a molecular chaperone in mitochondrial biogenesis. The chaperone in co-operation with its co-proteins acts as a translocation motor pulling the mitochondrial precursor into the matrix. Mt-hsp70s are highly conserved when compared to the bacterial hsp70 homologue, DnaK. Here we have used DnaK as a model to study the interaction of mitochondrial presequences with mt-hsp70 applying a DnaK-binding algorithm, computer modeling and biochemical investigations. DnaK-binding motifs have been analysed on all available, statistically relevant mitochondrial presequences found in the OWL database by running the algorithm. A total of 87 % of mammalian, 97 % of plant, 71 % of yeast and 100 % of Neurospora crassa presequences had at least one DnaK binding site. Based on the prediction, five 13-mer presequence peptides have been synthesized and their inhibitory effect on the molecular chaperone (DnaK/DnaJ/GrpE) assisted refolding of luciferase has been analysed. The peptide with the highest predicted binding likelihood showed the strongest inhibitory effect, whereas the peptide with no predicted binding capacity showed no inhibitory effect. A 3D structure of the pea mt-hsp70 has been constructed using homology modeling. The binding affinities of the 13-mer presequence peptides and additional control peptides to DnaK and pea mt-hsp70 have been theoretically estimated by calculating the buried hydrophobic surface area of the peptides docked to DnaK and to the mt-hsp70 structural model. These results suggest that mitochondrial presequences interact with the mt-hsp70 during or after mitochondrial protein import. PMID:10329135

  12. Human mitochondrial transcription factor A is required for the segregation of mitochondrial DNA in cultured cells.

    PubMed

    Kasashima, Katsumi; Sumitani, Megumi; Endo, Hitoshi

    2011-01-15

    The segregation and transmission of the mitochondrial genome in humans are complicated processes but are particularly important for understanding the inheritance and clinical abnormalities of mitochondrial disorders. However, the molecular mechanism of the segregation of mitochondrial DNA (mtDNA) is largely unclear. In this study, we demonstrated that human mitochondrial transcription factor A (TFAM) is required for the segregation of mtDNA in cultured cells. RNAi-mediated knockdown of TFAM in HeLa cells resulted in the enlarged mtDNA, as indicated by the assembly of fluorescent signals stained with PicoGreen. Fluorescent in situ hybridization confirmed the enlarged mtDNA and further showed the existence of increased numbers of mitochondria lacking mtDNA signals in TFAM knockdown cells. By complementation analysis, the C-terminal tail of TFAM, which enhances its affinity with DNA, was found to be required for the appropriate distribution of mtDNA. Furthermore, we found that TFAM knockdown induced asymmetric segregation of mtDNA between dividing daughter cells. These results suggest an essential role for human TFAM in symmetric segregation of mtDNA. PMID:20955698

  13. Mitochondrial DNA Variation in Human Radiation and Disease

    PubMed Central

    Wallace, Douglas C.

    2016-01-01

    Environmental adaptation, predisposition to common diseases, and, potentially, speciation may all be linked through the adaptive potential of mitochondrial DNA (mtDNA) alterations of bioenergetics. This Perspective synthesizes evidence that human mtDNA variants may be adaptive or deleterious depending on environmental context and proposes that the accrual of mtDNA variation could contribute to animal speciation via adaptation to marginal environments. PMID:26406369

  14. Genetics Home Reference: TK2-related mitochondrial DNA depletion syndrome, myopathic form

    MedlinePlus

    ... DNA depletion syndrome, myopathic form TK2-related mitochondrial DNA depletion syndrome, myopathic form Enable Javascript to view ... Open All Close All Description TK2 -related mitochondrial DNA depletion syndrome, myopathic form ( TK2 -MDS) is an ...

  15. Evaluating mitochondrial DNA variation in autism spectrum disorders

    PubMed Central

    HADJIXENOFONTOS, ATHENA; SCHMIDT, MICHAEL A.; WHITEHEAD, PATRICE L.; KONIDARI, IOANNA; HEDGES, DALE J.; WRIGHT, HARRY H.; ABRAMSON, RUTH K.; MENON, RAMKUMAR; WILLIAMS, SCOTT M.; CUCCARO, MICHAEL L.; HAINES, JONATHAN L.; GILBERT, JOHN R.; PERICAK-VANCE, MARGARET A.; MARTIN, EDEN R.; MCCAULEY, JACOB L.

    2012-01-01

    SUMMARY Despite the increasing speculation that oxidative stress and abnormal energy metabolism may play a role in Autism Spectrum Disorders (ASD), and the observation that patients with mitochondrial defects have symptoms consistent with ASD, there are no comprehensive published studies examining the role of mitochondrial variation in autism. Therefore, we have sought to comprehensively examine the role of mitochondrial DNA (mtDNA) variation with regard to ASD risk, employing a multi-phase approach. In phase 1 of our experiment, we examined 132 mtDNA single-nucleotide polymorphisms (SNPs) genotyped as part of our genome-wide association studies of ASD. In phase 2 we genotyped the major European mitochondrial haplogroup-defining variants within an expanded set of autism probands and controls. Finally in phase 3, we resequenced the entire mtDNA in a subset of our Caucasian samples (~400 proband-father pairs). In each phase we tested whether mitochondrial variation showed evidence of association to ASD. Despite a thorough interrogation of mtDNA variation, we found no evidence to suggest a major role for mtDNA variation in ASD susceptibility. Accordingly, while there may be attractive biological hints suggesting the role of mitochondria in ASD our data indicate that mtDNA variation is not a major contributing factor to the development of ASD. PMID:23130936

  16. Sensory Ataxic Neuropathy in Golden Retriever Dogs Is Caused by a Deletion in the Mitochondrial tRNATyr Gene

    PubMed Central

    Baranowska, Izabella; Jäderlund, Karin Hultin; Nennesmo, Inger; Holmqvist, Erik; Heidrich, Nadja; Larsson, Nils-Göran; Andersson, Göran; Wagner, E. Gerhart H.; Hedhammar, Åke; Wibom, Rolf; Andersson, Leif

    2009-01-01

    Sensory ataxic neuropathy (SAN) is a recently identified neurological disorder in golden retrievers. Pedigree analysis revealed that all affected dogs belong to one maternal lineage, and a statistical analysis showed that the disorder has a mitochondrial origin. A one base pair deletion in the mitochondrial tRNATyr gene was identified at position 5304 in affected dogs after re-sequencing the complete mitochondrial genome of seven individuals. The deletion was not found among dogs representing 18 different breeds or in six wolves, ruling out this as a common polymorphism. The mutation could be traced back to a common ancestor of all affected dogs that lived in the 1970s. We used a quantitative oligonucleotide ligation assay to establish the degree of heteroplasmy in blood and tissue samples from affected dogs and controls. Affected dogs and their first to fourth degree relatives had 0–11% wild-type (wt) sequence, while more distant relatives ranged between 5% and 60% wt sequence and all unrelated golden retrievers had 100% wt sequence. Northern blot analysis showed that tRNATyr had a 10-fold lower steady-state level in affected dogs compared with controls. Four out of five affected dogs showed decreases in mitochondrial ATP production rates and respiratory chain enzyme activities together with morphological alterations in muscle tissue, resembling the changes reported in human mitochondrial pathology. Altogether, these results provide conclusive evidence that the deletion in the mitochondrial tRNATyr gene is the causative mutation for SAN. PMID:19492087

  17. DNA Compaction by Yeast Mitochondrial Protein ABF2p

    SciTech Connect

    Friddle, R W; Klare, J E; Noy, A; Corzett, M; Balhorn, R; Baskin, R J; Martin, S S; Baldwin, E P

    2003-05-09

    We used high resolution Atomic Force Microscopy (AFM) to image compaction of linear and circular DNA by the yeast mitochondrial protein ABF2p , which plays a major role in maintaining mitochondrial DNA. AFM images show that protein binding induces drastic bends in the DNA backbone for both linear and circular DNA. At high concentration of ABF2p DNA collapses into a tight globular structure. We quantified the compaction of linear DNA by measuring the end-to-end distance of the DNA molecule at increasing concentrations of ABF2p. We also derived a polymer statistical mechanics model that gives quantitative description of compaction observed in our experiments. This model shows that a number of sharp bends in the DNA backbone is often sufficient to cause DNA compaction. Comparison of our model with the experimental data showed excellent quantitative correlation and allowed us to determine binding characteristics for ABF2. Our studies indicate that ABF2 compacts DNA through a novel mechanism that involves bending of DNA backbone. We discuss the implications of such a mechanism for mitochondrial DNA maintenance.

  18. Respiratory-deficient human fibroblasts exhibiting defective mitochondrial DNA replication.

    PubMed Central

    Bodnar, A G; Cooper, J M; Leonard, J V; Schapira, A H

    1995-01-01

    We have characterized cultured skin fibroblasts from two siblings affected with a fatal mitochondrial disease caused by a nuclear genetic defect. Mitochondrial respiratory-chain function was severely decreased in these cells. Southern-blot analysis showed that the fibroblasts had reduced levels of mitochondrial DNA (mtDNA). The mtDNA was unstable and was eliminated from the cultured cells over many generations, generating the rho0 genotype. As the mtDNA level decreased, the cells became more dependent upon pyruvate and uridine for growth. Nuclear-encoded subunits of respiratory-chain complexes were synthesized and imported into the mitochondria of the mtDNA-depleted cells, albeit at reduced levels compared with the controls. Mitochondrial protein synthesis directed by the residual mtDNA indicated that the mtDNA was expressed and that the defect specifically involves the replication or maintenance of mtDNA. This is a unique example of a respiratory-deficient human cell line exhibiting defective mtDNA replication. Images Figure 1 Figure 2 Figure 4 Figure 5 PMID:7848281

  19. Isolation of Circular DNA from a Mitochondrial Fraction from Yeast

    PubMed Central

    Clark-Walker, G. D.

