Science.gov

Sample records for mixed epithelial stromal

  1. Cystic nephroma/mixed epithelial stromal tumor: a benign neoplasm with potential for recurrence.

    PubMed

    Sun, Belinda L; Abern, Michael; Garzon, Steven; Setty, Suman

    2015-05-01

    Cystic nephroma (CN) is a rare, benign, renal neoplasm composed of epithelial and stromal elements. Only about 200 cases have been reported since 1892 and recurrence has rarely been observed. We report a 32-year-old Hispanic woman, with a history of a right, complex cystic, renal mass treated by robotic decortication 2 years ago, who presented with flank pain, hematuria, and recurrent urinary tract infection. A magnetic resonance imaging study showed a 3.4-cm multicystic lesion with thickened septa and enhancement at the right kidney. The partial nephrectomy specimen revealed a well-circumscribed, multicystic tumor abutting the renal pelvis, with thick septa and smooth walls, filled with clear fluid. Microscopic examination showed variably sized cysts lined by cuboidal epithelium with focal hobnailing, without significant cytologic atypia and mitosis. The epithelial lining was positive for CK19, high molecular weight cytokeratin, and α-methylacyl-CoA racemase suggesting a primitive tubular epithelial phenotype. Primitive glomeruli-like structures were also present. The ovarian-like stroma was condensed around the cysts and was variably cellular with areas of muscle differentiation and thick-walled vessels. The stroma was positive for desmin, estrogen receptor, progesterone receptor, and CD10. We suggest that CN represents a variable mixture of epithelial and stromal elements, immature glomerular, tubular, muscle, and vascular elements, which may be present in variable proportions creating a spectrum of lesions previously described as CN and mixed epithelial and stromal tumors (MEST). This case emphasizes that CN/MEST clinically/radiologically mimics other cystic renal neoplasms, especially cystic renal cell carcinoma and tubulocystic carcinoma, necessitating histopathological examination and immunohistochemial studies for definitive diagnosis. Additionally, CN has the tendency to recur when not completely excised initially. PMID:25525149

  2. Mixed epithelial and stromal tumor of the kidney: a rare case report and review of the literatures

    PubMed Central

    Yang, Cheng; Wang, Jianzhong; Du, Hexi; Chen, Mingwei; Zhu, Xia; Zhou, Jun; Hao, Zongyao; Shi, Haoqiang; Zhang, Li; Liang, Chaozhao

    2015-01-01

    Mixed epithelial and stromal tumor of the kidney (MESTK) is a rare complex renal neoplasm composed of a mixture of cystic and solid components. Until date only few cases of MESTK have been reported. We present here a rare case of MESTK that was diagnosed in a 56-year-old female. The patients were referred to our hospital due to a mass on the right kidney identified incidentally in a routine physical examination. A pre-operative diagnosis of cystic renal cell carcinoma was made and a right radical nephrectomy was carried out. Macroscopically, a cystic tumor was noticed in the upper portion of the right kidney. Various-sized cysts accompanied by multiple cysts and few solid areas were observed. Immunohistochemically, various epithelial markers as well as stromal markers were identified. Taken together with all the immunohistochemical results and morphological pattern of the tumor, a diagnosis of MESTK was made. MESTK is relatively rare and generally benign. However, it is difficult to distinguish between benign or malignant tumors according to the current radiological method. Therefore a complete resection of the tumor by partial or radical nephrectomy is suggested. PMID:26550392

  3. Modeling Stromal-Epithelial Interactions in Disease Progression

    PubMed Central

    Strand, Douglas W.; Hayward, Simon W.

    2014-01-01

    The role of tumor stroma in progression to malignancy has become the subject of intense experimental and clinical interest. The stromal compartment of organs is composed of all the non-epithelial cell types and maintains the proper architecture and nutrient levels required for epithelial and, ultimately, organ function. The composition of the reactive stroma surrounding tumors is vastly different from normal stromal tissue. Stromal phenotype can be correlated with, and predictive of, disease recurrence. In addition, the stroma is now seen as a legitimate target for therapeutic intervention. Although much has been learned about the role of the stromal compartment in development and disease in recent years, a number of key questions remain. Here we review how some of these questions are beginning to be addressed using new models of stromal-epithelial interaction. PMID:20587339

  4. Inactivation of Rb in stromal fibroblasts promotes epithelial cell invasion.

    PubMed

    Pickard, Adam; Cichon, Ann-Christin; Barry, Anna; Kieran, Declan; Patel, Daksha; Hamilton, Peter; Salto-Tellez, Manuel; James, Jacqueline; McCance, Dennis J

    2012-07-18

    Stromal-derived growth factors are required for normal epithelial growth but are also implicated in tumour progression. We have observed inactivation of the retinoblastoma protein (Rb), through phosphorylation, in cancer-associated fibroblasts in oro-pharyngeal cancer specimens. Rb is well known for its cell-autonomous effects on cancer initiation and progression; however, cell non-autonomous functions of Rb are not well described. We have identified a cell non-autonomous role of Rb, using three-dimensional cultures, where depletion of Rb in stromal fibroblasts enhances invasive potential of transformed epithelia. In part, this is mediated by upregulation of keratinocyte growth factor (KGF), which is produced by the depleted fibroblasts. KGF drives invasion of epithelial cells through induction of MMP1 expression in an AKT- and Ets2-dependent manner. Our data identify that stromal fibroblasts can alter the invasive behaviour of the epithelium, and we show that altered expression of KGF can mediate these functions. PMID:22643222

  5. Pten in Stromal Fibroblasts Suppresses Mammary Epithelial Tumors

    PubMed Central

    Trimboli, Anthony J.; Cantemir-Stone, Carmen Z.; Li, Fu; Wallace, Julie A.; Merchant, Anand; Creasap, Nicholas; Thompson, John C.; Caserta, Enrico; Wang, Hui; Chong, Jean-Leon; Naidu, Shan; Wei, Guo; Sharma, Sudarshana M.; Stephens, Julie A.; Fernandez, Soledad A.; Gurcan, Metin N.; Weinstein, Michael B.; Barsky, Sanford H.; Yee, Lisa; Rosol, Thomas J.; Stromberg, Paul C.; Robinson, Michael L.; Pepin, Francois; Hallett, Michael; Park, Morag; Ostrowski, Michael C.; Leone, Gustavo

    2009-01-01

    SUMMARY The tumor stroma is believed to contribute to some of the most malignant characteristics of epithelial tumors. However, signaling between stromal and tumor cells is complex and remains poorly understood. Here we show that the genetic inactivation of Pten in stromal fibroblasts of mouse mammary glands accelerated the initiation, progression and malignant transformation of mammary epithelial tumors. This was associated with the massive remodeling of the extra-cellular matrix (ECM), innate immune cell infiltration and increased angiogenesis. Loss of Pten in stromal fibroblasts led to increased expression, phosphorylation (T72) and recruitment of Ets2 to target promoters known to be involved in these processes. Remarkably, Ets2 inactivation in Pten stroma-deleted tumors ameliorated disruption of the tumor microenvironment and was sufficient to decrease tumor growth and progression. Global gene expression profiling of mammary stromal cells identified a Pten-specific signature that was highly represented in the tumor stroma of breast cancer patients. These findings identify the Pten-Ets2 axis as a critical stroma-specific signaling pathway that suppresses mammary epithelial tumors. PMID:19847259

  6. The corneal fibrosis response to epithelial-stromal injury.

    PubMed

    Torricelli, Andre A M; Santhanam, Abirami; Wu, Jiahui; Singh, Vivek; Wilson, Steven E

    2016-01-01

    The corneal wound healing response, including the development of stromal opacity in some eyes, is a process that often leads to scarring that occurs after injury, surgery or infection to the cornea. Immediately after epithelial and stromal injury, a complex sequence of processes contributes to wound repair and regeneration of normal corneal structure and function. In some corneas, however, often depending on the type and extent of injury, the response may also lead to the development of mature vimentin+ α-smooth muscle actin+ desmin+ myofibroblasts. Myofibroblasts are specialized fibroblastic cells generated in the cornea from keratocyte-derived or bone marrow-derived precursor cells. The disorganized extracellular matrix components secreted by myofibroblasts, in addition to decreased expression of corneal crystallins in these cells, are central biological processes that result in corneal stromal fibrosis associated with opacity or "haze". Several factors are associated with myofibroblast generation and haze development after PRK surgery in rabbits, a reproducible model of scarring, including the amount of tissue ablated, which may relate to the extent of keratocyte apoptosis in the early response to injury, irregularity of stromal surface after surgery, and changes in corneal stromal proteoglycans, but normal regeneration of the epithelial basement membrane (EBM) appears to be a critical factor determining whether a cornea heals with relative transparency or vision-limiting stromal opacity. Structural and functional abnormalities of the regenerated EBM facilitate prolonged entry of epithelium-derived growth factors such as transforming growth factor β (TGF-β) and platelet-derived growth factor (PDGF) into the stroma that both drive development of mature myofibroblasts from precursor cells and lead to persistence of the cells in the anterior stroma. A major discovery that has contributed to our understanding of haze development is that keratocytes and corneal

  7. Role of uterine stromal-epithelial crosstalk in embryo implantation.

    PubMed

    Hantak, Alison M; Bagchi, Indrani C; Bagchi, Milan K

    2014-01-01

    Embryo implantation is a crucial step for successful pregnancy. Prior to implantation, the luminal epithelium undergoes steroid hormone-induced structural and functional changes that render it competent for embryo attachment. Subsequent invasion of the embryo into the maternal tissue triggers differentiation of the underlying stromal cells to form the decidua, a transient tissue which supports the developing embryo. Many molecular cues of both stromal and epithelial origin have been identified that are critical mediators of this process. An important aspect of uterine biology is the elaborate crosstalk that occurs between these tissue compartments during early pregnancy through expression of paracrine factors regulated by the steroid hormones estrogen and progesterone. Aberrant expression of these factors often leads to implantation failure and infertility. Genetically-engineered mouse models have been instrumental in elucidating what these paracrine factors are, what drives their expression, and what their effects are on neighboring cells. This review provides an overview of several well-characterized signaling pathways that span both epithelial and stromal compartments and their function during implantation in the mouse. PMID:25023679

  8. [Disorders of the extracellular matrix in epithelial-stromal and stromal corneal dystrophies].

    PubMed

    Varkoly, Gréta; Bencze, János; Módis, László; Hortobágyi, Tibor

    2016-08-01

    The human cornea is rich in extracellular matrix. The stroma constitutes the main thickness of the cornea, which consists of collagens and proteoglycans mainly. The epithelial-stromal and stromal dystrophies of the cornea are either autosomal dominant or recessive inherited disorders, which are unrelated to inflammation or trauma. The diseases can manifest in each layer of the cornea, but in most cases the corneal stroma is affected. Generally, they develop in childhood or young adulthood but the diagnosis is only possible when clinical signs (epithelial erosions, decreased visual acuity, photophobia) develop. The different protein aggregates (hyaline, amyloid, crystalline) deposited in the corneal layers result in mild or advanced corneal opacity and loss of the corneal transparency due to disorganisation of the extracellular matrix. In some of the corneal dystrophies the keratane sulphate proteoglycan looses its function which results in a loss of the regular interfibrillar spacing. Due to the severe corneal opacity patients may need corneal transplantation. Orv. Hetil., 2016, 157(33), 1299-1303. PMID:27523312

  9. An improved method for isolation of epithelial and stromal cells from the human endometrium

    PubMed Central

    MASUDA, Ayako; KATOH, Noriko; NAKABAYASHI, Kazuhiko; KATO, Kiyoko; SONODA, Kenzo; KITADE, Mari; TAKEDA, Satoru; HATA, Kenichiro; TOMIKAWA, Junko

    2016-01-01

    We aimed to improve the efficiency of isolating endometrial epithelial and stromal cells (EMECs and EMSCs) from the human endometrium. We revealed by immunohistochemical staining that the large tissue fragments remaining after collagenase treatment, which are usually discarded after the first filtration in the conventional protocol, consisted of glandular epithelial and stromal cells. Therefore, we established protease treatment and cell suspension conditions to dissociate single cells from the tissue fragments and isolated epithelial (EPCAM-positive) and stromal (CD13-positive) cells by fluorescence-activated cell sorting. Four independent experiments showed that, on average, 1.2 × 106 of EMECs and 2.8 × 106 EMSCs were isolated from one hysterectomy specimen. We confirmed that the isolated cells presented transcriptomic features highly similar to those of epithelial and stromal cells obtained by the conventional method. Our improved protocol facilitates future studies to better understand the molecular mechanisms underlying the dynamic changes of the endometrium during the menstrual cycle. PMID:26853786

  10. Epithelial and stromal-specific immune pathway activation in the murine endometrium post-coitum.

    PubMed

    Field, S L; Cummings, M; Orsi, N M

    2015-08-01

    The endometrium is a dynamic tissue, demonstrating cyclical growth/remodelling in preparation for implantation. In mice, seminal constituents trigger mechanisms to prepare the endometrium, a process dubbed 'seminal priming' that modifies immune system components and mediates endometrial remodelling in preparation for pregnancy. An array of cytokines has been reported to mediate this interaction, although much of the literature relates to in vitro studies on isolated endometrial epithelial cells. This study measured changes in immune-related gene expression in endometrial epithelial and stromal cells in vivo following natural mating. CD1 mice were naturally mated and sacrificed over the first 4 days post-coitum (n=3 each day). Endometrial epithelial and stromal compartments were isolated by laser capture microdissection. Labelled cRNA was generated and hybridised to genome-wide expression microarrays. Pathway analysis identified several immune-related pathways active within epithelial and stromal compartments, in particular relating to cytokine networks, matrix metalloproteinases and prostaglandin synthesis. Cluster analysis demonstrated that the expression of factors involved in immunomodulation/endometrial remodelling differed between the epithelial and stromal compartments in a temporal fashion. This study is the first to examine the disparate responses of the endometrial epithelial and stromal compartments to seminal plasma in vivo in mice, and demonstrates the complexity of the interactions between these two compartments needed to create a permissive environment for implantation. PMID:26015594

  11. Transcriptome Analysis of Epithelial and Stromal Contributions to Mammogenesis in Three Week Prepartum Cows

    PubMed Central

    Casey, Theresa; Dover, Heather; Liesman, James; DeVries, Lindsey; Kiupel, Matti; VandeHaar, Michael; Plaut, Karen

    2011-01-01

    Transcriptome analysis of bovine mammary development has provided insight into regulation of mammogenesis. However, previous studies primarily examined expression of epithelial and stromal tissues combined, and consequently did not account for tissue specific contribution to mammary development. Our objective was to identify differences in gene expression in epithelial and intralobular stromal compartments. Tissue was biopsied from non-lactating dairy cows 3 weeks prepartum, cut into explants and incubated for 2 hr with insulin and hydrocortisone. Epithelial and intralobular stromal tissues were isolated with laser capture microdissection. Global gene expression was measured with Bovine Affymetrix GeneChips, and data were preprocessed using RMA method. Moderated t-tests from gene-specific linear model analysis with cell type as a fixed effect showed more than 3,000 genes were differentially expressed between tissues (P<0.05; FDR<0.17). Analysis of epithelial and stromal transcriptomes using Database for Annotation, Visualization and Integrated Discovery (DAVID) and Ingenuity Pathways Analysis (IPA) showed that epithelial and stromal cells contributed distinct molecular signatures. Epithelial signatures were enriched with gene sets for protein synthesis, metabolism and secretion. Stromal signatures were enriched with genes that encoded molecules important to signaling, extracellular matrix composition and remodeling. Transcriptome differences also showed evidence for paracrine interactions between tissues in stimulation of IGF1 signaling pathway, stromal reaction, angiogenesis, neurogenesis, and immune response. Molecular signatures point to the dynamic role the stroma plays in prepartum mammogenesis and highlight the importance of examining the roles of cell types within the mammary gland when targeting therapies and studying mechanisms that affect milk production. PMID:21829467

  12. Influence of stromal-epithelial interactions on breast cancer in vitro and in vivo.

    PubMed

    Potter, Shirley M; Dwyer, Roisin M; Hartmann, Marion C; Khan, Sonja; Boyle, Marie P; Curran, Catherine E; Kerin, Michael J

    2012-01-01

    Stromal cell-secreted chemokines including CCL2 have been implicated in the primary tumor microenvironment, as mediators of tumor cell migration, proliferation, and angiogenesis. Expression of CCL2 and its principal receptor CCR2 was analyzed by RQ-PCR in primary tumor cells and breast cancer cell lines. Breast cancer cell lines (MDA-MB-231, T47D) were co-cultured directly on a monolayer of primary breast tumor and normal stromal cells, retrieved using EpCAM+ magnetic beads, and changes in expression of CCL2, CCR2, MMP11, ELK1, VIL2, and Ki67 detected by RQ-PCR. Epithelial cell migration and proliferation in response to stromal cell-secreted factors was also analyzed. In vivo, tumor xenografts were formed by co-injecting T47D cells with primary tumor stromal cells. Following establishment, tumors were harvested and digested, epithelial cells retrieved and analyzed by RQ-PCR. Whole tumor tissue was also analyzed by immunohistochemistry for CD31 and the VIL2 encoded protein Ezrin. Tumor stromal cells expressed significantly higher levels of CCL2 than normal cells, with no CCR2 expression detected. Primary epithelial cells and breast cancer cell lines expressed elevated CCL2, with relative expression of CCR2 found to be higher than the ligand. Interaction of breast cancer epithelial cells with primary tumor, but not normal stromal cells, stimulated increased expression of CCL2 (8-fold), ELK1 (6-fold), VIL2 (6-fold), and MMP11 (17-fold). Factors secreted by stromal cells, including CCL2, stimulated a significant increase in epithelial cell migration, with no effect on cell proliferation in vitro observed. In vivo, the presence of stromal cells resulted in tumors of increased volume, mediated at least in part through neoangiogenesis demonstrated by immunohistochemistry (CD31). Admixed tumor xenografts exhibited increased expression of Ki67, MMP11, VIL2, and ELK1. Elevated Ezrin protein was also detected, with increased cytoplasmic localization. The results presented

  13. Stromal-epithelial dynamics in response to fractionated radiotherapy

    NASA Astrophysics Data System (ADS)

    Qayyum, Muqeem Abdul

    effective at treating the reactive stroma. We can kill the cancer cells at the standard rate (180 cGy/fraction), but we have found the larger fractions specifically inhibit wound healing mechanisms by inactivating stromal fibroblasts. The long term goal would be to reduce recurrence rates for early stage breast cancer by treating postsurgical regions most likely to harbor residual tumor cells. Ionizing radiation stress and its effect on ECM mediated cellular functions continues to be an evolving area of research. This study is an initial step in my career plans to study stromal modulation of epithelial tumors. It is also my career goal to integrate basic science experiments and engineering tools into clinical practice.

  14. Influence of Ionizing Radiation on Stromal-Epithelial Intercellular Communication in Esophageal Carcinogenesis

    NASA Technical Reports Server (NTRS)

    Patel, Zarana S.; Kalabis, Jiri; Rustgi, Anil K.; Cucinotta, Francis A.; Huff, Janice L.

    2010-01-01

    Esophageal cancer is the 6th leading cause of cancer death worldwide. Its development is associated with a variety of risk factors including tobacco use, heavy alcohol consumption, human papilloma virus infection, and certain dietary factors such as trace mineral and vitamin deficiencies. An association with ionizing radiation exposure is revealed by the high excess relative risk for squamous cell carcinoma of the esophagus observed in the survivors of the atomic bomb detonations in Japan. It is also seen as a secondary malignancy in patients who received radiotherapy for breast and thoracic cancers; additionally, patients with head/neck and oral squamous cell cancers are at increased risk for metachronous esophageal squamous cell cancers. This malignancy is rapidly fatal, mainly because it remains asymptomatic until late, advanced stages when the disease is rarely curable. The stromal microenvironment plays an essential role in the maintenance and modulation of normal epithelial cell growth and differentiation and cross talk between the epithelial and stromal compartments can influence many aspects of malignant progression, including tumor cell proliferation, migration, invasion and recruitment of new blood vessels. To test the hypothesis that radiation exposure plays a role in esophageal carcinogenesis via non-targeted mechanisms involving stromal-epithelial cell communication, we are studying radiation effects on hTERT-immortalized human esophageal epithelial cells and genetic variants grown in co-culture with human esophageal stromal fibroblasts (Okawa et al., Genes & Dev. 2007. 21: 2788-2803). We examined how radiation treatment of stromal fibroblasts affected epithelial migration and invasion, behaviors associated with cancer promotion and progression. Chemotactic and haptotactic migration of epithelial cells stimulated by conditioned media from irradiated fibroblasts was measured using assays conducted in Transwell cell culture chambers. Our results using

  15. Tenascin is a Stromal Marker for Epithelial Malignancy in the Mammary Gland

    NASA Astrophysics Data System (ADS)

    Mackie, Eleanor J.; Chiquet-Ehrismann, Ruth; Adams Pearson, Carolyn; Inaguma, Yutaka; Taya, Koji; Kawarada, Yoshifumi; Sakakura, Teruyo

    1987-07-01

    Tenascin is an extracellular matrix glycoprotein that is not present in the normal mature rat mammary gland. The distribution of tenascin was examined by immunohistochemistry in mammary tumors from carcinogen-treated and untreated rats, in virus-induced mammary tumors from mice, and in a variety of mammary gland lesions from humans. Tenascin was detectable in the stroma of the malignant but not of the benign tumors from all species. An inhibition ELISA, testing homogenates of rat tumors, confirmed that tenascin was present in malignant but not in benign tumors. Thus, tenascin was consistently found to be a stromal marker for epithelial malignancy in the mammary gland. It is concluded that tenascin may be involved in the interactions between the epithelial and mesenchyme-derived (stromal) components of the mammary gland, which are known to influence epithelial carcinogenesis in this organ.

  16. Diesel Exhaust Particle-Exposed Human Bronchial Epithelial Cells Induce Dendritic Cell Maturation and Polarization via Thymic Stromal Lymphopoietin

    PubMed Central

    Bleck, Bertram; Tse, Doris B.; Curotto de Lafaille, Maria A.; Zhang, Feijie

    2009-01-01

    Human exposure to air pollutants, including ambient particulate matter, has been proposed as a mechanism for the rise in allergic disorders. Diesel exhaust particles, a major component of ambient particulate matter, induce sensitization to neoallergens, but the mechanisms by which sensitization occur remain unclear. We show that diesel exhaust particles upregulate thymic stromal lymphopoietin in human bronchial epithelial cells in an oxidant-dependent manner. Thymic stromal lymphopoietin induced by diesel exhaust particles was associated with maturation of myeloid dendritic cells, which was blocked by anti-thymic stromal lymphopoietin antibodies or silencing epithelial cell-derived thymic stromal lymphopoietin. Dendritic cells exposed to diesel exhaust particle-treated human bronchial epithelial cells induced Th2 polarization in a thymic stromal lymphopoietin-dependent manner. These findings provide new insight into the mechanisms by which diesel exhaust particles modify human lung mucosal immunity. PMID:18049884

  17. Ovarian Epithelial-Stromal Interactions: Role of Interleukins 1 and 6

    PubMed Central

    Woolery, Kamisha T.; Kruk, Patricia A.

    2011-01-01

    Ovarian epithelial cancer is the most lethal gynecologic malignancy. The high mortality is attributed to the fact that most cases typically present in late stage when ovarian cancer (OC) has already spread beyond the ovary. Ovarian epithelial cancer cells are shed into intraperitoneal ascites and easily disseminate throughout the peritoneal cavity with preferential metastasis to the omentum, peritoneum, and local organs. Understanding how ovarian epithelial cells interact with and modulate their microenvironment can provide insight into the molecular mechanism(s) involved with malignant transformation and progression which may eventually identify novel diagnostic, prognostic, and therapeutic targets. The objective of this paper is to provide a brief consideration of ovarian surface epithelial-stromal interactions in regard to normal physiological function and tumor progression as influenced by two potentially key interleukins, interleukins-1 (IL-1) and -6 (IL-6), present in the microenvironment. Lastly, we will consider the clinical implications of IL-1 and IL-6 for OC patients. PMID:21765834

  18. Isolation and Culture of Human Endometrial Epithelial Cells and Stromal Fibroblasts

    PubMed Central

    Chen, Joseph C.; Roan, Nadia R.

    2016-01-01

    Purification and culture of endometrial epithelial cells (eEC) and stromal fibroblasts (eSF) from endometrial biopsies allows for downstream cell-specific in vitro studies. The utility of this protocol is the ease with which cells are purified without contamination from unwanted cell types, and the ability to use patient-paired eEC and eSF in experiments. These methods have been previously published, but here the protocol has been updated for maximum efficiency. PMID:27347495

  19. Nested stromal epithelial tumor of liver presenting with Cushing syndrome: a rare case report.

    PubMed

    Geramizadeh, Bita; Foroutan, Hamidreza; Foroutan, Ali; Bordbar, Mohammadreza

    2012-01-01

    Nested stromal and epithelial tumor of the liver is an extremely rare pediatric hepatic tumor. To the best of our knowledge, about 25 cases have been reported in the English literature so far, few of which accompanied with Cushing syndrome. Herein we report our experience with an 8-year-old boy presented with Cushing's syndrome because of ectopic ACTH production by this tumor. PMID:22771659

  20. Influence of Ionizing Radiation on Stromal-Epithelial Communication in Esophageal Carcinogenesis

    NASA Astrophysics Data System (ADS)

    Huff, Janice; Patel, Zarana; Grugan, Katharine; Rustgi, Anil; Cucinotta, Francis A.

    Esophageal cancer is the 6th leading cause of cancer death worldwide and is associated with a variety of risk factors including tobacco use, heavy alcohol consumption, human papilloma virus infection, and certain dietary factors such as trace mineral and vitamin deficiencies. A connection with ionizing radiation exposure is revealed by the high excess relative risk for esophageal squamous cell carcinoma observed in the survivors of the atomic bomb detonations in Japan. Esophageal carcinomas are also seen as secondary malignancies in patients who received radiotherapy for breast and thoracic cancers; additionally, patients with head/neck and oral squamous cell cancers are at increased risk for metachronous esophageal squamous cell cancers. This malignancy is rapidly fatal, mainly because it remains asymptomatic until late, advanced stages when the disease is rarely responsive to treatment. In normal epithelium, the stromal microenvironment is essential for the maintenance and modulation of cell growth and differentiation. Cross talk between the epithelial and stromal compartments can influence many aspects of malignant progression, including tumor cell proliferation, migration, invasion and recruitment of new blood vessels. To test the hypothesis that radiation exposure plays a role in esophageal carcinogenesis via non-targeted mechanisms involving stromal-epithelial cell communication, we are studying radiation effects on hTERT-immortalized human esophageal epithelial cells and genetic variants grown in co-culture with human esophageal stromal fibrob-lasts (Okawa et al., Genes Dev. 2007. 21: 2788-2803). We examined how irradiation of stromal fibroblasts affected epithelial migration and invasion, behaviors associated with cancer promotion and progression. These assays were conducted in modified Boyden chambers using conditioned media from irradiated fibroblasts. Our results using low LET gamma radiation showed a dose-dependent increase in migration of epithelial

  1. Mesenchymal Stromal Cells Epithelial Transition Induced by Renal Tubular Cells-Derived Extracellular Vesicles

    PubMed Central

    Chiabotto, Giulia; Bruno, Stefania; Collino, Federica

    2016-01-01

    Mesenchymal-epithelial interactions play an important role in renal tubular morphogenesis and in maintaining the structure of the kidney. The aim of this study was to investigate whether extracellular vesicles (EVs) produced by human renal proximal tubular epithelial cells (RPTECs) may induce mesenchymal-epithelial transition of bone marrow-derived mesenchymal stromal cells (MSCs). To test this hypothesis, we characterized the phenotype and the RNA content of EVs and we evaluated the in vitro uptake and activity of EVs on MSCs. MicroRNA (miRNA) analysis suggested the possible implication of the miR-200 family carried by EVs in the epithelial commitment of MSCs. Bone marrow-derived MSCs were incubated with EVs, or RPTEC-derived total conditioned medium, or conditioned medium depleted of EVs. As a positive control, MSCs were co-cultured in a transwell system with RPTECs. Epithelial commitment of MSCs was assessed by real time PCR and by immunofluorescence analysis of cellular expression of specific mesenchymal and epithelial markers. After one week of incubation with EVs and total conditioned medium, we observed mesenchymal-epithelial transition in MSCs. Stimulation with conditioned medium depleted of EVs did not induce any change in mesenchymal and epithelial gene expression. Since EVs were found to contain the miR-200 family, we transfected MSCs using synthetic miR-200 mimics. After one week of transfection, mesenchymal-epithelial transition was induced in MSCs. In conclusion, miR-200 carrying EVs released from RPTECs induce the epithelial commitment of MSCs that may contribute to their regenerative potential. Based on experiments of MSC transfection with miR-200 mimics, we suggested that the miR-200 family may be involved in mesenchymal-epithelial transition of MSCs. PMID:27409796

  2. Characteristics of a human prostate stromal cell line related to its use in a stromal-epithelial coculture model for the study of cancer chemoprevention.

    PubMed

    Diaw, Lena; Roth, Mark; Schwinn, Debra A; d'Alelio, Mary E; Green, Lisa J; Tangrea, Joseph A

    2005-01-01

    An immortalized human prostate stromal cell line (PS30) was previously established using recombinant retrovirus encoding human papillomavirus 16 gene products. In this study, we further characterize this stromal cell line for its potential use in a stromal-epithelial coculture model for prostate cancer prevention. Using reverse transcriptase-polymerase chain reaction, enzyme-linked immunosorbent assay, and immunocytochemistry, we examined expression of androgen receptor (AR), vitamin D receptor (VDR), prostate-specific antigen (PSA), transforming growth factor-beta (TGF-beta), and insulin-like growth factors (IGF) families and their receptors, metalloproteinases (MMP) MMP-2 and MMP-9, as well as the cells' ability to respond to the synthetic androgen R1881. The PS30 stromal cells do not express PSA, confirming their stromal origin. They are positive for both AR messenger ribonucleic acid (mRNA) and protein; however, they do not respond to growth stimulation by the synthetic androgen R1881. The PS30 cells express mRNA for VDR, TGF-betas, IGFs and their receptors, as well as the MMPs. Moreover, they produce significant amounts of TGF-beta1, TGF-beta2, IGFBP-3, and MMP-2 proteins. Our observations confirm the use of PS30 for the study of stromal-epithelial interactions in the modulation of prostate carcinogenesis. PMID:16153146

  3. Characterization of corneal stromal stem cells with the potential for epithelial transdifferentiation

    PubMed Central

    2013-01-01

    Introduction The corneal stroma is being increasingly recognized as a repository for stem cells. Like the limbal and endothelial niches, stromal stem cells often reside in the peripheral cornea and limbus. These peripheral and limbal corneal stromal cells (PLCSCs) are known to produce mesenchymal stem cells in vitro. Recently, a common corneal stromal and epithelial progenitor was hinted at. This study aims to examine the stem cell potential of corneal stromal cells and to investigate their epithelial transdifferentiation ability. Methods PLCSCs were grown in traditional Dulbecco modified Eagle medium (DMEM)-based keratocyte culture medium and an M199-based medium and analyzed for a profile of cell-surface markers by using flow cytometry and differentiated into mesenchymal phenotypes analyzed with quantitative polymerase chain reaction (qPCR) and histologic staining. PLCSCs in M199 were subsequently divided into subpopulations based on CD34 and CD105 expression by using fluorescence- activated cell sorting (FACS). Subpopulations were characterized by marker profile and mesenchymal differentiation ability. Both whole PLCSCs and subpopulations were also cultured for epithelial transdifferentiation. Results Cells cultured in M199 demonstrated a more stem-like cell-surface marker profile, and the keratocyte marker CD34 was retained for several passages but absent in cells cultured in DMEM. Cells cultured in M199 also exhibited a greater mesenchymal differentiation potential, compared with DMEM. PLCSCs could be divided into CD34+CD105+, CD34-CD105+, and CD34-CD105- subpopulations, of which CD34+CD105+ cells were the most stemlike with regard to marker expression and mesenchymal differentiation potential. Subpopulations of PLCSCs exhibited differing abilities to transdifferentiate into epithelial phenotypes. Cells that were initially CD34+CD105+ showed the greatest differentiation potential, producing CK3+ and CK19+ cells, and expressed a range of both epithelial

  4. Columnar cell lesions and pseudoangiomatous hyperplasia like stroma: is there an epithelial-stromal interaction?

    PubMed

    Recavarren, Rosemary A; Chivukula, Mamatha; Carter, Gloria; Dabbs, David J

    2009-01-01

    The significance of association between cancer and its microenvironment has been increasingly recognized. It has been shown in animal models that interaction between neoplastic epithelial cells and adjacent stroma can modulate tumor behavior. Carcinoma associated stromal cells can transform normal epithelial cells into neoplastic cells. In breast, columnar cell lesions are non-obligate precursors of low grade ductal carcinoma in situ. Columnar cell lesions can be seen intimately associated with PASH-like-stroma, a lesion we termed as CCPLS. Our aim is to investigate epithelial-stromal interactions in CCPLS and compare them to PASH without columnar cell lesions in breast core needle biopsies. Normal terminal duct lobular unit (TDLU) epithelium was seen in association with columnar cell lesions as well as PASH. Eight (8) cases of each category were examined by a panel of immunostains: CD117 (C-kit), CD34, CD105, bFGF, AR, ER-beta, MIB-1. We observed a markedly decreased expression of c-kit in columnar cell lesions compared to TDLU-epithelium. CD105 showed a quantitative increase in activated vessels in CCPLS compared to PASH. A subset of CCPLS and PASH were androgen receptor positive. A strong nuclear positivity for ER-beta is observed in the epithelium and stroma of all CCPLS cases. We conclude that (1) activated blood vessels predominate in CCPLS; (2) A molecular alteration is signified by c-kit loss in columnar cell lesions; (3) ER-beta and androgen receptor positivity indicate CCPLS are hormonally responsive lesions. Our study suggests an intimate vascular and hormone dependent epithelial-stromal interaction exists in CCPLS lesions. PMID:19918332

  5. Stromal inhibition of prostatic epithelial cell proliferation not mediated by transforming growth factor beta.

    PubMed Central

    Kooistra, A.; van den Eijnden-van Raaij, A. J.; Klaij, I. A.; Romijn, J. C.; Schröder, F. H.

    1995-01-01

    The paracrine influence of prostatic stroma on the proliferation of prostatic epithelial cells was investigated. Stromal cells from the human prostate have previously been shown to inhibit anchorage-dependent as well as anchorage-independent growth of the prostatic tumour epithelial cell lines PC-3 and LNCaP. Antiproliferative activity, mediated by a diffusible factor in the stromal cell conditioned medium, was found to be produced specifically by prostatic stromal cells. In the present study the characteristics of this factor were examined. It is demonstrated that prostate stroma-derived inhibiting factor is an acid- and heat-labile, dithiothreitol-sensitive protein. Although some similarities with type beta transforming growth factor (TGF-beta)-like inhibitors are apparent, evidence is presented that the factor is not identical to TGF-beta or to the TGF-beta-like factors activin and inhibin. Absence of TGF-beta activity was shown by the lack of inhibitory response of the TGF-beta-sensitive mink lung cell line CCL-64 to prostate stromal cell conditioned medium and to concentrated, partially purified preparations of the inhibitor. Furthermore, neutralising antibodies against TGF-beta 1 or TGF-beta 2 did not cause a decline in the level of PC-3 growth inhibition caused by partially purified inhibitor. Using Northern blot analyses, we excluded the involvement of inhibin or activin. It is concluded that the prostate stroma-derived factor may be a novel growth inhibitor different from any of the currently described inhibiting factors. Images Figure 5 PMID:7543773

  6. Estrogen mediated epithelial proliferation in the uterus is directed by stromal Fgf10 and Bmp8a

    PubMed Central

    Chung, Daesuk; Gao, Fei; Jegga, Anil G.; Das, Sanjoy K.

    2014-01-01

    To define endometrial stromal-derived paracrine mediators that participate in estradiol-17β (E2)-induced epithelial proliferation, microarray analysis of gene expression was carried out in mouse uterine epithelial–stromal co-culture systems under the condition of E2 or vehicle (control). Our results demonstrated gene alteration by E2: in epithelial cells, we found up-regulation of 119 genes and down-regulation of 28 genes, while in stroma cells we found up-regulation of 144 genes and down-regulation of 184 genes. A functional enrichment analysis of the upregulated epithelial genes implicated them for proliferation, while upregulated stromal genes were associated with extracellular functions. Quantitative RT-PCR and in situ hybridization results confirmed differential gene expression in both cell cultures and ovariectomized uteri after the above treatments. Based on our identification of stromal secretory factors, we found evidence that suppression by siRNA specifically for Bmp8a and/or Fgf10 in the stromal layer caused significant inhibition of proliferation by E2 in the co-culture system, suggesting Bmp8a and Fgf10 act as paracrine mediators during E2-dependent control of uterine proliferation. The localization of receptors and receptor activation signaling in epithelial cells in both the co-culture system and uteri was consistent with their involvement in ligand–receptor signaling. Interestingly, loss of Bmp8a or Fgf10 also caused abrogation of E2-regulated epithelial receptor signaling in co-culture systems, suggesting that stroma-derived Fgf10 and Bmp8a are responsible for epithelial communication. Overall, stromal Fgf10 and Bmp8a serve as potential paracrine factors for E2-dependent regulation of epithelial proliferation in the uterus. PMID:25451979

  7. Empirical comparison of color normalization methods for epithelial-stromal classification in H and E images

    PubMed Central

    Sethi, Amit; Sha, Lingdao; Vahadane, Abhishek Ramnath; Deaton, Ryan J.; Kumar, Neeraj; Macias, Virgilia; Gann, Peter H.

    2016-01-01

    Context: Color normalization techniques for histology have not been empirically tested for their utility for computational pathology pipelines. Aims: We compared two contemporary techniques for achieving a common intermediate goal – epithelial-stromal classification. Settings and Design: Expert-annotated regions of epithelium and stroma were treated as ground truth for comparing classifiers on original and color-normalized images. Materials and Methods: Epithelial and stromal regions were annotated on thirty diverse-appearing H and E stained prostate cancer tissue microarray cores. Corresponding sets of thirty images each were generated using the two color normalization techniques. Color metrics were compared for original and color-normalized images. Separate epithelial-stromal classifiers were trained and compared on test images. Main analyses were conducted using a multiresolution segmentation (MRS) approach; comparative analyses using two other classification approaches (convolutional neural network [CNN], Wndchrm) were also performed. Statistical Analysis: For the main MRS method, which relied on classification of super-pixels, the number of variables used was reduced using backward elimination without compromising accuracy, and test - area under the curves (AUCs) were compared for original and normalized images. For CNN and Wndchrm, pixel classification test-AUCs were compared. Results: Khan method reduced color saturation while Vahadane reduced hue variance. Super-pixel-level test-AUC for MRS was 0.010–0.025 (95% confidence interval limits ± 0.004) higher for the two normalized image sets compared to the original in the 10–80 variable range. Improvement in pixel classification accuracy was also observed for CNN and Wndchrm for color-normalized images. Conclusions: Color normalization can give a small incremental benefit when a super-pixel-based classification method is used with features that perform implicit color normalization while the gain is

  8. Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation

    SciTech Connect

    Parrinello, Simona; Coppe, Jean-Philippe; Krtolica, Ana; Campisi, Judith

    2004-07-14

    Cellular senescence suppresses cancer by arresting cells at risk for malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation, and branching morphogenesis. Further, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts--the ability to alter epithelial differentiation--that might also explain the loss of tissue function and organization that is a hallmark of aging.

  9. Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation

    PubMed Central

    Parrinello, Simona; Coppe, Jean-Philippe; Krtolica, Ana; Campisi, Judith

    2016-01-01

    Summary Cellular senescence suppresses cancer by arresting cells at risk of malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation and branching morphogenesis. Furthermore, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts – the ability to alter epithelial differentiation – that might also explain the loss of tissue function and organization that is a hallmark of aging. PMID:15657080

  10. Human corneal stromal stem cells support limbal epithelial cells cultured on RAFT tissue equivalents

    PubMed Central

    Kureshi, Alvena K; Dziasko, Marc; Funderburgh, James L; Daniels, Julie T

    2015-01-01

    Human limbal epithelial cells (HLE) and corneal stromal stem cells (CSSC) reside in close proximity in vivo in the corneal limbal stem cell niche. However, HLE are typically cultured in vitro without supporting niche cells. Here, we re-create the cell-cell juxtaposition of the native environment in vitro, to provide a tool for investigation of epithelial-stromal cell interactions and to optimize HLE culture conditions for potential therapeutic application. RAFT (Real Architecture For 3D Tissue) tissue equivalents (TEs) were used as a 3-dimensional substrate for co-culturing HLE and CSSC. Our results demonstrate that a monolayer of HLE that maintained expression of p63α, ABCB5, CK8 and CK15 (HLE markers), formed on the surface of RAFT TEs within 13 days of culture. CSSC remained in close proximity to HLE and maintained expression of mesenchymal stem cell markers. This simple technique has a short preparation time of only 15 days with the onset of HLE layering and differentiation observed. Furthermore, co-cultivation of HLE with another niche cell type (CSSC) directly on RAFT TEs, eliminates the requirement for animal-derived feeder cells. RAFT TEs may be useful for future therapeutic delivery of multiple cell types to restore the limbal niche following ocular surface injury or disease. PMID:26531048

  11. Human turbinate mesenchymal stromal cell sheets with bellows graft for rapid tracheal epithelial regeneration.

    PubMed

    Park, Jeong Hun; Park, Ju Young; Nam, Inn-Chul; Hwang, Se-Hwan; Kim, Choung-Soo; Jung, Jin Woo; Jang, Jinah; Lee, Hyungseok; Choi, Yeongjin; Park, Sun Hwa; Kim, Sung Won; Cho, Dong-Woo

    2015-10-01

    Rapid functional epithelial regeneration on the luminal surface is essential when using artificial tracheal grafts to repair tracheal defects. In this study, we imposed human turbinate mesenchymal stromal cell (hTMSC) sheets for tracheal epithelial regeneration, and then assessed their potential as a new clinical cell source. In vitro, hTMSCs sheets showed high capacity to differentiate into tracheal epithelium. We fabricated a poly(ε-caprolactone) (PCL) tracheal graft by indirect three-dimensional (3D) printing technique and created a composite construct by transplanting the hTMSC sheets to its luminal surface of the tracheal graft, then applied this tissue-engineered tracheal graft to non-circumferential tracheal reconstruction in a rabbit model. 4 weeks after implantation, the luminal surface of tissue-engineered tracheal graft was covered by a mature and highly-ciliated epithelium, whereas tracheal grafts without hTMSC sheets were covered by only a thin, immature epithelium. Therefore, hTMSC sheets on the luminal surface of a tissue-engineered tracheal graft can accelerate the tracheal epithelial regeneration, and the tissue-engineered tracheal graft with hTMSC sheets provides a useful clinical alternative for tracheal epithelial regeneration. PMID:26163763

  12. Evaluation of epithelial chimerism after bone marrow mesenchymal stromal cell infusion in intestinal transplant patients.

    PubMed

    Kilinc, S; Gurkan, U A; Guven, S; Koyuncu, G; Tan, S; Karaca, C; Ozdogan, O; Dogan, M; Tugmen, C; Pala, E E; Bayol, U; Baran, M; Kurtulmus, Y; Pirim, I; Kebapci, E; Demirci, U

    2014-01-01

    Intestinal transplantation is the most effective treatment for patients with short bowel syndrome and small bowel insufficiencies. We evaluated epithelial chimerism after infusion of autologous bone marrow mesenchymal stromal cells (BMSCs) in patients undergoing cadaveric donor isolated intestinal transplantation (I-ITx). BMSCs were isolated from patients' bone marrow via iliac puncture and expanded in vitro prior to infusion. Two out of the 3 patients were infused with autologous BMSCs, and small intestine tissue biopsies collected post-operatively were analyzed for epithelial chimerism using XY fluorescent in situ hybridization and short tandem repeat polymerase chain reaction. We observed epithelial chimeric effect in conditions both with and without BMSC infusion. Although our results suggest a higher epithelial chimerism effect with autologous BMSC infusion in I-ITx, the measurements in multiple biopsies at different time points that demonstrate the reproducibility of this finding and its stability or changes in the level over time would be beneficial. These approaches may have potential implications for improved graft survival, lower immunosuppressant doses, superior engraftment of the transplanted tissue, and higher success rates in I-ITx. PMID:25131122

  13. Genetic Evidence for Differential Regulation of Corneal Epithelial and Stromal Thickness

    PubMed Central

    Koehn, Demelza R.; Meyer, Kacie J.; Anderson, Michael G.

    2015-01-01

    Purpose Central corneal thickness (CCT) is a quantitative trait associated with keratoconus and primary open-angle glaucoma. Although CCT is highly heritable, known genetic variations explain only a fraction of the phenotypic variability. The purpose of this study was to identify additional CCT-influencing loci using inbred strains of mice. Methods Cohorts of 82 backcrossed (N2) and 99 intercrossed (F2) mice were generated from crosses between recombinant inbred BXD24/TyJ and wild-derived CAST/EiJ mice. Using anterior chamber optical coherence tomography, mice were phenotyped at 10 to 12 weeks of age, genotyped based on 96 genome-wide single nucleotide polymorphisms (SNPs), and subjected to quantitative trait locus (QTL) analysis. Results In an analysis of total CCT among all mice, two loci passed the significance threshold of P = 0.05. These were on Chr 3 and Chr 11 (Cctq4 and Cctq5, respectively). A third locus of interest was identified in a two-dimensional pairwise analysis; this locus on Chr 14 (Cctq6) exhibited a significant additive effect with Cctq5. Independent analyses of the dataset for epithelial and stromal thickness revealed that Cctq4 is specific to the epithelial layer and that Cctq5 and Cctq6 are specific to the stromal layer. Conclusions Our findings demonstrate a quantitative multigenic pattern of CCT inheritance in mice and identify three previously unrecognized CCT-influencing loci: Cctq4, Cctq5, and Cctq6. This is the first demonstration that distinct layers of the cornea are under differential genetic control and highlights the need to refine the design of future genome-wide association studies of CCT. PMID:26305532

  14. Gastrospheres of human gastric mucosa cells: an in vitro model of stromal and epithelial stem cell niche reconstruction.

