Science.gov

Sample records for mitochondrial gene expression

  1. Mitochondrial RNA granules: Compartmentalizing mitochondrial gene expression.

    PubMed

    Jourdain, Alexis A; Boehm, Erik; Maundrell, Kinsey; Martinou, Jean-Claude

    2016-03-14

    In mitochondria, DNA replication, gene expression, and RNA degradation machineries coexist within a common nondelimited space, raising the question of how functional compartmentalization of gene expression is achieved. Here, we discuss the recently characterized "mitochondrial RNA granules," mitochondrial subdomains with an emerging role in the regulation of gene expression. PMID:26953349

  2. Mitochondrial DNA Damage and its Consequences for Mitochondrial Gene Expression

    PubMed Central

    Cline, Susan D.

    2012-01-01

    How mitochondria process DNA damage and whether a change in the steady-state level of mitochondrial DNA damage (mtDNA) contributes to mitochondrial dysfunction are questions that fuel burgeoning areas of research into aging and disease pathogenesis. Over the past decade, researchers have identified and measured various forms of endogenous and environmental mtDNA damage and have elucidated mtDNA repair pathways. Interestingly, mitochondria do not appear to contain the full range of DNA repair mechanisms that operate in the nucleus, although mtDNA contains types of damage that are targets of each nuclear DNA repair pathway. The reduced repair capacity may, in part, explain the high mutation frequency of the mitochondrial chromosome. Since mtDNA replication is dependent on transcription, mtDNA damage may alter mitochondrial gene expression at three levels: by causing DNA polymerase γ nucleotide incorporation errors leading to mutations, by interfering with the priming of mtDNA replication by the mitochondrial RNA polymerase, or by inducing transcriptional mutagenesis or premature transcript termination. This review summarizes our current knowledge of mtDNA damage, its repair, and its effects on mtDNA integrity and gene expression. PMID:22728831

  3. Mitochondrial and Metabolic Gene Expression in the Aged Rat Heart.

    PubMed

    Barton, Gregory P; Sepe, Joseph J; McKiernan, Susan H; Aiken, Judd M; Diffee, Gary M

    2016-01-01

    Aging is associated with a decline in cardiac function. Exercise intervention has been suggested as a way to improve this decrement. Age-related decline in cardiac function is associated with decreases in fatty acid oxidation, mitochondrial function, and AMP-activated protein kinase (AMPK) activity. The molecular mechanisms involved with age-related changes in mitochondrial function and substrate metabolism are poorly understood. We determined gene expression differences in hearts of Young (6 mo), Old (33 mo), and old exercise trained (Old + EXE) (34 mo) FBN rats, using Qiagen PCR arrays for Glucose, Fatty acid, and Mitochondrial metabolism. Old rats demonstrated decreased (p < 0.05) expression for key genes in fatty acid oxidation, mitochondrial function, and AMPK signaling. There were no differences in the expression of genes involved in glucose metabolism with age. These gene expression changes occurred prior to altered protein translation as we found no differences in the protein content of peroxisome proliferator activated receptor gamma, coactivators 1 alpha (PGC-1α), peroxisome proliferator activated receptor alpha (PPARα), and AMPKα2 between young and old hearts. Four months of exercise training did not attenuate the decline in the gene expression in aged hearts. Despite this lack of change in gene expression, exercise-trained rats demonstrated increased exercise capacity compared to their sedentary counterparts. Taken together, our results show that differential expression of genes associated with fatty acid metabolism, AMPK signaling and mitochondrial function decrease in the aging heart which may play a role in age-related declines in fatty acid oxidation, AMPK activity, and mitochondrial function in the heart. PMID:27601998

  4. Mitochondrial and Metabolic Gene Expression in the Aged Rat Heart

    PubMed Central

    Barton, Gregory P.; Sepe, Joseph J.; McKiernan, Susan H.; Aiken, Judd M.; Diffee, Gary M.

    2016-01-01

    Aging is associated with a decline in cardiac function. Exercise intervention has been suggested as a way to improve this decrement. Age-related decline in cardiac function is associated with decreases in fatty acid oxidation, mitochondrial function, and AMP-activated protein kinase (AMPK) activity. The molecular mechanisms involved with age-related changes in mitochondrial function and substrate metabolism are poorly understood. We determined gene expression differences in hearts of Young (6 mo), Old (33 mo), and old exercise trained (Old + EXE) (34 mo) FBN rats, using Qiagen PCR arrays for Glucose, Fatty acid, and Mitochondrial metabolism. Old rats demonstrated decreased (p < 0.05) expression for key genes in fatty acid oxidation, mitochondrial function, and AMPK signaling. There were no differences in the expression of genes involved in glucose metabolism with age. These gene expression changes occurred prior to altered protein translation as we found no differences in the protein content of peroxisome proliferator activated receptor gamma, coactivators 1 alpha (PGC-1α), peroxisome proliferator activated receptor alpha (PPARα), and AMPKα2 between young and old hearts. Four months of exercise training did not attenuate the decline in the gene expression in aged hearts. Despite this lack of change in gene expression, exercise-trained rats demonstrated increased exercise capacity compared to their sedentary counterparts. Taken together, our results show that differential expression of genes associated with fatty acid metabolism, AMPK signaling and mitochondrial function decrease in the aging heart which may play a role in age-related declines in fatty acid oxidation, AMPK activity, and mitochondrial function in the heart. PMID:27601998

  5. Limitations of allotopic expression of mitochondrial genes in mammalian cells.

    PubMed Central

    Oca-Cossio, Jose; Kenyon, Lesley; Hao, Huiling; Moraes, Carlos T

    2003-01-01

    The possibility of expressing mitochondrial DNA-coded genes in the nuclear-cytoplasmic compartment provides an attractive system for genetic treatment of mitochondrial disorders associated with mitochondrial DNA mutations. In theory, by recoding mitochondrial genes to adapt them to the universal genetic code and by adding a DNA sequence coding for a mitochondrial-targeting sequence, one could achieve correct localization of the gene product. Such transfer has occurred in nature, and certain species of algae and plants express a number of polypeptides that are commonly coded by mtDNA in the nuclear-cytoplasmic compartment. In the present study, allotopic expression of three different mtDNA-coded polypeptides (ATPase8, apocytochrome b, and ND4) into COS-7 and HeLa cells was analyzed. Among these, only ATPase8 was correctly expressed and localized to mitochondria. The full-length, as well as truncated forms, of apocytochrome b and ND4 decorated the periphery of mitochondria, but also aggregated in fiber-like structures containing tubulin and in some cases also vimentin. The addition of a hydrophilic tail (EGFP) to the C terminus of these polypeptides did not change their localization. Overexpression of molecular chaperones also did not have a significant effect in preventing aggregations. Allotopic expression of apocytochrome b and ND4 induced a loss of mitochondrial membrane potential in transfected cells, which can lead to cell death. Our observations suggest that only a subset of mitochondrial genes can be replaced allotopically. Analyses of the hydrophobic patterns of different polypeptides suggest that hydrophobicity of the N-terminal segment is the main determinant for the importability of peptides into mammalian mitochondria. PMID:14573482

  6. Gemini surfactants mediate efficient mitochondrial gene delivery and expression.

    PubMed

    Cardoso, Ana M; Morais, Catarina M; Cruz, A Rita; Cardoso, Ana L; Silva, Sandra G; do Vale, M Luísa; Marques, Eduardo F; Pedroso de Lima, Maria C; Jurado, Amália S

    2015-03-01

    Gene delivery targeting mitochondria has the potential to transform the therapeutic landscape of mitochondrial genetic diseases. Taking advantage of the nonuniversal genetic code used by mitochondria, a plasmid DNA construct able to be specifically expressed in these organelles was designed by including a codon, which codes for an amino acid only if read by the mitochondrial ribosomes. In the present work, gemini surfactants were shown to successfully deliver plasmid DNA to mitochondria. Gemini surfactant-based DNA complexes were taken up by cells through a variety of routes, including endocytic pathways, and showed propensity for inducing membrane destabilization under acidic conditions, thus facilitating cytoplasmic release of DNA. Furthermore, the complexes interacted extensively with lipid membrane models mimicking the composition of the mitochondrial membrane, which predicts a favored interaction of the complexes with mitochondria in the intracellular environment. This work unravels new possibilities for gene therapy toward mitochondrial diseases. PMID:25634573

  7. Mitochondrial Cyclic AMP Response Element-binding Protein (CREB) Mediates Mitochondrial Gene Expression and Neuronal Survival*S

    PubMed Central

    Lee, Junghee; Kim, Chun-Hyung; Simon, David K.; Aminova, Lyaylya R.; Andreyev, Alexander Y.; Kushnareva, Yulia E.; Murphy, Anne N.; Lonze, Bonnie E.; Kim, Kwang-Soo; Ginty, David D.; Ferrante, Robert J.; Ryu, Hoon; Ratan, Rajiv R.

    2008-01-01

    Cyclic AMP response element-binding protein (CREB) is a widely expressed transcription factor whose role in neuronal protection is now well established. Here we report that CREB is present in the mitochondrial matrix of neurons and that it binds directly to cyclic AMP response elements (CREs) found within the mitochondrial genome. Disruption of CREB activity in the mitochondria decreases the expression of a subset of mitochondrial genes, including the ND5 subunit of complex I, down-regulates complex I-dependent mitochondrial respiration, and increases susceptibility to 3-nitropropionic acid, a mitochondrial toxin that induces a clinical and pathological phenotype similar to Huntington disease. These results demonstrate that regulation of mitochondrial gene expression by mitochondrial CREB, in part, underlies the protective effects of CREB and raise the possibility that decreased mitochondrial CREB activity contributes to the mitochondrial dysfunction and neuronal loss associated with neurodegenerative disorders. PMID:16207717

  8. Mitochondrial gene expression, antioxidant responses, and histopathology after cadmium exposure.

    PubMed

    Al Kaddissi, Simone; Legeay, Alexia; Elia, Antonia Concetta; Gonzalez, Patrice; Floriani, Magali; Cavalie, Isabelle; Massabuau, Jean-Charles; Gilbin, Rodolphe; Simon, Olivier

    2014-08-01

    The present study investigates cadmium effects on the transcription of mitochondrial genes of Procambarus clarkii after acute (0.05, 0.5, and 5 mg Cd/L; 4-10 days) and chronic exposures (10 μg Cd/L; 30-60 days). Transcriptional responses of cox1, atp6, and 12S using quantitative real-time RT-PCR were assessed in gills and hepatopancreas. Additionally, the expression levels of genes involved in detoxification and/or oxidative stress responses [mt, sod(Mn)] and enzymatic activities of antioxidants (SOD, CAT, GPX, and GST) were analyzed. The histopathological effects in hepatopancreas of crayfish were evaluated by light microscopy. Relationships between endpoints at different levels of biological organization and Cd bioaccumulation were also examined. Cd induced high levels of bioaccumulation, which was followed by mitochondrial dysfunction and histological alterations in both experiments. Moreover, perturbations in the defence mechanisms against oxidative stress tended to increase with time. Results also showed that molecular responses can vary depending on the intensity and duration of the chemical stress applied to the organisms and that the study of mt gene expression levels seemed to be the best tool to assess Cd intoxication. PMID:23065898

  9. Evidence of a bigenomic regulation of mitochondrial gene expression by thyroid hormone during rat brain development

    SciTech Connect

    Sinha, Rohit Anthony; Pathak, Amrita; Mohan, Vishwa; Babu, Satish; Pal, Amit; Khare, Drirh; Godbole, Madan M.

    2010-07-02

    Hypothyroidism during early mammalian brain development is associated with decreased expression of various mitochondrial encoded genes along with evidence for mitochondrial dysfunction. However, in-spite of the similarities between neurological disorders caused by perinatal hypothyroidism and those caused by various genetic mitochondrial defects we still do not know as to how thyroid hormone (TH) regulates mitochondrial transcription during development and whether this regulation by TH is nuclear mediated or through mitochondrial TH receptors? We here in rat cerebellum show that hypothyroidism causes reduction in expression of nuclear encoded genes controlling mitochondrial biogenesis like PGC-1{alpha}, NRF-1{alpha} and Tfam. Also, we for the first time demonstrate a mitochondrial localization of thyroid hormone receptor (mTR) isoform in developing brain capable of binding a TH response element (DR2) present in D-loop region of mitochondrial DNA. These results thus indicate an integrated nuclear-mitochondrial cross talk in regulation of mitochondrial transcription by TH during brain development.

  10. Suppression of cytoplasmic male sterility by nuclear genes alters expression of a novel mitochondrial gene region.

    PubMed Central

    Singh, M; Brown, G G

    1991-01-01

    To identify regions of the mitochondrial genome that potentially could specify the "Polima" (pol) cytoplasmic male sterility (CMS) of Brassica napus, transcripts of 14 mitochondrial genes from nap (male fertile), pol (male sterile), and nuclear fertility-restored pol cytoplasm plants were analyzed. Transcriptional differences among these plants were detected only with the ATPase subunit 6 (atp6) gene. Structural analysis of the atp6 gene regions of pol and nap mitochondrial DNAs showed that rearrangements in the pol mitochondrial genome occurring upstream of atp6 have generated a chimeric 224-codon open reading frame, designated orf224, that is cotranscribed with atp6. In CMS plants, most transcripts of this region are dicistronic, comprising both orf224 and atp6 sequences. Nuclear restorer genes at either of two distinct loci appear to specifically alter this transcript pattern such that monocistronic atp6 transcripts predominate. The differences in expression of this region appear to result, in part, from differential processing of a tRNA-like element comprising a tRNA pseudogene present immediately upstream of atp6 in both the sterile and fertile mitochondrial DNAs. Possible mechanisms by which expression of the orf224/atp6 locus and the Polima CMS trait may be specifically related are considered. PMID:1840901

  11. Inventory of the Human Mitochondrial Gene Expression Machinery with Links to Disease

    PubMed Central

    Shutt, Timothy E.; Shadel, Gerald S.

    2010-01-01

    Mammalian mitochondrial DNA encodes thirty-seven essential genes required for ATP production via oxidative phosphorylation, instability or misregulation of which is associated with human diseases and aging. Other than the mtDNA-encoded RNA species (thirteen mRNAs, 12S and 16S rRNAs, and twenty-two tRNAs), the many remaining factors needed for mitochondrial gene expression (i.e. transcription, RNA processing/modification and translation), including a dedicated set of mitochondrial ribosomal proteins, are products of nuclear genes that are imported into the mitochondrial matrix. Herein, we inventory the human mitochondrial gene expression machinery, and while doing so highlight specific associations of these regulatory factors with human disease. Major new breakthroughs have been made recently in this burgeoning area that set the stage for exciting future studies on the key outstanding issue of how mitochondrial gene expression is regulated differentially in vivo. This should promote a greater understanding of why mtDNA mutations and dysfunction cause the complex and tissue-specific pathology characteristic of mitochondrial disease states and how mitochondrial dysfunction contributes to more common human pathology and aging. PMID:20544879

  12. Effects of dietary fatty acids on mitochondrial phospholipid compositions, oxidative status and mitochondrial gene expression of zebrafish at different ages.

    PubMed

    Betancor, M B; Almaida-Pagán, P F; Hernández, A; Tocher, D R

    2015-10-01

    Mitochondrial decay is generally associated with impairment in the organelle bioenergetics function and increased oxidative stress, and it appears that deterioration of mitochondrial inner membrane phospholipids (PL) and accumulation of mitochondrial DNA (mtDNA) mutations are among the main mechanisms involved in this process. In the present study, mitochondrial membrane PL compositions, oxidative status (TBARS content and SOD activity) and mtDNA gene expression of muscle and liver were analyzed in zebrafish fed two diets with lipid supplied either by rapeseed oil (RO) or a blend 60:40 of RO and DHA500 TG oil (DHA). Two feeding trials were performed using zebrafish from the same population of two ages (8 and 21 months). Dietary FA composition affected fish growth in 8-month-old animals, which could be related to an increase in stress promoted by diet composition. Lipid peroxidation was considerably higher in mitochondria of 8-month-old zebrafish fed the DHA diet than in animals fed the RO diet. This could indicate higher oxidative damage to mitochondrial lipids, very likely due to increased incorporation of DHA in PL of mitochondrial membranes. Lipids would be among the first molecules affected by mitochondrial reactive oxygen species, and lipid peroxidation could propagate oxidative reactions that would damage other molecules, including mtDNA. Mitochondrial lipid peroxidation and gene expression of 21-month-old fish showed lower responsiveness to diet composition than those of younger fish. Differences found in the effect of diet composition on mitochondrial lipids between the two age groups could be indicating age-related changes in the ability to maintain structural homeostasis of mitochondrial membranes. PMID:26156499

  13. Expression profiling of Drosophila mitochondrial genes via deep mRNA sequencing

    PubMed Central

    Torres, Tatiana Teixeira; Dolezal, Marlies; Schlötterer, Christian; Ottenwälder, Birgit

    2009-01-01

    Mitochondria play an essential role in several cellular processes. Nevertheless, very little is known about patterns of gene expression of genes encoded by the mitochondrial DNA (mtDNA). In this study, we used next-generation sequencing (NGS) for transcription profiling of genes encoded in the mitochondrial genome of Drosophila melanogaster and D. pseudoobscura. The analysis of males and females in both species indicated that the expression pattern was conserved between the two species, but differed significantly between both sexes. Interestingly, mRNA levels were not only different among genes encoded by separate transcription units, but also showed significant differences among genes located in the same transcription unit. Hence, mRNA abundance of genes encoded by mtDNA seems to be heavily modulated by post-transcriptional regulation. Finally, we also identified several transcripts with a noncanonical structure, suggesting that processing of mitochondrial transcripts may be more complex than previously assumed. PMID:19843606

  14. Global variability in gene expression and alternative splicing is modulated by mitochondrial content.

    PubMed

    Guantes, Raul; Rastrojo, Alberto; Neves, Ricardo; Lima, Ana; Aguado, Begoña; Iborra, Francisco J

    2015-05-01

    Noise in gene expression is a main determinant of phenotypic variability. Increasing experimental evidence suggests that genome-wide cellular constraints largely contribute to the heterogeneity observed in gene products. It is still unclear, however, which global factors affect gene expression noise and to what extent. Since eukaryotic gene expression is an energy demanding process, differences in the energy budget of each cell could determine gene expression differences. Here, we quantify the contribution of mitochondrial variability (a natural source of ATP variation) to global variability in gene expression. We find that changes in mitochondrial content can account for ∼50% of the variability observed in protein levels. This is the combined result of the effect of mitochondria dosage on transcription and translation apparatus content and activities. Moreover, we find that mitochondrial levels have a large impact on alternative splicing, thus modulating both the abundance and type of mRNAs. A simple mathematical model in which mitochondrial content simultaneously affects transcription rate and splicing site choice can explain the alternative splicing data. The results of this study show that mitochondrial content (and/or probably function) influences mRNA abundance, translation, and alternative splicing, which ultimately affects cellular phenotype. PMID:25800673

  15. Dietary fatty acids affect mitochondrial phospholipid compositions and mitochondrial gene expression of rainbow trout liver at different ages.

    PubMed

    Almaida-Pagán, P F; De Santis, C; Rubio-Mejía, O L; Tocher, D R

    2015-01-01

    Mitochondria are among the first responders to various stressors that challenge the homeostasis of cells and organisms. Mitochondrial decay is generally associated with impairment in the organelle bioenergetics function and increased oxidative stress, and it appears that deterioration of mitochondrial inner membrane phospholipids (PL), particularly cardiolipin (CL), and accumulation of mitochondrial DNA (mtDNA) mutations are among the main mechanisms involved in this process. In the present study, liver mitochondrial membrane PL compositions, lipid peroxidation, and mtDNA gene expression were analyzed in rainbow trout fed three diets with the same base formulation but with lipid supplied either by fish oil (FO), rapeseed oil (RO), or high DHA oil (DHA) during 6 weeks. Specifically, two feeding trials were performed using fish from the same population of two ages (1 and 3 years), and PL class compositions of liver mitochondria, fatty acid composition of individual PL classes, TBARS content, and mtDNA expression were determined. Dietary fatty acid composition strongly affected mitochondrial membrane composition from trout liver but observed changes did not fully reflect the diet, particularly when it contained high DHA. The changes were PL specific, CL being particularly resistant to changes in DHA. Some significant differences observed in expression of mtDNA with diet may suggest long-term dietary effects in mitochondrial gene expression which could affect electron transport chain function. All the changes were influenced by fish age, which could be related to the different growth rates observed between 1- and 3-year-old trout but that could also indicate age-related changes in the ability to maintain structural homeostasis of mitochondrial membranes. PMID:25398637

  16. Whole Cell Formaldehyde Cross-Linking Simplifies Purification of Mitochondrial Nucleoids and Associated Proteins Involved in Mitochondrial Gene Expression

    PubMed Central

    Rajala, Nina; Hensen, Fenna; Wessels, Hans J. C. T.; Ives, Daniel; Gloerich, Jolein; Spelbrink, Johannes N.

    2015-01-01

    Mitochondrial DNA/protein complexes (nucleoids) appear as discrete entities inside the mitochondrial network when observed by live-cell imaging and immunofluorescence. This somewhat trivial observation in recent years has spurred research towards isolation of these complexes and the identification of nucleoid-associated proteins. Here we show that whole cell formaldehyde crosslinking combined with affinity purification and tandem mass-spectrometry provides a simple and reproducible method to identify potential nucleoid associated proteins. The method avoids spurious mitochondrial isolation and subsequent multifarious nucleoid enrichment protocols and can be implemented to allow for label-free quantification (LFQ) by mass-spectrometry. Using expression of a Flag-tagged Twinkle helicase and appropriate controls we show that this method identifies many previously identified nucleoid associated proteins. Using LFQ to compare HEK293 cells with and without mtDNA, but both expressing Twinkle-FLAG, identifies many proteins that are reduced or absent in the absence of mtDNA. This set not only includes established mtDNA maintenance proteins but also many proteins involved in mitochondrial RNA metabolism and translation and therefore represents what can be considered an mtDNA gene expression proteome. Our data provides a very valuable resource for both basic mitochondrial researchers as well as clinical geneticists working to identify novel disease genes on the basis of exome sequence data. PMID:25695250

  17. Mitochondrial content is central to nuclear gene expression: Profound implications for human health.

    PubMed

    Muir, Rebecca; Diot, Alan; Poulton, Joanna

    2016-02-01

    We review a recent paper in Genome Research by Guantes et al. showing that nuclear gene expression is influenced by the bioenergetic status of the mitochondria. The amount of energy that mitochondria make available for gene expression varies considerably. It depends on: the energetic demands of the tissue; the mitochondrial DNA (mtDNA) mutant load; the number of mitochondria; stressors present in the cell. Hence, when failing mitochondria place the cell in energy crisis there are major effects on gene expression affecting the risk of degenerative diseases, cancer and ageing. In 2015 the UK parliament approved a change in the regulation of IVF techniques, allowing "Mitochondrial replacement therapy" to become a reproductive choice for women at risk of transmitting mitochondrial disease to their children. This is the first time that this technique will be available. Therefore understanding the interaction between mitochondria and the nucleus has never been more important. PMID:26725055

  18. Mitochondrial content is central to nuclear gene expression: Profound implications for human health

    PubMed Central

    Muir, Rebecca; Diot, Alan

    2016-01-01

    We review a recent paper in Genome Research by Guantes et al. showing that nuclear gene expression is influenced by the bioenergetic status of the mitochondria. The amount of energy that mitochondria make available for gene expression varies considerably. It depends on: the energetic demands of the tissue; the mitochondrial DNA (mtDNA) mutant load; the number of mitochondria; stressors present in the cell. Hence, when failing mitochondria place the cell in energy crisis there are major effects on gene expression affecting the risk of degenerative diseases, cancer and ageing. In 2015 the UK parliament approved a change in the regulation of IVF techniques, allowing “Mitochondrial replacement therapy” to become a reproductive choice for women at risk of transmitting mitochondrial disease to their children. This is the first time that this technique will be available. Therefore understanding the interaction between mitochondria and the nucleus has never been more important. PMID:26725055

  19. Mitochondrial Gene Expression Is Responsive to Starvation Stress and Developmental Transition in Trypanosoma cruzi

    PubMed Central

    Shaw, Aubie K.; Kalem, Murat C.

    2016-01-01

    ABSTRACT Trypanosoma cruzi parasites causing Chagas disease are passed between mammals by the triatomine bug vector. Within the insect, T. cruzi epimastigote-stage cells replicate and progress through the increasingly nutrient-restricted digestive tract, differentiating into infectious, nonreplicative metacyclic trypomastigotes. Thus, we evaluated how nutrient perturbations or metacyclogenesis affects mitochondrial gene expression in different insect life cycle stages. We compared mitochondrial RNA abundances in cultures containing fed, replicating epimastigotes, differentiating cultures containing both starved epimastigotes and metacyclic trypomastigotes and epimastigote starvation cultures. We observed increases in mitochondrial rRNAs and some mRNAs in differentiating cultures. These increases predominated only for the edited CYb mRNA in cultures enriched for metacyclic trypomastigotes. For the other transcripts, abundance increases were linked to starvation and were strongest in culture fractions with a high population of starved epimastigotes. We show that loss of both glucose and amino acids results in rapid increases in RNA abundances that are quickly reduced when these nutrients are returned. Furthermore, the individual RNAs exhibit distinct temporal abundance patterns, suggestive of multiple mechanisms regulating individual transcript abundance. Finally, increases in mitochondrial respiratory complex subunit mRNA abundances were not matched by increases in abundances of nucleus-encoded subunit mRNAs, nor were there statistically significant increases in protein levels of three nucleus-encoded subunits tested. These results show that, similarly to that in T. brucei, the mitochondrial genome in T. cruzi has the potential to alter gene expression in response to environmental or developmental stimuli but for an as-yet-unknown purpose. IMPORTANCE Chagas disease is caused by insect-transmitted Trypanosoma cruzi. Halting T. cruzi’s life cycle in one of its

  20. Yeast PPR proteins, watchdogs of mitochondrial gene expression

    PubMed Central

    Herbert, Christopher J; Golik, Pawel; Bonnefoy, Nathalie

    2013-01-01

    PPR proteins are a family of ubiquitous RNA-binding factors, found in all the Eukaryotic lineages, and are particularly numerous in higher plants. According to recent bioinformatic analyses, yeast genomes encode from 10 (in S. pombe) to 15 (in S. cerevisiae) PPR proteins. All of these proteins are mitochondrial and very often interact with the mitochondrial membrane. Apart from the general factors, RNA polymerase and RNase P, most yeast PPR proteins are involved in the stability and/or translation of mitochondrially encoded RNAs. At present, some information concerning the target RNA(s) of most of these proteins is available, the next challenge will be to refine our understanding of the function of the proteins and to resolve the yeast PPR-RNA-binding code, which might differ significantly from the plant PPR code. PMID:24184848

  1. Effects of TCDD on the Expression of Nuclear Encoded Mitochondrial Genes

    PubMed Central

    Forgacs, Agnes L.; Burgoon, Lyle D.; Lynn, Scott G.; LaPres, John J.; Zacharewski, Timothy

    2014-01-01

    Generation of mitochondrial reactive oxygen species (ROS) can be perturbed following exposure to environmental chemicals such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Reports indicate that the aryl hydrocarbon receptor (AhR) mediates TCDD-induced sustained hepatic oxidative stress by decreasing hepatic ATP levels and through hyperpolarization of the inner mitochondrial membrane. To further elucidate the effects of TCDD on the mitochondria, high-throughput quantitative real-time PCR (HTP-QRTPCR) was used to evaluate the expression of 90 genes encoding mitochondrial proteins involved in electron transport, oxidative phosphorylation, uncoupling, and associated chaperones. HTP-QRTPCR analysis of time course (30 μg/kg TCDD at 2, 4, 8, 12, 18, 24, 72, and 168 hrs) liver samples obtained from orally gavaged immature, ovariectomized C57BL/6 mice identified 54 differentially expressed genes (|fold change|>1.5 and P-value <0.1). Of these, 8 exhibited a dose response (0.03 to 300 μg/kg TCDD) at 4, 24 or 72 hrs. Dose responsive genes encoded proteins associated with electron transport chain (ETC) complex I (NADH dehydrogenase), III (cytochrome c reductase), IV (cytochrome c oxidase), and V (ATP synthase) and could be generally categorized as having proton gradient, ATP synthesis, and chaperone activities. In contrast, transcript levels of ETC complex II, succinate dehydrogenase, remained unchanged. Putative dioxin response elements were computationally found in the promoter regions of the 8 dose-responsive genes. This high-throughput approach suggests that TCDD alters the expression of genes associated with mitochondrial function which may contribute to TCDD-elicited mitochondrial toxicity. PMID:20399798

  2. Effects of TCDD on the expression of nuclear encoded mitochondrial genes

    SciTech Connect

    Forgacs, Agnes L.; Burgoon, Lyle D.; Lynn, Scott G.; LaPres, John J.; Zacharewski, Timothy

    2010-07-15

    Generation of mitochondrial reactive oxygen species (ROS) can be perturbed following exposure to environmental chemicals such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Reports indicate that the aryl hydrocarbon receptor (AhR) mediates TCDD-induced sustained hepatic oxidative stress by decreasing hepatic ATP levels and through hyperpolarization of the inner mitochondrial membrane. To further elucidate the effects of TCDD on the mitochondria, high-throughput quantitative real-time PCR (HTP-QRTPCR) was used to evaluate the expression of 90 nuclear genes encoding mitochondrial proteins involved in electron transport, oxidative phosphorylation, uncoupling, and associated chaperones. HTP-QRTPCR analysis of time course (30 {mu}g/kg TCDD at 2, 4, 8, 12, 18, 24, 72, and 168 h) liver samples obtained from orally gavaged immature, ovariectomized C57BL/6 mice identified 54 differentially expressed genes (|fold change| > 1.5 and P-value < 0.1). Of these, 8 exhibited a sigmoidal or exponential dose-response profile (0.03 to 300 {mu}g/kg TCDD) at 4, 24 or 72 h. Dose-responsive genes encoded proteins associated with electron transport chain (ETC) complexes I (NADH dehydrogenase), III (cytochrome c reductase), IV (cytochrome c oxidase), and V (ATP synthase) and could be generally categorized as having proton gradient, ATP synthesis, and chaperone activities. In contrast, transcript levels of ETC complex II, succinate dehydrogenase, remained unchanged. Putative dioxin response elements were computationally found in the promoter regions of all 8 dose-responsive genes. This high-throughput approach suggests that TCDD alters the expression of genes associated with mitochondrial function which may contribute to TCDD-elicited mitochondrial toxicity.

  3. Population-level expression variability of mitochondrial DNA-encoded genes in humans

    PubMed Central

    Wang, Gang; Yang, Ence; Mandhan, Ishita; Brinkmeyer-Langford, Candice L; Cai, James J

    2014-01-01

    Human mitochondria contain multiple copies of a circular genome made up of double-stranded DNA (mtDNA) that encodes proteins involved in cellular respiration. Transcript abundance of mtDNA-encoded genes varies between human individuals, yet the level of variation in the general population has not been systematically assessed. In the present study, we revisited large-scale RNA sequencing data generated from lymphoblastoid cell lines of HapMap samples of European and African ancestry to estimate transcript abundance and quantify expression variation for mtDNA-encoded genes. In both populations, we detected up to over 100-fold difference in mtDNA gene expression between individuals. The marked variation was not due to differences in mtDNA copy number between individuals, but was shaped by the transcription of hundreds of nuclear genes. Many of these nuclear genes were co-expressed with one another, resulting in a module-enriched co-expression network. Significant correlations in expression between genes of the mtDNA and nuclear genomes were used to identify factors involved with the regulation of mitochondrial functions. In conclusion, we determined the baseline amount of variability in mtDNA gene expression in general human populations and cataloged a complete set of nuclear genes whose expression levels are correlated with those of mtDNA-encoded genes. Our findings will enable the integration of information from both mtDNA and nuclear genetic systems, and facilitate the discovery of novel regulatory pathways involving mitochondrial functions. PMID:24398800

  4. FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression

    PubMed Central

    Ferber, E C; Peck, B; Delpuech, O; Bell, G P; East, P; Schulze, A

    2012-01-01

    Forkhead transcription factors of the O class (FOXOs) are important targets of the phosphatidylinositol 3-kinase/Akt pathway, and are key regulators of the cell cycle, apoptosis and response to oxidative stress. FOXOs have been shown to have tumour suppressor function and are important for stem cell maintenance. We have performed a detailed analysis of the transcriptional programme induced in response to Forkhead-box protein O3a (FOXO3a) activation. We observed that FOXO3a activation results in the repression of a large number of nuclear-encoded genes with mitochondrial function. Repression of these genes was mediated by FOXO3a-dependent inhibition of c-Myc. FOXO3a activation also caused a reduction in mitochondrial DNA copy number, expression of mitochondrial proteins, respiratory complexes and mitochondrial respiratory activity. FOXO3a has been previously implicated in the detoxification of reactive oxygen species (ROS) through induction of manganese-containing superoxide dismutase (SOD2). We observed that reduction in ROS levels following FOXO3a activation was independent of SOD2, but required c-Myc inhibition. Hypoxia increases ROS production from the mitochondria, which is required for stabilisation of the hypoxia-inducible factor-1α (HIF-1α). FOXO3a activation blocked the hypoxia-dependent increase in ROS and prevented HIF-1α stabilisation. Our data suggest that FOXO factors regulate mitochondrial activity through inhibition of c-Myc function and alter the hypoxia response. PMID:22139133

  5. FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression.

    PubMed

    Ferber, E C; Peck, B; Delpuech, O; Bell, G P; East, P; Schulze, A

    2012-06-01

    Forkhead transcription factors of the O class (FOXOs) are important targets of the phosphatidylinositol 3-kinase/Akt pathway, and are key regulators of the cell cycle, apoptosis and response to oxidative stress. FOXOs have been shown to have tumour suppressor function and are important for stem cell maintenance. We have performed a detailed analysis of the transcriptional programme induced in response to Forkhead-box protein O3a (FOXO3a) activation. We observed that FOXO3a activation results in the repression of a large number of nuclear-encoded genes with mitochondrial function. Repression of these genes was mediated by FOXO3a-dependent inhibition of c-Myc. FOXO3a activation also caused a reduction in mitochondrial DNA copy number, expression of mitochondrial proteins, respiratory complexes and mitochondrial respiratory activity. FOXO3a has been previously implicated in the detoxification of reactive oxygen species (ROS) through induction of manganese-containing superoxide dismutase (SOD2). We observed that reduction in ROS levels following FOXO3a activation was independent of SOD2, but required c-Myc inhibition. Hypoxia increases ROS production from the mitochondria, which is required for stabilisation of the hypoxia-inducible factor-1α (HIF-1α). FOXO3a activation blocked the hypoxia-dependent increase in ROS and prevented HIF-1α stabilisation. Our data suggest that FOXO factors regulate mitochondrial activity through inhibition of c-Myc function and alter the hypoxia response. PMID:22139133

  6. Mitochondrially-targeted expression of a cytoplasmic male sterility-associated orf220 gene causes male sterility in Brassica juncea

    PubMed Central

    2010-01-01

    Background The novel chimeric open reading frame (orf) resulting from the rearrangement of a mitochondrial genome is generally thought to be a causal factor in the occurrence of cytoplasmic male sterility (CMS). Both positive and negative correlations have been found between CMS-associated orfs and the occurrence of CMS when CMS-associated orfs were expressed and targeted at mitochondria. Some orfs cause male sterility or semi-sterility, while some do not. Little is currently known about how mitochondrial factor regulates the expression of the nuclear genes involved in male sterility. The purpose of this study was to investigate the biological function of a candidate CMS-associated orf220 gene, newly isolated from cytoplasmic male-sterile stem mustard, and show how mitochondrial retrograde regulated nuclear gene expression is related to male sterility. Results It was shown that the ORF220 protein can be guided to the mitochondria using the mitochondrial-targeting sequence of the β subunit of F1-ATPase (atp2-1). Transgenic stem mustard plants expressed the chimeric gene containing the orf220 gene and a mitochondrial-targeting sequence of the β subunit of F1-ATPase (atp2-1). Transgenic plants were male-sterile, most being unable to produce pollen while some could only produce non-vigorous pollen. The transgenic stem mustard plants also showed aberrant floral development identical to that observed in the CMS stem mustard phenotype. Results obtained from oligooarray analysis showed that some genes related to mitochondrial energy metabolism were down-regulated, indicating a weakening of mitochondrial function in transgenic stem mustard. Some genes related to pollen development were shown to be down-regulated in transgenic stem mustard and the expression of some transcription factor genes was also altered. Conclusion The work presented furthers our understanding of how the mitochondrially-targeted expression of CMS-associated orf220 gene causes male sterility through

  7. Stress and corticosteroids regulate rat hippocampal mitochondrial DNA gene expression via the glucocorticoid receptor.

    PubMed

    Hunter, Richard G; Seligsohn, Ma'ayan; Rubin, Todd G; Griffiths, Brian B; Ozdemir, Yildirim; Pfaff, Donald W; Datson, Nicole A; McEwen, Bruce S

    2016-08-01

    Glucocorticoids (GCs) are involved in stress and circadian regulation, and produce many actions via the GC receptor (GR), which is classically understood to function as a nuclear transcription factor. However, the nuclear genome is not the only genome in eukaryotic cells. The mitochondria also contain a small circular genome, the mitochondrial DNA (mtDNA), that encodes 13 polypeptides. Recent work has established that, in the brain and other systems, the GR is translocated from the cytosol to the mitochondria and that stress and corticosteroids have a direct influence on mtDNA transcription and mitochondrial physiology. To determine if stress affects mitochondrially transcribed mRNA (mtRNA) expression, we exposed adult male rats to both acute and chronic immobilization stress and examined mtRNA expression using quantitative RT-PCR. We found that acute stress had a main effect on mtRNA expression and that expression of NADH dehydrogenase 1, 3, and 6 (ND-1, ND-3, ND-6) and ATP synthase 6 (ATP-6) genes was significantly down-regulated. Chronic stress induced a significant up-regulation of ND-6 expression. Adrenalectomy abolished acute stress-induced mtRNA regulation, demonstrating GC dependence. ChIP sequencing of GR showed that corticosterone treatment induced a dose-dependent association of the GR with the control region of the mitochondrial genome. These findings demonstrate GR and stress-dependent transcriptional regulation of the mitochondrial genome in vivo and are consistent with previous work linking stress and GCs with changes in the function of brain mitochondria. PMID:27457949

  8. Mitochondrial-related gene expression changes are sensitive to agonal-pH state: implications for brain disorders

    PubMed Central

    Vawter, MP; Tomita, H; Meng, F; Bolstad, B; Li, J; Evans, S; Choudary, P; Atz, M; Shao, L; Neal, C; Walsh, DM; Burmeister, M; Speed, T; Myers, R; Jones, EG; Watson, SJ; Akil, H; Bunney, WE

    2010-01-01

    Mitochondrial defects in gene expression have been implicated in the pathophysiology of bipolar disorder and schizophrenia. We have now contrasted control brains with low pH versus high pH and showed that 28% of genes in mitochondrial-related pathways meet criteria for differential expression. A majority of genes in the mitochondrial, chaperone and proteasome pathways of nuclear DNA-encoded gene expression were decreased with decreased brain pH, whereas a majority of genes in the apoptotic and reactive oxygen stress pathways showed an increased gene expression with a decreased brain pH. There was a significant increase in mitochondrial DNA copy number and mitochondrial DNA gene expression with increased agonal duration. To minimize effects of agonal-pH state on mood disorder comparisons, two classic approaches were used, removing all subjects with low pH and agonal factors from analysis, or grouping low and high pH as a separate variable. Three groups of potential candidate genes emerged that may be mood disorder related: (a) genes that showed no sensitivity to pH but were differentially expressed in bipolar disorder or major depressive disorder; (b) genes that were altered by agonal-pH in one direction but altered in mood disorder in the opposite direction to agonal-pH and (c) genes with agonal-pH sensitivity that displayed the same direction of changes in mood disorder. Genes from these categories such as NR4A1 and HSPA2 were confirmed with Q-PCR. The interpretation of postmortem brain studies involving broad mitochondrial gene expression and related pathway alterations must be monitored against the strong effect of agonal-pH state. Genes with the least sensitivity to agonal-pH could present a starting point for candidate gene search in neuropsychiatric disorders. PMID:16636682

  9. Mitochondrial-related gene expression changes are sensitive to agonal-pH state: implications for brain disorders.

    PubMed

    Vawter, M P; Tomita, H; Meng, F; Bolstad, B; Li, J; Evans, S; Choudary, P; Atz, M; Shao, L; Neal, C; Walsh, D M; Burmeister, M; Speed, T; Myers, R; Jones, E G; Watson, S J; Akil, H; Bunney, W E

    2006-07-01

    Mitochondrial defects in gene expression have been implicated in the pathophysiology of bipolar disorder and schizophrenia. We have now contrasted control brains with low pH versus high pH and showed that 28% of genes in mitochondrial-related pathways meet criteria for differential expression. A majority of genes in the mitochondrial, chaperone and proteasome pathways of nuclear DNA-encoded gene expression were decreased with decreased brain pH, whereas a majority of genes in the apoptotic and reactive oxygen stress pathways showed an increased gene expression with a decreased brain pH. There was a significant increase in mitochondrial DNA copy number and mitochondrial DNA gene expression with increased agonal duration. To minimize effects of agonal-pH state on mood disorder comparisons, two classic approaches were used, removing all subjects with low pH and agonal factors from analysis, or grouping low and high pH as a separate variable. Three groups of potential candidate genes emerged that may be mood disorder related: (a) genes that showed no sensitivity to pH but were differentially expressed in bipolar disorder or major depressive disorder; (b) genes that were altered by agonal-pH in one direction but altered in mood disorder in the opposite direction to agonal-pH and (c) genes with agonal-pH sensitivity that displayed the same direction of changes in mood disorder. Genes from these categories such as NR4A1 and HSPA2 were confirmed with Q-PCR. The interpretation of postmortem brain studies involving broad mitochondrial gene expression and related pathway alterations must be monitored against the strong effect of agonal-pH state. Genes with the least sensitivity to agonal-pH could present a starting point for candidate gene search in neuropsychiatric disorders. PMID:16636682

  10. Partial kinetoplast-mitochondrial gene organization and expression in the respiratory deficient plant trypanosomatid Phytomonas serpens.

    PubMed

    Maslov, D A; Nawathean, P; Scheel, J

    1999-04-30

    In plant-dwelling trypanosomatids from the genus Phytomonas, mitochondrial functions, such as cytochrome mediated respiration, ATP production and Krebs cycle, are missing, and cell energetics is based on the glycolysis. Using Blue Native/Tricine-SDS two-dimensional gel electrophoretic analysis, we observed that mitochondrial respiratory Complexes III (cytochrome bc1) and IV (cytochrome c oxidase) were absent in Phytomonas serpens; however, Complex V (ATPase) was present. A deletion of the genes for cytochrome c oxidase subunit III (COIII) and apocytochrome b (Cyb) was identified within the 6234 bp sequenced region of the 31 kb maxicircle kinetoplast DNA. Genes, found in this region, include 12S and 9S ribosomal RNAs, subunits 7, 8 and 9 of NADH dehydrogenase (ND7, ND8 and ND9) and subunit 6 of ATPase (A6 or MURF4), as well as the genes (MURF1, MURF5 and G3) with unknown function. Most genes are actively transcribed and some mRNAs are edited. Fully edited mRNAs for A6 and G3 were abundant, while edited ND7 transcripts were rare, and only partially edited and pre-edited transcripts for ND8 were detected. The data show that the mitochondrial genome of P. serpens is functional, although its functions may be limited to expressing the ATPase and, possibly, NADH dehydrogenase complexes. PMID:10340485

  11. Gene Expression Profiling Specifies Chemokine, Mitochondrial and Lipid Metabolism Signatures in Leprosy

    PubMed Central

    Guerreiro, Luana Tatiana Albuquerque; Robottom-Ferreira, Anna Beatriz; Ribeiro-Alves, Marcelo; Toledo-Pinto, Thiago Gomes; Rosa Brito, Tiana; Rosa, Patrícia Sammarco; Sandoval, Felipe Galvan; Jardim, Márcia Rodrigues; Antunes, Sérgio Gomes; Shannon, Edward J.; Sarno, Euzenir Nunes; Pessolani, Maria Cristina Vidal; Williams, Diana Lynn; Moraes, Milton Ozório

    2013-01-01

    Herein, we performed microarray experiments in Schwann cells infected with live M. leprae and identified novel differentially expressed genes (DEG) in M. leprae infected cells. Also, we selected candidate genes associated or implicated with leprosy in genetic studies and biological experiments. Forty-seven genes were selected for validation in two independent types of samples by multiplex qPCR. First, an in vitro model using THP-1 cells was infected with live Mycobacterium leprae and M. bovis bacillus Calmette-Guérin (BCG). In a second situation, mRNA obtained from nerve biopsies from patients with leprosy or other peripheral neuropathies was tested. We detected DEGs that discriminate M. bovis BCG from M. leprae infection. Specific signatures of susceptible responses after M. leprae infection when compared to BCG lead to repression of genes, including CCL2, CCL3, IL8 and SOD2. The same 47-gene set was screened in nerve biopsies, which corroborated the down-regulation of CCL2 and CCL3 in leprosy, but also evidenced the down-regulation of genes involved in mitochondrial metabolism, and the up-regulation of genes involved in lipid metabolism and ubiquitination. Finally, a gene expression signature from DEG was identified in patients confirmed of having leprosy. A classification tree was able to ascertain 80% of the cases as leprosy or non-leprous peripheral neuropathy based on the expression of only LDLR and CCL4. A general immune and mitochondrial hypo-responsive state occurs in response to M. leprae infection. Also, the most important genes and pathways have been highlighted providing new tools for early diagnosis and treatment of leprosy. PMID:23798993

  12. Gene expression changes of single skeletal muscle fibers in response to modulation of the mitochondrial calcium uniporter (MCU).

    PubMed

    Chemello, Francesco; Mammucari, Cristina; Gherardi, Gaia; Rizzuto, Rosario; Lanfranchi, Gerolamo; Cagnin, Stefano

    2015-09-01

    The mitochondrial calcium uniporter (MCU) gene codifies for the inner mitochondrial membrane (IMM) channel responsible for mitochondrial Ca(2 +) uptake. Cytosolic Ca(2 +) transients are involved in sarcomere contraction through cycles of release and storage in the sarcoplasmic reticulum. In addition cytosolic Ca(2 +) regulates various signaling cascades that eventually lead to gene expression reprogramming. Mitochondria are strategically placed in close contact with the ER/SR, thus cytosolic Ca(2 +) transients elicit large increases in the [Ca(2 +)] of the mitochondrial matrix ([Ca(2 +)]mt). Mitochondrial Ca(2 +) uptake regulates energy production and cell survival. In addition, we recently showed that MCU-dependent mitochondrial Ca(2 +) uptake controls skeletal muscle trophism. In the same report, we dissected the effects of MCU-dependent mitochondrial Ca(2 +) uptake on gene expression through microarray gene expression analysis upon modulation of MCU expression by in vivo AAV infection. Analyses were performed on single skeletal muscle fibers at two time points (7 and 14 days post-AAV injection). Raw and normalized data are available on the GEO database (http://www.ncbi.nlm.nih.gov/geo/) (GSE60931). PMID:26484227

  13. Bcmimp1, a Botrytis cinerea Gene Transiently Expressed in planta, Encodes a Mitochondrial Protein

    PubMed Central

    Benito-Pescador, David; Santander, Daniela; Arranz, M.; Díaz-Mínguez, José M.; Eslava, Arturo P.; van Kan, Jan A. L.; Benito, Ernesto P.

    2016-01-01

    Botrytis cinerea is a widespread necrotrophic fungus which infects more than 200 plant species. In an attempt to characterize the physiological status of the fungus in planta and to identify genetic factors contributing to its ability to infect the host cells, a differential gene expression analysis during the interaction B. cinerea-tomato was carried out. Gene Bcmimp1 codes for a mRNA detected by differential display in the course of this analysis. During the interaction with the host, it shows a transient expression pattern with maximal expression levels during the colonization and maceration of the infected tissues. Bioinformatic analysis suggested that BCMIMP1 is an integral membrane protein located in the mitochondrial inner membrane. Co-localization experiments with a BCMIMP1-GFP fusion protein confirmed that the protein is targeted to the mitochondria. ΔBcmimp1 mutants do not show obvious phenotypic differences during saprophytic growth and their infection ability was unaltered as compared to the wild-type. Interestingly, the mutants produced increased levels of reactive oxygen species, likely as a consequence of disturbed mitochondrial function. Although Bcmimp1 expression is enhanced in planta it cannot be considered a pathogenicity factor. PMID:26952144

  14. Expression of kenaf mitochondrial chimeric genes HM184 causes male sterility in transgenic tobacco plants.

    PubMed

    Zhao, Yanhong; Liao, Xiaofang; Huang, Zhipeng; Chen, Peng; Zhou, Bujin; Liu, Dongmei; Kong, Xiangjun; Zhou, Ruiyang

    2015-08-01

    Chimeric genes resulting from the rearrangement of a mitochondrial genome were generally thought to be a causal factor in the occurrence of cytoplasmic male sterility (CMS). In the study, earlier we reported that identifying a 47 bp deletion at 3'- flanking of atp9 that was linked to male sterile cytoplasm in kenaf. The truncated fragment was fused with atp9, a mitochondrial transit signal (MTS) and/or GFP, comprised two chimeric genes MTS-HM184-GFP and MTS-HM184. The plant expression vector pBI121 containing chimeric genes were then introduced to tobacco plants by Agrobacterium-mediated T-DNA transformation. The result showed that certain transgenic plants were male sterility or semi-sterility, while some were not. The expression analysis further demonstrated that higher level of expression were showed in the sterility plants, while no expression or less expression in fertility plants, the levels of expression of semi-sterility were in between. And the sterile plant (containing MTS-HM184-GFP) had abnormal anther produced malformed/shriveled pollen grains stained negative that failed to germinate (0%), the corresponding fruits was shrunken, the semi-sterile plants having normal anther shape produced about 10-50% normal pollen grains, the corresponding fruits were not full, and the germination rate was 58%. Meanwhile these transgenic plants which altered on fertility were further analyzed in phenotype. As a result, the metamorphosis leaves were observed in the seedling stage, the plant height of transgenic plants was shorter than wild type. The growth duration of transgenic tobacco was delayed 30-45 days compared to the wild type. The copy numbers of target genes of transgenic tobacco were analyzed using the real-time quantitative method. The results showed that these transgenic plants targeting-expression in mitochondrial containing MTS-HM184-GFP had 1 copy and 2 copies, the other two plants containing MTS-HM184 both had 3 copies, but 0 copy in wild type. In

  15. PPR (pentatricopeptide repeat) proteins in mammals: important aids to mitochondrial gene expression.

    PubMed

    Lightowlers, Robert N; Chrzanowska-Lightowlers, Zofia M A

    2008-11-15

    Genes encoding PPR (pentatricopeptide repeat)-containing proteins constitute one of the largest gene families in plants. The majority of these proteins are predicted to target organelles and to bind to RNA. Strikingly, there is a dearth of these proteins in mammals, although genomic searches reveal six candidates, all of which are also predicted to target the mitochondrion. Two of these proteins, POLRMT (the mitochondrial RNA polymerase) and MRPS27, a mitoribosomal protein, are involved in transcription and translation respectively. PTCD1 (pentatricopeptide repeat domain protein 1) and PTCD3 are predicted to be involved in the assembly of respiratory chain complexes, whereas mutations in one other protein, LRPPRC (leucine-rich pentatricopeptide repeat cassette), have been shown to cause defects in the levels of cytochrome c oxidase, the terminal member of the respiratory chain. In this issue of the Biochemical Journal, Xu et al. turn their attention to the remaining candidate, PTCD2. Depletion in a mouse model led to deficiencies of the third complex of the respiratory chain that caused profound ultrastructural changes in the heart. The exact molecular function of PTCD2 remains unclear, but depletion leads to an apparent lack of processing of the mitochondrial transcript encoding apocytochrome b, a critical member of complex III. These data are consistent with PTCD2 playing an important role in the post-transcriptional expression of the mitochondrial genome. PMID:18939947

  16. Ca2+ signals regulate mitochondrial metabolism by stimulating CREB-mediated expression of the mitochondrial Ca2+ uniporter gene mcu

    PubMed Central

    Shanmughapriya, Santhanam; Rajan, Sudarsan; Hoffman, Nicholas E.; Zhang, Xueqian; Guo, Shuchi; Kolesar, Jill E.; Hines, Kevin J.; Ragheb, Jonathan; Jog, Neelakshi R.; Caricchio, Roberto; Baba, Yoshihiro; Zhou, Yandong; Kaufman, Brett; Cheung, Joseph Y.; Kurosaki, Tomohiro; Gill, Donald L.; Madesh, Muniswamy

    2016-01-01

    Cytosolic Ca2+ signals, generated through the coordinated translocation of Ca2+ across the plasma membrane (PM) and endoplasmic reticulum (ER) membrane, mediate diverse cellular responses. Mitochondrial Ca2+ is important for mitochondrial function and, when cytosolic Ca2+ concentrations become too high, mitochondria function as cellular Ca2+ sinks. By measuring mitochondrial Ca2+ currents, we found that mitochondrial Ca2+ uptake was reduced in chicken DT40 B lymphocytes lacking either the ER-localized inositol trisphosphate receptor (IP3R), which releases Ca2+ from the ER, or Orai1 or STIM1, components of the PM-localized Ca2+-permeable channel complex that mediates store-operated calcium entry (SOCE) in response to depletion of ER Ca2+ stores. The abundance of MCU, the pore-forming subunit of the mitochondrial Ca2+ uniporter, was reduced in cells deficient in IP3R, STIM1, or Orai1. Chromatin immunoprecipitation and promoter reporter analyses revealed that the Ca2+-regulated transcription factor CREB directly bound the mcu promoter and stimulated expression. Lymphocytes deficient in IP3R, STIM1, or Orai1 exhibited altered mitochondrial metabolism, indicating that Ca2+ released from the ER and SOCE-mediated signals modulate mitochondrial function. Thus, our results showed that a transcriptional regulatory circuit involving Ca2+-dependent activation of CREB controls the Ca2+-uptake capability of mitochondria and hence regulates mitochondrial metabolism. PMID:25737585

  17. Ca2+ signals regulate mitochondrial metabolism by stimulating CREB-mediated expression of the mitochondrial Ca2+ uniporter gene MCU.

    PubMed

    Shanmughapriya, Santhanam; Rajan, Sudarsan; Hoffman, Nicholas E; Zhang, Xueqian; Guo, Shuchi; Kolesar, Jill E; Hines, Kevin J; Ragheb, Jonathan; Jog, Neelakshi R; Caricchio, Roberto; Baba, Yoshihiro; Zhou, Yandong; Kaufman, Brett A; Cheung, Joseph Y; Kurosaki, Tomohiro; Gill, Donald L; Madesh, Muniswamy

    2015-03-01

    Cytosolic Ca2+ signals, generated through the coordinated translocation of Ca2+ across the plasma membrane (PM) and endoplasmic reticulum (ER) membrane, mediate diverse cellular responses. Mitochondrial Ca2+ is important for mitochondrial function, and when cytosolic Ca2+ concentration becomes too high, mitochondria function as cellular Ca2+ sinks. By measuring mitochondrial Ca2+ currents, we found that mitochondrial Ca2+ uptake was reduced in chicken DT40 B lymphocytes lacking either the ER-localized inositol trisphosphate receptor (IP3R), which releases Ca2+ from the ER, or Orai1 or STIM1, components of the PM-localized Ca2+ -permeable channel complex that mediates store-operated calcium entry (SOCE) in response to depletion of ER Ca2+ stores. The abundance of MCU, the pore-forming subunit of the mitochondrial Ca2+ uniporter, was reduced in cells deficient in IP3R, STIM1, or Orai1. Chromatin immunoprecipitation and promoter reporter analyses revealed that the Ca2+ -regulated transcription factor CREB (cyclic adenosine monophosphate response element-binding protein) directly bound the MCU promoter and stimulated expression. Lymphocytes deficient in IP3R, STIM1, or Orai1 exhibited altered mitochondrial metabolism, indicating that Ca2+ released from the ER and SOCE-mediated signals modulates mitochondrial function. Thus, our results showed that a transcriptional regulatory circuit involving Ca2+ -dependent activation of CREB controls the Ca2+ uptake capability of mitochondria and hence regulates mitochondrial metabolism. PMID:25737585

  18. Unbiased Gene Expression Analysis Implicates the huntingtin Polyglutamine Tract in Extra-mitochondrial Energy Metabolism

    PubMed Central

    Lee, Jong-Min; Ivanova, Elena V; Seong, Ihn Sik; Cashorali, Tanya; Kohane, Isaac; Gusella, James F; MacDonald, Marcy E

    2007-01-01

    The Huntington's disease (HD) CAG repeat, encoding a polymorphic glutamine tract in huntingtin, is inversely correlated with cellular energy level, with alleles over ∼37 repeats leading to the loss of striatal neurons. This early HD neuronal specificity can be modeled by respiratory chain inhibitor 3-nitropropionic acid (3-NP) and, like 3-NP, mutant huntingtin has been proposed to directly influence the mitochondrion, via interaction or decreased PGC-1α expression. We have tested this hypothesis by comparing the gene expression changes due to mutant huntingtin accurately expressed in STHdhQ111/Q111 cells with the changes produced by 3-NP treatment of wild-type striatal cells. In general, the HD mutation did not mimic 3-NP, although both produced a state of energy collapse that was mildly alleviated by the PGC-1α-coregulated nuclear respiratory factor 1 (Nrf-1). Moreover, unlike 3-NP, the HD CAG repeat did not significantly alter mitochondrial pathways in STHdhQ111/Q111 cells, despite decreased Ppargc1a expression. Instead, the HD mutation enriched for processes linked to huntingtin normal function and Nf-κB signaling. Thus, rather than a direct impact on the mitochondrion, the polyglutamine tract may modulate some aspect of huntingtin's activity in extra-mitochondrial energy metabolism. Elucidation of this HD CAG-dependent pathway would spur efforts to achieve energy-based therapeutics in HD. PMID:17708681

  19. Structure and expression of mouse mitochondrial voltage dependent anion channel genes

    SciTech Connect

    Craigen, W.J.; Lovell, R.S.; Sampson, M.J.

    1994-09-01

    Voltage dependent anion channels (VDACs) are small abundant proteins of the outer mitochondrial membrane that interact with the adenine nucleotide translocater and bind glycerol kinase and hexokinase. Kinase binding is developmentally regulated, tissue specific, and increased in various tumor cell lines. VDACs are also components of the peripheral benzodiazepine receptor and GABA{sub A} receptor. Two human VDAC cDNAs have previously been reported, and expression of these isoforms appears ubiquitous. Genomic Southern analysis suggests the presence of other as yet uncharacterised VDAC genes. To study VDAC function in a mammal more amenable to experimental manipulation, we have isolated three mouse VDAC genes by cDNA cloning from a mouse brain cDNA library. DNA sequencing of the cDNAs shows that they share 65-75% amino acid identity. Northern analysis indicates that MVDAC1 is expressed most highly in kidney, heart, and brain. Using an MVDAC3 3{prime} untranslated exon as a probe, three distinct transcripts can be detected. The gene structure for MVDAC3 and MVDAC2 has been completed and suggests that the VDAC isoforms did not arise by gene duplication and divergence. The intron/exon boundaries are not conserved between MVDAC1 and MVDAC3, and MVDAC2 appears to be encoded by a single intronless gene.

  20. Mitochondrial dysfunction induces SESN2 gene expression through Activating Transcription Factor 4.

    PubMed

    Garaeva, Alisa A; Kovaleva, Irina E; Chumakov, Peter M; Evstafieva, Alexandra G

    2016-01-01

    We found that inhibitors of mitochondrial respiratory chain complexes III (myxothiazol) and I (piericidin A) in some epithelial carcinoma cell lines induce transcription of the p53-responsive SESN2 gene that plays an important role in stress response and homeostatic regulation. However, the effect did not depend on p53 because i) there was no induction of p53 after the treatment with piericidin A; ii) after the treatment with myxothiazol the peak of SESN2 gene upregulation occurred as early as 5h, before the onset of p53 activation (13h); iii) a supplementation with uridine that abolishes the p53 activation in response to myxothiazol did not abrogate the induction of SESN2 transcripts; iv) in the p53 negative HCT116 p53 -/- cells SESN2 transcription could be also induced by myxothiazol. In response to the respiratory chain inhibitors we observed an induction of ATF4, the key transcription factor of the integrated stress response (ISR). We found that the induction of SESN2 transcripts could be prevented by the ISR inhibitory small molecule ISRIB. Also, by inhibiting or overexpressing ATF4 with specific shRNA or ATF4-expressing constructs, respectively, we have confirmed the role of ATF4 in the SESN2 gene upregulation induced by mitochondrial dysfunction. At a distance of 228 bp upstream from the SESN2 transcription start site we found a candidate sequence for the ATF4 binding site and confirmed its requirement for the induction of SESN2 in luciferase reporter experiments. We suggest that the upregulation of SESN2 by mitochondrial dysfunction provides a homeostatic feedback that attenuates biosynthetic processes during temporal losses of energy supply from mitochondria thereby assisting better adaptation and viability of cells in hostile environments. PMID:26771712

  1. PPARδ Agonism Activates Fatty Acid Oxidation via PGC-1α but Does Not Increase Mitochondrial Gene Expression and Function

    PubMed Central

    Kleiner, Sandra; Nguyen-Tran, Van; Baré, Olivia; Huang, Xueming; Spiegelman, Bruce; Wu, Zhidan

    2009-01-01

    PPARδ (peroxisome proliferator-activated receptor δ) is a regulator of lipid metabolism and has been shown to induce fatty acid oxidation (FAO). PPARδ transgenic and knock-out mice indicate an involvement of PPARδ in regulating mitochondrial biogenesis and oxidative capacity; however, the precise mechanisms by which PPARδ regulates these pathways in skeletal muscle remain unclear. In this study, we determined the effect of selective PPARδ agonism with the synthetic ligand, GW501516, on FAO and mitochondrial gene expression in vitro and in vivo. Our results show that activation of PPARδ by GW501516 led to a robust increase in mRNA levels of key lipid metabolism genes. Mitochondrial gene expression and function were not induced under the same conditions. Additionally, the activation of Pdk4 transcription by PPARδ was coactivated by PGC-1α. PGC-1α, but not PGC-1β, was essential for full activation of Cpt-1b and Pdk4 gene expression via PPARδ agonism. Furthermore, the induction of FAO by PPARδ agonism was completely abolished in the absence of both PGC-1α and PGC-1β. Conversely, PGC-1α-driven FAO was independent of PPARδ. Neither GW501516 treatment nor knockdown of PPARδ affects PGC-1α-induced mitochondrial gene expression in primary myotubes. These results demonstrate that pharmacological activation of PPARδ induces FAO via PGC-1α. However, PPARδ agonism does not induce mitochondrial gene expression and function. PGC-1α-induced FAO and mitochondrial biogenesis appear to be independent of PPARδ. PMID:19435887

  2. The expression of genes involved in hepatocellular carcinoma chemoresistance is affected by mitochondrial genome depletion.

    PubMed

    Gonzalez-Sanchez, Ester; Marin, Jose J G; Perez, Maria J

    2014-06-01

    Deletions and mutations in mitochondrial DNA (mtDNA), which are frequent in human tumors, such as hepatocellular carcinoma (HCC), may contribute to enhancing their malignant phenotype. Here we have investigated the effect of mtDNA depletion in the expression of genes accounting for mechanisms of chemoresistance (MOC) in HCC. Using human HCC SK-Hep-1 cells depleted of mtDNA (Rho), changes in gene expression in response to antitumor drugs previously assayed in HCC treatment were analyzed. In Rho cells, a decreased sensitivity to doxorubicin-, SN-38-, cisplatin (CDDP)-, and sorafenib-induced cell death was found. Both constitutive and drug-induced reactive oxygen species generation were decreased. Owing to activation of the NRF2-mediated pathway, MDR1, MRP1, and MRP2 expression was higher in Rho than in wild-type cells. This difference was maintained after further upregulation induced by treatment with doxorubicin, SN-38, or CDDP. Topoisomerase-IIa expression was also enhanced in Rho cells before and after treatment with these drugs. Moreover, the ability of doxorubicin, SN-38 and CDDP to induce proapoptotic signals was weaker in Rho cells, as evidenced by survivin upregulation and reductions in Bax/Bcl-2 expression ratios. Changes in these genes seem to play a minor role in the enhanced resistance of Rho cells to sorafenib, which may be related to an enhanced intracellular ATP content together with the loss of expression of the specific target of sorafenib, tyrosine kinase receptor Kit. In conclusion, these results suggest that mtDNA depletion may activate MOC able to hinder the efficacy of chemotherapy against HCC. PMID:24824514

  3. Interactive Effects of Dietary Lipid and Phenotypic Feed Efficiency on the Expression of Nuclear and Mitochondrial Genes Involved in the Mitochondrial Electron Transport Chain in Rainbow Trout

    PubMed Central

    Eya, Jonathan C.; Ukwuaba, Vitalis O.; Yossa, Rodrigue; Gannam, Ann L.

    2015-01-01

    A 2 × 3 factorial study was conducted to evaluate the effects of dietary lipid level on the expression of mitochondrial and nuclear genes involved in electron transport chain in all-female rainbow trout Oncorhynchus mykiss. Three practical diets with a fixed crude protein content of 40%, formulated to contain 10% (40/10), 20% (40/20) and 30% (40/30) dietary lipid, were fed to apparent satiety to triplicate groups of either low-feed efficient (F120; 217.66 ± 2.24 g initial average mass) or high-feed efficient (F136; 205.47 ± 1.27 g) full-sib families of fish, twice per day, for 90 days. At the end of the experiment, the results showed that there is an interactive effect of the dietary lipid levels and the phenotypic feed efficiency (growth rate and feed efficiency) on the expression of the mitochondrial genes nd1 (NADH dehydrogenase subunit 1), cytb (Cytochrome b), cox1 (Cytochrome c oxidase subunits 1), cox2 (Cytochrome c oxidase subunits 2) and atp6 (ATP synthase subunit 6) and nuclear genes ucp2α (uncoupling proteins 2 alpha), ucp2β (uncoupling proteins 2 beta), pparα (peroxisome proliferator-activated receptor alpha), pparβ (peroxisome proliferatoractivated receptor beta) and ppargc1α (proliferator-activated receptor gamma coactivator 1 alpha) in fish liver, intestine and muscle, except on ppargc1α in the muscle which was affected by the diet and the family separately. Also, the results revealed that the expression of mitochondrial genes is associated with that of nuclear genes involved in electron transport chain in fish liver, intestine and muscle. Furthermore, this work showed that the expression of mitochondrial genes parallels with the expression of genes encoding uncoupling proteins (UCP) in the liver and the intestine of rainbow trout. This study for the first time presents the molecular basis of the effects of dietary lipid level on mitochondrial and nuclear genes involved in mitochondrial electron transport chain in fish. PMID:25853266

  4. Gene expression of key regulators of mitochondrial biogenesis is sex dependent in mice with growth hormone receptor deletion in liver.

    PubMed

    Zawada, Ilona; Masternak, Michal M; List, Edward O; Stout, Michael B; Berryman, Darlene E; Lewinski, Andrzej; Kopchick, John J; Bartke, Andrzej; Karbownik-Lewinska, Malgorzata; Gesing, Adam

    2015-03-01

    Mitochondrial biogenesis is an essential process for cell viability. Mice with disruption of the growth hormone receptor (GHR) gene (Ghr gene) in the liver (LiGHRKO), in contrast to long-lived mice with global deletion of the Ghr gene (GHRKO), are characterized by lack of improved insulin sensitivity and severe hepatic steatosis. Tissue-specific disruption of the GHR in liver results in a mouse model with dramatically altered GH/IGF1 axis. We have previously shown increased levels of key regulators of mitochondrial biogenesis in insulin-sensitive GHRKO mice. The aim of the present study is to assess, using real-time PCR, the gene expression of key regulators of mitochondrial biogenesis (Pgc1α, Ampk, Sirt1, Nrf2 and Mfn2) and a marker of mitochondrial activity (CoxIV) in brains, kidneys and livers of male and female LiGHRKO and wild-type (WT) mice. There were significant differences between males and females. In the brain, expression of Pgc1α, Ampk, Sirt1, Nrf2 and Mfn2 was lower in pooled females compared to pooled males. In the kidneys, expression of Ampk and Sirt1 was also lower in female mice. In the liver, no differences between males and females were observed. Sexual dimorphism may play an important role in regulating the biogenesis of mitochondria. PMID:25855408

  5. Effects of moderate global maternal nutrient reduction on fetal baboon renal mitochondrial gene expression at 0.9 gestation.

    PubMed

    Pereira, Susana P; Oliveira, Paulo J; Tavares, Ludgero C; Moreno, António J; Cox, Laura A; Nathanielsz, Peter W; Nijland, Mark J

    2015-06-01

    Early life malnutrition results in structural alterations in the kidney, predisposing offspring to later life renal dysfunction. Kidneys of adults who were growth restricted at birth have substantial variations in nephron endowment. Animal models have indicated renal structural and functional consequences in offspring exposed to suboptimal intrauterine nutrition. Mitochondrial bioenergetics play a key role in renal energy metabolism, growth, and function. We hypothesized that moderate maternal nutrient reduction (MNR) would adversely impact fetal renal mitochondrial expression in a well-established nonhuman primate model that produces intrauterine growth reduction at term. Female baboons were fed normal chow diet or 70% of control diet (MNR). Fetal kidneys were harvested at cesarean section at 0.9 gestation (165 days gestation). Human Mitochondrial Energy Metabolism and Human Mitochondria Pathway PCR Arrays were used to analyze mitochondrially relevant mRNA expression. In situ protein content was detected by immunohistochemistry. Despite the smaller overall size, the fetal kidney weight-to-body weight ratio was not affected. We demonstrated fetal sex-specific differential mRNA expression encoding mitochondrial metabolite transport and dynamics proteins. MNR-related differential gene expression was more evident in female fetuses, with 16 transcripts significantly altered, including 14 downregulated and 2 upregulated transcripts. MNR impacted 10 transcripts in male fetuses, with 7 downregulated and 3 upregulated transcripts. The alteration in mRNA levels was accompanied by a decrease in mitochondrial protein cytochrome c oxidase subunit VIc. In conclusion, transcripts encoding fetal renal mitochondrial energy metabolism proteins are nutrition sensitive in a sex-dependent manner. We speculate that these differences lead to decreased mitochondrial fitness that contributes to renal dysfunction in later life. PMID:25761880

  6. A human mitochondrial poly(A) polymerase mutation reveals the complexities of post-transcriptional mitochondrial gene expression.

    PubMed

    Wilson, William C; Hornig-Do, Hue-Tran; Bruni, Francesco; Chang, Jeong Ho; Jourdain, Alexis A; Martinou, Jean-Claude; Falkenberg, Maria; Spåhr, Henrik; Larsson, Nils-Göran; Lewis, Richard J; Hewitt, Lorraine; Baslé, Arnaud; Cross, Harold E; Tong, Liang; Lebel, Robert R; Crosby, Andrew H; Chrzanowska-Lightowlers, Zofia M A; Lightowlers, Robert N

    2014-12-01

    The p.N478D missense mutation in human mitochondrial poly(A) polymerase (mtPAP) has previously been implicated in a form of spastic ataxia with optic atrophy. In this study, we have investigated fibroblast cell lines established from family members. The homozygous mutation resulted in the loss of polyadenylation of all mitochondrial transcripts assessed; however, oligoadenylation was retained. Interestingly, this had differential effects on transcript stability that were dependent on the particular species of transcript. These changes were accompanied by a severe loss of oxidative phosphorylation complexes I and IV, and perturbation of de novo mitochondrial protein synthesis. Decreases in transcript polyadenylation and in respiratory chain complexes were effectively rescued by overexpression of wild-type mtPAP. Both mutated and wild-type mtPAP localized to the mitochondrial RNA-processing granules thereby eliminating mislocalization as a cause of defective polyadenylation. In vitro polyadenylation assays revealed severely compromised activity by the mutated protein, which generated only short oligo(A) extensions on RNA substrates, irrespective of RNA secondary structure. The addition of LRPPRC/SLIRP, a mitochondrial RNA-binding complex, enhanced activity of the wild-type mtPAP resulting in increased overall tail length. The LRPPRC/SLIRP effect although present was less marked with mutated mtPAP, independent of RNA secondary structure. We conclude that (i) the polymerase activity of mtPAP can be modulated by the presence of LRPPRC/SLIRP, (ii) N478D mtPAP mutation decreases polymerase activity and (iii) the alteration in poly(A) length is sufficient to cause dysregulation of post-transcriptional expression and the pathogenic lack of respiratory chain complexes. PMID:25008111

  7. Statin-Induced Increases in Atrophy Gene Expression Occur Independently of Changes in PGC1α Protein and Mitochondrial Content.

    PubMed

    Goodman, Craig A; Pol, Derk; Zacharewicz, Evelyn; Lee-Young, Robert S; Snow, Rod J; Russell, Aaron P; McConell, Glenn K

    2015-01-01

    One serious side effect of statin drugs is skeletal muscle myopathy. Although the mechanism(s) responsible for statin myopathy remains to be fully determined, an increase in muscle atrophy gene expression and changes in mitochondrial content and/or function have been proposed to play a role. In this study, we examined the relationship between statin-induced expression of muscle atrophy genes, regulators of mitochondrial biogenesis, and markers of mitochondrial content in slow- (ST) and fast-twitch (FT) rat skeletal muscles. Male Sprague Dawley rats were treated with simvastatin (60 or 80 mg·kg(-1)·day(-1)) or vehicle control via oral gavage for 14 days. In the absence of overt muscle damage, simvastatin treatment induced an increase in atrogin-1, MuRF1 and myostatin mRNA expression; however, these were not associated with changes in peroxisome proliferator gamma co-activator 1 alpha (PGC-1α) protein or markers of mitochondrial content. Simvastatin did, however, increase neuronal nitric oxide synthase (nNOS), endothelial NOS (eNOS) and AMPK α-subunit protein expression, and tended to increase total NOS activity, in FT but not ST muscles. Furthermore, simvastatin induced a decrease in β-hydroxyacyl CoA dehydrogenase (β-HAD) activity only in FT muscles. These findings suggest that the statin-induced activation of muscle atrophy genes occurs independent of changes in PGC-1α protein and mitochondrial content. Moreover, muscle-specific increases in NOS expression and possibly NO production, and decreases in fatty acid oxidation, could contribute to the previously reported development of overt statin-induced muscle damage in FT muscles. PMID:26020641

  8. Statin-Induced Increases in Atrophy Gene Expression Occur Independently of Changes in PGC1α Protein and Mitochondrial Content

    PubMed Central

    Zacharewicz, Evelyn; Lee-Young, Robert S.; Snow, Rod J.; Russell, Aaron P.; McConell, Glenn K.