    1972-01-01

    Breakage and fractionation of respiratory competent yeast in the presence of ethidium bromide, and subsequent centrifugation of a detergent lysate of the mitochondrial fraction by the dye-buoyant-density technique, results in the isolation of closed-circular DNA. After removal of bound dye, this DNA has two components when analyzed by equilibrium buoyant density in the analytical ultracentrifuge. A minor component has a buoyant density of 1.684 g/cm3, which is characteristic of mitochondrial DNA, but the major component has a buoyant density of 1.701 g/cm3. This species of DNA is also present in yeast that have been mutagenized to respiratory deficiency in the presence of the highest concentration of ethidium bromide compatible with cell growth. The closed-circular DNA of buoyant density 1.701 g/cm3, and free of linear DNA, is associated with the sole particulate band obtained on sucrose gradient centrifugation of a mitochondrial preparation from respiratory-deficient cells. Two particulate bands are obtained on sucrose gradient centrifugation of a mitochondrial preparation from respiratory-competent cells, the upper band containing DNA of buoyant density 1.701 g/cm3 and the lower band DNA of buoyant density 1.684 g/cm3. The suggestion is advanced, in view of the reputed sedimentation behaviour of yeast peroxisomes, that the closed-circular DNA of buoyant density 1.701 g/cm3 may be located in peroxisomes. Images PMID:4551142

  20. Complete Mitochondrial DNA Diversity in Iranians

    PubMed Central

    Derenko, Miroslava; Malyarchuk, Boris; Bahmanimehr, Ardeshir; Denisova, Galina; Perkova, Maria; Farjadian, Shirin; Yepiskoposyan, Levon

    2013-01-01

    Due to its pivotal geographical location and proximity to transcontinental migratory routes, Iran has played a key role in subsequent migrations, both prehistoric and historic, between Africa, Asia and Europe. To shed light on the genetic structure of the Iranian population as well as on the expansion patterns and population movements which affected this region, the complete mitochondrial genomes of 352 Iranians were obtained. All Iranian populations studied here exhibit similarly high diversity values comparable to the other groups from the Caucasus, Anatolia and Europe. The results of AMOVA and MDS analyses did not associate any regional and/or linguistic group of populations in the Anatolia/Caucasus and Iran region pointing to close genetic positions of Persians and Qashqais to each other and to Armenians, and Azeris from Iran to Georgians. By reconstructing the complete mtDNA phylogeny of haplogroups R2, N3, U1, U3, U5a1g, U7, H13, HV2, HV12, M5a and C5c we have found a previously unexplored genetic connection between the studied Iranian populations and the Arabian Peninsula, India, Near East and Europe, likely the result of both ancient and recent gene flow. Our results for Persians and Qashqais point to a continuous increase of the population sizes from ∼24 kya to the present, although the phase between 14-24 kya is thought to be hyperarid according to the Gulf Oasis model. Since this would have affected hunter-gatherer ranges and mobility patterns and forced them to increasingly rely on coastal resources, this transition can explain the human expansion across the Persian Gulf region. PMID:24244704

  1. Complete mitochondrial DNA diversity in Iranians.

    PubMed

    Derenko, Miroslava; Malyarchuk, Boris; Bahmanimehr, Ardeshir; Denisova, Galina; Perkova, Maria; Farjadian, Shirin; Yepiskoposyan, Levon

    2013-01-01

    Due to its pivotal geographical location and proximity to transcontinental migratory routes, Iran has played a key role in subsequent migrations, both prehistoric and historic, between Africa, Asia and Europe. To shed light on the genetic structure of the Iranian population as well as on the expansion patterns and population movements which affected this region, the complete mitochondrial genomes of 352 Iranians were obtained. All Iranian populations studied here exhibit similarly high diversity values comparable to the other groups from the Caucasus, Anatolia and Europe. The results of AMOVA and MDS analyses did not associate any regional and/or linguistic group of populations in the Anatolia/Caucasus and Iran region pointing to close genetic positions of Persians and Qashqais to each other and to Armenians, and Azeris from Iran to Georgians. By reconstructing the complete mtDNA phylogeny of haplogroups R2, N3, U1, U3, U5a1g, U7, H13, HV2, HV12, M5a and C5c we have found a previously unexplored genetic connection between the studied Iranian populations and the Arabian Peninsula, India, Near East and Europe, likely the result of both ancient and recent gene flow. Our results for Persians and Qashqais point to a continuous increase of the population sizes from ∼24 kya to the present, although the phase between 14-24 kya is thought to be hyperarid according to the Gulf Oasis model. Since this would have affected hunter-gatherer ranges and mobility patterns and forced them to increasingly rely on coastal resources, this transition can explain the human expansion across the Persian Gulf region. PMID:24244704

  2. Mitochondrial DNA repairs double-strand breaks in yeast chromosomes.

    PubMed

    Ricchetti, M; Fairhead, C; Dujon, B

    1999-11-01

    The endosymbiotic theory for the origin of eukaryotic cells proposes that genetic information can be transferred from mitochondria to the nucleus of a cell, and genes that are probably of mitochondrial origin have been found in nuclear chromosomes. Occasionally, short or rearranged sequences homologous to mitochondrial DNA are seen in the chromosomes of different organisms including yeast, plants and humans. Here we report a mechanism by which fragments of mitochondrial DNA, in single or tandem array, are transferred to yeast chromosomes under natural conditions during the repair of double-strand breaks in haploid mitotic cells. These repair insertions originate from noncontiguous regions of the mitochondrial genome. Our analysis of the Saccharomyces cerevisiae mitochondrial genome indicates that the yeast nuclear genome does indeed contain several short sequences of mitochondrial origin which are similar in size and composition to those that repair double-strand breaks. These sequences are located predominantly in non-coding regions of the chromosomes, frequently in the vicinity of retrotransposon long terminal repeats, and appear as recent integration events. Thus, colonization of the yeast genome by mitochondrial DNA is an ongoing process. PMID:10573425

  3. Mitochondrial DNA Depletion in Respiratory Chain–Deficient Parkinson Disease Neurons

    PubMed Central

    Rygiel, Karolina A.; Hepplewhite, Philippa D.; Morris, Christopher M.; Picard, Martin; Turnbull, Doug M.

    2016-01-01

    Objective To determine the extent of respiratory chain abnormalities and investigate the contribution of mtDNA to the loss of respiratory chain complexes (CI–IV) in the substantia nigra (SN) of idiopathic Parkinson disease (IPD) patients at the single‐neuron level. Methods Multiple‐label immunofluorescence was applied to postmortem sections of 10 IPD patients and 10 controls to quantify the abundance of CI–IV subunits (NDUFB8 or NDUFA13, SDHA, UQCRC2, and COXI) and mitochondrial transcription factors (TFAM and TFB2M) relative to mitochondrial mass (porin and GRP75) in dopaminergic neurons. To assess the involvement of mtDNA in respiratory chain deficiency in IPD, SN neurons, isolated with laser‐capture microdissection, were assayed for mtDNA deletions, copy number, and presence of transcription/replication‐associated 7S DNA employing a triplex real‐time polymerase chain reaction (PCR) assay. Results Whereas mitochondrial mass was unchanged in single SN neurons from IPD patients, we observed a significant reduction in the abundances of CI and II subunits. At the single‐cell level, CI and II deficiencies were correlated in patients. The CI deficiency concomitantly occurred with low abundances of the mtDNA transcription factors TFAM and TFB2M, which also initiate transcription‐primed mtDNA replication. Consistent with this, real‐time PCR analysis revealed fewer transcription/replication‐associated mtDNA molecules and an overall reduction in mtDNA copy number in patients. This effect was more pronounced in single IPD neurons with severe CI deficiency. Interpretation Respiratory chain dysfunction in IPD neurons not only involves CI, but also extends to CII. These deficiencies are possibly a consequence of the interplay between nDNA and mtDNA‐encoded factors mechanistically connected via TFAM. ANN NEUROL 2016;79:366–378 PMID:26605748

  4. Markov chain for estimating human mitochondrial DNA mutation pattern

    NASA Astrophysics Data System (ADS)

    Vantika, Sandy; Pasaribu, Udjianna S.

    2015-12-01

    The Markov chain was proposed to estimate the human mitochondrial DNA mutation pattern. One DNA sequence was taken randomly from 100 sequences in Genbank. The nucleotide transition matrix and mutation transition matrix were estimated from this sequence. We determined whether the states (mutation/normal) are recurrent or transient. The results showed that both of them are recurrent.

  5. A PAC containing the human mitochondrial DNA polymerase gamma gene (POLG) maps to chromosome 15q25

    SciTech Connect

    Walker, R.L.; Meltzer, P.S.; Anziano, P.

    1997-03-01

    The human mitochondrial DNA (mtDNA) is a closed circular, 16,569-bp double-stranded DNA, encoding 13 genes whose protein products are subunits of the oxidative phosphorylation system required for synthesis of most of the ATP consumed by eukaryotic cells. Point mutations of the mtDNA that cause multi-tissue, loss-of-energy syndromes, called mitochondrial encephalomyopathies (e.g., MERRF and MELAS), have been identified. In addition, large-scale deletions of the human mtDNA have been identified and are the molecular bases for the neonatal and adolescent onset loss-of-energy syndromes Pearson and Kearns-Sayer, respectively. 5 refs., 1 fig.

  6. PCR Primers for Metazoan Mitochondrial 12S Ribosomal DNA Sequences

    PubMed Central

    Machida, Ryuji J.; Kweskin, Matthew; Knowlton, Nancy

    2012-01-01

    Background Assessment of the biodiversity of communities of small organisms is most readily done using PCR-based analysis of environmental samples consisting of mixtures of individuals. Known as metagenetics, this approach has transformed understanding of microbial communities and is beginning to be applied to metazoans as well. Unlike microbial studies, where analysis of the 16S ribosomal DNA sequence is standard, the best gene for metazoan metagenetics is less clear. In this study we designed a set of PCR primers for the mitochondrial 12S ribosomal DNA sequence based on 64 complete mitochondrial genomes and then tested their efficacy. Methodology/Principal Findings A total of the 64 complete mitochondrial genome sequences representing all metazoan classes available in GenBank were downloaded using the NCBI Taxonomy Browser. Alignment of sequences was performed for the excised mitochondrial 12S ribosomal DNA sequences, and conserved regions were identified for all 64 mitochondrial genomes. These regions were used to design a primer pair that flanks a more variable region in the gene. Then all of the complete metazoan mitochondrial genomes available in NCBI's Organelle Genome Resources database were used to determine the percentage of taxa that would likely be amplified using these primers. Results suggest that these primers will amplify target sequences for many metazoans. Conclusions/Significance Newly designed 12S ribosomal DNA primers have considerable potential for metazoan metagenetic analysis because of their ability to amplify sequences from many metazoans. PMID:22536450

  7. Mitochondrial DNA assessment of Phytophthora infestans isolates from potato and tomato in Ethiopia reveals unexpected diversity.