    PubMed

    Santos, Carlos A N; Andrade, Leonardo R; Costa, Márcia H M; Souza, Heitor S P; Granjeiro, José M; Takiya, Christina M; Borojevic, Radovan; Nasciutti, Luiz E

    2016-08-01

    The molecular characterization of mechanisms involved in the gastrointestinal tract disorders needs an in vitro 3D culture model able to mimic the in vivo gastric microenvironment. Herein, we propose a 3D coculture system where gastric epithelial and stromal cells are grown together building spherical and solid structures using the NASA bioreactor - cell culture system (RCCS), a bioreactor. Epithelial and stromal cells from human antral gastric mucosa were isolated from endoscopic gastric biopsies. Thereafter, these cells were mechanically and enzymatically dispersed by treatment with dispase and collagenase, respectively. Using specific culture procedures, these cells formed 3D structures by using a RCCS, named "gastrospheres". Briefly, gastrospheres were obtained by initial seeding of 2.5x10⁴ cells/well in 96 well culture plates. At 24 h after their formation, they were transferred into RCCS, and maintained for 7, 14, 21, and 28 days. The gastrospheres were morphologically characterized by immunocytochemisty to evaluate extracellular matrix (ECM), and by electron microscopy. These analysis of gastrospheres revealed that the epithelial cells were cytokeratin (CK) and lectin reactive and were arranged in the outer layer; stromal cells presented long cytoplasmic processes and were localized inside the gastrosphere. They were vimentin (VIM) and α-smooth muscle actin (α-SMA) positive and expressed ECM components such as laminin (LN), fibronectin (FN), and type IV collagen (CIV). Electron microscopy revealed groups of cohesive gastric cells surrounded by complex stromal structures, with multiple microvilli, and tight cellular junctions interspersed with extracellular matrix fibrils and fibers. The presence of some nestin-positive cells was observed in the inner region of the gastrospheres, suggesting an intermediary localization between epithelial and stromal cells. Altogether, our data suggest that in vitro gastrospheres recapitulate the in vivo gastric niche

  15. Differential expression of epithelial basement membrane components nidogens and perlecan in corneal stromal cells in vitro

    PubMed Central

    Santhanam, Abirami; Torricelli, Andre A. M.; Wu, Jiahui; Marino, Gustavo K.

    2015-01-01

    Purpose The purpose of this study was to examine the expression of corneal epithelial basement membrane (EBM) components in different corneal stromal cell types. In vitro model systems were used to explore the expression of EBM components nidogen-1, nidogen-2, and perlecan that are the primary components in the lamina lucida and the lamina densa that defectively regenerate in corneas with stromal opacity after in −9.0 D photorefractive keratectomy (PRK). Methods Primary rabbit corneal stromal cells were cultured using varying serum concentrations and exogenous growth factors, including fibroblast growth factor (FGF)-2 and transforming growth factor (TGF)-β1, to optimize the growth of each cell type of interest. The expression of the keratocyte-specific marker keratocan and the myofibroblast-specific marker α-smooth muscle actin (α-SMA) were analyzed with real-time PCR, western blot, and immunocytochemical staining to evaluate the specificity of the cell types and select optimal conditions (high keratocan and low α-SMA for keratocytes; low keratocan and high α-SMA for myofibroblasts; low keratocan and low α-SMA for corneal fibroblasts). The expression of the EBM components nidogen-1, nidogen-2, and perlecan was evaluated in each corneal cell type using real-time PCR, immunostaining, and western blotting. In agreement with previous studies, serum-free DMEM was found to be optimal for keratocytes, DMEM with 10% serum and 40 ng/ml FGF-2 yielded the best marker profile for corneal fibroblasts, and DMEM with 1% serum and 2 ng/ml TGF-β1 was found to be optimal for myofibroblasts. Results Nidogen-1 and nidogen-2 mRNAs were highly expressed in keratocytes, whereas perlecan was highly expressed in myofibroblasts. In keratocytes, nidogen-2 and perlecan proteins were expressed predominantly in intracellular compartments, whereas in myofibroblasts expression of both EBM components was observed diffusely throughout the cell. Although the perlecan mRNA levels were high

  16. Loss of p53 in Stromal Fibroblasts Promotes Epithelial Cell Invasion through Redox-Mediated ICAM1 Signal

    PubMed Central

    Trachootham, Dunyaporn; Chen, Gang; Zhang, Wan; Lu, Weiqin; Zhang, Hui; Liu, Jinsong; Huang, Peng

    2013-01-01

    Tumor microenvironment plays a major role in cancer development. Understanding how the stroma affects epithelial transformation will provide a basis for new preventive strategies. Recent evidences suggest that oxidative stress in stroma may play a role in cancer progression and loss of p53 function in the stromal cells were associated with poor prognosis and high tumor recurrence. However, the underlying mechanisms remain poorly understood. Here, we investigated the role of p53 loss in fibroblasts on epithelial transformation and the mechanistic involvement of reactive species. Using 3D-organotypic culture and other assays, we report that the stroma containing p53-deficient fibroblasts could transform the non-tumorigenic epithelial cells of oral and ovarian tissues origins to become invasive through reactive nitrogen species (RNS)-mediated release of cytokine ICAM1. The p53-deficient fibroblasts have increased RNS production and accumulation of oxidative DNA damage products associated with specific up-regulation of endothelial nitric oxide synthase (eNOS). Suppression of RNS production by siRNA of eNOS or antioxidant NAC reduced ICAM1 expression and prevented the stroma-mediated epithelial invasion. Our study uncovers the novel mechanism by which redox alteration associated with loss of p53 in stromal fibroblasts function as a key inducer of epithelial transformation and invasion via RNS-mediated-ICAM1 signaling. Thus, modulation of the redox signaling in microenvironment may serve as a new approach to prevent epithelial transformation and suppress cancer invasion. PMID:23376231

  17. Flotillin-1 protein is upregulated in human endometrial cancer and localization shifts from epithelial to stromal with increasing tumor grade.

    PubMed

    Winship, Amy Louise; Rainczuk, Kate; Dimitriadis, Evdokia

    2016-01-01

    Endometrial cancer is the most common invasive gynecological malignancy. Flotillin-1 is an integral membrane protein and estrogen responsive gene. Flotillin-1 expression and localization in human endometrial cancers grades 1-3 was investigated using real-time RT-PCR and immunohistochemistry. Flotillin-1 mRNA levels were unchanged in endometrial cancer versus benign endometrium. Flotillin-1 protein was significantly reduced in the epithelial compartment with increasing tumor grade, although levels increased in the tumor stroma across grades. We have identified a novel factor in human endometrial cancer and observed a shift in epithelial to stromal localization with increasing tumor grade in women. PMID:26682635

  18. SU-E-J-105: Stromal-Epithelial Responses to Fractionated Radiotherapy

    SciTech Connect

    Qayyum, M

    2014-06-01

    Purpose: The stromal-epithelial-cell interactions that are responsible for directing normal breast-tissue development and maintenance play a central role in the progression of breast cancer. In the present study, we developed three-dimensional (3-D) cell co-cultures used to study cancerous mammary cell responses to fractionated radiotherapy. In particular, we focused on the role of the reactive stroma in determining the therapeutic ratio for postsurgical treatment. Methods: Cancerous human mammary epithelial cells were cultured in a 3-D collagen matrix with human fibroblasts stimulated by various concentrations of transforming growth factor beta 1 (TGF-β1). These culture samples were designed to model the post-lumpectomy mammary stroma in the presence of residual cancer cells. We tracked over time the changes in medium stiffness, fibroblast-cell activation (conversion to cancer activated fibroblasts (CAF)), and proliferation of both cell types under a variety of fractionated radiotherapy protocols. Samples were exposed to 6 MV X-rays from a linear accelerator in daily fraction sizes of 90, 180 and 360 cGy over five days in a manner consistent with irradiation exposure during radiotherapy. Results: We found in fractionation studies with fibroblasts and CAF that higher doses per fraction may be more effective early on in deactivating cancer-harboring cellular environments. Higher-dose fraction schemes inhibit contractility in CAF and prevent differentiation of fibroblasts, thereby metabolically uncoupling tumor cells from their surrounding stroma. Yet, over a longer time period, the higher dose fractions may slow wound healing and increase ECM stiffening that could stimulate proliferation of surviving cancer cells. Conclusion: The findings suggest that dose escalation to the region with residual disease can deactivate the reactive stroma, thus minimizing the cancer promoting features of the cellular environment. Large-fraction irradiation may be used to sterilize

  19. Dissecting stromal-epithelial interactions in a 3D in vitro cellularized intestinal model for permeability studies.

    PubMed

    Pereira, Carla; Araújo, Francisca; Barrias, Cristina C; Granja, Pedro L; Sarmento, Bruno

    2015-07-01

    Absorption evaluation plays an increasingly important role at the early stage of drug discovery due to its potential to scan the ADME (absorption, distribution, metabolism and excretion) properties of new drug candidates. Therefore, a new three-dimensional (3D) in vitro model replicating the intestinal functioning is herein proposed aiming to dissect the stromal-epithelial interactions and evaluate the permeation of a model drug, insulin. Inspired on the intestinal mucosal architecture, the present model comprises intestinal myofibroblasts (CCD18-Co cells) embedded in Matrigel, onto which epithelial enterocytes (Caco-2 cells) and mucus-producing cells (HT29-MTX cells) were seeded. CCD18-Co myofibroblasts showed to have a central role in the remodeling of the surrounding matrix confirmed by the production of fibronectin. Subsequently, this matrix revealed to be essential to the maintenance of the model architecture by supporting the overlying epithelial cells. In terms of functionality, this model allowed the efficient prediction of insulin permeability in which the presence of mucus, the less tight character between Caco-2 and HT29-MTX epithelial cells and the 3D assembly were critical factors. Concluding, this model constitutes a robust tool in the drug development field with potential to bridge the traditional 2D cell culture models and in vivo animal models. PMID:25934277

  20. Development of an Autonomous, Dual Chamber Bioreactor for the Growth of 3-Dimensional Epithelial-Stromal Tissues in Microgravity

    NASA Technical Reports Server (NTRS)

    Patel, Zarana S.; Wettergreen, Matthew A.; Huff, Janice L.

    2014-01-01

    We are developing a novel, autonomous bioreactor that can provide for the growth and maintenance in microgravity of 3-D organotypic epithelial-stromal cultures that require an air-liquid interface. These complex 3-D tissue models accurately represent the morphological features, differentiation markers, and growth characteristics observed in normal human epithelial tissues, including the skin, esophagus, lung, breast, pancreas, and colon. However, because of their precise and complex culture requirements, including that of an air-liquid interface, these 3-D models have yet to be utilized for life sciences research aboard the International Space Station. The development of a bioreactor for these cultures will provide the capability to perform biological research on the ISS using these realistic, tissue-like human epithelial-stromal cell models and will contribute significantly to advances in fundamental space biology research on questions regarding microgravity effects on normal tissue development, aging, cancer, and other disease processes. It will also allow for the study of how combined stressors, such as microgravity with radiation and nutritional deficiencies, affect multiple biological processes and will provide a platform for conducting countermeasure investigations on the ISS without the use of animal models. The technology will be autonomous and consist of a cell culture chamber that provides for air-liquid, liquid-liquid, and liquid-air exchanges within the chambers while maintaining the growth and development of the biological samples. The bioreactor will support multiple tissue types and its modular design will provide for incorporation of add-on capabilities such as microfluidics drug delivery, media sampling, and in situ biomarker analysis. Preliminary flight testing of the hardware will be conducted on a parabolic platform through NASA's Flight Opportunities Program.

  1. Fibulin-5 localisation in human endometrial cancer shifts from epithelial to stromal with increasing tumour grade, and silencing promotes endometrial epithelial cancer cell proliferation

    PubMed Central

    WINSHIP, AMY LOUISE; RAINCZUK, KATE; TON, AMANDA; DIMITRIADIS, EVA

    2016-01-01

    Endometrial cancer is the most common invasive gynaecological malignancy. While endocrine, genetic and inflammatory factors are thought to contribute to its pathogenesis, its precise etiology and molecular regulators remain poorly understood. Fibulin-5 is an extracellular matrix (ECM) protein that inhibits cell growth and invasion in several cancer cell types and is downregulated in a number of types of human cancer. However, it is unknown whether fibulin-5 plays a role in endometrial tumourigenesis. In the current report, the expression and localisation of fibulin-5 in type I endometrioid human endometrial cancers of grades (G) 1–3 was investigated using reverse transcription-quantitative polymerase chain reaction and immunohistochemistry. Fibulin-5 mRNA was found to be significantly reduced in whole tumour tissues from women across G1-3 compared with benign endometrium (P<0.0001). Consistently, fibulin-5 protein was also reduced in the tumour epithelial compartment across increasing tumour grades. By contrast, increased protein localisation to the tumour stroma was observed with increasing grade. Knockdown by small interfering RNA in Ishikawa endometrial epithelial cancer cells expressing fibulin-5 stimulated cell adhesion and proliferation in vitro. Fibulin-5 mRNA expression in Ishikawa cells was induced by transforming growth factor-β and fibulin-5 in turn activated extracellular signal-regulated kinases (ERK1/2), suggesting that it may act via the mitogen-activated protein kinase pathway. In summary, the present study identified fibulin-5 as a downregulated ECM gene in human endometrial cancer and observed a shift from epithelial to stromal protein localisation with increasing tumour grade in women. These data suggest that loss of fibulin-5 function may promote endometrial cancer progression by enhancing epithelial cell adhesion and proliferation. PMID:27347195

  2. Preferential Secretion of Thymic Stromal Lymphopoietin (TSLP) by Terminally Differentiated Esophageal Epithelial Cells: Relevance to Eosinophilic Esophagitis (EoE)

    PubMed Central

    Chandramouleeswaran, Prasanna M.; Shen, Dawen; Lee, Anna J.; Benitez, Alain; Dods, Kara; Gambanga, Fiona; Wilkins, Benjamin J.; Merves, Jamie; Noah, Yuliana; Toltzis, Sarit; Yearley, Jennifer H.; Spergel, Jonathan M.; Nakagawa, Hiroshi; Malefyt, Rene deWaal; Muir, Amanda B.; Wang, Mei-Lun

    2016-01-01

    Eosinophilic esophagitis (EoE) is a chronic Th2 and food antigen-mediated disease characterized by esophageal eosinophilic infiltration. Thymic stromal lymphopoetin (TSLP), an epithelial derived cytokine which bridges innate and Th2-type adaptive immune responses in other allergic conditions, is overexpressed in esophageal biopsies of EoE subjects. However, the triggers of TSLP expression in the esophageal epithelium are unknown. The objective of the current study was to characterize TSLP expression in human esophageal epithelium in EoE in vivo and to determine the role of food antigens upon epithelial TSLP expression in vitro. Using immunohistochemistry (IHC), we localized TSLP in esophageal biopsies of active EoE (≥15 eos/hpf), inactive EoE (<15 eos/hpf) and non-EoE control subjects, and found that TSLP expression was restricted to the differentiated suprabasal layer of the epithelium in actively inflamed EoE biopsies. Consistent with these results in vivo, inducible TSLP protein secretion was higher in CaCl2 differentiated telomerase-immortalized esophageal epithelial cells (EPC2-hTERT) compared to undifferentiated cells of the basal phenotype, following stimulation with the TLR3 ligand poly(I:C). To determine whether food antigens could directly induce epithelial TSLP secretion, differentiated and undifferentiated primary esophageal epithelial cells from EoE and non-EoE subjects were challenged with food antigens clinically relevant to EoE: Chicken egg ovalbumin (OVA), wheat, and milk proteins beta-lactoglobulin (blg) and beta-casein. Food antigens failed to induce TSLP secretion by undifferentiated cells; in contrast, only OVA induced TSLP secretion in differentiated epithelial cells from both EoE and control cell lines, an effect abolished by budesonide and NF-κb inhibition. Together, our study shows that specific food antigens can trigger innate immune mediated esophageal TSLP secretion, suggesting that esophageal epithelial cells at the barrier surface

  3. Preferential Secretion of Thymic Stromal Lymphopoietin (TSLP) by Terminally Differentiated Esophageal Epithelial Cells: Relevance to Eosinophilic Esophagitis (EoE).

    PubMed

    Chandramouleeswaran, Prasanna M; Shen, Dawen; Lee, Anna J; Benitez, Alain; Dods, Kara; Gambanga, Fiona; Wilkins, Benjamin J; Merves, Jamie; Noah, Yuliana; Toltzis, Sarit; Yearley, Jennifer H; Spergel, Jonathan M; Nakagawa, Hiroshi; Malefyt, Rene deWaal; Muir, Amanda B; Wang, Mei-Lun

    2016-01-01

    Eosinophilic esophagitis (EoE) is a chronic Th2 and food antigen-mediated disease characterized by esophageal eosinophilic infiltration. Thymic stromal lymphopoetin (TSLP), an epithelial derived cytokine which bridges innate and Th2-type adaptive immune responses in other allergic conditions, is overexpressed in esophageal biopsies of EoE subjects. However, the triggers of TSLP expression in the esophageal epithelium are unknown. The objective of the current study was to characterize TSLP expression in human esophageal epithelium in EoE in vivo and to determine the role of food antigens upon epithelial TSLP expression in vitro. Using immunohistochemistry (IHC), we localized TSLP in esophageal biopsies of active EoE (≥15 eos/hpf), inactive EoE (<15 eos/hpf) and non-EoE control subjects, and found that TSLP expression was restricted to the differentiated suprabasal layer of the epithelium in actively inflamed EoE biopsies. Consistent with these results in vivo, inducible TSLP protein secretion was higher in CaCl2 differentiated telomerase-immortalized esophageal epithelial cells (EPC2-hTERT) compared to undifferentiated cells of the basal phenotype, following stimulation with the TLR3 ligand poly(I:C). To determine whether food antigens could directly induce epithelial TSLP secretion, differentiated and undifferentiated primary esophageal epithelial cells from EoE and non-EoE subjects were challenged with food antigens clinically relevant to EoE: Chicken egg ovalbumin (OVA), wheat, and milk proteins beta-lactoglobulin (blg) and beta-casein. Food antigens failed to induce TSLP secretion by undifferentiated cells; in contrast, only OVA induced TSLP secretion in differentiated epithelial cells from both EoE and control cell lines, an effect abolished by budesonide and NF-κb inhibition. Together, our study shows that specific food antigens can trigger innate immune mediated esophageal TSLP secretion, suggesting that esophageal epithelial cells at the barrier surface

  4. Morphologic and Molecular Characteristics of Mixed Epithelial Ovarian Cancers.

    PubMed

    Mackenzie, Robertson; Talhouk, Aline; Eshragh, Sima; Lau, Sherman; Cheung, Daphne; Chow, Christine; Le, Nhu; Cook, Linda S; Wilkinson, Nafisa; McDermott, Jacqueline; Singh, Naveena; Kommoss, Friedrich; Pfisterer, Jacobus; Huntsman, David G; Köbel, Martin; Kommoss, Stefan; Gilks, C Blake; Anglesio, Michael S

    2015-11-01

    Epithelial ovarian cancer (EOC) consists of 5 major histotypes: high-grade serous carcinoma (HGSC), endometrioid carcinoma (EC), clear cell carcinoma (CCC), mucinous carcinoma (MC), and low-grade serous carcinoma (LGSC). Each can have a broad spectrum of morphologic appearances, and 1 histotype can closely mimic histopathologic features more typical of another. Historically, there has been a relatively high frequency of mixed, defined by 2 or more distinct histotypes present on the basis of routine histopathologic assessment, histotype carcinoma diagnoses (3% to 11%); however, recent immunohistochemical (IHC) studies identifying histotype-specific markers and allowing more refined histotype diagnoses suggest a much lower incidence. We reviewed hematoxylin and eosin-stained slides from 871 cases of EOC and found the frequency of mixed carcinomas to be 1.7% when modern diagnostic criteria are applied. Through international collaboration, we established a cohort totaling 22 mixed EOCs, consisting of 9 EC/CCC, 4 EC/LGSC, 3 HGSC/CCC, 2 CCC/MC, and 4 other combinations. We interrogated the molecular differences between the different components of each case using IHC, gene expression, and hotspot sequencing analyses. IHC data alone suggested that 9 of the 22 cases were not mixed tumors, as they presented a uniform immuno-phenotype throughout, and these cases most probably represent morphologic mimicry and variation within tumors of a single histotype. Synthesis of molecular data further reduces the incidence of mixed carcinomas. On the basis of these results, true mixed carcinomas with both morphologic and molecular support for the presence of >1 histotype within a given tumor represent <1% of EOCs. PMID:26099008

  5. Epithelial but not stromal expression of collagen alpha-1(III) is a diagnostic and prognostic indicator of colorectal carcinoma.

    PubMed

    Wang, Xiao-Qing; Tang, Zu-Xiong; Yu, Dong; Cui, Shu-Jian; Jiang, Ying-Hua; Zhang, Qian; Wang, Jie; Yang, Peng-Yuan; Liu, Feng

    2016-02-23

    Colorectal cancer (CRC) is the third most common cancer in males and the second in females worldwide with very poor prognosis. Collagen alpha-1(III) (COL3A1) gene, encoding an extracellular matrix protein, is upregulated in human cancers. Here, we revealed that COL3A1 was increased in CRC by analysis of five Oncomine gene expression datasets (n = 496). Immunohistochemistry analysis of a tissue microarray (n = 90) demonstrated that cancer epithelial but not stromal COL3A1 was significantly upregulated comparing with the normal counterparts. High COL3A1 mRNA and/or protein expression was accompanied with high stage, T stage, Dukes stage, grade and older age, as well as smoking and recurrence status. Upregulated COL3A1 predicted poor overall (p = 0.003) and disease-free (p = 0.025) survival. Increased epithelial but not stromal COL3A1 protein predicted worse outcome (p = 0.03). Older patients (age>65) with high COL3A1 had worse survival than younger (age≤65) with high COL3A1. Plasma COL3A1 was increased in CRC patients (n = 86) by 5.4 fold comparing with healthy individuals, enteritis and polyps patients. Plasma COL3A1 had an area under curve (AUC) of 0.92 and the best sensitivity/specificity of 98.8%/69.1%. While plasma CEA had a poorer prediction power (AUC = 0.791, sensitivity/selectivity = 70.2%/73.0%). Older patients (age≥60) had higher plasma COL3A1 than younger patients. The epithelial COL3A1 protein had an AUC of 0.975 and the best sensitivity/specificity of 95.2%/91.1%. Silencing of COL3A1 suppressed CRC cell proliferation in in vitro MTT assay and in in vivo Zebra fish xenograft model by downregulation of PI3K/AKT and WNT signaling. COL3A1 was a novel diagnosis and prognosis marker of CRC. PMID:26741506

  6. Epithelial but not stromal expression of collagen alpha-1(III) is a diagnostic and prognostic indicator of colorectal carcinoma

    PubMed Central

    Cui, Shu-Jian; Jiang, Ying-Hua; Zhang, Qian; Wang, Jie; Yang, Peng-Yuan; Liu, Feng

    2016-01-01

    Colorectal cancer (CRC) is the third most common cancer in males and the second in females worldwide with very poor prognosis. Collagen alpha-1(III) (COL3A1) gene, encoding an extracellular matrix protein, is upregulated in human cancers. Here, we revealed that COL3A1 was increased in CRC by analysis of five Oncomine gene expression datasets (n = 496). Immunohistochemistry analysis of a tissue microarray (n = 90) demonstrated that cancer epithelial but not stromal COL3A1 was significantly upregulated comparing with the normal counterparts. High COL3A1 mRNA and/or protein expression was accompanied with high stage, T stage, Dukes stage, grade and older age, as well as smoking and recurrence status. Upregulated COL3A1 predicted poor overall (p = 0.003) and disease-free (p = 0.025) survival. Increased epithelial but not stromal COL3A1 protein predicted worse outcome (p = 0.03). Older patients (age>65) with high COL3A1 had worse survival than younger (age≤65) with high COL3A1. Plasma COL3A1 was increased in CRC patients (n = 86) by 5.4 fold comparing with healthy individuals, enteritis and polyps patients. Plasma COL3A1 had an area under curve (AUC) of 0.92 and the best sensitivity/specificity of 98.8%/69.1%. While plasma CEA had a poorer prediction power (AUC = 0.791, sensitivity/selectivity = 70.2%/73.0%). Older patients (age≥60) had higher plasma COL3A1 than younger patients. The epithelial COL3A1 protein had an AUC of 0.975 and the best sensitivity/specificity of 95.2%/91.1%. Silencing of COL3A1 suppressed CRC cell proliferation in in vitro MTT assay and in in vivo Zebra fish xenograft model by downregulation of PI3K/AKT and WNT signaling. COL3A1 was a novel diagnosis and prognosis marker of CRC. PMID:26741506

  7. Stromal Clues in Endometrial Carcinoma: Loss of Expression of β-Catenin, Epithelial-Mesenchymal Transition Regulators, and Estrogen-Progesterone Receptor

    PubMed Central

    Sayar, Ilyas; Ceyran, Ayse B.; Ibiloglu, Ibrahim; Akalin, Ibrahim; Firat, Ugur; Kosemetin, Duygu; Engin Zerk, Pinar; Aydin, Abdullah

    2016-01-01

    Epithelial-stroma interactions in the endometrium are known to be responsible for physiological functions and emergence of several pathologic lesions. Periglandular stromal cells act on endometrial cells in a paracrine manner through sex hormones. In this study, we immunohistochemically evaluated the expression of epithelial-mesenchymal transition regulators (SNAIL/SLUG, TWIST, ZEB1), adhesion molecules (β-catenin and E-cadhenin), estrogen (ER)-progesterone (PR) receptor and their correlation with each other in 30 benign, 148 hyperplastic (EH), and 101 endometrioid-type endometrial carcinoma (EC) endometria. In the epithelial component, loss of expression in E-cadherin, ER and PR, and overexpression of TWIST and ZEB1 were significantly higher in EC than in EH (P<0.01). In the periglandular stromal component, β-catenin and SNAIL/SLUG expression were significantly higher in normal endometrium and simple without atypical EH compared with complex atypical EH and EC (P<0.01). In addition, periglandular stromal TWIST expression was significantly higher in EH group compared with EC (P<0.05). There was significantly negative correlation between β-catenin and ER, TWIST and ER, and TWIST and PR in hyperplastic and carcinomatous glandular epithelium, whereas there was a significantly positive correlation between β-catenin and SNAIL-SLUG, β-catenin and TWIST, β-catenin and ER, β-catenin and PR, SNAIL-SLUG and ER, SNAIL-SLUG and PR, TWIST and ER, TWIST and PR, in periglandular/cancer-associated stromal cells (P<0.01). In conclusion, the pattern of positive and negative correlations in the expression of epithelial-mesenchymal transition regulators (SNAIL-SLUG and TWIST), sex hormone receptors (ER and PR), and β-catenin between ECs and hyperplasia, as well as between epithelium and stroma herein, is suggestive of a significant role for these proteins and their underlying molecular processes in the development of endometrial carcinomas. PMID:26367784

  8. Therapeutic effect of lung mixed culture-derived epithelial cells on lung fibrosis.

    PubMed

    Tanaka, Kensuke; Fujita, Tetsuo; Umezawa, Hiroki; Namiki, Kana; Yoshioka, Kento; Hagihara, Masahiko; Sudo, Tatsuhiko; Kimura, Sadao; Tatsumi, Koichiro; Kasuya, Yoshitoshi

    2014-11-01

    Cell-based therapy is recognized as one of potential therapeutic options for lung fibrosis. However, preparing stem/progenitor cells is complicated and not always efficient. Here, we show easily prepared cell populations having therapeutic capacity for lung inflammatory disease that are named as 'lung mixed culture-derived epithelial cells' (LMDECs). LMDECs expressed surfactant protein (SP)-C and gave rise to type I alveolar epithelial cells (AECs) in vitro and in vivo that partly satisfied type II AEC-like characteristics. An intratracheal delivery of not HEK 293 cells but LMDECs to the lung ameliorated bleomycin (BLM)-induced lung injury. A comprehensive analysis of bronchoalveolar fluid by western blot array revealed that LMDEC engraftment could improve the microenvironment in the BLM-instilled lung in association with stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor 4 signaling axis. SDF-1 enhanced both migration activity and differentiating efficiency of LMDECs. Further classification of LMDECs by flow cytometric study showed that a major population of LMDECs (LMDEC(Maj), 84% of total LMDECs) was simultaneously SP-C(+), CD44(+), CD45(+), and hematopoietic cell lineage(+) and that LMDECs included bronchioalveolar stem cells (BASCs) showing SP-C(+)Clara cell secretory protein(+)stem cell antigen (Sca)1(+) as a small population (1.8% of total LMDECs). CD44(+)-sorted LMDEC(Maj) and Sca1(+)-sorted LMDECs equally ameliorated fibrosis induced by BLM like LMDECs did. However, infiltrated neutrophils were observed in Sca1(+)-sorted LMDEC-treated alveoli that was not typical in LMDEC(Maj)- or LMDEC-treated alveoli. These findings suggest that the protective effect of LMDECs against BLM-induced lung injury depends greatly on that of LMDEC(Maj). Furthermore, the cells expressing both alveolar epithelial and hematopoietic cell lineage markers (SP-C(+)CD45(+)) that have characteristics corresponding to LMDEC(Maj) were observed in the alveoli of lung and

  9. Early soy exposure via maternal diet regulates rat mammary epithelial differentiation by paracrine signaling from stromal adipocytes.

    PubMed

    Su, Ying; Shankar, Kartik; Simmen, Rosalia C M

    2009-05-01

    Diet-mediated changes in transcriptional programs that promote the early differentiation of the mammary gland may lead to reduced breast cancer risk. The disparity in adult breast cancer incidence between Asian women and Western counterparts is attributed partly to high soy food intake. Here, we conducted genome-wide profiling of mammary tissues of weanling rats exposed to soy protein isolate (SPI) or control casein (CAS) via maternal diet to evaluate the contribution of early exposure on mammary gene expression. Of the identified 18 up- and 39 downregulated genes with SPI relative to CAS, a subset was associated with lipid metabolic pathways, consistent with reduced mammary adipocyte size and suggesting stromal adipocyte-specific genomic changes. Female offspring of rats fed SPI tended to have fewer terminal end buds (P = 0.06) and had significantly lower body weight and abdominal fat mass. To demonstrate the functional consequence of SPI-mediated adipocyte metabolic changes on neighboring mammary epithelium, the expression of in vivo regulated genes in 3T3-L1 adipocytes treated with soy isoflavone genistein and effects of the resultant conditioned medium (CM) on the differentiation of HC11 mammary epithelial cells were evaluated by quantitative RT-PCR and/or Western immunoblots. In differentiated 3T3-L1, genistein decreased fatty acid synthase and stearoyl-CoA desaturase and increased hydroxysteroid 11-beta dehydrogenase 1 expression. CM from genistein-treated adipocytes had higher adiponectin levels and augmented prolactin-induced, glucocorticoid-regulated beta-casein levels. These findings suggest that soy-associated components, by targeting mammary adipocytes, alter paracrine signaling to enhance mammary epithelial differentiation, with important implications for the prevention of breast cancer associated with obesity and obesity-related diseases. PMID:19321580

  10. Stromal cells control the epithelial residence of DCs and memory T cells by regulated activation of TGF-β.

    PubMed

    Mohammed, Javed; Beura, Lalit K; Bobr, Aleh; Astry, Brian; Chicoine, Brian; Kashem, Sakeen W; Welty, Nathan E; Igyártó, Botond Z; Wijeyesinghe, Sathi; Thompson, Emily A; Matte, Catherine; Bartholin, Laurent; Kaplan, Alesia; Sheppard, Dean; Bridges, Alina G; Shlomchik, Warren D; Masopust, David; Kaplan, Daniel H

    2016-04-01

    Cells of the immune system that reside in barrier epithelia provide a first line of defense against pathogens. Langerhans cells (LCs) and CD8(+) tissue-resident memory T cells (TRM cells) require active transforming growth factor-β1 (TGF-β) for epidermal residence. Here we found that integrins αvβ6 and αvβ8 were expressed in non-overlapping patterns by keratinocytes (KCs) and maintained the epidermal residence of LCs and TRM cells by activating latent TGF-β. Similarly, the residence of dendritic cells and TRM cells in the small intestine epithelium also required αvβ6. Treatment of the skin with ultraviolet irradiation decreased integrin expression on KCs and reduced the availability of active TGF-β, which resulted in LC migration. Our data demonstrated that regulated activation of TGF-β by stromal cells was able to directly control epithelial residence of cells of the immune system through a novel mechanism of intercellular communication. PMID:26901152

  11. Cell Surface Glycoprotein of Reactive Stromal Fibroblasts as a Potential Antibody Target in Human Epithelial Cancers

    NASA Astrophysics Data System (ADS)

    Garin-Chesa, Pilar; Old, Lloyd J.; Rettig, Wolfgang J.

    1990-09-01

    The F19 antigen is a cell surface glycoprotein (M_r, 95,000) of human sarcomas and proliferating, cultured fibroblasts that is absent from resting fibroblasts in normal adult tissues. Normal and malignant epithelial cells are also F19^-. The present immunohistochemical study describes induction of F19 in the reactive mesenchyme of epithelial tumors. F19^+ fibroblasts were found in primary and metastatic carcinomas, including colorectal (18 of 18 cases studied), breast (14/14), ovarian (21/21), bladder (9/10), and lung carcinomas (13/13). In contrast, the stroma of benign colorectal adenomas, fibrocystic disease and fibroadenomas of breast, benign prostate hyperplasia, in situ bladder carcinomas, and benign ovarian tumors showed no or only moderate numbers of F19^+ fibroblasts. Analysis of dermal incision wounds revealed that F19 is strongly induced during scar formation. Comparison of F19 with the extracellular matrix protein tenascin, a putative marker of tumor mesenchyme, showed a cellular staining pattern for F19 vs. the extracellular matrix pattern for tenascin and widespread expression of tenascin in F19^- normal tissues and benign tumors. Our results suggest that the F19^+ phenotype correlates with specialized fibroblast functions in wound healing and malignant tumor growth. Because of its abundance in tumor mesenchyme, F19 may serve as a target for antibodies labeled with radioisotopes or toxic agents, or inflammatogenic antibodies, in carcinoma patients.

  12. Localisation of Epithelial Cells Capable of Holoclone Formation In Vitro and Direct Interaction with Stromal Cells in the Native Human Limbal Crypt

    PubMed Central

    Dziasko, Marc A.; Armer, Hannah E.; Levis, Hannah J.; Shortt, Alex J.; Tuft, Stephen; Daniels, Julie T.

    2014-01-01

    Limbal epithelial stem cells (LESCs) are essential to maintain the transparent ocular surface required for vision. Despite great advances in our understanding of ocular stem cell biology over the last decade, the exact location of the LESC niche remains unclear. In the present study we have used in vitro clonal analysis to confirm that limbal crypts provide a niche for the resident LESCs. We have used high-resolution imaging of the basal epithelial layer at the limbus to identify cells with a morphology consistent with stem cells that were only present within the basal layer of the limbal crypts. These cells are proximal to limbal stromal cells suggesting direct cell-to-cell interaction. Serial block-face scanning electron microscopy (SBFSEM) confirmed that the putative LESCs are indeed in direct contact with cells in the underlying stroma, a contact that is facilitated by focal basement membrane interruptions. Limbal mesenchymal cells previously identified in the human limbus collocate in the crypt-rich limbal stromal area in the vicinity of LESCs and may be involved in the cell-to-cell contact revealed by SBFSEM. We also observed a high population of melanocytes within the basal layer of the limbal crypts. From these observations we present a three dimensional reconstruction of the LESC niche in which the stem cell is closely associated and maintained by both dendritic pigmented limbal melanocytes and elongated limbal stromal cells. PMID:24714106

  13. Organotypic modelling as a means of investigating epithelial-stromal interactions during tumourigenesis

    PubMed Central

    Chioni, Athina-Myrto; Grose, Richard

    2008-01-01

    The advent of co-culture approaches has allowed researchers to more accurately model the behaviour of epithelial cells in cell culture studies. The initial work on epidermal modelling allowed the development of reconstituted epidermis, growing keratinocytes on top of fibroblasts seeded in a collagen gel at an air-liquid interface to generate terminally differentiated 'skin equivalents'. In addition to developing ex vivo skin sheets for the treatment of burns victims, such cultures have also been used as a means of investigating both the development and repair of the epidermis, in more relevant conditions than simple two-dimensional culture, but without the use of animals. More recently, by varying the cell types used and adjusting the composition of the matrix components, this physiological system can be adapted to allow the study of interactions between tumour cells and their surrounding stroma, particularly with regards to how such interactions regulate invasion. Here we provide a summary of the major themes involved in tumour progression and consider the evolution of the approaches used to study cancer cell behaviour. Finally, we review how organotypic models have facilitated the study of several key pathways in cancer development and invasion, and speculate on the exciting future roles for these models in cancer research. PMID:19077226

  14. Calcifying nested stromal-epithelial tumor (CNSET) of the liver: a newly recognized entity to be considered in the radiologist's differential diagnosis.

    PubMed

    Schaffer, Lauren R; Shehata, Bahig M; Yin, Julie; Schemankewitz, Erwin; Alazraki, Adina

    2016-01-01

    Calcifying nested stromal-epithelial tumor (CNSET), an extremely rare tumor found in the liver, was first described in 2001 by Ishak et al. The characteristic imaging features include large size, well-circumscribed, enhancing mass with calcification. To our knowledge, since 2001, there have been 29 reported. Typically arising from the right hepatic lobe, it is primarily found in children and shows clear predilection for females. Emphasizing imaging, we report a 14-year-old female with Beckwith-Wiedemann syndrome who presented with CNSET. PMID:26589005

  15. Effects of Central Corneal Stromal Thickness and Epithelial Thickness on Intraocular Pressure Using Goldmann Applanation and Non-Contact Tonometers

    PubMed Central

    Lee, Marvin; Ahn, Jaehong

    2016-01-01

    Purpose To investigate whether corneal thickness parameters measured by optical coherence tomography (OCT), such as central corneal thickness (CCT), central corneal stromal thickness (CCST), and central corneal epithelial thickness (CCET), influence the intraocular pressure (IOP) difference measured by Goldmann applanation tonometry (GAT) and non-contact tonometry (NCT). Methods In total, 50 eyes from 50 subjects without glaucomatous defects were included in this retrospective, cross-sectional study. We measured IOP using GAT and NCT and calculated the difference between the two methods. CCT was measured by a Cirrus HD-OCT device using anterior segment imaging. The basement membrane of the epithelium, which was seen as a high-reflection line in the OCT image, was taken as a reference line to measure CCST and CCET. Results The mean IOP measured by GAT and NCT was 16.7 ± 3.0 and 18.1 ± 3.8 mmHg, respectively. The mean IOP difference was 1.5 ± 1.7 mmHg, and the IOP measured by NCT was 8.4% ± 11.3% higher than that measured by GAT. The CCET and CCST were 57.9 ± 5.6 and 501.7 ± 33.8 μm, respectively. CCT showed a positive correlation with both GAT IOP (r = 0.648, P < 0.001) and NCT IOP (r = 0.676, P < 0.001). Although CCST showed a significant correlation with GAT IOP and NCT IOP, CCET did not. The difference between GAT IOP and NCT IOP increased with CCT (r = 0.333, P = 0.018), and CCET was positively correlated with the IOP difference between GAT and NCT (r = 0.435, P = 0.002). Conclusions IOP increased with greater CCT, and CCST seemed to have a more important role than CCET. CCET also increased with greater CCT, and this may be a possible explanation for the increasing difference in IOP between GAT and NCT with increasing CCT. PMID:26998838

  16. Seminal plasma induces global transcriptomic changes associated with cell migration, proliferation and viability in endometrial epithelial cells and stromal fibroblasts

    PubMed Central

    Chen, Joseph C.; Johnson, Brittni A.; Erikson, David W.; Piltonen, Terhi T.; Barragan, Fatima; Chu, Simon; Kohgadai, Nargis; Irwin, Juan C.; Greene, Warner C.; Giudice, Linda C.; Roan, Nadia R.

    2014-01-01

    STUDY QUESTION How does seminal plasma (SP) affect the transcriptome of human primary endometrial epithelial cells (eEC) and stromal fibroblasts (eSF)? SUMMARY ANSWER Exposure of eEC and eSF to SP in vitro increases expression of genes and secreted proteins associated with cellular migration, proliferation, viability and inhibition of cell death. WHAT IS KNOWN ALREADY Studies in both humans and animals suggest that SP can access and induce physiological changes in the upper female reproductive tract (FRT), which may participate in promoting reproductive success. STUDY DESIGN, SIZE, DURATION This is a cross sectional study involving control samples versus treatment. SP (pooled from twenty donors) was first tested for dose- and time-dependent cytotoxic effects on eEC and eSF (n = 4). As exposure of eEC or eSF to 1% SP for 6 h proved to be non-toxic, a second set of eEC/eSF samples (n = 4) was treated under these conditions for transcriptome, protein and functional analysis. With a third set of samples (n = 3), we further compared the transcriptional response of the cells to SP versus fresh semen. PARTICIPANTS/MATERIALS, SETTING, METHODS eEC and eSF were isolated from endometrial biopsies from women of reproductive age undergoing benign gynecologic procedures and maintained in vitro. RNA was isolated and processed for microarray studies to analyze global transcriptomic changes. Secreted factors in conditioned media from SP-treated cells were analyzed by Luminex and for the ability to stimulate migration of CD14+ monocytes and CD4+ T cells. MAIN RESULTS AND THE ROLE OF CHANCE Pathway identifications were determined using the Z-scoring system in Ingenuity Pathways Analysis (Z scores ≥|1.5|). SP induced transcriptomic changes (P < 0.05) associated with promoting leukocyte and endothelial cell recruitment, and proliferation of eEC and eSF. Cell viability pathways were induced, while those associated with cell death were suppressed (P < 0.05). SP and fresh semen induced

  17. Collagen based film with well epithelial and stromal regeneration as corneal repair materials: Improving mechanical property by crosslinking with citric acid.