    2015-01-01

    One serious side effect of statin drugs is skeletal muscle myopathy. Although the mechanism(s) responsible for statin myopathy remains to be fully determined, an increase in muscle atrophy gene expression and changes in mitochondrial content and/or function have been proposed to play a role. In this study, we examined the relationship between statin-induced expression of muscle atrophy genes, regulators of mitochondrial biogenesis, and markers of mitochondrial content in slow- (ST) and fast-twitch (FT) rat skeletal muscles. Male Sprague Dawley rats were treated with simvastatin (60 or 80 mg·kg-1·day-1) or vehicle control via oral gavage for 14 days. In the absence of overt muscle damage, simvastatin treatment induced an increase in atrogin-1, MuRF1 and myostatin mRNA expression; however, these were not associated with changes in peroxisome proliferator gamma co-activator 1 alpha (PGC-1α) protein or markers of mitochondrial content. Simvastatin did, however, increase neuronal nitric oxide synthase (nNOS), endothelial NOS (eNOS) and AMPK α-subunit protein expression, and tended to increase total NOS activity, in FT but not ST muscles. Furthermore, simvastatin induced a decrease in β-hydroxyacyl CoA dehydrogenase (β-HAD) activity only in FT muscles. These findings suggest that the statin-induced activation of muscle atrophy genes occurs independent of changes in PGC-1α protein and mitochondrial content. Moreover, muscle-specific increases in NOS expression and possibly NO production, and decreases in fatty acid oxidation, could contribute to the previously reported development of overt statin-induced muscle damage in FT muscles. PMID:26020641

  9. The mitochondrial aspartate/glutamate carrier isoform 1 gene expression is regulated by CREB in neuronal cells

    PubMed Central

    Menga, Alessio; Iacobazzi, Vito; Infantino, Vittoria; Avantaggiati, Maria Laura; Palmieri, Ferdinando

    2015-01-01

    The aspartate/glutamate carrier isoform 1 is an essential mitochondrial transporter that exchanges intramitochondrial aspartate and cytosolic glutamate across the inner mitochondrial membrane. It is expressed in brain, heart and muscle and is involved in important biological processes, including myelination. However, the signals that regulate the expression of this transporter are still largely unknown. In this study we first identify a CREB binding site within the aspartate/glutamate carrier gene promoter that acts as a strong enhancer element in neuronal SH-SY5Y cells. This element is regulated by active, phosphorylated CREB protein and by signal pathways that modify the activity of CREB itself and, most noticeably, by intracellular Ca2+ levels. Specifically, aspartate/glutamate carrier gene expression is induced via CREB by forskolin while it is inhibited by the PKA inhibitor, H89. Furthermore, the CREB-induced activation of gene expression is increased by thapsigargin, which enhances cytosolic Ca2+, while it is inhibited by BAPTA-AM that reduces cytosolic Ca2+ or by STO-609, which inhibits CaMK-IV phosphorylation. We further show that CREB-dependent regulation of aspartate/glutamate carrier gene expression occurs in neuronal cells in response to pathological (inflammation) and physiological (differentiation) conditions. Since this carrier is necessary for neuronal functions and is involved in myelinogenesis, our results highlight that targeting of CREB activity and Ca2+ might be therapeutically exploited to increase aspartate/glutamate carrier gene expression in neurodegenerative diseases. PMID:25597433

  10. Estrogen-related receptor {alpha} is essential for the expression of antioxidant protection genes and mitochondrial function

    SciTech Connect

    Rangwala, Shamina M. . E-mail: shamina.rangwala@novartis.com; Li, Xiaoyan; Lindsley, Loren; Wang, Xiaomei; Shaughnessy, Stacey; Daniels, Thomas G.; Szustakowski, Joseph; Nirmala, N.R.; Wu, Zhidan; Stevenson, Susan C.

    2007-05-25

    Estrogen-related receptor {alpha} (ERR{alpha}) is an important mediator of mitochondrial biogenesis and function. To investigate the transcriptional network controlling these phenomena, we investigated mitochondrial gene expression in embryonic fibroblasts isolated from ERR{alpha} null mice. Peroxisome proliferator-activated receptor {gamma} coactivator-1{alpha} (PGC-1{alpha}) stimulated mitochondrial gene expression program in control cells, but not in the ERR{alpha} null cells. Interestingly, the induction of levels of mitochondrial oxidative stress protection genes in response to increased PGC-1{alpha} levels was dependent on ERR{alpha}. Furthermore, we found that the PGC-1{alpha}-mediated induction of estrogen-related receptor {gamma} and nuclear respiratory factor 2 (NRF-2), was dependent on the presence of ERR{alpha}. Basal levels of NRF-2 were decreased in the absence of ERR{alpha}. The absence of ERR{alpha} resulted in a decrease in citrate synthase enzyme activity in response to PGC-1{alpha} overexpression. Our results indicate an essential role for ERR{alpha} as a key regulator of oxidative metabolism.

  11. A genome wide study in fission yeast reveals nine PPR proteins that regulate mitochondrial gene expression.

    PubMed

    Kühl, Inge; Dujeancourt, Laurent; Gaisne, Mauricette; Herbert, Christopher J; Bonnefoy, Nathalie

    2011-10-01

    Pentatricopeptide repeat (PPR) proteins are particularly numerous in plant mitochondria and chloroplasts, where they are involved in different steps of RNA metabolism, probably due to the repeated 35 amino acid PPR motifs that are thought to mediate interactions with RNA. In non-photosynthetic eukaryotes only a handful of PPR proteins exist, for example the human LRPPRC, which is involved in a mitochondrial disease. We have conducted a systematic study of the PPR proteins in the fission yeast Schizosaccharomyces pombe and identified, in addition to the mitochondrial RNA polymerase, eight proteins all of which localized to the mitochondria, and showed some association with the membrane. The absence of all but one of these PPR proteins leads to a respiratory deficiency and modified patterns of steady state mt-mRNAs or newly synthesized mitochondrial proteins. Some cause a general defect, whereas others affect specific mitochondrial RNAs, either coding or non-coding: cox1, cox2, cox3, 15S rRNA, atp9 or atp6, sometimes leading to secondary defects. Interestingly, the two possible homologs of LRPPRC, ppr4 and ppr5, play opposite roles in the expression of the cox1 mt-mRNA, ppr4 being the first mRNA-specific translational activator identified in S. pombe, whereas ppr5 appears to be a general negative regulator of mitochondrial translation. PMID:21727087

  12. Gene expression profiling in mitochondrial disease: assessment of microarray accuracy by high-throughput Q-PCR.

    PubMed

    Beckman, Kenneth B; Lee, Kathleen Y; Golden, Tamara; Melov, Simon

    2004-09-01

    Mitochondrial diseases are a heterogeneous array of disorders with a complex etiology. Use of microarrays as a tool to investigate complex human disease is increasingly common, however, a principle drawback of microarrays is their limited dynamic range, due to the poor quantification of weak signals. Although it is generally understood that low-intensity microarray 'spots' may be unreliable, there exists little documentation of their accuracy. Quantitative PCR (Q-PCR) is frequently used to validate microarray data, yet few Q-PCR validation studies have focused on the accuracy of low-intensity microarray signals. Hence, we have used Q-PCR to systematically assess microarray accuracy as a function of signal strength in a mouse model of mitochondrial disease, the superoxide dismutase 2 (SOD2) nullizygous mouse. We have focused on a unique category of data--spots with only one weak signal in a two-dye comparative hybridization--and show that such 'high-low' signal intensities are common for differentially expressed genes. This category of differential expression may be more important in mitochondrial disease in which there are often mosaic expression patterns due to the idiosyncratic distribution of mutant mtDNA in heteroplasmic individuals. Using RNA from the SOD2 mouse, we found that when spotted cDNA microarray data are filtered for quality (low variance between many technical replicates) and spot intensity (above a negative control threshold in both channels), there is an excellent quantitative concordance with Q-PCR (R2 = 0.94). The accuracy of gene expression ratios from low-intensity spots (R2 = 0.27) and 'high-low' spots (R2 = 0.32) is considerably lower. Our results should serve as guidelines for microarray interpretation and the selection of genes for validation in mitochondrial disorders. PMID:16120406

  13. Mitochondrial Gene Expression Profiles and Metabolic Pathways in the Amygdala Associated with Exaggerated Fear in an Animal Model of PTSD

    PubMed Central

    Li, He; Li, Xin; Smerin, Stanley E.; Zhang, Lei; Jia, Min; Xing, Guoqiang; Su, Yan A.; Wen, Jillian; Benedek, David; Ursano, Robert

    2014-01-01

    The metabolic mechanisms underlying the development of exaggerated fear in post-traumatic stress disorder (PTSD) are not well defined. In the present study, alteration in the expression of genes associated with mitochondrial function in the amygdala of an animal model of PTSD was determined. Amygdala tissue samples were excised from 10 non-stressed control rats and 10 stressed rats, 14 days post-stress treatment. Total RNA was isolated, cDNA was synthesized, and gene expression levels were determined using a cDNA microarray. During the development of the exaggerated fear associated with PTSD, 48 genes were found to be significantly upregulated and 37 were significantly downregulated in the amygdala complex based on stringent criteria (p < 0.01). Ingenuity pathway analysis revealed up- or downregulation in the amygdala complex of four signaling networks – one associated with inflammatory and apoptotic pathways, one with immune mediators and metabolism, one with transcriptional factors, and one with chromatin remodeling. Thus, informatics of a neuronal gene array allowed us to determine the expression profile of mitochondrial genes in the amygdala complex of an animal model of PTSD. The result is a further understanding of the metabolic and neuronal signaling mechanisms associated with delayed and exaggerated fear. PMID:25295026

  14. Cloning, characterization, and expression of Cytochrome b ( Cytb)—a key mitochondrial gene from Prorocentrum donghaiense

    NASA Astrophysics Data System (ADS)

    Zhao, Liyuan; Mi, Tiezhu; Zhen, Yu; Yu, Zhigang

    2012-05-01

    Mitochondrial cytochrome b (Cytb), one of the few proteins encoded by the mitochondrial DNA, plays an important role in transferring electrons. As a mitochondrial gene, it has been widely used for phylogenetic analysis. Previously, a 949-bp fragment of the coding gene and mRNA editing were characterized from Prorocentrum donghaiense, which might prove useful for resolving P. donghaiense from closely related species. However, the full-length coding region has not been characterized. In this study, we used rapid amplification of cDNA ends (RACE) to obtain full-length, 1 124 bp cDNA. Cytb transcript contained a standard initiation codon ATG, but did not have a recognizable stop codon. Homology comparison showed that the P. donghaiense Cytb had a high sequence identity to Cytb sequences from other dinoflagellate species. Phylogenetic analysis placed Cytb from P. donghaiense in the clade of dinoflagellates and it clustered together strongly with that from P. minimum. Based on the full-length sequence, we inferred 32 editing events at different positions, accounting for 2.93% of the Cytb gene. 34.4% (11) of the changes were A to G, 25% (8) were T to C, and 25% (8) were C to U, with smaller proportions of G to C and G to A edits (9.4% (3) and 6.2% (2), respectively). The expression level of the Cytb transcript was quantified by real-time PCR with a TaqMan probe at different times during the whole growth phase. The average Cytb transcript was present at 39.27±7.46 copies of cDNA per cell during the whole growth cycle, and the expression of Cytb was relatively stable over the different phases. These results deepen our understanding of the structure and characteristics of Cytb in P. donghaiense, and confirmed that Cytb in P. donghaiense is a candidate reference gene for studying the expression of other genes.

  15. Sequence and expression variations in 23 genes involved in mitochondrial and non-mitochondrial apoptotic pathways and risk of oral leukoplakia and cancer.

    PubMed

    Datta, Sayantan; Ray, Anindita; Singh, Richa; Mondal, Pinaki; Basu, Analabha; De Sarkar, Navonil; Majumder, Mousumi; Maiti, Guruparasad; Baral, Aradhita; Jha, Ganga Nath; Mukhopadhyay, Indranil; Panda, Chinmay; Chowdhury, Shantanu; Ghosh, Saurabh; Roychoudhury, Susanta; Roy, Bidyut

    2015-11-01

    Oral cancer is usually preceded by pre-cancerous lesion and related to tobacco abuse. Tobacco carcinogens damage DNA and cells harboring such damaged DNA normally undergo apoptotic death, but cancer cells are exceptionally resistant to apoptosis. Here we studied association between sequence and expression variations in apoptotic pathway genes and risk of oral cancer and precancer. Ninety nine tag SNPs in 23 genes, involved in mitochondrial and non-mitochondrial apoptotic pathways, were genotyped in 525 cancer and 253 leukoplakia patients and 538 healthy controls using Illumina Golden Gate assay. Six SNPs (rs1473418 at BCL2; rs1950252 at BCL2L2; rs8190315 at BID; rs511044 at CASP1; rs2227310 at CASP7 and rs13010627 at CASP10) significantly modified risk of oral cancer but SNPs only at BCL2, CASP1and CASP10 modulated risk of leukoplakia. Combination of SNPs showed a steep increase in risk of cancer with increase in "effective" number of risk alleles. In silico analysis of published data set and our unpublished RNAseq data suggest that change in expression of BID and CASP7 may have affected risk of cancer. In conclusion, three SNPs, rs1473418 in BCL2, rs1950252 in BCL2L2 and rs511044 in CASP1, are being implicated for the first time in oral cancer. Since SNPs at BCL2, CASP1 and CASP10 modulated risk of both leukoplakia and cancer, so, they should be studied in more details for possible biomarkers in transition of leukoplakia to cancer. This study also implies importance of mitochondrial apoptotic pathway gene (such as BCL2) in progression of leukoplakia to oral cancer. PMID:26403071

  16. Mitochondrial Gene Expression Profiles Are Associated with Maternal Psychosocial Stress in Pregnancy and Infant Temperament

    PubMed Central

    Lambertini, Luca; Chen, Jia; Nomura, Yoko

    2015-01-01

    Background Gene-environment interactions mediate through the placenta and shape the fetal brain development. Between the environmental determinants of the fetal brain, maternal psychosocial stress in pregnancy has been shown to negatively influence the infant temperament development. This in turn may have adverse consequences on the infant neurodevelopment extending throughout the entire life-span. However little is known about the underlying biological mechanisms of the effects of maternal psychosocial stress in pregnancy on infant temperament. Environmental stressors such as maternal psychosocial stress in pregnancy activate the stress response cascade that in turn drives the increase in the cellular energy demand of vital organs with high metabolic rates such as, in pregnancy, the placenta. Key players of the stress response cascade are the mitochondria. Results Here, we tested the expression of all 13 protein-coding genes encoded by the mitochondria in 108 placenta samples from the Stress in Pregnancy birth cohort, a study that aims at determining the influence of in utero exposure to maternal psychosocial stress in pregnancy on infant temperament. We showed that the expression of the protein-coding mitochondrial-encoded gene MT-ND2 was positively associated with indices of maternal psychosocial stress in pregnancy including Prenatal Perceived Stress (β = 0.259; p-regression = 0.004; r2-regression = 0.120), State Anxiety (β = 0.218; p-regression = 0.003; r2-regression = 0.153), Trait Anxiety (β = 0.262; p-regression = 0.003; r2-regression = 0.129) and Pregnancy Anxiety Total (β = 0.208; p-regression = 0.010; r2-regression = 0.103). In the meantime MT-ND2 was negatively associated with the infant temperament indices of Activity Level (β = -0.257; p-regression = 0.008; r2-regression = 0.165) and Smile and Laughter (β = -0.286; p-regression = 0.036; r2-regression = 0.082). Additionally, MT-ND6 was associated with the maternal psychosocial stress in pregnancy

  17. AtWRKY40 and AtWRKY63 Modulate the Expression of Stress-Responsive Nuclear Genes Encoding Mitochondrial and Chloroplast Proteins1[W][OA

    PubMed Central

    Van Aken, Olivier; Zhang, Botao; Law, Simon; Narsai, Reena; Whelan, James

    2013-01-01

    The expression of a variety of nuclear genes encoding mitochondrial proteins is known to adapt to changes in environmental conditions and retrograde signaling. The presence of putative WRKY transcription factor binding sites (W-boxes) in the promoters of many of these genes prompted a screen of 72 annotated WRKY factors in the Arabidopsis (Arabidopsis thaliana) genome for regulators of transcripts encoding mitochondrial proteins. A large-scale yeast one-hybrid screen was used to identify WRKY factors that bind the promoters of marker genes (Alternative oxidase1a, NADH dehydrogenaseB2, and the AAA ATPase Ubiquinol-cytochrome c reductase synthesis1), and interactions were confirmed using electromobility shift assays. Transgenic overexpression and knockout lines for 12 binding WRKY factors were generated and tested for altered expression of the marker genes during normal and stress conditions. AtWRKY40 was found to be a repressor of antimycin A-induced mitochondrial retrograde expression and high-light-induced signaling, while AtWRKY63 was identified as an activator. Genome-wide expression analysis following high-light stress in transgenic lines with perturbed AtWRKY40 and AtWRKY63 function revealed that these factors are involved in regulating stress-responsive genes encoding mitochondrial and chloroplast proteins but have little effect on more constitutively expressed genes encoding organellar proteins. Furthermore, it appears that AtWRKY40 and AtWRKY63 are particularly involved in regulating the expression of genes responding commonly to both mitochondrial and chloroplast dysfunction but not of genes responding to either mitochondrial or chloroplast perturbation. In conclusion, this study establishes the role of WRKY transcription factors in the coordination of stress-responsive genes encoding mitochondrial and chloroplast proteins. PMID:23509177

  18. Complete Mitochondrial Genome of Helicoverpa zea (Lepidoptera: Noctuidae) and Expression Profiles of Mitochondrial-Encoded Genes in Early and Late Embryos.

    PubMed

    Perera, Omaththage P; Walsh, Thomas K; Luttrell, Randall G

    2016-01-01

    The mitochondrial genome (mitogenome) of the bollworm, Helicoverpa zea (Boddie), was assembled using paired-end nucleotide sequence reads generated with a next-generation sequencing platform. Assembly resulted in a mitogenome of 15,348 bp with greater than 17,000-fold average coverage. Organization of the H. zea mitogenome (gene order and orientation) was identical to other known lepidopteran mitogenome sequences. Compared with Helicoverpa armigera (Hübner) mitogenome, there were a few differences in the lengths of gaps between genes, but the lengths of nucleotide overlaps were essentially conserved between the two species. Nucleotide composition of the H. zea mitochondrial genome was very similar to those of the related species H. armigera and Helicoverpa punctigera Wallengren. Mapping of RNA-Seq reads obtained from 2-h eggs and 48-h embryos to protein coding genes (PCG) revealed that all H. zea PCGs were processed as single mature gene transcripts except for the bicistronic atp8 + atp6 transcript. A tRNA-like sequence predicted to form a hammer-head-like secondary structure that may play a role in transcription start and mitogenome replication was identified within the control region of the H. zea mitogenome. Similar structures were also found within the control regions of several other lepidopteran species. Expression analysis revealed significant differences in levels of expression of PCGs within each developmental stage, but the pattern of variation was similar in both developmental stages analyzed in this study. Mapping of RNA-Seq reads to PCG transcripts also identified transcription termination and polyadenylation sites that differed from the sites described in other lepidopteran species. PMID:27126963

  19. Complete Mitochondrial Genome of Helicoverpa zea (Lepidoptera: Noctuidae) and Expression Profiles of Mitochondrial-Encoded Genes in Early and Late Embryos

    PubMed Central

    Perera, Omaththage P.; Walsh, Thomas K.; Luttrell, Randall G.

    2016-01-01

    The mitochondrial genome (mitogenome) of the bollworm, Helicoverpa zea (Boddie), was assembled using paired-end nucleotide sequence reads generated with a next-generation sequencing platform. Assembly resulted in a mitogenome of 15,348 bp with greater than 17,000-fold average coverage. Organization of the H. zea mitogenome (gene order and orientation) was identical to other known lepidopteran mitogenome sequences. Compared with Helicoverpa armigera (Hübner) mitogenome, there were a few differences in the lengths of gaps between genes, but the lengths of nucleotide overlaps were essentially conserved between the two species. Nucleotide composition of the H. zea mitochondrial genome was very similar to those of the related species H. armigera and Helicoverpa punctigera Wallengren. Mapping of RNA-Seq reads obtained from 2-h eggs and 48-h embryos to protein coding genes (PCG) revealed that all H. zea PCGs were processed as single mature gene transcripts except for the bicistronic atp8 + atp6 transcript. A tRNA-like sequence predicted to form a hammer-head-like secondary structure that may play a role in transcription start and mitogenome replication was identified within the control region of the H. zea mitogenome. Similar structures were also found within the control regions of several other lepidopteran species. Expression analysis revealed significant differences in levels of expression of PCGs within each developmental stage, but the pattern of variation was similar in both developmental stages analyzed in this study. Mapping of RNA-Seq reads to PCG transcripts also identified transcription termination and polyadenylation sites that differed from the sites described in other lepidopteran species. PMID:27126963

  20. The Infertility of Repeat-Breeder Cows During Summer Is Associated with Decreased Mitochondrial DNA and Increased Expression of Mitochondrial and Apoptotic Genes in Oocytes.

    PubMed

    Ferreira, Roberta Machado; Chiaratti, Marcos Roberto; Macabelli, Carolina Habermann; Rodrigues, Carlos Alberto; Ferraz, Márcio Leão; Watanabe, Yeda Fumie; Smith, Lawrence Charles; Meirelles, Flávio Vieira; Baruselli, Pietro Sampaio

    2016-03-01

    Oocyte quality is known to be a major cause of infertility in repeat-breeder (RB) and heat-stressed dairy cows. However, the mechanisms by which RB oocytes become less capable of supporting embryo development remain largely unknown. Thus, the aim of this study was to investigate whether the decreased oocyte competence of RB cows (RBs) during summer is associated with an altered gene expression profile and a decrease in mitochondrial DNA (mtDNA) copy number. Therefore, oocytes collected from heifers, non-RBs in peak lactation (PLs), and RBs were used to evaluate mtDNA amounts as well as the expression levels of genes associated with the mitochondria (MT-CO1,NRF1,POLG,POLG2,PPARGC1A, andTFAM), apoptosis (BAX,BCL2, andITM2B), and oocyte maturation (BMP15,FGF8,FGF10,FGF16,FGF17, andGDF9). The oocytes retrieved from RBs during winter contained over eight times more mtDNA than those retrieved from RBs during summer. They also contained significantly less mtDNA than oocytes retrieved from heifers and PLs during summer. Moreover, the expression of mitochondria- (NRF1,POLG,POLG2,PPARGC1A, andTFAM) and apoptosis-related (BAXandITM2B) genes, as well as ofGDF9, in RB oocytes collected during summer was significantly greater than that in oocytes collected from heifers and PLs during the same season. In oocytes from heifers and PLs, the expression levels of these genes were lower in those collected during summer compared with winter, but this difference was not observed in oocytes collected from RBs. Altogether, these data provide evidence of altered gene expression and reduced mtDNA copy number in the oocytes collected from RBs during summer. This indicates a loss of fertility in RBs during summer, which might be caused by a possible mitochondrial dysfunction associated with a greater chance of oocytes to undergo apoptosis. PMID:26843447

  1. Increased Mitochondrial Calcium Sensitivity and Abnormal Expression of Innate Immunity Genes Precede Dopaminergic Defects in Pink1-Deficient Mice

    PubMed Central

    Akundi, Ravi S.; Huang, Zhenyu; Eason, Joshua; Pandya, Jignesh D.; Zhi, Lianteng; Cass, Wayne A.; Sullivan, Patrick G.; Büeler, Hansruedi

    2011-01-01

    Background PTEN-induced kinase 1 (PINK1) is linked to recessive Parkinsonism (EOPD). Pink1 deletion results in impaired dopamine (DA) release and decreased mitochondrial respiration in the striatum of mice. To reveal additional mechanisms of Pink1-related dopaminergic dysfunction, we studied Ca2+ vulnerability of purified brain mitochondria, DA levels and metabolism and whether signaling pathways implicated in Parkinson's disease (PD) display altered activity in the nigrostriatal system of Pink1−/− mice. Methods and Findings Purified brain mitochondria of Pink1−/− mice showed impaired Ca2+ storage capacity, resulting in increased Ca2+ induced mitochondrial permeability transition (mPT) that was rescued by cyclosporine A. A subpopulation of neurons in the substantia nigra of Pink1−/− mice accumulated phospho-c-Jun, showing that Jun N-terminal kinase (JNK) activity is increased. Pink1−/− mice 6 months and older displayed reduced DA levels associated with increased DA turnover. Moreover, Pink1−/− mice had increased levels of IL-1β, IL-12 and IL-10 in the striatum after peripheral challenge with lipopolysaccharide (LPS), and Pink1−/− embryonic fibroblasts showed decreased basal and inflammatory cytokine-induced nuclear factor kappa-β (NF-κB) activity. Quantitative transcriptional profiling in the striatum revealed that Pink1−/− mice differentially express genes that (i) are upregulated in animals with experimentally induced dopaminergic lesions, (ii) regulate innate immune responses and/or apoptosis and (iii) promote axonal regeneration and sprouting. Conclusions Increased mitochondrial Ca2+ sensitivity and JNK activity are early defects in Pink1−/− mice that precede reduced DA levels and abnormal DA homeostasis and may contribute to neuronal dysfunction in familial PD. Differential gene expression in the nigrostriatal system of Pink1−/− mice supports early dopaminergic dysfunction and shows that Pink1 deletion causes aberrant

  2. Complete mitochondrial genome of Helicoverpa zea (Boddie) and expression profiles of mitochondrial-encoded genes in early and late embryos

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mitochondrial genome of the bollworm, Helicoverpa zea, was assembled using paired-end nucleotide sequence reads generated with a next-generation sequencing platform. Assembly resulted in a mitogenome of 15,348 bp with greater than 17,000-fold average coverage. Organization of the H. zea mitogen...

  3. Mitochondrial-derived oxidants and quartz activation of chemokine gene expression.

    PubMed

    Driscoll, K E; Howard, B W; Carter, J M; Janssen, Y M; Mossman, B T; Isfort, R J

    2001-01-01

    Macrophage inflammatory protein 2 (MIP-2) is a chemotactic cytokine which mediates neutrophil recruitment in the lung and other tissues. Pneumotoxic particles such as quartz increase MIP-2 expression in rat lung and rat alveolar type II epithelial cells. Deletion mutant analysis of the rat MIP-2 promoter demonstrated quartz-induction depended on a single NFkappaB consensus binding site. Quartz activation of NFkappaB and MIP-2 gene expression in RLE-6TN cells was inhibited by anti-oxidants suggesting the responses were dependent on oxidative stress. Consistent with anti-oxidant effects, quartz was demonstrated to increase RLE-6TN cell production of hydrogen peroxide. Rotenone treatment of RLE-6TN cells attenuated hydrogen peroxide production, NFkappaB activation and MIP-2 gene expression induced by quartz indicating that mitochondria-derived oxidants were contributing to these responses. Collectively, these findings indicate that quartz and crocidolite induction of MIP-2 gene expression in rat alveolar type II cells results from stimulation of an intracellular signaling pathway involving increased generation of hydrogen peroxide by mitochondria and subsequent activation of NFkappaB. PMID:11764986

  4. Expression of mRNA Encoding Mcu and Other Mitochondrial Calcium Regulatory Genes Depends on Cell Type, Neuronal Subtype, and Ca2+ Signaling.

    PubMed

    Márkus, Nóra M; Hasel, Philip; Qiu, Jing; Bell, Karen F S; Heron, Samuel; Kind, Peter C; Dando, Owen; Simpson, T Ian; Hardingham, Giles E

    2016-01-01

    Uptake of Ca2+ into the mitochondrial matrix controls cellular metabolism and survival-death pathways. Several genes are implicated in controlling mitochondrial Ca2+ uptake (mitochondrial calcium regulatory genes, MCRGs), however, less is known about the factors which influence their expression level. Here we have compared MCRG mRNA expression, in neural cells of differing type (cortical neurons vs. astrocytes), differing neuronal subtype (CA3 vs. CA1 hippocampus) and in response to Ca2+ influx, using a combination of qPCR and RNA-seq analysis. Of note, we find that the Mcu-regulating Micu gene family profile differs substantially between neurons and astrocytes, while expression of Mcu itself is markedly different between CA3 and CA1 regions in the adult hippocampus. Moreover, dynamic control of MCRG mRNA expression in response to membrane depolarization-induced Ca2+ influx is also apparent, resulting in repression of Letm1, as well as Mcu. Thus, the mRNA expression profile of MCRGs is not fixed, which may cause differences in the coupling between cytoplasmic and mitochondrial Ca2+, as well as diversity of mitochondrial Ca2+ uptake mechanisms. PMID:26828201

  5. Expression of mRNA Encoding Mcu and Other Mitochondrial Calcium Regulatory Genes Depends on Cell Type, Neuronal Subtype, and Ca2+ Signaling

    PubMed Central

    Márkus, Nóra M.; Hasel, Philip; Qiu, Jing; Bell, Karen F. S.; Heron, Samuel; Kind, Peter C.; Dando, Owen; Simpson, T. Ian; Hardingham, Giles E.

    2016-01-01

    Uptake of Ca2+ into the mitochondrial matrix controls cellular metabolism and survival-death pathways. Several genes are implicated in controlling mitochondrial Ca2+ uptake (mitochondrial calcium regulatory genes, MCRGs), however, less is known about the factors which influence their expression level. Here we have compared MCRG mRNA expression, in neural cells of differing type (cortical neurons vs. astrocytes), differing neuronal subtype (CA3 vs. CA1 hippocampus) and in response to Ca2+ influx, using a combination of qPCR and RNA-seq analysis. Of note, we find that the Mcu-regulating Micu gene family profile differs substantially between neurons and astrocytes, while expression of Mcu itself is markedly different between CA3 and CA1 regions in the adult hippocampus. Moreover, dynamic control of MCRG mRNA expression in response to membrane depolarization-induced Ca2+ influx is also apparent, resulting in repression of Letm1, as well as Mcu. Thus, the mRNA expression profile of MCRGs is not fixed, which may cause differences in the coupling between cytoplasmic and mitochondrial Ca2+, as well as diversity of mitochondrial Ca2+ uptake mechanisms. PMID:26828201

  6. Mitochondrial Fitness, Gene Expression, and Hypoxic Stress in a Hybrid Population of the Killifish, Fundulus Heteroclitus

    EPA Science Inventory

    The physiological link between oxygen availability and mitochondrial function is well established. However, whether or not fitness variation is associated with mitochondrial genotypes in the field remains a contested topic in evolutionary biology. In this study we draw on a popul...

  7. Mitochondrial gene cytochrome b developmental and environmental expression in Aedes aegypti.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cytochrome b, coded by mitochondrial DNA, is one of the cytochromes involved in electron transport in the respiratory chain of mitochondria. Cytochrome b is a critical intermediate in a mitochondrial death pathway. To reveal whether cytochrome b of the mosquito Aedes aegypti L. (AeaCytB) is developm...

  8. The relationship between transcript expression levels of nuclear encoded (TFAM, NRF1) and mitochondrial encoded (MT-CO1) genes in single human oocytes during oocyte maturation

    PubMed Central

    Novin, M Ghaffari; Allahveisi, A; Noruzinia, M; Farhadifar, F; Yousefian, E; Fard, A Dehghani; Salimi, M

    2015-01-01

    In some cases of infertility in women, human oocytes fail to mature when they reach the metaphase II (MII) stage. Mitochondria plays an important role in oocyte maturation. A large number of mitochondrial DNA (mtDNA), copied in oocytes, is essential for providing adenosine triphosphate (ATP) during oocyte maturation. The purpose of this study was to identify the relationship between transcript expression levels of the mitochondrial encoded gene (MT-CO1) and two nuclear encoded genes, nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM) in various stages of human oocyte maturation. Nine consenting patients, age 21–35 years old, with male factors were selected for ovarian stimulation and intracytoplasmic sperm injection (ICSI) procedures. mRNA levels of mitochondrial-related genes were performed by singlecell TaqMan® quantitative real-time polymerase chain reaction (qRT-PCR). There was no significant relationship between the relative expression levels in germinal vesicle (GV) stage oocytes (p = 0.62). On the contrary, a significant relationship was seen between the relative expression levels of TFAM and NRF1 and the MT-CO1 genes at the stages of metaphase I (MI) and MII (p = 0.03 and p = 0.002). A relationship exists between the transcript expression levels of TFAM and NRF1, and MT-CO1 genes in various stages of human oocyte maturation. PMID:26929904

  9. Changes in mitochondrial DNA alter expression of nuclear encoded genes associated with tumorigenesis

    SciTech Connect

    Jandova, Jana; Janda, Jaroslav; Sligh, James E

    2012-10-15

    We previously reported the presence of a mtDNA mutation hotspot in UV-induced premalignant and malignant skin tumors in hairless mice. We have modeled this change (9821insA) in murine cybrid cells and demonstrated that this alteration in mtDNA associated with mtBALB haplotype can alter the biochemical characteristics of cybrids and subsequently can contribute to significant changes in their behavioral capabilities. This study shows that changes in mtDNA can produce differences in expression levels of specific nuclear-encoded genes, which are capable of triggering the phenotypes such as seen in malignant cells. From a potential list of differentially expressed genes discovered by microarray analysis, we selected MMP-9 and Col1a1 for further studies. Real-time PCR confirmed up-regulation of MMP-9 and down-regulation of Col1a1 in cybrids harboring the mtDNA associated with the skin tumors. These cybrids also showed significantly increased migration and invasion abilities compared to wild type. The non-specific MMP inhibitor, GM6001, was able to inhibit migratory and invasive abilities of the 9821insA cybrids confirming a critical role of MMPs in cellular motility. Nuclear factor-{kappa}B (NF-{kappa}B) is a key transcription factor for production of MMPs. An inhibitor of NF-{kappa}B activation, Bay 11-7082, was able to inhibit the expression of MMP-9 and ultimately decrease migration and invasion of mutant cybrids containing 9821insA. These studies confirm a role of NF-{kappa}B in the regulation of MMP-9 expression and through this regulation modulates the migratory and invasive capabilities of cybrids with mutant mtDNA. Enhanced migration and invasion abilities caused by up-regulated MMP-9 may contribute to the tumorigenic phenotypic characteristics of mutant cybrids. -- Highlights: Black-Right-Pointing-Pointer Cybrids are useful models to study the role of mtDNA changes in cancer development. Black-Right-Pointing-Pointer mtDNA changes affect the expression of nuclear

  10. Regulation of the expression of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene. Its role in the control of ketogenesis.

    PubMed Central

    Casals, N; Roca, N; Guerrero, M; Gil-Gómez, G; Ayté, J; Ciudad, C J; Hegardt, F G

    1992-01-01

    We have explored the role of mitochondrial 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase in regulating ketogenesis. We had previously cloned the cDNA for mitochondrial HMG-CoA synthase and have now studied the regulation in vivo of the expression of this gene in rat liver. The amount of processed mitochondrial HMG-CoA synthase mRNA is rapidly changed in response to cyclic AMP, insulin, dexamethasone and refeeding, and is greatly increased by starvation, fat feeding and diabetes. We conclude that one point of ketogenic control is exercised at the level of genetic expression of mitochondrial HMG-CoA synthase. Images Fig. 1. Fig. 4. PMID:1348927

  11. Changes in mitochondrial DNA alter expression of nuclear encoded genes associated with tumorigenesis

    PubMed Central

    Jandova, Jana; Janda, Jaroslav; Sligh, James E

    2012-01-01

    We previously reported the presence of a mtDNA mutation hotspot in UV-induced premalignant and malignant skin tumors in hairless mice. We have modeled this change (9821insA) in murine cybrid cells and demonstrated that this alteration in mtDNA associated with mtBALB haplotype can alter the biochemical characteristics of cybrids and subsequently can contribute to significant changes in their behavioral capabilities. This study shows that changes in mtDNA can produce differences in expression levels of specific nuclear-encoded genes, which are capable of triggering the phenotypes such as seen in malignant cells. From a potential list of differentially expressed genes discovered by microarray analysis, we selected MMP-9 and Col1a1 for further studies. Real-time PCR confirmed up-regulation of MMP-9 and down-regulation of Col1a1 in cybrids harboring the mtDNA associated with the skin tumors. These cybrids also showed significantly increased migration and invasion abilities compared to wild type. The non-specific MMP inhibitor, GM6001, was able to inhibit migratory and invasive abilities of the 9821insA cybrids confirming a critical role of MMPs in cellular motility. Nuclear factor-κB (NF-κB) is a key transcription factor for production of MMPs. An inhibitor of NF-κB activation, Bay11-7082, was able to inhibit the expression of MMP-9 and ultimately decrease migration and invasion of mutant cybrids containing 9821insA. These studies confirm a role of NF-κB in the regulation of MMP-9 expression and through this regulation modulates the migratory and invasive capabilities of cybrids with mutant mtDNA. Enhanced migration and invasion abilities caused by up-regulated MMP-9 may contribute to the tumorigenic phenotypic characteristics of mutant cybrids. PMID:22705584

  12. Citrate-release-mediated aluminum resistance is coupled to the inducible expression of mitochondrial citrate synthase gene in Paraserianthes falcataria.

    PubMed

    Osawa, Hiroki; Kojima, Katsumi

    2006-05-01

    Aluminum (Al) resistance in some leguminous plants is achieved by enhanced citrate release from roots. Enhancement requires several hours for complete activation and is postulated to involve Al-responsive genes or components. We examined the mechanism of Al-induced citrate release by studying the relationship between citrate release and expression of the mitochondrial citrate synthase (mCS) gene in three leguminous trees. Root elongation in Leucaena leucocephala (Lam.) de Wit was arrested within 24 h by 30 microM Al, whereas root elongation in Paraserianthes falcataria (L.) Neilson and Acacia mangium Willd. was inhibited < 50% by a 48-h treatment with 100 microM Al in calcium chloride solution. Roots of P. falcataria and A. mangium maintained enhanced release and accumulation of citrate for at least 28 days in response to Al treatment. Aluminum increased the accumulation of mCS transcripts in P. falcataria roots, but not in L. leucocephala roots, and thus up-regulation decreased following removal of Al. Lanthanum did not alter the expression level of mCS. Aluminum increased mCS activity concomitantly with enhanced mCS gene expression in P. falcataria, whereas it did not affect mCS activity in L. leucocephala. Aluminum content in root apices of P. falcataria was increased by cycloheximide, supporting the idea that de novo synthesis of proteins is a prerequisite for Al resistance. Our findings suggest that Al-inducible expression of mCS coupled with enhanced citrate release mediates Al resistance in P. falcataria. PMID:16452070

  13. Loss of Mitochondrial Tumor Suppressor Genes Expression Is Associated with Unfavorable Clinical Outcome in Head and Neck Squamous Cell Carcinoma: Data from Retrospective Study.

    PubMed

    Mahjabeen, Ishrat; Kayani, Mahmood Akhtar

    2016-01-01

    Mitochondrial genes play important roles in cellular energy metabolism, free radical generation, and apoptosis. Dysregulation of these genes have long been suspected to contribute to the generation of reactive oxygen species (ROS), increased proliferation and progression of cancer. A family of orthologues of yeast silent information regulator 3 (SIRT3), 4 (SIRT4) and mitochondrial tumor suppressor 1 (MTUS1) are important mitochondrial tumor suppressor genes which play an important role in the progression of multiple cancers. However, their role in the development of oxidative stress, enhanced proliferation and progression of head and neck squamous cell carcinoma (HNSCC) has not yet been studied. In this study we aimed to test the association between reduced mitochondrial tumor suppressor genes' activities and enhancement in tissue oxidative stress and cell proliferation in HNSCC cases. The expression of mitochondrial tumor suppressor genes (SIRT3, SIRT4 and MTUS1), mitochondrial DNA repair gene (OGG1-2a) and a proliferation marker (Ki-67) was studied in a study cohort of 120 HNSCC patients and controls with reverse transcriptase polymerase chain reaction (RT-PCR) and real-time PCR (qPCR) in order to determine the potential prognostic significance of these genes. A statistically significant downregulation of SIRT3 (p<0.001), SIRT4 (p<0.0001), MTUS1 (p<0.002) and OGG1 (p<0.0001) was observed in HNSCC compared to control samples. Ki-67 was also overexpressed (p<0.0001) in HNSCC versus control samples. Additionally, to explore gene-gene relationship, we observed a positive spearmen correlation between SIRT3 versus SIRT4 (r = 0.523***, p<0.0001), SIRT3 versus MTUS1 (r = 0.273***, p<0.001), SIRT3 versus OGG1-2a (r = 0.213*, p<0.03), SIRT4 versus OGG1 (r = 0.338***, p<0.0001) and MTUS1 versus OGG1-2a (r = 0.215*, p<0.03) in HNSCC cases. A negative spearman correlation was observed between OGG1 versus Ki-67 (r = -0.224**, p<0.01) and OGG1-2a versus Ki-67 (r = -0.224**, p<0

  14. Validation of Mitochondrial Gene Delivery in Liver and Skeletal Muscle via Hydrodynamic Injection Using an Artificial Mitochondrial Reporter DNA Vector.

    PubMed

    Yasuzaki, Yukari; Yamada, Yuma; Ishikawa, Takuya; Harashima, Hideyoshi

    2015-12-01

    For successful mitochondrial transgene expression, two independent processes, i.e., developing a mitochondrial gene delivery system and construction of DNA vector to achieve mitochondrial gene expression, are required. To date, very few studies dealing with mitochondrial gene delivery have been reported and, in most cases, transgene expression was not validated, because the construction of a reporter DNA vector for mitochondrial gene expression is the bottleneck. In this study, mitochondrial transgene expression by the in vivo mitochondrial gene delivery of an artificial mitochondrial reporter DNA vector via hydrodynamic injection is demonstrated. In the procedure, a large volume of naked plasmid DNA (pDNA) is rapidly injected. We designed and constructed pHSP-mtLuc (CGG) as a mitochondrial reporter DNA vector that possesses a mitochondrial heavy strand promoter (HSP) and an artificial mitochondrial genome with the reporter NanoLuc (Nluc) luciferase gene that records adjustments to the mitochondrial codon system. We delivered the pDNA into mouse liver mitochondria by hydrodynamic injection, and detected exogenous mRNA in the liver using reverse transcription PCR analysis. The hydrodynamic injection of pHSP-mtLuc (CGG) resulted in the expression of the Nluc luciferase protein in liver and skeletal muscle. Our mitochondrial transgene expression reporter system would contribute to mitochondrial gene therapy and further studies directed at mitochondrial molecular biology. PMID:26567847

  15. Crocidolite activates NF-kappa B and MIP-2 gene expression in rat alveolar epithelial cells. Role of mitochondrial-derived oxidants.

    PubMed

    Driscoll, K E; Carter, J M; Howard, B W; Hassenbein, D; Janssen, Y M; Mossman, B T

    1998-10-01

    Nuclear factor kappa B (NF-kappa B) is a transcription factor that regulates expression of several genes coding for inflammatory and immunoregulatory proteins including the neutrophil chemotactic cytokine MIP-2. In previous studies we found that crocidolite asbestos activates the nuclear translocation of NF-kappa B as well as MIP-2 gene expression in rat alveolar type II cells. Here we report that both crocidolite-induced NF-kappa B activation of MIP-2 gene expression can be attenuated by the antioxidant tetramethylthiourea, suggesting the dependence of these responses on oxidative stress. Crocidolite exposure of RLE-TN cells also increased production of H2O2, a response that was inhibited by the mitochondrial respiratory chain inhibitor thenoyltrifluoroacetone (TTFA). TTFA treatment of RLE-6TN cells also inhibited crocidolite-induced nuclear translocation of NF-kappa B and MIP-2 gene expression. These results indicate crocidolite exposure of rat alveolar type II cells results in increased production of mitochondrial-derived hydrogen peroxide and that mitochondrial-derived oxidants contribute to crocidolite activation of NF-kappa B and increases in MIP-2 gene expression. PMID:9788893

  16. Sickness behavior induced by cisplatin chemotherapy and radiotherapy in a murine head and neck cancer model is associated with altered mitochondrial gene expression.

    PubMed

    Vichaya, Elisabeth G; Molkentine, Jessica M; Vermeer, Daniel W; Walker, Adam K; Feng, Rebekah; Holder, Gerard; Luu, Katherine; Mason, Ryan M; Saligan, Leo; Heijnen, Cobi J; Kavelaars, Annemieke; Mason, Kathy A; Lee, John H; Dantzer, Robert

    2016-01-15

    The present study was undertaken to explore the possible mechanisms of the behavioral alterations that develop in response to cancer and to cancer therapy. For this purpose we used a syngeneic heterotopic mouse model of human papilloma virus (HPV)-related head and neck cancer in which cancer therapy is curative. Mice implanted or not with HPV+ tumor cells were exposed to sham treatment or a regimen of cisplatin and radiotherapy (chemoradiation). Sickness was measured by body weight loss and reduced food intake. Motivation was measured by burrowing, a highly prevalent species specific behavior. Tumor-bearing mice showed a gradual decrease in burrowing over time and increased brain and liver inflammatory cytokine mRNA expression by 28 days post tumor implantation. Chemoradiation administered to healthy mice resulted in a mild decrease in burrowing, body weight, and food intake. Chemoradiation in tumor-bearing mice decreased tumor growth and abrogated liver and brain inflammation, but failed to attenuate burrowing deficits. PCR array analysis of selected hypoxia and mitochondrial genes revealed that both the tumor and chemoradiation altered the expression of genes involved in mitochondrial energy metabolism within the liver and brain and increased expression of genes related to HIF-1α signaling within the brain. The most prominent changes in brain mitochondrial genes were noted in tumor-bearing mice treated with chemoradiation. These findings indicate that targeting mitochondrial dysfunction following cancer and cancer therapy may be a strategy for prevention of cancer-related symptoms. PMID:26475509

  17. Mutations in nuclear genes alter post-transcriptional regulation of mitochondrial genes.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nuclear gene products are required for the expression of mitochondrial genes and elaboration of functional mitochondrial protein complexes. To better understand the roles of these nuclear genes, we exploited the mitochondrial encoded S-type of cytoplasmic male sterility (CMS-S) and developed a nove...

  18. Loss of Mitochondrial Tumor Suppressor Genes Expression Is Associated with Unfavorable Clinical Outcome in Head and Neck Squamous Cell Carcinoma: Data from Retrospective Study

    PubMed Central

    Mahjabeen, Ishrat; Kayani, Mahmood Akhtar

    2016-01-01

    Mitochondrial genes play important roles in cellular energy metabolism, free radical generation, and apoptosis. Dysregulation of these genes have long been suspected to contribute to the generation of reactive oxygen species (ROS), increased proliferation and progression of cancer. A family of orthologues of yeast silent information regulator 3 (SIRT3), 4 (SIRT4) and mitochondrial tumor suppressor 1 (MTUS1) are important mitochondrial tumor suppressor genes which play an important role in the progression of multiple cancers. However, their role in the development of oxidative stress, enhanced proliferation and progression of head and neck squamous cell carcinoma (HNSCC) has not yet been studied. In this study we aimed to test the association between reduced mitochondrial tumor suppressor genes’ activities and enhancement in tissue oxidative stress and cell proliferation in HNSCC cases. The expression of mitochondrial tumor suppressor genes (SIRT3, SIRT4 and MTUS1), mitochondrial DNA repair gene (OGG1-2a) and a proliferation marker (Ki-67) was studied in a study cohort of 120 HNSCC patients and controls with reverse transcriptase polymerase chain reaction (RT-PCR) and real-time PCR (qPCR) in order to determine the potential prognostic significance of these genes. A statistically significant downregulation of SIRT3 (p<0.001), SIRT4 (p<0.0001), MTUS1 (p<0.002) and OGG1 (p<0.0001) was observed in HNSCC compared to control samples. Ki-67 was also overexpressed (p<0.0001) in HNSCC versus control samples. Additionally, to explore gene–gene relationship, we observed a positive spearmen correlation between SIRT3 versus SIRT4 (r = 0.523***, p<0.0001), SIRT3 versus MTUS1 (r = 0.273***, p<0.001), SIRT3 versus OGG1-2a (r = 0.213*, p<0.03), SIRT4 versus OGG1 (r = 0.338***, p<0.0001) and MTUS1 versus OGG1-2a (r = 0.215*, p<0.03) in HNSCC cases. A negative spearman correlation was observed between OGG1 versus Ki-67 (r = -0.224**, p<0.01) and OGG1-2a versus Ki-67 (r = -0

  19. PGC-1α is coupled to HIF-1α-dependent gene expression by increasing mitochondrial oxygen consumption in skeletal muscle cells

    PubMed Central

    O'Hagan, Kathleen A.; Cocchiglia, Sinead; Zhdanov, Alexander V.; Tambuwala, Murtaza M.; Cummins, Eoin P.; Monfared, Mona; Agbor, Terence A.; Garvey, John F.; Papkovsky, Dmitri B.; Taylor, Cormac T.; Allan, Bernard B.

    2009-01-01

    Mitochondrial biogenesis occurs in response to increased cellular ATP demand. The mitochondrial electron transport chain requires molecular oxygen to produce ATP. Thus, increased ATP generation after mitochondrial biogenesis results in increased oxygen demand that must be matched by a corresponding increase in oxygen supply. We found that overexpression of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), which increases mitochondrial biogenesis in primary skeletal muscle cells, leads to increased expression of a cohort of genes known to be regulated by the dimeric hypoxia-inducible factor (HIF), a master regulator of the adaptive response to hypoxia. PGC-1α-dependent induction of HIF target genes under physiologic oxygen concentrations is not through transcriptional coactivation of HIF or up-regulation of HIF-1α mRNA but through HIF-1α protein stabilization. It occurs because of intracellular hypoxia as a result of increased oxygen consumption after mitochondrial biogenesis. Thus, we propose that at physiologic oxygen concentrations, PGC-1α is coupled to HIF signaling through the regulation of intracellular oxygen availability, allowing cells and tissues to match increased oxygen demand after mitochondrial biogenesis with increased oxygen supply. PMID:19179292

  20. The gene expression landscape of thermogenic skunk cabbage suggests critical roles for mitochondrial and vacuolar metabolic pathways in the regulation of thermogenesis.

    PubMed

    Ito-Inaba, Yasuko; Hida, Yamato; Matsumura, Hideo; Masuko, Hiromi; Yazu, Fumiko; Terauchi, Ryohei; Watanabe, Masao; Inaba, Takehito

    2012-03-01

    Floral thermogenesis has been described in several plant species. Because of the lack of comprehensive gene expression profiles in thermogenic plants, the molecular mechanisms by which floral thermogenesis is regulated remain to be established. We examined the gene expression landscape of skunk cabbage (Symplocarpus renifolius) during thermogenic and post-thermogenic stages and identified expressed sequence tags from different developmental stages of the inflorescences using super serial analysis of gene expression (SuperSAGE). In-depth analysis suggested that cellular respiration and mitochondrial functions are significantly enhanced during the thermogenic stage. In contrast, genes involved in stress responses and protein degradation were significantly up-regulated during post-thermogenic stages. Quantitative comparisons indicated that the expression levels of genes involved in cellular respiration were higher in thermogenic spadices than in Arabidopsis inflorescences. Thermogenesis-associated genes seemed to be expressed abundantly in the peripheral tissues of the spadix. Our results suggest that cellular respiration and mitochondrial metabolism play key roles in heat production during floral thermogenesis. On the other hand, vacuolar cysteine protease and other degradative enzymes seem to accelerate senescence and terminate thermogenesis in the post-thermogenic stage. PMID:21955303

  1. Dietary Fucoxanthin Increases Metabolic Rate and Upregulated mRNA Expressions of the PGC-1alpha Network, Mitochondrial Biogenesis and Fusion Genes in White Adipose Tissues of Mice

    PubMed Central

    Wu, Meng-Ting; Chou, Hong-Nong; Huang, Ching-jang

    2014-01-01

    The mechanism for how fucoxanthin (FX) suppressed adipose accumulation is unclear. We aim to investigate the effects of FX on metabolic rate and expressions of genes related to thermogenesis, mitochondria biogenesis and homeostasis. Using a 2 × 2 factorial design, four groups of mice were respectively fed a high sucrose (50% sucrose) or a high-fat diet (23% butter + 7% soybean oil) supplemented with or without 0.2% FX. FX significantly increased oxygen consumption and carbon dioxide production and reduced white adipose tissue (WAT) mass. The mRNA expressions of peroxisome proliferator-activated receptor (PPAR) γ coactivator-1α (PGC-1α), cell death-inducing DFFA-like effecter a (CIDEA), PPARα, PPARγ, estrogen-related receptor α (ERRα), β3-adrenergic receptor (β3-AR) and deiodinase 2 (Dio2) were significantly upregulated in inguinal WAT (iWAT) and epididymal WAT (eWAT) by FX. Mitochondrial biogenic genes, nuclear respiratory factor 1 (NRF1) and NRF2, were increased in eWAT by FX. Noticeably, FX upregulated genes of mitochondrial fusion, mitofusin 1 (Mfn1), Mfn2 and optic atrophy 1 (OPA1), but not mitochondrial fission, Fission 1, in both iWAT and eWAT. In conclusion, dietary FX enhanced the metabolic rate and lowered adipose mass irrespective of the diet. These were associated with upregulated genes of the PGC-1α network and mitochondrial fusion in eWAT and iWAT. PMID:24534841

  2. Pancreatic β-Cell Dysfunction in Diet-Induced Obese Mice: Roles of AMP-Kinase, Protein Kinase Cε, Mitochondrial and Cholesterol Metabolism, and Alterations in Gene Expression.

    PubMed

    Pepin, Émilie; Al-Mass, Anfal; Attané, Camille; Zhang, Kezhuo; Lamontagne, Julien; Lussier, Roxane; Madiraju, S R Murthy; Joly, Erik; Ruderman, Neil B; Sladek, Robert; Prentki, Marc; Peyot, Marie-Line

    2016-01-01

    Diet induced obese (DIO) mice can be stratified according to their weight gain in response to high fat diet as low responders (LDR) and high responders (HDR). This allows the study of β-cell failure and the transitions to prediabetes (LDR) and early diabetes (HDR). C57BL/6N mice were fed for 8 weeks with a normal chow diet (ND) or a high fat diet and stratified as LDR and HDR. Freshly isolated islets from ND, LDR and HDR mice were studied ex-vivo for mitochondrial metabolism, AMPK activity and signalling, the expression and activity of key enzymes of energy metabolism, cholesterol synthesis, and mRNA profiling. Severely compromised glucose-induced insulin secretion in HDR islets, as compared to ND and LDR islets, was associated with suppressed AMP-kinase activity. HDR islets also showed reduced acetyl-CoA carboxylase activity and enhanced activity of 3-hydroxy-3-methylglutaryl-CoA reductase, which led respectively to elevated fatty acid oxidation and increased cholesterol biosynthesis. HDR islets also displayed mitochondrial membrane hyperpolarization and reduced ATP turnover in the presence of elevated glucose. Expression of protein kinase Cε, which reduces both lipolysis and production of signals for insulin secretion, was elevated in DIO islets. Genes whose expression increased or decreased by more than 1.2-fold were minor between LDR and ND islets (17 differentially expressed), but were prominent between HDR and ND islets (1508 differentially expressed). In HDR islets, particularly affected genes were related to cell cycle and proliferation, AMPK signaling, mitochondrial metabolism and cholesterol metabolism. In conclusion, chronically reduced AMPK activity, mitochondrial dysfunction, elevated cholesterol biosynthesis in islets, and substantial alterations in gene expression accompany β-cell failure in HDR islets. The β-cell compensation process in the prediabetic state (LDR) is largely independent of transcriptional adaptive changes, whereas the transition

  3. Pancreatic β-Cell Dysfunction in Diet-Induced Obese Mice: Roles of AMP-Kinase, Protein Kinase Cε, Mitochondrial and Cholesterol Metabolism, and Alterations in Gene Expression

    PubMed Central

    Pepin, Émilie; Al-Mass, Anfal; Attané, Camille; Zhang, Kezhuo; Lamontagne, Julien; Lussier, Roxane; Madiraju, S. R. Murthy; Joly, Erik; Ruderman, Neil B.; Sladek, Robert; Prentki, Marc; Peyot, Marie-Line

    2016-01-01

    Diet induced obese (DIO) mice can be stratified according to their weight gain in response to high fat diet as low responders (LDR) and high responders (HDR). This allows the study of β-cell failure and the transitions to prediabetes (LDR) and early diabetes (HDR). C57BL/6N mice were fed for 8 weeks with a normal chow diet (ND) or a high fat diet and stratified as LDR and HDR. Freshly isolated islets from ND, LDR and HDR mice were studied ex-vivo for mitochondrial metabolism, AMPK activity and signalling, the expression and activity of key enzymes of energy metabolism, cholesterol synthesis, and mRNA profiling. Severely compromised glucose-induced insulin secretion in HDR islets, as compared to ND and LDR islets, was associated with suppressed AMP-kinase activity. HDR islets also showed reduced acetyl-CoA carboxylase activity and enhanced activity of 3-hydroxy-3-methylglutaryl-CoA reductase, which led respectively to elevated fatty acid oxidation and increased cholesterol biosynthesis. HDR islets also displayed mitochondrial membrane hyperpolarization and reduced ATP turnover in the presence of elevated glucose. Expression of protein kinase Cε, which reduces both lipolysis and production of signals for insulin secretion, was elevated in DIO islets. Genes whose expression increased or decreased by more than 1.2-fold were minor between LDR and ND islets (17 differentially expressed), but were prominent between HDR and ND islets (1508 differentially expressed). In HDR islets, particularly affected genes were related to cell cycle and proliferation, AMPK signaling, mitochondrial metabolism and cholesterol metabolism. In conclusion, chronically reduced AMPK activity, mitochondrial dysfunction, elevated cholesterol biosynthesis in islets, and substantial alterations in gene expression accompany β-cell failure in HDR islets. The β-cell compensation process in the prediabetic state (LDR) is largely independent of transcriptional adaptive changes, whereas the transition

  4. Effect of ambient PM(2.5) on lung mitochondrial damage and fusion/fission gene expression in rats.

    PubMed

    Li, Ruijin; Kou, Xiaojing; Geng, Hong; Xie, Jingfang; Yang, Zhenhua; Zhang, Yuexia; Cai, Zongwei; Dong, Chuan

    2015-03-16

    Exposure to ambient fine particulate matter (PM2.5) increases the risk of respiratory disease. Although previous mitochondrial research has provided new information about PM toxicity in the lung, the exact mechanism of PM2.5-mediated structural and functional damage of lung mitochondria remains unclear. In this study, changes in lung mitochondrial morphology, expression of mitochondrial fission/fusion markers, lipid peroxidation, and transport ATPase activity in SD rats exposed to ambient PM2.5 at different dosages were investigated. Also, the release of reactive oxygen species (ROS) via the respiratory burst in rat alveolar macrophages (AMs) exposed to PM2.5 was examined by luminol-dependent chemiluminescence (CL). The results showed that (1) PM2.5 deposited in the lung and induced pathological damage, particularly causing abnormal alterations of mitochondrial structure, including mitochondrial swelling and cristae disorder or even fragmentation in the presence of higher doses of PM2.5; (2) PM2.5 significantly affected the expression of specific mitochondrial fission/fusion markers (OPA1, Mfn1, Mfn2, Fis1, and Drp1) in rat lung; (3) PM2.5 inhibited Mn superoxide dismutase (MnSOD), Na(+)K(+)-ATPase, and Ca(2+)-ATPase activities and elevated malondialdehyde (MDA) content in rat lung mitochondria; and (4) PM2.5 induced rat AMs to produce ROS, which was inhibited by about 84.1% by diphenyleneiodonium chloride (DPI), an important ROS generation inhibitor. It is suggested that the pathological injury observed in rat lung exposed to PM2.5 is associated with mitochondrial fusion-fission dysfunction, ROS generation, mitochondrial lipid peroxidation, and cellular homeostasis imbalance. Damage to lung mitochondria may be one of the important mechanisms by which PM2.5 induces lung injury, contributing to respiratory diseases. PMID:25560372

  5. Identification and cloning of a yeast nuclear gene (CBP1) involved in expression of mitochondrial cytochrome b.

    PubMed Central

    Dieckmann, C L; Pape, L K; Tzagoloff, A

    1982-01-01

    Nuclear pet mutants of Saccharomyces cerevisiae deficient in mitochondrial respiration have been studied genetically and biochemically. Seven noncomplementing mutations leading to a deficiency of mitochondrial cytochrome b have been assigned to a single complementation group (group 60). Examination of mitochondrial RNA by blot hybridization on diazobenzyloxymethyl-paper has revealed that group 60 mutants produce a large number of novel apocytochrome b transcripts not detected in wild-type yeast. The product of the gene affected in the mutants, therefore, appears to be required either for correct transcription or for processing of apocytochrome b premessenger RNA. The gene has been designated CBP1. A representative mutant from complementation group 60 (N5-26) has been transformed to respiratory competency with a recombinant plasmid pool consisting of random fragments of wild-type yeast nuclear DNA inserted into a vector capable of replicating in yeast and Escherichia coli. The complementation of the N5-26 mutation has been shown for a number of independent transformants to be due to the presence of plasmid DNA. The plasmid pG60/T10 was further characterized to have a nuclear DNA insert of 6.7 kilobase pairs. This plasmid complements the mutations of all group 60 mutants, thus confirming that it contains the CBP1 gene. Images PMID:7043464

  6. Gene synthesis, bacterial expression, and 1H NMR spectroscopic studies of the rat outer mitochondrial membrane cytochrome b5.

    PubMed

    Rivera, M; Barillas-Mury, C; Christensen, K A; Little, J W; Wells, M A; Walker, F A

    1992-12-01

    The gene coding for the water-soluble domain of the outer mitochondrial membrane cytochrome b5 (OM cytochrome b5) from rat liver has been synthetized and expressed in Escherichia coli. The DNA sequence was obtained by back-translating the known amino acid sequence [Lederer, F., Ghrir, R., Guiard, B., Cortial, S., & Ito, A. (1983) Eur. J. Biochem. 132, 95-102]. The recombinant OM cytochrome b5 was characterized by UV-visible, EPR, and 1H NMR spectroscopy. The UV-visible and EPR spectra of the OM cytochrome b5 are almost identical to the ones obtained from the overexpressed rat microsomal cytochrome b5 [Bodman, S. B. V., Schyler, M. A., Jollie, D. R., & Sligar, S. G. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 9443-9447]. The one-dimensional 1H NMR spectrum of the OM cytochrome b5 indicates that the rhombic perturbation of the ferric center is essentially identical to that in the microsomal beef, rabbit, chicken, and rat cytochromes b5. Two-dimensional 1H NMR spectroscopy (NOESY) and one-dimensional NOE difference spectroscopy were used to assign the contact-shifted resonances that correspond to each of the two isomers that result from the rotation of the heme around its alpha-gamma-meso axis. The assignment of the resonances allowed the determination of the heme orientation ratio in the OM cytochrome b5, which was found to be 1.0 +/- 0.1. It is noteworthy that the two cytochromes b5 that have similar populations of the two heme isomers (large heme disorder) originate from the rat liver. PMID:1333795

  7. The oxen gene of Drosophila encodes a homolog of subunit 9 of yeast ubiquinol-cytochrome c oxidoreductase complex: evidence for modulation of gene expression in response to mitochondrial activity.

    PubMed

    Frolov, M V; Benevolenskaya, E V; Birchler, J A

    2000-12-01

    A P-element insertion in the oxen gene, ox(1), has been isolated in a search for modifiers of white gene expression. The mutation preferentially exerts a negative dosage effect upon the expression of three genes encoding ABC transporters involved in pigment precursor transport, white, brown, and scarlet. A precise excision of the P element reverts the mutant phenotype. Five different transcription units were identified around the insertion site. To distinguish a transcript responsible for the mutant phenotype, a set of deletions within the oxen region was generated. Analysis of gene expression within the oxen region in the case of deletions as well as generation of transgenic flies allowed us to identify the transcript responsible for oxen function. It encodes a 6.6-kD homolog of mitochondrial ubiquinol cytochrome c oxidoreductase (QCR9), subunit 9 of the bc(1) complex in yeast. In addition to white, brown, and scarlet, oxen regulates the expression of three of seven tested genes. Thus, our data provide additional evidence for a cellular response to changes in mitochondrial function. The oxen mutation provides a model for the genetic analysis in multicellular organisms of the effect of mitochondrial activity on nuclear gene expression. PMID:11102369

  8. ATP25, a New Nuclear Gene of Saccharomyces cerevisiae Required for Expression and Assembly of the Atp9p Subunit of Mitochondrial ATPase

    PubMed Central

    Zeng, Xiaomei; Barros, Mario H.; Shulman, Theodore

    2008-01-01

    We report a new nuclear gene, designated ATP25 (reading frame YMR098C on chromosome XIII), required for expression of Atp9p (subunit 9) of the Saccharomyces cerevisiae mitochondrial proton translocating ATPase. Mutations in ATP25 elicit a deficit of ATP9 mRNA and of its translation product, thereby preventing assembly of functional F0. Unlike Atp9p, the other mitochondrial gene products, including ATPase subunits Atp6p and Atp8p, are synthesized normally in atp25 mutants. Northern analysis of mitochondrial RNAs in an atp25 temperature-sensitive mutant confirmed that Atp25p is required for stability of the ATP9 mRNA. Atp25p is a mitochondrial inner membrane protein with a predicted mass of 70 kDa. The primary translation product of ATP25 is cleaved in vivo after residue 292 to yield a 35-kDa C-terminal polypeptide. The C-terminal half of Atp25p is sufficient to stabilize the ATP9 mRNA and restore synthesis of Atp9p. Growth on respiratory substrates, however, depends on both halves of Atp25p, indicating that the N-terminal half has another function, which we propose to be oligomerization of Atp9p into a proper size ring structure. PMID:18216280

  9. Maintenance and Expression of Mammalian Mitochondrial DNA.

    PubMed

    Gustafsson, Claes M; Falkenberg, Maria; Larsson, Nils-Göran

    2016-06-01

    Mammalian mitochondrial DNA (mtDNA) encodes 13 proteins that are essential for the function of the oxidative phosphorylation system, which is composed of four respiratory-chain complexes and adenosine triphosphate (ATP) synthase. Remarkably, the maintenance and expression of mtDNA depend on the mitochondrial import of hundreds of nuclear-encoded proteins that control genome maintenance, replication, transcription, RNA maturation, and mitochondrial translation. The importance of this complex regulatory system is underscored by the identification of numerous mutations of nuclear genes that impair mtDNA maintenance and expression at different levels, causing human mitochondrial diseases with pleiotropic clinical manifestations. The basic scientific understanding of the mechanisms controlling mtDNA function has progressed considerably during the past few years, thanks to advances in biochemistry, genetics, and structural biology. The challenges for the future will be to understand how mtDNA maintenance and expression are regulated and to what extent direct intramitochondrial cross talk between different processes, such as transcription and translation, is important. PMID:27023847

  10. Mitochondrial DNA Variants Mediate Energy Production and Expression Levels for CFH, C3 and EFEMP1 Genes: Implications for Age-Related Macular Degeneration

    PubMed Central

    Kenney, M. Cristina; Chwa, Marilyn; Atilano, Shari R.; Pavlis, Janelle M.; Falatoonzadeh, Payam; Ramirez, Claudio; Malik, Deepika; Hsu, Tiffany; Woo, Grace; Soe, Kyaw; Nesburn, Anthony B.; Boyer, David S.; Kuppermann, Baruch D.; Jazwinski, S. Michal; Miceli, Michael V.; Wallace, Douglas C.; Udar, Nitin

    2013-01-01

    Background Mitochondrial dysfunction is associated with the development and progression of age-related macular degeneration (AMD). Recent studies using populations from the United States and Australia have demonstrated that AMD is associated with mitochondrial (mt) DNA haplogroups (as defined by combinations of mtDNA polymorphisms) that represent Northern European Caucasians. The aim of this study was to use the cytoplasmic hybrid (cybrid) model to investigate the molecular and biological functional consequences that occur when comparing the mtDNA H haplogroup (protective for AMD) versus J haplogroup (high risk for AMD). Methodology/Principal Findings Cybrids were created by introducing mitochondria from individuals with either H or J haplogroups into a human retinal epithelial cell line (ARPE-19) that was devoid of mitochondrial DNA (Rho0). In cybrid lines, all of the cells carry the same nuclear genes but vary in mtDNA content. The J cybrids had significantly lower levels of ATP and reactive oxygen/nitrogen species production, but increased lactate levels and rates of growth. Q-PCR analyses showed J cybrids had decreased expressions for CFH, C3, and EFEMP1 genes, high risk genes for AMD, and higher expression for MYO7A, a gene associated with retinal degeneration in Usher type IB syndrome. The H and J cybrids also have comparatively altered expression of nuclear genes involved in pathways for cell signaling, inflammation, and metabolism. Conclusion/Significance Our findings demonstrate that mtDNA haplogroup variants mediate not only energy production and cell growth, but also cell signaling for major molecular pathways. These data support the hypothesis that mtDNA variants play important roles in numerous cellular functions and disease processes, including AMD. PMID:23365660

  11. Impaired barrier function by dietary fructo-oligosaccharides (FOS) in rats is accompanied by increased colonic mitochondrial gene expression

    PubMed Central

    Rodenburg, Wendy; Keijer, Jaap; Kramer, Evelien; Vink, Carolien; van der Meer, Roelof; Bovee-Oudenhoven, Ingeborg MJ

    2008-01-01

    Background Dietary non-digestible carbohydrates stimulate the gut microflora and are therefore presumed to improve host resistance to intestinal infections. However, several strictly controlled rat infection studies showed that non-digestible fructo-oligosaccharides (FOS) increase, rather than decrease, translocation of Salmonella towards extra-intestinal sites. In addition, it was shown that FOS increases intestinal permeability already before infection. The mechanism responsible for this adverse effect of FOS is unclear. Possible explanations are altered mucosal integrity due to changes in tight junctions or changes in expression of defense molecules such as antimicrobials and mucins. To examine the mechanisms underlying weakening of the intestinal barrier by FOS, a controlled dietary intervention study was performed. Two groups of 12 rats were adapted to a diet with or without FOS. mRNA was collected from colonic mucosa and changes in gene expression were assessed for each individual rat using Agilent rat whole genome microarrays. Results Among the 997 FOS induced genes we observed less mucosal integrity related genes than expected with the clear permeability changes. FOS did not induce changes in tight junction genes and only 8 genes related to mucosal defense were induced by FOS. These small effects are unlikely the cause for the clear increase in intestinal permeability that is observed. FOS significantly increased expression of 177 mitochondria-related genes. More specifically, induced expression of genes involved in all five OXPHOS complexes and the TCA cycle was observed. These results indicate that dietary FOS influences intestinal mucosal energy metabolism. Furthermore, increased expression of 113 genes related to protein turnover, including proteasome genes, ribosomal genes and protein maturation related genes, was seen. FOS upregulated expression of the peptide hormone proglucagon gene, in agreement with previous studies, as well as three other peptide

  12. Echinochrome A Increases Mitochondrial Mass and Function by Modulating Mitochondrial Biogenesis Regulatory Genes

    PubMed Central

    Jeong, Seung Hun; Kim, Hyoung Kyu; Song, In-Sung; Noh, Su Jin; Marquez, Jubert; Ko, Kyung Soo; Rhee, Byoung Doo; Kim, Nari; Mishchenko, Natalia P.; Fedoreyev, Sergey A.; Stonik, Valentin A.; Han, Jin

    2014-01-01

    Echinochrome A (Ech A) is a natural pigment from sea urchins that has been reported to have antioxidant properties and a cardio protective effect against ischemia reperfusion injury. In this study, we ascertained whether Ech A enhances the mitochondrial biogenesis and oxidative phosphorylation in rat cardio myoblast H9c2 cells. To study the effects of Ech A on mitochondrial biogenesis, we measured mitochondrial mass, level of oxidative phosphorylation, and mitochondrial biogenesis regulatory gene expression. Ech A treatment did not induce cytotoxicity. However, Ech A treatment enhanced oxygen consumption rate and mitochondrial ATP level. Likewise, Ech A treatment increased mitochondrial contents in H9c2 cells. Furthermore, Ech A treatment up-regulated biogenesis of regulatory transcription genes, including proliferator-activated receptor gamma co-activator (PGC)-1α, estrogen-related receptor (ERR)-α, peroxisome proliferator-activator receptor (PPAR)-γ, and nuclear respiratory factor (NRF)-1 and such mitochondrial transcription regulatory genes as mitochondrial transcriptional factor A (TFAM), mitochondrial transcription factor B2 (TFB2M), mitochondrial DNA direct polymerase (POLMRT), single strand binding protein (SSBP) and Tu translation elongation factor (TUFM). In conclusion, these data suggest that Ech A is a potentiated marine drug which enhances mitochondrial biogenesis. PMID:25196935

  13. Hypothalamic malonyl-CoA triggers mitochondrial biogenesis and oxidative gene expression in skeletal muscle: Role of PGC-1α

    PubMed Central

    Cha, Seung-Hun; Rodgers, Joseph T.; Puigserver, Pere; Chohnan, Shigeru; Lane, M. Daniel

    2006-01-01

    Previous investigations show that intracerebroventricular administration of a potent inhibitor of fatty acid synthase, C75, increases the level of its substrate, malonyl-CoA, in the hypothalamus. The “malonyl-CoA signal” is rapidly transmitted to skeletal muscle by the sympathetic nervous system, increasing fatty acid oxidation, uncoupling protein-3 (UCP3) expression, and thus, energy expenditure. Here, we show that intracerebroventricular or intraperitoneal administration of C75 increases the number of mitochondria in white and red (soleus) skeletal muscle. Consistent with signal transmission from the hypothalamus by the sympathetic nervous system, centrally administered C75 rapidly (≤2 h) up-regulated the expression (in skeletal muscle) of the β-adrenergic signaling molecules, i.e., norepinephrine, β3-adrenergic receptor, and cAMP; the transcriptional regulators peroxisomal proliferator activator regulator γ coactivator 1α (PGC-1α) and estrogen receptor-related receptor α (ERRα); and the expression of key oxidative mitochondrial enzymes, including pyruvate dehydrogenase kinase, medium-chain length fatty acyl-CoA dehydrogenase, ubiquinone–cytochrome c reductase, cytochrome oxidase, as well as ATP synthase and UCP3. The role of PGC-1α in mediating these responses in muscle was assessed with C2C12 myocytes in cell culture. Consistent with the in vivo response, adenovirus-directed expression of PGC-1α in C2C12 muscle cells provoked the phosphorylation/inactivation and reduced expression of acetyl-CoA carboxylase 2, causing a reduction of the malonyl-CoA concentration. These effects, coupled with an increased carnitine palmitoyltransferase 1b, led to increased fatty acid oxidation. PGC-1α also increased the expression of ERRα, PPARα, and enzymes that support mitochondrial fatty acid oxidation, ATP synthesis, and thermogenesis, apparently mediated by an increased expression of UCP3. PMID:17030788

  14. Expression levels of meristem identity and homeotic genes are modified by nuclear-mitochondrial interactions in alloplasmic male-sterile lines of Brassica napus.

    PubMed

    Teixeira, Rita Teresa; Farbos, Isabelle; Glimelius, Kristina

    2005-06-01

    Homeotic conversions of anthers were found in cytoplasmic male sterile (CMS) plants of Brassica napus derived from somatic hybrids of B. napus and Arabidopsis thaliana. CMS line flowers displayed petals reduced in size and width and stamens replaced by carpelloid structures. In order to investigate when these developmental aberrations appeared, flower development was analysed histologically, ultrastructurally and molecularly. Disorganized cell divisions were detected in the floral meristems of the CMS lines at stage 4. As CMS is associated with mitochondrial aberrations, ultrastructural analysis of the mitochondria in the floral meristems was performed. Two mitochondrial populations were found in the CMS lines. One type had disrupted cristae, while the other resembled mitochondria typical of B. napus. Furthermore, expression patterns of genes expressed in particular floral whorls were determined. In spite of the aberrant development of the third whorl organs, BnAP3 was expressed as in B. napus during the first six stages of development. However, the levels of BnPI were reduced. At later developmental stages, the expression of both BnAP3 and BnPI was strongly reduced. Interestingly the expression levels of genes responsible for AP3 and PI activation such as LFY, UFO and ASK1 were higher in the CMS lines, which indicates that activation of B-genes in the CMS lines does not occur as in B. napus. Disrupted and dysfunctional mitochondria seem to be one of the first aberrations manifested in CMS which result in a retrograde influence of the expression levels of genes responsible for the second and third whorl organ differentiation. PMID:15918886

  15. Mitochondrial-related gene expression profiles suggest an important role of PGC-1alpha in the compensatory mechanism of endemic dilated cardiomyopathy

    SciTech Connect

    He, Shu-Lan; Tan, Wu-Hong; Zhang, Zeng-Tie; Zhang, Feng; Qu, Cheng-Juan; Lei, Yan-Xia; Zhu, Yan-He; Yu, Han-Jie; Xiang, You-Zhang; and others

    2013-10-15

    Keshan disease (KD) is an endemic dilated cardiomyopathy with unclear etiology. In this study, we compared mitochondrial-related gene expression profiles of peripheral blood mononuclear cells (PBMCs) derived from 16 KD patients and 16 normal controls in KD areas. Total RNA was isolated, amplified, labeled and hybridized to Agilent human 4×44k whole genome microarrays. Mitochondrial-related genes were screened out by the Third-Generation Human Mitochondria-Focused cDNA Microarray (hMitChip3). Quantitative real-time PCR, immunohistochemical and biochemical parameters related mitochondrial metabolism were conducted to validate our microarray results. In KD samples, 34 up-regulated genes (ratios≥2.0) were detected by significance analysis of microarrays and ingenuity systems pathway analysis (IPA). The highest ranked molecular and cellular functions of the differentially regulated genes were closely related to amino acid metabolism, free radical scavenging, carbohydrate metabolism, and energy production. Using IPA, 40 significant pathways and four significant networks, involved mainly in apoptosis, mitochondrion dysfunction, and nuclear receptor signaling were identified. Based on our results, we suggest that PGC-1alpha regulated energy metabolism and anti-apoptosis might play an important role in the compensatory mechanism of KD. Our results may lead to the identification of potential diagnostic biomarkers for KD in PBMCs, and may help to understand the pathogenesis of KD. Highlights: • Thirty-four up-regulated genes were detected in KD versus health controls. • Forty pathways and four networks were detected in KD. • PGC-1alpha regulated energy metabolism and anti-apoptosis in KD.

