Science.gov

Sample records for mitochondrial dna sequence

  1. Sequencing mitochondrial DNA polymorphisms by hybridization

    SciTech Connect

    Chee, M.S.; Lockhart, D.J.; Hubbell, E.

    1994-09-01

    We have investigated the use of DNA chips for genetic analysis, using human mitochondrial DNA (mtDNA) as a model. The DNA chips are made up of ordered arrays of DNA oligonucleotide probes, synthesized on a glass substrate using photolithographic techniques. The synthesis site for each different probe is specifically addressed by illumination of the substrate through a photolithographic mask, achieving selective deprotection Nucleoside phosphoramidites bearing photolabile protecting groups are coupled only to exposed sites. Repeated cycles of deprotection and coupling generate all the probes in parallel. The set of 4{sup N} N-mer probes can be synthesized in only 4N steps. Any subset can be synthesized in 4N steps. Any subset can be synthesized in 4N or fewer steps. Sequences amplified from the D-loop region of human mitochondrial DNA (mtDNA) were fluorescently labelled and hybridized to DNA chips containing probes specific for mtDNA. Each nucleotide of a 1.3 kb region spanning the D loop is represented by four probes on the chip. Each probe has a different base at the position of interest: together they comprise a set of A, C, G and T probes which are otherwise identical. In principle, only one probe-target hybrid will be a perfect match. The other three will be single base mismatches. Fluorescence imaging of the hybridized chip allows quantification of hybridization signals. Heterozygous mixtures of sequences can also be characterized. We have developed software to quantitate and interpret the hybridization signals, and to call the sequence automatically. Results of sequence analysis of human mtDNAs will be presented.

  2. PCR Primers for Metazoan Mitochondrial 12S Ribosomal DNA Sequences

    PubMed Central

    Machida, Ryuji J.; Kweskin, Matthew; Knowlton, Nancy

    2012-01-01

    Background Assessment of the biodiversity of communities of small organisms is most readily done using PCR-based analysis of environmental samples consisting of mixtures of individuals. Known as metagenetics, this approach has transformed understanding of microbial communities and is beginning to be applied to metazoans as well. Unlike microbial studies, where analysis of the 16S ribosomal DNA sequence is standard, the best gene for metazoan metagenetics is less clear. In this study we designed a set of PCR primers for the mitochondrial 12S ribosomal DNA sequence based on 64 complete mitochondrial genomes and then tested their efficacy. Methodology/Principal Findings A total of the 64 complete mitochondrial genome sequences representing all metazoan classes available in GenBank were downloaded using the NCBI Taxonomy Browser. Alignment of sequences was performed for the excised mitochondrial 12S ribosomal DNA sequences, and conserved regions were identified for all 64 mitochondrial genomes. These regions were used to design a primer pair that flanks a more variable region in the gene. Then all of the complete metazoan mitochondrial genomes available in NCBI's Organelle Genome Resources database were used to determine the percentage of taxa that would likely be amplified using these primers. Results suggest that these primers will amplify target sequences for many metazoans. Conclusions/Significance Newly designed 12S ribosomal DNA primers have considerable potential for metazoan metagenetic analysis because of their ability to amplify sequences from many metazoans. PMID:22536450

  3. Mitochondrial DNA sequences in the nuclear genome of a locust.

    PubMed

    Gellissen, G; Bradfield, J Y; White, B N; Wyatt, G R

    The endosymbiotic theory of the origin of mitochondria is widely accepted, and implies that loss of genes from the mitochondria to the nucleus of eukaryotic cells has occurred over evolutionary time. However, evidence at the DNA sequence level for gene transfer between these organelles has so far been limited to a single example, the demonstration that a mitochondrial ATPase subunit gene of Neurospora crassa has an homologous partner in the nuclear genome. From a gene library of the insect, Locusta migratoria, we have now isolated two clones, representing separate fragments of nuclear DNA, which contain sequences homologous to the mitochondrial genes for ribosomal RNA, as well as regions of homology with highly repeated nuclear sequences. The results suggest the transfer of sequences between mitochondrial and nuclear genomes, followed by evolutionary divergence. PMID:6298629

  4. Mitochondrial DNA sequence evolution in the Arctoidea.

    PubMed Central

    Zhang, Y P; Ryder, O A

    1993-01-01

    Some taxa in the superfamily Arctoidea, such as the giant panda and the lesser panda, have presented puzzles to taxonomists. In the present study, approximately 397 bases of the cytochrome b gene, 364 bases of the 12S rRNA gene, and 74 bases of the tRNA(Thr) and tRNA(Pro) genes from the giant panda, lesser panda, kinkajou, raccoon, coatimundi, and all species of the Ursidae were sequenced. The high transition/transversion ratios in cytochrome b and RNA genes prior to saturation suggest that the presumed transition bias may represent a trend for some mammalian lineages rather than strictly a primate phenomenon. Transversions in the 12S rRNA gene accumulate in arctoids at about half the rate reported for artiodactyls. Different arctoid lineages evolve at different rates: the kinkajou, a procyonid, evolves the fastest, 1.7-1.9 times faster than the slowest lineage that comprises the spectacled and polar bears. Generation-time effect can only partially explain the different rates of nucleotide substitution in arctoids. Our results based on parsimony analysis show that the giant panda is more closely related to bears than to the lesser panda; the lesser panda is neither closely related to bears nor to the New World procyonids. The kinkajou, raccoon, and coatimundi diverged from each other very early, even though they group together. The polar bear is closely related to the spectacled bear, and they began to diverge from a common mitochondrial ancestor approximately 2 million years ago. Relationships of the remaining five bear species are derived. PMID:8415740

  5. Mitochondrial DNA sequences from a 7000-year old brain.

    PubMed Central

    Pääbo, S; Gifford, J A; Wilson, A C

    1988-01-01

    Pieces of mitochondrial DNA from a 7000-year-old human brain were amplified by the polymerase chain reaction and sequenced. Albumin and high concentrations of polymerase were required to overcome a factor in the brain extract that inhibits amplification. For this and other sources of ancient DNA, we find an extreme inverse dependence of the amplification efficiency on the length of the sequence to be amplified. This property of ancient DNA distinguishes it from modern DNA and thus provides a new criterion of authenticity for use in research on ancient DNA. The brain is from an individual recently excavated from Little Salt Spring in southwestern Florida and the anthropologically informative sequences it yielded are the first obtained from archaeologically retrieved remains. The sequences show that this ancient individual belonged to a mitochondrial lineage that is rare in the Old World and not previously known to exist among Native Americans. Our finding brings to three the number of maternal lineages known to have been involved in the prehistoric colonization of the New World. Images PMID:3186445

  6. Nuclear and mitochondrial DNA sequences from two Denisovan individuals

    PubMed Central

    Sawyer, Susanna; Renaud, Gabriel; Viola, Bence; Hublin, Jean-Jacques; Gansauge, Marie-Theres; Shunkov, Michael V.; Derevianko, Anatoly P.; Prüfer, Kay; Pääbo, Svante

    2015-01-01

    Denisovans, a sister group of Neandertals, have been described on the basis of a nuclear genome sequence from a finger phalanx (Denisova 3) found in Denisova Cave in the Altai Mountains. The only other Denisovan specimen described to date is a molar (Denisova 4) found at the same site. This tooth carries a mtDNA sequence similar to that of Denisova 3. Here we present nuclear DNA sequences from Denisova 4 and a morphological description, as well as mitochondrial and nuclear DNA sequence data, from another molar (Denisova 8) found in Denisova Cave in 2010. This new molar is similar to Denisova 4 in being very large and lacking traits typical of Neandertals and modern humans. Nuclear DNA sequences from the two molars form a clade with Denisova 3. The mtDNA of Denisova 8 is more diverged and has accumulated fewer substitutions than the mtDNAs of the other two specimens, suggesting Denisovans were present in the region over an extended period. The nuclear DNA sequence diversity among the three Denisovans is comparable to that among six Neandertals, but lower than that among present-day humans. PMID:26630009

  7. Nuclear and mitochondrial DNA sequences from two Denisovan individuals.

    PubMed

    Sawyer, Susanna; Renaud, Gabriel; Viola, Bence; Hublin, Jean-Jacques; Gansauge, Marie-Theres; Shunkov, Michael V; Derevianko, Anatoly P; Prüfer, Kay; Kelso, Janet; Pääbo, Svante

    2015-12-22

    Denisovans, a sister group of Neandertals, have been described on the basis of a nuclear genome sequence from a finger phalanx (Denisova 3) found in Denisova Cave in the Altai Mountains. The only other Denisovan specimen described to date is a molar (Denisova 4) found at the same site. This tooth carries a mtDNA sequence similar to that of Denisova 3. Here we present nuclear DNA sequences from Denisova 4 and a morphological description, as well as mitochondrial and nuclear DNA sequence data, from another molar (Denisova 8) found in Denisova Cave in 2010. This new molar is similar to Denisova 4 in being very large and lacking traits typical of Neandertals and modern humans. Nuclear DNA sequences from the two molars form a clade with Denisova 3. The mtDNA of Denisova 8 is more diverged and has accumulated fewer substitutions than the mtDNAs of the other two specimens, suggesting Denisovans were present in the region over an extended period. The nuclear DNA sequence diversity among the three Denisovans is comparable to that among six Neandertals, but lower than that among present-day humans. PMID:26630009

  8. Mitochondrial DNA Sequence Analysis - Validation and Use for Forensic Casework.

    PubMed

    Holland, M M; Parsons, T J

    1999-06-01

    With the discovery of the polymerase chain reaction (PCR) in the mid-1980's, the last in a series of critical molecular biology techniques (to include the isolation of DNA from human and non-human biological material, and primary sequence analysis of DNA) had been developed to rapidly analyze minute quantities of mitochondrial DNA (mtDNA). This was especially true for mtDNA isolated from challenged sources, such as ancient or aged skeletal material and hair shafts. One of the beneficiaries of this work has been the forensic community. Over the last decade, a significant amount of research has been conducted to develop PCR-based sequencing assays for the mtDNA control region (CR), which have subsequently been used to further characterize the CR. As a result, the reliability of these assays has been investigated, the limitations of the procedures have been determined, and critical aspects of the analysis process have been identified, so that careful control and monitoring will provide the basis for reliable testing. With the application of these assays to forensic identification casework, mtDNA sequence analysis has been properly validated, and is a reliable procedure for the examination of biological evidence encountered in forensic criminalistic cases. PMID:26255820

  9. Genetic variability of Taenia saginata inferred from mitochondrial DNA sequences.

    PubMed

    Rostami, Sima; Salavati, Reza; Beech, Robin N; Babaei, Zahra; Sharbatkhori, Mitra; Harandi, Majid Fasihi

    2015-04-01

    Taenia saginata is an important tapeworm, infecting humans in many parts of the world. The present study was undertaken to identify inter- and intraspecific variation of T. saginata isolated from cattle in different parts of Iran using two mitochondrial CO1 and 12S rRNA genes. Up to 105 bovine specimens of T. saginata were collected from 20 slaughterhouses in three provinces of Iran. DNA were extracted from the metacestode Cysticercus bovis. After PCR amplification, sequencing of CO1 and 12S rRNA genes were carried out and two phylogenetic analyses of the sequence data were generated by Bayesian inference on CO1 and 12S rRNA sequences. Sequence analyses of CO1 and 12S rRNA genes showed 11 and 29 representative profiles respectively. The level of pairwise nucleotide variation between individual haplotypes of CO1 gene was 0.3-2.4% while the overall nucleotide variation among all 11 haplotypes was 4.6%. For 12S rRNA sequence data, level of pairwise nucleotide variation was 0.2-2.5% and the overall nucleotide variation was determined as 5.8% among 29 haplotypes of 12S rRNA gene. Considerable genetic diversity was found in both mitochondrial genes particularly in 12S rRNA gene. PMID:25687521

  10. Mitochondrial DNA and nuclear DNA from normal rat liver have a common sequence.

    PubMed Central

    Hadler, H I; Dimitrijevic, B; Mahalingam, R

    1983-01-01

    Although Pst I does not cut the circular mitochondrial genome of the rat, BamHI generates from this genome two unequal fragments of DNA. Each of these fragments was cloned in pBR322. Nuclear DNA was digested from rat liver singly or doubly with Pst I and BamHI, and it was demonstrated that nuclear DNA shared a common sequence with the larger mitochondrial DNA BamHI fragment. The cloned larger mitochondrial DNA fragment was further subdivided with HindIII into four pieces that were labeled and then used to probe the double-digested nuclear DNA. The hybridization data showed that the common sequence is less than 3 kilobase pairs long and lies within the part of the mitochondrial genome containing the D-loop and a portion of the rRNA genes. It therefore appears that, as in lower eukaryotes, there are shared sequences between the nuclear and mitochondrial genomes in mammals. Images PMID:6579536

  11. Complete genome sequence of mitochondrial DNA (mtDNA) of Chlorella sorokiniana.

    PubMed

    Orsini, Massimiliano; Costelli, Cristina; Malavasi, Veronica; Cusano, Roberto; Concas, Alessandro; Angius, Andrea; Cao, Giacomo

    2016-01-01

    The complete sequence of mitochondrial genome of the Chlorella sorokiniana strain (SAG 111-8 k) is presented in this work. Within the Chlorella genus, it represents the second species with a complete sequenced and annotated mitochondrial genome (GenBank accession no. KM241869). The genome consists of circular chromosomes of 52,528 bp and encodes a total of 31 protein coding genes, 3 rRNAs and 26 tRNAs. The overall AT contents of the C. sorokiniana mtDNA is 70.89%, while the coding sequence is of 97.4%. PMID:25186028

  12. Twin Mitochondrial Sequence Analysis.

    PubMed

    Bouhlal, Yosr; Martinez, Selena; Gong, Henry; Dumas, Kevin; Shieh, Joseph T C

    2013-09-01

    When applying genome-wide sequencing technologies to disease investigation, it is increasingly important to resolve sequence variation in regions of the genome that may have homologous sequences. The human mitochondrial genome challenges interpretation given the potential for heteroplasmy, somatic variation, and homologous nuclear mitochondrial sequences (numts). Identical twins share the same mitochondrial DNA (mtDNA) from early life, but whether the mitochondrial sequence remains similar is unclear. We compared an adult monozygotic twin pair using high throughput-sequencing and evaluated variants with primer extension and mitochondrial pre-enrichment. Thirty-seven variants were shared between the twin individuals, and the variants were verified on the original genomic DNA. These studies support highly identical genetic sequence in this case. Certain low-level variant calls were of high quality and homology to the mitochondrial DNA, and they were further evaluated. When we assessed calls in pre-enriched mitochondrial DNA templates, we found that these may represent numts, which can be differentiated from mtDNA variation. We conclude that twin identity extends to mitochondrial DNA, and it is critical to differentiate between numts and mtDNA in genome sequencing, particularly since significant heteroplasmy could influence genome interpretation. Further studies on mtDNA and numts will aid in understanding how variation occurs and persists. PMID:24040623

  13. Sequence analysis of mitochondrial DNA hypervariable regions using infrared fluorescence detection.

    PubMed

    Steffens, D L; Roy, R

    1998-06-01

    The non-coding region of the mitochondrial genome provides an attractive target for human forensic identification studies. Two hypervariable (HV) regions, each approximately 250-350 bp in length, contain the majority of mitochondrial DNA (mtDNA) sequence variability among different individuals. Various approaches to determine mtDNA sequence were evaluated utilizing highly sensitive infrared (IR) fluorescence detection. HV regions were amplified either together or separately and cycle-sequenced using a Thermo Sequenase protocol. An M13 universal primer sequence tail covalently attached to the 5' terminus of an amplification primer facilitated electrophoretic analysis and direct sequencing of the amplification products using IR detection. PMID:9631201

  14. Next Generation Sequencing to Characterize Mitochondrial Genomic DNA Heteroplasmy

    PubMed Central

    Huang, Taosheng

    2015-01-01

    This protocol is to describe the methodology to characterize mitochondria DNA (mtDNA) heteroplasmy with parallel sequencing. Mitochondria play a very important role in important cellular functions. Each eukaryotic cell contains hundreds of mitochondria with hundreds of mitochondria genomes. The mutant mtDNA and the wild type may co-exist as heteroplasmy, and cause human disease. The purpose of this methodology is to simultaneously determine mtDNA sequence and to quantify the heteroplasmy level. The protocol includes two-fragment mitochondria genome DNA PCR amplification. The PCR product is then mixed at an equimolar ratio. The samples will be barcoded and sequenced with high-throughput next-generation sequencing technology. We found that this technology is highly sensitive, specific, and accurate in determining mtDNA mutations and the degree of heteroplasmic level. PMID:21975941

  15. A database of mitochondrial DNA hypervariable regions I and II sequences of individuals from Slovakia.

    PubMed

    Lehocký, Ivan; Baldovic, Marian; Kádasi, Ludevít; Metspalu, Ene

    2008-09-01

    In order to identify polymorphic positions and to determine their frequencies and the frequency of haplotypes in the human mitochondrial control region, two hypervariable regions (HV1 and HV2) of the mitochondrial DNA (mtDNA) of 374 unrelated individuals from Slovakia were amplified and sequenced. Sequence comparison led to the identification of 284 mitochondrial lineages as defined by 163 variable sites. Genetic diversity (GD) was estimated at 0.997 and the probability of two randomly selected individuals from population having identical mtDNA types (random match probability, RMP) for the both regions is 0.60%. PMID:19083829

  16. Mitochondrial DNA.

    ERIC Educational Resources Information Center

    Wright, Russell G.; Bottino, Paul J.

    1986-01-01

    Provides background information for teachers on mitochondrial DNA, pointing out that it may have once been a free-living organism. Includes a ready-to-duplicate exercise titled "Using Microchondrial DNA to Measure Evolutionary Distance." (JN)

  17. Molecular diversification of Trichuris spp. from Sigmodontinae (Cricetidae) rodents from Argentina based on mitochondrial DNA sequences.

    PubMed

    Callejón, Rocío; Robles, María Del Rosario; Panei, Carlos Javier; Cutillas, Cristina

    2016-08-01

    A molecular phylogenetic hypothesis is presented for the genus Trichuris based on sequence data from mitochondrial cytochrome c oxidase 1 (cox1) and cytochrome b (cob). The taxa consisted of nine populations of whipworm from five species of Sigmodontinae rodents from Argentina. Bayesian Inference, Maximum Parsimony, and Maximum Likelihood methods were used to infer phylogenies for each gene separately but also for the combined mitochondrial data and the combined mitochondrial and nuclear dataset. Phylogenetic results based on cox1 and cob mitochondrial DNA (mtDNA) revealed three clades strongly resolved corresponding to three different species (Trichuris navonae, Trichuris bainae, and Trichuris pardinasi) showing phylogeographic variation, but relationships among Trichuris species were poorly resolved. Phylogenetic reconstruction based on concatenated sequences had greater phylogenetic resolution for delimiting species and populations intra-specific of Trichuris than those based on partitioned genes. Thus, populations of T. bainae and T. pardinasi could be affected by geographical factors and co-divergence parasite-host. PMID:27083190

  18. Inferring patterns in mitochondrial DNA sequences through hypercube independent spanning trees.

    PubMed

    da Silva, Eduardo Sant' Ana; Pedrini, Helio

    2016-03-01

    Given a graph G, a set of spanning trees rooted at a vertex r of G is said vertex/edge independent if, for each vertex v of G, v≠r, the paths of r to v in any pair of trees are vertex/edge disjoint. Independent spanning trees (ISTs) provide a number of advantages in data broadcasting due to their fault tolerant properties. For this reason, some studies have addressed the issue by providing mechanisms for constructing independent spanning trees efficiently. In this work, we investigate how to construct independent spanning trees on hypercubes, which are generated based upon spanning binomial trees, and how to use them to predict mitochondrial DNA sequence parts through paths on the hypercube. The prediction works both for inferring mitochondrial DNA sequences comprised of six bases as well as infer anomalies that probably should not belong to the mitochondrial DNA standard. PMID:26802544

  19. Pairwise Comparisons of Mitochondrial DNA Sequences in Subdivided Populations and Implications for Early Human Evolution

    PubMed Central

    Marjoram, P.; Donnelly, P.

    1994-01-01

    We consider the effect on the distribution of pairwise differences between mitochondrial DNA sequences of the incorporation into the underlying population genetics model of two particular effects that seem realistic for human populations. The first is that the population size was roughly constant before growing to its current level. The second is that the population is geographically subdivided rather than panmictic. In each case these features tend to encourage multimodal distributions of pairwise differences, in contrast to existing, unimodal datasets. We argue that population genetics models currently used to analyze such data may thus fail to reflect important features of human mitochondrial DNA evolution. These may include selection on the mitochondrial genome, more realistic mutation mechanisms, or special population or migration dynamics. Particularly in view of the variability inherent in the single available human mitochondrial genealogy, it is argued that until these effects are better understood, inferences from such data should be rather cautious. PMID:8150290

  20. Targeted multiplex next-generation sequencing: advances in techniques of mitochondrial and nuclear DNA sequencing for population genomics.

    PubMed

    Hancock-Hanser, Brittany L; Frey, Amy; Leslie, Matthew S; Dutton, Peter H; Archer, Frederick I; Morin, Phillip A

    2013-03-01

    Next-generation sequencing (NGS) is emerging as an efficient and cost-effective tool in population genomic analyses of nonmodel organisms, allowing simultaneous resequencing of many regions of multi-genomic DNA from multiplexed samples. Here, we detail our synthesis of protocols for targeted resequencing of mitochondrial and nuclear loci by generating indexed genomic libraries for multiplexing up to 100 individuals in a single sequencing pool, and then enriching the pooled library using custom DNA capture arrays. Our use of DNA sequence from one species to capture and enrich the sequencing libraries of another species (i.e. cross-species DNA capture) indicates that efficient enrichment occurs when sequences are up to about 12% divergent, allowing us to take advantage of genomic information in one species to sequence orthologous regions in related species. In addition to a complete mitochondrial genome on each array, we have included between 43 and 118 nuclear loci for low-coverage sequencing of between 18 kb and 87 kb of DNA sequence per individual for single nucleotide polymorphisms discovery from 50 to 100 individuals in a single sequencing lane. Using this method, we have generated a total of over 500 whole mitochondrial genomes from seven cetacean species and green sea turtles. The greater variation detected in mitogenomes relative to short mtDNA sequences is helping to resolve genetic structure ranging from geographic to species-level differences. These NGS and analysis techniques have allowed for simultaneous population genomic studies of mtDNA and nDNA with greater genomic coverage and phylogeographic resolution than has previously been possible in marine mammals and turtles. PMID:23351075

  1. Association of DNA sequence variation in mitochondrial DNA polymerase with mitochondrial DNA synthesis and risk of oral cancer.

    PubMed

    Datta, Sayantan; Ray, Anindita; Roy, Roshni; Roy, Bidyut

    2016-01-10

    Enzymes responsible for mitochondrial (mt) DNA synthesis and transcription are encoded by nuclear genome and inherited mutations in these genes may play important roles in enhancing risk of precancer and cancer. Here, genetic variations in 23 functionally relevant tagSNPs in 6 genes responsible for mtDNA synthesis and transcription were studied in 522 cancer and 241 precancer (i.e. leukoplakia) patients and 525 healthy controls using Illumina Golden Gate assay to explore association with risk of oral precancer and cancer. Two SNPs, rs41553913 at POLRMT and rs9905016 at POLG2, significantly increased risk of oral leukoplakia and cancer, respectively, at both genotypic and allelic levels. Gene-environment interaction models also revealed that tobacco habits and SNPs at POLG2 and TFAM may modulate risk of both leukoplakia and cancer. In silico analysis of published data-set also revealed that variant heterozygote (TC) significantly increased transcription of POLG2 compared to wild genotype (p=0.03). Cancer tissues having variant allele genotypes (TC+CC) at POLG2 contained 1.6 times (p<0.01) more mtDNA compared to cancer tissues having wild genotype (TT). In conclusion, polymorphisms at POLG2 and POLRMT increased risk of oral cancer and leukoplakia, respectively, probably modulating synthesis and activity of the enzymes. Enhanced synthesis of mtDNA in cancer tissues may have implication in carcinogenesis, but the mechanism is yet to be explored. PMID:26403317

  2. What Is Mitochondrial DNA?

    MedlinePlus

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  3. Recombination by sequence repeats with formation of suppressive or residual mitochondrial DNA in Neurospora

    SciTech Connect

    Almasan, A.; Mishra, N.C. )

    1991-09-01

    Recombination junctions of several Neurospora mitochondrial DNA (mtDNA) mutants and their revertants were identified. Their nucleotide sequences and putative secondary structures were determined in order to understand the nature of the elements involved in intramolecular recombination. Multiple deletions, involving the same portion of Neurospora mtDNA, were identified in six independently isolated mutants. A 9-nucleotide repeat element, CCCCNCCCC, was found to be involved in these and other Neurospora mitochondrial recombination events. The repeat elements were clustered as hot spots on the Neurospora mtDNA and were associated with palindromic DNA sequences. The palindromes have a potential to generate hairpin structures. A much lower free energy of the putative hairpins at the 5{prime} end of the recombination site, and the possible formation of non-B-DNA structure by polypyrimidine tracks, may be important in the initiation of recombination. Using PCR, the authors found low levels of a specific mitochondrial deletion in certain Neurospora mutants. Their presence in low amounts in a population with a much larger number of normal mtDNA is unexpected. Contrary to earlier belief, this finding supports the view that deleted, smaller DNA molecules are not always suppressive relative to normal mtDNAs.

  4. Use of yeast nuclear DNA sequences to define the mitochondrial RNA polymerase promoter in vitro.

    PubMed Central

    Marczynski, G T; Schultz, P W; Jaehning, J A

    1989-01-01

    We have extended an earlier observation that the TATA box for the nuclear GAL10 gene serves as a promoter for the mitochondrial RNA polymerase in in vitro transcription reactions (C. S. Winkley, M. J. Keller, and J. A. Jaehning, J. Biol. Chem. 260:14214-14223, 1985). In this work, we demonstrate that other nuclear genes also have upstream sequences that function in vitro as mitochondrial RNA polymerase promoters. These genes include the GAL7 and MEL1 genes, which are regulated in concert with the GAL10 gene, the sigma repetitive element, and the 2 microns plasmid origin of replication. We used in vitro transcription reactions to test a large number of nuclear DNA sequences that contain critical mitochondrial promoter sequences as defined by Biswas et al. (T. K. Biswas, J. C. Edwards, M. Rabinowitz, and G. S. Getz, J. Biol. Chem. 262:13690-13696, 1987). The results of these experiments allowed us to extend the definition of essential promoter elements. This extended sequence, -ACTATAAACGatcATAG-, was frequently found in the upstream regulatory regions of nuclear genes. On the basis of these observations, we hypothesized that either (i) a catalytic RNA polymerase related to the mitochondrial enzyme functions in the nucleus of the yeast cell or (ii) a DNA sequence recognition factor is shared by the two genetic compartments. By using cells deficient in the catalytic core of the mitochondrial RNA polymerase (rpo41-) and sensitive assays for transcripts initiating from the nuclear promoter sequences, we have conclusively ruled out a role for the catalytic RNA polymerase in synthesizing transcripts from all of the nuclear sequences analyzed. The possibility that a DNA sequence recognition factor functions in both the nucleus and the mitochondria remains to be tested. Images PMID:2677667

  5. Complete genome sequence of the mitochondrial DNA of the sparkling enope squid, Watasenia scintillans.

    PubMed

    Hayashi, Keiko; Kawai, Yuri L; Yura, Kei; Yoshida, Masa-Aki; Ogura, Atsushi; Hata, Kenichiro; Nakabayashi, Kazuhiko; Okamura, Kohji

    2016-05-01

    The sparkling enope squid, Watasenia scintillans, is a deep-sea mollusk inhabiting the western part of the Pacific Ocean. It has the peculiar ability to illuminate its body without the involvement of other organisms. In this study, we extracted the brain DNA from a single squid female caught in the Japan Sea and determined the complete genome sequence of its mitochondrial DNA using the Illumina sequencing platform. The circular sequence is 20,089 bp in length. Using the next-generation sequencing data, we also estimated the mean copy number of mitochondria per cell in the brain to be 108 by comparing the depths of the read data in the nuclear and mitochondrial genomes. The haploid genome size was calculated to be 4.78 Gb. Six heteroplasmy sites were also identified, together with their allele frequencies, in this individual. Our methodology is shown to be useful in mitochondrion-related studies. PMID:25329271

  6. Dog mitochondrial genome sequencing to enhance dog mtDNA discrimination power in forensic casework.

    PubMed

    Verscheure, Sophie; Backeljau, Thierry; Desmyter, Stijn

    2014-09-01

    A Belgian dog population sample and several population studies worldwide have confirmed that only a limited number of mtDNA control region haplotypes is observed in the majority of dogs. The high population frequency of these haplotypes negatively impacts both the exclusion probability of dog mtDNA analysis and the evidential value of a match with one of these haplotypes in casework. Variation within the mtDNA coding region was explored to improve the discrimination power of dog mtDNA analysis. In the current study, the entire mitochondrial genome of 161 dogs was sequenced applying a quality assured strategy and resulted in a total of 119 different mitochondrial genome sequences. Our research was focused on those dogs with the six most common control region haplotypes from a previous Belgian population study. We identified 33 informative SNPs that successfully divide the six most common control region haplotypes into 32 clusters of mitochondrial genome sequences. Determining the identity of these 33 polymorphic sites in addition to control region sequencing in case of a match with one of these 6 control region haplotypes could augment the exclusion probability of forensic dog mtDNA analysis from 92.5% to 97.5%. PMID:24905334

  7. Tripartite mitochondrial genome of spinach: physical structure, mitochondrial gene mapping, and locations of transposed chloroplast DNA sequences.

    PubMed Central

    Stern, D B; Palmer, J D

    1986-01-01

    A complete physical map of the spinach mitochondrial genome has been established. The entire sequence content of 327 kilobase pairs (kb) is postulated to occur as a single circular molecule. Two directly repeated elements of approximately 6 kb, located on this "master chromosome", are proposed to participate in an intragenomic recombination event that reversibly generates two "subgenomic" circles of 93 kb and 234 kb. The positions of protein and ribosomal RNA-encoding genes, determined by heterologous filter hybridizations, are scattered throughout the genome, with duplicate 26S rRNA genes located partially or entirely within the 6 kb repeat elements. Filter hybridizations between spinach mitochondrial DNA and cloned segments of spinach chloroplast DNA reveal at least twelve dispersed regions of inter-organellar sequence homology. Images PMID:3016660

  8. Phylogeny and genetic diversity of Bridgeoporus nobilissimus inferred using mitochondrial and nuclear rDNA sequences

    USGS Publications Warehouse

    Redberg, G.L.; Hibbett, D.S.; Ammirati, J.F., Jr.; Rodriguez, R.J.

    2003-01-01

    The genetic diversity and phylogeny of Bridgeoporus nobilissimus have been analyzed. DNA was extracted from spores collected from individual fruiting bodies representing six geographically distinct populations in Oregon and Washington. Spore samples collected contained low levels of bacteria, yeast and a filamentous fungal species. Using taxon-specific PCR primers, it was possible to discriminate among rDNA from bacteria, yeast, a filamentous associate and B. nobilissimus. Nuclear rDNA internal transcribed spacer (ITS) region sequences of B. nobilissimus were compared among individuals representing six populations and were found to have less than 2% variation. These sequences also were used to design dual and nested PCR primers for B. nobilissimus-specific amplification. Mitochondrial small-subunit rDNA sequences were used in a phylogenetic analysis that placed B. nobilissimus in the hymenochaetoid clade, where it was associated with Oxyporus and Schizopora.

  9. Sequencing strategy of mitochondrial HV1 and HV2 DNA with length heteroplasmy.

    PubMed

    Rasmussen, E M; Sørensen, E; Eriksen, B; Larsen, H J; Morling, N

    2002-10-01

    We describe a method to obtain reliable mitochondrial DNA (mtDNA) sequences downstream of the homopolymeric stretches with length heteroplasmy in the sequencing direction. The method is based on the use of junction primers that bind to a part of the homopolymeric stretch and the first 2-4 bases downstream of the homopolymeric region. This junction primer method gave clear and unambiguous results using samples from 21 individuals with length heteroplasmy in the hypervariable regions HV1, HV2 or both. The method is of special value for forensic casework, because sequencing of both strands of an mtDNA region is preferable in order to reduce ambiguities in sequence determination. PMID:12372693

  10. Mitochondrial DNA control region sequences study in Saraiki population from Pakistan.

    PubMed

    Hayat, Sikandar; Akhtar, Tanveer; Siddiqi, Muhammad Hassan; Rakha, Allah; Haider, Naeem; Tayyab, Muhammad; Abbas, Ghazanfar; Ali, Azam; Bokhari, Syed Yassir Abbas; Tariq, Muhammad Akram; Khan, Fazle Majid

    2015-03-01

    The analysis of mitochondrial DNA (mtDNA) control region was carried in 85 unrelated Sariki individuals living in the different provinces of Pakistan. DNA was extracted from blood preserved in EDTA vacutainers. Hypervariable regions (HV1, HV2 & HV3) were PCR amplified and sequenced. Sequencing results were aligned and compared with revised Cambridge reference sequence (rCRS). The sequencing results showed presence of total 63 different haplotypes, 58 of them are unique and 05 are common haplotypes shared by more than one individual. The most common haplotype observed was (W6) with a frequency 12.9% of population sample. The Saraiki population was detected with genetic diversity (0.9570) and power of discrimination (0.9458). This study will be beneficial for forensic casework. PMID:25465675

  11. Complete mitochondrial DNA sequence of marble goby, Oxyeleotris marmorata (Bleeker, 1852).

    PubMed

    Xu, Yiping; Hu, Yonglai; Bao, Baolong; Gong, Xiaoling

    2016-01-01

    Marble goby, Oxyeleotris marmorata (Bleeker) is a large-scale invasive goby in China. In this study, the mitochondrial genome of marble goby was firstly determined. The entire mtDNA sequence was 16,556 bp in length with 13 protein-coding genes, 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs) and control region (CR). Its mitochondrial genome has the common features with those of other bony fishes with respect to gene arrangement, base composition, and tRNA structures. PMID:24845442

  12. Comparative Sequence Analysis of the Non-Protein-Coding Mitochondrial DNA of Inbred Rat Strains

    PubMed Central

    Abhyankar, Avinash; Park, Hee-Bok; Tonolo, Giancarlo; Luthman, Holger

    2009-01-01

    The proper function of mammalian mitochondria necessitates a coordinated expression of both nuclear and mitochondrial genes, most likely due to the co-evolution of nuclear and mitochondrial genomes. The non-protein coding regions of mitochondrial DNA (mtDNA) including the D-loop, tRNA and rRNA genes form a major component of this regulated expression unit. Here we present comparative analyses of the non-protein-coding regions from 27 Rattus norvegicus mtDNA sequences. There were two variable positions in 12S rRNA, 20 in 16S rRNA, eight within the tRNA genes and 13 in the D-loop. Only one of the three neutrality tests used demonstrated statistically significant evidence for selection in 16S rRNA and tRNA-Cys. Based on our analyses of conserved sequences, we propose that some of the variable nucleotide positions identified in 16S rRNA and tRNA-Cys, and the D-loop might be important for mitochondrial function and its regulation. PMID:19997590

  13. Mitochondrial DNA heteroplasmy in the emerging field of massively parallel sequencing

    PubMed Central

    Just, Rebecca S.; Irwin, Jodi A.; Parson, Walther

    2015-01-01

    Long an important and useful tool in forensic genetic investigations, mitochondrial DNA (mtDNA) typing continues to mature. Research in the last few years has demonstrated both that data from the entire molecule will have practical benefits in forensic DNA casework, and that massively parallel sequencing (MPS) methods will make full mitochondrial genome (mtGenome) sequencing of forensic specimens feasible and cost-effective. A spate of recent studies has employed these new technologies to assess intraindividual mtDNA variation. However, in several instances, contamination and other sources of mixed mtDNA data have been erroneously identified as heteroplasmy. Well vetted mtGenome datasets based on both Sanger and MPS sequences have found authentic point heteroplasmy in approximately 25% of individuals when minor component detection thresholds are in the range of 10–20%, along with positional distribution patterns in the coding region that differ from patterns of point heteroplasmy in the well-studied control region. A few recent studies that examined very low-level heteroplasmy are concordant with these observations when the data are examined at a common level of resolution. In this review we provide an overview of considerations related to the use of MPS technologies to detect mtDNA heteroplasmy. In addition, we examine published reports on point heteroplasmy to characterize features of the data that will assist in the evaluation of future mtGenome data developed by any typing method. PMID:26009256

  14. Mitochondrial DNA heteroplasmy in the emerging field of massively parallel sequencing.

    PubMed

    Just, Rebecca S; Irwin, Jodi A; Parson, Walther

    2015-09-01

    Long an important and useful tool in forensic genetic investigations, mitochondrial DNA (mtDNA) typing continues to mature. Research in the last few years has demonstrated both that data from the entire molecule will have practical benefits in forensic DNA casework, and that massively parallel sequencing (MPS) methods will make full mitochondrial genome (mtGenome) sequencing of forensic specimens feasible and cost-effective. A spate of recent studies has employed these new technologies to assess intraindividual mtDNA variation. However, in several instances, contamination and other sources of mixed mtDNA data have been erroneously identified as heteroplasmy. Well vetted mtGenome datasets based on both Sanger and MPS sequences have found authentic point heteroplasmy in approximately 25% of individuals when minor component detection thresholds are in the range of 10-20%, along with positional distribution patterns in the coding region that differ from patterns of point heteroplasmy in the well-studied control region. A few recent studies that examined very low-level heteroplasmy are concordant with these observations when the data are examined at a common level of resolution. In this review we provide an overview of considerations related to the use of MPS technologies to detect mtDNA heteroplasmy. In addition, we examine published reports on point heteroplasmy to characterize features of the data that will assist in the evaluation of future mtGenome data developed by any typing method. PMID:26009256

  15. Complete mitochondrial DNA sequence of the Eastern keelback mullet Liza affinis.

    PubMed

    Gong, Xiaoling; Zhu, Wenjia; Bao, Baolong

    2016-05-01

    Eastern keelback mullet (Liza affinis) inhabits inlet waters and estuaries of rivers. In this paper, we initially determined the complete mitochondrial genome of Liza affinis. The entire mtDNA sequence is 16,831 bp in length, including 2 rRNA genes, 22 tRNA genes, 13 protein-coding genes and 1 putative control region. Its order and numbers of genes are similar to most bony fishes. PMID:25423506

  16. Sequence polymorphism of mitochondrial DNA in Japanese individuals from Gifu Prefecture.

    PubMed

    Nagai, Atsushi; Nakamura, Isao; Shiraki, Futoru; Bunai, Yasuo; Ohya, Isao

    2003-03-01

    Sequence polymorphisms of the hypervariable region HV1 in mitochondrial DNA (mtDNA) were analyzed in a sample of 137 unrelated Japanese individuals living in Gifu Prefecture (central region of Japan) using polymerase chain reaction amplification and direct sequencing. Eighty-two different haplotypes resulting from 81 variable sites were found in the mtDNA HV1 region between positions 16061 and 16450. The most frequent haplotype (16223T, 16362C) was shared by ten individuals. The genetic diversity and the genetic identity were 0.985 and 0.022, respectively. The C-stretch region located around position 16189 was observed in 23.4% of this population sample. Sequence heteroplasmy at the position 16103 (A/G) was found in one individual. PMID:12935592

  17. Sequence-specific modification of mitochondrial DNA using a chimeric zinc finger methylase

    PubMed Central

    Minczuk, Michal; Papworth, Monika A.; Kolasinska, Paulina; Murphy, Michael P.; Klug, Aaron

    2006-01-01

    We used engineered zinc finger peptides (ZFPs) to bind selectively to predetermined sequences in human mtDNA. Surprisingly, we found that engineered ZFPs cannot be reliably routed to mitochondria by using only conventional mitochondrial targeting sequences. We here show that addition of a nuclear export signal allows zinc finger chimeric enzymes to be imported into human mitochondria. The selective binding of mitochondria-specific ZFPs to mtDNA was exemplified by targeting the T8993G mutation, which causes two mitochondrial diseases, neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP) and also maternally inherited Leigh's syndrome. To develop a system that allows the monitoring of site-specific alteration of mtDNA we combined a ZFP with the easily assayed DNA-modifying activity of hDNMT3a methylase. Expression of the mutation-specific chimeric methylase resulted in the selective methylation of cytosines adjacent to the mutation site. This is a proof of principle that it is possible to target and alter mtDNA in a sequence-specific manner by using zinc finger technology. PMID:17170133

  18. Analysis of mixtures using next generation sequencing of mitochondrial DNA hypervariable regions

    PubMed Central

    Kim, Hanna; Erlich, Henry A.; Calloway, Cassandra D.

    2015-01-01

    Aim To apply massively parallel and clonal sequencing (next generation sequencing or NGS) to the analysis of forensic mixed samples. Methods A duplex polymerase chain reaction (PCR) assay targeting the mitochondrial DNA (mtDNA) hypervariable regions I/II (HVI/HVII) was developed for NGS analysis on the Roche 454 GS Junior instrument. Eight sets of multiplex identifier-tagged 454 fusion primers were used in a combinatorial approach for amplification and deep sequencing of up to 64 samples in parallel. Results This assay was shown to be highly sensitive for sequencing limited DNA amounts ( ~ 100 mtDNA copies) and analyzing contrived and biological mixtures with low level variants ( ~ 1%) as well as “complex” mixtures (≥3 contributors). PCR artifact “hybrid” sequences generated by jumping PCR or template switching were observed at a low level (<2%) in the analysis of mixed samples but could be eliminated by reducing the PCR cycle number. Conclusion This study demonstrates the power of NGS technologies targeting the mtDNA HVI/HVII regions for analysis of challenging forensic samples, such as mixtures and specimens with limited DNA. PMID:26088845

  19. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments.

    PubMed

    Dabney, Jesse; Knapp, Michael; Glocke, Isabelle; Gansauge, Marie-Theres; Weihmann, Antje; Nickel, Birgit; Valdiosera, Cristina; García, Nuria; Pääbo, Svante; Arsuaga, Juan-Luis; Meyer, Matthias

    2013-09-24

    Although an inverse relationship is expected in ancient DNA samples between the number of surviving DNA fragments and their length, ancient DNA sequencing libraries are strikingly deficient in molecules shorter than 40 bp. We find that a loss of short molecules can occur during DNA extraction and present an improved silica-based extraction protocol that enables their efficient retrieval. In combination with single-stranded DNA library preparation, this method enabled us to reconstruct the mitochondrial genome sequence from a Middle Pleistocene cave bear (Ursus deningeri) bone excavated at Sima de los Huesos in the Sierra de Atapuerca, Spain. Phylogenetic reconstructions indicate that the U. deningeri sequence forms an early diverging sister lineage to all Western European Late Pleistocene cave bears. Our results prove that authentic ancient DNA can be preserved for hundreds of thousand years outside of permafrost. Moreover, the techniques presented enable the retrieval of phylogenetically informative sequences from samples in which virtually all DNA is diminished to fragments shorter than 50 bp. PMID:24019490

  20. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments

    PubMed Central

    Dabney, Jesse; Knapp, Michael; Glocke, Isabelle; Gansauge, Marie-Theres; Weihmann, Antje; Nickel, Birgit; Valdiosera, Cristina; García, Nuria; Pääbo, Svante; Arsuaga, Juan-Luis; Meyer, Matthias

    2013-01-01

    Although an inverse relationship is expected in ancient DNA samples between the number of surviving DNA fragments and their length, ancient DNA sequencing libraries are strikingly deficient in molecules shorter than 40 bp. We find that a loss of short molecules can occur during DNA extraction and present an improved silica-based extraction protocol that enables their efficient retrieval. In combination with single-stranded DNA library preparation, this method enabled us to reconstruct the mitochondrial genome sequence from a Middle Pleistocene cave bear (Ursus deningeri) bone excavated at Sima de los Huesos in the Sierra de Atapuerca, Spain. Phylogenetic reconstructions indicate that the U. deningeri sequence forms an early diverging sister lineage to all Western European Late Pleistocene cave bears. Our results prove that authentic ancient DNA can be preserved for hundreds of thousand years outside of permafrost. Moreover, the techniques presented enable the retrieval of phylogenetically informative sequences from samples in which virtually all DNA is diminished to fragments shorter than 50 bp. PMID:24019490

  1. Complete Sequence of the Mitochondrial DNA of the Annelid Worm Lumbricus Terrestris

    PubMed Central

    Boore, J. L.; Brown, W. M.