    PubMed

    Zhao, Xuan; Liu, Yang; Li, Weichang; Long, Kai; Wang, Lin; Liu, Sa; Wang, Yingjun; Ren, Li

    2015-10-01

    Corneal disease can lead to vision loss. It has become the second greatest cause of blindness in the world, and keratoplasty is considered as an effective treatment method. This paper presents the crosslinked collagen (Col)-citric acid (CA) films developed by making use of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The results showed that the Col-CA films had necessary optical performance, water content. The collagenase resistance of CA crosslinked films was superior to that of EDC crosslinked films. And CA5 film (Col:CA:EDC:NHS=60:3:10:10) had the best mechanical properties. Cell experiments showed that CA5 film was non-cytotoxic and human corneal epithelial cells could proliferate well on the films. Lamellar keratoplasty showed that the CA5 film could be sutured in the rabbit eyes and was epithelialized completely in about 10 days, and the transparency was restored quickly in 30±5 days. No inflammation and corneal neovascularization were observed at 6 months. Corneal stroma had been repaired; stromal cells and neo-stroma could be seen in the area of operation from the hematoxylin-eosin stained histologic sections and anterior segment optical coherence tomography images. These results indicated that Col-CA films were highly promising biomaterials that could be used in corneal tissue engineering and a variety of other tissue engineering applications. PMID:26117756

  18. Airway epithelial cells activate Th2 cytokine production in mast cells via IL-1 and thymic stromal lymphopoietin

    PubMed Central

    Nagarkar, Deepti R.; Poposki, Julie A.; Comeau, Michael R.; Biyasheva, Assel; Avila, Pedro C.; Schleimer, Robert P.; Kato, Atsushi

    2012-01-01

    Background Airway epithelial cells are important regulators of innate and adaptive immunity. Although mast cells are known to play a central role in manifestations of allergic inflammation and are found in the epithelium in Th2-related diseases, their role is incompletely understood. Objectives The objective of this study was to investigate the role of airway epithelial cells in production of Th2 cytokines in mast cells. Methods Normal human bronchial epithelial cells (NHBE) were stimulated with TNF, IL-4, IFN-γ, IL -17A and dsRNA alone or in combination. Human mast cells were stimulated with epithelial cell-derived supernatants, or co-cultured with NHBE. Th2 cytokine responses were blocked with neutralizing antibodies. Results Supernatants from IL-4 and dsRNA stimulated NHBE significantly enhanced Th2 cytokine production from mast cells. The combination of IL-4 and dsRNA itself or supernatants from NHBE stimulated with other cytokines did not activate mast cells, suggesting that mast cell responses were induced by epithelial cell factors that were only induced by IL-4 and dsRNA. Epithelial supernatant-dependent Th2 cytokine production in mast cells was suppressed by anti-IL-1 and anti-TSLP, and was enhanced by anti-IL-1Ra. Similar results were observed in co-culture experiments. Finally, we found dsRNA-dependent production of IL-1, TSLP, and IL-1Ra in NHBE was regulated by Th cytokines, and their ratio in NHBE correlated with Th2 cytokine production in mast cells. Conclusions Pathogens producing dsRNA, such as respiratory viral infections, may amplify local Th2 inflammation in asthmatics via the production of TSLP and IL-1 by epithelial cells and subsequent activation of Th2 cytokine production by mast cells in the airways. PMID:22633328

  19. MicroRNA-375 regulation of thymic stromal lymphopoietin by diesel exhaust particles and ambient particulate matter in human bronchial epithelial cells§

    PubMed Central

    Bleck, Bertram; Grunig, Gabriele; Chiu, Amanda; Liu, Mengling; Gordon, Terry; Kazeros, Angeliki; Reibman, Joan

    2013-01-01

    Air pollution contributes to acute exacerbations of asthma and the development of asthma in children and adults. Airway epithelial cells interface innate and adaptive immune responses and have been proposed to regulate much of the response to pollutants. Thymic stromal lymphopoietin (TSLP) is a pivotal cytokine linking innate and Th2 adaptive immune disorders and is upregulated by environmental pollutants, including ambient particulate matter (PM) and diesel exhaust particles (DEP). We now show that DEP and ambient fine PM upregulate TSLP mRNA and hsa-miR-375 in primary human bronchial epithelial cells (pHBEC). Moreover, transfection of pHBEC with anti-hsa-miR-375 reduced TSLP mRNA in DEP but not TNF-α treated cells. In silico pathway evaluation suggested the aryl hydrocarbon receptor (AhR) as one possible target of miR-375. DEP and ambient fine PM (3 μg/cm2), down regulated AhR mRNA. Transfection of mimic-hsa-miR-375 resulted in a small downregulation of AhR mRNA compared to resting AhR mRNA. AhR mRNA was increased in pHBEC treated with DEP after transfection with anti-hsa-miR-375. Our data show that two pollutants, DEP and ambient PM, upregulate TSLP in human bronchial epithelial cells by a mechanism that includes hsa-miR-375 with complex regulatory effects on AhR mRNA. The absence of this pathway in TNF-α-treated cells suggests multiple regulatory pathways for TSLP expression in these cells. PMID:23455502

  20. Toll-like Receptor 4 and MyD88 Dependent Signaling Mechanisms of the Innate Immune System are Essential for the Response to Lipopolysaccharide by Epithelial and Stromal Cells of the Bovine Endometrium

    PubMed Central

    Cronin, James G; Turner, Matthew L; Goetze, Leopold; Bryant, Clare E; Sheldon, I Martin

    2015-01-01

    Infection of the bovine endometrium with Gram-negative bacteria commonly causes uterine disease. Toll-like receptor 4 (TLR4) on cells of the immune system bind Gram-negative bacterial lipopolysaccharide (LPS), stimulating the secretion of the pro-inflammatory cytokines interleukin (IL)-1β and IL-6, and the chemokine IL-8. As the endometrium is the first barrier to infection of the uterus, the signaling cascade triggered by LPS and the subsequent expression of inflammatory mediators was investigated in endometrial epithelial and stromal cells, and the key pathways identified using short interfering RNA (siRNA) and biochemical inhibitors. Treatment of endometrial cells with ultrapure LPS stimulated an inflammatory response characterized by increased IL1B, IL6 and IL8 mRNA expression, and IL-6 protein accumulation in epithelial cells; and increased IL1B and IL8 mRNA expression, and IL-6 and IL-8 protein accumulation in stromal cells. Treatment of endometrial cells with LPS also induced the degradation of IκB and the nuclear translocation of NF-κB, as well as rapid phosphorylation of MAPK3/1 and MAPK14. Knockdown of TLR4 or its signaling adaptor molecule, MYD88, using siRNA reduced the inflammatory response to LPS in epithelial and stromal cells. Biochemical inhibition of MAPK3/1, but not JNK, or MAPK14, reduced LPS-induced IL1B, IL6 and IL8 expression in endometrial cells. In conclusion, epithelial and stromal cells have an intrinsic role in innate immune surveillance in the endometrium, and in the case of LPS this recognition occurs via TLR4 and MyD88 dependent cell signaling pathways. PMID:22053092

  1. IL1{beta}-mediated Stromal COX-2 signaling mediates proliferation and invasiveness of colonic epithelial cancer cells

    SciTech Connect

    Zhu, Yingting; Zhu, Min; Lance, Peter

    2012-11-15

    COX-2 is a major inflammatory mediator implicated in colorectal inflammation and cancer. However, the exact origin and role of COX-2 on colorectal inflammation and carcinogenesis are still not well defined. Recently, we reported that COX-2 and iNOS signalings interact in colonic CCD18Co fibroblasts. In this article, we investigated whether activation of COX-2 signaling by IL1{beta} in primary colonic fibroblasts obtained from normal and cancer patients play a critical role in regulation of proliferation and invasiveness of human colonic epithelial cancer cells. Our results demonstrated that COX-2 level was significantly higher in cancer associated fibroblasts than that in normal fibroblasts with or without stimulation of IL-1{beta}, a powerful stimulator of COX-2. Using in vitro assays for estimating proliferative and invasive potential, we discovered that the proliferation and invasiveness of the epithelial cancer cells were much greater when the cells were co-cultured with cancer associated fibroblasts than with normal fibroblasts, with or without stimulation of IL1{beta}. Further analysis indicated that the major COX-2 product, prostaglandin E{sub 2}, directly enhanced proliferation and invasiveness of the epithelial cancer cells in the absence of fibroblasts. Moreover, a selective COX-2 inhibitor, NS-398, blocked the proliferative and invasive effect of both normal and cancer associate fibroblasts on the epithelial cancer cells, with or without stimulation of IL-1{beta}. Those results indicate that activation of COX-2 signaling in the fibroblasts plays a major role in promoting proliferation and invasiveness of the epithelial cancer cells. In this process, PKC is involved in the activation of COX-2 signaling induced by IL-1{beta} in the fibroblasts.

  2. Evaluation of Candidate Stromal Epithelial Cross-Talk Genes Identifies Association between Risk of Serous Ovarian Cancer and TERT, a Cancer Susceptibility “Hot-Spot”

    PubMed Central

    Chen, Xiaoqing; Macgregor, Stuart; Duffy, David L.; Spurdle, Amanda B.; deFazio, Anna; Gava, Natalie; Webb, Penelope M.; Rossing, Mary Anne; Doherty, Jennifer Anne; Goodman, Marc T.; Lurie, Galina; Thompson, Pamela J.; Wilkens, Lynne R.; Ness, Roberta B.; Moysich, Kirsten B.; Chang-Claude, Jenny; Wang-Gohrke, Shan; Cramer, Daniel W.; Terry, Kathryn L.; Hankinson, Susan E.; Tworoger, Shelley S.; Garcia-Closas, Montserrat; Yang, Hannah; Lissowska, Jolanta; Chanock, Stephen J.; Pharoah, Paul D.; Song, Honglin; Whitemore, Alice S.; Pearce, Celeste L.; Stram, Daniel O.; Wu, Anna H.; Pike, Malcolm C.; Gayther, Simon A.; Ramus, Susan J.; Menon, Usha; Gentry-Maharaj, Aleksandra; Anton-Culver, Hoda; Ziogas, Argyrios; Hogdall, Estrid; Kjaer, Susanne K.; Hogdall, Claus; Berchuck, Andrew; Schildkraut, Joellen M.; Iversen, Edwin S.; Moorman, Patricia G.; Phelan, Catherine M.; Sellers, Thomas A.; Cunningham, Julie M.; Vierkant, Robert A.; Rider, David N.; Goode, Ellen L.; Haviv, Izhak; Chenevix-Trench, Georgia

    2010-01-01

    We hypothesized that variants in genes expressed as a consequence of interactions between ovarian cancer cells and the host micro-environment could contribute to cancer susceptibility. We therefore used a two-stage approach to evaluate common single nucleotide polymorphisms (SNPs) in 173 genes involved in stromal epithelial interactions in the Ovarian Cancer Association Consortium (OCAC). In the discovery stage, cases with epithelial ovarian cancer (n = 675) and controls (n = 1,162) were genotyped at 1,536 SNPs using an Illumina GoldenGate assay. Based on Positive Predictive Value estimates, three SNPs—PODXL rs1013368, ITGA6 rs13027811, and MMP3 rs522616—were selected for replication using TaqMan genotyping in up to 3,059 serous invasive cases and 8,905 controls from 16 OCAC case-control studies. An additional 18 SNPs with Pper-allele<0.05 in the discovery stage were selected for replication in a subset of five OCAC studies (n = 1,233 serous invasive cases; n = 3,364 controls). The discovery stage associations in PODXL, ITGA6, and MMP3 were attenuated in the larger replication set (adj. Pper-allele≥0.5). However genotypes at TERT rs7726159 were associated with ovarian cancer risk in the smaller, five-study replication study (Pper-allele = 0.03). Combined analysis of the discovery and replication sets for this TERT SNP showed an increased risk of serous ovarian cancer among non-Hispanic whites [adj. ORper-allele 1.14 (1.04–1.24) p = 0.003]. Our study adds to the growing evidence that, like the 8q24 locus, the telomerase reverse transcriptase locus at 5p15.33, is a general cancer susceptibility locus. PMID:20628624

  3. Mesenchymal stromal cells induce epithelial-to-mesenchymal transition in human colorectal cancer cells through the expression of surface-bound TGF-β.

    PubMed

    Mele, Valentina; Muraro, Manuele G; Calabrese, Diego; Pfaff, Dennis; Amatruda, Nunzia; Amicarella, Francesca; Kvinlaug, Brynn; Bocelli-Tyndall, Chiara; Martin, Ivan; Resink, Therese J; Heberer, Michael; Oertli, Daniel; Terracciano, Luigi; Spagnoli, Giulio C; Iezzi, Giandomenica

    2014-06-01

    Mesenchymal stem/stromal cells (MSC) are multipotent precursors endowed with the ability to home to primary and metastatic tumor sites, where they can integrate into the tumor-associated stroma. However, molecular mechanisms and outcome of their interaction with cancer cells have not been fully clarified. In this study, we investigated the effects mediated by bone marrow-derived MSC on human colorectal cancer (CRC) cells in vitro and in vivo. We found that MSC triggered epithelial-to-mesenchymal transition (EMT) in tumor cells in vitro, as indicated by upregulation of EMT-related genes, downregulation of E-cadherin and acquisition of mesenchymal morphology. These effects required cell-to-cell contact and were mediated by surface-bound TGF-β newly expressed on MSC upon coculture with tumor cells. In vivo tumor masses formed by MSC-conditioned CRC cells were larger and characterized by higher vessel density, decreased E-cadherin expression and increased expression of mesenchymal markers. Furthermore, MSC-conditioned tumor cells displayed increased invasiveness in vitro and enhanced capacity to invade peripheral tissues in vivo. Thus, by promoting EMT-related phenomena, MSC appear to favor the acquisition of an aggressive phenotype by CRC cells. PMID:24214914

  4. Stromal COX-2 signaling activated by deoxycholic acid mediates proliferation and invasiveness of colorectal epithelial cancer cells

    SciTech Connect

    Zhu, Yingting; Tissue Tech Inc., Miami, FL 33173 ; Zhu, Min; Lance, Peter

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer Human colonic cancer associated fibroblasts are major sources of COX-2 and PGE{sub 2}. Black-Right-Pointing-Pointer The fibroblasts interact with human colonic epithelial cancer cells. Black-Right-Pointing-Pointer Activation of COX-2 signaling in the fibroblasts affects behavior of the epithelia. Black-Right-Pointing-Pointer Protein Kinase C controls the activation of COX-2 signaling. -- Abstract: COX-2 is a major regulator implicated in colonic cancer. However, how COX-2 signaling affects colonic carcinogenesis at cellular level is not clear. In this article, we investigated whether activation of COX-2 signaling by deoxycholic acid (DCA) in primary human normal and cancer associated fibroblasts play a significant role in regulation of proliferation and invasiveness of colonic epithelial cancer cells. Our results demonstrated while COX-2 signaling can be activated by DCA in both normal and cancer associated fibroblasts, the level of activation of COX-2 signaling is significantly greater in cancer associated fibroblasts than that in normal fibroblasts. In addition, we discovered that the proliferative and invasive potential of colonic epithelial cancer cells were much greater when the cells were co-cultured with cancer associated fibroblasts pre-treated with DCA than with normal fibroblasts pre-treated with DCA. Moreover, COX-2 siRNA attenuated the proliferative and invasive effect of both normal and cancer associate fibroblasts pre-treated with DCA on the colonic cancer cells. Further studies indicated that the activation of COX-2 signaling by DCA is through protein kinase C signaling. We speculate that activation of COX-2 signaling especially in cancer associated fibroblasts promotes progression of colonic cancer.

  5. Spermatogonial Nature of the Germ Cell Component of Canine Testicular Mixed Germ Cell-Sex Cord Stromal Tumours.

    PubMed

    Mizukami, S; Murakami, T; Tanaka, T; Machida, N; Nomura, K; Yoshida, T; Shibutani, M

    2016-07-01

    The present study has characterized the germ cell component of canine testicular mixed germ cell-sex cord stromal tumours (MGSCTs) by examining the histological nature and histochemical and immunohistochemical features using gonocytic and spermatogonial cellular markers, c-Kit, placental alkaline phosphatase (PLAP), protein gene product 9.5 (PGP9.5), Sal-like protein 4 (SALL4), and the periodic acid-Schiff (PAS) reaction. Histologically, all 45 examples of MGSCTs were classified as spermatocytic seminomas (SSs) and Sertoli cell tumours in combination. The germ cell component of all MGSCTs was negative by PAS staining. Immunohistochemically, PLAP immunoreactivity was lacking in the germ cell component of all MGSCTs, which is not consistent with a gonocytic origin. The germ cell component was positive for PGP9.5 and SALL4 in all MGSCTs and positive for c-Kit in 53% of MGSCTs, which is consistent with the phenotype of spermatogonia. Furthermore, the germ cell component in 71% of MGSCTs had moderate immunoreactivity for SALL4, which is suggestive of a spermatogonial phenotype. Conversely, 29% of cases had a minor population of germ cells showing strong SALL4 immunoreactivity, suggesting a phenotype similar to prespermatogonia. The results suggest that the germ cell component of canine MGSCTs is morphologically classified as SS, with the majority of cases showing the spermatogonial phenotype and some cases containing a small population of prespermatogonia. PMID:27241073

  6. Targeting matriptase in breast cancer abrogates tumor progression via impairment of stromal-epithelial growth factor signaling

    PubMed Central

    Zoratti, Gina L.; Tanabe, Lauren M.; Varela, Fausto A.; Murray, Andrew S.; Bergum, Christopher; Colombo, Eloic; Lang, Julie; Molinolo, Alfredo A.; Leduc, Richard; Marsault, Eric; Boerner, Julie; List, Karin

    2015-01-01

    Matriptase is an epithelia-specific membrane-anchored serine protease that has received considerable attention in recent years due to its consistent dysregulation in human epithelial tumors, including breast cancer. Mice with reduced levels of matriptase display a significant delay in oncogene-induced mammary tumor formation and blunted tumor growth. The abated tumor growth is associated with a decrease in cancer cell proliferation. Here we demonstrate by genetic deletion and silencing that the proliferation impairment in matriptase deficient breast cancer cells is caused by their inability to initiate activation of the c-Met signaling pathway in response to fibroblast-secreted pro-HGF. Similarly, inhibition of matriptase catalytic activity using a selective small-molecule inhibitor abrogates the activation of c-Met, Gab1 and AKT, in response to pro-HGF, which functionally leads to attenuated proliferation in breast carcinoma cells. We conclude that matriptase is critically involved in breast cancer progression and represents a potential therapeutic target in breast cancer. PMID:25873032

  7. Epithelial and Stromal Cell Urokinase Plasminogen Activator Receptor Expression Differentially Correlates with Survival in Rectal Cancer Stages B and C Patients

    PubMed Central

    Ahn, Seong Beom; Chan, Charles; Dent, Owen F.; Mohamedali, Abidali; Kwun, Sun Young; Clarke, Candice; Fletcher, Julie; Chapuis, Pierre H.; Nice, Edouard C.; Baker, Mark S.

    2015-01-01

    Urokinase plasminogen activator receptor (uPAR) has been proposed as a potential prognostic factor for colorectal cancer (CRC) patient survival. However, CRC uPAR expression remains controversial, especially regarding cell types where uPAR is overexpressed (e.g., epithelium (uPARE) or stroma-associated cells (uPARS)) and associated prognostic relevance. In this study, two epitope-specific anti-uPAR monoclonal antibodies (MAbs) could discriminate expression of uPARE from uPARS and were used to examine this association with survival of stages B and C rectal cancer (RC) patients. Using immunohistochemistry, MAbs #3937 and R4 were used to discriminate uPARE from uPARS respectively in the central and invasive frontal regions of 170 stage B and 179 stage C RC specimens. Kaplan-Meier and Cox regression analyses were used to determine association with survival. uPAR expression occurred in both epithelial and stromal compartments with differential expression observed in many cases, indicating uPARE and uPARS have different cellular roles. In the central and invasive frontal regions, uPARE was adversely associated with overall stage B survival (HR = 1.9; p = 0.014 and HR = 1.5; p = 0.031, respectively) reproducing results from previous studies. uPARS at the invasive front was associated with longer stage C survival (HR = 0.6; p = 0.007), reflecting studies demonstrating that macrophage peritumoural accumulation is associated with longer survival. This study demonstrates that different uPAR epitopes should be considered as being expressed on different cell types during tumour progression and at different stages in RC. Understanding how uPARE and uPARS expression affects survival is anticipated to be a useful clinical prognostic marker of stages B and C RC. PMID:25692297

  8. Comprehensive site-specific whole genome profiling of stromal and epithelial colonic gene signatures in human sigmoid colon and rectal tissue.

    PubMed

    Knight, Jason M; Kim, Eunji; Ivanov, Ivan; Davidson, Laurie A; Goldsby, Jennifer S; Hullar, Meredith A J; Randolph, Timothy W; Kaz, Andrew M; Levy, Lisa; Lampe, Johanna W; Chapkin, Robert S

    2016-09-01

    The strength of associations between various exposures (e.g., diet, tobacco, chemopreventive agents) and colorectal cancer risk may partially depend on the complex interaction between epithelium and stroma across anatomic subsites. Currently, baseline data describing genome-wide coding and long noncoding gene expression profiles in the healthy colon specific to tissue type and location are lacking. Therefore, colonic mucosal biopsies from 10 healthy participants who were enrolled in a clinical study to evaluate effects of lignan supplementation on gut resiliency were used to characterize the site-specific global gene expression signatures associated with stromal vs. epithelial cells in the sigmoid colon and rectum. Using RNA-seq, we demonstrate that tissue type and location patterns of gene expression and upstream regulatory pathways are distinct. For example, consistent with a key role of stroma in the crypt niche, mRNAs associated with immunoregulatory and inflammatory processes (i.e., CXCL14, ANTXR1), smooth muscle contraction (CALD1), proliferation and apoptosis (GLP2R, IGFBP3), and modulation of extracellular matrix (MMP2, COL3A1, MFAP4) were all highly expressed in the stroma. In comparison, HOX genes (HOXA3, HOXD9, HOXD10, HOXD11, and HOXD-AS2, a HOXD cluster antisense RNA 2), and WNT5B expression were also significantly higher in sigmoid colon compared with the rectum. These findings provide strong impetus for considering colorectal tissue subtypes and location in future observational studies and clinical trials designed to evaluate the effects of exposures on colonic health. PMID:27401218

  9. Mixed germ cell-sex cord stromal tumor of the testis with an intratubular component: a problem in differential diagnosis.

    PubMed

    Roth, Lawrence M; Cheng, Liang

    2016-05-01

    The origin of mixed germ cell-sex cord stromal tumor (MGC-SCST) of the testis is uncertain, and a controversy exists as to whether the germ cells in these tumors are neoplastic. Although intratubular components of the common and several uncommon forms of testicular germ cell tumors have been described, to our knowledge, intratubular MGC-SCST has not previously been reported in detail. In a study of 13 cases of testicular MGC-SCST, we observed entrapped seminiferous tubules in 7 cases and an intratubular component in 2, both of which were associated with extensive entrapped tubules. Intratubular MGC-SCST is distinguished from entrapped tubules by the occurrence of germ cells resembling spermatogonia in the adluminal compartment and the absence of tubular lumens. By way of contrast, the adluminal compartment of entrapped tubules is composed entirely of immature Sertoli cells, and lumen formation is observed in favorably oriented tubules. Although the germ cells in our cases of MGC-SCST do not show histologic features of malignancy, the observation of spermatogonia-like cells in the adluminal compartment of the tubule, sometimes with concomitant germ cell proliferation, and the infiltrative pattern of the germ cells in the extratubular component support their neoplastic nature. The intratubular component tends to be more centrally located than the adjacent entrapped seminiferous tubules suggesting that it originates from the latter. The tubules of intratubular MGC-SCST are not expanded except in the advanced stage and are approximately the same size as entrapped seminiferous tubules but are considerably smaller than those of the uninvolved testis that shows active spermatogenesis. PMID:27067782

  10. Belinostat in Treating Patients With Advanced Ovarian Epithelial Cancer, Primary Peritoneal Cancer, or Fallopian Tube Cancer or Ovarian Low Malignant Potential Tumors

    ClinicalTrials.gov

    2013-04-11

    Fallopian Tube Cancer; Primary Peritoneal Cavity Cancer; Recurrent Borderline Ovarian Surface Epithelial-stromal Tumor; Recurrent Ovarian Epithelial Cancer; Stage III Borderline Ovarian Surface Epithelial-stromal Tumor; Stage III Ovarian Epithelial Cancer; Stage IV Borderline Ovarian Surface Epithelial-stromal Tumor; Stage IV Ovarian Epithelial Cancer

  11. Epithelial and Stromal Cells of Bovine Endometrium Have Roles in Innate Immunity and Initiate Inflammatory Responses to Bacterial Lipopeptides In Vitro via Toll-Like Receptors TLR2, TLR1, and TLR6

    PubMed Central

    Turner, Matthew L.; Cronin, James G.; Healey, Gareth D.

    2014-01-01

    Bacteria often infect the endometrium of cattle to cause endometritis, uterine disease, and infertility. Lipopeptides are commonly found among bacteria and are detected by the Toll-like receptor (TLR) cell surface receptor TLR2 on immune cells. Heterodimers of TLR2 with TLR1 or TLR6 activate MAPK and nuclear factor-κB intracellular signaling pathways to stimulate inflammatory responses. In the endometrium, epithelial and stromal cells are the first to encounter invading bacteria, so the present study explored whether endometrial cells can also mount inflammatory responses to bacterial lipopeptides via TLRs. The supernatants of pure populations of primary bovine endometrial epithelial and stromal cells accumulated the cytokine IL-6 and the chemokine IL-8 in response to triacylated or diacylated bacterial lipopeptides. The accumulation of IL-6 and IL-8 in response to triacylated lipopeptides was reduced by small interfering RNA targeting TLR2 or TLR1 but not TLR6, whereas cellular responses to diacylated lipopeptide were reduced by small interfering RNA targeting TLR2, TLR1, or TLR6. Both lipopeptides induced rapid phosphorylation of ERK1/2, p38, and nuclear factor-κB in endometrial cells, and inhibitors of ERK1/2 or p38 limited the accumulation of IL-6. The ovarian steroids estradiol and progesterone had little impact on inflammatory responses to lipopeptides. The endometrial epithelial and stromal cell responses to lipopeptides via TLR2, TLR1, and TLR6 provide a mechanism linking a wide range of bacterial infections to inflammation of the endometrium. PMID:24437488

  12. Effects of steroid hormones on differentiated glandular epithelial and stromal cells in a three dimensional cell culture model of the canine endometrium

    PubMed Central

    2013-01-01

    Background Oestrogens and progesterone have a significant impact on the endometrium during the canine oestrous cycle. Their receptors mediate plasma steroid hormone levels and are expressed in several endometrial cell types. Altered steroid receptor expression patterns are involved in serious uterine diseases; however the mechanisms of hormone action during pathogenesis in these tissues remain unclear. The development of 3D culture systems of canine endometrial cells provides an opportunity for the effects of steroid hormones to be quantitatively assessed in a more in vivo-like setting. The present study aimed to determine the effects of the steroid hormones 17β-estradiol (E) and progesterone (P) on the expression of the oestrogen and progesterone receptors (ER and PR), and on proliferative activity, in a 3D co-culture system of canine uterine origin, comprising differentiated endometrial glands, and stromal cells (SCs). Results Morphology, differentiation, and apical-basolateral polarity of cultured glandular epithelial cells (GECs) were comparable to those in native uterine tissue as assessed by immunohistochemistry using differentiation markers (β-catenin, laminin), lectin histochemistry, and transmission electron microscopy. Supplementation of our 3D-culture system with E (at 15, 30 and 100 pg/mL) resulted in constant levels of ER expression in GECs, but reduced expression levels in SCs. PR expression was reduced in both GECs and SCs following treatment with E. 3 ng/mL P resulted in increased ER expression in GECs, but a decrease in SCs. PR expression in GECs increased in all P-treated groups, whereas PRs in SCs decreased with the lowest and highest doses, but increased with the middle dose of treatment. Proliferative activity, assessed by Ki67 staining, remained below 1% in all assays and cell types. Conclusions The present study demonstrates the applicability of our 3D organotypic canine endometrium-derived culture system for cellular-level studies. 3D

  13. Unclassified mixed germ cell-sex cord-stromal tumor with multiple malignant cellular elements in a young woman: a case report and review of the literature.

    PubMed

    Pang, Shujie; Zhang, Lin; Shi, Yiquan; Liu, Yixin

    2014-01-01

    Unclassified mixed germ cell-sex cord-stromal tumor composed of germ cells and sex cord derivatives is a rare neoplasm. Approximately 10% of such tumors have malignant germ cell components. We report the case of a 28 year-old female with a right adnexal mass measuring 8 cm in greatest dimension, containing areas with both germ cell and sex cord components. The germ cell portion contained multiple growth patterns with a malignant appearance, while the sex cord element consisted mainly of annular tubules. Within the malignant germ cell elements was a dysgerminoma that accounted for approximately 75% of the tumor volume. Other malignant germ cell elements included yolk sac tumor, embryonal carcinoma, and choriocarcinoma, which comprised about 15% of the tumor volume. The annular tubule structures comprised about 10% of the total tumor volume. To our knowledge, this is the first case reported in the literature of an unclassified mixed germ cell-sex cord-stromal tumor associated with embryonal carcinoma components. The patient had a 46XX karyotype, regular menstrual periods, and no evidence of gross abnormalities in the contralateral ovary. The patient remained clinically well and disease-free 2 years after surgery. In addition to a thorough case description, the literature concerning this entity is reviewed and discussed. PMID:25197407

  14. Mixed low grade and high grade endometrial stromal sarcoma of uterus: differences on immunohistochemistry and chromosome in situ hybridisation.

    PubMed Central

    Cheung, A N; Ng, W F; Chung, L P; Khoo, U S

    1996-01-01

    A case of a 64 year old woman with a tumour of the uterus is reported. The patient presented with postmenopausal bleeding and subsequently underwent total hysterectomy and bilateral salpingo-oophorectomy. Sections of the tumour showed a low grade endometrial stromal sarcoma coexisting with areas consistent with high grade sarcoma. The sarcoma cells, in both the low and high grade areas, were positive for vimentin and negative for desmin and cytokeratin on immunohistochemistry. While the sarcoma cells in the low grade region showed immunoreactivity for oestrogen and progestogen receptors, those in the high grade region did not. Using chromosome in situ hybridisation, the low grade portion of the sarcoma was diploid for chromosomes X, 11, 12, and 17, whereas the more anaplastic areas were aneuploid for these chromosomes. This case may represent an example of high grade endometrial stromal sarcoma arising by dedifferentiation from a low grade stromal sarcoma. Adequate sampling is important in identifying such anaplastic changes as the origin of the tumour will affect patient management. Images PMID:8813967

  15. Stromal Effects on Mammary Gland Development and Breast Cancer

    NASA Astrophysics Data System (ADS)

    Wiseman, Bryony S.; Werb, Zena

    2002-05-01

    Breast cancer manifests itself in the mammary epithelium, yet there is a growing recognition that mammary stromal cells also play an important role in tumorigenesis. During its developmental cycle, the mammary gland displays many of the properties associated with breast cancer, and many of the stromal factors necessary for mammary development also promote or protect against breast cancer. Here we review our present knowledge of the specific factors and cell types that contribute to epithelial-stromal crosstalk during mammary development. To find cures for diseases like breast cancer that rely on epithelial-stromal crosstalk, we must understand how these different cell types communicate with each other.

  16. Expression of Transcription Factors and Nuclear Receptors in Mixed Germ Cell-Sex Cord Stromal Tumor and Related Tumors of the Gonads.

    PubMed

    Roth, Lawrence M; Cheng, Liang

    2015-11-01

    In this study, we compare the expression of OCT4, SALL4, and TSPYL1 in mixed germ cell-sex cord stromal tumor (MGC-SCST) of either gonad to that of normal adult testis, classic and spermatocytic seminoma, intratubular germ cell neoplasia, unclassified, gonadoblastoma, and dysgerminoma to determine the entity or entities that most closely resemble MGC-SCST by immunohistochemistry of germ cells. The most useful transcription factor was OCT4. In addition, to its already described value in distinguishing germinoma and embryonal carcinoma from yolk sac tumor and in differentiating classic from spermatocytic seminoma, we found that OCT4 is useful in confirming or ruling out potential malignancy in MGC-SCST of either gonad. Expression of OCT4 in most ovarian MGC-SCSTs resembles that of dysgerminoma, whereas most testicular examples resemble that of spermatocytic seminoma and normal adult testis. Thus, most MGC-SCSTs of the ovary are potentially malignant, and corresponding tumors of the testis are mostly benign; however, exceptions likely can be detected by the use of OCT4, potentially leading to more appropriate clinical management in some cases. SALL4 is an underutilized transcription factor that is useful in distinguishing testicular MGC-SCST from sex cord stromal tumor, unclassified in those neoplasms where the germ cells are sparse or unevenly distributed. Compared with other transcription factors studied, TSPY and its congener TSPYL1 have little value in the assessment of germ cell tumors because of their relatively wide range of expression in normal adult testis and in germ cell tumors. PMID:26107563

  17. Angiotensin II enhances epithelial-to-mesenchymal transition through the interaction between activated hepatic stellate cells and the stromal cell-derived factor-1/CXCR4 axis in intrahepatic cholangiocarcinoma.

    PubMed

    Okamoto, Koichi; Tajima, Hidehiro; Nakanuma, Shinichi; Sakai, Seisho; Makino, Isamu; Kinoshita, Jun; Hayashi, Hironori; Nakamura, Keishi; Oyama, Katsunobu; Nakagawara, Hisatoshi; Fujita, Hideto; Takamura, Hiroyuki; Ninomiya, Itasu; Kitagawa, Hirohisa; Fushida, Sachio; Fujimura, Takashi; Harada, Shinichi; Wakayama, Tomohiko; Iseki, Shoichi; Ohta, Tetsuo

    2012-08-01

    We previously reported that hepatic stellate cells (HSCs) activated by angiotensin II (AngII) facilitate stromal fibrosis and tumor progression in intrahepatic cholangiocarcinoma (ICC). AngII has been known as a growth factor which can promote epithelial-to-mesenchymal transition (EMT) in renal epithelial cells, alveolar epithelial cells and peritoneal mesothelial cells. However, in the past, the relationship between AngII and stromal cell-derived factor-1 (SDF-1) in the microenvironment around cancer and the role of AngII on EMT of cancer cells has not been reported in detail. SDF-1 and its specific receptor, CXCR4, are now receiving attention as a mechanism of cell progression and metastasis. In this study, we examined whether activated HSCs promote tumor fibrogenesis, tumor progression and distant metastasis by mediating EMT via the AngII/AngII type 1 receptor (AT-1) and the SDF-1/CXCR4 axis. Two human ICC cell lines and a human HSC line, LI-90, express CXCR4. Significantly higher concentration of SDF-1α was released into the supernatant of LI-90 cells to which AngII had been added. SDF-1α increased the proliferative activity of HSCs and enhanced the activation of HSCs as a growth factor. Furthermore, addition of SDF-1α and AngII enhanced the increase of the migratory capability and vimentin expression, reduced E-cadherin expression, and translocated the expression of β-catenin into the nucleus and cytoplasm in ICC cells. Co-culture with HSCs also enhanced the migratory capability of ICC cells. These findings suggest that SDF-1α, released from activated HSCs and AngII, play important roles in cancer progression, tumor fibrogenesis, and migration in autocrine and paracrine fashion by mediating EMT. Our mechanistic findings may provide pivotal insights into the molecular mechanism of the AngII and SDF-1α-initiated signaling pathway that regulates fibrogenesis in cancerous stroma, tumor progression and meta-stasis of tumor cells expressing AT-1 and CXCR4

  18. Analysis of thymic stromal cell subpopulations grown in vitro on extracellular matrix in defined medium. III. Growth conditions of human thymic epithelial cells and immunomodulatory activities in their culture supernatant.

    PubMed Central

    Schreiber, L; Eshel, I; Meilin, A; Sharabi, Y; Shoham, J

    1991-01-01

    We report here on a new approach to the cultivation of human thymic epithelial (HTE) cells, which apparently allows more faithful preservation of cell function. This approach, previously developed by us for mouse thymic epithelial (MTE) cells, is based on the use of culture plates coated with extracellular matrix (ECM), and on the use of serum-free, growth factor-supplemented medium. The nutritional requirements of HTE and MTE are somewhat different. Although both are critically dependent on ECM and insulin, they differ in their dependency on other growth factors: selenium and transferrin are much more important for HTE cells, whereas epidermal growth factor and hydrocortisone play a more essential role in MTE cultures. The epithelial nature of the cultured cells is indicated by positive staining with anti-keratin antibodies and by the presence of desmosomes and tonofilaments. The ultrastructural appearance of the cells further suggests high metabolic and secretory activities, not usually found in corresponding cell lines. The culture supernatant (CS) of HTE cells exhibited a strong enhancing effect on thymocyte response to Con A stimulation, as measured by cell proliferation and lymphokine production. The effect was observed on both human and mouse thymocytes, but was much stronger in the homologous combination. Thymic factors tested in parallel did not have such a differential effect. The dose-effect relationships were in the form of a bell-shaped curve, with fivefold enhancement of response at the peak and a measurable effect even with 1:1000 dilution, when human thymocytes were used. The responding thymocytes were those which do not bind peanut agglutinin and are resistant to hydrocortisone. The culture system described here may have advantages for the in vitro study of thymic stromal cell function. Images Figure 1 Figure 3 Figure 4 PMID:1783421

  19. Bilateral ovarian mixed epithelial adenocarcinoma in a postmenopausal woman with unilateral ovarian yolk sac tumor component.

    PubMed

    Chen, Qin; Chen, Xiaoduan

    2014-01-01

    Ovarian yolk sac tumors (YSTs) usually occur in the young women and have been rarely documented in perimenopausal and postmenopausal women. The different age distribution supposes their complex nomenclature and histogenesis. We report a case of bilateral ovarian epithelial carcinoma with right ovarian YST component in a postmenopausal woman. The patient was treated by surgery and adjuvant combination chemotherapy of taxol and carboplatin for 6 courses and has been clinically free of tumor for 6 months. The correlation between the YST and the epithelial components always confuse us. Ovarian yolk sac tumors are not a discrete entity and represent a multifaceted group of neoplasms. The conjunction of multi antibodies help in differential diagnoses. In addition to a thorough case description, the literature concerning this entity is reviewed and discussed. PMID:25550883

  20. MicroRNA-206 is differentially expressed in Brca1-deficient mice and regulates epithelial and stromal cell compartments of the mouse mammary gland

    PubMed Central

    Wronski, A; Sandhu, G K; Milevskiy, M J G; Brewster, B L; Bridge, J A; Shewan, A M; Edwards, S L; French, J D; Brown, M A

    2016-01-01

    Depletion of Brca1 leads to defects in mouse mammary gland development and mammary tumors in humans and mice. To explore the role of microRNAs (miRNAs) in this process, we examined the mammary glands of MMTV-Cre Brca1Co/Co mice for differential miRNA expression using a candidate approach. Several miRNAs were differentially expressed in mammary tissue at day 1 of lactation and in mammary epithelial cell lines in which Brca1 messenger RNA (mRNA) levels have been reduced. Functional studies revealed that several of these miRNAs regulate mammary epithelial cell function in vitro, including miR-206. Creation and analysis of MMTV-miR-206 transgenic mice showed no effect on lactational mammary development and no tumors, but indicates a role in mammary tissue remodeling in mature mice, potentially involving Igf-1 and Sfrp1. These results indicate the potential of miRNAs to mediate the consequences of Brca1 loss and suggest a novel function for miR-206. PMID:27043663

  1. MicroRNA-206 is differentially expressed in Brca1-deficient mice and regulates epithelial and stromal cell compartments of the mouse mammary gland.

    PubMed

    Wronski, A; Sandhu, G K; Milevskiy, M J G; Brewster, B L; Bridge, J A; Shewan, A M; Edwards, S L; French, J D; Brown, M A

    2016-01-01

    Depletion of Brca1 leads to defects in mouse mammary gland development and mammary tumors in humans and mice. To explore the role of microRNAs (miRNAs) in this process, we examined the mammary glands of MMTV-Cre Brca1(Co/Co) mice for differential miRNA expression using a candidate approach. Several miRNAs were differentially expressed in mammary tissue at day 1 of lactation and in mammary epithelial cell lines in which Brca1 messenger RNA (mRNA) levels have been reduced. Functional studies revealed that several of these miRNAs regulate mammary epithelial cell function in vitro, including miR-206. Creation and analysis of MMTV-miR-206 transgenic mice showed no effect on lactational mammary development and no tumors, but indicates a role in mammary tissue remodeling in mature mice, potentially involving Igf-1 and Sfrp1. These results indicate the potential of miRNAs to mediate the consequences of Brca1 loss and suggest a novel function for miR-206. PMID:27043663

  2. Stromal Fibroblasts in Digestive Cancer

    PubMed Central

    Worthley, Daniel L.; Giraud, Andrew S.

    2010-01-01

    The normal gastrointestinal stroma consists of extra-cellular matrix and a community of stromal cells including fibroblasts, myofibroblasts, smooth muscle cells, pericytes, endothelium and inflammatory cells. α-smooth muscle actin (α-SMA) positive stromal fibroblasts, often referred to as myofibroblasts or activated fibroblasts, are critical in the development of digestive cancer and help to create an environment that is permissive of tumor growth, angiogenesis and invasion. This review focusses on the contribution of activated fibroblasts in carcinogenesis and where possible directly applies this to, and draws on examples from, gastrointestinal cancer. In particular, the review expands on the definition, types and origins of activated fibroblasts. It examines the molecular biology of stromal fibroblasts and their contribution to the peritumoral microenvironment and concludes by exploring some of the potential clinical applications of this exciting branch of cancer research. Understanding the origin and biology of activated fibroblasts will help in the development of an integrated epithelial-stromal sequence to cancer that will ultimately inform cancer pathogenesis, natural history and future therapeutics. PMID:21209778

  3. Mesenchymal Stem/Stromal Cells in Stromal Evolution and Cancer Progression

    PubMed Central

    Cammarota, Francesca; Laukkanen, Mikko O.

    2016-01-01

    The study of cancer biology has mainly focused on malignant epithelial cancer cells, although tumors also contain a stromal compartment, which is composed of stem cells, tumor-associated fibroblasts (TAFs), endothelial cells, immune cells, adipocytes, cytokines, and various types of macromolecules comprising the extracellular matrix (ECM). The tumor stroma develops gradually in response to the needs of epithelial cancer cells during malignant progression initiating from increased local vascular permeability and ending to remodeling of desmoplastic loosely vascularized stromal ECM. The constant bidirectional interaction of epithelial cancer cells with the surrounding microenvironment allows damaged stromal cell usage as a source of nutrients for cancer cells, maintains the stroma renewal thus resembling a wound that does not heal, and affects the characteristics of tumor mesenchymal stem/stromal cells (MSCs). Although MSCs have been shown to coordinate tumor cell growth, dormancy, migration, invasion, metastasis, and drug resistance, recently they have been successfully used in treatment of hematopoietic malignancies to enhance the effect of total body irradiation-hematopoietic stem cell transplantation therapy. Hence, targeting the stromal elements in combination with conventional chemotherapeutics and usage of MSCs to attenuate graft-versus-host disease may offer new strategies to overcome cancer treatment failure and relapse of the disease. PMID:26798356

  4. Know thy neighbor: stromal cells can contribute oncogenic signals

    NASA Technical Reports Server (NTRS)

    Tlsty, T. D.; Hein, P. W.

    2001-01-01

    Although the stroma within carcinogenic lesions is known to be supportive and responsive to tumors, new data increasingly show that the stroma also has a more active, oncogenic role in tumorigenesis. Stromal cells and their products can transform adjacent tissues in the absence of pre-existing tumor cells by inciting phenotypic and genomic changes in the epithelial cells. The oncogenic action of distinctive stromal components has been demonstrated through a variety of approaches, which provide clues about the cellular pathways involved.

  5. Cellular and extracellular matrix modulation of corneal stromal opacity.

    PubMed

    Torricelli, Andre A M; Wilson, Steven E

    2014-12-01

    Stromal transparency is a critical factor contributing to normal function of the visual system. Corneal injury, surgery, disease and infection elicit complex wound healing responses that serve to protect against insults and maintain the integrity of the cornea, and subsequently to restore corneal structure and transparency. However, in some cases these processes result in prolonged loss of corneal transparency and resulting diminished vision. Corneal opacity is mediated by the complex actions of many cytokines, growth factors, and chemokines produced by the epithelial cells, stromal cells, bone marrow-derived cells, lacrimal tissues, and nerves. Myofibroblasts, and the disorganized extracellular matrix produced by these cells, are critical determinants of the level and persistence of stromal opacity after corneal injury. Decreases in corneal crystallins in myofibroblasts and corneal fibroblasts contribute to cellular opacity in the stroma. Regeneration of a fully functional epithelial basement membrane (BM) appears to have a critical role in the maintenance of corneal stromal transparency after mild injuries and recovery of transparency when opacity is generated after severe injuries. The epithelial BM likely has a regulatory function whereby it modulates epithelium-derived growth factors such as transforming growth factor (TGF) β and platelet-derived growth factor (PDGF) that drive the development and persistence of myofibroblasts from precursor cells. The purpose of this article is to review the factors involved in the maintenance of corneal transparency and to highlight the mechanisms involved in the appearance, persistency and regression of corneal opacity after stromal injury. PMID:25281830

  6. Tailored stromal expansion with a refractive lenticule for crosslinking the ultrathin cornea.

    PubMed

    Sachdev, Mahipal S; Gupta, Deepa; Sachdev, Gitansha; Sachdev, Ritika

    2015-05-01

    We describe a technique for stromal expansion of thin and ultrathin corneas in keratoconus patients that uses refractive stromal lenticules of patients having small-incision lenticule extraction for myopic correction. The stromal lenticule is placed and spread over the host cornea following epithelial debridement so the thickest area of the 6.2 mm diameter lenticule corresponds to the thinnest area of the cone. The remaining collagen crosslinking (CXL) procedure is carried out in a routine manner. We believe tailored stromal expansion is a safe and effective technique for performing CXL in patients with thin corneas. PMID:25953470

  7. Stromal–epithelial cell interactions and alteration of branching morphogenesis in macromastic mammary glands

    PubMed Central

    Zhong, Aimei; Wang, Guohua; Yang, Jie; Xu, Qijun; Yuan, Quan; Yang, Yanqing; Xia, Yun; Guo, Ke; Horch, Raymund E; Sun, Jiaming

    2014-01-01

    True macromastia is a rare but disabling condition characterized by massive breast growth. The aetiology and pathogenic mechanisms for this disorder remain largely unexplored because of the lack of in vivo or in vitro models. Previous studies suggested that regulation of epithelial cell growth and development by oestrogen was dependent on paracrine growth factors from the stroma. In this study, a co-culture model containing epithelial and stromal cells was used to investigate the interactions of these cells in macromastia. Epithelial cell proliferation and branching morphogenesis were measured to assess the effect of macromastic stromal cells on epithelial cells. We analysed the cytokines secreted by stromal cells and identified molecules that were critical for effects on epithelial cells. Our results indicated a significant increase in cell proliferation and branching morphogenesis of macromastic and non-macromastic epithelial cells when co-cultured with macromastic stromal cells or in conditioned medium from macromastic stromal cells. Hepatocyte growth factor (HGF) is a key factor in epithelial–stromal interactions of macromastia-derived cell cultures. Blockade of HGF with neutralizing antibodies dramatically attenuated epithelial cell proliferation in conditioned medium from macromastic stromal cells. The epithelial–stromal cell co-culture model demonstrated reliability for studying interactions of mammary stromal and epithelial cells in macromastia. In this model, HGF secreted by macromastic stromal cells was found to play an important role in modifying the behaviour of co-cultured epithelial cells. This model allows further studies to investigate basic cellular and molecular mechanisms in tissue from patients with true breast hypertrophy. PMID:24720804

  8. Stromal cells can contribute oncogenic signals

    NASA Technical Reports Server (NTRS)

    Tlsty, T. D.

    2001-01-01

    The majority of studies of neoplastic transformation have focused attention on events that occur within transformed cells. These cell autonomous events result in the disruption of molecular pathways that regulate basic activities of the cells such as proliferation, death, movement and genomic integrity. Other studies have addressed the microenvironment of tumor cells and documented its importance in supporting tumor progression. Recent work has begun to expand on these initial studies of tumor microenvironment and now provide novel insights into the possible initiation and progression of malignant cells. This review will address the transforming effect of stromal cells on epithelial components. Copyright 2001 Academic Press.