    PubMed

    Shimelash, Daniel; Hussien, Temam; Fininsa, Chemeda; Forbes, Greg; Yuen, Jonathan

    2016-08-01

    Mitochondrial DNA (mtDNA) haplotypes were determined using restriction fragment length polymorphism (RFLP) for P. infestans sampled from 513 foliar lesions of late blight found on potato and tomato in different regions of Ethiopia. Among the four reported mitochondrial haplotypes of Phytophthora infestans, Ia, Ib and IIb were detected in 93 % of the samples analyzed but the vast majority of these were Ia. The remaining 7 % represented a previously unreported haplotype. DNA sequencing of this new haplotype also confirmed a single base nucleotide substitution that resulted in loss of EcoRI restriction site and gain of two additional MspI sites in cox1 and atp1 genes, respectively. There were 28 polymorphic sites among all nucleotide sequences including five reference isolates. Sites with alignment gaps were observed in P4 with one nucleotide deletion in 11 Ethiopian isolates. None of the reference sequence produced frame-shifts, with the exception of the 3-nucleotide deletion in the P4 region by Phytophthora andina, a feature that can be used to distinguish the new Ethiopian isolates from P. andina. While a distinguishing molecular data presented here clearly separated them from P. infestans, 7 % of the isolates that share this feature formed an important component of the late blight pathogen causing disease on Solanum tuberosum in Ethiopia. Thus, these Ethiopian isolates could represent a novel Phytophthora species reported for the first time here. PMID:26873223

  8. Dynamic Localization of Trypanosoma brucei Mitochondrial DNA Polymerase ID

    PubMed Central

    Concepción-Acevedo, Jeniffer; Luo, Juemin

    2012-01-01

    Trypanosomes contain a unique form of mitochondrial DNA called kinetoplast DNA (kDNA) that is a catenated network composed of minicircles and maxicircles. Several proteins are essential for network replication, and most of these localize to the antipodal sites or the kinetoflagellar zone. Essential components for kDNA synthesis include three mitochondrial DNA polymerases TbPOLIB, TbPOLIC, and TbPOLID). In contrast to other kDNA replication proteins, TbPOLID was previously reported to localize throughout the mitochondrial matrix. This spatial distribution suggests that TbPOLID requires redistribution to engage in kDNA replication. Here, we characterize the subcellular distribution of TbPOLID with respect to the Trypanosoma brucei cell cycle using immunofluorescence microscopy. Our analyses demonstrate that in addition to the previously reported matrix localization, TbPOLID was detected as discrete foci near the kDNA. TbPOLID foci colocalized with replicating minicircles at antipodal sites in a specific subset of the cells during stages II and III of kDNA replication. Additionally, the TbPOLID foci were stable following the inhibition of protein synthesis, detergent extraction, and DNase treatment. Taken together, these data demonstrate that TbPOLID has a dynamic localization that allows it to be spatially and temporally available to perform its role in kDNA replication. PMID:22286095

  9. Detection of Heteroplasmic Mitochondrial DNA in Single Mitochondria

    PubMed Central

    Reiner, Joseph E.; Kishore, Rani B.; Levin, Barbara C.; Albanetti, Thomas; Boire, Nicholas; Knipe, Ashley; Helmerson, Kristian; Deckman, Koren Holland

    2010-01-01

    Background Mitochondrial DNA (mtDNA) genome mutations can lead to energy and respiratory-related disorders like myoclonic epilepsy with ragged red fiber disease (MERRF), mitochondrial myopathy, encephalopathy, lactic acidosis and stroke (MELAS) syndrome, and Leber's hereditary optic neuropathy (LHON). It is not well understood what effect the distribution of mutated mtDNA throughout the mitochondrial matrix has on the development of mitochondrial-based disorders. Insight into this complex sub-cellular heterogeneity may further our understanding of the development of mitochondria-related diseases. Methodology This work describes a method for isolating individual mitochondria from single cells and performing molecular analysis on that single mitochondrion's DNA. An optical tweezer extracts a single mitochondrion from a lysed human HL-60 cell. Then a micron-sized femtopipette tip captures the mitochondrion for subsequent analysis. Multiple rounds of conventional DNA amplification and standard sequencing methods enable the detection of a heteroplasmic mixture in the mtDNA from a single mitochondrion. Significance Molecular analysis of mtDNA from the individually extracted mitochondrion demonstrates that a heteroplasmy is present in single mitochondria at various ratios consistent with the 50/50 heteroplasmy ratio found in single cells that contain multiple mitochondria. PMID:21179558

  10. A DNA helicase required for maintenance of the functional mitochondrial genome in Saccharomyces cerevisiae.

    PubMed

    Sedman, T; Kuusk, S; Kivi, S; Sedman, J

    2000-03-01

    A novel DNA helicase, a homolog of several prokaryotic helicases, including Escherichia coli Rep and UvrD proteins, is encoded by the Saccharomyces cerevisiae nuclear genome open reading frame YOL095c on the chromosome XV. Our data demonstrate that the helicase is localized in the yeast mitochondria and is loosely associated with the mitochondrial inner membrane during biochemical fractionation. The sequence of the C-terminal end of the 80-kDa helicase protein is similar to a typical N-terminal mitochondrial targeting signal; deletions and point mutations in this region abolish transport of the protein into mitochondria. The C-terminal signal sequence of the helicase targets a heterologous carrier protein into mitochondria in vivo. The purified recombinant protein can unwind duplex DNA molecules in an ATP-dependent manner. The helicase is required for the maintenance of the functional ([rho(+)]) mitochondrial genome on both fermentable and nonfermentable carbon sources. However, the helicase is not essential for the maintenance of several defective ([rho(-)]) mitochondrial genomes. We also demonstrate that the helicase is not required for transcription in mitochondria. PMID:10669756

  11. A DNA Helicase Required for Maintenance of the Functional Mitochondrial Genome in Saccharomyces cerevisiae

    PubMed Central

    Sedman, Tiina; Kuusk, Silja; Kivi, Sirje; Sedman, Juhan

    2000-01-01

    A novel DNA helicase, a homolog of several prokaryotic helicases, including Escherichia coli Rep and UvrD proteins, is encoded by the Saccharomyces cerevisiae nuclear genome open reading frame YOL095c on the chromosome XV. Our data demonstrate that the helicase is localized in the yeast mitochondria and is loosely associated with the mitochondrial inner membrane during biochemical fractionation. The sequence of the C-terminal end of the 80-kDa helicase protein is similar to a typical N-terminal mitochondrial targeting signal; deletions and point mutations in this region abolish transport of the protein into mitochondria. The C-terminal signal sequence of the helicase targets a heterologous carrier protein into mitochondria in vivo. The purified recombinant protein can unwind duplex DNA molecules in an ATP-dependent manner. The helicase is required for the maintenance of the functional ([rho+]) mitochondrial genome on both fermentable and nonfermentable carbon sources. However, the helicase is not essential for the maintenance of several defective ([rho−]) mitochondrial genomes. We also demonstrate that the helicase is not required for transcription in mitochondria. PMID:10669756

  12. Mitochondrial DNA mutations in human colonic crypt stem cells

    PubMed Central

    Taylor, Robert W.; Barron, Martin J.; Borthwick, Gillian M.; Gospel, Amy; Chinnery, Patrick F.; Samuels, David C.; Taylor, Geoffrey A.; Plusa, Stefan M.; Needham, Stephanie J.; Greaves, Laura C.; Kirkwood, Thomas B.L.; Turnbull, Douglass M.

    2003-01-01

    The mitochondrial genome encodes 13 essential subunits of the respiratory chain and has remarkable genetics based on uniparental inheritance. Within human populations, the mitochondrial genome has a high rate of sequence divergence with multiple polymorphic variants and thus has played a major role in examining the evolutionary history of our species. In recent years it has also become apparent that pathogenic mitochondrial DNA (mtDNA) mutations play an important role in neurological and other diseases. Patients harbor many different mtDNA mutations, some of which are mtDNA mutations, some of which are inherited, but others that seem to be sporadic. It has also been suggested that mtDNA mutations play a role in aging and cancer, but the evidence for a causative role in these conditions is less clear. The accumulated data would suggest, however, that mtDNA mutations occur on a frequent basis. In this article we describe a new phenomenon: the accumulation of mtDNA mutations in human colonic crypt stem cells that result in a significant biochemical defect in their progeny. These studies have important consequences not only for understanding of the finding of mtDNA mutations in aging tissues and tumors, but also for determining the frequency of mtDNA mutations within a cell. PMID:14597761

  13. Mitochondrial DNA disease and developmental implications for reproductive strategies

    PubMed Central

    Burgstaller, Joerg Patrick; Johnston, Iain G.; Poulton, Joanna

    2015-01-01

    Mitochondrial diseases are potentially severe, incurable diseases resulting from dysfunctional mitochondria. Several important mitochondrial diseases are caused by mutations in mitochondrial DNA (mtDNA), the genetic material contained within mitochondria, which is maternally inherited. Classical and modern therapeutic approaches exist to address the inheritance of mtDNA disease, but are potentially complicated by the fact that cellular mtDNA populations evolve according to poorly-understood dynamics during development and organismal lifetimes. We review these therapeutic approaches and models of mtDNA dynamics during development, and discuss the implications of recent results from these models for modern mtDNA therapies. We particularly highlight mtDNA segregation—differences in proliferative rates between different mtDNA haplotypes—as a potential and underexplored issue in such therapies. However, straightforward strategies exist to combat this and other potential therapeutic problems. In particular, we describe haplotype matching as an approach with the power to potentially ameliorate any expected issues from mtDNA incompatibility. PMID:25425607

  14. Southeast Asian Mitochondrial DNA Analysis Reveals Genetic Continuity of Ancient Mongoloid Migrations

    PubMed Central

    Ballinger, S. W.; Schurr, T. G.; Torroni, A.; Gan, Y. Y.; Hodge, J. A.; Hassan, K.; Chen, K. H.; Wallace, D. C.