    1995-01-01

    We have determined the complete nucleotide (nt) sequence of the mitochondrial genome of an oligochaete annelid, the earthworm Lumbricus terrestris. This genome contains the 37 genes typical of metazoan mitochondrial DNA (mtDNA), including ATPase8, which is missing from some invertebrate mtDNAs. ATPase8 is not immediately upstream of ATPase6, a condition found previously only in the mtDNA of snails. All genes are transcribed from the same DNA strand. The largest noncoding region is 384 nt and is characterized by several homopolymer runs, a tract of alternating TA pairs, and potential secondary structures. All protein-encoding genes either overlap the adjacent downstream gene or end at an abbreviated stop codon. In Lumbricus mitochondria, the variation of the genetic code that is typical of most invertebrate mitochondrial genomes is used. Only the codon ATG is used for translation initiation. Lumbricus mtDNA is A + T rich, which appears to affect the codon usage pattern. The DHU arm appears to be unpaired not only in tRNA(ser(AGN)), as is typical for metazoans, but perhaps also in tRNA(ser(UCN)), a condition found previously only in a chiton and among nematodes. Relating the Lumbricus gene organization to those of other major protostome groups requires numerous rearrangements. PMID:8536978

  2. Cytogenetic and Sequence Analyses of Mitochondrial DNA Insertions in Nuclear Chromosomes of Maize

    PubMed Central

    Lough, Ashley N.; Faries, Kaitlyn M.; Koo, Dal-Hoe; Hussain, Abid; Roark, Leah M.; Langewisch, Tiffany L.; Backes, Teresa; Kremling, Karl A. G.; Jiang, Jiming; Birchler, James A.; Newton, Kathleen J.

    2015-01-01

    The transfer of mitochondrial DNA (mtDNA) into nuclear genomes is a regularly occurring process that has been observed in many species. Few studies, however, have focused on the variation of nuclear-mtDNA sequences (NUMTs) within a species. This study examined mtDNA insertions within chromosomes of a diverse set of Zea mays ssp. mays (maize) inbred lines by the use of fluorescence in situ hybridization. A relatively large NUMT on the long arm of chromosome 9 (9L) was identified at approximately the same position in four inbred lines (B73, M825, HP301, and Oh7B). Further examination of the similarly positioned 9L NUMT in two lines, B73 and M825, indicated that the large size of these sites is due to the presence of a majority of the mitochondrial genome; however, only portions of this NUMT (∼252 kb total) were found in the publically available B73 nuclear sequence for chromosome 9. Fiber-fluorescence in situ hybridization analysis estimated the size of the B73 9L NUMT to be ∼1.8 Mb and revealed that the NUMT is methylated. Two regions of mtDNA (2.4 kb and 3.3 kb) within the 9L NUMT are not present in the B73 mitochondrial NB genome; however, these 2.4-kb and 3.3-kb segments are present in other Zea mitochondrial genomes, including that of Zea mays ssp. parviglumis, a progenitor of domesticated maize. PMID:26333837

  3. DmTTF, a novel mitochondrial transcription termination factor that recognises two sequences of Drosophila melanogaster mitochondrial DNA

    PubMed Central

    Roberti, Marina; Polosa, Paola Loguercio; Bruni, Francesco; Musicco, Clara; Gadaleta, Maria Nicola; Cantatore, Palmiro

    2003-01-01

    Using a combination of bioinformatic and molecular biology approaches a Drosophila melanogaster protein, DmTTF, has been identified, which exhibits sequence and structural similarity with two mitochondrial transcription termination factors, mTERF (human) and mtDBP (sea urchin). Import/processing assays indicate that DmTTF is synthesised as a precursor of 410 amino acids and is imported into mitochondria, giving rise to a mature product of 366 residues. Band-shift and DNase I protection experiments show that DmTTF binds two homologous, short, non-coding sequences of Drosophila mitochondrial DNA, located at the 3′ end of blocks of genes transcribed on opposite strands. The location of the target sequences coincides with that of two of the putative transcription termination sites previously hypothesised. These results indicate that DmTTF is the termination factor of mitochondrial transcription in Drosophila. The existence of two DmTTF binding sites might serve not only to stop transcription but also to control the overlapping of a large number of transcripts generated by the peculiar transcription mechanism operating in this organism. PMID:12626700

  4. Phylogenetic relationships of bears (the Ursidae) inferred from mitochondrial DNA sequences.

    PubMed

    Zhang, Y P; Ryder, O A

    1994-12-01

    The phylogenetic relationships among some bear species are still open questions. We present here mitochondrial DNA sequences of D-loop region, cytochrome b, 12S rRNA, tRNA(Pro), and tRNA(Thr) genes from all bear species and the giant panda. A series of evolutionary trees with concordant topology has been derived based on the combined data set of all of the mitochondrial DNA sequences, which may have resolved the evolutionary relationships of all bear species: the ancestor of the spectacled bear diverged first, followed by the sloth bear; the brown bear and polar bear are sister taxa relative to the Asiatic black bear; the closest relative of the American black bear is the sun bear. Primers for forensic identification of the giant panda and bears are proposed. Analysis of these data, in combination with data from primates and antelopes, suggests that relative substitutional rates between different mitochondrial DNA regions may vary greatly among different taxa of the vertebrates. PMID:7697192

  5. Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences.

    PubMed

    Meyer, A; Kocher, T D; Basasibwaki, P; Wilson, A C

    1990-10-11

    Lake Victoria, together with its satellite lakes, harbours roughly 200 endemic forms of cichlid fishes that are classified as 'haplochromines' and yet the lake system is less than a million years old. This 'flock' has attracted attention because of the possibility that it evolved within the lake from one ancestral species and that biologists are thus presented with a case of explosive evolution. Within the past decade, however, morphology has increasingly emphasized the view that the flock may be polyphyletic. We sequenced up to 803 base pairs of mitochondrial DNA from 14 representative Victorian species and 23 additional African species. The flock seems to be monophyletic, and is more akin to that from Lake Malawi than to species from Lake Tanganyika; in addition, it contains less genetic variation than does the human species, and there is virtually no sharing of mitochondrial DNA types among species. These results confirm that the founding event was recent. PMID:2215680

  6. Molecular phylogeny and evolution of Scomber (Teleostei: Scombridae) based on mitochondrial and nuclear DNA sequences

    NASA Astrophysics Data System (ADS)

    Cheng, Jiao; Gao, Tianxiang; Miao, Zhenqing; Yanagimoto, Takashi

    2011-03-01

    A molecular phylogenetic analysis of the genus Scomber was conducted based on mitochondrial (COI, Cyt b and control region) and nuclear (5S rDNA) DNA sequence data in multigene perspective. A variety of phylogenetic analytic methods were used to clarify the current taxonomic Classification and to assess phylogenetic relationships and the evolutionary history of this genus. The present study produced a well-resolved phylogeny that strongly supported the monophyly of Scomber. We confirmed that S. japonicus and S. colias were genetically distinct. Although morphologically and ecologically similar to S. colias, the molecular data showed that S. japonicus has a greater molecular affinity with S. australasicus, which conflicts with the traditional taxonomy. This phylogenetic pattern was corroborated by the mtDNA data, but incompletely by the nuclear DNA data. Phylogenetic concordance between the mitochondrial and nuclear DNA regions for the basal nodes Supports an Atlantic origin for Scomber. The present-day geographic ranges of the species were compared with the resultant molecular phylogeny derived from partition Bayesian analyses of the combined data sets to evaluate possible dispersal routes of the genus. The present-day geographic distribution of Scomber species might be best ascribed to multiple dispersal events. In addition, our results suggest that phylogenies derived from multiple genes and long sequences exhibited improved phylogenetic resolution, from which we conclude that the phylogenetic reconstruction is a reliable representation of the evolutionary history of Scomber.

  7. Complete DNA Sequence of the Mitochondrial Genome of the Black Chiton, Katharina Tunicata

    PubMed Central

    Boore, J. L.; Brown, W. M.

    1994-01-01

    The DNA sequence of the 15,532-base pair (bp) mitochondrial DNA (mtDNA) of the chiton Katharina tunicata has been determined. The 37 genes typical of metazoan mtDNA are present: 13 for protein subunits involved in oxidative phosphorylation, 2 for rRNAs and 22 for tRNAs. The gene arrangement resembles those of arthropods much more than that of another mollusc, the bivalve Mytilus edulis. Most genes abut directly or overlap, and abbreviated stop codons are inferred for four genes. Four junctions between adjacent pairs of protein genes lack intervening tRNA genes; however, at each of these junctions there is a sequence immediately adjacent to the start codon of the downstream gene that is capable of forming a stem-and-loop structure. Analysis of the tRNA gene sequences suggests that the D arm is unpaired in tRNA(ser(AGN)), which is typical of metazoan mtDNAs, and also in tRNA(ser(UCN)), a condition found previously only in nematode mtDNAs. There are two additional sequences in Katharina mtDNA that can be folded into structures resembling tRNAs; whether these are functional genes is unknown. All possible codons except the stop codons TAA and TAG are used in the protein-encoding genes, and Katharina mtDNA appears to use the same variation of the mitochondrial genetic code that is used in Drosophila and Mytilus. Translation initiates at the codons ATG, ATA and GTG. A + T richness appears to have affected codon usage patterns and, perhaps, the amino acid composition of the encoded proteins. A 142-bp non-coding region between tRNA(glu) and CO3 contains a 72-bp tract of alternating A and T. PMID:7828825

  8. A mitochondrial DNA sequence is associated with abnormal pollen development in cytoplasmic male sterile bean plants.

    PubMed Central

    Johns, C; Lu, M; Lyznik, A; Mackenzie, S

    1992-01-01

    Cytoplasmic male sterility (CMS) in common bean is associated with the presence of a 3-kb unique mitochondrial sequence designated pvs. The pvs sequence encodes at least two open reading frames (297 and 720 bp in length) with portions derived from the chloroplast genome. Fertility restoration by the nuclear restorer gene Fr results in the loss of this transcriptionally active unique region. We examined the effect of CMS (pvs present) and fertility restoration by Fr (pvs absent) on the pattern of pollen development in bean. In the CMS line, pollen aborted in the tetrad stage late in microgametogenesis. Microspores maintained cytoplasmic connections throughout pollen development, indicating aberrant or incomplete cytokinesis. Pollen-specific events associated with pollen abortion and fertility restoration imply that a gametophytic factor or event may be involved in CMS. In situ hybridization experiments suggested that significant reduction or complete loss of the mitochondrial sterility-associated sequence occurred in fertile pollen of F2 populations segregating for fertility. These observations support a model of fertility restoration by the loss of a mitochondrial DNA sequence prior to or during microsporogenesis/gametogenesis. PMID:1498602

  9. Whole mitochondrial DNA sequencing in Alpine populations and the genetic history of the Neolithic Tyrolean Iceman.

    PubMed

    Coia, V; Cipollini, G; Anagnostou, P; Maixner, F; Battaggia, C; Brisighelli, F; Gómez-Carballa, A; Destro Bisol, G; Salas, A; Zink, A

    2016-01-01

    The Tyrolean Iceman is an extraordinarily well-preserved natural mummy that lived south of the Alpine ridge ~5,200 years before present (ybp), during the Copper Age. Despite studies that have investigated his genetic profile, the relation of the Iceman´s maternal lineage with present-day mitochondrial variation remains elusive. Studies of the Iceman have shown that his mitochondrial DNA (mtDNA) belongs to a novel lineage of haplogroup K1 (K1f) not found in extant populations. We analyzed the complete mtDNA sequences of 42 haplogroup K bearing individuals from populations of the Eastern Italian Alps - putatively in genetic continuity with the Tyrolean Iceman-and compared his mitogenome with a large dataset of worldwide K1 sequences. Our results allow a re-definition of the K1 phylogeny, and indicate that the K1f haplogroup is absent or rare in present-day populations. We suggest that mtDNA Iceman´s lineage could have disappeared during demographic events starting in Europe from ~5,000 ybp. Based on the comparison of our results with published data, we propose a scenario that could explain the apparent contrast between the phylogeographic features of maternal and paternal lineages of the Tyrolean Iceman within the context of the demographic dynamics happening in Europe from 8,000 ybp. PMID:26764605

  10. Whole mitochondrial DNA sequencing in Alpine populations and the genetic history of the Neolithic Tyrolean Iceman

    PubMed Central

    Coia, V.; Cipollini, G.; Anagnostou, P.; Maixner, F.; Battaggia, C.; Brisighelli, F.; Gómez-Carballa, A; Destro Bisol, G.; Salas, A.; Zink, A.

    2016-01-01

    The Tyrolean Iceman is an extraordinarily well-preserved natural mummy that lived south of the Alpine ridge ~5,200 years before present (ybp), during the Copper Age. Despite studies that have investigated his genetic profile, the relation of the Iceman´s maternal lineage with present-day mitochondrial variation remains elusive. Studies of the Iceman have shown that his mitochondrial DNA (mtDNA) belongs to a novel lineage of haplogroup K1 (K1f) not found in extant populations. We analyzed the complete mtDNA sequences of 42 haplogroup K bearing individuals from populations of the Eastern Italian Alps – putatively in genetic continuity with the Tyrolean Iceman—and compared his mitogenome with a large dataset of worldwide K1 sequences. Our results allow a re-definition of the K1 phylogeny, and indicate that the K1f haplogroup is absent or rare in present-day populations. We suggest that mtDNA Iceman´s lineage could have disappeared during demographic events starting in Europe from ~5,000 ybp. Based on the comparison of our results with published data, we propose a scenario that could explain the apparent contrast between the phylogeographic features of maternal and paternal lineages of the Tyrolean Iceman within the context of the demographic dynamics happening in Europe from 8,000 ybp. PMID:26764605

  11. Complete mitochondrial DNA sequences of six snakes: phylogenetic relationships and molecular evolution of genomic features.

    PubMed

    Dong, Songyu; Kumazawa, Yoshinori

    2005-07-01

    Complete mitochondrial DNA (mtDNA) sequences were determined for representative species from six snake families: the acrochordid little file snake, the bold boa constrictor, the cylindrophiid red pipe snake, the viperid himehabu, the pythonid ball python, and the xenopeltid sunbeam snake. Thirteen protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 2 control regions were identified in these mtDNAs. Duplication of the control region and translocation of the tRNALeu gene were two notable features of the snake mtDNAs. The duplicate control regions had nearly identical nucleotide sequences within species but they were divergent among species, suggesting concerted sequence evolution of the two control regions. In addition, the duplicate control regions appear to have facilitated an interchange of some flanking tRNA genes in the viperid lineage. Phylogenetic analyses were conducted using a large number of sites (9570 sites in total) derived from the complete mtDNA sequences. Our data strongly suggested a new phylogenetic relationship among the major families of snakes: ((((Viperidae, Colubridae), Acrochordidae), (((Pythonidae, Xenopeltidae), Cylindrophiidae), Boidae)), Leptotyphlopidae). This conclusion was distinct from a widely accepted view based on morphological characters in denying the sister-group relationship of boids and pythonids, as well as the basal divergence of nonmacrostomatan cylindrophiids. These results imply the significance to reconstruct the snake phylogeny with ample molecular data, such as those from complete mtDNA sequences. PMID:16007493

  12. Mitochondrial DNA sequences in ancient Australians: Implications for modern human origins

    PubMed Central

    Adcock, Gregory J.; Dennis, Elizabeth S.; Easteal, Simon; Huttley, Gavin A.; Jermiin, Lars S.; Peacock, W. James; Thorne, Alan

    2001-01-01

    DNA from ancient human remains provides perspectives on the origin of our species and the relationship between molecular and morphological variation. We report analysis of mtDNA from the remains of 10 ancient Australians. These include the morphologically gracile Lake Mungo 3 [≈60 thousand years (ka) before present] and three other gracile individuals from Holocene deposits at Willandra Lakes (<10 ka), all within the skeletal range of living Australians, and six Pleistocene/early Holocene individuals (15 to <8 ka) from Kow Swamp with robust morphologies outside the skeletal range of contemporary indigenous Australians. Lake Mungo 3 is the oldest (Pleistocene) “anatomically modern” human from whom DNA has been recovered. His mtDNA belonged to a lineage that only survives as a segment inserted into chromosome 11 of the nuclear genome, which is now widespread among human populations. This lineage probably diverged before the most recent common ancestor of contemporary human mitochondrial genomes. This timing of divergence implies that the deepest known mtDNA lineage from an anatomically modern human occurred in Australia; analysis restricted to living humans places the deepest branches in East Africa. The other ancient Australian individuals we examined have mtDNA sequences descended from the most recent common ancestor of living humans. Our results indicate that anatomically modern humans were present in Australia before the complete fixation of the mtDNA lineage now found in all living people. Sequences from additional ancient humans may further challenge current concepts of modern human origins. PMID:11209053

  13. Mitochondrial DNA sequences in ancient Australians: Implications for modern human origins.

    PubMed

    Adcock, G J; Dennis, E S; Easteal, S; Huttley, G A; Jermiin, L S; Peacock, W J; Thorne, A

    2001-01-16

    DNA from ancient human remains provides perspectives on the origin of our species and the relationship between molecular and morphological variation. We report analysis of mtDNA from the remains of 10 ancient Australians. These include the morphologically gracile Lake Mungo 3 [ approximately 60 thousand years (ka) before present] and three other gracile individuals from Holocene deposits at Willandra Lakes (<10 ka), all within the skeletal range of living Australians, and six Pleistocene/early Holocene individuals (15 to <8 ka) from Kow Swamp with robust morphologies outside the skeletal range of contemporary indigenous Australians. Lake Mungo 3 is the oldest (Pleistocene) "anatomically modern" human from whom DNA has been recovered. His mtDNA belonged to a lineage that only survives as a segment inserted into chromosome 11 of the nuclear genome, which is now widespread among human populations. This lineage probably diverged before the most recent common ancestor of contemporary human mitochondrial genomes. This timing of divergence implies that the deepest known mtDNA lineage from an anatomically modern human occurred in Australia; analysis restricted to living humans places the deepest branches in East Africa. The other ancient Australian individuals we examined have mtDNA sequences descended from the most recent common ancestor of living humans. Our results indicate that anatomically modern humans were present in Australia before the complete fixation of the mtDNA lineage now found in all living people. Sequences from additional ancient humans may further challenge current concepts of modern human origins. PMID:11209053

  14. Genomic mitochondrial DNA-like sequences in normal and tumor tissue of mouse and rat

    SciTech Connect

    Hadler, H.I.; Devadas, K.; Mahalingam, R. )

    1990-02-26

    The restriction enzyme Kpn I, which does not cut mouse mitochondrial DNA (mtDNA) generated families of nuclear DNA with mtDNA-like sequences from both the normal liver of DBA/2 mice and a lymphoid leukemic ascites cell line, L1210, started by methylcholanthrene in DBA/2 mice. The family of the new Kpn l mtDNA-like element is most evident in tumor. The Southern blot banding patterns of the families were so altered by additional digestion with Pst I, which does cut mouse mtDNA, that the Kpn I mtDNA-like elements were implicated have different arrangement in tumor. KPn I which also does not cut rat mtDNA generated families of Kpn I mtDNA-like elements from normal rat liver and from a rat hepatoma (freshly induced by diethylnitrosoamine) in a mode analogous so that described for the mouse. These experiments stem from our unitary hypothesis for carcinogenesis presented 18 years ago.

  15. Optimization of primer specific filter metrics for the assessment of mitochondrial DNA sequence data

    PubMed Central

    CURTIS, PAMELA C.; THOMAS, JENNIFER L.; PHILLIPS, NICOLE R.; ROBY, RHONDA K.

    2011-01-01

    Filter metrics are used as a quick assessment of sequence trace files in order to sort data into different categories, i.e. High Quality, Review, and Low Quality, without human intervention. The filter metrics consist of two numerical parameters for sequence quality assessment: trace score (TS) and contiguous read length (CRL). Primer specific settings for the TS and CRL were established using a calibration dataset of 2817 traces and validated using a concordance dataset of 5617 traces. Prior to optimization, 57% of the traces required manual review before import into a sequence analysis program, whereas after optimization only 28% of the traces required manual review. After optimization of primer specific filter metrics for mitochondrial DNA sequence data, an overall reduction of review of trace files translates into increased throughput of data analysis and decreased time required for manual review. PMID:21171863

  16. The phylogenetic status of Paxillosida (Asteroidea) based on complete mitochondrial DNA sequences.

    PubMed

    Matsubara, Mioko; Komatsu, Miéko; Araki, Takeyoshi; Asakawa, Shuichi; Yokobori, Shin-ichi; Watanabe, Kimitsuna; Wada, Hiroshi

    2005-09-01

    One of the most important issues in asteroid phylogeny is the phylogenetic status of Paxillosida. This group lacks an anus and suckers on the tube feet in adults and does not develop the brachiolaria stage in early development. Two controversial hypotheses have been proposed for the phylogenetic status of Paxillosida, i.e., Paxillosida is primitive or rather specialized in asteroids. In this study, we determined the complete mitochondrial DNA nucleotide sequences from two paxillosidans (Astropecten polyacanthus and Luidia quinaria) and one forcipulatidan (Asterias amurensis). The mitochondrial genomes of the three asteroids were identical with respect to gene order and transcription direction, and were identical to the previously reported mitochondrial genomes of Asterina pectinifera (Valvatida) and Pisaster ochraceus (Forcipulatida) in this respect. Therefore, the comparison of genome structures was uninformative for the purposes of asteroid phylogeny. However, molecular phylogenetic analyses based on the amino acid sequences and the nucleotide sequences from the five asteroids supported the monophyly of the clade that included the two paxillosidans and Asterina. This suggests that the paxillosidan characters are secondarily derived ones. PMID:15878829

  17. Rapid evolution of a heteroplasmic repetitive sequence in the mitochondrial DNA control region of carnivores.

    PubMed

    Hoelzel, A R; Lopez, J V; Dover, G A; O'Brien, S J

    1994-08-01

    We describe a repetitive DNA region at the 3' end of the mitochondrial DNA (mtDNA) control region and compare it in 21 carnivore species representing eight carnivore families. The sequence and organization of the repetitive motifs can differ extensively between arrays; however, all motifs appear to be derived from the core motif "ACGT." Sequence data and Southern blot analysis demonstrate extensive heteroplasmy. The general form of the array is similar between heteroplasmic variants within an individual and between individuals within a species (varying primarily in the length of the array, though two clones from the northern elephant seal are exceptional). Within certain families, notably ursids, the array structure is also similar between species. Similarity between species was not apparent in other carnivore families, such as the mustelids, suggesting rapid changes in the organization and sequence of some arrays. The pattern of change seen within and between species suggests that a dominant mechanism involved in the evolution of these arrays is DNA slippage. A comparative analysis shows that the motifs that are being reiterated or deleted vary within and between arrays, suggesting a varying rate of DNA turnover. We discuss the evolutionary implications of the observed patterns of variation and extreme levels of heteroplasmy. PMID:7932782

  18. Discrimination of two natural biocontrol agents in the Mediterranean region based on mitochondrial DNA sequencing data.

    PubMed

    Evangelou, V I; Bouga, M; Emmanouel, N G; Perdikis, D Ch; Papadoulis, G Th

    2013-12-01

    Macrolophus pygmaeus and M. melanotoma (Hemiptera: Miridae) are biological control agents used in greenhouse crops, the former preferring plants of the Solanaceae family and the latter the aster Dittrichia viscosa. The discrimination of these species is of high significance for effective biological pest control, but identification based on morphological characters of the host plant is not always reliable. In this study, sequencing analysis of mitochondrial gene segments 12S rDNA and COI has been combined with crossing experiments and morphological observations to develop new markers for Macrolophus spp. discrimination and to provide new data on their genetic variability. This is the first comprehensive research in Greece on M. pygmaeus and M. melanotoma genetic variability based on sequencing data from 12S rDNA and COI gene segments. The relationship of this variability to host plant preference must be investigated in an agricultural ecosystem. PMID:23839086

  19. Simultaneous detection of human mitochondrial DNA and nuclear-inserted mitochondrial-origin sequences (NumtS) using forensic mtDNA amplification strategies and pyrosequencing technology.

    PubMed

    Bintz, Brittania J; Dixon, Groves B; Wilson, Mark R

    2014-07-01

    Next-generation sequencing technologies enable the identification of minor mitochondrial DNA variants with higher sensitivity than Sanger methods, allowing for enhanced identification of minor variants. In this study, mixtures of human mtDNA control region amplicons were subjected to pyrosequencing to determine the detection threshold of the Roche GS Junior(®) instrument (Roche Applied Science, Indianapolis, IN). In addition to expected variants, a set of reproducible variants was consistently found in reads from one particular amplicon. A BLASTn search of the variant sequence revealed identity to a segment of a 611-bp nuclear insertion of the mitochondrial control region (NumtS) spanning the primer-binding sites of this amplicon (Nature 1995;378:489). Primers (Hum Genet 2012;131:757; Hum Biol 1996;68:847) flanking the insertion were used to confirm the presence or absence of the NumtS in buccal DNA extracts from twenty donors. These results further our understanding of human mtDNA variation and are expected to have a positive impact on the interpretation of mtDNA profiles using deep-sequencing methods in casework. PMID:24738853

  20. Complete mitochondrial DNA sequence and phylogenic analysis of Oxyeleotris lineolatus (Perciformes, Eleotridae).

    PubMed

    Zang, Xue; Yin, Danqing; Wang, Ruoran; Yin, Shaowu; Tao, Panfeng; Chen, Jiawei; Zhang, Guosong

    2016-07-01

    In this study, the mitochondrial genome of Oxyeleotris lineolatus was first determined. The length of entire mtDNA sequence was 16,522 bp with (A + T) content of 53.81%, and it contained 13 protein-coding genes, two rRNAs, 22 tRNAs, and a control region. The gene order and the orientation are similar to some typical fish species. The data will provide useful molecular information for phylogenetic studies concerning O. lineolatus and its related species. PMID:26016879

  1. Phylogenetic relationships of land plants using mitochondrial small-subunit rDNA sequences.

    PubMed

    Duff, R J; Nickrent, D L

    1999-03-01

    Phylogenetic relationships among embryophytes (tracheophytes, mosses, liverworts, and hornworts) were examined using 21 newly generated mitochondrial small-subunit (19S) rDNA sequences. The "core" 19S rDNA contained more phylogenetically informative sites and lower homoplasy than either nuclear 18S or plastid 16S rDNA. Results of phylogenetic analyses using parsimony (MP) and likelihood (ML) were generally congruent. Using MP, two trees were obtained that resolved either liverworts or hornworts as the basal land plant clade. The optimal ML tree showed hornworts as basal. That topology was not statistically different from the two MP trees, thus both appear to be equally viable evolutionary hypotheses. High bootstrap support was obtained for the majority of higher level embryophyte clades named in a recent morphologically based classification, e.g., Tracheophyta, Euphyllophytina, Lycophytina, and Spermatophytata. Strong support was also obtained for the following monophyletic groups: hornworts, liverworts, mosses, lycopsids, leptosporangiate and eusporangiate ferns, gymnosperms and angiosperms. This molecular analysis supported a sister relationship between Equisetum and leptosporangiate ferns and a monophyletic gymnosperms sister to angiosperms. The topologies of deeper clades were affected by taxon inclusion (particularly hornworts) as demonstrated by jackknife analyses. This study represents the first use of mitochondrial 19S rDNA for phylogenetic purposes and it appears well-suited for examining intermediate to deep evolutionary relationships among embryophytes. PMID:10077500

  2. mtDNA-Server: next-generation sequencing data analysis of human mitochondrial DNA in the cloud.

    PubMed

    Weissensteiner, Hansi; Forer, Lukas; Fuchsberger, Christian; Schöpf, Bernd; Kloss-Brandstätter, Anita; Specht, Günther; Kronenberg, Florian; Schönherr, Sebastian

    2016-07-01

    Next generation sequencing (NGS) allows investigating mitochondrial DNA (mtDNA) characteristics such as heteroplasmy (i.e. intra-individual sequence variation) to a higher level of detail. While several pipelines for analyzing heteroplasmies exist, issues in usability, accuracy of results and interpreting final data limit their usage. Here we present mtDNA-Server, a scalable web server for the analysis of mtDNA studies of any size with a special focus on usability as well as reliable identification and quantification of heteroplasmic variants. The mtDNA-Server workflow includes parallel read alignment, heteroplasmy detection, artefact or contamination identification, variant annotation as well as several quality control metrics, often neglected in current mtDNA NGS studies. All computational steps are parallelized with Hadoop MapReduce and executed graphically with Cloudgene. We validated the underlying heteroplasmy and contamination detection model by generating four artificial sample mix-ups on two different NGS devices. Our evaluation data shows that mtDNA-Server detects heteroplasmies and artificial recombinations down to the 1% level with perfect specificity and outperforms existing approaches regarding sensitivity. mtDNA-Server is currently able to analyze the 1000G Phase 3 data (n = 2,504) in less than 5 h and is freely accessible at https://mtdna-server.uibk.ac.at. PMID:27084948

  3. mtDNA-Server: next-generation sequencing data analysis of human mitochondrial DNA in the cloud

    PubMed Central

    Weissensteiner, Hansi; Forer, Lukas; Fuchsberger, Christian; Schöpf, Bernd; Kloss-Brandstätter, Anita; Specht, Günther; Kronenberg, Florian; Schönherr, Sebastian

    2016-01-01

    Next generation sequencing (NGS) allows investigating mitochondrial DNA (mtDNA) characteristics such as heteroplasmy (i.e. intra-individual sequence variation) to a higher level of detail. While several pipelines for analyzing heteroplasmies exist, issues in usability, accuracy of results and interpreting final data limit their usage. Here we present mtDNA-Server, a scalable web server for the analysis of mtDNA studies of any size with a special focus on usability as well as reliable identification and quantification of heteroplasmic variants. The mtDNA-Server workflow includes parallel read alignment, heteroplasmy detection, artefact or contamination identification, variant annotation as well as several quality control metrics, often neglected in current mtDNA NGS studies. All computational steps are parallelized with Hadoop MapReduce and executed graphically with Cloudgene. We validated the underlying heteroplasmy and contamination detection model by generating four artificial sample mix-ups on two different NGS devices. Our evaluation data shows that mtDNA-Server detects heteroplasmies and artificial recombinations down to the 1% level with perfect specificity and outperforms existing approaches regarding sensitivity. mtDNA-Server is currently able to analyze the 1000G Phase 3 data (n = 2,504) in less than 5 h and is freely accessible at https://mtdna-server.uibk.ac.at. PMID:27084948

  4. Sequence polymorphism of the mitochondrial DNA hypervariable regions I and II in 205 Singapore Malays.

    PubMed

    Wong, Hang Yee; Tang, June S W; Budowle, Bruce; Allard, Marc W; Syn, Christopher K C; Tan-Siew, Wai Fun; Chow, Shui Tse

    2007-01-01

    Mitochondrial DNA sequences of the hypervariable regions HV1 and HV2 were analyzed in 205 unrelated ethnic Malays residing in Singapore as an initial effort to generate a database for forensic identification purposes. Sequence polymorphism was detected using PCR and direct sequencing analysis. A total of 152 haplotypes was found containing 152 polymorphisms. Out of the 152 haplotypes, 115 were observed only once and 37 types were seen in multiple individuals. The most common haplotype (16223T, 16295T, 16362C, 73G, 146C, 199C, 263G, and 315.1C) was shared by 7 (3.41%) individuals, two haplotypes were shared by 4 individuals, seven haplotypes were shared by 3 individuals, and 27 haplotypes by 2 individuals. Haplotype diversity and random match probability were estimated to be 0.9961% and 0.87%, respectively. PMID:17150401

  5. Mitochondrial DNA control region sequence variation in migraine headache and cyclic vomiting syndrome.

    PubMed

    Wang, Qingxue; Ito, Masamichi; Adams, Kathleen; Li, B U K; Klopstock, Thomas; Maslim, Audrey; Higashimoto, Tomoyasu; Herzog, Juergen; Boles, Richard G

    2004-11-15

    Migraine headache is a very common condition affecting about 10% of the population that results in substantial morbidity and economic loss. The two most common variants are migraine with (MA) and without (MO) aura. Often considered to be a migraine-like variant, cyclic vomiting syndrome (CVS) is a predominately childhood condition characterized by severe, discrete episodes of nausea, vomiting, and lethargy. Disease-associated mitochondrial DNA (mtDNA) sequence variants are suggested in common migraine and CVS based upon a strong bias towards the maternal inheritance of disease, and several other factors. Temporal temperature gradient gel electrophoresis (TTGE) followed by cyclosequencing and RFLP was used to screen almost 90% of the mtDNA, including the control region (CR), for heteroplasmy in 62 children with CVS and neuromuscular disease (CVS+) and in 95 control subjects. One or two rare mtDNA-CR heteroplasmic sequence variants were found in six CVS+ and in zero control subjects (P = 0.003). These variants comprised 6 point and 2 length variants in hypervariable regions 1 and 2 (HV1 and HV2, both part of the mtDNA-CR), one half of which were clustered in the nt 16040-16188 segment of HV1 that includes the termination associated sequence (TAS), a functional location important in the regulation of mtDNA replication. Based upon our findings, sequencing and statistical analysis looking for homoplasmic nucleotide changes was performed in HV1 among 30 CVS+, 30 randomly-ascertained CVS (rCVS), 18 MA, 32 MO, and 35 control haplogroup H cases. Within the nt 16040-16188 segment, homoplasmic sequence variants were three-fold more common relative to control subjects in both CVS groups (P = 0.01 combined data) and in MO (P = 0.02), but not in MA (P = 0.5 vs. control subjects and 0.02 vs. MO). No group differences were noted in the remainder of HV1. We conclude that sequence variation in this small "peri-TAS" segment is associated with CVS and MO, but not MA. These variants

  6. Sequence analysis and mapping of a novel human mitochondrial ATP synthase subunit 9 cDNA (ATP5G3)

    SciTech Connect

    Yan, W.L.; Gusella, J.F. |; Haines, J.L. |

    1994-11-15

    The authors describe the cloning, sequence analysis, and chromosomal mapping of a novel mitochondrial ATP synthase subunit 9 cDNA, P3. Subunit 9 transports protons across the inner mitochondrial membrane to the F{sub 1}-ATPase protruding on the matrix side, resulting in the generation of ATP. Sequence analysis of the P3 cDNA reveals only 80% identity with the human subunit 9 genes P1 and P2 in the DNA sequence encoding the mature protein identical to P1 and P2. The predicted sequence of the P3 leader peptide differs from the P1 and P2 leaders, but retains the {open_quotes}RFS{close_quotes} motif critical for mitochondrial import and maturation. The P3 gene (ATP5G3) maps to chromosome 2. 8 refs., 1 fig., 1 tab.

  7. Evidence for frequent and tissue-specific sequence heteroplasmy in human mitochondrial DNA.

    PubMed

    Naue, Jana; Hörer, Steffen; Sänger, Timo; Strobl, Christina; Hatzer-Grubwieser, Petra; Parson, Walther; Lutz-Bonengel, Sabine

    2015-01-01

    Mitochondrial point heteroplasmy is a common event observed not only in patients with mitochondrial diseases but also in healthy individuals. We here report a comprehensive investigation of heteroplasmy occurrence in human including the whole mitochondrial control region from nine different tissue types of 100 individuals. Sanger sequencing was used as a standard method and results were supported by cloning, minisequencing, and massively parallel sequencing. Only 12% of all individuals showed no heteroplasmy, whereas 88% showed at least one heteroplasmic position within the investigated tissues. In 66% of individuals up to 8 positions were affected. The highest relative number of heteroplasmies was detected in muscle and liver (79%, 69%), followed by brain, hair, and heart (36.7%-30.2%). Lower percentages were observed in bone, blood, lung, and buccal cells (19.8%-16.2%). Accumulation of position-specific heteroplasmies was found in muscle (positions 64, 72, 73, 189, and 408), liver (position 72) and brain (partial deletion at position 71). Deeper analysis of these specific positions in muscle revealed a non-random appearance and position-specific dependency on age. MtDNA heteroplasmy frequency and its potential functional importance have been underestimated in the past and its occurrence is ubiquitous and dependent at least on age, tissue, and position-specific mutation rates. PMID:25526677

  8. Complete Mitochondrial DNA Sequence of the Mucoralean Fungus Absidia glauca, a Model for Studying Host-Parasite Interactions

    PubMed Central

    Ellenberger, Sabrina; Burmester, Anke

    2016-01-01

    The mitochondrial DNA (mtDNA) of Absidia glauca has been completely sequenced. It is 63,080 bp long, has a G+C content of 28%, and contains the standard fungal gene set. A. glauca is the recipient in a laboratory model for horizontal gene transfer with Parasitella parasitica as a donor of nuclei and mitochondria. PMID:27013042

  9. Belgian canine population and purebred study for forensics by improved mitochondrial DNA sequencing.

    PubMed

    Desmyter, Stijn; Gijsbers, Leonie

    2012-01-01

    In canine population studies for forensics, the mitochondrial DNA is profiled by sequencing the two hyper variable regions, HV1 and HV2 of the control region. In a first effort to create a Belgian population database some samples showed partially poor sequence quality. We demonstrated that a nuclear pseudogene was co-amplified with the mtDNA control region. Using a new combination of primers this adverse result was no longer observed and sequencing quality was improved. All former samples with poor sequence data were reanalyzed. Furthermore, the forensic canine population study was extended to 208 breed and mixed dogs. In total, 58 haplotypes were identified, resulting in an exclusion capacity of 0.92. The profile distribution of the Belgian population sample was not significantly different from those observed in population studies of three other countries. In addition to the total population study 107 Belgian registered pedigree dogs of six breeds were profiled. Per breed, the obtained haplotypes were supplemented with those from population and purebred studies. The combined data revealed that some haplotypes were more or less prominent present in particular dog breeds. The statistically significant differences in haplotype distribution between breeds and population sample can have consequences on mtDNA databasing and matching probabilities in forensics. PMID:21489897

  10. A pedigree-based study of mitochondrial D-loop DNA sequence variation among Arabian horses.

    PubMed

    Bowling, A T; Del Valle, A; Bowling, M

    2000-02-01

    Through DNA sequence comparisons of a mitochondrial D-loop hypervariable region, we investigated matrilineal diversity for Arabian horses in the United States. Sixty-two horses were tested. From published pedigrees they traced in the maternal line to 34 mares acquired primarily in the mid to late 19th century from nomadic Bedouin tribes. Compared with the reference sequence (GenBank X79547), these samples showed 27 haplotypes with altogether 31 base substitution sites within 397 bp of sequence. Based on examination of pedigrees from a random sampling of 200 horses in current studbooks of the Arabian Horse Registry of America, we estimated that this study defined the expected mtDNA haplotypes for at least 89% of Arabian horses registered in the US. The reliability of the studbook recorded maternal lineages of Arabian pedigrees was demonstrated by haplotype concordance among multiple samplings in 14 lines. Single base differences observed within two maternal lines were interpreted as representing alternative fixations of past heteroplasmy. The study also demonstrated the utility of mtDNA sequence studies to resolve historical maternity questions without access to biological material from the horses whose relationship was in question, provided that representatives of the relevant female lines were available for comparison. The data call into question the traditional assumption that Arabian horses of the same strain necessarily share a common maternal ancestry. PMID:10690354

  11. DNA capture and next-generation sequencing can recover whole mitochondrial genomes from highly degraded samples for human identification

    PubMed Central

    2013-01-01

    Background Mitochondrial DNA (mtDNA) typing can be a useful aid for identifying people from compromised samples when nuclear DNA is too damaged, degraded or below detection thresholds for routine short tandem repeat (STR)-based analysis. Standard mtDNA typing, focused on PCR amplicon sequencing of the control region (HVS I and HVS II), is limited by the resolving power of this short sequence, which misses up to 70% of the variation present in the mtDNA genome. Methods We used in-solution hybridisation-based DNA capture (using DNA capture probes prepared from modern human mtDNA) to recover mtDNA from post-mortem human remains in which the majority of DNA is both highly fragmented (<100 base pairs in length) and chemically damaged. The method ‘immortalises’ the finite quantities of DNA in valuable extracts as DNA libraries, which is followed by the targeted enrichment of endogenous mtDNA sequences and characterisation by next-generation sequencing (NGS). Results We sequenced whole mitochondrial genomes for human identification from samples where standard nuclear STR typing produced only partial profiles or demonstrably failed and/or where standard mtDNA hypervariable region sequences lacked resolving power. Multiple rounds of enrichment can substantially improve coverage and sequencing depth of mtDNA genomes from highly degraded samples. The application of this method has led to the reliable mitochondrial sequencing of human skeletal remains from unidentified World War Two (WWII) casualties approximately 70 years old and from archaeological remains (up to 2,500 years old). Conclusions This approach has potential applications in forensic science, historical human identification cases, archived medical samples, kinship analysis and population studies. In particular the methodology can be applied to any case, involving human or non-human species, where whole mitochondrial genome sequences are required to provide the highest level of maternal lineage discrimination

  12. Application of mitochondrial DNA sequence analysis in the forensic identification of Chinese sika deer subspecies.

    PubMed

    Wu, Hua; Wan, Qiu-Hong; Fang, Sheng-Guo; Zhang, Shu-Yan

    2005-03-10

    As a direct and indirect consequence of human activities, only two subspecies, Cervus nippon sinchuanicus and Cervus nippon kopschi, currently subsist in the wild of China. However, a large population of Cervus nippon hortulorum and Cervus nippon nippon is raised in order to gain deer parts for Chinese traditional medicine. According to Chinese Wild Animal Conservation Law, hunting, capturing and trading of the wild sika deer are strictly banned, however, raising and trading of the domestic individual are permitted. Thus, it is very necessary to identify the subspecies of sika deer in China in forensic tests. In our study, we used mitochondrial DNA control region sequence analysis and phylogenetic analysis to identify the subspecies of sika deer. Mitochondrial DNA control region sequences analysis revealed that two haplotypes came from the unknown samples. One is the same as the haplotype that came from the samples of wild population of C. n. kopschi. Phylogenetic analysis indicated that the two haplotypes of unknown samples clustered with the haplotypes of C. n. kopschi, and had significant difference from the haplotypes of the other subspecies. These results together revealed that the unknown samples came from two individuals that belong to the wild population of C. n. kopschi living in the Qinglingfeng State Natural Reserve of Zhejiang province. Therefore, the results provide forensic evidence of illegal wild animal hunting. PMID:15639603

  13. A reexamination of the phylogenetic position of Callimico (primates) incorporating new mitochondrial DNA sequence data.