  9. Local binary patterns for stromal area removal in histology images

    NASA Astrophysics Data System (ADS)

    Alomari, Raja S.; Ghosh, Subarna; Chaudhary, Vipin; Al-Kadi, Omar

    2012-03-01

    Nuclei counting in epithelial cells is an indication for tumor proliferation rate which is useful to rank tumors and select an appropriate treatment schedule for the patient. However, due to the high interand intra- observer variability in nuclei counting, pathologists seek a deterministic proliferation rate estimate. Histology tissue contains epithelial and stromal cells. However, nuclei counting is clinically restricted to epithelial cells because stromal cells do not become cancerous themselves since they remain genetically normal. Counting nuclei existing within the stromal tissue is one of the major causes of the proliferation rate non-deterministic estimation. Digitally removing stromal tissue will eliminate a major cause in pathologist counting variability and bring the clinical pathologist a major step closer toward a deterministic proliferation rate estimation. To that end, we propose a computer aided diagnosis (CAD) system for eliminating stromal cells from digital histology images based on the local binary patterns, entropy measurement, and statistical analysis. We validate our CAD system on a set of fifty Ki-67-stained histology images. Ki-67-stained histology images are among the clinically approved methods for proliferation rate estimation. To test our CAD system, we prove that the manual proliferation rate estimation performed by the expert pathologist does not change before and after stromal removal. Thus, stromal removal does not affect the expert pathologist estimation clinical decision. Hence, the successful elimination of the stromal area highly reduces the false positive nuclei which are the major confusing cause for the less experienced pathologists and thus accounts for the non-determinism in the proliferation rate estimation. Our experimental setting shows statistical insignificance (paired student t-test shows ρ = 0.74) in the manual nuclei counting before and after our automated stromal removal. This means that the clinical decision of

  10. Angiomyolipoma With Epithelial Cysts.

    PubMed

    LeRoy, Michael A; Rao, Priya

    2016-06-01

    Angiomyolipoma with epithelial cysts is a rare mesenchymal tumor of the kidney that enters in the differential diagnosis of adult cystic renal neoplasms. These tumors demonstrate a slight female predominance and can present either incidentally or with symptoms, commonly flank pain and hematuria. Unlike conventional angiomyolipoma, this variant is characterized grossly by both solid and cystic areas, and histologically by the presence of single or multiple cysts lined by epithelial cells, a subepithelial "cambium-like" layer of small stromal cells with a prominent capillary vasculature, and a thick exterior wall composed of poorly formed fascicles of smooth muscle and thick-walled dysplastic blood vessels. Tumors show a distinct immunohistochemical profile and are often reactive for melanocytic markers (HMB-45 and Melan-A), as well as estrogen receptor and progesterone receptor. These tumors have an indolent clinical course, with no reports of progression or metastasis in reported cases thus far. PMID:27232352

  11. Isolation of hormone responsive uterine stromal cells: an in vitro model for stromal cell proliferation and differentiation.

    PubMed

    Rider, Virginia

    2006-01-01

    The female sex hormones estrogen and progesterone stimulate proliferation and differentiation of human and rodent uterine cells. The purpose of this chapter is to provide a method for isolating hormone-responsive rat uterine stromal cell lines that can be used to study steroid control of the cell cycle. Uteri from ovariectomized rats are differentially digested with trypsin to separate epithelial and stromal cells. The stromal cells are cultured in a standard growth medium containing 10% fetal bovine serum. After several passages, the purity of the stromal cell lines is determined using immunocytochemistry. Cell proliferation is studied by culturing the stromal cells in serum-free medium containing sex steroids and other mitogens. Cell cycle progression is assessed by flow cytometry, 3H-thymidine and BrdU incorporation, whereas proliferation is monitored using the MTT assay. Cell cycle regulators are visualized by Northern and Western blotting whereas cyclin-cyclin-dependent kinase activity is monitored using immune complex kinase assays. Uterine stromal cell lines isolated using the methods reported in this chapter provide a suitable model system to investigate the signal transduction events that stimulate hormone-dependent control of the cell cycle. PMID:16251733

  12. Microarray Analysis on Gene Regulation by Estrogen, Progesterone and Tamoxifen in Human Endometrial Stromal Cells

    PubMed Central

    Ren, Chun-E; Zhu, Xueqiong; Li, Jinping; Lyle, Christian; Dowdy, Sean; Podratz, Karl C.; Byck, David; Chen, Hai-Bin; Jiang, Shi-Wen

    2015-01-01

    Epithelial stromal cells represent a major cellular component of human uterine endometrium that is subject to tight hormonal regulation. Through cell-cell contacts and/or paracrine mechanisms, stromal cells play a significant role in the malignant transformation of epithelial cells. We isolated stromal cells from normal human endometrium and investigated the morphological and transcriptional changes induced by estrogen, progesterone and tamoxifen. We demonstrated that stromal cells express appreciable levels of estrogen and progesterone receptors and undergo different morphological changes upon hormonal stimulation. Microarray analysis indicated that both estrogen and progesterone induced dramatic alterations in a variety of genes associated with cell structure, transcription, cell cycle, and signaling. However, divergent patterns of changes, and in some genes opposite effects, were observed for the two hormones. A large number of genes are identified as novel targets for hormonal regulation. These hormone-responsive genes may be involved in normal uterine function and the development of endometrial malignancies. PMID:25782154

  13. Coevolution of neoplastic epithelial cells and multilineage stroma via polyploid giant cells during immortalization and transformation of mullerian epithelial cells

    PubMed Central

    Zhang, Shiwu; Mercado-Uribe, Imelda; Sood, Anil; Bast, Robert C.; Liu, Jinsong

    2016-01-01

    Stromal cells are generally considered to be derived primarily from the host's normal mesenchymal stromal cells or bone marrow. However, the origins of stromal cells have been quite controversial. To determine the role of polyploidy in tumor development, we examined the fate of normal mullerian epithelial cells during the immortalization and transformation process by tracing the expression of SV40 large T antigen. Here we show that immortalized or HRAS-transformed mullerian epithelial cells contain a subpopulation of polyploid giant cells that grow as multicellular spheroids expressing hematopoietic markers in response to treatment with CoCl2. The immortalized or transformed epithelial cells can transdifferentiate into stromal cells when transplanted into nude mice. Immunofluorescent staining revealed expression of stem cell factors OCT4, Nanog, and SOX-2 in spheroid, whereas expression of embryonic stem cell marker SSEA1 was increased in HRAS-transformed cells compared with their immortalized isogenic counterparts. These results suggest that normal mullerian epithelial cells are intrinsically highly plastic, via the formation of polyploid giant cells and activation of embryonic stem-like program, which work together to promote the coevolution of neoplastic epithelial cells and multiple lineage stromal cells. PMID:27382431

  14. Protective Effects of Human iPS-Derived Retinal Pigmented Epithelial Cells in Comparison with Human Mesenchymal Stromal Cells and Human Neural Stem Cells on the Degenerating Retina in rd1 mice.

    PubMed

    Sun, Jianan; Mandai, Michiko; Kamao, Hiroyuki; Hashiguchi, Tomoyo; Shikamura, Masayuki; Kawamata, Shin; Sugita, Sunao; Takahashi, Masayo

    2015-05-01

    Retinitis pigmentosa (RP) is a group of visual impairments characterized by progressive rod photoreceptor cell loss due to a genetic background. Pigment epithelium-derived factor (PEDF) predominantly secreted by the retinal pigmented epithelium (RPE) has been reported to protect photoreceptors in retinal degeneration models, including rd1. In addition, clinical trials are currently underway outside Japan using human mesenchymal stromal cells and human neural stem cells to protect photoreceptors in RP and dry age-related macular degeneration, respectively. Thus, this study aimed to investigate the rescue effects of induced pluripotent stem (iPS)-RPE cells in comparison with those types of cells used in clinical trials on photoreceptor degeneration in rd1 mice. Cells were injected into the subretinal space of immune-suppressed 2-week-old rd1 mice. The results demonstrated that human iPS-RPE cells significantly attenuated photoreceptor degeneration on postoperative days (PODs) 14 and 21 and survived longer up to at least 12 weeks after operation than the other two types of graft cells with less immune responses and apoptosis. The mean PEDF concentration in the intraocular fluid in RPE-transplanted eyes was more than 1 µg/ml at PODs 14 and 21, and this may have contributed to the protective effect of RPE transplantation. Our findings suggest that iPS-RPE cells serve as a competent source to delay photoreceptor degeneration through stable survival in degenerating ocular environment and by releasing neuroprotective factors such as PEDF. PMID:25728228

  15. Two-photon autofluorescence spectroscopy and second-harmonic generation of epithelial tissue

    NASA Astrophysics Data System (ADS)

    Wu, Yicong; Qu, Jianan Y.

    2005-11-01

    A spectroscopy system is developed for studying the two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) of epithelial tissue in backscattering geometry. Our findings show that TPEF signals from epithelial and underlying stromal layers exhibit different spectral characteristics, providing information on the biomorphology and biochemistry of tissue. The SHG signal serves as a sensitive indicator of collagen to separate the epithelial layer from underlying stroma. The polarization dependence of the SHG signal reveals a well-ordered orientation of collagen fibers in the stromal layer. The results demonstrate the potential of depth-resolved TPEF and SHG in determining the pathology of epithelial tissue.

  16. Epithelial cells prime the immune response to an array of gut-derived commensals towards a tolerogenic phenotype through distinct actions of thymic stromal lymphopoietin and transforming growth factor-β

    PubMed Central

    Zeuthen, Louise Hjerrild; Fink, Lisbeth Nielsen; Frokiaer, Hanne

    2008-01-01

    Humans and other mammals coexist with a diverse array of microbes colonizing the intestine, termed the microflora. The relationship is symbiotic, with the microbes benefiting from a stable environment and nutrient supply, and the host gaining competitive exclusion of pathogens and continuously maintenance of the gut immune homeostasis. Here we report novel crosstalk mechanisms between the human enterocyte cell line, Caco2, and underlying human monocyte-derived DC in a transwell model where Gram-positive (G+) commensals prevent Toll-like receptor-4 (TLR4)-dependent Escherichia coli-induced semimaturation in a TLR2-dependent fashion. These findings add to our understanding of the hypo-responsiveness of the gut epithelium towards the microflora. Gut DC posses a more tolerogenic phenotype than conventional DC. Here we show that Caco2 spent medium (SM) induces tolerogenic DC with lower expression of maturation markers, interleukin (IL)-12p70, and tumour necrosis factor-α when matured with G+ and Gram-negative (G–) commensals, while IL-10 production is enhanced in DC upon encountering G+ commensals and reduced upon encountering G– bacteria. The Caco2 SM-induced tolerogenic phenotype is also seen in DC priming of naive T cells with elevated levels of transforming growth factor-β (TGF-β) and markedly reduced levels of bacteria-induced interferon-γ production. Caco2 cell production of IL-8, thymic stromal lymphopoietin (TSLP) and TGF-β increases upon microbial stimulation in a strain dependent manner. TSLP and TGF-β co-operate in inducing the tolerogenic DC phenotype but other mediators might be involved. PMID:17655740

  17. The inflammatory network: bridging senescent stroma and epithelial tumorigenesis

    PubMed Central

    Shan, Weiwei; Yang, Gong; Liu, Jinsong

    2010-01-01

    Cellular senescence or cellular aging, defined by permanent cell cycle arrest, is well known for its evolutionary advantage in protecting the organism from developing cancer; however, it is also acknowledged that aged stromal cells can significantly expedite epithelial tumorigenesis, although exactly how they function to augment tumor formation remains elusive. Recent evidence suggests that this tumor-promoting effect is likely mediated by diffusible pro-inflammatory molecules synthesized and released by senescent stromal fibroblasts, acting in a paracrine fashion on adjacent tumor epithelium. Mobilization of the inflammatory network by senescent fibroblasts has bifurcated roles on the epithelial and stromal compartments, converging on the promotion of epithelial tumorigenesis. A thorough understanding of the regulatory mechanisms underlying these events may lead to improved approaches in cancer treatment. PMID:19273333

  18. Influence of Cancer-Associated Endometrial Stromal Cells on Hormone-Driven Endometrial Tumor Growth

    PubMed Central

    Pineda, M. J.; Lu, Z.; Cao, D.

    2016-01-01

    Cancer-associated fibroblasts have been shown to inhibit or stimulate tumor growth depending on stage, grade, and tumor type. It remains unclear, however, the effect of endometrial-cancer-associated fibroblasts on hormone-driven responses in endometrial cancer. In this study, we investigated the effect of normal and cancer-associated stromal cells from patients with and without endometrial cancer on endometrial tumor growth in response to estradiol (E2) and progesterone (P4). Compared to benign endometrial stromal cells, the low-grade and high-grade cancer-associated stromal cells exhibited a blunted hormone response for proliferation as well as IGFBP1 secretion. Additional analysis of the influence of stromal cells on hormone-driven tumor growth was done by mixing stromal cells from benign, low-grade, or high-grade tumors, with Ishikawa cells for subcutaneous tumor formation. The presence of both benign and high-grade cancer-associated stromal cells increased estradiol-driven xenografted tumor growth compared to Ishikawa cells alone. Low-grade cancer-associated stromal cells did not significantly influence hormone-regulated tumor growth. Addition of P4 attenuated tumor growth in Ishikawa + benign or high-grade stromal cells, but not in Ishikawa cells alone or with low-grade stromal cells. Using an angiogenesis focused real-time array TGFA, TGFB2 and TGFBR1 and VEGFC were identified as potential candidates for hormone-influenced growth regulation of tumors in the presence of benign and high-grade stromal cells. In summary, endometrial-cancer-associated cells responded differently to in vitro hormone treatment compared to benign endometrial stromal cells. Additionally, presence of stromal cells differentially influenced hormone-driven xenograft growth in vivo depending on the disease status of the stromal cells. PMID:25976290

  19. Denileukin Diftitox Used in Treating Patients With Advanced Refractory Ovarian Cancer, Primary Peritoneal Carcinoma, or Epithelial Fallopian Tube Cancer

    ClinicalTrials.gov

    2016-05-02

    Fallopian Tube Cancer; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mixed Epithelial Carcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Ovarian Undifferentiated Adenocarcinoma; Peritoneal Cavity Cancer; Recurrent Ovarian Epithelial Cancer; Stage III Ovarian Epithelial Cancer; Stage IV Ovarian Epithelial Cancer

  20. Stromal androgen receptor roles in the development of normal prostate, benign prostate hyperplasia, and prostate cancer.

    PubMed

    Wen, Simeng; Chang, Hong-Chiang; Tian, Jing; Shang, Zhiqun; Niu, Yuanjie; Chang, Chawnshang

    2015-02-01

    The prostate is an androgen-sensitive organ that needs proper androgen/androgen receptor (AR) signals for normal development. The progression of prostate diseases, including benign prostate hyperplasia (BPH) and prostate cancer (PCa), also needs proper androgen/AR signals. Tissue recombination studies report that stromal, but not epithelial, AR plays more critical roles via the mesenchymal-epithelial interactions to influence the early process of prostate development. However, in BPH and PCa, much more attention has been focused on epithelial AR roles. However, accumulating evidence indicates that stromal AR is also irreplaceable and plays critical roles in prostate disease progression. Herein, we summarize the roles of stromal AR in the development of normal prostate, BPH, and PCa, with evidence from the recent results of in vitro cell line studies, tissue recombination experiments, and AR knockout animal models. Current evidence suggests that stromal AR may play positive roles to promote BPH and PCa progression, and targeting stromal AR selectively with AR degradation enhancer, ASC-J9, may allow development of better therapies with fewer adverse effects to battle BPH and PCa. PMID:25432062

  1. Stromal Androgen Receptor Roles in the Development of Normal Prostate, Benign Prostate Hyperplasia, and Prostate Cancer

    PubMed Central

    Wen, Simeng; Chang, Hong-Chiang; Tian, Jing; Shang, Zhiqun; Niu, Yuanjie; Chang, Chawnshang

    2016-01-01

    The prostate is an androgen-sensitive organ that needs proper androgen/androgen receptor (AR) signals for normal development. The progression of prostate diseases, including benign prostate hyperplasia (BPH) and prostate cancer (PCa), also needs proper androgen/AR signals. Tissue recombination studies report that stromal, but not epithelial, AR plays more critical roles via the mesenchymal-epithelial interactions to influence the early process of prostate development. However, in BPH and PCa, much more attention has been focused on epithelial AR roles. However, accumulating evidence indicates that stromal AR is also irreplaceable and plays critical roles in prostate disease progression. Herein, we summarize the roles of stromal AR in the development of normal prostate, BPH, and PCa, with evidence from the recent results of in vitro cell line studies, tissue recombination experiments, and AR knockout animal models. Current evidence suggests that stromal AR may play positive roles to promote BPH and PCa progression, and targeting stromal AR selectively with AR degradation enhancer, ASC-J9, may allow development of better therapies with fewer adverse effects to battle BPH and PCa. PMID:25432062

  2. Stromal expression of SPARC in pancreatic adenocarcinoma.

    PubMed

    Neuzillet, Cindy; Tijeras-Raballand, Annemilaï; Cros, Jérôme; Faivre, Sandrine; Hammel, Pascal; Raymond, Eric

    2013-12-01

    Pancreatic ductal adenocarcinoma (PDAC) stands as the poorest prognostic tumor of the digestive tract, with a 5-year survival rate of less than 5%. Therapeutic options for unresectable PDAC are extremely limited and there is a pressing need for expanded therapeutic approaches to improve current options available with gemcitabine-based regimens. With PDAC displaying one of the most prominent desmoplastic stromal reactions of all carcinomas, recent research has focused on the microenvironment surrounding PDAC cells. Secreted protein acid and rich in cysteine (SPARC), which is overexpressed in PDAC, may display tumor suppressor functions in several cancers (e.g., in colorectal, ovarian, prostate cancers, and acute myelogenous leukemia) but also appears to be overexpressed in other tumor types (e.g., breast cancer, melanoma, and glioblastoma). The apparent contradictory functions of SPARC may yield inhibition of angiogenesis via inhibition of vascular endothelial growth factor, while promoting epithelial-to-mesenchymal transition and invasion through matrix metalloprotease expression. This feature is of particular interest in PDAC where SPARC overexpression in the stroma stands along with inhibition of angiogenesis and promotion of cancer cell invasion and metastasis. Several therapeutic strategies to deplete stromal tissue have been developed. In this review, we focused on key preclinical and clinical data describing the role of SPARC in PDAC biology, the properties, and mechanisms of delivery of drugs that interact with SPARC and discuss the proof-of-concept clinical trials using nab-paclitaxel. PMID:23690170

  3. Metabolic reprogramming of stromal fibroblasts through p62-mTORC1 signaling promotes inflammation and tumorigenesis.

    PubMed

    Valencia, Tania; Kim, Ji Young; Abu-Baker, Shadi; Moscat-Pardos, Jorge; Ahn, Christopher S; Reina-Campos, Miguel; Duran, Angeles; Castilla, Elias A; Metallo, Christian M; Diaz-Meco, Maria T; Moscat, Jorge

    2014-07-14

    The tumor microenvironment plays a critical role in cancer progression, but the precise mechanisms by which stromal cells influence the epithelium are poorly understood. Here we show that p62 levels were reduced in the stroma of several tumors and that its loss in the tumor microenvironment or stromal fibroblasts resulted in increased tumorigenesis of epithelial prostate cancer cells. The mechanism involves the regulation of cellular redox through an mTORC1/c-Myc pathway of stromal glucose and amino acid metabolism, resulting in increased stromal IL-6 production, which is required for tumor promotion in the epithelial compartment. Thus, p62 is an anti-inflammatory tumor suppressor that acts through the modulation of metabolism in the tumor stroma. PMID:25002027

  4. Stromal TGFβR2 signaling: a gateway to progression for pancreatic cancer

    PubMed Central

    Hagopian, Moriah M; Brekken, Rolf A

    2015-01-01

    The function of transforming growth factor β (TGFβ) in the progression of pancreatic ductal adenocarcinoma (PDA) is complex and therapeutic targeting of this pathway is challenging. We showed that antibody-mediated inhibition of stromal Tgfβr2 prevented or reversed epithelial plasticity resulting in a potent reduction of metastasis in xenograft models of PDA. PMID:27308449

  5. Stromal TGFβR2 signaling: a gateway to progression for pancreatic cancer.

    PubMed

    Hagopian, Moriah M; Brekken, Rolf A

    2015-01-01

    The function of transforming growth factor β (TGFβ) in the progression of pancreatic ductal adenocarcinoma (PDA) is complex and therapeutic targeting of this pathway is challenging. We showed that antibody-mediated inhibition of stromal Tgfβr2 prevented or reversed epithelial plasticity resulting in a potent reduction of metastasis in xenograft models of PDA. PMID:27308449

  6. NACA deficiency reveals the crucial role of somite-derived stromal cells in haematopoietic niche formation.

    PubMed

    Murayama, Emi; Sarris, Milka; Redd, Michael; Le Guyader, Dorothée; Vivier, Catherine; Horsley, Wyatt; Trede, Nikolaus; Herbomel, Philippe

    2015-01-01

    The ontogeny of haematopoietic niches in vertebrates is essentially unknown. Here we show that the stromal cells of the caudal haematopoietic tissue (CHT), the first niche where definitive haematopoietic stem/progenitor cells (HSPCs) home in zebrafish development, derive from the caudal somites through an epithelial-mesenchymal transition (EMT). The resulting stromal cell progenitors accompany the formation of the caudal vein sinusoids, the other main component of the CHT niche, and mature into reticular cells lining and interconnecting sinusoids. We characterize a zebrafish mutant defective in definitive haematopoiesis due to a deficiency in the nascent polypeptide-associated complex alpha subunit (NACA). We demonstrate that the defect resides not in HSPCs but in the CHT niche. NACA-deficient stromal cell progenitors initially develop normally together with the sinusoids, and HSPCs home to the resulting niche, but stromal cell maturation is compromised, leading to a niche that is unable to support HSPC maintenance, expansion and differentiation. PMID:26411530

  7. Marginal reticular cells: a stromal subset directly descended from the lymphoid tissue organizer

    PubMed Central

    Katakai, Tomoya

    2012-01-01

    The architecture of secondary lymphoid organs (SLOs) is supported by several non-hematopoietic stromal cells. Currently it is established that two distinct stromal subsets, follicular dendritic cells and fibroblastic reticular cells, play crucial roles in the formation of tissue compartments within SLOs, i.e., the follicle and T zone, respectively. Although stromal cells in the anlagen are essential for SLO development, the relationship between these primordial cells and the subsets in adulthood remains poorly understood. In addition, the roles of stromal cells in the entry of antigens into the compartments through some tissue structures peculiar to SLOs remain unclear. A recently identified stromal subset, marginal reticular cells (MRCs), covers the margin of SLOs that are primarily located in the outer edge of follicles and construct a unique reticulum. MRCs are closely associated with specialized endothelial or epithelial structures for antigen transport. The similarities in marker expression profiles and successive localization during development suggest that MRCs directly descend from organizer stromal cells in the anlagen. Therefore, MRCs are thought to be a crucial stromal component for the organization and function of SLOs. PMID:22807928

  8. Biomechanical and biochemical remodeling of stromal extracellular matrix in cancer.

    PubMed

    Malik, Ruchi; Lelkes, Peter I; Cukierman, Edna

    2015-04-01

    The extracellular matrix (ECM) provides structural and biochemical signals that regulate cell function. A well-controlled balance between cells and surroundings (i.e., dynamic reciprocity) is crucial for regulating ECM architecture. During cancer progression, epithelial cells undergo genetic alterations which, together with stromal changes including ECM remodeling, disturb the homeostatic dynamics of the epithelium. A parallel organization of stromal ECM fibrils is associated with tumorigenic responses. In an emerging paradigm, continuous and progressive regulation via mechanical forces and aberrant signaling are believed to be responsible for tumor-associated ECM remodeling. In this review we discuss the discrete biomechanical and biochemical mechanisms that underlie these architectural changes and highlight their particular relevance to the regulation of the alignment of ECM in the mesenchymal stroma. PMID:25708906

  9. BIOMECHANICAL and BIOCHEMICAL REMODELING of STROMAL EXTRACELLULAR MATRIX IN CANCER

    PubMed Central

    Malik, Ruchi; Lelkes, Peter I; Cukierman, Edna

    2015-01-01

    The extracellular matrix (ECM) provides structural and biochemical signals that regulate cell function. A well-controlled balance between cells and surroundings (i.e., Dynamic Reciprocity) is crucial for regulating ECM architecture. During cancer progression, epithelial cells undergo genetic alterations, which together with stromal changes, including ECM remodeling, disturb the homeostatic dynamics of the epithelium. A parallel organization of stromal ECM fibrils is associated with tumorigenic responses. In an emerging paradigm, continuous and progressive regulation via mechanical forces and aberrant signaling are believed to be responsible for tumor-associated ECM remodeling. In this review, we discuss the discrete biomechanical and biochemical mechanisms that underlie these architectural changes and highlight their particular relevance to the regulation of the alignment of ECM in the mesenchymal stroma. PMID:25708906

  10. Stromal influences on breast cancer cell growth.

    PubMed Central

    van Roozendaal, C. E.; van Ooijen, B.; Klijn, J. G.; Claassen, C.; Eggermont, A. M.; Henzen-Logmans, S. C.; Foekens, J. A.

    1992-01-01

    Paracrine influences from fibroblasts derived from different sources of breast tissue on epithelial breast cancer cell growth in vitro were investigated. Medium conditioned (CM) by fibroblasts derived from tumours, adjacent normal breast tissue, and normal breast tissue obtained from reduction mammoplasty or from skin tissue significantly stimulated the growth of the steroid-receptor positive cell lines MCF-7 and ZR 75.1. The proliferation index (PI) on MCF-7 cells with CM from fibroblasts derived from breast tumour tissue was significantly higher than that obtained with fibroblasts derived from adjacent normal breast tissue (2p less than 0.05, n = 8). The PI obtained with CM from normal fibroblast cultures from reduction mammoplasty tissue, like normal tissue adjacent to the tumour, fell in the lower range of values. Skin fibroblast, like tumour tissue derived fibroblast, CM caused a high range PI. MDA-MB-231 and Evsa-T, two steroid-receptor negative cell lines, showed only a minor growth stimulatory responses with some of the fibroblast CM's. Evsa-T was occasionally inhibited by CM's. In conclusion, stromal factors play a role in the growth regulation of human breast cancer cells. The effects on cancer cell growth are, however, varying depending on the source of the stroma and the characteristics of the epithelial tumour cells. PMID:1733444

  11. Reversing the aging stromal phenotype prevents carcinoma initiation.

    PubMed

    Lewis, Davina A; Travers, Jeffrey B; Machado, Christiane; Somani, Ally-Khan; Spandau, Dan F

    2011-04-01

    The accumulation of senescent stromal cells in aging tissue changes the local microenvironment from normal to a state similar to chronic inflammation. This inflammatory microenvironment can stimulate the proliferation of epithelial cells containing DNA mutations which can ultimately lead to cancer. Using geriatric skin as a model, we demonstrated that senescent fibroblasts also alter how epithelial keratinocytes respond to genotoxic stress, due to the silencing of IGF-1 expression in geriatric fibroblasts. These data indicate that in addition to promoting epithelial tumor growth, senescent fibroblasts also can promote carcinogenic initiation. We hypothesized that commonly used therapeutic stromal wounding therapies can reduce the percentage of senescent fibroblasts and consequently prevent the formation of keratinocytes proliferating with DNA mutations following acute genotoxic (UVB) stress. Sun-protected skin on the lower back of geriatric human volunteers was wounded by dermabrasion and the skin was allowed to heal for three months. In geriatric skin, we found that dermabrasion wounding decreases the proportion of senescent fibroblasts found in geriatric dermis, increases the expression of IGF-1, and restores the appropriate UVB response to epidermal keratinocytes in geriatric skin. Therefore, dermal rejuvenation therapies may play a significant role in preventing the initiation of skin cancer in geriatric patients. PMID:21515933

  12. Gastrointestinal stromal tumour.

    PubMed

    Joensuu, Heikki; Hohenberger, Peter; Corless, Christopher L

    2013-09-14

    Gastrointestinal stromal tumours (GISTs) are mesenchymal neoplasms that arise in the gastrointestinal tract, usually in the stomach or the small intestine and rarely elsewhere in the abdomen. They can occur at any age, the median age being 60-65 years, and typically cause bleeding, anaemia, and pain. GISTs have variable malignant potential, ranging from small lesions with a benign behaviour to fatal sarcomas. Most tumours stain positively for the mast/stem cell growth factor receptor KIT and anoctamin 1 and harbour a kinase-activating mutation in either KIT or PDGFRA. Tumours without such mutations could have alterations in genes of the succinate dehydrogenase complex or in BRAF, or rarely RAS family genes. About 60% of patients are cured by surgery. Adjuvant treatment with imatinib is recommended for patients with a substantial risk of recurrence, if the tumour has an imatinib-sensitive mutation. Tyrosine kinase inhibitors substantially improve survival in advanced disease, but secondary drug resistance is common. PMID:23623056

  13. Amount of stroma is associated with mammographic density and stromal expression of oestrogen receptor in normal breast tissues.

    PubMed

    Gabrielson, Marike; Chiesa, Flaminia; Paulsson, Janna; Strell, Carina; Behmer, Catharina; Rönnow, Katarina; Czene, Kamila; Östman, Arne; Hall, Per

    2016-07-01

    Following female sex and age, mammographic density is considered one of the strongest risk factors for breast cancer. Despite the association between mammographic density and breast cancer risk, little is known about the underlying histology and biological basis of breast density. To better understand the mechanisms behind mammographic density we assessed morphology, proliferation and hormone receptor status in relation to mammographic density in breast tissues from healthy women. Tissues were obtained from 2012-2013 by ultrasound-guided core needle biopsy from 160 women as part of the Karma (Karolinska mammography project for risk prediction for breast cancer) project. Mammograms were collected through routine mammography screening and mammographic density was calculated using STRATUS. The histological composition, epithelial and stromal proliferation status and hormone receptor status were assessed through immunohistochemical staining. Higher mammographic density was significantly associated with a greater proportion of stromal and epithelial tissue and a lower proportion of adipose tissue. Epithelial expression levels of Ki-67, oestrogen receptor (ER) and progesterone receptor (PR) were not associated with mammographic density. Epithelial Ki-67 was associated with a greater proportion of epithelial tissue, and epithelial PR was associated with a greater proportion of stromal and a lower proportion of adipose tissue. Epithelial ER was not associated with any tissues. In contrast, expression of ER in the stroma was significantly associated with a greater proportion of stroma, and negatively associated with the amount of adipose tissue. High mammographic density is associated with higher amount of stroma and epithelium and less amount of fat, but is not associated with a change in epithelial proliferation or receptor status. Increased expressions of both epithelial PR and stromal ER are associated with a greater proportion of stroma, suggesting hormonal involvement

  14. Oncologic Trogocytosis of an Original Stromal Cells Induces Chemoresistance of Ovarian Tumours

    PubMed Central

    Rafii, Arash; Mirshahi, Pejman; Poupot, Mary; Faussat, Anne-Marie; Simon, Anne; Ducros, Elodie; Mery, Eliane; Couderc, Bettina; Lis, Raphael; Capdet, Jerome; Bergalet, Julie; Querleu, Denis; Dagonnet, Francoise; Fournié, Jean-Jacques; Marie, Jean-Pierre; Pujade-Lauraine, Eric; Favre, Gilles; Soria, Jeanine; Mirshahi, Massoud

    2008-01-01

    Background The microenvironment plays a major role in the onset and progression of metastasis. Epithelial ovarian cancer (EOC) tends to metastasize to the peritoneal cavity where interactions within the microenvironment might lead to chemoresistance. Mesothelial cells are important actors of the peritoneal homeostasis; we determined their role in the acquisition of chemoresistance of ovarian tumours. Methodology/Principal Findings We isolated an original type of stromal cells, referred to as “Hospicells” from ascitis of patients with ovarian carcinosis using limiting dilution. We studied their ability to confer chemoresistance through heterocellular interactions. These stromal cells displayed a new phenotype with positive immunostaining for CD9, CD10, CD29, CD146, CD166 and Multi drug resistance protein. They preferentially interacted with epithelial ovarian cancer cells. This interaction induced chemoresistance to platin and taxans with the implication of multi-drug resistance proteins. This contact enabled EOC cells to capture patches of the Hospicells membrane through oncologic trogocytosis, therefore acquiring their functional P-gp proteins and thus developing chemoresistance. Presence of Hospicells on ovarian cancer tissue micro-array from patients with neo-adjuvant chemotherapy was also significantly associated to chemoresistance. Conclusions/Significance This is the first report of trogocytosis occurring between a cancer cell and an original type of stromal cell. This interaction induced autonomous acquisition of chemoresistance. The presence of stromal cells within patient's tumour might be predictive of chemoresistance. The specific interaction between cancer cells and stromal cells might be targeted during chemotherapy. PMID:19079610

  15. Endometrial Stromal Decidualization Responds Reversibly to Hormone Stimulation and Withdrawal.

    PubMed

    Yu, Jie; Berga, Sarah L; Johnston-MacAnanny, Erika B; Sidell, Neil; Bagchi, Indrani C; Bagchi, Milan K; Taylor, Robert N

    2016-06-01

    Human endometrial stromal decidualization is required for embryo receptivity, angiogenesis, and placentation. Previous studies from our laboratories established that connexin (Cx)-43 critically regulates endometrial stromal cell (ESC) differentiation, whereas gap junction blockade prevents it. The current study evaluated the plasticity of ESC morphology and Cx43 expression, as well as other biochemical markers of cell differentiation, in response to decidualizing hormones. Primary human ESC cultures were exposed to 10 nM estradiol, 100 nM progesterone, and 0.5 mM cAMP for up to 14 days, followed by hormone withdrawal for 14 days, mimicking a biphasic ovulatory cycle. Reversible differentiation was documented by characteristic changes in cell shape. Cx43 was reversibly up- and down-regulated after the estradiol, progesterone, and cAMP treatment and withdrawal, respectively, paralleled by fluctuations in prolactin, vascular endothelial growth factor, IL-11, and glycodelin secretion. Markers of mesenchymal-epithelial transition (MET), and its counterpart epithelial-mesenchymal transition, followed reciprocal patterns corresponding to the morphological changes. Incubation in the presence of 18α-glycyrrhetinic acid, an inhibitor of gap junctions, partially reversed the expression of decidualization and MET markers. In the absence of hormones, Cx43 overexpression promoted increases in vascular endothelial growth factor and IL-11 secretion, up-regulated MET markers, and reduced N-cadherin, an epithelial-mesenchymal transition marker. The combined results support the hypothesis that Cx43-containing gap junctions and endocrine factors cooperate to regulate selected biomarkers of stromal decidualization and MET and suggest roles for both phenomena in endometrial preparation for embryonic receptivity. PMID:27035651

  16. Tumor suppression by stromal TIMPs.

    PubMed

    Shimoda, Masayuki; Jackson, Hartland W; Khokha, Rama

    2016-05-01

    The tumor stroma has the capacity to drive cancer progression, although the mechanisms governing these effects are incompletely understood. Recently, we reported that deletion of tissue inhibitor of metalloproteinases (Timps) in fibroblasts unleashes the function of cancer-associated fibroblasts and identifies a novel mode of stromal-tumor communication that activates key oncogenic pathways invoving Notch and ras homolog gene family, member A (RhoA) via stromal exosomes. PMID:27314104

  17. Thymic stromal lymphopoietin: master switch for allergic inflammation

    PubMed Central

    Liu, Yong-Jun

    2006-01-01

    Thymic stromal lymphopoietin (TSLP) is an interleukin (IL) 7–like cytokine that triggers dendritic cell–mediated T helper (Th)2 inflammatory responses. TSLP is highly expressed by keratinocytes in skin lesions of patients with atopic dermatitis and is associated with dendritic cell activation in situ, suggesting that TSLP might be a master switch for allergic inflammation at the epithelial cell–dendritic cell interface. New reports now establish a direct link between TSLP expression and the pathogenesis of atopic dermatitis and asthma in vivo, and begin to reveal the molecular mechanisms underlying TSLP-induced allergic inflammation. PMID:16432252

  18. Adipose-Derived Stromal Vascular Fraction Differentially Expands Breast Progenitors in Tissue Adjacent to Tumors Compared to Healthy Breast Tissue

    PubMed Central

    Chatterjee, Sumanta; Laliberte, Mike; Blelloch, Sarah; Ratanshi, Imran; Safneck, Janice; Buchel, Ed

    2015-01-01

    Background: Autologous fat grafts supplemented with adipose-derived stromal vascular fraction are used in reconstructive and cosmetic breast procedures. Stromal vascular fraction contains adipose-derived stem cells that are thought to encourage wound healing, tissue regeneration, and graft retention. Although use of stromal vascular fraction has provided exciting perspectives for aesthetic procedures, no studies have yet been conducted to determine whether its cells contribute to breast tissue regeneration. The authors examined the effect of these cells on the expansion of human breast epithelial progenitors. Methods: From patients undergoing reconstructive breast surgery following mastectomies, abdominal fat, matching tissue adjacent to breast tumors, and the contralateral non–tumor-containing breast tissue were obtained. Ex vivo co-cultures using breast epithelial cells and the stromal vascular fraction cells were used to study the expansion potential of breast progenitors. Breast reduction samples were collected as a source of healthy breast cells. Results: The authors observed that progenitors present in healthy breast tissue or contralateral non–tumor-containing breast tissue showed significant and robust expansion in the presence of stromal vascular fraction (5.2- and 4.8-fold, respectively). Whereas the healthy progenitors expanded up to 3-fold without the stromal vascular fraction cells, the expansion of tissue adjacent to breast tumor progenitors required the presence of stromal vascular fraction cells, leading to a 7-fold expansion, which was significantly higher than the expansion of healthy progenitors with stromal vascular fraction. Conclusions: The use of stromal vascular fraction might be more beneficial to reconstructive operations following mastectomies compared with cosmetic corrections of the healthy breast. Future studies are required to examine the potential risk factors associated with its use. CLINICAL QUESTION/LEVEL OF EVIDENCE

  19. Stromal-epithelial dynamics in response to fractionated radiotherapy

    NASA Astrophysics Data System (ADS)

    Rong, Panying

    The speech of individuals with velopharyngeal incompetency (VPI) is characterized by hypernasality, a speech quality related to excessive emission of acoustic energy through the nose, as caused by failure of velopharyngeal closure. As an attempt to reduce hypernasality and, in turn, improve the quality of VPI-related hypernasal speech, this study is dedicated to developing an approach that uses speech-dependent articulatory adjustments to reduce hypernasality caused by excessive velopharyngeal opening. A preliminary study has been done to derive such articulatory adjustments for hypernasal /i/ vowels based on the simulation of an articulatorymodel (Speech Processing and Synthesis Toolboxes, Childers (2000)). Both nasal /i/ vowels with and without articulatory adjustments were synthesized by the model. Spectral analysis found that nasal acoustic features were attenuated and oral formant structures were restored after articulatory adjustments. In addition, comparisons of perceptual ratings of nasality between the two types of nasal vowels showed the articulatory adjustments generated by the model significantly reduced the perception of nasality for nasal /i/ vowels. Such articulatory adjustments for nasal /i/ have two patterns: 1) a consistent adjustment pattern, which corresponds an expansion at the velopharynx, and 2) some speech-dependent fine-tuning adjustment patterns, including adjustments in the lip area and the upper pharynx. The long-term goal of this study is to apply this approach of articulatory adjustment as a therapeutic tool in clinical speech treatment to detect and correct the maladaptive articulatory behaviors developed spontaneously by speakers with VPI on individual bases. This study constructed a speaker-adaptive articulatory model on the basis of the framework of Childers's vocal tract model to simulate articulatory adjustments aiming at compensating for the acoustic outcome caused by velopharyngeal opening and reducing nasality. To construct such a speaker-adaptive articulatory model, (1) an articulatory-acoustic-aerodynamic database was recorded using the articulography and aerodynamic instruments to provide point-wise articulatory data to be fitted into the framework of Childers's standard vocal tract model; (2) the length and transverse dimension of the vocal tract were adjusted to fit individual speaker by minimizing the acoustic discrepancy between the model simulation and the target derived from acoustic signal in the database using the simulated annealing algorithm; (3) the articulatory space of the model was adjusted to fit individual articulatory features by adapting the movement ranges of all articulators. With the speaker-adaptive articulatory model, the articulatory configurations of the oral and nasal vowels in the database were simulated and synthesized. Given the acoustic targets derived from the oral vowels in the database, speech-dependent articulatory adjustments were simulated to compensate for the acoustic outcome caused by VPO. The resultant articulatory configurations corresponds to nasal vowels with articulatory adjustment, which were synthesized to serve as the perceptual stimuli for a listening task of nasality rating. The oral and nasal vowels synthesized based on the oral and nasal vowel targets in the database also served as the perceptual stimuli. The results suggest both acoustic and perceptual effects of the mode-generated articulatory adjustment on the nasal vowels /a/, /i/ and /u/. In terms of acoustics, the articulatory adjustment (1) restores the altered formant structures due to nasal coupling, including shifted formant frequency, attenuated formant intensity and expanded formant bandwidth and (2) attenuates the peaks and zeros caused by nasal resonances. Perceptually, the articulatory adjustment generated by the speaker-adaptive model significantly reduces the perceived nasality for all three vowels (/a/, /i/, /u/). The acoustic and perceptual effects of articulatory adjustment suggest achievement of the acoustic goal of compensating for the acoustic discrepancy c

  20. Genetics Home Reference: gastrointestinal stromal tumor

    MedlinePlus

    ... cells in the gastrointestinal tract and patches of dark skin on various areas of the body. Some ... Cancer Society: Treating Gastrointestinal Stromal Tumor (GIST) Cancer.Net: Gastrointestinal Stromal Tumor--Diagnosis Genetic Testing Registry: Gastrointestinal ...

  1. Gene expression down-regulation in CD90+ prostate tumor-associated stromal cells involves potential organ-specific genes

    PubMed Central

    2009-01-01

    Background The prostate stroma is a key mediator of epithelial differentiation and development, and potentially plays a role in the initiation and progression of prostate cancer. The tumor-associated stroma is marked by increased expression of CD90/THY1. Isolation and characterization of these stromal cells could provide valuable insight into the biology of the tumor microenvironment. Methods Prostate CD90+ stromal fibromuscular cells from tumor specimens were isolated by cell-sorting and analyzed by DNA microarray. Dataset analysis was used to compare gene expression between histologically normal and tumor-associated stromal cells. For comparison, stromal cells were also isolated and analyzed from the urinary bladder. Results The tumor-associated stromal cells were found to have decreased expression of genes involved in smooth muscle differentiation, and those detected in prostate but not bladder. Other differential expression between the stromal cell types included that of the CXC-chemokine genes. Conclusion CD90+ prostate tumor-associated stromal cells differed from their normal counterpart in expression of multiple genes, some of which are potentially involved in organ development. PMID:19737398

  2. Dicer1 activity in the stromal compartment regulates nephron differentiation and vascular patterning during mammalian kidney organogenesis.

    PubMed

    Nakagawa, Naoki; Xin, Cuiyan; Roach, Allie M; Naiman, Natalie; Shankland, Stuart J; Ligresti, Giovanni; Ren, Shuyu; Szak, Suzanne; Gomez, Ivan G; Duffield, Jeremy S

    2015-06-01

    MicroRNAs, activated by the enzyme Dicer1, control post-transcriptional gene expression. Dicer1 has important roles in the epithelium during nephrogenesis, but its function in stromal cells during kidney development is unknown. To study this, we inactivated Dicer1 in renal stromal cells. This resulted in hypoplastic kidneys, abnormal differentiation of the nephron tubule and vasculature, and perinatal mortality. In mutant kidneys, genes involved in stromal cell migration and activation were suppressed as were those involved in epithelial and endothelial differentiation and maturation. Consistently, polarity of the proximal tubule was incorrect, distal tubule differentiation was diminished, and elongation of Henle's loop attenuated resulting in lack of inner medulla and papilla in stroma-specific Dicer1 mutants. Glomerular maturation and capillary loop formation were abnormal, whereas peritubular capillaries, with enhanced branching and increased diameter, formed later. In Dicer1-null renal stromal cells, expression of factors associated with migration, proliferation, and morphogenic functions including α-smooth muscle actin, integrin-α8, -β1, and the WNT pathway transcriptional regulator LEF1 were reduced. Dicer1 mutation in stroma led to loss of expression of distinct microRNAs. Of these, miR-214, -199a-5p, and -199a-3p regulate stromal cell functions ex vivo, including WNT pathway activation, migration, and proliferation. Thus, Dicer1 activity in the renal stromal compartment regulates critical stromal cell functions that, in turn, regulate differentiation of the nephron and vasculature during nephrogenesis. PMID:25651362

  3. Dicer1 activity in the stromal compartment regulates nephron differentiation and vascular patterning during mammalian kidney organogenesis

    PubMed Central

    Nakagawa, Naoki; Xin, Cuiyan; Roach, Allie M.; Naiman, Natalie; Shankland, Stuart J.; Ligresti, Giovanni; Ren, Shuyu; Szak, Suzanne; Gomez, Ivan G.; Duffield, Jeremy S.