  16. Stage- and tissue-specific expression of rice OsIsu1 gene encoding a scaffold protein for mitochondrial iron-sulfur-cluster biogenesis.

    PubMed

    Tsugama, Daisuke; Liu, Shenkui; Takano, Tetsuo

    2009-08-01

    Isu is a scaffold protein involved in mitochondrial iron-sulfur-cluster biogenesis, which affects redox and iron homeostasis in human and yeast cells. A BLASTP search identified two putative Isu genes in rice, and we designated one of them as OsIsu1. When expressed in onion epidermal cells, OsIsu1::GFP was localized to the mitochondria. Northern analysis showed that OsIsu1 was down-regulated in iron-deficient rice root. OsIsu1 promoter-GUS was introduced into Arabidopsis thaliana and histochemical GUS-staining showed that OsIsu1 expression was regulated in a stage- and tissue-specific manner. OsIsu1 was expressed ectopically in Arabidopsis under the control of the CaMV35S promoter, which increased weight of plants. PMID:19396402

  17. Isolation, characterization, and expression of the gene encoding the beta subunit of the mitochondrial processing peptidase from Blastocladiella emersonii.

    PubMed

    Costa Rocha, C R; Lopes Gomes, S

    1998-08-01

    A 2.3-kb BamHI-KpnI fragment was isolated from a partial genomic library and shown by nucleotide sequence analysis to contain the entire coding region of the gene encoding the beta subunit of the Blastocladiella mitochondrial processing peptidase (beta-MPP). The predicted beta-MPP protein has 465 amino acids and a calculated molecular mass of 50.8 kDa. S1 nuclease protection assays revealed an intron, 209 bp in size, interrupting the coding region between the putative signal sequence and the mature protein. Northern blot analysis showed that beta-MPP mRNA levels decrease significantly during B. emersonii sporulation, reaching basal levels in the zoospore stage. The amount of beta-MPP protein, determined in Western blots, unlike its mRNA, does not vary significantly throughout the fungal life cycle. PMID:9683495

  18. Gene expression profiling for human iPS-derived motor neurons from sporadic ALS patients reveals a strong association between mitochondrial functions and neurodegeneration

    PubMed Central

    Alves, Chrystian J.; Dariolli, Rafael; Jorge, Frederico M.; Monteiro, Matheus R.; Maximino, Jessica R.; Martins, Roberto S.; Strauss, Bryan E.; Krieger, José E.; Callegaro, Dagoberto; Chadi, Gerson

    2015-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that leads to widespread motor neuron death, general palsy and respiratory failure. The most prevalent sporadic ALS form is not genetically inherited. Attempts to translate therapeutic strategies have failed because the described mechanisms of disease are based on animal models carrying specific gene mutations and thus do not address sporadic ALS. In order to achieve a better approach to study the human disease, human induced pluripotent stem cell (hiPSC)-differentiated motor neurons were obtained from motor nerve fibroblasts of sporadic ALS and non-ALS subjects using the STEMCCA Cre-Excisable Constitutive Polycistronic Lentivirus system and submitted to microarray analyses using a whole human genome platform. DAVID analyses of differentially expressed genes identified molecular function and biological process-related genes through Gene Ontology. REVIGO highlighted the related functions mRNA and DNA binding, GTP binding, transcription (co)-repressor activity, lipoprotein receptor binding, synapse organization, intracellular transport, mitotic cell cycle and cell death. KEGG showed pathways associated with Parkinson's disease and oxidative phosphorylation, highlighting iron homeostasis, neurotrophic functions, endosomal trafficking and ERK signaling. The analysis of most dysregulated genes and those representative of the majority of categorized genes indicates a strong association between mitochondrial function and cellular processes possibly related to motor neuron degeneration. In conclusion, iPSC-derived motor neurons from motor nerve fibroblasts of sporadic ALS patients may recapitulate key mechanisms of neurodegeneration and may offer an opportunity for translational investigation of sporadic ALS. Large gene profiling of differentiated motor neurons from sporadic ALS patients highlights mitochondrial participation in the establishment of autonomous mechanisms associated with sporadic ALS

  19. Assignment of the chloramphenicol resistance gene to mitochondrial deoxyribonucleic acid and analysis of its expression in cultured human cells

    SciTech Connect

    Wallace, D.C.

    1981-08-01

    The mitochondrial deoxyribonucleic acids (mtDNA's) from human HeLa and HT1080 cells differed in their restriction endonuclease cleavage patterns for HaeII, HaeIII, and HhaI. HaeII digestion yielded a 9-kilobase fragment in Ht1080, which was replaced by 4.5-, 2.4-, and 2.1-kilobase fragments in HeLa. HaeIII and HhaI yielded distinctive 1.35- and 0.68-kilobase HeLa fragments. These restriction endonuclease polymorphisms were used as mtDNA markers in HeLa-HT1080 cybrid and hybrid crosses involving the cytoplasmic chloramphenicol resistance mutation was used. Three cybrids and four hybrids (four expressing HeLa and three expressing HT1080 chloramphenicol resistance) contained 2- to 10-fold excesses of the mtDNA of the chloramphenicol-resistant parent. One cybrid, which was permitted to segregate chloramphenicol resistance and was then rechallenged with chloramphenicol, had approximately equal proportions of the two mtDNA's. Only one hybrid was discordant. These results indicated that chloramphenicol resistance is encoded in mtDNA and that expression of chloramphenicol resistance is related to the ratio of chloramphenicol-resistant and -sensitive genomes within cells.

  20. The Expression of a Novel Mitochondrially-Encoded Gene in Gonadic Precursors May Drive Paternal Inheritance of Mitochondria

    PubMed Central

    Pecci, Andrea; Maurizii, Maria Gabriella; Passamonti, Marco

    2015-01-01

    Mitochondria have an active role in germ line development, and their inheritance dynamics are relevant to this process. Recently, a novel protein (RPHM21) was shown to be encoded in sperm by the male-transmitted mtDNA of Ruditapes philippinarum, a species with Doubly Uniparental Inheritance (DUI) of mitochondria. In silico analyses suggested a viral origin of RPHM21, and we hypothesized that the endogenization of a viral element provided sperm mitochondria of R. philippinarum with the ability to invade male germ line, thus being transmitted to the progeny. In this work we investigated the dynamics of germ line development in relation to mitochondrial transcription and expression patterns using qPCR and specific antibodies targeting the germ line marker VASPH (R. philippinarum VASA homolog), and RPHM21. Based on the experimental results we conclude that both targets are localized in the primordial germ cells (PGCs) of males, but while VASPH is detected in all PGCs, RPHM21 appears to be expressed only in a subpopulation of them. Since it has been predicted that RPHM21 might have a role in cell proliferation and migration, we here suggest that PGCs expressing it might gain advantage over others and undertake spermatogenesis, accounting for RPHM21 presence in all spermatozoa. Understanding how foreign sequence endogenization and co-option can modify the biology of an organism is of particular importance to assess the impact of such events on evolution. PMID:26339998

  1. Mitochondrial DNA mutation-elicited oxidative stress, oxidative damage, and altered gene expression in cultured cells of patients with MERRF syndrome.

    PubMed

    Wu, Shi-Bei; Ma, Yi-Shing; Wu, Yu-Ting; Chen, Yin-Chiu; Wei, Yau-Huei

    2010-06-01

    Myoclonic epilepsy and ragged-red fibers (MERRF) syndrome is a rare disorder characterized by myoclonus, muscle weakness, cerebellar ataxia, heart conduction block, and dementia. It has been documented that 80-90% of the patients with MERRF syndrome are caused by the A8344G mutation in the tRNA(Lys) gene of mitochondrial DNA (mtDNA). We and other investigators have reported that the mtDNA mutation results in not only inefficient generation of adenosine triphosphate but also increased production of reactive oxygen species (ROS) in cultured cells harboring A8344G mutation of mtDNA. In addition, we found an imbalance in the gene expression of antioxidant enzymes in the skin fibroblasts of MERRF patients. The mRNA, protein, and enzyme activity levels of manganese-superoxide dismutase were increased, but those of Cu,Zn-SOD, catalase, and glutathione peroxidase did not show significant changes. Recently, we showed that the excess ROS could damage voltage-dependent anion channel, prohibitin, Lon protease, and aconitase in the MERRF cells. Moreover, there was a dramatic increase in the gene expression and activity of matrix metalloproteinase 1, which may contribute to the cytoskeleton remodeling involved in the weakness and atrophy of muscle commonly seen in MERRF patients. Taken together, we suggest that mtDNA mutation-elicited oxidative stress, oxidative damage, and altered gene expression are involved in the pathogenesis and progression of MERRF syndrome. PMID:20411357

  2. Analysis of the mitochondrial ATP synthase beta-subunit gene in Drosophilidae: structure, transcriptional regulatory features and developmental pattern of expression in Drosophila melanogaster.

    PubMed Central

    Peña, P; Ugalde, C; Calleja, M; Garesse, R

    1995-01-01

    We have cloned and determined the structure of the gene encoding the H(+)-ATP synthase beta subunit in two distantly related Drosophila species, D. melanogaster and D. virilis. The gene contains three exons that are extremely well conserved at the amino acid level, not only in the region encoding the mature protein but also in that encoding the leader peptide. Primer extension analysis indicates that the 5' untranslated region is extremely short, and reveals the presence of multiple initiation sites of transcription in both Drosophila species. The promoters of D. melanogaster and D. virilis H(+)-ATP synthase beta-subunit genes contain a conserved region surrounding the initiation transcription sites. Nucleotide sequence analysis has revealed the absence of canonical TATA and CCAAT boxes and the presence of several putative regulatory elements in both promoter regions, including GAGA, GATA and Ets binding sites. We have analysed the pattern of gene expression during D. melanogaster development. The mRNA is stored in oocytes, and activation of transcription takes place after 10 h of development. The expression of the nuclear-encoded H(+)-ATP synthase beta subunit is strictly coordinated with the expression of subunits 6 and 8 of the same complex that are encoded in the mitochondrial genome. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 8 PMID:8554535

  3. Differential expression of citA gene encoding the mitochondrial citrate synthase of Aspergillus nidulans in response to developmental status and carbon sources.

    PubMed

    Min, In Sook; Bang, Ji Young; Seo, Soon Won; Lee, Cheong Ho; Maeng, Pil Jae

    2010-04-01

    As an extension of our previous studies on the mitochondrial citrate synthase of Aspergillus nidulans and cloning of its coding gene (citA), we analyzed differential expression of citA in response to the progress of development and change of carbon source. The cDNA consisted of 1,700 nucleotides and was predicted to encode a 474-amino acid protein. By comparing the cDNA sequence with the corresponding genomic sequence, we confirmed that citA gene contains 7 introns and that its transcription starts at position -26 (26-nucleotide upstream from the initiation codon). Four putative CreA binding motifs and three putative stress-response elements (STREs) were found within the 1.45-kb citA promoter region. The mode of citA expression was examined by both Northern blot and confocal microscopy using green fluorescent protein (sGFP) as a vital reporter. During vegetative growth and asexual development, the expression of citA was ubiquitous throughout the whole fungal body including mycelia and conidiophores. During sexual development, the expression of citA was quite strong in cleistothecial shells, but significantly weak in the content of cleistothecia including ascospores. Acetate showed a strong inductive effect on citA expression, which is subjected to carbon catabolite repression (CCR) caused by glucose. The recombinant fusion protein CitA(40)::sGFP (sGFP containing the 40-amino acid N-terminal segment of CitA) was localized into mitochondria, which supports that a mitochondrial targeting signal is included within the 40-amino acid N-terminal segment of CitA. PMID:20437151

  4. Alzheimer’s disease is associated with altered expression of genes involved in immune response and mitochondrial processes in astrocytes

    PubMed Central

    Sekar, Shobana; McDonald, Jacquelyn; Cuyugan, Lori; Aldrich, Jessica; Kurdoglu, Ahmet; Adkins, Jonathan; Serrano, Geidy; Beach, Thomas G.; Craig, David W.; Valla, Jonathan; Reiman, Eric M.; Liang, Winnie S.

    2014-01-01

    Alzheimer’s disease (AD) is characterized by deficits in cerebral metabolic rates of glucose in the posterior cingulate (PC) and precuneus in AD subjects, and in APOEε4 carriers, decades prior to the onset of measureable cognitive deficits. However, the cellular and molecular basis of this phenotype remains to be clarified. Given the roles of astrocytes in energy storage and brain immunity, we sought to characterize the transcriptome of AD PC astrocytes. Cells were laser capture microdissected from AD (n=10) and healthy elderly control (n=10) subjects for RNA sequencing. We generated >5.22 billion reads and compared sequencing data between controls and AD patients. We identified differentially expressed mitochondria-related genes including TRMT61B, FASTKD2, and NDUFA4L2, and using pathway and weighted gene co-expression analyses, we identified differentially expressed immune response genes. A number of these genes, including CLU, C3, and CD74, have been implicated in Abeta generation or clearance. This data provides key insights into astrocyte-specific contributions to AD and we present this data set as a publicly available resource. PMID:25448601

  5. Imatinib inhibits the expression of SCO2 and FRATAXIN genes that encode mitochondrial proteins in human Bcr-Abl⁺ leukemia cells.

    PubMed

    Papadopoulou, Lefkothea C; Kyriazou, Angeliki V; Bonovolias, Ioannis D; Tsiftsoglou, Asterios S

    2014-01-01

    Imatinib mesylate (IM/Gleevec®), a selective inhibitor of chimeric Bcr-Abl tyrosine kinase, was developed as a first line drug to treat CML and ALL Ph(+) patients. Earlier studies have shown that hemin counteracts the IM-induced cell killing in human K-562 CML cells. In this study, we investigated whether IM disrupts the heme-dependent Cytochrome c Oxidase (COX) Biosynthesis and Assembly Pathway (HDCBAP) in Bcr-Abl(+) and Bcr-Abl(-) cells by affecting the expression of key-genes. Cells were exposed to IM and evaluated at time intervals for cell growth, cell death, expression of various genes by RT-PCR analysis as well as Sco2 mature protein levels by western blot analysis and COX enzymatic activity. IM at 1 μM induced extensive cell growth inhibition and cell death as well as marked suppression of the expression of SCO2 and FRATAXIN (FXN) genes in human K-562 and KU-812 Bcr-Abl(+) CML cells. IM also reduced the protein level of mature Sco2 mitochondrial protein as well as COX activity in these cell lines. However, treatment of human MOLT-4 Bcr-Abl(-) cells with 1μM and even with higher concentrations (4×10(-5)M) of IM neither reduced the expression of SCO2 and FXN genes nor suppressed the protein level of mature Sco2 protein and COX activity. Our findings indicate that SCO2 and FXN genes, involved in HDCBAP, are repressed by IM in human Bcr-Abl(+) CML cells and may represent novel target sites in leukemia therapy. PMID:24726617

  6. The human ΔNp53 isoform triggers metabolic and gene expression changes that activate mTOR and alter mitochondrial function.

    PubMed

    Lin, Shih-Chieh; Karoly, Edward D; Taatjes, Dylan J

    2013-10-01

    A naturally occurring p53 isoform that lacks 39 residues at the N-terminus (denoted ΔNp53), when expressed with wild-type p53 (WTp53), forms mixed ΔNp53:WTp53 tetramers and causes accelerated aging in mice. Cellular alterations specific to ΔNp53:WTp53 have been difficult to assess because ΔNp53 and WTp53 coexpression results in tetramer heterogeneity, including formation of contaminating WTp53 tetramers. Based on the p53 tetramer structure, we expressed ΔNp53 and WTp53 as a single transcript that maintained tetramer architecture, ensuring a 2:2 ΔNp53:WTp53 stoichiometry. As expected, ΔNp53:WTp53 tetramers were stable and transcriptionally active in vitro and in cells, largely mimicking the function of WTp53 tetramers. Microarray analyses, however, revealed about 80 genes whose expression was altered twofold or more in ΔNp53:WTp53 cells. Moreover, global metabolomic profiling quantitated hundreds of biochemicals across different experiments (WTp53, ΔNp53:WTp53, plus controls). When evaluated collectively, these data suggested altered mTOR signaling and mitochondrial function-each canonical regulators of longevity-in cells expressing ΔNp53:WTp53 vs. WTp53. Increased levels of free amino acids, increased expression of IRS-1, and decreased expression of INPP5D/SHIP-1 suggested activated mTOR signaling in ΔNp53:WTp53 cells; this was confirmed upon comparative analyses of several mTOR pathway intermediates. We also observed changes in mitochondrial function in ΔNp53:WTp53 cells, which correlated with increased MARS2 expression and increased levels of carnitine, acetyl CoA, ATP, and Krebs cycle intermediates. Finally, increased levels of succinate and 2-hydroxyglutarate indicate potential epigenetic means to propagate ΔNp53:WTp53-induced gene expression changes to cell progeny. This may be especially important for aging, as biological effects manifest over time. PMID:23734707

  7. Quality improvement of transgenic cloned bovine embryos using an aggregation method: Effects on cell number, cell ratio, embryo perimeter, mitochondrial distribution, and gene expression profile.

    PubMed

    Bang, J I; Jin, J I; Ghanem, N; Choi, B H; Fakruzzaman, M; Ha, A N; Lee, K L; Uhm, S J; Ko, D H; Koo, B C; Lee, J G; Kong, I K

    2015-09-01

    The production of cloned embryos using conventional methods has extremely low success rates owing to low embryo quality. To improve the quality of cloned bovine embryos expressing enhanced green fluorescent protein (EGFP), we applied an aggregation culture method. The EGFP gene was transfected into bovine fetal fibroblasts using a retroviral vector system. Somatic cell nuclear transfer was performed using these cells, and the resulting embryos were cultured in aggregates or individually. Gene expression was analyzed by a microarray, and differentially expressed genes were validated by quantitative real-time polymerase chain reaction. The total number of cells per blastocyst and the ratio of inner cell mass cells to trophectoderm cells were higher in aggregated transgenic cloned blastocysts (agBL; 368.7 ± 109.6 and 1:4.8, respectively) than in in vitro-fertilized blastocysts (ivfBL; 189.8 ± 65.8 and 1:2.6, respectively) and nonaggregated transgenic cloned blastocysts (sBL; 113.1 ± 36.3 and 1:1.5, respectively; P < 0.05 and P < 0.01, respectively). Moreover, the blastocyst perimeter was larger in the agBL group than in the ivfBL and sBL groups (1168.8 ± 200.23 vs. 887.33 ± 187.62 and 678 ± 226.1 μm; P < 0.05). In addition, mitochondrial fluorescence intensity was higher in the agBL group than in the ivfBL and sBL groups (P < 0.05). The number of apoptotic cells per blastocyst was lower in the ivfBL and agBL groups than in the sBL group (3.7 ± 2.2 and 3.4 ± 2.1 vs. 6.7 ± 6.8; P < 0.05). The genes identified in the microarray belonged to 18 categories. Expression of the Krüppel-like factor 4 gene, which is associated with cell proliferation, development, and transcription, was 7.2-fold higher in the agBL group than in the ivfBL group (P < 0.05) but did not differ between the sBL and ivfBL groups (P > 0.05). Expression of the heat shock 70-kDa protein 1A gene, which is associated with apoptosis, was 12-fold higher in the s

  8. Effects of dietary lipid levels on mitochondrial gene expression in low and high-feed efficient families of rainbow trout Oncorhynchus mykiss.

    PubMed

    Eya, J C; Yossa, R; Ashame, M F; Pomeroy, C F; Gannam, A L

    2014-06-01

    A 2 × 3 factorial study was conducted to evaluate the effects of dietary lipid level on mitochondrial gene expression in mixed sex rainbow trout Oncorhynchus mykiss. Practical diets with a fixed crude protein content of 42%, formulated to contain 10% (42/10), 20% (42/20) and 30% (42/30) dietary lipid, were fed to triplicate groups of either low-feed efficient (F129; mean ± s.d. = 105.67 ± 3.04 g initial average mass) or high-feed efficient (F134; mean ± s.d. = 97.86 ± 4.02 g) families of fish, to apparent satiety, twice per day, for 108 days. At the end of the experiment, diets 42/20 and 42/30 led to similar fish condition factors, which were higher than that observed with diet 42/10 (P < 0.05). F134 fish fed diet 42/10 showed the highest hepato-somatic index, while there was no significant difference among all the other treatments (P < 0.05). When the group of F134 fish fed diet 42/10 was used as the calibrator for gene expression analysis, the five genes selected for their involvement in lipid metabolism (complex I-nd1, complex III-cytb, complex IV-cox1, complex IV-cox2 and complex V-atp6) were up-regulated in the muscle and down-regulated in both the liver and the intestine. There was a significant family × diet interaction regarding nd1, cox2 and atp6 in the liver; nd1, cytb, cox1, cox2 and atp6 in the intestine, and nd1, cytb, cox1, cox2 and atp6 in the muscle (P < 0.05). The overall results of this study constitute basic information for the understanding of molecular mechanisms of lipid metabolism at the mitochondrial level in fishes. PMID:24890403

  9. The effect of allopurinol administration on mitochondrial respiration and gene expression of xanthine oxidoreductase, inducible nitric oxide synthase, and inflammatory cytokines in selected tissues of broiler chickens.

    PubMed

    Settle, T; Falkenstein, E; Klandorf, H

    2015-10-01

    Birds have a remarkable longevity for their body size despite an increased body temperature, higher metabolic rate, and increased blood glucose concentrations compared to most mammals. As the end-product of purine degradation, uric acid (UA) is generated in the xanthine/hypoxanthine reactions catalyzed by xanthine oxidoreductase (XOR). In the first study, Cobb × Cobb broilers (n = 12; 4 weeks old) were separated into 2 treatments (n = 6); control (CON) and allopurinol (AL) 35 mg/kg BW (ALLO). The purpose of this study was to assess mitochondrial function in broiler chickens in response to potential oxidative stress generated from the administration of AL for 1 wk. There was a significant reduction in state 3 respiration (P = 0.01) and state 4 respiration (P = 0.007) in AL-treated birds compared to the controls. The purpose of the second study was to assess the effect of AL on gene expression of inflammatory cytokines interferon-γ (IFN)-γ, IL-1β, IL-6, and IL-12p35, as well as inducible nitric oxide synthase and XOR in liver tissue. Cobb × Cobb broilers were separated into two groups at 4 wk age (n = 10); CON and ALLO. After 1 wk AL treatment, half of the birds in each group (CON 1 and ALLO 1) were euthanized while the remaining birds continued on AL treatment for an additional week (CON 2 and ALLO 2). A significant increase in gene expression of XOR, IFN-γ, IL-1β, and IL-12p35 in ALLO 2 birds as compared to birds in CON 2 was detected. Liver UA content was significantly decreased in both ALLO 1(P = 0.003) and ALLO 2 (P = 0.012) birds when compared to CON 1 and CON 2, respectively. The AL reduced liver UA concentrations and increased expression of inflammatory cytokines. Additional studies are needed to determine if AL causes a direct effect on mitochondria or if mitochondrial dysfunction observed in liver mitochondria was due indirectly through increased oxidative stress or increased inflammation. PMID:26316336

  10. Development of a human mitochondrial oligonucleotide microarray (h-MitoArray) and gene expression analysis of fibroblast cell lines from 13 patients with isolated F1Fo ATP synthase deficiency

    PubMed Central

    Čížková, Alena; Stránecký, Viktor; Ivánek, Robert; Hartmannová, Hana; Nosková, Lenka; Piherová, Lenka; Tesařová, Markéta; Hansíková, Hana; Honzík, Tomáš; Zeman, Jiří; Divina, Petr; Potocká, Andrea; Paul, Jan; Sperl, Wolfgang; Mayr, Johannes A; Seneca, Sara; Houštĕk, Josef; Kmoch, Stanislav

    2008-01-01

    Background To strengthen research and differential diagnostics of mitochondrial disorders, we constructed and validated an oligonucleotide microarray (h-MitoArray) allowing expression analysis of 1632 human genes involved in mitochondrial biology, cell cycle regulation, signal transduction and apoptosis. Using h-MitoArray we analyzed gene expression profiles in 9 control and 13 fibroblast cell lines from patients with F1Fo ATP synthase deficiency consisting of 2 patients with mt9205ΔTA microdeletion and a genetically heterogeneous group of 11 patients with not yet characterized nuclear defects. Analysing gene expression profiles, we attempted to classify patients into expected defect specific subgroups, and subsequently reveal group specific compensatory changes, identify potential phenotype causing pathways and define candidate disease causing genes. Results Molecular studies, in combination with unsupervised clustering methods, defined three subgroups of patient cell lines – M group with mtDNA mutation and N1 and N2 groups with nuclear defect. Comparison of expression profiles and functional annotation, gene enrichment and pathway analyses of differentially expressed genes revealed in the M group a transcription profile suggestive of synchronized suppression of mitochondrial biogenesis and G1/S arrest. The N1 group showed elevated expression of complex I and reduced expression of complexes III, V, and V-type ATP synthase subunit genes, reduced expression of genes involved in phosphorylation dependent signaling along MAPK, Jak-STAT, JNK, and p38 MAP kinase pathways, signs of activated apoptosis and oxidative stress resembling phenotype of premature senescent fibroblasts. No specific functionally meaningful changes, except of signs of activated apoptosis, were detected in the N2 group. Evaluation of individual gene expression profiles confirmed already known ATP6/ATP8 defect in patients from the M group and indicated several candidate disease causing genes for

  11. Evolution of mitochondrial gene order in Annelida.

    PubMed

    Weigert, Anne; Golombek, Anja; Gerth, Michael; Schwarz, Francine; Struck, Torsten H; Bleidorn, Christoph

    2016-01-01

    Annelida is a highly diverse animal group with over 21,000 described species. As part of Lophotrochozoa, the vast majority of annelids are currently classified into two groups: Errantia and Sedentaria, together forming Pleistoannelida. Besides these taxa, Sipuncula, Amphinomidae, Chaetopteridae, Oweniidae and Magelonidae can be found branching at the base of the tree. Comparisons of mitochondrial genomes have been used to investigate phylogenetic relationship within animal taxa. Complete annelid mitochondrial genomes are available for some Sedentaria and Errantia and in most cases exhibit a highly conserved gene order. Only two complete genomes have been published from the basal branching lineages and these are restricted to Sipuncula. We describe the first complete mitochondrial genome sequences for all other basal branching annelid families: Owenia fusiformis (Oweniidae), Magelona mirabilis (Magelonidae), Eurythoe complanata (Amphinomidae), Chaetopterus variopedatus and Phyllochaetopterus sp. (Chaetopteridae). The mitochondrial gene order of all these taxa is substantially different from the pattern found in Pleistoannelida. Additionally, we report the first mitochondrial genomes in Annelida that encode genes on both strands. Our findings demonstrate that the supposedly highly conserved mitochondrial gene order suggested for Annelida is restricted to Pleistoannelida, representing the ground pattern of this group. All investigated basal branching annelid taxa show a completely different arrangement of genes than observed in Pleistoannelida. The gene order of protein coding and ribosomal genes in Magelona mirabilis differs only in two transposition events from a putative lophotrochozoan ground pattern and might be the closest to an ancestral annelid pattern. The mitochondrial genomes of Myzostomida show the conserved pattern of Pleistoannelida, thereby supporting their inclusion in this taxon. PMID:26299879

  12. New progress in snake mitochondrial gene rearrangement.

    PubMed

    Chen, Nian; Zhao, Shujin

    2009-08-01

    To further understand the evolution of snake mitochondrial genomes, the complete mitochondrial DNA (mtDNA) sequences were determined for representative species from two snake families: the Many-banded krait, the Banded krait, the Chinese cobra, the King cobra, the Hundred-pace viper, the Short-tailed mamushi, and the Chain viper. Thirteen protein-coding genes, 22-23 tRNA genes, 2 rRNA genes, and 2 control regions were identified in these mtDNAs. Duplication of the control region and translocation of the tRNAPro gene were two notable features of the snake mtDNAs. These results from the gene rearrangement comparisons confirm the correctness of traditional classification schemes and validate the utility of comparing complete mtDNA sequences for snake phylogeny reconstruction. PMID:19479623

  13. Expression and Purification of Mitochondrial RNA Polymerase and Transcription Factor A from Drosophila melanogaster.

    PubMed

    Gajewski, John P; Arnold, Jamie J; Salminen, Tiina S; Kaguni, Laurie S; Cameron, Craig E

    2016-01-01

    Mitochondrial gene expression is essential in all organisms. Our understanding of mitochondrial transcription on a biochemical level has been limited by the inability to purify the individual protein components involved in mitochondrial gene expression. Recently, new systems have been identified that permit purification of these proteins from bacteria. However, the generalizability of these systems is not clear. Here, we have applied the technology from the Cameron lab to express and purify mitochondrial RNA polymerase and transcription factor A from Drosophila melanogaster. We show that the use of SUMO system to produce SUMO fusion proteins in bacteria is effective not only for the human and mouse proteins, but also for the fly proteins. The application of this system to produce the mitochondrial proteins from other organisms should permit detailed understanding of mitochondrial transcription from any organism. PMID:26530684

  14. Mitochondrial and nuclear genomic responses to loss of LRPPRC expression.

    PubMed

    Gohil, Vishal M; Nilsson, Roland; Belcher-Timme, Casey A; Luo, Biao; Root, David E; Mootha, Vamsi K

    2010-04-30

    Rapid advances in genotyping and sequencing technology have dramatically accelerated the discovery of genes underlying human disease. Elucidating the function of such genes and understanding their role in pathogenesis, however, remain challenging. Here, we introduce a genomic strategy to characterize such genes functionally, and we apply it to LRPPRC, a poorly studied gene that is mutated in Leigh syndrome, French-Canadian type (LSFC). We utilize RNA interference to engineer an allelic series of cellular models in which LRPPRC has been stably silenced to different levels of knockdown efficiency. We then combine genome-wide expression profiling with gene set enrichment analysis to identify cellular responses that correlate with the loss of LRPPRC. Using this strategy, we discovered a specific role for LRPPRC in the expression of all mitochondrial DNA-encoded mRNAs, but not the rRNAs, providing mechanistic insights into the enzymatic defects observed in the disease. Our analysis shows that nuclear genes encoding mitochondrial proteins are not collectively affected by the loss of LRPPRC. We do observe altered expression of genes related to hexose metabolism, prostaglandin synthesis, and glycosphingolipid biology that may either play an adaptive role in cell survival or contribute to pathogenesis. The combination of genetic perturbation, genomic profiling, and pathway analysis represents a generic strategy for understanding disease pathogenesis. PMID:20220140

  15. Detection of a conserved arrangement of three tRNA genes in the sunflower mitochondrial genome. Identification, mapping and expression of trnC-trnN-trnY genes.

    PubMed

    Ceci, L R; Ambrosini, M; Fiorella, S; Gallerani, R

    1994-04-01

    The genes coding for tRNA-Cys (trnC), tRNA-Asn (trnN) and tRNA-Tyr (trnY) have been sequenced in a region of about 3.0 kb of the sunflower mitochondrial DNA. The trnC and trnY are genuine mitochondrial genes, while the trnN gene has a chloroplast origin. Despite their heterologous origin the three genes are transcribed. Their arrangement is the first detected in a highly conserved form in a specific group of advanced dicots. PMID:8061634

  16. Human TRMU encoding the mitochondrial 5-methylaminomethyl-2-thiouridylate-methyltransferase is a putative nuclear modifier gene for the phenotypic expression of the deafness-associated 12S rRNA mutations

    SciTech Connect

    Yan Qingfeng; Bykhovskaya, Yelena; Li Ronghua; Mengesha, Emebet; Shohat, Mordechai; Estivill, Xavier; Fischel-Ghodsian, Nathan; Guan Minxin . E-mail: min-xin.guan@chmcc.org

    2006-04-21

    Nuclear modifier genes have been proposed to modulate the phenotypic manifestation of human mitochondrial 12S rRNA A1491G mutation associated with deafness in many families world-wide. Here we identified and characterized the putative nuclear modifier gene TRMU encoding a highly conserved mitochondrial protein related to tRNA modification. A 1937 bp TRMU cDNA has been isolated and the genomic organization of TRMU has been elucidated. The human TRMU gene containing 11 exons encodes a 421 residue protein with a strong homology to the TRMU-like proteins of bacteria and other homologs. TRMU is ubiquitously expressed in various tissues, but abundantly in tissues with high metabolic rates including heart, liver, kidney, and brain. Immunofluorescence analysis of human 143B cells expressing TRMU-GFP fusion protein demonstrated that the human Trmu localizes and functions in mitochondrion. Furthermore, we show that in families with the deafness-associated 12S rRNA A1491G mutation there is highly suggestive linkage and linkage disequilibrium between microsatellite markers adjacent to TRMU and the presence of deafness. These observations suggest that human TRMU may modulate the phenotypic manifestation of the deafness-associated mitochondrial 12S rRNA mutations.

  17. Identification and mapping of tRNA genes on the Helianthus annuus mitochondrial genome.

    PubMed

    Ceci, L R; Veronico, P; Gallerani, R

    1996-01-01

    The physical map for seventeen tRNA genes on the mitochondrial genome of the dicotyledonous plant Helianthus annuus has been established. Eleven are genuine mitochondrial genes, while the other six show a high degree of similarity with the chloroplast counterparts. The genes, with the exception of the genuine trnS(GCT) and of the chloroplast-like trnV and trnP, are expressed. The comparison of the organization of some tRNA genes in the H. annuus mitochondrial genome with that of similar genes detectable in other plants reveals that their association is common to several dicotyledons. PMID:8722570

  18. Mitochondrial Physiology and Gene Expression Analyses Reveal Metabolic and Translational Dysregulation in Oocyte-Induced Somatic Nuclear Reprogramming

    PubMed Central

    Esteves, Telma C.; Psathaki, Olympia E.; Pfeiffer, Martin J.; Balbach, Sebastian T.; Zeuschner, Dagmar; Shitara, Hiroshi; Yonekawa, Hiromichi; Siatkowski, Marcin; Fuellen, Georg; Boiani, Michele

    2012-01-01

    While reprogramming a foreign nucleus after somatic cell nuclear transfer (SCNT), the enucleated oocyte (ooplasm) must signal that biomass and cellular requirements changed compared to the nucleus donor cell. Using cells expressing nuclear-encoded but mitochondria-targeted EGFP, a strategy was developed to directly distinguish maternal and embryonic products, testing ooplasm demands on transcriptional and post-transcriptional activity during reprogramming. Specifically, we compared transcript and protein levels for EGFP and other products in pre-implantation SCNT embryos, side-by-side to fertilized controls (embryos produced from the same oocyte pool, by intracytoplasmic injection of sperm containing the EGFP transgene). We observed that while EGFP transcript abundance is not different, protein levels are significantly lower in SCNT compared to fertilized blastocysts. This was not observed for Gapdh and Actb, whose protein reflected mRNA. This transcript-protein relationship indicates that the somatic nucleus can keep up with ooplasm transcript demands, whilst transcription and translation mismatch occurs after SCNT for certain mRNAs. We further detected metabolic disturbances after SCNT, suggesting a place among forces regulating post-transcriptional changes during reprogramming. Our observations ascribe oocyte-induced reprogramming with previously unsuspected regulatory dimensions, in that presence of functional proteins may no longer be inferred from mRNA, but rather depend on post-transcriptional regulation possibly modulated through metabolism. PMID:22693623

  19. Molecular Genetics of Mitochondrial Biogenesis in Maize.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mitochondrial genome encodes proteins essential for mitochondrial respiration and ATP synthesis. Nuclear gene products, however, are required for the expression of mitochondrial genes and the elaboration of functional mitochondrial protein complexes. We are exploiting a unique collection of maiz...

  20. Expression of a mitochondrial gene orfH79 from CMS-Honglian rice inhibits Escherichia coli growth via deficient oxygen consumption.

    PubMed

    Ding, Xia; Chen, Qiusheng; Bao, Canming; Ai, Aihua; Zhou, Ying; Li, Shaobo; Xie, Hongwei; Zhu, Youlin; Cai, Yaohui; Peng, Xiaojue

    2016-01-01

    Cytoplasmic male sterility (CMS) has often been associated with abnormal mitochondrial open frames (ORF), orfH79 is a mitochondrial chimeric gene responsible for the CMS trait in Honglian (HL) rice. In this study, the weakly produced ORFH79 protein significantly inhibited the growth of E. coli in an oxygen culture, however, the growth of the transformants producing ORFH79 was indistinguishable from the control under anaerobic incubation conditions. In addition, a lower respiration rate, wrinkled bacterial surfaces, and decreased pyruvate kinase and α-ketoglutarate dehydrogenase activities were observed in the ORFH79 produced E. coli. These results indicate that ORFH79 impairs the oxygen respiration of E. coli, which may inhibit E. coli growth. PMID:27478742

  1. Disorders of phospholipid metabolism: an emerging class of mitochondrial disease due to defects in nuclear genes

    PubMed Central

    Lu, Ya-Wen; Claypool, Steven M.

    2015-01-01

    The human nuclear and mitochondrial genomes co-exist within each cell. While the mitochondrial genome encodes for a limited number of proteins, transfer RNAs, and ribosomal RNAs, the vast majority of mitochondrial proteins are encoded in the nuclear genome. Of the multitude of mitochondrial disorders known to date, only a fifth are maternally inherited. The recent characterization of the mitochondrial proteome therefore serves as an important step toward delineating the nosology of a large spectrum of phenotypically heterogeneous diseases. Following the identification of the first nuclear gene defect to underlie a mitochondrial disorder, a plenitude of genetic variants that provoke mitochondrial pathophysiology have been molecularly elucidated and classified into six categories that impact: (1) oxidative phosphorylation (subunits and assembly factors); (2) mitochondrial DNA maintenance and expression; (3) mitochondrial protein import and assembly; (4) mitochondrial quality control (chaperones and proteases); (5) iron–sulfur cluster homeostasis; and (6) mitochondrial dynamics (fission and fusion). Here, we propose that an additional class of genetic variant be included in the classification schema to acknowledge the role of genetic defects in phospholipid biosynthesis, remodeling, and metabolism in mitochondrial pathophysiology. This seventh class includes a small but notable group of nuclear-encoded proteins whose dysfunction impacts normal mitochondrial phospholipid metabolism. The resulting human disorders present with a diverse array of pathologic consequences that reflect the variety of functions that phospholipids have in mitochondria and highlight the important role of proper membrane homeostasis in mitochondrial biology. PMID:25691889

  2. Disorders of phospholipid metabolism: an emerging class of mitochondrial disease due to defects in nuclear genes.

    PubMed

    Lu, Ya-Wen; Claypool, Steven M

    2015-01-01

    The human nuclear and mitochondrial genomes co-exist within each cell. While the mitochondrial genome encodes for a limited number of proteins, transfer RNAs, and ribosomal RNAs, the vast majority of mitochondrial proteins are encoded in the nuclear genome. Of the multitude of mitochondrial disorders known to date, only a fifth are maternally inherited. The recent characterization of the mitochondrial proteome therefore serves as an important step toward delineating the nosology of a large spectrum of phenotypically heterogeneous diseases. Following the identification of the first nuclear gene defect to underlie a mitochondrial disorder, a plenitude of genetic variants that provoke mitochondrial pathophysiology have been molecularly elucidated and classified into six categories that impact: (1) oxidative phosphorylation (subunits and assembly factors); (2) mitochondrial DNA maintenance and expression; (3) mitochondrial protein import and assembly; (4) mitochondrial quality control (chaperones and proteases); (5) iron-sulfur cluster homeostasis; and (6) mitochondrial dynamics (fission and fusion). Here, we propose that an additional class of genetic variant be included in the classification schema to acknowledge the role of genetic defects in phospholipid biosynthesis, remodeling, and metabolism in mitochondrial pathophysiology. This seventh class includes a small but notable group of nuclear-encoded proteins whose dysfunction impacts normal mitochondrial phospholipid metabolism. The resulting human disorders present with a diverse array of pathologic consequences that reflect the variety of functions that phospholipids have in mitochondria and highlight the important role of proper membrane homeostasis in mitochondrial biology. PMID:25691889

  3. Higher plant mitochondrial DNA: Genomes, genes, mutants, transcription, translation

    SciTech Connect

    Not Available

    1986-01-01

    This volume contains brief summaries of 63 presentations given at the International Workshop on Higher Plant Mitochondrial DNA. The presentations are organized into topical discussions addressing plant genomes, mitochondrial genes, cytoplasmic male sterility, transcription, translation, plasmids and tissue culture. (DT)

  4. Identification of a Gene for Pyruvate-Insensitive Mitochondrial Alternative Oxidase Expressed in the Thermogenic Appendices in Arum maculatum1[W][OA

    PubMed Central

    Ito, Kikukatsu; Ogata, Takafumi; Kakizaki, Yusuke; Elliott, Catherine; Albury, Mary S.; Moore, Anthony L.

    2011-01-01

    Heat production in thermogenic plants has been attributed to a large increase in the expression of the alternative oxidase (AOX). AOX acts as an alternative terminal oxidase in the mitochondrial respiratory chain, where it reduces molecular oxygen to water. In contrast to the mitochondrial terminal oxidase, cytochrome c oxidase, AOX is nonprotonmotive and thus allows the dramatic drop in free energy between ubiquinol and oxygen to be dissipated as heat. Using reverse transcription-polymerase chain reaction-based cloning, we reveal that, although at least seven cDNAs for AOX exist (AmAOX1a, -1b, -1c, -1d, -1e, -1f, and -1g) in Arum maculatum, the organ and developmental regulation for each is distinct. In particular, the expression of AmAOX1e transcripts appears to predominate in thermogenic appendices among the seven AmAOXs. Interestingly, the amino acid sequence of AmAOX1e indicates that the ENV element found in almost all other AOX sequences, including AmAOX1a, -1b, -1c, -1d, and -1f, is substituted by QNT. The existence of a QNT motif in AmAOX1e was confirmed by nano-liquid chromatography-tandem mass spectrometry analysis of mitochondrial proteins from thermogenic appendices. Further functional analyses with mitochondria prepared using a yeast heterologous expression system demonstrated that AmAOX1e is insensitive to stimulation by pyruvate. These data suggest that a QNT type of pyruvate-insensitive AOX, AmAOX1e, plays a crucial role in stage- and organ-specific heat production in the appendices of A. maculatum. PMID:21988877

  5. Opposite Regulation of the Copy Number and the Expression of Plastid and Mitochondrial Genes by Light and Acetate in the Green Flagellate Chlorogonium.

    PubMed Central

    Kroymann, J.; Schneider, W.; Zetsche, K.

    1995-01-01

    In the unicellular green alga Chlorogonium elongatum (Chlamydomonadaceae), the formation of both the photosynthetic and the respiratory apparatus is under the control of light and acetate. Autotrophically cultured cells possess a 3-fold higher copy number of the plastid genes rbcL and psbA than cells cultivated in the dark with acetate (heterotrophic cells). Under mixotrophic conditions (light and acetate), both genes are present at an intermediate level. This pattern is repeated at the mRNA level. The amounts of rbcL and psbA mRNAs are approximately 3-fold higher in autotrophic cells than in heterotrophic ones and are intermediate in mixotrophic cells. As expected, the copy number of the nuclear-encoded rbcS gene is constant irrespective of the applied culture conditions. RbcS mRNA, however, is 7-fold more frequent in autotrophic than in heterotrophic cells. Again, mixotrophic cells show an intermediate level. In contrast to genes encoding plastid proteins, the copy number and transcript level of the mitochondrial cob gene are approximately 5-fold higher in heterotrophic cells than in autotrophic ones. As before, mixotrophic cells take an intermediate position. Therefore, light and acetate control the genes involved in the formation of either the photosynthetic or the respiratory apparatus in a coordinated but opposite manner. PMID:12228568

  6. Pioglitazone stimulates AMP-activated protein kinase signalling and increases the expression of genes involved in adiponectin signalling, mitochondrial function and fat oxidation in human skeletal muscle in vivo: a randomised trial

    PubMed Central

    Sriwijitkamol, A.; Wajcberg, E.; Tantiwong, P.; Li, M.; Prentki, M.; Madiraju, M.; Jenkinson, C. P.; Cersosimo, E.; Musi, N.; DeFronzo, R. A.

    2016-01-01

    Aims/hypothesis The molecular mechanisms by which thiazolidinediones improve insulin sensitivity in type 2 diabetes are not fully understood. We hypothesised that pioglitazone would activate the adenosine 5′-monophosphate-activated protein kinase (AMPK) pathway and increase the expression of genes involved in adiponectin signalling, NEFA oxidation and mitochondrial function in human skeletal muscle. Methods A randomised, double-blind, parallel study was performed in 26 drug-naive type 2 diabetes patients treated with: (1) pioglitazone (n=14) or (2) aggressive nutritional therapy (n=12) to reduce HbA1c to levels observed in the pioglitazone-treated group. Participants were assigned randomly to treatment using a table of random numbers. Before and after 6 months, patients reported to the Clinical Research Center of the Texas Diabetes Institute for a vastus lateralis muscle biopsy followed by a 180 min euglycaemic–hyperinsulinaemic (80 mU m−2 min−1) clamp. Results All patients in the pioglitazone (n=14) or nutritional therapy (n=12) group were included in the analysis. Pioglitazone significantly increased plasma adiponectin concentration by 79% and reduced fasting plasma NEFA by 35% (both p<0.01). Following pioglitazone, insulin-stimulated glucose disposal increased by 30% (p<0.01), and muscle AMPK and acetyl-CoA carboxylase (ACC) phosphorylation increased by 38% and 53%, respectively (p<0.05). Pioglitazone increased mRNA levels for adiponectin receptor 1 and 2 genes (ADIPOR1, ADIPOR2), peroxisome proliferator-activated receptor gamma, coactivator 1 gene (PPARGC1) and multiple genes involved in mitochondrial function and fat oxidation. Despite a similar reduction in HbA1c and similar improvement in insulin sensitivity with nutritional therapy, there were no significant changes in muscle AMPK and ACC phosphorylation, or the expression of ADIPOR1, ADIPOR2, PPARGC1 and genes involved in mitochondrial function and fat oxidation. No adverse (or unexpected) effects

  7. Radiation response and regulation of apoptosis induced by a combination of TRAIL and CHX in cells lacking mitochondrial DNA: A role for NF-{kappa}B-STAT3-directed gene expression

    SciTech Connect

    Ivanov, Vladimir N. Ghandhi, Shanaz A.; Zhou, Hongning; Huang, Sarah X.; Chai, Yunfei; Amundson, Sally A.; Hei, Tom K.

    2011-07-01

    Mitochondrial DNA depleted ({rho}{sup 0}) human skin fibroblasts (HSF) with suppressed oxidative phosphorylation were characterized by significant changes in the expression of 2100 nuclear genes, encoding numerous protein classes, in NF-{kappa}B and STAT3 signaling pathways, and by decreased activity of mitochondrial death pathway, compared to the parental {rho}{sup +} HSF. In contrast, the extrinsic TRAIL/TRAIL-Receptor mediated death pathway remained highly active, and exogenous TRAIL in a combination with cycloheximide (CHX) induced higher levels of apoptosis in {rho}{sup 0} cells compared to {rho}{sup +} HSF. Global gene expression analysis using microarray and qRT-PCR demonstrated that mRNA expression levels of many growth factors and their adaptor proteins (FGF13, HGF, IGFBP4, IGFBP6, and IGFL2), cytokines (IL6, {Oota}L17{Beta}, {Oota}L18, {Oota}L19, and {Oota}L28{Beta}) and cytokine receptors (IL1R1, IL21R, and IL31RA) were substantially decreased after mitochondrial DNA depletion. Some of these genes were targets of NF-{kappa}B and STAT3, and their protein products could regulate the STAT3 signaling pathway. Alpha-irradiation further induced expression of several NF-{kappa}B/STAT3 target genes, including IL1A, IL1B, IL6, PTGS2/COX2 and MMP12, in {rho}{sup +} HSF, but this response was substantially decreased in {rho}{sup 0} HSF. Suppression of the IKK-NF-{kappa}B pathway by the small molecular inhibitor BMS-345541 and of the JAK2-STAT3 pathway by AG490 dramatically increased TRAIL-induced apoptosis in the control and irradiated {rho}{sup +} HSF. Inhibitory antibodies against IL6, the main activator of JAK2-STAT3 pathway, added into the cell media, also increased TRAIL-induced apoptosis in HSF, especially after alpha-irradiation. Collectively, our results indicated that NF-{kappa}B activation was partially lost in {rho}{sup 0} HSF resulting in downregulation of the basal or radiation-induced expression of numerous NF-{kappa}B targets, further suppressing IL6

  8. Molecular cloning of the yeast mitochondrial aconitase gene (ACO1) and evidence of a synergistic regulation of expression by glucose plus glutamate.

    PubMed Central

    Gangloff, S P; Marguet, D; Lauquin, G J

    1990-01-01

    We have isolated genomic clones complementing the aconitase-deficient strain (glu1-1) of Saccharomyces cerevisiae. Identification of the aconitase gene was established by enzymatic assays and molecular analyses. The corresponding mRNA has been characterized, and its direction of transcription has been determined. The complete nucleotide sequence revealed strong amino acid homologies with the sequences of some peptides isolated from the mammalian protein. Disruption of the gene by deletion-insertion led to glutamate auxotrophy. Expression of the aconitase gene was sensitive to glucose repression and was synergistically down regulated by glucose and glutamate. Images PMID:1972545

  9. Glucose repression of yeast mitochondrial transcription: kinetics of derepression and role of nuclear genes.

    PubMed Central

    Ulery, T L; Jang, S H; Jaehning, J A

    1994-01-01

    Yeast mitochondrial transcript and gene product abundance has been observed to increase upon release from glucose repression, but the mechanism of regulation of this process has not been determined. We report a kinetic analysis of this phenomenon, which demonstrates that the abundance of all classes of mitochondrial RNA changes slowly relative to changes observed for glucose-repressed nuclear genes. Several cell doublings are required to achieve the 2- to 20-fold-higher steady-state levels observed after a shift to a nonrepressing carbon source. Although we observed that in some yeast strains the mitochondrial DNA copy number also increases upon derepression, this does not seem to play the major role in increased RNA abundance. Instead we found that three- to sevenfold increases in RNA synthesis rates, measured by in vivo pulse-labelling experiments, do correlate with increased transcript abundance. We found that mutations in the SNF1 and REG1 genes, which are known to affect the expression of many nuclear genes subject to glucose repression, affect derepression of mitochondrial transcript abundance. These genes do not appear to regulate mitochondrial transcript levels via regulation of the nuclear genes RPO41 and MTF1, which encode the subunits of the mitochondrial RNA polymerase. We conclude that a nuclear gene-controlled factor(s) in addition to the two RNA polymerase subunits must be involved in glucose repression of mitochondrial transcript abundance. Images PMID:8289797

  10. Mitochondrial complex 1 gene analysis in keratoconus

    PubMed Central

    Pathak, Dhananjay; Nayak, Bhagabat; Singh, Manvendra; Sharma, Namrata; Tandon, Radhika; Sinha, Rajesh; Titiyal, Jeewan S.

    2011-01-01

    Purpose Keratoconus is characterized by the thinning of corneal stroma, resulting in reduced vision. The exact etiology of keratoconus (KC) is still unknown. The involvement of oxidative stress (OS) in this disease has been reported. However, the exact mechanism of OS in keratoconus is still unknown. Thus we planned this study to screen mitochondrial complex I genes for sequence changes in keratoconus patients and controls, as mitochondrial complex I is the chief source of reactive oxygen species (ROS) production. Methods A total of 20 keratoconus cases and 20 healthy controls without any ocular disorder were enrolled in this study. Mitochondrial complex I genes (ND1, 2, 3, 4, 4L, 5, and 6) were amplified in all patients and controls using 12 pairs of primers by PCR. After sequencing, DNA sequences were analyzed against the mitochondrial reference sequence NC_012920. Haplogroup frequency based Principle Component Analysis (PCA) was constructed to determine whether the gene pool of keratoconus patients is closer to major populations in India. Results DNA sequencing revealed a total 84 nucleotide variations in patients and 29 in controls. Of 84 nucleotide changes, 18 variations were non-synonymous and two novel frame-shift mutations were detected in cases. Non-synonymous mtDNA sequence variations may account for increased ROS and decreased ATP production. This ultimately leads to OS; which is a known cause for variety of corneal abnormalities. Haplotype analysis showed that most of the patients were clustered under the haplogroups: T, C4a2a, R2’TJ, M21’Q1a, M12’G2a2a, M8’CZ and M7a2a, which are present as negligible frequency in normal Indian population, whereas only few patients were found to be a part of the other haplogroups like U7 (Indo-European), R2 and R31, whose origin is contentious. Conclusions Mt complex I sequence variations are the main cause of elevated ROS production which leads oxidative stress. This oxidative stress then starts a cascade of

  11. Mammalian mitochondrial ribosomal small subunit (MRPS) genes: A putative role in human disease.

    PubMed

    Gopisetty, Gopal; Thangarajan, Rajkumar

    2016-09-01

    Mitochondria are prominently understood as power houses producing ATP the primary energy currency of the cell. However, mitochondria are also known to play an important role in apoptosis and autophagy, and mitochondrial dysregulation can lead to pathological outcomes. Mitochondria are known to contain 1500 proteins of which only 13 are coded by mitochondrial DNA and the rest are coded by nuclear genes. Protein synthesis in mitochondria involves mitochondrial ribosomes which are 55-60S particles and are composed of small 28S and large 39S subunits. A feature of mammalian mitoribosome which differentiate it from bacterial ribosomes is the increased protein content. The human mitochondrial ribosomal protein (MRP) gene family comprises of 30 genes which code for mitochondrial ribosomal small subunit and 50 genes for the large subunit. The present review focuses on the mitochondrial ribosomal small subunit genes (MRPS), presents an overview of the literature and data gleaned from publicly available gene and protein expression databases. The survey revealed aberrations in MRPS gene expression patterns in varied human diseases indicating a putative role in their etiology. PMID:27170550

  12. Regulation of nuclear genes encoding mitochondrial proteins in Saccharomyces cerevisiae.

    PubMed Central

    Brown, T A; Evangelista, C; Trumpower, B L

    1995-01-01

    Selection for mutants which release glucose repression of the CYB2 gene was used to identify genes which regulate repression of mitochondrial biogenesis. We have identified two of these as the previously described GRR1/CAT80 and ROX3 genes. Mutations in these genes not only release glucose repression of CYB2 but also generally release respiration of the mutants from glucose repression. In addition, both mutants are partially defective in CYB2 expression when grown on nonfermentable carbon sources, indicating a positive regulatory role as well. ROX3 was cloned by complementation of a glucose-inducible flocculating phenotype of an amber mutant and has been mapped as a new leftmost marker on chromosome 2. The ROX3 mutant has only a modest defect in glucose repression of GAL1 but is substantially compromised in galactose induction of GAL1 expression. This mutant also has increased SUC2 expression on nonrepressing carbon sources. We have also characterized the regulation of CYB2 in strains carrying null mutation in two other glucose repression genes, HXK2 and SSN6, and show that HXK2 is a negative regulator of CYB2, whereas SSN6 appears to be a positive effector of CYB2 expression. PMID:7592476

  13. Multiple losses and transfers to the nucleus of two mitochondrial succinate dehydrogenase genes during angiosperm evolution.

    PubMed Central

    Adams, K L; Rosenblueth, M; Qiu, Y L; Palmer, J D

    2001-01-01

    Unlike in animals, the functional transfer of mitochondrial genes to the nucleus is an ongoing process in plants. All but one of the previously reported transfers in angiosperms involve ribosomal protein genes. Here we report frequent transfer of two respiratory genes, sdh3 and sdh4 (encoding subunits 3 and 4 of succinate dehydrogenase), and we also show that these genes are present and expressed in the mitochondria of diverse angiosperms. Southern hybridization surveys reveal that sdh3 and sdh4 have been lost from the mitochondrion about 40 and 19 times, respectively, among the 280 angiosperm genera examined. Transferred, functional copies of sdh3 and sdh4 were characterized from the nucleus in four and three angiosperm families, respectively. The mitochondrial targeting presequences of two sdh3 genes are derived from preexisting genes for anciently transferred mitochondrial proteins. On the basis of the unique presequences of the nuclear genes and the recent mitochondrial gene losses, we infer that each of the seven nuclear sdh3 and sdh4 genes was derived from a separate transfer to the nucleus. These results strengthen the hypothesis that angiosperms are experiencing a recent evolutionary surge of mitochondrial gene transfer to the nucleus and reveal that this surge includes certain respiratory genes in addition to ribosomal protein genes. PMID:11454775

  14. N-acetylcysteine inhibits the upregulation of mitochondrial biogenesis genes in livers from rats fed ethanol chronically

    PubMed Central

    Caro, Andres A.; Bell, Matthew; Ejiofor, Shannon; Zurcher, Grant; Petersen, Dennis R.; Ronis, Martin J. J.

    2014-01-01

    Background Chronic ethanol administration to experimental animals induces hepatic oxidative stress and upregulates mitochondrial biogenesis. The mechanisms by which chronic ethanol upregulates mitochondrial biogenesis have not been fully explored. In this work, we hypothesized that oxidative stress is a factor that triggers mitochondrial biogenesis after chronic ethanol feeding. If our hypothesis is correct, co-administration of antioxidants should prevent upregulation of mitochondrial biogenesis genes. Methods Rats were fed an ethanol-containing diet intragastrically by total enteral nutrition for 150 days, in the absence or presence of the antioxidant N-acetylcysteine (NAC) at 1.7 g/kg/day; control rats were administered isocaloric diets where carbohydrates substituted for ethanol calories. Results Ethanol administration significantly increased hepatic oxidative stress, evidenced as decreased liver total glutathione and GSH/GSSG ratio. These effects were inhibited by co-administration of ethanol and NAC. Chronic ethanol increased the expression of mitochondrial biogenesis genes including peroxisome proliferator activated receptor gamma-coactivator-1 alpha and mitochondrial transcription factor A, and mitochondrial DNA; co-administration of ethanol and NAC prevented these effects. Chronic ethanol administration was associated with decreased mitochondrial mass, inactivation and depletion of mitochondrial complex I and complex IV, and increased hepatic mitochondrial oxidative damage, effects that were not prevented by NAC. Conclusions These results suggest that oxidative stress caused by chronic ethanol triggered the upregulation of mitochondrial biogenesis genes in rat liver, because an antioxidant such as NAC prevented both effects. Because NAC did not prevent liver mitochondrial oxidative damage, extra-mitochondrial effects of reactive oxygen species may regulate mitochondrial biogenesis. In spite of the induction of hepatic mitochondrial biogenesis genes by

  15. A Moderate Zinc Deficiency Does Not Impair Gene Expression of PPARα, PPARγ, and Mitochondrial Enoyl-CoA Delta Isomerase in the Liver of Growing Rats.

    PubMed

    Justus, Jennifer; Weigand, Edgar

    2014-01-01

    The aim of the study was to investigate the impact of a moderate zinc deficiency and a high intake of polyunsaturated fat on the mRNA expression of peroxisome-proliferator-activated receptor alpha (PPARα), peroxisome-proliferator-activated receptor gamma (PPARγ), and mitochondrial Δ3Δ2-enoyl-CoA isomerase (ECI) in the liver. Weanling rats were assigned to five groups (eight animals each) and fed semi-synthetic, low-carbohydrate diets containing 7 or 50 mg Zn/kg (low-Zn (LZ) or high-Zn (HZ)) and 22% cocoa butter (CB) or 22% safflower (SF) oil for four weeks. One group each was fed the LZ-CB, LZ-SF, or HZ-SF diet free choice, and one group each was fed the HZ-CB and HZ-SF diets in restricted amounts according to intake of the respective LZ diets. The LZ diets markedly lowered growth and zinc concentrations in plasma and femur. Hepatic mRNA levels of PPARα, PPARγ, and ECI were not reduced by the moderate zinc deficiency. Overall, ECI-mRNA abundance was marginally higher in the SF-fed than in the CB-fed animals. PMID:24855375

  16. A Moderate Zinc Deficiency Does Not Impair Gene Expression of PPARα, PPARγ, and Mitochondrial Enoyl-CoA Delta Isomerase in the Liver of Growing Rats

    PubMed Central

    Justus, Jennifer; Weigand, Edgar

    2014-01-01

    The aim of the study was to investigate the impact of a moderate zinc deficiency and a high intake of polyunsaturated fat on the mRNA expression of peroxisome-proliferator-activated receptor alpha (PPARα), peroxisome-proliferator-activated receptor gamma (PPARγ), and mitochondrial Δ3Δ2-enoyl-CoA isomerase (ECI) in the liver. Weanling rats were assigned to five groups (eight animals each) and fed semi-synthetic, low-carbohydrate diets containing 7 or 50 mg Zn/kg (low-Zn (LZ) or high-Zn (HZ)) and 22% cocoa butter (CB) or 22% safflower (SF) oil for four weeks. One group each was fed the LZ-CB, LZ-SF, or HZ-SF diet free choice, and one group each was fed the HZ-CB and HZ-SF diets in restricted amounts according to intake of the respective LZ diets. The LZ diets markedly lowered growth and zinc concentrations in plasma and femur. Hepatic mRNA levels of PPARα, PPARγ, and ECI were not reduced by the moderate zinc deficiency. Overall, ECI-mRNA abundance was marginally higher in the SF-fed than in the CB-fed animals. PMID:24855375

  17. GENE EXPRESSION NETWORKS

    EPA Science Inventory

    "Gene expression network" is the term used to describe the interplay, simple or complex, between two or more gene products in performing a specific cellular function. Although the delineation of such networks is complicated by the existence of multiple and subtle types of intera...

  18. PGC-1α/β induced expression partially compensates for respiratory chain defects in cells from patients with mitochondrial disorders

    PubMed Central

    Srivastava, Sarika; Diaz, Francisca; Iommarini, Luisa; Aure, Karine; Lombes, Anne; Moraes, Carlos T.

    2009-01-01

    Members of the peroxisome proliferator-activated receptor γ coactivator (PGC) family are potent inducers of mitochondrial biogenesis. We have tested the potential effect of increased mitochondrial biogenesis in cells derived from patients harboring oxidative phosphorylation defects due to either nuclear or mitochondrial DNA mutations. We found that the PGC-1α and/or PGC-1β expression improved mitochondrial respiration in cells harboring a complex III or IV deficiency as well as in transmitochondrial cybrids harboring mitochondrial encephalomyopathy lactic acidosis and stroke A3243G tRNA(Leu)UUR gene mutation. The respiratory function improvement was found to be associated with increased levels of mitochondrial components per cell, although this increase was not homogeneous. These results reinforce the concept that increased mitochondrial biogenesis is a promising venue for the treatment of mitochondrial diseases. PMID:19297390

  19. A nuclear genetic lesion affecting Saccharomyces cerevisiae mitochondrial translation is complemented by a homologous Bacillus gene.

    PubMed Central

    Kim, S I; Stange-Thomann, N; Martins, O; Hong, K W; Söll, D; Fox, T D

    1997-01-01

    A novel Bacillus gene was isolated and characterized. It encodes a homolog of Saccharomyces cerevisiae Pet112p, a protein that has no characterized relative and is dispensable for cell viability but required for mitochondrial translation. Expression of the Bacillus protein in yeast, modified to ensure mitochondrial targeting, partially complemented the phenotype of the pet112-1 mutation, demonstrating a high degree of evolutionary conservation for this as yet unidentified component of translation. PMID:9287027

  20. Antagonistic Regulation of Parvalbumin Expression and Mitochondrial Calcium Handling Capacity in Renal Epithelial Cells

    PubMed Central

    Henzi, Thomas; Schwaller, Beat

    2015-01-01

    Parvalbumin (PV) is a cytosolic Ca2+-binding protein acting as a slow-onset Ca2+ buffer modulating the shape of Ca2+ transients in fast-twitch muscles and a subpopulation of neurons. PV is also expressed in non-excitable cells including distal convoluted tubule (DCT) cells of the kidney, where it might act as an intracellular Ca2+ shuttle facilitating transcellular Ca2+ resorption. In excitable cells, upregulation of mitochondria in “PV-ergic” cells in PV-/- mice appears to be a general hallmark, evidenced in fast-twitch muscles and cerebellar Purkinje cells. Using Gene Chip Arrays and qRT-PCR, we identified differentially expressed genes in the DCT of PV-/- mice. With a focus on genes implicated in mitochondrial Ca2+ transport and membrane potential, uncoupling protein 2 (Ucp2), mitocalcin (Efhd1), mitochondrial calcium uptake 1 (Micu1), mitochondrial calcium uniporter (Mcu), mitochondrial calcium uniporter regulator 1 (Mcur1), cytochrome c oxidase subunit 1 (COX1), and ATP synthase subunit β (Atp5b) were found to be up-upregulated. At the protein level, COX1 was increased by 31 ± 7%, while ATP-synthase subunit β was unchanged. This suggested that these mitochondria were better suited to uphold the electrochemical potential across the mitochondrial membrane, necessary for mitochondrial Ca2+ uptake. Ectopic expression of PV in PV-negative Madin-Darby canine kidney (MDCK) cells decreased COX1 and concomitantly mitochondrial volume, while ATP synthase subunit β levels remained unaffected. Suppression of PV by shRNA in PV-expressing MDCK cells led subsequently to an increase in COX1 expression. The collapsing of the mitochondrial membrane potential by the uncoupler CCCP occurred at lower concentrations in PV-expressing MDCK cells than in control cells. In support, a reduction of the relative mitochondrial mass was observed in PV-expressing MDCK cells. Deregulation of the cytoplasmic Ca2+ buffer PV in kidney cells was counterbalanced in vivo and in vitro by

  1. Oligodendroglial differentiation induces mitochondrial genes and inhibition of mitochondrial function represses oligodendroglial differentiation

    PubMed Central

    Schoenfeld, Robert; Wong, Alice; Silva, Jillian; Li, Ming; Itoh, Aki; Horiuchi, Makoto; Itoh, Takayuki; Pleasure, David; Cortopassi, Gino

    2011-01-01

    Demyelination occurs in multiple inherited mitochondrial diseases. We studied which genes were induced as a consequence of differentiation in rodent and human oligodendroglia. Cholesterol, myelin and mitochondrial genes were significantly increased with oligodendroglial differentiation. Mitochondrial DNA content per cell and acetyl CoA-related transcripts increased significantly; thus, the large buildup of cholesterol necessary for myelination appears to require mitochondrial production of acetyl-CoA. Oligodendroglia were treated with low doses of the mitochondrial inhibitor rotenone to test the dependence of differentiation on mitochondrial function. Undifferentiated cells were resistant to rotenone, whereas differentiating cells were much more sensitive. Very low doses of rotenone that did not affect viability or ATP synthesis still inhibited differentiation, as measured by reduced levels of the myelin transcripts 2′,3′-Cyclic Nucleotide-3′-Phosphodiesterase and Myelin Basic Protein. Thus, mitochondrial transcripts and mtDNA are amplified during oligodendroglial differentiation, and differentiating oligodendroglia are especially sensitive to mitochondrial inhibition, suggesting mechanisms for demyelination observed in mitochondrial disease. PMID:20005986

  2. Gene expression profiling indicates an increased capacity for proline, serine, and ATP synthesis and mitochondrial mass by the liver of steers grazing high vs. low endophyte-infected tall fescue.

    PubMed

    Liao, S F; Boling, J A; Matthews, J C

    2015-12-01

    Grazing -infected forages results in a variety of reduced animal performance parameters, collectively known as "fescue toxicosis." The initial, limited evaluations of hepatic mechanisms affected by fescue toxicosis have used transcriptomic expression profiling of experimental phenotypes developed by short-term feeding of concentrated ergot alkaloids or fescue seeds to rodents and steers. To assess the effects of fescue toxicosis in growing cattle using a commercially relevant phenotype, we induced fescue toxicosis in beef steers by summer-long grazing (89 to 105 d) of a single high toxic endophyte-infected tall fescue pasture (HE; 0.746 μg/g ergot alkaloids; 5.7 ha; = 10; BW = 267 ± 14.5 kg) vs. a low toxic endophyte tall fescue-mixed pasture (LE; 0.023 μg/g ergot alkaloids; 5.7 ha; = 9; BW = 266 ± 10.9 kg). High toxic endophyte tall fescue-mixed pasture steers had decreased BW (313 vs. 338 kg) and an increased potential for hepatic gluconeogenesis from AA-derived carbons. To gain a greater perspective into fescue toxicosis-induced hepatic metabolism and identify candidate regulatory mechanisms, the goal of the current research was to examine liver samples for changes in gene (mRNA) expression profiles using a Bovine Affymetrix microarray and selected reverse-transcription PCR and immunoblot analyses. The expression (false discovery rate < 10%; < 0.01) of 147 genes was increased (7 to 268%) and that of 227 was decreased (4 to 87%) in livers of HE vs. LE steers. The top (1) functional gene category was cell-mediated immune response (33 genes; ≤ 0.012), (2) canonical cell signaling pathway was primary immunodeficiency signaling (8 genes; ≤ 0.0003), and (3) canonical metabolic pathways were oxidative phosphorylation (5 genes; ≤ 0.016) and purine metabolism (8 genes; ≤ 0.029). High toxic endophyte tall fescue-mixed pasture steers had increased ( ≤ 0.022) expression of genes critical for increased (1) Pro () and Ser () synthesis, (2) shunting of AA carbons

  3. Gene expression technology

    SciTech Connect

    Goeddel, D.V. )

    1990-01-01

    The articles in this volume were assemble to enable the reader to design effective strategies for the expression of cloned genes and cDNAs. More than a compilation of papers describing the multitude of techniques now available for expressing cloned genes, this volume provides a manual that should prove useful for solving the majority of expression problems one likely to encounter. The four major expression systems commonly available to most investigators are stressed: Escherichia coli, Bacillus subtilis, yeast, and mammalian cells. Each of these system has its advantages and disadvantages, details of which are found in Chapter 1 and the strategic overviews for the four major sections of the volume. The papers in each of these sections provide many suggestions on how to proceed if initial expression levels are not sufficient.

  4. Codon usage trend in mitochondrial CYB gene.

    PubMed

    Uddin, Arif; Chakraborty, Supriyo

    2016-07-15

    Here we reported the pattern of codon usage and the factors which influenced the codon usage pattern in mitochondrial cytochrome B (MT-CYB) gene among pisces, aves and mammals. The F1 axis of correspondence analysis showed highly significant positive correlation with nucleobases A3, C and C3 and significant negative correlation with T and T3 while F2 of correspondence analysis showed significant positive correlation with C and C3 and significant negative correlation with A and A3. From the neutrality plot, it was evident that the GC12 was influenced by mutation pressure and natural selection with a ratio of 0.10/0.90=0.11 in pisces, 0.024/0.976=0.0245 in aves and in mammals 0.215/0.785=0.273, which indicated that the role of natural selection was more than mutation pressure on structuring the bases at the first and second codon positions. Natural selection played the major role; but compositional constraint and mutation pressure also played a significant role in codon usage pattern. Analysis of codon usage pattern has contributed to the better understanding of the mechanism of distribution of codons and the evolution of MT-CYB gene. PMID:27063508

  5. The mitochondrial genome of the stramenopile alga Chrysodidymus synuroideus. Complete sequence, gene content and genome organization

    PubMed Central

    Chesnick, Joby M.; Goff, Megan; Graham, James; Ocampo, Christopher; Lang, B. Franz; Seif, Elias; Burger, Gertraud

    2000-01-01

    This is the first report of a complete mitochondrial genome sequence from a photosynthetic member of the stramenopiles, the chrysophyte alga Chrysodidymus synuroideus. The circular-mapping mitochondrial DNA (mtDNA) of 34 119 bp contains 58 densely packed genes (all without introns) and five unique open reading frames (ORFs). Protein genes code for components of respiratory chain complexes, ATP synthase and the mitoribosome, as well as one product of unknown function, encoded in many other protist mtDNAs (YMF16). In addition to small and large subunit ribosomal RNAs, 23 tRNAs are mtDNA-encoded, permitting translation of all codons present in protein-coding genes except ACN (Thr) and CGN (Arg). The missing tRNAs are assumed to be imported from the cytosol. Comparison of the C.synuroideus mtDNA with that of other stramenopiles allowed us to draw conclusions about mitochondrial genome organization, expression and evolution. First, we provide evidence that mitochondrial ORFs code for highly derived, unrecognizable versions of ribosomal or respiratory genes otherwise ‘missing’ in a particular mtDNA. Secondly, the observed constraints in mitochondrial genome rearrangements suggest operon-based, co-ordinated expression of genes functioning in common biological processes. Finally, stramenopile mtDNAs reveal an unexpectedly low variability in genome size and gene complement, testifying to substantial differences in the tempo of mtDNA evolution between major eukaryotic lineages. PMID:10871400

  6. Gene expression networks.

    PubMed

    Thomas, Reuben; Portier, Christopher J

    2013-01-01

    With the advent of microarrays and next-generation biotechnologies, the use of gene expression data has become ubiquitous in biological research. One potential drawback of these data is that they are very rich in features or genes though cost considerations allow for the use of only relatively small sample sizes. A useful way of getting at biologically meaningful interpretations of the environmental or toxicological condition of interest would be to make inferences at the level of a priori defined biochemical pathways or networks of interacting genes or proteins that are known to perform certain biological functions. This chapter describes approaches taken in the literature to make such inferences at the biochemical pathway level. In addition this chapter describes approaches to create hypotheses on genes playing important roles in response to a treatment, using organism level gene coexpression or protein-protein interaction networks. Also, approaches to reverse engineer gene networks or methods that seek to identify novel interactions between genes are described. Given the relatively small sample numbers typically available, these reverse engineering approaches are generally useful in inferring interactions only among a relatively small or an order 10 number of genes. Finally, given the vast amounts of publicly available gene expression data from different sources, this chapter summarizes the important sources of these data and characteristics of these sources or databases. In line with the overall aims of this book of providing practical knowledge to a researcher interested in analyzing gene expression data from a network perspective, the chapter provides convenient publicly accessible tools for performing analyses described, and in addition describe three motivating examples taken from the published literature that illustrate some of the relevant analyses. PMID:23086841

  7. Hepatitis C Virus Attenuates Mitochondrial Lipid β-Oxidation by Downregulating Mitochondrial Trifunctional-Protein Expression

    PubMed Central

    Munakata, Tsubasa; Kohara, Michinori; Siddiqui, Aleem; Peers, Chris

    2015-01-01

    ABSTRACT The course of hepatitis C virus (HCV) infection and disease progression involves alterations in lipid metabolism, leading to symptoms such as hypocholesterolemia and steatosis. Steatosis can be induced by multiple mechanisms, including increases in lipid biosynthesis and uptake, impaired lipoprotein secretion, and/or attenuation of lipid β-oxidation. However, little is known about the effects of HCV on lipid β-oxidation. A previous proteomics study revealed that HCV interacted with both the α- and β-subunits of the mitochondrial trifunctional protein (MTP), an enzyme complex which catalyzes the last 3 steps of mitochondrial lipid β-oxidation for cellular energy production. Here we show that in HCV-infected Huh7.5 cells, lipid β-oxidation was significantly attenuated. Consistently with this, MTP protein and mRNA levels were suppressed by HCV infection. A loss-of-function study showed that MTP depletion rendered cells less responsive to alpha interferon (IFN-α) treatment by impairing IFN-stimulated gene expression. These aspects of host-virus interaction explain how HCV alters host energy homeostasis and how it may also contribute to the establishment of persistent infection in the liver. IMPORTANCE HCV infection triggers metabolic alterations, which lead to significant disease outcomes, such as fatty liver (steatosis). This study revealed that HCV impairs mitochondrial lipid β-oxidation, which results in low lipid combustion. On the other hand, the HCV-induced defects in metabolic status played an important role in the control of the type I interferon system. Under the conditions of impaired lipid β-oxidation, host cells were less responsive to the ability of exogenously added IFN-α to suppress HCV replication. This suggests that interference with lipid β-oxidation may assist the virus in the establishment of a long-term, persistent infection. Further understanding of this aspect of virus-host interaction may lead to improvements in the current

  8. Gene therapy for the treatment of mitochondrial DNA disorders.

    PubMed

    Taylor, Robert W

    2005-02-01

    Despite recent epidemiological studies confirming that mitochondrial respiratory chain disorders due to mutations in either the mitochondrial or nuclear genome are amongst the most common inherited human diseases, realistic therapeutic strategies for these patients remain limited. The disappointing response to various vitamins, cofactors and electron acceptors that have been administered to patients in an attempt to bypass the underlying respiratory chain defect, coupled with the complexities of human mitochondrial genetics, means that novel and innovative means are required to offer realistic treatments. Several 'gene therapy' strategies have therefore been proposed to treat patients with pathogenic mitochondrial DNA mutations, and although these are not without their own inherent problems, several exciting approaches promise much in the near future. This review will provide a basic background to mitochondrial genetics and mitochondrial DNA disorders before introducing the various strategies being tested in vitro at present, in cell culture and animal models, and, in the example of therapeutic exercise, in patients themselves. PMID:15757380

  9. A One-Megabase Physical Map Provides Insights on Gene Organization in the Enormous Mitochondrial Genome of Cucumber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cucumber has one of the largest mitochondrial genomes known among all eukaryotes, due in part to the accumulation of short repetitive-DNA motifs. Recombination among these repetitive DNAs produces rearrangements affecting organization and expression of mitochondrial genes. In order to more efficie...