    1992-01-01

    Human mitochondrial DNAs (mtDNAs) from 153 independent samples encompassing seven Asian populations were surveyed for sequence variation using the polymerase chain reaction (PCR), restriction endonuclease analysis and oligonucleotide hybridization. All Asian populations were found to share two ancient AluI/DdeI polymorphisms at nps 10394 and 10397 and to be genetically similar indicating that they share a common ancestry. The greatest mtDNA diversity and the highest frequency of mtDNAs with HpaI/HincII morph 1 were observed in the Vietnamese suggesting a Southern Mongoloid origin of Asians. Remnants of the founding populations of Papua New Guinea (PNG) were found in Malaysia, and a marked frequency cline for the COII/tRNA(Lys) intergenic deletion was observed along coastal Asia. Phylogenetic analysis indicates that both insertion and deletion mutations in the COII/tRNA(Lys) region have occurred more than once. PMID:1346259

  15. In vivo DNA deletion assay to detect environmental and genetic predisposition to cancer.

    PubMed

    Reliene, Ramune; Bishop, Alexander J R; Aubrecht, Jiri; Schiestl, Robert H

    2004-01-01

    Large-scale genomic rearrangements such as DNA deletions play a role in the etiology of cancer. The frequency of DNA deletions can be elevated by exposure to carcinogens or by mutations in genes involved in the maintenance of genomic integrity. The in vivo DNA deletion assay allows a visual detection of deletion events within the pink-eyed unstable (pun) locus in developing mouse embryos. A deletion of one copy of a duplicated 70-kb DNA fragment within the pun locus restores the pink-eyed dilute (p) gene, which encodes a protein responsible for the assembly of a black color melanin complex. Deletion events occurring in premelanocytes cause visible black patches (fur-spots) on the light gray fur of offspring and black pigmented cells (eye-spots) on the unpigmented retinal pigment epithelium (RPE). In the fur-spot assay, 10-d-old pups are observed for black spots on the fur. In the eye-spot assay, mice are sacrificed at d 20, eyes are removed, and the wholemount RPE slides are prepared for eye-spot analysis. The frequency, size, and position relative to the optic nerve of the eye-spots are determined. This assay can be used to study the effect of environmental chemicals and physical agents as well as the genetic control of DNA deletions in vivo. PMID:14769959

  16. Mitochondrial heat shock protein 70, a molecular chaperone for proteins encoded by mitochondrial DNA

    PubMed Central

    1994-01-01

    Mitochondrial heat shock protein 70 (mt-Hsp70) has been shown to play an important role in facilitating import into, as well as folding and assembly of nuclear-encoded proteins in the mitochondrial matrix. Here, we describe a role for mt-Hsp70 in chaperoning proteins encoded by mitochondrial DNA and synthesized within mitochondria. The availability of mt-Hsp70 function influences the pattern of proteins synthesized in mitochondria of yeast both in vivo and in vitro. In particular, we show that mt-Hsp70 acts in maintaining the var1 protein, the only mitochondrially encoded subunit of mitochondrial ribosomes, in an assembly competent state, especially under heat stress conditions. Furthermore, mt-Hsp70 helps to facilitate assembly of mitochondrially encoded subunits of the ATP synthase complex. By interacting with the ATP-ase 9 oligomer, mt-Hsp70 promotes assembly of ATP-ase 6, and thereby protects the latter protein from proteolytic degradation. Thus mt-Hsp70 by acting as a chaperone for proteins encoded by the mitochondrial DNA, has a critical role in the assembly of supra- molecular complexes. PMID:7962074

  17. Structure and evolution of the Phasianidae mitochondrial DNA control region.

    PubMed

    Huang, Zuhao; Ke, Dianhua

    2016-01-01

    The mitochondrial DNA control region is an area of the mitochondrial genome which is non-coding DNA. To infer the structural and evolutionary characteristics of Phasianidae mitochondrial DNA control region, the entire control region sequences of 34 species were analyzed. The length of the control region sequences ranged from 1144 bp (Phasianus colchicus) to 1555 bp (Coturnix japonica) and can be separated into three domains. The average genetic distances among the species within the genera varied from 1.96% (Chrysolophus) to 12.05% (Coturnix). The average genetic distances showed significantly negative correlation with ts/tv. In most genera (except Coturnix), domain I is the most variable among the three domains. However, the first 150 nucleotides apparently evolved at unusually low rates. Four conserved sequence boxes in the domain II of Phasianidae sequences were identified. The alignment of the Phasianidae four boxes and CSB-1 sequences showed considerable sequence variation. PMID:24617466

  18. Mitochondrial DNA Stress Primes the Antiviral Innate Immune Response

    PubMed Central

    West, A. Phillip; Khoury-Hanold, William; Staron, Matthew; Tal, Michal C.; Pineda, Cristiana M.; Lang, Sabine M.; Bestwick, Megan; Duguay, Brett A.; Raimundo, Nuno; MacDuff, Donna A.; Kaech, Susan M.; Smiley, James R.; Means, Robert E.; Iwasaki, Akiko; Shadel, Gerald S.

    2014-01-01

    Mitochondrial DNA (mtDNA) is normally present at thousands of copies per cell and is packaged into several hundred higher-order structures termed nucleoids1. The abundant mtDNA-binding protein, transcription factor A mitochondrial (TFAM), regulates nucleoid architecture, abundance, and segregation2. Complete mtDNA depletion profoundly impairs oxidative phosphorylation (OXPHOS), triggering calcium-dependent stress signaling and adaptive metabolic responses3. However, the cellular responses to mtDNA instability, a physiologically relevant stress observed in many human diseases and aging, remain ill-defined4. Here we show that moderate mtDNA stress elicited by TFAM deficiency engages cytosolic antiviral signaling to enhance the expression of a subset of interferon-stimulated genes (ISG). Mechanistically, we have found that aberrant mtDNA packaging promotes escape of mtDNA into the cytosol, where it engages the DNA sensor cGAS and promotes STING-IRF3-dependent signaling to elevate ISG expression, potentiate type I interferon responses, and confer broad viral resistance. Furthermore, we demonstrate that herpesviruses induce mtDNA stress, which potentiates antiviral signaling and type I interferon responses during infection. Our results further demonstrate that mitochondria are central participants in innate immunity, identify mtDNA stress as a cell-intrinsic trigger of antiviral signaling, and suggest that cellular monitoring of mtDNA homeostasis cooperates with canonical virus sensing mechanisms to fully license antiviral innate immunity. PMID:25642965

  19. Mitochondrial DNA stress primes the antiviral innate immune response.

    PubMed

    West, A Phillip; Khoury-Hanold, William; Staron, Matthew; Tal, Michal C; Pineda, Cristiana M; Lang, Sabine M; Bestwick, Megan; Duguay, Brett A; Raimundo, Nuno; MacDuff, Donna A; Kaech, Susan M; Smiley, James R; Means, Robert E; Iwasaki, Akiko; Shadel, Gerald S

    2015-04-23

    Mitochondrial DNA (mtDNA) is normally present at thousands of copies per cell and is packaged into several hundred higher-order structures termed nucleoids. The abundant mtDNA-binding protein TFAM (transcription factor A, mitochondrial) regulates nucleoid architecture, abundance and segregation. Complete mtDNA depletion profoundly impairs oxidative phosphorylation, triggering calcium-dependent stress signalling and adaptive metabolic responses. However, the cellular responses to mtDNA instability, a physiologically relevant stress observed in many human diseases and ageing, remain poorly defined. Here we show that moderate mtDNA stress elicited by TFAM deficiency engages cytosolic antiviral signalling to enhance the expression of a subset of interferon-stimulated genes. Mechanistically, we find that aberrant mtDNA packaging promotes escape of mtDNA into the cytosol, where it engages the DNA sensor cGAS (also known as MB21D1) and promotes STING (also known as TMEM173)-IRF3-dependent signalling to elevate interferon-stimulated gene expression, potentiate type I interferon responses and confer broad viral resistance. Furthermore, we demonstrate that herpesviruses induce mtDNA stress, which enhances antiviral signalling and type I interferon responses during infection. Our results further demonstrate that mitochondria are central participants in innate immunity, identify mtDNA stress as a cell-intrinsic trigger of antiviral signalling and suggest that cellular monitoring of mtDNA homeostasis cooperates with canonical virus sensing mechanisms to fully engage antiviral innate immunity. PMID:25642965

  20. Nonneutral mitochondrial DNA variation in humans and chimpanzees

    SciTech Connect

    Nachman, M.W.; Aquadro, C.F.; Brown, W.M.

    1996-03-01

    We sequenced the NADH dehydrogenase subunit 3 (ND3) gene from a sample of 61 humans, five common chimpanzees, and one gorilla to test whether patterns of mitochondrial DNA (mtDNA) variation are consistent with a neutral model of molecular evolution. Within humans and within chimpanzees, the ratio of replacement to silent nucleotide substitutions was higher than observed in comparisons between species, contrary to neutral expectations. To test the generality of this result, we reanalyzed published human RFLP data from the entire mitochondrial genome. Gains of restriction sites relative to a known human mtDNA sequence were used to infer unambiguous nucleotide substitutions. We also compared the complete mtDNA sequences of three humans. Both the RFLP data and the sequence data reveal a higher ratio of replacement to silent nucleotide substitutions within humans than is seen between species. This pattern is observed at most or all human mitochondrial genes and is inconsistent with a strictly neutral model. These data suggest that many mitochondrial protein polymorphisms are slightly deleterious, consistent with studies of human mitochondrial diseases. 59 refs., 2 figs., 8 tabs.