    2015-01-01

    MicroRNAs, activated by the enzyme Dicer1, control post-transcriptional gene expression. Dicer1 has important roles in the epithelium during nephrogenesis, but its function in stromal cells during kidney development is unknown. To study this we inactivated Dicer1 in renal stromal cells. This resulted in hypoplastic kidneys, abnormal differentiation of the nephron tubule and vasculature, and perinatal mortality. In mutant kidneys, genes involved in stromal cell migration and activation were suppressed as were those involved in epithelial and endothelial differentiation and maturation. Consistently, polarity of the proximal tubule was incorrect, distal tubule differentiation was diminished, and elongation of Henle’s loop attenuated resulting in lack of inner medulla and papilla in stroma-specific Dicer1 mutants. Glomerular maturation and capillary loop formation were abnormal while peritubular capillaries, with enhanced branching and increased diameter, formed later. In Dicer1-null renal stromal cells, expression of factors associated with migration, proliferation and morphogenic functions including α-smooth muscle actin, integrin-α8, -β1, and the WNT pathway transcriptional regulator LEF1 were reduced. Dicer1 mutation in stroma led to loss of expression of distinct microRNAs. Of these, miR-214, -199a-5p and -199a-3p regulate stromal cell functions ex vivo, including WNT pathway activation, migration and proliferation. Thus, Dicer1 activity in the renal stromal compartment regulates critical stromal cell functions that, in turn, regulate differentiation of the nephron and vasculature during nephrogenesis. PMID:25651362

  4. LAPAROSCOPIC RESECTION OF GASTROINTESTINAL STROMAL TUMORS (GIST)

    PubMed Central

    LOUREIRO, Marcelo de Paula; de ALMEIDA, Rômulo Augusto Andrade; CLAUS, Christiano Marlo Paggi; BONIN, Eduardo Aimoré; CURY-FILHO,, Antônio Moris; DIMBARRE, Daniellson; da COSTA, Marco Aurélio Raeder; VITAL, Marcílio Lisboa

    2016-01-01

    Background Gastrointestinal mesenchymal or stromal tumors (GIST) are lesions originated on digestive tract walls, which are treated by surgical resection. Several laparoscopic techniques, from gastrectomies to segmental resections, have been used successfully. Aim Describe a single center experience on laparoscopic GIST resection. Method Charts of 15 operated patients were retrospectively reviewed. Thirteen had gastric lesions, of which ten were sub epithelial, ranging from 2-8 cm; and three were pure exofitic growing lesions. The remaining two patients had small bowel lesions. Surgical laparoscopic treatment consisted of two distal gastrectomies, 11 wedge gastric resections and two segmental enterectomies. Mechanical suture was used in the majority of patients except on six, which underwent resection and closure using manual absorbable sutures. There were no conversions to open technique. Results Mean operative time was 1h 29 min±92 (40-420 min). Average lenght of hospital stay was three days (2-6 days). There were no leaks, postoperative bleeding or need for reintervention. Mean postoperative follow-up was 38±17 months (6-60 months). Three patients underwent adjuvant Imatinib treatment, one for recurrence five months postoperatively and two for tumors with moderate risk for recurrence . Conclusion Laparoscopic GIST resection, not only for small lesions but also for tumors above 5 cm, is safe and acceptable technique. PMID:27120729

  5. Arousal of cancer-associated stromal fibroblasts

    PubMed Central

    2012-01-01

    Cancer-associated fibroblasts (CAF), comprised of activated fibroblasts or myofibroblasts, are found in stroma surrounding solid tumors; these myofibroblasts promote invasion and metastasis of cancer cells. Activation of stromal fibroblasts into myofibroblasts is induced by expression of cystoskeleton protein, palladin, at early stages in tumorigenesis and increases with neoplastic progression. Expression of palladin in fibroblasts is triggered by paracrine signaling from adjacent k-ras-expressing epithelial cells. Three-dimensional co-cultures of palladin-expressing fibroblasts and pancreatic cancer cells reveals that the activated fibroblasts lead the invasion by creating tunnels through the extracellular matrix through which the cancer cells follow. Invasive tunneling occurs as a result of the development of invadopodia-like cellular protrusions in the palladin-activated fibroblasts and the addition of a wounding/inflammatory trigger. Abrogation of palladin reduces the invasive capacity of these cells. CAF also play a role in cancer resistance and immuno-privilege, making the targeting of activators of these cells of interest for oncologists. PMID:23076142

  6. Pancreatic cancer stromal biology and therapy

    PubMed Central

    Xie, Dacheng; Xie, Keping

    2015-01-01

    Pancreatic cancer is one of the most lethal malignancies. Significant progresses have been made in understanding of pancreatic cancer pathogenesis, including appreciation of precursor lesions or premalignant pancreatic intraepithelial neoplasia (PanINs), description of sequential transformation from normal pancreatic tissue to invasive pancreatic cancer and identification of major genetic and epigenetic events and the biological impact of those events on malignant behavior. However, the currently used therapeutic strategies targeting tumor epithelial cells, which are potent in cell culture and animal models, have not been successful in the clinic. Presumably, therapeutic resistance of pancreatic cancer is at least in part due to its drastic desmoplasis, which is a defining hallmark for and circumstantially contributes to pancreatic cancer development and progression. Improved understanding of the dynamic interaction between cancer cells and the stroma is important to better understanding pancreatic cancer biology and to designing effective intervention strategies. This review focuses on the origination, evolution and disruption of stromal molecular and cellular components in pancreatic cancer, and their biological effects on pancreatic cancer pathogenesis. PMID:26114155

  7. Paclitaxel and Carboplatin or Bleomycin Sulfate, Etoposide Phosphate, and Cisplatin in Treating Patients With Advanced or Recurrent Sex Cord-Ovarian Stromal Tumors

    ClinicalTrials.gov

    2016-03-16

    Ovarian Granulosa Cell Tumor; Ovarian Gynandroblastoma; Ovarian Sertoli-Leydig Cell Tumor; Ovarian Sex Cord Tumor With Annular Tubules; Ovarian Sex Cord-Stromal Tumor; Ovarian Sex Cord-Stromal Tumor of Mixed or Unclassified Cell Types; Ovarian Steroid Cell Tumor

  8. Laparoscopic wedge resection of synchronous gastric intraepithelial neoplasia and stromal tumor: a case report.

    PubMed

    Mou, Yi-Ping; Xu, Xiao-Wu; Xie, Kun; Zhou, Wei; Zhou, Yu-Cheng; Chen, Ke

    2010-10-21

    Synchronous occurrence of epithelial neoplasia and gastrointestinal stromal tumor (GIST) in the stomach is uncommon. Only rare cases have been reported in the literature. We present here a 60-year-old female case of synchronous occurrence of gastric high-level intraepithelial neoplasia and GIST with the features of 22 similar cases and detailed information reported in the English-language literature summarized. In the present patient, epithelial neoplasia and GIST were removed en bloc by laparoscopic wedge resection. To the best of our knowledge, this is the first reported case treated by laparoscopic wedge resection. PMID:20954290

  9. Mammary fibroblasts regulate morphogenesis of normal and tumorigenic breast epithelial cells by mechanical and paracrine signals

    PubMed Central

    Lühr, Inke; Friedl, Andreas; Overath, Thorsten; Tholey, Andreas; Kunze, Thomas; Hilpert, Felix; Sebens, Susanne; Arnold, Norbert; Rösel, Frank; Oberg, Hans-Heinrich; Maass, Nicolai; Mundhenke, Christoph; Jonat, Walter; Bauer, Maret

    2013-01-01

    Stromal factors play a critical role in the development of the mammary gland. Using a three dimensional-coculture model we demonstrate a significant role for stromal fibroblasts in the regulation of normal mammary epithelial morphogenesis and the control of tumor growth. Both soluble factors secreted by fibroblasts and fibroblast-derived modifications of the matrix compliance contribute to the regulation of epithelial cell morphogenesis. Readjustment of matrix tension by fibroblasts can even induce a phenotypic reversion of breast carcinoma cells. These data offer a basis to develop new strategies for the normalization of the tumor stroma as an innovative target in cancer therapy. PMID:22776560

  10. Stromal fibroblasts derived from mammary gland of bovine with mastitis display inflammation-specific changes.

    PubMed

    Chen, Qing; He, Guiliang; Zhang, Wenyao; Xu, Tong; Qi, Hongliang; Li, Jing; Zhang, Yong; Gao, Ming-Qing

    2016-01-01

    Fibroblasts are predominant components of mammary stromal cells and play crucial roles in the development and involution of bovine mammary gland; however, whether these cells contribute to mastitis has not been demonstrated. Thus, we have undertaken biological and molecular characterization of inflammation-associated fibroblasts (INFs) extracted from bovine mammary glands with clinical mastitis and normal fibroblasts (NFs) from slaughtered dairy cows because of fractured legs during lactation. The functional contributions of INFs to normal epithelial cells were also investigated by using an in vitro co-culture model. We present evidence that the INFs were activated fibroblasts and showed inflammation-related features. Moreover, INFs significantly inhibited the proliferation and β-casein secretion of epithelial cells, as well as upregulated the expression of tumor necrosis factor-α and interleukin-8 in epithelial cells. These findings indicate that functional alterations can occur in stromal fibroblasts within the bovine mammary gland during mastitis, demonstrating the importance of stromal fibroblasts in bovine mastitis and its treatment. PMID:27272504

  11. Ezrin expression in stromal cells of capillary hemangioblastoma. An immunohistochemical survey of brain tumors.

    PubMed Central

    Böhling, T.; Turunen, O.; Jääskeläinen, J.; Carpen, O.; Sainio, M.; Wahlström, T.; Vaheri, A.; Haltia, M.

    1996-01-01

    Ezrin is a cytoskeleton-associated protein that appears to link actin filaments to the plasma membrane. Immunocytochemical studies suggest that ezrin is expressed in epithelial cells but not in mesenchymal cells. In addition, ezrin is expressed by certain epithelial tumors, such as renal cell adenocarcinomas. Ezrin serves as a tyrosine kinase substrate, and is phosphorylated in epidermal growth factor-stimulated cells. Ezrin may thus mediate regulatory signals in different cell functions. We studied the distribution of ezrin in 104 cases of primary tumors of the central nervous system (CNS) by immunocytochemistry. Special interest was focused on capillary hemangioblastoma, owing to its resemblance to renal cell adenocarcinoma, and on malignant gliomas, owing to their frequent epidermal growth factor receptor amplification. The stromal cells of hemangioblastomas were found to be strongly positive for ezrin. No expression was detected in gliomas and, except for hemangioblastomas, ezrin expression was restricted to those few CNS tumors that show epithelial differentiation, ie, choroid plexus papillomas, craniopharyngiomas, ependymomas, and cysts. The diffuse cytoplasmic expression of ezrin in the stromal cells of capillary hemangioblastoma may indicate that stromal cells overexpress ezrin or express ezrin with deficient binding properties. Images Figure 1 Figure 2 PMID:8579099

  12. Stromal fibroblasts derived from mammary gland of bovine with mastitis display inflammation-specific changes

    PubMed Central

    Chen, Qing; He, Guiliang; Zhang, Wenyao; Xu, Tong; Qi, Hongliang; Li, Jing; Zhang, Yong; Gao, Ming-Qing

    2016-01-01

    Fibroblasts are predominant components of mammary stromal cells and play crucial roles in the development and involution of bovine mammary gland; however, whether these cells contribute to mastitis has not been demonstrated. Thus, we have undertaken biological and molecular characterization of inflammation-associated fibroblasts (INFs) extracted from bovine mammary glands with clinical mastitis and normal fibroblasts (NFs) from slaughtered dairy cows because of fractured legs during lactation. The functional contributions of INFs to normal epithelial cells were also investigated by using an in vitro co-culture model. We present evidence that the INFs were activated fibroblasts and showed inflammation-related features. Moreover, INFs significantly inhibited the proliferation and β-casein secretion of epithelial cells, as well as upregulated the expression of tumor necrosis factor-α and interleukin-8 in epithelial cells. These findings indicate that functional alterations can occur in stromal fibroblasts within the bovine mammary gland during mastitis, demonstrating the importance of stromal fibroblasts in bovine mastitis and its treatment. PMID:27272504

  13. Total lymphoid irradiation leads to transient depletion of the mouse thymic medulla and persistent abnormalities among medullary stromal cells

    SciTech Connect

    Adkins, B.; Gandour, D.; Strober, S.; Weissman, I.

    1988-05-15

    Mice given multiple doses of sublethal irradiation to both the thymus and the peripheral lymphoid tissues showed major transient, and some persistent disruptions in general thymic architecture and in thymic stromal components. At 2 wk after total lymphoid irradiation (TLI), the thymus lacked identifiable medullary regions by immunohistochemical analyses. Medullary stromal cells expression MHC Ag or a medullary epithelial cell Ag, as well as medullary macrophages, were undetectable. Instead, the processes of cortical epithelial cells were observed throughout the entire thymus. Strikingly, thymocyte subsets with mature phenotypes (CD4+CD8- and CD4-CD8+) were present in the apparent absence of a medulla. This early, gross effect was rapidly reversed such that by 1 to 2 mo after TLI, medullary areas with MHC Ag-positive cells were evident. However, abnormalities in a subset of medullary stromal cells appeared to be more persistent. Medullary epithelial cells, identified by the MD1 mAb, were greatly reduced in number and abnormally organized for at least 4 mo after TLI. In addition, macrophages containing endogenous peroxidase activity, normally abundant in medullary regions, were undetectable at all times examined after TLI. Therefore, this irradiation regimen induced both transient and long term effects in the thymus, primarily in medullary regions. These results suggest that TLI may be used as an experimental tool for studying the impact of selective depletion of medullary stromal cells on the development of specific T cell functions.

  14. Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment

    PubMed Central

    2011-01-01

    Cancer cells show a broad spectrum of bioenergetic states, with some cells using aerobic glycolysis while others rely on oxidative phosphorylation as their main source of energy. In addition, there is mounting evidence that metabolic coupling occurs in aggressive tumors, between epithelial cancer cells and the stromal compartment, and between well-oxygenated and hypoxic compartments. We recently showed that oxidative stress in the tumor stroma, due to aerobic glycolysis and mitochondrial dysfunction, is important for cancer cell mutagenesis and tumor progression. More specifically , increased autophagy/mitophagy in the tumor stroma drives a form of parasitic epithelial-stromal metabolic coupling. These findings explain why it is effective to treat tumors with either inducers or inhibitors of autophagy, as both would disrupt this energetic coupling. We also discuss evidence that glutamine addiction in cancer cells produces ammonia via oxidative mitochondrial metabolism. Ammonia production in cancer cells, in turn, could then help maintain autophagy in the tumor stromal compartment. In this vicious cycle, the initial glutamine provided to cancer cells would be produced by autophagy in the tumor stroma. Thus, we believe that parasitic epithelial-stromal metabolic coupling has important implications for cancer diagnosis and therapy, for example, in designing novel metabolic imaging techniques and establishing new targeted therapies. In direct support of this notion, we identified a loss of stromal caveolin-1 as a marker of oxidative stress, hypoxia, and autophagy in the tumor microenvironment, explaining its powerful predictive value. Loss of stromal caveolin-1 in breast cancers is associated with early tumor recurrence, metastasis, and drug resistance, leading to poor clinical outcome. PMID:21867571

  15. Cell mates: paracrine and stromal targets for prostate cancer therapy.

    PubMed

    Sluka, Pavel; Davis, Ian D

    2013-08-01

    After many years of limited treatment options for patients with metastatic castration-resistant prostate cancer (mCRPC), multiple systemic therapies are now available, providing patients with significant improvements in survival, symptom control and bone health. Most of the recent advances in this area have been based on better understanding of mCRPC biology, particularly with respect to the key role of androgen receptor signalling. However, most therapies are targeted towards the malignant epithelial cell component of the cancer and it should not be forgotten that cancer cells exist in close and symbiotic relationships with other components of the tumour. Paracrine and stromal signals are often critical to the growth of the cancer and represent new potential therapeutic targets that are separate from the malignant epithelial cells. The stroma produces numerous growth factors, including vascular endothelial growth factor family members, platelet-derived growth factors and fibroblast growth factors, which are all critical for tumour growth. Targeting prostate-cancer-associated fibroblasts in order to destroy the physical and functional scaffold of a cancer is also a logical approach. The interaction between prostate cancer and the immune system remains an active topic of basic and clinical research, with cytokines, chemokines and growth factors being potential targets for therapy. The biology of epithelial-mesenchymal transition and of circulating tumour cells might also provide insight into new therapeutic targets. PMID:23857181

  16. What Are the Key Statistics about Gastrointestinal Stromal Tumors?

    MedlinePlus

    ... for gastrointestinal stromal tumors? What are the key statistics about gastrointestinal stromal tumors? Gastrointestinal stromal tumors (GISTs) ... They are slightly more common in men. Survival statistics for GIST are discussed in “ Survival rates for ...

  17. What's New in Gastrointestinal Stromal Tumor Research and Treatment?

    MedlinePlus

    ... Topic Additional resources for gastrointestinal stromal tumor What’s new in gastrointestinal stromal tumor research and treatment? There ... GIST) Talking With Your Doctor After Treatment What`s New in Gastrointestinal Stromal Tumor (GIST) Research? Other Resources ...

  18. Pseudoangiomatous stromal hyperplasia: an overview.

    PubMed

    Virk, Renu K; Khan, Ashraf

    2010-07-01

    Pseudoangiomatous stromal hyperplasia (PASH) of the breast is a benign, proliferative mesenchymal lesion with possible hormonal etiology. It typically affects women in the reproductive age group. Pseudoangiomatous stromal hyperplasia is frequently an incidental histologic finding in breast biopsies performed for other benign or malignant lesions. Rarely, it can present as a firm, painless breast mass, which has been referred to as nodular or tumorous PASH. Grossly, tumorous PASH is a well-circumscribed, firm, rubbery mass with solid, homogenous, gray-white cut surface. On histologic examination, it is characterized by the presence of open slitlike spaces in dense collagenous stroma. The spaces are lined by a discontinuous layer of flat, spindle-shaped myofibroblasts with bland nuclei. The spindle cells express progesterone receptors and are positive for vimentin, actin, and CD34. The most important differential diagnosis on histopathology is angiosarcoma. Pseudoangiomatous stromal hyperplasia discovered incidentally does not require any additional specific treatment. Tumorous PASH is treated by local surgical excision with clear margins and the prognosis is excellent, with minimal risk of recurrence after adequate surgical excision. PMID:20586640

  19. Nuclear receptor co-regulator Kruppel-like factor 9 and prohibitin 2 expression in estrogen-induced epithelial cell proliferation in the mouse uterus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estrogen, acting through its cognate receptor estrogen receptor-' (ESR1), is a critical regulator of uterine endometrial epithelial proliferation. Although the dynamic communication between endometrial stromal (ST) and epithelial cells is considered to be an important component in this process, key ...

  20. Paclitaxel, Cisplatin, and Topotecan With or Without Filgrastim in Treating Patients With Newly Diagnosed Stage III or Stage IV Epithelial Ovarian Cancer

    ClinicalTrials.gov

    2013-01-23

    Brenner Tumor; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mixed Epithelial Carcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Ovarian Undifferentiated Adenocarcinoma; Stage III Ovarian Epithelial Cancer; Stage IV Ovarian Epithelial Cancer

  1. Thymic stromal cell subsets for T cell development.

    PubMed

    Nitta, Takeshi; Suzuki, Harumi

    2016-03-01

    The thymus provides a specialized microenvironment in which a variety of stromal cells of both hematopoietic and non-hematopoietic origin regulate development and repertoire selection of T cells. Recent studies have been unraveling the inter- and intracellular signals and transcriptional networks for spatiotemporal regulation of development of thymic stromal cells, mainly thymic epithelial cells (TECs), and the molecular mechanisms of how different TEC subsets control T cell development and selection. TECs are classified into two functionally different subsets: cortical TECs (cTECs) and medullary TECs (mTECs). cTECs induce positive selection of diverse and functionally distinct T cells by virtue of unique antigen-processing systems, while mTECs are essential for establishing T cell tolerance via ectopic expression of peripheral tissue-restricted antigens and cooperation with dendritic cells. In addition to reviewing the role of the thymic stroma in conventional T cell development, we will discuss recently discovered novel functions of TECs in the development of unconventional T cells, such as natural killer T cells and γδT cells. PMID:26825337

  2. Adaptive epithelial cytoplasm segmentation and epithelial unit separation in immunoflurorescent images

    NASA Astrophysics Data System (ADS)

    Ramachandran, Janakiramanan; Scott, Richard; Ajemba, Peter; Karvir, Hrishikesh; Khan, Faisal; Zeineh, Jack; Donovan, Michael; Fernandez, Gerardo

    2012-02-01

    Tissue segmentation is one of the key preliminary steps in the morphometric analysis of tissue architecture. In multi-channel immunoflurorescent biomarker images, the primary segmentation steps consist of segmenting the nuclei (epithelial and stromal) and epithelial cytoplasm from 4',6-diamidino-2-phenylindole (DAPI) and cytokeratin 18 (CK18) biomarker images respectively. The epithelial cytoplasm segmentation can be very challenging due to variability in cytoplasm morphology and image staining. A robust and adaptive segmentation algorithm was developed for the purpose of both delineating the boundaries and separating thin gaps that separate the epithelial unit structures. This paper discusses novel methods that were developed for adaptive segmentation of epithelial cytoplasm and separation of epithelial units. The adaptive segmentation was performed by computing the non-epithelial background texture of every CK18 biomarker image. The epithelial unit separation was performed using two complementary techniques: a marker based, center-initialized watershed transform and a boundary initialized fast marching-watershed segmentation. The adaptive segmentation algorithm was tested on 926 CK18 biomarker biopsy images (326 patients) with limited background noise and 1030 prostatectomy images (374 patients) with noisy to very noisy background. The segmentation performance was measured using two different methods, namely; stability and background textural metrics. It was observed that the database of 1030 noisy prostatectomy images had a lower mean value (using stability and three background texture performance metrics) compared to the biopsy dataset of 926 images that had limited background noise. The average of all four performance metrics yielded 94.32% accuracy for prostatectomy images compared to 99.40% accuracy for biopsy images.

  3. ICAM-1 mediates surface contact between neutrophils and keratocytes following corneal epithelial abrasion in the mouse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corneal epithelial abrasion elicits an inflammatory response involving neutrophil (PMN) recruitment from the limbal vessels into the corneal stroma. These migrating PMNs make surface contact with collagen and stromal keratocytes. Using mice deficient in PMN integrin CD18, we previously showed that P...

  4. Platelet recruitment promotes keratocyte repopulation following corneal epithelial abrasion in the mouse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corneal abrasion not only damages the epithelium but also induces stromal keratocyte death at the site of injury. While a coordinated cascade of inflammatory cell recruitment facilitates epithelial restoration, it is unclear if this cascade is necessary for keratocyte recovery. Since platelet and ne...

  5. Impaired Capacity of Fibroblasts to Support Airway Epithelial Progenitors in Bronchiolitis Obliterans Syndrome

    PubMed Central

    Zhang, Su-Bei; Sun, Xin; Wu, Qi; Wu, Jun-Ping; Chen, Huai-Yong

    2016-01-01

    Background: Bronchiolitis obliterans syndrome (BOS) often develops in transplant patients and results in injury to the respiratory and terminal airway epithelium. Owing to its rising incidence, the pathogenesis of BOS is currently an area of intensive research. Studies have shown that injury to the respiratory epithelium results in dysregulation of epithelial repair. Airway epithelial regeneration is supported by stromal cells, including fibroblasts. This study aimed to investigate whether the supportive role of lung fibroblasts is altered in BOS. Methods: Suspensions of lung cells were prepared by enzyme digestion. Lung progenitor cells (LPCs) were separated by fluorescence-activated cell sorting. Lung fibroblasts from patients with BOS or healthy controls were mixed with sorted mouse LPCs to compare the colony-forming efficiency of LPCs by counting the number of colonies with a diameter of ≥50 μm in each culture. Statistical analyses were performed using the SPSS 17.0 software (SPSS Inc., USA). The paired Student's t-test was used to test for statistical significance. Results: LPCs were isolated with the surface phenotype of CD31- CD34- CD45- EpCAM+ Sca-1+. The colony-forming efficiency of LPCs was significantly reduced when co-cultured with fibroblasts isolated from patients with BOS. The addition of SB431542 increased the colony-forming efficiency of LPCs to 1.8%; however, it was still significantly less than that in co-culture with healthy control fibroblasts (P < 0.05). Conclusion: The epithelial-supportive capacity of fibroblasts is impaired in the development of BOS and suggest that inefficient repair of airway epithelium could contribute to persistent airway inflammation in BOS. PMID:27569228

  6. Bizarre Stromal Cells in an Endometrial Polyp.

    PubMed

    Heller, Debra; Barrett, Theodore

    2016-06-01

    Bizarre stromal cells have been reported in vulvovaginal polyps, as well as in nongynecologic sites, with caution not to mistake them for malignancy. Similar atypical stromal cells have only rarely been reported in the endometrium. We present a case found incidentally in a postmenopausal woman, and review the literature. PMID:26888957

  7. Epithelial-mesenchymal, mesenchymal-epithelial, and endothelial-mesenchymal transitions in malignant tumors: An update

    PubMed Central

    Gurzu, Simona; Turdean, Sabin; Kovecsi, Attila; Contac, Anca Otilia; Jung, Ioan

    2015-01-01

    Epithelial-to-mesenchymal transition (EMT) represents conversion of an epithelial cell in an elongated cell with mesenchymal phenotype, which can occur in physiologic and pathologic processes such as embryogenesis (type 1 EMT), wound healing and/or fibrosis (type 2 EMT) and malignant tumors (type 3 EMT). The proliferation rate, metastasizing and recurrence capacity, as also the individualized response at chemotherapics, in both epithelial and mesenchymal malignant tumors is known to be influenced by reversible switch between EMT and mesenchymal-to-epithelial transition (MET). Although much research work has already been done in these fields, the specific molecular pathways of EMT, relating to the tumor type and tumor localization, are yet to be elucidated. In this paper, based on the literature and personal experience of the authors, an update in the field of EMT vs MET in epithelial and mesenchymal tumors is presented. The authors tried to present the latest data about the particularities of these processes, and also of the so-called endothelial-to-mesenchymal transition, based on tumor location. The EMT-angiogenesis link is discussed as a possible valuable parameter for clinical follow-up and targeted therapeutic oncologic management. The paper begins with presentation of the basic aspects of EMT, its classification and assessment possibilities, and concludes with prognostic and therapeutic perspectives. The particularities of EMT and MET in gastric and colorectal carcinomas, pancreatic cancer, hepatocellular and cholangiocarcinomas, and lung, breast and prostate cancers, respectively in sarcomas and gastrointestinal stromal tumors are presented in detail. PMID:25984514

  8. Epithelial-mesenchymal, mesenchymal-epithelial, and endothelial-mesenchymal transitions in malignant tumors: An update.

    PubMed

    Gurzu, Simona; Turdean, Sabin; Kovecsi, Attila; Contac, Anca Otilia; Jung, Ioan

    2015-05-16

    Epithelial-to-mesenchymal transition (EMT) represents conversion of an epithelial cell in an elongated cell with mesenchymal phenotype, which can occur in physiologic and pathologic processes such as embryogenesis (type 1 EMT), wound healing and/or fibrosis (type 2 EMT) and malignant tumors (type 3 EMT). The proliferation rate, metastasizing and recurrence capacity, as also the individualized response at chemotherapics, in both epithelial and mesenchymal malignant tumors is known to be influenced by reversible switch between EMT and mesenchymal-to-epithelial transition (MET). Although much research work has already been done in these fields, the specific molecular pathways of EMT, relating to the tumor type and tumor localization, are yet to be elucidated. In this paper, based on the literature and personal experience of the authors, an update in the field of EMT vs MET in epithelial and mesenchymal tumors is presented. The authors tried to present the latest data about the particularities of these processes, and also of the so-called endothelial-to-mesenchymal transition, based on tumor location. The EMT-angiogenesis link is discussed as a possible valuable parameter for clinical follow-up and targeted therapeutic oncologic management. The paper begins with presentation of the basic aspects of EMT, its classification and assessment possibilities, and concludes with prognostic and therapeutic perspectives. The particularities of EMT and MET in gastric and colorectal carcinomas, pancreatic cancer, hepatocellular and cholangiocarcinomas, and lung, breast and prostate cancers, respectively in sarcomas and gastrointestinal stromal tumors are presented in detail. PMID:25984514

  9. Endometrial Stromal Nodule: Report of a Case

    PubMed Central

    Fdili Alaoui, F. Z.; Chaara, H.; Bouguern, H.; Melhouf, M. A.; Fatemi, H.; Belmlih, A.; Amarti, A.

    2011-01-01

    Endometrial stromal nodule (ESN) is the least common of the endometrial stromal tumors. They are rare neoplasms which are diagnosed in most instances by light microscopy. Although such nodules are benign, hysterectomy has been considered the treatment of choice to determine the margins of the tumor required for diagnosis and to differentiate it from invasive stromal sarcoma Whose prognosis is totally different. We report a case of a 45 years old woman, with presurgical diagnosis of adnexal mass or uterine tumor. She underwent a total abdominal hysterectomy. Pathologic examination revealed an endometrial stromal nodule. Through this observation, we insist on the fact that the ESNs are rare and benign entities which must be differentiated from the other invasive malignant stromal tumors; this can change the final prognosis. PMID:21423543

  10. Endometrial stromal nodule: report of a case.

    PubMed

    Fdili Alaoui, F Z; Chaara, H; Bouguern, H; Melhouf, M A; Fatemi, H; Belmlih, A; Amarti, A

    2011-01-01

    Endometrial stromal nodule (ESN) is the least common of the endometrial stromal tumors. They are rare neoplasms which are diagnosed in most instances by light microscopy. Although such nodules are benign, hysterectomy has been considered the treatment of choice to determine the margins of the tumor required for diagnosis and to differentiate it from invasive stromal sarcoma Whose prognosis is totally different. We report a case of a 45 years old woman, with presurgical diagnosis of adnexal mass or uterine tumor. She underwent a total abdominal hysterectomy. Pathologic examination revealed an endometrial stromal nodule. Through this observation, we insist on the fact that the ESNs are rare and benign entities which must be differentiated from the other invasive malignant stromal tumors; this can change the final prognosis. PMID:21423543

  11. Stromal androgen receptor regulates the composition of the microenvironment to influence prostate cancer outcome.

    PubMed

    Leach, Damien A; Need, Eleanor F; Toivanen, Roxanne; Trotta, Andrew P; Palethorpe, Helen M; Palenthorpe, Helen M; Tamblyn, David J; Kopsaftis, Tina; England, Georgina M; Smith, Eric; Drew, Paul A; Pinnock, Carole B; Lee, Peng; Holst, Jeff; Risbridger, Gail P; Chopra, Samarth; DeFranco, Donald B; Taylor, Renea A; Buchanan, Grant

    2015-06-30

    Androgen receptor (AR) signaling in stromal cells is important in prostate cancer, yet the mechanisms underpinning stromal AR contribution to disease development and progression remain unclear. Using patient-matched benign and malignant prostate samples, we show a significant association between low AR levels in cancer associated stroma and increased prostate cancer-related death at one, three and five years post-diganosis, and in tissue recombination models with primary prostate cancer cells that low stromal AR decreases castration-induced apoptosis. AR-regulation was found to be different in primary human fibroblasts isolated from adjacent to cancerous and non-cancerous prostate epithelia, and to represent altered activation of myofibroblast pathways involved in cell cycle, adhesion, migration, and the extracellular matrix (ECM). Without AR signaling, the fibroblast-derived ECM loses the capacity to promote attachment of both myofibroblasts and cancer cells, is less able to prevent cell-matrix disruption, and is less likely to impede cancer cell invasion. AR signaling in prostate cancer stroma appears therefore to alter patient outcome by maintaining an ECM microenvironment inhibitory to cancer cell invasion. This paper provides comprehensive insight into AR signaling in the non-epithelial prostate microenvironment, and a resource from which the prognostic and therapeutic implications of stromal AR levels can be further explored. PMID:25965833

  12. Stromal androgen receptor regulates the composition of the microenvironment to influence prostate cancer outcome

    PubMed Central

    Leach, Damien A.; Need, Eleanor F.; Toivanen, Roxanne; Trotta, Andrew P.; Palenthorpe, Helen M.; Tamblyn, David J.; Kopsaftis, Tina; England, Georgina M.; Smith, Eric; Drew, Paul A.; Pinnock, Carole B.; Lee, Peng; Holst, Jeff; Risbridger, Gail P.; Chopra, Samarth; DeFranco, Donald B.; Taylor, Renea A.; Buchanan, Grant

    2015-01-01

    Androgen receptor (AR) signaling in stromal cells is important in prostate cancer, yet the mechanisms underpinning stromal AR contribution to disease development and progression remain unclear. Using patient-matched benign and malignant prostate samples, we show a significant association between low AR levels in cancer associated stroma and increased prostate cancer-related death at one, three and five years post-diganosis, and in tissue recombination models with primary prostate cancer cells that low stromal AR decreases castration-induced apoptosis. AR-regulation was found to be different in primary human fibroblasts isolated from adjacent to cancerous and non-cancerous prostate epithelia, and to represent altered activation of myofibroblast pathways involved in cell cycle, adhesion, migration, and the extracellular matrix (ECM). Without AR signaling, the fibroblast-derived ECM loses the capacity to promote attachment of both myofibroblasts and cancer cells, is less able to prevent cell-matrix disruption, and is less likely to impede cancer cell invasion. AR signaling in prostate cancer stroma appears therefore to alter patient outcome by maintaining an ECM microenvironment inhibitory to cancer cell invasion. This paper provides comprehensive insight into AR signaling in the non-epithelial prostate microenvironment, and a resource from which the prognostic and therapeutic implications of stromal AR levels can be further explored. PMID:25965833

  13. Identification of Meflin as a Potential Marker for Mesenchymal Stromal Cells

    PubMed Central

    Maeda, Keiko; Enomoto, Atsushi; Hara, Akitoshi; Asai, Naoya; Kobayashi, Takeshi; Horinouchi, Asuka; Maruyama, Shoichi; Ishikawa, Yuichi; Nishiyama, Takahiro; Kiyoi, Hitoshi; Kato, Takuya; Ando, Kenju; Weng, Liang; Mii, Shinji; Asai, Masato; Mizutani, Yasuyuki; Watanabe, Osamu; Hirooka, Yoshiki; Goto, Hidemi; Takahashi, Masahide

    2016-01-01

    Bone marrow-derived mesenchymal stromal cells (BM-MSCs) in culture are derived from BM stromal cells or skeletal stem cells. Whereas MSCs have been exploited in clinical medicine, the identification of MSC-specific markers has been limited. Here, we report that a cell surface and secreted protein, Meflin, is expressed in cultured MSCs, fibroblasts and pericytes, but not other types of cells including epithelial, endothelial and smooth muscle cells. In vivo, Meflin is expressed by immature osteoblasts and chondroblasts. In addition, Meflin is found on stromal cells distributed throughout the BM, and on pericytes and perivascular cells in multiple organs. Meflin maintains the undifferentiated state of cultured MSCs and is downregulated upon their differentiation, consistent with the observation that Meflin-deficient mice exhibit increased number of osteoblasts and accelerated bone development. In the bone and BM, Meflin is more highly expressed in primitive stromal cells that express platelet-derived growth factor receptor α and Sca-1 than the Sca-1-negative adipo-osteogenic progenitors, which create a niche for hematopoiesis. Those results are consistent with a decrease in the number of clonogenic colony-forming unit-fibroblasts within the BM of Meflin-deficient mice. These preliminary data suggest that Meflin is a potential marker for cultured MSCs and their source cells in vivo. PMID:26924503

  14. Identification of Meflin as a Potential Marker for Mesenchymal Stromal Cells.

    PubMed

    Maeda, Keiko; Enomoto, Atsushi; Hara, Akitoshi; Asai, Naoya; Kobayashi, Takeshi; Horinouchi, Asuka; Maruyama, Shoichi; Ishikawa, Yuichi; Nishiyama, Takahiro; Kiyoi, Hitoshi; Kato, Takuya; Ando, Kenju; Weng, Liang; Mii, Shinji; Asai, Masato; Mizutani, Yasuyuki; Watanabe, Osamu; Hirooka, Yoshiki; Goto, Hidemi; Takahashi, Masahide

    2016-01-01

    Bone marrow-derived mesenchymal stromal cells (BM-MSCs) in culture are derived from BM stromal cells or skeletal stem cells. Whereas MSCs have been exploited in clinical medicine, the identification of MSC-specific markers has been limited. Here, we report that a cell surface and secreted protein, Meflin, is expressed in cultured MSCs, fibroblasts and pericytes, but not other types of cells including epithelial, endothelial and smooth muscle cells. In vivo, Meflin is expressed by immature osteoblasts and chondroblasts. In addition, Meflin is found on stromal cells distributed throughout the BM, and on pericytes and perivascular cells in multiple organs. Meflin maintains the undifferentiated state of cultured MSCs and is downregulated upon their differentiation, consistent with the observation that Meflin-deficient mice exhibit increased number of osteoblasts and accelerated bone development. In the bone and BM, Meflin is more highly expressed in primitive stromal cells that express platelet-derived growth factor receptor α and Sca-1 than the Sca-1-negative adipo-osteogenic progenitors, which create a niche for hematopoiesis. Those results are consistent with a decrease in the number of clonogenic colony-forming unit-fibroblasts within the BM of Meflin-deficient mice. These preliminary data suggest that Meflin is a potential marker for cultured MSCs and their source cells in vivo. PMID:26924503

  15. Reprogramming of the tumour microenvironment by stromal PTEN-regulated miR-320.

    PubMed

    Bronisz, A; Godlewski, J; Wallace, J A; Merchant, A S; Nowicki, M O; Mathsyaraja, H; Srinivasan, R; Trimboli, A J; Martin, C K; Li, F; Yu, L; Fernandez, S A; Pécot, T; Rosol, T J; Cory, S; Hallett, M; Park, M; Piper, M G; Marsh, C B; Yee, L D; Jimenez, R E; Nuovo, G; Lawler, S E; Chiocca, E A; Leone, G; Ostrowski, M C

    2012-02-01

    PTEN (Phosphatase and tensin homolog deleted on chromosome 10) expression in stromal fibroblasts suppresses epithelial mammary tumours, but the underlying molecular mechanisms remain unknown. Using proteomic and expression profiling, we show that Pten loss from mammary stromal fibroblasts activates an oncogenic secretome that orchestrates the transcriptional reprogramming of other cell types in the microenvironment. Downregulation of miR-320 and upregulation of one of its direct targets, ETS2 (v-ets erythroblastosis virus E26 oncogene homolog 2) are critical events in Pten-deleted stromal fibroblasts responsible for inducing this oncogenic secretome, which in turn promotes tumour angiogenesis and tumour-cell invasion. Expression of the Pten-miR-320-Ets2-regulated secretome distinguished human normal breast stroma from tumour stroma and robustly correlated with recurrence in breast cancer patients. This work reveals miR-320 as a critical component of the Pten tumour-suppressor axis that acts in stromal fibroblasts to reprogramme the tumour microenvironment and curtail tumour progression. PMID:22179046

  16. CD271 antigen defines a subset of multipotent stromal cells with immunosuppressive and lymphohematopoietic engraftment-promoting properties

    PubMed Central

    Kuçi, Selim; Kuçi, Zyrafete; Kreyenberg, Hermann; Deak, Erika; Pütsch, Kathrin; Huenecke, Sabine; Amara, Chandrasekhar; Koller, Stefanie; Rettinger, Eva; Grez, Manuel; Koehl, Ulrike; Latifi-Pupovci, Hatixhe; Henschler, Reinhard; Tonn, Torsten; von Laer, Dorothee; Klingebiel, Thomas; Bader, Peter

    2010-01-01

    Background In vitro proliferative and differentiation potential of mesenchymal stromal cells generated from CD271+ bone marrow mononuclear cells (CD271-mesenchymal stromal cells) has been demonstrated in several earlier and recent reports. In the present study we focused, in addition to proliferative and differentiation potential, on in vitro and in vivo immunosuppressive and lymphohematopoietic engraftment-promoting potential of these mesenchymal stromal cells compared to bone marrow-derived mesenchymal stromal cells generated by plastic adherence (plastic adherence-mesenchymal stromal cells). Design and Methods We set up a series of experimental protocols in order to determine the phenotype of CD271-mesenchymal stromal cells, and their clonogenic, proliferative, differentiation and immunosuppressive potential. The potential of CD271-mesenchymal stromal cells to improve the engraftment of CD133+ hematopoietic stem cells at co-transplantation was evaluated in immunodeficient NOD/SCID-IL2Rγnull mice. Results In vitro studies demonstrated that CD271-mesenchymal stromal cells differentiate along adipogenic, osteogenic and chondrogenic lineages (trilineage potential), produce significantly higher levels of cytokines than plastic adherence-mesenchymal stromal cells, and significantly inhibit the proliferation of allogeneic T-lymphocytes in mixed lymphocyte reaction assays. Elevated levels of prostaglandin E2, but not nitric monoxide, mediated the majority of this immunosuppressive effect. In vivo studies showed that CD271-mesenchymal stromal cells promoted significantly greater lymphoid engraftment than did plastic adherence-mesenchymal stromal cells when co-transplanted with CD133+ hematopoietic stem cells at a ratio of 8:1 in immunodeficient NOD/SCID-IL2Rγnull mice. They induced a 10.4-fold increase in the number of T cells, a 2.5-fold increase in the number of NK cells, and a 3.6-fold increase in the number of B cells, indicating a major qualitative difference

  17. Tumoral pseudoangiomatous stromal hyperplasia of the breast.

    PubMed

    Wieman, Stephanie M; Landercasper, Jeffrey; Johnson, Jeanne M; Ellis, Richard L; Wester, Susan M; Lambert, Pamela J; Ross, Lauren A

    2008-12-01

    Tumoral pseudoangiomatous stromal hyperplasia (PASH) is a rare benign proliferative disease of the breast. The majority of the literature reports of PASH have not contained detailed descriptions of the imaging characteristics of PASH. A 10-year retrospective study of patients with tumoral PASH and a 20-year Ovid MEDLINE search were performed to determine whether specific imaging and needle biopsy results could characterize PASH preoperatively. We identified 22 patients with tumoral PASH. Seventeen (77%) of 22 women had a palpable lump and 14 (72%) of 21 had a density on mammography. Ultrasound (US) findings included mixed or hypoechoic echogenicity in 83 per cent and ill-defined borders in 62 per cent. Eight (36%) patients had lesions with a Breast Imaging Reporting and Data System (BI-RADS) classification of 4 or 5. The sensitivity of preoperative core needle biopsy (CNB) to identify PASH was 83 per cent. A review of the literature revealed that 90 per cent of patients with PASH had some malignant imaging characteristics and 95 per cent had a mass on mammography. The imaging characteristics of PASH exhibited marked variability. Excision of PASH after CNB may be considered for patients with symptoms, enlarging lesions, or lesions classified as BI-RADS 4 or 5. PASH diagnosed by CNB allows selected patients to avoid excision. PMID:19097540

  18. Mesenchymal precursor cells maintain the differentiation and proliferation potentials of breast epithelial cells

    PubMed Central

    2014-01-01

    Introduction Stromal-epithelial interactions play a fundamental role in tissue homeostasis, controlling cell proliferation and differentiation. Not surprisingly, aberrant stromal-epithelial interactions contribute to malignancies. Studies of the cellular and molecular mechanisms underlying these interactions require ex vivo experimental model systems that recapitulate the complexity of human tissue without compromising the differentiation and proliferation potentials of human primary cells. Methods We isolated and characterized human breast epithelial and mesenchymal precursors from reduction mammoplasty tissue and tagged them with lentiviral vectors. We assembled heterotypic co-cultures and compared mesenchymal and epithelial cells to cells in corresponding monocultures by analyzing growth, differentiation potentials, and gene expression profiles. Results We show that heterotypic culture of non-immortalized human primary breast epithelial and mesenchymal precursors maintains their proliferation and differentiation potentials and constrains their growth. We further describe the gene expression profiles of stromal and epithelial cells in co-cultures and monocultures and show increased expression of the tumor growth factor beta (TGFβ) family member inhibin beta A (INHBA) in mesenchymal cells grown as co-cultures compared with monocultures. Notably, overexpression of INHBA in mesenchymal cells increases colony formation potential of epithelial cells, suggesting that it contributes to the dynamic reciprocity between breast mesenchymal and epithelial cells. Conclusions The described heterotypic co-culture system will prove useful for further characterization of the molecular mechanisms mediating interactions between human normal or neoplastic breast epithelial cells and the stroma, and will provide a framework to test the relevance of the ever-increasing number of oncogenomic alterations identified in human breast cancer. PMID:24916766

  19. Structural Analysis of Different Incision Sizes and Stromal Hydration in Cataract Surgery Using Anterior Segment Optical Coherence Tomography

    PubMed Central

    Bang, Jong-Wook; Lee, Jong-Hyun; Kim, Jin-Hyoung

    2015-01-01

    Purpose To analyze healing changes of corneal wounds of different corneal incision sizes with or without stromal hydration in cataract surgery using anterior segment optical coherence tomography. Methods Cataract surgeries were performed by a single surgeon and 2.2- and 2.8-mm corneal incisions were made using a diamond blade (ME-759; Meyco, Biel-Bienne, Swiss). Patients were divided into four groups according to incision size (2.2 and 2.8 mm), and with/without stromal hydration. Fifteen eyes were assigned to each group and incision wounds were measured using anterior segment optical coherence tomography at 2 hours, 1 day, 1 week, 1 month, and 3 months postoperatively. Corneal thickness, incision length and incision angle were measured and existence of epithelial, endothelial gaping and Descemet's membrane detachment was evaluated. Results Incision thickness was greater in the group with stromal hydration than in the group without on operation day (p < 0.05). Stromal hydration exerted greater influence in the 2.2-mm incision group than in the 2.8-mm incision group. Corneal thickness decreased more rapidly in the stromal hydration group than in the group with no hydration (p = 0.022). Endothelial gaping was greater in the 2.2-mm incision group than in the 2.8-mm incision group 1 day, 1 month, and 3 months after surgery (p = 0.035, p = 0.009, and p = 0.008, respectively). No other statistical significance was observed between the two groups (2.2 and 2.8 mm) during follow-up regarding corneal thickness, epithelial gaping and Descemet's membrane detachment. Conclusions Corneal wounds with a smaller incision could be more vulnerable to external stimuli such as stromal hydration and are less stable than those with a larger incision. PMID:25646057

  20. Uterine Epithelial Estrogen Receptor-α Controls Decidualization via a Paracrine Mechanism.

    PubMed

    Pawar, S; Laws, M J; Bagchi, I C; Bagchi, M K

    2015-09-01

    Steroid hormone-regulated differentiation of uterine stromal cells, known as decidualization, is essential for embryo implantation. The role of the estrogen receptor-α (ESR1) during this differentiation process is unclear. Development of conditional Esr1-null mice showed that deletion of this gene in both epithelial and stromal compartments of the uterus leads to a complete blockade of decidualization, indicating a critical role of ESR1 during this process. To further elucidate the cell type-specific function of ESR1 in the uterus, we created WE(d/d) mice in which Esr1 is ablated in uterine luminal and glandular epithelia but is retained in the stroma. Uteri of WE(d/d) mice failed to undergo decidualization, indicating that epithelial ESR1 contributes to stromal differentiation via a paracrine mechanism. We noted markedly reduced production of the leukemia inhibitory factor (LIF) in WE(d/d) uteri. Supplementation with LIF restored decidualization in WE(d/d) mice. Our study indicated that LIF acts synergistically with progesterone to induce the expression of Indian hedgehog (IHH) in uterine epithelium and its receptor patched homolog 1 in the stroma. IHH then induces the expression of chicken ovalbumin upstream promoter-transcription factor II, a transcription factor that promotes stromal differentiation. To address the mechanism by which LIF induces IHH expression, we used mice lacking uterine epithelial signal transducer and activator of transcription 3, a well-known mediator of LIF signaling. Our study revealed that LIF-mediated induction of IHH occurs without the activation of epithelial signal transducer and activator of transcription 3 but uses an alternate pathway involving the activation of the ERK1/2 kinase. Collectively our results provide unique insights into the paracrine mechanisms by which ESR1 directs epithelial-stromal dialogue during pregnancy establishment. PMID:26241389

  1. Stroma provides an intestinal stem cell niche in the absence of epithelial Wnts.

    PubMed

    Kabiri, Zahra; Greicius, Gediminas; Madan, Babita; Biechele, Steffen; Zhong, Zhendong; Zaribafzadeh, Hamed; Edison; Aliyev, Jamal; Wu, Yonghui; Bunte, Ralph; Williams, Bart O; Rossant, Janet; Virshup, David M

    2014-06-01

    Wnt/β-catenin signaling supports intestinal homeostasis by regulating proliferation in the crypt. Multiple Wnts are expressed in Paneth cells as well as other intestinal epithelial and stromal cells. Ex vivo, Wnts secreted by Paneth cells can support intestinal stem cells when Wnt signaling is enhanced with supplemental R-Spondin 1 (RSPO1). However, in vivo, the source of Wnts in the stem cell niche is less clear. Genetic ablation of Porcn, an endoplasmic reticulum resident O-acyltransferase that is essential for the secretion and activity of all vertebrate Wnts, confirmed the role of intestinal epithelial Wnts in ex vivo culture. Unexpectedly, mice lacking epithelial Wnt activity (Porcn(Del)/Villin-Cre mice) had normal intestinal proliferation and differentiation, as well as successful regeneration after radiation injury, indicating that epithelial Wnts are dispensable for these processes. Consistent with a key role for stroma in the crypt niche, intestinal stromal cells endogenously expressing Wnts and Rspo3 support the growth of Porcn(Del) organoids ex vivo without RSPO1 supplementation. Conversely, increasing pharmacologic PORCN inhibition, affecting both stroma and epithelium, reduced Lgr5 intestinal stem cells, inhibited recovery from radiation injury, and at the highest dose fully blocked intestinal proliferation. We conclude that epithelial Wnts are dispensable and that stromal production of Wnts can fully support normal murine intestinal homeostasis. PMID:24821987

  2. Identifying the Spatial Relationships of Thymic Stromal and Thymocyte Subsets by Immunofluorescence Analysis.

    PubMed

    Bain, Virginia; Richie, Ellen R

    2016-01-01

    Immunofluorescence analysis of thymic tissue sections is an indispensable technique for visualizing spatial relationships among thymocyte and stromal cell subsets. The thymus is organized into distinct microenvironmental zones in which particular thymic epithelial cell (TEC) subsets support specific stages of thymocyte maturation. Conversely, thymocytes and lymphoid tissue inducer cells support functional maturation of TECs. The composition and organization of TECs change during ontogeny to generate a maximally functional organ in the young adult. Deterioration of thymic architecture and stromal organization occurs with age as the thymus undergoes involution. Such changes can be monitored by immunofluorescent staining of thymic sections obtained at different ages throughout the life-span. Here we describe methods to generate frozen or paraffin-embedded thymic tissue sections for multicolor immunofluorescence staining using antibodies to surface and/or cytoplasmic antigens. PMID:26294399

  3. Activity of neutral endopeptidase and aminopeptidase N in mouse thymic stromal cells which bind double-positive thymocytes.