  10. Deregulation of genes related to iron and mitochondrial metabolism in refractory anemia with ring sideroblasts.

    PubMed

    del Rey, Mónica; Benito, Rocío; Fontanillo, Celia; Campos-Laborie, Francisco J; Janusz, Kamila; Velasco-Hernández, Talía; Abáigar, María; Hernández, María; Cuello, Rebeca; Borrego, Daniel; Martín-Zanca, Dionisio; De Las Rivas, Javier; Mills, Ken I; Hernández-Rivas, Jesús M

    2015-01-01

    The presence of SF3B1 gene mutations is a hallmark of refractory anemia with ring sideroblasts (RARS). However, the mechanisms responsible for iron accumulation that characterize the Myelodysplastic Syndrome with ring sideroblasts (MDS-RS) are not completely understood. In order to gain insight in the molecular basis of MDS-RS, an integrative study of the expression and mutational status of genes related to iron and mitochondrial metabolism was carried out. A total of 231 low-risk MDS patients and 81 controls were studied. Gene expression analysis revealed that iron metabolism and mitochondrial function had the highest number of genes deregulated in RARS patients compared to controls and the refractory cytopenias with unilineage dysplasia (RCUD). Thus mitochondrial transporters SLC25 (SLC25A37 and SLC25A38) and ALAD genes were over-expressed in RARS. Moreover, significant differences were observed between patients with SF3B1 mutations and patients without the mutations. The deregulation of genes involved in iron and mitochondrial metabolism provides new insights in our knowledge of MDS-RS. New variants that could be involved in the pathogenesis of these diseases have been identified. PMID:25955609

  11. Deregulation of Genes Related to Iron and Mitochondrial Metabolism in Refractory Anemia with Ring Sideroblasts

    PubMed Central

    del Rey, Mónica; Benito, Rocío; Fontanillo, Celia; Campos-Laborie, Francisco J.; Janusz, Kamila; Velasco-Hernández, Talía; Abáigar, María; Hernández, María; Cuello, Rebeca; Borrego, Daniel; Martín-Zanca, Dionisio; De Las Rivas, Javier; Mills, Ken I.; Hernández-Rivas, Jesús M.

    2015-01-01

    The presence of SF3B1 gene mutations is a hallmark of refractory anemia with ring sideroblasts (RARS). However, the mechanisms responsible for iron accumulation that characterize the Myelodysplastic Syndrome with ring sideroblasts (MDS-RS) are not completely understood. In order to gain insight in the molecular basis of MDS-RS, an integrative study of the expression and mutational status of genes related to iron and mitochondrial metabolism was carried out. A total of 231 low-risk MDS patients and 81 controls were studied. Gene expression analysis revealed that iron metabolism and mitochondrial function had the highest number of genes deregulated in RARS patients compared to controls and the refractory cytopenias with unilineage dysplasia (RCUD). Thus mitochondrial transporters SLC25 (SLC25A37 and SLC25A38) and ALAD genes were over-expressed in RARS. Moreover, significant differences were observed between patients with SF3B1 mutations and patients without the mutations. The deregulation of genes involved in iron and mitochondrial metabolism provides new insights in our knowledge of MDS-RS. New variants that could be involved in the pathogenesis of these diseases have been identified. PMID:25955609

  12. Expression of mitochondrial regulatory genes parallels respiratory capacity and contractile function in a rat model of hypoxia-induced right ventricular hypertrophy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic hypobaric hypoxia (CHH) increases load on the right ventricle (RV) resulting in RV hypertrophy. We hypothesized that CHH elicits distinct responses, i.e., the hypertrophied RV, unlike the left ventricle (LV), displaying enhanced mitochondrial respiratory and contractile function. Wistar rats...

  13. Expression of Mitochondrial Cytochrome C Oxidase Chaperone Gene (COX20) Improves Tolerance to Weak Acid and Oxidative Stress during Yeast Fermentation

    PubMed Central

    Kumar, Vinod; Hart, Andrew J.; Keerthiraju, Ethiraju R.; Waldron, Paul R.; Tucker, Gregory A.; Greetham, Darren

    2015-01-01

    Introduction Saccharomyces cerevisiae is the micro-organism of choice for the conversion of fermentable sugars released by the pre-treatment of lignocellulosic material into bioethanol. Pre-treatment of lignocellulosic material releases acetic acid and previous work identified a cytochrome oxidase chaperone gene (COX20) which was significantly up-regulated in yeast cells in the presence of acetic acid. Results A Δcox20 strain was sensitive to the presence of acetic acid compared with the background strain. Overexpressing COX20 using a tetracycline-regulatable expression vector system in a Δcox20 strain, resulted in tolerance to the presence of acetic acid and tolerance could be ablated with addition of tetracycline. Assays also revealed that overexpression improved tolerance to the presence of hydrogen peroxide-induced oxidative stress. Conclusion This is a study which has utilised tetracycline-regulated protein expression in a fermentation system, which was characterised by improved (or enhanced) tolerance to acetic acid and oxidative stress. PMID:26427054

  14. Evolutionary relationship of nuclear genes encoding mitochondrial proteins across grasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Comparative genome studies were done across taxa to provide a basic understanding of genome evolution regarding nuclear genes encoding for mitochondrial proteins and their conservation in grass species. Two different mitochondria-related gene sets, one from rice and another from Arabidopsis, were us...

  15. StAR enhances transcription of genes encoding the mitochondrial proteases involved in its own degradation.

    PubMed

    Bahat, Assaf; Perlberg, Shira; Melamed-Book, Naomi; Lauria, Ines; Langer, Thomas; Orly, Joseph

    2014-02-01

    Steroidogenic acute regulatory protein (StAR) is essential for steroid hormone synthesis in the adrenal cortex and the gonads. StAR activity facilitates the supply of cholesterol substrate into the inner mitochondrial membranes where conversion of the sterol to a steroid is catalyzed. Mitochondrial import terminates the cholesterol mobilization activity of StAR and leads to mounting accumulation of StAR in the mitochondrial matrix. Our studies suggest that to prevent mitochondrial impairment, StAR proteolysis is executed by at least 2 mitochondrial proteases, ie, the matrix LON protease and the inner membrane complexes of the metalloproteases AFG3L2 and AFG3L2:SPG7/paraplegin. Gonadotropin administration to prepubertal rats stimulated ovarian follicular development associated with increased expression of the mitochondrial protein quality control system. In addition, enrichment of LON and AFG3L2 is evident in StAR-expressing ovarian cells examined by confocal microscopy. Furthermore, reporter studies of the protease promoters examined in the heterologous cell model suggest that StAR expression stimulates up to a 3.5-fold increase in the protease gene transcription. Such effects are StAR-specific, are independent of StAR activity, and failed to occur upon expression of StAR mutants that do not enter the matrix. Taken together, the results of this study suggest the presence of a novel regulatory loop, whereby acute accumulation of an apparent nuisance protein in the matrix provokes a mitochondria to nucleus signaling that, in turn, activates selected transcription of genes encoding the enrichment of mitochondrial proteases relevant for enhanced clearance of StAR. PMID:24422629

  16. Expression and properties of the mitochondrial and cytosolic forms of fumarase in germinating maize seeds.

    PubMed

    Eprintsev, Alexander T; Fedorin, Dmitry N; Starinina, Elena V; Igamberdiev, Abir U

    2014-10-01

    Fumarase (EC 4.2.1.2) catalyzes reversible interconversion of malate and fumarate. It is usually associated with the tricarboxylic acid cycle in mitochondria, although the cytosolic form has also been detected. We investigated the expression of two fumarase genes and activities of the mitochondrial and cytosolic isoforms of fumarase in maize (Zea mays) scutellum during germination. Both isoforms were purified to electrophoretic homogeneity. The cytosolic form had low optimum pH (6.5) and high affinity to malate (Km 5 μM) when compared with the mitochondrial form (optimum pH 7.0, Km 50 μM). The cytosolic form was strongly activated by Mg(2+) and even more by Mn(2+) , whereas the mitochondrial form was moderately activated by Mg(2+) and Mn(2+) was less effective. The highest fumarase activity in scutellum and a high expression of the gene encoding the cytosolic form were observed during the maximal activity of the glyoxylate cycle. In leaves, the localization of fumarase is only mitochondrial and only one fumarase gene is expressed. It is concluded that the function of cytosolic fumarase in maize scutellum can be related to metabolism of succinate formed in the glyoxylate cycle. PMID:24611547

  17. Regulation of gene expression by a metabolic enzyme.

    PubMed

    Hall, David A; Zhu, Heng; Zhu, Xiaowei; Royce, Thomas; Gerstein, Mark; Snyder, Michael

    2004-10-15

    Gene expression in eukaryotes is normally believed to be controlled by transcriptional regulators that activate genes encoding structural proteins and enzymes. To identify previously unrecognized DNA binding activities, a yeast proteome microarray was screened with DNA probes; Arg5,6, a well-characterized mitochondrial enzyme involved in arginine biosynthesis, was identified. Chromatin immunoprecipitation experiments revealed that Arg5,6 is associated with specific nuclear and mitochondrial loci in vivo, and Arg5,6 binds to specific fragments in vitro. Deletion of Arg5,6 causes altered transcript levels of both nuclear and mitochondrial target genes. These results indicate that metabolic enzymes can directly regulate eukaryotic gene expression. PMID:15486299

  18. Mitochondrial impairment increases FL-PINK1 levels by calcium-dependent gene expression☆

    PubMed Central

    Gómez-Sánchez, Rubén; Gegg, Matthew E.; Bravo-San Pedro, José M.; Niso-Santano, Mireia; Alvarez-Erviti, Lydia; Pizarro-Estrella, Elisa; Gutiérrez-Martín, Yolanda; Alvarez-Barrientos, Alberto; Fuentes, José M.; González-Polo, Rosa Ana; Schapira, Anthony H.V.

    2014-01-01

    Mutations of the PTEN-induced kinase 1 (PINK1) gene are a cause of autosomal recessive Parkinson's disease (PD). This gene encodes a mitochondrial serine/threonine kinase, which is partly localized to mitochondria, and has been shown to play a role in protecting neuronal cells from oxidative stress and cell death, perhaps related to its role in mitochondrial dynamics and mitophagy. In this study, we report that increased mitochondrial PINK1 levels observed in human neuroblastoma SH-SY5Y cells after carbonyl cyanide m-chlorophelyhydrazone (CCCP) treatment were due to de novo protein synthesis, and not just increased stabilization of full length PINK1 (FL-PINK1). PINK1 mRNA levels were significantly increased by 4-fold after 24 h. FL-PINK1 protein levels at this time point were significantly higher than vehicle-treated, or cells treated with CCCP for 3 h, despite mitochondrial content being decreased by 29%. We have also shown that CCCP dissipated the mitochondrial membrane potential (Δψm) and induced entry of extracellular calcium through L/N-type calcium channels. The calcium chelating agent BAPTA-AM impaired the CCCP-induced PINK1 mRNA and protein expression. Furthermore, CCCP treatment activated the transcription factor c-Fos in a calcium-dependent manner. These data indicate that PINK1 expression is significantly increased upon CCCP-induced mitophagy in a calcium-dependent manner. This increase in expression continues after peak Parkin mitochondrial translocation, suggesting a role for PINK1 in mitophagy that is downstream of ubiquitination of mitochondrial substrates. This sensitivity to intracellular calcium levels supports the hypothesis that PINK1 may also play a role in cellular calcium homeostasis and neuroprotection. PMID:24184327

  19. Gene expression following acute morphine administration.

    PubMed

    Loguinov, A V; Anderson, L M; Crosby, G J; Yukhananov, R Y

    2001-08-28

    The long-term response to neurotropic drugs depends on drug-induced neuroplasticity and underlying changes in gene expression. However, alterations in neuronal gene expression can be observed even following single injection. To investigate the extent of these changes, gene expression in the medial striatum and lumbar part of the spinal cord was monitored by cDNA microarray following single injection of morphine. Using robust and resistant linear regression (MM-estimator) with simultaneous prediction confidence intervals, we detected differentially expressed genes. By combining the results with cluster analysis, we have found that a single morphine injection alters expression of two major groups of genes, for proteins involved in mitochondrial respiration and for cytoskeleton-related proteins. RNAs for these proteins were mostly downregulated both in the medial striatum and in lumbar part of the spinal cord. These transitory changes were prevented by coadministration of the opioid antagonist naloxone. Data indicate that microarray analysis by itself is useful in describing the effect of well-known substances on the nervous system and provides sufficient information to propose a potentially novel pathway mediating its activity. PMID:11526201

  20. Gene Express Inc.

    PubMed

    Saccomanno, Colette F

    2006-07-01

    Gene Express, Inc. is a technology-licensing company and provider of Standardized Reverse Transcription Polymerase Chain Reaction (StaRT-PCR) services. Designed by and for clinical researchers involved in pharmaceutical, biomarker and molecular diagnostic product development, StaRT-PCR is a unique quantitative and standardized multigene expression measurement platform. StaRT-PCR meets all of the performance characteristics defined by the US FDA as required to support regulatory submissions [101,102] , and by the Clinical Laboratory Improvement Act of 1988 (CLIA) as necessary to support diagnostic testing [1] . A standardized mixture of internal standards (SMIS), manufactured in bulk, provides integrated quality control wherein each native template target gene is measured relative to a competitive template internal standard. Bulk production enables the compilation of a comprehensive standardized database from across multiple experiments, across collaborating laboratories and across the entire clinical development lifecycle of a given compound or diagnostic product. For the first time, all these data are able to be directly compared. Access to such a database can dramatically shorten the time from investigational new drug (IND) to new drug application (NDA), or save time and money by hastening a substantiated 'no-go' decision. High-throughput StaRT-PCR is conducted at the company's automated Standardized Expression Measurement (SEM) Center. Currently optimized for detection on a microcapillary electrophoretic platform, StaRT-PCR products also may be analyzed on microarray, high-performance liquid chromatography (HPLC), or matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) platforms. SEM Center services deliver standardized genomic data--data that will accelerate the application of pharmacogenomic technology to new drug and diagnostic test development and facilitate personalized medicine. PMID:16886903

  1. Independent replication of mitochondrial genes supports the transcriptional program in developing fiber cells of cotton (Gossypium hirsutum L.).

    PubMed

    Thyssen, Gregory N; Song, Xianliang; Naoumkina, Marina; Kim, Hee-Jin; Fang, David D

    2014-07-01

    The mitochondrial genomes of flowering plants exist both as a "master circle" chromosome and as numerous subgenomic sublimons that are generated by intramolecular recombination. Differential stability or replication of these sublimons allows individual mitochondrial gene copy numbers to vary independently between different cell types and developmental stages. Our objective was to determine the relationship between mitochondrial gene copy number and transcript abundance in the elongating fiber cells of Upland cotton (Gossypium hirsutum L.). We compared RNA and DNA from cotton fiber cells at five developmental time points from early elongation through secondary cell wall thickening from the Ligon-lintless 2 (Li2) short fiber mutant and its wild type near isogenic line (NIL) DP5690. Mitochondrial gene copy number decreased from 3 to 8-DPA in the developing cotton fiber cells while transcript levels remained low. As secondary cell wall biosynthesis began in developing fibers, the expression levels and copy numbers of mitochondrial genes involved in energy production and respiration were up-regulated in wild type cotton DP5690. However, the short fiber mutant Li2, failed to increase expression of these genes, which include three subunits of ATP synthase, atp1, atp8 and atp9 and two cytochrome genes cox1 and cob. At the same time, Li2 failed to increase the copy numbers of these highly expressed genes. Surprisingly, we found that when mitochondrial genes were highly transcribed, they also had very high copy numbers. This observation suggests that in developing cotton fibers, increased mitochondrial sublimon replication may support increases in gene transcription. PMID:24768176

  2. Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-γ coactivator 1α regulated β-secretase 1 degradation and mitochondrial gene expression in Alzheimer's mouse models.

    PubMed

    Gong, Bing; Pan, Yong; Vempati, Prashant; Zhao, Wei; Knable, Lindsay; Ho, Lap; Wang, Jun; Sastre, Magdalena; Ono, Kenjiro; Sauve, Anthony A; Pasinetti, Giulio M

    2013-06-01

    Nicotinamide adenine dinucleotide (NAD)(+), a coenzyme involved in redox activities in the mitochondrial electron transport chain, has been identified as a key regulator of the lifespan-extending effects, and the activation of NAD(+) expression has been linked with a decrease in beta-amyloid (Aβ) toxicity in Alzheimer's disease (AD). Nicotinamide riboside (NR) is a NAD(+) precursor, it promotes peroxisome proliferator-activated receptor-γ coactivator 1 (PGC)-1α expression in the brain. Evidence has shown that PGC-1α is a crucial regulator of Aβ generation because it affects β-secretase (BACE1) degradation. In this study we tested the hypothesis that NR treatment in an AD mouse model could attenuate Aβ toxicity through the activation of PGC-1α-mediated BACE1 degradation. Using the Tg2576 AD mouse model, using in vivo behavioral analyses, biochemistry assays, small hairpin RNA (shRNA) gene silencing and electrophysiological recording, we found (1) dietary treatment of Tg2576 mice with 250 mg/kg/day of NR for 3 months significantly attenuates cognitive deterioration in Tg2576 mice and coincides with an increase in the steady-state levels of NAD(+) in the cerebral cortex; (2) application of NR to hippocampal slices (10 μM) for 4 hours abolishes the deficits in long-term potentiation recorded in the CA1 region of Tg2576 mice; (3) NR treatment promotes PGC-1α expression in the brain coinciding with enhanced degradation of BACE1 and the reduction of Aβ production in Tg2576 mice. Further in vitro studies confirmed that BACE1 protein content is decreased by NR treatment in primary neuronal cultures derived from Tg2576 embryos, in which BACE1 degradation was prevented by PGC-1α-shRNA gene silencing; and (4) NR treatment and PGC-1α overexpression enhance BACE1 ubiquitination and proteasomal degradation. Our studies suggest that dietary treatment with NR might benefit AD cognitive function and synaptic plasticity, in part by promoting PGC-1α-mediated BACE1

  3. The effects of aging, physical training, and a single bout of exercise on mitochondrial protein expression in human skeletal muscle

    PubMed Central

    Bori, Zoltan; Zhao, Zhongfu; Koltai, Erika; Fatouros, Ioannis G.; Jamurtas, Athanasios Z.; Douroudos, Ioannis I.; Terzis, Gerasimos; Chatzinikolaou, Athanasios; Sovatzidis, Apostolos; Draganidis, Dimitrios; Boldogh, Istvan; Radak, Zsolt

    2016-01-01

    Aging results in a significant decline in aerobic capacity and impaired mitochondrial function. We have tested the effects of moderate physical activity on aerobic capacity and a single bout of exercise on the expression profile of mitochondrial biogenesis, and fusion and fission related genes in skeletal muscle of human subjects. Physical activity attenuated the aging-associated decline in VO2 max (p<0.05). Aging increased and a single exercise bout decreased the expression of nuclear respiratory factor-1 (NRF1), while the transcription factor A (TFAM) expression showed a strong relationship with VO2max and increased significantly in the young physically active group. Mitochondrial fission representing FIS1 was induced by regular physical activity, while a bout of exercise decreased fusion-associated gene expression. The expression of polynucleotide phosphorylase (PNPase) changed inversely in young and old groups and decreased with aging. The A2 subunit of cyclic AMP-activated protein kinase (AMPK) was induced by a single bout of exercise in skeletal muscle samples of both young and old subjects (p<0.05). Our data suggest that moderate levels of regular physical activity increases a larger number of mitochondrial biogenesis-related gene expressions in young individuals than in aged subjects. Mitochondrial fission is impaired by aging and could be one of the most sensitive markers of the age-associated decline in the adaptive response to physical activity. PMID:22449457

  4. MicroRNA-7 Regulates the Function of Mitochondrial Permeability Transition Pore by Targeting VDAC1 Expression.

    PubMed

    Chaudhuri, Amrita Datta; Choi, Doo Chul; Kabaria, Savan; Tran, Alan; Junn, Eunsung

    2016-03-18

    Mitochondrial dysfunction is one of the major contributors to neurodegenerative disorders including Parkinson disease. The mitochondrial permeability transition pore is a protein complex located on the mitochondrial membrane. Under cellular stress, the pore opens, increasing the release of pro-apoptotic proteins, and ultimately resulting in cell death. MicroRNA-7 (miR-7) is a small non-coding RNA that has been found to exhibit a protective role in the cellular models of Parkinson disease. In the present study, miR-7 was predicted to regulate the function of mitochondria, according to gene ontology analysis of proteins that are down-regulated by miR-7. Indeed, miR-7 overexpression inhibited mitochondrial fragmentation, mitochondrial depolarization, cytochrome c release, reactive oxygen species generation, and release of mitochondrial calcium in response to 1-methyl-4-phenylpyridinium (MPP(+)) in human neuroblastoma SH-SY5Y cells. In addition, several of these findings were confirmed in mouse primary neurons. Among the mitochondrial proteins identified by gene ontology analysis, the expression of voltage-dependent anion channel 1 (VDAC1), a constituent of the mitochondrial permeability transition pore, was down-regulated by miR-7 through targeting 3'-untranslated region of VDAC1 mRNA. Similar to miR-7 overexpression, knockdown of VDAC1 also led to a decrease in intracellular reactive oxygen species generation and subsequent cellular protection against MPP(+). Notably, overexpression of VDAC1 without the 3'-UTR significantly abolished the protective effects of miR-7 against MPP(+)-induced cytotoxicity and mitochondrial dysfunction, suggesting that the protective effect of miR-7 is partly exerted through promoting mitochondrial function by targeting VDAC1 expression. These findings point to a novel mechanism by which miR-7 accomplishes neuroprotection by improving mitochondrial health. PMID:26801612

  5. The regulation of mitochondrial transcription factor A (Tfam) expression during skeletal muscle cell differentiation

    PubMed Central

    Collu-Marchese, Melania; Shuen, Michael; Pauly, Marion; Saleem, Ayesha; Hood, David A.

    2015-01-01

    The ATP demand required for muscle development is accommodated by elevations in mitochondrial biogenesis, through the co-ordinated activities of the nuclear and mitochondrial genomes. The most important transcriptional activator of the mitochondrial genome is mitochondrial transcription factor A (Tfam); however, the regulation of Tfam expression during muscle differentiation is not known. Thus, we measured Tfam mRNA levels, mRNA stability, protein expression and localization and Tfam transcription during the progression of muscle differentiation. Parallel 2-fold increases in Tfam protein and mRNA were observed, corresponding with 2–3-fold increases in mitochondrial content. Transcriptional activity of a 2051 bp promoter increased during this differentiation period and this was accompanied by a 3-fold greater Tfam mRNA stabilization. Interestingly, truncations of the promoter at 1706 bp, 978 bp and 393 bp promoter all exhibited 2–3-fold higher transcriptional activity than the 2051 bp construct, indicating the presence of negative regulatory elements within the distal 350 bp of the promoter. Activation of AMP kinase augmented Tfam transcription within the proximal promoter, suggesting the presence of binding sites for transcription factors that are responsive to cellular energy state. During differentiation, the accumulating Tfam protein was progressively distributed to the mitochondrial matrix where it augmented the expression of mtDNA and COX (cytochrome c oxidase) subunit I, an mtDNA gene product. Our data suggest that, during muscle differentiation, Tfam protein levels are regulated by the availability of Tfam mRNA, which is controlled by both transcription and mRNA stability. Changes in energy state and Tfam localization also affect Tfam expression and action in differentiating myotubes. PMID:26182383

  6. Evolution of gene expression after gene amplification.

    PubMed

    Garcia, Nelson; Zhang, Wei; Wu, Yongrui; Messing, Joachim

    2015-05-01

    We took a rather unique approach to investigate the conservation of gene expression of prolamin storage protein genes across two different subfamilies of the Poaceae. We took advantage of oat plants carrying single maize chromosomes in different cultivars, called oat-maize addition (OMA) lines, which permitted us to determine whether regulation of gene expression was conserved between the two species. We found that γ-zeins are expressed in OMA7.06, which carries maize chromosome 7 even in the absence of the trans-acting maize prolamin-box-binding factor (PBF), which regulates their expression. This is likely because oat PBF can substitute for the function of maize PBF as shown in our transient expression data, using a γ-zein promoter fused to green fluorescent protein (GFP). Despite this conservation, the younger, recently amplified prolamin genes in maize, absent in oat, are not expressed in the corresponding OMAs. However, maize can express the oldest prolamin gene, the wheat high-molecular weight glutenin Dx5 gene, even when maize Pbf is knocked down (through PbfRNAi), and/or another maize transcription factor, Opaque-2 (O2) is knocked out (in maize o2 mutant). Therefore, older genes are conserved in their regulation, whereas younger ones diverged during evolution and eventually acquired a new repertoire of suitable transcriptional activators. PMID:25912045

  7. Evolution of Gene Expression after Gene Amplification

    PubMed Central

    Garcia, Nelson; Zhang, Wei; Wu, Yongrui; Messing, Joachim

    2015-01-01

    We took a rather unique approach to investigate the conservation of gene expression of prolamin storage protein genes across two different subfamilies of the Poaceae. We took advantage of oat plants carrying single maize chromosomes in different cultivars, called oat–maize addition (OMA) lines, which permitted us to determine whether regulation of gene expression was conserved between the two species. We found that γ-zeins are expressed in OMA7.06, which carries maize chromosome 7 even in the absence of the trans-acting maize prolamin-box-binding factor (PBF), which regulates their expression. This is likely because oat PBF can substitute for the function of maize PBF as shown in our transient expression data, using a γ-zein promoter fused to green fluorescent protein (GFP). Despite this conservation, the younger, recently amplified prolamin genes in maize, absent in oat, are not expressed in the corresponding OMAs. However, maize can express the oldest prolamin gene, the wheat high-molecular weight glutenin Dx5 gene, even when maize Pbf is knocked down (through PbfRNAi), and/or another maize transcription factor, Opaque-2 (O2) is knocked out (in maize o2 mutant). Therefore, older genes are conserved in their regulation, whereas younger ones diverged during evolution and eventually acquired a new repertoire of suitable transcriptional activators. PMID:25912045

  8. Clock-genes and mitochondrial respiratory activity: Evidence of a reciprocal interplay.

    PubMed

    Scrima, Rosella; Cela, Olga; Merla, Giuseppe; Augello, Bartolomeo; Rubino, Rosa; Quarato, Giovanni; Fugetto, Sabino; Menga, Marta; Fuhr, Luise; Relógio, Angela; Piccoli, Claudia; Mazzoccoli, Gianluigi; Capitanio, Nazzareno

    2016-08-01

    In the past few years mounting evidences have highlighted the tight correlation between circadian rhythms and metabolism. Although at the organismal level the central timekeeper is constituted by the hypothalamic suprachiasmatic nuclei practically all the peripheral tissues are equipped with autonomous oscillators made up by common molecular clockworks represented by circuits of gene expression that are organized in interconnected positive and negative feed-back loops. In this study we exploited a well-established in vitro synchronization model to investigate specifically the linkage between clock gene expression and the mitochondrial oxidative phosphorylation (OxPhos). Here we show that synchronized cells exhibit an autonomous ultradian mitochondrial respiratory activity which is abrogated by silencing the master clock gene ARNTL/BMAL1. Surprisingly, pharmacological inhibition of the mitochondrial OxPhos system resulted in dramatic deregulation of the rhythmic clock-gene expression and a similar result was attained with mtDNA depleted cells (Rho0). Our findings provide a novel level of complexity in the interlocked feedback loop controlling the interplay between cellular bioenergetics and the molecular clockwork. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:27060253

  9. Mitochondrial encephalomyopathy: variable clinical expression within a single kindred.

    PubMed Central

    Crimmins, D; Morris, J G; Walker, G L; Sue, C M; Byrne, E; Stevens, S; Jean-Francis, B; Yiannikas, C; Pamphlett, R

    1993-01-01

    The clinical manifestations of mitochondrial encephalomyopathy are described in four generations of a single kindred. The age of onset of major neurological disturbance varied from 3-70 years. In some patients, deafness was the only manifestation; in others, recurrent bouts of status epilepticus associated with focal neurological deficits and headache, caused severe disability or death. Examples of all three adult forms of mitochondrial encephalomyopathy: MELAS, MERFF and Kearns Sayre syndrome, were represented within the kindred. Associated features included deafness, short stature, non-insulin-dependent diabetes mellitus, migraine, peptic ulceration and severe constipation. The nt 3243 A-G MELAS mutation was detected in two members of the kindred. This study highlights the diversity of clinical expression of a mitochondrial mutation within a single kindred. Images PMID:8350109

  10. Polymorphisms in mitochondrial genes and prostate cancer risk

    PubMed Central

    Wang, Liang; McDonnell, Shannon K.; Hebbring, Scott J.; Cunningham, Julie M.; Sauver, Jennifer St; Cerhan, James R.; Isaya, Grazia; Schaid, Daniel J.; Thibodeau, Stephen N.

    2009-01-01

    The mitochondrion, conventionally thought to be an organelle specific to energy metabolism, is in fact multi-functional and implicated in many diseases, including cancer. To evaluate whether mitochondria-related genes are associated with increased risk for prostate cancer, we genotyped 24 single nucleotide polymorphisms (SNPs) within the mitochondrial genome (mtSNPs) and 376 tagSNPs localized to 78 nuclear-encoded mitochondrial genes. The tagSNPs were selected to achieve ≥80% coverage based on linkage disequilibrium. We compared allele and haplotype frequencies in ~1000 prostate cancer cases with ~500 population controls. An association with prostate cancer was not detected for any of the mtSNPs individually or for 10 mitochondrial common haplotypes when evaluated using a global score statistic. For the nuclear-encoded genes, none of the tagSNPs were significantly associated with prostate cancer after adjusting for multiple testing. Nonetheless, we evaluated unadjusted p-values by comparing our results with those from the CGEMS phase I data set. Seven tagSNPs had unadjusted p-values ≤ 0.05 in both our data and in CGEMS (two SNPs were identical and five were in strong linkage disequilibrium with CGEMS SNPs). These seven SNPs (rs17184211, rs4147684, rs4233367, rs2070902, rs3829037, rs7830235, and rs1203213) are located in genes MTRR, NDUFA9, NDUFS2, NDUFB9 and COX7A2, respectively. Five of the seven SNPs were further included in the CGEMS phase II study, however, none of the findings for these were replicated. Overall, these results suggest that polymorphisms in the mitochondrial genome and those in the nuclear encoded mitochondrial genes evaluated are not substantial risk factors for prostate cancer. PMID:19064571

  11. Serial analysis of gene expression.

    PubMed

    Velculescu, V E; Zhang, L; Vogelstein, B; Kinzler, K W

    1995-10-20

    The characteristics of an organism are determined by the genes expressed within it. A method was developed, called serial analysis of gene expression (SAGE), that allows the quantitative and simultaneous analysis of a large number of transcripts. To demonstrate this strategy, short diagnostic sequence tags were isolated from pancreas, concatenated, and cloned. Manual sequencing of 1000 tags revealed a gene expression pattern characteristic of pancreatic function. New pancreatic transcripts corresponding to novel tags were identified. SAGE should provide a broadly applicable means for the quantitative cataloging and comparison of expressed genes in a variety of normal, developmental, and disease states. PMID:7570003

  12. Skeletal muscle gene expression in space-flown rats.

    PubMed

    Nikawa, Takeshi; Ishidoh, Kazumi; Hirasaka, Katsuya; Ishihara, Ibuki; Ikemoto, Madoka; Kano, Mihoko; Kominami, Eiki; Nonaka, Ikuya; Ogawa, Takayuki; Adams, Gregory R; Baldwin, Kenneth M; Yasui, Natsuo; Kishi, Kyoichi; Takeda, Shin'ichi

    2004-03-01

    Skeletal muscles are vulnerable to marked atrophy under microgravity. This phenomenon is due to the transcriptional alteration of skeletal muscle cells to weightlessness. To further investigate this issue at a subcellular level, we examined the expression of approximately 26,000 gastrocnemius muscle genes in space-flown rats by DNA microarray analysis. Comparison of the changes in gene expression among spaceflight, tail-suspended, and denervated rats revealed that such changes were unique after spaceflight and not just an extension of simulated weightlessness. The microarray data showed two spaceflight-specific gene expression patterns: 1) imbalanced expression of mitochondrial genes with disturbed expression of cytoskeletal molecules, including putative mitochondria-anchoring proteins, A-kinase anchoring protein, and cytoplasmic dynein, and 2) up-regulated expression of ubiquitin ligase genes, MuRF-1, Cbl-b, and Siah-1A, which are rate-limiting enzymes of muscle protein degradation. Distorted expression of cytoskeletal genes during spaceflight resulted in dislocation of the mitochondria in the cell. Several oxidative stress-inducible genes were highly expressed in the muscle of spaceflight rats. We postulate that mitochondrial dislocation during spaceflight has deleterious effects on muscle fibers, leading to atrophy in the form of insufficient energy provision for construction and leakage of reactive oxygen species from the mitochondria. PMID:14715702

  13. Aberrant Gene Expression in Humans

    PubMed Central

    Yang, Ence; Ji, Guoli; Brinkmeyer-Langford, Candice L.; Cai, James J.

    2015-01-01

    Gene expression as an intermediate molecular phenotype has been a focus of research interest. In particular, studies of expression quantitative trait loci (eQTL) have offered promise for understanding gene regulation through the discovery of genetic variants that explain variation in gene expression levels. Existing eQTL methods are designed for assessing the effects of common variants, but not rare variants. Here, we address the problem by establishing a novel analytical framework for evaluating the effects of rare or private variants on gene expression. Our method starts from the identification of outlier individuals that show markedly different gene expression from the majority of a population, and then reveals the contributions of private SNPs to the aberrant gene expression in these outliers. Using population-scale mRNA sequencing data, we identify outlier individuals using a multivariate approach. We find that outlier individuals are more readily detected with respect to gene sets that include genes involved in cellular regulation and signal transduction, and less likely to be detected with respect to the gene sets with genes involved in metabolic pathways and other fundamental molecular functions. Analysis of polymorphic data suggests that private SNPs of outlier individuals are enriched in the enhancer and promoter regions of corresponding aberrantly-expressed genes, suggesting a specific regulatory role of private SNPs, while the commonly-occurring regulatory genetic variants (i.e., eQTL SNPs) show little evidence of involvement. Additional data suggest that non-genetic factors may also underlie aberrant gene expression. Taken together, our findings advance a novel viewpoint relevant to situations wherein common eQTLs fail to predict gene expression when heritable, rare inter-individual variation exists. The analytical framework we describe, taking into consideration the reality of differential phenotypic robustness, may be valuable for investigating

  14. Proinflammatory cytokines promote glial heme oxygenase-1 expression and mitochondrial iron deposition: implications for multiple sclerosis.

    PubMed

    Mehindate, K; Sahlas, D J; Frankel, D; Mawal, Y; Liberman, A; Corcos, J; Dion, S; Schipper, H M

    2001-06-01

    Proinflammatory cytokines, pathological iron deposition, and oxidative stress have been implicated in the pathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). HO-1 mRNA levels and mitochondrial uptake of [(55)Fe]Cl(3)-derived iron were measured in rat astroglial cultures exposed to interleukin-1beta (IL-1beta) or tumor necrosis factor-alpha (TNF-alpha) alone or in combination with the heme oxygenase-1 (HO-1) inhibitors, tin mesoporphyrin (SnMP) or dexamthasone (DEX), or interferon beta1b (INF-beta). HO-1 expression in astrocytes was evaluated by immunohistochemical staining of spinal cord tissue derived from MS and control subjects. IL-1beta or TNF-alpha promoted sequestration of non-transferrin-derived (55)Fe by astroglial mitochondria. HO-1 inhibitors, mitochondrial permeability transition pore (MTP) blockers and antioxidants significantly attenuated cytokine-related mitochondrial iron sequestration in these cells. IFN-beta decreased HO-1 expression and mitochondrial iron sequestration in IL-1beta- and TNF-alpha-challenged astroglia. The percentage of astrocytes coexpressing HO-1 in affected spinal cord from MS patients (57.3% +/- 12.8%) was significantly greater (p < 0.05) than in normal spinal cord derived from controls subjects (15.4% +/- 8.4%). HO-1 is over-expressed in MS spinal cord astroglia and may promote mitochondrial iron deposition in MS plaques. In MS, IFN-beta may attenuate glial HO-1 gene induction and aberrant mitochondrial iron deposition accruing from exposure to proinflammatory cytokines. PMID:11389189

  15. TP53 status regulates ACSL5-induced expression of mitochondrial mortalin in enterocytes and colorectal adenocarcinomas.

    PubMed

    Klaus, Christina; Kaemmerer, Elke; Reinartz, Andrea; Schneider, Ursula; Plum, Patrick; Jeon, Min Kyung; Hose, Josephine; Hartmann, Franziska; Schnölzer, Martina; Wagner, Norbert; Kopitz, Jürgen; Gassler, Nikolaus

    2014-07-01

    Acyl-CoA synthetase 5 (ACSL5), a mitochondrially localized enzyme, catalyzes the synthesis of long-chain fatty acid thioesters and is physiologically involved in pro-apoptotic sensing of enterocytes. The aim of the present study is to identify an ACSL5-dependent regulation of mitochondrially expressed proteins and the characterization of related pathways in normal and diseased human intestinal mucosa. Proteomics of isolated mitochondria from ACSL5 transfectants and CaCo2 controls were performed. ACSL5-dependent protein synthesis was verified with quantitative reverse transcription plus the polymerase chain reaction, Western blotting, short-interfering-RNA-mediated gene silencing and additional cell culture experiments. Lipid changes were analyzed with tandem mass spectrometry. ACSL5-related pathways were characterized in normal mucosa and sporadic adenocarcinomas of the human intestine. In CaCo2 cells transfected with ACSL5, mortalin (HSPA9) was about two-fold increased in mitochondria, whereas cytoplasmic mortalin levels were unchanged. Disturbance of acyl-CoA/sphingolipid metabolism, induced by ACSL5 over-expression, was characterized as crucial. ACSL5-related over-expression of mitochondrial mortalin was found in HEK293 and Lovo (wild-type TP53 [tumor protein p53]) and CaCo2 (p53-negative; TP53 mutated) cells but not in Colo320DM cells (mutated TP53). In normal human intestinal mucosa, an increasing gradient of both ACSL5 and mortalin from bottom to top was observed, whereas p53 (wild-type TP53) decreased. In sporadic intestinal adenocarcinomas with strong p53 immunostaining (mutated TP53), ACSL5-related mortalin expression was heterogeneous. ACSL5-induced mitochondrial mortalin expression is assumed to be a stress response to ACSL5-related changes in lipid metabolism and is regulated by the TP53 status. Uncoupling of ACSL5 and mitochondrial mortalin by mutated TP53 could be important in colorectal carcinogenesis. PMID:24770931

  16. 5-HT2 Receptor Regulation of Mitochondrial Genes: Unexpected Pharmacological Effects of Agonists and Antagonists.

    PubMed

    Harmon, Jennifer L; Wills, Lauren P; McOmish, Caitlin E; Demireva, Elena Y; Gingrich, Jay A; Beeson, Craig C; Schnellmann, Rick G

    2016-04-01

    In acute organ injuries, mitochondria are often dysfunctional, and recent research has revealed that recovery of mitochondrial and renal functions is accelerated by induction of mitochondrial biogenesis (MB). We previously reported that the nonselective 5-HT2 receptor agonist DOI [1-(4-iodo-2,5-dimethoxyphenyl)propan-2-amine] induced MB in renal proximal tubular cells (RPTCs). The goal of this study was to determine the role of 5-HT2 receptors in the regulation of mitochondrial genes and oxidative metabolism in the kidney. The 5-HT2C receptor agonist CP-809,101 [2-[(3-chlorophenyl)methoxy]-6-(1-piperazinyl)pyrazine] and antagonist SB-242,084 [6-chloro-2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-1H-indole-1-carboxyamide dihydrochloride] were used to examine the induction of renal mitochondrial genes and oxidative metabolism in RPTCs and in mouse kidneys in the presence and absence of the 5-HT2C receptor. Unexpectedly, both CP-809,101 and SB-242,084 increased RPTC respiration and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA expression in RPTCs at 1-10 nM. In addition, CP-809,101 and SB-242,084 increased mRNA expression of PGC-1α and the mitochondrial proteins NADH dehydrogenase subunit 1 and NADH dehydrogenase (ubiquinone) β subcomplex 8 in mice. These compounds increased mitochondrial genes in RPTCs in which the 5-HT2C receptor was downregulated with small interfering RNA and in the renal cortex of mice lacking the 5-HT2C receptor. By contrast, the ability of these compounds to increase PGC-1α mRNA and respiration was blocked in RPTCs treated with 5-HT2A receptor small interfering RNA or the 5-HT2A receptor antagonist eplivanserin. In addition, the 5-HT2A receptor agonist NBOH-2C-CN [4-[2-[[(2-hydroxyphenyl)methyl]amino]ethyl]-2,5-dimethoxybenzonitrile] increased RPTC respiration at 1-100 nM. These results suggest that agonism of the 5-HT2A receptor induces MB and that the classic 5-HT2C receptor agonist CP

  17. Method of controlling gene expression

    DOEpatents

    Peters, Norman K.; Frost, John W.; Long, Sharon R.

    1991-12-03

    A method of controlling expression of a DNA segment under the control of a nod gene promoter which comprises administering to a host containing a nod gene promoter an amount sufficient to control expression of the DNA segment of a compound of the formula: ##STR1## in which each R is independently H or OH, is described.

  18. A putative mitochondrial fission gene from the ectomycorrhizal ascomycete Tuber borchii Vittad.: cloning, characterisation and phylogeny.

    PubMed

    Guidi, C; Zeppa, S; Barbieri, E; Zambonelli, A; Polidori, E; Potenza, L; Stocchi, V

    2003-11-01

    Mitochondrial binary division is a complex process occurring in multiple steps, mediated by several proteins. In Saccharomyces cerevisiae, a mitochondrial membrane protein, Fis1p, is required for the proper assembly of the mitochondrial division apparatus. In this study, we report the cloning, characterisation and phylogenetic analysis of Tbfis1, a gene from the ectomycorrhizal ascomycetous truffle Tuber borchii, encoding for an orthologue of S. cerevisiae Fis1p. The Tbfis1 coding region consists of a 468-nucleotide open reading frame interrupted by four introns, which encodes for a polypeptide of 155 amino acids, having a predicted transmembrane domain structure typical of the Fis1p Family. Southern blot analysis revealed that Tbfis1 is a single-copy gene in the T. borchii genome. Tbfis1 is highly expressed during the first stages of T. borchii fruit body ripening, while its expression decreases during T. borchii mycelium ageing. Also, Virtual Northern blot analysis revealed Tbfis1 expression in the symbiotic phase of the fungus life cycle. Phylogenetic analysis allowed the identification of Tbfis1 orthologues in filamentous fungi, yeasts, plants, worms, flies and mammals, indicating that the function of the protein coded by this gene has been conserved during evolution. PMID:12910371

  19. Identification of the gene encoding the mitochondrial elongation factor G in mammals.

    PubMed Central

    Barker, C; Makris, A; Patriotis, C; Bear, S E; Tsichlis, P N

    1993-01-01

    Protein synthesis in cytosolic and rough endoplasmic reticulum associated ribosomes is directed by factors, many of which have been well characterized. Although these factors have been the subject of intense study, most of the corresponding factors regulating protein synthesis in the mitochondrial ribosomes remain unknown. In this report we present the cloning and initial characterization of the gene encoding the rat mitochondrial elongation factor-G (rEF-Gmt). The rat gene encoding EF-Gmt (rMef-g) maps to rat chromosome 2 and it is expressed in all tissues with highest levels in liver, thymus and brain. Its DNA sequence predicts a 752 amino acid protein exhibiting 72% homology to the yeast Saccharomyces cerevisiae mitochondrial elongation factor-G (YMEF-G), 62% and 61% homology to the Thermus thermophilus and E. coli elongation factor-G (EF-G) respectively and 52% homology to the rat elongation factor-2 (EF-2). The deduced amino acid sequence of EF-G contains characteristic motifs shared by all GTP binding proteins. Therefore, similarly to other elongation factors, the enzymatic function of EF-Gmt is predicted to depend on GTP binding and hydrolysis. EF-Gmt differs from its cytoplasmic homolog, EF-2, in that it contains an aspartic acid residue at amino acid position 621 which corresponds to the EF-2 histidine residue at position 715. Since this histidine residue, following posttranslational modification into diphthamide, appears to be the sole cellular target of diphtheria toxin and Pseudomonas aeruginosa endotoxin A, we conclude that EF-Gmt will not be inactivated by these toxins. The severe effects of these toxins on protein elongation in tissues expressing EF-Gmt suggest that EF-Gmt and EF-2 exhibit nonoverlapping functions. The cloning and characterization of the mammalian mitochondrial elongation factor G will permit us to address its role in the regulation of normal mitochondrial function and in disease states attributed to mitochondrial dysfunction. Images

  20. Large gene overlaps and tRNA processing in the compact mitochondrial genome of the crustacean Armadillidium vulgare.

    PubMed

    Doublet, Vincent; Ubrig, Elodie; Alioua, Abdelmalek; Bouchon, Didier; Marcadé, Isabelle; Maréchal-Drouard, Laurence

    2015-01-01

    A faithful expression of the mitochondrial DNA is crucial for cell survival. Animal mitochondrial DNA (mtDNA) presents a highly compact gene organization. The typical 16.5 kbp animal mtDNA encodes 13 proteins, 2 rRNAs and 22 tRNAs. In the backyard pillbug Armadillidium vulgare, the rather small 13.9 kbp mtDNA encodes the same set of proteins and rRNAs as compared to animal kingdom mtDNA, but seems to harbor an incomplete set of tRNA genes. Here, we first confirm the expression of 13 tRNA genes in this mtDNA. Then we show the extensive repair of a truncated tRNA, the expression of tRNA involved in large gene overlaps and of tRNA genes partially or fully integrated within protein-coding genes in either direct or opposite orientation. Under selective pressure, overlaps between genes have been likely favored for strong genome size reduction. Our study underlines the existence of unknown biochemical mechanisms for the complete gene expression of A. vulgare mtDNA, and of co-evolutionary processes to keep overlapping genes functional in a compacted mitochondrial genome. PMID:26361137

  1. Large gene overlaps and tRNA processing in the compact mitochondrial genome of the crustacean Armadillidium vulgare

    PubMed Central

    Doublet, Vincent; Ubrig, Elodie; Alioua, Abdelmalek; Bouchon, Didier; Marcadé, Isabelle; Maréchal-Drouard, Laurence

    2015-01-01

    A faithful expression of the mitochondrial DNA is crucial for cell survival. Animal mitochondrial DNA (mtDNA) presents a highly compact gene organization. The typical 16.5 kbp animal mtDNA encodes 13 proteins, 2 rRNAs and 22 tRNAs. In the backyard pillbug Armadillidium vulgare, the rather small 13.9 kbp mtDNA encodes the same set of proteins and rRNAs as compared to animal kingdom mtDNA, but seems to harbor an incomplete set of tRNA genes. Here, we first confirm the expression of 13 tRNA genes in this mtDNA. Then we show the extensive repair of a truncated tRNA, the expression of tRNA involved in large gene overlaps and of tRNA genes partially or fully integrated within protein-coding genes in either direct or opposite orientation. Under selective pressure, overlaps between genes have been likely favored for strong genome size reduction. Our study underlines the existence of unknown biochemical mechanisms for the complete gene expression of A. vulgare mtDNA, and of co-evolutionary processes to keep overlapping genes functional in a compacted mitochondrial genome. PMID:26361137

  2. Mitochondrial dysfunction impairs tumor suppressor p53 expression/function.

    PubMed

    Compton, Shannon; Kim, Chul; Griner, Nicholas B; Potluri, Prasanth; Scheffler, Immo E; Sen, Sabyasachi; Jerry, D Joseph; Schneider, Sallie; Yadava, Nagendra

    2011-06-10

    Recently, mitochondria have been suggested to act in tumor suppression. However, the underlying mechanisms by which mitochondria suppress tumorigenesis are far from being clear. In this study, we have investigated the link between mitochondrial dysfunction and the tumor suppressor protein p53 using a set of respiration-deficient (Res(-)) mammalian cell mutants with impaired assembly of the oxidative phosphorylation machinery. Our data suggest that normal mitochondrial function is required for γ-irradiation (γIR)-induced cell death, which is mainly a p53-dependent process. The Res(-) cells are protected against γIR-induced cell death due to impaired p53 expression/function. We find that the loss of complex I biogenesis in the absence of the MWFE subunit reduces the steady-state level of the p53 protein, although there is no effect on the p53 protein level in the absence of the ESSS subunit that is also essential for complex I assembly. The p53 protein level was also reduced to undetectable levels in Res(-) cells with severely impaired mitochondrial protein synthesis. This suggests that p53 protein expression is differentially regulated depending upon the type of electron transport chain/respiratory chain deficiency. Moreover, irrespective of the differences in the p53 protein expression profile, γIR-induced p53 activity is compromised in all Res(-) cells. Using two different conditional systems for complex I assembly, we also show that the effect of mitochondrial dysfunction on p53 expression/function is a reversible phenomenon. We believe that these findings will have major implications in the understanding of cancer development and therapy. PMID:21502317

  3. The Bicoid Stability Factor Controls Polyadenylation and Expression of Specific Mitochondrial mRNAs in Drosophila melanogaster

    PubMed Central

    Grönke, Sebastian; Stewart, James B.; Mourier, Arnaud; Ruzzenente, Benedetta; Kukat, Christian; Wibom, Rolf; Habermann, Bianca; Partridge, Linda; Larsson, Nils-Göran

    2011-01-01

    The bicoid stability factor (BSF) of Drosophila melanogaster has been reported to be present in the cytoplasm, where it stabilizes the maternally contributed bicoid mRNA and binds mRNAs expressed from early zygotic genes. BSF may also have other roles, as it is ubiquitously expressed and essential for survival of adult flies. We have performed immunofluorescence and cell fractionation analyses and show here that BSF is mainly a mitochondrial protein. We studied two independent RNAi knockdown fly lines and report that reduced BSF protein levels lead to a severe respiratory deficiency and delayed development at the late larvae stage. Ubiquitous knockdown of BSF results in a severe reduction of the polyadenylation tail lengths of specific mitochondrial mRNAs, accompanied by an enrichment of unprocessed polycistronic RNA intermediates. Furthermore, we observed a significant reduction in mRNA steady state levels, despite increased de novo transcription. Surprisingly, mitochondrial de novo translation is increased and abnormal mitochondrial translation products are present in knockdown flies, suggesting that BSF also has a role in coordinating the mitochondrial translation in addition to its role in mRNA maturation and stability. We thus report a novel function of BSF in flies and demonstrate that it has an important intra-mitochondrial role, which is essential for maintaining mtDNA gene expression and oxidative phosphorylation. PMID:22022283

  4. Gene Expression in Oligodendroglial Tumors

    PubMed Central

    Shaw, Elisabeth J.; Haylock, Brian; Husband, David; du Plessis, Daniel; Sibson, D. Ross; Warnke, Peter C.; Walker, Carol

    2010-01-01

    Background: Oligodendroglial tumors with 1p/19q loss are more likely to be chemosensitive and have longer survival than those with intact 1p/19q, but not all respond to chemotherapy, warranting investigation of the biological basis of chemosensitivity. Methods: Gene expression profiling was performed using amplified antisense RNA from 28 oligodendroglial tumors treated with chemotherapy (26 serial stereotactic biopsy, 2 resection). Expression of differentially expressed genes was validated by real-time PCR. Results: Unsupervised hierarchical clustering showed clustering of multiple samples from the same case in 14/17 cases and identified subgroups associated with tumor grade and 1p/19q status. 176 genes were differentially expressed, 164 being associated with 1p/19q loss (86% not on 1p or 19q). 94 genes differed between responders and non-responders to chemotherapy; 12 were not associated with 1p/19q loss. Significant differential expression was confirmed in 11/13 selected genes. Novel genes associated with response to therapy included SSBP2, GFRA1, FAP and RASD1. IQGAP1, INA, TGIF1, NR2F2 and MYCBP were differentially expressed in oligodendroglial tumors with 1p/19q loss. Conclusion: Gene expression profiling using serial stereotactic biopsies indicated greater homogeneity within tumors than between tumors. Genes associated with 1p/19q status or response were identified warranting further elucidation of their role in oligodendroglial tumors. PMID:20966545

  5. Gene expression profiling analysis of lung adenocarcinoma

    PubMed Central

    Xu, H.; Ma, J.; Wu, J.; Chen, L.; Sun, F.; Qu, C.; Zheng, D.; Xu, S.

    2016-01-01

    The present study screened potential genes related to lung adenocarcinoma, with the aim of further understanding disease pathogenesis. The GSE2514 dataset including 20 lung adenocarcinoma and 19 adjacent normal tissue samples from 10 patients with lung adenocarcinoma aged 45-73 years was downloaded from Gene Expression Omnibus. Differentially expressed genes (DEGs) between the two groups were screened using the t-test. Potential gene functions were predicted using functional and pathway enrichment analysis, and protein-protein interaction (PPI) networks obtained from the STRING database were constructed with Cytoscape. Module analysis of PPI networks was performed through MCODE in Cytoscape. In total, 535 upregulated and 465 downregulated DEGs were identified. These included ATP5D, UQCRC2, UQCR11 and genes encoding nicotinamide adenine dinucleotide (NADH), which are mainly associated with mitochondrial ATP synthesis coupled electron transport, and which were enriched in the oxidative phosphorylation pathway. Other DEGs were associated with DNA replication (PRIM1, MCM3, and RNASEH2A), cell surface receptor-linked signal transduction and the enzyme-linked receptor protein signaling pathway (MAPK1, STAT3, RAF1, and JAK1), and regulation of the cytoskeleton and phosphatidylinositol signaling system (PIP5K1B, PIP5K1C, and PIP4K2B). Our findings suggest that DEGs encoding subunits of NADH, PRIM1, MCM3, MAPK1, STAT3, RAF1, and JAK1 might be associated with the development of lung adenocarcinoma. PMID:26840709

  6. Chloroplast-like transfer RNA genes expressed in wheat mitochondria.

    PubMed Central

    Joyce, P B; Gray, M W

    1989-01-01

    In the course of a systematic survey of wheat mitochondrial tRNA genes, we have sequenced chloroplast-like serine (trnS-GGA), phenylalanine (trnF-GAA) and cysteine (trnC-GCA) tRNA genes and their flanking regions. These genes are remnants of 'promiscuous' chloroplast DNA that has been incorporated into wheat mtDNA in the course of its evolution. Each gene differs by one or a few nucleotides from the authentic chloroplast homolog previously characterized in wheat or other plants, and each could potentially encode a functional tRNA whose secondary structure shows no deviations from the generalized model. To determine whether these chloroplast-like tRNA genes are actually expressed, wheat mitochondrial tRNAs were resolved by a series of polyacrylamide gel electrophoreses, after being specifically end-labeled in vitro by 3'-CCA addition mediated by wheat tRNA nucleotidyltransferase. Subsequent direct RNA sequence analysis identified prominent tRNA species corresponding to the mitochondrial and not the chloroplast trnS, trnF and trnC genes. This analysis also revealed chloroplast-like elongator methionine, asparagine and tryptophan tRNAs. Our results suggest that at least some chloroplast-like tRNA genes in wheat mtDNA are transcribed, with transcripts undergoing processing, post-transcriptional modification and 3'-CCA addition, to produce mature tRNAs that may participate in mitochondrial protein synthesis. Images PMID:2762145

  7. Increased COUP-TFII expression in adult hearts induces mitochondrial dysfunction resulting in heart failure.

    PubMed

    Wu, San-Pin; Kao, Chung-Yang; Wang, Leiming; Creighton, Chad J; Yang, Jin; Donti, Taraka R; Harmancey, Romain; Vasquez, Hernan G; Graham, Brett H; Bellen, Hugo J; Taegtmeyer, Heinrich; Chang, Ching-Pin; Tsai, Ming-Jer; Tsai, Sophia Y

    2015-01-01

    Mitochondrial dysfunction and metabolic remodelling are pivotal in the development of cardiomyopathy. Here, we show that myocardial COUP-TFII overexpression causes heart failure in mice, suggesting a causal effect of elevated COUP-TFII levels on development of dilated cardiomyopathy. COUP-TFII represses genes critical for mitochondrial electron transport chain enzyme activity, oxidative stress detoxification and mitochondrial dynamics, resulting in increased levels of reactive oxygen species and lower rates of oxygen consumption in mitochondria. COUP-TFII also suppresses the metabolic regulator PGC-1 network and decreases the expression of key glucose and lipid utilization genes, leading to a reduction in both glucose and oleate oxidation in the hearts. These data suggest that COUP-TFII affects mitochondrial function, impairs metabolic remodelling and has a key role in dilated cardiomyopathy. Last, COUP-TFII haploinsufficiency attenuates the progression of cardiac dilation and improves survival in a calcineurin transgenic mouse model, indicating that COUP-TFII may serve as a therapeutic target for the treatment of dilated cardiomyopathy. PMID:26356605

  8. Increased COUP-TFII expression in adult hearts induces mitochondrial dysfunction resulting in heart failure

    PubMed Central

    Wu, San-Pin; Kao, Chung-Yang; Wang, Leiming; Creighton, Chad J.; Yang, Jin; Donti, Taraka R.; Harmancey, Romain; Vasquez, Hernan G.; Graham, Brett H.; Bellen, Hugo J.; Taegtmeyer, Heinrich; Chang, Ching-Pin; Tsai, Ming-Jer; Tsai, Sophia Y.

    2015-01-01

    Mitochondrial dysfunction and metabolic remodelling are pivotal in the development of cardiomyopathy. Here, we show that myocardial COUP-TFII overexpression causes heart failure in mice, suggesting a causal effect of elevated COUP-TFII levels on development of dilated cardiomyopathy. COUP-TFII represses genes critical for mitochondrial electron transport chain enzyme activity, oxidative stress detoxification and mitochondrial dynamics, resulting in increased levels of reactive oxygen species and lower rates of oxygen consumption in mitochondria. COUP-TFII also suppresses the metabolic regulator PGC-1 network and decreases the expression of key glucose and lipid utilization genes, leading to a reduction in both glucose and oleate oxidation in the hearts. These data suggest that COUP-TFII affects mitochondrial function, impairs metabolic remodelling and has a key role in dilated cardiomyopathy. Last, COUP-TFII haploinsufficiency attenuates the progression of cardiac dilation and improves survival in a calcineurin transgenic mouse model, indicating that COUP-TFII may serve as a therapeutic target for the treatment of dilated cardiomyopathy. PMID:26356605

  9. Genomic modulation of mitochondrial respiratory genes in the hypertrophied heart reflects adaptive changes in mitochondrial and contractile function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We hypothesized the coordinate induction of mitochondrial regulatory genes in the hypertrophied right ventricle to sustain mitochondrial respiratory capacity and contractile function in response to increased load. Wistar rats were exposed to hypobaric hypoxia (11% O(2)) or normoxia for 2 wk. Cardiac...

  10. Screen for mitochondrial DNA copy number maintenance genes reveals essential role for ATP synthase

    PubMed Central

    Fukuoh, Atsushi; Cannino, Giuseppe; Gerards, Mike; Buckley, Suzanne; Kazancioglu, Selena; Scialo, Filippo; Lihavainen, Eero; Ribeiro, Andre; Dufour, Eric; Jacobs, Howard T

    2014-01-01

    The machinery of mitochondrial DNA (mtDNA) maintenance is only partially characterized and is of wide interest due to its involvement in disease. To identify novel components of this machinery, plus other cellular pathways required for mtDNA viability, we implemented a genome-wide RNAi screen in Drosophila S2 cells, assaying for loss of fluorescence of mtDNA nucleoids stained with the DNA-intercalating agent PicoGreen. In addition to previously characterized components of the mtDNA replication and transcription machineries, positives included many proteins of the cytosolic proteasome and ribosome (but not the mitoribosome), three proteins involved in vesicle transport, some other factors involved in mitochondrial biogenesis or nuclear gene expression, > 30 mainly uncharacterized proteins and most subunits of ATP synthase (but no other OXPHOS complex). ATP synthase knockdown precipitated a burst of mitochondrial ROS production, followed by copy number depletion involving increased mitochondrial turnover, not dependent on the canonical autophagy machinery. Our findings will inform future studies of the apparatus and regulation of mtDNA maintenance, and the role of mitochondrial bioenergetics and signaling in modulating mtDNA copy number. PMID:24952591

  11. Expression of the Ciona intestinalis alternative oxidase (AOX) in Drosophila complements defects in mitochondrial oxidative phosphorylation.

    PubMed

    Fernandez-Ayala, Daniel J M; Sanz, Alberto; Vartiainen, Suvi; Kemppainen, Kia K; Babusiak, Marek; Mustalahti, Eero; Costa, Rodolfo; Tuomela, Tea; Zeviani, Massimo; Chung, Jongkyeong; O'Dell, Kevin M C; Rustin, Pierre; Jacobs, Howard T

    2009-05-01

    Defects in mitochondrial OXPHOS are associated with diverse and mostly intractable human disorders. The single-subunit alternative oxidase (AOX) found in many eukaryotes, but not in arthropods or vertebrates, offers a potential bypass of the OXPHOS cytochrome chain under conditions of pathological OXPHOS inhibition. We have engineered Ciona intestinalis AOX for conditional expression in Drosophila melanogaster. Ubiquitous AOX expression produced no detrimental phenotype in wild-type flies. However, mitochondrial suspensions from AOX-expressing flies exhibited a significant cyanide-resistant substrate oxidation, and the flies were partially resistant to both cyanide and antimycin. AOX expression was able to complement the semilethality of partial knockdown of both cyclope (COXVIc) and the complex IV assembly factor Surf1. It also rescued the locomotor defect and excess mitochondrial ROS production of flies mutated in dj-1beta, a Drosophila homolog of the human Parkinson's disease gene DJ1. AOX appears to offer promise as a wide-spectrum therapeutic tool in OXPHOS disorders. PMID:19416715

  12. Molecular mechanisms of extensive mitochondrial gene rearrangementin plethodontid salamanders

    SciTech Connect

    Mueller, Rachel Lockridge; Boore, Jeffrey L.

    2005-06-01

    Extensive gene rearrangement is reported in the mitochondrial genomes of lungless salamanders (Plethodontidae). In each genome with a novel gene order, there is evidence that the rearrangement was mediated by duplication of part of the mitochondrial genome, including the presence of both pseudogenes and additional, presumably functional, copies of duplicated genes. All rearrangement-mediating duplications include either the origin of light strand replication and the nearby tRNA genes or the regions flanking the origin of heavy strand replication. The latter regions comprise nad6, trnE, cob, trnT, an intergenic spacer between trnT and trnP and, in some genomes, trnP, the control region, trnF, rrnS, trnV, rrnL, trnL1, and nad1. In some cases, two copies of duplicated genes, presumptive regulatory regions, and/or sequences with no assignable function have been retained in the genome following the initial duplication; in other genomes, only one of the duplicated copies has been retained. Both tandem and non-tandem duplications are present in these genomes, suggesting different duplication mechanisms. In some of these mtDNAs, up to 25 percent of the total length is composed of tandem duplications of non-coding sequence that includes putative regulatory regions and/or pseudogenes of tRNAs and protein-coding genes along with otherwise unassignable sequences. These data indicate that imprecise initiation and termination of replication, slipped-strand mispairing, and intra-molecular recombination may all have played a role in generating repeats during the evolutionary history of plethodontid mitochondrial genomes.

  13. Two adjacent nuclear genes, ISF1 and NAM7/UPF1, cooperatively participate in mitochondrial functions in Saccharomyces cerevisiae.

    PubMed

    Altamura, N; Dujardin, G; Groudinsky, O; Slonimski, P P

    1994-01-01

    We previously isolated a nuclear 5.7 kb genomic fragment carrying the NAM7/UPF1 gene, which is able to suppress mitochondrial splicing deficiency when present in multiple copies. We show here that an immediately adjacent gene ISF1 (Increasing Suppression Factor) increases the efficiency of the NAM7/UPF1 suppressor activity. The ISF1 gene has been independently isolated as the MBR3 gene and comparison of the ISF1 predicted protein sequence with data libraries revealed a significant similarity with the MBR1 yeast protein. The ISF1 and NAM7 genes are transcribed in the same direction, and RNase mapping allowed the precise location of their termini within the intergenic region to be determined. The ISF1 gene is not essential for cell viability or respiratory growth. However as for many mitochondrial genes, ISF1 expression is sensitive to fermentative repression; in contrast expression of the NAM7 gene is unaffected by glucose. We propose that ISF1 could influence the NAM7/UPF1 function, possibly at the level of mRNA turnover, thus modulating the expression of nuclear genes involved in mitochondrial biogenesis. PMID:7506349

  14. MIDAS/GPP34, a nuclear gene product, regulates total mitochondrial mass in response to mitochondrial dysfunction.

    PubMed

    Nakashima-Kamimura, Naomi; Asoh, Sadamitsu; Ishibashi, Yoshitomo; Mukai, Yuri; Shidara, Yujiro; Oda, Hideaki; Munakata, Kae; Goto, Yu-Ichi; Ohta, Shigeo

    2005-11-15

    To investigate the regulatory system in mitochondrial biogenesis involving crosstalk between the mitochondria and nucleus, we found a factor named MIDAS (mitochondrial DNA absence sensitive factor) whose expression was enhanced by the absence of mitochondrial DNA (mtDNA). In patients with mitochondrial diseases, MIDAS expression was increased only in dysfunctional muscle fibers. A majority of MIDAS localized to mitochondria with a small fraction in the Golgi apparatus in HeLa cells. To investigate the function of MIDAS, we stably transfected HeLa cells with an expression vector carrying MIDAS cDNA or siRNA. Cells expressing the MIDAS protein and the siRNA constitutively showed an increase and decrease in the total mass of mitochondria, respectively, accompanying the regulation of a mitochondria-specific phospholipid, cardiolipin. In contrast, amounts of the mitochondrial DNA, RNA and proteins did not depend upon MIDAS. Thus, MIDAS is involved in the regulation of mitochondrial lipids, leading to increases of total mitochondrial mass in response to mitochondrial dysfunction. PMID:16263763

  15. The impact of mitochondrial DNA and nuclear genes related to mitochondrial functioning on the risk of Parkinson's disease.

    PubMed

    Gaweda-Walerych, Katarzyna; Zekanowski, Cezary

    2013-12-01

    Mitochondrial dysfunction and oxidative stress are the major factors implicated in Parkinson's disease (PD) pathogenesis. The maintenance of healthy mitochondria is a very complex process coordinated bi-genomically. Here, we review association studies on mitochondrial haplogroups and subhaplogroups, discussing the underlying molecular mechanisms. We also focus on variation in the nuclear genes (NDUFV2, PGC-1alpha, HSPA9, LRPPRC, MTIF3, POLG1, and TFAM encoding NADH dehydrogenase (ubiquinone) flavoprotein 2, peroxisome proliferator-activated receptor gamma coactivator 1-alpha, mortalin, leucine-rich pentatricopeptide repeat containing protein, translation initiation factor 3, mitochondrial DNA polymerase gamma, and mitochondrial transcription factor A, respectively) primarily linked to regulation of mitochondrial functioning that recently have been associated with PD risk. Possible interactions between mitochondrial and nuclear genetic variants and related proteins are discussed. PMID:24532986

  16. The Impact of Mitochondrial DNA and Nuclear Genes Related to Mitochondrial Functioning on the Risk of Parkinson’s Disease

    PubMed Central

    Gaweda-Walerych, Katarzyna; Zekanowski, Cezary

    2013-01-01

    Mitochondrial dysfunction and oxidative stress are the major factors implicated in Parkinson’s disease (PD) pathogenesis. The maintenance of healthy mitochondria is a very complex process coordinated bi-genomically. Here, we review association studies on mitochondrial haplogroups and subhaplogroups, discussing the underlying molecular mechanisms. We also focus on variation in the nuclear genes (NDUFV2, PGC-1alpha, HSPA9, LRPPRC, MTIF3, POLG1, and TFAM encoding NADH dehydrogenase (ubiquinone) flavoprotein 2, peroxisome proliferator-activated receptor gamma coactivator 1-alpha, mortalin, leucine-rich pentatricopeptide repeat containing protein, translation initiation factor 3, mitochondrial DNA polymerase gamma, and mitochondrial transcription factor A, respectively) primarily linked to regulation of mitochondrial functioning that recently have been associated with PD risk. Possible interactions between mitochondrial and nuclear genetic variants and related proteins are discussed. PMID:24532986

  17. Human white adipocytes express the cold receptor TRPM8 which activation induces UCP1 expression, mitochondrial activation and heat production.

    PubMed

    Rossato, Marco; Granzotto, Marnie; Macchi, Veronica; Porzionato, Andrea; Petrelli, Lucia; Calcagno, Alessandra; Vencato, Juri; De Stefani, Diego; Silvestrin, Valentina; Rizzuto, Rosario; Bassetto, Franco; De Caro, Raffaele; Vettor, Roberto

    2014-03-01

    Mammals possess two types of adipose tissue, white (WAT) and brown (BAT). The uncoupling protein 1 (UCP1) is a hallmark of BAT, being the pivotal player for cold-induced thermogenesis. WAT can acquire BAT characteristics with up-regulation of UCP1 after cold exposure or adrenergic stimulation. In the present study we demonstrated that human white adipocytes express the cold-sensing receptor TRPM8 which activation by menthol and icilin induced a rise in [Ca²⁺](i) and UCP1 expression, increased mitochondrial membrane potential, glucose uptake and heat production. The induction of "brown-like" phenotype in human white adipocytes after TRPM8 activation was supported by ultrastructural morphological changes of mitochondrial morphology and of their intracellular localization, with no modifications of the genes regulating mitochondrial biogenesis. In conclusion human white adipocytes express the cold receptor TRPM8 which activation induces their "browning" supporting a possible role of this receptor in the control of adipose tissue metabolism and body energy balance. PMID:24342393

  18. Insertion near the mitochondrial tyrosine tRNA gene in patients with mitochondrial diseases

    SciTech Connect

    Goto, Y.; Nonaka, I.; Horai, S.

    1994-09-01

    The 3243 mutation commonly found in patients with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) has been occasionally detected in patients with chronic progressive external opthalmoplegia (CPEO). To elucidate the molecular mechanism underlying this phenomenon, an extensive mitochondrial (mt) DNA study was performed on such a patient (3243-CPEO). The newly discovered insertion was located in the noncoding region between cytrochrome c oxidase subunit 1 and tyrosine tRNA. The insertion was not found in 58 or 22 CPEO patients with or without mtDNA large-scale deletion but in another 3243-CPEO patient. In addition, the insertion was present in 1 of 116 normal Japanese, who had no 3243 mutation, and in 3 of 68 3243-MELAS patients. These results raise the possibility that the phenotypic expression of the 3243 mutation could be modulated or arranged by additional mtDNA mutations.