    PubMed

    Pastorini, J; Forstner, M R; Martin, R D; Melnick, D J

    1998-07-01

    The New World monkeys are divided into two main groups, Callitrichidae and Cebidae. Callimico goeldii shares traits with both the Cebidae and the Callitrichidae. Recent morphological phyletic studies generally place Callimico as the most basal member of the Callitrichidae. In contrast, genetic studies (immunological, restriction fragment, and sequence data) have consistently placed Callimico somewhere within the Callitrichidae, not basal to this clade. A DNA sequence data set from the terminal 236 codons of the mitochondrial ND4 gene and the tRNA(His), tRNA(Ser), and tRNA(Leu) genes was generated to clarify the position of Callimico. The sequences of 887 base pairs were analyzed by maximum-parsimony, neighbor-joining, and maximum-likelihood methods. The results of these various methods are generally congruent and place Callimico within the Callitrichidae between the marmosets (Callithrix and Cebuella) and the tamarins (Saguinus and Leontopithecus). Combined analyses of all suitable nuclear and mitochondrial gene sequences confirm the position of Callimico between the marmosets and the tamarins. As available molecular evidence indicates that Callimico is more closely related to the marmosets than to the tamarins, a reconsideration of the morphological evidence in light of the consensus tree from DNA sequence analyses is warranted. The marmosets and tamarins share four morphological characters (loss of the third molar, loss of the hypocone, reduced body size, reproductive twinning). Dwarfism may have evolved repeatedly among the Callitrichidae. It is well-known that the loss of a character can occur many times independently. The reproduction of marmosets and tamarins is extremely specialized and it is difficult to imagine that this complex and unique twinning system evolved separately in marmosets and tamarins. However, it is possible that a secondary reversal to single offspring took place in Callimico. PMID:9664694

  14. Self-similar mitochondrial DNA.

    PubMed

    Oiwa, Nestor N; Glazier, James A

    2004-01-01

    We show that repeated sequences, like palindromes (local repetitions) and homologies between two different nucleotide sequences (motifs along the genome), compose a self-similar (fractal) pattern in mitochondrial DNA. This self-similarity comes from the looplike structures distributed along the genome. The looplike structures generate scaling laws in a pseudorandom DNA walk constructed from the sequence, called a Lévy flight. We measure the scaling laws from the generalized fractal dimension and singularity spectrum for mitochondrial DNA walks for 35 different species. In particular, we report characteristic loop distributions for mammal mitochondrial genomes. PMID:15371639

  15. Mitochondrial DNA population data of HV1 and HV2 sequences from Japanese individuals.

    PubMed

    Sekiguchi, Kazumasa; Imaizumi, Kazuhiko; Fujii, Koji; Mizuno, Natsuko; Ogawa, Yoshinori; Akutsu, Tomoko; Nakahara, Hiroaki; Kitayama, Tetsushi; Kasai, Kentaro

    2008-09-01

    Mitochondrial DNA sequences of the hypervariable regions HV1 and HV2 were determined for 1204 unrelated Japanese individuals. A total of 741 different mtDNA haplotypes were found, 157 of which were seen in multiple individuals. Twenty-seven of these individuals showed point heteroplasmy. The most frequent haplotype (16223T-16362C-73G-263G-315.1C) was found in 31 individuals and the second most frequent haplotypes (16129A-16223T- 16362C-73G-152C-263G-309.1C-315.1C) was found in 24 individuals. The haplotypes diversity and random match probability were calculated to be 0.9969 and 0.0040, respectively. PMID:18442943

  16. Mitochondrial DNA D-loop sequence variation in maternal lineages of Iranian native horses.

    PubMed

    Moridi, M; Masoudi, A A; Vaez Torshizi, R; Hill, E W

    2013-04-01

    To understand the origin and genetic diversity of Iranian native horses, mitochondrial DNA (mtDNA) D-loop sequences were generated for 95 horses from five breeds sampled in eight geographical locations in Iran. Sequence analysis of a 247-bp segment revealed a total of 27 haplotypes with 38 polymorphic sites. Twelve of 19 mtDNA haplogroups were identified in the samples. The most common haplotypes were found within haplogroup X2. Within-population haplotype and nucleotide diversities of the five breeds ranged from 0.838 ± 0.056 to 0.974 ± 0.022 and 0.011 ± 0.002 to 0.021 ± 0.001 respectively, indicating a relatively high genetic diversity in Iranian horses. The identification of several ancient sequences common between the breeds suggests that the lineage of the majority of Iranian horse breeds is old and obviously originated from a vast number of mares. We found in all native Iranian horse breeds lineages of the haplogroups D and K, which is concordant with the previous findings of Asian origins of these haplogroups. The presence of haplotypes E and K in our study also is consistent with a geographical west-east direction of increasing frequency of these haplotypes and a genetic fusion in Iranian horse breeds. PMID:22732008

  17. Mitochondrial DNA sequence analysis of four Alzheimer`s and Parkinson`s disease patients

    SciTech Connect

    Brown, M.D.; Shoffner, J.M.; Wallace, D.C.

    1996-01-22

    The mitochondrial DNA (mtDNA) sequence was determined on 3 patients with Alzheimer`s disease (AD) exhibiting AD plus Parkinson`s disease (PD) neuropathologic changes and one patient with PD. Patient mtDNA sequences were compared to the standard Cambridge sequence to identify base changes. In the first AD + PD patient, 2 of the 15 nucleotide substitutions may contribute to the neuropathology, a nucleotide pair (np) 4336 transition in the tRNA{sup Gln} gene found 7.4 times more frequently in patients than in controls, and a unique np 721 transition in the 12S rRNA gene which was not found in 70 other patients or 905 controls. In the second AD + PD patient, 27 nucleotide substitutions were detected, including an np 3397 transition in the ND1 gene which converts a conserved methionine to a valine. In the third AD + PD patient, 2 polymorphic base substitutions frequently found at increased frequency in Leber`s hereditary optic neuropathy patients were observed, an np 4216 transition in ND1 and an np 13708 transition in the ND5 gene. For the PD patient, 2 novel variants were observed among 25 base substitutions, an np 1709 substitution in the 16S rRNA gene and an np 15851 missense mutation in the cytb gene. Further studies will be required to demonstrate a casual role for these base substitutions in neurodegenerative disease. 68 refs., 2 tabs.

  18. Variability of the human mitochondrial DNA control region sequences in the Lithuanian population.

    PubMed

    Kasperaviciūte, Dalia; Kucinskas, Vaidutis

    2002-01-01

    The Lithuanians and Latvians are the only two Baltic cultures that survived until today. Since the Neolithic period the native inhabitants of the present-day Lithuanian territory have not been replaced by any other ethnic group. Therefore the genetic characterization of the present-day Lithuanians may shed some light on the early history of the Balts. We have analysed 120 DNA samples from two Lithuanian ethnolinguistic groups (Aukstaiciai and Zemaiciai) by direct sequencing of the first hypervariable segment (HVI) of the control region of mitochondrial DNA (mtDNA) and restriction enzyme digestion for polymorphic site 00073. On the basis of specific nucleotide substitutions the obtained sequences were classified to mtDNA haplogroups. This revealed the presence of almost all European haplogroups (except X) in the Lithuanian sample, including those that expanded through Europe in the Palaeolithic and those whose expansion occurred during the Neolithic. Molecular diversity indices (gene diversity 0.97, nucleotide diversity 0.012 and mean number of pairwise differences 4.5) were within the range usually reported in European populations. No significant differences between Aukstaiciai and Zemaiciai subgroups were found, but some slight differences need further investigation. PMID:12080181

  19. Update of AMmtDB: a database of multi-aligned Metazoa mitochondrial DNA sequences.

    PubMed

    Lanave, Cecilia; Licciulli, Flavio; De Robertis, Mariateresa; Marolla, Alessandra; Attimonelli, Marcella

    2002-01-01

    The AMmtDB database (http://bighost.area.ba.cnr.it/mitochondriome) has been updated by collecting the multi-aligned sequences of Chordata and Invertebrata mitochondrial genes coding for proteins and tRNAs. Links to the multi-aligned mtDNA intraspecies variants, collected in VarMmtDB at the Mitochondriome web site, have been introduced. The genes coding for proteins are multi-aligned based on the translated sequences and both the nucleotide and amino acid multi-alignments are provided. AMmtDB data selected through SRS can be viewed and managed using GeneDoc or other programs for the management of multi-aligned data depending on the user's operative system. The multiple alignments have been produced with CLUSTALW and PILEUP programs and then carefully optimized manually. PMID:11752285

  20. Update of AMmtDB: a database of multi-aligned Metazoa mitochondrial DNA sequences

    PubMed Central

    Lanave, Cecilia; Licciulli, Flavio; De Robertis, Mariateresa; Marolla, Alessandra; Attimonelli, Marcella

    2002-01-01

    The AMmtDB database (http://bighost.area.ba.cnr.it/mitochondriome) has been updated by collecting the multi-aligned sequences of Chordata and Invertebrata mitochondrial genes coding for proteins and tRNAs. Links to the multi-aligned mtDNA intraspecies variants, collected in VarMmtDB at the Mitochondriome web site, have been introduced. The genes coding for proteins are multi-aligned based on the translated sequences and both the nucleotide and amino acid multi-alignments are provided. AMmtDB data selected through SRS can be viewed and managed using GeneDoc or other programs for the management of multi-aligned data depending on the user’s operative system. The multiple alignments have been produced with CLUSTALW and PILEUP programs and then carefully optimized manually. PMID:11752285

  1. Genetic differentiation in pointing dog breeds inferred from microsatellites and mitochondrial DNA sequence.

    PubMed

    Parra, D; Méndez, S; Cañón, J; Dunner, S

    2008-02-01

    Recent studies presenting genetic analysis of dog breeds do not focus specifically on genetic relationships among pointing dog breeds, although hunting was among the first traits of interest when dogs were domesticated. This report compares histories with genetic relationships among five modern breeds of pointing dogs (English Setter, English Pointer, Epagneul Breton, Deutsch Drahthaar and German Shorthaired Pointer) collected in Spain using mitochondrial, autosomal and Y-chromosome information. We identified 236 alleles in autosomal microsatellites, four Y-chromosome haplotypes and 18 mitochondrial haplotypes. Average F(ST) values were 11.2, 14.4 and 13.1 for autosomal, Y-chromosome microsatellite markers and mtDNA sequence respectively, reflecting relatively high genetic differentiation among breeds. The high gene diversity observed in the pointing breeds (61.7-68.2) suggests contributions from genetically different individuals, but that these individuals originated from the same ancestors. The modern English Setter, thought to have arisen from the Old Spanish Pointer, was the first breed to cluster independently when using autosomal markers and seems to share a common maternal origin with the English Pointer and German Shorthaired Pointer, either via common domestic breed females in the British Isles or through the Old Spanish Pointer females taken to the British Isles in the 14th and 16th centuries. Analysis of mitochondrial DNA sequence indicates the isolation of the Epagneul Breton, which has been formally documented, and shows Deutsch Drahthaar as the result of crossing the German Shorthaired Pointer with other breeds. Our molecular data are consistent with historical documents. PMID:18254732

  2. The determination of complete human mitochondrial DNA sequences in single cells: implications for the study of somatic mitochondrial DNA point mutations

    PubMed Central

    Taylor, Robert W.; Taylor, Geoffrey A.; Durham, Steve E.; Turnbull, Douglass M.

    2001-01-01

    Studies of single cells have previously shown intracellular clonal expansion of mitochondrial DNA (mtDNA) mutations to levels that can cause a focal cytochrome c oxidase (COX) defect. Whilst techniques are available to study mtDNA rearrangements at the level of the single cell, recent interest has focused on the possible role of somatic mtDNA point mutations in ageing, neurodegenerative disease and cancer. We have therefore developed a method that permits the reliable determination of the entire mtDNA sequence from single cells without amplifying contaminating, nuclear-embedded pseudogenes. Sequencing and PCR–RFLP analyses of individual COX-negative muscle fibres from a patient with a previously described heteroplasmic COX II (T7587C) mutation indicate that mutant loads as low as 30% can be reliably detected by sequencing. This technique will be particularly useful in identifying the mtDNA mutational spectra in age-related COX-negative cells and will increase our understanding of the pathogenetic mechanisms by which they occur. PMID:11470889

  3. Complete mitochondrial DNA sequence of the ark shell Scapharca broughtonii: an ultra-large metazoan mitochondrial genome.

    PubMed

    Liu, Yun-Guo; Kurokawa, Tadahide; Sekino, Masashi; Tanabe, Toru; Watanabe, Kazuhito

    2013-03-01

    The complete mitochondrial (mt) genome of the ark shell Scapharca broughtonii was determined using long PCR and a genome walking sequencing strategy with genus-specific primers. The S. broughtonii mt genome (GenBank accession number AB729113) contained 12 protein-coding genes (the atp8 gene is missing, as in most bivalves), 2 ribosomal RNA genes, and 42 transfer tRNA genes, in a length of 46,985 nucleotides for the size of mtDNA with only one copy of the heteroplasmic tandem repeat (HTR) unit. Moreover the S. broughtonii mt genome shows size variation; these genomes ranged in size from about 47 kb to about 50 kb because of variation in the number of repeat sequences in the non-coding region. The mt-genome of S. broughtonii is, to date, the longest reported metazoan mtDNA sequence. Sequence duplication in non-coding region and the formation of HTR arrays were two of the factors responsible for the ultra-large size of this mt genome. All the tRNA genes were found within the S. broughtonii mt genome, unlike the other bivalves usually lacking one or more tRNA genes. Twelve additional specimens were used to analyze the patterns of tandem repeat arrays by PCR amplification and agarose electrophoresis. Each of the 12 specimens displayed extensive heteroplasmy and had 8-10 length variants. The motifs of the HTR arrays are about 353-362 bp and the number of repeats ranges from 1 to 11. PMID:23291309

  4. Mitochondrial DNA hypervariable region-1 sequence variation and phylogeny of the concolor gibbons, Nomascus.

    PubMed

    Monda, Keri; Simmons, Rachel E; Kressirer, Philipp; Su, Bing; Woodruff, David S

    2007-11-01

    The still little known concolor gibbons are represented by 14 taxa (five species, nine subspecies) distributed parapatrically in China, Myanmar, Vietnam, Laos and Cambodia. To set the stage for a phylogeographic study of the genus we examined DNA sequences from the highly variable mitochondrial hypervariable region-1 (HVR-1 or control region) in 51 animals, mostly of unknown geographic provenance. We developed gibbon-specific primers to amplify mtDNA noninvasively and obtained >477 bp sequences from 38 gibbons in North American and European zoos and >159 bp sequences from ten Chinese museum skins. In hindsight, we believe these animals represent eight of the nine nominal subspecies and four of the five nominal species. Bayesian, maximum likelihood and maximum parsimony haplotype network analyses gave concordant results and show Nomascus to be monophyletic. Significant intraspecific variation within N. leucogenys (17 haplotypes) is comparable with that reported earlier in Hylobates lar and less than half the known interspecific pairwise distances in gibbons. Sequence data support the recognition of five species (concolor, leucogenys, nasutus, gabriellae and probably hainanus) and suggest that nasutus is the oldest and leucogenys, the youngest taxon. In contrast, the subspecies N. c. furvogaster, N. c. jingdongensis, and N. leucogenys siki, are not recognizable at this otherwise informative genetic locus. These results show that HVR-1 sequence is variable enough to define evolutionarily significant units in Nomascus and, if coupled with multilocus microsatellite or SNP genotyping, more than adequate to characterize their phylogeographic history. There is an urgent need to obtain DNA from gibbons of known geographic provenance before they are extirpated to facilitate the conservation genetic management of the surviving animals. PMID:17455231

  5. Complete mitochondrial DNA sequences of Saccostrea mordax and Saccostrea cucullata: genome organization and phylogeny analysis.

    PubMed

    Volatiana, Josie Ancella; Fang, Shasha; Kinaro, Zachary Omambia; Liu, Xiao

    2016-07-01

    Classified in the phylum mollusks, oysters are bivalves which are found in estuaries and coastal zones. Because of their plastic shell, mitochondrial DNA analysis of this species becomes an interesting field, necessary to investigate their phylogenetic and evolution of relations. In our study, two oyster species: Saccostrea mordax and Saccostrea cucullata from Indian Ocean (Madagascar) were investigated. The complete sequence of Saccostrea mordax (16 512 bp) and Saccostrea cucullata (16 396 bp) were described and determined, with their mitogenomes deposited in the GenBank with accession number KP769562 and KP967577 respectively. Both mitochondrial genome sequences contained 12 protein-coding genes, 23 tRNAs, and two rRNAs, all encoded in the same heavy strand. High levels of similarity in the gene arrangement of the two Saccostrea species were evident. The phylogenetic analysis shows a closer relationship between the two Saccostrea species and confirms the strong relationship within Saccostrea, Crassostrea and Ostrea genus in taxonomy of Ostreidae family. PMID:26226596

  6. Mitochondrial DNA Sequence and Lack of Response to Anoxia in the Annual Killifish Austrofundulus limnaeus

    PubMed Central

    Wagner, Josiah T.; Herrejon Chavez, Florisela; Podrabsky, Jason E.

    2016-01-01

    The annual killifish Austrofundulus limnaeus inhabits ephemeral ponds in regions of Venezuela, South America. Permanent populations of A. limnaeus are maintained by production of stress-tolerant embryos that are able to persist in the desiccated sediment. Previous work has demonstrated that A. limnaeus have a remarkable ability to tolerate extended periods of anoxia and desiccating conditions. After considering temperature, A. limnaeus embryos have the highest known tolerance to anoxia when compared to any other vertebrate yet studied. Oxygen is completely essential for the process of oxidative phosphorylation by mitochondria, the intracellular organelle responsible for the majority of adenosine triphosphate production. Thus, understanding the unique properties of A. limnaeus mitochondria is of great interest. In this work, we describe the first complete mitochondrial genome (mtgenome) sequence of a single adult A. limnaeus individual and compare both coding and non-coding regions to several other closely related fish mtgenomes. Mitochondrial features were predicted using MitoAnnotator and polyadenylation sites were predicted using RNAseq mapping. To estimate the responsiveness of A. limnaeus mitochondria to anoxia treatment, we measure relative mitochondrial DNA copy number and total citrate synthase activity in both relatively anoxia-tolerant and anoxia-sensitive embryonic stages. Our cross-species comparative approach identifies unique features of ND1, ND5, ND6, and ATPase-6 that may facilitate the unique phenotype of A. limnaeus embryos. Additionally, we do not find evidence for mitochondrial degradation or biogenesis during anoxia/reoxygenation treatment in A. limnaeus embryos, suggesting that anoxia-tolerant mitochondria do not respond to anoxia in a manner similar to anoxia-sensitive mitochondria.

  7. Does behavior reflect phylogeny in swiftlets (Aves: Apodidae)? A test using cytochrome b mitochondrial DNA sequences.

    PubMed Central

    Lee, P L; Clayton, D H; Griffiths, R; Page, R D

    1996-01-01

    Swiftlets are small insectivorous birds, many of which nest in caves and are known to echolocate. Due to a lack of distinguishing morphological characters, the taxonomy of swiftlets is primarily based on the presence or absence of echolocating ability, together with nest characters. To test the reliability of these behavioral characters, we constructed an independent phylogeny using cytochrome b mitochondrial DNA sequences from swiftlets and their relatives. This phylogeny is broadly consistent with the higher classification of swifts but does not support the monophyly of swiftlets. Echolocating swiftlets (Aerodramus) and the nonecholocating "giant swiftlet" (Hydrochous gigas) group together, but the remaining nonecholocating swiftlets belonging to Collocalia are not sister taxa to these swiftlets. While echolocation may be a synapomorphy of Aerodramus (perhaps secondarily lost in Hydrochous), no character of Aerodramus nests showed a statistically significant fit to the molecular phylogeny, indicating that nest characters are not phylogenetically reliable in this group. Images Fig. 1 PMID:8692950

  8. Phylogeny of the owlet-nightjars (Aves: Aegothelidae) based on mitochondrial DNA sequence

    USGS Publications Warehouse

    Dumbacher, J.P.; Pratt, T.K.; Fleischer, R.C.

    2003-01-01

    The avian family Aegothelidae (Owlet-nightjars) comprises nine extant species and one extinct species, all of which are currently classified in a single genus, Aegotheles. Owlet-nightjars are secretive nocturnal birds of the South Pacific. They are relatively poorly studied and some species are known from only a few specimens. Furthermore, their confusing morphological variation has made it difficult to cluster existing specimens unambiguously into hierarchical taxonomic units. Here we sample all extant owlet-nightjar species and all but three currently recognized subspecies. We use DNA extracted primarily from museum specimens to obtain mitochondrial gene sequences and construct a molecular phylogeny. Our phylogeny suggests that most species are reciprocally monophyletic, however A. albertisi appears paraphyletic. Our data also suggest splitting A. bennettii into two species and splitting A. insignis and A. tatei as suggested in another recent paper. ?? 2003 Elsevier Science (USA). All rights reserved.

  9. A phylogeny of cockroaches and related insects based on DNA sequence of mitochondrial ribosomal RNA genes.

    PubMed Central

    Kambhampati, S

    1995-01-01

    Cockroaches are among the most ancient winged insects, the earliest fossils dating back to about 400 million years. Several conflicting phylogenies for cockroach families, subfamilies, and genera have been proposed in the past. In addition, the relationship of Cryptocercidae to other cockroach families and the relationship between the cockroach, Cryptocercus punctulatus, and the termite, Mastotermes darwiniensis, have generated debate. In this paper, a phylogeny for cockroaches, mantids, and termites based on DNA sequence of the mitochondrial ribosomal RNA genes is presented. The results indicated that cockroaches are a monophyletic group, whose sister group is Mantoidea. The inferred relationship among cockroach families was in agreement with the presently accepted phylogeny. However, there was only partial congruence at the subfamily and the generic levels. The phylogeny inferred here does not support a close relationship between C. punctulatus and M. darwiniensis. The apparent synapomorphies of these two species are likely a manifestation of convergent evolution because there are similarities in biology and habitat. PMID:7534409

  10. Molecular phylogeny of the lemur family cheirogaleidae (primates) based on mitochondrial DNA sequences.

    PubMed

    Pastorini, J; Martin, R D; Ehresmann, P; Zimmermann, E; Forstner, M R

    2001-04-01

    Cheirogaleidae currently comprises five genera whose relationships remain contentious. The taxonomic status and phylogenetic position of both Mirza coquereli and Allocebus trichotis are still unclear. The taxonomic status of the recently discovered Microcebus ravelobensis (a sympatric sibling species of Microcebus murinus) and its phylogenetic position also require further examination. A approximately 2.4-kb mitochondrial DNA sequence including part of the COIII gene, complete ND3, ND4L, and ND4 genes, and 5 tRNAs was used to clarify relationships among cheirogaleids. Mirza and Microcebus form a clade representing the sister group of Allocebus, with a clade containing Cheirogaleus major and Cheirogaleus medius diverging first. M. ravelobensis and Microcebus rufus form a subclade within Microcebus, with M. murinus as its sister group. The molecular data support the generic status of Mirza coquereli and species-level divergence of M. ravelobensis. Furthermore, "M. rufus" may well represent more than one species. PMID:11286490

  11. De novo assembly of the carrot mitochondrial genome using next generation sequencing of whole genomic DNA provides first evidence of DNA transfer into an angiosperm plastid genome

    PubMed Central

    2012-01-01

    Background Sequence analysis of organelle genomes has revealed important aspects of plant cell evolution. The scope of this study was to develop an approach for de novo assembly of the carrot mitochondrial genome using next generation sequence data from total genomic DNA. Results Sequencing data from a carrot 454 whole genome library were used to develop a de novo assembly of the mitochondrial genome. Development of a new bioinformatic tool allowed visualizing contig connections and elucidation of the de novo assembly. Southern hybridization demonstrated recombination across two large repeats. Genome annotation allowed identification of 44 protein coding genes, three rRNA and 17 tRNA. Identification of the plastid genome sequence allowed organelle genome comparison. Mitochondrial intergenic sequence analysis allowed detection of a fragment of DNA specific to the carrot plastid genome. PCR amplification and sequence analysis across different Apiaceae species revealed consistent conservation of this fragment in the mitochondrial genomes and an insertion in Daucus plastid genomes, giving evidence of a mitochondrial to plastid transfer of DNA. Sequence similarity with a retrotransposon element suggests a possibility that a transposon-like event transferred this sequence into the plastid genome. Conclusions This study confirmed that whole genome sequencing is a practical approach for de novo assembly of higher plant mitochondrial genomes. In addition, a new aspect of intercompartmental genome interaction was reported providing the first evidence for DNA transfer into an angiosperm plastid genome. The approach used here could be used more broadly to sequence and assemble mitochondrial genomes of diverse species. This information will allow us to better understand intercompartmental interactions and cell evolution. PMID:22548759

  12. PCR-Free Enrichment of Mitochondrial DNA from Human Blood and Cell Lines for High Quality Next-Generation DNA Sequencing

    PubMed Central

    Gould, Meetha P.; Bosworth, Colleen M.; McMahon, Sarah; Grandhi, Sneha; Grimerg, Brian T.; LaFramboise, Thomas

    2015-01-01

    Recent advances in sequencing technology allow for accurate detection of mitochondrial sequence variants, even those in low abundance at heteroplasmic sites. Considerable sequencing cost savings can be achieved by enriching samples for mitochondrial (relative to nuclear) DNA. Reduction in nuclear DNA (nDNA) content can also help to avoid false positive variants resulting from nuclear mitochondrial sequences (numts). We isolate intact mitochondrial organelles from both human cell lines and blood components using two separate methods: a magnetic bead binding protocol and differential centrifugation. DNA is extracted and further enriched for mitochondrial DNA (mtDNA) by an enzyme digest. Only 1 ng of the purified DNA is necessary for library preparation and next generation sequence (NGS) analysis. Enrichment methods are assessed and compared using mtDNA (versus nDNA) content as a metric, measured by using real-time quantitative PCR and NGS read analysis. Among the various strategies examined, the optimal is differential centrifugation isolation followed by exonuclease digest. This strategy yields >35% mtDNA reads in blood and cell lines, which corresponds to hundreds-fold enrichment over baseline. The strategy also avoids false variant calls that, as we show, can be induced by the long-range PCR approaches that are the current standard in enrichment procedures. This optimization procedure allows mtDNA enrichment for efficient and accurate massively parallel sequencing, enabling NGS from samples with small amounts of starting material. This will decrease costs by increasing the number of samples that may be multiplexed, ultimately facilitating efforts to better understand mitochondria-related diseases. PMID:26488301

  13. Determination of the melon chloroplast and mitochondrial genome sequences reveals that the largest reported mitochondrial genome in plants contains a significant amount of DNA having a nuclear origin

    PubMed Central

    2011-01-01

    Background The melon belongs to the Cucurbitaceae family, whose economic importance among vegetable crops is second only to Solanaceae. The melon has a small genome size (454 Mb), which makes it suitable for molecular and genetic studies. Despite similar nuclear and chloroplast genome sizes, cucurbits show great variation when their mitochondrial genomes are compared. The melon possesses the largest plant mitochondrial genome, as much as eight times larger than that of other cucurbits. Results The nucleotide sequences of the melon chloroplast and mitochondrial genomes were determined. The chloroplast genome (156,017 bp) included 132 genes, with 98 single-copy genes dispersed between the small (SSC) and large (LSC) single-copy regions and 17 duplicated genes in the inverted repeat regions (IRa and IRb). A comparison of the cucumber and melon chloroplast genomes showed differences in only approximately 5% of nucleotides, mainly due to short indels and SNPs. Additionally, 2.74 Mb of mitochondrial sequence, accounting for 95% of the estimated mitochondrial genome size, were assembled into five scaffolds and four additional unscaffolded contigs. An 84% of the mitochondrial genome is contained in a single scaffold. The gene-coding region accounted for 1.7% (45,926 bp) of the total sequence, including 51 protein-coding genes, 4 conserved ORFs, 3 rRNA genes and 24 tRNA genes. Despite the differences observed in the mitochondrial genome sizes of cucurbit species, Citrullus lanatus (379 kb), Cucurbita pepo (983 kb) and Cucumis melo (2,740 kb) share 120 kb of sequence, including the predicted protein-coding regions. Nevertheless, melon contained a high number of repetitive sequences and a high content of DNA of nuclear origin, which represented 42% and 47% of the total sequence, respectively. Conclusions Whereas the size and gene organisation of chloroplast genomes are similar among the cucurbit species, mitochondrial genomes show a wide variety of sizes, with a non

  14. Genetic structure of Florida green turtle rookeries as indicated by mitochondrial DNA control region sequences

    USGS Publications Warehouse

    Shamblin, Brian M.; Bagley, Dean A.; Ehrhart, Llewellyn M.; Desjardin, Nicole A.; Martin, R. Erik; Hart, Kristen M.; Naro-Maciel, Eugenia; Rusenko, Kirt; Stiner, John C.; Sobel, Debra; Johnson, Chris; Wilmers, Thomas; Wright, Laura J.; Nairn, Campbell J.

    2014-01-01

    Green turtle (Chelonia mydas) nesting has increased dramatically in Florida over the past two decades, ranking the Florida nesting aggregation among the largest in the Greater Caribbean region. Individual beaches that comprise several hundred kilometers of Florida’s east coast and Keys support tens to thousands of nests annually. These beaches encompass natural to highly developed habitats, and the degree of demographic partitioning among rookeries was previously unresolved. We characterized the genetic structure of ten Florida rookeries from Cape Canaveral to the Dry Tortugas through analysis of 817 base pair mitochondrial DNA (mtDNA) control region sequences from 485 nesting turtles. Two common haplotypes, CM-A1.1 and CM-A3.1, accounted for 87 % of samples, and the haplotype frequencies were strongly partitioned by latitude along Florida’s Atlantic coast. Most genetic structure occurred between rookeries on either side of an apparent genetic break in the vicinity of the St. Lucie Inlet that separates Hutchinson Island and Jupiter Island, representing the finest scale at which mtDNA structure has been documented in marine turtle rookeries. Florida and Caribbean scale analyses of population structure support recognition of at least two management units: central eastern Florida and southern Florida. More thorough sampling and deeper sequencing are necessary to better characterize connectivity among Florida green turtle rookeries as well as between the Florida nesting aggregation and others in the Greater Caribbean region.

  15. Ancient DNA analyses reveal high mitochondrial DNA sequence diversity and parallel morphological evolution of late pleistocene cave bears.

    PubMed

    Hofreiter, Michael; Capelli, Cristian; Krings, Matthias; Waits, Lisette; Conard, Nicholas; Münzel, Susanne; Rabeder, Gernot; Nagel, Doris; Paunovic, Maja; Jambrĕsić, Gordana; Meyer, Sonja; Weiss, Gunter; Pääbo, Svante

    2002-08-01

    Cave bears (Ursus spelaeus) existed in Europe and western Asia until the end of the last glaciation some 10,000 years ago. To investigate the genetic diversity, population history, and relationship among different cave bear populations, we have determined mitochondrial DNA sequences from 12 cave bears that range in age from about 26,500 to at least 49,000 years and originate from nine caves. The samples include one individual from the type specimen population, as well as two small-sized high-Alpine bears. The results show that about 49,000 years ago, the mtDNA diversity among cave bears was about 1.8-fold lower than the current species-wide diversity of brown bears (Ursus arctos). However, the current brown bear mtDNA gene pool consists of three clades, and cave bear mtDNA diversity is similar to the diversity observed within each of these clades. The results also show that geographically separated populations of the high-Alpine cave bear form were polyphyletic with respect to their mtDNA. This suggests that small size may have been an ancestral trait in cave bears and that large size evolved at least twice independently. PMID:12140236

  16. Assessing Mitochondrial DNA Variation and Copy Number in Lymphocytes of ~2,000 Sardinians Using Tailored Sequencing Analysis Tools.

    PubMed

    Ding, Jun; Sidore, Carlo; Butler, Thomas J; Wing, Mary Kate; Qian, Yong; Meirelles, Osorio; Busonero, Fabio; Tsoi, Lam C; Maschio, Andrea; Angius, Andrea; Kang, Hyun Min; Nagaraja, Ramaiah; Cucca, Francesco; Abecasis, Gonçalo R; Schlessinger, David

    2015-07-01

    DNA sequencing identifies common and rare genetic variants for association studies, but studies typically focus on variants in nuclear DNA and ignore the mitochondrial genome. In fact, analyzing variants in mitochondrial DNA (mtDNA) sequences presents special problems, which we resolve here with a general solution for the analysis of mtDNA in next-generation sequencing studies. The new program package comprises 1) an algorithm designed to identify mtDNA variants (i.e., homoplasmies and heteroplasmies), incorporating sequencing error rates at each base in a likelihood calculation and allowing allele fractions at a variant site to differ across individuals; and 2) an estimation of mtDNA copy number in a cell directly from whole-genome sequencing data. We also apply the methods to DNA sequence from lymphocytes of ~2,000 SardiNIA Project participants. As expected, mothers and offspring share all homoplasmies but a lesser proportion of heteroplasmies. Both homoplasmies and heteroplasmies show 5-fold higher transition/transversion ratios than variants in nuclear DNA. Also, heteroplasmy increases with age, though on average only ~1 heteroplasmy reaches the 4% level between ages 20 and 90. In addition, we find that mtDNA copy number averages ~110 copies/lymphocyte and is ~54% heritable, implying substantial genetic regulation of the level of mtDNA. Copy numbers also decrease modestly but significantly with age, and females on average have significantly more copies than males. The mtDNA copy numbers are significantly associated with waist circumference (p-value = 0.0031) and waist-hip ratio (p-value = 2.4×10-5), but not with body mass index, indicating an association with central fat distribution. To our knowledge, this is the largest population analysis to date of mtDNA dynamics, revealing the age-imposed increase in heteroplasmy, the relatively high heritability of copy number, and the association of copy number with metabolic traits. PMID:26172475

  17. Update of AMmtDB: a database of multi-aligned metazoa mitochondrial DNA sequences.

    PubMed

    Lanave, C; Attimonelli, M; De Robertis, M; Licciulli, F; Liuni, S; Sbisá, E; Saccone, C

    1999-01-01

    The present paper describes AMmtDB, a database collecting the multi-aligned sequences of vertebrate mitochondrial genes coding for proteins and tRNAs, as well as the multiple alignment of the mammalian mtDNA main regulatory region (D-loop) sequences. The genes coding for proteins are multi-aligned based on the translated sequences and both the nucleotide and amino acid multi-alignments are provided. As far as the genes coding for tRNAs are concerned, the multi-alignments based on the primary and the secondary structures are both provided; for the mammalian D-loop multi-alignments we report the conserved regions of the entire D-loop (CSB1, CSB2, CSB3, the central region, ETAS1 and ETAS2) as defined by Sbisà et al. [ Gene (1997), 205, 125-140). A flatfile format for AMmtDB has been designed allowing its implementation in SRS (http://bio-www.ba.cnr.it:8000/BioWWW/#AMMTDB ). Data selected through SRS can be managed using GeneDoc or other programs for the management of multi-aligned data depending on the user's operative system. The multiple alignments have been produced with CLUSTALV and PILEUP programs and then carefully optimized manually. PMID:9847158

  18. Lack of geographic structure in mitochondrial DNA sequences of Bering Sea walleye pollock, Theragra chalcogramma.

    PubMed

    Shields, G F; Gust, J R

    1995-03-01

    We compared 511 nucleotides of mitochondrial DNA from 162 walleye pollock from 32 locations in the Bering Sea, the Shelikof Strait, and the Gulf of Alaska to learn about population structuring in this economically important species. Specifically, we tested for evidence of genetic heterogeneity among three sequence data sets: a 76-bp spacer, the control region, and spacers and control regions combined among six geographic regions: southwest Bering Sea, northern Bering Sea, western Aleutians, eastern Aleutians, the Donut Hole, and the Gulf of Alaska. No significant genetic heterogeneity was detected among spacer sequences or control regions, or spacers and control regions combined among areas of the Bering Sea. Slight genetic heterogeneity was detected when a "Western Bering" sample (southwest Bering and northern Bering) and an "Eastern Bering" sample (western Aleutians and eastern Aleutians) were compared. Presence of an abundant and widespread haplotype suggests recent establishment of the walleye pollock population in the Bering Sea. However, the ratio of nucleotide transitions to transversions in these pollock is extremely low, suggesting that the population may be old. Presence of a widespread and abundant haplotype, together with numerous rare ones, suggests a high variance in reproductive success for relatively few females, which may be disproportionately contributing to the survival of individual haplotypes. Sequencing of control regions in pollock may be less informative than conventional analysis of restriction fragment length polymorphisms or RFLP analysis of amplified variable sites. PMID:7749468

  19. Molecular phylogeny of the lionfish genera Dendrochirus and Pterois (Scorpaenidae, Pteroinae) based on mitochondrial DNA sequences.

    PubMed

    Kochzius, Marc; Söller, Rainer; Khalaf, Maroof A; Blohm, Dietmar

    2003-09-01

    This study investigates the molecular phylogeny of seven lionfishes of the genera Dendrochirus and Pterois. MP, ML, and NJ phylogenetic analysis based on 964 bp of partial mitochondrial DNA sequences (cytochrome b and 16S rDNA) revealed two main clades: (1) "Pterois" clade (Pterois miles and Pterois volitans), and (2) "Pteropterus-Dendrochirus" clade (remainder of the sampled species). The position of Dendrochirus brachypterus either basal to the main clades or in the "Pteropterus-Dendrochirus" clade cannot be resolved. However, the molecular phylogeny did not support the current separation of the genera Pterois and Dendrochirus. The siblings P. miles and P. volitans are clearly separated and our results support the proposed allopatric or parapatric distribution in the Indian and Pacific Ocean. However, the present analysis cannot reveal if P. miles and P. volitans are separate species or two populations of a single species, because the observed separation in different clades can be either explained by speciation or lineage sorting. Molecular clock estimates for the siblings P. miles and P. volitans suggest a divergence time of 2.4-8.3 mya, which coincide with geological events that created vicariance between populations of the Indian and Pacific Ocean. PMID:12927126

  20. Relationships and origin of endemic Lake Baikal gastropods (Caenogastropoda: Rissooidea) based on mitochondrial DNA sequences.

    PubMed

    Hausdorf, Bernhard; Röpstorf, Peter; Riedel, Frank

    2003-03-01

    The phylogenetic relationships and the origin of two groups of rissooid freshwater snails endemic to Lake Baikal were investigated using partial mitochondrial COI, 12S rDNA, and 16S rDNA sequences. The Baikalian Benedictiinae proved to be closely related to the Lithoglyphinae. According to a molecular clock estimate the two groups diverged in the Paleogene. The Benedictiinae might have evolved autochthonously in precursors of Lake Baikal. The Baikalian Baicaliidae are probably most closely related to the Amnicolidae and the Bithyniidae. These groups diverged at the latest during the Cretaceous. Thus the origin of the Baicaliidae predates the origin of the Baikal rift zone. The Baicaliidae evolved probably in other Central Asian freshwater reservoirs. However, the radiation of the extant Baicaliidae only started in the Neogene and might have occurred autochthonously in Lake Baikal. The conchological similarity of the Baicaliidae and the Pyrgulidae is due to convergence. The Pyrgulidae diverged from the common stem lineage of the other hydrobiid families at the latest in the Jurassic. The Bithyniidae is derived from hydrobiids and is related to the Amnicolidae. PMID:12644402

  1. Complete DNA sequence of the mitochondrial genome of the treehopper Leptobelus gazella (Membracoidea: Hemiptera).

    PubMed

    Zhao, Xing; Liang, Ai-Ping

    2016-09-01

    The first complete DNA sequence of the mitochondrial genome (mitogenome) of Leptobelus gazelle (Membracoidea: Hemiptera) is determined in this study. The circular molecule is 16,007 bp in its full length, which encodes a set of 37 genes, including 13 proteins, 2 ribosomal RNAs, 22 transfer RNAs, and contains an A + T-rich region (CR). The gene numbers, content, and organization of L. gazelle are similar to other typical metazoan mitogenomes. Twelve of the 13 PCGs are initiated with ATR methionine or ATT isoleucine codons, except the atp8 gene that uses the ATC isoleucine as start signal. Ten of the 13 PCGs have complete termination codons, either TAA (nine genes) or TAG (cytb). The remaining 3 PCGs (cox1, cox2 and nad5) have incomplete termination codons T (AA). All of the 22 tRNAs can be folded in the form of a typical clover-leaf structure. The complete mitogenome sequence data of L. gazelle is useful for the phylogenetic and biogeographic studies of the Membracoidea and Hemiptera. PMID:25714149

  2. Molecular phylogenetic and dating analyses using mitochondrial DNA sequences of eyelid geckos (Squamata: Eublepharidae).

    PubMed

    Jonniaux, Pierre; Kumazawa, Yoshinori

    2008-01-15

    Mitochondrial DNA sequences of approximately 2.3 kbp including the complete NADH dehydrogenase subunit 2 gene and its flanking genes, as well as parts of 12S and 16S rRNA genes were determined from major species of the eyelid gecko family Eublepharidae sensu [Kluge, A.G. 1987. Cladistic relationships in the Gekkonoidea (Squamata, Sauria). Misc. Publ. Mus. Zool. Univ. Michigan 173, 1-54.]. In contrast to previous morphological studies, phylogenetic analyses based on these sequences supported that Eublepharidae and Gekkonidae form a sister group with Pygopodidae, raising the possibility of homoplasious character change in some key features of geckos, such as reduction of movable eyelids and innovation of climbing toe pads. The phylogenetic analyses also provided a well-resolved tree for relationships between the eublepharid species. The Bayesian estimation of divergence times without assuming the molecular clock suggested the Jurassic divergence of Eublepharidae from Gekkonidae and radiations of most eublepharid genera around the Cretaceous. These dating results appeared to be robust against some conditional changes for time estimation, such as gene regions used, taxon representation, and data partitioning. Taken together with geological evidence, these results support the vicariant divergence of Eublepharidae and Gekkonidae by the breakup of Pangea into Laurasia and Gondwanaland, and recent dispersal of two African eublepharid genera from Eurasia to Africa after these landmasses were connected in the Early Miocene. PMID:18029117

  3. The complete mitochondrial DNA sequences of Nephroselmis olivacea and Pedinomonas minor. Two radically different evolutionary patterns within green algae.