  1. Blood cell mitochondrial DNA content and premature ovarian aging.

    PubMed

    Bonomi, Marco; Somigliana, Edgardo; Cacciatore, Chiara; Busnelli, Marta; Rossetti, Raffaella; Bonetti, Silvia; Paffoni, Alessio; Mari, Daniela; Ragni, Guido; Persani, Luca

    2012-01-01

    Primary ovarian insufficiency (POI) is a critical fertility defect characterized by an anticipated and silent impairment of the follicular reserve, but its pathogenesis is largely unexplained. The frequent maternal inheritance of POI together with a remarkable dependence of ovarian folliculogenesis upon mitochondrial biogenesis and bioenergetics suggested the possible involvement of a generalized mitochondrial defect. Here, we verified the existence of a significant correlation between blood and ovarian mitochondrial DNA (mtDNA) content in a group of women undergoing ovarian hyperstimulation (OH), and then aimed to verify whether mtDNA content was significantly altered in the blood cells of POI women. We recruited 101 women with an impaired ovarian reserve: 59 women with premature ovarian failure (POF) and 42 poor responders (PR) to OH. A Taqman copy number assay revealed a significant mtDNA depletion (P<0.001) in both POF and PR women in comparison with 43 women of similar age and intact ovarian reserve, or 53 very old women with a previous physiological menopause. No pathogenic variations in the mitochondrial DNA polymerase γ (POLG) gene were detected in 57 POF or PR women with low blood mtDNA content. In conclusion, blood cell mtDNA depletion is a frequent finding among women with premature ovarian aging, suggesting that a still undetermined but generalized mitochondrial defect may frequently predispose to POI which could then be considered a form of anticipated aging in which the ovarian defect may represent the first manifestation. The determination of mtDNA content in blood may become an useful tool for the POI risk prediction. PMID:22879975

  2. Blood Cell Mitochondrial DNA Content and Premature Ovarian Aging

    PubMed Central

    Cacciatore, Chiara; Busnelli, Marta; Rossetti, Raffaella; Bonetti, Silvia; Paffoni, Alessio; Mari, Daniela; Ragni, Guido; Persani, Luca; Arosio, M.; Beck-Peccoz, P.; Biondi, M.; Bione, S.; Bruni, V.; Brigante, C.; Cannavo`, S.; Cavallo, L.; Cisternino, M.; Colombo, I.; Corbetta, S.; Crosignani, P.G.; D'Avanzo, M.G.; Dalpra, L.; Danesino, C.; Di Battista, E.; Di Prospero, F.; Donti, E.; Einaudi, S.; Falorni, A.; Foresta, C.; Fusi, F.; Garofalo, N.; Giotti, I.; Lanzi, R.; Larizza, D.; Locatelli, N.; Loli, P.; Madaschi, S.; Maghnie, M.; Maiore, S.; Mantero, F.; Marozzi, A.; Marzotti, S.; Migone, N.; Nappi, R.; Palli, D.; Patricelli, M.G.; Pisani, C.; Prontera, P.; Petraglia, F.; Radetti, G.; Renieri, A.; Ricca, I.; Ripamonti, A.; Rossetti, R.; Russo, G.; Russo, S.; Tonacchera, M.; Toniolo, D.; Torricelli, F.; Vegetti, W.; Villa, N.; Vineis, P.; Wasniewsk, M.; Zuffardi, O.

    2012-01-01

    Primary ovarian insufficiency (POI) is a critical fertility defect characterized by an anticipated and silent impairment of the follicular reserve, but its pathogenesis is largely unexplained. The frequent maternal inheritance of POI together with a remarkable dependence of ovarian folliculogenesis upon mitochondrial biogenesis and bioenergetics suggested the possible involvement of a generalized mitochondrial defect. Here, we verified the existence of a significant correlation between blood and ovarian mitochondrial DNA (mtDNA) content in a group of women undergoing ovarian hyperstimulation (OH), and then aimed to verify whether mtDNA content was significantly altered in the blood cells of POI women. We recruited 101 women with an impaired ovarian reserve: 59 women with premature ovarian failure (POF) and 42 poor responders (PR) to OH. A Taqman copy number assay revealed a significant mtDNA depletion (P<0.001) in both POF and PR women in comparison with 43 women of similar age and intact ovarian reserve, or 53 very old women with a previous physiological menopause. No pathogenic variations in the mitochondrial DNA polymerase γ (POLG) gene were detected in 57 POF or PR women with low blood mtDNA content. In conclusion, blood cell mtDNA depletion is a frequent finding among women with premature ovarian aging, suggesting that a still undetermined but generalized mitochondrial defect may frequently predispose to POI which could then be considered a form of anticipated aging in which the ovarian defect may represent the first manifestation. The determination of mtDNA content in blood may become an useful tool for the POI risk prediction. PMID:22879975

  3. Methods for Efficient Elimination of Mitochondrial DNA from Cultured Cells

    PubMed Central

    Spadafora, Domenico; Kozhukhar, Nataliya; Chouljenko, Vladimir N.; Kousoulas, Konstantin G.; Alexeyev, Mikhail F.

    2016-01-01

    Here, we document that persistent mitochondria DNA (mtDNA) damage due to mitochondrial overexpression of the Y147A mutant uracil-N-glycosylase as well as mitochondrial overexpression of bacterial Exonuclease III or Herpes Simplex Virus protein UL12.5M185 can induce a complete loss of mtDNA (ρ0 phenotype) without compromising the viability of cells cultured in media supplemented with uridine and pyruvate. Furthermore, we use these observations to develop rapid, sequence-independent methods for the elimination of mtDNA, and demonstrate utility of these methods for generating ρ0 cells of human, mouse and rat origin. We also demonstrate that ρ0 cells generated by each of these three methods can serve as recipients of mtDNA in fusions with enucleated cells. PMID:27136098

  4. A modified procedure for isolation of yeast mitochondrial DNA.

    PubMed

    Nedeva, Trayana; Petrova, Ventzislava; Hristozova, Tsonka; Kujumdzieva, Anna

    2002-01-01

    A modified, rapid and inexpensive method for preparation of mitochondrial DNA (mtDNA), suitable for molecular analysis is proposed. It comprises batch cultivation of Saccharomyces cerevisiae strain NBIMCC 583 on a simple nutrient medium at 28 degrees C; permeabialization of cells from late exponential growth phase with cetyltrimethylamonnium bromide, mechanical disintegration of the cell wall; preparation of a mitochondrial fraction and subsequent isolation and purification of mtDNA. The amount and the purity of the obtained mtDNA have been checked and its application for molecular analysis proven. The main advantages of the proposed procedure for isolation of mtDNA are introduction of simple nutrient medium, replacement of the enzymatic lysis of the cell wall by the cheaper mechanical one, avoidance of ultracentrifugation steps and use of harmful chemical substances. PMID:12440743

  5. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA.

    PubMed

    Tan, An S; Baty, James W; Dong, Lan-Feng; Bezawork-Geleta, Ayenachew; Endaya, Berwini; Goodwin, Jacob; Bajzikova, Martina; Kovarova, Jaromira; Peterka, Martin; Yan, Bing; Pesdar, Elham Alizadeh; Sobol, Margarita; Filimonenko, Anatolyj; Stuart, Shani; Vondrusova, Magdalena; Kluckova, Katarina; Sachaphibulkij, Karishma; Rohlena, Jakub; Hozak, Pavel; Truksa, Jaroslav; Eccles, David; Haupt, Larisa M; Griffiths, Lyn R; Neuzil, Jiri; Berridge, Michael V

    2015-01-01

    We report that tumor cells without mitochondrial DNA (mtDNA) show delayed tumor growth, and that tumor formation is associated with acquisition of mtDNA from host cells. This leads to partial recovery of mitochondrial function in cells derived from primary tumors grown from cells without mtDNA and a shorter lag in tumor growth. Cell lines from circulating tumor cells showed further recovery of mitochondrial respiration and an intermediate lag to tumor growth, while cells from lung metastases exhibited full restoration of respiratory function and no lag in tumor growth. Stepwise assembly of mitochondrial respiratory (super)complexes was correlated with acquisition of respiratory function. Our findings indicate horizontal transfer of mtDNA from host cells in the tumor microenvironment to tumor cells with compromised respiratory function to re-establish respiration and tumor-initiating efficacy. These results suggest pathophysiological processes for overcoming mtDNA damage and support the notion of high plasticity of malignant cells. PMID:25565207

  6. Role of polynucleotide kinase/phosphatase in mitochondrial DNA repair

    PubMed Central

    Tahbaz, Nasser; Subedi, Sudip; Weinfeld, Michael

    2012-01-01

    Mutations in mitochondrial DNA (mtDNA) are implicated in a broad range of human diseases and in aging. Compared to nuclear DNA, mtDNA is more highly exposed to oxidative damage due to its proximity to the respiratory chain and the lack of protection afforded by chromatin-associated proteins. While repair of oxidative damage to the bases in mtDNA through the base excision repair pathway has been well studied, the repair of oxidatively induced strand breaks in mtDNA has been less thoroughly examined. Polynucleotide kinase/phosphatase (PNKP) processes strand-break termini to render them chemically compatible for the subsequent action of DNA polymerases and ligases. Here, we demonstrate that functionally active full-length PNKP is present in mitochondria as well as nuclei. Downregulation of PNKP results in an accumulation of strand breaks in mtDNA of hydrogen peroxide-treated cells. Full restoration of repair of the H2O2-induced strand breaks in mitochondria requires both the kinase and phosphatase activities of PNKP. We also demonstrate that PNKP contains a mitochondrial-targeting signal close to the C-terminus of the protein. We further show that PNKP associates with the mitochondrial protein mitofilin. Interaction with mitofilin may serve to translocate PNKP into mitochondria. PMID:22210862

  7. Mitochondrial DNA evidence of southward migration of Manchus in China.

    PubMed

    Zhao, Yong-Bin; Sun, Wen-Yi; Zhan, Yang; Di, Wang; Yu, Chang-Chun

    2011-01-01

    The Northeast area of China is a cross region between East Asia and Siberia. Although five populations from this area have been studied in maternal lineage, little is known about the genetics of other populations. In this study, forty-seven Manchu individuals were analyzed using a mitochondrial DNA marker, and fourteen mitochondrial DNA haplogroups, the representative haplogroups of east Eurasian, were identified. All analyses showed that Manchu were close to the neighboring populations such as Mongolian, Korean and northern Han Chinese, and were far from the other populations who lived in the cradle of Manchu, suggesting that the Manchu integrated gradually with natives following its southward migration. PMID:22393778

  8. Mitochondrial DNA Mutation Associated with Leber's Hereditary Optic Neuropathy

    NASA Astrophysics Data System (ADS)

    Wallace, Douglas C.; Singh, Gurparkash; Lott, Marie T.; Hodge, Judy A.; Schurr, Theodore G.; Lezza, Angela M. S.; Elsas, Louis J.; Nikoskelainen, Eeva K.