  19. Gene expression during normal and FSHD myogenesis

    PubMed Central

    2011-01-01

    Background Facioscapulohumeral muscular dystrophy (FSHD) is a dominant disease linked to contraction of an array of tandem 3.3-kb repeats (D4Z4) at 4q35. Within each repeat unit is a gene, DUX4, that can encode a protein containing two homeodomains. A DUX4 transcript derived from the last repeat unit in a contracted array is associated with pathogenesis but it is unclear how. Methods Using exon-based microarrays, the expression profiles of myogenic precursor cells were determined. Both undifferentiated myoblasts and myoblasts differentiated to myotubes derived from FSHD patients and controls were studied after immunocytochemical verification of the quality of the cultures. To further our understanding of FSHD and normal myogenesis, the expression profiles obtained were compared to those of 19 non-muscle cell types analyzed by identical methods. Results Many of the ~17,000 examined genes were differentially expressed (> 2-fold, p < 0.01) in control myoblasts or myotubes vs. non-muscle cells (2185 and 3006, respectively) or in FSHD vs. control myoblasts or myotubes (295 and 797, respectively). Surprisingly, despite the morphologically normal differentiation of FSHD myoblasts to myotubes, most of the disease-related dysregulation was seen as dampening of normal myogenesis-specific expression changes, including in genes for muscle structure, mitochondrial function, stress responses, and signal transduction. Other classes of genes, including those encoding extracellular matrix or pro-inflammatory proteins, were upregulated in FSHD myogenic cells independent of an inverse myogenesis association. Importantly, the disease-linked DUX4 RNA isoform was detected by RT-PCR in FSHD myoblast and myotube preparations only at extremely low levels. Unique insights into myogenesis-specific gene expression were also obtained. For example, all four Argonaute genes involved in RNA-silencing were significantly upregulated during normal (but not FSHD) myogenesis relative to non

  20. Genes or culture: are mitochondrial genes associated with tool use in bottlenose dolphins (Tursiops sp.)?

    PubMed

    Bacher, K; Allen, S; Lindholm, A K; Bejder, L; Krützen, M

    2010-09-01

    Some bottlenose dolphins use marine sponges as foraging tools ('sponging'), which appears to be socially transmitted from mothers mainly to their female offspring. Yet, explanations alternative to social transmission have been proposed. Firstly, the propensity to engage in sponging might be due to differences in diving ability caused by variation of mitochondrial genes coding for proteins of the respiratory chain. Secondly, the cultural technique of sponging may have selected for changes in these same genes (or other autosomal ones) among its possessors. We tested whether sponging can be predicted by mitochondrial coding genes and whether these genes are under selection. In 29 spongers and 54 non-spongers from two study sites, the non-coding haplotype at the HVRI locus was a significant predictor of sponging, whereas the coding mitochondrial genes were not. There was no evidence of selection in the investigated genes. Our study shows that mitochondrial gene variation is unlikely to be a viable alternative to cultural transmission as a primary driver of tool use in dolphins. PMID:20582623

  1. Probable presence of an ubiquitous cryptic mitochondrial gene on the antisense strand of the cytochrome oxidase I gene

    PubMed Central

    2011-01-01

    Background Mitochondria mediate most of the energy production that occurs in the majority of eukaryotic organisms. These subcellular organelles contain a genome that differs from the nuclear genome and is referred to as mitochondrial DNA (mtDNA). Despite a disparity in gene content, all mtDNAs encode at least two components of the mitochondrial electron transport chain, including cytochrome c oxidase I (Cox1). Presentation of the hypothesis A positionally conserved ORF has been found on the complementary strand of the cox1 genes of both eukaryotic mitochondria (protist, plant, fungal and animal) and alpha-proteobacteria. This putative gene has been named gau for gene antisense ubiquitous in mtDNAs. The length of the deduced protein is approximately 100 amino acids. In vertebrates, several stop codons have been found in the mt gau region, and potentially functional gau regions have been found in nuclear genomes. However, a recent bioinformatics study showed that several hypothetical overlapping mt genes could be predicted, including gau; this involves the possible import of the cytosolic AGR tRNA into the mitochondria and/or the expression of mt antisense tRNAs with anticodons recognizing AGR codons according to an alternative genetic code that is induced by the presence of suppressor tRNAs. Despite an evolutionary distance of at least 1.5 to 2.0 billion years, the deduced Gau proteins share some conserved amino acid signatures and structure, which suggests a possible conserved function. Moreover, BLAST analysis identified rare, sense-oriented ESTs with poly(A) tails that include the entire gau region. Immunohistochemical analyses using an anti-Gau monoclonal antibody revealed strict co-localization of Gau proteins and a mitochondrial marker. Testing the hypothesis This hypothesis could be tested by purifying the gau gene product and determining its sequence. Cell biological experiments are needed to determine the physiological role of this protein. Implications of

  2. The defective expression of gtpbp3 related to tRNA modification alters the mitochondrial function and development of zebrafish.

    PubMed

    Chen, Danni; Li, Feng; Yang, Qingxian; Tian, Miao; Zhang, Zengming; Zhang, Qinghai; Chen, Ye; Guan, Min-Xin

    2016-08-01

    Human mitochondrial DNA (mtDNA) mutations have been associated with a wide spectrum of clinical abnormalities. However, nuclear modifier gene(s) modulate the phenotypic expression of pathogenic mtDNA mutations. In our previous investigation, we identified the human GTPBP3 related to mitochondrial tRNA modification, acting as a modifier to influence of deafness-associated mtDNA mutation. Mutations in GTPBP3 have been found to be associated with other human diseases. However, the pathophysiology of GTPBP3-associated disorders is still not fully understood. Here, we reported the generation and characterization of Gtpbp3 depletion zebrafish model using antisense morpholinos. Zebrafish gtpbp3 has three isoforms localized at mitochondria. Zebrafish gtpbp3 is expressed at various embryonic stages and in multiple tissues. In particular, the gtpbp3 was expressed more abundantly in adult zebrafish ovary and testis. The expression of zebrafish gtpbp3 can functionally restore the growth defects caused by the mss1/gtpbp3 mutation in yeast. A marked decrease of mitochondrial ATP generation accompanied by increased levels of apoptosis and reactive oxygen species were observed in gtpbp3 knockdown zebrafish embryos. The Gtpbp3 morphants exhibited defective in embryonic development including bleeding, melenin, oedema and curved tails within 5days post fertilization, as compared with uninjected controls. The co-injection of wild type gtpbp3 mRNA partially rescued these defects in Gtpbp3 morphants. These data suggest that zebrafish Gtpbp3 is a structural and functional homolog of human and yeast GTPBP3. The mitochondrial dysfunction caused by defective Gtpbp3 may alter the embryonic development in the zebrafish. In addition, this zebrafish model of mitochondrial disease may provide unique opportunities for studying defective tRNA modification, mitochondrial biogenesis, and pathophysiology of mitochondrial disorders. PMID:27184967

  3. Decrypting the Mitochondrial Gene Pool of Modern Panamanians

    PubMed Central

    Angerhofer, Norman; Ekins, Jayne E.; Olivieri, Anna; Woodward, Scott R.; Pascale, Juan Miguel; Cooke, Richard; Motta, Jorge; Achilli, Alessandro

    2012-01-01

    The Isthmus of Panama–the narrow neck of land connecting the northern and southern American landmasses–was an obligatory corridor for the Paleo-Indians as they moved into South America. Archaeological evidence suggests an unbroken link between modern natives and their Paleo-Indian ancestors in some areas of Panama, even if the surviving indigenous groups account for only 12.3% of the total population. To evaluate if modern Panamanians have retained a larger fraction of the native pre-Columbian gene pool in their maternally-inherited mitochondrial genome, DNA samples and historical records were collected from more than 1500 volunteer participants living in the nine provinces and four indigenous territories of the Republic. Due to recent gene-flow, we detected ∼14% African mitochondrial lineages, confirming the demographic impact of the Atlantic slave trade and subsequent African immigration into Panama from Caribbean islands, and a small European (∼2%) component, indicating only a minor influence of colonialism on the maternal side. The majority (∼83%) of Panamanian mtDNAs clustered into native pan-American lineages, mostly represented by haplogroup A2 (51%). These findings reveal an overwhelming native maternal legacy in today's Panama, which is in contrast with the overall concept of personal identity shared by many Panamanians. Moreover, the A2 sub-clades A2ad and A2af (with the previously named 6 bp Huetar deletion), when analyzed at the maximum level of resolution (26 entire mitochondrial genomes), confirm the major role of the Pacific coastal path in the peopling of North, Central and South America, and testify to the antiquity of native mitochondrial genomes in Panama. PMID:22675545

  4. Decrypting the mitochondrial gene pool of modern Panamanians.

    PubMed

    Perego, Ugo A; Lancioni, Hovirag; Tribaldos, Maribel; Angerhofer, Norman; Ekins, Jayne E; Olivieri, Anna; Woodward, Scott R; Pascale, Juan Miguel; Cooke, Richard; Motta, Jorge; Achilli, Alessandro

    2012-01-01

    The Isthmus of Panama--the narrow neck of land connecting the northern and southern American landmasses--was an obligatory corridor for the Paleo-Indians as they moved into South America. Archaeological evidence suggests an unbroken link between modern natives and their Paleo-Indian ancestors in some areas of Panama, even if the surviving indigenous groups account for only 12.3% of the total population. To evaluate if modern Panamanians have retained a larger fraction of the native pre-Columbian gene pool in their maternally-inherited mitochondrial genome, DNA samples and historical records were collected from more than 1500 volunteer participants living in the nine provinces and four indigenous territories of the Republic. Due to recent gene-flow, we detected ~14% African mitochondrial lineages, confirming the demographic impact of the Atlantic slave trade and subsequent African immigration into Panama from Caribbean islands, and a small European (~2%) component, indicating only a minor influence of colonialism on the maternal side. The majority (~83%) of Panamanian mtDNAs clustered into native pan-American lineages, mostly represented by haplogroup A2 (51%). These findings reveal an overwhelming native maternal legacy in today's Panama, which is in contrast with the overall concept of personal identity shared by many Panamanians. Moreover, the A2 sub-clades A2ad and A2af (with the previously named 6 bp Huetar deletion), when analyzed at the maximum level of resolution (26 entire mitochondrial genomes), confirm the major role of the Pacific coastal path in the peopling of North, Central and South America, and testify to the antiquity of native mitochondrial genomes in Panama. PMID:22675545

  5. An atlas of gene expression and gene co-regulation in the human retina.

    PubMed

    Pinelli, Michele; Carissimo, Annamaria; Cutillo, Luisa; Lai, Ching-Hung; Mutarelli, Margherita; Moretti, Maria Nicoletta; Singh, Marwah Veer; Karali, Marianthi; Carrella, Diego; Pizzo, Mariateresa; Russo, Francesco; Ferrari, Stefano; Ponzin, Diego; Angelini, Claudia; Banfi, Sandro; di Bernardo, Diego

    2016-07-01

    The human retina is a specialized tissue involved in light stimulus transduction. Despite its unique biology, an accurate reference transcriptome is still missing. Here, we performed gene expression analysis (RNA-seq) of 50 retinal samples from non-visually impaired post-mortem donors. We identified novel transcripts with high confidence (Observed Transcriptome (ObsT)) and quantified the expression level of known transcripts (Reference Transcriptome (RefT)). The ObsT included 77 623 transcripts (23 960 genes) covering 137 Mb (35 Mb new transcribed genome). Most of the transcripts (92%) were multi-exonic: 81% with known isoforms, 16% with new isoforms and 3% belonging to new genes. The RefT included 13 792 genes across 94 521 known transcripts. Mitochondrial genes were among the most highly expressed, accounting for about 10% of the reads. Of all the protein-coding genes in Gencode, 65% are expressed in the retina. We exploited inter-individual variability in gene expression to infer a gene co-expression network and to identify genes specifically expressed in photoreceptor cells. We experimentally validated the photoreceptors localization of three genes in human retina that had not been previously reported. RNA-seq data and the gene co-expression network are available online (http://retina.tigem.it). PMID:27235414

  6. An atlas of gene expression and gene co-regulation in the human retina

    PubMed Central

    Pinelli, Michele; Carissimo, Annamaria; Cutillo, Luisa; Lai, Ching-Hung; Mutarelli, Margherita; Moretti, Maria Nicoletta; Singh, Marwah Veer; Karali, Marianthi; Carrella, Diego; Pizzo, Mariateresa; Russo, Francesco; Ferrari, Stefano; Ponzin, Diego; Angelini, Claudia; Banfi, Sandro; di Bernardo, Diego

    2016-01-01

    The human retina is a specialized tissue involved in light stimulus transduction. Despite its unique biology, an accurate reference transcriptome is still missing. Here, we performed gene expression analysis (RNA-seq) of 50 retinal samples from non-visually impaired post-mortem donors. We identified novel transcripts with high confidence (Observed Transcriptome (ObsT)) and quantified the expression level of known transcripts (Reference Transcriptome (RefT)). The ObsT included 77 623 transcripts (23 960 genes) covering 137 Mb (35 Mb new transcribed genome). Most of the transcripts (92%) were multi-exonic: 81% with known isoforms, 16% with new isoforms and 3% belonging to new genes. The RefT included 13 792 genes across 94 521 known transcripts. Mitochondrial genes were among the most highly expressed, accounting for about 10% of the reads. Of all the protein-coding genes in Gencode, 65% are expressed in the retina. We exploited inter-individual variability in gene expression to infer a gene co-expression network and to identify genes specifically expressed in photoreceptor cells. We experimentally validated the photoreceptors localization of three genes in human retina that had not been previously reported. RNA-seq data and the gene co-expression network are available online (http://retina.tigem.it). PMID:27235414

  7. Review: Progress in the Researches on Insect Mitochondrial Genome and Analysis of Gene Order

    NASA Astrophysics Data System (ADS)

    Hu, Li; Jianyu, Gao; Haiyu, Liu; Wanzhi, Cai

    2009-04-01

    Insect mitochondrial genome is a double-stranded circular genomes which range from 14,503 bp to 19,571 bp in size. Nearly all the sequenced insect mitochondrial genomes encode 37 genes: two for rRNAs, 13 for proteins and 22 for tRNAs. This review compares and summarizes the features of complete mitochondrial genomes from 175 sequenced species of insects in 22 orders. The genomic organization, contents, gene order, and rearrangements of gene order are analyzed.

  8. Meta-analysis of differentially expressed genes in ankylosing spondylitis.

    PubMed

    Lee, Y H; Song, G G

    2015-01-01

    The purpose of this study was to identify differentially expressed (DE) genes and biological processes associated with changes in gene expression in ankylosing spondylitis (AS). We performed a meta-analysis using the integrative meta-analysis of expression data program on publicly available microarray AS Gene Expression Omnibus (GEO) datasets. We performed Gene Ontology (GO) enrichment analyses and pathway analysis using the Kyoto Encyclopedia of Genes and Genomes. Four GEO datasets, including 31 patients with AS and 39 controls, were available for the meta-analysis. We identified 65 genes across the studies that were consistently DE in patients with AS vs controls (23 upregulated and 42 downregulated). The upregulated gene with the largest effect size (ES; -1.2628, P = 0.020951) was integral membrane protein 2A (ITM2A), which is expressed by CD4+ T cells and plays a role in activation of T cells. The downregulated gene with the largest ES (1.2299, P = 0.040075) was mitochondrial ribosomal protein S11 (MRPS11). The most significant GO enrichment was in the respiratory electron transport chain category (P = 1.67 x 10-9). Therefore, our meta-analysis identified genes that were consistently DE as well as biological pathways associated with gene expression changes in AS. PMID:26125709

  9. Single nucleotide polymorphisms linked to mitochondrial uncoupling protein genes UCP2 and UCP3 affect mitochondrial metabolism and healthy aging in female nonagenarians.

    PubMed

    Kim, Sangkyu; Myers, Leann; Ravussin, Eric; Cherry, Katie E; Jazwinski, S Michal

    2016-08-01

    Energy expenditure decreases with age, but in the oldest-old, energy demand for maintenance of body functions increases with declining health. Uncoupling proteins have profound impact on mitochondrial metabolic processes; therefore, we focused attention on mitochondrial uncoupling protein genes. Alongside resting metabolic rate (RMR), two SNPs in the promoter region of UCP2 were associated with healthy aging. These SNPs mark potential binding sites for several transcription factors; thus, they may affect expression of the gene. A third SNP in the 3'-UTR of UCP3 interacted with RMR. This UCP3 SNP is known to impact UCP3 expression in tissue culture cells, and it has been associated with body weight and mitochondrial energy metabolism. The significant main effects of the UCP2 SNPs and the interaction effect of the UCP3 SNP were also observed after controlling for fat-free mass (FFM) and physical-activity related energy consumption. The association of UCP2/3 with healthy aging was not found in males. Thus, our study provides evidence that the genetic risk factors for healthy aging differ in males and females, as expected from the differences in the phenotypes associated with healthy aging between the two sexes. It also has implications for how mitochondrial function changes during aging. PMID:26965008

  10. Biogenesis of mitochondria: the mitochondrial gene (aap1) coding for mitochondrial ATPase subunit 8 in Saccharomyces cerevisiae.

    PubMed Central

    Macreadie, I G; Novitski, C E; Maxwell, R J; John, U; Ooi, B G; McMullen, G L; Lukins, H B; Linnane, A W; Nagley, P

    1983-01-01

    A mitochondrial gene (denoted aap1) in Saccharomyces cerevisiae has been characterized by nucleotide sequence analysis of a region of mtDNA between the oxi3 and oli2 genes. The reading frame of the aap1 gene specifies a hydrophobic polypeptide containing 48 amino acids. The functional nature of this reading frame was established by sequence analysis of a series of mit- mutants and revertants. Evidence is presented that the aap1 gene codes for a mitochondrially synthesized polypeptide associated with the mitochondrial ATPase complex. This polypeptide (denoted subunit 8) is a proteolipid whose size has been previously assumed to be 10 kilodaltons based on its mobility on SDS-polyacrylamide gels, but the sequence of the aap1 gene predicts a molecular weight of 5,815 for this protein. PMID:6223276

  11. High throughput gene complementation screening permits identification of a mammalian mitochondrial protein synthesis (ρ(-)) mutant.

    PubMed

    Potluri, Prasanth; Procaccio, Vincent; Scheffler, Immo E; Wallace, Douglas C

    2016-08-01

    To identify nuclear DNA (nDNA) oxidative phosphorylation (OXPHOS) gene mutations using cultured cells, we have developed a complementation system based on retroviral transduction with a full length cDNA expression library and selection for OXHOS function by growth in galactose. We have used this system to transduce the Chinese hamster V79-G7 OXPHOS mutant cell line with a defect in mitochondrial protein synthesis. The complemented cells were found to have acquired the cDNA for the bS6m polypeptide of the small subunit of the mitochondrial ribosome. bS6m is a 14 kDa polypeptide located on the outside of the mitochondrial 28S ribosomal subunit and interacts with the rRNA. The V79-G7 mutant protein was found to harbor a methionine to threonine missense mutation at codon 13. The hamster bS6m null mutant could also be complemented by its orthologs from either mouse or human. bS6m protein tagged at its C-terminus by HA, His or GFP localized to the mitochondrion and was fully functional. Through site-directed mutagenesis we identified the probable RNA interacting residues of the bS6m peptide and tested the functional significance of mammalian specific C-terminal region. The N-terminus of the bS6m polypeptide functionally corresponds to that of the prokaryotic small ribosomal subunit, but deletion of C-terminal residues along with the zinc ion coordinating cysteine had no functional effect. Since mitochondrial diseases can result from hundreds to thousands of different nDNA gene mutations, this one step viral complementation cloning may facilitate the molecular diagnosis of a range of nDNA mitochondrial disease mutations. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:26946086

  12. The role of SIGMAR1 gene mutation and mitochondrial dysfunction in amyotrophic lateral sclerosis.

    PubMed

    Fukunaga, Kohji; Shinoda, Yasuharu; Tagashira, Hideaki

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) patients exhibit diverse pathologies such as endoplasmic reticulum (ER) stress and mitochondrial dysfunction in motor neurons. Five to ten percent of patients have familial ALS, a form of the disease caused by mutations in ALS-related genes, while sporadic forms of the disease occur in 90-95% of patients. Recently, it was reported that familial ALS patients exhibit a missense mutation in SIGMAR1 (c.304G > C), which encodes sigma-1 receptor (Sig-1R), substituting glutamine for glutamic acid at amino acid residue 102 (p.E102Q). Expression of that mutant Sig-1R(E102Q) protein reduces mitochondrial ATP production, inhibits proteasome activity and causes mitochondrial injury, aggravating ER stress-induced neuronal death in neuro2A cells. In this issue, we discuss mechanisms underlying mitochondrial impairment seen in ALS motor neurons and propose that therapies that protect mitochondria might improve the quality of life (QOL) of ALS patients and should be considered for clinical trials. PMID:25704016

  13. Interaction between yeast mitochondrial and nuclear genomes: null alleles of RTG genes affect resistance to the alkaloid lycorine in rho0 petites of Saccharomyces cerevisiae.

    PubMed

    Del Giudice, Luigi; Massardo, Domenica Rita; Pontieri, Paola; Wolf, Klaus

    2005-07-18

    Some nuclear genes in Saccharomyces cerevisiae (S. cerevisiae) respond to signals from the mitochondria in a process called by Butow (Cell Death Differ. 9 (2002) 1043-1045) retrograde regulation. Expression of these genes is activated in cells lacking mitochondrial function by involvement of RTG1, RTG2 and RTG3 genes whose protein products bind to "R-boxes" in the promoter region; RTG2p is a cytoplasmic protein. Since S. cerevisiae rho0 strains, lacking the entire mitochondrial genome, are resistant to lycorine, an alkaloid extracted from Amaryllis plants, it could be hypothesized that in rho0 cells the dysfunctional mitochondrial status stimulates overexpression of nuclear genes very likely involved in both nuclear and mitochondrial DNA replication. In this report we show that the resistance of rho0 cells to lycorine is affected by the deletion of RTG genes. PMID:15893890

  14. Targeted impairment of thymidine kinase 2 expression in cells induces mitochondrial DNA depletion and reveals molecular mechanisms of compensation of mitochondrial respiratory activity

    SciTech Connect

    Villarroya, Joan; Lara, Mari-Carmen; Dorado, Beatriz; Garrido, Marta; Garcia-Arumi, Elena; Meseguer, Anna; Hirano, Michio; Vila, Maya R.

    2011-04-08

    Highlights: {yields} We impaired TK2 expression in Ost TK1{sup -} cells via siRNA-mediated interference (TK2{sup -}). {yields} TK2 impairment caused severe mitochondrial DNA (mtDNA) depletion in quiescent cells. {yields} Despite mtDNA depletion, TK2{sup -} cells show high cytochrome oxidase activity. {yields} Depletion of mtDNA occurs without imbalance in the mitochondrial dNTP pool. {yields} Nuclear-encoded ENT1, DNA-pol {gamma}, TFAM and TP gene expression is lowered in TK2{sup -} cells. -- Abstract: The mitochondrial DNA (mtDNA) depletion syndrome comprises a clinically heterogeneous group of diseases characterized by reductions of the mtDNA abundance, without associated point mutations or rearrangements. We have developed the first in vitro model to study of mtDNA depletion due to reduced mitochondrial thymidine kinase 2 gene (TK2) expression in order to understand the molecular mechanisms involved in mtDNA depletion syndrome due to TK2 mutations. Small interfering RNA targeting TK2 mRNA was used to decrease TK2 expression in Ost TK1{sup -} cells, a cell line devoid of endogenous thymidine kinase 1 (TK1). Stable TK2-deficient cell lines showed a reduction of TK2 levels close to 80%. In quiescent conditions, TK2-deficient cells showed severe mtDNA depletion, also close to 80% the control levels. However, TK2-deficient clones showed increased cytochrome c oxidase activity, higher cytochrome c oxidase subunit I transcript levels and higher subunit II protein expression respect to control cells. No alterations of the deoxynucleotide pools were found, whereas a reduction in the expression of genes involved in nucleoside/nucleotide homeostasis (human equilibrative nucleoside transporter 1, thymidine phosphorylase) and mtDNA maintenance (DNA-polymerase {gamma}, mitochondrial transcription factor A) was observed. Our findings highlight the importance of cellular compensatory mechanisms that enhance the expression of respiratory components to ensure respiratory activity

  15. Nuclear Neighborhoods and Gene Expression

    PubMed Central

    Zhao, Rui; Bodnar, Megan S.; Spector, David L.

    2009-01-01

    Summary The eukaryotic nucleus is a highly compartmentalized and dynamic environment. Chromosome territories are arranged non-randomly within the nucleus and numerous studies have indicated that a gene’s position in the nucleus can impact its transcriptional activity. Here, we focus on recent advances in our understanding of the influence of specific nuclear neighborhoods on gene expression or repression. Nuclear neighborhoods associated with transcriptional repression include the inner nuclear membrane/nuclear lamina and peri-nucleolar chromatin, whereas neighborhoods surrounding the nuclear pore complex, PML nuclear bodies, and nuclear speckles seem to be transcriptionally permissive. While nuclear position appears to play an important role in gene expression, it is likely to be only one piece of a flexible puzzle that incorporates numerous parameters. We are still at a very early, yet exciting stage in our journey toward deciphering the mechanism(s) that govern the permissiveness of gene expression/repression within different nuclear neighborhoods. PMID:19339170

  16. Differential Gene Expression in Glaucoma

    PubMed Central

    Jakobs, Tatjana C.

    2014-01-01

    In glaucoma, regardless of its etiology, retinal ganglion cells degenerate and eventually die. Although age and elevated intraocular pressure (IOP) are the main risk factors, there are still many mysteries in the pathogenesis of glaucoma. The advent of genome-wide microarray expression screening together with the availability of animal models of the disease has allowed analysis of differential gene expression in all parts of the eye in glaucoma. This review will outline the findings of recent genome-wide expression studies and discuss their commonalities and differences. A common finding was the differential regulation of genes involved in inflammation and immunity, including the complement system and the cytokines transforming growth factor β (TGFβ) and tumor necrosis factor α (TNFα). Other genes of interest have roles in the extracellular matrix, cell–matrix interactions and adhesion, the cell cycle, and the endothelin system. PMID:24985133

  17. Transgenic Arabidopsis Gene Expression System

    NASA Technical Reports Server (NTRS)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  18. Progressive mitochondrial myopathy, deafness, and sporadic seizures associated with a novel mutation in the mitochondrial tRNASer(AGY) gene.

    PubMed

    Cardaioli, Elena; Malfatti, Edoardo; Da Pozzo, Paola; Gallus, Gian Nicola; Carluccio, Maria Alessandra; Rufa, Alessandra; Volpi, Nila; Dotti, Maria Teresa; Federico, Antonio

    2011-04-15

    We sequenced the mitochondrial genome from a patient with progressive mitochondrial myopathy associated with deafness, sporadic seizures, and histological and biochemical features of mitochondrial respiratory chain dysfunction. Direct sequencing showed a heteroplasmic mutation at nucleotide 12262 in the tRNASer(AGY) gene. RFLP analysis confirmed that 63% of muscle mtDNA harboured the mutation, while it was absent in all the other tissues. The mutation is predicted to influence the functional behaviour of the aminoacyl acceptor stem of the tRNA. Several point mutations on mitochondrial tRNA genes have been reported in patients affected by encephalomyopathies, but between them only four were reported for tRNASer(AGY). PMID:21257182

  19. Construction of a yeast strain devoid of mitochondrial introns and its use to screen nuclear genes involved in mitochondrial splicing.

    PubMed Central

    Séraphin, B; Boulet, A; Simon, M; Faye, G

    1987-01-01

    We have constructed a respiring yeast strain devoid of mitochondrial introns to screen nuclear pet- mutants for those that play a direct role in mitochondrial intron excision. Intron-less mitochondria are introduced by cytoduction into pet- strains that have been made rho0; cytoductants therefrom recover respiratory competency if the original pet- mutation is required only for mitochondrial splicing. By this means, we have identified 11 complementation groups of such genes. Their total number may be estimated as about 18. Images PMID:3309947

  20. Mitochondrial gene order change in Schistosoma (Platyhelminthes: Digenea: Schistosomatidae).

    PubMed

    Webster, Bonnie L; Littlewood, D Timothy J

    2012-01-01

    In the flatworm genus Schistosoma, species of which include parasites of biomedical and veterinary importance, mitochondrial gene order is radically different in some species. A PCR-based survey of 19 schistosomatid spp. established which of 14 Schistosoma spp. have the ancestral (plesiomorphic) or derived gene order condition. A phylogeny for Schistosoma was estimated and used to infer the origin of the gene order change which is present in all members of a clade containing Schistosoma incognitum and members of the traditionally recognised Schistosoma indicum, Schistosoma mansoni and Schistosomahaematobium spp. groups. Schistosoma turkestanicum, with the plesiomorphic gene order state, is sister to this clade. Common interval analysis suggests change in gene order, from ancestral to derived, consisted of two sequential transposition events: (a) nad1_nad3 to nad3_nad1 and (b) [atp6,nad2]_[nad3,-nad1,cox1,rrnL,rrnS,cox2,nad6] to [nad3,nad1,cox1,rrnL,rrnS,cox2,nad6]_[atp6,nad2], where gene order offragments within square brackets remain unchanged. Gene order change is rare in parasitic flatworms and is a robust synapomorphy for schistosome spp. that exhibit it. The schistosomatid phylogeny casts some doubt on the origin of Schistosoma (Asian or African), highlights the propensity for species to hosts witch amongst mammalian (definitive) hosts, and indicates the likely importance of snail (intermediate)hosts in determining and defining patterns of schistosome radiation and continental invasion. Mitogenomic sampling of Schistosoma dattai and Schistosoma harinasutai to determine gene order, and within key species, especially S. turkestanicum and S. incognitum, to determine ancestral ranges, may help discover the geographic origins of gene order change in the genus. Samples of S. incognitum from India and Thailand suggest this taxon may include cryptic species. PMID:23362512

  1. Detection of gene-anchored amplification polymorphism (GAAP) in the vicinity of plant mitochondrial genes.

    PubMed

    Loridon, K; Saumitou-Laprade, P

    2002-05-01

    A simple, semi-automatable method was established for assessing polymorphism in plant mitochondrial genome. A set of 41 mitochondrial markers based on the published Arabidopsis thaliana sequence was developed in Brassicaceae using a gene-anchored amplification polymorphism (GAAP) strategy. PCR primers were selected based on conserved coding regions of mitochondrial genes and used to amplify the corresponding 5' and/or 3' non-coding flanking regions in order to maximise sequence variability between haplotypes. The variations in fragment size were analysed on a LiCor DNA sequencer, but the methodology is compatible with various sequencing systems using denaturing polyacrylamide gels. One advantage of the method is that GAAP products can be directly sequenced (without any cloning steps) through labelled M13 consensus sequences. Mitochondrial GAAP loci gave clear and simple patterns (one or two bands) that were easy to score and highly reproducible. Nearly all mitochondrial loci examined in A. thaliana were conserved within the Brassicaceae family, and half of the primers generated products when DNA from a distant species, Beta vulgaris (Chenopodiaceae), was used as template. The GAAP markers revealed low levels of polymorphism within species but exhibited a high level of polymorphism among genera and families. Our results showed some discrepancies with respect to the published mtDNA sequence of A. thaliana. PMID:12073035

  2. Neighboring Genes Show Correlated Evolution in Gene Expression

    PubMed Central

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  3. High Variability of Mitochondrial Gene Order among Fungi

    PubMed Central

    Aguileta, Gabriela; de Vienne, Damien M.; Ross, Oliver N.; Hood, Michael E.; Giraud, Tatiana; Petit, Elsa; Gabaldón, Toni

    2014-01-01

    From their origin as an early alpha proteobacterial endosymbiont to their current state as cellular organelles, large-scale genomic reorganization has taken place in the mitochondria of all main eukaryotic lineages. So far, most studies have focused on plant and animal mitochondrial (mt) genomes (mtDNA), but fungi provide new opportunities to study highly differentiated mtDNAs. Here, we analyzed 38 complete fungal mt genomes to investigate the evolution of mtDNA gene order among fungi. In particular, we looked for evidence of nonhomologous intrachromosomal recombination and investigated the dynamics of gene rearrangements. We investigated the effect that introns, intronic open reading frames (ORFs), and repeats may have on gene order. Additionally, we asked whether the distribution of transfer RNAs (tRNAs) evolves independently to that of mt protein-coding genes. We found that fungal mt genomes display remarkable variation between and within the major fungal phyla in terms of gene order, genome size, composition of intergenic regions, and presence of repeats, introns, and associated ORFs. Our results support previous evidence for the presence of mt recombination in all fungal phyla, a process conspicuously lacking in most Metazoa. Overall, the patterns of rearrangements may be explained by the combined influences of recombination (i.e., most likely nonhomologous and intrachromosomal), accumulated repeats, especially at intergenic regions, and to a lesser extent, mobile element dynamics. PMID:24504088

  4. The complete mitochondrial genome of Pseudocellus pearsei (Chelicerata: Ricinulei) and a comparison of mitochondrial gene rearrangements in Arachnida

    PubMed Central

    Fahrein, Kathrin; Talarico, Giovanni; Braband, Anke; Podsiadlowski, Lars

    2007-01-01

    Background Mitochondrial genomes are widely utilized for phylogenetic and population genetic analyses among animals. In addition to sequence data the mitochondrial gene order and RNA secondary structure data are used in phylogenetic analyses. Arachnid phylogeny is still highly debated and there is a lack of sufficient sequence data for many taxa. Ricinulei (hooded tickspiders) are a morphologically distinct clade of arachnids with uncertain phylogenetic affinities. Results The first complete mitochondrial DNA genome of a member of the Ricinulei, Pseudocellus pearsei (Arachnida: Ricinulei) was sequenced using a PCR-based approach. The mitochondrial genome is a typical circular duplex DNA molecule with a size of 15,099 bp, showing the complete set of genes usually present in bilaterian mitochondrial genomes. Five tRNA genes (trnW, trnY, trnN, trnL(CUN), trnV) show different relative positions compared to other Chelicerata (e.g. Limulus polyphemus, Ixodes spp.). We propose that two events led to this derived gene order: (1) a tandem duplication followed by random deletion and (2) an independent translocation of trnN. Most of the inferred tRNA secondary structures show the common cloverleaf pattern except tRNA-Glu where the TψC-arm is missing. In phylogenetic analyses (maximum likelihood, maximum parsimony, Bayesian inference) using concatenated amino acid and nucleotide sequences of protein-coding genes the basal relationships of arachnid orders remain unresolved. Conclusion Phylogenetic analyses (ML, MP, BI) of arachnid mitochondrial genomes fail to resolve interordinal relationships of Arachnida and remain in a preliminary stage because there is still a lack of mitogenomic data from important taxa such as Opiliones and Pseudoscorpiones. Gene order varies considerably within Arachnida – only eight out of 23 species have retained the putative arthropod ground pattern. Some gene order changes are valuable characters in phylogenetic analysis of intraordinal

  5. Low-dose ionizing radiation induces mitochondrial fusion and increases expression of mitochondrial complexes I and III in hippocampal neurons

    PubMed Central

    Chang, Chuang-Rung; Kao, Mou-Chieh; Chen, Kuan-Wei; Chiu, Shih-Che; Hsu, Ming-Ling; Hsiang, I-Chou; Chen, Yu-Jen; Chen, Linyi

    2015-01-01

    High energy ionizing radiation can cause DNA damage and cell death. During clinical radiation therapy, the radiation dose could range from 15 to 60 Gy depending on targets. While 2 Gy radiation has been shown to cause cancer cell death, studies also suggest a protective potential by low dose radiation. In this study, we examined the effect of 0.2-2 Gy radiation on hippocampal neurons. Low dose 0.2 Gy radiation treatment increased the levels of MTT. Since hippocampal neurons are post-mitotic, this result reveals a possibility that 0.2 Gy irradiation may increase mitochondrial activity to cope with stimuli. Maintaining neural plasticity is an energy-demanding process that requires high efficient mitochondrial function. We thus hypothesized that low dose radiation may regulate mitochondrial dynamics and function to ensure survival of neurons. Our results showed that five days after 0.2 Gy irradiation, no obvious changes on neuronal survival, neuronal synapses, membrane potential of mitochondria, reactive oxygen species levels, and mitochondrial DNA copy numbers. Interestingly, 0.2 Gy irradiation promoted the mitochondria fusion, resulting in part from the increased level of a mitochondrial fusion protein, Mfn2, and inhibition of Drp1 fission protein trafficking to the mitochondria. Accompanying with the increased mitochondrial fusion, the expressions of complexes I and III of the electron transport chain were also increased. These findings suggest that, hippocampal neurons undergo increased mitochondrial fusion to modulate cellular activity as an adaptive mechanism in response to low dose radiation. PMID:26415228

  6. Targeting presequence acquisition after mitochondrial gene transfer to the nucleus occurs by duplication of existing targeting signals.

    PubMed Central

    Kadowaki, K; Kubo, N; Ozawa, K; Hirai, A

    1996-01-01

    We have cloned a gene for mitochondrial ribosomal protein S11 (RPS11), which is encoded in lower plants by the mitochondrial genome, in higher plants by the nuclear genome, demonstrating genetic information transfer from the mitochondrial genome to the nucleus during flowering plant evolution. The sequence s11-1 encodes an N-terminal extension as well as an organelle-derived RPS11 region. Surprisingly, the N-terminal region has high amino acid sequence similarity with the presequence of the beta-subunit of ATP synthase from plant mitochondria, suggesting a common lineage of the presequences. The deduced N-terminal region of s11-2, a second nuclear-encoded homolog of rps11, shows high sequence similarity with the putative presequence of cytochrome oxidase subunit Vb. The sharing of the N-terminal region together with its 5' flanking untranslated nucleotide sequence in different proteins strongly suggests an involvement of duplication/recombination for targeting signal acquisition after gene migration. A remnant of ancestral rps11 sequence, transcribed and subjected to RNA editing, is found in the mitochondrial genome, indicating that inactivation of mitochondrial rps11 gene expression was initiated at the translational level prior to termination of transcription. Images PMID:8978691

  7. Profiling of genes central to human mitochondrial energy metabolism following low intensity laser irradiation

    NASA Astrophysics Data System (ADS)

    Houreld, Nicolette N.; Masha, Roland; Abrahamse, Heidi

    2012-09-01

    Background: Wound healing involves three overlapping phases: inflammation, granulation and tissue remodelling. If this process is disrupted, delayed wound healing ensues, a common complication seen in diabetic patients. Low intensity laser irradiation (LILI) has been found to promote healing in such patients. However, the exact mechanisms of action are poorly understood. Purpose: This study aimed to profile the expression of key genes involved in mitochondrial respiration. Materials and Methods: Diabetic wounded fibroblast cells were exposed to a wavelength of 660 nm and a fluence of 5 J/cm2 and incubated for 30 min. Total RNA was isolated and 1 μg reverse transcribed into cDNA which was used for real-time polymerase chain reaction (PCR) array analysis. The array contained genes important for each of the mitochondrial complexes involved in the electron transport chain (ETC). Adenosine triphosphate (ATP) levels were also determined post-irradiation by ATP luminescence. Results: Genes involved in complex IV (cytochrome c oxidase), COX6B2 and COX6C, and PPA1 which is involved in complex V (ATP synthase) were significantly up-regulated. There was a significant increase in ATP levels in diabetic wounded cells post-irradiation. Discussion and Conclusion: LILI stimulates the ETC at a transcriptional level, resulting in an increase in ATP. This study helps understand the mechanisms of LILI in diabetic wound healing, and gives information on activation of genes in response to LILI.

  8. Activation of a Mitochondrial ATPase Gene Induces Abnormal Seed Development in Arabidopsis

    PubMed Central

    Baek, Kon; Seo, Pil Joon; Park, Chung-Mo

    2011-01-01

    The ATPases associated with various cellular activities (AAA) proteins are widespread in living organisms. Some of the AAA-type ATPases possess metalloprotease activities. Other members constitute the 26S proteasome complexes. In recent years, a few AAA members have been implicated in vesicle-mediated secretion, membrane fusion, cellular organelle biogenesis, and hypersensitive responses (HR) in plants. However, the physiological roles and biochemical activities of plant AAA proteins have not yet been defined at the molecular level, and regulatory mechanisms underlying their functions are largely unknown. In this study, we showed that overexpression of an Arabidopsis gene encoding a mitochondrial AAA protein, ATPase-in-Seed-Development (ASD), induces morphological and anatomical defects in seed maturation. The ASD gene is expressed at a high level during the seed maturation process and in mature seeds but is repressed rapidly in germinating seeds. Transgenic plants overexpressing the ASD gene are morphologically normal. However, seed formation is severely disrupted in the transgenic plants. The ASD gene is induced by abiotic stresses, such as low temperatures and high salinity, in an abscisic acid (ABA)- dependent manner. The ASD protein possesses ATPase activity and is localized into the mitochondria. Our observations suggest that ASD may play a role in seed maturation by influencing mitochondrial function under abiotic stress. PMID:21359673

  9. Lifelong Parental Voluntary Wheel Running Increases Offspring Hippocampal Pgc-1α mRNA Expression But Not Mitochondrial Content or Bdnf Expression

    PubMed Central

    Venezia, Andrew C.; Guth, Lisa M.; Spangenburg, Espen E.; Roth, Stephen M.

    2015-01-01

    When exercise is initiated during pregnancy, offspring of physically active mothers have higher hippocampal expression of brain derived neurotrophic factor (Bdnf) and other plasticity and mitochondrial-associated genes, resulting in hippocampal structural and functional adaptations. In the present study, we examined the effects of lifelong parental voluntary wheel running (before, during, and after pregnancy) on offspring hippocampal mRNA expression of genes implicated in the exercise-induced improvement of cognitive function. C57BL/6 mice were individually housed at 8 weeks of age with (EX; n=20) or without (SED; n=20) access to a computer-monitored voluntary running wheel (VRW) for 12 weeks prior to breeding. EX breeders maintained access to the VRW throughout breeding, pregnancy, and lactation. Male offspring were housed in sedentary cages, regardless of parental group, and were sacrificed at 8 (n=18) or 28 weeks (n=19). PCR was used to assess mRNA expression of several genes and mitochondrial content (ratio of mitochondrial to nuclear DNA) in hippocampal homogenates. We found significantly higher peroxisome proliferator-activated receptor γ coactivator 1 alpha (Pgc-1α) mRNA expression in EX offspring compared to SED offspring at 8 wks (p=0.04), though the effect was no longer present at 28 wks. There was no difference in mitochondrial content or expression of Bdnf or any other mRNA targets between offspring at 8 or 28 wks. In contrast to exercise initiated during pregnancy, parental voluntary physical activity initiated early in life and maintained throughout pregnancy has little effect on offspring mRNA expression of genes implicated in exercise-induced hippocampal plasticity. PMID:25919993

  10. Gene expression during memory formation.

    PubMed

    Igaz, Lionel Muller; Bekinschtein, Pedro; Vianna, Monica M R; Izquierdo, Ivan; Medina, Jorge H

    2004-01-01

    For several decades, neuroscientists have provided many clues that point out the involvement of de novo gene expression during the formation of long-lasting forms of memory. However, information regarding the transcriptional response networks involved in memory formation has been scarce and fragmented. With the advent of genome-based technologies, combined with more classical approaches (i.e., pharmacology and biochemistry), it is now feasible to address those relevant questions--which gene products are modulated, and when that processes are necessary for the proper storage of memories--with unprecedented resolution and scale. Using one-trial inhibitory (passive) avoidance training of rats, one of the most studied tasks so far, we found two time windows of sensitivity to transcriptional and translational inhibitors infused into the hippocampus: around the time of training and 3-6 h after training. Remarkably, these periods perfectly overlap with the involvement of hippocampal cAMP/PKA (protein kinase A) signaling pathways in memory consolidation. Given the complexity of transcriptional responses in the brain, particularly those related to processing of behavioral information, it was clearly necessary to address this issue with a multi-variable, parallel-oriented approach. We used cDNA arrays to screen for candidate inhibitory avoidance learning-related genes and analyze the dynamic pattern of gene expression that emerges during memory consolidation. These include genes involved in intracellular kinase networks, synaptic function, DNA-binding and chromatin modification, transcriptional activation and repression, translation, membrane receptors, and oncogenes, among others. Our findings suggest that differential and orchestrated hippocampal gene expression is necessary in both early and late periods of long-term memory consolidation. Additionally, this kind of studies may lead to the identification and characterization of genes that are relevant for the pathogenesis

  11. Influence of mitochondria on gene expression in a citrus cybrid.

    PubMed

    Bassene, Jean-Baptiste; Froelicher, Yann; Navarro, Luis; Ollitrault, Patrick; Ancillo, Gema

    2011-06-01

    The production of cybrids, combining nucleus of a species with alien cytoplasmic organelles, is a valuable method used for improvement of various crops. Several citrus cybrids have been created by somatic hybridization. These genotypes are interesting models to analyze the impact of cytoplasmic genome change on nuclear genome expression. Herein, we report genome-wide gene expression analysis in leaves of a citrus cybrid between C. reticulata cv 'Willowleaf mandarin' and C. limon cv 'Eureka lemon' compared with its lemon parent, using a Citrus 20K cDNA microarray. Molecular analysis showed that this cybrid possesses nuclear and chloroplast genomes of Eureka lemon plus mitochondria from Willowleaf mandarin and, therefore, can be considered as a lemon bearing foreign mitochondria. Mandarin mitochondria influenced the expression of a large set of lemon nuclear genes causing an over-expression of 480 of them and repression of 39 genes. Quantitative real-time RT-PCR further confirmed the credibility of microarray data. Genes over-expressed in cybrid leaves are predominantly attributed to the functional category "cellular protein metabolism" whereas in the down-regulated none functional category was enriched. Overall, mitochondria replacement affected different nuclear genes including particularly genes predicted to be involved in mitochondrial retrograde signaling. Mitochondria regulate all cell structures even chloroplast status. These results suggest that nuclear gene expression is modulated with respect to new information received from the foreign organelle, with the final objective to suit specific needs to ensure better cell physiological balance. PMID:21308470

  12. Flower-enhanced expression of a nuclear-encoded mitochondrial respiratory protein is associated with changes in mitochondrion number.

    PubMed Central

    Huang, J; Struck, F; Matzinger, D F; Levings, C S

    1994-01-01

    The mitochondrial Rieske iron-sulfur protein is an obligatory component of the respiratory electron transport chain that is encoded by a single-copy gene in mammals and fungi. In contrast, this protein is encoded by a small gene family in dicotyledonous tobacco and monocotyledonous maize. We cloned four cDNAs from tobacco that encode the mitochondrial Rieske iron-sulfur protein. These clones, along with a previously isolated cDNA, represent five independent members of the gene family that can be divided into three subfamilies. All of these genes were derived from the two progenitor species and were expressed in amphidiploid tobacco. The proteins encoded by these five genes are probably functional because they all contain the universally conserved hexyl peptides necessary for the 2Fe-2S cluster formation. The expression of the Rieske protein gene family is differentially regulated; a 6- to 11-fold higher level of steady state transcripts was found in flowers than in leaves, stems, and roots. Members of at least two subfamilies were preferentially expressed in flowers, indicating that they share a common cis-regulatory element(s), which can respond to a flower-specific signal(s). Although approximately 10 times more transcripts occurred in flowers than in leaves, flower and leaf mitochondria contained a similar amount of the Rieske protein. Flowers, however, contained seven times more Rieske proteins than leaves. These results indicated an increase in mitochondrion number in flowers. High-energy demands during anther development might bring about an increase in mitochondrion numbers in flowers and the flower-enhanced expression of the Rieske protein gene family. Our results suggested that nuclear genes encoding mitochondrial respiratory proteins could sense and respond to changes in energy metabolism and/or changes in mitochondrion numbers. PMID:8180500

  13. Genetic Variants in Nuclear-Encoded Mitochondrial Genes Influence AIDS Progression

    PubMed Central

    Hendrickson, Sher L.; Lautenberger, James A.; Chinn, Leslie Wei; Malasky, Michael; Sezgin, Efe; Kingsley, Lawrence A.; Goedert, James J.; Kirk, Gregory D.; Gomperts, Edward D.; Buchbinder, Susan P.; Troyer, Jennifer L.; O'Brien, Stephen J.

    2010-01-01

    Background The human mitochondrial genome includes only 13 coding genes while nuclear-encoded genes account for 99% of proteins responsible for mitochondrial morphology, redox regulation, and energetics. Mitochondrial pathogenesis occurs in HIV patients and genetically, mitochondrial DNA haplogroups with presumed functional differences have been associated with differential AIDS progression. Methodology/Principal Findings Here we explore whether single nucleotide polymorphisms (SNPs) within 904 of the estimated 1,500 genes that specify nuclear-encoded mitochondrial proteins (NEMPs) influence AIDS progression among HIV-1 infected patients. We examined NEMPs for association with the rate of AIDS progression using genotypes generated by an Affymetrix 6.0 genotyping array of 1,455 European American patients from five US AIDS cohorts. Successfully genotyped SNPs gave 50% or better haplotype coverage for 679 of known NEMP genes. With a Bonferroni adjustment for the number of genes and tests examined, multiple SNPs within two NEMP genes showed significant association with AIDS progression: acyl-CoA synthetase medium-chain family member 4 (ACSM4) on chromosome 12 and peroxisomal D3,D2-enoyl-CoA isomerase (PECI) on chromosome 6. Conclusions Our previous studies on mitochondrial DNA showed that European haplogroups with presumed functional differences were associated with AIDS progression and HAART mediated adverse events. The modest influences of nuclear-encoded mitochondrial genes found in the current study add support to the idea that mitochondrial function plays a role in AIDS pathogenesis. PMID:20877624

  14. Physella acuta: atypical mitochondrial gene order among panpulmonates (Gastropoda)

    PubMed Central

    Nolan, Journey R.; Bergthorsson, Ulfar; Adema, Coen M.

    2014-01-01

    Mitochondrial (mt) sequences are frequently used for phylogenetic reconstruction and for identification of species of molluscs. This study expands the phylogenetic range of Hygrophila (Panpulmonata) for which such sequence data are available by characterizing the full mt genome of the invasive freshwater snail Physella acuta (Physidae). The mt genome sequences of two P. acuta isolates from Stubblefield Lake, New Mexico, USA, differed in length (14,490 vs 14,314 bp) and showed 11.49% sequence divergence, whereas ITS1 and ITS2 sequences from the nuclear genome differed by 1.75%. The mt gene order of P. acuta (cox1, P, nad6, nad5, nad1, D, F, cox2, Y, W, nad4L, C, Q, atp6, R, E, rrnS, M, T, cox3, I, nad2, K, V, rrnL, L1, A, cytb, G, H, L2, atp8, N, nad2, S1, S2, nad4) differs considerably from the relatively conserved gene order within Panpulmonata. Phylogenetic trees show that the 13 protein-encoding mt gene sequences (equivalent codons) of P. acuta group according to gastropod phylogeny, yet branch lengths and dN/dS ratios for P. acuta indicate elevated amino acid substitutions relative to other gastropods. This study indicates that mt sequences of P. acuta are phylogenetically informative despite a considerable intraspecific divergence and the atypical gene order in its mt genome. PMID:25368439

  15. Gene expression profile of pulpitis.

    PubMed

    Galicia, J C; Henson, B R; Parker, J S; Khan, A A

    2016-06-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the significance analysis of microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (⩾30 mm on VAS) compared with those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology. PMID:27052691

  16. Systems Biophysics of Gene Expression

    PubMed Central

    Vilar, Jose M.G.; Saiz, Leonor

    2013-01-01

    Gene expression is a process central to any form of life. It involves multiple temporal and functional scales that extend from specific protein-DNA interactions to the coordinated regulation of multiple genes in response to intracellular and extracellular changes. This diversity in scales poses fundamental challenges to the use of traditional approaches to fully understand even the simplest gene expression systems. Recent advances in computational systems biophysics have provided promising avenues to reliably integrate the molecular detail of biophysical process into the system behavior. Here, we review recent advances in the description of gene regulation as a system of biophysical processes that extend from specific protein-DNA interactions to the combinatorial assembly of nucleoprotein complexes. There is now basic mechanistic understanding on how promoters controlled by multiple, local and distal, DNA binding sites for transcription factors can actively control transcriptional noise, cell-to-cell variability, and other properties of gene regulation, including precision and flexibility of the transcriptional responses. PMID:23790365

  17. Control of Renin Gene Expression

    PubMed Central

    Glenn, Sean T.; Jones, Craig A.; Gross, Kenneth W.; Pan, Li

    2015-01-01

    Renin, as part of the renin-angiotensin system, plays a critical role in the regulation of blood pressure, electrolyte homeostasis, mammalian renal development and progression of fibrotic/hypertrophic diseases. Renin gene transcription is subject to complex developmental and tissue-specific regulation. Initial studies using the mouse As4.1 cell line, which has many characteristics of the renin-expressing juxtaglomerular cells of the kidney, have identified a proximal promoter region (−197 to −50 bp) and an enhancer (−2866 to −2625 bp) upstream of the Ren-1c gene, which are critical for renin gene expression. The proximal promoter region contains several transcription factor-binding sites including a binding site for the products of the developmental control genes Hox. The enhancer consists of at least 11 transcription factor-binding sites and is responsive to various signal transduction pathways including cAMP, retinoic acid, endothelin-1, and cytokines, all of which are known to alter renin mRNA levels. Furthermore, in vivo models have validated several of these key components found within the proximal promoter region and the enhancer as well as other key sites necessary for renin gene transcription. PMID:22576577

  18. Mitochondrial network genes in the skeletal muscle of amyotrophic lateral sclerosis patients.

    PubMed

    Bernardini, Camilla; Censi, Federica; Lattanzi, Wanda; Barba, Marta; Calcagnini, Giovanni; Giuliani, Alessandro; Tasca, Giorgio; Sabatelli, Mario; Ricci, Enzo; Michetti, Fabrizio

    2013-01-01

    Recent evidence suggested that muscle degeneration might lead and/or contribute to neurodegeneration, thus it possibly play a key role in the etiopathogenesis and progression of amyotrophic lateral sclerosis (ALS). To test this hypothesis, this study attempted to categorize functionally relevant genes within the genome-wide expression profile of human ALS skeletal muscle, using microarray technology and gene regulatory network analysis. The correlation network structures significantly change between patients and controls, indicating an increased inter-gene connection in patients compared to controls. The gene network observed in the ALS group seems to reflect the perturbation of muscle homeostasis and metabolic balance occurring in affected individuals. In particular, the network observed in the ALS muscles includes genes (PRKR1A, FOXO1, TRIM32, ACTN3, among others), whose functions connect the sarcomere integrity to mitochondrial oxidative metabolism. Overall, the analytical approach used in this study offer the possibility to observe higher levels of correlation (i.e. common expression trends) among genes, whose function seems to be aberrantly activated during the progression of muscle atrophy. PMID:23469062

  19. Mitochondrial Network Genes in the Skeletal Muscle of Amyotrophic Lateral Sclerosis Patients

    PubMed Central

    Lattanzi, Wanda; Barba, Marta; Calcagnini, Giovanni; Giuliani, Alessandro; Tasca, Giorgio; Sabatelli, Mario; Ricci, Enzo; Michetti, Fabrizio

    2013-01-01

    Recent evidence suggested that muscle degeneration might lead and/or contribute to neurodegeneration, thus it possibly play a key role in the etiopathogenesis and progression of amyotrophic lateral sclerosis (ALS). To test this hypothesis, this study attempted to categorize functionally relevant genes within the genome-wide expression profile of human ALS skeletal muscle, using microarray technology and gene regulatory network analysis. The correlation network structures significantly change between patients and controls, indicating an increased inter-gene connection in patients compared to controls. The gene network observed in the ALS group seems to reflect the perturbation of muscle homeostasis and metabolic balance occurring in affected individuals. In particular, the network observed in the ALS muscles includes genes (PRKR1A, FOXO1, TRIM32, ACTN3, among others), whose functions connect the sarcomere integrity to mitochondrial oxidative metabolism. Overall, the analytical approach used in this study offer the possibility to observe higher levels of correlation (i.e. common expression trends) among genes, whose function seems to be aberrantly activated during the progression of muscle atrophy. PMID:23469062

  20. A unique horizontal gene transfer event has provided the octocoral mitochondrial genome with an active mismatch repair gene that has potential for an unusual self-contained function

    PubMed Central

    2011-01-01

    Background The mitochondrial genome of the Octocorallia has several characteristics atypical for metazoans, including a novel gene suggested to function in DNA repair. This mtMutS gene is favored for octocoral molecular systematics, due to its high information content. Several hypotheses concerning the origins of mtMutS have been proposed, and remain equivocal, although current weight of support is for a horizontal gene transfer from either an epsilonproteobacterium or a large DNA virus. Here we present new and compelling evidence on the evolutionary origin of mtMutS, and provide the very first data on its activity, functional capacity and stability within the octocoral mitochondrial genome. Results The mtMutS gene has the expected conserved amino acids, protein domains and predicted tertiary protein structure. Phylogenetic analysis indicates that mtMutS is not a member of the MSH family and therefore not of eukaryotic origin. MtMutS clusters closely with representatives of the MutS7 lineage; further support for this relationship derives from the sharing of a C-terminal endonuclease domain that confers a self-contained mismatch repair function. Gene expression analyses confirm that mtMutS is actively transcribed in octocorals. Rates of mitochondrial gene evolution in mtMutS-containing octocorals are lower than in their hexacoral sister-group, which lacks the gene, although paradoxically the mtMutS gene itself has higher rates of mutation than other octocoral mitochondrial genes. Conclusions The octocoral mtMutS gene is active and codes for a protein with all the necessary components for DNA mismatch repair. A lower rate of mitochondrial evolution, and the presence of a nicking endonuclease domain, both indirectly support a theory of self-sufficient DNA mismatch repair within the octocoral mitochondrion. The ancestral affinity of mtMutS to non-eukaryotic MutS7 provides compelling support for an origin by horizontal gene transfer. The immediate vector of transmission

  1. Gene expression throughout a vertebrate's embryogenesis

    PubMed Central

    2011-01-01

    Background Describing the patterns of gene expression during embryonic development has broadened our understanding of the processes and patterns that define morphogenesis. Yet gene expression patterns have not been described throughout vertebrate embryogenesis. This study presents statistical analyses of gene expression during all 40 developmental stages in the teleost Fundulus heteroclitus using four biological replicates per stage. Results Patterns of gene expression for 7,000 genes appear to be important as they recapitulate developmental timing. Among the 45% of genes with significant expression differences between pairs of temporally adjacent stages, significant differences in gene expression vary from as few as five to more than 660. Five adjacent stages have disproportionately more significant changes in gene expression (> 200 genes) relative to other stages: four to eight and eight to sixteen cell stages, onset of circulation, pre and post-hatch, and during complete yolk absorption. The fewest differences among adjacent stages occur during gastrulation. Yet, at stage 16, (pre-mid-gastrulation) the largest number of genes has peak expression. This stage has an over representation of genes in oxidative respiration and protein expression (ribosomes, translational genes and proteases). Unexpectedly, among all ribosomal genes, both strong positive and negative correlations occur. Similar correlated patterns of expression occur among all significant genes. Conclusions These data provide statistical support for the temporal dynamics of developmental gene expression during all stages of vertebrate development. PMID:21356103

  2. Expression of a mitochondrial progesterone receptor in human spermatozoa correlates with a progestin-dependent increase in mitochondrial membrane potential.

    PubMed

    Tantibhedhyangkul, J; Hawkins, K C; Dai, Q; Mu, K; Dunn, C N; Miller, S E; Price, T M

    2014-11-01

    The hyperactivation of human spermatozoa necessary for fertilization requires a substantial increase in cellular energy production. The factors responsible for increasing cellular energy remain poorly defined. This article proposes a role for a novel mitochondrial progesterone receptor (PR-M) in modulation of mitochondrial activity. Basic science studies demonstrate a 38 kDa protein with western blot analysis, consistent with PR-M; whereas imaging studies with confocal and immunoelectron microscopy demonstrate a PR on the mitochondria. Treatment with a PR-specific progestin shows increased mitochondrial membrane potential, not related to induction of an acrosome reaction. The increase in mitochondrial membrane potential was inhibited by a specific PR antagonist, but not affected by an inhibitor to the progesterone-dependent Catsper voltage-activated channel. In conclusion, these studies suggest expression of a novel mitochondrial PR in human spermatozoa with a progestin-dependent increase in mitochondrial activity. This mechanism may serve to enhance cellular energy production as the spermatozoa traverse the female genital tract being exposed to increasing concentrations of progesterone. PMID:25187426

  3. Gene Therapy Corrects Mitochondrial Dysfunction in Hematopoietic Progenitor Cells and Fibroblasts from Coq9R239X Mice.

    PubMed

    Barriocanal-Casado, Eliana; Cueto-Ureña, Cristina; Benabdellah, Karim; Gutiérrez-Guerrero, Alejandra; Cobo, Marién; Hidalgo-Gutiérrez, Agustín; Rodríguez-Sevilla, Juan José; Martín, Francisco; López, Luis C

    2016-01-01

    Recent clinical trials have shown that in vivo and ex vivo gene therapy strategies can be an option for the treatment of several neurological disorders. Both strategies require efficient and safe vectors to 1) deliver the therapeutic gene directly into the CNS or 2) to genetically modify stem cells that will be used as Trojan horses for the systemic delivery of the therapeutic protein. A group of target diseases for these therapeutic strategies are mitochondrial encephalopathies due to mutations in nuclear DNA genes. In this study, we have developed a lentiviral vector (CCoq9WP) able to overexpress Coq9 mRNA and COQ9 protein in mouse embryonic fibroblasts (MEFs) and hematopoietic progenitor cells (HPCs) from Coq9R239X mice, an animal model of mitochondrial encephalopathy due to primary Coenzyme Q (CoQ) deficiency. Ectopic over-expression of Coq9 in both cell types restored the CoQ biosynthetic pathway and mitochondrial function, improving the fitness of the transduced cells. These results show the potential of the CCoq9WP lentiviral vector as a tool for gene therapy to treat mitochondrial encephalopathies. PMID:27341668

  4. Gene Therapy Corrects Mitochondrial Dysfunction in Hematopoietic Progenitor Cells and Fibroblasts from Coq9R239X Mice

    PubMed Central

    Benabdellah, Karim; Gutiérrez-Guerrero, Alejandra; Cobo, Marién; Hidalgo-Gutiérrez, Agustín; Rodríguez-Sevilla, Juan José; Martín, Francisco

    2016-01-01

    Recent clinical trials have shown that in vivo and ex vivo gene therapy strategies can be an option for the treatment of several neurological disorders. Both strategies require efficient and safe vectors to 1) deliver the therapeutic gene directly into the CNS or 2) to genetically modify stem cells that will be used as Trojan horses for the systemic delivery of the therapeutic protein. A group of target diseases for these therapeutic strategies are mitochondrial encephalopathies due to mutations in nuclear DNA genes. In this study, we have developed a lentiviral vector (CCoq9WP) able to overexpress Coq9 mRNA and COQ9 protein in mouse embryonic fibroblasts (MEFs) and hematopoietic progenitor cells (HPCs) from Coq9R239X mice, an animal model of mitochondrial encephalopathy due to primary Coenzyme Q (CoQ) deficiency. Ectopic over-expression of Coq9 in both cell types restored the CoQ biosynthetic pathway and mitochondrial function, improving the fitness of the transduced cells. These results show the potential of the CCoq9WP lentiviral vector as a tool for gene therapy to treat mitochondrial encephalopathies. PMID:27341668

  5. Gene Expression Studies in Mosquitoes

    PubMed Central

    Chen, Xlao-Guang; Mathur, Geetika; James, Anthony A.

    2009-01-01

    Research on gene expression in mosquitoes is motivated by both basic and applied interests. Studies of genes involved in hematophagy, reproduction, olfaction, and immune responses reveal an exquisite confluence of biological adaptations that result in these highly-successful life forms. The requirement of female mosquitoes for a bloodmeal for propagation has been exploited by a wide diversity of viral, protozoan and metazoan pathogens as part of their life cycles. Identifying genes involved in host-seeking, blood feeding and digestion, reproduction, insecticide resistance and susceptibility/refractoriness to pathogen development is expected to provide the bases for the development of novel methods to control mosquito-borne diseases. Advances in mosquito transgenesis technologies, the availability of whole genome sequence information, mass sequencing and analyses of transcriptomes and RNAi techniques will assist development of these tools as well as deepen the understanding of the underlying genetic components for biological phenomena characteristic of these insect species. PMID:19161831

  6. Host Mitochondrial Association Evolved in the Human Parasite Toxoplasma gondii via Neofunctionalization of a Gene Duplicate.

    PubMed

    Adomako-Ankomah, Yaw; English, Elizabeth D; Danielson, Jeffrey J; Pernas, Lena F; Parker, Michelle L; Boulanger, Martin J; Dubey, Jitender P; Boyle, Jon P

    2016-05-01

    In Toxoplasma gondii, an intracellular parasite of humans and other animals, host mitochondrial association (HMA) is driven by a gene family that encodes multiple mitochondrial association factor 1 (MAF1) proteins. However, the importance of MAF1 gene duplication in the evolution of HMA is not understood, nor is the impact of HMA on parasite biology. Here we used within- and between-species comparative analysis to determine that the MAF1 locus is duplicated in T. gondii and its nearest extant relative Hammondia hammondi, but not another close relative, Neospora caninum Using cross-species complementation, we determined that the MAF1 locus harbors multiple distinct paralogs that differ in their ability to mediate HMA, and that only T. gondii and H. hammondi harbor HMA(+) paralogs. Additionally, we found that exogenous expression of an HMA(+) paralog in T. gondii strains that do not normally exhibit HMA provides a competitive advantage over their wild-type counterparts during a mouse infection. These data indicate that HMA likely evolved by neofunctionalization of a duplicate MAF1 copy in the common ancestor of T. gondii and H. hammondi, and that the neofunctionalized gene duplicate is selectively advantageous. PMID:26920761

  7. Host Mitochondrial Association Evolved in the Human Parasite Toxoplasma gondii via Neofunctionalization of a Gene Duplicate

    PubMed Central

    Adomako-Ankomah, Yaw; English, Elizabeth D.; Danielson, Jeffrey J.; Pernas, Lena F.; Parker, Michelle L.; Boulanger, Martin J.; Dubey, Jitender P.; Boyle, Jon P.

    2016-01-01

    In Toxoplasma gondii, an intracellular parasite of humans and other animals, host mitochondrial association (HMA) is driven by a gene family that encodes multiple mitochondrial association factor 1 (MAF1) proteins. However, the importance of MAF1 gene duplication in the evolution of HMA is not understood, nor is the impact of HMA on parasite biology. Here we used within- and between-species comparative analysis to determine that the MAF1 locus is duplicated in T. gondii and its nearest extant relative Hammondia hammondi, but not another close relative, Neospora caninum. Using cross-species complementation, we determined that the MAF1 locus harbors multiple distinct paralogs that differ in their ability to mediate HMA, and that only T. gondii and H. hammondi harbor HMA+ paralogs. Additionally, we found that exogenous expression of an HMA+ paralog in T. gondii strains that do not normally exhibit HMA provides a competitive advantage over their wild-type counterparts during a mouse infection. These data indicate that HMA likely evolved by neofunctionalization of a duplicate MAF1 copy in the common ancestor of T. gondii and H. hammondi, and that the neofunctionalized gene duplicate is selectively advantageous. PMID:26920761

  8. The Gene Expression Omnibus database

    PubMed Central

    Clough, Emily; Barrett, Tanya

    2016-01-01

    The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome–protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/. PMID:27008011

  9. The Gene Expression Omnibus Database.

    PubMed

    Clough, Emily; Barrett, Tanya

    2016-01-01

    The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome-protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/. PMID:27008011

  10. Cigarette smoke decreases mitochondrial porin expression and steroidogenesis

    SciTech Connect

    Bose, Mahuya; Whittal, Randy M.; Gairola, C. Gary; Bose, Himangshu S.

    2008-03-01

    Steroidogenic acute regulatory protein (StAR) facilitates the movement of cholesterol from the outer to inner mitochondrial membrane for steroidogenesis. Here, we investigated the effect of cigarette smoke (CS) on steroidogenesis using adrenal mitochondria isolated from mice chronically exposed to CS. Steroidogenesis was decreased approximately 78% in CS-exposed mitochondria, as measured by synthesis of the steroid hormone precursor pregnenolone. This effect was accompanied by decreased mitochondrial import of {sup 35}S-StAR. Further characterization of the imported {sup 35}S-StAR by native gradient PAGE revealed the presence of a high molecular weight complex in both control and CS-exposed groups. Following density gradient fractionation of {sup 35}S-StAR that had been extracted from control mitochondria, precursor StAR could be found in fractions 2-6 and smaller-sized StAR complexes in fractions 6-13. In the CS-exposed group, the appearance of precursor shifted from fraction 1-6 and the smaller complexes in fractions 6-9 disappeared. Mass spectrometric analysis revealed that the {sup 35}S-StAR-associated protein complex was composed of several resident matrix proteins as well as the OMM resident, VDAC. VDAC expression was greatly reduced by CS, and blockage of VDAC with Koenig's polyanion decreased pregnenolone synthesis in isolated mitochondria. Taken together, these results suggest that VDAC may participate in steroidogenesis by promoting StAR interaction with the OMM and that CS may inhibit steroidogenesis by reducing VDAC-StAR interactions.

  11. Repeated, recent and diverse transfers of a mitochondrial gene to the nucleus in flowering plants.

    PubMed

    Adams, K L; Daley, D O; Qiu, Y L; Whelan, J; Palmer, J D

    2000-11-16

    A central component of the endosymbiotic theory for the bacterial origin of the mitochondrion is that many of its genes were transferred to the nucleus. Most of this transfer occurred early in mitochondrial evolution; functional transfer of mitochondrial genes has ceased in animals. Although mitochondrial gene transfer continues to occur in plants, no comprehensive study of the frequency and timing of transfers during plant evolution has been conducted. Here we report frequent loss (26 times) and transfer to the nucleus of the mitochondrial gene rps10 among 277 diverse angiosperms. Characterization of nuclear rps10 genes from 16 out of 26 loss lineages implies that many independent, RNA-mediated rps10 transfers occurred during recent angiosperm evolution; each of the genes may represent a separate functional gene transfer. Thus, rps10 has been transferred to the nucleus at a surprisingly high rate during angiosperm evolution. The structures of several nuclear rps10 genes reveal diverse mechanisms by which transferred genes become activated, including parasitism of pre-existing nuclear genes for mitochondrial or cytoplasmic proteins, and activation without gain of a mitochondrial targeting sequence. PMID:11099041

  12. A novel mitochondrial ATP8 gene mutation in a patient with apical hypertrophic cardiomyopathy and neuropathy.

    PubMed

    Jonckheere, An I; Hogeveen, Marije; Nijtmans, Leo; van den Brand, Mariel; Janssen, Antoon; Diepstra, Heleen; van den Brandt, Frans; van den Heuvel, Bert; Hol, Frans; Hofste, Tom; Kapusta, Livia; Dillmann, U; Shamdeen, M; Smeitink, J; Smeitink, J; Rodenburg, Richard

    2009-01-01

    To identify the biochemical and molecular genetic defect in a 16-year-old patient presenting with apical hypertrophic cardiomyopathy and neuropathy suspected for a mitochondrial disorder.Measurement of the mitochondrial energy-generating system (MEGS) capacity in muscle and enzyme analysis in muscle and fibroblasts were performed. Relevant parts of the mitochondrial DNA were analysed by sequencing.A homoplasmic nonsense mutation m.8529G→A (p.Trp55X) was found in the mitochondrial ATP8 gene in the patient's fibroblasts and muscle tissue. Reduced complex V activity was measured in the patient's fibroblasts and muscle tissue, and was confirmed in cybrid clones containing patient-derived mitochondrial DNAWe describe the first pathogenic mutation in the mitochondrial ATP8 gene, resulting in an improper assembly and reduced activity of the complex V holoenzyme. PMID:21686774

  13. Mitochondrial DNA variants can mediate methylation status of inflammation, angiogenesis and signaling genes.

    PubMed

    Atilano, Shari R; Malik, Deepika; Chwa, Marilyn; Cáceres-Del-Carpio, Javier; Nesburn, Anthony B; Boyer, David S; Kuppermann, Baruch D; Jazwinski, S Michal; Miceli, Michael V; Wallace, Douglas C; Udar, Nitin; Kenney, M Cristina

    2015-08-15

    Mitochondrial (mt) DNA can be classified into haplogroups representing different geographic and/or racial origins of populations. The H haplogroup is protective against age-related macular degeneration (AMD), while the J haplogroup is high risk for AMD. In the present study, we performed comparison analyses of human retinal cell cybrids, which possess identical nuclei, but mtDNA from subjects with either the H or J haplogroups, and demonstrate differences in total global methylation, and expression patterns for two genes related to acetylation and five genes related to methylation. Analyses revealed that untreated-H and -J cybrids have different expression levels for nuclear genes (CFH, EFEMP1, VEGFA and NFkB2). However, expression levels for these genes become equivalent after treatment with a methylation inhibitor, 5-aza-2'-deoxycytidine. Moreover, sequencing of the entire mtDNA suggests that differences in epigenetic status found in cybrids are likely due to single nucleotide polymorphisms (SNPs) within the haplogroup profiles rather than rare variants or private SNPs. In conclusion, our findings indicate that mtDNA variants can mediate methylation profiles and transcription for inflammation, angiogenesis and various signaling pathways, which are important in several common diseases. PMID:25964427

  14. Classification of genes based on gene expression analysis

    NASA Astrophysics Data System (ADS)

    Angelova, M.; Myers, C.; Faith, J.

    2008-05-01

    Systems biology and bioinformatics are now major fields for productive research. DNA microarrays and other array technologies and genome sequencing have advanced to the point that it is now possible to monitor gene expression on a genomic scale. Gene expression analysis is discussed and some important clustering techniques are considered. The patterns identified in the data suggest similarities in the gene behavior, which provides useful information for the gene functionalities. We discuss measures for investigating the homogeneity of gene expression data in order to optimize the clustering process. We contribute to the knowledge of functional roles and regulation of E. coli genes by proposing a classification of these genes based on consistently correlated genes in expression data and similarities of gene expression patterns. A new visualization tool for targeted projection pursuit and dimensionality reduction of gene expression data is demonstrated.

  15. Classification of genes based on gene expression analysis

    SciTech Connect

    Angelova, M. Myers, C. Faith, J.

    2008-05-15

    Systems biology and bioinformatics are now major fields for productive research. DNA microarrays and other array technologies and genome sequencing have advanced to the point that it is now possible to monitor gene expression on a genomic scale. Gene expression analysis is discussed and some important clustering techniques are considered. The patterns identified in the data suggest similarities in the gene behavior, which provides useful information for the gene functionalities. We discuss measures for investigating the homogeneity of gene expression data in order to optimize the clustering process. We contribute to the knowledge of functional roles and regulation of E. coli genes by proposing a classification of these genes based on consistently correlated genes in expression data and similarities of gene expression patterns. A new visualization tool for targeted projection pursuit and dimensionality reduction of gene expression data is demonstrated.

  16. Gene expression changes in response to aging compared to heat stress, oxidative stress and ionizing radiation in Drosophila melanogaster

    PubMed Central

    Landis, Gary; Tower, John

    2012-01-01

    Gene expression changes in response to aging, heat stress, hyperoxia, hydrogen peroxide, and ionizing radiation were compared using microarrays. A set of 18 genes were up-regulated across all conditions, indicating a general stress response shared with aging, including the heat shock protein (Hsp) genes Hsp70, Hsp83 and l(2)efl, the glutathione-S-transferase gene GstD2, and the mitochondrial unfolded protein response (mUPR) gene ref(2)P. Selected gene expression changes were confirmed using quantitative PCR, Northern analysis and GstD-GFP reporter constructs. Certain genes were altered in only a subset of the conditions, for example, up-regulation of numerous developmental pathway and signaling genes in response to hydrogen peroxide. While aging shared features with each stress, aging was more similar to the stresses most associated with oxidative stress (hyperoxia, hydrogen peroxide, ionizing radiation) than to heat stress. Aging is associated with down-regulation of numerous mitochondrial genes, including electron-transport-chain (ETC) genes and mitochondrial metabolism genes, and a sub-set of these changes was also observed upon hydrogen peroxide stress and ionizing radiation stress. Aging shared the largest number of gene expression changes with hyperoxia. The extensive down-regulation of mitochondrial and ETC genes during aging is consistent with an aging-associated failure in mitochondrial maintenance, which may underlie the oxidative stress-like and proteotoxic stress-like responses observed during aging. PMID:23211361

  17. Identification of four soybean reference genes for gene expression normalization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gene expression analysis requires the use of reference genes stably expressed independently of specific tissues or environmental conditions. Housekeeping genes (e.g., actin, tubulin, ribosomal, polyubiquitin and elongation factor 1-alpha) are commonly used as reference genes with the assumption tha...

  18. PHGDH Expression Is Required for Mitochondrial Redox Homeostasis, Breast Cancer Stem Cell Maintenance, and Lung Metastasis.