    PubMed Central

    Turmel, M; Lemieux, C; Burger, G; Lang, B F; Otis, C; Plante, I; Gray, M W

    1999-01-01

    Green plants appear to comprise two sister lineages, Chlorophyta (classes Chlorophyceae, Ulvophyceae, Trebouxiophyceae, and Prasinophyceae) and Streptophyta (Charophyceae and Embryophyta, or land plants). To gain insight into the nature of the ancestral green plant mitochondrial genome, we have sequenced the mitochondrial DNAs (mtDNAs) of Nephroselmis olivacea and Pedinomonas minor. These two green algae are presumptive members of the Prasinophyceae. This class is thought to include descendants of the earliest diverging green algae. We find that Nephroselmis and Pedinomonas mtDNAs differ markedly in size, gene content, and gene organization. Of the green algal mtDNAs sequenced so far, that of Nephroselmis (45,223 bp) is the most ancestral (minimally diverged) and occupies the phylogenetically most basal position within the Chlorophyta. Its repertoire of 69 genes closely resembles that in the mtDNA of Prototheca wickerhamii, a later diverging trebouxiophycean green alga. Three of the Nephroselmis genes (nad10, rpl14, and rnpB) have not been identified in previously sequenced mtDNAs of green algae and land plants. In contrast, the 25,137-bp Pedinomonas mtDNA contains only 22 genes and retains few recognizably ancestral features. In several respects, including gene content and rate of sequence divergence, Pedinomonas mtDNA resembles the reduced mtDNAs of chlamydomonad algae, with which it is robustly affiliated in phylogenetic analyses. Our results confirm the existence of two radically different patterns of mitochondrial genome evolution within the green algae. PMID:10488238

  4. Nucleotide sequence analysis of the hypervariable region III of mitochondrial DNA in Thais.

    PubMed

    Thongngam, Punlop; Leewattanapasuk, Worraanong; Bhoopat, Tanin; Sangthong, Padchanee

    2016-07-01

    This study analyzed the nucleotide sequences of the hypervariable region III (HVRIII) of mitochondrial DNA in Thai individuals. Buccal swab samples were randomly obtained from 100 healthy, unrelated, adult (18-60 years old), volunteer donors living in Thailand. Eighteen different haplotypes were found, of which 11 haplotypes were unique. The most frequent haplotypes observed were 522D-523D. Nucleotide transition from Thymine (T) to Cytosine (C) at position 489 (43%) was the most frequent substitution. Nucleotide transversions were also observed at position 433 (Adenine (A) to C, 1%) and position 499 (Guanine (G) to C, 1%). Fifty-three samples presented nucleotide insertion and deletion of C and A (CA) at position 514-523. Insertion of 1AC (3%) and 2AC (2%) were observed. Deletion of 1CA (53%) and 2CA (2%) at position 514-523 were revealed. The deletion of T at position 459 was observed. The haplotype diversity, random match probability, and discrimination power were calculated to be 0.7770, 0.2308, and 0.7692, respectively. PMID:27107562

  5. A new hypothesis of squamate evolutionary relationships from nuclear and mitochondrial DNA sequence data

    SciTech Connect

    Townsend, Ted M.; Larson, Allan; Louis, Edward; Macey, J. Robert

    2004-05-19

    Squamate reptiles serve as model systems for evolutionary studies of a variety of morphological and behavioral traits, and phylogeny is crucial to many generalizations derived from such studies. Specifically, the traditional dichotomy between Iguania and Scleroglossa has been correlated with major evolutionary shifts within Squamata. We present a molecular phylogenetic study of squamates using DNA sequence data from the nuclear genes RAG-1 and c-mos and the mitochondrial ND2 region, sampling all major clades and most major subclades. Monophyly of Iguania, Anguimorpha, and almost all currently recognized squamate families is strongly supported. However, monophyly is rejected for Scleroglossa, Varanoidea, and several other higher taxa, and Iguania is highly nested within Squamata. Limblessness evolved independently in snakes, dibamids, and amphisbaenians, suggesting widespread morphological convergence or parallelism in limbless, burrowing forms. Amphisbaenians are the sister group of lacertids, and snakes are grouped with iguanians and anguimorphs. Dibamids diverged early in squamate evolutionary history. Xantusiidae is the sister taxon of Cordylidae. Studies of functional tongue morphology and feeding mode have found significant differences between Scleroglossa and Iguania, and our finding of a nonmonophyletic Scleroglossa and a highly nested Iguania suggest that similar states evolved separately in Sphenodon and Iguania, and that jaw prehension is the ancestral feeding mode in squamates.

  6. Relationships among brown lemurs (Eulemur fulvus) based on mitochondrial DNA sequences.

    PubMed

    Pastorini, J; Forstner, M R; Martin, R D

    2000-09-01

    The brown lemurs (Eulemur fulvus) include seven subspecies, whose evolutionary relationships remain contentious. In particular, it is unclear whether the Malagasy and Comorian E. f. fulvus populations are differentiated at the subspecific level (E. f. mayottensis). Furthermore, it has been suggested that E. f. collaris and E. f. albocollaris are separate species. Analyses of approximately 2400 bp of mitochondrial DNA sequence data from part of the COIII gene, together with complete genes for ND3, ND4L, and ND4 and 5 tRNAs, resolved 34 E. fulvus specimens into six clades: ((albocollaris, collaris) (rufus (rufus (fulvus/mayottensis (albifrons/fulvus/sanfordi))))). Based on the information available and our analyses we conclude that E. f. albocollaris and E. f. collaris do not represent species distinct from E. fulvus and that Comorian brown lemurs do not deserve subspecific rank. No genetic differentiation was detected between E. f. albifrons and E. f. sanfordi; on the other hand, there are obviously two separate lineages of E. f. rufus. PMID:10991794

  7. Repetitive transpositions of mitochondrial DNA sequences to the nucleus during the radiation of horseshoe bats (Rhinolophus, Chiroptera).

    PubMed

    Shi, Huizhen; Dong, Ji; Irwin, David M; Zhang, Shuyi; Mao, Xiuguang

    2016-05-01

    Transposition of mitochondrial DNA into the nucleus, which gives rise to nuclear mitochondrial DNAs (NUMTs), has been well documented in eukaryotes. However, very few studies have assessed the frequency of these transpositions during the evolutionary history of a specific taxonomic group. Here we used the horseshoe bats (Rhinolophus) as a case study to determine the frequency and relative timing of nuclear transfers of mitochondrial control region sequences. For this, phylogenetic and coalescent analyzes were performed on NUMTs and authentic mtDNA sequences generated from eight horseshoe bat species. Our results suggest at least three independent transpositions, including two ancient and one more recent, during the evolutionary history of Rhinolophus. The two ancient transpositions are represented by the NUMT-1 and -2 clades, with each clade consisting of NUMTs from almost all studied species but originating from different portions of the mtDNA genome. Furthermore, estimates of the most recent common ancestor for each clade corresponded to the time of the initial diversification of this genus. The recent transposition is represented by NUMT-3, which was discovered only in a specific subgroup of Rhinolophus and exhibited a close relationship to its mitochondrial counterpart. Our similarity searches of mtDNA in the R. ferrumequinum genome confirmed the presence of NUMT-1 and NUMT-2 clade sequences and, for the first time, assessed the extent of NUMTs in a bat genome. To our knowledge, this is the first study to report on the frequency of transpositions of mtDNA occurring before the common ancestry of a genus. PMID:26809101

  8. Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences.

    PubMed

    Miya, Masaki; Takeshima, Hirohiko; Endo, Hiromitsu; Ishiguro, Naoya B; Inoue, Jun G; Mukai, Takahiko; Satoh, Takashi P; Yamaguchi, Motoomi; Kawaguchi, Akira; Mabuchi, Kohji; Shirai, Shigeru M; Nishida, Mutsumi

    2003-01-01

    A recent preliminary study using complete mitochondrial DNA sequences from 48 species of teleosts has suggested that higher teleostean phylogenies should be reinvestigated on the basis of more intensive taxonomic sampling. As a second step towards the resolution of higher teleostean phylogenies, which have been described as the "(unresolved) bush at the top of the tree," we reanalyzed their relationships using mitogenomic data from 100 purposefully chosen species that fully represented all of the higher teleostean orders, except for the Batrachoidiformes. Unweighted and weighted maximum parsimony analyses were conducted with the data set that comprised concatenated nucleotide sequences from 12 protein-coding genes (excluding 3rd codon positions) and 21 transfer RNA (tRNA) genes (stem regions only) from each species. The resultant trees were well resolved and largely congruent, with most internal branches being supported by high statistical values. All major, comprehensive groups above ordinal level as currently defined in higher teleosts (with the exception of the Neoteleostei and several monotypic groups), such as the Eurypterygii, Ctenosquamata, Acanthomorpha, Paracanthopterygii, Acanthopterygii, and Percomorpha, appeared to be nonmonophyletic in the present tree. Such incongruities largely resulted from differences in the placement and/or limits of the orders Ateleopodiformes, Lampridiformes, Polymixiiformes, Ophidiiformes, Lophiiformes, Beryciformes, Stephanoberyciformes, and Zeiformes, long-standing problematic taxa in systematic ichthyology. Of these, the resulting phylogenetic positions of the Ophidiiformes and Lophiiformes were totally unexpected, because, although they have consistently been considered relatively primitive groups within higher teleosts (Paracanthopterygii), they were confidently placed within a crown group of teleosts, herein called the Percomorpha. It should be noted that many unexpected, but highly supported relationships were found

  9. Sequence analysis of the mitochondrial DNA control region of ciscoes (genus Coregonus): Taxonomic implications for the Great Lakes species flock

    USGS Publications Warehouse

    Reed, Kent M.; Dorschner, Michael O.; Todd, Thomas N.; Phillips, Ruth B.

    1998-01-01

    Sequence variation in the control region (D-loop) of the mitochondrial DNA (mtDNA) was examined to assess the genetic distinctiveness of the shortjaw cisco (Coregonus zenithicus). Individuals from within the Great Lakes Basin as well as inland lakes outside the basin were sampled. DNA fragments containing the entire D-loop were amplified by PCR from specimens ofC. zenithicus and the related species C. artedi, C. hoyi, C. kiyi, and C. clupeaformis. DNA sequence analysis revealed high similarity within and among species and shared polymorphism for length variants. Based on this analysis, the shortjaw cisco is not genetically distinct from other cisco species.

  10. Complete Sequences of the Mitochondrial DNA of the Wild Gracilariopsis lemaneiformis and Two Mutagenic Cultivated Breeds (Gracilariaceae, Rhodophyta)

    PubMed Central

    Zhang, Lei; Wang, Xumin; Qian, Hao; Chi, Shan; Liu, Cui; Liu, Tao

    2012-01-01

    The complete mitochondrial DNA (mtDNA) of Gracilariopsis lemaneiformis was sequenced (25883 bp) and mapped to a circular model. The A+T composition was 72.5%. Forty six genes and two potentially functional open reading frames were identified. They include 24 protein-coding genes, 2 rRNA genes, 20 tRNA genes and 2 ORFs (orf60, orf142). There is considerable sequence synteny across the five red algal mtDNAs falling into Florideophyceae including Gr. lemaneiformis in this study and previously sequenced species. A long stem-loop and a hairpin structure were identified in intergenic regions of mt genome of Gr. lemaneiformis, which are believed to be involved with transcription and replication. In addition, the mtDNAs of two mutagenic cultivated breeds (“981” and “07-2”) were also sequenced. Compared with the mtDNA of wild Gr. lemaneiformis, the genome size and gene length and order of three strains were completely identical except nine base mutations including eight in the protein-coding genes and one in the tRNA gene. None of the base mutations caused frameshift or a premature stop codon in the mtDNA genes. Phylogenetic analyses based on mitochondrial protein-coding genes and rRNA genes demonstrated Gracilariopsis andersonii had closer phylogenetic relationship with its parasite Gracilariophila oryzoides than Gracilariopsis lemaneiformis which was from the same genus of Gracilariopsis. PMID:22768261

  11. Dna Sequencing

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1995-04-25

    A method for sequencing a strand of DNA, including the steps off: providing the strand of DNA; annealing the strand with a primer able to hybridize to the strand to give an annealed mixture; incubating the mixture with four deoxyribonucleoside triphosphates, a DNA polymerase, and at least three deoxyribonucleoside triphosphates in different amounts, under conditions in favoring primer extension to form nucleic acid fragments complementory to the DNA to be sequenced; labelling the nucleic and fragments; separating them and determining the position of the deoxyribonucleoside triphosphates by differences in the intensity of the labels, thereby to determine the DNA sequence.

  12. Multiple independent transpositions of mitochondrial DNA control region sequences to the nucleus.

    PubMed

    Sorenson, M D; Fleischer, R C

    1996-12-24

    Transpositions of mtDNA sequences to the nuclear genome have been documented in a wide variety of individual taxa, but little is known about their taxonomic frequency or patterns of variation. We provide evidence of nuclear sequences homologous to the mtDNA control region in seven species of diving ducks (tribe Aythyini). Phylogenetic analysis places each nuclear sequence as a close relative of the mtDNA haplotypes of the specie(s) in which it occurs, indicating that they derive from six independent transposition events, all occurring within the last approximately 1.5 million years. Relative-rate tests and comparison of intraspecific variation in nuclear and mtDNA sequences confirm the expectation of a greatly reduced rate of evolution in the nuclear copies. By representing mtDNA haplotypes from ancestral populations, nuclear insertions may be valuable in some phylogenetic analyses, but they also confound the accurate determination of mtDNA sequences. In particular, our data suggest that the presumably nonfunctional but more slowly evolving nuclear sequences often will not be identifiable by changes incompatible with function and may be preferentially amplified by PCR primers based on mtDNA sequences from related taxa. PMID:8986794

  13. Pseudanoplocephala crawfordi is a member of genus Hymenolepis based on phylogenetic analysis using ribosomal and mitochondrial DNA sequences.

    PubMed

    Jia, Yan-Qing; Yan, Wen-Chao; Du, Shuai-Zhi; Song, Jun-Ke; Zhao, Wen; Zhao, Yu-Xin; Cheng, Wen-Yu; Zhao, Guang-Hui

    2016-05-01

    Pseudanoplocephala crawfordi is one of the important zoonotic cestodes causing economic significance and public health concern. In the present study, the phylogenetic position of P. crawfordi isolated from pigs was re-inferred using molecular markers of internal transcribed spacer ribosomal DNA (ITS rDNA) and partial NADH dehydrogenase subunit 1 (pnad1) mitochondrial DNA. The lengths of ITS1, ITS2 rDNA and pnad1 were 757 bp, 628 bp and 458 bp, respectively. Sequence differences in the ITS1, ITS2 rDNA and pnad1 between P. crawfordi and Hymenolepis species were smaller than that between cestodes within genus Hymenolepis. Phylogenetic analyses based on three gene fragments showed that P. crawfordi was grouped into cluster of Hymenolepis species. These results suggested that P. crawfordi would be one member of genus Hymenolepis but not in a new genus Pseudanoplocephala. PMID:25211088

  14. Ovine mitochondrial DNA sequence variation and its association with production and reproduction traits within an Afec-Assaf flock.

    PubMed

    Reicher, S; Seroussi, E; Weller, J I; Rosov, A; Gootwine, E

    2012-07-01

    Polymorphisms in mitochondrial DNA (mtDNA) protein- and tRNA-coding genes were shown to be associated with various diseases in humans as well as with production and reproduction traits in livestock. Alignment of full length mitochondria sequences from the 5 known ovine haplogroups: HA (n = 3), HB (n = 5), HC (n = 3), HD (n = 2), and HE (n = 2; GenBank accession nos. HE577847-50 and 11 published complete ovine mitochondria sequences) revealed sequence variation in 10 out of the 13 protein coding mtDNA sequences. Twenty-six of the 245 variable sites found in the protein coding sequences represent non-synonymous mutations. Sequence variation was observed also in 8 out of the 22 tRNA mtDNA sequences. On the basis of the mtDNA control region and cytochrome b partial sequences along with information on maternal lineages within an Afec-Assaf flock, 1,126 Afec-Assaf ewes were assigned to mitochondrial haplogroups HA, HB, and HC, with frequencies of 0.43, 0.43, and 0.14, respectively. Analysis of birth weight and growth rate records of lamb (n = 1286) and productivity from 4,993 lambing records revealed no association between mitochondrial haplogroup affiliation and female longevity, lambs perinatal survival rate, birth weight, and daily growth rate of lambs up to 150 d that averaged 1,664 d, 88.3%, 4.5 kg, and 320 g/d, respectively. However, significant (P < 0.0001) differences among the haplogroups were found for prolificacy of ewes, with prolificacies (mean ± SE) of 2.14 ± 0.04, 2.25 ± 0.04, and 2.30 ± 0.06 lamb born/ewe lambing for the HA, HB, and the HC haplogroups, respectively. Our results highlight the ovine mitogenome genetic variation in protein- and tRNA coding genes and suggest that sequence variation in ovine mtDNA is associated with variation in ewe prolificacy. PMID:22266988

  15. Sequence variation in three mitochondrial DNA genes among isolates of Ascaridia galli originating from Guangdong, Hunan and Yunnan provinces, China.

    PubMed

    Li, J Y; Liu, G H; Wang, Y; Song, H Q; Lin, R Q; Zou, F C; Liu, W; Xu, M J; Zhu, X Q

    2013-09-01

    The present study examined sequence variation in three mitochondrial DNA (mtDNA) genes, namely cytochrome c oxidase subunit 3 (cox3) and NADH dehydrogenase subunits 1 and 4 (nad1 and nad4), among Ascaridia galli isolates from different geographical localities in China. A portion of cox3 (pcox3), nad1 (pnad1) and nad4 (pnad4) genes were amplified by polymerase chain reaction (PCR) separately from adult A. galli individuals and the amplicons were subjected to sequencing from both directions. The length of the sequences of pcox3, pnad1 and pnad4 were 408 bp, 471 bp and 333 bp, respectively. The intraspecific sequence variations within A. galli were 0-1.7% for pcox3, 0-2.8% for pnad1 and 0-3.4% for pnad4. The A+T contents of the sequences were 67.16-67.65% (pcox3), 67.09-67.94% (pnad1) and 69.91-71.77% (pnad4). The interspecific sequence differences among members of the Ascaridida were significantly higher, being 13.2-30.9%, 12.8-29.0% and 15.1-34.1% for pcox3, pnad1 and pnad4, respectively. Phylogenetic analyses using combined sequences of pcox3, pnad1 and pnad4, with three different computational algorithms (Bayesian analysis, maximum likelihood and maximum parsimony), all revealed distinct groups with high statistical support. These findings demonstrated the existence of intraspecific variation in mitochondrial DNA (mtDNA) sequences among A. galli isolates from different geographical regions in China, and have implications for studying molecular epidemiology and population genetics of A. galli. PMID:23046568

  16. Irritable Bowel Syndrome may be associated with maternal inheritance and mitochondrial DNA control region sequence variants

    PubMed Central

    van Tilburg, Miranda A.L.; Zaki, Essam A.; Venkatesan, Thangam; Boles, Richard G.

    2014-01-01

    Background & Aims Mitochondrial dysfunction has been implicated in various functional disorders that are co-morbid to Irritable Bowel Syndrome (IBS) such as migraine, depression and chronic fatigue syndrome. The aim of the current case-control pilot study was to determine if functional symptoms in IBS show a maternal inheritance bias, and if the degree of this maternal inheritance is related to mitochondrial DNA (mtDNA) polymorphisms. Methods Pedigrees were obtained from N=308 adult IBS patients, N=102 healthy controls, and N=36 controls with Inflammatory Bowel Disease (IBD), all from Caucasian heritage, to determine probable maternal inheritance. Two mtDNA polymorphisms (16519T and 3010A), which have previously been implicated in other functional disorders, were assayed in mtDNA haplogroup H IBS subjects and compared to genetic data from N=344 published haplogroup H controls. Results Probable Maternal Inheritance was found in 17.5% IBS, 2% healthy controls and 0% IBD controls (p < 0.0001). No difference was found between IBS and control for 3010A, and a trend was found for 16519T (p=.05). IBS with maternal inheritance were significantly more likely to have the 16519T than controls (OR=5.8; 95%CI=1.5–23.1) or IBS without maternal inheritance (OR=5.2; 95%CI=1.2–22.6). Conclusions This small pilot study shows that a significant minority (1/6) of IBS patients have pedigrees suggestive of maternal inheritance. The mtDNA polymorphism 16519T, which has been previously implicated in other functional disorders, is also associated with IBS patients who display maternal inheritance. These findings suggest that mtDNA-related mitochondrial dysfunction may constitute a sub-group within IBS. Future replication studies in larger samples are needed. PMID:24500451

  17. [Mitochondrial DNA sequence variation, demographic history, and population structure of Amur sturgeon Acipenser schrenckii Brandt, 1869].

    PubMed

    Shedko, S V; Miroshnichenko, I L; Nemkova, G A; Koshelev, V N; Shedko, M B

    2015-02-01

    The variability of the mtDNA control region (D-loop) was examined in Amur sturgeon endemic to the Amur River. This species is also classified as critically endangered by the IUCN Red List of Threatened species. Sequencing of 796- to 812-bp fragments of the D-loop in 112 sturgeon collected in the Lower Amur revealed 73 different genotypes. The sample was characterized by a high level of haplotypic (0.976) and nucleotide (0.0194) diversity. The identified haplotypes split into two well-defined monophyletic groups, BG (n = 39) and SM (n = 34), differing (HKY distance) on average by 3.41% of nucleotide positions upon an average level of intragroup differences of 0.54 and 1.23%, respectively. Moreover, the haplotypes of the SM groups differed by the presence of a 13-14 bp deletion. Most ofthe samples (66 out of 112) carried BG haplotypes. Overall, the pattern of pairwise nucleotide differences and the results of neutrality tests, as well as the results of tests for compliance with the model of sudden demographic expansion or with the model of exponential growth pointed to a past significant increase in the number of Amur sturgeon, which was most clearly manifested in the analysis of data on the BG haplogroup. The constructed Bayesian skyline plots showed that this growth began about 18 to 16 thousand years ago. At present, the effective size of the strongly reduced (due to overharvesting) population of Amur sturgeon may be equal to or even lower than it was before the beginning of this growth during the Last Glacial Maximum. The presence in the mitochondrial gene pool ofAmur sturgeon of two haplogroups, their unequal evolutionary dynamics, and, judging by scanty data, their unequal representation in the Russian and Chinese parts of the Amur River basin point to the possible existence of at least two distinct populations of Amur sturgeon in the past. PMID:25966586

  18. Update of AMmtDB: a database of multi-aligned metazoa mitochondrial DNA sequences.

    PubMed

    Lanave, C; Liuni, S; Licciulli, F; Attimonelli, M

    2000-01-01

    The AMmtDB database (http://bio-www.ba.cnr.it:8000/srs6/ ) has been updated by collecting the multi-aligned sequences of Chordata mitochondrial genes coding for proteins and tRNAs. The genes coding for proteins are multi-aligned based on the translated sequences and both the nucleotide and amino acid multi-alignments are provided. AMmtDB data selected through SRS can be viewed and managed using GeneDoc or other programs for the management of multi-aligned data depending on the user's operative system. The multiple alignments have been produced with CLUSTALW and PILEUP programs and then carefully optimized manually. PMID:10592208

  19. The Complete DNA Sequence of the Mitochondrial Genome of a ``living Fossil,'' the Coelacanth (Latimeria Chalumnae)

    PubMed Central

    Zardoya, R.; Meyer, A.

    1997-01-01

    The complete nucleotide sequence of the 16,407-bp mitochondrial genome of the coelacanth (Latimeria chalumnae) was determined. The coelacanth mitochondrial genome order is identical to the consensus vertebrate gene order which is also found in all ray-finned fishes, the lungfish, and most tetrapods. Base composition and codon usage also conform to typical vertebrate patterns. The entire mitochondrial genome was PCR-amplified with 24 sets of primers that are expected to amplify homologous regions in other related vertebrate species. Analyses of the control region of the coelacanth mitochondrial genome revealed the existence of four 22-bp tandem repeats close to its 3' end. The phylogenetic analyses of a large data set combining genes coding for rRNAs, tRNAs, and proteins (16,140 characters) confirmed the phylogenetic position of the coelacanth as a lobe-finned fish; it is more closely related to tetrapods than to ray-finned fishes. However, different phylogenetic methods applied to this largest available molecular data set were unable to resolve unambiguously the relationship of the coelacanth to the two other groups of extant lobe-finned fishes, the lungfishes and the tetrapods. Maximum parsimony favored a lungfish/coelacanth or a lungfish/tetrapod sistergroup relationship depending on which transversion:transition weighting is assumed. Neighbor-joining and maximum likelihood supported a lungfish/tetrapod sistergroup relationship. PMID:9215903

  20. Statistical validation of the identification of tuna species: bootstrap analysis of mitochondrial DNA sequences.

    PubMed

    Terol, Javier; Mascarell, Rosario; Fernandez-Pedrosa, Victoria; Pérez-Alonso, Manuel

    2002-02-27

    Sequencing of the mitochondrial cytochrome b gene has been used to differentiate three tuna species: Thunnus albacares (yellowfin tuna), Thunnus obesus (bigeye tuna), and Katsuwonus pelamis (skipjack). A PCR amplified 528 bp fragment from 30 frozen samples and a 171 bp fragment from 26 canned samples of the three species were analyzed to determine the intraspecific variation and the positions with diagnostic value. Polymorphic sites between the species that did not present intraspecific variation were given a diagnostic value. The genetic distance between the sequences was calculated, and a phylogenetic tree was constructed, showing that the sequences belonging to the same species clustered together. The bootstrap test of confidence was used to determine the statistical validation of the species assignation, allowing for the first time a quantification of the certainty of the species assignation. The bootstrap values obtained from these results indicate that the sequencing of the cytochrome b fragments allows a correct species assignation with a probability > or =95%. PMID:11853465

  1. Simultaneous Whole Mitochondrial Genome Sequencing with Short Overlapping Amplicons Suitable for Degraded DNA Using the Ion Torrent Personal Genome Machine.

    PubMed

    Chaitanya, Lakshmi; Ralf, Arwin; van Oven, Mannis; Kupiec, Tomasz; Chang, Joseph; Lagacé, Robert; Kayser, Manfred

    2015-12-01

    Whole mitochondrial (mt) genome analysis enables a considerable increase in analysis throughput, and improves the discriminatory power to the maximum possible phylogenetic resolution. Most established protocols on the different massively parallel sequencing (MPS) platforms, however, invariably involve the PCR amplification of large fragments, typically several kilobases in size, which may fail due to mtDNA fragmentation in the available degraded materials. We introduce a MPS tiling approach for simultaneous whole human mt genome sequencing using 161 short overlapping amplicons (average 200 bp) with the Ion Torrent Personal Genome Machine. We illustrate the performance of this new method by sequencing 20 DNA samples belonging to different worldwide mtDNA haplogroups. Additional quality control, particularly regarding the potential detection of nuclear insertions of mtDNA (NUMTs), was performed by comparative MPS analysis using the conventional long-range amplification method. Preliminary sensitivity testing revealed that detailed haplogroup inference was feasible with 100 pg genomic input DNA. Complete mt genome coverage was achieved from DNA samples experimentally degraded down to genomic fragment sizes of about 220 bp, and up to 90% coverage from naturally degraded samples. Overall, we introduce a new approach for whole mt genome MPS analysis from degraded and nondegraded materials relevant to resolve and infer maternal genetic ancestry at complete resolution in anthropological, evolutionary, medical, and forensic applications. PMID:26387877

  2. Population data of mitochondrial DNA HVS-I and HVS-II sequences for 208 Henan Han Chinese.

    PubMed

    Xu, Kaikai; Hu, Shengping

    2015-07-01

    The two hypervariable segments (HVS-I and HVS-II) of mitochondrial DNA (mtDNA) control region were sequenced for a population of 208 unrelated healthy individuals sampled from Suiping County, Henan Province, China. A total of 192 different haplotypes were identified, of which 179 haplotypes were unique (93.23%). The variation of the mtDNA HVS-I and HVS-II was confined to 166 nucleotide positions, of which 115 were observed in the HVS-I and 51 in the HVS-II. The haplotype diversity and random match probability were 0.9991 and 0.0061, respectively. Following the principle of the updated East Asian mtDNA phylogeny tree, individual samples were assigned to the specific haplogroups based on the information both from control region and coding-region obtained. Haplogroup D was the most common haplogroup (25.96%). The northern China-prevalent haplogroups (A, C, D, G, M8, Y, and Z) and the southern China-prevalent haplogroups (B, F, M7, N9, and R9) accounted for 48.56% and 46.63%, respectively, of the Henan Han mtDNA gene pool. The mtDNA hypervariable region was highly polymorphic in Henan Han population. These sequences could serve as mtDNA reference data for forensic casework in Henan population as well as for population genetic study. PMID:25759193

  3. Mitochondrial DNA sequence characteristics modulate the size of the genetic bottleneck.

    PubMed

    Wilson, Ian J; Carling, Phillipa J; Alston, Charlotte L; Floros, Vasileios I; Pyle, Angela; Hudson, Gavin; Sallevelt, Suzanne C E H; Lamperti, Costanza; Carelli, Valerio; Bindoff, Laurence A; Samuels, David C; Wonnapinij, Passorn; Zeviani, Massimo; Taylor, Robert W; Smeets, Hubert J M; Horvath, Rita; Chinnery, Patrick F

    2016-03-01

    With a combined carrier frequency of 1:200, heteroplasmic mitochondrial DNA (mtDNA) mutations cause human disease in ∼1:5000 of the population. Rapid shifts in the level of heteroplasmy seen within a single generation contribute to the wide range in the severity of clinical phenotypes seen in families transmitting mtDNA disease, consistent with a genetic bottleneck during transmission. Although preliminary evidence from human pedigrees points towards a random drift process underlying the shifting heteroplasmy, some reports describe differences in segregation pattern between different mtDNA mutations. However, based on limited observations and with no direct comparisons, it is not clear whether these observations simply reflect pedigree ascertainment and publication bias. To address this issue, we studied 577 mother-child pairs transmitting the m.11778G>A, m.3460G>A, m.8344A>G, m.8993T>G/C and m.3243A>G mtDNA mutations. Our analysis controlled for inter-assay differences, inter-laboratory variation and ascertainment bias. We found no evidence of selection during transmission but show that different mtDNA mutations segregate at different rates in human pedigrees. m.8993T>G/C segregated significantly faster than m.11778G>A, m.8344A>G and m.3243A>G, consistent with a tighter mtDNA genetic bottleneck in m.8993T>G/C pedigrees. Our observations support the existence of different genetic bottlenecks primarily determined by the underlying mtDNA mutation, explaining the different inheritance patterns observed in human pedigrees transmitting pathogenic mtDNA mutations. PMID:26740552

  4. Mitochondrial DNA sequence characteristics modulate the size of the genetic bottleneck

    PubMed Central

    Wilson, Ian J.; Carling, Phillipa J.; Alston, Charlotte L.; Floros, Vasileios I.; Pyle, Angela; Hudson, Gavin; Sallevelt, Suzanne C.E.H.; Lamperti, Costanza; Carelli, Valerio; Bindoff, Laurence A.; Samuels, David C.; Wonnapinij, Passorn; Zeviani, Massimo; Taylor, Robert W.; Smeets, Hubert J.M.; Horvath, Rita; Chinnery, Patrick F

    2016-01-01

    With a combined carrier frequency of 1:200, heteroplasmic mitochondrial DNA (mtDNA) mutations cause human disease in ∼1:5000 of the population. Rapid shifts in the level of heteroplasmy seen within a single generation contribute to the wide range in the severity of clinical phenotypes seen in families transmitting mtDNA disease, consistent with a genetic bottleneck during transmission. Although preliminary evidence from human pedigrees points towards a random drift process underlying the shifting heteroplasmy, some reports describe differences in segregation pattern between different mtDNA mutations. However, based on limited observations and with no direct comparisons, it is not clear whether these observations simply reflect pedigree ascertainment and publication bias. To address this issue, we studied 577 mother–child pairs transmitting the m.11778G>A, m.3460G>A, m.8344A>G, m.8993T>G/C and m.3243A>G mtDNA mutations. Our analysis controlled for inter-assay differences, inter-laboratory variation and ascertainment bias. We found no evidence of selection during transmission but show that different mtDNA mutations segregate at different rates in human pedigrees. m.8993T>G/C segregated significantly faster than m.11778G>A, m.8344A>G and m.3243A>G, consistent with a tighter mtDNA genetic bottleneck in m.8993T>G/C pedigrees. Our observations support the existence of different genetic bottlenecks primarily determined by the underlying mtDNA mutation, explaining the different inheritance patterns observed in human pedigrees transmitting pathogenic mtDNA mutations. PMID:26740552

  5. Complete mitochondrial DNA sequence of the fat dormouse, Glis glis: further evidence of rodent paraphyly.

    PubMed

    Reyes, A; Pesole, G; Saccone, C

    1998-05-01

    The complete mitochondrial genome of the fat dormouse, Glis glis, has been sequenced (16,602 bp). A total of 23 complete mitochondrial mammalian genomes have been taken into account for phylogenetic reconstruction. Phylogenetic analyses were performed with parsimony, distance (stationary Markov model), and maximum-likelihood methods. In all cases, data strongly support the paraphyly of rodents, with dormouse and guinea pig in a different clade from rat and mouse, reaching bootstrap values of 95%. Rodent monophyly and the existence of Glires (Rodentia and Lagomorpha) are weakly supported, with maximum bootstrap values of 11% and 8.6%, respectively. This result agrees with the analyses of isochore patterns in the nuclear genome and the B2 and B2-like retroposons, which show a close relationship between dormice and guinea pigs rather than between dormice and rats and mice. PMID:9580978

  6. Inosine Triphosphate Pyrophosphohydrolase (ITPA) polymorphic sequence variants in adult hematological malignancy patients and possible association with mitochondrial DNA defects

    PubMed Central

    2013-01-01

    Background Inosine triphosphate pyrophosphohydrolase (ITPase) is a ‘house-cleaning’ enzyme that degrades non-canonical (‘rogue’) nucleotides. Complete deficiency is fatal in knockout mice, but a mutant polymorphism resulting in low enzyme activity with an accumulation of ITP and other non-canonical nucleotides, appears benign in humans. We hypothesised that reduced ITPase activity may cause acquired mitochondrial DNA (mtDNA) defects. Furthermore, we investigated whether accumulating mtDNA defects may then be a risk factor for cell transformation, in adult haematological malignancy (AHM). Methods DNA was extracted from peripheral blood and bone marrow samples. Microarray-based sequencing of mtDNA was performed on 13 AHM patients confirmed as carrying the ITPA 94C>A mutation causing low ITPase activity, and 4 AHM patients with wildtype ITPA. The frequencies of ITPA 94C>A and IVS2+21A>C polymorphisms were studied from 85 available AHM patients. Results ITPA 94C>A was associated with a significant increase in total heteroplasmic/homoplasmic mtDNA mutations (p<0.009) compared with wildtype ITPA, following exclusion of haplogroup variants. This suggested that low ITPase activity may induce mitochondrial abnormalities. Compared to the normal population, frequencies for the 94C>A and IVS2+21A>C mutant alleles among the AHM patients were higher for myelodyplastic syndrome (MDS) - but below significance; were approximately equivalent for chronic lymphoblastic leukemia; and were lower for acute myeloid leukemia. Conclusions This study invokes a new paradigm for the evolution of MDS, where nucleotide imbalances produced by defects in ‘house-cleaning’ genes may induce mitochondrial dysfunction, compromising cell integrity. It supports recent studies which point towards an important role for ITPase in cellular surveillance of rogue nucleotides. PMID:23547827

  7. Population genetic structure of Indian shad, Tenualosa ilisha inferred from variation in mitochondrial DNA sequences.

    PubMed

    Behera, B K; Singh, N S; Paria, P; Sahoo, A K; Panda, D; Meena, D K; Das, P; Pakrashi, S; Biswas, D K; Sharma, A P

    2015-09-01

    Indian shad, Tenualosa ilisha, is a commercially important anadromous fish representing major catch in Indo-pacific region. The present study evaluated partial Cytochrome b (Cyt b) gene sequence of mtDNA in T. ilisha for determining genetic variation from Bay of Bengal and Arabian Sea origins. The genomic DNA extracted from T. ilisha samples representing two distant rivers in the Indian subcontinent, the Bhagirathi (lower stretch of Ganges) and the Tapi was analyzed. Sequencing of 307 bp mtDNA Cytochrome b gene fragment revealed the presence of 5 haplotypes, with high haplotype diversity (Hd) of 0.9048 with variance 0.103 and low nucleotide diversity (π) of 0.14301. Three population specific haplotypes were observed in river Ganga and two haplotypes in river Tapi. Neighbour-joining tree based on Cytochrome b gene sequences of T. ilisha showed that population from Bay of Bengal and Arabian Sea origins belonged to two distinct clusters. PMID:26521565

  8. Deep Sequencing of Mixed Total DNA without Barcodes Allows Efficient Assembly of Highly Plastic Ascidian Mitochondrial Genomes

    PubMed Central

    Rubinstein, Nimrod D.; Feldstein, Tamar; Shenkar, Noa; Botero-Castro, Fidel; Griggio, Francesca; Mastrototaro, Francesco; Delsuc, Frédéric; Douzery, Emmanuel J.P.; Gissi, Carmela; Huchon, Dorothée

    2013-01-01

    Ascidians or sea squirts form a diverse group within chordates, which includes a few thousand members of marine sessile filter-feeding animals. Their mitochondrial genomes are characterized by particularly high evolutionary rates and rampant gene rearrangements. This extreme variability complicates standard polymerase chain reaction (PCR) based techniques for molecular characterization studies, and consequently only a few complete Ascidian mitochondrial genome sequences are available. Using the standard PCR and Sanger sequencing approach, we produced the mitochondrial genome of Ascidiella aspersa only after a great effort. In contrast, we produced five additional mitogenomes (Botrylloides aff. leachii, Halocynthia spinosa, Polycarpa mytiligera, Pyura gangelion, and Rhodosoma turcicum) with a novel strategy, consisting in sequencing the pooled total DNA samples of these five species using one Illumina HiSeq 2000 flow cell lane. Each mitogenome was efficiently assembled in a single contig using de novo transcriptome assembly, as de novo genome assembly generally performed poorly for this task. Each of the new six mitogenomes presents a different and novel gene order, showing that no syntenic block has been conserved at the ordinal level (in Stolidobranchia and in Phlebobranchia). Phylogenetic analyses support the paraphyly of both Ascidiacea and Phlebobranchia, with Thaliacea nested inside Phlebobranchia, although the deepest nodes of the Phlebobranchia–Thaliacea clade are not well resolved. The strategy described here thus provides a cost-effective approach to obtain complete mitogenomes characterized by a highly plastic gene order and a fast nucleotide/amino acid substitution rate. PMID:23709623

  9. RE-EVALUATION OF THE GEOGRAPHIC DISTRIBUTION AND PHYLOGEOGRAPHY OF THE SIGMODON HISPIDUS COMPLEX BASED ON MITOCHONDRIAL DNA SEQUENCES

    PubMed Central

    Bradley, Robert D.; Henson, Dallas D.; Durish, Nevin D.

    2010-01-01

    Geographic distribution among members of the Sigmodon hispidus complex (Sigmodon hirsutus, S. hispidus, and S. toltecus) were examined using DNA sequences from the mitochondrial cytochrome-b gene. Geographic distribution of each taxon was defined based on DNA sequences obtained from 69 samples (19 newly obtained and 50 from previous studies) collected from North, Central, and South America. These data indicated that S. hispidus is restricted to the southern one-half of the United States and northeastern Mexico (Nuevo León and Tamaulipas), S. toltecus occupies the eastern one-third of Mexico (central Tamaulipas) to northern Honduras, and S. hirsutus is distributed from central Chiapas and southeastern Oaxaca to northern South America (Venezuela). The newly collected data extend distributions of S. hispidus from the southern United States southward into northeastern Mexico and that of S. toltecus from Chiapas, Mexico, southward to Honduras. Genetic divergence and patterns of phylogeography were examined within each taxon. PMID:20613884

  10. Mitochondrial DNA variation and phylogenetic relationships among five tuna species based on sequencing of D-loop region.

    PubMed

    Kumar, Girish; Kocour, Martin; Kunal, Swaraj Priyaranjan

    2016-05-01

    In order to assess the DNA sequence variation and phylogenetic relationship among five tuna species (Auxis thazard, Euthynnus affinis, Katsuwonus pelamis, Thunnus tonggol, and T. albacares) out of all four tuna genera, partial sequences of the mitochondrial DNA (mtDNA) D-loop region were analyzed. The estimate of intra-specific sequence variation in studied species was low, ranging from 0.027 to 0.080 [Kimura's two parameter distance (K2P)], whereas values of inter-specific variation ranged from 0.049 to 0.491. The longtail tuna (T. tonggol) and yellowfin tuna (T. albacares) were found to share a close relationship (K2P = 0.049) while skipjack tuna (K. pelamis) was most divergent studied species. Phylogenetic analysis using Maximum-Likelihood (ML) and Neighbor-Joining (NJ) methods supported the monophyletic origin of Thunnus species. Similarly, phylogeny of Auxis and Euthynnus species substantiate the monophyly. However, results showed a distinct origin of K. pelamis from genus Thunnus as well as Auxis and Euthynnus. Thus, the mtDNA D-loop region sequence data supports the polyphyletic origin of tuna species. PMID:25329285

  11. Molecular dating of the diversification of Phyllostominae bats based on nuclear and mitochondrial DNA sequences.

    PubMed

    Hoffmann, Federico G; Hoofer, Steven R; Baker, Robert J

    2008-11-01

    Times of divergence among the three tribes included within the subfamily Phyllostominae were estimated using a Bayesian approach to infer dates of divergence based on mitochondrial and nuclear sequence data. The subfamily Phyllostominae is particularly attractive for such analysis, as it is one of the few groups of bats to have fossil specimens. Our molecular time analyses suggest that diversification among tribes and genera of phyllostomine bats occurred during the Early to Mid-Miocene, and was coincident with diversification events in two co distributed taxa: Caviomorph rodents and New World monkeys. PMID:18727956

  12. Phylogenetic relationships of three hymenolepidid species inferred from nuclear ribosomal and mitochondrial DNA sequences.

    PubMed

    Okamoto, M; Agatsuma, T; Kurosawa, T; Ito, A

    1997-12-01

    Three hymenolepidid tapeworms, Hymenolepis diminuta, H. nana and H. microstoma, are commonly maintained in laboratory rodents and used in many experimental model systems of tapeworm infections. We examined partial sequences from the mitochondrial cytochrome c oxidase subunit 1 (CO1) gene and nuclear ribosomal internal transcribed spacer 2 (ITS2) sequences to infer phylogenetic relationships of the 3 hymenolepidid species. Parts of the CO1 gene and ITS2 were amplified by PCR and sequenced directly. The CO1 gene sequence obtained was the same in length (391 bp) among all specimens. In the case of ITS2, however, several insertions and deletions were detected (671-741 bp) not only among species but also between an American isolate and a Japanese isolate of H. diminuta. Percentage nucleotide differences between H. diminuta and H. microstoma, or H. diminuta and H. nana were 16.6-18.2% for the CO1 gene and 21.3-22.9% for ITS2. The differences in both sequences between H. microstoma and H. nana were about 14%. Phylogenetic trees inferred from both of the nucleotide sequences showed similar topology, and suggest that H. diminuta may have diverged from the common ancestral line the earliest, and that H. nana is closer to H. microstoma than to H. diminuta. PMID:9488878

  13. [Genetic variation of Manchurian pheasant (Phasianus colchicus pallasi Rotshild, 1903) inferred from mitochondrial DNA control region sequences].