    PubMed

    Small, M; Kaiser, M; Tse, W; Heimfeld, S; Blumberg, S

    1996-04-01

    The activity of two peptidases was determined in immortalized lines of thymic stromal cells. A line of total stromal cells (T-TG-St) was grown from transgenic mouse expressing temperature-sensitive SV40 T antigen under the control of the regulatory elements of the mouse major histocompatibility complex class I gene. From these cells we isolated a subset (DP-TG-St) that binds thymocytes which are mainly CD4+8+. We also assayed a clone of fetal thymic epithelial cells (BA/10) that binds CD4+8+ thymocytes. Both lines of double -positive cell-binding stroma exhibited strong activity of two peptidases, neutral endopeptidase (NEP; EC 3.4.24.11) and aminopeptidase N (APN; EC 3.4.11.2). In contrast, the activity of both enzymes was very low in the total thymic stromal line. Use of the specific inhibitors confirmed that these two enzymes were responsible for the activity observed but also suggested the presence of additional unidentified aminopeptidase(s) in the same stromal cells. The high activity of the two peptidases on stromal cells that bind thymocytes at the double-positive stage raises the possibility that they might contribute to the microenvironment of the developing thymocytes. PMID:8625997

  4. Generation of mesenchymal stromal cells in the presence of platelet lysate: a phenotypic and functional comparison of umbilical cord blood- and bone marrow-derived progenitors

    PubMed Central

    Avanzini, Maria Antonietta; Bernardo, Maria Ester; Cometa, Angela Maria; Perotti, Cesare; Zaffaroni, Nadia; Novara, Francesca; Visai, Livia; Moretta, Antonia; Del Fante, Claudia; Villa, Raffaella; Ball, Lynne M.; Fibbe, Willem E.; Maccario, Rita; Locatelli, Franco

    2009-01-01

    Background Mesenchymal stromal cells are employed in various different clinical settings in order to modulate immune response. However, relatively little is known about the mechanisms responsible for their immunomodulatory effects, which could be influenced by both the cell source and culture conditions. Design and Methods We tested the ability of a 5% platelet lysate-supplemented medium to support isolation and ex vivo expansion of mesenchymal stromal cells from full-term umbilical-cord blood. We also investigated the biological/functional properties of umbilical cord blood mesenchymal stromal cells, in comparison with platelet lysate-expanded bone marrow mesenchymal stromal cells. Results The success rate of isolation of mesenchymal stromal cells from umbilical cord blood was in the order of 20%. These cells exhibited typical morphology, immunophenotype and differentiation capacity. Although they have a low clonogenic efficiency, umbilical cord blood mesenchymal stromal cells may possess high proliferative potential. The genetic stability of these cells from umbilical cord blood was demonstrated by a normal molecular karyotype; in addition, these cells do not express hTERT and telomerase activity, do express p16ink4a protein and do not show anchorage-independent cell growth. Concerning alloantigen-specific immune responses, umbilical cord blood mesenchymal stromal cells were able to: (i) suppress T- and NK-lymphocyte proliferation, (ii) decrease cytotoxic activity and (iii) only slightly increase interleukin-10, while decreasing interferon-γ secretion, in mixed lymphocyte culture supernatants. While an indoleamine 2,3-dioxygenase-specific inhibitor did not reverse mesenchymal stromal cell-induced suppressive effects, a prostaglandin E2-specific inhibitor hampered the suppressive effect of both umbilical cord blood- and bone marrow-mesenchymal stromal cells on alloantigen-induced cytotoxic activity. Mesenchymal stromal cells from both sources expressed HLA

  5. Gastrointestinal Stromal Tumors: A Case Report

    PubMed Central

    Sashidharan, Palankezhe; Matele, Apoorva; Matele, Usha; Al Felahi, Nowfel; Kassem, Khalid F.

    2014-01-01

    Advances in the identification of gastrointestinal stromal tumors, its molecular and immunohiostochemical basis, and its management have been a watershed in the treatment of gastrointestinal tumors. This paradigm shift occurred over the last two decades and gastrointestinal stromal tumors have now come to be understood as rare gastrointestinal tract tumors with predictable behavior and outcome, replacing the older terminologies like leiomyoma, schwannoma or leiomyosarcoma. This report presents a case of gastric gastrointestinal stromal tumor operated recently in a 47-year-old female patient and the outcome, as well as literature review of the pathological identification, sites of origin, and factors predicting its behavior, prognosis and treatment. PMID:24715944

  6. Mesenchymal stroma: primary determinant and therapeutic target for epithelial cancer

    PubMed Central

    Goruppi, Sandro; Dotto, G. Paolo

    2013-01-01

    Multifocal and recurrent epithelial tumors, originating from either dormant or de novo cancer cells, are major causes of morbidity and mortality. The age-dependent increase of cancer incidence has long been assumed to result from the sequential accumulation of cancer driving or facilitating mutations with induction of cellular senescence as a protective mechanism. However, recent evidence suggests that the initiation and development of epithelial cancer results from a close interplay with its altered tissue microenvironment, with chronic inflammation, stromal senescence, autophagy, and activation of cancer associated fibroblasts (CAFs) playing possible primary roles. We will discuss recent progress in these areas, and highlight how this understanding may be used for devising novel preventive and therapeutic approaches to the epithelial cancer problem. PMID:24074947

  7. A spinal tumor showing mixed features of ependymoma and hemangioblastoma: a case report and literature review.

    PubMed

    Cheng, Hai-Xia; Chu, Shu-Guang; Xu, Qi-Wu; Wang, Yin

    2015-04-01

    We report an intramedullary spinal tumor consisting of an ependymoma and a hemangioblastoma (HB). A 37-year-old woman presented with progressive bilateral lower limb sensory and motor deficits. Magnetic resonance imaging showed a single intramedullary mass in the thoracic cord (T4-T6 level). Clinically, the patient had no von Hippel-Lindau disease and neurofibromatosis type 2. Metastatic carcinomas including renal cell carcinoma were altogether negative. Complete surgical resection was performed. Histologically, the tumor consisted of a mixed ependymoma and HB. Tumor cells of ependymoma displayed a rather uniform appearance with round to oval nuclei having salt-and-pepper-like chromatin, forming perivascular pseudorosette structures with radially arranged, tapering cell processes extending to intratumoral blood vessels. Stromal cells of HB had vacuolated or homogeneously eosinophilic cytoplasm and variable sized hyperchromatic nuclei within a background of capillaries. Immunohistochemically, tumor cells of ependymoma were strongly positive for glial fibrillary acidic protein (GFAP), focally positive for epithelial membrane antigen (EMA) and D2-40 in a dot-like or ring-like pattern. Stromal cells of HB showed immunoreactivity for S100, vimentin, inhibin-α, D2-40, EMA and cytokeratins (CK: AE1/AE3, CK19). A review of the literature, in conjunction with the present case, shows that ependymomas and HBs may have a close relationship with each other. PMID:25515524

  8. Stromal matrix metalloproteinase-11 is involved in the mammary gland postnatal development.

    PubMed

    Tan, J; Buache, E; Alpy, F; Daguenet, E; Tomasetto, C-L; Ren, G-S; Rio, M-C

    2014-07-31

    MMP-11 is a bad prognosis paracrine factor in invasive breast cancers. However, its mammary physiological function remains largely unknown. In the present study we have investigated MMP-11 function during postnatal mammary gland development and function using MMP-11-deficient (MMP-11-/-) mice. Histological and immunohistochemical analyses as well as whole-mount mammary gland staining show alteration of the mammary gland in the absence of MMP-11, where ductal tree, alveolar structures and milk production are reduced. Moreover, a series of transplantation experiments allowed us to demonstrate that MMP-11 exerts an essential local paracrine function that favors mammary gland branching and epithelial cell outgrowth and invasion through adjacent connective tissues. Indeed, MMP-11-/- cleared fat pads are not permissive for wild-type epithelium development, whereas MMP-11-/- epithelium transplants grow normally when implanted in wild-type cleared fat pads. In addition, using primary mammary epithelial organoids, we show in vitro that this MMP-11 pro-branching effect is not direct, suggesting that MMP-11 acts via production/release of stroma-associated soluble factor(s). Finally, the lack of MMP-11 leads to decreased periductal collagen content, suggesting that MMP-11 has a role in collagen homeostasis. Thus, local stromal MMP-11 might also regulate mammary epithelial cell behavior mechanically by promoting extracellular matrix stiffness. Collectively, the present data indicate that MMP-11 is a paracrine factor involved during postnatal mammary gland morphogenesis, and support the concept that the stroma strongly impact epithelial cell behavior. Interestingly, stromal MMP-11 has previously been reported to favor malignant epithelial cell survival and promote cancer aggressiveness. Thus, MMP-11 has a paracrine function during mammary gland development that might be harnessed to promote tumor progression, exposing a new link between development and malignancy. PMID:24141782

  9. Ovarian endometriosis-associated stromal cells reveal persistently high affinity for iron

    PubMed Central

    Mori, Masahiko; Ito, Fumiya; Shi, Lei; Wang, Yue; Ishida, Chiharu; Hattori, Yuka; Niwa, Masato; Hirayama, Tasuku; Nagasawa, Hideko; Iwase, Akira; Kikkawa, Fumitaka; Toyokuni, Shinya

    2015-01-01

    Ovarian endometriosis is a recognized risk for infertility and epithelial ovarian cancer, presumably due to iron overload resulting from repeated hemorrhage. To find a clue for early detection and prevention of ovarian endometriosis-associated cancer, it is mandatory to evaluate catalytic (labile) ferrous iron (catalytic Fe(II)) and to study iron manipulation in ovarian endometriotic lesions. By the use of tissues from women of ovarian endometriosis as well as endometrial tissue from women with and without endometriosis, we for the first time performed histological analysis and cellular detection of catalytic Fe(II) with a specific fluorescent probe (HMRhoNox-M), and further evaluated iron transport proteins in the human specimens and in co-culture experiments using immortalized human eutopic/ectopic endometrial stromal cells (ESCs) in the presence or absence of epithelial cells (EpCs). The amounts of catalytic Fe(II) were higher in ectopic endometrial stromal cells (ecESCs) than in normal eutopic endometrial stromal cells (n-euESCs) both in the tissues and in the corresponding immortalized ESCs. ecESCs exhibited higher transferrin receptor 1 expression both in vivo and in vitro and lower ferroportin expression in vivo than n-euESCs, leading to sustained iron uptake. In co-culture experiments of ESCs with iron-loaded EpCs, ecESCs received catalytic ferrous iron from EpCs, but n-euESCs did not. These data suggest that ecESC play a protective role for cancer-target epithelial cells by collecting excess iron, and that these characteristics are retained in the immortalized ecESCs. PMID:26498255

  10. Gastrointestinal stromal tumor (gist) of the duodenum.

    PubMed

    Ghazanfar, Shahriyar; Sial, Khadim S; Quraishy, M S

    2007-06-01

    This is a report of a rare gastrointestinal stromal tumor of the duodenum in a 75 years old man who presented with recurrent episodes of intestinal obstruction and melena. The patient underwent successful Whipple's procedure. PMID:17623589

  11. Expression of the FGFR2 mesenchymal splicing variant in epithelial cells drives epithelial-mesenchymal transition

    PubMed Central

    Ranieri, Danilo; Rosato, Benedetta; Nanni, Monica; Magenta, Alessandra

    2016-01-01

    The FGFRs are receptor tyrosine kinases expressed by tissue-specific alternative splicing in epithelial IIIb or mesenchymal IIIc isoforms. Deregulation of FGF/FGFR signaling unbalances the epithelial-stromal homeostasis and may lead to cancer development. In the epithelial-context, while FGFR2b/KGFR acts as tumor suppressor, FGFR2c appears to play an oncogenic role. Based on our recent observation that the switching of FGFR2b versus FGFR2c induces EMT, here we investigated the biological outcome of the ectopic expression of FGFR2c in normal human keratinocytes. Morphological analysis showed that, differently from FGFR2b overexpression, the forced expression and activation of FGFR2c drive the epithelial cells to acquire a mesenchymal-like shape and actin reorganization. Moreover, the appearance of invasiveness and anchorage-independent growth ability in FGFR2c transfected keratinocytes was consistent with the potential tumorigenic role proposed for this receptor variant. Biochemical and molecular approaches revealed that the observed phenotypic changes were accompanied by modulation of EMT biomarkers and indicated the involvement of EMT transcription factors and miRs. Finally, the analysis of the expression pattern of discriminating markers strongly suggested that activation of FGFR2c triggers a process corresponding to the initiation of the pathological type III EMT, but not to the more physiological type II EMT occurring during FGFR2b-mediated wound healing. PMID:26713601

  12. Pseudoangiomatous stromal hyperplasia: a case report.

    PubMed

    Masannat, Yazan A; Whitehead, Stephen; Hawley, Ian; Apthorp, Lesley; Shah, Elizabeth F

    2010-01-01

    Pseudoangiomatous stromal hyperplasia (PASH) is a rare benign proliferating breast condition. It was first reported in 1986 when Vuitch, Rosen, and Erlandson described nine cases of benign well-circumscribed, breast masses that simulated vascular lesions consisting of mammary stromal proliferations (Vuitch et al. (1986)). Since then there have been few reported cases of PASH in the literature (Taira et al. (2005)). We describe a large PASH, mimicking inflammatory carcinoma in a young lady that was excised with excellent cosmetic results. PMID:21318179

  13. Isolation of Murine Lymph Node Stromal Cells

    PubMed Central

    Lagarde, Nadège; Rossi, Simona W.

    2014-01-01

    Secondary lymphoid organs including lymph nodes are composed of stromal cells that provide a structural environment for homeostasis, activation and differentiation of lymphocytes. Various stromal cell subsets have been identified by the expression of the adhesion molecule CD31 and glycoprotein podoplanin (gp38), T zone reticular cells or fibroblastic reticular cells, lymphatic endothelial cells, blood endothelial cells and FRC-like pericytes within the double negative cell population. For all populations different functions are described including, separation and lining of different compartments, attraction of and interaction with different cell types, filtration of the draining fluidics and contraction of the lymphatic vessels. In the last years, different groups have described an additional role of stromal cells in orchestrating and regulating cytotoxic T cell responses potentially dangerous for the host. Lymph nodes are complex structures with many different cell types and therefore require a appropriate procedure for isolation of the desired cell populations. Currently, protocols for the isolation of lymph node stromal cells rely on enzymatic digestion with varying incubation times; however, stromal cells and their surface molecules are sensitive to these enzymes, which results in loss of surface marker expression and cell death. Here a short enzymatic digestion protocol combined with automated mechanical disruption to obtain viable single cells suspension of lymph node stromal cells maintaining their surface molecule expression is proposed. PMID:25178108

  14. Subclinical Increased Anterior Stromal Reflectivity With Topical Taprenepag Isopropyl

    PubMed Central

    Schachar, Ronald A.; Raber, Susan; Thomas, Kristina V.; Benetz, Beth Ann M.; Szczotka-Flynn, Loretta B.; Zhang, Min; Howell, Scott J.; Lass, Jonathan H.

    2016-01-01

    Purpose To assess the effect of topical taprenepag isopropyl on each layer of the cornea by confocal microscopy. Methods Thirty-two ocular hypertensive or glaucoma patients were randomized into a 2-period, crossover study of 14 days of 0.1% taprenepag alone and in unfixed combination with 0.005% latanoprost (combination therapy). Baseline and sequential slit-lamp biomicroscopy, fluorescein staining, central ultrasonic pachymetry, and confocal microscopy were performed. Confocal images were analyzed for the density of the central superficial and basal epithelium, midstromal keratocytes, and endothelium, as well as endothelial coefficient of variation and percentage of hexagonal cells, and reflectivity of anterior stromal and midstromal layers. Results Corneal staining increased from baseline, reaching a peak at day 13 (69% and 63% of subjects treated with monotherapy and combination therapy, respectively), which resolved by day 35. A statistically significant increase in mean corneal thickness for both eyes and both treatments occurred on days 7 and 13 (range, 20–27 μm; P < 0.001) but recovered (≤6 μm) by day 35. No statistically significant changes were observed in the basal epithelial, midstromal, or endothelial cells. Mean ratio of average reflectivity of anterior stroma to midstroma increased on days 13 and 35 in period 1 for each treatment (range, 1.2–1.9; P < 0.001), and this increase persisted during period 2. Conclusions Anterior stromal reflectivity may remain increased even when biomicroscopic and confocal images of corneal layers remain normal or have recovered after topical taprenepag. This subclinical measure may be useful to detect a persistent adverse effect of a topical agent on the cornea. PMID:22549238

  15. Characteristics of Multipotent Mesenchymal Stromal Cells Isolated from Human Endometrium and Endometriosis Lesions.

    PubMed

    Savilova, A M; Yushina, M N; Rudimova, Yu V; Khabas, G N; Chuprynin, V D; Sukhikh, G T

    2016-08-01

    Cell cultures isolated from endometriosis lesions by enzymatic dissociation consisted of fibroblast-like cells expressing CD90, CD73, and CD105; cell viability in these cultures was >90%, but this parameter decreased by passage 3. Zero passage cultures contained 10-25% epithelial cells expressing cytokeratin-7, but by passage 2, the cultures became more homogeneous and epithelial cells disappeared. The proportion of proliferating cells and population doubling level increased from passage 1 to passage 3. The cultures from the endometrium were induced to adipogenic and osteogenic differentiation in vitro. The cultures derived from ectopic endometrium have properties of multipotent mesenchymal stromal cells that exhibited in vitro similarities and differences from cell cultures from eutopic endometrium, which allows using this cell model for the search and testing of new drugs and technologies aimed at suppression of the growth and spread of endometriosis lesions. PMID:27590769

  16. Sparfloxacin-associated corneal epithelial toxicity.

    PubMed

    Agarwal, Aniruddha Kishandutt; Ram, Jagat; Singh, Ramandeep

    2014-01-01

    Sparfloxacin is a broad-spectrum fluoroquinolone antibiotic commonly used for various bacterial corneal infections. Topical use of fluoroquinolones is considered to be safe leading to their widespread use. Common indications include blepharitis, conjunctivitis and corneal ulcers. However, unsupervised prolonged use is associated with deposition of crystalline material in the epithelial and anterior stromal layers of the cornea. These may be associated with significant visual symptoms including diminution of vision and glare/photophobia. We present a case of a 40-year-old man who was treated with topical 0.3% sparfloxacin unsupervised for a long time. The patient developed significant visual impairment due to diffuse epitheliopathy. Cessation of the drug was slowly followed by reversal of manifestations and normalisation of corneal morphology. PMID:25239984

  17. Ex vivo expanded SSEA-4+ human limbal stromal cells are multipotent and do not express other embryonic stem cell markers

    PubMed Central

    Hussin, Noor Hamidah; Othman, Ainoon; Umapathy, Thiageswari; Baharuddin, Puteri; Jamal, Rahman; Zakaria, Zubaidah

    2012-01-01

    Purpose The presence of multipotent human limbal stromal cells resembling mesenchymal stromal cells (MSC) provides new insights to the characteristic of these cells and its therapeutic potential. However, little is known about the expression of stage-specific embryonic antigen 4 (SSEA-4) and the embryonic stem cell (ESC)-like properties of these cells. We studied the expression of SSEA-4 surface protein and the various ESC and MSC markers in the ex vivo cultured limbal stromal cells. The phenotypes and multipotent differentiation potential of these cells were also evaluated. Methods Limbal stromal cells were derived from corneoscleral rims. The SSEA-4+ and SSEA-4- limbal stromal cells were sorted by fluorescence-activated cells sorting (FACS). Isolated cells were expanded and reanalyzed for their expression of SSEA-4. Expression of MSC and ESC markers on these cells were also analyzed by FACS. In addition, expression of limbal epithelial and corneal stromal proteins such as ATP-binding cassette sub-family G member 2 (ABCG2), tumour protein p63 (p63), paired box 6 (Pax6), cytokeratin 3 (AE5), cytokeratin 10, and keratocan sulfate were evaluated either by immunofluorecence staining or reverse transcription polymerase chain reaction. Appropriate induction medium was used to differentiate these cells into adipocytes, osteocytes, and chondrocytes. Results Expanded limbal stromal cells expressed the majority of mesenchymal markers. These cells were negative for ABCG2, p63, Pax6, AE-5, and keratocan sulfate. After passaged, a subpopulation of these cells showed low expression of SSEA-4 but were negative for other important ESC surface markers such as Tra-1–60, Tra-1–81, and transcription factors like octamer-binding transcription factor 4 (Oct4), SRY(sex determining region Y)-box 2 (Sox2), and Nanog. Early passaged cells when induced were able to differentiate into adipocytes, osteocytes and chondrocytes. Conclusions The expanded limbal stromal cells showed features

  18. Multicentric malignant gastrointestinal stromal tumor.

    PubMed

    Shukla, Shailaja; Singh, Sanjeet K; Pujani, Mukta

    2009-01-01

    Malignant gastrointestinal stromal tumor (GIST) is a rare type of sarcoma that is found in the digestive system, most often in the wall of the stomach. Multiple GISTs are extremely rare and usually associated with type 1 neurofibromatosis and familial GIST.We report here a case of a 70-year-old woman who reported pain in the abdomen, loss of appetite, and weight loss for six months. Ultrasound examination showed a small bowel mass along with multiple peritoneal deposits and a mass within the liver. Barium studies were suggestive of a neoplastic pathology of the distal ileum. A differential diagnosis of adenocarcinoma/lymphoma with metastases was entertained. Perioperative findings showed two large growths arising from the jejunum and the distal ileum, along with multiple smaller nodules on the serosal surface and adjoining mesentery of the involved bowel segments. Segmental resection of the involved portions of the intestine was performed. Histopathological features were consistent with those of multicentric malignant GIST-not otherwise specified (GIST-NOS). Follow-up examination three months after surgery showed no evidence of recurrence. PMID:19568556

  19. What Should You Ask Your Doctor about Gastrointestinal Stromal Tumors?

    MedlinePlus

    ... gastrointestinal stromal tumors? What should you ask your doctor about gastrointestinal stromal tumors? As you cope with ... we encourage you to talk openly with your doctor, nurse, and cancer care team. You should feel ...

  20. What Are the Risk Factors for Gastrointestinal Stromal Tumors?

    MedlinePlus

    ... what causes gastrointestinal stromal tumors? What are the risk factors for gastrointestinal stromal tumors? A risk factor is ... disease like cancer. Different cancers have different risk factors. Some risk factors, like smoking, can be changed. Others, like ...

  1. A case of retained graphite anterior chamber foreign body masquerading as stromal keratitis.

    PubMed

    Han, Eun Ryung; Wee, Won Ryang; Lee, Jin Hak; Hyon, Joon Young

    2011-04-01

    We report a case of a retained graphite anterior chamber foreign body that was masquerading as stromal keratitis. A 28-year-old male visited with complaints of visual disturbance and hyperemia in his right eye for four weeks. On initial examination, he presented with a stromal edema involving the inferior half of the cornea, epithelial microcysts, and moderate chamber inflammation. Suspecting herpetic stromal keratitis, he was treated with anti-viral and anti-inflammatory agents. One month after the initial visit, anterior chamber inflammation was improved and his visual acuity recovered to 20/20, but subtle corneal edema still remained. On tapering the medication, after three months, a foreign body was incidentally identified in the inferior chamber angle and was surgically removed resulting in complete resolution of corneal edema. The removed foreign body was a fragment of graphite and he subsequently disclosed a trauma with mechanical pencil 12 years earlier. This case showed that the presence of an anterior chamber foreign body should always be considered in the differential diagnosis of idiopathic localized corneal edema. PMID:21461226

  2. Understanding tumor-stroma interplays for targeted therapies by armed mesenchymal stromal progenitors: the Mesenkillers

    PubMed Central

    Grisendi, Giulia; Bussolari, Rita; Veronesi, Elena; Piccinno, Serena; Burns, Jorge S; De Santis, Giorgio; Loschi, Pietro; Pignatti, Marco; Di Benedetto, Fabrizio; Ballarin, Roberto; Di Gregorio, Carmela; Guarneri, Valentina; Piccinini, Lino; Horwitz, Edwin M; Paolucci, Paolo; Conte, PierFranco; Dominici, Massimo

    2011-01-01

    A tumor represents a complex structure containing malignant cells strictly coupled with a large variety of surrounding cells constituting the tumor stroma (TS). In recent years, the importance of TS for cancer initiation, development, local invasion and metastases has become increasingly clear allowing the identification of TS as one of the possible ways to indirectly target tumors. Inside the heterogeneous stromal cell population, tumor associated fibroblasts (TAF) play a crucial role providing both functional and supportive environments. During both tumor and stroma development, several findings suggest that TAF could be recruited from different sources such as locally derived host fibroblasts, via epithelial/endothelial mesenchymal transitions or from circulating pools of fibroblasts deriving form mesenchymal progenitors, namely mesenchymal stem/stromal cells (MSC). These insights prompted scientists to identify multimodal approaches to target TS by biomolecules, monoclonal antibodies, and more recently via cell based strategies. These latter strategies appear extremely promising, although still associated with debated and unclear findings. This review discusses crosstalk between cancers and their stroma, dissecting specific tumor types, such as sarcoma, pancreatic and breast carcinoma, where stroma plays distinct paradigmatic roles. The recognition of these distinct stromal functions may help in planning effective and safer approaches aimed either to eradicate or to substitute TS by novel compounds and/or MSC having specific killing activities. PMID:22016827

  3. Round cell pattern of prostatic stromal tumor of uncertain malignant potential: a subtle newly recognized variant.

    PubMed

    Sadimin, Evita T; Epstein, Jonathan I

    2016-06-01

    Prostatic stromal tumor of uncertain malignant potential (STUMP) is a distinct entity which includes several different patterns. Four patterns of STUMP have been described including stroma with (1) degenerative atypia, (2) hypercellular spindle cells, (3) myxoid spindle cells, and (4) phyllodes-like pattern. The current study identified a novel round cell pattern. We searched our database from 1999 to 2015 and identified 7 patients with round cell pattern out of a total number of 98 patients with STUMP. All 7 cases showed mildly increased stromal cellularity with rounded nuclei, diagnosed on core biopsies in 5 cases, transurethral resection in 1 case, and radical prostatectomy in 1 case. Some degree of glandular displacement was observed in 4 cases. In 2 of the cases, STUMP was not recognized histologically by the referring pathologists and was initially diagnosed as benign prostatic hyperplasia. As has been described with other patterns of STUMP, several cases showed associated epithelial proliferations that in some instances masked the neoplastic stromal process. The round cell pattern of STUMP is a new deceptively subtle pattern that may not be recognized as a neoplasm and may be misdiagnosed as benign prostatic hyperplasia. Although there was no direct evidence in our study that the round cell pattern of STUMP has the same behavior as other variants of STUMPs, increased recognition of this entity will hopefully lead to additional studies to further understand its malignant potential. PMID:26980017

  4. Targeting Stromal-Cancer Cell Crosstalk Networks in Ovarian Cancer Treatment

    PubMed Central

    Yeung, Tsz-Lun; Leung, Cecilia S.; Li, Fuhai; Wong, Stephen T. C.; Mok, Samuel C.

    2016-01-01

    Ovarian cancer is a histologically, clinically, and molecularly diverse disease with a five-year survival rate of less than 30%. It has been estimated that approximately 21,980 new cases of epithelial ovarian cancer will be diagnosed and 14,270 deaths will occur in the United States in 2015, making it the most lethal gynecologic malignancy. Ovarian tumor tissue is composed of cancer cells and a collection of different stromal cells. There is increasing evidence that demonstrates that stromal involvement is important in ovarian cancer pathogenesis. Therefore, stroma-specific signaling pathways, stroma-derived factors, and genetic changes in the tumor stroma present unique opportunities for improving the diagnosis and treatment of ovarian cancer. Cancer-associated fibroblasts (CAFs) are one of the major components of the tumor stroma that have demonstrated supportive roles in tumor progression. In this review, we highlight various types of signaling crosstalk between ovarian cancer cells and stromal cells, particularly with CAFs. In addition to evaluating the importance of signaling crosstalk in ovarian cancer progression, we discuss approaches that can be used to target tumor-promoting signaling crosstalk and how these approaches can be translated into potential ovarian cancer treatment. PMID:26751490

  5. Stromal cell-based immunotherapy in transplantation

    PubMed Central

    Charles, Ronald; Lu, Lina; Qian, Shiguang; Fung, John J

    2012-01-01

    Organs are composed of parenchymal cells that characterize organ function and nonparenchymal cells that are composed of cells in transit, as well as tissue connective tissue, also referred to as tissue stromal cells. It was originally thought that these tissue stromal cells provided only structural and functional support for parenchymal cells and were relatively inert. However, we have come to realize that tissue stromal cells, not restricted to in the thymus and lymphoid organs, also play an active role in modulating the immune system and its response to antigens. The recognition of these elements and the elucidation of their mechanisms of action have provided valuable insight into peripheral immune regulation. Extrapolation of these principles may allow us to utilize their potential for clinical application. In this article, we will summarize a number of tissue stromal elements/cell types that have been shown to induce hyporesponsiveness to transplants. We will also discuss the mechanisms by which these stromal cells create a tolerogenic environment, which in turn results in long-term allograft survival. PMID:22091683

  6. Intrathymic lymphopoiesis: stromal cell-associated proliferation of T cells is independent of lymphocyte genotype.

    PubMed

    Kyewski, B A; Travis, M; Kaplan, H S

    1984-09-01

    We analyzed the genetic restriction of direct cell-cell interactions between thymocytes and a) cortical epithelial cells, b) macrophages, and c) medullary dendritic cells in the mouse thymus. Thymectomized (C3H X C57BL/Ka)F1 hybrid mice were doubly grafted with P1 and P2 neonatal thymus grafts, were lethally irradiated, and were reconstituted with a mixture of P1 and P2 bone marrow cells which differed in the Thy-1 locus. The contributions of both parental inocula to the composition of the free and stromal cell-associated T cell compartments were analyzed separately in thymic grafts of each parental strain. The lymphoid composition in both compartments essentially reflected the peripheral T cell-chimerism in the host. The development of lymphostromal complexes was not restricted by the genotype of the partner cells. Statistical analysis of the distributions of P1 and P2 T cells among free thymocytes and within individual lymphostromal complexes, however, suggests that the T cells of an individual complex are the progeny of oligoclonal proliferation. Thus, both epithelial cells and bone marrow-derived stromal cells seem to be involved in different stages of intrathymic lymphopoiesis. PMID:6611364

  7. Surgical Treatment of Gastric Gastrointestinal Stromal Tumor

    PubMed Central

    Kong, Seong-Ho

    2013-01-01

    Gastrointestinal stromal tumor is the most common mesenchymal tumor in the gastrointestinal tract and is most frequently developed in the stomach in the form of submucosal tumor. The incidence of gastric gastrointestinal stromal tumor is estimated to be as high as 25% of the population when all small and asymptomatic tumors are included. Because gastric gastrointestinal stromal tumor is not completely distinguished from other submucosal tumors, a surgical excisional biopsy is recommended for tumors >2 cm. The surgical principles of gastrointestinal stromal tumor are composed of an R0 resection with a normal mucosa margin, no systemic lymph node dissection, and avoidance of perforation, which results in peritoneal seeding even in cases with otherwise low risk profiles. Laparoscopic surgery has been indicated for gastrointestinal stromal tumors <5 cm, and the indication for laparoscopic surgery is expanded to larger tumors if the above mentioned surgical principles can be maintained. A simple exogastric resection and various transgastric resection techniques are used for gastrointestinal stromal tumors in favorable locations (the fundus, body, greater curvature side). For a lesion at the gastroesophageal junction in the posterior wall of the stomach, enucleation techniques have been tried preserve the organ's function. Those methods have a theoretical risk of seeding a ruptured tumor, but this risk has not been evaluated by well-designed clinical trials. While some clinical trials are still on-going, neoadjuvant imatinib is suggested when marginally unresectable or multiorgan resection is anticipated to reduce the extent of surgery and the chance of incomplete resection, rupture or bleeding. PMID:23610714

  8. Comparative proteomic analysis of normal and tumor stromal cells by tissue on chip based mass spectrometry (toc-MS)

    PubMed Central

    2010-01-01

    In carcinoma tissues, genetic and metabolic changes not only occur at the tumor cell level, but also in the surrounding stroma. This carcinoma-reactive stromal tissue is heterogeneous and consists e.g. of non-epithelial cells such as fibroblasts or fibrocytes, inflammatory cells and vasculature-related cells, which promote carcinoma growth and progression of carcinomas. Nevertheless, there is just little knowledge about the proteomic changes from normal connective tissue to tumor stroma. In the present study, we acquired and analysed specific protein patterns of small stromal sections surrounding head and neck cell complexes in comparison to normal subepithelial connective tissue. To gain defined stromal areas we used laser-based tissue microdissection. Because these stromal areas are limited in size we established the highly sensitive 'tissue on chip based mass spectrometry' (toc-MS). Therefore, the dissected areas were directly transferred to chromatographic arrays and the proteomic profiles were subsequently analysed with mass spectrometry. At least 100 cells were needed for an adequate spectrum. The locating of differentially expressed proteins enables a precise separation of normal and tumor stroma. The newly described toc-MS technology allows an initial insight into proteomic differences between small numbers of exactly defined cells from normal and tumor stroma. PMID:20205871

  9. Anti-stromal treatment together with chemotherapy targets multiple signalling pathways in pancreatic adenocarcinoma.

    PubMed

    Carapuça, Elisabete F; Gemenetzidis, Emilios; Feig, Christine; Bapiro, Tashinga E; Williams, Michael D; Wilson, Abigail S; Delvecchio, Francesca R; Arumugam, Prabhu; Grose, Richard P; Lemoine, Nicholas R; Richards, Frances M; Kocher, Hemant M

    2016-07-01

    Stromal targeting for pancreatic ductal adenocarcinoma (PDAC) is rapidly becoming an attractive option, due to the lack of efficacy of standard chemotherapy and increased knowledge about PDAC stroma. We postulated that the addition of stromal therapy may enhance the anti-tumour efficacy of chemotherapy. Gemcitabine and all-trans retinoic acid (ATRA) were combined in a clinically applicable regimen, to target cancer cells and pancreatic stellate cells (PSCs) respectively, in 3D organotypic culture models and genetically engineered mice (LSL-Kras(G12D) (/+) ;LSL-Trp53(R172H) (/+) ;Pdx-1-Cre: KPC mice) representing the spectrum of PDAC. In two distinct sets of organotypic models as well as KPC mice, we demonstrate a reduction in cancer cell proliferation and invasion together with enhanced cancer cell apoptosis when ATRA is combined with gemcitabine, compared to vehicle or either agent alone. Simultaneously, PSC activity (as measured by deposition of extracellular matrix proteins such as collagen and fibronectin) and PSC invasive ability were both diminished in response to combination therapy. These effects were mediated through a range of signalling cascades (Wnt, hedgehog, retinoid, and FGF) in cancer as well as stellate cells, affecting epithelial cellular functions such as epithelial-mesenchymal transition, cellular polarity, and lumen formation. At the tissue level, this resulted in enhanced tumour necrosis, increased vascularity, and diminished hypoxia. Consequently, there was an overall reduction in tumour size. The enhanced effect of stromal co-targeting (ATRA) alongside chemotherapy (gemcitabine) appears to be mediated by dampening multiple signalling cascades in the tumour-stroma cross-talk, rather than ablating stroma or targeting a single pathway. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. PMID:27061193

  10. TGF-β in jaw tumor fluids induces RANKL expression in stromal fibroblasts.

    PubMed

    Yamada, Chiaki; Aikawa, Tomonao; Okuno, Emi; Miyagawa, Kazuaki; Amano, Katsuhiko; Takahata, Sosuke; Kimata, Masaaki; Okura, Masaya; Iida, Seiji; Kogo, Mikihiko

    2016-08-01

    Odontogenic tumors and cysts, arising in the jawbones, grow by resorption and destruction of the jawbones. However, mechanisms underlying bone resorption by odontogenic tumors/cysts remain unclear. Odontogenic tumors/cysts comprise odontogenic epithelial cells and stromal fibroblasts, which originate from the developing tooth germ. It has been demonstrated that odontogenic epithelial cells of the developing tooth germ induce osteoclastogenesis to prevent the tooth germ from invading the developing bone to maintain its structure in developing bones. Thus, we hypothesized that odontogenic epithelial cells of odontogenic tumors/cysts induce osteoclast formation, which plays potential roles in tumor/cyst outgrowth into the jawbone. The purpose of this study was to examine osteoclastogenesis by cytokines, focusing on transforming growth factor-β (TGF-β), produced by odontogenic epithelial cells. We observed two pathways for receptor activator of NF-κB ligand (RANKL) induction by keratocystic odontogenic tumor fluid: the cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) pathway through interleukin-1α (IL-1α) signaling and non-COX-2/PGE2 pathway through TGF-β receptor signaling. TGF-β1 and IL-1α produced by odontogenic tumors/cysts induced osteoclastogenesis directly in the osteoclast precursor cells and indirectly via increased RANKL induction in the stroma. PMID:27279422

  11. TGF-β in jaw tumor fluids induces RANKL expression in stromal fibroblasts

    PubMed Central

    Yamada, Chiaki; Aikawa, Tomonao; Okuno, Emi; Miyagawa, Kazuaki; Amano, Katsuhiko; Takahata, Sosuke; Kimata, Masaaki; Okura, Masaya; Iida, Seiji; Kogo, Mikihiko

    2016-01-01

    Odontogenic tumors and cysts, arising in the jawbones, grow by resorption and destruction of the jawbones. However, mechanisms underlying bone resorption by odontogenic tumors/cysts remain unclear. Odontogenic tumors/cysts comprise odontogenic epithelial cells and stromal fibroblasts, which originate from the developing tooth germ. It has been demonstrated that odontogenic epithelial cells of the developing tooth germ induce osteoclastogenesis to prevent the tooth germ from invading the developing bone to maintain its structure in developing bones. Thus, we hypothesized that odontogenic epithelial cells of odontogenic tumors/cysts induce osteoclast formation, which plays potential roles in tumor/cyst outgrowth into the jawbone. The purpose of this study was to examine osteoclastogenesis by cytokines, focusing on transforming growth factor-β (TGF-β), produced by odontogenic epithelial cells. We observed two pathways for receptor activator of NF-κB ligand (RANKL) induction by keratocystic odontogenic tumor fluid: the cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) pathway through interleukin-1α (IL-1α) signaling and non-COX-2/PGE2 pathway through TGF-β receptor signaling. TGF-β1 and IL-1α produced by odontogenic tumors/cysts induced osteoclastogenesis directly in the osteoclast precursor cells and indirectly via increased RANKL induction in the stroma. PMID:27279422

  12. Decidualization and syndecan-1 knock down sensitize endometrial stromal cells to apoptosis induced by embryonic stimuli.

    PubMed

    Boeddeker, Sarah Jean; Baston-Buest, Dunja Maria; Fehm, Tanja; Kruessel, Jan; Hess, Alexandra

    2015-01-01

    Human embryo invasion and implantation into the inner wall of the maternal uterus, the endometrium, is the pivotal process for a successful pregnancy. Whereas disruption of the endometrial epithelial layer was already correlated with the programmed cell death, the role of apoptosis of the subjacent endometrial stromal cells during implantation is indistinct. The aim was to clarify whether apoptosis plays a role in the stromal invasion and to characterize if the apoptotic susceptibility of endometrial stromal cells to embryonic stimuli is influenced by decidualization and Syndecan-1. Therefore, the immortalized human endometrial stromal cell line St-T1 was used to first generate a new cell line with a stable Syndecan-1 knock down (KdS1), and second to further decidualize the cells with progesterone. As a replacement for the ethically inapplicable embryo all cells were treated with the embryonic factors and secretion products interleukin-1β, interferon-γ, tumor necrosis factor-α, transforming growth factor-β1 and anti-Fas antibody to mimic the embryo contact. Detection of apoptosis was verified via Caspase ELISAs, PARP cleavage and Annexin V staining. Apoptosis-related proteins were investigated via antibody arrays and underlying signaling pathways were analyzed by Western blot. Non-decidualized endometrial stromal cells showed a resistance towards apoptosis which was rescinded by decidualization and Syndecan-1 knock down independent of decidualization. This was correlated with an altered expression of several pro- and anti-apoptotic proteins and connected to a higher activation of pro-survival Akt in non-differentiated St-T1 as an upstream mediator of apoptotis-related proteins. This study provides insight into the largely elusive process of implantation, proposing an important role for stromal cell apoptosis to successfully establish a pregnancy. The impact of Syndecan-1 in attenuating the apoptotic signal is particularly interesting in the light of an already

  13. Isolation and Characterisation of Mesenchymal Stem/Stromal Cells in the Ovine Endometrium

    PubMed Central

    Deane, James A.; Ulrich, Daniela; Gurung, Shanti; Ong, Y. Rue; Gargett, Caroline E.