    PubMed

    Samanta, Debangshu; Park, Youngrok; Andrabi, Shaida A; Shelton, Laura M; Gilkes, Daniele M; Semenza, Gregg L

    2016-08-01

    Intratumoral hypoxia stimulates enrichment of breast cancer stem cells (BCSC), which are critical for metastasis and patient mortality. Here we report a metabolic adaptation that is required for hypoxia-induced BCSC enrichment and metastasis. Hypoxia-inducible factors coordinately regulate expression of genes encoding phosphoglycerate dehydrogenase (PHGDH) and five downstream enzymes in the serine synthesis pathway and mitochondrial one-carbon (folate) cycle. RNAi-mediated silencing of PHGDH expression in both estrogen receptor-positive and negative breast cancer cells led to decreased NADPH levels, disturbed mitochondrial redox homeostasis, and increased apoptosis, which abrogated BCSC enrichment under hypoxic conditions. PHGDH-deficient cells exhibited increased oxidant levels and apoptosis, as well as loss of BCSC enrichment, in response to treatment with carboplatin or doxorubicin. PHGDH-deficient cells were relatively weakly tumorigenic and tumors that did form were deficient in BCSCs, abolishing metastatic capacity. Our findings highlight a role for PHGDH in the formation of secondary (recurrent or metastatic) tumors, with potential implications for therapeutic targeting of advanced cancers. Cancer Res; 76(15); 4430-42. ©2016 AACR. PMID:27280394

  19. Maintaining PGC-1α expression following pressure overload-induced cardiac hypertrophy preserves angiogenesis but not contractile or mitochondrial function

    PubMed Central

    Pereira, Renata O.; Wende, Adam R.; Crum, Ashley; Hunter, Douglas; Olsen, Curtis D.; Rawlings, Tenley; Riehle, Christian; Ward, Walter F.; Abel, E. Dale

    2014-01-01

    During pathological hypertrophy, peroxisome proliferator-activated receptor coactivator 1α (PGC-1α) is repressed in concert with reduced mitochondrial oxidative capacity and fatty acid oxidation (FAO). We therefore sought to determine if maintaining or increasing PGC-1α levels in the context of pressure overload hypertrophy (POH) would preserve mitochondrial function and prevent contractile dysfunction. Pathological cardiac hypertrophy was induced using 4 wk of transverse aortic constriction (TAC) in mice overexpressing the human PGC-1α genomic locus via a bacterial artificial chromosome (TG) and nontransgenic controls (Cont). PGC-1α levels were increased by 40% in TG mice and were sustained following TAC. Although TAC-induced repression of FAO genes and oxidative phosphorylation (oxphos) genes was prevented in TG mice, mitochondrial function and ATP synthesis were equivalently impaired in Cont and TG mice after TAC. Contractile function was also equally impaired in Cont and TG mice following TAC, as demonstrated by decreased +dP/dt and ejection fraction and increased left ventricular developed pressure and end diastolic pressure. Conversely, capillary density was preserved, in concert with increased VEGF expression, while apoptosis and fibrosis were reduced in TG relative to Cont mice after TAC. Hence, sustaining physiological levels of PGC-1α expression following POH, while preserving myocardial vascularity, does not prevent mitochondrial and contractile dysfunction.—Pereira, R. O., Wende, A. R., Crum, A., Hunter, D., Olsen, C. D., Rawlings, T., Riehle, C., Ward, W. F., Abel, E. D. Maintaining PGC-1α expression following pressure overload-induced cardiac hypertrophy preserves angiogenesis but not contractile or mitochondrial function. PMID:24776744

  20. Potential efficacy of mitochondrial genes for animal DNA barcoding: a case study using eutherian mammals

    PubMed Central

    2011-01-01

    Background A well-informed choice of genetic locus is central to the efficacy of DNA barcoding. Current DNA barcoding in animals involves the use of the 5' half of the mitochondrial cytochrome oxidase 1 gene (CO1) to diagnose and delimit species. However, there is no compelling a priori reason for the exclusive focus on this region, and it has been shown that it performs poorly for certain animal groups. To explore alternative mitochondrial barcoding regions, we compared the efficacy of the universal CO1 barcoding region with the other mitochondrial protein-coding genes in eutherian mammals. Four criteria were used for this comparison: the number of recovered species, sequence variability within and between species, resolution to taxonomic levels above that of species, and the degree of mutational saturation. Results Based on 1,179 mitochondrial genomes of eutherians, we found that the universal CO1 barcoding region is a good representative of mitochondrial genes as a whole because the high species-recovery rate (> 90%) was similar to that of other mitochondrial genes, and there were no significant differences in intra- or interspecific variability among genes. However, an overlap between intra- and interspecific variability was still problematic for all mitochondrial genes. Our results also demonstrated that any choice of mitochondrial gene for DNA barcoding failed to offer significant resolution at higher taxonomic levels. Conclusions We suggest that the CO1 barcoding region, the universal DNA barcode, is preferred among the mitochondrial protein-coding genes as a molecular diagnostic at least for eutherian species identification. Nevertheless, DNA barcoding with this marker may still be problematic for certain eutherian taxa and our approach can be used to test potential barcoding loci for such groups. PMID:21276253

  1. Evolution of the mitochondrial genome in snakes: Gene rearrangements and phylogenetic relationships

    PubMed Central

    Yan, Jie; Li, Hongdan; Zhou, Kaiya

    2008-01-01

    Background Snakes as a major reptile group display a variety of morphological characteristics pertaining to their diverse behaviours. Despite abundant analyses of morphological characters, molecular studies using mitochondrial and nuclear genes are limited. As a result, the phylogeny of snakes remains controversial. Previous studies on mitochondrial genomes of snakes have demonstrated duplication of the control region and translocation of trnL to be two notable features of the alethinophidian (all serpents except blindsnakes and threadsnakes) mtDNAs. Our purpose is to further investigate the gene organizations, evolution of the snake mitochondrial genome, and phylogenetic relationships among several major snake families. Results The mitochondrial genomes were sequenced for four taxa representing four different families, and each had a different gene arrangement. Comparative analyses with other snake mitochondrial genomes allowed us to summarize six types of mitochondrial gene arrangement in snakes. Phylogenetic reconstruction with commonly used methods of phylogenetic inference (BI, ML, MP, NJ) arrived at a similar topology, which was used to reconstruct the evolution of mitochondrial gene arrangements in snakes. Conclusion The phylogenetic relationships among the major families of snakes are in accordance with the mitochondrial genomes in terms of gene arrangements. The gene arrangement in Ramphotyphlops braminus mtDNA is inferred to be ancestral for snakes. After the divergence of the early Ramphotyphlops lineage, three types of rearrangements occurred. These changes involve translocations within the IQM tRNA gene cluster and the duplication of the CR. All phylogenetic methods support the placement of Enhydris plumbea outside of the (Colubridae + Elapidae) cluster, providing mitochondrial genomic evidence for the familial rank of Homalopsidae. PMID:19038056

  2. Extensive mitochondrial gene rearrangement in a genus of plant parasitic nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The nematodes Globodera pallida and G. rostochiensis are two of the only animals known to have multipartite mitochondrial genomes. In such genomes, mitochondrial genes are distributed on multiple circles. The entire sequence of a nematode (Radopholus similis) that belongs to the same superfamily (...

  3. The mitochondrial genome of the onychophoran Opisthopatus cinctipes (Peripatopsidae) reflects the ancestral mitochondrial gene arrangement of Panarthropoda and Ecdysozoa.

    PubMed

    Braband, Anke; Cameron, Stephen L; Podsiadlowski, Lars; Daniels, Savel R; Mayer, Georg

    2010-10-01

    The ancestral genome composition in Onychophora (velvet worms) is unknown since only a single species of Peripatidae has been studied thus far, which shows a highly derived gene order with numerous translocated genes. Due to this lack of information from Onychophora, it is difficult to infer the ancestral mitochondrial gene arrangement patterns for Panarthropoda and Ecdysozoa. Hence, we analyzed the complete mitochondrial genome of the onychophoran Opisthopatus cinctipes, a representative of Peripatopsidae. Our data show that O. cinctipes possesses a highly conserved gene order, similar to that found in various arthropods. By comparing our results to those from different outgroups, we reconstruct the ancestral gene arrangement in Panarthropoda and Ecdysozoa. Our phylogenetic analysis of protein-coding gene sequences from 60 protostome species (including outgroups) provides some support for the sister group relationship of Onychophora and Arthropoda, which was not recovered by using a single species of Peripatidae, Epiperipatus biolleyi, in a previous study. A comparison of the strand-specific bias between onychophorans, arthropods, and a priapulid suggests that the peripatid E. biolleyi is less suitable for phylogenetic analyses of Ecdysozoa using mitochondrial genomic data than the peripatopsid O. cinctipes. PMID:20493270

  4. Does inbreeding affect gene expression in birds?

    PubMed Central

    Hansson, Bengt; Naurin, Sara; Hasselquist, Dennis

    2014-01-01

    Inbreeding increases homozygosity, exposes genome-wide recessive deleterious alleles and often reduces fitness. The physiological and reproductive consequences of inbreeding may be manifested already during gene regulation, but the degree to which inbreeding influences gene expression is unknown in most organisms, including in birds. To evaluate the pattern of inbreeding-affected gene expression over the genome and in relation to sex, we performed a transcriptome-wide gene expression (10 695 genes) study of brain tissue of 10-day-old inbred and outbred, male and female zebra finches. We found significantly lower gene expression in females compared with males at Z-linked genes, confirming that dosage compensation is incomplete in female birds. However, inbreeding did not affect gene expression at autosomal or sex-linked genes, neither in males nor in females. Analyses of single genes again found a clear sex-biased expression at Z-linked genes, whereas only a single gene was significantly affected by inbreeding. The weak effect of inbreeding on gene expression in zebra finches contrasts to the situation, for example, in Drosophila where inbreeding has been found to influence gene expression more generally and at stress-related genes in particular. PMID:25232028

  5. Seasonal Effects on Gene Expression

    PubMed Central

    Goldinger, Anita; Shakhbazov, Konstantin; Henders, Anjali K.; McRae, Allan F.; Montgomery, Grant W.; Powell, Joseph E.

    2015-01-01

    Many health conditions, ranging from psychiatric disorders to cardiovascular disease, display notable seasonal variation in severity and onset. In order to understand the molecular processes underlying this phenomenon, we have examined seasonal variation in the transcriptome of 606 healthy individuals. We show that 74 transcripts associated with a 12-month seasonal cycle were enriched for processes involved in DNA repair and binding. An additional 94 transcripts demonstrated significant seasonal variability that was largely influenced by blood cell count levels. These transcripts were enriched for immune function, protein production, and specific cellular markers for lymphocytes. Accordingly, cell counts for erythrocytes, platelets, neutrophils, monocytes, and CD19 cells demonstrated significant association with a 12-month seasonal cycle. These results demonstrate that seasonal variation is an important environmental regulator of gene expression and blood cell composition. Notable changes in leukocyte counts and genes involved in immune function indicate that immune cell physiology varies throughout the year in healthy individuals. PMID:26023781

  6. Impact of mitochondrial telomerase over-expression on drug resistance of hepatocellular carcinoma

    PubMed Central

    Yan, Jing; Zhou, Yuan; Chen, Daixing; Li, Lili; Yang, Xin; You, Yang; Ling, Xianlong

    2015-01-01

    Background: The efficacy of chemotherapy in patients with hepatocellular carcinomas still poor due to multidrug resistance. This study aimed to investigate the impact of the over-expressed mitochondrial human telomerase reverse transcriptase on multidrug resistance of hepatocellular carcinomas. Methods: HepG2 and SK-Hep1 cell lines were used. And sensitivity to chemotherapeutic drugs was detected. Results: Mitochondrial human telomerase reverse transcriptase over-expression in hepatocellular carcinomas cells could significantly reduce its sensitivity to multiple chemotherapeutic drugs in vitro and in vivo. Hepatocellular carcinomas cells over-expressing mitochondrial human telomerase reverse transcriptase showed a significantly higher mitochondrial membrane potential, a markedly lower activated caspase-3 after drug treatment, and an increased mtDNA copy number, which explained the drastically decreased drug-induced apoptosis of hepatocellular carcinomas cells with mitochondrial human telomerase reverse transcriptase over-expression. Conclusion: Over-expressed mitochondrial human telomerase reverse transcriptase may increase the mtDNA copy number and inhibit the activation of mitochondrial apoptotic pathway to contribute to the multidrug resistance of hepatocellular carcinomas cells. PMID:25755831

  7. MRI of Transgene Expression: Correlation to Therapeutic Gene Expression

    PubMed Central

    Ichikawa, Tomotsugu; Högemanny, Dagmar; Saeki, Yoshinaga; Tyminski, Edyta; Terada, Kinya; Weissleder, Ralph; Chiocca, E Antonio; Basilion, James P

    2002-01-01

    Abstract Magnetic resonance imaging (MRI) can provide highresolution 3D maps of structural and functional information, yet its use of mapping in vivo gene expression has only recently been explored. A potential application for this technology is to noninvasively image transgene expression. The current study explores the latter using a nonregulatable internalizing engineered transferrin receptor (ETR) whose expression can be probed for with a superparamagnetic Tf-CLIO probe. Using an HSV-based amplicon vector system for transgene delivery, we demonstrate that: 1) ETR is a sensitive MR marker gene; 2) several transgenes can be efficiently expressed from a single amplicon; 3) expression of each transgene results in functional gene product; and 4) ETR gene expression correlates with expression of therapeutic genes when the latter are contained within the same amplicon. These data, taken together, suggest that MRI of ETR expression can serve as a surrogate for measuring therapeutic transgene expression. PMID:12407446

  8. Validation of endogenous control reference genes for normalizing gene expression studies in endometrial carcinoma.

    PubMed

    Ayakannu, Thangesweran; Taylor, Anthony H; Willets, Jonathon M; Brown, Laurence; Lambert, David G; McDonald, John; Davies, Quentin; Moss, Esther L; Konje, Justin C

    2015-09-01

    Real-time quantitative RT-PCR (qRT-PCR) is a powerful technique used for the relative quantification of target genes, using reference (housekeeping) genes for normalization to ensure the generation of accurate and robust data. A systematic examination of the suitability of endogenous reference genes for gene expression studies in endometrial cancer tissues is absent. The aims of this study were therefore to identify and evaluate from the thirty-two possible reference genes from a TaqMan(®) array panel their suitability as an internal control gene. The mathematical software packages geNorm qBasePLUS identified Pumilio homolog 1 (Drosophila) (PUM1), ubiquitin C (UBC), phosphoglycerate kinase (PGK1), mitochondrial ribosomal protein L19 (MRPL19) and peptidylpropyl isomerase A (cyclophilin A) (PPIA) as the best reference gene combination, whilst NormFinder identified MRPL19 as the best single reference gene, with importin 8 (IPO8) and PPIA being the best combination of two reference genes. BestKeeper ranked MRPL19 as the most stably expressed gene. In addition, the study was validated by examining the relative expression of a test gene, which encodes the cannabinoid receptor 1 (CB1). A significant difference in CB1 mRNA expression between malignant and normal endometrium using MRPL19, PPIA, and IP08 in combination was observed. The use of MRPL19, IPO8 and PPIA was identified as the best reference gene combination for the normalization of gene expression levels in endometrial carcinoma. This study demonstrates that the arbitrary selection of endogenous control reference genes for normalization in qRT-PCR studies of endometrial carcinoma, without validation, risks the production of inaccurate data and should therefore be discouraged. PMID:26124453

  9. The Arabidopsis HUELLENLOS Gene, Which Is Essential for Normal Ovule Development, Encodes a Mitochondrial Ribosomal Protein

    PubMed Central

    Skinner, Debra J.; Baker, Shawn C.; Meister, Robert J.; Broadhvest, Jean; Schneitz, Kay; Gasser, Charles S.

    2001-01-01

    The HUELLENLOS (HLL) gene participates in patterning and growth of the Arabidopsis ovule. We have isolated the HLL gene and shown that it encodes a protein homologous to the L14 proteins of eubacterial ribosomes. The Arabidopsis genome also includes a highly similar gene, HUELLENLOS PARALOG (HLP), and genes for both cytosolic (L23) and chloroplast ribosome L14 proteins. Phylogenetic analysis shows that HLL and HLP differ significantly from these other two classes of such proteins. HLL and HLP fusions to green fluorescent protein were localized to mitochondria. Ectopic expression of HLP complemented the hll mutant, indicating that HLP and HLL share redundant functions. We conclude that HLL and HLP encode L14 subunits of mitochondrial ribosomes. HLL mRNA was at significantly higher levels than HLP mRNA in pistils, with the opposite pattern in leaves. This differential expression can explain the confinement of effects of hll mutations to gynoecia and ovules. Our elucidation of the nature of HLL shows that metabolic defects can have specific effects on developmental patterning. PMID:11752383

  10. Mitochondrial gene polymorphisms alter hepatic cellular energy metabolism and aggravate diet-induced non-alcoholic steatohepatitis

    PubMed Central

    Schröder, Torsten; Kucharczyk, David; Bär, Florian; Pagel, René; Derer, Stefanie; Jendrek, Sebastian Torben; Sünderhauf, Annika; Brethack, Ann-Kathrin; Hirose, Misa; Möller, Steffen; Künstner, Axel; Bischof, Julia; Weyers, Imke; Heeren, Jörg; Koczan, Dirk; Schmid, Sebastian Michael; Divanovic, Senad; Giles, Daniel Aaron; Adamski, Jerzy; Fellermann, Klaus; Lehnert, Hendrik; Köhl, Jörg; Ibrahim, Saleh; Sina, Christian

    2016-01-01

    Objective Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and is associated with an enhanced risk for liver and cardiovascular diseases and mortality. NAFLD can progress from simple hepatic steatosis to non-alcoholic steatohepatitis (NASH). However, the mechanisms predisposing to this progression remain undefined. Notably, hepatic mitochondrial dysfunction is a common finding in patients with NASH. Due to a lack of appropriate experimental animal models, it has not been evaluated whether this mitochondrial dysfunction plays a causative role for the development of NASH. Methods To determine the effect of a well-defined mitochondrial dysfunction on liver physiology at baseline and during dietary challenge, C57BL/6J-mtFVB/N mice were employed. This conplastic inbred strain has been previously reported to exhibit decreased mitochondrial respiration likely linked to a non-synonymous gene variation (nt7778 G/T) of the mitochondrial ATP synthase protein 8 (mt-ATP8). Results At baseline conditions, C57BL/6J-mtFVB/N mice displayed hepatic mitochondrial dysfunction characterized by decreased ATP production and increased formation of reactive oxygen species (ROS). Moreover, genes affecting lipid metabolism were differentially expressed, hepatic triglyceride and cholesterol levels were changed in these animals, and various acyl-carnitines were altered, pointing towards an impaired mitochondrial carnitine shuttle. However, over a period of twelve months, no spontaneous hepatic steatosis or inflammation was observed. On the other hand, upon dietary challenge with either a methionine and choline deficient diet or a western-style diet, C57BL/6J-mtFVB/N mice developed aggravated steatohepatitis as characterized by lipid accumulation, ballooning of hepatocytes and infiltration of immune cells. Conclusions We observed distinct metabolic alterations in mice with a mitochondrial polymorphism associated hepatic mitochondrial dysfunction. However, a

  11. Gene expression in plant mitochondria: transcriptional and post-transcriptional control.

    PubMed Central

    Binder, Stefan; Brennicke, Axel

    2003-01-01

    The informational content of the mitochondrial genome in plants is, although small, essential for each cell. Gene expression in these organelles involves a number of distinct transcriptional and post-transcriptional steps. The complex post-transcriptional processes of plant mitochondria such as 5' and 3' RNA processing, intron splicing, RNA editing and controlled RNA stability extensively modify individual steady-state RNA levels and influence the mRNA quantities available for translation. In this overview of the processes in mitochondrial gene expression, we focus on confirmed and potential sites of regulatory interference and discuss the evolutionary origins of the transcriptional and post-transcriptional processes. PMID:12594926

  12. Independent replication of mitochondrial genes supports the transcriptional program in developing fiber cells of cotton (Gossypium hirsutum L.).

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mitochondrial genomes of flowering plants exist both as a "master circle" chromosome and as numerous subgenomic sublimons that are generated by intramolecular recombination. Differential stability or replication of these sublimons allows individual mitochondrial gene copy numbers to vary indepe...

  13. Identification of the human mitochondrial S-adenosylmethionine transporter: bacterial expression, reconstitution, functional characterization and tissue distribution.

    PubMed Central

    Agrimi, G; Di Noia, M A; Marobbio, C M T; Fiermonte, G; Lasorsa, F M; Palmieri, F

    2004-01-01

    The mitochondrial carriers are a family of transport proteins that, with a few exceptions, are found in the inner membranes of mitochondria. They shuttle metabolites and cofactors through this membrane, and connect cytoplasmic functions with others in the matrix. SAM (S-adenosylmethionine) has to be transported into the mitochondria where it is converted into S-adenosylhomocysteine in methylation reactions of DNA, RNA and proteins. The transport of SAM has been investigated in rat liver mitochondria, but no protein has ever been associated with this activity. By using information derived from the phylogenetically distant yeast mitochondrial carrier for SAM and from related human expressed sequence tags, a human cDNA sequence was completed. This sequence was overexpressed in bacteria, and its product was purified, reconstituted into phospholipid vesicles and identified from its transport properties as the human mitochondrial SAM carrier (SAMC). Unlike the yeast orthologue, SAMC catalysed virtually only countertransport, exhibited a higher transport affinity for SAM and was strongly inhibited by tannic acid and Bromocresol Purple. SAMC was found to be expressed in all human tissues examined and was localized to the mitochondria. The physiological role of SAMC is probably to exchange cytosolic SAM for mitochondrial S-adenosylhomocysteine. This is the first report describing the identification and characterization of the human SAMC and its gene. PMID:14674884

  14. A novel mitochondrial tRNAAla gene variant causes chronic progressive external ophthalmoplegia in a patient with Huntington disease

    PubMed Central

    Filosto, Massimiliano; Lanzi, Gaetana; Nesti, Claudia; Vielmi, Valentina; Marchina, Eleonora; Galvagni, Anna; Giliani, Silvia; Santorelli, Filippo M.; Padovani, Alessandro

    2016-01-01

    Chronic progressive external ophthalmoplegia is a mitochondrial disorder usually caused by single or multiple mitochondrial DNA (mtDNA) deletions and, more rarely, by maternally inherited mtDNA point mutations, most frequently in tRNA genes (MTT). We report on a patient presenting with a progressive eyelid ptosis with bilateral ophthalmoparesis, dysphagia, dysphonia and mild proximal limb weakness associate with a mild movement disorder characterized by abnormal involuntary movements involving head and limbs, imbalance and gait instability. Muscle biopsy demonstrated the presence of ragged red fibers and several cytochrome-C-oxidase negative fibers. Molecular analysis showed the novel m.5613T > C heteroplasmic mutation in the mitochondrial tRNAAla gene (MTTA) which disrupts a conserved site and fulfills the accepted criteria of pathogenicity. Moreover, a 38 CAG trinucleotide repeat expansion was found on the huntingtin gene, thus configuring a singular CPEO/“reduced penetrance” Huntington disease “double trouble”. With this novel MTTA point mutation, we extend the spectrum of provisional pathogenic changes in this gene, which is a very rare site of pathogenic mutation, and confirm that clinical expression of these mutations is hardly ever heterogeneous, including myopathy and CPEO. Mitochondrial involvement is an emerging key determinant in the pathogenesis of Huntington disease and it is well known that mutant huntingtin influences the mitochondrial respiratory complexes II and III. A synergist effect of the HTT and MTTA mutations on respiratory chain function may be hypothesized in our patient and should be regarded as a spur for further studies on the mtDNA/HTT reciprocal interactions. PMID:27014581

  15. Deficiency in the mouse mitochondrial adenine nucleotide translocator isoform 2 gene is associated with cardiac noncompaction.

    PubMed

    Kokoszka, Jason E; Waymire, Katrina G; Flierl, Adrian; Sweeney, Katelyn M; Angelin, Alessia; MacGregor, Grant R; Wallace, Douglas C

    2016-08-01

    The mouse fetal and adult hearts express two adenine nucleotide translocator (ANT) isoform genes. The predominant isoform is the heart-muscle-brain ANT-isoform gene 1 (Ant1) while the other is the systemic Ant2 gene. Genetic inactivation of the Ant1 gene does not impair fetal development but results in hypertrophic cardiomyopathy in postnatal mice. Using a knockin X-linked Ant2 allele in which exons 3 and 4 are flanked by loxP sites combined in males with a protamine 1 promoter driven Cre recombinase we created females heterozygous for a null Ant2 allele. Crossing the heterozygous females with the Ant2(fl), PrmCre(+) males resulted in male and female ANT2-null embryos. These fetuses proved to be embryonic lethal by day E14.5 in association with cardiac developmental failure, immature cardiomyocytes having swollen mitochondria, cardiomyocyte hyperproliferation, and cardiac failure due to hypertrabeculation/noncompaction. ANTs have two main functions, mitochondrial-cytosol ATP/ADP exchange and modulation of the mitochondrial permeability transition pore (mtPTP). Previous studies imply that ANT2 biases the mtPTP toward closed while ANT1 biases the mtPTP toward open. It has been reported that immature cardiomyocytes have a constitutively opened mtPTP, the closure of which signals the maturation of cardiomyocytes. Therefore, we hypothesize that the developmental toxicity of the Ant2 null mutation may be the result of biasing the cardiomyocyte mtPTP to remain open thus impairing cardiomyocyte maturation and resulting in cardiomyocyte hyperproliferation and failure of trabecular maturation. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:27048932

  16. Microsporidia, amitochondrial protists, possess a 70-kDa heat shock protein gene of mitochondrial evolutionary origin.

    PubMed

    Peyretaillade, E; Broussolle, V; Peyret, P; Méténier, G; Gouy, M; Vivarès, C P

    1998-06-01

    An intronless gene encoding a protein of 592 amino acid residues with similarity to 70-kDa heat shock proteins (HSP70s) has been cloned and sequenced from the amitochondrial protist Encephalitozoon cuniculi (phylum Microsporidia). Southern blot analyses show the presence of a single gene copy located on chromosome XI. The encoded protein exhibits an N-terminal hydrophobic leader sequence and two motifs shared by proteobacterial and mitochondrially expressed HSP70 homologs. Phylogenetic analysis using maximum likelihood and evolutionary distances place the E. cuniculi sequence in the cluster of mitochondrially expressed HSP70s, with a higher evolutionary rate than those of homologous sequences. Similar results were obtained after cloning a fragment of the homologous gene in the closely related species E. hellem. The presence of a nuclear targeting signal-like sequence supports a role of the Encephalitozoon HSP70 as a molecular chaperone of nuclear proteins. No evidence for cytosolic or endoplasmic reticulum forms of HSP70 was obtained through PCR amplification. These data suggest that Encephalitozoon species have evolved from an ancestor bearing mitochondria, which is in disagreement with the postulated presymbiotic origin of Microsporidia. The specific role and intracellular localization of the mitochondrial HSP70-like protein remain to be elucidated. PMID:9615449

  17. Compilation and classification of higher plant mitochondrial tRNA genes.

    PubMed Central

    Veronico, P; Gallerani, R; Ceci, L R

    1996-01-01

    This compilation reports the tRNA genes detected on higher plant mitochondrial genomes subdivided into the widely accepted categories of 'genuine' and 'chloroplast-like' genes. Moreover, it includes a list of pseudo or truncated genes divided in the same way. PMID:8710486

  18. Compilation and classification of higher plant mitochondrial tRNA genes.

    PubMed

    Veronico, P; Gallerani, R; Ceci, L R

    1996-06-15

    This compilation reports the tRNA genes detected on higher plant mitochondrial genomes subdivided into the widely accepted categories of 'genuine' and 'chloroplast-like' genes. Moreover, it includes a list of pseudo or truncated genes divided in the same way. PMID:8710486

  19. Mitochondrial Genome Sequence and Expression Profiling for the Legume Pod Borer Maruca vitrata (Lepidoptera: Crambidae)

    PubMed Central

    Margam, Venu M.; Coates, Brad S.; Hellmich, Richard L.; Agunbiade, Tolulope; Seufferheld, Manfredo J.; Sun, Weilin; Ba, Malick N.; Sanon, Antoine; Binso-Dabire, Clementine L.; Baoua, Ibrahim; Ishiyaku, Mohammad F.; Covas, Fernando G.; Srinivasan, Ramasamy; Armstrong, Joel; Murdock, Larry L.; Pittendrigh, Barry R.

    2011-01-01

    We report the assembly of the 14,054 bp near complete sequencing of the mitochondrial genome of the legume pod borer (LPB), Maruca vitrata (Lepidoptera: Crambidae), which we subsequently used to estimate divergence and relationships within the lepidopteran lineage. The arrangement and orientation of the 13 protein-coding, 2 rRNA, and 19 tRNA genes sequenced was typical of insect mitochondrial DNA sequences described to date. The sequence contained a high A+T content of 80.1% and a bias for the use of codons with A or T nucleotides in the 3rd position. Transcript mapping with midgut and salivary gland ESTs for mitochondrial genome annotation showed that translation from protein-coding genes initiates and terminates at standard mitochondrial codons, except for the coxI gene, which may start from an arginine CGA codon. The genomic copy of coxII terminates at a T nucleotide, and a proposed polyadenylation mechanism for completion of the TAA stop codon was confirmed by comparisons to EST data. EST contig data further showed that mature M. vitrata mitochondrial transcripts are monocistronic, except for bicistronic transcripts for overlapping genes nd4/nd4L and nd6/cytb, and a tricistronic transcript for atp8/atp6/coxIII. This processing of polycistronic mitochondrial transcripts adheres to the tRNA punctuated cleavage mechanism, whereby mature transcripts are cleaved only at intervening tRNA gene sequences. In contrast, the tricistronic atp8/atp6/coxIII in Drosophila is present as separate atp8/atp6 and coxIII transcripts despite the lack of an intervening tRNA. Our results indicate that mitochondrial processing mechanisms vary between arthropod species, and that it is crucial to use transcriptional information to obtain full annotation of mitochondrial genomes. PMID:21311752

  20. Gene Expression: Sizing it all up

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic architecture appears to be a largely unexplored component of gene expression. Although surely not the end of the story, we are learning that when it comes to gene expression, size is important. We have been surprised to find that certain patterns of expression, tissue-specific versus constit...

  1. Tripartite mitochondrial genome of spinach: physical structure, mitochondrial gene mapping, and locations of transposed chloroplast DNA sequences.

    PubMed Central

    Stern, D B; Palmer, J D

    1986-01-01

    A complete physical map of the spinach mitochondrial genome has been established. The entire sequence content of 327 kilobase pairs (kb) is postulated to occur as a single circular molecule. Two directly repeated elements of approximately 6 kb, located on this "master chromosome", are proposed to participate in an intragenomic recombination event that reversibly generates two "subgenomic" circles of 93 kb and 234 kb. The positions of protein and ribosomal RNA-encoding genes, determined by heterologous filter hybridizations, are scattered throughout the genome, with duplicate 26S rRNA genes located partially or entirely within the 6 kb repeat elements. Filter hybridizations between spinach mitochondrial DNA and cloned segments of spinach chloroplast DNA reveal at least twelve dispersed regions of inter-organellar sequence homology. Images PMID:3016660

  2. Sessile snails, dynamic genomes: gene rearrangements within the mitochondrial genome of a family of caenogastropod molluscs

    PubMed Central

    2010-01-01

    Background Widespread sampling of vertebrates, which comprise the majority of published animal mitochondrial genomes, has led to the view that mitochondrial gene rearrangements are relatively rare, and that gene orders are typically stable across major taxonomic groups. In contrast, more limited sampling within the Phylum Mollusca has revealed an unusually high number of gene order arrangements. Here we provide evidence that the lability of the molluscan mitochondrial genome extends to the family level by describing extensive gene order changes that have occurred within the Vermetidae, a family of sessile marine gastropods that radiated from a basal caenogastropod stock during the Cenozoic Era. Results Major mitochondrial gene rearrangements have occurred within this family at a scale unexpected for such an evolutionarily young group and unprecedented for any caenogastropod examined to date. We determined the complete mitochondrial genomes of four species (Dendropoma maximum, D. gregarium, Eualetes tulipa, and Thylacodes squamigerus) and the partial mitochondrial genomes of two others (Vermetus erectus and Thylaeodus sp.). Each of the six vermetid gastropods assayed possessed a unique gene order. In addition to the typical mitochondrial genome complement of 37 genes, additional tRNA genes were evident in D. gregarium (trnK) and Thylacodes squamigerus (trnV, trnLUUR). Three pseudogenes and additional tRNAs found within the genome of Thylacodes squamigerus provide evidence of a past duplication event in this taxon. Likewise, high sequence similarities between isoaccepting leucine tRNAs in Thylacodes, Eualetes, and Thylaeodus suggest that tRNA remolding has been rife within this family. While vermetids exhibit gene arrangements diagnostic of this family, they also share arrangements with littorinimorph caenogastropods, with which they have been linked based on sperm morphology and primary sequence-based phylogenies. Conclusions We have uncovered major changes in gene

  3. Role of mitochondrial dysfunction in cancer progression.

    PubMed

    Hsu, Chia-Chi; Tseng, Ling-Ming; Lee, Hsin-Chen

    2016-06-01

    Deregulated cellular energetics was one of the cancer hallmarks. Several underlying mechanisms of deregulated cellular energetics are associated with mitochondrial dysfunction caused by mitochondrial DNA mutations, mitochondrial enzyme defects, or altered oncogenes/tumor suppressors. In this review, we summarize the current understanding about the role of mitochondrial dysfunction in cancer progression. Point mutations and copy number changes are the two most common mitochondrial DNA alterations in cancers, and mitochondrial dysfunction induced by chemical depletion of mitochondrial DNA or impairment of mitochondrial respiratory chain in cancer cells promotes cancer progression to a chemoresistance or invasive phenotype. Moreover, defects in mitochondrial enzymes, such as succinate dehydrogenase, fumarate hydratase, and isocitrate dehydrogenase, are associated with both familial and sporadic forms of cancer. Deregulated mitochondrial deacetylase sirtuin 3 might modulate cancer progression by regulating cellular metabolism and oxidative stress. These mitochondrial defects during oncogenesis and tumor progression activate cytosolic signaling pathways that ultimately alter nuclear gene expression, a process called retrograde signaling. Changes in the intracellular level of reactive oxygen species, Ca(2+), or oncometabolites are important in the mitochondrial retrograde signaling for neoplastic transformation and cancer progression. In addition, altered oncogenes/tumor suppressors including hypoxia-inducible factor 1 and tumor suppressor p53 regulate mitochondrial respiration and cellular metabolism by modulating the expression of their target genes. We thus suggest that mitochondrial dysfunction plays a critical role in cancer progression and that targeting mitochondrial alterations and mitochondrial retrograde signaling might be a promising strategy for the development of selective anticancer therapy. PMID:27022139

  4. Control of RANKL Gene Expression

    PubMed Central

    O'Brien, Charles A.

    2009-01-01

    Osteoclasts are highly specialized cells capable of degrading mineralized tissue and form at different regions of bone to meet different physiological needs, such as mobilization of calcium, modeling of bone structure, and remodeling of bone matrix. Osteoclast production is elevated in a number of pathological conditions, many of which lead to loss of bone mass. Whether normal or pathological, osteoclastogenesis strictly depends upon support from accessory cells which supply cytokines required for osteoclast differentiation. Only one of these cytokines, receptor activator of NFκB ligand (RANKL), is absolutely essential for osteoclast formation throughout life and is thus expressed by all cell types that support osteoclast differentiation. The central role of RANKL in bone resorption is highlighted by the fact that it is the basis for a new therapy to inhibit bone loss. This review will discuss mechanisms that control RANKL gene expression in different osteoclast-support cells and how the study of such mechanisms may lead to a better understanding of the cellular interactions that drive normal and pathological bone resorption. PMID:19716455

  5. Enhanced Cardiac Akt/Protein Kinase B Signaling Contributes to Pathological Cardiac Hypertrophy in Part by Impairing Mitochondrial Function via Transcriptional Repression of Mitochondrion-Targeted Nuclear Genes

    PubMed Central

    Wende, Adam R.; O'Neill, Brian T.; Bugger, Heiko; Riehle, Christian; Tuinei, Joseph; Buchanan, Jonathan; Tsushima, Kensuke; Wang, Li; Caro, Pilar; Guo, Aili; Sloan, Crystal; Kim, Bum Jun; Wang, Xiaohui; Pereira, Renata O.; McCrory, Mark A.; Nye, Brenna G.; Benavides, Gloria A.; Darley-Usmar, Victor M.; Shioi, Tetsuo; Weimer, Bart C.

    2014-01-01

    Sustained Akt activation induces cardiac hypertrophy (LVH), which may lead to heart failure. This study tested the hypothesis that Akt activation contributes to mitochondrial dysfunction in pathological LVH. Akt activation induced LVH and progressive repression of mitochondrial fatty acid oxidation (FAO) pathways. Preventing LVH by inhibiting mTOR failed to prevent the decline in mitochondrial function, but glucose utilization was maintained. Akt activation represses expression of mitochondrial regulatory, FAO, and oxidative phosphorylation genes in vivo that correlate with the duration of Akt activation in part by reducing FOXO-mediated transcriptional activation of mitochondrion-targeted nuclear genes in concert with reduced signaling via peroxisome proliferator-activated receptor α (PPARα)/PGC-1α and other transcriptional regulators. In cultured myocytes, Akt activation disrupted mitochondrial bioenergetics, which could be partially reversed by maintaining nuclear FOXO but not by increasing PGC-1α. Thus, although short-term Akt activation may be cardioprotective during ischemia by reducing mitochondrial metabolism and increasing glycolysis, long-term Akt activation in the adult heart contributes to pathological LVH in part by reducing mitochondrial oxidative capacity. PMID:25535334

  6. Methods for monitoring multiple gene expression

    DOEpatents

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2008-06-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  7. Methods for monitoring multiple gene expression

    DOEpatents

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2012-05-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  8. Methods for monitoring multiple gene expression

    DOEpatents

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2013-10-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  9. Relationship between Sirt1 expression and mitochondrial proteins during conditions of chronic muscle use and disuse.

    PubMed

    Chabi, Beatrice; Adhihetty, Peter J; O'Leary, Michael F N; Menzies, Keir J; Hood, David A

    2009-12-01

    Sirt1 is a NAD(+)-dependent histone deacetylase that interacts with the regulatory protein of mitochondrial biogenesis PGC-1alpha and is sensitive to metabolic alterations. We assessed whether a strict relationship between the expression of Sirt1, mitochondrial proteins, and PGC-1alpha existed across tissues possessing a wide range of oxidative capabilities, as well as in skeletal muscle subject to chronic use (voluntary wheel running or electrical stimulation for 7 days, 10 Hz; 3 h/day) or disuse (denervation for up to 21 days) in which organelle biogenesis is altered. PGC-1alpha levels were not closely associated with the expression of Sirt1, measured using immunoblotting or via enzymatic deacetylase activity. The mitochondrial protein cytochrome c increased by 70-90% in soleus and plantaris muscles of running animals, whereas Sirt1 activity remained unchanged. In chronically stimulated muscle, cytochrome c was increased by 30% compared with nonstimulated muscle, whereas Sirt1 activity was increased modestly by 20-25%. In contrast, in denervated muscle, these markers of mitochondrial content were decreased by 30-50% compared with the control muscle, whereas Sirt1 activity was increased by 75-80%. Our data suggest that Sirt1 and PGC-1alpha expression are independently regulated and that, although Sirt1 activity may be involved in mitochondrial biogenesis, its expression is not closely correlated to changes in mitochondrial proteins during conditions of chronic muscle use and disuse. PMID:19797682

  10. Mitochondrial DNA plasticity is an essential inducer of tumorigenesis

    PubMed Central

    Lee, W T Y; Cain, J E; Cuddihy, A; Johnson, J; Dickinson, A; Yeung, K-Y; Kumar, B; Johns, T G; Watkins, D N; Spencer, A; St John, J C

    2016-01-01

    Although mitochondrial DNA has been implicated in diseases such as cancer, its role remains to be defined. Using three models of tumorigenesis, namely glioblastoma multiforme, multiple myeloma and osteosarcoma, we show that mitochondrial DNA plays defining roles at early and late tumour progression. Specifically, tumour cells partially or completely depleted of mitochondrial DNA either restored their mitochondrial DNA content or actively recruited mitochondrial DNA, which affected the rate of tumorigenesis. Nevertheless, non-depleted tumour cells modulated mitochondrial DNA copy number at early and late progression in a mitochondrial DNA genotype-specific manner. In glioblastoma multiforme and osteosarcoma, this was coupled with loss and gain of mitochondrial DNA variants. Changes in mitochondrial DNA genotype affected tumour morphology and gene expression patterns at early and late progression. Importantly, this identified a subset of genes that are essential to early progression. Consequently, mitochondrial DNA and commonly expressed early tumour-specific genes provide novel targets against tumorigenesis. PMID:27551510

  11. Mitochondrial DNA plasticity is an essential inducer of tumorigenesis.

    PubMed

    Lee, W T Y; Cain, J E; Cuddihy, A; Johnson, J; Dickinson, A; Yeung, K-Y; Kumar, B; Johns, T G; Watkins, D N; Spencer, A; St John, J C

    2016-01-01

    Although mitochondrial DNA has been implicated in diseases such as cancer, its role remains to be defined. Using three models of tumorigenesis, namely glioblastoma multiforme, multiple myeloma and osteosarcoma, we show that mitochondrial DNA plays defining roles at early and late tumour progression. Specifically, tumour cells partially or completely depleted of mitochondrial DNA either restored their mitochondrial DNA content or actively recruited mitochondrial DNA, which affected the rate of tumorigenesis. Nevertheless, non-depleted tumour cells modulated mitochondrial DNA copy number at early and late progression in a mitochondrial DNA genotype-specific manner. In glioblastoma multiforme and osteosarcoma, this was coupled with loss and gain of mitochondrial DNA variants. Changes in mitochondrial DNA genotype affected tumour morphology and gene expression patterns at early and late progression. Importantly, this identified a subset of genes that are essential to early progression. Consequently, mitochondrial DNA and commonly expressed early tumour-specific genes provide novel targets against tumorigenesis. PMID:27551510

  12. Mitogen-activated protein kinase kinases promote mitochondrial biogenesis in part through inducing peroxisome proliferator-activated receptor γ coactivator-1β expression.

    PubMed

    Gao, Minghui; Wang, Junjian; Lu, Na; Fang, Fang; Liu, Jinsong; Wong, Chi-Wai

    2011-06-01

    Growth factor activates mitogen-activated protein kinase kinases to promote cell growth. Mitochondrial biogenesis is an integral part of cell growth. How growth factor regulates mitochondrial biogenesis is not fully understood. In this study, we found that mitochondrial mass was specifically reduced upon serum starvation and induced upon re-feeding with serum. Using mitogen-activated protein kinase kinases inhibitor U0126, we found that the mRNA expression levels of ATP synthase, cytochrome-C, mitochondrial transcription factor A, and mitofusin 2 were reduced. Since the transcriptional levels of these genes are under the control of peroxisome proliferator-activated receptor γ coactivator-1α and -1β (PGC-1α and PGC-1β), we examined and found that only the mRNA and protein levels of PGC-1β were suppressed. Importantly, over-expression of PGC-1β partially reversed the reduction of mitochondrial mass upon U0126 treatment. Thus, we conclude that mitogen-activated protein kinase kinases direct mitochondrial biogenesis through selectively inducing PGC-1β expression. PMID:21458501

  13. Nuclear expression of mitochondrial ND4 leads to the protein assembling in complex I and prevents optic atrophy and visual loss

    PubMed Central

    Cwerman-Thibault, Hélène; Augustin, Sébastien; Lechauve, Christophe; Ayache, Jessica; Ellouze, Sami; Sahel, José-Alain; Corral-Debrinski, Marisol

    2015-01-01

    Leber hereditary optic neuropathy is due to mitochondrial DNA mutations; in ~70% of all cases, a point mutation in the mitochondrial NADH dehydrogenase subunit 4, ND4, gene leads to central vision loss. We optimized allotopic expression (nuclear transcription of a gene that is normally transcribed inside the mitochondria) aimed at designing a gene therapy for ND4; its coding sequence was associated with the cis-acting elements of the human COX10 mRNA to allow the efficient mitochondrial delivery of the protein. After ocular administration to adult rats of a recombinant adeno-associated viral vector containing the human ND4 gene, we demonstrated that: (i) the sustained expression of human ND4 did not lead to harmful effects, instead the human protein is efficiently imported inside the mitochondria and assembled in respiratory chain complex I; (ii) the presence of the human protein in the experimental model of Leber hereditary optic neuropathy significantly prevents retinal ganglion cell degeneration and preserves both complex I function in optic nerves and visual function. Hence, the use of optimized allotopic expression is relevant for treating mitochondrial disorders due to mutations in the organelle genome. PMID:26029714

  14. Mitochondrial Homeostasis Molecules: Regulation by a Trio of Recessive Parkinson's Disease Genes

    PubMed Central

    Han, Ji-Young; Kim, Ji-Soo

    2014-01-01

    Mitochondria are small organelles that produce the majority of cellular energy as ATP. Mitochondrial dysfunction has been implicated in the pathogenesis of Parkinson's disease (PD), and rare familial forms of PD provide valuable insight into the pathogenic mechanism underlying mitochondrial impairment, even though the majority of PD cases are sporadic. The regulation of mitochondria is crucial for the maintenance of energy-demanding neuronal functions in the brain. Mitochondrial biogenesis and mitophagic degradation are the major regulatory pathways that preserve optimal mitochondrial content, structure and function. In this mini-review, we provide an overview of the mitochondrial quality control mechanisms, emphasizing regulatory molecules in mitophagy and biogenesis that specifically interact with the protein products of three major recessive familial PD genes, PINK1, Parkin and DJ-1. PMID:25548534

  15. Gene expression in major depressive disorder.

    PubMed

    Jansen, R; Penninx, B W J H; Madar, V; Xia, K; Milaneschi, Y; Hottenga, J J; Hammerschlag, A R; Beekman, A; van der Wee, N; Smit, J H; Brooks, A I; Tischfield, J; Posthuma, D; Schoevers, R; van Grootheest, G; Willemsen, G; de Geus, E J; Boomsma, D I; Wright, F A; Zou, F; Sun, W; Sullivan, P F

    2016-03-01

    The search for genetic variants underlying major depressive disorder (MDD) has not yet provided firm leads to its underlying molecular biology. A complementary approach is to study gene expression in relation to MDD. We measured gene expression in peripheral blood from 1848 subjects from The Netherlands Study of Depression and Anxiety. Subjects were divided into current MDD (N=882), remitted MDD (N=635) and control (N=331) groups. MDD status and gene expression were measured again 2 years later in 414 subjects. The strongest gene expression differences were between the current MDD and control groups (129 genes at false-discovery rate, FDR<0.1). Gene expression differences across MDD status were largely unrelated to antidepressant use, inflammatory status and blood cell counts. Genes associated with MDD were enriched for interleukin-6 (IL-6)-signaling and natural killer (NK) cell pathways. We identified 13 gene expression clusters with specific clusters enriched for genes involved in NK cell activation (downregulated in current MDD, FDR=5.8 × 10(-5)) and IL-6 pathways (upregulated in current MDD, FDR=3.2 × 10(-3)). Longitudinal analyses largely confirmed results observed in the cross-sectional data. Comparisons of gene expression results to the Psychiatric Genomics Consortium (PGC) MDD genome-wide association study results revealed overlap with DVL3. In conclusion, multiple gene expression associations with MDD were identified and suggest a measurable impact of current MDD state on gene expression. Identified genes and gene clusters are enriched with immune pathways previously associated with the etiology of MDD, in line with the immune suppression and immune activation hypothesis of MDD. PMID:26008736

  16. Drosophila expressing human SOD1 successfully recapitulates mitochondrial phenotypic features of familial amyotrophic lateral sclerosis.

    PubMed

    Gallart-Palau, Xavier; Ng, Chee-Hoe; Ribera, Joan; Sze, Siu Kwan; Lim, Kah-Leong

    2016-06-15

    Mitochondrial pathology is a seminal pathogenic hallmark of familial amyotrophic lateral sclerosis (FALS) which is extensively manifested by human patients and mutant SOD1(G93A) mammalian models. Rodents expressing human FALS-associated mutations successfully mimic several human disease features; although they are not as amenable to genetic and therapeutic compound screenings as non-mammalian models. In this study, we report a newly generated and characterized Drosophila model that expresses human SOD1(G93A) in muscle fibers. Presence of SOD1(G93A) in thoracic muscles causes mitochondrial pathology and impairs normal motor behavior in these flies. Use of this new FALS-24B-SOD1(G93A) fly model holds promise for better understanding of the mitochondrial affectation process in FALS and for the discovery of novel therapeutic compounds able to reverse mitochondrial dysfunction in this fatal disease. PMID:27163198

  17. Analysis of Gene Expression Patterns Using Biclustering.

    PubMed

    Roy, Swarup; Bhattacharyya, Dhruba K; Kalita, Jugal K

    2016-01-01

    Mining microarray data to unearth interesting expression profile patterns for discovery of in silico biological knowledge is an emerging area of research in computational biology. A group of functionally related genes may have similar expression patterns under a set of conditions or at some time points. Biclustering is an important data mining tool that has been successfully used to analyze gene expression data for biologically significant cluster discovery. The purpose of this chapter is to introduce interesting patterns that may be observed in expression data and discuss the role of biclustering techniques in detecting interesting functional gene groups with similar expression patterns. PMID:26350227

  18. Diabetes and activation of peroxisome proliferator activated receptor alpha increases mitochondrial thioesterase I protein expression and activity in the heart

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mitochondrial thioesterase-I (MTE-I) catalyzes the de-esterification of fattyacyl-CoAs to fatty acid anions in the mitochondrial matrix, which are extruded to the cytosol, thus preventing the accumulation of toxic mitochondrial fattyacyl-CoAs. MTE-I mRNA expression in the heart is regulated by perox...

  19. Successful expression of heterologous egfp gene in the mitochondria of a photosynthetic eukaryote Chlamydomonas reinhardtii.

    PubMed

    Hu, Zhangli; Zhao, Zhonglin; Wu, Zhihua; Fan, Zhun; Chen, Jun; Wu, Jinxia; Li, Jiancheng

    2011-09-01

    The efficient expression of exogenous gene in mitochondria of photosynthetic organism has been an insurmountable problem. In this study, the pBsLPNCG was constructed by inserting the egfp gene into a site between TERMINVREP-Left repeats and the cob gene in a fragment of mitochondrial DNA of Chlamydomonas reinhardtii CC-124 and introduced into the mitochondria of respiratory deficient dum-1 mutation of C. reinhardtii CC-2654. Sequencing and DNA Southern analyses revealed that egfp gene had been integrated into the mitochondrial genome of transgenic algae as expected and no other copy of egfp existed in their nucleic genome. Both the fluorescence detection and Western blot analysis confirmed the presence of eGFP protein in the transgenic algae; it indicated that the egfp gene was successfully expressed in the mitochondria of C. reinhardtii. PMID:21664493

  20. POLRMT regulates the switch between replication primer formation and gene expression of mammalian mtDNA

    PubMed Central

    Kühl, Inge; Miranda, Maria; Posse, Viktor; Milenkovic, Dusanka; Mourier, Arnaud; Siira, Stefan J.; Bonekamp, Nina A.; Neumann, Ulla; Filipovska, Aleksandra; Polosa, Paola Loguercio; Gustafsson, Claes M.; Larsson, Nils-Göran

    2016-01-01

    Mitochondria are vital in providing cellular energy via their oxidative phosphorylation system, which requires the coordinated expression of genes encoded by both the nuclear and mitochondrial genomes (mtDNA). Transcription of the circular mammalian mtDNA depends on a single mitochondrial RNA polymerase (POLRMT). Although the transcription initiation process is well understood, it is debated whether POLRMT also serves as the primase for the initiation of mtDNA replication. In the nucleus, the RNA polymerases needed for gene expression have no such role. Conditional knockout of Polrmt in the heart results in severe mitochondrial dysfunction causing dilated cardiomyopathy in young mice. We further studied the molecular consequences of different expression levels of POLRMT and found that POLRMT is essential for primer synthesis to initiate mtDNA replication in vivo. Furthermore, transcription initiation for primer formation has priority over gene expression. Surprisingly, mitochondrial transcription factor A (TFAM) exists in an mtDNA-free pool in the Polrmt knockout mice. TFAM levels remain unchanged despite strong mtDNA depletion, and TFAM is thus protected from degradation of the AAA+ Lon protease in the absence of POLRMT. Last, we report that mitochondrial transcription elongation factor may compensate for a partial depletion of POLRMT in heterozygous Polrmt knockout mice, indicating a direct regulatory role of this factor in transcription. In conclusion, we present in vivo evidence that POLRMT has a key regulatory role in the replication of mammalian mtDNA and is part of a transcriptional mechanism that provides a switch between primer formation for mtDNA replication and mitochondrial gene expression. PMID:27532055

  1. POLRMT regulates the switch between replication primer formation and gene expression of mammalian mtDNA.

    PubMed

    Kühl, Inge; Miranda, Maria; Posse, Viktor; Milenkovic, Dusanka; Mourier, Arnaud; Siira, Stefan J; Bonekamp, Nina A; Neumann, Ulla; Filipovska, Aleksandra; Polosa, Paola Loguercio; Gustafsson, Claes M; Larsson, Nils-Göran

    2016-08-01

    Mitochondria are vital in providing cellular energy via their oxidative phosphorylation system, which requires the coordinated expression of genes encoded by both the nuclear and mitochondrial genomes (mtDNA). Transcription of the circular mammalian mtDNA depends on a single mitochondrial RNA polymerase (POLRMT). Although the transcription initiation process is well understood, it is debated whether POLRMT also serves as the primase for the initiation of mtDNA replication. In the nucleus, the RNA polymerases needed for gene expression have no such role. Conditional knockout of Polrmt in the heart results in severe mitochondrial dysfunction causing dilated cardiomyopathy in young mice. We further studied the molecular consequences of different expression levels of POLRMT and found that POLRMT is essential for primer synthesis to initiate mtDNA replication in vivo. Furthermore, transcription initiation for primer formation has priority over gene expression. Surprisingly, mitochondrial transcription factor A (TFAM) exists in an mtDNA-free pool in the Polrmt knockout mice. TFAM levels remain unchanged despite strong mtDNA depletion, and TFAM is thus protected from degradation of the AAA(+) Lon protease in the absence of POLRMT. Last, we report that mitochondrial transcription elongation factor may compensate for a partial depletion of POLRMT in heterozygous Polrmt knockout mice, indicating a direct regulatory role of this factor in transcription. In conclusion, we present in vivo evidence that POLRMT has a key regulatory role in the replication of mammalian mtDNA and is part of a transcriptional mechanism that provides a switch between primer formation for mtDNA replication and mitochondrial gene expression. PMID:27532055

  2. Xenbase: gene expression and improved integration.

    PubMed

    Bowes, Jeff B; Snyder, Kevin A; Segerdell, Erik; Jarabek, Chris J; Azam, Kenan; Zorn, Aaron M; Vize, Peter D

    2010-01-01

    Xenbase (www.xenbase.org), the model organism database for Xenopus laevis and X. (Silurana) tropicalis, is the principal centralized resource of genomic, development data and community information for Xenopus research. Recent improvements include the addition of the literature and interaction tabs to gene catalog pages. New content has been added including a section on gene expression patterns that incorporates image data from the literature, large scale screens and community submissions. Gene expression data are integrated into the gene catalog via an expression tab and is also searchable by multiple criteria using an expression search interface. The gene catalog has grown to contain over 15,000 genes. Collaboration with the European Xenopus Research Center (EXRC) has resulted in a stock center section with data on frog lines supplied by the EXRC. Numerous improvements have also been made to search and navigation. Xenbase is also the source of the Xenopus Anatomical Ontology and the clearinghouse for Xenopus gene nomenclature. PMID:19884130

  3. Gene Expression Profiling of Gastric Cancer

    PubMed Central

    Marimuthu, Arivusudar; Jacob, Harrys K.C.; Jakharia, Aniruddha; Subbannayya, Yashwanth; Keerthikumar, Shivakumar; Kashyap, Manoj Kumar; Goel, Renu; Balakrishnan, Lavanya; Dwivedi, Sutopa; Pathare, Swapnali; Dikshit, Jyoti Bajpai; Maharudraiah, Jagadeesha; Singh, Sujay; Sameer Kumar, Ghantasala S; Vijayakumar, M.; Veerendra Kumar, Kariyanakatte Veeraiah; Premalatha, Chennagiri Shrinivasamurthy; Tata, Pramila; Hariharan, Ramesh; Roa, Juan Carlos; Prasad, T.S.K; Chaerkady, Raghothama; Kumar, Rekha Vijay; Pandey, Akhilesh

    2015-01-01

    Gastric cancer is the second leading cause of cancer death worldwide, both in men and women. A genomewide gene expression analysis was carried out to identify differentially expressed genes in gastric adenocarcinoma tissues as compared to adjacent normal tissues. We used Agilent’s whole human genome oligonucleotide microarray platform representing ~41,000 genes to carry out gene expression analysis. Two-color microarray analysis was employed to directly compare the expression of genes between tumor and normal tissues. Through this approach, we identified several previously known candidate genes along with a number of novel candidate genes in gastric cancer. Testican-1 (SPOCK1) was one of the novel molecules that was 10-fold upregulated in tumors. Using tissue microarrays, we validated the expression of testican-1 by immunohistochemical staining. It was overexpressed in 56% (160/282) of the cases tested. Pathway analysis led to the identification of several networks in which SPOCK1 was among the topmost networks of interacting genes. By gene enrichment analysis, we identified several genes involved in cell adhesion and cell proliferation to be significantly upregulated while those corresponding to metabolic pathways were significantly downregulated. The differentially expressed genes identified in this study are candidate biomarkers for gastric adenoacarcinoma. PMID:27030788

  4. HOXB homeobox gene expression in cervical carcinoma.

    PubMed

    López, R; Garrido, E; Piña, P; Hidalgo, A; Lazos, M; Ochoa, R; Salcedo, M

    2006-01-01

    The homeobox (HOX) genes are a family of transcription factors that bind to specific DNA sequences in target genes regulating gene expression. Thirty-nine HOX genes have been mapped in four conserved clusters: A, B, C, and D; they act as master genes regulating the identity of body segments along the anteroposterior axis of the embryo. The role played by HOX genes in adult cell differentiation is unclear to date, but growing evidence suggests that they may play an important role in the development of cancer. To study the role played by HOX genes in cervical cancer, in the present work, we analyzed the expression of HOXB genes and the localization of their transcripts in human cervical tissues. Reverse transcription-polymerase chain reaction analysis and nonradioactive RNA in situ hybridization were used to detect HOXB expression in 11 normal cervical tissues and 17 cervical carcinomas. It was determined that HOXB1, B3, B5, B6, B7, B8, and B9 genes are expressed in normal adult cervical epithelium and squamous cervical carcinomas. Interestingly, HOXB2, HOXB4, and HOXB13 gene expression was found only in tumor tissues. Our findings suggest that the new expression of HOXB2, HOXB4, and B13 genes is involved in cervical cancer. PMID:16445654

  5. Gene expression profiling in developing human hippocampus.

    PubMed

    Zhang, Yan; Mei, Pinchao; Lou, Rong; Zhang, Michael Q; Wu, Guanyun; Qiang, Boqin; Zhang, Zhengguo; Shen, Yan

    2002-10-15

    The gene expression profile of developing human hippocampus is of particular interest and importance to neurobiologists devoted to development of the human brain and related diseases. To gain further molecular insight into the developmental and functional characteristics, we analyzed the expression profile of active genes in developing human hippocampus. Expressed sequence tags (ESTs) were selected by sequencing randomly selected clones from an original 3'-directed cDNA library of 150-day human fetal hippocampus, and a digital expression profile of 946 known genes that could be divided into 16 categories was generated. We also used for comparison 14 other expression profiles of related human neural cells/tissues, including human adult hippocampus. To yield more confidence regarding differential expression, a method was applied to attach normalized expression data to genes with a low false-positive rate (<0.05). Finally, hierarchical cluster analysis was used to exhibit related gene expression patterns. Our results are in accordance with anatomical and physiological observations made during the developmental process of the human hippocampus. Furthermore, some novel findings appeared to be unique to our results. The abundant expression of genes for cell surface components and disease-related genes drew our attention. Twenty-four genes are significantly different from adult, and 13 genes might be developing hippocampus-specific candidate genes, including wnt2b and some Alzheimer's disease-related genes. Our results could provide useful information on the ontogeny, development, and function of cells in the human hippocampus at the molecular level and underscore the utility of large-scale, parallel gene expression analyses in the study of complex biological phenomena. PMID:12271469

  6. Brief Report: High Frequency of Biochemical Markers for Mitochondrial Dysfunction in Autism: No Association with the Mitochondrial Aspartate/Glutamate Carrier "SLC25A12" Gene

    ERIC Educational Resources Information Center

    Correia, Catarina; Coutinho, Ana M.; Diogo, Luisa; Grazina, Manuela; Marques, Carla; Miguel, Teresa; Ataide, Assuncao; Almeida, Joana; Borges, Luis; Oliveira, Catarina; Oliveira, Guiomar; Vicente, Astrid M.

    2006-01-01

    In the present study we confirm the previously reported high frequency of biochemical markers of mitochondrial dysfunction, namely hyperlactacidemia and increased lactate/pyruvate ratio, in a significant fraction of 210 autistic patients. We further examine the involvement of the mitochondrial aspartate/glutamate carrier gene ("SLC25A12") in…

  7. Widespread ectopic expression of olfactory receptor genes

    PubMed Central

    Feldmesser, Ester; Olender, Tsviya; Khen, Miriam; Yanai, Itai; Ophir, Ron; Lancet, Doron

    2006-01-01

    Background Olfactory receptors (ORs) are the largest gene family in the human genome. Although they are expected to be expressed specifically in olfactory tissues, some ectopic expression has been reported, with special emphasis on sperm and testis. The present study systematically explores the expression patterns of OR genes in a large number of tissues and assesses the potential functional implication of such ectopic expression. Results We analyzed the expression of hundreds of human and mouse OR transcripts, via EST and microarray data, in several dozens of human and mouse tissues. Different tissues had specific, relatively small OR gene subsets which had particularly high expression levels. In testis, average expression was not particularly high, and very few highly expressed genes were found, none corresponding to ORs previously implicated in sperm chemotaxis. Higher expression levels were more common for genes with a non-OR genomic neighbor. Importantly, no correlation in expression levels was detected for human-mouse orthologous pairs. Also, no significant difference in expression levels was seen between intact and pseudogenized ORs, except for the pseudogenes of subfamily 7E which has undergone a human-specific expansion. Conclusion The OR superfamily as a whole, show widespread, locus-dependent and heterogeneous expression, in agreement with a neutral or near neutral evolutionary model for transcription control. These results cannot reject the possibility that small OR subsets might play functional roles in different tissues, however considerable care should be exerted when offering a functional interpretation for ectopic OR expression based only on transcription information. PMID:16716209

  8. Gene organization and characterization of the complete mitochondrial genome of Hainan black goat (Capra hircus).

    PubMed

    Hu, Jiangtao; Zhao, Wei; Niu, Lili; Wang, Linjie; Li, Li; Zhang, Hongping; Zhong, Tao

    2016-05-01

    The complete mitochondrial genome sequence of Hainan black goat was determined for the first time by the PCR-based method. The total length of the mitogenome was 16,641 bp, including 33.54% A, 26.04% C, 27.31% T, 13.11% G. The genome structure contained 22 tRNA genes, 2 rRNA genes, 13 protein-coding genes and 1 control region (D-loop region). These results have extended more detail information of mitochondrial genome, thus being useful for further study on the genetic divergence and phylogenetic resolution of global goats. PMID:25211090

  9. Aluminium induced oxidative stress results in decreased mitochondrial biogenesis via modulation of PGC-1α expression

    SciTech Connect

    Sharma, Deep Raj; Sunkaria, Aditya; Wani, Willayat Yousuf; Sharma, Reeta Kumari; Kandimalla, Ramesh J.L.; Bal, Amanjit; Gill, Kiran Dip

    2013-12-01

    The present investigation was carried out to elucidate a possible molecular mechanism related to the effects of aluminium-induced oxidative stress on various mitochondrial respiratory complex subunits with special emphasis on the role of Peroxisome proliferator activated receptor gamma co-activator 1α (PGC-1α) and its downstream targets i.e. Nuclear respiratory factor-1(NRF-1), Nuclear respiratory factor-2(NRF-2) and Mitochondrial transcription factor A (Tfam) in mitochondrial biogenesis. Aluminium lactate (10 mg/kg b.wt./day) was administered intragastrically to rats for 12 weeks. After 12 weeks of exposure, we found an increase in ROS levels, mitochondrial DNA oxidation and decrease in citrate synthase activity in the Hippocampus (HC) and Corpus striatum (CS) regions of rat brain. On the other hand, there was a decrease in the mRNA levels of the mitochondrial encoded subunits–NADH dehydrogenase (ND) subunits i.e. ND1, ND2, ND3, Cytochrome b (Cytb), Cytochrome oxidase (COX) subunits i.e. COX1, COX3, ATP synthase (ATPase) subunit 6 along with reduced expression of nuclear encoded subunits COX4, COX5A, COX5B of Electron transport chain (ETC). Besides, a decrease in mitochondrial DNA copy number and mitochondrial content in both regions of rat brain was observed. The PGC-1α was down-regulated in aluminium treated rats along with NRF-1, NRF-2 and Tfam, which act downstream from PGC-1α in aluminium treated rats. Electron microscopy results revealed a significant increase in the mitochondrial swelling, loss of cristae, chromatin condensation and decreases in mitochondrial number in case of aluminium treated rats as compared to control. So, PGC-1α seems to be a potent target for aluminium neurotoxicity, which makes it an almost ideal target to control or limit the damage that has been associated with the defective mitochondrial function seen in neurodegenerative diseases. - Highlights: • Aluminium decreases the mRNA levels of mitochondrial and nuclear encoded

  10. Modeling Gene Networks in Saccharomyces cerevisiae Based on Gene Expression Profiles

    PubMed Central

    Zhang, Yulin; Lv, Kebo; Wang, Shudong; Su, Jionglong; Meng, Dazhi

    2015-01-01

    Detailed and innovative analysis of gene regulatory network structures may reveal novel insights to biological mechanisms. Here we study how gene regulatory network in Saccharomyces cerevisiae can differ under aerobic and anaerobic conditions. To achieve this, we discretized the gene expression profiles and calculated the self-entropy of down- and upregulation of gene expression as well as joint entropy. Based on these quantities the uncertainty coefficient was calculated for each gene triplet, following which, separate gene logic networks were constructed for the aerobic and anaerobic conditions. Four structural parameters such as average degree, average clustering coefficient, average shortest path, and average betweenness were used to compare the structure of the corresponding aerobic and anaerobic logic networks. Five genes were identified to be putative key components of the two energy metabolisms. Furthermore, community analysis using the Newman fast algorithm revealed two significant communities for the aerobic but only one for the anaerobic network. David Gene Functional Classification suggests that, under aerobic conditions, one such community reflects the cell cycle and cell replication, while the other one is linked to the mitochondrial respiratory chain function. PMID:26839582

  11. Gene Expression Patterns in Ovarian Carcinomas

    PubMed Central

    Schaner, Marci E.; Ross, Douglas T.; Ciaravino, Giuseppe; Sørlie, Therese; Troyanskaya, Olga; Diehn, Maximilian; Wang, Yan C.; Duran, George E.; Sikic, Thomas L.; Caldeira, Sandra; Skomedal, Hanne; Tu, I-Ping; Hernandez-Boussard, Tina; Johnson, Steven W.; O'Dwyer, Peter J.; Fero, Michael J.; Kristensen, Gunnar B.; Børresen-Dale, Anne-Lise; Hastie, Trevor; Tibshirani, Robert; van de Rijn, Matt; Teng, Nelson N.; Longacre, Teri A.; Botstein, David; Brown, Patrick O.; Sikic, Branimir I.

    2003-01-01

    We used DNA microarrays to characterize the global gene expression patterns in surface epithelial cancers of the ovary. We identified groups of genes that distinguished the clear cell subtype from other ovarian carcinomas, grade I and II from grade III serous papillary carcinomas, and ovarian from breast carcinomas. Six clear cell carcinomas were distinguished from 36 other ovarian carcinomas (predominantly serous papillary) based on their gene expression patterns. The differences may yield insights into the worse prognosis and therapeutic resistance associated with clear cell carcinomas. A comparison of the gene expression patterns in the ovarian cancers to published data of gene expression in breast cancers revealed a large number of differentially expressed genes. We identified a group of 62 genes that correctly classified all 125 breast and ovarian cancer specimens. Among the best discriminators more highly expressed in the ovarian carcinomas were PAX8 (paired box gene 8), mesothelin, and ephrin-B1 (EFNB1). Although estrogen receptor was expressed in both the ovarian and breast cancers, genes that are coregulated with the estrogen receptor in breast cancers, including GATA-3, LIV-1, and X-box binding protein 1, did not show a similar pattern of coexpression in the ovarian cancers. PMID:12960427

  12. The complete mitochondrial genome sequence and gene organization of Tridentiger trigonocephalus (Gobiidae: Gobionellinae) with phylogenetic consideration.

    PubMed

    Wei, Hongqing; Ma, Hongyu; Ma, Chunyan; Zhang, Fengying; Wang, Wei; Chen, Wei; Ma, Lingbo

    2016-09-01

    The complete mitochondrial genome plays an important role in studies of genome-level characteristics and phylogenetic relationships. Here we determined the complete mitogenome sequence of Tridentiger trigonocephalus (Perciformes, Gobiidae), and discovered its phylogenetic relationship. This circular genome was 16 662 bp in length, and consisted of 37 typical genes, including 13 protein-coding genes, 22 tRNA genes, and two rRNA genes. The gene order of T. trigonocephalus mitochondrial genome was identical to those observed in most other vertebrates. Of 37 genes, 28 were encoded by heavy strand, while the others were encoded by light strand. The phylogenetic tree constructed by 13 concatenated protein-coding genes showed that T. trigonocephalus was closest to T. bifasciatus, and then to T. barbatus among the 20 species within suborder Gobioidei. This work should facilitate the studies on population genetic diversity, and molecular evolution in Gobioidei fishes. PMID:26370266

  13. Gene Expression Studies in Lygus lineolaris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genes are expressed in insect cells, as in all living organisms, by transcription of DNA into RNA followed by translation of RNA into proteins. The intricate patterns of differential gene expression in time and space directly influence the development and function of every aspect of the organism. Wh...

  14. Arabidopsis gene expression patterns during spaceflight

    NASA Astrophysics Data System (ADS)

    Paul, A.-L.; Ferl, R. J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments resulted in the differential expression of hundreds of genes. A 5 day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β -Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on two fronts. First, expression patterns visualized with the Adh/GUS transgene were used to address specifically the possibility that spaceflight induces a hypoxic stress response, and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. (Paul et al., Plant Physiol. 2001, 126:613). Second, genome-wide patterns of native gene expression were evaluated utilizing the Affymetrix ATH1 GeneChip? array of 8,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes identified with the arrays was further characterized with quantitative Real-Time RT PCR (ABI - TaqmanTM). Comparison of the patterns of expression for arrays of hybridized with RNA isolated from plants exposed to spaceflight compared to the control arrays revealed hundreds of genes that were differentially expressed in response to spaceflight, yet most genes that are hallmarks of hypoxic stress were unaffected. These results will be discussed in light of current models for plant responses to the spaceflight environment, and with regard to potential future flight opportunities.

  15. Uniparental Inheritance of Mitochondrial Genes in Yeast: Dependence on Input Bias of Mitochondrial DNA and Preliminary Investigations of the Mechanism

    PubMed Central

    Birky, C. William; Demko, Catherine A.; Perlman, Philip S.; Strausberg, Robert

    1978-01-01

    In Saccharomyces cerevisiae, previous studies on the inheritance of mitochondrial genes controlling antibiotic resistance have shown that some crosses produce a substantial number of uniparental zygotes , which transmit to their diploid progeny mitochondrial alleles from only one parent. In this paper, we show that uniparental zygotes are formed especially when one parent (majority parent) contributes substantially more mitochondrial DNA molecules to the zygote than does the other (minority) parent. Cellular contents of mitochondrial DNA (mtDNA) are increased in these experiments by treatment with cycloheximide, alpha-factor, or the uvsρ5 nuclear mutation. In such a biased cross, some zygotes are uniparental for mitochondrial alleles from the majority parent, and the frequency of such zygotes increases with increasing bias. In two- and three-factor crosses, the cap1, ery1, and oli1 loci behave coordinately, rather than independently; minority markers tend to be transmitted or lost as a unit, suggesting that the uniparental mechanism acts on entire mtDNA molecules rather than on individual loci. This rules out the possibility that uniparental inheritance can be explained by the conversion of minority markers to the majority alleles during recombination. Exceptions to the coordinate behavior of different loci can be explained by marker rescue via recombination. Uniparental inheritance is largely independent of the position of buds on the zygote. We conclude that it is due to the failure of minority markers to replicate in some zygotes, possibly involving the rapid enzymatic destruction of such markers. We have considered two general classes of mechanisms: (1) random selection of molecules for replication, as for example by competition for replicating sites on a membrane; and (2) differential marking of mtDNA molecules in the two parents, possibly by modification enzymes, followed by a mechanism that "counts" molecules and replicates only the majority type. These

  16. Gearbox gene expression and growth rate.

    PubMed

    Aldea, M; Garrido, T; Tormo, A

    1993-07-01

    Regulation of gene expression in prokaryotic cells usually takes place at the level of transcription initiation. Different forms of RNA polymerase recognizing specific promoters are engaged in the control of many prokaryotic regulons. This also seems to be the case for some Escherichia coli genes that are induced at low growth rates and by nutrient starvation. Their gene products are synthesized at levels inversely proportional to growth rate, and this mode of regulation has been termed gearbox gene expression. This kind of growth-rate modulation is exerted by specific transcriptional initiation signals, the gearbox promoters, and some of them depend on a putative new σ factor (RpoS). Gearbox promoters drive expression of morphogenetic and cell division genes at constant levels per cell and cycle to meet the demands of cell division and septum formation. A mechanism is proposed that could sense the growth rate of the cell to alter gene expression by the action of specific σ factors. PMID:24420108

  17. Quality measures for gene expression biclusters.

    PubMed

    Pontes, Beatriz; Girldez, Ral; Aguilar-Ruiz, Jess S

    2015-01-01

    An noticeable number of biclustering approaches have been proposed proposed for the study of gene expression data, especially for discovering functionally related gene sets under different subsets of experimental conditions. In this context, recognizing groups of co-expressed or co-regulated genes, that is, genes which follow a similar expression pattern, is one of the main objectives. Due to the problem complexity, heuristic searches are usually used instead of exhaustive algorithms. Furthermore, most of biclustering approaches use a measure or cost function that determines the quality of biclusters. Having a suitable quality metric for bicluster is a critical aspect, not only for guiding the search, but also for establishing a comparison criteria among the results obtained by different biclustering techniques. In this paper, we analyse a large number of existing approaches to quality measures for gene expression biclusters, as well as we present a comparative study of them based on their capability to recognize different expression patterns in biclusters. PMID:25763839

  18. Quality Measures for Gene Expression Biclusters

    PubMed Central

    Pontes, Beatriz; Girldez, Ral; Aguilar-Ruiz, Jess S.