    1988-12-01

    Leber's hereditary optic neuropathy is a maternally inherited disease resulting in optic nerve degeneration and cardiac dysrhythmia. A mitochondrial DNA replacement mutation was identified that correlated with this disease in multiple families. This mutation converted a highly conserved arginine to a histidine at codon 340 in the NADH dehydrogenase subunit 4 gene and eliminated an Sfa NI site, thus providing a simple diagnostic test. This finding demonstrated that a nucleotide change in a mitochondrial DNA energy production gene can result in a neurological disease.

  9. Mutations in FBXL4 Cause Mitochondrial Encephalopathy and a Disorder of Mitochondrial DNA Maintenance

    PubMed Central

    Bonnen, Penelope E.; Yarham, John W.; Besse, Arnaud; Wu, Ping; Faqeih, Eissa A.; Al-Asmari, Ali Mohammad; Saleh, Mohammad A.M.; Eyaid, Wafaa; Hadeel, Alrukban; He, Langping; Smith, Frances; Yau, Shu; Simcox, Eve M.; Miwa, Satomi; Donti, Taraka; Abu-Amero, Khaled K.; Wong, Lee-Jun; Craigen, William J.; Graham, Brett H.; Scott, Kenneth L.; McFarland, Robert; Taylor, Robert W.

    2013-01-01

    Nuclear genetic disorders causing mitochondrial DNA (mtDNA) depletion are clinically and genetically heterogeneous, and the molecular etiology remains undiagnosed in the majority of cases. Through whole-exome sequencing, we identified recessive nonsense and splicing mutations in FBXL4 segregating in three unrelated consanguineous kindreds in which affected children present with a fatal encephalopathy, lactic acidosis, and severe mtDNA depletion in muscle. We show that FBXL4 is an F-box protein that colocalizes with mitochondria and that loss-of-function and splice mutations in this protein result in a severe respiratory chain deficiency, loss of mitochondrial membrane potential, and a disturbance of the dynamic mitochondrial network and nucleoid distribution in fibroblasts from affected individuals. Expression of the wild-type FBXL4 transcript in cell lines from two subjects fully rescued the levels of mtDNA copy number, leading to a correction of the mitochondrial biochemical deficit. Together our data demonstrate that mutations in FBXL4 are disease causing and establish FBXL4 as a mitochondrial protein with a possible role in maintaining mtDNA integrity and stability. PMID:23993193

  10. DNA methyltransferase 1 mutations and mitochondrial pathology: is mtDNA methylated?

    PubMed Central

    Maresca, Alessandra; Zaffagnini, Mirko; Caporali, Leonardo; Carelli, Valerio; Zanna, Claudia

    2015-01-01

    Autosomal dominant cerebellar ataxia-deafness and narcolepsy (ADCA-DN) and Hereditary sensory neuropathy with dementia and hearing loss (HSN1E) are two rare, overlapping neurodegenerative syndromes that have been recently linked to allelic dominant pathogenic mutations in the DNMT1 gene, coding for DNA (cytosine-5)-methyltransferase 1 (DNMT1). DNMT1 is the enzyme responsible for maintaining the nuclear genome methylation patterns during the DNA replication and repair, thus regulating gene expression. The mutations responsible for ADCA-DN and HSN1E affect the replication foci targeting sequence domain, which regulates DNMT1 binding to chromatin. DNMT1 dysfunction is anticipated to lead to a global alteration of the DNA methylation pattern with predictable downstream consequences on gene expression. Interestingly, ADCA-DN and HSN1E phenotypes share some clinical features typical of mitochondrial diseases, such as optic atrophy, peripheral neuropathy, and deafness, and some biochemical evidence of mitochondrial dysfunction. The recent discovery of a mitochondrial isoform of DNMT1 and its proposed role in methylating mitochondrial DNA (mtDNA) suggests that DNMT1 mutations may directly affect mtDNA and mitochondrial physiology. On the basis of this latter finding the link between DNMT1 abnormal activity and mitochondrial dysfunction in ADCA-DN and HSN1E appears intuitive, however, mtDNA methylation remains highly debated. In the last years several groups demonstrated the presence of 5-methylcytosine in mtDNA by different approaches, but, on the other end, the opposite evidence that mtDNA is not methylated has also been published. Since over 1500 mitochondrial proteins are encoded by the nuclear genome, the altered methylation of these genes may well have a critical role in leading to the mitochondrial impairment observed in ADCA-DN and HSN1E. Thus, many open questions still remain unanswered, such as why mtDNA should be methylated, and how this process is regulated and

  11. More evidence for non-maternal inheritance of mitochondrial DNA?

    PubMed Central

    Bandelt, H; Kong, Q; Parson, W; Salas, A

    2005-01-01

    Background: A single case of paternal co-transmission of mitochondrial DNA (mtDNA) in humans has been reported so far. Objective: To find potential instances of non-maternal inheritance of mtDNA. Methods: Published medical case studies (of single patients) were searched for irregular mtDNA patterns by comparing the given haplotype information for different clones or tissues with the worldwide mtDNA database as known to date—a method that has proved robust and reliable for the detection of flawed mtDNA sequence data. Results: More than 20 studies were found reporting clear cut instances with mtDNAs of different ancestries in single individuals. As examples, cases are reviewed from recent published reports which, at face value, may be taken as evidence for paternal inheritance of mtDNA or recombination. Conclusions: Multiple types (or recombinant types) of quite dissimilar mitochondrial DNA from different parts of the known mtDNA phylogeny are often reported in single individuals. From re-analyses and corrigenda of forensic mtDNA data, it is apparent that the phenomenon of mixed or mosaic mtDNA can be ascribed solely to contamination and sample mix up. PMID:15923271

  12. Arsenic trioxide promotes mitochondrial DNA mutation and cell apoptosis in primary APL cells and NB4 cell line.

    PubMed

    Meng, Ran; Zhou, Jin; Sui, Meng; Li, ZhiYong; Feng, GuoSheng; Yang, BaoFeng

    2010-01-01

    This study aimed to investigate the effects of arsenic trioxide (As(2)O(3)) on the mitochondrial DNA (mtDNA) of acute promyelocytic leukemia (APL) cells. The NB4 cell line was treated with 2.0 micromol/L As(2)O(3) in vitro, and the primary APL cells were treated with 2.0 micromol/L As(2)O(3) in vitro and 0.16 mg kg(-1) d(-1) As(2)O(3) in vivo. The mitochondrial DNA of all the cells above was amplified by PCR, directly sequenced and analyzed by Sequence Navigatore and Factura software. The apoptosis rates were assayed by flow cytometry. Mitochondrial DNA mutation in the D-loop region was found in NB4 and APL cells before As(2)O(3) use, but the mutation spots were remarkably increased after As(2)O(3) treatment, which was positively correlated to the rates of cellular apoptosis, the correlation coefficient: r (NB4-As2O3)=0.973818, and r (APL-As2O3)=0.934703. The mutation types include transition, transversion, codon insertion or deletion, and the mutation spots in all samples were not constant and regular. It is revealed that As(2)O(3) aggravates mtDNA mutation in the D-loop region of acute promyelocytic leukemia cells both in vitro and in vivo. Mitochondrial DNA might be one of the targets of As(2)O(3) in APL treatment. PMID:20596959

  13. Shot-gun proteomic analysis of mitochondrial D-loop DNA binding proteins: identification of mitochondrial histones.

    PubMed

    Choi, Yon-Sik; Hoon Jeong, Jae; Min, Hye-Ki; Jung, Hee-Jung; Hwang, Daehee; Lee, Sang-Won; Kim Pak, Youngmi

    2011-05-01

    Transcription and replication of mitochondrial DNA (mtDNA) are regulated by nuclear DNA-encoded proteins that are targeted into mitochondria. A decrease in mtDNA copy number results in mitochondrial dysfunction, which may lead to insulin resistance and metabolic syndromes. We analyzed mitochondrial proteins that physically bind to human mitochondrial D-loop DNA using a shot-gun proteomics approach following protein enrichment by D-loop DNA-linked affinity chromatography. A total of 152 D-loop DNA binding proteins were identified by peptide sequencing using ultra high pressure capillary reverse-phase liquid chromatography/tandem mass spectrometry. Bioinformatic analysis showed that 68 were mitochondrial proteins, 96 were DNA/RNA/protein binding proteins and 114 proteins might form a complex via protein-protein interactions. Histone family members of H1, H2A, H2B, H3, and H4, were detected in abundance among them. In particular, histones H2A and H2B were present in the mitochondrial membrane as integral membrane proteins and not bound directly to mtDNA inside the organelle. Histones H1.2, H3 and H4 were associated with the outer mitochondrial membrane. Silencing of H2AX expression inhibited mitochondrial protein transport. Our data suggests that many mitochondrial proteins may reside in multiple subcellular compartments like H2AX and exert multiple functions. PMID:21359316

  14. Leber's hereditary optic neuropathy with 3460 mitochondrial DNA mutation.

    PubMed Central

    Hwang, Jeong-Min; Chang, Bong Leen; Koh, Hyoung Jun; Kim, Ji Yeon; Park, Sung Sup