    PubMed

    Kozyrenko, M M; Fisenko, P V; Zhuravlev, Iu N

    2009-04-01

    Sequence variation of the mitochondrial DNA control region was studied in Manchurian pheasants (Phasianus colchicus pallasi Rotshild, 1903) representing three geographic populations from the southern part of the Russian Far East. Extremely low population genetic differentiation (F(ST) = 0.0003) pointed to a very high gene exchange between the populations. Combination of such characters as high haplotype diversity (0.884 to 0.913), low nucleotide diversity (0.0016 to 0.0022), low R2 values (0.1235 to 0.1337), certain patterns of pairwise-difference distributions, and the absence of phylogenetic structure suggested that the phylogenetic history of Ph. C. pallasi included passing through a bottleneck with further expansion in the postglacial period. According to the data obtained, it was suggested that differentiation between the mitochondrial lineages started approximately 100 000 years ago. PMID:19507706

  14. Identification of sequence polymorphisms in the D-loop region of mitochondrial DNA as risk biomarker for liposarcoma.

    PubMed

    Xun, Jianjun; Song, Xiaolei; Gao, Shejun; Yang, Huichai; Li, Zhenxing; Li, Linxing

    2016-09-01

    Single nucleotide polymorphisms (SNPs) in the Displacement-loop (D-loop) region of mitochondrial DNA have been reported to be associated with cancer risk in various types of cancer. To assess the frequency of D-loop SNPs in a large series of liposarcoma and establish correlations with cancer risk, we sequenced the D-loop of 82 liposarcoma patients and analyzed their use as predictive biomarkers for liposarcoma risk. The minor alleles of nucleotides 73G, 523-524del, 16,290T, 16,319A, 16,356C were associated with an increased risk for liposarcoma patients, whereas the insertion of C at the site 315 (located within the D310) were associated with a decreased risk for liposarcoma patients. These results suggest that SNPs in the mitochondrial D-loop should be considered as a biomarker which may be useful for the early detection of liposarcoma in individuals at risk of this cancer. PMID:25812053

  15. GLOBAL RELATIONSHIPS OF BEMISIA TABACI (HEMIPTERA: ALEYRODIDAE) REVEALED USING BAYESIAN ANALYSIS OF MITOCHONDRIAL COI DNA SEQUENCE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global phylogenetic relationships of the major races of B. tabaci remain unresolved thus a Bayesian phylogenetic technique was utilized to elucidate affinities. All COI DNA sequence data available in Genbank for B. tabaci world-wide (369 specimens) were obtained and the first well resolved phylogen...

  16. Update of AMmtDB: a database of multi-aligned Metazoa mitochondrial DNA sequences

    PubMed Central

    Lanave, Cecilia; Liuni, Sabino; Licciulli, Flavio; Attimonelli, Marcella

    2000-01-01

    The AMmtDB database (http://bio-www.ba.cnr.it:8000/srs6/ ) has been updated by collecting the multi-aligned sequences of Chordata mitochondrial genes coding for proteins and tRNAs. The genes coding for proteins are multi-aligned based on the translated sequences and both the nucleotide and amino acid multi-alignments are provided. AMmtDB data selected through SRS can be viewed and managed using GeneDoc or other programs for the management of multi-aligned data depending on the user’s operative system. The multiple alignments have been produced with CLUSTALW and PILEUP programs and then carefully optimized manually. PMID:10592208

  17. EST and mitochondrial DNA sequences support a distinct Pacific form of salmon louse, Lepeophtheirus salmonis.

    PubMed

    Yazawa, Ryosuke; Yasuike, Motoshige; Leong, Jong; von Schalburg, Kristian R; Cooper, Glenn A; Beetz-Sargent, Marianne; Robb, Adrienne; Davidson, William S; Jones, Simon R M; Koop, Ben F

    2008-01-01

    Nuclear deoxyribonucleic acid sequences from approximately 15,000 salmon louse expressed sequence tags (ESTs), the complete mitochondrial genome (16,148bp) of salmon louse, and 16S ribosomal ribonucleic acid (rRNA) and cytochrome oxidase subunit I (COI) genes from 68 salmon lice collected from Japan, Alaska, and western Canada support a Pacific lineage of Lepeophtheirus salmonis that is distinct from that occurring in the Atlantic Ocean. On average, nuclear genes are 3.2% different, the complete mitochondrial genome is 7.1% different, and 16S rRNA and COI genes are 4.2% and 6.1% different, respectively. Reduced genetic diversity within the Pacific form of L. salmonis is consistent with an introduction into the Pacific from the Atlantic Ocean. The level of divergence is consistent with the hypothesis that the Pacific form of L. salmonis coevolved with Pacific salmon (Onchorhynchus spp.) and the Atlantic form coevolved with Atlantic salmonids (Salmo spp.) independently for the last 2.5-11 million years. The level of genetic divergence coincides with the opportunity for migration of fish between the Atlantic and Pacific Ocean basins via the Arctic Ocean with the opening of the Bering Strait, approximately 5 million years ago. The genetic differences may help explain apparent differences in pathogenicity and environmental sensitivity documented for the Atlantic and Pacific forms of L. salmonis. PMID:18574633

  18. Mitochondrial DNA sequence analyses and phylogenetic relationships among two Nigerian goat breeds and the South African Kalahari Red.

    PubMed

    Awotunde, Esther O; Bemji, Martha N; Olowofeso, Olajide; James, Ikechukwu J; Ajayi, O O; Adebambo, Ayotunde O

    2015-01-01

    The first hypervariable (HV1) region of mitochondrial DNA (mtDNA) of two popular Nigerian goat breeds: West African Dwarf (WAD) (n=35) and Red Sokoto (RS) (n=37) and one exotic breed: Kalahari Red (KR) (n=38) imported from South Africa were sequenced to investigate sequence diversity, genetic structure, origin, and demographic history of the populations. A total of 68 polymorphic sites were found in 110 sequences that grouped into 68 haplotypes. Average haplotype and nucleotide diversities for all breeds were 0.982±0.005 and 0.02350±0.00213, respectively. Phylogenetic analysis revealed two mtDNA lineages (A and B). Lineage A was predominant and included all haplotypes from WAD and RS and 5 out of 11 haplotypes of KR goats. The remaining haplotypes (6) of KR belong to lineage B. The analysis of molecular variance revealed a high-within breed genetic variance of 82.4% and a low-between breed genetic variance of 17.6%. The three breeds clustered with Capra aegagrus as their wild ancestor. Mismatch distribution analysis showed that WAD, RS and haplogroup A have experienced population expansion events. The study has revealed very high diversity within the three breeds which are not strongly separated from each other based on mtDNA analysis. The information obtained on the genetic structure of the breeds will be useful in planning improvement and conservation programs for the local populations. PMID:25695640

  19. Phylogenetic analysis of Demodex caprae based on mitochondrial 16S rDNA sequence.

    PubMed

    Zhao, Ya-E; Hu, Li; Ma, Jun-Xian

    2013-11-01

    Demodex caprae infests the hair follicles and sebaceous glands of goats worldwide, which not only seriously impairs goat farming, but also causes a big economic loss. However, there are few reports on the DNA level of D. caprae. To reveal the taxonomic position of D. caprae within the genus Demodex, the present study conducted phylogenetic analysis of D. caprae based on mt16S rDNA sequence data. D. caprae adults and eggs were obtained from a skin nodule of the goat suffering demodicidosis. The mt16S rDNA sequences of individual mite were amplified using specific primers, and then cloned, sequenced, and aligned. The sequence divergence, genetic distance, and transition/transversion rate were computed, and the phylogenetic trees in Demodex were reconstructed. Results revealed the 339-bp partial sequences of six D. caprae isolates were obtained, and the sequence identity was 100% among isolates. The pairwise divergences between D. caprae and Demodex canis or Demodex folliculorum or Demodex brevis were 22.2-24.0%, 24.0-24.9%, and 22.9-23.2%, respectively. The corresponding average genetic distances were 2.840, 2.926, and 2.665, and the average transition/transversion rates were 0.70, 0.55, and 0.54, respectively. The divergences, genetic distances, and transition/transversion rates of D. caprae versus the other three species all reached interspecies level. The five phylogenetic trees all presented that D. caprae clustered with D. brevis first, and then with D. canis, D. folliculorum, and Demodex injai in sequence. In conclusion, D. caprae is an independent species, and it is closer to D. brevis than to D. canis, D. folliculorum, or D. injai. PMID:23996126

  20. Relationships of scincid lizards (Mabuya spp; Reptilia: Scincidae) from the Cape Verde islands based on mitochondrial and nuclear DNA sequences.

    PubMed

    Brehm, A; Jesus, J; Pinheiro, M; Harris, D J

    2001-05-01

    Partial DNA sequences from two mitochondrial (mt) and one nuclear gene (cytochrome b, 12S rRNA, and C-mos) were used to estimate the phylogenetic relationships among the six extant species of skinks endemic to the Cape Verde Archipelago. The species form a monophyletic unit, indicating a single colonization of the islands, probably from West Africa. Mabuya vaillanti and M. delalandii are sister taxa, as indicated by morphological characters. Mabuya fogoensis and M. stangeri are closely related, but the former is probably paraphyletic. Mabuya spinalis and M. salensis are also probably paraphyletic. Within species, samples from separate islands always form monophyletic groups. Some colonization events can be hypothesized, which are in line with the age of the islands. C-mos variation is concordant with the topology derived from mtDNA. PMID:11341812

  1. [Mitochondrial disease and mitochondrial DNA depletion syndromes].

    PubMed

    Huang, Chin-Chang; Hsu, Chang-Huang

    2009-12-01

    Mitochondria is an intracellular double membrane-bound structure and it can provide energy for intracellular metabolism. The metabolism includes Krebs cycle, beta-oxidation and lipid synthesis. The density of mitochondria is different in various tissues dependent upon the demands of oxidative phosphorylation. Mitochondrial diseases can occur by defects either in mitochondrial DNA or nuclear DNA. Human mitochondrial DNA (mtDNA) encoding for 22 tRNAs, 2 rRNAs and 13 mRNAs that are translated in the mitochondria. Mitochondrial genetic diseases are most resulted from defects in the mtDNA which may be point mutations, deletions, or mitochondrial DNA depletion. These patterns of inheritance in mitochondrial diseases include sporadic, maternally inherited, or of Mendelian inheritance. Mitochondrial DNA depletion is caused by defects in the nuclear genes that are responsible for maintenance of integrity of mtDNA or deoxyribonucelotide pools and mtDNA biogenesis. The mtDNA depletion syndrome (MDS) includes the following categories: progressive external ophthalmoplegia (PEO), predominant myopathy, mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), sensory-ataxic neuropathy, dysarthria, and ophthalmoplegia (SANDO) and hepato-encephalopathy. The most common tissues or organs involved in MDS and related disorders include the brain, liver and muscles. These involved genes are divided into two groups including 1) DNA polymerase gamma (POLG, POLG2) and Twinkle genes whose products function directly at the mtDNA replication fork, and 2) adenine nucleotide translocator 1, thymidine phosphorylase, thymidine kinase 2, deoxyguanosine kinase, ADP-forming succinyl-CoA synthetase ligase, MPV17 whose products supply the mitochondria with deoxyribonucleotide triphosphate pools needed for mtDNA replication, and possible mutation in the RRM2B gene. The development has provided new information about the importance of the biosynthetic pathway of the nucleotides for mtDNA replication

  2. Associations between sequence variations in the mitochondrial DNA D-loop region and outcome of hepatocellular carcinoma

    PubMed Central

    LI, SHILAI; WAN, PEIQI; PENG, TAO; XIAO, KAIYIN; SU, MING; SHANG, LIMING; XU, BANGHAO; SU, ZHIXIONG; YE, XINPING; PENG, NING; QIN, QUANLIN; LI, LEQUN

    2016-01-01

    The association between mitochondrial DNA (mtDNA) polymorphisms or mutations and the prognoses of cancer have been investigated previously, but the results have been ambiguous. In the present study, the associations between sequence variations in the mtDNA D-loop region and the outcomes of patients with hepatocellular carcinoma (HCC) were analysed. A total of 140 patients with HCC (123 males and 17 females), who were hospitalised to undergo radical resection, were studied. Polymerase chain reaction and direct sequencing were performed to detect the sequence variations in the mtDNA D-loop region. Multivariate and univariate analyses were conducted to determine important factors in the prognosis of HCC. A total of 150 point sequence variations were observed in the 140 cases (13 point mutations, 8 insertions, 20 deletions and 116 polymorphisms). The variation rate was 13.4% (150/1, 122). mtDNA nucleotide 150 (C/T) was an independent factor in the logistic regression for early/late recurrence of HCC. Patients with 150T appeared to have later recurrences. In a Cox proportional hazards regression model, hepatitis B virus DNA, Child-Pugh class, differentiation degree, tumour-node-metastasis (TNM) stage, nucleotide 16263 (T/C) and nucleotide 315 (N/insertion C) were independent factors for tumour-free survival time. Patients with the 16263T allele had a greater tumour-free survival time than patients with the 16263C allele. Similarly, patients with 315 insertion C had a superior tumour-free survival time when compared with patients with 315 N (normal). In the Cox proportional hazards regression model, recurrence type (early/late), Child-Pugh class, TNM stage and adjuvant treatment after tumour recurrence (none or one/more than one treatment) were independent factors for overall survival. None of the mtDNA variations served as independent factors. Patients with late recurrence, Child-Pugh class A, and low TNM stages and/or those who received more than one adjuvant treatment

  3. Phylogenetic relationships among Octopodidae species in coastal waters of China inferred from two mitochondrial DNA gene sequences.

    PubMed

    Lü, Z M; Cui, W T; Liu, L Q; Li, H M; Wu, C W

    2013-01-01

    Octopus in the family Octopodidae (Mollusca: Cephalopoda) has been generally recognized as a "catch-all" genus. The monophyly of octopus species in China's coastal waters has not yet been studied. In this paper, we inferred the phylogeny of 11 octopus species (family Octopodidae) in China's coastal waters using nucleotide sequences of two mitochondrial DNA genes: cytochrome c oxidase subunit I (COI) and 16S rRNA. Sequence analysis of both genes revealed that the 11 species of Octopodidae fell into four distinct groups, which were genetically distant from one another and exhibited identical phylogenetic resolution. The phylogenies indicated strongly that the genus Octopus in China's coastal waters is also not monophyletic, and it is therefore clear that the Octopodidae systematics in this area requires major revision. It is demonstrated that partial sequence information of both the mitochondrial genes 16S rRNA and COI could be used as diagnostic molecular markers in the identification and resolution of the taxonomic ambiguity of Octopodidae species. PMID:24085437

  4. cDNA, genomic sequence cloning and overexpression of giant panda (Ailuropoda melanoleuca) mitochondrial ATP synthase ATP5G1.

    PubMed

    Hou, W-R; Hou, Y-L; Ding, X; Wang, T

    2012-01-01

    The ATP5G1 gene is one of the three genes that encode mitochondrial ATP synthase subunit c of the proton channel. We cloned the cDNA and determined the genomic sequence of the ATP5G1 gene from the giant panda (Ailuropoda melanoleuca) using RT-PCR technology and touchdown-PCR, respectively. The cloned cDNA fragment contains an open reading frame of 411 bp encoding 136 amino acids; the length of the genomic sequence is of 1838 bp, containing three exons and two introns. Alignment analysis revealed that the nucleotide sequence and the deduced protein sequence are highly conserved compared to Homo sapiens, Mus musculus, Rattus norvegicus, Bos taurus, and Sus scrofa. The homologies for nucleotide sequences of the giant panda ATP5G1 to those of these species are 93.92, 92.21, 92.46, 93.67, and 92.46%, respectively, and the homologies for amino acid sequences are 90.44, 95.59, 93.38, 94.12, and 91.91%, respectively. Topology prediction showed that there is one protein kinase C phosphorylation site, one casein kinase II phosphorylation site, five N-myristoylation sites, and one ATP synthase c subunit signature in the ATP5G1 protein of the giant panda. The cDNA of ATP5G1 was transfected into Escherichia coli, and the ATP5G1 fused with the N-terminally GST-tagged protein gave rise to accumulation of an expected 40-kDa polypeptide, which had the characteristics of the predicted protein. PMID:23007995

  5. Monitoring of Fasciola Species Contamination in Water Dropwort by cox1 Mitochondrial and ITS-2 rDNA Sequencing Analysis

    PubMed Central

    Choi, In-Wook; Kim, Hwang-Yong; Quan, Juan-Hua; Ryu, Jae-Gee; Sun, Rubing; Lee, Young-Ha

    2015-01-01

    Fascioliasis, a food-borne trematode zoonosis, is a disease primarily in cattle and sheep and occasionally in humans. Water dropwort (Oenanthe javanica), an aquatic perennial herb, is a common second intermediate host of Fasciola, and the fresh stems and leaves are widely used as a seasoning in the Korean diet. However, no information regarding Fasciola species contamination in water dropwort is available. Here, we collected 500 samples of water dropwort in 3 areas in Korea during February and March 2015, and the water dropwort contamination of Fasciola species was monitored by DNA sequencing analysis of the Fasciola hepatica and Fasciola gigantica specific mitochondrial cytochrome c oxidase subunit 1 (cox1) and nuclear ribosomal internal transcribed spacer 2 (ITS-2). Among the 500 samples assessed, the presence of F. hepatica cox1 and 1TS-2 markers were detected in 2 samples, and F. hepatica contamination was confirmed by sequencing analysis. The nucleotide sequences of cox1 PCR products from the 2 F. hepatica-contaminated samples were 96.5% identical to the F. hepatica cox1 sequences in GenBank, whereas F. gigantica cox1 sequences were 46.8% similar with the sequence detected from the cox1 positive samples. However, F. gigantica cox1 and ITS-2 markers were not detected by PCR in the 500 samples of water dropwort. Collectively, in this survey of the water dropwort contamination with Fasciola species, very low prevalence of F. hepatica contamination was detected in the samples. PMID:26537044

  6. Monitoring of Fasciola Species Contamination in Water Dropwort by cox1 Mitochondrial and ITS-2 rDNA Sequencing Analysis.

    PubMed

    Choi, In-Wook; Kim, Hwang-Yong; Quan, Juan-Hua; Ryu, Jae-Gee; Sun, Rubing; Lee, Young-Ha

    2015-10-01

    Fascioliasis, a food-borne trematode zoonosis, is a disease primarily in cattle and sheep and occasionally in humans. Water dropwort (Oenanthe javanica), an aquatic perennial herb, is a common second intermediate host of Fasciola, and the fresh stems and leaves are widely used as a seasoning in the Korean diet. However, no information regarding Fasciola species contamination in water dropwort is available. Here, we collected 500 samples of water dropwort in 3 areas in Korea during February and March 2015, and the water dropwort contamination of Fasciola species was monitored by DNA sequencing analysis of the Fasciola hepatica and Fasciola gigantica specific mitochondrial cytochrome c oxidase subunit 1 (cox1) and nuclear ribosomal internal transcribed spacer 2 (ITS-2). Among the 500 samples assessed, the presence of F. hepatica cox1 and 1TS-2 markers were detected in 2 samples, and F. hepatica contamination was confirmed by sequencing analysis. The nucleotide sequences of cox1 PCR products from the 2 F. hepatica-contaminated samples were 96.5% identical to the F. hepatica cox1 sequences in GenBank, whereas F. gigantica cox1 sequences were 46.8% similar with the sequence detected from the cox1 positive samples. However, F. gigantica cox1 and ITS-2 markers were not detected by PCR in the 500 samples of water dropwort. Collectively, in this survey of the water dropwort contamination with Fasciola species, very low prevalence of F. hepatica contamination was detected in the samples. PMID:26537044

  7. Mitochondrial DNA, mitochondrial dysfunction, and cardiac manifestations.

    PubMed

    Lee, Sung Ryul; Kim, Nari; Noh, Yeonhee; Xu, Zhelong; Ko, Kyung Soo; Rhee, Byoung Doo; Han, Jin

    2016-01-01

    Mitochondria, the powerhouses of cells, have their own DNA (mtDNA). They regulate the transport of metabolites and ions, which determine cell physiology, survival, and death. Mitochondrial dysfunction, including impaired oxidative phosphorylation, preferentially affects heart function via imbalance of energy supply and demand. Recently, mitochondrial mutations and associated mitochondrial dysfunction were suggested as a causal factor of cardiac manifestations. Oxidative stress largely influences mtDNA stability due to oxidative modifications of mtDNA. Furthermore, the continuous replicative state of mtDNA and presence of minimal nucleoid structure render mitochondria vulnerable to oxidative damage and subsequent mutations, which impair mitochondrial functions. However, the occurrence of mtDNA heteroplasmy in the same mitochondrion or cell and presence of nuclear DNA-encoded mtDNA repair systems raise questions regarding whether oxidative stress-mediated mtDNA mutations are the major driving force in accumulation of mtDNA mutations. Here, we address the possible causes of mitochondrial DNA mutations and their involvement in cardiac manifestations. Current strategies for treatment related to mitochondrial mutations and/or dysfunction in cardiac manifestations are briefly discussed. PMID:27100514

  8. Sequence polymorphism of the mitochondrial DNA control region in the population of Vojvodina Province, Serbia.

    PubMed

    Zgonjanin, Dragana; Veselinović, Igor; Kubat, Milovan; Furac, Ivana; Antov, Mirjana; Loncar, Eva; Tasić, Milos; Vuković, Radenko; Omorjan, Radovan

    2010-03-01

    In order to generate and establish the database for forensic identification purposes in Vojvodina Province (Serbia), the sequence of the hypervariable regions 1 (HV1) and 2 (HV2) of the mtDNA control region were determined in a population of 104 unrelated individuals from Vojvodina Province, using a fluorescent-based capillary electrophoresis sequencing method. A total of 93 different haplotypes were found, of these 83 mtDNA types were unique, nine haplotypes were shared by two individuals and one haplotype by three individuals. The variation of mtDNA HV1 and HV2 regions was confined to 116 nucleotide positions, of which 72 were observed in the HV1 and 44 in the HV2. A statistical estimate of the results for this population showed the genetic diversity of 0.9977 and the random match probability of 1.18%. Haplogroup H was the most common haplogroup (43.3%). Haplogroups observed at intermediate levels included clusters U (13.5%), T (10.6%), J (8.6%) and W (5.8%). PMID:19962932

  9. Maternal phylogenetic relationships and genetic variation among Arabian horse populations using whole mitochondrial DNA D-loop sequencing

    PubMed Central

    2013-01-01

    Background Maternal inheritance is an essential point in Arabian horse population genetics and strains classification. The mitochondrial DNA (mtDNA) sequencing is a highly informative tool to investigate maternal lineages. We sequenced the whole mtDNA D-loop of 251 Arabian horses to study the genetic diversity and phylogenetic relationships of Arabian populations and to examine the traditional strain classification system that depends on maternal family lines using native Arabian horses from the Middle East. Results The variability in the upstream region of the D-loop revealed additional differences among the haplotypes that had identical sequences in the hypervariable region 1 (HVR1). While the American-Arabians showed relatively low diversity, the Syrian population was the most variable and contained a very rare and old haplogroup. The Middle Eastern horses had major genetic contributions to the Western horses and there was no clear pattern of differentiation among all tested populations. Our results also showed that several individuals from different strains shared a single haplotype, and individuals from a single strain were represented in clearly separated haplogroups. Conclusions The whole mtDNA D-loop sequence was more powerful for analysis of the maternal genetic diversity in the Arabian horses than using just the HVR1. Native populations from the Middle East, such as Syrians, could be suggested as a hot spot of genetic diversity and may help in understanding the evolution history of the Arabian horse breed. Most importantly, there was no evidence that the Arabian horse breed has clear subdivisions depending on the traditional maternal based strain classification system. PMID:24034565

  10. Molecular systematics of pikas (genus Ochotona) inferred from mitochondrial DNA sequences.

    PubMed

    Yu, N; Zheng, C; Zhang, Y P; Li, W H

    2000-07-01

    The phylogenetic relationships among worldwide species of genus Ochotona were investigated by sequencing mitochondrial cytochrome b and ND4 genes. Parsimony and neighbor-joining analyses of the sequence data yielded congruent results that strongly indicated three major clusters: the shrub-steppe group, the northern group, and the mountain group. The subgeneric classification of Ochotona species needs to be revised because each of the two subgenera in the present classification contains species from the mountain group. To solve this taxonomic problem so that each taxon is monophyletic, i.e. , represents a natural clade, Ochotona could be divided into three subgenera, one for the shrub-steppe species, a second for the northern species, and a third for the mountain species. The inferred tree suggests that the differentiation of this genus in the Palearctic Region was closely related to the gradual uplifting of the Tibet (Qinghai-Xizang) Plateau, as hypothesized previously, and that vicariance might have played a major role in the differentiation of this genus on the Plateau. On the other hand, the North American species, O. princeps, is most likely a dispersal event, which might have happened during the Pliocene through the opening of the Bering Strait. The phylogenetic relationships within the shrub-steppe group are worth noting in that instead of a monophyletic shrub-dwelling group, shrub dwellers and steppe dwellers are intermingled with each other. Moreover, the sequence divergence within the sister taxa of one steppe dweller and one shrub dweller is very low. These findings support the hypothesis that pikas have entered the steppe environment several times and that morphological similarities within steppe dwellers were due to convergent evolution. PMID:10877942

  11. Comparison of mitochondrial DNA control region sequence and microsatellite DNA analyses in estimating population structure and gene flow rates in Atlantic sturgeon Acipenser oxyrinchus

    USGS Publications Warehouse

    Wirgin, I.; Waldman, J.; Stabile, J.; Lubinski, B.; King, T.

    2002-01-01

    Atlantic sturgeon Acipenser oxyrinchus is large, long-lived, and anadromous with subspecies distributed along the Atlantic (A. oxyrinchus oxyrinchus) and Gulf of Mexico (A. o. desotoi) coasts of North America. Although it is not certain if extirpation of some population units has occurred, because of anthropogenic influences abundances of all populations are low compared with historical levels. Informed management of A. oxyrinchus demands a detailed knowledge of its population structure, levels of genetic diversity, and likelihood to home to natal rivers. We compared the use of mitochondrial DNA (mtDNA) control region sequence and microsatellite nuclear DNA (nDNA) analyses in identifying the stock structure and homing fidelity of Atlantic and Gulf coast populations of A. oxyrinchus. The approaches were concordant in that they revealed moderate to high levels of genetic diversity and suggested that populations of Atlantic sturgeon are highly structured. At least six genetically distinct management units were detected using the two approaches among the rivers surveyed. Mitochondrial DNA sequences revealed a significant cline in haplotype diversity along the Atlantic coast with monomorphism observed in Canadian populations. High levels of nDNA diversity were also observed among populations along the Atlantic coast, including the two Canadian populations, probably resulting from the more rapid rate of mutational and evolutionary change at microsatellite loci. Estimates of gene flow among populations were similar between both approaches with the exception that because of mtDNA monomorphism in Canadian populations, gene flow estimates between them were unobtainable. Analyses of both genomes provided high resolution and confidence in characterizing the population structure of Atlantic sturgeon. Microsatellite analysis was particularly informative in delineating population structure in rivers that were recently glaciated and may prove diagnostic in rivers that are

  12. Validation of Next-Generation Sequencing of Entire Mitochondrial Genomes and the Diversity of Mitochondrial DNA Mutations in Oral Squamous Cell Carcinoma

    PubMed Central

    Kloss-Brandstätter, Anita; Weissensteiner, Hansi; Erhart, Gertraud; Schäfer, Georg; Forer, Lukas; Schönherr, Sebastian; Pacher, Dominic; Seifarth, Christof; Stöckl, Andrea; Fendt, Liane; Sottsas, Irma; Klocker, Helmut; Huck, Christian W.; Rasse, Michael; Kronenberg, Florian; Kloss, Frank R.

    2015-01-01

    Background Oral squamous cell carcinoma (OSCC) is mainly caused by smoking and alcohol abuse and shows a five-year survival rate of ~50%. We aimed to explore the variation of somatic mitochondrial DNA (mtDNA) mutations in primary oral tumors, recurrences and metastases. Methods We performed an in-depth validation of mtDNA next-generation sequencing (NGS) on an Illumina HiSeq 2500 platform for its application to cancer tissues, with the goal to detect low-level heteroplasmies and to avoid artifacts. Therefore we genotyped the mitochondrial genome (16.6 kb) from 85 tissue samples (tumors, recurrences, resection edges, metastases and blood) collected from 28 prospectively recruited OSCC patients applying both Sanger sequencing and high-coverage NGS (~35,000 reads per base). Results We observed a strong correlation between Sanger sequencing and NGS in estimating the mixture ratio of heteroplasmies (r = 0.99; p<0.001). Non-synonymous heteroplasmic variants were enriched among cancerous tissues. The proportions of somatic and inherited variants in a given gene region were strongly correlated (r = 0.85; p<0.001). Half of the patients shared mutations between benign and cancerous tissue samples. Low level heteroplasmies (<10%) were more frequent in benign samples compared to tumor samples, where heteroplasmies >10% were predominant. Four out of six patients who developed a local tumor recurrence showed mutations in the recurrence that had also been observed in the primary tumor. Three out of five patients, who had tumor metastases in the lymph nodes of their necks, shared mtDNA mutations between primary tumors and lymph node metastases. The percentage of mutation heteroplasmy increased from the primary tumor to lymph node metastases. Conclusions We conclude that Sanger sequencing is valid for heteroplasmy quantification for heteroplasmies ≥10% and that NGS is capable of reliably detecting and quantifying heteroplasmies down to the 1%-level. The finding of shared

  13. Validation of three sympatric Thoracophelia species (Annelida: Opheliidae) from Dillon Beach, California using mitochondrial and nuclear DNA sequence data.

    PubMed

    Law, Chris J; Dorgan, Kelly M; Rouse, Greg W

    2013-01-01

    Thoracophelia (Annelida, Opheliidae) are burrowing deposit feeders generally found in the mid- to upper intertidal areas of sandy beaches. Thoracophelia mucronata (Treadwell, 1914) is found along the west coast of North America, including at Dillon Beach, CA. Two additional species, Thoracophelia dillonensis (Hartman, 1938) and T. williamsi (Hartman, 1938) were also described from this beach. These three sympatric species have been primarily distinguished by branchial morphology, and efforts to determine the validity of the species have been based on morphological, reproductive and ecological studies. Here we demonstrate using mitochondrial and nuclear DNA sequence data that these three species are valid. Mitochondrial Cytochrome c subunit 1 (COI) sequences show uncorrected interspecific distances of ~9-13%. We found no inter-specific differences in body color or in hemoglobin concentration, but found that reproductive males were pinkish-red in color and had lower hemoglobin concentrations than purplish-red reproductive females. PMID:24614448

  14. Tempo of speciation in a butterfly genus from the Southeast Asian tropics, inferred from mitochondrial and nuclear DNA sequence data.

    PubMed

    Megens, Hendrik-Jan; van Moorsel, Coline H M; Piel, William H; Pierce, Naomi E; de Jong, Rienk

    2004-06-01

    Molecular systematics is frequently beset with phylogenetic results that are not fully resolved. Researchers either state that the absence of resolution is due to character conflict, explosive speciation, or some combination of the two, but seldom do they carefully examine their data to distinguish between these causes. In this study, we exhaustively analyze a set of nuclear and mitochondrial nucleotide data for the Asian tropical butterfly genus Arhopala so as to highlight the causes of polytomies in the phylogenetic trees, and, as a result, to infer important biological events in the history of this genus. We began by using non-parametric statistical methods to determine whether the ambiguously resolved regions in these trees represent hard or soft polytomies. In addition we determined how this correlated to number of inferred changes on branches, using parametric maximum likelihood estimations. Based on congruent patterns in both mitochondrial and nuclear DNA sequences, we concluded that at two stages in the history of Arhopala there have been accelerated instances of speciation. One event, at the base of the phylogeny, generated many of the groups and subgroups currently recognized in this genus, while a later event generated another major clade consisting of both Oriental and Papuan species groups. Based on comparisons of closely related taxa, the ratio of instantaneous rate of evolution between mitochondrial and nuclear DNA evolution is established at approximately 3:1. The earliest radiation is dated between 7 and 11 Ma by a molecular clock analysis, setting the events generating much of the diversity of Arhopala at well before the Pleistocene. Periodical flooding of the Sunda plateau during interglacial periods was, therefore, not responsible for generating the major divisions in the genus Arhopala. Instead, we hypothesize that large-scale climatic changes taking place in the Miocene have induced the early acceleration in speciation. PMID:15120408

  15. Phylogenetic relationships in European Ceriporiopsis species inferred from nuclear and mitochondrial ribosomal DNA sequences.

    PubMed

    Tomšovský, Michal; Menkis, Audrius; Vasaitis, Rimvydas

    2010-04-01

    The aim of this work was to clarify taxonomy and examine evolutionary relationships within European Ceriporiopsis species using a combined analysis of the large subunit (nLSU) nuclear rRNA and small subunit (mtSSU) mitochondrial rRNA gene sequences. Data from the ITS region were applied to enhance the view of the phylogenetic relationships among different species. The studied samples grouped into four complex clades, suggesting that the genus Ceriporiopsis is polyphyletic. The generic type Ceriporiopsis gilvescens formed a separate group together with Ceriporiopsis guidella and Phlebia spp. in the phlebioid clade. In this clade, the closely related species Ceriporiopsis resinascens and Ceriporiopsis pseudogilvescens grouped together with Ceriporiopsis aneirina. C. resinascens and C. pseudogilvescens have identical LSU and SSU sequences but differ in ITS. Ceriporiopsis pannocincta also fell in the phlebioid clade, but showed closer proximity to Gloeoporus dichrous than to C. gilvescens or C. aneirina-C. pseudogilvescens-C. resinascens group. Another clade was composed of a Ceriporiopsis balaenae-Ceriporiopsis consobrina group and was found to be closely related to Antrodiella and Frantisekia, with the overall clade highly reminiscent of the residual polyporoid clade. The monotypic genus Pouzaroporia, erected in the past for Ceriporiopsis subrufa due to its remarkable morphological differences, also fell within the residual polyporoid clade. Ceriporiopsis subvermispora held an isolated position from the other species of the genus. Therefore, the previously proposed name Gelatoporia subvermispora has been adopted for this species. Physisporinus rivulosus appeared unrelated to two other European Physisporinus species. Moreover, Ceriporiopsis (=Skeletocutis) jelicii grouped in a separate clade, distinct from Ceriporiopsis species. Finally, the ITS data demonstrated the proximity of some Ceriporiopsis species (Ceriporiopsis portcrosensis and Ceriporiopsis

  16. De novo assembly and characterization of the carrot mitochondrial genome using next generation sequencing data from whole genomic DNA provides first evidence of DNA transfer into an angiosperm plastid genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sequence analysis of organelle genomes has revealed important aspects of plant cell evolution. The scope of this study was to develop an approach for de novo assembly of the carrot mitochondrial genome using next generation sequence data from total genomic DNA. Sequencing data from a carrot 454 whol...

  17. Phylogenetic relationships among the Caribbean members of the Cliona viridis complex (Porifera, Demospongiae, Hadromerida) using nuclear and mitochondrial DNA sequences.

    PubMed

    Escobar, Dairo; Zea, Sven; Sánchez, Juan A

    2012-08-01

    Species complexes - groups of closely related species in which intraspecific and interspecific variability overlap - have generated considerable interest and study. Frequently, members of a species complex do not have complete reproductive isolation; therefore, the complex may go through extensive gene flow. In the Caribbean Sea, some encrusting and excavating sponges of the genus Cliona (Porifera, Hadromerida, Clionaidae) are grouped within the great "Cliona viridis" complex because of their morphological similarities. This study examined the evolutionary relationships of the Caribbean members of this complex (C. caribbaea, C. tenuis, C. aprica and C. varians) and related taxa based on nuclear (ITS1 and ITS2) and mitochondrial (3' end of ND6) DNA sequences. The intragenomic ITS variation and its secondary structures were evaluated using a mixed approach of Denaturing Gradient Gel Electrophoresis (DGGE), DNA sequencing and secondary structure prediction. Considerable intragenomic variation was found in all the species, with apparently functional ITS1 and ITS2 secondary structures. Despite the subtle but clear morphological differentiation in these excavating sponges, the intragenomic copies of C. caribbaea, C. tenuis and C. aprica had a polyphyletic placement in the ITS1 and ITS2 genealogies and very low divergence. Therefore, it is clear that these species constitute a species complex (herein called Ct-complex). Genetic distances within the Ct-complex revealed that an important part of the interspecific variation overlapped with intraspecific variation, suggesting either incomplete lineage sorting or extensive gene flow. In contrast, C. varians and an unidentified "Pione" species emerged as monophyletic clades, being the closest sister groups to the Ct-complex. Additionally, our results support that C. laticavicola and C. delitrix conform a monophyletic group, but absence of reciprocal monophyly in these species suggests they may be life stages or ecophenotypes of

  18. Complete nucleotide sequences of the domestic cat (Felis catus) mitochondrial genome and a transposed mtDNA tandem repeat (Numt) in the nuclear genome

    SciTech Connect

    Lopez, J.V.; Cevario, S.; O`Brien, S.J.

    1996-04-15

    The complete 17,009-bp mitochondrial genome of the domestic cat, Felis catus, has been sequenced and conforms largely to the typical organization of previously characterized mammalian mtDNAs. Codon usage and base composition also followed canonical vertebrate patterns, except for an unusual ATC (non-AUG) codon initiating the NADH dehydrogenase subunit 2 (ND2) gene. Two distinct repetitive motifs at opposite ends of the control region contribute to the relatively large size (1559 bp) of this carnivore mtDNA. Alignment of the feline mtDNA genome to a homologous 7946-bp nuclear mtDNA tandem repeat DNA sequence in the cat, Numt, indicates simple repeat motifs associated with insertion/deletion mutations. Overall DNA sequence divergence between Numt and cytoplasmic mtDNA sequence was only 5.1%. Substitutions predominate at the third codon position of homologous feline protein genes. Phylogenetic analysis of mitochondrial gene sequences confirms the recent transfer of the cytoplasmic mtDNA sequences to the domestic cat nucleus and recapitulates evolutionary relationships between mammal species. 86 refs., 4 figs., 3 tabs.

  19. Mitochondrial DNA diversity in the acanthocephalan Prosthenorchis elegans in Colombia based on cytochrome c oxidase I (COI) gene sequence

    PubMed Central

    Falla, Ana Carolina; Brieva, Claudia; Bloor, Paul

    2015-01-01

    Prosthenorchis elegans is a member of the Phylum Acanthocephala and is an important parasite affecting New World Primates in the wild in South America and in captivity around the world. It is of significant management concern due to its pathogenicity and mode of transmission through intermediate hosts. Current diagnosis of P. elegans is based on the detection of eggs by coprological examination. However, this technique lacks both specificity and sensitivity, since eggs of most members of the genus are morphologically indistinguishable and shed intermittently, making differential diagnosis difficult, and coprological examinations are often negative in animals severely infected at death. We examined sequence variation in 633 bp of mitochondrial DNA (mtDNA) cytochrome c oxidase I (COI) sequence in 37 isolates of P. elegans from New World monkeys (Saguinus leucopus and Cebus albifrons) in Colombia held in rescue centers and from the wild. Intraspecific divergence ranged from 0.0 to 1.6% and was comparable with corresponding values within other species of acanthocephalans. Furthermore, comparisons of patterns of sequence divergence within the Acanthocephala suggest that Prosthenorchis represents a separate genus within the Oligacanthorhynchida. Six distinct haplotypes were identified within P. elegans which grouped into one of two well-supported mtDNA haplogroups. No association between haplogroup/haplotype, holding facility and species was found. This information will help pave the way to the development of molecular-based diagnostic tools for the detection of P. elegans as well as furthering research into the life cycle, intermediate hosts and epidemiological aspects of the species. PMID:26759793

  20. Mitochondrial DNA diversity in the acanthocephalan Prosthenorchis elegans in Colombia based on cytochrome c oxidase I (COI) gene sequence.

    PubMed

    Falla, Ana Carolina; Brieva, Claudia; Bloor, Paul

    2015-12-01

    Prosthenorchis elegans is a member of the Phylum Acanthocephala and is an important parasite affecting New World Primates in the wild in South America and in captivity around the world. It is of significant management concern due to its pathogenicity and mode of transmission through intermediate hosts. Current diagnosis of P. elegans is based on the detection of eggs by coprological examination. However, this technique lacks both specificity and sensitivity, since eggs of most members of the genus are morphologically indistinguishable and shed intermittently, making differential diagnosis difficult, and coprological examinations are often negative in animals severely infected at death. We examined sequence variation in 633 bp of mitochondrial DNA (mtDNA) cytochrome c oxidase I (COI) sequence in 37 isolates of P. elegans from New World monkeys (Saguinus leucopus and Cebus albifrons) in Colombia held in rescue centers and from the wild. Intraspecific divergence ranged from 0.0 to 1.6% and was comparable with corresponding values within other species of acanthocephalans. Furthermore, comparisons of patterns of sequence divergence within the Acanthocephala suggest that Prosthenorchis represents a separate genus within the Oligacanthorhynchida. Six distinct haplotypes were identified within P. elegans which grouped into one of two well-supported mtDNA haplogroups. No association between haplogroup/haplotype, holding facility and species was found. This information will help pave the way to the development of molecular-based diagnostic tools for the detection of P. elegans as well as furthering research into the life cycle, intermediate hosts and epidemiological aspects of the species. PMID:26759793

  1. Molecular phylogeny of Diabrotica beetles (Coleoptera: Chrysomelidae) inferred from analysis of combined mitochondrial and nuclear DNA sequences.

    PubMed

    Clark, T L; Meinke, L J; Foster, J E

    2001-08-01

    The phylogenetic relationships of thirteen Diabrotica (representing virgifera and fucata species groups) and two outgroup Acalymma beetle species (Coleoptera: Chrysomelidae) were inferred from the phylogenetic analysis of a combined data set of 1323 bp of mitochondrial DNA (mtDNA) cytochrome oxidase subunit 1 (COI) and the entire second internal transcribed spacer region (ITS-2) of nuclear ribosomal DNA of 362 characters. Species investigated were D. adelpha, D. balteata, D. barberi, D. cristata, D. lemniscata, D. longicornis, D. porracea, D. speciosa, D. undecimpunctata howardi, D. u. undecimpunctata, D. virgifera virgifera, D. v. zeae, D. viridula, and outgroup A. blandulum and A. vittatum. Maximum parsimony (MP), minimum evolution (ME), and maximum likelihood (ML) analyses of combined COI and ITS-2 sequences clearly place species into their traditional morphological species groups with MP and ME analyses resulting in identical topologies. Results generally confer with a prior work based on allozyme data, but within the virgifera species group, D. barberi and D. longicornis strongly resolve as sister taxa as well as monophyletic with the neotropical species, D. viridula, D. cristata and D. lemniscata also resolve as sister taxa. Both relationships are not in congruence with the prior allozyme-based hypothesis. Within the fucata species group, D. speciosa and D. balteata resolve as sister taxa. Results also strongly supported the D. virgifera and D. undecimpunctata subspecies complexes. Our proposed phylogeny provides some insight into current hypotheses regarding distribution status and evolution of various life history traits for Diabrotica. PMID:11520353

  2. Complete mitochondrial DNA sequence of the endangered giant sable antelope (Hippotragus niger variani): insights into conservation and taxonomy.