    2015-01-01

    An noticeable number of biclustering approaches have been proposed proposed for the study of gene expression data, especially for discovering functionally related gene sets under different subsets of experimental conditions. In this context, recognizing groups of co-expressed or co-regulated genes, that is, genes which follow a similar expression pattern, is one of the main objectives. Due to the problem complexity, heuristic searches are usually used instead of exhaustive algorithms. Furthermore, most of biclustering approaches use a measure or cost function that determines the quality of biclusters. Having a suitable quality metric for bicluster is a critical aspect, not only for guiding the search, but also for establishing a comparison criteria among the results obtained by different biclustering techniques. In this paper, we analyse a large number of existing approaches to quality measures for gene expression biclusters, as well as we present a comparative study of them based on their capability to recognize different expression patterns in biclusters. PMID:25763839

  19. Differential co-expression analysis of venous thromboembolism based on gene expression profile data

    PubMed Central

    MING, ZHIBING; DING, WENBIN; YUAN, RUIFAN; JIN, JIE; LI, XIAOQIANG

    2016-01-01

    The aim of the present study was to screen differentially co-expressed genes and the involved transcription factors (TFs) and microRNAs (miRNAs) in venous thromboembolism (VTE). Microarray data of GSE19151 were downloaded from Gene Expression Omnibus, including 70 patients with VTE and 63 healthy controls. Principal component analysis (PCA) was performed using R software. Differential co-expression analysis was performed using R, followed by screening of modules using Cytoscape. Functional annotation was performed using Database for Annotation, Visualization, and Integrated Discovery. Moreover, Fisher test was used to screen key TFs and miRNAs for the modules. PCA revealed the disease and healthy samples could not be distinguished at the gene expression level. A total of 4,796 upregulated differentially co-expressed genes (e.g. zinc finger protein 264, electron-transfer-flavoprotein, beta polypeptide and Janus kinase 2) and 3,629 downregulated differentially co-expressed genes (e.g. adenylate cyclase 7 and single-stranded DNA binding protein 2) were identified, which were further mined to obtain 17 and eight modules separately. Functional annotation revealed that the largest upregulated module was primarily associated with acetylation and the largest downregulated module was mainly involved in mitochondrion. Moreover, 48 TFs and 62 miRNA families were screened for the 17 upregulated modules, such as E2F transcription factor 4, miR-30 and miR-135 regulating the largest module. Conversely, 35 TFs and 18 miRNA families were identified for the 8 downregulated modules, including mitochondrial ribosomal protein S12 and miR-23 regulating the largest module. Differentially co-expressed genes regulated by TFs and miRNAs may jointly contribute to the abnormal acetylation and mitochondrion presentation in the progression of VTE. PMID:27284300

  20. Expression of a family of noncoding mitochondrial RNAs distinguishes normal from cancer cells.

    PubMed

    Burzio, Verónica A; Villota, Claudio; Villegas, Jaime; Landerer, Eduardo; Boccardo, Enrique; Villa, Luisa L; Martínez, Ronny; Lopez, Constanza; Gaete, Fancy; Toro, Viviana; Rodriguez, Ximena; Burzio, Luis O

    2009-06-01

    We reported the presence in human cells of a noncoding mitochondrial RNA that contains an inverted repeat (IR) of 815 nucleotides (nt) covalently linked to the 5' end of the mitochondrial 16S RNA (16S mtrRNA). The transcript contains a stem-loop structure and is expressed in human proliferating cells but not in resting cells. Here, we demonstrate that, in addition to this transcript, normal human proliferating cells in culture express 2 antisense mitochondrial transcripts. These transcripts also contain stem-loop structures but strikingly they are down-regulated in tumor cell lines and tumor cells present in 17 different tumor types. The differential expression of these transcripts distinguishes normal from tumor cells and might contribute a unique vision on cancer biology and diagnostics. PMID:19470459

  1. Expression of a family of noncoding mitochondrial RNAs distinguishes normal from cancer cells

    PubMed Central

    Burzio, Verónica A.; Villota, Claudio; Villegas, Jaime; Landerer, Eduardo; Boccardo, Enrique; Villa, Luisa L.; Martínez, Ronny; Lopez, Constanza; Gaete, Fancy; Toro, Viviana; Rodriguez, Ximena; Burzio, Luis O.

    2009-01-01

    We reported the presence in human cells of a noncoding mitochondrial RNA that contains an inverted repeat (IR) of 815 nucleotides (nt) covalently linked to the 5′ end of the mitochondrial 16S RNA (16S mtrRNA). The transcript contains a stem-loop structure and is expressed in human proliferating cells but not in resting cells. Here, we demonstrate that, in addition to this transcript, normal human proliferating cells in culture express 2 antisense mitochondrial transcripts. These transcripts also contain stem-loop structures but strikingly they are down-regulated in tumor cell lines and tumor cells present in 17 different tumor types. The differential expression of these transcripts distinguishes normal from tumor cells and might contribute a unique vision on cancer biology and diagnostics. PMID:19470459

  2. Carbon dioxide and light regulation of promoters controlling the expression of mitochondrial carbonic anhydrase in Chlamydomonas reinhardtii.

    PubMed

    Villand, P; Eriksson, M; Samuelsson, G

    1997-10-01

    Nuclear genes coding for carbonic anhydrase, a major mitochondrial constituent in Chlamydomonas reinhardtii grown under limited CO2, were characterized. Two genes, ca1 and ca2, were found within 7 kb of genomic DNA, organized 'head to head' in a large inverted repeat. The DNA sequences for the two genes were very similar, even in the promoter regions and in introns, indicating that the repeat is a result of a recent duplication. To study gene regulation, elements from the upstream region of ca1 were fused to the arylsulphatase reporter gene. After transformation, the expression of arylsulphatase was regulated similarly to the endogenous ca1/ca2 genes, even when the promoter was trimmed down to 194 nt. Expression could not be detected when 5% CO2 was bubbled into the growth medium, but was induced within hours after transfer to air. The ca1 promoter was not induced in low light, but at intermediate light levels its activity was dependent on the irradiance. O2 concentration had no effect on the promoter activity, indicating that photorespiratory metabolites are not triggering the response. The availability of cells transformed with a CO2-regulated reporter gene should facilitate further studies on the metabolic adaptations that occur in some green algae in response to the external CO2 level. PMID:9355734

  3. Aplysia californica neurons express microinjected neuropeptide genes.

    PubMed Central

    DesGroseillers, L; Cowan, D; Miles, M; Sweet, A; Scheller, R H

    1987-01-01

    Neuropeptide genes are expressed in specific subsets of large polyploid neurons in Aplysia californica. We have defined the transcription initiation sites of three of these neuropeptide genes (the R14, L11, and ELH genes) and determined the nucleotide sequence of the promoter regions. The genes contain the usual eucaryotic promoter signals as well as other structures of potential regulatory importance, including inverted and direct repeats. The L11 and ELH genes, which are otherwise unrelated, have homology in the promoter regions, while the R14 promoter was distinct. When cloned plasmids were microinjected into Aplysia neurons in organ culture, transitions between supercoiled, relaxed circular, and linear DNAs occurred along with ligation into high-molecular-weight species. About 20% of the microinjected neurons expressed the genes. The promoter region of the R14 gene functioned in expression of the microinjected DNA in all cells studied. When both additional 5' and 3' sequences were included, the gene was specifically expressed only in R14, suggesting that the specificity of expression is generated by a multicomponent repression system. Finally, the R14 peptide could be expressed in L11, demonstrating that it is possible to alter the transmitter phenotype of these neurons by introduction of cloned genes. Images PMID:3670293

  4. YY1 and Sp1 activate transcription of the human NDUFS8 gene encoding the mitochondrial complex I TYKY subunit.

    PubMed

    Lescuyer, Pierre; Martinez, Pascal; Lunardi, Joël

    2002-03-19

    Complex I is the most complicated of the multimeric enzymes that constitute the mitochondrial respiratory chain. It is encoded by both mitochondrial and nuclear genomes. We have previously characterized the human NDUFS8 gene that encodes the TYKY subunit. This essential subunit is thought to participate in the electron transfer and proton pumping activities of complex I. Here, we have analyzed the transcriptional regulation of the NDUFS8 gene. Using primer extension assays, we have identified two transcription start sites. The basal promoter was mapped to a 247 bp sequence upstream from the main transcription start site by reporter gene analysis in HeLa cells and in differentiated or non-differentiated C2C12 cells. Three Sp1 sites and one YY1 site were identified in this minimal promoter. Through gel shift analysis, all sites were shown to bind to their cognate transcription factors. Site-directed mutagenesis revealed that the YY1 site and two upstream adjacent Sp1 sites drive most of the promoter activity. This work represents the first promoter analysis for a complex I gene. Together with previous studies, our results indicate that YY1 and Sp1 control the expression of genes encoding proteins that are involved in almost all steps of the oxidative phosphorylation metabolism. PMID:11955626

  5. Methodological Limitations in Determining Astrocytic Gene Expression

    PubMed Central

    Peng, Liang; Guo, Chuang; Wang, Tao; Li, Baoman; Gu, Li; Wang, Zhanyou

    2013-01-01

    Traditionally, astrocytic mRNA and protein expression are studied by in situ hybridization (ISH) and immunohistochemically. This led to the concept that astrocytes lack aralar, a component of the malate-aspartate-shuttle. At least similar aralar mRNA and protein expression in astrocytes and neurons isolated by fluorescence-assisted cell sorting (FACS) reversed this opinion. Demonstration of expression of other astrocytic genes may also be erroneous. Literature data based on morphological methods were therefore compared with mRNA expression in cells obtained by recently developed methods for determination of cell-specific gene expression. All Na,K-ATPase-α subunits were demonstrated by immunohistochemistry (IHC), but there are problems with the cotransporter NKCC1. Glutamate and GABA transporter gene expression was well determined immunohistochemically. The same applies to expression of many genes of glucose metabolism, whereas a single study based on findings in bacterial artificial chromosome (BAC) transgenic animals showed very low astrocytic expression of hexokinase. Gene expression of the equilibrative nucleoside transporters ENT1 and ENT2 was recognized by ISH, but ENT3 was not. The same applies to the concentrative transporters CNT2 and CNT3. All were clearly expressed in FACS-isolated cells, followed by biochemical analysis. ENT3 was enriched in astrocytes. Expression of many nucleoside transporter genes were shown by microarray analysis, whereas other important genes were not. Results in cultured astrocytes resembled those obtained by FACS. These findings call for reappraisal of cellular nucleoside transporter expression. FACS cell yield is small. Further development of cell separation methods to render methods more easily available and less animal and cost consuming and parallel studies of astrocytic mRNA and protein expression by ISH/IHC and other methods are necessary, but new methods also need to be thoroughly checked. PMID:24324456

  6. Gene Expression Noise, Fitness Landscapes, and Evolution

    NASA Astrophysics Data System (ADS)

    Charlebois, Daniel

    The stochastic (or noisy) process of gene expression can have fitness consequences for living organisms. For example, gene expression noise facilitates the development of drug resistance by increasing the time scale at which beneficial phenotypic states can be maintained. The present work investigates the relationship between gene expression noise and the fitness landscape. By incorporating the costs and benefits of gene expression, we track how the fluctuation magnitude and timescale of expression noise evolve in simulations of cell populations under stress. We find that properties of expression noise evolve to maximize fitness on the fitness landscape, and that low levels of expression noise emerge when the fitness benefits of gene expression exceed the fitness costs (and that high levels of noise emerge when the costs of expression exceed the benefits). The findings from our theoretical/computational work offer new hypotheses on the development of drug resistance, some of which are now being investigated in evolution experiments in our laboratory using well-characterized synthetic gene regulatory networks in budding yeast. Nserc Postdoctoral Fellowship (Grant No. PDF-453977-2014).

  7. Gene clusters for ribosomal proteins in the mitochondrial genome of a liverwort, Marchantia polymorpha.

    PubMed Central

    Takemura, M; Oda, K; Yamato, K; Ohta, E; Nakamura, Y; Nozato, N; Akashi, K; Ohyama, K

    1992-01-01

    We detected 16 genes for ribosomal proteins in the complete sequence of the mitochondrial DNA from a liverwort, Marchantia polymorpha. The genes formed two major clusters, rps12-rps7 and rps10-rpl2-rps19-rps3-rpl16-rpl5- rps14-rps8- rpl6-rps13-rps11-rps1, very similar in organization to Escherichia coli ribosomal protein operons (str and S10-spc-alpha operons, respectively). In contrast, rps2 and rps4 genes were located separately in the liverwort mitochondrial genome (the latter was part of the alpha operon in E. coli). Furthermore, several ribosomal proteins encoded by the liverwort mitochondrial genome differed substantially in size from their counterparts in E. coli and liverwort chloroplast. PMID:1620617

  8. Gene organization and complete sequence of the mitochondrial genome of Linwu mallard.

    PubMed

    Tian, Ke-Xiong; Liu, Li-Li; Yu, Qi-Fang; He, Shao-Ping; He, Jian-Hua

    2016-01-01

    Linwu mallard is an excellent native breeds from Hunan province in China. This is the first study to determine the complete mitochondrial genome sequence of L. mallard using PCR-based amplification and Sanger sequencing. The characteristic of the entire mitochondrial genome was analyzed in detail, with the base composition of 29.19% A, 22.19% T, 32.83% C, 15.79% G in the L. mallard (16,605 bp in length). It contained 2 ribosomal RNA genes, 13 protein-coding genes, 22 transfer RNA genes and a major non-coding control region (D-loop region). The complete mitochondrial genome sequence of L. mallard will be useful for the phylogenetics of poultry, and be available as basic data for the genetics and breeding. PMID:24938102

  9. The mitochondrial genome of Anopheles quadrimaculatus species A: complete nucleotide sequence and gene organization.

    PubMed

    Mitchell, S E; Cockburn, A F; Seawright, J A

    1993-12-01

    The complete sequence (15,455 bp) of the mitochondrial DNA of the mosquito Anopheles quadrimaculatus species A is reported. This genome is compact and very A+T rich (77.4% A+T). It contains genes for 2 ribosomal RNAs (rRNAs), 22 transfer RNAs (tRNAs), and 13 subunits of the mitochondrial inner membrane respiratory complexes. The gene arrangement is the same as in Drosophila yakuba, except that the positions of two contiguous tRNAs are reversed and a third tRNA is transcribed from the complementary strand. Protein-coding genes, rRNAs, and most tRNAs were similar to D. yakuba. Two tRNAs had nonstandard secondary structures comparable with those of nematode mitochondrial tRNAs. The very small putative control region (625 bp) contains no sequence motifs similar to those used in vertebrates and other insects for initiation of transcription and replication. PMID:8112570

  10. Complete sequence and gene organization of the mitochondrial genome of Asio flammeus (Strigiformes, strigidae).

    PubMed

    Zhang, Yanan; Song, Tao; Pan, Tao; Sun, Xiaonan; Sun, Zhonglou; Qian, Lifu; Zhang, Baowei

    2016-07-01

    The complete sequence of the mitochondrial genome was determined for Asio flammeus, which is distributed widely in geography. The length of the complete mitochondrial genome was 18,966 bp, containing 2 rRNA genes, 22 tRNA genes, 13 protein-coding genes (PCGs), and 1 non-coding region (D-loop). All the genes were distributed on the H-strand, except for the ND6 subunit gene and eight tRNA genes which were encoded on the L-strand. The D-loop of A. flammeus contained many tandem repeats of varying lengths and repeat numbers. The molecular-based phylogeny showed that our species acted as the sister group to A. capensis and the supported Asio was the monophyletic group. PMID:25980662

  11. Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements

    PubMed Central

    Jühling, Frank; Pütz, Joern; Bernt, Matthias; Donath, Alexander; Middendorf, Martin; Florentz, Catherine; Stadler, Peter F.

    2012-01-01

    Transfer RNAs (tRNAs) are present in all types of cells as well as in organelles. tRNAs of animal mitochondria show a low level of primary sequence conservation and exhibit ‘bizarre’ secondary structures, lacking complete domains of the common cloverleaf. Such sequences are hard to detect and hence frequently missed in computational analyses and mitochondrial genome annotation. Here, we introduce an automatic annotation procedure for mitochondrial tRNA genes in Metazoa based on sequence and structural information in manually curated covariance models. The method, applied to re-annotate 1876 available metazoan mitochondrial RefSeq genomes, allows to distinguish between remaining functional genes and degrading ‘pseudogenes’, even at early stages of divergence. The subsequent analysis of a comprehensive set of mitochondrial tRNA genes gives new insights into the evolution of structures of mitochondrial tRNA sequences as well as into the mechanisms of genome rearrangements. We find frequent losses of tRNA genes concentrated in basal Metazoa, frequent independent losses of individual parts of tRNA genes, particularly in Arthropoda, and wide-spread conserved overlaps of tRNAs in opposite reading direction. Direct evidence for several recent Tandem Duplication-Random Loss events is gained, demonstrating that this mechanism has an impact on the appearance of new mitochondrial gene orders. PMID:22139921

  12. A mitochondrial uncoupling artifact can be caused by expression of uncoupling protein 1 in yeast.

    PubMed Central

    Stuart, J A; Harper, J A; Brindle, K M; Jekabsons, M B; Brand, M D

    2001-01-01

    Uncoupling protein 1 (UCP1) from mouse was expressed in yeast and the specific (GDP-inhibitable) and artifactual (GDP-insensitive) effects on mitochondrial uncoupling were assessed. UCP1 provides a GDP-inhibitable model system to help interpret the uncoupling effects of high expression in yeast of other members of the mitochondrial carrier protein family, such as the UCP1 homologues UCP2 and UCP3. Yeast expressing UCP1 at modest levels (approx. 1 microg/mg of mitochondrial protein) showed no growth defect, normal rates of chemically uncoupled respiration and an increased non-phosphorylating proton conductance that was completely GDP-sensitive. The catalytic-centre activity of UCP1 in these yeast mitochondria was similar to that in mammalian brown-adipose-tissue mitochondria. However, yeast expressing UCP1 at higher levels (approx. 11 microg/mg of mitochondrial protein) showed a growth defect. Their mitochondria had depressed chemically uncoupled respiration rates and an increased proton conductance that was partly GDP-insensitive. Thus, although UCP1 shows native behaviour at modest levels of expression in yeast, higher levels (or rates) of expression can lead to an uncoupling that is not a physiological property of the native protein and is therefore artifactual. This observation might be important in the interpretation of results from experiments in which the functions of UCP1 homologues are verified by their ability to uncouple yeast mitochondria. PMID:11389685

  13. Assignment of two mitochondrially synthesized polypeptides to human mitochondrial DNA and their use in the study of intracellular mitochondrial interaction

    SciTech Connect

    Oliver, N.A.; Wallace, D.C.

    1982-01-01

    Two mitochondrially synthesized marker polypeptides, MV-1 and MV-2, were found in human HeLa and HT1080 cells. These were assigned to the mitochondrial DNA in HeLa-HT1080 hybrids and hybrids by demonstrating their linkage to cytoplasmic genetic markers. These markers include mitochondrial DNA restriction site polymorphisms and resistance to chloramphenicol, an inhibitor of mitochondrial protein synthesis. In the absence of chloramphenicol, the expression of MV-1 and MV-2 in hybrids and hybrids was found to be directly proportional to the ratio of the parental mitochondrial DNAs. In the presence of chloramphenicol, the marker polypeptide linked to the chloramphenicol-sensitive mitochondrial DNA continued to be expressed. This demonstrated that resistant and sensitive mitochondrial DNAs can cooperate within a cell for gene expression and that the CAP-resistant allele was dominant or codominant to sensitive. Such cooperation suggests that mitochondrial DNAs can be exchanged between mitochondria.

  14. Biased introgression of mitochondrial and nuclear genes: a comparison of diploid and haplodiploid systems.

    PubMed

    Patten, Manus M; Carioscia, Sara A; Linnen, Catherine R

    2015-10-01

    Hybridization between recently diverged species, even if infrequent, can lead to the introgression of genes from one species into another. The rates of mitochondrial and nuclear introgression often differ, with some taxa showing biases for mitochondrial introgression and others for nuclear introgression. Several hypotheses exist to explain such biases, including adaptive introgression, sex differences in dispersal rates, sex-specific prezygotic isolation and sex-specific fitness of hybrids (e.g. Haldane's rule). We derive a simple population genetic model that permits an analysis of sex-specific demographic and fitness parameters and measures the relative rates of mitochondrial and nuclear introgression between hybridizing pairs. We do this separately for diploid and haplodiploid species. For diploid taxa, we recover results consistent with previous hypotheses: an excess of one sex among the hybridizing migrants or sex-specific prezygotic isolation causes a bias for one type of marker or the other; when Haldane's rule is obeyed, we find a mitochondrial bias in XY systems and a nuclear bias in ZW systems. For haplodiploid taxa, the model reveals that owing to their unique transmission genetics, they are seemingly assured of strong mitochondrial biases in introgression rates, unlike diploid taxa, where the relative fitness of male and female hybrids can tip the bias in either direction. This heretofore overlooked aspect of hybridization in haplodiploids provides what is perhaps the most likely explanation for differential introgression of mitochondrial and nuclear markers and raises concerns about the use of mitochondrial DNA barcodes for species delimitation in these taxa. PMID:26173469

  15. Recent stable insertion of mitochondrial DNA into an Arabidopsis polyubiquitin gene by nonhomologous recombination.

    PubMed

    Sun, C W; Callis, J

    1993-01-01

    Sequence analysis of a newly identified polyubiquitin gene (UBQ13) from the Columbia ecotype of Arabidopsis thaliana revealed that the gene contained a 3.9-kb insertion in the coding region. All subclones of the 3.9-kb insert hybridized to isolated mitochondrial DNA. The insert was found to consist of at least two, possibly three, distinct DNA segments from the mitochondrial genome. A 590-bp region of the insert is nearly identical to the Arabidopsis mitochondrial nad1 gene. UBQ13 restriction fragments in total cellular DNA from ecotypes Ler, No-0, Be-0, WS, and RLD were identified and, with the exception of Be-0, their sizes were equivalent to that predicted from the corresponding ecotype Columbia UBQ13 restriction fragment without the mitochondrial insert. Isolation by polymerase chain reaction and sequence determination of UBQ13 sequences from the other ecotypes showed that all lacked the mitochondrial insert. All ecotypes examined, except Columbia, contain intact open reading frames in the region of the insert, including four ubiquitin codons which Columbia lacks. This indicates that the mitochondrial DNA in UBQ13 in ecotype Columbia is the result of an integration event that occurred after speciation of Arabidopsis rather than a deletion event that occurred in all ecotypes except Columbia. This stable movement of mitochondrial DNA to the nucleus is so recent that there are few nucleotide changes subsequent to the transfer event. This allows for precise analysis of the sequences involved and elucidation of the possible mechanism. The presence of intron sequences in the transferred nucleic acid indicates that DNA was the transfer intermediate. The lack of sequence identity between the integrating sequence and the target site, represented by the other Arabidopsis ecotypes, suggests that integration occurred via nonhomologus recombination. This nuclear/organellar gene transfer event is strikingly similar to the experimentally accessible process of nuclear

  16. A comparative gene expression database for invertebrates

    PubMed Central

    2011-01-01

    Background As whole genome and transcriptome sequencing gets cheaper and faster, a great number of 'exotic' animal models are emerging, rapidly adding valuable data to the ever-expanding Evo-Devo field. All these new organisms serve as a fantastic resource for the research community, but the sheer amount of data, some published, some not, makes detailed comparison of gene expression patterns very difficult to summarize - a problem sometimes even noticeable within a single lab. The need to merge existing data with new information in an organized manner that is publicly available to the research community is now more necessary than ever. Description In order to offer a homogenous way of storing and handling gene expression patterns from a variety of organisms, we have developed the first web-based comparative gene expression database for invertebrates that allows species-specific as well as cross-species gene expression comparisons. The database can be queried by gene name, developmental stage and/or expression domains. Conclusions This database provides a unique tool for the Evo-Devo research community that allows the retrieval, analysis and comparison of gene expression patterns within or among species. In addition, this database enables a quick identification of putative syn-expression groups that can be used to initiate, among other things, gene regulatory network (GRN) projects. PMID:21861937

  17. Differential placental gene expression in severe preeclampsia.

    PubMed

    Sitras, V; Paulssen, R H; Grønaas, H; Leirvik, J; Hanssen, T A; Vårtun, A; Acharya, G

    2009-05-01

    We investigated the global placental gene expression profile in severe preeclampsia. Twenty-one women were randomly selected from 50 participants with uncomplicated pregnancies to match 21 patients with severe preeclampsia. A 30K Human Genome Survey Microarray v.2.0 (Applied Biosystems) was used to evaluate the gene expression profile. After RNA isolation, five preeclamptic placentas were excluded due to poor RNA quality. The series composed of 37 hybridizations in a one-channel detection system of chemiluminescence emitted by the microarrays. An empirical Bayes analysis was applied to find differentially expressed genes. In preeclamptic placentas 213 genes were significantly (fold-change>or=2 and pexpressed genes were associated with Alzheimer disease, angiogenesis, Notch-, TGFbeta- and VEGF-signalling pathways. Sixteen genes best discriminated preeclamptic from normal placentas. Comparison between early- (<34 weeks) and late-onset preeclampsia showed 168 differentially expressed genes with oxidative stress, inflammation, and endothelin signalling pathways mainly involved in early-onset disease. Validation of the microarray results was performed by RT-PCR, quantitative urine hCG measurement and placental histopathologic examination. In summary, placental gene expression is altered in preeclampsia and we provide a comprehensive list of the differentially expressed genes. Placental gene expression is different between early- and late-onset preeclampsia, suggesting differences in pathophysiology. PMID:19249095

  18. Mitochondrial neurogastrointestinal encephalomyopathy: novel pathogenic mutations in thymidine phosphorylase gene in two Italian brothers.

    PubMed

    Libernini, Laura; Lupis, Chiara; Mastrangelo, Mario; Carrozzo, Rosalba; Santorelli, Filippo Maria; Inghilleri, Maurizio; Leuzzi, Vincenzo

    2012-08-01

    Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE, MIM 603041) is an autosomal recessive multisystem disorder occurring due to mutations in a nuclear gene coding for the enzyme thymidine phosphorylase (TYMP). Clinical features of MNGIE include gastrointestinal dysmotility, cachexia, ptosis or ophthalmoparesis, peripheral neuropathy, diffuse leukoencephalopathy, and signs of mitochondrial dysfunction in tissues. We report the clinical and molecular findings in two brothers in whom novel TYMP gene mutations (c.215-13_215delinsGCGTGA; c.1159 + 2T > A) were associated with different clinical presentations and outcomes. PMID:22618301

  19. A mutation in the yeast heat-shock factor gene causes temperature-sensitive defects in both mitochondrial protein import and the cell cycle.

    PubMed Central

    Smith, B J; Yaffe, M P

    1991-01-01

    Yeast cells containing the recessive mas3 mutation display temperature-sensitive defects in both mitochondrial protein import and the cell division cycle. The import defect is characterized by two pools of mitochondrial precursors and a dramatically slower rate of posttranslational import. The effect of mas3 on cell cycle progression occurs within one cell cycle at the nonpermissive temperature and retards progression through the G2 stage. The mas3 mutation maps to the gene encoding yeast heat-shock transcription factor (HSF), and expression of wild-type HSF complements the temperature-sensitive defects. The mas3 lesion has no apparent effect on protein secretion. In mas3 cells, induction of a major heat-shock gene, SSA1, is defective at 37 degrees C. The properties of the mas3 mutant cells indicate that HSF mediates the response to stress of two basic cellular processes: mitochondrial protein import and cell cycle progression. Images PMID:2017170

  20. Nucleosome repositioning underlies dynamic gene expression.

    PubMed

    Nocetti, Nicolas; Whitehouse, Iestyn

    2016-03-15

    Nucleosome repositioning at gene promoters is a fundamental aspect of the regulation of gene expression. However, the extent to which nucleosome repositioning is used within eukaryotic genomes is poorly understood. Here we report a comprehensive analysis of nucleosome positions as budding yeast transit through an ultradian cycle in which expression of >50% of all genes is highly synchronized. We present evidence of extensive nucleosome repositioning at thousands of gene promoters as genes are activated and repressed. During activation, nucleosomes are relocated to allow sites of general transcription factor binding and transcription initiation to become accessible. The extent of nucleosome shifting is closely related to the dynamic range of gene transcription and generally related to DNA sequence properties and use of the coactivators TFIID or SAGA. However, dynamic gene expression is not limited to SAGA-regulated promoters and is an inherent feature of most genes. While nucleosome repositioning occurs pervasively, we found that a class of genes required for growth experience acute nucleosome shifting as cells enter the cell cycle. Significantly, our data identify that the ATP-dependent chromatin-remodeling enzyme Snf2 plays a fundamental role in nucleosome repositioning and the expression of growth genes. We also reveal that nucleosome organization changes extensively in concert with phases of the cell cycle, with large, regularly spaced nucleosome arrays being established in mitosis. Collectively, our data and analysis provide a framework for understanding nucleosome dynamics in relation to fundamental DNA-dependent transactions. PMID:26966245

  1. Expression of a functional oxygen-labile nitrogenase component in the mitochondrial matrix of aerobically grown yeast

    PubMed Central

    López-Torrejón, Gema; Jiménez-Vicente, Emilio; Buesa, José María; Hernandez, Jose A.; Verma, Hemant K.; Rubio, Luis M.

    2016-01-01

    The extreme sensitivity of nitrogenase towards oxygen stands as a major barrier to engineer biological nitrogen fixation into cereal crops by direct nif gene transfer. Here, we use yeast as a model of eukaryotic cell and show that aerobically grown cells express active nitrogenase Fe protein when the NifH polypeptide is targeted to the mitochondrial matrix together with the NifM maturase. Co-expression of NifH and NifM with Nif-specific Fe–S cluster biosynthetic proteins NifU and NifS is not required for Fe protein activity, demonstrating NifH ability to incorporate endogenous mitochondrial Fe–S clusters. In contrast, expression of active Fe protein in the cytosol requires both anoxic growth conditions and co-expression of NifH and NifM with NifU and NifS. Our results show the convenience of using mitochondria to host nitrogenase components, thus providing instrumental technology for the grand challenge of engineering N2-fixing cereals. PMID:27126134

  2. A new point mutation in the ND1 mitochondrial gene identified in a type II diabetic patient

    SciTech Connect

    Kalinin, V.N.; Schmidt, W.; Olek, K.

    1995-08-01

    A novel mutation in a mitochondrial gene was identified in a patient with type II diabetes mellitus. G-to-A transition was localized at the nt3316 position of gene ND1 and resulted in alanine threonine replacement at position 4 of mitochondrial NAD-H-dehydrogenase. 6 refs., 2 figs.

  3. Gene expression patterns during intramuscular fat development in cattle.

    PubMed

    Wang, Y H; Bower, N I; Reverter, A; Tan, S H; De Jager, N; Wang, R; McWilliam, S M; Cafe, L M; Greenwood, P L; Lehnert, S A

    2009-01-01

    Deposition of intramuscular fat, or "marbling," in beef cattle contributes significantly to meat quality variables, including juiciness, flavor, and tenderness. The accumulation of intramuscular fat is largely influenced by the genetic background of cattle, as well as their age and nutrition. To identify genes that can be used as early biomarkers for the prediction of marbling capacity, we studied the muscle transcriptome of 2 cattle crossbreeds with contrasting intramuscular fat content. The transcriptomes of marbling LM tissue of heifers from Wagyu x Hereford (WxH; n = 6) and Piedmontese x Hereford (PxH; n = 7) crosses were profiled by using a combination of complementary DNA microarray and quantitative reverse transcription-PCR. Five biopsies of LM were taken from each animal at approximately 3, 7, 12, 20, and 25 mo from birth. Tissue was also collected from the LM of each animal at slaughter (approximately 30 mo). Microarray experiments, conducted on the first 3 biopsies of 2 animals from each crossbreed, identified 97 differentially expressed genes. The gene expression results indicated that the LM transcriptome of animals with high marbling potential (WxH) could be reliably distinguished from less marbled animals (PxH) when the animals were as young as 7 mo of age. At this early age, one cannot reliably determine meaningful differences in intramuscular fat deposition. We observed greater expression of a set of adipogenesis- and lipogenesis-related genes in the LM of young WxH animals compared with their PxH contemporaries. In contrast, genes highly expressed in PxH animals were associated with mitochondrial oxidative activity. Further quantitative reverse transcription-PCR experiments revealed that the messenger RNA of 6 of the lipogenesis-related genes also peaked at the age of 20 to 25 mo in WxH animals. The messenger RNA expression of ADIPOQ, SCD, and THRSP was highly correlated with intramuscular fat content of an individual in WxH animals. Our study

  4. Cilostazol promotes mitochondrial biogenesis in human umbilical vein endothelial cells through activating the expression of PGC-1α

    SciTech Connect

    Zuo, Luning; Li, Qiang; Sun, Bei; Xu, Zhiying; Ge, Zhiming

    2013-03-29

    Highlights: ► First time to show that cilostazol promotes the expressions of PGC-1α. ► First time to show that cilostazol stimulates mitochondrial biogenesis in HUVECs. ► PKA/CREB pathway mediates the effect of cilostazol on PGC-1α expression. ► Suggesting the roles of cilostazol in mitochondrial dysfunction related disease. -- Abstract: Mitochondrial dysfunction is frequently observed in vascular diseases. Cilostazol is a drug approved by the US Food and Drug Administration for the treatment of intermittent claudication. Cilostazol increases intracellular cyclic adenosine monophosphate (cAMP) levels through inhibition of type III phosphodiesterase. The effects of cilostazol in mitochondrial biogenesis in human umbilical vein endothelial cells (HUVECs) were investigated in this study. Cilostazol treated HUVECs displayed increased levels of ATP, mitochondrial DNA/nuclear DNA ratio, expressions of cytochrome B, and mitochondrial mass, suggesting an enhanced mitochondrial biogenesis induced by cilostazol. The promoted mitochondrial biogenesis could be abolished by Protein kinase A (PKA) specific inhibitor H-89, implying that PKA pathway played a critical role in increased mitochondrial biogenesis after cilostazol treatment. Indeed, expression levels of peroxisome proliferator activator receptor gamma-coactivator 1α (PGC-1α), NRF 1 and mitochondrial transcription factor A (TFAM) were significantly increased in HUVECs after incubation with cilostazol at both mRNA levels and protein levels. Importantly, knockdown of PGC-1α could abolish cilostazol-induced mitochondrial biogenesis. Enhanced expression of p-CREB and PGC-1α induced by cilostazol could be inhibited by H-89. Moreover, the increased expression of PGC-1α induced by cilostazol could be inhibited by downregulation of CREB using CREB siRNA at both mRNA and protein levels. All the results indicated that cilostazol promoted mitochondrial biogenesis through activating the expression of PGC-1α in

  5. The plant mitochondrial mat-r gene/nad1 gene complex

    SciTech Connect

    Wolstenhome, D.R.

    1996-12-31

    We have completed sequencing segments of the maize mitochondrial (mt) DNA that contains all five of the exons (A-E) of the gene (nad1) for subunit I of the respiratory chain NADH dehydrogenase. Analysis of these sequences indicates that exons B and C are joined by a continuous group II intron, but the remaining exons are associated with partial group II introns and are encoded at widely separated locations in the maize mtDNA molecule. We have shown that mature transcripts of the maize nad1 gene contain 23 edited nucleotides, and that transcripts of maize and soybean mat-r genes contain 15 and 14 edits, respectively. The majority of edits in nad1 transcripts result in amino acid replacements that increase similarity between the maize NAD1 protein and NAD1 proteins of other plant species and of animal species. We found that the intron between exons b and c is not edited. From data obtained using PCR and sequencing we have shown that transcripts containing all possible exon combinations exist in maize mitochondria.

  6. Sexual Dimorphism in the Expression of Mitochondria-Related Genes in Rat Heart at Different Ages

    PubMed Central

    Vijay, Vikrant; Han, Tao; Moland, Carrie L.; Kwekel, Joshua C.; Fuscoe, James C.; Desai, Varsha G.

    2015-01-01

    Cardiovascular disease (CVD) is the leading cause of mortality worldwide. Moreover, sex and age are considered major risk factors in the development of CVDs. Mitochondria are vital for normal cardiac function, and regulation of mitochondrial structure and function may impact susceptibility to CVD. To identify potential role of mitochondria in sex-related differences in susceptibility to CVD, we analyzed the basal expression levels of mitochondria-related genes in the hearts of male and female rats. Whole genome expression profiling was performed in the hearts of young (8-week), adult (21-week), and old (78-week) male and female Fischer 344 rats and the expression of 670 unique genes related to various mitochondrial functions was analyzed. A significant (p<0.05) sexual dimorphism in expression levels of 46, 114, and 41 genes was observed in young, adult and old rats, respectively. Gene Ontology analysis revealed the influence of sex on various biological pathways related to cardiac energy metabolism at different ages. The expression of genes involved in fatty acid metabolism was significantly different between the sexes in young and adult rat hearts. Adult male rats also showed higher expression of genes associated with the pyruvate dehydrogenase complex compared to females. In young and adult hearts, sexual dimorphism was not noted in genes encoding oxidative phosphorylation. In old rats, however, a majority of genes involved in oxidative phosphorylation had higher expression in females compared to males. Such basal differences between the sexes in cardiac expression of genes associated with energy metabolism may indicate a likely involvement of mitochondria in susceptibility to CVDs. In addition, female rats showed lower expression levels of apoptotic genes in hearts compared to males at all ages, which may have implications for better preservation of cardiac mass in females than in males. PMID:25615628

  7. Palindromic Genes in the Linear Mitochondrial Genome of the Nonphotosynthetic Green Alga Polytomella magna

    PubMed Central

    Smith, David Roy; Hua, Jimeng; Archibald, John M.; Lee, Robert W.

    2013-01-01

    Organelle DNA is no stranger to palindromic repeats. But never has a mitochondrial or plastid genome been described in which every coding region is part of a distinct palindromic unit. While sequencing the mitochondrial DNA of the nonphotosynthetic green alga Polytomella magna, we uncovered precisely this type of genic arrangement. The P. magna mitochondrial genome is linear and made up entirely of palindromes, each containing 1–7 unique coding regions. Consequently, every gene in the genome is duplicated and in an inverted orientation relative to its partner. And when these palindromic genes are folded into putative stem-loops, their predicted translational start sites are often positioned in the apex of the loop. Gel electrophoresis results support the linear, 28-kb monomeric conformation of the P. magna mitochondrial genome. Analyses of other Polytomella taxa suggest that palindromic mitochondrial genes were present in the ancestor of the Polytomella lineage and lost or retained to various degrees in extant species. The possible origins and consequences of this bizarre genomic architecture are discussed. PMID:23940100

  8. Palindromic genes in the linear mitochondrial genome of the nonphotosynthetic green alga Polytomella magna.

    PubMed

    Smith, David Roy; Hua, Jimeng; Archibald, John M; Lee, Robert W

    2013-01-01

    Organelle DNA is no stranger to palindromic repeats. But never has a mitochondrial or plastid genome been described in which every coding region is part of a distinct palindromic unit. While sequencing the mitochondrial DNA of the nonphotosynthetic green alga Polytomella magna, we uncovered precisely this type of genic arrangement. The P. magna mitochondrial genome is linear and made up entirely of palindromes, each containing 1-7 unique coding regions. Consequently, every gene in the genome is duplicated and in an inverted orientation relative to its partner. And when these palindromic genes are folded into putative stem-loops, their predicted translational start sites are often positioned in the apex of the loop. Gel electrophoresis results support the linear, 28-kb monomeric conformation of the P. magna mitochondrial genome. Analyses of other Polytomella taxa suggest that palindromic mitochondrial genes were present in the ancestor of the Polytomella lineage and lost or retained to various degrees in extant species. The possible origins and consequences of this bizarre genomic architecture are discussed. PMID:23940100

  9. Transcriptional regulation of secretin gene expression.

    PubMed

    Nishitani, J; Rindi, G; Lopez, M J; Upchurch, B H; Leiter, A B

    1995-01-01

    Expression of the gene encoding the hormone secretin is restricted to a specific enteroendocrine cell type and to beta-cells in developing pancreatic islets. To characterize regulatory elements in the secretin gene responsible for its expression in secretin-producing cells, we used a series of reporter genes for transient expression assays in transfection studies carried out in secretin-producing islet cell lines. Analysis of the transcriptional activity of deletion mutants identified a positive cis regulatory domain between 174 and 53 base pairs upstream from the transcriptional initiation site which was required for secretin gene expression in secretin-producing HIT insulinoma cells. Within this enhancer were sequences resembling two binding sites for the transcription factor Sp1, as well as a consensus sequence for binding to helix-loop-helix proteins. Analysis of these three elements by site-directed mutagenesis suggests that each is important for full transcriptional activity. The role of proximal enhancer sequences in directing secretin gene expression to appropriate tissues is further supported by studies in transgenic mice revealing that 1.6 kilobases of the secretin gene 5' flanking sequence were sufficient to direct the expression of either human growth hormone or simian virus 40 large T-antigen reporter genes to all major secretin-producing tissues. PMID:8774991

  10. Sexual differences of imprinted genes' expression levels.

    PubMed

    Faisal, Mohammad; Kim, Hana; Kim, Joomyeong

    2014-01-01

    In mammals, genomic imprinting has evolved as a dosage-controlling mechanism for a subset of genes that play critical roles in their unusual reproduction scheme involving viviparity and placentation. As such, many imprinted genes are highly expressed in sex-specific reproductive organs. In the current study, we sought to test whether imprinted genes are differentially expressed between the two sexes. According to the results, the expression levels of the following genes differ between the two sexes of mice: Peg3, Zim1, Igf2, H19 and Zac1. The expression levels of these imprinted genes are usually greater in males than in females. This bias is most obvious in the developing brains of 14.5-dpc embryos, but also detected in the brains of postnatal-stage mice. However, this sexual bias is not obvious in 10.5-dpc embryos, a developmental stage before the sexual differentiation. Thus, the sexual bias observed in the imprinted genes is most likely attributable by gonadal hormones rather than by sex chromosome complement. Overall, the results indicate that several imprinted genes are sexually different in terms of their expression levels, and further suggest that the transcriptional regulation of these imprinted genes may be influenced by unknown mechanisms associated with sexual differentiation. PMID:24125951

  11. High expression hampers horizontal gene transfer.

    PubMed

    Park, Chungoo; Zhang, Jianzhi

    2012-01-01

    Horizontal gene transfer (HGT), the movement of genetic material from one species to another, is a common phenomenon in prokaryotic evolution. Although the rate of HGT is known to vary among genes, our understanding of the cause of this variation, currently summarized by two rules, is far from complete. The first rule states that informational genes, which are involved in DNA replication, transcription, and translation, have lower transferabilities than operational genes. The second rule asserts that protein interactivity negatively impacts gene transferability. Here, we hypothesize that high expression hampers HGT, because the fitness cost of an HGT to the recipient, arising from the 1) energy expenditure in transcription and translation, 2) cytotoxic protein misfolding, 3) reduction in cellular translational efficiency, 4) detrimental protein misinteraction, and 5) disturbance of the optimal protein concentration or cell physiology, increases with the expression level of the transferred gene. To test this hypothesis, we examined laboratory and natural HGTs to Escherichia coli. We observed lower transferabilities of more highly expressed genes, even after controlling the confounding factors from the two established rules and the genic GC content. Furthermore, expression level predicts gene transferability better than all other factors examined. We also confirmed the significant negative impact of gene expression on the rate of HGTs to 127 of 133 genomes of eubacteria and archaebacteria. Together, these findings establish the gene expression level as a major determinant of horizontal gene transferability. They also suggest that most successful HGTs are initially slightly deleterious, fixed because of their negligibly low costs rather than high benefits to the recipient. PMID:22436996

  12. Gene expression in periodontal tissues following treatment

    PubMed Central

    Beikler, Thomas; Peters, Ulrike; Prior, Karola; Eisenacher, Martin; Flemmig, Thomas F

    2008-01-01

    Background In periodontitis, treatment aimed at controlling the periodontal biofilm infection results in a resolution of the clinical and histological signs of inflammation. Although the cell types found in periodontal tissues following treatment have been well described, information on gene expression is limited to few candidate genes. Therefore, the aim of the study was to determine the expression profiles of immune and inflammatory genes in periodontal tissues from sites with severe chronic periodontitis following periodontal therapy in order to identify genes involved in tissue homeostasis. Gingival biopsies from 12 patients with severe chronic periodontitis were taken six to eight weeks following non-surgical periodontal therapy, and from 11 healthy controls. As internal standard, RNA of an immortalized human keratinocyte line (HaCaT) was used. Total RNA was subjected to gene expression profiling using a commercially available microarray system focusing on inflammation-related genes. Post-hoc confirmation of selected genes was done by Realtime-PCR. Results Out of the 136 genes analyzed, the 5% most strongly expressed genes compared to healthy controls were Interleukin-12A (IL-12A), Versican (CSPG-2), Matrixmetalloproteinase-1 (MMP-1), Down syndrome critical region protein-1 (DSCR-1), Macrophage inflammatory protein-2β (Cxcl-3), Inhibitor of apoptosis protein-1 (BIRC-1), Cluster of differentiation antigen 38 (CD38), Regulator of G-protein signalling-1 (RGS-1), and Finkel-Biskis-Jinkins murine osteosarcoma virus oncogene (C-FOS); the 5% least strongly expressed genes were Receptor-interacting Serine/Threonine Kinase-2 (RIP-2), Complement component 3 (C3), Prostaglandin-endoperoxide synthase-2 (COX-2), Interleukin-8 (IL-8), Endothelin-1 (EDN-1), Plasminogen activator inhibitor type-2 (PAI-2), Matrix-metalloproteinase-14 (MMP-14), and Interferon regulating factor-7 (IRF-7). Conclusion Gene expression profiles found in periodontal tissues following therapy

  13. Species boundaries of Gulf of Mexico vestimentiferans (Polychaeta, Siboglinidae) inferred from mitochondrial genes

    NASA Astrophysics Data System (ADS)

    Pia Miglietta, Maria; Hourdez, Stephane; Cowart, Dominique A.; Schaeffer, Stephen W.; Fisher, Charles

    2010-11-01

    At least six morphospecies of vestimentiferan tubeworms are associated with cold seeps in the Gulf of Mexico (GOM). The physiology and ecology of the two best-studied species from depths above 1000 m in the upper Louisiana slope (Lamellibrachia luymesi and Seepiophila jonesi) are relatively well understood. The biology of one rare species from the upper slope (escarpiid sp. nov.) and three morphospecies found at greater depths in the GOM (Lamellibrachia sp. 1, L. sp. 2, and Escarpia laminata) are not as well understood. Here we address species distributions and boundaries of cold-seep tubeworms using phylogenetic hypotheses based on two mitochondrial genes. Fragments of the mitochondrial large ribosomal subunit rDNA (16S) and cytochrome oxidase subunit I (COI) genes were sequenced for 167 vestimentiferans collected from the GOM and analyzed in the context of other seep vestimentiferans for which sequence data were available. The analysis supported five monophyletic clades of vestimentiferans in the GOM. Intra-clade variation in both genes was very low, and there was no apparent correlation between the within-clade diversity and collection depth or location. Two of the morphospecies of Lamellibrachia from different depths in the GOM could not be distinguished by either mitochondrial gene. Similarly, E. laminata could not be distinguished from other described species of Escarpia from either the west coast of Africa or the eastern Pacific using COI. We suggest that the mitochondrial COI and 16S genes have little utility as barcoding markers for seep vestimentiferan tubeworms.

  14. Gene Arrangement Convergence, Diverse Intron Content, and Genetic Code Modifications in Mitochondrial Genomes of Sphaeropleales (Chlorophyta)

    PubMed Central

    Fučíková, Karolina; Lewis, Paul O.; González-Halphen, Diego; Lewis, Louise A.

    2014-01-01

    The majority of our knowledge about mitochondrial genomes of Viridiplantae comes from land plants, but much less is known about their green algal relatives. In the green algal order Sphaeropleales (Chlorophyta), only one representative mitochondrial genome is currently available—that of Acutodesmus obliquus. Our study adds nine completely sequenced and three partially sequenced mitochondrial genomes spanning the phylogenetic diversity of Sphaeropleales. We show not only a size range of 25–53 kb and variation in intron content (0–11) and gene order but also conservation of 13 core respiratory genes and fragmented ribosomal RNA genes. We also report an unusual case of gene arrangement convergence in Neochloris aquatica, where the two rns fragments were secondarily placed in close proximity. Finally, we report the unprecedented usage of UCG as stop codon in Pseudomuriella schumacherensis. In addition, phylogenetic analyses of the mitochondrial protein-coding genes yield a fully resolved, well-supported phylogeny, showing promise for addressing systematic challenges in green algae. PMID:25106621

  15. Axin is expressed in mitochondria and suppresses mitochondrial ATP synthesis in HeLa cells.

    PubMed

    Shin, Jee-Hye; Kim, Hyun-Wook; Rhyu, Im Joo; Kee, Sun-Ho

    2016-01-01

    Many recent studies have revealed that axin is involved in numerous cellular functions beyond the negative regulation of β-catenin-dependent Wnt signaling. Previously, an association of ectopic axin with mitochondria was observed. In an effort to investigate the relationship between axin and mitochondria, we found that axin expression suppressed cellular ATP production, which was more apparent as axin expression levels increased. Also, mitochondrial expression of axin was observed using two axin-expressing HeLa cell models: doxycycline-inducible ectopic axin expression (HeLa-axin) and axin expression enhanced by long-term treatment with XAV939 (HeLa-XAV). In biochemical analysis, axin is associated with oxidative phosphorylation (OXPHOS) complex IV and is involved in defects in the assembly of complex IV-containing supercomplexes. Functionally, axin expression reduced the activity of OXPHOS complex IV and the oxygen consumption rate (OCR), suggesting axin-mediated mitochondrial dysfunction. Subsequent studies using various inhibitors of Wnt signaling showed that the reduction in cellular ATP levels was weaker in cases of ICAT protein expression and treatment with iCRT3 or NSC668036 compared with XAV939 treatment, suggesting that XAV939 treatment affects ATP synthesis in addition to suppressing Wnt signaling activity. Axin-mediated regulation of mitochondrial function may be an additional mechanism to Wnt signaling for regulation of cell growth. PMID:26704260

  16. A Metabolic Phenotype Based on Mitochondrial Ribosomal Protein Expression as a Predictor of Lymph Node Metastasis in Papillary Thyroid Carcinoma

    PubMed Central

    Lee, Jandee; Seol, Mi-Youn; Jeong, Seonhyang; Lee, Cho Rok; Ku, Cheol Ryong; Kang, Sang-Wook; Jeong, Jong Ju; Shin, Dong Yeob; Nam, Kee-Hyun; Lee, Eun Jig; Chung, Woong Youn; Jo, Young Suk

    2015-01-01

    Abstract Metabolic reprogramming has been regarded as an essential component of malignant transformation. However, the clinical significance of metabolic heterogeneity remains poorly characterized. The aim of this study was to characterize metabolic heterogeneity in thyroid cancers via the analysis of the expression of mitochondrial ribosomal proteins (MRPs) and genes involved in oxidative phosphorylation (OxPhos), and investigate potential prognostic correlations. Gene set enrichment analysis (GSEA) verified by reverse transcription polymerase chain reaction and gene network analysis was performed using public repository data. Cross-sectional observational study was conducted to classify papillary thyroid cancer (PTC) by the expression of MRP L44 (MRPL44) messenger RNA (mRNA), and to investigate the clinicopathological features. GSEA clearly showed that the expression of OxPhos and MRP gene sets was significantly lower in primary thyroid cancer than in matched normal thyroid tissue. However, 8 of 49 primary thyroid tumors (16.3%) in the public repository did not show a reduction in OxPhos mRNA expression. Remarkably, strong positive correlations between MRPL44 expression and those of OxPhos and MRPs such as reduced nicotinamide adenine dinucleotide dehydrogenase (ubiquinone) 1 α subcomplex, 5; succinate dehydrogenase complex, subunit D; cytochrome c, somatic; adenosine triphosphate synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9); and MRP S5 (MRPS5) (P < 0.0001) were clearly denoted, suggesting that MRPL44 is a representative marker of OxPhos and MRP expressions. In laboratory experiments, metabolic heterogeneity in oxygen consumption, extracellular acidification rates (ECARs), and amounts of OxPhos complexes were consistently observed in BCPAP, TPC1, HTH-7, and XTC.UC1 cell lines. In PTCs, metabolic phenotype according to OxPhos amount defined by expression of MRPL44 mRNA was significantly related to lymph node metastasis (LNM) (P

  17. A metabolic phenotype based on mitochondrial ribosomal protein expression as a predictor of lymph node metastasis in papillary thyroid carcinoma.

    PubMed

    Lee, Jandee; Seol, Mi-Youn; Jeong, Seonhyang; Lee, Cho Rok; Ku, Cheol Ryong; Kang, Sang-Wook; Jeong, Jong Ju; Shin, Dong Yeob; Nam, Kee-Hyun; Lee, Eun Jig; Chung, Woong Youn; Jo, Young Suk

    2015-01-01

    Metabolic reprogramming has been regarded as an essential component of malignant transformation. However, the clinical significance of metabolic heterogeneity remains poorly characterized. The aim of this study was to characterize metabolic heterogeneity in thyroid cancers via the analysis of the expression of mitochondrial ribosomal proteins (MRPs) and genes involved in oxidative phosphorylation (OxPhos), and investigate potential prognostic correlations. Gene set enrichment analysis (GSEA) verified by reverse transcription polymerase chain reaction and gene network analysis was performed using public repository data. Cross-sectional observational study was conducted to classify papillary thyroid cancer (PTC) by the expression of MRP L44 (MRPL44) messenger RNA (mRNA), and to investigate the clinicopathological features. GSEA clearly showed that the expression of OxPhos and MRP gene sets was significantly lower in primary thyroid cancer than in matched normal thyroid tissue. However, 8 of 49 primary thyroid tumors (16.3%) in the public repository did not show a reduction in OxPhos mRNA expression. Remarkably, strong positive correlations between MRPL44 expression and those of OxPhos and MRPs such as reduced nicotinamide adenine dinucleotide dehydrogenase (ubiquinone) 1 α subcomplex, 5; succinate dehydrogenase complex, subunit D; cytochrome c, somatic; adenosine triphosphate synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9); and MRP S5 (MRPS5) (P < 0.0001) were clearly denoted, suggesting that MRPL44 is a representative marker of OxPhos and MRP expressions. In laboratory experiments, metabolic heterogeneity in oxygen consumption, extracellular acidification rates (ECARs), and amounts of OxPhos complexes were consistently observed in BCPAP, TPC1, HTH-7, and XTC.UC1 cell lines. In PTCs, metabolic phenotype according to OxPhos amount defined by expression of MRPL44 mRNA was significantly related to lymph node metastasis (LNM) (P < 0

  18. Gene expression homeostasis and chromosome architecture

    PubMed Central

    Seshasayee, Aswin Sai Narain

    2014-01-01

    In rapidly growing populations of bacterial cells, including those of the model organism Escherichia coli, genes essential for growth - such as those involved in protein synthesis - are expressed at high levels; this is in contrast to many horizontally-acquired genes, which are maintained at low transcriptional levels.1 This balance in gene expression states between 2 distinct classes of genes is established by a galaxy of transcriptional regulators, including the so-called nucleoid associated proteins (NAP) that contribute to shaping the chromosome.2 Besides these active players in gene regulation, it is not too far-fetched to anticipate that genome organization in terms of how genes are arranged on the chromosome,3 which is the result of long-drawn transactions among genome rearrangement processes and selection, and the manner in which it is structured inside the cell, plays a role in establishing this balance. A recent study from our group has contributed to the literature investigating the interplay between global transcriptional regulators and genome organization in establishing gene expression homeostasis.4 In particular, we address a triangle of functional interactions among genome organization, gene expression homeostasis and horizontal gene transfer. PMID:25997086

  19. Relationship between mitochondrial DNA Copy Number and SIRT1 Expression in Porcine Oocytes

    PubMed Central

    Sato, Daichi; Itami, Nobuhiko; Tasaki, Hidetaka; Takeo, Shun; Kuwayama, Takehito; Iwata, Hisataka

    2014-01-01

    The present study assessed the effect of resveratrol on the expression of SIRT1 and mitochondrial quality and quantity in porcine oocytes. Supplementing the maturation medium with 20 µM resveratrol increased the expression of SIRT1, and enhanced mitochondrial functions, as observed from the increased ATP content and mitochondrial membrane potential. Addition of resveratrol also improved the ability of oocytes to develop into the blastocyst stage following activation. The effects of resveratrol on mitochondrial number were examined by comparing the mitochondrial DNA copy number (Mt number) between group of oocytes collected from the same donor gilt ovaries. Supplementing the maturation medium with only resveratrol did not affect the Mt number in the oocytes. However, supplementing the maturation medium with 10 µM MG132, a proteasome inhibitor, significantly increased the amount of ubiquitinated proteins and Mt number by 12 and 14%, respectively. In addition, when resveratrol was added to the medium containing MG132, the Mt number increased significantly by 39%, this effect was diminished by the addition of the SIRT1 inhibitor EX527. Furthermore, supplementing the medium with MG132 and EX527 did not affect Mt number. The mean SIRT1 expression in 20 oocytes was significantly and positively correlated with the Mt number in oocytes collected from the same donor. This study suggests that the expression of SIRT1 is associated with the Mt number in oocytes. In addition, activation of SIRT1 by resveratrol enhances the biosynthesis and degradation of mitochondria in oocytes, thereby replenishing and improving mitochondrial function and the developmental ability of oocytes. PMID:24747689

  20. Candidate reference genes for gene expression studies in water lily.

    PubMed

    Luo, Huolin; Chen, Sumei; Wan, Hongjian; Chen, Fadi; Gu, Chunsun; Liu, Zhaolei

    2010-09-01

    The selection of an appropriate reference gene(s) is a prerequisite for the proper interpretation of quantitative Real-Time polymerase chain reaction data. We report the evaluation of eight candidate reference genes across various tissues and treatments in the water lily by the two software packages geNorm and NormFinder. Across all samples, clathrin adaptor complexes medium subunit (AP47) and actin 11 (ACT11) emerged as the most suitable reference genes. Across different tissues, ACT11 and elongation factor 1-alpha (EF1alpha) exhibited a stable expression pattern. ACT11 and AP47 also stably expressed in roots subjected to various treatments, but in the leaves of the same plants the most stably expressed genes were ubiquitin-conjugating enzyme 16 (UBC16) and ACT11. PMID:20452325

  1. Differential Expression of Lipid and Carbohydrate Metabolism Genes in Upper Airway versus Diaphragm Muscle

    PubMed Central

    van Lunteren, Erik; Spiegler, Sarah; Moyer, Michelle

    2010-01-01

    Study Objectives: Contractile properties of upper airway muscles influence upper airway patency, an issue of particular importance for subjects with obstructive sleep apnea. Expression of genes related to cellular energetics is, in turn, critical for the maintenance of contractile integrity over time during repetitive activation. We tested the hypothesis that sternohyoid has lower expression of genes related to lipid and carbohydrate energetic pathways than the diaphragm. Methods: Sternohyoid and diaphragm from normal adult rats were examined with gene expression arrays. Analysis focused on genes belonging to Gene Ontology (GO) groups carbohydrate metabolism and lipid metabolism. Results: There were 433 genes with at least ± 2-fold significant differential expression between sternohyoid and diaphragm, of which 192 had sternohyoid > diaphragm and 241 had diaphragm > sternohyoid expression. Among genes with higher sternohyoid expression, there was over-representation of the GO group carbohydrate metabolism (P = 0.0053, n = 13 genes, range of differential expression 2.1- to 6.2-fold) but not lipid metabolism (P = 0.44). Conversely, among genes with higher diaphragm expression, there was over-representation of the GO group lipid metabolism (P = 0.0000065, n = 32 genes, range of differential expression 2.0- to 37.9-fold) but not carbohydrate metabolism (P = 0.23). Nineteen genes with diaphragm > sternohyoid expression were related to fatty acid metabolism (P = 0.000000058), in particular fatty acid β oxidation and biosynthesis in the mitochondria. Conclusions: Sternohyoid has much lower gene expression than diaphragm for mitochondrial enzymes that participate in fatty acid oxidation and biosynthesis. This likely contributes to the lower fatigue resistance of pharyngeal upper airway muscles compared with the diaphragm. Citation: van Lunteren E; Spiegler S; Moyer M. Differential expression of lipid and carbohydrate metabolism genes in upper airway versus diaphragm

  2. Comparison of Mitochondrial-Related Transcriptional Levels of TFAM, NRF1 and MT-CO1 Genes in Single Human Oocytes at Various Stages of the Oocyte Maturation

    PubMed Central

    Ghaffari Novin, Marefat; Noruzinia, Mehrdad; Allahveisi, Azra; Saremi, Aboutaleb; Fadaei Fathabadi, Fateme; Mastery Farahani, Reza; Dehghani Fard, Ali; Pooladi, Arash; Mazaherinezhad Fard, Ramin; Yousefian, Elham

    2015-01-01

    Background: The aim of the current study was to assess the mRNA levels of two mitochondria-related genes, including nuclear-encoded NRF1 (nuclear respiratory factor 1), mitochondrial transcription factor A (TFAM), and mitochondrial-encoded cytochrome c oxidase subunit 1 (MT-CO1) genes in various stages of the human oocyte maturation. Methods: Oocytes were obtained from nine infertile women with male factor undergoing in vitro fertilization (IVF)/intra-cytoplasmic sperm injection protocol. Mitochondrial-related mRNA levels were performed by single-cell TaqMan real-time PCR. Results: the expression level of the target genes was low at the germinal vesicle stage (P>0.05). Although the mRNA level of NRF1gene remained stable in metaphase I, the mRNA level of TFAM and MT-CO1 increased significantly (P<0.05).In metaphase II, the expression level of all genes increased compared to metaphase I (P<0.05). Conclusion: The overexpression levels of NRF1, TFAM, and MT-CO1 genes are related to the oocyte maturation. Therefore, the current study could be used clinically to improve the success rate of IVF. PMID:25605486

  3. Dynamic modeling of gene expression data

    NASA Technical Reports Server (NTRS)

    Holter, N. S.; Maritan, A.; Cieplak, M.; Fedoroff, N. V.; Banavar, J. R.

    2001-01-01

    We describe the time evolution of gene expression levels by using a time translational matrix to predict future expression levels of genes based on their expression levels at some initial time. We deduce the time translational matrix for previously published DNA microarray gene expression data sets by modeling them within a linear framework by using the characteristic modes obtained by singular value decomposition. The resulting time translation matrix provides a measure of the relationships among the modes and governs their time evolution. We show that a truncated matrix linking just a few modes is a good approximation of the full time translation matrix. This finding suggests that the number of essential connections among the genes is small.

  4. Dynamic modeling of gene expression data

    PubMed Central

    Holter, Neal S.; Maritan, Amos; Cieplak, Marek; Fedoroff, Nina V.; Banavar, Jayanth R.

    2001-01-01

    We describe the time evolution of gene expression levels by using a time translational matrix to predict future expression levels of genes based on their expression levels at some initial time. We deduce the time translational matrix for previously published DNA microarray gene expression data sets by modeling them within a linear framework by using the characteristic modes obtained by singular value decomposition. The resulting time translation matrix provides a measure of the relationships among the modes and governs their time evolution. We show that a truncated matrix linking just a few modes is a good approximation of the full time translation matrix. This finding suggests that the number of essential connections among the genes is small. PMID:11172013

  5. Nucleosomal promoter variation generates gene expression noise

    PubMed Central

    Brown, Christopher R.; Boeger, Hinrich

    2014-01-01

    Gene product molecule numbers fluctuate over time and between cells, confounding deterministic expectations. The molecular origins of this noise of gene expression remain unknown. Recent EM analysis of single PHO5 gene molecules of yeast indicated that promoter molecules stochastically assume alternative nucleosome configurations at steady state, including the fully nucleosomal and nucleosome-free configuration. Given that distinct configurations are unequally conducive to transcription, the nucleosomal variation of promoter molecules may constitute a source of gene expression noise. This notion, however, implies an untested conjecture, namely that the nucleosomal variation arises de novo or intrinsically (i.e., that it cannot be explained as the result of the promoter’s deterministic response to variation in its molecular surroundings). Here, we show—by microscopically analyzing the nucleosome configurations of two juxtaposed physically linked PHO5 promoter copies—that the configurational variation, indeed, is intrinsically stochastic and thus, a cause of gene expression noise rather than its effect. PMID:25468975

  6. Potential impact of human mitochondrial replacement on global policy regarding germline gene modification.

    PubMed

    Ishii, Tetsuya

    2014-08-01

    Previous discussions regarding human germline gene modification led to a global consensus that no germline should undergo genetic modification. However, the UK Human Fertilisation and Embryology Authority, having conducted at the UK Government's request a scientific review and a wide public consultation, provided advice to the Government on the pros and cons of Parliament's lifting a ban on altering mitochondrial DNA content of human oocytes and embryos, so as to permit the prevention of maternal transmission of mitochondrial diseases. In this commentary, relevant ethical and biomedical issues are examined and requirements for proceeding with this novel procedure are suggested. Additionally, potentially significant impacts of the UK legalization on global policy concerning germline gene modification are discussed in the context of recent advances in genome-editing technology. It is concluded that international harmonization is needed, as well as further ethical and practical consideration, prior to the legalization of human mitochondrial replacement. PMID:24832374

  7. Inferring Developmental Stage Composition from Gene Expression in Human Malaria

    PubMed Central

    Montgomery, Jacqui; Sidhu, Amar Bir; Oh, Keunyoung; Meyer, Evan; Pierre-Louis, Willythssa; Seydel, Karl; Milner, Danny; Williamson, Kim; Wiegand, Roger; Ndiaye, Daouda; Daily, Johanna; Wirth, Dyann; Taylor, Terrie; Huttenhower, Curtis; Marti, Matthias

    2013-01-01

    In the current era of malaria eradication, reducing transmission is critical. Assessment of transmissibility requires tools that can accurately identify the various developmental stages of the malaria parasite, particularly those required for transmission (sexual stages). Here, we present a method for estimating relative amounts of Plasmodium falciparum asexual and sexual stages from gene expression measurements. These are modeled using constrained linear regression to characterize stage-specific expression profiles within mixed-stage populations. The resulting profiles were analyzed functionally by gene set enrichment analysis (GSEA), confirming differentially active pathways such as increased mitochondrial activity and lipid metabolism during sexual development. We validated model predictions both from microarrays and from quantitative RT-PCR (qRT-PCR) measurements, based on the expression of a small set of key transcriptional markers. This sufficient marker set was identified by backward selection from the whole genome as available from expression arrays, targeting one sentinel marker per stage. The model as learned can be applied to any new microarray or qRT-PCR transcriptional measurement. We illustrate its use in vitro in inferring changes in stage distribution following stress and drug treatment and in vivo in identifying immature and mature sexual stage carriers within patient cohorts. We believe this approach will be a valuable resource for staging lab and field samples alike and will have wide applicability in epidemiological studies of malaria transmission. PMID:24348235

  8. Amino acid regulation of gene expression.

    PubMed Central

    Fafournoux, P; Bruhat, A; Jousse, C

    2000-01-01

    The impact of nutrients on gene expression in mammals has become an important area of research. Nevertheless, the current understanding of the amino acid-dependent control of gene expression is limited. Because amino acids have multiple and important functions, their homoeostasis has to be finely maintained. However, amino-acidaemia can be affected by certain nutritional conditions or various forms of stress. It follows that mammals have to adjust several of their physiological functions involved in the adaptation to amino acid availability by regulating the expression of numerous genes. The aim of the present review is to examine the role of amino acids in regulating mammalian gene expression and protein turnover. It has been reported that some genes involved in the control of growth or amino acid metabolism are regulated by amino acid availability. For instance, limitation of several amino acids greatly increases the expression of the genes encoding insulin-like growth factor binding protein-1, CHOP (C/EBP homologous protein, where C/EBP is CCAAT/enhancer binding protein) and asparagine synthetase. Elevated mRNA levels result from both an increase in the rate of transcription and an increase in mRNA stability. Several observations suggest that the amino acid regulation of gene expression observed in mammalian cells and the general control process described in yeast share common features. Moreover, amino acid response elements have been characterized in the promoters of the CHOP and asparagine synthetase genes. Taken together, the results discussed in the present review demonstrate that amino acids, by themselves, can, in concert with hormones, play an important role in the control of gene expression. PMID:10998343

  9. Efficient ectopic gene expression targeting chick mesoderm.

    PubMed

    Oberg, Kerby C; Pira, Charmaine U; Revelli, Jean-Pierre; Ratz, Beate; Aguilar-Cordova, Estuardo; Eichele, Gregor

    2002-07-01

    The chick model has been instrumental in illuminating genes that regulate early vertebrate development and pattern formation. Targeted ectopic gene expression is critical to dissect further the complicated gene interactions that are involved. In an effort to develop a consistent method to ectopically introduce and focally express genes in chick mesoderm, we evaluated and optimized several gene delivery methods, including implantation of 293 cells laden with viral vectors, direct adenoviral injection, and electroporation (EP). We targeted the mesoderm of chick wing buds between stages 19 and 21 (Hamburger and Hamilton stages) and used beta-galactosidase and green fluorescent protein (GFP) to document gene transfer. Expression constructs using the cytomegalovirus (CMV) promoter, the beta-actin promoter, and vectors with an internal ribosomal entry sequence linked to GFP (IRES-GFP) were also compared. After gene transfer, we monitored expression for up to 3 days. The functionality of ectopic expression was demonstrated with constructs containing the coding sequences for Shh, a secreted signaling protein, or Hoxb-8, a transcription factor, both of which can induce digit duplication when ectopically expressed in anterior limb mesoderm. We identified several factors that enhance mesodermal gene transfer. First, the use of a vector with the beta-actin promoter coupled to the 69% fragment of the bovine papilloma virus yielded superior mesodermal expression both by markers and functional results when compared with several CMV-driven vectors. Second, we found the use of mineral oil to be an important adjuvant for EP and direct viral injection to localize and contain vector within the mesoderm at the injection site. Lastly, although ectopic expression could be achieved with all three methods, we favored EP confined to the mesoderm with insulated microelectrodes (confined microelectroporation- CMEP), because vector construction is rapid, the method is efficient, and results

  10. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis

    PubMed Central

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis. PMID:26393928

  11. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis.

    PubMed

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis. PMID:26393928

  12. A Cardiac-Specific Robotized Cellular Assay Identified Families of Human Ligands as Inducers of PGC-1α Expression and Mitochondrial Biogenesis

    PubMed Central

    Ruiz, Matthieu; Courilleau, Delphine; Jullian, Jean-Christophe; Fortin, Dominique; Ventura-Clapier, Renée; Blondeau, Jean-Paul; Garnier, Anne

    2012-01-01

    Background Mitochondrial function is dramatically altered in heart failure (HF). This is associated with a decrease in the expression of the transcriptional coactivator PGC-1α, which plays a key role in the coordination of energy metabolism. Identification of compounds able to activate PGC-1α transcription could be of future therapeutic significance. Methodology/Principal Findings We thus developed a robotized cellular assay to screen molecules in order to identify new activators of PGC-1α in a cardiac-like cell line. This screening assay was based on both the assessment of activity and gene expression of a secreted luciferase under the control of the human PGC-1α promoter, stably expressed in H9c2 cells. We screened part of a library of human endogenous ligands and steroid hormones, B vitamins and fatty acids were identified as activators of PGC-1α expression. The most responsive compounds of these families were then tested for PGC-1α gene expression in adult rat cardiomyocytes. These data highly confirmed the primary screening, and the increase in PGC-1α mRNA correlated with an increase in several downstream markers of mitochondrial biogenesis. Moreover, respiration rates of H9c2 cells treated with these compounds were increased evidencing their effectiveness on mitochondrial biogenesis. Conclusions/Significance Using our cellular reporter assay we could identify three original families, able to activate mitochondrial biogenesis both in cell line and adult cardiomyocytes. This first screening can be extended to chemical libraries in order to increase our knowledge on PGC-1α regulation in the heart and to identify potential therapeutic compounds able to improve mitochondrial function in HF. PMID:23056435

  13. Homeobox genes expressed during echinoderm arm regeneration.

    PubMed

    Ben Khadra, Yousra; Said, Khaled; Thorndyke, Michael; Martinez, Pedro

    2014-04-01

    Regeneration in echinoderms has proved to be more amenable to study in the laboratory than the more classical vertebrate models, since the smaller genome size and the absence of multiple orthologs for different genes in echinoderms simplify the analysis of gene function during regeneration. In order to understand the role of homeobox-containing genes during arm regeneration in echinoderms, we isolated the complement of genes belonging to the Hox class that are expressed during this process in two major echinoderm groups: asteroids (Echinaster sepositus and Asterias rubens) and ophiuroids (Amphiura filiformis), both of which show an extraordinary capacity for regeneration. By exploiting the sequence conservation of the homeobox, putative orthologs of several Hox genes belonging to the anterior, medial, and posterior groups were isolated. We also report the isolation of a few Hox-like genes expressed in the same systems. PMID:24309817

  14. New genes and pathomechanisms in mitochondrial disorders unraveled by NGS technologies.

    PubMed

    Legati, Andrea; Reyes, Aurelio; Nasca, Alessia; Invernizzi, Federica; Lamantea, Eleonora; Tiranti, Valeria; Garavaglia, Barbara; Lamperti, Costanza; Ardissone, Anna; Moroni, Isabella; Robinson, Alan; Ghezzi, Daniele; Zeviani, Massimo

    2016-08-01

    Next Generation Sequencing (NGS) technologies are revolutionizing the diagnostic screening for rare disease entities, including primary mitochondrial disorders, particularly those caused by nuclear gene defects. NGS approaches are able to identify the causative gene defects in small families and even single individuals, unsuitable for investigation by traditional linkage analysis. These technologies are contributing to fill the gap between mitochondrial disease cases defined on the basis of clinical, neuroimaging and biochemical readouts, which still outnumber by approximately 50% the cases for which a molecular-genetic diagnosis is attained. We have been using a combined, two-step strategy, based on targeted genes panel as a first NGS screening, followed by whole exome sequencing (WES) in still unsolved cases, to analyze a large cohort of subjects, that failed to show mutations in mtDNA and in ad hoc sets of specific nuclear genes, sequenced by the Sanger's method. Not only this approach has allowed us to reach molecular diagnosis in a significant fraction (20%) of these difficult cases, but it has also revealed unexpected and conceptually new findings. These include the possibility of marked variable penetrance of recessive mutations, the identification of large-scale DNA rearrangements, which explain spuriously heterozygous cases, and the association of mutations in known genes with unusual, previously unreported clinical phenotypes. Importantly, WES on selected cases has unraveled the presence of pathogenic mutations in genes encoding non-mitochondrial proteins (e.g. the transcription factor E4F1), an observation that further expands the intricate genetics of mitochondrial disease and suggests a new area of investigation in mitochondrial medicine. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:26968897

  15. Reading Genomes and Controlling Gene Expression

    NASA Astrophysics Data System (ADS)

    Libchaber, Albert

    2000-03-01

    Molecular recognition of DNA sequences is achieved by DNA hybridization of complementary sequences. We present various scenarios for optimization, leading to microarrays and global measurement. Gene expression can be controlled using gene constructs immobilized on a template with micron scale temperature heaters. We will discuss and present results on protein microarrays.

  16. Polyunsaturated fatty acids and gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose of review. This review focuses on the effect(s) of n-3 polyunsaturated fatty acids (PUFA) on gene transcription as determined from data generated using cDNA microarrays. Introduced within the past decade, this methodology allows detection of the expression of thousands of genes simultaneo...

  17. Role of Calcineurin, hnRNPA2 and Akt in Mitochondrial Respiratory Stress-Mediated Transcription Activation of Nuclear Gene Targets

    PubMed Central

    Guha, Manti; Tang, Weigang; Sondheimer, Neal; Avadhani, Narayan G.