    2015-01-01

    Objective Mesenchymal stem/stromal cells (MSC) were recently discovered in the human endometrium. These cells possess key stem cell properties and show promising results in small animal models when used for preclinical tissue engineering studies. A small number of surface markers have been identified that enrich for MSC from bone marrow and human endometrium, including the Sushi Domain-containing 2 (SUSD2; W5C5) and CD271 markers. In preparation for developing a large animal preclinical model for urological and gynecological tissue engineering applications we aimed to identify and characterise MSC in ovine endometrium and determine surface markers to enable their prospective isolation. Materials and Methods Ovine endometrium was obtained from hysterectomised ewes following progesterone synchronisation, dissociated into single cell suspensions and tested for MSC surface markers and key stem cell properties. Purified stromal cells were obtained by flow cytometry sorting with CD49f and CD45 to remove epithelial cells and leukocytes respectively, and MSC properties investigated. Results There was a small population CD271+ stromal cells (4.5 ± 2.3%) in the ovine endometrium. Double labelling with CD271 and CD49f showed that the sorted CD271+CD49f- stromal cell population possessed significantly higher cloning efficiency, serial cloning capacity and a qualitative increased ability to differentiate into 4 mesodermal lineages (adipocytic, smooth muscle, chondrocytic and osteoblastic) than CD271-CD49f- cells. Immunolabelling studies identified an adventitial perivascular location for ovine endometrial CD271+ cells. Conclusion This is the first study to characterise MSC in the ovine endometrium and identify a surface marker profile identifying their location and enabling their prospective isolation. This knowledge will allow future preclinical studies with a large animal model that is well established for pelvic organ prolapse research. PMID:25992577

  14. Stromal fibrosis reaction in rat prostates induced by alpha 1 adrenergic stimulation.

    PubMed

    Rosenzweig-Bublil, Nurit; Abramovici, Armand

    2006-01-01

    Most of the publications dealing with the experimental induction of prostatic neoplasia have focused on the description of epithelial lesions, but little attention has been paid to the involvement of their stromal alterations. The present study is a first attempt to assess the stromal changes in both collagen and elastic fibrils as well as in its cellular constituents, which accompany prostatic intraepithelial neoplastic (PIN)-like lesions induced by phenylephrine (PE) in rats. Adolescent rats received subcutaneous injections of PE daily (10 mg/kg/d) for 1 month. At the end of the experimental period the rats were sacrificed; the dissected ventral prostates were fixed in Stieve solution and paraffin-embedded; and sections were cut and stained accordingly. Most of the stromal cells were identified by immunohistochemistry techniques using primary antibodies to ED2 (resident macrophages), actin (fibrocytes and vascular smooth muscle cells), vimentin (mesenchymal cells), and 5'-bromo-2'-deoxyuridine (S-phase proliferating cells). Collagen stromal mass was visualized by Gomori trichrome and individual collagen fibers by picrosirius red staining under polarized light, whereas the fine fibrils were stained according to the Pinkus method. The untreated rat prostates are characterized by a delicate interacinar stroma with scanty cells and fibrils. The PE-treated prostates showed a significant increase in both cellular and fibrillar elements as well as an increase in arteriolar density, in addition to the typical PIN lesions. The presence of such an interstitial fibrosis, which also includes inflammatory cells, neoangiogenesis, and synthesis de novo of collagen and fibers, might be regarded as a desmoplastic reaction. It is suggested that these changes could be related to a tissue repair process occurring subsequent to the inflammatory exudate that takes place during the incipient phases of the PE treatment. PMID:16304211

  15. Very late antigen-5 facilitates stromal progenitor cell differentiation into myofibroblast.

    PubMed

    Sen, Namita; Weingarten, Mark; Peter, Yakov

    2014-11-01

    Fibrotic disease is associated with abrogated stromal cell proliferation and activity. The precise identity of the cells that drive fibrosis remains obscure, in part because of a lack of information on their lineage development. To investigate the role of an early stromal progenitor cell (SPC) on the fibrotic process, we selected for, and monitored the stages of, fibroblast development from a previously reported free-floating anchorage-independent cell (AIC) progenitor population. Our findings demonstrate that organotypic pulmonary, cardiac, and renal fibroblast commitment follows a two-step process of attachment and remodeling in culture. Cell differentiation was confirmed by the inability of SPCs to revert to the free-floating state and functional mesenchymal stem/stromal cell (MSC) differentiation into osteoblast, adipocyte, chondrocyte, and fibroblastic lineages. The myofibroblastic phenotype was reflected by actin stress-fiber formation, α-smooth muscle production, and a greater than threefold increase in proliferative activity compared with that of the progenitors. SPC-derived pulmonary myofibroblasts demonstrated a more than 300-fold increase in fibronectin-1 (Fn1), collagen, type 1, α1, integrin α-5 (Itga5), and integrin β-1 (Itgb1) transcript levels. Very late antigen-5 (ITGA5/ITGB1) protein cluster formations were also prevalent on the differentiated cells. Normalized SPC-derived myofibroblast expression patterns reflected those of primary cultured lung myofibroblasts. Intratracheal implantation of pulmonary AICs into recipient mouse lungs resulted in donor cell FN1 production and evidence of epithelial derivation. SPC derivation into stromal tissue in vitro and in vivo and the observation that MSC and fibroblast lineages share a common ancestor could potentially lead to personalized antifibrotic therapies. PMID:25273539

  16. Functions of thymic stromal lymphopoietin in immunity and disease.

    PubMed

    Zhang, Yanlu; Zhou, Baohua

    2012-06-01

    Thymic stromal lymphopoietin (TSLP) is an interleukin 7-like cytokine expressed mainly by epithelial cells. Current studies provide compelling evidence that TSLP is capable of activating dendritic cells to promote T helper (Th) 2 immune responses. TSLP has also been shown to directly promote Th2 differentiation of naïve CD4(+) T cell and activate natural killer T cells, basophils and other innate immune cells at the initial stage of inflammation. In addition, TSLP affects B cell maturation and activation and can also influence regulatory T (Treg) cell differentiation and development. TSLP-induced Th2 responses are associated with the pathogenesis of allergic inflammatory diseases, including atopic dermatitis, asthma, and rhinitis. Based on recent findings in humans and mouse models, TSLP might also be involved in the pathogenesis of inflammatory bowel disease and progression of cancer. In this review, we will summarize our current understanding of the biology of TSLP and highlight the important issues for future investigations. PMID:22274860

  17. Stromal remodelling is required for progressive involution of the rat ventral prostate after castration: identification of a matrix metalloproteinase-dependent apoptotic wave.

    PubMed

    Bruni-Cardoso, A; Augusto, T M; Pravatta, H; Damas-Souza, D M; Carvalho, H F

    2010-10-01

    Prostate epithelial-cell apoptosis occurs in response to androgen deprivation. We have hypothesized that continued regression would require stromal changes. Studying apoptosis kinetics up to the 14th day after castration, we identified successive waves of apoptosis, with a prominent peak on day 11. This peak was associated with caspase-3 activity, nuclear translocation of apoptosis-inducing factor and clusterin expression. The apoptosis peak on day 11 was preceded by increased MMP-2 and MMP-7 activation, and MMP-9 expression on days 9 and 10. Treatment with the matrix metalloproteinases inhibitors doxycyclin, hydrocortisone, or GM6001 caused significant reduction in the apoptosis rate on day 11. The present data demonstrate that prostatic epithelial-cell deletion at the 11th day after castration was induced by focal degradation of the extracellular matrix associated with stromal remodelling. PMID:19906188

  18. Role of Allergen Source-Derived Proteases in Sensitization via Airway Epithelial Cells

    PubMed Central

    Matsumura, Yasuhiro

    2012-01-01

    Protease activity is a characteristic common to many allergens. Allergen source-derived proteases interact with lung epithelial cells, which are now thought to play vital roles in both innate and adaptive immune responses. Allergen source-derived proteases act on airway epithelial cells to induce disruption of the tight junctions between epithelial cells, activation of protease-activated receptor-2, and the production of thymic stromal lymphopoietin. These facilitate allergen delivery across epithelial layers and enhance allergenicity or directly activate the immune system through a nonallergic mechanism. Furthermore, they cleave regulatory cell surface molecules involved in allergic reactions. Thus, allergen source-derived proteases are a potentially critical factor in the development of allergic sensitization and appear to be strongly associated with heightened allergenicity. PMID:22523502

  19. Inorganic Arsenic–Related Changes in the Stromal Tumor Microenvironment in a Prostate Cancer Cell–Conditioned Media Model

    PubMed Central

    Shearer, Joseph J.; Wold, Eric A.; Umbaugh, Charles S.; Lichti, Cheryl F.; Nilsson, Carol L.; Figueiredo, Marxa L.

    2015-01-01

    Background: The tumor microenvironment plays an important role in the progression of cancer by mediating stromal–epithelial paracrine signaling, which can aberrantly modulate cellular proliferation and tumorigenesis. Exposure to environmental toxicants, such as inorganic arsenic (iAs), has also been implicated in the progression of prostate cancer. Objective: The role of iAs exposure in stromal signaling in the tumor microenvironment has been largely unexplored. Our objective was to elucidate molecular mechanisms of iAs-induced changes to stromal signaling by an enriched prostate tumor microenvironment cell population, adipose-derived mesenchymal stem/stromal cells (ASCs). Results: ASC-conditioned media (CM) collected after 1 week of iAs exposure increased prostate cancer cell viability, whereas CM from ASCs that received no iAs exposure decreased cell viability. Cytokine array analysis suggested changes to cytokine signaling associated with iAs exposure. Subsequent proteomic analysis suggested a concentration-dependent alteration to the HMOX1/THBS1/TGFβ signaling pathway by iAs. These results were validated by quantitative reverse transcriptase–polymerase chain reaction (RT-PCR) and Western blotting, confirming a concentration-dependent increase in HMOX1 and a decrease in THBS1 expression in ASC following iAs exposure. Subsequently, we used a TGFβ pathway reporter construct to confirm a decrease in stromal TGFβ signaling in ASC following iAs exposure. Conclusions: Our results suggest a concentration-dependent alteration of stromal signaling: specifically, attenuation of stromal-mediated TGFβ signaling following exposure to iAs. Our results indicate iAs may enhance prostate cancer cell viability through a previously unreported stromal-based mechanism. These findings indicate that the stroma may mediate the effects of iAs in tumor progression, which may have future therapeutic implications. Citation: Shearer JJ, Wold EA, Umbaugh CS, Lichti CF, Nilsson CL

  20. Epimorphin Functions as a Key Morphoregulator for Mammary Epithelial Cells

    SciTech Connect

    Hirai, H.; Lochter, A.; Galosy, S.; Koshida, S.; Niwa, S.; Bissell, M.J.

    1997-10-13

    Hepatocyte growth factor (HGF) and EGF have been reported to promote branching morphogenesis of mammary epithelial cells. We now show that it is epimorphin that is primarily responsible for this phenomenon. In vivo, epimorphin was detected in the stromal compartment but not in lumenal epithelial cells of the mammary gland; in culture, however, a subpopulation of mammary epithelial cells produced significant amounts of epimorphin. When epimorphin-expressing epithelial cell clones were cultured in collagen gels they displayed branching morphogenesis in the presence of HGF, EGF, keratinocyte growth factor, or fibroblast growth factor, a process that was inhibited by anti-epimorphin but not anti-HGF antibodies. The branch length, however, was roughly proportional to the ability of the factors to induce growth. Accordingly, epimorphin-negative epithelial cells simply grew in a cluster in response to the growth factors and failed to branch. When recombinant epimorphin was added to these collagen gels, epimorphin-negative cells underwent branching morphogenesis. The mode of action of epimorphin on morphogenesis of the gland, however, was dependent on how it was presented to the mammary cells. If epimorphin was overexpressed in epimorphin-negative epithelial cells under regulation of an inducible promoter or was allowed to coat the surface of each epithelial cell in a nonpolar fashion, the cells formed globular, alveoli-like structures with a large central lumen instead of branching ducts. This process was enhanced also by addition of HGF, EGF, or other growth factors and was inhibited by epimorphin antibodies. These results suggest that epimorphin is the primary morphogen in the mammary gland but that growth factors are necessary to achieve the appropriate cell numbers for the resulting morphogenesis to be visualized.

  1. Breaking down barriers: the importance of the stromal microenvironment in acquiring invasiveness in young women's breast cancer

    PubMed Central

    Schedin, Pepper; Borges, Virginia

    2009-01-01

    Gene expression profiling was performed on laser captured breast stroma and epithelium obtained from 14 breast cancer patients. As with breast epithelium, of the stromal gene expression changes observed between normal tissue and invasive ductal carcinoma, greater than 90% occurred early, at the normal to ductal carcinoma in situ transition. Only 10% of stromal and 0% of epithelial genes were differentially regulated between non-invasive ductal carcinoma in situ and invasive disease. These data suggest that the majority of gene expression changes required for transformation occur early, prior to histological evidence of an invasive phenotype, the stroma cooperates closely with epithelium in this transformation, and for acquisition of the invasive phenotype, the stroma is dominant over the epithelium. PMID:19344495

  2. Innate lymphoid cells integrate stromal and immune signals to enhance antibody production by splenic marginal zone B cells

    PubMed Central

    Bascones, Sabrina; Mortha, Arthur; Puga, Irene; Cassis, Linda; Barra, Carolina M.; Comerma, Laura; Chudnovskiy, Aleksey; Gentile, Maurizio; Llige, David; Cols, Montserrat; Serrano, Sergi; Aróstegui, Juan Ignacio; Juan, Manel; Yagüe, Jordi; Merad, Miriam; Fagarasan, Sidonia; Cerutti, Andrea

    2014-01-01

    Innate lymphoid cells (ILCs) regulate stromal, epithelial and immune cells, but their impact on B cells remains unclear. We identified RORγt+ ILCs nearby the marginal zone (MZ), a splenic compartment containing innate-like B cells that respond to circulating T cell-independent (TI) antigens. Spenic ILCs established a bidirectional crosstalk with MAdCAM-1+ marginal reticular cells by providing tumor necrosis factor (TNF) and lymphotoxin, and activated MZ B cells via BAFF, CD40 ligand and the Notch ligand, Delta-like 1. Splenic ILCs further helped MZ B cells and their plasma cell progeny by co-opting neutrophils through the release of GM-CSF. Consequently, ILC depletion impaired both pre- and post-immune TI antibody responses. Thus, ILCs integrate stromal and myeloid signals to orchestrate innate-like antibody production at the interface between the immune and circulatory systems. PMID:24562309

  3. Treatment for Stromal Tumors of the Ovary

    MedlinePlus

    ... Get Involved Find Local ACS Learn About Cancer » Ovarian Cancer » Detailed Guide » Treatment for stromal tumors of the ... saved articles window. My Saved Articles » My ACS » Ovarian Cancer + - Text Size Download Printable Version [PDF] » Treating Ovarian ...

  4. Pseudoangiomatous stromal hyperplasia (PASH): a brief review.

    PubMed

    Jaunoo, S S; Thrush, S; Dunn, P

    2011-01-01

    Pseudoangiomatous stromal hyperplasia (PASH) is a benign entity of the breast and typically found incidentally. It warrants thorough investigation in order to exclude more sinister pathology masquerading as this form of benign breast disease and can often be managed expectantly without the need for surgical intervention. We provide a brief review of the literature on PASH, discussing its clinicopathological features and management. PMID:20887819

  5. Uterine epithelial cell proliferation and endometrial hyperplasia: evidence from a mouse model.

    PubMed

    Gao, Yang; Li, Shu; Li, Qinglei

    2014-08-01

    In the uterus, epithelial cell proliferation changes during the estrous cycle and pregnancy. Uncontrolled epithelial cell proliferation results in implantation failure and/or cancer development. Transforming growth factor-β (TGF-β) signaling is a fundamental regulator of diverse biological processes and is indispensable for multiple reproductive functions. However, the in vivo role of TGF-β signaling in uterine epithelial cells remains poorly defined. We have shown that in the uterus, conditional deletion of the Type 1 receptor for TGF-β (Tgfbr1) using anti-Müllerian hormone receptor type 2 (Amhr2) Cre leads to myometrial defects. Here, we describe enhanced epithelial cell proliferation by immunostaining of Ki67 in the uteri of these mice. The aberration culminated in endometrial hyperplasia in aged females. To exclude the potential influence of ovarian steroid hormones, the proliferative status of uterine epithelial cells was assessed following ovariectomy. Increased uterine epithelial cell proliferation was also revealed in ovariectomized Tgfbr1 Amhr2-Cre conditional knockout mice. We further demonstrated that transcript levels for fibroblast growth factor 10 (Fgf10) were markedly up-regulated in Tgfbr1 Amhr2-Cre conditional knockout uteri. Consistently, treatment of primary uterine stromal cells with TGF-β1 significantly reduced Fgf10 mRNA expression. Thus, our findings suggest a potential involvement of TGFBR1-mediated signaling in the regulation of uterine epithelial cell proliferation, and provide genetic evidence supporting the role of uterine epithelial cell proliferation in the pathogenesis of endometrial hyperplasia. PMID:24770950

  6. Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells.

    PubMed

    Gray, Daniel H D; Seach, Natalie; Ueno, Tomoo; Milton, Morag K; Liston, Adrian; Lew, Andrew M; Goodnow, Christopher C; Boyd, Richard L

    2006-12-01

    Despite the importance of thymic stromal cells to T-cell development, relatively little is known about their biology. Here, we use single-cell analysis of stromal cells to analyze extensive changes in the number and composition of thymic stroma throughout life, revealing a surprisingly dynamic population. Phenotypic progression of thymic epithelial subsets was assessed at high resolution in young mice to provide a developmental framework. The cellular and molecular requirements of adult epithelium were studied, using various mutant mice to demonstrate new cross talk checkpoints dependent on RelB in the cortex and CD40 in the medulla. With the use of Ki67 and BrdU labeling, the turnover of thymic epithelium was found to be rapid, but then diminished on thymic involution. The various defects in stromal turnover and composition that accompanied involution were rapidly reversed following sex steroid ablation. Unexpectedly, mature cortical and medullary epithelium showed a potent capacity to stimulate naive T cells, comparable to that of thymic dendritic cells. Overall, these studies show that the thymic stroma is a surprisingly dynamic population and may have a more direct role in negative selection than previously thought. PMID:16896157

  7. Paracrine-acting adiponectin promotes mammary epithelial differentiation and synergizes with genistein to enhance transcriptional response to estrogen receptor beta signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mammary stromal adipocytes constitute an active site for the synthesis of the adipokine adiponectin (APN) that may influence the mammary epithelial microenvironment. The relationship between 'local', mammary tissue-derived APN and breast cancer risk is poorly understood. Herein, we identify a novel ...

  8. Activation of cortical and inhibited differentiation of medullary epithelial cells in the thymus of lymphotoxin-beta receptor-deficient mice: an ultrastructural study

    PubMed Central

    Milićević, N M; Nohroudi, K; Milićević, Ž; Westermann, J

    2008-01-01

    The reciprocal influences of thymic lymphocyte and nonlymphocyte populations, i.e. thymic cross-talk, are necessary for the proper maturation of thymocytes and the development/maintenance of thymic stromal microenvironments. Although the molecular influences exerted by thymic stromal cells on maturing thymocytes have been extensively studied, the identity of signalling molecules used by thymocytes to influence the thymic stromal cells is still largely unknown. Our study provides the first ultrastructural evidence that the functional lymphotoxin-beta receptor (LTβR) signalling pathway is engaged in the cross-talk between thymocytes and the thymic stromal cell population. We show that LTβR signalling is of the utmost significance for the preservation of the subcellular integrity of all thymic epithelial cells. In the absence of LTβR there is (1) hypertrophy and activation of cortical thymic epithelial cells, (2) the complete loss of fully differentiated medullary thymic epithelial cells, and (3) the inhibited differentiation of remaining medullary thymic epithelial cells with the appearance of prominent intercellular cysts in the thymic medulla. PMID:18194204

  9. Belinostat and Carboplatin in Treating Patients With Recurrent or Persistent Ovarian Epithelial Cancer, Fallopian Tube Cancer, or Primary Peritoneal Cancer That Did Not Respond to Carboplatin or Cisplatin

    ClinicalTrials.gov

    2014-06-18

    Brenner Tumor; Fallopian Tube Cancer; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mixed Epithelial Carcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Ovarian Undifferentiated Adenocarcinoma; Primary Peritoneal Cavity Cancer; Recurrent Ovarian Epithelial Cancer

  10. EGEN-001 and Pegylated Liposomal Doxorubicin Hydrochloride in Treating Patients With Recurrent or Persistent Ovarian Epithelial Cancer, Fallopian Tube Cancer, or Primary Peritoneal Cancer

    ClinicalTrials.gov

    2014-08-11

    Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mixed Epithelial Carcinoma; Ovarian Serous Cystadenocarcinoma; Ovarian Undifferentiated Adenocarcinoma; Recurrent Fallopian Tube Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Primary Peritoneal Cavity Cancer

  11. Hedgehog signaling in prostate epithelial-mesenchymal growth regulation

    PubMed Central

    Peng, Yu-Ching; Joyner, Alexandra L.

    2015-01-01

    The prostate gland plays an important role in male reproduction, and is also an organ prone to diseases such as benign prostatic hyperplasia (BPH) and prostate cancer. The prostate consists of ducts with an inner layer of epithelium surrounded by stroma. Reciprocal signaling between these two cell compartments is instrumental to normal prostatic development, homeostasis, regeneration, as well as tumor formation. Hedgehog (HH) signaling is a master regulator in numerous developmental processes. In many organs, HH plays a key role in epithelial-mesenchymal signaling that regulates organ growth and tissue differentiation, and abnormal HH signaling has been implicated in the progression of various epithelial carcinomas. In this review, we focus on recent studies exploring the multipotency of endogenous postnatal and adult epithelial and stromal stem cells and studies addressing the role of HH in prostate development and cancer. We discuss the implications of the results for a new understanding of prostate development and disease. Insight into the cellular and molecular mechanisms underlying epithelial-mesenchymal growth regulation should provide a basis for devising innovative therapies to combat diseases of the prostate. PMID:25641695

  12. Evaluation and Comparison of the Biopathology of Collagen and Inflammation in the Extracellular Matrix of Oral Epithelial Dysplasias and Inflammatory Fibrous Hyperplasia Using Picrosirius Red Stain and Polarising Microscopy: A Preliminary Study

    PubMed Central

    Varghese, Soma Susan; Sarojini, Sreenivasan Bargavan; George, Giju Baby; Vinod, Sankar; Mathew, Philips; Babu, Anulekh; Sebastian, Joseph

    2015-01-01

    Background: The role of tumour inflammation and the dysplastic epithelial-stromal interactions on the nature of collagen fibres in the extracellular matrix of dysplastic epithelium is not fully understood. The present study was aimed to evaluate and compare the inflammation and pathological stromal collagen (loosely packed thin disorganized collagen) present in mild, moderate and severe epithelial dysplasias with that of inflammatory fibrous hyperplasias. The basement membrane intactness of epithelial dysplasias was also evaluated to determine if dysplastic epithelial mesenchymal interaction has any role in the integrity of stromal collagen in epithelial dysplasia. Methods: Oral epithelial dysplasias, inflammatory fibrous hyperplasia and normal oral mucosal samples were used for the study. Packing, thickness and orientation of collagen fibres in mild, moderate and severe grades of oral epithelial dysplasias (n = 24), inflammatory fibrous hyperplasia (n = 8) and normal oral mucosal samples (n = 8) were analysed based on the polarisation of collagen fibres in picrosirius red polarising stain under polarising microscope. Results: All the grades of epithelial dysplasias showed greenish yellow birefringence confirming the presence of loosely arranged pathological collagen in the presence of moderate inflammation. All the cases of inflammatory fibrous hyperplasia showed red polarisation hue and moderate inflammation. A statistically significant difference was found in the packing and orientation of collagen when epithelial dysplasias and inflammatory fibrous hyperplasia were compared (P < 0.01). When the intactness of basement membrane integrity was compared in all the groups of epithelial dysplasia, a statistically significant result was obtained (P < 0.05). Conclusions: Presence of significant amount of loosely packed thin disoriented collagen even in mild epithelial dysplasia suggests that tumourigenic factors are released to connective tissue stroma much earlier than

  13. Stromal cells in phyllodes tumors of the breast are enriched for EZH2 and stem cell marker expression.

    PubMed

    Zhang, Yanhong; Liss, Adam L; Chung, Eugene; Pierce, Lori J; Kleer, Celina G

    2016-07-01

    Phyllodes tumors (PTs) of the breast are fibroepithelial neoplasms with stromal hypercellularity, which is the basis for their classification as benign, borderline, and malignant. The histologic diagnosis of PTs is often difficult, and the pathological features may not always predict clinical behavior. The pathobiology of PT remains poorly understood. Enhancer of Zeste 2 (EZH2) epigenetically regulates cell-type identity, cellular differentiation, and breast cancer stem cells. EZH2 exerts oncogenic functions in breast cancer and is associated with metastasis. We hypothesized that in PTs, EZH2 and the stem cell marker ALDH1 may be expressed in stromal cells and may be associated with their degree of differentiation. Forty PTs were histologically characterized at our institution following the World Health Organization criteria. We investigated the expression of EZH2 and ALDH1 by immunohistochemistry and recorded as percentage of positive epithelial and stromal cells. EZH2 was positive when over 10 % of cells exhibited nuclear staining; ALDH1 was positive when over 5 % of cells had cytoplasmic staining. Of the 40 PTs, 24 (60 %) were histologically benign, 8 (20 %) borderline, and 8 (20 %) malignant. Stromal EZH2 was significantly associated with the diagnosis of malignant PT, as it was detected in 1 of 24 (4 %) benign, 3 of 8 (37.5 %) borderline, and 5 of 8 (62.5 %) malignant tumors. Stromal EZH2 was significantly associated with stromal overgrowth (p = 0.01), atypia (p = 0.01), hypercellularity (p = 0.01), and mitoses (p = 0.02), all features of malignant PT. Stromal EZH2 and ALDH1 were significantly associated with grade of PT (p = 0.01 and p < 0.05 respectively). In conclusion, EZH2 and ALDH1 expression in the stroma of PT may mark malignant progression and may be helpful to distinguish histologically benign from borderline and malignant tumors in challenging cases. Our study also suggests that PTs contain mesenchymal stem cells, shedding light

  14. Corneal Lymphangiogenesis in Herpetic Stromal Keratitis

    PubMed Central

    Park, Paul J; Chang, Michael; Garg, Nitin; Zhu, Jimmy; Chang, Jin-Hong; Shukla, Deepak

    2014-01-01

    Corneal lymphangiogenesis is the extension of lymphatic vessels into the normally alymphatic cornea, a process that compromises the cornea’s immune privileged state and facilitates herpetic stromal keratitis (HSK). HSK results most commonly from infection by herpes simplex virus-1 (HSV-1) and is characterized by immune- and inflammation-mediated damage to the deep layers of the cornea. Current research demonstrates the potential of anti-lymphangiogenic therapy to decrease and prevent herpes-induced lymphangiogenesis. PMID:25444520

  15. Gastrointestinal stromal tumor of the rectum.

    PubMed

    Hama, Y; Okizuka, H; Odajima, K; Hayakawa, M; Kusano, S

    2001-01-01

    Gastrointestinal stromal tumors (GISTs) are characterized by remarkable variability in their differentiation potential, but most of these lesions do not display convincing smooth muscle or neuronal differentiation. The GISTs arising from the rectum or anal canal are extremely uncommon. We present a case of immunohistochemically proven GIST of the rectum, which was characterized by homogenous isointensity mass without necrosis or hemorrhage on T2-weighted image and by enhancement on gadolinium-enhanced study. PMID:11218017

  16. Skull metastasis from rectal gastrointestinal stromal tumours.

    PubMed

    Gil-Arnaiz, Irene; Martínez-Trufero, Javier; Pazo-Cid, Roberto Antonio; Felipo, Francesc; Lecumberri, María José; Calderero, Verónica

    2009-09-01

    Gastrointestinal stromal tumours (GIST) are the most common mesenchymal neoplasm of the gastrointestinal tract. Rectum localisation is infrequent for these neoplasms, accounting for about 5% of all cases. Distant metastases of GIST are also rare. We present a patient with special features: the tumour is localised in rectum and it has an uncommon metastatic site, the skull, implying a complex differential diagnosis approach. PMID:19776004

  17. Stromal reengineering to treat pancreas cancer

    PubMed Central

    Stromnes, Ingunn M.; DelGiorno, Kathleen E.; Greenberg, Philip D.; Hingorani, Sunil R.

    2014-01-01

    Pancreatic ductal adenocarcinoma co-opts multiple cellular and extracellular mechanisms to create a complex cancer organ with an unusual proclivity for metastasis and resistance to therapy. Cell-autonomous events are essential for the initiation and maintenance of pancreatic ductal adenocarcinoma, but recent studies have implicated critical non-cell autonomous processes within the robust desmoplastic stroma that promote disease pathogenesis and resistance. Thus, non-malignant cells and associated factors are culprits in tumor growth, immunosuppression and invasion. However, even this increasing awareness of non-cell autonomous contributions to disease progression is tempered by the conflicting roles stromal elements can play. A greater understanding of stromal complexity and complicity has been aided in part by studies in highly faithful genetically engineered mouse models of pancreatic ductal adenocarcinoma. Insights gleaned from such studies are spurring the development of therapies designed to reengineer the pancreas cancer stroma and render it permissive to agents targeting cell-autonomous events or to reinstate immunosurveillance. Integrating conventional and immunological treatments in the context of stromal targeting may provide the key to a durable clinical impact on this formidable disease. PMID:24908682

  18. Lymphoid Tissue Mesenchymal Stromal Cells in Development and Tissue Remodeling

    PubMed Central

    2016-01-01

    Secondary lymphoid organs (SLOs) are sites that facilitate cell-cell interactions required for generating adaptive immune responses. Nonhematopoietic mesenchymal stromal cells have been shown to play a critical role in SLO function, organization, and tissue homeostasis. The stromal microenvironment undergoes profound remodeling to support immune responses. However, chronic inflammatory conditions can promote uncontrolled stromal cell activation and aberrant tissue remodeling including fibrosis, thus leading to tissue damage. Despite recent advancements, the origin and role of mesenchymal stromal cells involved in SLO development and remodeling remain unclear. PMID:27190524

  19. Lymphoid Tissue Mesenchymal Stromal Cells in Development and Tissue Remodeling.

    PubMed

    Genovese, Luca; Brendolan, Andrea

    2016-01-01

    Secondary lymphoid organs (SLOs) are sites that facilitate cell-cell interactions required for generating adaptive immune responses. Nonhematopoietic mesenchymal stromal cells have been shown to play a critical role in SLO function, organization, and tissue homeostasis. The stromal microenvironment undergoes profound remodeling to support immune responses. However, chronic inflammatory conditions can promote uncontrolled stromal cell activation and aberrant tissue remodeling including fibrosis, thus leading to tissue damage. Despite recent advancements, the origin and role of mesenchymal stromal cells involved in SLO development and remodeling remain unclear. PMID:27190524

  20. Real-time polymerase chain reaction for the diagnosis of necrotizing herpes stromal keratitis

    PubMed Central

    Ma, Jun-Xin; Wang, Lin-Nong; Zhou, Ru-Xia; Yu, Yang; Du, Tong-Xin

    2016-01-01

    AIM To design, optimize and validate a rapid, internally controlled real-time polymerase chain reaction (RT-PCR) test for herpes simplex virus (HSV) in the diagnosis of necrotizing herpes stromal keratitis. METHODS Tears alone or together with corneal epithelium scrapings from 30 patients (30 eyes) suspected of necrotizing herpes stromal keratitis were tested for HSV DNA by RT-PCR. The samples were collected during the first visit and then on the subsequent 7, 14, 28, 42, and 56d. The symptoms of the patients were scored before treatment to determine the correlation between HSV concentration in the corneal epithelium scrapings and clinical scores. RESULTS The positive rate (46.4%) in the corneal epithelium group before the therapy was significantly higher than that (13.3%) in the tears group (P=0.006). There were 13 positive HSV patients before the therapy, the concentration of HSV DNA in corneal epithelium scrapings group was significantly higher than that in the tears group (paired t-test, P=0.0397). Multilevel mixed-effects model analysis showed that the difference between the corneal epithelium scrapings group and the tears group was statistically significant (P=0.0049). The Spearman rank correlation analysis indicated a positive correlation between the HSV concentration in the corneal epithelium scrapings and clinical scores before the treatment (r=0.844, P<0.0001). CONCLUSION RT-PCR appears to be a powerful molecular tool for the diagnosis of necrotizing herpes stromal keratitis. PMID:27275421

  1. Anterior stromal puncture for treatment of contact lens-intolerant keratoconus patients

    PubMed Central

    Kang, Su Yeon; Park, Young Kee; Song, Jong-Suk

    2010-01-01

    Purpose To report the results and effectiveness of anterior stromal puncture for contact lens-intolerant keratoconus patients with subepithelial fibrotic nodules. Methods Nine eyes of nine keratoconus patients who were rigid gas-permeable contact lenses (RGP)-intolerant due to subepithelial nodular scars were included in this study. The nine patients were enrolled in the study between March 2008 and December 2008. After confirming nodular elevation from slit-lamp biomicroscopy, the area where the epithelium of nodular scars had sloughed was punctured by anterior stromal puncture using a 26-gauge needle attached to a 1-ml syringe under slit-lamp biomicroscopy. The RGPs of all patients were refitted around 4 weeks after the puncture. Results Five of the nine patients were male, and the average patient age was 29.6 years (SD ± 5.22 years). Mean follow-up time was 13.7 months (SD ± 4.8 months), and the epithelial defect healed in 1.4 days on average. After the puncture, four of nine patients presented with a recurrent erosion of the nodule during follow-up and needed a second puncture. All the patients showed good contact lens tolerance and satisfactory contact lens fit. No complications such as corneal perforation or keratitis developed. Conclusions Anterior stromal puncture using a 26-gauge needle can be a successful and effective method to induce corneal epithelium and Bowman’s layer reattachment. It can be used as an outpatient procedure to improve RGP tolerance in patients with keratoconus with elevated subepithelial nodules. PMID:20625761

  2. TNF superfamily members play distinct roles in shaping the thymic stromal microenvironment.

    PubMed

    Bichele, Rudolf; Kisand, Kai; Peterson, Pärt; Laan, Martti

    2016-04-01

    The differentiation and proper function of thymic epithelial cells (TECs) depend on various tumor necrosis factor superfamily (TNFSF) signals that are needed to maintain the thymic stromal microenvironment. Nevertheless, the direct transcriptional effects of these signals on TECs remain unclear. To address this issue, we stimulated murine embryonic thymus tissue with selected TNFSF ligands and performed a gene expression profiling study. We show that Aire expression is a direct and specific effect of RANKL stimulation, whereas LTβ and TNFα are major inducers of chemokines in the thymic stroma and we propose differential NF-κB binding as one possible cause of these gene expression patterns. Our work provides further insight into the complex molecular pathways that shape the thymic microenvironment and maintain central tolerance. PMID:27011037

  3. Conditioned Media From Adipose-Derived Stromal Cells Accelerates Healing in 3-Dimensional Skin Cultures.

    PubMed

    Collawn, Sherry S; Mobley, James A; Banerjee, N Sanjib; Chow, Louise T

    2016-04-01

    Wound healing involves a number of factors that results in the production of a "closed" wound. Studies have shown, in animal models, acceleration of wound healing with the addition of adipose-derived stromal cells (ADSC). The cause for the positive effect which these cells have on wound healing has not been elucidated. We have previously shown that addition of ADSC to the dermal equivalent in 3-dimensional skin cultures accelerates reepithelialization. We now demonstrate that conditioned media (CM) from cultured ADSC produced a similar rate of healing. This result suggests that a feedback from the 3-dimensional epithelial cultures to ADSC was not necessary to effect the accelerated reepithelialization. Mass spectrometry of CM from ADSC and primary human fibroblasts revealed differences in secretomes, some of which might have roles in the accelerating wound healing. Thus, the use of CM has provided some preliminary information on a possible mode of action. PMID:26954733

  4. Carboplatin and Paclitaxel With or Without Bevacizumab Compared to Docetaxel, Carboplatin, and Paclitaxel in Treating Patients With Stage II, Stage III, or Stage IV Ovarian Epithelial, Fallopian Tube, or Primary Peritoneal Cavity Carcinoma (Cancer)

    ClinicalTrials.gov

    2013-03-18

    Brenner Tumor; Fallopian Tube Cancer; Ovarian Carcinosarcoma; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mixed Epithelial Carcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Ovarian Undifferentiated Adenocarcinoma; Primary Peritoneal Cavity Cancer; Stage II Ovarian Epithelial Cancer; Stage III Ovarian Epithelial Cancer; Stage IV Ovarian Epithelial Cancer

  5. Paclitaxel, Bevacizumab And Adjuvant Intraperitoneal Carboplatin in Treating Patients Who Had Initial Debulking Surgery for Stage II, Stage III, or Stage IV Ovarian Epithelial, Primary Peritoneal, or Fallopian Tube Cancer

    ClinicalTrials.gov

    2014-06-18

    Brenner Tumor; Fallopian Tube Cancer; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mixed Epithelial Carcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Ovarian Undifferentiated Adenocarcinoma; Primary Peritoneal Cavity Cancer; Stage II Ovarian Epithelial Cancer; Stage III Ovarian Epithelial Cancer; Stage IV Ovarian Epithelial Cancer

  6. Sequential cultivation of human epidermal keratinocytes and dermal mesenchymal like stromal cells in vitro.

    PubMed

    Mahabal, Shyam; Konala, Vijay Bhaskar Reddy; Mamidi, Murali Krishna; Kanafi, Mohammad Mahboob; Mishra, Suniti; Shankar, Krupa; Pal, Rajarshi; Bhonde, Ramesh

    2016-08-01

    Human skin has continuous self-renewal potential throughout adult life and serves as first line of defence. Its cellular components such as human epidermal keratinocytes (HEKs) and dermal mesenchymal stromal cells (DMSCs) are valuable resources for wound healing applications and cell based therapies. Here we show a simple, scalable and cost-effective method for sequential isolation and propagation of HEKs and DMSCs under defined culture conditions. Human skin biopsy samples obtained surgically were cut into fine pieces and cultured employing explant technique. Plated skin samples attached and showed outgrowth of HEKs. Gross microscopic examination displayed polygonal cells with a granular cytoplasm and H&E staining revealed archetypal HEK morphology. RT-PCR and immunocytochemistry authenticated the presence of key HEK markers including trans-membrane protein epithelial cadherin (E-cadherin), keratins and cytokeratin. After collection of HEKs by trypsin-EDTA treatment, mother explants were left intact and cultured further. Interestingly, we observed the appearance of another cell type with fibroblastic or stromal morphology which were able to grow up to 15 passages in vitro. Growth pattern, expression of cytoskeletal protein vimentin, surface proteins such as CD44, CD73, CD90, CD166 and mesodermal differentiation potential into osteocytes, adipocytes and chondrocytes confirmed their bonafide mesenchymal stem cell like status. These findings albeit preliminary may open up significant opportunities for novel applications in wound healing. PMID:25698160

  7. Transcriptome analysis of individual stromal cell populations identifies stroma-tumor crosstalk in mouse lung cancer model.

    PubMed

    Choi, Hyejin; Sheng, Jianting; Gao, Dingcheng; Li, Fuhai; Durrans, Anna; Ryu, Seongho; Lee, Sharrell B; Narula, Navneet; Rafii, Shahin; Elemento, Olivier; Altorki, Nasser K; Wong, Stephen T C; Mittal, Vivek

    2015-02-24

    Emerging studies have begun to demonstrate that reprogrammed stromal cells play pivotal roles in tumor growth, metastasis, and resistance to therapy. However, the contribution of stromal cells to non-small-cell lung cancer (NSCLC) has remained underexplored. We used an orthotopic model of Kras-driven NSCLC to systematically dissect the contribution of specific hematopoietic stromal cells in lung cancer. RNA deep-sequencing analysis of individually sorted myeloid lineage and tumor epithelial cells revealed cell-type-specific differentially regulated genes, indicative of activated stroma. We developed a computational model for crosstalk signaling discovery based on ligand-receptor interactions and downstream signaling networks and identified known and novel tumor-stroma paracrine and tumor autocrine crosstalk-signaling pathways in NSCLC. We provide cellular and molecular insights into components of the lung cancer microenvironment that contribute to carcinogenesis. This study has the potential for development of therapeutic strategies that target tumor-stroma interactions and may complement conventional anti-cancer treatments. PMID:25704820

  8. Relevance of the stroma and epithelial-mesenchymal transition (EMT) for the rheumatic diseases

    PubMed Central

    Zvaifler, Nathan J

    2006-01-01

    Epithelial-mesenchymal transition (EMT) is a term applied to the process whereby cells undergo a switch from an epithelial phenotype with tight junctions, lateral, apical, and basal membranes, and lack of mobility into mesenchymal cells that have loose interactions with other cells, are non-polarized, motile and produce an extracellular matrix. The importance of this process was initially recognized from a very early step in embryology, but more recently as a potential mechanism for the progression and spread of epithelial cancers. As the sequence of morphological changes has become understood in molecular terms, diseases characterized by alterations in stromal elements and fibrosis are being considered as examples of EMT. This review will focus on the pathogenetic features of immune-mediated renal disease, systemic sclerosis and rheumatoid arthritis that could be explained by EMT. PMID:16689999

  9. Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells.

    PubMed

    Rimoldi, Monica; Chieppa, Marcello; Salucci, Valentina; Avogadri, Francesca; Sonzogni, Angelica; Sampietro, Gianluca M; Nespoli, Angelo; Viale, Giuseppe; Allavena, Paola; Rescigno, Maria

    2005-05-01

    The control of damaging inflammation by the mucosal immune system in response to commensal and harmful ingested bacteria is unknown. Here we show epithelial cells conditioned mucosal dendritic cells through the constitutive release of thymic stromal lymphopoietin and other mediators, resulting in the induction of 'noninflammatory' dendritic cells. Epithelial cell-conditioned dendritic cells released interleukins 10 and 6 but not interleukin 12, and they promoted the polarization of T cells toward a 'classical' noninflammatory T helper type 2 response, even after exposure to a T helper type 1-inducing pathogen. This control of immune responses seemed to be lost in patients with Crohn disease. Thus, the intimate interplay between intestinal epithelial cells and dendritic cells may help to maintain gut immune homeostasis. PMID:15821737

  10. The Epithelial Cell-derived Atopic Dermatitis Cytokine TSLP Activates Neurons to Induce Itch

    PubMed Central

    Wilson, Sarah R.; Thé, Lydia; Batia, Lyn M.; Beattie, Katherine; Katibah, George E.; McClain, Shannan P.; Pellegrino, Maurizio; Estandian, Daniel M.; Bautista, Diana M.

    2014-01-01

    Summary Atopic dermatitis (AD) is a chronic itch and inflammatory disorder of the skin that affects one in ten people. Patients suffering from severe AD eventually progress to develop asthma and allergic rhinitis, in a process known as the “atopic march.” Signaling between epithelial cells and innate immune cells via the cytokine Thymic Stromal Lymphopoietin (TSLP) is thought to drive AD and the atopic march. Here we report that epithelial cells directly communicate to cutaneous sensory neurons via TSLP to promote itch. We identify the ORAI1/NFAT calcium signaling pathway as an essential regulator of TSLP release from keratinocytes, the primary epithelial cells of the skin. TSLP then acts directly on a subset of TRPA1-positive sensory neurons to trigger robust itch behaviors. Our results support a new model whereby calcium-dependent TSLP release by keratinocytes activates both primary afferent neurons and immune cells to promote inflammatory responses in the skin and airways. PMID:24094650

  11. p16(INK4A) represses the paracrine tumor-promoting effects of breast stromal fibroblasts.