    PubMed

    Espregueira Themudo, Gonçalo; Rufino, Ana C; Campos, Paula F

    2015-02-01

    The giant sable antelope is one of the most endangered African bovids. Populations of this iconic animal, the national symbol of Angola, were recently rediscovered, after many decades of presumed extinction. Even so, their numbers are scarce and hence conservation plans are essential. However, fundamental information such as its taxonomic position, time of divergence and degree of genetic variation are still lacking. Here, we used a museum preserved horn as a source of DNA to describe, for the first time, the complete mitochondrial genome of the giant sable antelope, and provide insights into its evolutionary history. Reads generated by shotgun sequencing were mapped against the mitochondrial genome of common sable antelope and the nuclear genomes of cow and sheep. Phylogenetic reconstruction and divergence time estimate give support to the monophyly of the giant sable and a maximum divergence time of 170 thousand years to the closest subspecies. About 7% of the nuclear genome was mapped against the reference. The genetic resources reported here are now available for future work in the field of conservation genetics and phylogeny, in this and related species. PMID:25527983

  3. [On the phylogenetic relationship of Corvinae birds (Aves, Corvidae) from data of partial sequencing of cytochrome b gene mitochondrial DNA].

    PubMed

    Kriukov, A P; Odati, S

    2000-09-01

    To establish phylogenetic relationships within the corvine birds at the interspecific and intergeneric levels, the sequence of the mitochondrial DNA cytochrome b gene was analyzed. The NJ, UPGMA, and MP trees showed similar clustering. Relationships between the jungle crow, on the one hand, and the rook and Australian raven, on the other hand, were closer than between the jungle crow and the hooded and carrion crows. Mitochondrial genome of Australian raven displayed the closest similarity to the ancestral genome of the genus Corvus. Populations inhabiting the eastern part of the carrion crow C. corone orientations area were statistically significantly subdivided into three lineages. These data also confirmed the hypothesis on the location of the carrion crow ancestral lineage in the southeastern part of the area. In general, the transition and transversion substitution levels, their relationships, and distribution over codon positions were similar to that already reported for birds. Synonymous transitions in the third codon position were the prevailing substitution type. Using standard calibration scales, the time of divergence between species and genera within the corvine family was estimated to be 3.1-4 and 3.8-8.8 Myr, respectively. The divergence time between the examined corvine birds and birds of paradise constituted from 8 to 10 Myr. PMID:11042813

  4. Genetic variability among Schistosoma japonicum isolates from different endemic regions in China revealed by sequences of three mitochondrial DNA genes.

    PubMed

    Zhao, G H; Mo, X H; Zou, F C; Li, J; Weng, Y B; Lin, R Q; Xia, C M; Zhu, X Q

    2009-05-26

    The present study examined sequence variation in three mitochondrial DNA (mtDNA) regions, namely cytochrome c oxidase subunit 3 (cox3), NADH dehydrogenase subunits 4 and 5 (nad4 and nad5), among Schistosoma japonicum isolates from different endemic regions in China, and their phylogenetic relationships were re-constructed. A portion of the cox3 gene (pcox3), a portion of the nad4 and nad5 genes (pnad4 and pnad5) were amplified separately from individual trematodes by polymerase chain reaction (PCR) and the amplicons were subjected to direct sequencing. In the mountainous areas, sequence variations between parasites from Yunnan and those from Sichuan were 0.3% for pcox3, 0.0-0.1% for pnad4, and 0.0-0.2% for pnad5. In the lake/marshland areas, sequence variations between male and female parasites among different geographical locations were 0.0-0.3% for pcox3, 0.0-0.7% for pnad4, and 0.0-1.6% for pnad5. Sequence variations between S. japonicum from mountainous areas and those from lake/marshland areas were 0.0-0.5% for pcox3, 0.0-0.7% for pnad4, and 0.0-1.6% for pnad5. Phylogenetic analyses based on the combined sequences of pcox3, pnad4 and pnad5 revealed that S. japonicum isolates from mountainous areas (Yunnan and Sichuan provinces) clustered together. For isolates from the lake/marshland areas, isolates from Anhui and Jiangsu provinces clustered together and was sister to samples from Jiangxi province, while isolates from Hubei and Zhejiang province clustered together. However, isolates from different geographical locations in Hunan province were in different clades. These findings demonstrated the usefulness and attributes of the three mtDNA sequences for population genetic studies of S. japonicum, and have implications for studying population biology, molecular epidemiology, and genetic structure of S. japonicum, as well as for the effective control of schistosomiasis. PMID:19303214

  5. Pronounced population genetic differentiation in the rock bream Oplegnathus fasciatus inferred from mitochondrial DNA sequences.

    PubMed

    Xiao, Yongshuang; Li, Jun; Ren, Guijing; Ma, Daoyuan; Wang, Yanfeng; Xiao, ZhiZhong; Xu, Shihong

    2016-05-01

    The population genetic structure of the rock bream (Oplegnathus fasciatus) along the coastal waters of China was estimated based on three mtDNA fragments (D-loop, COI, and Cytb). A total of 112 polymorphic sites were checked, which defined 63 haplotypes. A pattern with high levels of haplotype diversity (hCOI = 0.886 ± 0.034, hCytb = 0.874 ± 0.023) and low levels of nucleotide diversity (лCOI = 0.009 ± 0.005, лCytb = 0.006 ± 0.003) was detected based on the COI and Cytb fragments, and high levels of genetic diversity (hD-loop = 0.995 ± 0.007, лD-loop = 0.021 ± 0.011) were detected from the mtDNA D-loop. The population genetic diversity of O. fasciatus in south China was significantly higher than those of north China. Three genealogical clades were checked in the O. fasciatus populations based on the NJ and MST analyses of mtDNA COI gene sequence, and the genetic distances among the clades ranged from 0.018 to 0.025. Significant population genetic differentiation was also checked based on the Fst (0.331, p = 0.000) and exact p (0.000) test analyses. No significant population differentiations were checked based on mtDNA D-loop and Cytb fragments. Using a variety of phylogenetic methods, coalescent reasoning, and molecular dating interpreted in conjunction with paleoclimatic and physiographic evidences, we inferred that the genetic make-up of extant populations of O. fasciatus was shaped by Pleistocene environmental impacts on the historical demography of this species. Coalescent analyses (neutrality tests, mismatch distribution analysis, and Bayesian skyline analyses) showed that the species along coastline of China has experienced population expansions originated in its most recent history at about 169-175 kya before present. PMID:25427804

  6. Mitochondrial DNA Alterations and Reduced Mitochondrial Function in Aging

    PubMed Central

    Hebert, Sadie L.; Lanza, Ian R.; Nair, K. Sreekumaran

    2010-01-01

    Oxidative damage to mitochondrial DNA increases with aging. This damage has the potential to affect mitochondrial DNA replication and transcription which could alter the abundance or functionality of mitochondrial proteins. This review describes mitochondrial DNA alterations and changes in mitochondrial function that occur with aging. Age-related alterations in mitochondrial DNA as a possible contributor to the reduction in mitochondrial function are discussed. PMID:20307565

  7. Phylogeography of Balkan wall lizard (Podarcis taurica) and its relatives inferred from mitochondrial DNA sequences.

    PubMed

    Poulakakis, N; Lymberakis, P; Valakos, E; Pafilis, P; Zouros, E; Mylonas, M

    2005-07-01

    Wall lizards of the genus Podarcis (Sauria, Lacertidae) comprise 17 currently recognized species in southern Europe, where they are the predominant reptile group. The taxonomy of Podarcis is complex and unstable. Based on DNA sequence data the species of Podarcis falls into four main groups that have substantial geographical conherence (western island group, southwestern group, Italian group and Balkan group). The Balkan species are divided in two subgroups: the subgroup of Podarcis taurica (P. taurica, P. milensis, P. gaigeae and perhaps P. melisellensis), and the subgroup of Podarcis erhardii (P. erhardii and P. peloponnesiaca). We addressed the question of phylogenetic relations among the species of the P. taurica subgroup encountered in Greece, as they can be inferred from partial mtDNA (cyt b and 16S) sequences. Our data support the monophyly of P. taurica subgroup and suggest that P. gaigeae, P. milensis and P. melisellensis form a clade, which thereinafter connects to P. taurica. Within the previous clade, P. gaigeae is more closely related to P. milensis than to P. melisellensis. However, the specimens of P. taurica were subdivided in two different groups. The first one includes the specimens from northeastern Greece, and the other group includes the specimens from the rest of continental Greece and Ionian islands. Because the molecular clock of the cyt b and 16 rRNA genes was not rejected in our model test, it is possible to estimate times of speciation events. Based on the splitting of the island of Crete from Peloponnisos [c. 5 million years ago (Ma)], the evolutionary rate for the cyt b is 1.55% per million years (Myr) and for the 16S rRNA is 0.46% per Myr. These results suggest that the evolutionary history of P. taurica in Greece is more complex than a single evolutionary invasion. The data analysed, stress the need for a reconsideration of the evolutionary history of Greek Podarcis species and help overcome difficulties that classical taxonomy has

  8. A revised molecular phylogeny of the globally distributed hawkmoth genus Hyles (Lepidoptera: Sphingidae), based on mitochondrial and nuclear DNA sequences.

    PubMed

    Hundsdoerfer, Anna K; Rubinoff, Daniel; Attié, Marc; Wink, Michael; Kitching, Ian J

    2009-09-01

    The hawkmoth genus Hyles comprises some 29 species with a global distribution. In this study, we augment the previous taxon sampling with more species and add sequences from a nuclear gene to produce a refined phylogenetic hypothesis. A total evidence reconstruction based on Bayesian analysis of the combined mitochondrial (COI, t-RNA-Leu, COII; 2284 bp) and nuclear (EF1alpha; 773 bp) sequences is discussed and compared with the results from separate analyses of the two genes. The total evidence phylogeny corroborates many of the phylogenetic relationships previously postulated within the genus. In addition, the hitherto unsampled enigmatic species Hyles biguttata from Madagascar appears as sister group to Hyles livornicoides from Australia, although support for the relationship is relatively weak. The high level of differentiation of Hyles perkinsi from H. calida (both Hawaii), and the status of these two as sister species, is corroborated by both sources of sequence data. However, their phylogenetic position when mt DNA sequences alone are considered differs markedly from that under total evidence. The previously postulated relationships within the Hyles euphorbiae complex (HEC) s.s. are largely corroborated, but H. dahlii is now more closely related and the HEC s.l. is redefined to include H. zygophylli and H. stroehlei (two species that had not been studied previously using molecular data) and to exclude H. siehei and H. hippophaes. The nuclear sequences alone are insufficiently variable to fully resolve all lineages and the phylogeny suggests that nuclear gene swapping and incomplete lineage sorting have occurred implying recent divergence. The results from the total evidence analysis provide a phylogenetic hypothesis that both corroborates and complements the previous biogeographic scenario, and provides new insights into the origins of several of the included taxa. PMID:19482093

  9. Genetic variation in Labeo fimbriatus (Cypriniformes: Cyprinidae) populations as revealed by partial cytochrome b sequences of mitochondrial DNA.

    PubMed

    Swain, Subrat Kumar; Bej, Dillip; Das, Sofia Priyadarsani; Sahoo, Lakshman; Jayasankar, Pallipuram; Das, Pratap Chandra; Das, Paramananda

    2016-05-01

    Labeo fimbriatus, a medium sized carp is assessed as a commercially important aquaculture species in Indian subcontinent. In the present study, the genetic diversity and population structure of four Indian riverine populations of L. fimbriatus have been evaluated using partial cytochrome b sequences of mitochondrial DNA. Sequencing and analysis of this gene from 108 individuals defined 7 distinct haplotypes. Haplotype diversity (Hd) and nucleotide diversity (π) ranged from 0.067 to 0.405 and 0.00023 to 0.03231, respectively. The Mahanadi population had the highest π level. Analysis of molecular variance (AMOVA) indicated that 47.36% of genetic variation contained within population and 53.76% of genetic variation among groups. Pairwise FST analysis indicated that there was little or no genetic differentiation among populations (-0.0018 to 04572) from different geographical regions except Mahanadi population. The Mahanadi population can be considered as a separate stock from rest three riverine populations. Accordingly, the genetic information generated from this study can be implemented while taking decision in formulating base population for the sustainable selective breeding programs of this species. PMID:25329277

  10. Evolutionary history and phylogeography of the schistosome-vector freshwater snail Biomphalaria glabrata based on nuclear and mitochondrial DNA sequences.

    PubMed

    Mavárez, J; Steiner, C; Pointier, J-P; Jarne, P

    2002-10-01

    The phylogeography of the freshwater snail Biomphalaria glabrata remains poorly known, although this species is the major vector of schistosomiasis in the New World. It was here investigated in South America and the Lesser Antilles, based on partial mitochondrial large ribosomal subunit (16S rDNA) and nuclear internal transcribed spacer-2 (ITS-2) gene sequences. Sampling included 17 populations from a large part of the current geographic range of the species (Brazil, Venezuela and Lesser Antilles). Substantial variability was detected, as well as a high amount of phylogenetically informative signal. The molecular phylogeny inferred splits B. glabrata into Northern and Southern clades separated by the Amazon river, and may even suggest a supra-specific status for B. glabrata. Brazilian populations were the most diverse and appeared basal to the other populations. Venezuelan haplotypes formed a single clade, albeit not strongly supported. Two Venezuelan haplotypes appear rather similar to Brazilian haplotypes. Similarly, Lesser Antilles haplotypes clustered in the same monophyletic clade, which suggests that the recent colonisation of the Antilles has a northern South American origin. However, the estimated divergence time between Antilles and Venezuelan sequences is extremely large (conservatively higher than 10(5) years). These results are discussed in the light of (i) phylogeographic patterns at South American scale, and (ii) recurrent introduction of molluscs, especially in the Antilles, as a consequence of human activities. PMID:12242642

  11. cDNA-derived amino acid sequence of rat mitochondrial 3-oxoacyl-CoA thiolase with no transient presequence: structural relationship with peroxisomal isozyme.

    PubMed Central

    Arakawa, H; Takiguchi, M; Amaya, Y; Nagata, S; Hayashi, H; Mori, M

    1987-01-01

    The sorting of homologous proteins between two separate intracellular organelles is a major unsolved problem. 3-Oxoacyl-CoA thiolase is localized in mitochondria and peroxisomes, and provides a good system for the study on the problem. Unlike most mitochondrial matrix proteins, mitochondrial 3-oxoacyl-CoA thiolase in rats is synthesized with no transient presequence and possess information for mitochondrial targeting and import in the mature protein. Two overlapping cDNA clones contained an open reading frame encoding a polypeptide of 397 amino acid residues (predicted Mr = 41,868), a 5' untranslated sequence of 164 bp, a 3' untranslated sequence of 264 bp and a poly(A) tract. The amino acid sequence of the mitochondrial thiolase is 37% identical with that of the mature portion of rat peroxisomal 3-oxoacyl-CoA thiolase precursor. These results suggest that the two thiolases have a common origin and obtained information for targeting to respective organelles during evolution. Two portions in the mitochondrial thiolase that may serve as a mitochondrial targeting signal are presented. PMID:3038520

  12. Reduced-Median-Network Analysis of Complete Mitochondrial DNA Coding-Region Sequences for the Major African, Asian, and European Haplogroups

    PubMed Central

    Herrnstadt, Corinna; Elson, Joanna L.; Fahy, Eoin; Preston, Gwen; Turnbull, Douglass M.; Anderson, Christen; Ghosh, Soumitra S.; Olefsky, Jerrold M.; Beal, M. Flint; Davis, Robert E.; Howell, Neil

    2002-01-01

    The evolution of the human mitochondrial genome is characterized by the emergence of ethnically distinct lineages or haplogroups. Nine European, seven Asian (including Native American), and three African mitochondrial DNA (mtDNA) haplogroups have been identified previously on the basis of the presence or absence of a relatively small number of restriction-enzyme recognition sites or on the basis of nucleotide sequences of the D-loop region. We have used reduced-median-network approaches to analyze 560 complete European, Asian, and African mtDNA coding-region sequences from unrelated individuals to develop a more complete understanding of sequence diversity both within and between haplogroups. A total of 497 haplogroup-associated polymorphisms were identified, 323 (65%) of which were associated with one haplogroup and 174 (35%) of which were associated with two or more haplogroups. Approximately one-half of these polymorphisms are reported for the first time here. Our results confirm and substantially extend the phylogenetic relationships among mitochondrial genomes described elsewhere from the major human ethnic groups. Another important result is that there were numerous instances both of parallel mutations at the same site and of reversion (i.e., homoplasy). It is likely that homoplasy in the coding region will confound evolutionary analysis of small sequence sets. By a linkage-disequilibrium approach, additional evidence for the absence of human mtDNA recombination is presented here. PMID:11938495

  13. Population structure of the Indonesian giant tiger shrimp Penaeus monodon: a window into evolutionary similarities between paralogous mitochondrial DNA sequences and their genomes.

    PubMed

    Abdul-Aziz, Muslihudeen A; Schöfl, Gerhard; Mrotzek, Grit; Haryanti, Haryanti; Sugama, Ketut; Saluz, Hans Peter

    2015-09-01

    Here we used both microsatellites and mtCR (mitochondrial DNA control region) sequences as genetic markers to examine the genetic diversity and population structure of Penaeus monodon shrimp from six Indonesian regions. The microsatellite data showed that shrimp from the Indian and the Pacific Ocean were genetically distinct from each other. It has been reported previously that P. monodon mtCR sequences from the Indo-Pacific group into two major paralogous clades of unclear origin. Here we show that the population structure inferred from mtCR sequences matches the microsatellite-based population structure for one of these clades. This is consistent with the notion that this mtCR clade shares evolutionary history with nuclear DNA and may thus represent nuclear mitochondrial pseudogenes (Numts). PMID:26380687

  14. Population structure of the Indonesian giant tiger shrimp Penaeus monodon: a window into evolutionary similarities between paralogous mitochondrial DNA sequences and their genomes

    PubMed Central

    Abdul-Aziz, Muslihudeen A; Schöfl, Gerhard; Mrotzek, Grit; Haryanti, Haryanti; Sugama, Ketut; Saluz, Hans Peter

    2015-01-01

    Here we used both microsatellites and mtCR (mitochondrial DNA control region) sequences as genetic markers to examine the genetic diversity and population structure of Penaeus monodon shrimp from six Indonesian regions. The microsatellite data showed that shrimp from the Indian and the Pacific Ocean were genetically distinct from each other. It has been reported previously that P. monodon mtCR sequences from the Indo-Pacific group into two major paralogous clades of unclear origin. Here we show that the population structure inferred from mtCR sequences matches the microsatellite-based population structure for one of these clades. This is consistent with the notion that this mtCR clade shares evolutionary history with nuclear DNA and may thus represent nuclear mitochondrial pseudogenes (Numts). PMID:26380687

  15. mtDNAmanager: a Web-based tool for the management and quality analysis of mitochondrial DNA control-region sequences

    PubMed Central

    Lee, Hwan Young; Song, Injee; Ha, Eunho; Cho, Sung-Bae; Yang, Woo Ick; Shin, Kyoung-Jin

    2008-01-01

    Background For the past few years, scientific controversy has surrounded the large number of errors in forensic and literature mitochondrial DNA (mtDNA) data. However, recent research has shown that using mtDNA phylogeny and referring to known mtDNA haplotypes can be useful for checking the quality of sequence data. Results We developed a Web-based bioinformatics resource "mtDNAmanager" that offers a convenient interface supporting the management and quality analysis of mtDNA sequence data. The mtDNAmanager performs computations on mtDNA control-region sequences to estimate the most-probable mtDNA haplogroups and retrieves similar sequences from a selected database. By the phased designation of the most-probable haplogroups (both expected and estimated haplogroups), mtDNAmanager enables users to systematically detect errors whilst allowing for confirmation of the presence of clear key diagnostic mutations and accompanying mutations. The query tools of mtDNAmanager also facilitate database screening with two options of "match" and "include the queried nucleotide polymorphism". In addition, mtDNAmanager provides Web interfaces for users to manage and analyse their own data in batch mode. Conclusion The mtDNAmanager will provide systematic routines for mtDNA sequence data management and analysis via easily accessible Web interfaces, and thus should be very useful for population, medical and forensic studies that employ mtDNA analysis. mtDNAmanager can be accessed at . PMID:19014619

  16. Mitochondrial and nuclear DNA sequences reveal recent divergence in morphologically indistinguishable petrels.

    PubMed

    Welch, Andreanna J; Yoshida, Allison A; Fleischer, Robert C

    2011-04-01

    Often during the process of divergence, genetic markers will only gradually obtain the signal of isolation. Studies of recently diverged taxa utilizing both mitochondrial and nuclear data sets may therefore yield gene trees with differing levels of phylogenetic signal as a result of differences in coalescence times. However, several factors can lead to this same pattern, and it is important to distinguish between them to gain a better understanding of the process of divergence and the factors driving it. Here, we employ three nuclear intron loci in addition to the mitochondrial Cytochrome b gene to investigate the magnitude and timing of divergence between two endangered and nearly indistinguishable petrel taxa: the Galapagos (GAPE) and Hawaiian (HAPE) petrels (Pterodroma phaeopygia and P. sandwichensis). Phylogenetic analyses indicated reciprocal monophyly between these two taxa for the mitochondrial data set, but trees derived from the nuclear introns were unresolved. Coalescent analyses revealed effectively no migration between GAPE and HAPE over the last 100,000 generations and that they diverged relatively recently, approximately 550,000 years ago, coincident with a time of intense ecological change in both the Galapagos and Hawaiian archipelagoes. This indicates that recent divergence and incomplete lineage sorting are causing the difference in the strength of the phylogenetic signal of each data set, instead of insufficient variability or ongoing male-biased dispersal. Further coalescent analyses show that gene flow is low even between islands within each archipelago suggesting that divergence may be continuing at a local scale. Accurately identifying recently isolated taxa is becoming increasingly important as many clearly recognizable species are already threatened by extinction. PMID:21324012

  17. Phylogenetic studies of two Anas platyrhynchos (Anatini: Anatinae) in Hunan province of China based on complete mitochondrial DNA sequences.

    PubMed

    He, Xi; Lin, Qian; Cao, Rong; Yuan, Ya-Ting; Pan, Di-Zi; Yun, Long; Zhang, Shi-Rui; Hou, De-Xing

    2016-07-01

    In this study, we cloned and sequenced the complete mitochondrial DNAs of Chinese duck, Anas platyrhynchos, population from two different areas of Hunan province in China. The Anas platyrhynchos breed Linwu duck (LW) sample was taken from the Linwu county of Chenzhou city, and the Anas platyrhynchos breed Youxian duck (YX) sample was taken from the Youxian county of Zhuzhou city. The lengths of their complete mitochondrial genome were 16,604 bp (LW) and 16,606 bp (YX), respectively. The organization of the two Anas platyrhynchos breed mitochondrial genomes was similar to those reported from other duck mitochondrial genomes. Phylogenetic analyses using N-J computational algorithms showed that the analyzed species are divided into four major clades: Anatinae, Anserinae, Dendrocygninae and Anseranatidae. Also, the Linwu duck and Youxian duck have highly similar phylogenetic relationship. PMID:26057008

  18. DNA sequence of the Xenopus laevis mitochondrial heavy and light strand replication origins and flanking tRNA genes.

    PubMed Central

    Wong, J F; Ma, D P; Wilson, R K; Roe, B A

    1983-01-01

    We have determined the primary structure of the two regions of the Xenopus laevis mitochondrial genome which encompass the origins of heavy (H) and light (L) strand replication. The first segment, which consists of 2398 nucleotides, contains the displacement loop (D-loop), the tRNA genes for threonine, proline and phenylalanine, the origin of H-strand replication, and the promoters of H- and L-strand transcription. The second segment, which consists of 447 nucleotides, contains the L-strand replication origin flanked by the tRNA genes for tryptophan, alanine, asparagine, cysteine, and tyrosine. A comparison of the sequences of the Xenopus laevis mitochondrial L-strand replication origin region and the eight tRNA genes with their counterparts from the mammalian mitochondrial genomes reveals that these regions are quite homologous, while its D-loop region shows only slight homology with those of the mammalian mitochondrial genomes. PMID:6308566

  19. Complete sequence of the mitochondrial DNA of the red alga Porphyra purpurea. Cyanobacterial introns and shared ancestry of red and green algae.

    PubMed Central

    Burger, G; Saint-Louis, D; Gray, M W; Lang, B F

    1999-01-01

    The mitochondrial DNA (mtDNA) of Porphyra purpurea, a circular-mapping genome of 36,753 bp, has been completely sequenced. A total of 57 densely packed genes has been identified, including the basic set typically found in animals and fungi, as well as seven genes characteristic of protist and plant mtDNAs and specifying ribosomal proteins and subunits of succinate:ubiquinone oxidoreductase. The mitochondrial large subunit rRNA gene contains two group II introns that are extraordinarily similar to those found in the cyanobacterium Calothrix sp, suggesting a recent lateral intron transfer between a bacterial and a mitochondrial genome. Notable features of P. purpurea mtDNA include the presence of two 291-bp inverted repeats that likely mediate homologous recombination, resulting in genome rearrangement, and of numerous sequence polymorphisms in the coding and intergenic regions. Comparative analysis of red algal mitochondrial genomes from five different, evolutionarily distant orders reveals that rhodophyte mtDNAs are unusually uniform in size and gene order. Finally, phylogenetic analyses provide strong evidence that red algae share a common ancestry with green algae and plants. PMID:10488235

  20. Phylogeny of the sea hares in the aplysia clade based on mitochondrial DNA sequence data

    SciTech Connect

    Medina, Monica; Collins, Timothy; Walsh, Patrick J.

    2004-02-20

    Sea hare species within the Aplysia clade are distributed worldwide. Their phylogenetic and biogeographic relationships are, however, still poorly known. New molecular evidence is presented from a portion of the mitochondrial cytochrome oxidase c subunit 1 gene (cox1) that improves our understanding of the phylogeny of the group. Based on these data a preliminary discussion of the present distribution of sea hares in a biogeographic context is put forward. Our findings are consistent with only some aspects of the current taxonomy and nomenclatural changes are proposed. The first, is the use of a rank free classification for the different Aplysia clades and subclades as opposed to previously used genus and subgenus affiliations. The second, is the suggestion that Aplysia brasiliana (Rang, 1828) is a junior synonym of Aplysia fasciata (Poiret, 1789). The third, is the elimination of Neaplysia since its only member is confirmed to be part of the large Varria clade.

  1. Targeted exome sequencing of suspected mitochondrial disorders

    PubMed Central

    Lieber, Daniel S.; Calvo, Sarah E.; Shanahan, Kristy; Slate, Nancy G.; Liu, Shangtao; Hershman, Steven G.; Gold, Nina B.; Chapman, Brad A.; Thorburn, David R.; Berry, Gerard T.; Schmahmann, Jeremy D.; Borowsky, Mark L.; Mueller, David M.; Sims, Katherine B.

    2013-01-01

    Objective: To evaluate the utility of targeted exome sequencing for the molecular diagnosis of mitochondrial disorders, which exhibit marked phenotypic and genetic heterogeneity. Methods: We considered a diverse set of 102 patients with suspected mitochondrial disorders based on clinical, biochemical, and/or molecular findings, and whose disease ranged from mild to severe, with varying age at onset. We sequenced the mitochondrial genome (mtDNA) and the exons of 1,598 nuclear-encoded genes implicated in mitochondrial biology, mitochondrial disease, or monogenic disorders with phenotypic overlap. We prioritized variants likely to underlie disease and established molecular diagnoses in accordance with current clinical genetic guidelines. Results: Targeted exome sequencing yielded molecular diagnoses in established disease loci in 22% of cases, including 17 of 18 (94%) with prior molecular diagnoses and 5 of 84 (6%) without. The 5 new diagnoses implicated 2 genes associated with canonical mitochondrial disorders (NDUFV1, POLG2), and 3 genes known to underlie other neurologic disorders (DPYD, KARS, WFS1), underscoring the phenotypic and biochemical overlap with other inborn errors. We prioritized variants in an additional 26 patients, including recessive, X-linked, and mtDNA variants that were enriched 2-fold over background and await further support of pathogenicity. In one case, we modeled patient mutations in yeast to provide evidence that recessive mutations in ATP5A1 can underlie combined respiratory chain deficiency. Conclusion: The results demonstrate that targeted exome sequencing is an effective alternative to the sequential testing of mtDNA and individual nuclear genes as part of the investigation of mitochondrial disease. Our study underscores the ongoing challenge of variant interpretation in the clinical setting. PMID:23596069

  2. Mitochondrial DNA Damage and Diseases

    PubMed Central

    Singh, Gyanesh; Pachouri, U C; Khaidem, Devika Chanu; Kundu, Aman; Chopra, Chirag; Singh, Pushplata

    2015-01-01

    Various endogenous and environmental factors can cause mitochondrial DNA (mtDNA) damage.  One of the reasons for enhanced mtDNA damage could be its proximity to the source of oxidants, and lack of histone-like protective proteins. Moreover, mitochondria contain inadequate DNA repair pathways, and, diminished DNA repair capacity may be one of the factors responsible for high mutation frequency of the mtDNA. mtDNA damage might cause impaired mitochondrial function, and, unrepaired mtDNA damage has been frequently linked with several diseases. Exploration of mitochondrial perspective of diseases might lead to a better understanding of several diseases, and will certainly open new avenues for detection, cure, and prevention of ailments.

  3. Complete mitochondrial genome DNA sequence for two ophiuroids and a holothuroid: the utility of protein gene sequence and gene maps in the analyses of deep deuterostome phylogeny.

    PubMed

    Scouras, Andrea; Beckenbach, Karen; Arndt, Allan; Smith, Michael J

    2004-04-01

    The complete mitochondrial genome sequences have been determined for the holothuroid Cucumaria miniata and two ophiuroid species Ophiopholis aculeata and Ophiura lütkeni. In addition, the nucleotide sequence of the mitochondrial protein-coding genes for the asteroid Pisaster ochraceus has been completed. Maximum-likelihood and LogDet distance analyses of concatenated protein-coding sequences produced a series of trees that did not conclusively support generally accepted models of echinoderm phylogeny. The ophiuroid data consistently demonstrated accelerated nucleotide divergence rates and lack of stationarity. This confounds the phylogenetic analyses. Molecular investigations using individual protein-coding gene alignments demonstrated that the cytochrome b gene exhibits the least deviation in rate and stationarity and generated some trees consistent with proposed echinoderm phylogenies. Phylogenies based on echinoderm mitochondrial gene rearrangements also proved problematic because of extensive variation in gene order between and within classes. A comparison of the two distinctive ophiuroid mitochondrial gene orders supports the hypothesis that O. lütkeni has a more derived mitochondrial gene order versus O. aculeata. The variation in the echinoderm mitochondrial gene maps reinforces the limitations of the application of mitochondrial gene rearrangements as a global phylogenetic tool. PMID:15019608

  4. Taxonomic and genetic status of lancelet in Weihai coastal waters based on mitochondrial DNA sequence

    NASA Astrophysics Data System (ADS)

    Zhao, Qi; Zhu, Qian

    2011-05-01

    Lancelets (subphylum Cephalochordata) are a transitional species between invertebrates and vertebrates. They are currently listed in the Second Order of Protected Animals in China. Lancelets were first documented in the waters around the city of Weihai (Shandong, China) in 2002. However, little is known about the phylogeny of this population. We analyzed the sequences of cytochrome b (Cyt b) and cytochrome oxidase c subunit I (CO I) genes from samples collected from coastal waters in the cities of Weihai and Qingdao (˜150 km to the south). We analyzed 176 sequences, of which 150 were novel sequences and 26 were obtained from GenBank. Our results suggest that (1) lancelets in the two cities belong to the species Branchiostoma japonicus and have a high level of genetic diversity; (2) there is a high level of gene flow and low level of genetic differentiation between lancelets from the two cities; (3) demographic expansion occurred an estimated 1.1 million years (Ma) ago (mid Pleistocene) for lancelets in Weihai-Qingdao; and (4) the divergence between B. belcheri and B. japonicus was estimated at between 37.75 Ma (early Oligocene)-46.5 Ma (late Eocene).

  5. Mitochondrial DNA sequence analyses in Bornean sucker fishes (Balitoridae: Teleostei: Gastromyzontinae).

    PubMed

    Sulaiman, Zohrah Haji; Hui, Tan Heok; Lim, Kelvin K P; Ng, Peter K L

    2006-03-01

    Phylogenetic relationships among Bornean sucker fishes (Teleostei: Balitoridae: Gastromyzontinae) were investigated by comparing cytochrome b gene sequences from eight species. The results were in general agreement with previous morphology-based studies. It was found that the genera Gastromyzon and Neogastromyzon are both monophyletic and that the Chinese homalopterid Crossostoma lacustre (Homalopterinae) is not related to the Bornean species. This molecular-level study of cytochrome b gene variation in Bornean gastromyzontins will undoubtedly help to shed light on the molecular systematics of this unique freshwater fish. PMID:21395984

  6. Analysis of complete mitochondrial DNA sequences of three members of the Montastraea annularis coral species complex (Cnidaria, Anthozoa, Scleractinia)

    NASA Astrophysics Data System (ADS)

    Fukami, Hironobu; Knowlton, Nancy

    2005-11-01

    Complete mitochondrial nucleotide sequences of two individuals each of Montastraea annularis, Montastraea faveolata, and Montastraea franksi were determined. Gene composition and order differed substantially from the sea anemone Metridium senile, but were identical to that of the phylogenetically distant coral genus Acropora. However, characteristics of the non-coding regions differed between the two scleractinian genera. Among members of the M. annularis complex, only 25 of 16,134 base pair positions were variable. Sixteen of these occurred in one colony of M. franksi, which (together with additional data) indicates the existence of multiple divergent mitochondrial lineages in this species. Overall, rates of evolution for these mitochondrial genomes were extremely slow (0.03 0.04% per million years based on the fossil record of the M. annularis complex). At higher taxonomic levels, patterns of genetic divergence and synonymous/nonsynonymous substitutions suggest non-neutral and unequal rates of evolution between the two lineages to which Montastraea and Acropora belong.

  7. Identification of sequence polymorphisms in the displacement loop region of mitochondrial DNA as a risk factor for renal cell carcinoma

    PubMed Central

    ZHANG, JUNXIA; GUO, ZHANJUN; BAI, YALING; CUI, LIWEN; ZHANG, SHENGLEI; XU, JINSHENG

    2013-01-01

    The accumulation of single-nucleotide polymorphisms (SNPs) in the displacement loop (D-loop) of mitochondrial DNA (mtDNA) may be associated with an increased cancer risk. In this case-control study, the SNPs in the mitochondrial D-loop of renal cell carcinoma (RCC) patients were identified and their association with cancer risk was evaluated. The minor alleles of nucleotides 16293A/G, 262A/G and 488T/C were associated with an increased risk, whereas the minor alleles of nucleotides 16298T/C and 16319G/A were associated with a decreased risk for RCC. Moreover, the nucleotides 16293, 262, 16298 and 16319 were identified as specifically associated with the risk of clear cell RCC (ccRCC), whereas 262 and 488 were specifically associated with papillary RCC and renal oncocytoma. In conclusion, SNPs in mtDNA are potential modifiers of RCC. The analysis of genetic polymorphisms in the mitochondrial D-loop may help identify the patient subgroups at a high risk of developing RCC. PMID:24648987

  8. Analyses of the population structure in a global collection of Phytophthora nicotianae isolates inferred from mitochondrial and nuclear DNA sequences.

    PubMed

    Mammella, Marco A; Martin, Frank N; Cacciola, Santa O; Coffey, Michael D; Faedda, Roberto; Schena, Leonardo

    2013-06-01

    Genetic variation within the heterothallic cosmopolitan plant pathogen Phytophthora nicotianae was determined in 96 isolates from a wide range of hosts and geographic locations by characterizing four mitochondrial (10% of the genome) and three nuclear loci. In all, 52 single-nucleotide polymorphisms (SNPs) (an average of 1 every 58 bp) and 313 sites with gaps representing 5,450 bases enabled the identification of 50 different multilocus mitochondrial haplotypes. Similarly, 24 SNPs (an average of 1 every 69 bp), with heterozygosity observed at each locus, were observed in three nuclear regions (hyp, scp, and β-tub) differentiating 40 multilocus nuclear genotypes. Both mitochondrial and nuclear markers revealed a high level of dispersal of isolates and an inconsistent geographic structuring of populations. However, a specific association was observed for host of origin and genetic grouping with both nuclear and mitochondrial sequences. In particular, the majority of citrus isolates from Italy, California, Florida, Syria, Albania, and the Philippines clustered in the same mitochondrial group and shared at least one nuclear allele. A similar association was also observed for isolates recovered from Nicotiana and Solanum spp. The present study suggests an important role of nursery populations in increasing genetic recombination within the species and the existence of extensive phenomena of migration of isolates that have been likely spread worldwide with infected plant material. PMID:23384862

  9. Mitochondrial DNA Evolution in Mice

    PubMed Central

    Ferris, Stephen D.; Sage, Richard D.; Prager, Ellen M.; Ritte, Uzi; Wilson, Allan C.

    1983-01-01

    This study extends knowledge of mitochondrial DNA (mtDNA) diversity in mice to include 208 animals belonging to eight species in the subgenus Mus. Highly purified mtDNA from each has been subjected to high-resolution restriction mapping with respect to the known sequence of one mouse mtDNA. Variation attributed to base substitutions was encountered at about 200 of the 300 cleavage sites examined, and a length mutation was located in or near the displacement loop. The variability of different functional regions in this genome was as follows, from least to most: ribosomal RNA, transfer RNA, known proteins, displacement loop and unidentified reading frames.—Phylogenetic analysis confirmed the utility of the Sage and Marshall revision of mouse classification, according to which there are at least four species of commensal mice and three species of aboriginal mice in the complex that was formerly considered to be one species. The most thoroughly studied of these species is Mus domesticus, the house mouse of Western Europe and the Mediterranean region, which is the mitochondrial source of all 50 of the laboratory strains examined and of the representatives of wild house mice introduced by Europeans to North and South America during the past few hundred years.—The level of mtDNA variation among wild representatives of (M. musculus) and several other mammalian species. By contrast, among the many laboratory strains that are known or suspected to stem from the pet mouse trade, there is little interstrain variation, most strains having the "old inbred" type of domesticus mtDNA, whose frequency in the 145 wild mice examined is low, about 0.04. Also notable is the apparent homogeneity of mtDNA in domesticus races that have fixed six or more fused chromosomes and the close relationship of some of these mtDNAs to those of karyotypically normal mice.—In addition, this paper discusses fossil and other evidence for the view that in mice, as in many other mammals, the average

  10. Tracking Mitochondrial DNA In Situ.

    PubMed

    Ligasová, Anna; Koberna, Karel

    2016-01-01

    The methods of the detection of (1) non-labeled and (2) BrdU-labeled mitochondrial DNA (mtDNA) are described. They are based on the production of singlet oxygen by monovalent copper ions and the subsequent induction of DNA gaps. The ends of interrupted DNA serve as origins for the labeling of mtDNA by DNA polymerase I or they are utilized by exonuclease that degrades DNA strands, unmasking BrdU in BrdU-labeled DNA. Both methods are sensitive approaches without the need of additional enhancement of the signal or the use of highly sensitive optical systems. PMID:26530676

  11. Systematics, biogeography, and evolution of Hemidactylus geckos (Reptilia: Gekkonidae) elucidated using mitochondrial DNA sequences.

    PubMed

    Carranza, S; Arnold, E N

    2006-02-01

    With more than 80 species inhabiting all warm continental land masses and hundreds of intervening continental and oceanic islands, Hemidactylus geckos are one of the most species-rich and widely distributed of all reptile genera. They consequently represent an excellent model for biogeographic, ecological, and evolutionary studies. A molecular phylogeny for Hemidactylus is presented here, based on 702 bp of mtDNA (303 bp cytochrome b and 399 bp 12S rRNA) from 166 individuals of 30 species of Hemidactylus plus Briba brasiliana, Cosymbotus platyurus, and several outgroups. The phylogeny indicates that Hemidactylus may have initially undergone rapid radiation, and long-distance dispersal is more extensive than in any other reptilian genus. In the last 15 My, African lineages have naturally crossed the Atlantic Ocean at least twice. They also colonized the Gulf of Guinea, Cape Verde and Socotra islands, again sometimes on more than one occasion. Many extensive range extensions have occurred much more recently, sometimes with devastating consequences for other geckos. These colonizations are likely to be largely anthropogenic, involving the 'weedy' commensal species, H. brookii s. lat, H. mabouia, H. turcicus, H. garnotii, and H. frenatus. These species collectively have colonized the Mediterranean region, tropical Africa, much of the Americas and hundreds of islands in the Pacific, Indian, and Atlantic oceans. Five well-supported clades are discernable in Hemidactylus, with the African H. fasciatus unallocated. 1. Tropical Asian clade: (Cosymbotus platyurus (H. bowringii, H. karenorum, H. garnotii)) (H. flaviviridis (Asian H. brookii, H. frenatus)). 2. African H. angulatus and Caribbean H. haitianus. 3. Arid clade, of NE Africa, SW Asia, etc.: (H. modestus (H. citernii, H. foudai)) (H. pumilio (H. granti, H. dracaenacolus) (H. persicus, H. macropholis, H. robustus, H. turcicus (H. oxyrhinus (H. homoeolepis, H. forbesii))). 4. H. mabouia clade (H. yerburii, H. mabouia

  12. Double trouble for grasshopper molecular systematics: intra-individual heterogeneity of both mitochondrial 12S-valine-16S and nuclear internal transcribed spacer ribosomal DNA sequences in Hesperotettix viridis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hesperotettix viridis grasshoppers (Orthoptera: Acrididae:Melanoplinae) exhibit intra-individual variation in both mitochondrial 12S-valine-16S and nuclear internal transcribed spacer (ITS) ribosomal DNA sequences. These findings violate core assumptions underlying DNA sequence data obtained via pol...

  13. Population genetic structure of the parasitic nematode Camallanus cotti inferred from DNA sequences of ITS1 rDNA and the mitochondrial COI gene.

    PubMed

    Wu, Shan G; Wang, Gui T; Xi, Bing W; Xiong, Fan; Liu, Tao; Nie, Pin

    2009-10-14

    The population genetic structure of fish parasitic nematode, Camallanus cotti, collected from the Yangtze River, Pearl River and Minjiang River in China was investigated. From these parasites, the approximately 730 bp of the first internal transcribed spacer of ribosomal DNA (ITS1 rDNA) and the 428bp of mitochondrial cytochrome c oxidase subunit I (COI) gene were sequenced. For the ITS1 rDNA data set, highly significant Fst values and low rates of migration were detected between the Pearl River group and both the Yangtze River (Fst=0.70, P<0.00001; Nm=0.21) and Minjiang River (Fst=0.73, P<0.00001; Nm=0.18) groups, while low Fst value (Fst=0.018, P>0.05) and high rate of migration (Nm=28.42) were found between the Minjiang and the Yangtze rivers. When different host/locality populations (subpopulations) within each river were considered, subpopulations between the Yangtze River and Minjiang River had low Fst values (3.72), while Pearl River subpopulations were significantly different from the Yangtze River and Minjiang River subpopulations (Fst>or=0.59; Nm<1). The COI gene data set revealed a similar genetic structure. Both phylogenetic analyses and a statistical parsimony network grouped the Pearl River haplotypes into one phylogroup, while the Yangtze River and Minjiang River haplotypes formed a second group. These results suggested that the Yangtze River and Minjiang River subpopulations constituted a single reproductive pool that was distinct from the Pearl River subpopulations. In addition, the present study did not find host-related genetic differentiation occurring in the same drainage. PMID:19632785

  14. Phylogenetic relationships among the major lineages of the birds-of-paradise (Paradisaeidae) using mitochondrial DNA gene sequences.