    2002-01-01

    Leber's hereditary optic neuropathy (LHON) is a maternally transmitted disease causing acute or subacute, bilateral optic atrophy mainly in young men. It is found to be a mitochondrial disorder with the primary mitochondrial DNA (mtDNA) mutations at 11,778, 3460, and 14,484. The incidence of each mutation is reported to be race-dependent. Point mutations at mtDNA nucleotide position 11,778 and 14,484 have been reported in Korean patients with LHON, however there has been no report of mtDNA mutation at nucleotide position 3460. Molecular genetic analyses at four primary sites (11,778, 14,484, 15,257, and 3460) of mitochondrial DNA using the polymerase chain reaction, restriction enzyme digestion, and direct sequencing were performed in a 35-yr-old man with severe visual loss. A point mutation in the mtDNA at nucleotide position 3460 was identified and a conversion of a single alanine to a threonine was confirmed. To our knowledge, this is the first report confirming mtDNA mutation at nucleotide position 3460 in Korean patients with LHON. Detailed molecular analyses would be very helpful for the correct diagnosis of optic neuropathy of unknown etiology and for genetic counseling. PMID:11961321

  15. Nuclear and mitochondrial DNA quantification of various forensic materials.

    PubMed

    Andréasson, H; Nilsson, M; Budowle, B; Lundberg, H; Allen, M

    2006-12-01

    Due to the different types and quality of forensic evidence materials, their DNA content can vary substantially, and particularly low quantities can impact the results in an identification analysis. In this study, the quantity of mitochondrial and nuclear DNA was determined in a variety of materials using a previously described real-time PCR method. DNA quantification in the roots and distal sections of plucked and shed head hairs revealed large variations in DNA content particularly between the root and the shaft of plucked hairs. Also large intra- and inter-individual variations were found among hairs. In addition, DNA content was estimated in samples collected from fingerprints and accessories. The quantification of DNA on various items also displayed large variations, with some materials containing large amounts of nuclear DNA while no detectable nuclear DNA and only limited amounts of mitochondrial DNA were seen in others. Using this sensitive real-time PCR quantification assay, a better understanding was obtained regarding DNA content and variation in commonly analysed forensic evidence materials and this may guide the forensic scientist as to the best molecular biology approach for analysing various forensic evidence materials. PMID:16427750

  16. Mitochondrial DNA heteroplasmy in human health and disease

    PubMed Central

    STEFANO, GEORGE B.; KREAM, RICHARD M.

    2016-01-01

    The biomedical literature has extensively documented the functional roles of genetic polymorphisms in concert with well-characterized somatic mutations in the etiology and progression of major metastatic diseases afflicting human populations. Mitochondrial heteroplasmy exists as a dynamically determined co-expression of inherited polymorphisms and somatic mutations in varying ratios within individual mitochondrial DNA genomes with repetitive patterns of tissue specificity. Mechanistically, carcinogenic cellular processes include profound alterations of normative mitochondrial function, notably dependence on aerobic and anaerobic glycolysis, and aberrant production and release of lactate, according to a classic theory. Within the translational context of human health and disease, the present review discusses the necessity of establishing critical foci designed to probe multiple biological roles of mitochondrial heteroplasmy in cancer biology. PMID:26998260

  17. Adipocyte-Specific Deletion of Manganese Superoxide Dismutase Protects From Diet-Induced Obesity Through Increased Mitochondrial Uncoupling and Biogenesis.

    PubMed

    Han, Yong Hwan; Buffolo, Márcio; Pires, Karla Maria; Pei, Shaobo; Scherer, Philipp E; Boudina, Sihem

    2016-09-01

    Obesity and insulin resistance are associated with oxidative stress (OS). The causal role of adipose OS in the pathogenesis of these conditions is unknown. To address this issue, we generated mice with an adipocyte-selective deletion of manganese superoxide dismutase (MnSOD). When fed a high-fat diet (HFD), the AdSod2 knockout (KO) mice exhibited less adiposity, reduced adipocyte hypertrophy, and decreased circulating leptin. The resistance to diet-induced adiposity was the result of an increased metabolic rate and energy expenditure. Furthermore, palmitate oxidation was elevated in the white adipose tissue (WAT) and brown adipose tissue of AdSod2 KO mice fed an HFD, and the expression of key fatty acid oxidation genes was increased. To gain mechanistic insight into the increased fat oxidation in HFD-fed AdSod2 KO mice, we quantified the mitochondrial function and mitochondrial content in WAT and found that MnSOD deletion increased mitochondrial oxygen consumption and induced mitochondrial biogenesis. This effect was preserved in cultured adipocytes from AdSod2 KO mice in vitro. As expected from the enhanced fat oxidation, circulating levels of free fatty acids were reduced in the HFD-fed AdSod2 KO mice. Finally, HFD-fed AdSod2 KO mice were protected from hepatic steatosis, adipose tissue inflammation, and glucose and insulin intolerance. Taken together, these results demonstrate that MnSOD deletion in adipocytes triggered an adaptive stress response that activated mitochondrial biogenesis and enhanced mitochondrial fatty acid oxidation, thereby preventing diet-induced obesity and insulin resistance. PMID:27284109

  18. Reduction of nuclear encoded enzymes of mitochondrial energy metabolism in cells devoid of mitochondrial DNA

    SciTech Connect

    Mueller, Edith E.; Mayr, Johannes A.; Zimmermann, Franz A.; Feichtinger, Rene G.; Stanger, Olaf; Sperl, Wolfgang; Kofler, Barbara

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer We examined OXPHOS and citrate synthase enzyme activities in HEK293 cells devoid of mtDNA. Black-Right-Pointing-Pointer Enzymes partially encoded by mtDNA show reduced activities. Black-Right-Pointing-Pointer Also the entirely nuclear encoded complex II and citrate synthase exhibit reduced activities. Black-Right-Pointing-Pointer Loss of mtDNA induces a feedback mechanism that downregulates complex II and citrate synthase. -- Abstract: Mitochondrial DNA (mtDNA) depletion syndromes are generally associated with reduced activities of oxidative phosphorylation (OXPHOS) enzymes that contain subunits encoded by mtDNA. Conversely, entirely nuclear encoded mitochondrial enzymes in these syndromes, such as the tricarboxylic acid cycle enzyme citrate synthase (CS) and OXPHOS complex II, usually exhibit normal or compensatory enhanced activities. Here we report that a human cell line devoid of mtDNA (HEK293 {rho}{sup 0} cells) has diminished activities of both complex II and CS. This finding indicates the existence of a feedback mechanism in {rho}{sup 0} cells that downregulates the expression of entirely nuclear encoded components of mitochondrial energy metabolism.

  19. Evidence for recombination in scorpion mitochondrial DNA (Scorpiones: Buthidae)

    PubMed Central

    Gantenbein, Benjamin; Fet, Victor; Gantenbein-Ritter, Iris A; Balloux, François

    2005-01-01

    There has been very little undisputed evidence for recombination in animal mitochondrial DNA (mtDNA) provided so far. Previous unpublished results suggestive of mtDNA recombination in the scorpion family Buthidae, together with cytological evidence for a unique mechanism of mitochondrial fusion in that family, prompted us to investigate this group in more details. First, we sequenced the complete mtDNA genome of Mesobuthus gibbosus, and chose two genes opposing each other (16S and coxI). We then sequenced 150 individuals from the natural populations of four species of Buthidae (Old World genera Buthus and Mesobuthus). We observed strong evidence for widespread recombination through highly significant negative correlations between linkage disequilibrium and physical distance in three out of four species. The evidence is further confirmed when using five other tests for recombination and by the presence of a high amount of homoplasy in phylogenetic trees. PMID:15870032

  20. Ultraviolet B, melanin and mitochondrial DNA: Photo-damage in human epidermal keratinocytes and melanocytes modulated by alpha-melanocyte-stimulating hormone

    PubMed Central

    Böhm, Markus; Hill, Helene Z.

    2016-01-01

    Alpha-melanocyte-stimulating hormone (alpha-MSH) increases melanogenesis and protects from UV-induced DNA damage. However, its effect on mitochondrial DNA (mtDNA) damage is unknown. We have addressed this issue in a pilot study using human epidermal keratinocytes and melanocytes incubated with alpha-MSH and irradiated with UVB. Real-time touchdown PCR was used to quantify total and deleted mtDNA. The deletion detected encompassed the common deletion but was more sensitive to detection. There were 4.4 times more mtDNA copies in keratinocytes than in melanocytes. Irradiation alone did not affect copy numbers. Alpha-MSH slightly increased copy numbers in both cell types in the absence of UVB and caused a similar small decrease in copy number with dose in both cell types. Deleted copies were nearly twice as frequent in keratinocytes as in melanocytes. Alpha-MSH reduced the frequency of deleted copies by half in keratinocytes but not in melanocytes. UVB dose dependently led to an increase in the deleted copy number in alpha-MSH-treated melanocytes. UVB irradiation had little effect on deleted copy number in alpha-MSH-treated keratinocytes. In summary, alpha-MSH enhances mtDNA damage in melanocytes presumably by increased melanogenesis, while α-MSH is protective in keratinocytes, the more so in the absence of irradiation. PMID:27303631

  1. Ultraviolet B, melanin and mitochondrial DNA: Photo-damage in human epidermal keratinocytes and melanocytes modulated by alpha-melanocyte-stimulating hormone.