    2010-01-01

    Pathophysiological conditions causing mitochondrial dysfunction and altered transmembrane potential (Δψm) initiate a mitochondrial respiratory stress response, also known as mitochondrial retrograde response, in a variety of mammalian cells. An increase in the cytosolic Ca2+ [Ca2+]c as part of this signaling cascade activates Ca2+ responsive phosphatase, Calcineurin (Cn). Activation of IGF1R accompanied by increased glycolysis, invasiveness, and resistance to apoptosis are phenotypic hallmarks of C2C12 rhabdomyoblast cells subjected to this stress. The signaling is associated with activation and increased nuclear translocation of a number of transcription factors including a novel NFκB (cRel: p50) pathway, NFAT, CREB and C/EBPδ. This culminates in the upregulation of a number of nuclear genes including Cathepsin L, RyR1, Glut4 and Akt1. We observed that stress regulated transcription activation of nuclear genes involves a cooperative interplay between NFκB (cRel:p50), C/EBPδ, CREB, NFAT. Our results show that the functional synergy of these factors requires the stress-activated heterogeneous nuclear ribonucleoprotein, hnRNPA2 as a transcriptional co-activator. We report here that mitochondrial stress leads to induced expression and activation of serine threonine kinase Akt1. Interestingly, we observe that Akt1 phosphorylates hnRNPA2 under mitochondrial stress conditions, which is a crucial step for the recruitment of this coactivator to the stress target promoters and culmination in mitochondrial stress-mediated transcription activation of target genes. We propose that mitochondrial stress plays an important role in tumor progression and emergence of invasive phenotypes. PMID:20153290

  18. Gene expression in rat brain.

    PubMed

    Milner, R J; Sutcliffe, J G

    1983-08-25

    191 randomly selected cDNA clones prepared from rat brain cytoplasmic poly (A)+ RNA were screened by Northern blot hybridization to rat brain, liver and kidney RNA to determine the tissue distribution, abundance and size of the corresponding brain mRNA. 18% hybridized to mRNAs each present equally in the three tissues, 26% to mRNAs differentially expressed in the tissues, and 30% to mRNAs present only in the brain. An additional 26% of the clones failed to detect mRNA in the three tissues at an abundance level of about 0.01%, but did contain rat cDNA as demonstrated by Southern blotting; this class probably represents rare mRNAs expressed in only some brain cells. Therefore, most mRNA expressed in brain is either specific to brain or otherwise displays regulation. Rarer mRNA species tend to be larger than the more abundant species, and tend to be brain specific; the rarest, specific mRNAs average 5000 nucleotides in length. Ten percent of the clones hybridize to multiple mRNAs, some of which are expressed from small multigenic families. From these data we estimate that there are probably at most 30,000 distinct mRNA species expressed in the rat brain, the majority of which are uniquely expressed in the brain. PMID:6193485

  19. Inactivation of Mitochondrial Complex I Induces the Expression of a Twin Cysteine Protein that Targets and Affects Cytosolic, Chloroplastidic and Mitochondrial Function.

    PubMed

    Wang, Yan; Lyu, Wenhui; Berkowitz, Oliver; Radomiljac, Jordan D; Law, Simon R; Murcha, Monika W; Carrie, Chris; Teixeira, Pedro F; Kmiec, Beata; Duncan, Owen; Van Aken, Olivier; Narsai, Reena; Glaser, Elzbieta; Huang, Shaobai; Roessner, Ute; Millar, A Harvey; Whelan, James

    2016-05-01

    At12Cys-1 (At5g64400) and At12Cys-2 (At5g09570) are two closely related isogenes that encode small, twin cysteine proteins, typically located in mitochondria. At12Cys-2 transcript is induced in a variety of mutants with disrupted mitochondrial proteins, but an increase in At12Cys protein is only detected in mutants with reduced mitochondrial complex I abundance. Induction of At12Cys protein in mutants that lack mitochondrial complex I is accompanied by At12Cys protein located in mitochondria, chloroplasts, and the cytosol. Biochemical analyses revealed that even single gene deletions, i.e., At12cys-1 or At12cys-2, have an effect on mitochondrial and chloroplast functions. However, only double mutants, i.e., At12cys-1:At12cys-2, affect the abundance of protein and mRNA transcripts encoding translation elongation factors as well as rRNA abundance. Blue native PAGE showed that At12Cys co-migrated with mitochondrial supercomplex I + III. Likewise, deletion of both At12cys-1 and At12cys-2 genes, but not single gene deletions, results in enhanced tolerance to drought and light stress and increased anti-oxidant capacity. The induction and multiple localization of At12Cys upon a reduction in complex I abundance provides a mechanism to specifically signal mitochondrial dysfunction to the cytosol and then beyond to other organelles in the cell. PMID:26829715

  20. Host mitochondrial association evolved in the human parasite Toxoplasma gondii via neofunctionalization of a gene duplicate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Toxoplasma gondii, an intracellular parasite of humans and other warm-blooded animals, the ability to associate with host mitochondria (HMA) is driven by a locally expanded gene family that encodes multiple mitochondrial association factor 1 (MAF1) proteins. The importance of copy number in the e...

  1. Sex-Biased Gene Expression during Head Development in a Sexually Dimorphic Stalk-Eyed Fly

    PubMed Central

    Wilkinson, Gerald S.; Johns, Philip M.; Metheny, Jackie D.; Baker, Richard H.

    2013-01-01

    Stalk-eyed flies (family Diopsidae) are a model system for studying sexual selection due to the elongated and sexually dimorphic eye-stalks found in many species. These flies are of additional interest because their X chromosome is derived largely from an autosomal arm in other flies. To identify candidate genes required for development of dimorphic eyestalks and investigate how sex-biased expression arose on the novel X, we compared gene expression between males and females using oligonucleotide microarrays and RNA from developing eyestalk tissue or adult heads in the dimorphic diopsid, Teleopsis dalmanni. Microarray analysis revealed sex-biased expression for 26% of 3,748 genes expressed in eye-antennal imaginal discs and concordant sex-biased expression for 86 genes in adult heads. Overall, 415 female-biased and 482 male-biased genes were associated with dimorphic eyestalk development but not differential expression in the adult head. Functional analysis revealed that male-biased genes are disproportionately associated with growth and mitochondrial function while female-biased genes are associated with cell differentiation and patterning or are novel transcripts. With regard to chromosomal effects, dosage compensation occurs by elevated expression of X-linked genes in males. Genes with female-biased expression were more common on the X and less common on autosomes than expected, while male-biased genes exhibited no chromosomal pattern. Rates of protein evolution were lower for female-biased genes but higher for genes that moved on or off the novel X chromosome. These findings cannot be due to meiotic sex chromosome inactivation or by constraints associated with dosage compensation. Instead, they could be consistent with sexual conflict in which female-biased genes on the novel X act primarily to reduce eyespan in females while other genes increase eyespan in both sexes. Additional information on sex-biased gene expression in other tissues and related sexually

  2. Over-expression of heme oxygenase-1 promotes oxidative mitochondrial damage in rat astroglia.

    PubMed

    Song, Wei; Su, Haixiang; Song, Sisi; Paudel, Hemant K; Schipper, Hyman M

    2006-03-01

    Glial heme oxygenase-1 is over-expressed in the CNS of subjects with Alzheimer disease (AD), Parkinson disease (PD) and multiple sclerosis (MS). Up-regulation of HO-1 in rat astroglia has been shown to facilitate iron sequestration by the mitochondrial compartment. To determine whether HO-1 induction promotes mitochondrial oxidative stress, assays for 8-epiPGF(2alpha) (ELISA), protein carbonyls (ELISA) and 8-OHdG (HPLC-EC) were used to quantify oxidative damage to lipids, proteins, and nucleic acids, respectively, in mitochondrial fractions and whole-cell compartments derived from cultured rat astroglia engineered to over-express human (h) HO-1 by transient transfection. Cell viability was assessed by trypan blue exclusion and the MTT assay, and cell proliferation was determined by [3H] thymidine incorporation and total cell counts. In rat astrocytes, hHO-1 over-expression (x 3 days) resulted in significant oxidative damage to mitochondrial lipids, proteins, and nucleic acids, partial growth arrest, and increased cell death. These effects were attenuated by incubation with 1 microM tin mesoporphyrin, a competitive HO inhibitor, or the iron chelator, deferoxamine. Up-regulation of HO-1 engenders oxidative mitochondrial injury in cultured rat astroglia. Heme-derived ferrous iron and carbon monoxide (CO) may mediate the oxidative modification of mitochondrial lipids, proteins and nucleic acids in these cells. Glial HO-1 hyperactivity may contribute to cellular oxidative stress, pathological iron deposition, and bioenergetic failure characteristic of degenerating and inflamed neural tissues and may constitute a rational target for therapeutic intervention in these conditions. PMID:16222706

  3. Complete Sequence and Gene Organization of the Mitochondrial Genome of the Land Snail Albinaria Coerulea

    PubMed Central

    Hatzoglou, E.; Rodakis, G. C.; Lecanidou, R.

    1995-01-01

    The complete sequence (14,130 bp) of the mitochondrial DNA (mtDNA) of the land snail Albinaria coerulea was determined. It contains 13 protein, two rRNA and 22 tRNA genes. Twenty-four of these genes are encoded by one and 13 genes by the other strand. The gene arrangement shares almost no similarities with that of two other molluscs for which the complete gene content and arrangement are known, the bivalve Mytilus edulis and the chiton Katharina tunicata; the protein and rRNA gene order is similar to that of another terrestrial gastropod, Cepaea nemoralis. Unusual features include the following: (1) the absence of lengthy noncoding regions (there are only 141 intergenic nucleotides interspersed at different gene borders, the longest intergenic sequence being 42 nucleotides), (2) the presence of several overlapping genes (mostly tRNAs), (3) the presence of tRNA-like structures and other stem and loop structures within genes. An RNA editing system acting on tRNAs must necessarily be invoked for posttranscriptional extension of the overlapping tRNAs. Due to these features, and also because of the small size of its genes (e.g., it contains the smallest rRNA genes among the known coelomates), it is one of the most compact mitochondrial genomes known to date. PMID:7498775

  4. Molecular systematics of the genus Sigmodon: results from mitochondrial and nuclear gene sequences

    PubMed Central

    Henson, Dallas D.; Bradley, Robert D.

    2010-01-01

    Phylogenetic relationships within the genus Sigmodon Say and Ord, 1825 were examined using sequence data from multiple gene regions, including exon 1 of the nuclear-encoded interphotoreceptor retinoid binding protein, intron 7 of the nuclear beta-fibrinogen gene, and the mitochondrial cytochrome b gene from 27 individuals representing 11 species of Sigmodon. Nuclear genes were analyzed independently, combined with each other, and combined with the mitochondrial data. Topologies were constructed using parsimony and Bayesian methods, with nodal support provided by bootstrap and posterior probability values. All analyses recovered four independent clades (I–IV), each representing unique species groups: hispidus, fulviventer, peruanus, and alstoni. The analyses from the combined data also provided support for relationships previously proposed within those species groups. PMID:20407590

  5. Increased Incidence of Mitochondrial Cytochrome C Oxidase 1 Gene Mutations in Patients with Primary Ovarian Insufficiency

    PubMed Central

    Zhen, Xiumei; Wu, Bailin; Wang, Jian; Lu, Cuiling; Gao, Huafang; Qiao, Jie

    2015-01-01

    Primary ovarian insufficiency (POI), also known as premature ovarian failure (POF), is defined as more than six months of cessation of menses before the age of 40 years, with two serum follicle stimulating hormone (FSH) levels (at least 1 month apart) falling in the menopause range. The cause of POI remains undetermined in the majority of cases, although some studies have reported increased levels of reactive oxygen species (ROS) in idiopathic POF. The role of mitochondrial DNA in the pathogenesis of POI has not been studied extensively. This aim of this study was to uncover underlying mitochondrial genetic defects in patients with POI. The entire region of the mitochondrial genome was amplified in subjects with idiopathic POI (n=63) and age-matched healthy female controls (n=63) using nine pair sets of primers, followed by screening of the mitochondrial genome using an Illumina MiSeq. We identified a total of 96 non-synonymous mitochondrial variations in POI patients and 93 non-synonymous variations in control subjects. Of these, 21 (9 in POI and 12 in control) non-synonymous variations had not been reported previously. Eight mitochondrial cytochrome coxidase 1 (MT-CO1) missense variants were identified in POI patients, whereas only four missense mutations were observed in controls. A high incidence of MT-CO1 missense variants were identified in POI patients compared with controls, and the difference between the groups was statistically significant (13/63 vs. 5/63, p=0.042). Our results show that patients with primary ovarian insufficiency exhibit an increased incidence of mitochondrial cytochrome c oxidase 1 gene mutations, suggesting that MT-CO1 gene mutation may be causal in POI. PMID:26225554

  6. Thyroid hormone-regulated brain mitochondrial genes revealed by differential cDNA cloning.

    PubMed Central

    Vega-Núñez, E; Menéndez-Hurtado, A; Garesse, R; Santos, A; Perez-Castillo, A

    1995-01-01

    Thyroid hormone (T3) plays a critical role in the development of the central nervous system and its deficiency during the early neonatal period results in severe brain damage. However the mechanisms involved and the genes specifically regulated by T3 during brain development are largely unknown. By using a subtractive hybridization technique we have isolated a number of cDNAs that represented mitochondrial genes (12S and 16S rRNAs and cytochrome c oxidase subunit III). The steady state level of all three RNAs was reduced in hypothyroid animals during the postnatal period and T3 administration restored control levels. During fetal life the level of 16S rRNA was decreased in the brain of hypothyroid animals, suggesting a prenatal effect of thyroid hormone on brain development. Since T3 does not affect the amount of mitochondrial DNA, the results suggest that the effect of T3 is at transcriptional and/or postranscriptional level. In addition, the transcript levels for two nuclear-encoded mitochondrial cytochrome c oxidase subunits: subunits IV and VIc were also decreased in the brains of hypothyroid animals. Hypothyroidism-induced changes in mitochondrial RNAs were followed by a concomitant 40% decrease in cytochrome c oxidase activity. This study shows that T3 is an important regulator of mitochondrial function in the neonatal brain and, more importantly, provides a molecular basis for the specific action of this hormone in the developing brain. Images PMID:7635984

  7. Complete mitochondrial genome of Tubulipora flabellaris (Bryozoa: Stenolaemata): the first representative from the class Stenolaemata with unique gene order.

    PubMed

    Sun, Ming'an; Shen, Xin; Liu, Huilian; Liu, Xixing; Wu, Zhigang; Liu, Bin

    2011-09-01

    Mitochondrial genomes play a significant role in the reconstruction of phylogenetic relationships within metazoans. There are still many controversies concerning the phylogenetic position of the phylum Bryozoa. In this research, we have finished the complete mitochondrial genome of one bryozoan (Tubulipora flabellaris), which is the first representative from the class Stenolaemata. The complete mitochondrial genome of T. flabellaris is 13,763bp in length and contains 36 genes, which lacks the atp8 gene in contrast to the typical metazoan mitochondrial genomes. Gene arrangement comparisons indicate that the mitochondrial genome of T. flabellaris has unique gene order when compared with other metazoans. The four known bryozoans complete mitochondrial genomes also have very different gene arrangements, indicates that bryozoan mitochondrial genomes have experienced drastic rearrangements. To investigate the phylogenetic relationship of Bryozoa, phylogenetic analyses based on amino acid sequences of 11 protein coding genes (excluding atp6 and atp8) from 26 metazoan complete mitochondrial genomes were made utilizing Maximum Likelihood (ML) and Bayesian methods, respectively. The results indicate the monopoly of Lophotrochozoa and a close relationship between Chaetognatha and Bryozoa. However, more evidences are needed to clarify the relationship between two groups. Lophophorate appeared to be polyphyletic according to our analyses. Meanwhile, neither analysis supports close relationship between Branchiopod and Phoronida. Four bryozoans form a clade and the relationship among them is T. flabellaris+(F. hispida+(B. neritina+W. subtorquata)), which is in coincidence with traditional classification system. PMID:21867967

  8. Control of gene expression in trypanosomes.

    PubMed Central

    Vanhamme, L; Pays, E

    1995-01-01

    Trypanosomes are protozoan agents of major parasitic diseases such as Chagas' disease in South America and sleeping sickness of humans and nagana disease of cattle in Africa. They are transmitted to mammalian hosts by specific insect vectors. Their life cycle consists of a succession of differentiation and growth phases requiring regulated gene expression to adapt to the changing extracellular environment. Typical of such stage-specific expression is that of the major surface antigens of Trypanosoma brucei, procyclin in the procyclic (insect) form and the variant surface glycoprotein (VSG) in the bloodstream (mammalian) form. In trypanosomes, the regulation of gene expression is effected mainly at posttranscriptional levels, since primary transcription of most of the genes occurs in long polycistronic units and is constitutive. The transcripts are processed by transsplicing and polyadenylation under the influence of intergenic polypyrimidine tracts. These events show some developmental regulation. Untranslated sequences of the mRNAs seem to play a prominent role in the stage-specific control of individual gene expression, through a modulation of mRNA abundance. The VSG and procyclin transcription units exhibit particular features that are probably related to the need for a high level of expression. The promoters and RNA polymerase driving the expression of these units resemble those of the ribosomal genes. Their mutually exclusive expression is ensured by controls operating at several levels, including RNA elongation. Antigenic variation in the bloodstream is achieved through DNA rearrangements or alternative activation of the telomeric VSG gene expression sites. Recent discoveries, such as the existence of a novel nucleotide in telomeric DNA and the generation of point mutations in VSG genes, have shed new light on the mechanisms and consequences of antigenic variation. PMID:7603410

  9. Gene Expression Profiling of H9c2 Myoblast Differentiation towards a Cardiac-Like Phenotype

    PubMed Central

    Branco, Ana F.; Pereira, Susana P.; Gonzalez, Susana; Gusev, Oleg; Rizvanov, Albert A.; Oliveira, Paulo J.

    2015-01-01

    H9c2 myoblasts are a cell model used as an alternative for cardiomyocytes. H9c2 cells have the ability to differentiate towards a cardiac phenotype when the media serum is reduced in the presence of all-trans-retinoic acid (RA), creating multinucleated cells with low proliferative capacity. In the present study, we performed for the first time a transcriptional analysis of the H9c2 cell line in two differentiation states, i.e. embryonic cells and differentiated cardiac-like cells. The results show that RA-induced H9c2 differentiation increased the expression of genes encoding for cardiac sarcomeric proteins such as troponin T, or calcium transporters and associated machinery, including SERCA2, ryanodine receptor and phospholamban as well as genes associated with mitochondrial energy production including respiratory chain complexes subunits, mitochondrial creatine kinase, carnitine palmitoyltransferase I and uncoupling proteins. Undifferentiated myoblasts showed increased gene expression of pro-survival proteins such as Bcl-2 as well as cell cycle-regulating proteins. The results indicate that the differentiation of H9c2 cells lead to an increase of transcripts and protein levels involved in calcium handling, glycolytic and mitochondrial metabolism, confirming that H9c2 cell differentiation induced by RA towards a more cardiac-like phenotype involves remodeled mitochondrial function. PI3K, PDK1 and p-CREB also appear to be involved on H9c2 differentiation. Furthermore, complex analysis of differently expressed transcripts revealed significant up-regulation of gene expression related to cardiac muscle contraction, dilated cardiomyopathy and other pathways specific for the cardiac tissue. Metabolic and gene expression remodeling impacts cell responses to different stimuli and determine how these cells are used for biochemical assays. PMID:26121149

  10. Gene Expression Profiling of H9c2 Myoblast Differentiation towards a Cardiac-Like Phenotype.

    PubMed

    Branco, Ana F; Pereira, Susana P; Gonzalez, Susana; Gusev, Oleg; Rizvanov, Albert A; Oliveira, Paulo J

    2015-01-01

    H9c2 myoblasts are a cell model used as an alternative for cardiomyocytes. H9c2 cells have the ability to differentiate towards a cardiac phenotype when the media serum is reduced in the presence of all-trans-retinoic acid (RA), creating multinucleated cells with low proliferative capacity. In the present study, we performed for the first time a transcriptional analysis of the H9c2 cell line in two differentiation states, i.e. embryonic cells and differentiated cardiac-like cells. The results show that RA-induced H9c2 differentiation increased the expression of genes encoding for cardiac sarcomeric proteins such as troponin T, or calcium transporters and associated machinery, including SERCA2, ryanodine receptor and phospholamban as well as genes associated with mitochondrial energy production including respiratory chain complexes subunits, mitochondrial creatine kinase, carnitine palmitoyltransferase I and uncoupling proteins. Undifferentiated myoblasts showed increased gene expression of pro-survival proteins such as Bcl-2 as well as cell cycle-regulating proteins. The results indicate that the differentiation of H9c2 cells lead to an increase of transcripts and protein levels involved in calcium handling, glycolytic and mitochondrial metabolism, confirming that H9c2 cell differentiation induced by RA towards a more cardiac-like phenotype involves remodeled mitochondrial function. PI3K, PDK1 and p-CREB also appear to be involved on H9c2 differentiation. Furthermore, complex analysis of differently expressed transcripts revealed significant up-regulation of gene expression related to cardiac muscle contraction, dilated cardiomyopathy and other pathways specific for the cardiac tissue. Metabolic and gene expression remodeling impacts cell responses to different stimuli and determine how these cells are used for biochemical assays. PMID:26121149

  11. Application of multidisciplinary analysis to gene expression.

    SciTech Connect

    Wang, Xuefel; Kang, Huining; Fields, Chris; Cowie, Jim R.; Davidson, George S.; Haaland, David Michael; Sibirtsev, Valeriy; Mosquera-Caro, Monica P.; Xu, Yuexian; Martin, Shawn Bryan; Helman, Paul; Andries, Erik; Ar, Kerem; Potter, Jeffrey; Willman, Cheryl L.; Murphy, Maurice H.

    2004-01-01

    Molecular analysis of cancer, at the genomic level, could lead to individualized patient diagnostics and treatments. The developments to follow will signal a significant paradigm shift in the clinical management of human cancer. Despite our initial hopes, however, it seems that simple analysis of microarray data cannot elucidate clinically significant gene functions and mechanisms. Extracting biological information from microarray data requires a complicated path involving multidisciplinary teams of biomedical researchers, computer scientists, mathematicians, statisticians, and computational linguists. The integration of the diverse outputs of each team is the limiting factor in the progress to discover candidate genes and pathways associated with the molecular biology of cancer. Specifically, one must deal with sets of significant genes identified by each method and extract whatever useful information may be found by comparing these different gene lists. Here we present our experience with such comparisons, and share methods developed in the analysis of an infant leukemia cohort studied on Affymetrix HG-U95A arrays. In particular, spatial gene clustering, hyper-dimensional projections, and computational linguistics were used to compare different gene lists. In spatial gene clustering, different gene lists are grouped together and visualized on a three-dimensional expression map, where genes with similar expressions are co-located. In another approach, projections from gene expression space onto a sphere clarify how groups of genes can jointly have more predictive power than groups of individually selected genes. Finally, online literature is automatically rearranged to present information about genes common to multiple groups, or to contrast the differences between the lists. The combination of these methods has improved our understanding of infant leukemia. While the complicated reality of the biology dashed our initial, optimistic hopes for simple answers from

  12. Phytochrome-regulated Gene Expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identification of all genes involved in the phytochrome (phy)-mediated responses of plants to their light environment is an important goal in providing an overall understanding of light-regulated growth and development. This article highlights and integrates the central findings of two recent compre...

  13. Brain region-specific altered expression and association of mitochondria-related genes in autism

    PubMed Central

    2012-01-01

    Background Mitochondrial dysfunction (MtD) has been observed in approximately five percent of children with autism spectrum disorders (ASD). MtD could impair highly energy-dependent processes such as neurodevelopment, thereby contributing to autism. Most of the previous studies of MtD in autism have been restricted to the biomarkers of energy metabolism, while most of the genetic studies have been based on mutations in the mitochondrial DNA (mtDNA). Despite the mtDNA, most of the proteins essential for mitochondrial replication and function are encoded by the genomic DNA; so far, there have been very few studies of those genes. Therefore, we carried out a detailed study involving gene expression and genetic association studies of genes related to diverse mitochondrial functions. Methods For gene expression analysis, postmortem brain tissues (anterior cingulate gyrus (ACG), motor cortex (MC) and thalamus (THL)) from autism patients (n=8) and controls (n=10) were obtained from the Autism Tissue Program (Princeton, NJ, USA). Quantitative real-time PCR arrays were used to quantify the expression of 84 genes related to diverse functions of mitochondria, including biogenesis, transport, translocation and apoptosis. We used the delta delta Ct (∆∆Ct) method for quantification of gene expression. DNA samples from 841 Caucasian and 188 Japanese families were used in the association study of genes selected from the gene expression analysis. FBAT was used to examine genetic association with autism. Results Several genes showed brain region-specific expression alterations in autism patients compared to controls. Metaxin 2 (MTX2), neurofilament, light polypeptide (NEFL) and solute carrier family 25, member 27 (SLC25A27) showed consistently reduced expression in the ACG, MC and THL of autism patients. NEFL (P = 0.038; Z-score 2.066) and SLC25A27 (P = 0.046; Z-score 1.990) showed genetic association with autism in Caucasian and Japanese samples, respectively. The expression of

  14. Over-expression of mitochondrial ferritin affects the JAK2/STAT5 pathway in K562 cells and causes mitochondrial iron accumulation

    PubMed Central

    Santambrogio, Paolo; Erba, Benedetta Gaia; Campanella, Alessandro; Cozzi, Anna; Causarano, Vincenza; Cremonesi, Laura; Gallì, Anna; Della Porta, Matteo Giovanni; Invernizzi, Rosangela; Levi, Sonia

    2011-01-01

    Background Mitochondrial ferritin is a nuclear encoded iron-storage protein localized in mitochondria. It has anti-oxidant properties related to its ferroxidase activity, and it is able to sequester iron avidly into the organelle. The protein has a tissue-specific pattern of expression and is also highly expressed in sideroblasts of patients affected by hereditary sideroblastic anemia and by refractory anemia with ringed sideroblasts. The present study examined whether mitochondrial ferritin has a role in the pathogenesis of these diseases. Design and Methods We analyzed the effect of mitochondrial ferritin over-expression on the JAK2/STAT5 pathway, on iron metabolism and on heme synthesis in erythroleukemic cell lines. Furthermore its effect on apoptosis was evaluated on human erythroid progenitors. Results Data revealed that a high level of mitochondrial ferritin reduced reactive oxygen species and Stat5 phosphorylation while promoting mitochondrial iron loading and cytosolic iron starvation. The decline of Stat5 phosphorylation induced a decrease of the level of anti-apoptotic Bcl-xL transcript compared to that in control cells; however, transferrin receptor 1 transcript increased due to the activation of the iron responsive element/iron regulatory protein machinery. Also, high expression of mitochondrial ferritin increased apoptosis, limited heme synthesis and promoted the formation of Perls-positive granules, identified by electron microscopy as iron granules in mitochondria. Conclusions Our results provide evidence suggesting that Stat5-dependent transcriptional regulation is displaced by strong cytosolic iron starvation status induced by mitochondrial ferritin. The protein interferes with JAK2/STAT5 pathways and with the mechanism of mitochondrial iron accumulation. PMID:21712541

  15. Regulation of immunoglobulin gene rearrangement and expression.

    PubMed

    Taussig, M J; Sims, M J; Krawinkel, U

    1989-05-01

    The molecular genetic events leading to Ig expression and their control formed the topic of a recent EMBO workshop. This report by Michael Taussig, Martin Sims and Ulrich Krawinkel discusses contributions dealing with genes expressed in early pre-B cells, the mechanism of rearrangement, aberrant rearrangements seen in B cells of SCID mice, the feedback control of rearrangement as studied in transgenic mice, the control of Ig expression at the transcriptional and post-transcriptional levels, and class switching. PMID:2787158

  16. Heterelogous Expression of Plant Genes

    PubMed Central

    Yesilirmak, Filiz; Sayers, Zehra

    2009-01-01

    Heterologous expression allows the production of plant proteins in an organism which is simpler than the natural source. This technology is widely used for large-scale purification of plant proteins from microorganisms for biochemical and biophysical analyses. Additionally expression in well-defined model organisms provides insights into the functions of proteins in complex pathways. The present review gives an overview of recombinant plant protein production methods using bacteria, yeast, insect cells, and Xenopus laevis oocytes and discusses the advantages of each system for functional studies and protein characterization. PMID:19672459

  17. Aging alters the expression of genes for neuroprotection and synaptic function following acute estradiol treatment

    PubMed Central

    Aenlle, Kristina K.; Foster, Thomas C.

    2009-01-01

    This study used microarray analysis to examine age-related changes in gene expression 6 and 12 hr following a single estradiol injection in ovariectomized mice. Estradiol-responsive gene expression at the 6 hr time point was reduced in aged (18 mo) animals compared to young (4 mo) and middle-aged (MA, 12 mo) mice. Examination of gene clustering within biological and functional pathways indicated that young and MA mice exhibited increased expression of genes for cellular components of the synapse and decreased expression of genes related to oxidative phosphorylation and mitochondrial dysfunction. At the 12 hr time point, estradiol-responsive gene expression increased in aged animals and decreased in young and MA mice compared to the 6 hr time point. Gene clustering analysis indicated that aged mice exhibited increased expression of genes for signaling pathways that are rapidly influenced by estradiol. The age differences in gene expression for rapid signaling pathways may relate to disparity in basal pathway activity and estradiol mediated activation of rapid signaling cascades. PMID:19790252

  18. Stable expression of antibiotic-resistant gene ble from Streptoalloteichus hindustanus in the mitochondria of Chlamydomonas reinhardtii.

    PubMed

    Hu, Zhangli; Fan, Zhun; Zhao, Zhonglin; Chen, Jun; Li, Jiancheng

    2012-01-01

    The mitochondrial expression of exogenous antibiotic resistance genes has not been demonstrated successfully to date, which has limited the development of antibiotic resistance genes as selectable markers for mitochondrial site-directed transformation in Chlamydomonas reinhardtii. In this work, the plasmid pBSLPNCB was constructed by inserting the gene ble of Streptoalloteichus hindustanus (Sh ble), encoding a small (14-kilodalton) protective protein into the site between TERMINVREP-Left repeats and the cob gene in a fragment of mitochondrial DNA (mtDNA) of C. reinhardtii. The fusion DNA-construct, which contained TERMINVREP-Left, Sh ble, cob, and partial nd4 sequence, were introduced into the mitochondria of the respiratory deficient dum-1 mutant CC-2654 of C. reinhardtii by biolistic particle delivery system. A large number of transformants were obtained after eight weeks in the dark. Subsequent subculture of the transformants on the selection TAP media containing 3 ìg/mL Zeomycin for 12 months resulted in genetically modified transgenic algae MT-Bs. Sequencing and Southern analyses on the mitochondrial genome of the different MT-B lines revealed that Sh ble gene had been integrated into the mitochondrial genome of C. reinhardtii. Both Western blot, using the anti-BLE monoclonal antibody, and Zeomycin tolerance analysis confirmed the presence of BLE protein in the transgenic algal cells. It indicates that the Sh ble gene can be stably expressed in the mitochondria of C. reinhardtii. PMID:22530046

  19. Baculovirus expression of the maize mitochondrial protein URF13 confers insecticidal activity in cell cultures and larvae.

    PubMed Central

    Korth, K L; Levings, C S

    1993-01-01

    The URF13 protein, which is encoded by the mitochondrial gene T-urf13, is responsible for cytoplasmic male sterility and pathotoxin sensitivity in the Texas male-sterile cytoplasm (cms-T) of maize. Mitochondrial sensitivity to two host-specific fungal toxins (T toxins) is mediated by the interaction of URF13 and T toxins to form pores in the inner mitochondrial membrane. A carbamate insecticide, methomyl, mimics the effects of T toxins on isolated cms-T mitochondria. URF13 was expressed in Spodoptera frugiperda (fall army-worm) cells (Sf9) in culture and in Trichoplusia ni (cabbage looper) larvae with a baculovirus vector. In insect cells, URF13 forms oligomeric structures in the membrane and confers T toxin or methomyl sensitivity. Adding T toxin or methomyl to Sf9 cells producing URF13 causes permeabilization of plasma membranes. In addition, URF13 is toxic to insect cells grown in culture without T toxins or methomyl; even a T-toxin-insensitive mutant form of URF13 is lethal to cell cultures. Baculoviruses expressing URF13 are lethal to T. ni larvae, at times postinjection comparable to those obtained by injecting a baculovirus expressing an insect neurotoxin. This result suggests that URF13 could be useful as a biological control agent for insect pests. Our data indicate that URF13 has two independent mechanisms for toxicity, one that is mediated by T toxin and methomyl and one that is independent of these toxins. Similarly, male sterility and toxin sensitivity in cms-T maize may be due to independent mechanisms. Images Fig. 1 Fig. 2 Fig. 5 Fig. 6 PMID:8475086

  20. Introduction to the Gene Expression Analysis.

    PubMed

    Segundo-Val, Ignacio San; Sanz-Lozano, Catalina S

    2016-01-01

    In 1941, Beadle and Tatum published experiments that would explain the basis of the central dogma of molecular biology, whereby the DNA through an intermediate molecule, called RNA, results proteins that perform the functions in cells. Currently, biomedical research attempts to explain the mechanisms by which develops a particular disease, for this reason, gene expression studies have proven to be a great resource. Strictly, the term "gene expression" comprises from the gene activation until the mature protein is located in its corresponding compartment to perform its function and contribute to the expression of the phenotype of cell.The expression studies are directed to detect and quantify messenger RNA (mRNA) levels of a specific gene. The development of the RNA-based gene expression studies began with the Northern Blot by Alwine et al. in 1977. In 1969, Gall and Pardue and John et al. independently developed the in situ hybridization, but this technique was not employed to detect mRNA until 1986 by Coghlan. Today, many of the techniques for quantification of RNA are deprecated because other new techniques provide more information. Currently the most widely used techniques are qPCR, expression microarrays, and RNAseq for the transcriptome analysis. In this chapter, these techniques will be reviewed. PMID:27300529

  1. Complete mitochondrial genome sequence and gene organization of Chinese indigenous chickens with phylogenetic considerations.

    PubMed

    Zhao, F P; Fan, H Y; Li, G H; Zhang, B K

    2016-01-01

    In this study, we sequenced the complete mitochondrial DNA of Chinese indigenous Jinhu Black-bone and Rugao chickens. The two chicken mitochondrial genomes were deposited in GenBank under accession Nos. KP742951 and KR347464, respectively. The complete mitochondrial genomes of Jinhu Black-bone and Rugao chickens were sequenced and found to span 16,785 and 16,786 bp, respectively, and consisted of 22 tRNA genes, two rRNA genes (12S rRNA and 16S rRNA), 13 protein-coding genes, and one control region (D-loop). The majority of genes were positioned on the H-strand, and the ND6 and eight tRNA genes were found to be encoded on the L-strand. The mitogenomes showed a similar gene order to that of the published Gallus gallus genome, as neither included a control region. The overall base composition of the genome of the two chickens was A = 30.22/30.28%, G = 13.57/13.49%, T = 23.74/23.76%, and C = 32.48/32.48%. Nucleotide skewness of the coding strands of the two chicken genomes (AT-skew = 0.12, GC-skew = -0.41) was biased towards T and G. Phylogenetic analysis revealed 29 subspecies, and the molecular genetic relationship among the 29 subspecies was identical to that of traditional taxonomy. PMID:27421002

  2. Complete mitochondrial genome DNA sequence for two ophiuroids and a holothuroid: the utility of protein gene sequence and gene maps in the analyses of deep deuterostome phylogeny.

    PubMed

    Scouras, Andrea; Beckenbach, Karen; Arndt, Allan; Smith, Michael J

    2004-04-01

    The complete mitochondrial genome sequences have been determined for the holothuroid Cucumaria miniata and two ophiuroid species Ophiopholis aculeata and Ophiura lütkeni. In addition, the nucleotide sequence of the mitochondrial protein-coding genes for the asteroid Pisaster ochraceus has been completed. Maximum-likelihood and LogDet distance analyses of concatenated protein-coding sequences produced a series of trees that did not conclusively support generally accepted models of echinoderm phylogeny. The ophiuroid data consistently demonstrated accelerated nucleotide divergence rates and lack of stationarity. This confounds the phylogenetic analyses. Molecular investigations using individual protein-coding gene alignments demonstrated that the cytochrome b gene exhibits the least deviation in rate and stationarity and generated some trees consistent with proposed echinoderm phylogenies. Phylogenies based on echinoderm mitochondrial gene rearrangements also proved problematic because of extensive variation in gene order between and within classes. A comparison of the two distinctive ophiuroid mitochondrial gene orders supports the hypothesis that O. lütkeni has a more derived mitochondrial gene order versus O. aculeata. The variation in the echinoderm mitochondrial gene maps reinforces the limitations of the application of mitochondrial gene rearrangements as a global phylogenetic tool. PMID:15019608

  3. Engineering the alternative oxidase gene to better understand and counteract mitochondrial defects: state of the art and perspectives

    PubMed Central

    El-Khoury, Riyad; Kemppainen, Kia K; Dufour, Eric; Szibor, Marten; Jacobs, Howard T; Rustin, Pierre

    2014-01-01

    Mitochondrial disorders are nowadays recognized as impinging on most areas of medicine. They include specific and widespread organ involvement, including both tissue degeneration and tumour formation. Despite the spectacular progresses made in the identification of their underlying molecular basis, effective therapy remains a distant goal. Our still rudimentary understanding of the pathophysiological mechanisms by which these diseases arise constitutes an obstacle to developing any rational treatments. In this context, the idea of using a heterologous gene, encoding a supplemental oxidase otherwise absent from mammals, potentially bypassing the defective portion of the respiratory chain, was proposed more than 10 years ago. The recent progress made in the expression of the alternative oxidase in a wide range of biological systems and disease conditions reveals great potential benefit, considering the broad impact of mitochondrial diseases. This review addresses the state of the art and the perspectives that can be now envisaged by using this strategy. Linked Articles This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:24383965

  4. Noise minimization in eukaryotic gene expression

    SciTech Connect

    Fraser, Hunter B.; Hirsh, Aaron E.; Giaever, Guri; Kumm, Jochen; Eisen, Michael B.

    2004-01-15

    All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or noise. Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection.

  5. Nutrition Therapy for Mitochondrial Neurogastrointestinal Encephalopathy with Homozygous Mutation of the TYMP Gene.

    PubMed

    Wang, Jing; Chen, Wei; Wang, Fang; Wu, Dong; Qian, Jiaming; Kang, Junren; Li, Hailong; Ma, Enling

    2015-04-01

    Mitochondrial neurogastrointestinal encephalopathy (MNGIE) is characterized by significant gastrointestinal dysmotility. Early and long-term nutritional therapy is highly recommended. We report a case of MNGIE in a patient who was undergoing long-term nutrition therapy. The patient was diagnosed with a serious symptom of fatty liver and hyperlipidemia complications, along with homozygous mutation of the thymidine phosphorylase (TYMP) gene (c.217G > A). To our knowledge, this is the first report of such a case. Herein, we describe preventive measures for the aforementioned complications and mitochondrial disease-specific nutritional therapy. PMID:25954734

  6. Nutrition Therapy for Mitochondrial Neurogastrointestinal Encephalopathy with Homozygous Mutation of the TYMP Gene

    PubMed Central

    Wang, Jing; Wang, Fang; Wu, Dong; Qian, Jiaming; Kang, Junren; Li, Hailong; Ma, Enling

    2015-01-01

    Mitochondrial neurogastrointestinal encephalopathy (MNGIE) is characterized by significant gastrointestinal dysmotility. Early and long-term nutritional therapy is highly recommended. We report a case of MNGIE in a patient who was undergoing long-term nutrition therapy. The patient was diagnosed with a serious symptom of fatty liver and hyperlipidemia complications, along with homozygous mutation of the thymidine phosphorylase (TYMP) gene (c.217G > A). To our knowledge, this is the first report of such a case. Herein, we describe preventive measures for the aforementioned complications and mitochondrial disease-specific nutritional therapy. PMID:25954734

  7. Multisystem disorder associated with a missense mutation in the mitochondrial cytochrome b gene.

    PubMed

    Wibrand, F; Ravn, K; Schwartz, M; Rosenberg, T; Horn, N; Vissing, J

    2001-10-01

    Mitochondrial cytochrome b mutations have been reported to have a homogenous phenotype of pure exercise intolerance. We describe a novel mutation in the cytochrome b gene of mitochondrial DNA (A15579G) associated with a selective decrease of muscle complex III activity in a patient who, besides severe exercise intolerance, also has multisystem manifestations (deafness, mental retardation, retinitis pigmentosa, cataract, growth retardation, epilepsy). The point mutation is heteroplasmic in muscle (88%) and leukocytes (15%), and changes a highly conserved tyrosine to cysteine at amino acid position 278. PMID:11601507

  8. Whole Mitochondrial Genome Sequencing and Re-Examination of a Cytoplasmic Male Sterility-Associated Gene in Boro-Taichung-Type Cytoplasmic Male Sterile Rice

    PubMed Central

    Kazama, Tomohiko; Toriyama, Kinya

    2016-01-01

    Nuclear genome substitutions between subspecies can lead to cytoplasmic male sterility (CMS) through incompatibility between nuclear and mitochondrial genomes. Boro-Taichung (BT)-type CMS rice was obtained by substituting the nuclear genome of Oryza sativa subsp. indica cultivar Chinsurah Boro II with that of Oryza sativa subsp. japonica cultivar Taichung 65. In BT-type CMS rice, the mitochondrial gene orf79 is associated with male sterility. A complete sequence of the Boro-type mitochondrial genome responsible for BT-type CMS has not been determined to date. Here, we used pyrosequencing to construct the Boro-type mitochondrial genome. The contiguous sequences were assembled into five circular DNA molecules, four of which could be connected into a single circle. The two resulting subgenomic circles were unable to form a reliable master circle, as recombination between them was scarcely detected. We also found an unequal abundance of DNA molecules for the two loci of atp6. These results indicate the presence of multi-partite DNA molecules in the Boro-type mitochondrial genome. Expression patterns were investigated for Boro-type mitochondria-specific orfs, which were not found in the mitochondria from the standard japonica cultivar Nipponbare. Restorer of fertility 1 (RF1)-dependent RNA processing has been observed in orf79-containing RNA but was not detected in other Boro-type mitochondria-specific orfs, supporting the conclusion that orf79 is a unique CMS-associated gene in Boro-type mitochondria. PMID:27414645

  9. Aging: a portrait from gene expression profile in blood cells.

    PubMed

    Calabria, Elisa; Mazza, Emilia Maria Cristina; Dyar, Kenneth Allen; Pogliaghi, Silvia; Bruseghini, Paolo; Morandi, Carlo; Salvagno, Gian Luca; Gelati, Matteo; Guidi, Gian Cesare; Bicciato, Silvio; Schiaffino, Stefano; Schena, Federico; Capelli, Carlo

    2016-08-01

    The availability of reliable biomarkers of aging is important not only to monitor the effect of interventions and predict the timing of pathologies associated with aging but also to understand the mechanisms and devise appropriate countermeasures. Blood cells provide an easily available tissue and gene expression profiles from whole blood samples appear to mirror disease states and some aspects of the aging process itself. We report here a microarray analysis of whole blood samples from two cohorts of healthy adult and elderly subjects, aged 43±3 and 68±4 years, respectively, to monitor gene expression changes in the initial phase of the senescence process. A number of significant changes were found in the elderly compared to the adult group, including decreased levels of transcripts coding for components of the mitochondrial respiratory chain, which correlate with a parallel decline in the maximum rate of oxygen consumption (VO2max), as monitored in the same subjects. In addition, blood cells show age-related changes in the expression of several markers of immunosenescence, inflammation and oxidative stress. These findings support the notion that the immune system has a major role in tissue homeostasis and repair, which appears to be impaired since early stages of the aging process. PMID:27545843

  10. Nuclear respiratory factor 2 induces the expression of many but not all human proteins acting in mitochondrial DNA transcription and replication.

    PubMed

    Bruni, Francesco; Polosa, Paola Loguercio; Gadaleta, Maria Nicola; Cantatore, Palmiro; Roberti, Marina

    2010-02-01

    In mammals, NRF-2 (nuclear respiratory factor 2), also named GA-binding protein, is an Ets family transcription factor that controls many genes involved in cell cycle progression and protein synthesis as well as in mitochondrial biogenesis. In this paper, we analyzed the role of NRF-2 in the regulation of human genes involved in mitochondrial DNA transcription and replication. By a combination of bioinformatic and biochemical approaches, we found that the factor binds in vitro and in vivo to the proximal promoter region of the genes coding for the transcription termination factor mTERF, the RNA polymerase POLRMT, the B subunit of the DNA polymerase-gamma, the DNA helicase TWINKLE, and the single-stranded DNA-binding protein mtSSB. The role of NRF-2 in modulating the expression of those genes was further established by RNA interference and overexpression strategies. On the contrary, we found that NRF-2 does not control the genes for the subunit A of DNA polymerase-gamma and for the transcription repressor MTERF3; we suggest that these genes are under regulatory mechanisms that do not involve NRF proteins. Since NRFs are known to positively control the expression of transcription-activating proteins, the novelty emerging from our data is that proteins playing antithetical roles in mitochondrial DNA transcription, namely activators and repressors, are under different regulatory pathways. Finally, we developed a more stringent consensus with respect to the general consensus of NRF-2/GA-binding protein when searching for NRF-2 binding sites in the promoter of mitochondrial proteins. PMID:19951946

  11. Thymidine phosphorylase gene mutations in patients with mitochondrial neurogastrointestinal encephalomyopathy syndrome.

    PubMed

    Slama, A; Lacroix, C; Plante-Bordeneuve, V; Lombès, A; Conti, M; Reimund, J M; Auxenfants, E; Crenn, P; Laforêt, P; Joannard, A; Seguy, D; Pillant, H; Joly, P; Haut, S; Messing, B; Said, G; Legrand, A; Guiochon-Mantel, A

    2005-04-01

    The mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) syndrome is characterized by the association of gastrointestinal and neurological symptoms. It is a rare autosomal recessive mitochondrial disorder with multiple mitochondrial DNA deletions and/or depletion. It is caused by thymidine phosphorylase (TP) gene mutations resulting in a complete abolition of TP activity. We tested 31 unrelated patients presenting either with a complete MNGIE syndrome (8 patients), a severe intestinal pseudo-obstruction (10 patients), and multiple deletions and/or depletion of mitochondrial DNA (13 patients). All the tested patients presenting with a complete MNGIE had increased thymidine levels in plasma and urine, and no TP activity. The group with pseudo-obstruction syndrome had normal or partial reduction of TP activity. We found pathogenic mutations on TP gene only in the MNGIE syndrome group: all the MNGIE patients were compound heterozygous or homozygous for mutations in the TP gene. Eight of these mutations are yet unreported, confirming the lack of genotype/phenotype correlation in this syndrome. Enzymatic activity and thymidine level are thus rapid diagnosis tests to detect MNGIE affected patients prior to genetic testing for patients with gastrointestinal symptoms. PMID:15781193

  12. Identification and mapping of trnI, trnE and trnfM genes in the sunflower mitochondrial genome.

    PubMed

    Ceci, L R; Veronico, P; Siculella, L; Gallerani, R

    1995-01-01

    Three sunflower mitochondrial HindIII restriction fragments containing the tRNA genes trnI, trnE and trnfM have been sequenced. The genes are present in single copy on the whole genome and are transcribed. Hybridization experiments and sequence analysis of the HindIII fragments allowed the precise mapping and orientation of each gene on the sunflower mitochondrial genome. PMID:7579587

  13. Characteristic features of the nucleotide sequences of yeast mitochondrial ribosomal protein genes as analyzed by computer program GeneMark.

    PubMed

    Isono, K; McIninch, J D; Borodovsky, M

    1994-01-01

    The nucleotide sequence data for yeast mitochondrial ribosomal protein (MRP) genes were analyzed by the computer program GeneMark which predicts the presence of likely genes in sequence data by calculating statistical biases in the appearance of consecutive nucleotides. The program uses a set of standard sequence data for this calculation. We used this program for the analysis of yeast nucleotide sequence data containing MRP genes, hoping to obtain information as to whether they share features in common that are different from other yeast genes. Sequence data sets for ordinary yeast genes and for 27 known MRP genes were used. The MRP genes were nicely predicted as likely genes regardless of the data sets used, whereas other yeast genes were predicted to be likely genes only when the data set for ordinary yeast genes was used. The assembled sequence data for chromosomes II, III, VIII and XI as well as the segmented data for chromosome V were analyzed in a similar manner. In addition to the known MRP genes, eleven ORF's were predicted to be likely MRP genes. Thus, the method seems very powerful in analyzing genes of heterologous origins. PMID:7719921

  14. Discovery of the rpl10 Gene in Diverse Plant Mitochondrial Genomes and Its Probable Replacement by the Nuclear Gene for Chloroplast RPL10 in Two Lineages of Angiosperms

    PubMed Central

    Kubo, Nakao; Arimura, Shin-ichi

    2010-01-01

    Mitochondrial genomes of plants are much larger than those of mammals and often contain conserved open reading frames (ORFs) of unknown function. Here, we show that one of these conserved ORFs is actually the gene for ribosomal protein L10 (rpl10) in plant. No rpl10 gene has heretofore been reported in any mitochondrial genome other than the exceptionally gene-rich genome of the protist Reclinomonas americana. Conserved ORFs corresponding to rpl10 are present in a wide diversity of land plant and green algal mitochondrial genomes. The mitochondrial rpl10 genes are transcribed in all nine land plants examined, with five seed plant genes subject to RNA editing. In addition, mitochondrial-rpl10-like cDNAs were identified in EST libraries from numerous land plants. In three lineages of angiosperms, rpl10 is either lost from the mitochondrial genome or a pseudogene. In two of them (Brassicaceae and monocots), no nuclear copy of mitochondrial rpl10 is identifiably present, and instead a second copy of nuclear-encoded chloroplast rpl10 is present. Transient assays using green fluorescent protein indicate that this duplicate gene is dual targeted to mitochondria and chloroplasts. We infer that mitochondrial rpl10 has been functionally replaced by duplicated chloroplast counterparts in Brassicaceae and monocots. PMID:19934175

  15. Aminoglycoside uptake increased by tet gene expression.

    PubMed Central

    Merlin, T L; Davis, G E; Anderson, W L; Moyzis, R K; Griffith, J K

    1989-01-01

    The expression of extrachromosomal tet genes not only confers tetracycline resistance but also increases the susceptibilities of gram-negative bacteria to commonly used aminoglycoside antibiotics. We investigated the possibility that tet expression increases aminoglycoside susceptibility by increasing bacterial uptake of aminoglycoside. Studies of [3H]gentamicin uptake in paired sets of Escherichia coli HB101 and Salmonella typhimurium LT2 expressing and not expressing tet showed that tet expression accelerates energy-dependent [3H]gentamicin uptake. Increased [3H]gentamicin uptake was accompanied by decreased bacterial protein synthesis and bacterial growth. Increased aminoglycoside uptake occurred whether tet expression was constitutive or induced, whether the tet gene was class B or C, and whether the tet gene was plasmid borne or integrated into the bacterial chromosome. tet expression produced no measurable change in membrane potential, suggesting that tet expression increases aminoglycoside uptake either by increasing the availability of specific carriers or by lowering the minimum membrane potential that is necessary for uptake. PMID:2684011

  16. Inferring differentiation pathways from gene expression

    PubMed Central

    Costa, Ivan G.; Roepcke, Stefan; Hafemeister, Christoph; Schliep, Alexander

    2008-01-01

    Motivation: The regulation of proliferation and differentiation of embryonic and adult stem cells into mature cells is central to developmental biology. Gene expression measured in distinguishable developmental stages helps to elucidate underlying molecular processes. In previous work we showed that functional gene modules, which act distinctly in the course of development, can be represented by a mixture of trees. In general, the similarities in the gene expression programs of cell populations reflect the similarities in the differentiation path. Results: We propose a novel model for gene expression profiles and an unsupervised learning method to estimate developmental similarity and infer differentiation pathways. We assess the performance of our model on simulated data and compare it with favorable results to related methods. We also infer differentiation pathways and predict functional modules in gene expression data of lymphoid development. Conclusions: We demonstrate for the first time how, in principal, the incorporation of structural knowledge about the dependence structure helps to reveal differentiation pathways and potentially relevant functional gene modules from microarray datasets. Our method applies in any area of developmental biology where it is possible to obtain cells of distinguishable differentiation stages. Availability: The implementation of our method (GPL license), data and additional results are available at http://algorithmics.molgen.mpg.de/Supplements/InfDif/ Contact: filho@molgen.mpg.de, schliep@molgen.mpg.de Supplementary information: Supplementary data is available at Bioinformatics online. PMID:18586709

  17. Human AZU-1 gene, variants thereof and expressed gene products

    DOEpatents

    Chen, Huei-Mei; Bissell, Mina

    2004-06-22

    A human AZU-1 gene, mutants, variants and fragments thereof. Protein products encoded by the AZU-1 gene and homologs encoded by the variants of AZU-1 gene acting as tumor suppressors or markers of malignancy progression and tumorigenicity reversion. Identification, isolation and characterization of AZU-1 and AZU-2 genes localized to a tumor suppressive locus at chromosome 10q26, highly expressed in nonmalignant and premalignant cells derived from a human breast tumor progression model. A recombinant full length protein sequences encoded by the AZU-1 gene and nucleotide sequences of AZU-1 and AZU-2 genes and variant and fragments thereof. Monoclonal or polyclonal antibodies specific to AZU-1, AZU-2 encoded protein and to AZU-1, or AZU-2 encoded protein homologs.

  18. Towards germline gene therapy of inherited mitochondrial diseases

    PubMed Central

    Tachibana, Masahito; Amato, Paula; Sparman, Michelle; Woodward, Joy; Sanchis, Dario Melguizo; Ma, Hong; Gutierrez, Nuria Marti; Tippner-Hedges, Rebecca; Kang, Eunju; Lee, Hyo-Sang; Ramsey, Cathy; Masterson, Keith; Battaglia, David; Lee, David; Wu, Diana; Jensen, Jeffrey; Patton, Phillip; Gokhale, Sumita; Stouffer, Richard; Mitalipov, Shoukhrat

    2012-01-01

    Mutations in mitochondrial DNA (mtDNA) are associated with serious human diseases and inherited from mother's eggs. Here we investigated the feasibility of mtDNA replacement in human oocytes by spindle transfer (ST). Of 106 human oocytes donated for research, 65 were subjected to reciprocal ST and 33 served as controls. Fertilization rate in ST oocytes (73%) was similar to controls (75%). However, a significant portion of ST zygotes (52%) displayed abnormal fertilization as determined by irregular number of pronuclei. Among normally fertilized ST zygotes, blastocyst development (62%) and embryonic stem cell (ESC) isolation (38%) rates were comparable to controls. All ESC lines derived from ST zygotes displayed normal euploid karyotypes and contained exclusively donor mtDNA. The mtDNA can be efficiently replaced in human oocytes. Although some ST oocytes displayed abnormal fertilization, remaining embryos were capable of developing to blastocysts and producing ESCs similar to controls. PMID:23103867

  19. [Complete sequence and gene organization of the Tibetan chicken mitochondrial genome].

    PubMed

    Tong, Xiao-Mei; Liang, Yu; Wang, Wei; Xu, Shu-Qing; Zheng, Xiao-Guang; Wang, Jian; Yu, Jun

    2006-07-01

    Using PCR amplification, sequencing and assembling, we obtained the complete mitochondrial genome of Tibetan chicken. The complete mitochondrial genome was 16 783 bp in length. It contained 37 genes (13 protein coding genes, 2 rRNA, 22 tRNA) and a control region. The deduced restriction map revealed a unique pattern of Dra I restriction in Tibetan chicken. Phylogenetic trees based on the D-loop locus and the 13 protein coding genes by Neighbor-joining and Maximum Parsimony analysis indicated that the red junglefowl was the direct ancestor of Tibetan chicken and Tibetan chicken was closest to white leghorn and white plymouth rock, although the evolution of Tibetan chicken appeared to be relatively independent from them. A possible explanation is that the ancestor of Tibetan chicken lived in a relatively isolated environment after entering into the high altitude area and developed unique genetic characters. PMID:16825161

  20. FSH and bFGF regulate the expression of genes involved in Sertoli cell energetic metabolism.

    PubMed

    Regueira, Mariana; Riera, María Fernanda; Galardo, María Noel; Camberos, María Del Carmen; Pellizzari, Eliana Herminia; Cigorraga, Selva Beatriz; Meroni, Silvina Beatriz

    2015-10-01

    The purpose of this study was to investigate if FSH and bFGF regulate fatty acid (FA) metabolism and mitochondrial biogenesis in Sertoli cells (SC). SC cultures obtained from 20-day-old rats were incubated with 100ng/ml FSH or 30ng/ml bFGF for 6, 12, 24 and 48h. The expression of genes involved in transport and metabolism of FA such as: fatty acid transporter CD36 (FAT/CD36), carnitine-palmitoyltransferase 1 (CPT1), long- and medium-chain 3-hydroxyacyl-CoA dehydrogenases (LCAD, MCAD), and of genes involved in mitochondrial biogenesis such as: nuclear respiratory factors 1 and 2 (NRF1, NRF2) and transcription factor A (Tfam), was analyzed. FSH stimulated FAT/CD36, CPT1, MCAD, NRF1, NRF2 and Tfam mRNA levels while bFGF only stimulated CPT1 expression. A possible participation of PPARβ/δ activation in the regulation of gene expression and lactate production was then evaluated. SC cultures were incubated with FSH or bFGF in the presence of the PPARβ/δ antagonist GSK3787 (GSK; 20μM). bFGF stimulation of CPT1 expression and lactate production were inhibited by GSK. On the other hand, FSH effects were not inhibited by GSK indicating that FSH regulates the expression of genes involved in FA transport and metabolism and in mitochondrial biogenesis, independently of PPARβ/δ activation. FA oxidation and mitochondrial biogenesis as well as lactate production are essential for the energetic metabolism of the seminiferous tubule. The fact that these processes are regulated by hormones in a different way reflects the multifarious regulation of molecular mechanisms involved in Sertoli cell function. PMID:26315388

  1. Alternative-splicing-mediated gene expression

    NASA Astrophysics Data System (ADS)

    Wang, Qianliang; Zhou, Tianshou

    2014-01-01

    Alternative splicing (AS) is a fundamental process during gene expression and has been found to be ubiquitous in eukaryotes. However, how AS impacts gene expression levels both quantitatively and qualitatively remains to be fully explored. Here, we analyze two common models of gene expression, each incorporating a simple splice mechanism that a pre-mRNA is spliced into two mature mRNA isoforms in a probabilistic manner. In the constitutive expression case, we show that the steady-state molecular numbers of two mature mRNA isoforms follow mutually independent Poisson distributions. In the bursting expression case, we demonstrate that the tail decay of the steady-state distribution for both mature mRNA isoforms that in general are not mutually independent can be characterized by the product of mean burst size and splicing probability. In both cases, we find that AS can efficiently modulate both the variability (measured by variance) and the noise level of the total mature mRNA, and in particular, the latter is always lower than the noise level of the pre-mRNA, implying that AS always reduces the noise. These results altogether reveal that AS is a mechanism of efficiently controlling the gene expression noise.

  2. Coordinated patterns of gene expression for substrate and energy metabolism in skeletal muscle of diabetic mice

    PubMed Central

    Yechoor, Vijay K.; Patti, Mary-Elizabeth; Saccone, Robert; Kahn, C. Ronald

    2002-01-01

    Metabolic abnormalities underlying diabetes are primarily the result of the lack of adequate insulin action and the associated changes in protein phosphorylation and gene expression. To define the full set of alterations in gene expression in skeletal muscle caused by diabetes and the loss of insulin action, we have used Affymetrix oligonucleotide microarrays and streptozotocin-diabetic mice. Of the genes studied, 235 were identified as changed in diabetes, with 129 genes up-regulated and 106 down-regulated. Analysis revealed a coordinated regulation at key steps in glucose and lipid metabolism, mitochondrial electron transport, transcriptional regulation, and protein trafficking. mRNAs for all of the enzymes of the fatty acid β-oxidation pathway were increased, whereas those for GLUT4, hexokinase II, the E1 component of the pyruvate dehydrogenase complex, and subunits of all four complexes of the mitochondrial electron transport chain were all coordinately down-regulated. Only about half of the alterations in gene expression in diabetic mice could be corrected toward normal after 3 days of insulin treatment and euglycemia. These data point to as of yet undefined mechanisms for highly coordinated regulation of gene expression by insulin and potential new targets for therapy of diabetes mellitus. PMID:12149437

  3. The phenotypic expression of mitochondrial tRNA-mutations can be modulated by either mitochondrial leucyl-tRNA synthetase or the C-terminal domain thereof

    PubMed Central

    Giordano, Carla; Morea, Veronica; Perli, Elena; d’Amati, Giulia

    2015-01-01

    Mutations in mitochondrial (mt) DNA determine important human diseases. The majority of the known pathogenic mutations are located in transfer RNA (tRNA) genes and are responsible for a wide range of currently untreatable disorders. Experimental evidence both in yeast and in human cells has shown that the detrimental effects of mt-tRNA point mutations can be attenuated by increasing the expression of the cognate mt-aminoacyl-tRNA synthetases (aaRSs). In addition, constitutive high levels of isoleucyl-tRNA syntethase have been shown to reduce the penetrance of a homoplasmic mutation in mt-tRNAIle in a small kindred. More recently, we showed that the isolated carboxy-terminal domain of human mt-leucyl tRNA synthetase (LeuRS-Cterm) localizes to mitochondria and ameliorates the energetic defect in transmitochondrial cybrids carrying mutations either in the cognate mt-tRNALeu(UUR) or in the non-cognate mt-tRNAIle gene. Since the mt-LeuRS-Cterm does not possess catalytic activity, its rescuing ability is most likely mediated by a chaperon-like effect, consisting in the stabilization of the tRNA structure altered by the mutation. All together, these observations open potential therapeutic options for mt-tRNA mutations-associated diseases. PMID:25852750

  4. Differential Gene Expression in the Oxyntic and Pyloric Mucosa of the Young Pig

    PubMed Central

    Colombo, Michela; Priori, Davide; Trevisi, Paolo; Bosi, Paolo

    2014-01-01

    The stomach is often considered a single compartment, although morphological differences among specific areas are well known. Oxyntic mucosa (OXY) and pyloric mucosa (PYL, in other species called antral mucosa) are primarily equipped for acid secretion and gastrin production, respectively, while it is not yet clear how the remainder of genes expressed differs in these areas. Here, the differential gene expression between OXY and PYL mucosa was assessed in seven starter pigs. Total RNA expression was analyzed by whole genome Affymetrix Porcine Gene 1.1_ST array strips. Exploratory functional analysis of gene expression values was done by Gene Set Enrichment Analysis, comparing OXY and PYL. Normalized enrichment scores (NESs) were calculated for each gene (statistical significance defined when False Discovery Rate % <25 and P-values of NES<0.05). Expression values were selected for a set of 44 genes and the effect of point of gastric sample was tested by analysis of variance with the procedure for repeated measures. In OXY, HYDROGEN ION TRANSMEMBRANE TRANSPORTER ACTIVITY gene set was the most enriched set compared to PYL, including the two genes for H+/K+-ATPase. Pathways related to mitochondrial activity and feeding behavior were also enriched (primarily cholecystokinin receptors and ghrelin). Aquaporin 4 was the top-ranking gene. In PYL, two gene sets were enriched compared with OXY: LYMPHOCYTE ACTIVATION and LIPID RAFT, a gene set involved in cholesterol-rich microdomains of the plasma membrane. The single most differentially expressed genes were gastrin and secretoglobin 1A, member 1, presumably located in the epithelial line, to inactivate inflammatory mediators. Several genes related to mucosal integrity, immune response, detoxification and epithelium renewal were also enriched in PYL (P<0.05). The data indicate that there is significant differential gene expression between OXY of the young pig and PYL and further functional studies are needed to confirm their

  5. Strikingly Bacteria-Like and Gene-Rich Mitochondrial Genomes throughout Jakobid Protists

    PubMed Central

    Burger, Gertraud; Gray, Michael W.; Forget, Lise; Lang, B. Franz

    2013-01-01

    The most bacteria-like mitochondrial genome known is that of the jakobid flagellate Reclinomonas americana NZ. This genome also encodes the largest known gene set among mitochondrial DNAs (mtDNAs), including the RNA subunit of RNase P (transfer RNA processing), a reduced form of transfer–messenger RNA (translational control), and a four-subunit bacteria-like RNA polymerase, which in other eukaryotes is substituted by a nucleus-encoded, single-subunit, phage-like enzyme. Further, protein-coding genes are preceded by potential Shine–Dalgarno translation initiation motifs. Whether similarly ancestral mitochondrial characters also exist in relatives of R. americana NZ is unknown. Here, we report a comparative analysis of nine mtDNAs from five distant jakobid genera: Andalucia, Histiona, Jakoba, Reclinomonas, and Seculamonas. We find that Andalucia godoyi has an even larger mtDNA gene complement than R. americana NZ. The extra genes are rpl35 (a large subunit mitoribosomal protein) and cox15 (involved in cytochrome oxidase assembly), which are nucleus encoded throughout other eukaryotes. Andalucia cox15 is strikingly similar to its homolog in the free-living α-proteobacterium Tistrella mobilis. Similarly, a long, highly conserved gene cluster in jakobid mtDNAs, which is a clear vestige of prokaryotic operons, displays a gene order more closely resembling that in free-living α-proteobacteria than in Rickettsiales species. Although jakobid mtDNAs, overall, are characterized by bacteria-like features, they also display a few remarkably divergent characters, such as 3′-tRNA editing in Seculamonas ecuadoriensis and genome linearization in Jakoba libera. Phylogenetic analysis with mtDNA-encoded proteins strongly supports monophyly of jakobids with Andalucia as the deepest divergence. However, it remains unclear which α-proteobacterial group is the closest mitochondrial relative. PMID:23335123

  6. Over-Expressing Mitofusin-2 in Healthy Mature Mammalian Skeletal Muscle Does Not Alter Mitochondrial Bioenergetics

    PubMed Central

    Lally, James S. V.; Herbst, Eric A. F.; Matravadia, Sarthak; Maher, Amy C.; Perry, Christopher G. R.; Ventura-Clapier, Renée; Holloway, Graham P.

    2013-01-01

    The role of mitofusin-2 (MFN-2) in regulating mitochondrial dynamics has been well-characterized in lower order eukaryotic cell lines through the complete ablation of MFN-2 protein. However, to support the contractile function of mature skeletal muscle, the subcellular architecture and constituent proteins of this tissue differ substantially from simpler cellular organisms. Such differences may also impact the role of MFN-2 in mature mammalian muscle, and it is unclear if minor fluctuations in MFN-2, as observed in response to physiological perturbations, has a functional consequence. Therefore, we have transiently transfected MFN-2 cDNA into rat tibialis anterior muscle to determine the effect of physiolgically relevant increases in MFN-2 protein on mitochondrial bioenergetics. Permeabilized muscle fibres generated from muscle following MFN-2-transfection were used for functional assessments of mitochondrial bioenergetics. In addition, we have further established a novel method for selecting fibre bundles that are positively transfected, and using this approach transient transfection increased MFN-2 protein ∼2.3 fold in selected muscle fibres. However, this did not alter maximal rates of oxygen consumption or the sensitivity for ADP-stimulated respiration. In addition, MFN-2 over-expression did not alter rates of H2O2 emission. Altogether, and contrary to evidence from lower order cell lines, our results indicate that over-expressing MFN-2 in healthy muscle does not influence mitochondrial bioenergetics in mature mammalian skeletal muscle. PMID:23383258

  7. Whole mitochondrial genome analysis in two families with dilated mitochondrial cardiomyopathy: detection of mutations in MT-ND2 and MT-TL1 genes.

    PubMed

    Alila, Olfa Fersi; Rebai, Emna Mkaouar; Tabebi, Mouna; Tej, Amel; Chamkha, Imen; Tlili, Abdelaziz; Bouguila, Jihene; Tilouche, Samia; Soyah, Nejla; Boughamoura, Lamia; Fakhfakh, Faiza

    2016-07-01

    Pathogenic mitochondrial DNA (mtDNA) mutations leading to mitochondrial dysfunction can cause cardiomyopathy and heart failure. These mutations were described in the mt-tRNA genes and in the mitochondrial protein-coding genes. The aim of this study was to identify the genetic defect in two patients belonging to two families with cardiac dysfunction associated to a wide spectrum of clinical phenotypes. The sequencing analysis of the whole mitochondrial DNA in the two patients and their parents revealed the presence of known polymorphisms associated to cardiomyopathy and two pathogenic mutations in DNA extracted from blood leucocytes: the heteroplasmic m.3243A > G mutation in the MT-TL1 gene in patient A; and the homoplasmic m.5182C > T mutation in the ND2 gene in patient B. Secondary structure analysis of the ND2 protein further supported the deleterious role of the m.5182C > T mutation, as it was found to be involved an extended imbalance in its hydrophobicity and affect its function. In addition, the mitochondrial variants identified in patients A and B classify both of them in the same haplogroup H2a2a1. PMID:26258512

  8. Changes in mitochondrial function and mitochondria associated protein expression in response to 2-weeks of high intensity interval training

    PubMed Central

    Vincent, Grace; Lamon, Séverine; Gant, Nicholas; Vincent, Peter J.; MacDonald, Julia R.; Markworth, James F.; Edge, Johann A.; Hickey, Anthony J. R.

    2015-01-01

    Purpose: High-intensity short-duration interval training (HIT) stimulates functional and metabolic adaptation in skeletal muscle, but the influence of HIT on mitochondrial function remains poorly studied in humans. Mitochondrial metabolism as well as mitochondrial-associated protein expression were tested in untrained participants performing HIT over a 2-week period. Methods: Eight males performed a single-leg cycling protocol (12 × 1 min intervals at 120% peak power output, 90 s recovery, 4 days/week). Muscle biopsies (vastus lateralis) were taken pre- and post-HIT. Mitochondrial respiration in permeabilized fibers, citrate synthase (CS) activity and protein expression of peroxisome proliferator-activated receptor gamma coactivator (PGC-1α) and respiratory complex components were measured. Results: HIT training improved peak power and time to fatigue. Increases in absolute oxidative phosphorylation (OXPHOS) capacities and CS activity were observed, but not in the ratio of CCO to the electron transport system (CCO/ETS), the respiratory control ratios (RCR-1 and RCR-2) or mitochondrial-associated protein expression. Specific increases in OXPHOS flux were not apparent after normalization to CS, indicating that gross changes mainly resulted from increased mitochondrial mass. Conclusion: Over only 2 weeks HIT significantly increased mitochondrial function in skeletal muscle independently of detectable changes in mitochondrial-associated and mitogenic protein expression. PMID:25759671

  9. Gene expression analysis of flax seed development

    PubMed Central

    2011-01-01

    Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages) seed coats (globular and torpedo stages) and endosperm (pooled globular to torpedo stages) and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST) (GenBank accessions LIBEST_026995 to LIBEST_027011) were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152) had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid clones that comprise

  10. Mitochondrial genomes of Clymenella torquata (Maldanidae) and Riftia pachyptila (Siboglinidae): evidence for conserved gene order in annelida.

    PubMed

    Jennings, Robert M; Halanych, Kenneth M

    2005-02-01

    Mitochondrial genomes are useful tools for inferring evolutionary history. However, many taxa are poorly represented by available data. Thus, to further understand the phylogenetic potential of complete mitochondrial genome sequence data in Annelida (segmented worms), we examined the complete mitochondrial sequence for Clymenella torquata (Maldanidae) and an estimated 80% of the sequence of Riftia pachyptila (Siboglinidae). These genomes have remarkably similar gene orders to previously published annelid genomes, suggesting that gene order is conserved across annelids. This result is interesting, given the high variation seen in the closely related Mollusca and Brachiopoda. Phylogenetic analyses of DNA sequence, amino acid sequence, and gene order all support the recent hypothesis that Sipuncula and Annelida are closely related. Our findings suggest that gene order data is of limited utility in annelids but that sequence data holds promise. Additionally, these genomes show AT bias (approximately 66%) and codon usage biases but have a typical gene complement for bilaterian mitochondrial genomes. PMID:15483328

  11. Decreased beige adipocyte number and mitochondrial respiration coincide with increased histone methyl transferase (G9a) and reduced FGF21 gene expression in Sprague-Dawley rats fed prenatal low protein and postnatal high-fat diets.

    PubMed

    Claycombe, Kate J; Vomhof-DeKrey, Emilie E; Garcia, Rolando; Johnson, William Thomas; Uthus, Eric; Roemmich, James N

    2016-05-01

    We have shown that prenatal low-protein (LP) followed by postnatal high-fat (HF) diets result in a rapid increase in subcutaneous adipose tissue (subc-AT) mass in the offspring, contributing to development of obesity and insulin resistance. Studies have shown that a key transcription factor, PR domain containing 16 (PRDM16), and fibroblast growth factor 21 (FGF21) are involved in conversion of precursor cells into mitochondria (mt)-enriched beige adipocytes (BA). Our hypothesis is that a maternal LP and postnatal HF diets increase the risk of obesity and insulin resistance in offspring, in part, by reducing the conversion of precursor cell into BA in the subc-AT of offspring. Using obese-prone Sprague-Dawley rats fed 8% LP or 20% normal-protein (NP) diets for 3 weeks prior to conception and throughout pregnancy and lactation followed by 12 weeks of 10% normal-fat (NF) or 45% HF diet feeding, we investigated whether prenatal LP and postnatal HF diets affect BA number and oxidative respiratory function in subc-AT. Results showed that subc-AT and liver FGF21, PRDM16 and BA marker CD137 mRNA increase with postnatal HF diet in maternal NP group rats. In contrast, rats fed maternal LP and postnatal HF diets showed no increase in subc-AT mt copy number, oxygen consumption rate, FGF21, PRDM16 and CD137 mRNA, whereas protein expression of an inhibitor for FGF21 transcription (histone methyltransferase, G9a) increased. These findings suggest that LPHF diets cause offspring metabolic alterations by reduced BA and FGF21 mRNA and increased G9a protein expression in subc-AT. PMID:27133430

  12. Redox signaling: globalization of gene expression

    PubMed Central

    Oh, Jeong-Il; Kaplan, Samuel

    2000-01-01

    Here we show that the extent of electron flow through the cbb3 oxidase of Rhodobacter sphaeroides is inversely related to the expression levels of those photosynthesis genes that are under control of the PrrBA two-component activation system: the greater the electron flow, the stronger the inhibitory signal generated by the cbb3 oxidase to repress photosynthesis gene expression. Using site-directed mutagenesis, we show that intramolecular electron transfer within the cbb3 oxidase is involved in signal generation and transduction and this signal does not directly involve the intervention of molecular oxygen. In addition to the cbb3 oxidase, the redox state of the quinone pool controls the transcription rate of the puc operon via the AppA–PpsR antirepressor–repressor system. Together, these interacting regulatory circuits are depicted in a model that permits us to understand the regulation by oxygen and light of photosynthesis gene expression in R.sphaeroides. PMID:10944106

  13. The Mitochondrial Genome of Soybean Reveals Complex Genome Structures and Gene Evolution at Intercellular and Phylogenetic Levels

    PubMed Central

    Chang, Shengxin; Wang, Yankun; Lu, Jiangjie; Gai, Junyi; Li, Jijie; Chu, Pu; Guan, Rongzhan; Zhao, Tuanjie

    2013-01-01

    Determining mitochondrial genomes is important for elucidating vital activities of seed plants. Mitochondrial genomes are specific to each plant species because of their variable size, complex structures and patterns of gene losses and gains during evolution. This complexity has made research on the soybean mitochondrial genome difficult compared with its nuclear and chloroplast genomes. The present study helps to solve a 30-year mystery regarding the most complex mitochondrial genome structure, showing that pairwise rearrangements among the many large repeats may produce an enriched molecular pool of 760 circles in seed plants. The soybean mitochondrial genome harbors 58 genes of known function in addition to 52 predicted open reading frames of unknown function. The genome contains sequences of multiple identifiable origins, including 6.8 kb and 7.1 kb DNA fragments that have been transferred from the nuclear and chloroplast genomes, respectively, and some horizontal DNA transfers. The soybean mitochondrial genome has lost 16 genes, including nine protein-coding genes and seven tRNA genes; however, it has acquired five chloroplast-derived genes during evolution. Four tRNA genes, common among the three genomes, are derived from the chloroplast. Sizeable DNA transfers to the nucleus, with pericentromeric regions as hotspots, are observed, including DNA transfers of 125.0 kb and 151.6 kb identified unambiguously from the soybean mitochondrial and chloroplast genomes, respectively. The soybean nuclear genome has acquired five genes from its mitochondrial genome. These results provide biological insights into the mitochondrial genome of seed plants, and are especially helpful for deciphering vital activities in soybean. PMID:23431381

  14. Gene expression profiles in irradiated cancer cells

    NASA Astrophysics Data System (ADS)

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C.

    2013-07-01

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  15. Gene expression profiles in irradiated cancer cells

    SciTech Connect

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C.

    2013-07-26

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.