    PubMed

    Nunn, G B; Cracraft, J

    1996-06-01

    Complete mitochondrial cytochrome b gene sequences were determined from 12 species of the Australo-Papuan birds-of-paradise (Paradisaeidae) representing 9 genera. Phylogenetic analysis of these and 5 previously published sequences reveals a radiation of the main paradisaeinine lineages that took place over a relatively short evolutionary time scale. The core paradisaeinines are resolved as the monophyletic sister-group to the crow-like manucodines. The genus Parotia is basal to other paradisaeinines and is not closely related to the morphologically similar genera Ptiloris and Lophorina. Three major clades within the paradisaeinine ingroup include: (1) Cicinnurus and Diphyllodes, (2) Ptiloris and Lophorina, and (3) the genus Paradisaea. The monotypic genus Seleucidis is apparently closely related to clades (1) and (2). Cytochrome b sequences did not provide evidence for the monophyly of the sicklebill genera Epimachus and Drepanornis. The paradisaeid tree is characterized by short internodal distances. Thus, some clades cannot be strongly resolved by cytochrome b sequences alone. PMID:8744759

  15. Complete Mitochondrial DNA Sequences of the Threadfin Cichlid (Petrochromis trewavasae) and the Blunthead Cichlid (Tropheus moorii) and Patterns of Mitochondrial Genome Evolution in Cichlid Fishes

    PubMed Central

    Fischer, Christoph; Koblmüller, Stephan; Gülly, Christian; Schlötterer, Christian; Sturmbauer, Christian; Thallinger, Gerhard G.

    2013-01-01

    The cichlid fishes of the East African Great Lakes represent a model especially suited to study adaptive radiation and speciation. With several African cichlid genome projects being in progress, a promising set of closely related genomes is emerging, which is expected to serve as a valuable data base to solve questions on genotype-phenotype relations. The mitochondrial (mt) genomes presented here are the first results of the assembly and annotation process for two closely related but eco-morphologically highly distinct Lake Tanganyika cichlids, Petrochromis trewavasae and Tropheus moorii. The genomic sequences comprise 16,588 bp (P. trewavasae) and 16,590 bp (T. moorii), and exhibit the typical mitochondrial structure, with 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes, and a non-coding control region. Analyses confirmed that the two species are very closely related with an overall sequence similarity of 96%. We analyzed the newly generated sequences in the phylogenetic context of 21 published labroid fish mitochondrial genomes. Consistent with other vertebrates, the D-loop region was found to evolve faster than protein-coding genes, which in turn are followed by the rRNAs; the tRNAs vary greatly in the rate of sequence evolution, but on average evolve the slowest. Within the group of coding genes, ND6 evolves most rapidly. Codon usage is similar among examined cichlid tribes and labroid families; although a slight shift in usage patterns down the gene tree could be observed. Despite having a clearly different nucleotide composition, ND6 showed a similar codon usage. C-terminal ends of Cox1 exhibit variations, where the varying number of amino acids is related to the structure of the obtained phylogenetic tree. This variation may be of functional relevance for Cox1 synthesis. PMID:23826193

  16. Recovering phylogenetic signal from DNA sequences: relationships within the corvine assemblage (class aves) as inferred from complete sequences of the mitochondrial DNA cytochrome-b gene.

    PubMed

    Helm-Bychowski, K; Cracraft, J

    1993-11-01

    Phylogenetic analysis of cytochrome-b sequences and cranial osteological characters for nine genera of corvine passerine birds supports the hypothesis that the two major groups of birds of paradise, the manucodines and paradisaeinines, constitute a monophyletic group and that their postulated sister group is the Corvidae (crows, jays, and allies). The data are also consistent with the hypothesis that the bowerbirds are not closely related to the birds of paradise but instead lie near the base of the corvine assemblage. The corvine radiation exemplifies a case of multiple star phylogenies embedded within a major clade, with the branching pattern characterized by very short internodal divergence times. Such histories are difficult to resolve no matter what type of data is employed, because little change accumulates between branching events. With respect to sequence data, reconstructed tree topologies are sensitive to the choice of outgroup and to the method of analysis (e.g., transversion vs. global parsimony). In such cases, assessing the "reliability" of a best-fit or most-parsimonious tree inferred from any particular data set becomes problematic. Statistical tests of tree topologies that depend on random sampling of characters will generally be inconclusive in that all cladistic components will tend to be poorly supported because relatively few character-state changes will be recorded between branching events. It is suggested, on the other hand, that congruence in cladistic signal across different data sets may be a potentially more useful method for evaluating the reliability of the signal of any one data set. Resolution of star phylogenies will probably be possible only if DNA sequence and morphological characters are combined in a single analysis. PMID:8277851

  17. Phylogenetic studies of four Anser cygnoides (Anserini: Anserinae) in Hunan province of China based on complete mitochondrial DNA sequences.

    PubMed

    Dai, Qiu-Zhong; Lin, Qian; Jiang, Gui-Tao

    2016-07-01

    In this study, we cloned and sequenced the complete mitochondrial DNAs of Chinese goose, Anser cygnoides populations from three different areas of Hunan province in China. The Anser cygnoides breed Wugangtong white goose (WGTW) sample and Wugangtong grey goose sample (WGTG) were taken from the Wugang county of Shaoyang city, the Anser cygnoides breed Xupu goose (XP) sample was taken from the Xupu county of Huaihua city, and the Anser cygnoides breed Yanling white goose (YLW) sample was taken from the Yanling county of Zhuzhou city. The organization of the four Anser cygnoides breeds mitochondrial genomes was similar. Phylogenetic analyses using N-J computational algorithms showed that the analyzed species are divided into four major clades: Anatinae, Anserinae, Dendrocygninae and Anseranatidae. It was noted that Wugangtong white goose, Yanling white goose and Xupu goose have highly similar phylogenetic relationship. PMID:26057006

  18. Quantification of human mitochondrial DNA using synthesized DNA standards.

    PubMed

    Kavlick, Mark F; Lawrence, Helen S; Merritt, R Travis; Fisher, Constance; Isenberg, Alice; Robertson, James M; Budowle, Bruce

    2011-11-01

    Successful mitochondrial DNA (mtDNA) forensic analysis depends on sufficient quantity and quality of mtDNA. A real-time quantitative PCR assay was developed to assess such characteristics in a DNA sample, which utilizes a duplex, synthetic DNA to ensure optimal quality assurance and quality control. The assay's 105-base pair target sequence facilitates amplification of degraded DNA and is minimally homologous to nonhuman mtDNA. The primers and probe hybridize to a region that has relatively few sequence polymorphisms. The assay can also identify the presence of PCR inhibitors and thus indicate the need for sample repurification. The results show that the assay provides information down to 10 copies and provides a dynamic range spanning seven orders of magnitude. Additional experiments demonstrated that as few as 300 mtDNA copies resulted in successful hypervariable region amplification, information that permits sample conservation and optimized downstream PCR testing. The assay described is rapid, reliable, and robust. PMID:21883207

  19. Sequencing and comparing whole mitochondrial genomes ofanimals

    SciTech Connect

    Boore, Jeffrey L.; Macey, J. Robert; Medina, Monica

    2005-04-22

    Comparing complete animal mitochondrial genome sequences is becoming increasingly common for phylogenetic reconstruction and as a model for genome evolution. Not only are they much more informative than shorter sequences of individual genes for inferring evolutionary relatedness, but these data also provide sets of genome-level characters, such as the relative arrangements of genes, that can be especially powerful. We describe here the protocols commonly used for physically isolating mtDNA, for amplifying these by PCR or RCA, for cloning,sequencing, assembly, validation, and gene annotation, and for comparing both sequences and gene arrangements. On several topics, we offer general observations based on our experiences to date with determining and comparing complete mtDNA sequences.

  20. Long-distance colonization and radiation in gekkonid lizards, Tarentola (Reptilia: Gekkonidae), revealed by mitochondrial DNA sequences.

    PubMed Central

    Carranza, S; Arnold, E N; Mateo, J A; López-Jurado, L F

    2000-01-01

    Morphological systematics makes it clear that many non-volant animal groups have undergone extensive transmarine dispersal with subsequent radiation in new, often island, areas. However, details of such events are often lacking. Here we use partial DNA sequences derived from the mitochondrial cytochrome b and 12S rRNA genes (up to 684 and 320 bp, respectively) to trace migration and speciation in Tarentola geckos, a primarily North African clade which has invaded many of the warmer islands in the North Atlantic Ocean. There were four main invasions of archipelagos presumably by rafting. (i) The subgenus Neotarentola reached Cuba up to 23 million years (Myr) ago, apparently via the North Equatorial current, a journey of at least 6000 km. (ii) The subgenus Tarentola invaded the eastern Canary Islands relatively recently covering a minimum of 120 km. (iii) The subgenus Makariogecko got to Gran Canaria and the western Canary Islands 7-17.5 Myr ago, either directly from the mainland or via the Selvages or the archipelago of Madeira, an excursion of 200-1200 km. (iv) A single species of Makariogecko from Gomera or Tenerife in the western Canaries made the 1400 km journey to the Cape Verde Islands tip to 7 Myr ago by way of the south-running Canary current. Many journeys have also occurred within archipelagos, a minimum of five taking place in the Canaries and perhaps 16 in the Cape Verde Islands. Occupation of the Cape Verde archipelago first involved an island in the northern group, perhaps São Nicolau, with subsequent spread to its close neighbours. The eastern and southern islands were colonized from these northern islands, at least two invasions widely separated in time being involved. While there are just three allopatric species of Makariogecko in the Canaries, the single invader of the Cape Verde Islands radiated into five, most of the islands being inhabited by two of these which differ in size. While size difference may possibly be a product of character

  1. Mitochondrial DNA sequence variation in Drosophilid species (Diptera: Drosophilidae) along altitudinal gradient from Central Himalayan region of India.

    PubMed

    Sarswat, Manisha; Dewan, Saurabh; Fartyal, Rajendra Singh

    2016-06-01

    Central Himalayan region of India encompasses varied ecological habitats ranging from near tropics to the mid-elevation forests dominated by cool-temperate taxa. In past, we have reported several new records and novel species from Uttarakhand state of India. Here, we assessed genetic variations in three mitochondrial genes, namely, 16S rRNA, cytochrome c oxidase subunit I and cytochrome c oxidase subunit II (COI and COII) in 26 drosophilid species collected along altitudinal transect from 550 to 2700 m above mean sea level. In the present study, overall 543 sequences were generated, 82 for 16S rRNA, 238 for COI, 223 for COII with 21, 47 and 45 mitochondrial haplotypes for 16S rRNA, COI and COII genes, respectively. Almost all species were represented by 2-3 unique mitochondrial haplotypes, depicting a significant impact of environmental heterogeneity along altitudinal gradient on genetic diversity. Also for the first time, molecular data of some rare species like Drosophila mukteshwarensis, Liodrosophila nitida, Lordiphosa parantillaria, Lordiphosa ayarpathaensis, Scaptomyza himalayana, Scaptomyza tistai, Zaprionus grandis and Stegana minuta are provided to public domains through this study. PMID:27350680

  2. Markov chain for estimating human mitochondrial DNA mutation pattern

    NASA Astrophysics Data System (ADS)

    Vantika, Sandy; Pasaribu, Udjianna S.

    2015-12-01

    The Markov chain was proposed to estimate the human mitochondrial DNA mutation pattern. One DNA sequence was taken randomly from 100 sequences in Genbank. The nucleotide transition matrix and mutation transition matrix were estimated from this sequence. We determined whether the states (mutation/normal) are recurrent or transient. The results showed that both of them are recurrent.

  3. Identification of sequence polymorphism in the D-Loop region of mitochondrial DNA as a risk factor for hepatocellular carcinoma with distinct etiology

    PubMed Central

    2010-01-01

    Background Hepatocellular carcinoma (HCC) is frequently preceded by hepatitis virus infection or alcohol abuse. Genetic backgrounds may increase susceptibility to HCC from these exposures. Methods Mitochondrial DNA (mtDNA) of peripheral blood, tumor, and/or adjacent non-tumor tissue from 49 hepatitis B virus-related and 11 alcohol-related HCC patients, and from 38 controls without HCC were examined for single nucleotide polymorphisms (SNPs) and mutations in the D-Loop region. Results Single nucleotide polymorphisms (SNPs) in the D-loop region of mt DNA were examined in HCC patients. Individual SNPs, namely the 16266C/T, 16293A/G, 16299A/G, 16303G/A, 242C/T, 368A/G, and 462C/T minor alleles, were associated with increased risk for alcohol- HCC, and the 523A/del was associated with increased risks of both HCC types. The mitochondrial haplotypes under the M haplogroup with a defining 489C polymorphism were detected in 27 (55.1%) of HBV-HCCand 8 (72.7%) of alcohol- HCC patients, and in 15 (39.5%) of controls. Frequencies of the 489T/152T, 489T/523A, and 489T/525C haplotypes were significantly reduced in HBV-HCC patients compared with controls. In contrast, the haplotypes of 489C with 152T, 249A, 309C, 523Del, or 525Del associated significantly with increase of alcohol-HCC risk. Mutations in the D-Loop region were detected in 5 adjacent non-tumor tissues and increased in cancer stage (21 of 49 HBV-HCC and 4 of 11 alcohol- HCC, p < 0.002). Conclusions In sum, mitochondrial haplotypes may differentially predispose patients to HBV-HCC and alcohol-HCC. Mutations of the mitochondrial D-Loop sequence may relate to HCC development. PMID:20849651

  4. Phylogeographic genomics of mitochondrial DNA: Highly-resolved patterns of intraspecific evolution and a multi-species, microarray-based DNA sequencing strategy for biodiversity studies.

    PubMed

    Carr, Steven M; Marshall, H Dawn; Duggan, Ana T; Flynn, Sarah M C; Johnstone, Kimberley A; Pope, Angela M; Wilkerson, Corinne D

    2008-03-01

    Phylogeographic genomics, based on multiple complete mtDNA genome sequences from within individual vertebrate species, provides highly-resolved intraspecific trees for the detailed study of evolutionary biology. We describe new biogeographic and historical insights from our studies of the genomes of codfish, wolffish, and harp seal populations in the Northwest Atlantic, and from the descendants of the founding human population of Newfoundland. Population genomics by conventional sequencing methods remains laborious. A new biotechnology, iterative DNA "re-sequencing", uses a DNA microarray to recover 30-300 kb of contiguous DNA sequence in a single experiment. Experiments with a single-species mtDNA microarray show that the method is accurate and efficient, and sufficiently species-specific to discriminate mtDNA genomes of moderately-divergent taxa. Experiments with a multi-species DNA microarray (the "ArkChip") show that simultaneous sequencing of species in different orders and classes detects SNPs within each taxon with equal accuracy as single-species-specific experiments. Iterative DNA sequencing offers a practical method for high-throughput biodiversity genomics that will enable standardized, coordinated investigation of multiple species of interest to Species at Risk and conservation biologists. PMID:20483203

  5. Phylogenetic relationships among ten sole species (Soleidae, Pleuronectiformes) from the Gulf of Cadiz (Spain) based on mitochondrial DNA sequences.

    PubMed

    Infante, Carlos; Catanese, Gaetano; Manchado, Manuel

    2004-01-01

    The entire sequence of the mitochondrial cytochrome b gene and 2 partial sequences of the ribosomal RNA12S and 16S genes have been used to study the molecular phylogeny in 10 species of soles belonging to the genera Solea, Monochirus, Microchirus, Dicologlossa, and Synaptura from the Atlantic waters of the Gulf of Cadiz (Spain). The results obtained by means of different phylogenetic analyses (maximum likelihood, maximum parsimony, and neighbor-joining) were quite similar, supporting the monophyly of the Solea species. Nevertheless, they favor the differentiation of Dicologlossa cuneata and Dicologlossa hexophthalma in 2 distinct genera, since the most closely related species to the last one is Microchirus azevia. The fact that M. azevia is also more closely linked to Monochirus hispidus than to its congeneric Microchirus boscanion argues in favor of a taxonomic reorganization of these genera. PMID:15747091

  6. Genetic characterization of the Pacific sheath-tailed bat (Emballonura semicaudata rotensis) using mitochondrial DNA sequence data

    USGS Publications Warehouse

    Oyler-McCance, Sara J.; Valdez, Ernest W.; O'Shea, Thomas; Fike, Jennifer A.

    2013-01-01

    Emballonura semicaudata occurs in the southwestern Pacific and populations on many islands have declined or disappeared. One subspecies (E. semicaudata rotensis) occurs in the Northern Mariana Islands, where it has been extirpated from all but 1 island (Aguiguan). We assessed genetic similarity between the last population of E. s. rotensis and 2 other subspecies, and examined genetic diversity on Aguiguan. We sampled 12 E. s. rotensis, sequenced them at 3 mitochondrial loci, and compared them with published sequences from 2 other subspecies. All 12 E. s. rotensis had identical sequences in each of the 3 regions. Using cytochrome-b (Cytb) data E. s. rotensis was sister to E. s. palauensis in a clade separate from E. s. semicaudata. 12S ribosomal RNA (12S) sequences grouped all E. s. semicaudata in 1 clade with E. s. rotensis in a clade by itself. Genetic distances among the 3 subspecies at Cytb were smallest between E. s. palauensis and E. s. rotensis. Distance between E. s. semicaudata and the other 2 subspecies was not different from the distance between E. s. semicaudata and the full species E. raffrayana. A similar relationship was found using the 12S data. These distances are larger than those typically reported for mammalian subspecies using Cytb sequence and within the range of sister species.

  7. Mitochondrial DNA and Cancer Epidemiology Workshop

    Cancer.gov

    A workshop to review the state-of-the science in the mitochondrial DNA field and its use in cancer epidemiology, and to develop a concept for a research initiative on mitochondrial DNA and cancer epidemiology.

  8. Stock Structure and Homing Fidelity in Gulf of Mexico Sturgeon (Acipenser Oxyrinchus Desotoi) Based on Restriction Fragment Length Polymorphism and Sequence Analyses of Mitochondrial DNA

    PubMed Central

    Stabile, J.; Waldman, J. R.; Parauka, F.; Wirgin, I.

    1996-01-01

    Efforts have been proposed worldwide to restore sturgeon populations through the use of hatcheries to supplement natural reproduction and to reintroduce sturgeon where they have become extinct. We examined the population structure and inferred the extent of homing in the anadromous Gulf of Mexico (Gulf) sturgeon (Acipenser oxyrinchus desotoi). Restriction fragment length polymorphism and control region sequence analyses of mitochondrial DNA (mtDNA) were used to identify haplotypes of Gulf sturgeon specimens obtained from eight drainages spanning the subspecies' entire distribution from Louisiana to Florida. Significant differences in haplotype frequencies indicated substantial geographic structuring of populations. A minimum of four regional or river-specific populations were identified (from west to east): (1) Pearl River, LA and Pascagoula River, MS, (2) Escambia and Yellow rivers, FL, (3) Choctawhatchee River, FL, and (4) Apalachicola, Ochlockonee, and Suwannee rivers, FL. Estimates of maternally mediated gene flow between any pair of the four regional or river-specific stocks ranged between 0.15 to 1.2. Tandem repeats in the mtDNA control region of Gulf sturgeon were not perfectly conserved. This result, together with an absence of heteroplasmy and length variation in Gulf sturgeon mtDNA, indicates that the molecular mechanisms of mtDNA control region sequence evolution differ among acipenserids. PMID:8889537

  9. Stock structure and homing fidelity in Gulf of Mexico sturgeon (Acipenser oxyrinchus desotoi) based on restriction fragment length polymorphism and sequence analyses of mitochondrial DNA.

    PubMed

    Stabile, J; Waldman, J R; Parauka, F; Wirgin, I

    1996-10-01

    Efforts have been proposed worldwide to restore sturgeon populations through the use of hatcheries to supplement natural reproduction and to reintroduce sturgeon where they have become extinct. We examined the population structure and inferred the extent of homing in the anadromous Gulf of Mexico (Gulf) sturgeon (Acipenser oxyrinchus desotoi). Restriction fragment length polymorphism and control region sequence analyses of mitochondrial DNA (mtDNA) were used to identify haplotypes of Gulf sturgeon specimens obtained from eight drainages spanning the subspecies' entire distribution from Louisiana to Florida. Significant differences in haplotype frequencies indicated substantial geographic structuring of populations. A minimum of four regional or river-specific populations were identified (from west to east): (1) Pearl River, LA and Pascagoula River, MS, (2) Escambia and Yellow rivers, FI, (3) Choctawbatchee River, FL and (4) Apalachicola Ochlockonee, and Suwannee rivers, FL. Estimates of maternally mediated gene flow between any pair of the four regional or river-specific stocks ranged between 0.15 to 1.2. Tandem repeats in the mtDNA control region of Gulf sturgeon were not perfectly conserved. This result, together with an absence of heteroplasmy and length variation in Gulf sturgeon mtDNA, indicates that the molecular mechanisms of mtDNA control region sequence evolution differ among acipenserids. PMID:8889537

  10. Phylogeny and Biogeography of Cedrus (Pinaceae) Inferred from Sequences of Seven Paternal Chloroplast and Maternal Mitochondrial DNA Regions

    PubMed Central

    Qiao, Cai-Yuan; Ran, Jin-Hua; Li, Yan; Wang, Xiao-Quan

    2007-01-01

    Background and Aims Cedrus (true cedars) is a very important horticultural plant group. It has a disjunct distribution in the Mediterranean region and western Himalaya. Its evolution and biogeography are of great interest to botanists. This study aims to investigate the phylogeny and biogeography of Cedrus based on sequence analyses of seven cytoplasmic DNA fragments. Methods The methods used were PCR amplification and sequencing of seven paternal cpDNA and maternal mtDNA fragments, parsimony and maximum likelihood analyses of the DNA dataset, and molecular clock estimate of divergence times of Cedrus species. Key Results Phylogenies of Cedrus constructed from cpDNA, mtDNA and the combined cp- and mt-DNA dataset are identical in topology. It was found that the Himalayan cedar C. deodara diverged first, and then the North African species C. atlantica separated from the common ancestor of C. libani and C. brevifolia, two species from the eastern Mediterranean area. Molecular clock estimates suggest that the divergence between C. atlantica and the eastern Mediterranean clade at 23·49 ± 3·55 to 18·81 ± 1·25 Myr and the split between C. libani and C. brevifolia at 7·83 ± 2·79 to 6·56 ± 1·20 Myr. Conclusions The results, combined with palaeogeographical and palaeoecological information, indicate that Cedrus could have an origin in the high latitude area of Eurasia, and its present distribution might result from vicariance of southerly migrated populations during climatic oscillations in the Tertiary and further fragmentation and dispersal of these populations. It is very likely that Cedrus migrated into North Africa in the very late Tertiary, while its arrival in the Himalayas would not have been before the Miocene, after which the phased or fast uplift of the Tibetan plateau happened. PMID:17611189

  11. Addressing the use of phylogenetics for identification of sequences in error in the SWGDAM mitochondrial DNA database.

    PubMed

    Budowle, Bruce; Polanskey, Deborah; Allard, Marc W; Chakraborty, Ranajit

    2004-11-01

    The SWGDAM mtDNA database is a publicly available reference source that is used for estimating the rarity of an evidence mtDNA profile. Because of the current processes for generating population data, it is unlikely that population databases are error free. The majority of the errors are due to human error and are transcriptional in nature. Phylogenetic analysis of data sets can identify some potential errors, and coupled with a review of the sequence data or alignment sheets can be a very useful tool. Seven sequences with errors have been identified by phylogenetic analysis. In addition, two samples were inadvertently modified when placed in the SWGDAM database. The corrected sequences are provided so that users can modify appropriately the current iteration of the SWGDAM database. From a practical perspective, upper bound estimates of the percentage of matching profiles obtained from a database search containing an incorrect sequence and those of a database containing the corrected sequence are not substantially different. Community wide access and review has enabled identification of errors in the SWGDAM data set and will continue to do so. The result of public accessibility is that the quality of the SWGDAM forensic dataset is always improving. PMID:15568698

  12. Prevalence of rare mitochondrial DNA mutations in mitochondrial disorders

    PubMed Central

    Bannwarth, Sylvie; Procaccio, Vincent; Lebre, Anne Sophie; Jardel, Claude; Chaussenot, Annabelle; Hoarau, Claire; Maoulida, Hassani; Charrier, Nathanaël; Gai, Xiaowu; Xie, Hongbo M; Ferre, Marc; Fragaki, Konstantina; Hardy, Gaëlle; Mousson de Camaret, Bénédicte; Marlin, Sandrine; Dhaenens, Claire Marie; Slama, Abdelhamid; Rocher, Christophe; Paul Bonnefont, Jean; Rötig, Agnès; Aoutil, Nadia; Gilleron, Mylène; Desquiret-Dumas, Valérie; Reynier, Pascal; Ceresuela, Jennifer; Jonard, Laurence; Devos, Aurore; Espil-Taris, Caroline; Martinez, Delphine; Gaignard, Pauline; Le Quan Sang, Kim-Hanh; Amati-Bonneau, Patrizia; Falk, Marni J; Florentz, Catherine; Chabrol, Brigitte; Durand-Zaleski, Isabelle; Paquis-Flucklinger, Véronique

    2013-01-01

    Abstract Background Mitochondrial DNA (mtDNA) diseases are rare disorders whose prevalence is estimated around 1 in 5000. Patients are usually tested only for deletions and for common mutations of mtDNA which account for 5–40% of cases, depending on the study. However, the prevalence of rare mtDNA mutations is not known. Methods We analysed the whole mtDNA in a cohort of 743 patients suspected of manifesting a mitochondrial disease, after excluding deletions and common mutations. Both heteroplasmic and homoplasmic variants were identified using two complementary strategies (Surveyor and MitoChip). Multiple correspondence analyses followed by hierarchical ascendant cluster process were used to explore relationships between clinical spectrum, age at onset and localisation of mutations. Results 7.4% of deleterious mutations and 22.4% of novel putative mutations were identified. Pathogenic heteroplasmic mutations were more frequent than homoplasmic mutations (4.6% vs 2.8%). Patients carrying deleterious mutations showed symptoms before 16 years of age in 67% of cases. Early onset disease (<1 year) was significantly associated with mutations in protein coding genes (mainly in complex I) while late onset disorders (>16 years) were associated with mutations in tRNA genes. MTND5 and MTND6 genes were identified as ‘hotspots’ of mutations, with Leigh syndrome accounting for the large majority of associated phenotypes. Conclusions Rare mitochondrial DNA mutations probably account for more than 7.4% of patients with respiratory chain deficiency. This study shows that a comprehensive analysis of mtDNA is essential, and should include young children, for an accurate diagnosis that is now accessible with the development of next generation sequencing technology. PMID:23847141

  13. Mitochondrial DNA variants in obesity.

    PubMed

    Knoll, Nadja; Jarick, Ivonne; Volckmar, Anna-Lena; Klingenspor, Martin; Illig, Thomas; Grallert, Harald; Gieger, Christian; Wichmann, Heinz-Erich; Peters, Annette; Wiegand, Susanna; Biebermann, Heike; Fischer-Posovszky, Pamela; Wabitsch, Martin; Völzke, Henry; Nauck, Matthias; Teumer, Alexander; Rosskopf, Dieter; Rimmbach, Christian; Schreiber, Stefan; Jacobs, Gunnar; Lieb, Wolfgang; Franke, Andre; Hebebrand, Johannes; Hinney, Anke

    2014-01-01

    Heritability estimates for body mass index (BMI) variation are high. For mothers and their offspring higher BMI correlations have been described than for fathers. Variation(s) in the exclusively maternally inherited mitochondrial DNA (mtDNA) might contribute to this parental effect. Thirty-two to 40 mtDNA single nucleotide polymorphisms (SNPs) were available from genome-wide association study SNP arrays (Affymetrix 6.0). For discovery, we analyzed association in a case-control (CC) sample of 1,158 extremely obese children and adolescents and 435 lean adult controls. For independent confirmation, 7,014 population-based adults were analyzed as CC sample of n = 1,697 obese cases (BMI ≥ 30 kg/m2) and n = 2,373 normal weight and lean controls (BMI<25 kg/m2). SNPs were analyzed as single SNPs and haplogroups determined by HaploGrep. Fisher's two-sided exact test was used for association testing. Moreover, the D-loop was re-sequenced (Sanger) in 192 extremely obese children and adolescents and 192 lean adult controls. Association testing of detected variants was performed using Fisher's two-sided exact test. For discovery, nominal association with obesity was found for the frequent allele G of m.8994G/A (rs28358887, p = 0.002) located in ATP6. Haplogroup W was nominally overrepresented in the controls (p = 0.039). These findings could not be confirmed independently. For two of the 252 identified D-loop variants nominal association was detected (m.16292C/T, p = 0.007, m.16189T/C, p = 0.048). Only eight controls carried the m.16292T allele, five of whom belonged to haplogroup W that was initially enriched among these controls. m.16189T/C might create an uninterrupted poly-C tract located near a regulatory element involved in replication of mtDNA. Though follow-up of some D-loop variants still is conceivable, our hypothesis of a contribution of variation in the exclusively maternally inherited mtDNA to the observed larger correlations for BMI between mothers and their

  14. Mitochondrial DNA Variants in Obesity

    PubMed Central

    Knoll, Nadja; Jarick, Ivonne; Volckmar, Anna-Lena; Klingenspor, Martin; Illig, Thomas; Grallert, Harald; Gieger, Christian; Wichmann, Heinz-Erich; Peters, Annette; Wiegand, Susanna; Biebermann, Heike; Fischer-Posovszky, Pamela; Wabitsch, Martin; Völzke, Henry; Nauck, Matthias; Teumer, Alexander; Rosskopf, Dieter; Rimmbach, Christian; Schreiber, Stefan; Jacobs, Gunnar; Lieb, Wolfgang; Franke, Andre; Hebebrand, Johannes; Hinney, Anke

    2014-01-01

    Heritability estimates for body mass index (BMI) variation are high. For mothers and their offspring higher BMI correlations have been described than for fathers. Variation(s) in the exclusively maternally inherited mitochondrial DNA (mtDNA) might contribute to this parental effect. Thirty-two to 40 mtDNA single nucleotide polymorphisms (SNPs) were available from genome-wide association study SNP arrays (Affymetrix 6.0). For discovery, we analyzed association in a case-control (CC) sample of 1,158 extremely obese children and adolescents and 435 lean adult controls. For independent confirmation, 7,014 population-based adults were analyzed as CC sample of n = 1,697 obese cases (BMI≥30 kg/m2) and n = 2,373 normal weight and lean controls (BMI<25 kg/m2). SNPs were analyzed as single SNPs and haplogroups determined by HaploGrep. Fisher's two-sided exact test was used for association testing. Moreover, the D-loop was re-sequenced (Sanger) in 192 extremely obese children and adolescents and 192 lean adult controls. Association testing of detected variants was performed using Fisher's two-sided exact test. For discovery, nominal association with obesity was found for the frequent allele G of m.8994G/A (rs28358887, p = 0.002) located in ATP6. Haplogroup W was nominally overrepresented in the controls (p = 0.039). These findings could not be confirmed independently. For two of the 252 identified D-loop variants nominal association was detected (m.16292C/T, p = 0.007, m.16189T/C, p = 0.048). Only eight controls carried the m.16292T allele, five of whom belonged to haplogroup W that was initially enriched among these controls. m.16189T/C might create an uninterrupted poly-C tract located near a regulatory element involved in replication of mtDNA. Though follow-up of some D-loop variants still is conceivable, our hypothesis of a contribution of variation in the exclusively maternally inherited mtDNA to the observed larger correlations for BMI between

  15. Genetic variation and population structure of hair crab (Erimacrus isenbeckii ) in Japan inferred from mitochondrial DNA sequence analysis.

    PubMed

    Azuma, Noriko; Kunihiro, Yasushi; Sasaki, Jun; Mihara, Eiji; Mihara, Yukio; Yasunaga, Tomoaki; Jin, Deuk-Hee; Abe, Syuiti

    2008-01-01

    Genetic variation and population structure of hair crab (Erimacrus isenbeckii) were examined using nucleotide sequence analysis of 580 base pairs (bp) in the 3' portion of the mitochondrial cytochrome c oxidase subunit I gene (COI) of 20 samples collected from 16 locales in Japan (the Hokkaido and Honshu Islands) and one in Korea. A total of 27 haplotypes was defined by 23 variable nucleotide sites in the examined COI region. Pairwise population F (ST) estimates and neighbor-joining tree inferred distinct genetic differentiation between the representative samples from the Pacific Ocean off the Eastern Hokkaido Island and the Sea of Japan, while others were intermediate between these two groups. AMOVA also showed a weak but significant differentiation among these three groups. The present results suggest a moderate population structure of hair crab, probably influenced by high gene flow between regional populations due to sea current dependent larval dispersal of this species. PMID:17955293

  16. Mitochondrial DNA haplotype predicts deafness risk

    SciTech Connect

    Hutchin, T.; Cortopassi, G.

    1995-12-18

    Since mitochondrial DNA (mtDNA) does not recombine in humans, once deleterious variation arises within a particular mtDNA clone it remains linked to that clonal type. An A to G mutation at mtDNA position 1555 confers matrilineal deafness among Asians and others. Two major mtDNA types (I and II) have been defined in Asians by D-loop sequencing. We have determined the D-loop sequence of 8 unrelated deaf Asians bearing the 1555G mutation, and find that 7 are of type II, whereas only one is of type I. Thus the frequency of the 1555G mutation is higher in type II mtDNA than type I (P = 0.035, binomial test), and persons with type II mtDNA are more likely to become deaf. Type II mtDNAs are rare in the Caucasian population, which may explain the rarity of this form of deafness in the United States. Negative Darwinian selection is expected to rapidly eliminate mtDNAs bearing severely deleterious mutations; but mildly deleterious mutations whose phenotype is expressed after reproduction should persist on the mtDNA background in which they arose. Thus determination of mtDNA clonal type has the potential to predict human risk for diseases that are the result of mildly deleterious mtDNA mutations which confer a post-reproductive phenotype. 4 refs., 1 fig.

  17. Detection of Mitochondrial COII DNA Sequences in Ant Guts as a Method for Assessing Termite Predation by Ants

    PubMed Central

    Fayle, Tom M.; Scholtz, Olivia; Dumbrell, Alex J.; Russell, Stephen; Segar, Simon T.; Eggleton, Paul

    2015-01-01

    Termites and ants contribute more to animal biomass in tropical rain forests than any other single group and perform vital ecosystem functions. Although ants prey on termites, at the community level the linkage between these groups is poorly understood. Thus, assessing the distribution and specificity of ant termitophagy is of considerable interest. We describe an approach for quantifying ant-termite food webs by sequencing termite DNA (cytochrome c oxidase subunit II, COII) from ant guts and apply this to a soil-dwelling ant community from tropical rain forest in Gabon. We extracted DNA from 215 ants from 15 species. Of these, 17.2 % of individuals had termite DNA in their guts, with BLAST analysis confirming the identity of 34.1 % of these termites to family level or better. Although ant species varied in detection of termite DNA, ranging from 63 % (5/7; Camponotus sp. 1) to 0 % (0/7; Ponera sp. 1), there was no evidence (with small sample sizes) for heterogeneity in termite consumption across ant taxa, and no evidence for species-specific ant-termite predation. In all three ant species with identifiable termite DNA in multiple individuals, multiple termite species were represented. Furthermore, the two termite species that were detected on multiple occasions in ant guts were in both cases found in multiple ant species, suggesting that ant-termite food webs are not strongly compartmentalised. However, two ant species were found to consume only Anoplotermes-group termites, indicating possible predatory specialisation at a higher taxonomic level. Using a laboratory feeding test, we were able to detect termite COII sequences in ant guts up to 2 h after feeding, indicating that our method only detects recent feeding events. Our data provide tentative support for the hypothesis that unspecialised termite predation by ants is widespread and highlight the use of molecular approaches for future studies of ant-termite food webs. PMID:25853549

  18. Molecular phylogeny of commercially important lobster species from Indian coast inferred from mitochondrial and nuclear DNA sequences.

    PubMed

    Jeena, N S; Gopalakrishnan, A; Radhakrishnan, E V; Kizhakudan, Joe K; Basheer, V S; Asokan, P K; Jena, J K

    2016-07-01

    Lobsters constitute low-volume high-value crustacean fishery resource along Indian coast. For the conservation and management of this declining resource, accurate identification of species and larvae is essential. The objectives of this work were to generate species-specific molecular signatures of 11 commercially important species of lobsters of families Palinuridae and Scyllaridae and to reconstruct a phylogeny to clarify the evolutionary relationships among genera and species included in this study. Partial sequences were generated for all the candidate species from sampling sites along the Indian coast using markers like Cytochrome oxidase I (COI), 16SrRNA, 12SrRNA, and 18SrRNA genes, and analyzed. The genetic identities of widely distributed Thenus species along the Indian coast to be Thenus unimaculatus and the sub-species of Panulirus homarus to be P. homarus homarus were confirmed. Phylogeny reconstruction using the individual gene and concatenated mtDNA data set were carried out. The overall results suggested independent monophyly of Scyllaridae and Stridentes of Palinuridae. The interspecific divergence was found to be highest for the 12SrRNA compared with other genes. Significant incongruence between mtDNA and nuclear 18SrRNA gene tree topologies was observed. The results hinted an earlier origin for Palinuridae compared with Scyllaridae. The DNA sequence data generated from this study will aid in the correct identification of lobster larvae and will find application in research related to larval transport and distribution. PMID:26065848

  19. History of infection with different male-killing bacteria in the two-spot ladybird beetle Adalia bipunctata revealed through mitochondrial DNA sequence analysis.

    PubMed Central

    v d Schulenburg, J Hinrich G; Hurst, Gregory D D; Tetzlaff, Dagmar; Booth, Gwendolen E; Zakharov, Ilia A; Majerus, Michael E N

    2002-01-01

    The two-spot ladybird beetle Adalia bipunctata (Coleoptera: Coccinellidae) is host to four different intracellular maternally inherited bacteria that kill male hosts during embryogenesis: one each of the genus Rickettsia (alpha-Proteobacteria) and Spiroplasma (Mollicutes) and two distinct strains of Wolbachia (alpha-Proteobacteria). The history of infection with these male-killers was explored using host mitochondrial DNA, which is linked with the bacteria due to joint maternal inheritance. Two variable regions, 610 bp of cytochrome oxidase subunit I and 563 bp of NADH dehydrogenase subunit 5, were isolated from 52 A. bipunctata with known infection status and different geographic origin from across Eurasia. Two outgroup taxa were also considered. DNA sequence analysis revealed that the distribution of mitochondrial haplotypes is not associated with geography. Rather, it correlates with infection status, confirming linkage disequilibrium between mitochondria and bacteria. The data strongly suggest that the Rickettsia male-killer invaded the host earlier than the other taxa. Further, the male-killing Spiroplasma is indicated to have undergone a recent and extensive spread through host populations. In general, male-killing in A. bipunctata seems to represent a highly dynamic system, which should prove useful in future studies on the evolutionary dynamics of this peculiar type of symbiont-host association. PMID:11901123

  20. The exome sequencing identified the mutation in YARS2 encoding the mitochondrial tyrosyl-tRNA synthetase as a nuclear modifier for the phenotypic manifestation of Leber's hereditary optic neuropathy-associated mitochondrial DNA mutation.

    PubMed

    Jiang, Pingping; Jin, Xiaofen; Peng, Yanyan; Wang, Meng; Liu, Hao; Liu, Xiaoling; Zhang, Zengjun; Ji, Yanchun; Zhang, Juanjuan; Liang, Min; Zhao, Fuxin; Sun, Yan-Hong; Zhang, Minglian; Zhou, Xiangtian; Chen, Ye; Mo, Jun Qin; Huang, Taosheng; Qu, Jia; Guan, Min-Xin

    2016-02-01

    Leber's hereditary optic neuropathy (LHON) is the most common mitochondrial disorder. Nuclear modifier genes are proposed to modify the phenotypic expression of LHON-associated mitochondrial DNA (mtDNA) mutations. By using an exome sequencing approach, we identified a LHON susceptibility allele (c.572G>T, p.191Gly>Val) in YARS2 gene encoding mitochondrial tyrosyl-tRNA synthetase, which interacts with m.11778G>A mutation to cause visual failure. We performed functional assays by using lymphoblastoid cell lines derived from members of Chinese families (asymptomatic individuals carrying m.11778G>A mutation, or both m.11778G>A and heterozygous p.191Gly>Val mutations and symptomatic subjects harboring m.11778G>A and homozygous p.191Gly>Val mutations) and controls lacking these mutations. The 191Gly>Val mutation reduced the YARS2 protein level in the mutant cells. The aminoacylated efficiency and steady-state level of tRNA(Tyr) were markedly decreased in the cell lines derived from patients both carrying homozygous YARS2 p.191Gly>Val and m.11778G>A mutations. The failure in tRNA(Tyr) metabolism impaired mitochondrial translation, especially for polypeptides with high content of tyrosine codon such as ND4, ND5, ND6 and COX2 in cells lines carrying homozygous YARS2 p.191Gly>Val and m.11778G>A mutations. The YARS2 p.191Gly>Val mutation worsened the respiratory phenotypes associated with m.11778G>A mutation, especially reducing activities of complexes I and IV. The respiratory deficiency altered the efficiency of mitochondrial ATP synthesis and increased the production of reactive oxygen species. Thus, mutated YARS2 aggravates mitochondrial dysfunctions associated with the m.11778G>A mutation, exceeding the threshold for the expression of blindness phenotype. Our findings provided new insights into the pathophysiology of LHON that were manifested by interaction between mtDNA mutation and mutated nuclear-modifier YARS2. PMID:26647310

  1. Classification and phylogeny of sika deer (Cervus nippon) subspecies based on the mitochondrial control region DNA sequence using an extended sample set.

    PubMed

    Ba, Hengxing; Yang, Fuhe; Xing, Xiumei; Li, Chunyi

    2015-06-01

    To further refine the classification and phylogeny of sika deer subspecies, the well-annotated sequences of the complete mitochondrial DNA (mtDNA) control region of 13 sika deer subspecies from GenBank were downloaded, aligned and analyzed in this study. By reconstructing the phylogenetic tree with an extended sample set, the results revealed a split between Northern and Southern Mainland Asia/Taiwan lineages, and moreover, two subspecies, C.n.mantchuricus and C.n.hortulorum, were existed in Northern Mainland Asia. Unexpectedly, Dybowskii's sika deer that was thought to originate from Northern Mainland Asia joins the Southern Mainland Asia/Taiwan lineage. The genetic divergences were ranged from 2.1% to 4.7% between Dybowskii's sika deer and all the other established subspecies at the mtDNA sequence level, which suggests that the maternal lineage of uncertain sika subspecies in Europe had been maintained until today. This study also provides a better understanding for the classification, phylogeny and phylogeographic history of sika deer subspecies. PMID:24063645

  2. Structure and evolution of the Phasianidae mitochondrial DNA control region.

    PubMed

    Huang, Zuhao; Ke, Dianhua

    2016-01-01

    The mitochondrial DNA control region is an area of the mitochondrial genome which is non-coding DNA. To infer the structural and evolutionary characteristics of Phasianidae mitochondrial DNA control region, the entire control region sequences of 34 species were analyzed. The length of the control region sequences ranged from 1144 bp (Phasianus colchicus) to 1555 bp (Coturnix japonica) and can be separated into three domains. The average genetic distances among the species within the genera varied from 1.96% (Chrysolophus) to 12.05% (Coturnix). The average genetic distances showed significantly negative correlation with ts/tv. In most genera (except Coturnix), domain I is the most variable among the three domains. However, the first 150 nucleotides apparently evolved at unusually low rates. Four conserved sequence boxes in the domain II of Phasianidae sequences were identified. The alignment of the Phasianidae four boxes and CSB-1 sequences showed considerable sequence variation. PMID:24617466

  3. Complete mitochondrial DNA sequence of oyster Crassostrea hongkongensis-a case of "Tandem duplication-random loss" for genome rearrangement in Crassostrea?