    PubMed

    Böhm, Markus; Hill, Helene Z

    2016-01-01

    Alpha-melanocyte-stimulating hormone (alpha-MSH) increases melanogenesis and protects from UV-induced DNA damage. However, its effect on mitochondrial DNA (mtDNA) damage is unknown. We have addressed this issue in a pilot study using human epidermal keratinocytes and melanocytes incubated with alpha-MSH and irradiated with UVB. Real-time touchdown PCR was used to quantify total and deleted mtDNA. The deletion detected encompassed the common deletion but was more sensitive to detection. There were 4.4 times more mtDNA copies in keratinocytes than in melanocytes. Irradiation alone did not affect copy numbers. Alpha-MSH slightly increased copy numbers in both cell types in the absence of UVB and caused a similar small decrease in copy number with dose in both cell types. Deleted copies were nearly twice as frequent in keratinocytes as in melanocytes. Alpha-MSH reduced the frequency of deleted copies by half in keratinocytes but not in melanocytes. UVB dose dependently led to an increase in the deleted copy number in alpha-MSH-treated melanocytes. UVB irradiation had little effect on deleted copy number in alpha-MSH-treated keratinocytes. In summary, alpha-MSH enhances mtDNA damage in melanocytes presumably by increased melanogenesis, while α-MSH is protective in keratinocytes, the more so in the absence of irradiation. PMID:27303631

  2. Mitochondrial DNA Mutations in etiopathogenesis of male infertility

    PubMed Central

    Shamsi, Monis Bilal; Kumar, Rakesh; Bhatt, Audesh; Bamezai, R. N. K.; Kumar, Rajeev; Gupta, Narmada P.; Das, T. K.; Dada, Rima

    2008-01-01

    Objective To understand role of mitochondrial (mt) mutations in genes regulating oxidative phosphorylation (OXPHOS) in pathogenesis of male infertility. Infertility affects approximately 15% of couples trying to conceive. Infertility is frequently attributed to defects of sperm motility and number. Mitochondrion and mitochondrial DNA (mtDNA) play an important role in variety of physiological process. They control the oxidative energy supply and thus are central to growth, development and differentiation. Mitochondrial function is controlled by a fine-tuned crosstalk between mtDNA and nuclear DNA (nDNA). As mitochondria supply energy by OXPHOS, any mutation in mtDNA disrupts adenosine triphosphate (ATP) production and thus result in an impaired spermatogenesis and impaired flagellar movement. As sperm midpiece has few mtDNA copies, thus enhanced number of mutant mtDNA results in early phenotypic defect which manifest as spermatogenic arrest or asthenozoospermia. Oxidative stress and mtDNA mutations are positively correlated and mutations in mitochondrial genome (mt genome) are implicated in the lowered fertilising capacity of the sperm and affects the reproductive potential of an individual. Materials and Methods A thorough review of articles in the last 15 years was cited with reference to the below-mentioned keywords. The articles considered discuss the role of mt genome in the normal functioning of sperm and the factors associated with mt mutations and impact of these mutations on the reproductive potential. Results Sperm motility is a very important factor for the fertilisation of ova. The energy requirements of sperm are therefore very critical for sperm. Mutations in the mitochondrial genes as COX II, ATPase 6 and 8 play an important role and disrupts ATP production affecting the spermatogenesis and sperm motility. Therefore, the aberrations in mt genome are an important etiopatholgy of male infertility. Conclusion In the context of male infertility, mt

  3. Mitochondrial DNA haplogroups may influence Fabry disease phenotype.

    PubMed

    Simoncini, C; Chico, L; Concolino, D; Sestito, S; Fancellu, L; Boadu, W; Sechi, G P; Feliciani, C; Gnarra, M; Zampetti, A; Salviati, A; Scarpelli, M; Orsucci, D; Bonuccelli, U; Siciliano, G; Mancuso, M

    2016-08-26

    While the genetic origin of Fabry disease (FD) is well known, it is still unclear why the disease presents a wide heterogeneity of clinical presentation and progression, even within the same family. Emerging observations reveal that mitochondrial impairment and oxidative stress may be implicated in the pathogenesis of FD. To investigate if specific genetic polymorphisms within the mitochondrial genome (mtDNA) could act as susceptibility factors and contribute to the clinical expression of FD, we have genotyped European mtDNA haplogroups in 77 Italian FD patients and 151 healthy controls. Haplogroups H and I, and haplogroup cluster HV were significantly more frequent in patients than controls. However, no correlation with gender, age of onset, organ involvement was observed. Our study seems to provide some evidence of a contribution of mitochondrial variation in FD pathogenesis, at least in Italy. PMID:27365132

  4. Mitochondrial DNA sequences in the nuclear genome of a locust.

    PubMed

    Gellissen, G; Bradfield, J Y; White, B N; Wyatt, G R

    The endosymbiotic theory of the origin of mitochondria is widely accepted, and implies that loss of genes from the mitochondria to the nucleus of eukaryotic cells has occurred over evolutionary time. However, evidence at the DNA sequence level for gene transfer between these organelles has so far been limited to a single example, the demonstration that a mitochondrial ATPase subunit gene of Neurospora crassa has an homologous partner in the nuclear genome. From a gene library of the insect, Locusta migratoria, we have now isolated two clones, representing separate fragments of nuclear DNA, which contain sequences homologous to the mitochondrial genes for ribosomal RNA, as well as regions of homology with highly repeated nuclear sequences. The results suggest the transfer of sequences between mitochondrial and nuclear genomes, followed by evolutionary divergence. PMID:6298629

  5. A p.R369G POLG2 mutation associated with adPEO and multiple mtDNA deletions causes decreased affinity between polymerase γ subunits

    PubMed Central

    Craig, Kate; Young, Matthew J.; Blakely, Emma L.; Longley, Matthew J.; Turnbull, Douglass M.; Copeland, William C.; Taylor, Robert W.

    2013-01-01

    Human mitochondrial DNA (mtDNA) polymerase γ (pol γ) is the sole enzyme required to replicate and maintain the integrity of the mitochondrial genome. It comprises two subunits, a catalytic p140 subunit and a smaller p55 accessory subunit encoded by the POLG2 gene. We describe the molecular characterization of a potential dominant POLG2 mutation (p.R369G) in a patient with adPEO and multiple mtDNA deletions. Biochemical studies of the recombinant mutant p55 protein showed a reduced affinity to the pol γ p140 subunit, leading to impaired processivity of the holoenzyme complex but did not show sensitivity to N-ethylmalaimide (NEM) inhibition, inferring a novel disease mechanism. PMID:22155748

  6. qPCR-based mitochondrial DNA quantification: influence of template DNA fragmentation on accuracy.

    PubMed

    Jackson, Christopher B; Gallati, Sabina; Schaller, André

    2012-07-01

    Real-time PCR (qPCR) is the method of choice for quantification of mitochondrial DNA (mtDNA) by relative comparison of a nuclear to a mitochondrial locus. Quantitative abnormal mtDNA content is indicative of mitochondrial disorders and mostly confines in a tissue-specific manner. Thus handling of degradation-prone bioptic material is inevitable. We established a serial qPCR assay based on increasing amplicon size to measure degradation status of any DNA sample. Using this approach we can exclude erroneous mtDNA quantification due to degraded samples (e.g. long post-exicision time, autolytic processus, freeze-thaw cycles) and ensure abnormal DNA content measurements (e.g. depletion) in non-degraded patient material. By preparation of degraded DNA under controlled conditions using sonification and DNaseI digestion we show that erroneous quantification is due to the different preservation qualities of the nuclear and the mitochondrial genome. This disparate degradation of the two genomes results in over- or underestimation of mtDNA copy number in degraded samples. Moreover, as analysis of defined archival tissue would allow to precise the molecular pathomechanism of mitochondrial disorders presenting with abnormal mtDNA content, we compared fresh frozen (FF) with formalin-fixed paraffin-embedded (FFPE) skeletal muscle tissue of the same sample. By extrapolation of measured decay constants for nuclear DNA (λnDNA) and mtDNA (λmtDNA) we present an approach to possibly correct measurements in degraded samples in the future. To our knowledge this is the first time different degradation impact of the two genomes is demonstrated and which evaluates systematically the impact of DNA degradation on quantification of mtDNA copy number. PMID:22683632

  7. Heterogeneous base distribution in mitochondrial DNA of Neurospora crassa.

    PubMed Central

    Terpstra, P; Holtrop, M; Kroon, A

    1977-01-01

    The mitochondrial DNA of Neurospora crassa has a heterogeneous intramolecular base distribution. A contiguous piece, representing at least 30% of the total genome, has a G+C content that is 6% lower than the overall G+C content of the DNA. The genes for both ribosomal RNAs are contained in the remaining, relatively G+C rich, part of the genome. PMID:141040

  8. Fly Diversity Revealed by PCR-RFLP of Mitochondrial DNA

    ERIC Educational Resources Information Center

    Asraoui, Jimmy F.; Sayar, Nancy P.; Knio, Khouzama M.; Smith, Colin A.

    2008-01-01

    In this article, we describe an inexpensive, two-session undergraduate laboratory activity that introduces important molecular biology methods in the context of biodiversity. In the first session, students bring tentatively identified flies (order Diptera, true flies) to the laboratory, extract DNA, and amplify a region of the mitochondrial gene…

  9. A Polymorphism in Mitochondrial DNA Associated with IQ?

    ERIC Educational Resources Information Center

    Skuder, Patricia; And Others

    1995-01-01

    Of 100 DNA markers examined in an allelic association study, only 1 showed a replicated association with IQ in samples totaling 107 children. How the gene marked by the particular restriction fragment length polymorphism was tracked and its mitochondrial origin identified is described. (SLD)

  10. Mitochondrial DNA Variation and Heteroplasmy in Monozygotic Twins Clinically Discordant for Multiple Sclerosis.

    PubMed

    Souren, Nicole Y P; Gerdes, Lisa A; Kümpfel, Tania; Lutsik, Pavlo; Klopstock, Thomas; Hohlfeld, Reinhard; Walter, Jörn

    2016-08-01

    We examined the debated link between mitochondrial DNA (mtDNA) variation and multiple sclerosis (MS) using 49 monozygotic (MZ) twin pairs clinically discordant for MS, which enables to associate de novo mtDNA variants, skewed heteroplasmy, and mtDNA copy number with MS manifestation. Ultra-deep sequencing of blood-derived mtDNA revealed 25 heteroplasmic variants with potentially pathogenic features in 18 pairs. All variants were pair-specific and had low and/or similar heteroplasmy levels in both cotwins. In one pair, a confirmed pathogenic variant (m.11778G>A, heteroplasmy ∼50%) associated with Leber hereditary optic neuropathy was detected. Detailed diagnostic investigation revealed subclinical MS signs in the prior nondiseased cotwin. Moreover, neither mtDNA deletions nor copy-number variations were involved. Furthermore, the majority of heteroplasmic variants were shared among MZ twins and exhibited more similar heteroplasmy levels in the same tissue of MZ twins as compared with different tissues of the same individual. Heteroplasmy levels were also more similar within MZ twins compared with nonidentical siblings. Our analysis excludes mtDNA variation as a major driver of the discordant clinical manifestation of MS in MZ twins, and provides valuable insights into the occurrence and distribution of heteroplasmic variants within MZ twins and nonidentical siblings, and across different tissues. PMID:27119776