    PubMed Central

    Yu, Ziniu; Wei, Zhengpeng; Kong, Xiaoyu; Shi, Wei

    2008-01-01

    Background Mitochondrial DNA sequences are extensively used as genetic markers not only for studies of population or ecological genetics, but also for phylogenetic and evolutionary analyses. Complete mt-sequences can reveal information about gene order and its variation, as well as gene and genome evolution when sequences from multiple phyla are compared. Mitochondrial gene order is highly variable among mollusks, with bivalves exhibiting the most variability. Of the 41 complete mt genomes sequenced so far, 12 are from bivalves. We determined, in the current study, the complete mitochondrial DNA sequence of Crassostrea hongkongensis. We present here an analysis of features of its gene content and genome organization in comparison with two other Crassostrea species to assess the variation within bivalves and among main groups of mollusks. Results The complete mitochondrial genome of C. hongkongensis was determined using long PCR and a primer walking sequencing strategy with genus-specific primers. The genome is 16,475 bp in length and contains 12 protein-coding genes (the atp8 gene is missing, as in most bivalves), 22 transfer tRNA genes (including a suppressor tRNA gene), and 2 ribosomal RNA genes, all of which appear to be transcribed from the same strand. A striking finding of this study is that a DNA segment containing four tRNA genes (trnk1, trnC, trnQ1 and trnN) and two duplicated or split rRNA gene (rrnL5' and rrnS) are absent from the genome, when compared with that of two other extant Crassostrea species, which is very likely a consequence of loss of a single genomic region present in ancestor of C. hongkongensis. It indicates this region seem to be a "hot spot" of genomic rearrangements over the Crassostrea mt-genomes. The arrangement of protein-coding genes in C. hongkongensis is identical to that of Crassostrea gigas and Crassostrea virginica, but higher amino acid sequence identities are shared between C. hongkongensis and C. gigas than between other

  4. An isolated case of lissencephaly caused by the insertion of a mitochondrial genome-derived DNA sequence into the 5' untranslated region of the PAFAH1B1 (LIS1) gene.

    PubMed

    Millar, David S; Tysoe, Carolyn; Lazarou, Lazarus P; Pilz, Daniela T; Mohammed, Shehla; Anderson, Katharine; Chuzhanova, Nadia; Cooper, David N; Butler, Rachel

    2010-08-01

    A 130 base pair (bp) insertion (g.-8delCins130) into the 5' untranslated region of the PAFAH1B1 (LIS1) gene, seven nucleotides upstream of the translational initiation site, was detected in an isolated case of lissencephaly. The inserted DNA sequence exhibited perfect homology to two non-contiguous regions of the mitochondrial genome (8479 to 8545 and 8775 to 8835, containing portions of two genes, ATP8 and ATP6 ), as well as near-perfect homology (1 bp mismatch) to a nuclear mitochondrial pseudogene (NUMT) sequence located on chromosome 1p36. This lesion was not evident on polymerase chain reaction (PCR) sequence analysis of either parent, indicating that the mutation had occurred de novo in the patient. Experiments designed to distinguish between a mitochondrial and a nuclear genomic origin for the inserted DNA sequence were, however, inconclusive. Mitochondrial genome sequences from both the patient and his parents were sequenced and found to be identical to the sequence inserted into the PAFAH1B1 gene. Analysis of parental PCR products from the chromosome 1-specific NUMT were also consistent with the interpretation that the inserted sequence had originated directly from the mitochondrial genome. The chromosome 1-specific NUMT in the patient proved to be refractory to PCR analysis, however, suggesting that this region of chromosome 1 could have been deleted or rearranged. Although it remains by far the most likely scenario, in the absence of DNA sequence information from the patient's own chromosome 1-specific NUMT, we cannot unequivocally confirm that the 130 bp insertion originated from mitochondrial genome rather than from the NUMT. PMID:20846927

  5. Genetic relationships among some subspecies of the Peregrine Falcon (Falco peregrinus L.), inferred from mitochondrial DNA control-region sequences

    USGS Publications Warehouse

    White, Clayton M.; Sonsthagen, Sarah A.; Sage, George K.; Anderson, Clifford; Talbot, Sandra L.

    2013-01-01

    The ability to successfully colonize and persist in diverse environments likely requires broad morphological and behavioral plasticity and adaptability, and this may partly explain why the Peregrine Falcon (Falco peregrinus) exhibits a large range of morphological characteristics across their global distribution. Regional and local differences within Peregrine Falcons were sufficiently variable that ∼75 subspecies have been described; many were subsumed, and currently 19 are generally recognized. We used sequence information from the control region of the mitochondrial genome to test for concordance between genetic structure and representatives of 12 current subspecies and from two areas where subspecies distributions overlap. Haplotypes were broadly shared among subspecies, and all geographic locales shared a widely distributed common haplotype (FalconCR2). Haplotypes were distributed in a star-like phylogeny, consistent with rapid expansion of a recently derived species, with observed genetic patterns congruent with incomplete lineage sorting and/or differential rates of evolution on morphology and neutral genetic characters. Hierarchical analyses of molecular variance did not uncover genetic partitioning at the continental level, despite strong population-level structure (FST = 0.228). Similar analyses found weak partitioning, albeit significant, among subspecies (FCT = 0.138). All reconstructions placed the hierofalcons' (Gyrfalcon [F. rusticolus] and Saker Falcon [F. cherrug]) haplotypes in a well-supported clade either basal or unresolved with respect to the Peregrine Falcon. In addition, haplotypes representing Taita Falcon (F. fasciinucha) were placed within the Peregrine Falcon clade.

  6. Mitochondrial genome sequencing in atherosclerosis: what's next?

    PubMed

    Sazonova, Margarita A; Shkurat, Tatiana P; Demakova, Natalya A; Zhelankin, Andrey V; Barinova, Valeria A; Sobenin, Igor A; Orekhov, Alexander N

    2016-01-01

    Cardiovascular diseases are currently a basic cause of mortality in highly developed countries. The major reason for genesis and development of cardiovascular diseases is atherosclerosis. At the present time high technology methods of molecular genetic diagnostics can significantly simplify early presymptomatic recognition of patients with atherosclerosis, to detect risk groups and to perform a family analysis of this pathology. A Next-Generation Sequencing (NGS) technology can be characterized by high productivity and cheapness of full genome analysis of each DNA sample. We suppose that in the nearest future NGS methods will be widely used for scientific and diagnostic purposes, including personalized medicine. In the present review article literature data on using NGS technology were described in studying mitochondrial genome mutations associated with atherosclerosis and its risk factors, such as mitochondrial diabetes, mitochondrial cardiomyopathy, diabetic nephropathy and left ventricular hypertrophy. With the use of the NGS technology it proved to be possible to detect a range of homoplasmic and heteroplasmic mutations and mitochondrial genome haplogroups which are associated with these pathologies. Meanwhile some mutations and haplogroups were detected both in atherosclerosis and in its risk factors. It conveys the suggestion that there are common pathogenetic mechanisms causing these pathologies. What comes next? New paradigm of crosstalk between non-pharmaceutical (including molecular genetic) and true pharmaceutical approaches may be developed to fill the niche of effective and pathogenically targeted pretreatment and treatment of preclinical and subclinical atherosclerosis to avoid the development of chronic life-threatening disease. PMID:26561059

  7. Origin and genetic diversity of Egyptian native chickens based on complete sequence of mitochondrial DNA D-loop region.

    PubMed

    Osman, Sayed A-M; Yonezawa, Takahiro; Nishibori, Masahide

    2016-06-01

    Domestic chickens (Gallus gallus) play a significant role, ranging from food and entertainment to religion and ornamentation. However, the details on their domestication process are still controversial, especially the origin and evolution of African chickens. Egypt is thought to be important place for this event because of its geographic location as well as its long history of civilization. However, the genetic component and structure of Egyptian native chicken (ENC) have not been studied so far. The aim of this study is to clarify the origin and evolution of African chickens through assessing the genetic diversities and structure of five ENC breeds using the mitochondrial D-loop sequences. Our results suggest there is genetic differentiation between the pure native breeds and the improved native breeds. The latter breeds were established by the hybridization of the pure native and the exotic breeds. The pure native breeds were estimated to be established about 800 years ago. Subsequently, we extensively analyzed the D-loop sequences from the ENC as well as the globally collected chickens (2,010 individuals in total). Our phylogenetic tree among the regional populations shows African chickens can be separated to two distinct clades. The first clade consists of North African (Egypt), Central African (Sudan and Cameroon), European, and West (and Central) Asian chickens. The second clade consists of East African (Kenya, Malawi, and Zimbabwe) and Pacific chickens. It suggests the dual origins of African native chickens. The first group was probably originated from South Asia, and then migrated to West Asia, and finally arrived to Africa thorough Egypt. The second group migrated from Pacific to East Africa via Indian Ocean probably by Austronesian people. This dual origin hypothesis as well as estimated divergence times in this study is harmonious with the archaeological and historical evidences. Our migration analysis suggests there is limited gene flow within African

  8. DNA sequencing conference, 2

    SciTech Connect

    Cook-Deegan, R.M.; Venter, J.C.; Gilbert, W.; Mulligan, J.; Mansfield, B.K.

    1991-06-19

    This conference focused on DNA sequencing, genetic linkage mapping, physical mapping, informatics and bioethics. Several were used to study this sequencing and mapping. This article also discusses computer hardware and software aiding in the mapping of genes.

  9. Diagnosis of mitochondrial disorders by concomitant next-generation sequencing of the exome and mitochondrial genome

    PubMed Central

    Dinwiddie, Darrell L.; Smith, Laurie D.; Miller, Neil A.; Atherton, Andrea M.; Farrow, Emily G.; Strenk, Meghan E.; Soden, Sarah E.; Saunders, Carol J.; Kingsmore, Stephen F.

    2015-01-01

    Mitochondrial diseases are notoriously difficult to diagnose due to extreme locus and allelic heterogeneity, with both nuclear and mitochondrial genomes potentially liable. Using exome sequencing we demonstrate the ability to rapidly and cost effectively evaluate both the nuclear and mitochondrial genomes to obtain a molecular diagnosis for four patients with three distinct mitochondrial disorders. One patient was found to have Leigh syndrome due to a mutation in MT-ATP6, two affected siblings were discovered to be compound heterozygous for mutations in the NDUFV1 gene, which causes mitochondrial complex I deficiency, and one patient was found to have coenzyme Q10 deficiency due to compound heterozygous mutations in COQ2. In all cases conventional diagnostic testing failed to identify a molecular diagnosis. We suggest that additional studies should be conducted to evaluate exome sequencing as a primary diagnostic test for mitochondrial diseases, including those due to mtDNA mutations. PMID:23631824

  10. Mitochondrial DNA Damage and its Consequences for Mitochondrial Gene Expression

    PubMed Central

    Cline, Susan D.

    2012-01-01

    How mitochondria process DNA damage and whether a change in the steady-state level of mitochondrial DNA damage (mtDNA) contributes to mitochondrial dysfunction are questions that fuel burgeoning areas of research into aging and disease pathogenesis. Over the past decade, researchers have identified and measured various forms of endogenous and environmental mtDNA damage and have elucidated mtDNA repair pathways. Interestingly, mitochondria do not appear to contain the full range of DNA repair mechanisms that operate in the nucleus, although mtDNA contains types of damage that are targets of each nuclear DNA repair pathway. The reduced repair capacity may, in part, explain the high mutation frequency of the mitochondrial chromosome. Since mtDNA replication is dependent on transcription, mtDNA damage may alter mitochondrial gene expression at three levels: by causing DNA polymerase γ nucleotide incorporation errors leading to mutations, by interfering with the priming of mtDNA replication by the mitochondrial RNA polymerase, or by inducing transcriptional mutagenesis or premature transcript termination. This review summarizes our current knowledge of mtDNA damage, its repair, and its effects on mtDNA integrity and gene expression. PMID:22728831

  11. Mitochondrial DNA control region sequence variation suggests an independent origin of an {open_quotes}Asian-specific{close_quotes} 9-bp deletion in Africans

    SciTech Connect

    Soodyall, H.; Redd, A.; Vigilant

    1994-09-01

    The intergenic noncoding region between the cytochrome oxidase II and lysyl tRNA genes of human mitochondrial DNA (mtDNA) is associated with two tandemly arranged copies of a 9-bp sequence. A deletion of one of these repeats has been found at varying frequencies in populations of Asian descent, and is commonly referred to as an {open_quotes}Asian-specific{close_quotes} marker. We report here that the 9-bp deletion is also found at a frequency of 10.2% (66/649) in some indigenous African populations, with frequencies of 28.6% (20/70) in Pygmies, 26.6% (12/45) in Malawians and 15.4% (31/199) in southeastern Bantu-speaking populations. The deletion was not found in 123 Khoisan individuals nor in 209 western Bantu-speaking individuals, with the exception of 3 individuals from one group that was admixed with Pygmies. Sequence analysis of the two hypervariable segments of the mtDNA control region reveals that the types associated with the African 9-bp deletion are different from those found in Asian-derived populations with the deletion. Phylogenetic analysis separates the {open_quotes}African{close_quotes} and {open_quotes}Asian{close_quotes} 9-bp deletion types into two different clusters which are statistically supported. Mismatch distributions based on the number of differences between pairs of mtDNA types are consistent with this separation. These findings strongly support the view that the 9-bp deletion originated independently in Africa and in Asia.

  12. Low Genetic Diversity and Strong Geographical Structure of the Critically Endangered White-Headed Langur (Trachypithecus leucocephalus) Inferred from Mitochondrial DNA Control Region Sequences

    PubMed Central

    Wang, Weiran; Qiao, Yu; Pan, Wenshi; Yao, Meng

    2015-01-01

    Many Asian colobine monkey species are suffering from habitat destruction and population size decline. There is a great need to understand their genetic diversity, population structure and demographic history for effective species conservation. The white-headed langur (Trachypithecus leucocephalus) is a Critically Endangered colobine species endemic to the limestone karst forests in southwestern China. We analyzed the mitochondrial DNA (mtDNA) control region sequences of 390 fecal samples from 40 social groups across the main distribution areas, which represented one-third of the total extant population. Only nine haplotypes and 10 polymorphic sites were identified, indicating remarkably low genetic diversity in the species. Using a subset of 77 samples from different individuals, we evaluated genetic variation, population structure, and population demographic history. We found very low values of haplotype diversity (h = 0.570 ± 0.056) and nucleotide diversity (π = 0.00323 ± 0.00044) in the hypervariable region I (HVRI) of the mtDNA control region. Distribution of haplotypes displayed marked geographical pattern, with one population (Chongzuo, CZ) showing a complete lack of genetic diversity (having only one haplotype), whereas the other population (Fusui, FS) having all nine haplotypes. We detected strong population genetic structure among habit patches (ΦST = 0.375, P < 0.001). In addition, the Mantel test showed a significant correlation between the pairwise genetic distances and geographical distances among social groups in FS (correlation coefficient = 0.267, P = 0.003), indicting isolation-by-distance pattern of genetic divergence in the mtDNA sequences. Analyses of demographic history suggested an overall stable historical population size and modest population expansion in the last 2,000 years. Our results indicate different genetic diversity and possibly distinct population history for different local populations, and suggest that CZ and FS should be

  13. Phylogenetic relationships and historical biogeography of neotropical parrots (Psittaciformes: Psittacidae: Arini) inferred from mitochondrial and nuclear DNA sequences.

    PubMed

    Tavares, Erika Sendra; Baker, Allan J; Pereira, Sérgio Luiz; Miyaki, Cristina Yumi

    2006-06-01

    Previous hypotheses of phylogenetic relationships among Neotropical parrots were based on limited taxon sampling and lacked support for most internal nodes. In this study we increased the number of taxa (29 species belonging to 25 of the 30 genera) and gene sequences (6388 base pairs of RAG-1, cyt b, NADH2, ATPase 6, ATPase 8, COIII, 12S rDNA, and 16S rDNA) to obtain a stronger molecular phylogenetic hypothesis for this group of birds. Analyses of the combined gene sequences using maximum likelihood and Bayesian methods resulted in a well-supported phylogeny and indicated that amazons and allies are a sister clade to macaws, conures, and relatives, and these two clades are in turn a sister group to parrotlets. Key morphological and behavioral characters used in previous classifications were mapped on the molecular tree and were phylogenetically uninformative. We estimated divergence times of taxa using the molecular tree and Bayesian and penalized likelihood methods that allow for rate variation in DNA substitutions among sites and taxa. Our estimates suggest that the Neotropical parrots shared a common ancestor with Australian parrots 59 Mya (million of years ago; 95% credibility interval (CrI) 66, 51 Mya), well before Australia separated from Antarctica and South America, implying that ancestral parrots were widespread in Gondwanaland. Thus, the divergence of Australian and Neotropical parrots could be attributed to vicariance. The three major clades of Neotropical parrots originated about 50 Mya (95% CrI 57, 41 Mya), coinciding with periods of higher sea level when both Antarctica and South America were fragmented with transcontinental seaways, and likely isolated the ancestors of modern Neotropical parrots in different regions in these continents. The correspondence between major paleoenvironmental changes in South America and the diversification of genera in the clade of amazons and allies between 46 and 16 Mya suggests they diversified exclusively in South

  14. Biogeography of the Pistia clade (Araceae): based on chloroplast and mitochondrial DNA sequences and Bayesian divergence time inference.

    PubMed

    Renner, Susanne S; Zhang, Li-Bing

    2004-06-01

    Pistia stratiotes (water lettuce) and Lemna (duckweeds) are the only free-floating aquatic Araceae. The geographic origin and phylogenetic placement of these unrelated aroids present long-standing problems because of their highly modified reproductive structures and wide geographical distributions. We sampled chloroplast (trnL-trnF and rpl20-rps12 spacers, trnL intron) and mitochondrial sequences (nad1 b/c intron) for all genera implicated as close relatives of Pistia by morphological, restriction site, and sequencing data, and present a hypothesis about its geographic origin based on the consensus of trees obtained from the combined data, using Bayesian, maximum likelihood, parsimony, and distance analyses. Of the 14 genera closest to Pistia, only Alocasia, Arisaema, and Typhonium are species-rich, and the latter two were studied previously, facilitating the choice of representatives that span the roots of these genera. Results indicate that Pistia and the Seychelles endemic Protarum sechellarum are the basalmost branches in a grade comprising the tribes Colocasieae (Ariopsis, Steudnera, Remusatia, Alocasia, Colocasia), Arisaemateae (Arisaema, Pinellia), and Areae (Arum, Biarum, Dracunculus, Eminium, Helicodiceros, Theriophonum, Typhonium). Unexpectedly, all Areae genera are embedded in Typhonium, which throws new light on the geographic history of Areae. A Bayesian analysis of divergence times that explores the effects of multiple fossil and geological calibration points indicates that the Pistia lineage is 90 to 76 million years (my) old. The oldest fossils of the Pistia clade, though not Pistia itself, are 45-my-old leaves from Germany; the closest outgroup, Peltandreae (comprising a few species in Florida, the Mediterranean, and Madagascar), is known from 60-my-old leaves from Europe, Kazakhstan, North Dakota, and Tennessee. Based on the geographic ranges of close relatives, Pistia likely originated in the Tethys region, with Protarum then surviving on the

  15. Modeling of antigenomic therapy of mitochondrial diseases by mitochondrially addressed RNA targeting a pathogenic point mutation in mitochondrial DNA.

    PubMed

    Tonin, Yann; Heckel, Anne-Marie; Vysokikh, Mikhail; Dovydenko, Ilya; Meschaninova, Mariya; Rötig, Agnès; Munnich, Arnold; Venyaminova, Alya; Tarassov, Ivan; Entelis, Nina

    2014-05-01

    Defects in mitochondrial genome can cause a wide range of clinical disorders, mainly neuromuscular diseases. Presently, no efficient therapeutic treatment has been developed against this class of pathologies. Because most of deleterious mitochondrial mutations are heteroplasmic, meaning that wild type and mutated forms of mitochondrial DNA (mtDNA) coexist in the same cell, the shift in proportion between mutant and wild type molecules could restore mitochondrial functions. Recently, we developed mitochondrial RNA vectors that can be used to address anti-replicative oligoribonucleotides into human mitochondria and thus impact heteroplasmy level in cells bearing a large deletion in mtDNA. Here, we show that this strategy can be also applied to point mutations in mtDNA. We demonstrate that specifically designed RNA molecules containing structural determinants for mitochondrial import and 20-nucleotide sequence corresponding to the mutated region of mtDNA, are able to anneal selectively to the mutated mitochondrial genomes. After being imported into mitochondria of living human cells in culture, these RNA induced a decrease of the proportion of mtDNA molecules bearing a pathogenic point mutation in the mtDNA ND5 gene. PMID:24692550

  16. Automated DNA Sequencing System

    SciTech Connect

    Armstrong, G.A.; Ekkebus, C.P.; Hauser, L.J.; Kress, R.L.; Mural, R.J.

    1999-04-25

    Oak Ridge National Laboratory (ORNL) is developing a core DNA sequencing facility to support biological research endeavors at ORNL and to conduct basic sequencing automation research. This facility is novel because its development is based on existing standard biology laboratory equipment; thus, the development process is of interest to the many small laboratories trying to use automation to control costs and increase throughput. Before automation, biology Laboratory personnel purified DNA, completed cycle sequencing, and prepared 96-well sample plates with commercially available hardware designed specifically for each step in the process. Following purification and thermal cycling, an automated sequencing machine was used for the sequencing. A technician handled all movement of the 96-well sample plates between machines. To automate the process, ORNL is adding a CRS Robotics A- 465 arm, ABI 377 sequencing machine, automated centrifuge, automated refrigerator, and possibly an automated SpeedVac. The entire system will be integrated with one central controller that will direct each machine and the robot. The goal of this system is to completely automate the sequencing procedure from bacterial cell samples through ready-to-be-sequenced DNA and ultimately to completed sequence. The system will be flexible and will accommodate different chemistries than existing automated sequencing lines. The system will be expanded in the future to include colony picking and/or actual sequencing. This discrete event, DNA sequencing system will demonstrate that smaller sequencing labs can achieve cost-effective the laboratory grow.

  17. Mitochondrial DNA control region sequences in Koreans: identification of useful variable sites and phylogenetic analysis for mtDNA data quality control.

    PubMed

    Lee, Hwan Young; Yoo, Ji-Eun; Park, Myung Jin; Chung, Ukhee; Shin, Kyoung-Jin

    2006-01-01

    We have established a high-quality mtDNA control region sequence database for Koreans. To identify polymorphic sites and to determine their frequencies and haplotype frequencies, the complete mtDNA control region was sequenced in 593 Koreans, and major length variants of poly-cytosine tracts in HV2 and HV3 were determined in length heteroplasmic individuals by PCR analysis using fluorescence-labeled primers. Sequence comparison showed that 494 haplotypes defined by 285 variable sites were found when the major poly-cytosine tract genotypes were considered in distinguishing haplotypes, whereas 441 haplotypes were found when the poly-cytosine tracts were ignored. Statistical parameters indicated that analysis of partial mtDNA control region which encompasses the extended regions of HV1 and HV2, CA dinucleotide repeats in HV3 and nucleotide position 16497, 16519, 456, 489 and 499 (HV1ex+HV2ex+HV3CA+5SNPs) and the analysis of another partial mtDNA control region including extended regions of HV1 and HV2, HV3 region and nucleotide position 16497 and 16519 (HV1ex+HV2ex+HV3+2SNPs) can be used as efficient alternatives for the analysis of the entire mtDNA control region in Koreans. Also, we collated the basic informative SNPs, suggested the important mutation motifs for the assignment of East Asian haplogroups, and classified 592 Korean mtDNAs (99.8%) into various East Asian haplogroups or sub-haplogroups. Haplogroup-directed database comparisons confirmed the absence of any major systematic errors in our data, e.g., a mix-up of site designations, base shifts or mistypings. PMID:16177905

  18. Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing.

    PubMed

    Latorre-Pellicer, Ana; Moreno-Loshuertos, Raquel; Lechuga-Vieco, Ana Victoria; Sánchez-Cabo, Fátima; Torroja, Carlos; Acín-Pérez, Rebeca; Calvo, Enrique; Aix, Esther; González-Guerra, Andrés; Logan, Angela; Bernad-Miana, María Luisa; Romanos, Eduardo; Cruz, Raquel; Cogliati, Sara; Sobrino, Beatriz; Carracedo, Ángel; Pérez-Martos, Acisclo; Fernández-Silva, Patricio; Ruíz-Cabello, Jesús; Murphy, Michael P; Flores, Ignacio; Vázquez, Jesús; Enríquez, José Antonio

    2016-07-28

    Human mitochondrial DNA (mtDNA) shows extensive within population sequence variability. Many studies suggest that mtDNA variants may be associated with ageing or diseases, although mechanistic evidence at the molecular level is lacking. Mitochondrial replacement has the potential to prevent transmission of disease-causing oocyte mtDNA. However, extension of this technology requires a comprehensive understanding of the physiological relevance of mtDNA sequence variability and its match with the nuclear-encoded mitochondrial genes. Studies in conplastic animals allow comparison of individuals with the same nuclear genome but different mtDNA variants, and have provided both supporting and refuting evidence that mtDNA variation influences organismal physiology. However, most of these studies did not confirm the conplastic status, focused on younger animals, and did not investigate the full range of physiological and phenotypic variability likely to be influenced by mitochondria. Here we systematically characterized conplastic mice throughout their lifespan using transcriptomic, proteomic,metabolomic, biochemical, physiological and phenotyping studies. We show that mtDNA haplotype profoundly influences mitochondrial proteostasis and reactive oxygen species generation,insulin signalling, obesity, and ageing parameters including telomere shortening and mitochondrial dysfunction, resulting in profound differences in health longevity between conplastic strains. PMID:27383793

  19. Mitochondrial DNA: A Blind Spot in Neuroepigenetics

    PubMed Central

    Manev, Hari; Dzitoyeva, Svetlana; Chen, Hu

    2012-01-01

    Neuroepigenetics, which includes nuclear DNA modifications such as 5-methylcytosine and 5-hydoxymethylcytosine and modifications of nuclear proteins such as histones, is emerging as the leading field in molecular neuroscience. Historically, a functional role for epigenetic mechanisms, including in neuroepigenetics, has been sought in the area of the regulation of nuclear transcription. However, one important compartment of mammalian cell DNA, different from nuclear but equally important for physiological and pathological processes (including in the brain), mitochondrial DNA has for the most part not had a systematic epigenetic characterization. The importance of mitochondria and mitochondrial DNA (particularly its mutations) in central nervous system physiology and pathology has long been recognized. Only recently have mechanisms of mitochondrial DNA methylation and hydroxymethylation, including the discovery of mitochondrial DNA-methyltransferases and the presence and the functionality of 5-methylcytosine and 5-hydroxymethylcytosine in mitochondrial DNA (e.g., in modifying the transcription of mitochondrial genome), been unequivocally recognized as a part of mammalian mitochondrial physiology. Here we summarize for the first time evidence supporting the existence of these mechanisms and we propose the term “mitochondrial epigenetics” to be used when referring to them. Currently, neuroepigenetics does not include mitochondrial epigenetics - a gap that we expect to close in the near future. PMID:22639700

  20. Analysis of the systematic relationships among ticks of the genera Rhipicephalus and Boophilus (Acari: Ixodidae) based on mitochondrial 12S ribosomal DNA gene sequences and morphological characters.

    PubMed

    Beati, L; Keirans, J E

    2001-02-01

    A portion of mitochondrial 12S rDNA sequences (337-355 base pairs) and 63 morphological characters of 36 hard-tick species belonging to 7 genera were analyzed to determine the phylogenetic relationships among groups and species of Rhipicephalus and between the genera Rhipicephalus and Boophilus. Molecular and morphological data sets were first examined separately. The molecular data were analyzed by maximum parsimony (MP), maximum likelihood, and neighbor-joining distance methods; the morphological data were analyzed by MP After their level of congruence was evaluated by a partition homogeneity test, all characters were combined and analyzed by MP. The branches of the tree obtained by combining the data sets were better resolved than those of the trees inferred from the separate analyses. Boophilus is monophyletic and arose within Rhipicephalus. Boophilus species clustered with species of the Rhipicephalus evertsi group. Most of the clustering within Rhipicephalus was, however, consistent with previous classifications based on morphological data. Morphological characters were traced on the molecular reconstruction in order to identify characters diagnostic for monophyletic clades. Within the Rhipicephalus sanguineus complex, the sequences of specimens morphologically identified as Rhipicephalus turanicus were characterized by a high level of variability, indicating that R. turanicus-like morphology may cover a spectrum of distinct species. PMID:11227901

  1. Population genetic diversity of the northern snakehead (Channa argus) in China based on the mitochondrial DNA control region and adjacent regions sequences.

    PubMed

    Zhou, Aiguo; Zhuo, Xiaolei; Zou, Qing; Chen, Jintao; Zou, Jixing

    2015-06-01

    Genetic variation and population structure of northern snakehead (Channa argus) from eight locations in China were investigated using mitochondrial DNA control region and adjacent regions sequences. Sequence analysis showed that there were 105 haplotypes in 260 individuals, 48 unique haplotypes and 57 shared haplotypes, but no common haplotype shared by all populations. As a whole, the haplotype diversity was high (h=0.989), while the nucleotide diversity was low (π=0.00482). AMOVA analysis detected significant genetic differentiation among all eight populations (FST=0.328, p<0.01) and 66.17% of the total variance was resulted from intra-population differentiation. UPGMA analysis indicated that the eight populations could be divided into four major clusters, which was consistent with that the eight sampled locations were belonged to four isolated river systems. The neutrality and mismatch distribution tests suggested that the eight populations of C. argus in the sampling locations underwent recent population expansion. Among the eight populations, the Erhai Lake population may represent a unique genetic resource and therefore needs to be conserved. PMID:24724976

  2. Mitochondrial DNA repairs double-strand breaks in yeast chromosomes.

    PubMed

    Ricchetti, M; Fairhead, C; Dujon, B

    1999-11-01

    The endosymbiotic theory for the origin of eukaryotic cells proposes that genetic information can be transferred from mitochondria to the nucleus of a cell, and genes that are probably of mitochondrial origin have been found in nuclear chromosomes. Occasionally, short or rearranged sequences homologous to mitochondrial DNA are seen in the chromosomes of different organisms including yeast, plants and humans. Here we report a mechanism by which fragments of mitochondrial DNA, in single or tandem array, are transferred to yeast chromosomes under natural conditions during the repair of double-strand breaks in haploid mitotic cells. These repair insertions originate from noncontiguous regions of the mitochondrial genome. Our analysis of the Saccharomyces cerevisiae mitochondrial genome indicates that the yeast nuclear genome does indeed contain several short sequences of mitochondrial origin which are similar in size and composition to those that repair double-strand breaks. These sequences are located predominantly in non-coding regions of the chromosomes, frequently in the vicinity of retrotransposon long terminal repeats, and appear as recent integration events. Thus, colonization of the yeast genome by mitochondrial DNA is an ongoing process. PMID:10573425

  3. DNA Sequencing apparatus

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1992-01-01

    An automated DNA sequencing apparatus having a reactor for providing at least two series of DNA products formed from a single primer and a DNA strand, each DNA product of a series differing in molecular weight and having a chain terminating agent at one end; separating means for separating the DNA products to form a series bands, the intensity of substantially all nearby bands in a different series being different, band reading means for determining the position an This invention was made with government support including a grant from the U.S. Public Health Service, contract number AI-06045. The U.S. government has certain rights in the invention.

  4. Tissue mitochondrial DNA changes. A stochastic system.

    PubMed

    Kopsidas, G; Kovalenko, S A; Heffernan, D R; Yarovaya, N; Kramarova, L; Stojanovski, D; Borg, J; Islam, M M; Caragounis, A; Linnane, A W

    2000-06-01

    Several lines of evidence support the view that the bioenergetic function of the mitochondria in postmitotic tissue deteriorates during normal aging. Skeletal muscle is one such tissue that undergoes age-related fiber loss and atrophy and an age-associated rise in the number of cytochrome c oxidase (COX) deficient fibers. With such metabolic pressure placed on skeletal muscle it would be an obvious advantage to supplement the cellular requirement for energy by up-regulating glycolysis, and alternative pathway for energy synthesis. Analysis of rat skeletal muscle utilizing antibodies directed against key enzymes involved in glycolysis has provided evidence of an age-associated increase in the enzymes involved in glycolysis. Fructose-6-phosphate kinase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, and pyruvate kinase protein levels appeared to increase in the soleus, gracilis, and quadriceps muscle from aged rats. The increase in the level of these proteins appeared to correlate to a corresponding decrease in the amount of cytochrome c oxidase protein measured in the same tissue. Together these results are interpreted to represent a general upregulation of glycolysis that occurs in response to the age-associated decrease in mitochondrial energy capacity. Mitochondrial DNA (mtDNA) damage and mutations may accumulate with advancing age until they reach a threshold level were they impinge on the bioenergy capacity of the cell or tissue. Evidence indicates that mtDNA from the skeletal muscle of both aged rats and humans not only undergoes changes at the nucleotide sequence level (mutations and DNA damage), but also undergoes modifications at the tertiary level to generate unique age-related conformational mtDNA species. One particular age-related conformational form was only detected in aged rat tissues with high demands on respiration, specifically in heart, kidney, soleus muscle, and, to a lesser extent, the quadriceps muscle. The age-related form was not

  5. Mitochondrial Genome Sequences Effectively Reveal the Phylogeny of Hylobates Gibbons

    PubMed Central

    Chan, Yi-Chiao; Roos, Christian; Inoue-Murayama, Miho; Inoue, Eiji; Shih, Chih-Chin; Pei, Kurtis Jai-Chyi; Vigilant, Linda

    2010-01-01

    Background Uniquely among hominoids, gibbons exist as multiple geographically contiguous taxa exhibiting distinctive behavioral, morphological, and karyotypic characteristics. However, our understanding of the evolutionary relationships of the various gibbons, especially among Hylobates species, is still limited because previous studies used limited taxon sampling or short mitochondrial DNA (mtDNA) sequences. Here we use mtDNA genome sequences to reconstruct gibbon phylogenetic relationships and reveal the pattern and timing of divergence events in gibbon evolutionary history. Methodology/Principal Findings We sequenced the mitochondrial genomes of 51 individuals representing 11 species belonging to three genera (Hylobates, Nomascus and Symphalangus) using the high-throughput 454 sequencing system with the parallel tagged sequencing approach. Three phylogenetic analyses (maximum likelihood, Bayesian analysis and neighbor-joining) depicted the gibbon phylogenetic relationships congruently and with strong support values. Most notably, we recover a well-supported phylogeny of the Hylobates gibbons. The estimation of divergence times using Bayesian analysis with relaxed clock model suggests a much more rapid speciation process in Hylobates than in Nomascus. Conclusions/Significance Use of more than 15 kb sequences of the mitochondrial genome provided more informative and robust data than previous studies of short mitochondrial segments (e.g., control region or cytochrome b) as shown by the reliable reconstruction of divergence patterns among Hylobates gibbons. Moreover, molecular dating of the mitogenomic divergence times implied that biogeographic change during the last five million years may be a factor promoting the speciation of Sundaland animals, including Hylobates species. PMID:21203450

  6. Complete DNA sequence of the mitochondrial genome of the sea-slug, Aplysia californica: conservation of the gene order in Euthyneura.

    PubMed

    Knudsen, Bjarne; Kohn, Andrea B; Nahir, Ben; McFadden, Catherine S; Moroz, Leonid L

    2006-02-01

    We have sequenced and characterized the complete mitochondrial genome of the sea slug, Aplysia californica, an important model organism in experimental biology and a representative of Anaspidea (Opisthobranchia, Gastropoda). The mitochondrial genome of Aplysia is in the small end of the observed sizes of animal mitochondrial genomes (14,117 bp, NCBI Accession No. NC_005827). The Aplysia genome, like most other mitochondrial genomes, encodes genes for 2 ribosomal subunit RNAs (small and large rRNAs), 22 tRNAs, and 13 protein subunits (cytochrome c oxidase subunits 1-3, cytochrome b apoenzyme, ATP synthase subunits 6 and 8, and NADH dehydrogenase subunits 1-6 and 4L). The gene order is virtually identical between opisthobranchs and pulmonates, with the majority of differences arising from tRNA translocations. In contrast, the gene order from representatives of basal gastropods and other molluscan classes is significantly different from opisthobranchs and pulmonates. The Aplysia genome was compared to all other published molluscan mitochondrial genomes and phylogenetic analyses were carried out using a concatenated protein alignment. Phylogenetic analyses using maximum likelihood based analyses of the well aligned regions of the protein sequences support both monophyly of Euthyneura (a group including both the pulmonates and opisthobranchs) and Opisthobranchia (as a more derived group). The Aplysia mitochondrial genome sequenced here will serve as an important platform in both comparative and neurobiological studies using this model organism. PMID:16230032

  7. Mitochondrial DNA variation in Nicobarese Islanders.

    PubMed

    Prasad, B V; Ricker, C E; Watkins, W S; Dixon, M E; Rao, B B; Naidu, J M; Jorde, L B; Bamshad, M

    2001-10-01

    The aboriginal populations living in the Nicobar Islands are hypothesized to be descendants of people who were part of early human dispersals into Southeast Asia. However, analyses of ethnographic histories, languages, morphometric data, and protein polymorphisms have not yet resolved which worldwide populations are most closely related to the Nicobarese. Thus, to explore the origins and affinities of the Nicobar Islanders, we analyzed mitochondrial DNA (mtDNA) hypervariable region 1 sequence data from 33 Nicobarese Islanders and compared their mtDNA haplotypes to those of neighboring East Asians, mainland and island Southeast Asians, Indians, Australian aborigines, Pacific Islanders, and Africans. Unique Nicobarese mtDNA haplotypes, including five Nicobarese mtDNA haplotypes linked to the COII/tRNA(Lys) 9-bp deletion, are most closely related to mtDNA haplotypes from mainland Southeast Asian Mon-Kmer-speaking populations (e.g., Cambodians). Thus, the dispersal of southern Chinese into mainland Southeast Asia may have included a westward expansion and colonization of the islands of the Andaman Sea. PMID:11758691

  8. Mitochondrial DNA perspective of Serbian genetic diversity.

    PubMed

    Davidovic, Slobodan; Malyarchuk, Boris; Aleksic, Jelena M; Derenko, Miroslava; Topalovic, Vladanka; Litvinov, Andrey; Stevanovic, Milena; Kovacevic-Grujicic, Natasa

    2015-03-01

    Although south-Slavic populations have been studied to date from various aspects, the population of Serbia, occupying the central part of the Balkan Peninsula, is still genetically understudied at least at the level of mitochondrial DNA (mtDNA) variation. We analyzed polymorphisms of the first and the second mtDNA hypervariable segments (HVS-I and HVS-II) and informative coding-region markers in 139 Serbians to shed more light on their mtDNA variability, and used available data on other Slavic and neighboring non-Slavic populations to assess their interrelations in a broader European context. The contemporary Serbian mtDNA profile is consistent with the general European maternal landscape having a substantial proportion of shared haplotypes with eastern, central, and southern European populations. Serbian population was characterized as an important link between easternmost and westernmost south-Slavic populations due to the observed lack of genetic differentiation with all other south-Slavic populations and its geographical positioning within the Balkan Peninsula. An increased heterogeneity of south Slavs, most likely mirroring turbulent demographic events within the Balkan Peninsula over time (i.e., frequent admixture and differential introgression of various gene pools), and a marked geographical stratification of Slavs to south-, east-, and west-Slavic groups, were also found. A phylogeographic analyses of 20 completely sequenced Serbian mitochondrial genomes revealed not only the presence of mtDNA lineages predominantly found within the Slavic gene pool (U4a2a*, U4a2a1, U4a2c, U4a2g, HV10), supporting a common Slavic origin, but also lineages that may have originated within the southern Europe (H5*, H5e1, H5a1v) and the Balkan Peninsula in particular (H6a2b and L2a1k). PMID:25418795

  9. A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing

    PubMed Central

    Green, Richard E.; Malaspinas, Anna-Sapfo; Krause, Johannes; Briggs, Adrian W.; Johnson, Philip L. F.; Uhler, Caroline; Meyer, Matthias; Good, Jeffrey M.; Maricic, Tomislav; Stenzel, Udo; Prüfer, Kay; Siebauer, Michael; Burbano, Hernán A.; Ronan, Michael; Rothberg, Jonathan M.; Egholm, Michael; Rudan, Pavao; Brajković, Dejana; Kućan, Željko; Gušić, Ivan; Wikström, Mårten; Laakkonen, Liisa; Kelso, Janet; Slatkin, Montgomery; Pääbo, Svante

    2008-01-01

    Summary A complete mitochondrial (mt) genome sequence was reconstructed from a 38,000-year-old Neandertal individual using 8,341 mtDNA sequences identified among 4.8 Gb of DNA generated from ~0.3 grams of bone. Analysis of the assembled sequence unequivocally establishes that the Neandertal mtDNA falls outside the variation of extant human mtDNAs and allows an estimate of the divergence date between the two mtDNA lineages of 660,000±140,000 years. Of the 13 proteins encoded in the mtDNA, subunit 2 of cytochrome c oxidase of the mitochondrial electron transport chain has experienced the largest number of amino acid substitutions in human ancestors since the separation from Neandertals. There is evidence that purifying selection in the Neandertal mtDNA was reduced compared to other primate lineages suggesting that the effective population size of Neandertals was small. PMID:18692465

  10. Nonneutral mitochondrial DNA variation in humans and chimpanzees

    SciTech Connect

    Nachman, M.W.; Aquadro, C.F.; Brown, W.M.

    1996-03-01

    We sequenced the NADH dehydrogenase subunit 3 (ND3) gene from a sample of 61 humans, five common chimpanzees, and one gorilla to test whether patterns of mitochondrial DNA (mtDNA) variation are consistent with a neutral model of molecular evolution. Within humans and within chimpanzees, the ratio of replacement to silent nucleotide substitutions was higher than observed in comparisons between species, contrary to neutral expectations. To test the generality of this result, we reanalyzed published human RFLP data from the entire mitochondrial genome. Gains of restriction sites relative to a known human mtDNA sequence were used to infer unambiguous nucleotide substitutions. We also compared the complete mtDNA sequences of three humans. Both the RFLP data and the sequence data reveal a higher ratio of replacement to silent nucleotide substitutions within humans than is seen between species. This pattern is observed at most or all human mitochondrial genes and is inconsistent with a strictly neutral model. These data suggest that many mitochondrial protein polymorphisms are slightly deleterious, consistent with studies of human mitochondrial diseases. 59 refs., 2 figs., 8 tabs.