    PubMed

    Al-Ansari, M M; Hendrayani, S F; Shehata, A I; Aboussekhra, A

    2013-05-01

    Cancer-associated fibroblasts (CAFs), the most abundant and probably the most active cellular component of breast cancer-associated stroma, promote carcinogenesis through paracrine effects; however, the molecular basis remains elusive. We have shown here that p16(INK4A) expression is reduced in 83% CAFs as compared with their normal adjacent counterparts cancer-free tissues isolated from the same patients. This decrease is mainly due to AUF1-dependent higher turnover of the CDKN2A mRNA in CAFs. Importantly, p16(INK4A) downregulation using specific siRNA activated breast fibroblasts and increased the expression/secretion levels of stromal cell-derived factor 1 (SDF-1) and matrix metalloproteinase (MMP)-2. Consequently, media conditioned with these cells stimulated the proliferation of epithelial cells. Furthermore, the migration/invasion of breast cancer cells was also enhanced in an SDF-1-dependent manner. This effect was mediated through inducing an epithelial-mesenchymal transition state. By contrast, increase in p16(INK4A) level through ectopic expression or AUF1 downregulation, reduced the secreted levels of SDF-1 and MMP-2 and suppressed the pro-carcinogenic effects of CAFs. In addition, p16(INK4A)-defective fibroblasts accelerated breast tumor xenograft formation and growth rate in mice. Importantly, tumors formed in the presence of p16(INK4A)-defective fibroblasts exhibited higher levels of active Akt, Cox-2, MMP-2 and MMP-9, showing their greater aggressiveness as compared with xenografts formed in the presence of p16(INK4A)-proficient fibroblasts. These results provide the first indication that p16(INK4A) downregulation in breast stromal fibroblasts is an important step toward their activation. PMID:22751126

  12. A Role for Androgens in Epithelial Proliferation and Formation of Glands in the Mouse Uterus.

    PubMed

    Simitsidellis, Ioannis; Gibson, Douglas A; Cousins, Fiona L; Esnal-Zufiaurre, Arantza; Saunders, Philippa T K

    2016-05-01

    The endometrium consists of stromal and epithelial compartments (luminal and glandular) with distinct functions in the regulation of uterine homeostasis. Ovarian sex steroids, namely 17β-estradiol and progesterone, play essential roles in modulating uterine cell proliferation, stromal-epithelial cross-talk and differentiation in preparation for pregnancy. The effect of androgens on uterine function remains poorly understood. The current study investigated the effect of the non-aromatizable androgen dihydrotestosterone (DHT) on mouse endometrial function. Ovx female mice were given a single sc injection (short treatment) or 7 daily injections (long treatment) of vehicle alone (5% ethanol, 0.4% methylcellulose) or vehicle with the addition of 0.2 mg DHT (n=8/group) and a single injection of bromodeoxyuridine 2 hours prior to tissue recovery. Treatment with DHT increased uterine weight, the area of the endometrial compartment and immunoexpression of the androgen receptor in the luminal and glandular epithelium. Treatment-dependent proliferation of epithelial cells was identified by immunostaining for MKi67 and bromodeoxyuridine. Real-time PCR identified significant DHT-dependent changes in the concentrations of mRNAs encoded by genes implicated in the regulation of the cell cycle (Wee1, Ccnd1, Rb1) and stromal-epithelial interactions (Wnt4, Wnt5a, Wnt7a, Cdh1, Vcl, Igf1, Prl8, Prlr) as well as a striking effect on the number of endometrial glands. This study has revealed a novel role for androgens in regulating uterine function with an effect on the glandular compartment of the endometrium. This previously unrecognized role for androgens has implications for our understanding of the role of androgens in regulation of endometrial function and fertility in women. PMID:26963473

  13. A Role for Androgens in Epithelial Proliferation and Formation of Glands in the Mouse Uterus

    PubMed Central

    Simitsidellis, Ioannis; Gibson, Douglas A.; Cousins, Fiona L.; Esnal-Zufiaurre, Arantza

    2016-01-01

    The endometrium consists of stromal and epithelial compartments (luminal and glandular) with distinct functions in the regulation of uterine homeostasis. Ovarian sex steroids, namely 17β-estradiol and progesterone, play essential roles in modulating uterine cell proliferation, stromal-epithelial cross-talk and differentiation in preparation for pregnancy. The effect of androgens on uterine function remains poorly understood. The current study investigated the effect of the non-aromatizable androgen dihydrotestosterone (DHT) on mouse endometrial function. Ovx female mice were given a single sc injection (short treatment) or 7 daily injections (long treatment) of vehicle alone (5% ethanol, 0.4% methylcellulose) or vehicle with the addition of 0.2 mg DHT (n=8/group) and a single injection of bromodeoxyuridine 2 hours prior to tissue recovery. Treatment with DHT increased uterine weight, the area of the endometrial compartment and immunoexpression of the androgen receptor in the luminal and glandular epithelium. Treatment-dependent proliferation of epithelial cells was identified by immunostaining for MKi67 and bromodeoxyuridine. Real-time PCR identified significant DHT-dependent changes in the concentrations of mRNAs encoded by genes implicated in the regulation of the cell cycle (Wee1, Ccnd1, Rb1) and stromal-epithelial interactions (Wnt4, Wnt5a, Wnt7a, Cdh1, Vcl, Igf1, Prl8, Prlr) as well as a striking effect on the number of endometrial glands. This study has revealed a novel role for androgens in regulating uterine function with an effect on the glandular compartment of the endometrium. This previously unrecognized role for androgens has implications for our understanding of the role of androgens in regulation of endometrial function and fertility in women. PMID:26963473

  14. Pseudoangiomatous Stromal Hyperplasia: A Rare Cause of Idiopathic Gigantomastia

    PubMed Central

    Roy, Mélissa; Lee, James; Aldekhayel, Salah

    2015-01-01

    Summary: Gigantomastia remains a rare clinical diagnosis with significant physical and psychological impacts on patients. We present the case of a 40-year-old woman with idiopathic breast enlargement. Further histological analysis of the breast tissue revealed pseudoangiomatous stromal hyperplasia. This is the first reported case of diffuse breast enlargement resulting from pseudoangiomatous stromal hyperplasia. PMID:26495214

  15. Pseudoangiomatous Stromal Hyperplasia: A Rare Cause of Idiopathic Gigantomastia.

    PubMed

    Roy, Mélissa; Lee, James; Aldekhayel, Salah; Dionisopoulos, Tassos

    2015-09-01

    Gigantomastia remains a rare clinical diagnosis with significant physical and psychological impacts on patients. We present the case of a 40-year-old woman with idiopathic breast enlargement. Further histological analysis of the breast tissue revealed pseudoangiomatous stromal hyperplasia. This is the first reported case of diffuse breast enlargement resulting from pseudoangiomatous stromal hyperplasia. PMID:26495214

  16. Bovine myocardial epithelial inclusions.

    PubMed

    Baker, D C; Schmidt, S P; Langheinrich, K A; Cannon, L; Smart, R A

    1993-01-01

    Light microscopic, histochemical, immunohistochemical, and ultrastructural methods were used to examine myocardial epithelial masses in the hearts of ten cattle. The tissues consisted of paraffin-embedded or formalin-fixed samples from eight hearts that were being inspected in slaughter houses and from two hearts from calves that died of septicemia. The ages of the cattle ranged from 4 days to 12 years; the breeds were unspecified for all but one Hereford female and the two Holstein calves; and there were three males, four females, and three steers. The masses in these cases were compared with similar appearing lesions found in other animal species. The lesions in the bovine hearts were single to multiple, well circumscribed, found in the left ventricle wall, and composed of squamous to cuboidal epithelial cells that formed tubular, ductular, and acinar structures with lumens that were void or filled with amorphous protein globules. Electron microscopic examination revealed epithelial cells that had sparse apical microvilli, tight apical intercellular junctions, perinuclear bundles of filaments, and rare cilia. Almost half of the bovine epithelial masses (4/9) had occasional diastase-resistant periodic acid-Schiff-positive granules in their cytoplasm, and few had hyaluronidase-resistant alcian blue-positive granules (2/9) or colloidal iron-positive granules (1/9). All myocardial masses had abundant collagen surrounding the tubular and acinar structures, and 2/9 had elastin fibers as well. None of the myocardial masses had Churukian-Schenk or Fontana Masson's silver staining granules in epithelial cells. Immunohistochemically, all bovine myocardial tumors stained positively for cytokeratin (8/8), and occasional masses stained positively for vimentin (3/8) or carcinoembryonic antigen (3/8). None of the masses stained positively for desmin. The myocardial epithelial tumors most likely represent endodermal rests of tissue misplaced during organogenesis. PMID:7680178

  17. Stromal cell contribution to human follicular lymphoma pathogenesis.

    PubMed

    Mourcin, Frédéric; Pangault, Céline; Amin-Ali, Rada; Amé-Thomas, Patricia; Tarte, Karin

    2012-01-01

    Follicular lymphoma (FL) is the prototypical model of indolent B cell lymphoma displaying a strong dependence on a specialized cell microenvironment mimicking normal germinal center. Within malignant cell niches in invaded lymph nodes and bone marrow, external stimuli provided by infiltrating stromal cells make a pivotal contribution to disease development, progression, and drug resistance. The crosstalk between FL B cells and stromal cells is bidirectional, causing activation of both partners. In agreement, FL stromal cells exhibit specific phenotypic, transcriptomic, and functional properties. This review highlights the critical pathways involved in the direct tumor-promoting activity of stromal cells but also their role in the organization of FL cell niche through the recruitment of accessory immune cells and their polarization to a B cell supportive phenotype. Finally, deciphering the interplay between stromal cells and FL cells provides potential new therapeutic targets with the aim to mobilize malignant cells outside their protective microenvironment and increase their sensitivity to conventional treatment. PMID:22973275

  18. Combined Therapy of Gastrointestinal Stromal Tumors.

    PubMed

    Rutkowski, Piotr; Hompes, Daphne

    2016-10-01

    Radical surgery is the mainstay of therapy for primary resectable, localized gastrointestinal stromal tumors (GIST). Nevertheless, approximately 40% to 50% of patients with potentially curative resections develop recurrent or metastatic disease. The introduction of imatinib mesylate has revolutionized the therapy of advanced (inoperable and/or metastatic) GIST and has become the standard of care in treatment of patients with advanced GIST. This article discusses the proper selection of candidates for adjuvant and neoadjuvant treatment in locally advanced GIST, exploring the available evidence behind the combination of preoperative imatinib and surgery. PMID:27591496

  19. Keratinocyte-Derived Chemokine Induces Prostate Epithelial Hyperplasia and Reactive Stroma in a Novel Transgenic Mouse Model

    PubMed Central

    Schauer, Isaiah G.; Ressler, Steven J.; Rowley, David R.

    2009-01-01

    Background Interleukin-8 (IL-8) is upregulated in fibrotic and malignant diseases and is a key mediator of proliferative responses. Elevated IL-8 was recently correlated with benign prostatic hyperplasia epithelium and a myofibroblast reactive stroma. Thus, we sought to determine whether overexpressed IL-8 and keratinocyte-derived chemokine (KC), the functional murine homolog of IL-8, induce prostate epithelial hyperplasia and a reactive phenotype. Methods Transgenic mice that overexpress KC within prostate epithelia and xenograft models with engineered human cells that overexpress IL-8 were developed. Results Overexpression of KC in transgenic mice produced hyperplastic prostate epithelial acini associated with a periacinar reactive stroma. KC induced an altered epithelial/stroma proliferation index ratio, increased acini diameter, epithelial infolding, and expression of prototypical reactive stroma markers. Overexpression of IL-8 in normal human prostate epithelial xenografts correlated with elevated epithelial proliferation index and altered morphology. Elevated human prostate stromal and epithelial cell proliferation, nodule-like morphology and increased xenograft survival were observed in IL-8-overexpressing orthotopic xenografts. Conclusions Together, these data demonstrate that overexpression of IL-8/KC results in a prostate epithelial hyperplasia with an associated reactive stroma phenotype. The novel transgenic mouse and human xenograft models described here may be useful in dissecting key mechanisms of IL-8 induced prostate hyperplasia and reactive stroma. PMID:19021203

  20. Uterine Epithelial Cell Estrogen Receptor Alpha-Dependent and -Independent Genomic Profiles That Underlie Estrogen Responses in Mice1

    PubMed Central

    Winuthayanon, Wipawee; Hewitt, Sylvia C.; Korach, Kenneth S.

    2014-01-01

    ABSTRACT Estrogens exert their activity through estrogen receptor alpha (ERalpha) to stimulate hypertrophy and hyperplasia in the uterus. A uterine epithelial ERalpha conditional knockout mouse model (Wnt7aCre+;Esr1f/f or cKO) demonstrated that ERalpha in the epithelial cells was dispensable for an initial uterine proliferative response to 17beta-estradiol (E2) but required for subsequent uterine biological responses. This study aimed to characterize the differential gene expression patterns induced by E2 in the presence or absence of epithelial ERalpha. RNA microarray analysis revealed that approximately 20% of the genes differentially expressed at 2 h were epithelial ERalpha independent, as they were preserved in the cKO uteri. This indicates that early uterine transcripts mediated by stromal ERalpha are sufficient to promote initial proliferative responses. However, more than 90% of the differentially expressed transcripts at 24 h were not regulated in the cKO, indicating that the majority of later transcriptional regulation required epithelial ERalpha, especially those involved in mitosis. This shows that loss of regulation of these later transcripts results in blunted subsequent uterine growth after 3 days of E2 treatment. Additionally, progesterone's ability to inhibit E2-induced epithelial cell proliferation was impaired, consistent with a uterine receptivity defect that contributes to cKO infertility. These transcriptional profiles correlate with our previously observed biological responses, in which the initial proliferative response is independent of epithelial ERalpha and thus dependent on stromal ERalpha, yet epithelial ERalpha is essential for subsequent tissue responsiveness. PMID:25210133

  1. Spatiotemporally Regulated Ablation of Klf4 in Adult Mouse Corneal Epithelial Cells Results in Altered Epithelial Cell Identity and Disrupted Homeostasis

    PubMed Central

    Delp, Emili E.; Swamynathan, Sudha; Kao, Winston W.; Swamynathan, Shivalingappa K.

    2015-01-01

    Purpose. In previous studies, conditional disruption of Klf4 in the developing mouse ocular surface from embryonic day 10 resulted in corneal epithelial fragility, stromal edema, and loss of conjunctival goblet cells, revealing the importance of Klf4 in ocular surface maturation. Here, we use spatiotemporally regulated ablation of Klf4 to investigate its functions in maintenance of adult corneal epithelial homeostasis. Methods. Expression of Cre was induced in ternary transgenic (Klf4LoxP/LoxP/Krt12rtTA/rtTA/Tet-O-Cre) mouse corneal epithelium by doxycycline administered through intraperitoneal injections and drinking water, to generate corneal epithelium–specific deletion of Klf4 (Klf4Δ/ΔCE). Corneal epithelial barrier function was tested by fluorescein staining. Expression of selected Klf4-target genes was determined by quantitative PCR (QPCR), immunoblotting, and immunofluorescent staining. Results. Klf4 was efficiently ablated within 5 days of doxycycline administration in adult Klf4Δ/ΔCE corneal epithelium. The Klf4Δ/ΔCE corneal epithelial barrier function was disrupted, and the basal cells were swollen and rounded after 15 days of doxycycline treatment. Increased numbers of cell layers and Ki67-positive proliferating cells suggested deregulated Klf4Δ/ΔCE corneal epithelial homeostasis. Expression of tight junction proteins ZO-1 and occludin, desmosomal Dsg and Dsp, basement membrane laminin-332, and corneal epithelial–specific keratin-12 was decreased, while that of matrix metalloproteinase Mmp9 and noncorneal keratin-17 increased, suggesting altered Klf4Δ/ΔCE corneal epithelial cell identity. Conclusions. Ablation of Klf4 in the adult mouse corneas resulted in the absence of characteristic corneal epithelial cell differentiation, disrupted barrier function, and squamous metaplasia, revealing that Klf4 is essential for maintenance of the adult corneal epithelial cell identity and homeostasis. PMID:26047041

  2. Periostin expression in intra-tumoral stromal cells is prognostic and predictive for colorectal carcinoma via creating a cancer-supportive niche

    PubMed Central

    Tan, Xiaojie; Ding, Yibo; Luo, Yanxin; Cai, Hui; Liu, Yan; Gao, Xianhua; Liu, Qizhi; Yu, Yongwei; Du, Yan; Wang, Hao; Ma, Liye; Wang, Jianping; Chen, Kun; Ding, Yanqing; Fu, Chuangang; Cao, Guangwen

    2016-01-01

    Periostin (POSTN) expression in cancer cells and circulation has been related to poor prognosis of colorectal carcinoma (CRC). However, the role of POSTN expressed in intra-tumoral stroma on CRC progression remains largely unknown. This study enrolled 1098 CRC patients who received surgical treatment in Shanghai and Guangzhou, Mainland China. In Shanghai cohort, immunohistochemistry score of stromal POSTN expression increased consecutively from adjacent mucosa, primary CRC tissues, to metastatic CRC tissues (P < 0.001), while medium- and high-stromal POSTN expression, rather than epithelial POSTN expression, independently predicted unfavorable prognoses of CRC, adjusted for covariates including TNM stage and postoperative chemotherapy in multivariate Cox models. The results in Shanghai cohort were faithfully replicated in Guangzhou cohort. Stromal POSTN expression dose-dependently predicted an unfavorable prognosis of stage III CRC patients with postoperative chemotherapy in both cohorts. POSTN derived from colonic fibroblasts or recombinant POSTN significantly promoted proliferation, anchorage independent growth, invasion, and chemo-resistance of CRC cells; whereas these effects were counteracted via targeting to PI3K/Akt or Wnt/β-catenin signaling pathway. CRC cell RKO-derived factor(s) significantly induced POSTN production in colonic fibroblasts and autocrine POSTN promoted proliferation, migration, and anchorage independent growth of fibroblasts. Conclusively, stromal POSTN is prognostic and predictive for CRC via creating a niche to facilitate cancer progression. Targeting POSTN-induced signaling pathways may be therapeutic options for metastatic or chemoresistant CRC. PMID:26556874

  3. Epithelial and Mesenchymal Tumor Compartments Exhibit In Vivo Complementary Patterns of Vascular Perfusion and Glucose Metabolism1

    PubMed Central

    Galie, Mirco; Farace, Paolo; Nanni, Cristina; Spinelli, Antonello; Nicolato, Elena; Boschi, Federico; Magnani, Paolo; Trespidi, Silvia; Ambrosini, Valentina; Fanti, Stefano; Merigo, Flavia; Osculati, Francesco; Marzola, Pasquina; Sbarbati, Andrea

    2007-01-01

    Glucose transport and consumption are increased in tumors, and this is considered a diagnostic index of malignancy. However, there is recent evidence that carcinoma-associated stromal cells are capable of aerobic metabolism with low glucose consumption, at least partly because of their efficient vascular supply. In the present study, using dynamic contrast-enhanced magnetic resonance imaging and [F-18]fluorodeoxyglucose (FDG) positron emission tomography (PET), we mapped in vivo the vascular supply and glucose metabolism in syngeneic experimental models of carcinoma and mesenchymal tumor. We found that in both tumor histotypes, regions with high vascular perfusion exhibited a significantly lower FDG uptake. This reciprocity was more conspicuous in carcinomas than in mesenchymal tumors, and regions with a high-vascular/low-FDG uptake pattern roughly overlapped with a stromal capsule and intratumoral large connectival septa. Accordingly, mesenchymal tumors exhibited a higher vascular perfusion and a lower FDG uptake than carcinomas. Thus, we provide in vivo evidence of vascular/metabolic reciprocity between epithelial and mesenchymal histotypes in tumors, suggesting a new intriguing aspect of epithelial-stromal interaction. Our results suggests that FDG-PET-based clinical analysis can underestimate the malignity or tumor extension of carcinomas exhibiting any trait of “mesenchymalization” such as desmoplasia or epithelial-mesenchymal transition. PMID:18030358

  4. Distinct functions and regulation of epithelial progesterone receptor in the mouse cervix, vagina, and uterus.

    PubMed

    Mehta, Fabiola F; Son, Jieun; Hewitt, Sylvia C; Jang, Eunjung; Lydon, John P; Korach, Kenneth S; Chung, Sang-Hyuk

    2016-04-01

    While the function of progesterone receptor (PR) has been studied in the mouse vagina and uterus, its regulation and function in the cervix has not been described. We selectively deleted epithelial PR in the female reproductive tracts using the Cre/LoxP recombination system. We found that epithelial PR was required for induction of apoptosis and suppression of cell proliferation by progesterone (P4) in the cervical and vaginal epithelium. We also found that epithelial PR was dispensable for P4 to suppress apoptosis and proliferation in the uterine epithelium. PR is encoded by the Pgr gene, which is regulated by estrogen receptor α (ERα) in the female reproductive tracts. Using knock-in mouse models expressing ERα mutants, we determined that the DNA-binding domain (DBD) and AF2 domain of ERα were required for upregulation of Pgr in the cervix and vagina as well as the uterine stroma. The ERα AF1 domain was required for upregulation of Pgr in the vaginal stroma and epithelium and cervical epithelium, but not in the uterine and cervical stroma. ERα DBD, AF1, and AF2 were required for suppression of Pgr in the uterine epithelium, which was mediated by stromal ERα. Epithelial ERα was responsible for upregulation of epithelial Pgr in the cervix and vagina. Our results indicate that regulation and functions of epithelial PR are different in the cervix, vagina, and uterus. PMID:27007157

  5. Distinct functions and regulation of epithelial progesterone receptor in the mouse cervix, vagina, and uterus

    PubMed Central

    Mehta, Fabiola F.; Son, Jieun; Hewitt, Sylvia C.; Jang, Eunjung; Lydon, John P.; Korach, Kenneth S.; Chung, Sang-Hyuk

    2016-01-01

    While the function of progesterone receptor (PR) has been studied in the mouse vagina and uterus, its regulation and function in the cervix has not been described. We selectively deleted epithelial PR in the female reproductive tracts using the Cre/LoxP recombination system. We found that epithelial PR was required for induction of apoptosis and suppression of cell proliferation by progesterone (P4) in the cervical and vaginal epithelium. We also found that epithelial PR was dispensable for P4 to suppress apoptosis and proliferation in the uterine epithelium. PR is encoded by the Pgr gene, which is regulated by estrogen receptor α (ERα) in the female reproductive tracts. Using knock−in mouse models expressing ERα mutants, we determined that the DNA−binding domain (DBD) and AF2 domain of ERα were required for upregulation of Pgr in the cervix and vagina as well as the uterine stroma. The ERα AF1 domain was required for upregulation of Pgr in the vaginal stroma and epithelium and cervical epithelium, but not in the uterine and cervical stroma. ERα DBD, AF1, and AF2 were required for suppression of Pgr in the uterine epithelium, which was mediated by stromal ERα. Epithelial ERα was responsible for upregulation of epithelial Pgr in the cervix and vagina. Our results indicate that regulation and functions of epithelial PR are different in the cervix, vagina, and uterus. PMID:27007157

  6. The plasticity of human breast carcinoma cells is more than epithelial to mesenchymal conversion

    SciTech Connect

    Petersen, Ole William; Nielsen, Helga Lind; Gudjonsson, Thorarinn; Villadsen, René; Ronnov-Jessen, Lone; Bissell, Mina J.

    2001-05-12

    The human breast comprises three lineages: the luminal epithelial lineage, the myoepithelial lineage, and the mesenchymal lineage. It has been widely accepted that human breast neoplasia pertains only to the luminal epithelial lineage. In recent years, however, evidence has accumulated that neoplastic breast epithelial cells may be substantially more plastic in their differentiation repertoire than previously anticipated. Thus, along with an increasing availability of markers for the myoepithelial lineage, at least a partial differentiation towards this lineage is being revealed frequently. It has also become clear that conversions towards the mesenchymal lineage actually occur, referred to as epithelial to mesenchymal transitions. Indeed, some of the so-called myofibroblasts surrounding the tumor may indeed have an epithelial origin rather than a mesenchymal origin. Because myoepithelial cells, epithelial to mesenchymal transition-derived cells, genuine stromal cells and myofibroblasts share common markers, we now need to define a more ambitious set of markers to distinguish these cell types in the microenvironment of the tumors. This is necessary because the different microenvironments may confer different clinical outcomes. The aim of this commentary is to describe some of the inherent complexities in defining cellular phenotypes in the microenvironment of breast cancer and to expand wherever possible on the implications for tumor suppression and progression.

  7. Whole transcriptome profiling of patient-derived xenograft models as a tool to identify both tumor and stromal specific biomarkers

    PubMed Central

    Bradford, James R.; Wappett, Mark; Beran, Garry; Logie, Armelle; Delpuech, Oona; Brown, Henry; Boros, Joanna; Camp, Nicola J.; McEwen, Robert; Mazzola, Anne Marie; D'Cruz, Celina; Barry, Simon T.

    2016-01-01

    The tumor microenvironment is emerging as a key regulator of cancer growth and progression, however the exact mechanisms of interaction with the tumor are poorly understood. Whilst the majority of genomic profiling efforts thus far have focused on the tumor, here we investigate RNA-Seq as a hypothesis-free tool to generate independent tumor and stromal biomarkers, and explore tumor-stroma interactions by exploiting the human-murine compartment specificity of patient-derived xenografts (PDX). Across a pan-cancer cohort of 79 PDX models, we determine that mouse stroma can be separated into distinct clusters, each corresponding to a specific stromal cell type. This implies heterogeneous recruitment of mouse stroma to the xenograft independent of tumor type. We then generate cross-species expression networks to recapitulate a known association between tumor epithelial cells and fibroblast activation, and propose a potentially novel relationship between two hypoxia-associated genes, human MIF and mouse Ddx6. Assessment of disease subtype also reveals MMP12 as a putative stromal marker of triple-negative breast cancer. Finally, we establish that our ability to dissect recruited stroma from trans-differentiated tumor cells is crucial to identifying stem-like poor-prognosis signatures in the tumor compartment. In conclusion, RNA-Seq is a powerful, cost-effective solution to global analysis of human tumor and mouse stroma simultaneously, providing new insights into mouse stromal heterogeneity and compartment-specific disease markers that are otherwise overlooked by alternative technologies. The study represents the first comprehensive analysis of its kind across multiple PDX models, and supports adoption of the approach in pre-clinical drug efficacy studies, and compartment-specific biomarker discovery. PMID:26980748

  8. Whole transcriptome profiling of patient-derived xenograft models as a tool to identify both tumor and stromal specific biomarkers.

    PubMed

    Bradford, James R; Wappett, Mark; Beran, Garry; Logie, Armelle; Delpuech, Oona; Brown, Henry; Boros, Joanna; Camp, Nicola J; McEwen, Robert; Mazzola, Anne Marie; D'Cruz, Celina; Barry, Simon T

    2016-04-12

    The tumor microenvironment is emerging as a key regulator of cancer growth and progression, however the exact mechanisms of interaction with the tumor are poorly understood. Whilst the majority of genomic profiling efforts thus far have focused on the tumor, here we investigate RNA-Seq as a hypothesis-free tool to generate independent tumor and stromal biomarkers, and explore tumor-stroma interactions by exploiting the human-murine compartment specificity of patient-derived xenografts (PDX).Across a pan-cancer cohort of 79 PDX models, we determine that mouse stroma can be separated into distinct clusters, each corresponding to a specific stromal cell type. This implies heterogeneous recruitment of mouse stroma to the xenograft independent of tumor type. We then generate cross-species expression networks to recapitulate a known association between tumor epithelial cells and fibroblast activation, and propose a potentially novel relationship between two hypoxia-associated genes, human MIF and mouse Ddx6. Assessment of disease subtype also reveals MMP12 as a putative stromal marker of triple-negative breast cancer. Finally, we establish that our ability to dissect recruited stroma from trans-differentiated tumor cells is crucial to identifying stem-like poor-prognosis signatures in the tumor compartment.In conclusion, RNA-Seq is a powerful, cost-effective solution to global analysis of human tumor and mouse stroma simultaneously, providing new insights into mouse stromal heterogeneity and compartment-specific disease markers that are otherwise overlooked by alternative technologies. The study represents the first comprehensive analysis of its kind across multiple PDX models, and supports adoption of the approach in pre-clinical drug efficacy studies, and compartment-specific biomarker discovery. PMID:26980748

  9. Mechanism of initial attachment of corneal epithelial cells to polymeric surfaces.

    PubMed

    Steele, J G; Johnson, G; Griesser, H J; Underwood, P A

    1997-12-01

    The initial attachment of cultured bovine corneal epithelial cells and stromal fibroblasts to two oxygen-containing synthetic polymers was studied. Cultured epithelial cells and stromal fibroblasts were seeded onto two oxygen-containing surfaces: 'tissue culture' polystyrene (TCPS) and a polymer film deposited by RF plasma deposition using a methylmethacrylate monomer (MMA/FEP). To establish the mechanism of cell attachment, the effect of the selective removal of the vitronectin and fibronectin from the serum used in the culture medium was tested. The attachment of cultured epithelial cells during the first 90 min of culture was reduced by 40% (TCPS)-80% (MMA/FEP) as a result of removing vitronectin from the medium. Attachment of these cells to TCPS was reduced by 85-95% when the serum was depleted of both fibronectin and vitronectin. However, depletion of fibronectin reduced cell attachment to TCPS by 20%, whilst on MMA/FEP cell attachment was equivalent, or higher, than that for intact serum. The attachment of cultured corneal stromal fibroblasts was similarly dependent on vitronectin but less dependent on fibronectin. Therefore, for the attachment of both cultured epithelial cells and fibroblasts to oxygen-containing surfaces in the presence of serum, there is a high requirement for serum vitronectin but a lesser requirement for fibronectin. The effects of the establishment of corneal epithelial cells in culture and the site of origin of the cells, were determined. Primary isolates of epithelial cells isolated from the limbal, central or peripheral regions of the cornea were less dependent on vitronectin for initial attachment to TCPS than were these cells after several passages in culture. Furthermore, the primary isolates were dramatically less responsive to vitronectin than the cultured cells. These results indicate that the mechanism of attachment of corneal epithelial cells to TCPS varies with the culture experience of the cells. Cells that are culture

  10. DNA typing of epithelial cells after strangulation.

    PubMed

    Wiegand, P; Kleiber, M

    1997-01-01

    DNA typing was carried out on epithelial cells which were transferred from the hands of the suspect onto the neck of the victim. In an experimental study 16 suspect-victim combinations were investigated for estimating the typing success. Alternatively to an attack against the neck, the upper arm was used for "strangulation". PCR typing was carried out using the short tandem repeat systems (STRs) HumCD4, HumVWF31A (VWA) and Hum-FIBRA (FGA) and the success rate was > 70% for all 3 systems. In most of the cases mixed patterns containing the phenotype of the suspect and the victim were obtained. In a case where strangulation was the cause of death, epithelial cells could be removed from the neck of the victim. The DNA pattern of the suspect could be successfully amplified using four STRs, demonstrating the applicability of this approach for practical casework. PMID:9274940

  11. Polyglutamate Paclitaxel and Carboplatin in Treating Patients With Ovarian Epithelial, Peritoneal, or Fallopian Tube Cancer

    ClinicalTrials.gov

    2015-05-07

    Fallopian Tube Carcinoma; Malignant Ovarian Mixed Epithelial Tumor; Ovarian Brenner Tumor; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Primary Peritoneal Carcinoma; Stage III Ovarian Cancer; Stage IV Ovarian Cancer; Undifferentiated Ovarian Carcinoma

  12. Benign Mesenchymal Stromal Cells in Human Sarcomas

    PubMed Central

    Morozov, Alexei; Downey, Robert J.; Healey, John; Moreira, Andre L.; Lou, Emil; Leung, Roland; Edgar, Mark; Singer, Samuel; LaQuaglia, Michael; Maki, Robert G.; Moore, Malcolm A.S.

    2010-01-01

    Purpose Recent evidence suggests that at least some sarcomas arise through aberrant differentiation of mesenchymal stromal cells (MSCs), but MSCs have never been isolated directly from human sarcoma specimens. Experimental Design We examined human sarcoma cell lines and primary adherent cultures derived from human sarcoma surgical samples for features of MSCs. We further characterized primary cultures as either benign or malignant by the presence of tumor-defining genetic lesions and tumor formation in immunocompromised mice. Results We show that a dedifferentiated liposarcoma cell line DDLS8817 demonstrates fat, bone and cartilage trilineage differentiation potential characteristic of MSCs. Primary sarcoma cultures have the morphology, surface immunophenotype and differentiation potential characteristic of MSCs. Surprisingly, many of these cultures are benign as they do not form tumors in mice and lack sarcoma-defining genetic lesions. Consistent with the recently proposed pericyte origin of MSCs in normal human tissues, sarcoma-derived benign MSCs express markers of pericytes and cooperate with endothelial cells in tube formation assays. In human sarcoma specimens, a subset of CD146-positive microvascular pericytes express CD105, an MSC marker, while malignant cells largely do not. In an in vitro co-culture model, sarcoma-derived benign MSCs as well as normal human pericytes markedly stimulate the growth of sarcoma cell lines. Conclusions Sarcoma-derived benign MSCs/pericytes represent a previously undescribed stromal cell type in sarcoma which may contribute to tumor formation. PMID:21138865

  13. Epithelial hyperplasia, airways —

    Cancer.gov

    Number of respiratory epithelial cells is increased diffusely or focally. Frequently luminal protrusions are observed, sometimes forming papillae. Mucous (goblet) cell metaplastic hyperplasia is a variant, in which the respiratory epithelium of conducting airways is replaced by mucous cells either as a single or a pseudostratified layer.

  14. Antigen Presenting Cells and Stromal Cells Trigger Human Natural Killer Lymphocytes to Autoreactivity: Evidence for the Involvement of Natural Cytotoxicity Receptors (NCR) and NKG2D

    PubMed Central

    Poggi, Alessandro; Zocchi, Maria Raffaella

    2006-01-01

    Human natural killer (NK) lymphocytes should not damage autologous cells due to the engagement of inhibitory receptor superfamily (IRS) members by HLA-I. Nevertheless, NK cells kill self cells expressing low levels or lacking HLA-I, as it may occur during viral infections (missing-self hypothesis). Herein, we show that human NK cells can be activated upon binding with self antigen presenting cells or stromal cells despite the expression of HLA-I. Indeed, NK cells can kill and produce pro-inflammatory and regulating cytokines as IFN-γ, TNF-α and IL10 during interaction with autologous dendritic cells or bone marrow stromal cells or skin fibroblasts. The killing of antigen presenting and stromal cells is dependent on LFA1/ICAM1 interaction. Further, the natural cytotoxicity receptors (NCR) NKp30 and NKp46 are responsible for the delivery of lethal hit to DC, whereas NKG2D activating receptor, the ligand of the MHC-related molecule MIC-A and the UL16 binding protein, is involved in stromal cell killing. These findings indicate that different activating receptors are involved in cell to self cell interaction. Finally, NK cells can revert the veto effect of stromal cells on mixed lymphocyte reaction further supporting the idea that NK cells may alter the interaction between T lymphocytes and microenvironment leading to autoreactivity. PMID:17162374

  15. Decellularization of human stromal refractive lenticules for corneal tissue engineering.

    PubMed

    Yam, Gary Hin-Fai; Yusoff, Nur Zahirah Binte M; Goh, Tze-Wei; Setiawan, Melina; Lee, Xiao-Wen; Liu, Yu-Chi; Mehta, Jodhbir S

    2016-01-01

    Small incision lenticule extraction (SMILE) becomes a procedure to correct myopia. The extracted lenticule can be used for other clinical scenarios. To prepare for allogeneic implantation, lenticule decellularization with preserved optical property, stromal architecture and chemistry would be necessary. We evaluated different methods to decellularize thin human corneal stromal lenticules created by femtosecond laser. Treatment with 0.1% sodium dodecylsulfate (SDS) followed by extensive washes was the most efficient protocol to remove cellular and nuclear materials. Empty cell space was found inside the stroma, which displayed aligned collagen fibril architecture similar to native stroma. The SDS-based method was superior to other treatments with hyperosmotic 1.5 M sodium chloride, 0.1% Triton X-100 and nucleases (from 2 to 10 U/ml DNase and RNase) in preserving extracellular matrix content (collagens, glycoproteins and glycosaminoglycans). The stromal transparency and light transmittance was indifferent to untreated lenticules. In vitro recellularization showed that the SDS-treated lenticules supported corneal stromal fibroblast growth. In vivo re-implantation into a rabbit stromal pocket further revealed the safety and biocompatibility of SDS-decellularized lenticules without short- and long-term rejection risk. Our results concluded that femtosecond laser-derived human stromal lenticules decellularized by 0.1% SDS could generate a transplantable bioscaffold with native-like stromal architecture and chemistry. PMID:27210519

  16. Decellularization of human stromal refractive lenticules for corneal tissue engineering

    PubMed Central

    Yam, Gary Hin-Fai; Yusoff, Nur Zahirah Binte M.; Goh, Tze-Wei; Setiawan, Melina; Lee, Xiao-Wen; Liu, Yu-Chi; Mehta, Jodhbir S.

    2016-01-01

    Small incision lenticule extraction (SMILE) becomes a procedure to correct myopia. The extracted lenticule can be used for other clinical scenarios. To prepare for allogeneic implantation, lenticule decellularization with preserved optical property, stromal architecture and chemistry would be necessary. We evaluated different methods to decellularize thin human corneal stromal lenticules created by femtosecond laser. Treatment with 0.1% sodium dodecylsulfate (SDS) followed by extensive washes was the most efficient protocol to remove cellular and nuclear materials. Empty cell space was found inside the stroma, which displayed aligned collagen fibril architecture similar to native stroma. The SDS-based method was superior to other treatments with hyperosmotic 1.5 M sodium chloride, 0.1% Triton X-100 and nucleases (from 2 to 10 U/ml DNase and RNase) in preserving extracellular matrix content (collagens, glycoproteins and glycosaminoglycans). The stromal transparency and light transmittance was indifferent to untreated lenticules. In vitro recellularization showed that the SDS-treated lenticules supported corneal stromal fibroblast growth. In vivo re-implantation into a rabbit stromal pocket further revealed the safety and biocompatibility of SDS-decellularized lenticules without short- and long-term rejection risk. Our results concluded that femtosecond laser-derived human stromal lenticules decellularized by 0.1% SDS could generate a transplantable bioscaffold with native-like stromal architecture and chemistry. PMID:27210519

  17. Epithelial-to-Mesenchymal Transition and Cancer Invasiveness: What Can We Learn from Cholangiocarcinoma?

    PubMed Central

    Brivio, Simone; Cadamuro, Massimiliano; Fabris, Luca; Strazzabosco, Mario

    2015-01-01

    In addition to its well-established role in embryo development, epithelial-to-mesenchymal transition (EMT) has been proposed as a general mechanism favoring tumor metastatization in several epithelial malignancies. Herein, we review the topic of EMT in cholangiocarcinoma (CCA), a primary liver cancer arising from the epithelial cells lining the bile ducts (cholangiocytes) and characterized by an abundant stromal reaction. CCA carries a dismal prognosis, owing to a pronounced invasiveness and scarce therapeutic opportunities. In CCA, several reports indicate that cancer cells acquire a number of EMT biomarkers and functions. These phenotypic changes are likely induced by both autocrine and paracrine signals released in the tumor microenvironment (cytokines, growth factors, morphogens) and intracellular stimuli (microRNAs, oncogenes, tumor suppressor genes) variably associated with specific disease mechanisms, including chronic inflammation and hypoxia. Nevertheless, evidence supporting a complete EMT of neoplastic cholangiocytes into stromal cells is lacking, and the gain of EMT-like changes by CCA cells rather reflects a shift towards an enhanced pro-invasive phenotype, likely induced by the tumor stroma. This concept may help to identify new biomarkers of early metastatic behavior along with potential therapeutic targets. PMID:26703747

  18. Thymic stromal lymphopoietin (TSLP) inhibits human colon tumor growth by promoting apoptosis of tumor cells

    PubMed Central

    Yang, Xuguang; Li, Bingji; Liu, Jie; He, Rui

    2016-01-01

    Thymic stromal lymphopoietin (TSLP) has recently been suggested in several epithelial cancers, either pro-tumor or anti-tumor. However, the role of TSLP in colon cancer remains unknown. We here found significantly decreased TSLP levels in tumor tissues compared with tumor-surrounding tissues of patients with colon cancer and TSLP levels negatively correlated with the clinical staging score of colon cancer. TSLPR, the receptor of TSLP, was expressed in all three colon cancer cell lines investigated and colon tumor tissues. The addition of TSLP significantly enhanced apoptosis of colon cancer cells in a TSLPR-dependent manner. Interestingly, TSLP selectively induced the apoptosis of colon cancer cells, but not normal colonic epithelial cells. Furthermore, we demonstrated that TSLP induced JNK and p38 activation and initiated apoptosis mainly through the extrinsic pathway, as caspase-8 inhibitor significantly reversed the apoptosis-promoting effect of TSLP. Finally, using a xenograft mouse model, we demonstrated that peritumoral administration of TSLP greatly reduced tumor growth accompanied with extensive tumor apoptotic response, which was abolished by tumor cell-specific knockdown of TSLPR. Collectively, our study reveals a novel anti-tumor effect of TSLP via direct promotion of the apoptosis of colon cancer cells, and suggests that TSLP could be of value in treating colon cancer. PMID:26919238

  19. Quantification of regenerative potential in primary human mammary epithelial cells

    PubMed Central

    Linnemann, Jelena R.; Miura, Haruko; Meixner, Lisa K.; Irmler, Martin; Kloos, Uwe J.; Hirschi, Benjamin; Bartsch, Harald S.; Sass, Steffen; Beckers, Johannes; Theis, Fabian J.; Gabka, Christian; Sotlar, Karl; Scheel, Christina H.

    2015-01-01

    We present an organoid regeneration assay in which freshly isolated human mammary epithelial cells are cultured in adherent or floating collagen gels, corresponding to a rigid or compliant matrix environment. In both conditions, luminal progenitors form spheres, whereas basal cells generate branched ductal structures. In compliant but not rigid collagen gels, branching ducts form alveoli at their tips, express basal and luminal markers at correct positions, and display contractility, which is required for alveologenesis. Thereby, branched structures generated in compliant collagen gels resemble terminal ductal-lobular units (TDLUs), the functional units of the mammary gland. Using the membrane metallo-endopeptidase CD10 as a surface marker enriches for TDLU formation and reveals the presence of stromal cells within the CD49fhi/EpCAM− population. In summary, we describe a defined in vitro assay system to quantify cells with regenerative potential and systematically investigate their interaction with the physical environment at distinct steps of morphogenesis. PMID:26071498

  20. Comparing the immunosuppressive potency of naïve marrow stromal cells and Notch-transfected marrow stromal cells

    PubMed Central

    2011-01-01

    Background SB623 cells are expanded from marrow stromal cells (MSCs) transfected with a Notch intracellular domain (NICD)-expressing plasmid. In stroke-induced animals, these cells reduce infarct size and promote functional recovery. SB623 cells resemble the parental MSCs with respect to morphology and cell surface markers despite having been in extended culture. MSCs are known to have immunosuppressive properties; whether long-term culture of MSCs impact their immunomodulatory activity has not been addressed. Methods To assess the possible senescent properties of SB623 cells, we performed cell cycle related assays and beta-galactosidase staining. To assess the immunomodulatory activity of these expanded NICD-transfected MSCs, we performed co-cultures of SB623 cells or MSCs with either enriched human T cells or monocytes and assessed cytokine production by flow cytometry. In addition, we monitored the immunosuppressive activity of SB623 cells in both allogenic and xenogenic mixed lymphocyte reaction (MLR). Results Compared to MSCs, we showed that a small number of senescent-like cells appear in each lot of SB623 cells. Nevertheless, we demonstrated that these cells suppress human T cell proliferation in both the allogeneic and xenogeneic mixed lymphocyte reaction (MLR) in a manner comparable to MSCs. IL-10 producing T cells were generated and monocyte-dendritic cell differentiation was dampened by co-culture with SB623 cells. Compared to the parental MSCs, SB623 cells appear to exert a greater inhibitory impact on the maturation of dendritic cells as demonstrated by a greater reduction in the surface expression of the co-stimulatory molecule, CD86. Conclusion The results demonstrated that the immunosuppressive activity of the expanded NICD-transfected MSCs is comparable to the parental MSCs, in spite of the appearance of a small number of senescent-like cells. PMID:21982515

  1. On the histogenesis of osseous structures in epithelial tumours. A light and electronmicroscopical study illustrated at the so-called mixed tumour of the mammary gland in bitches (author's transl).

    PubMed

    Bomhard, D V; Schäffer, E; Sandersleben, J V

    1977-05-20

    The osseous areas of 126 canine mixed tumours of the mammary gland were studied by light microscopy. Seven cases were investigated in detail using the electronmicroscop. It is suggested, that these structures develop by enchondral ossification. There ist no indication that myoepithelial tumour cells play a role in formation of osteoid or osseous foci. The cells taking part in enchondral ossification in such tumours cannot be distinguished from cell normally found in enchondral ossification. They derive from the stroma growing into the chondroid matrix. Areas developed by enchondral ossification therefore cannot be considered as tumour tissue in the true sense. PMID:141796

  2. Immunological hallmarks of stromal cells in the tumour microenvironment.

    PubMed

    Turley, Shannon J; Cremasco, Viviana; Astarita, Jillian L

    2015-11-01

    A dynamic and mutualistic interaction between tumour cells and the surrounding stroma promotes the initiation, progression, metastasis and chemoresistance of solid tumours. Far less understood is the relationship between the stroma and tumour-infiltrating leukocytes; however, emerging evidence suggests that the stromal compartment can shape antitumour immunity and responsiveness to immunotherapy. Thus, there is growing interest in elucidating the immunomodulatory roles of the stroma that evolve within the tumour microenvironment. In this Review, we discuss the evidence that stromal determinants interact with leukocytes and influence antitumour immunity, with emphasis on the immunological attributes of stromal cells that may foster their protumorigenic function. PMID:26471778

  3. Prostate stromal cell proteomics analysis discriminates normal from tumour reactive stromal phenotypes

    PubMed Central

    Webber, Jason P.; Spary, Lisa K.; Mason, Malcolm D.; Tabi, Zsuzsanna; Brewis, Ian A.; Clayton, Aled

    2016-01-01

    Changes within interstitial stromal compartments often accompany carcinogenesis, and this is true of prostate cancer. Typically, the tissue becomes populated by myofibroblasts that can promote progression. Not all myofibroblasts exhibit the same negative influence, however, and identifying the aggressive form of myofibroblast may provide useful information at diagnosis. A means of molecularly defining such myofibroblasts is unknown. We compared protein profiles of normal and diseased stroma isolated from prostate cancer patients to identify discriminating hallmarks of disease-associated stroma. We included the stimulation of normal stromal cells with known myofibroblast inducers namely soluble TGFβ and exosome-associated-TGFβ and compared the function and protein profiles arising. In all 6-patients examined, diseased stroma exhibited a pro-angiogenic influence on endothelial cells, generating large multicellular vessel-like structures. Identical structures were apparent following stimulation of normal stroma with exosomes (5/6 patients), but TGFβ-stimulation generated a non-angiogenic stroma. Proteomics highlighted disease-related cytoskeleton alterations such as elevated Transgelin (TAGLN). Many of these were also changed following TGFβ or exosome stimulation and did not well discriminate the nature of the stimulus. Soluble TGFβ, however triggered differential expression of proteins related to mitochondrial function including voltage dependent ion channels VDAC1 and 2, and this was not found in the other stromal types studied. Surprisingly, Aldehyde Dehydrogenase (ALDH1A1), a stem-cell associated protein was detected in normal stromal cells and found to decrease in disease. In summary, we have discovered a set of proteins that contribute to defining disease-associated myofibroblasts, and emphasise the similarity between exosome-generated myofibroblasts and those naturally arising in situ. PMID:26934553

  4. Staphylococcus aureus Blepharitis Associated with Multiple Corneal Stromal Microabscess, Stromal Edema, and Uveitis.

    PubMed

    Boto-de-los-Bueis, Ana; del Hierro Zarzuelo, Almudena; García Perea, Adela; de Pablos, Manuela; Pastora, Natalia; Noval, Susana

    2015-04-01

    We report a case of an immunocompetent woman with atypical marginal keratitis. She presented with recurrent episodes of multiples microabscess distributed in a triangular pattern associated with stromal oedema and anterior chamber uveitis, affecting both eyes, but not simultaneously. The episodes responded to steroid drops, corneal inflammation was coincidental with a worsening of her blepharitis in the affected eye and S. aureus was isolated from the lids. PMID:24410378

  5. Microcystic stromal tumor of the ovary: report of 16 cases of a hitherto uncharacterized distinctive ovarian neoplasm.

    PubMed

    Irving, Julie A; Young, Robert H

    2009-03-01

    weakly positive; calretinin, 1/16 cases positive; cytokeratin, 4/16 cases focally positive; and epithelial membrane antigen, 0/16 cases positive. Microcystic change can be observed in a wide variety of ovarian tumors and the broad potential differential diagnosis is discussed in the text. For tumors which have been well sampled and exhibit (1) a microcystic pattern and regions with lobulated cellular masses with intervening, sometimes hyalinized fibrous stroma, (2) an absence of morphologic features enabling any other specific diagnosis in the sex cord-stromal category, (3) an absence of epithelial elements, and (4) an absence of teratomatous or other germ cell elements, we propose the designation "microcystic stromal tumor." The characteristic immunophenotype is CD10/vimentin+/epithelial membrane antigen-, with focal cytokeratin-positivity in one-quarter of cases; inhibin and/or calretinin are usually negative. Seven patients with available follow-up are without evidence of disease at a mean of 4.25 years (range: 1.5 to 12.5 y) from the time of initial diagnosis. These tumors, to date, have occurred over a wide age range in postpubertal females, are characteristically unilateral, and confined to the ovary at presentation. They represent, in addition to the sclerosing stromal tumor (segregated out 3 decades ago), a distinctive subtype of ovarian tumor, likely also belonging to the stromal category based on current evidence. PMID:18971779

  6. Stromal progesterone receptors mediate induction of Indian Hedgehog (IHH) in uterine epithelium and its downstream targets in uterine stroma.

    PubMed

    Simon, Liz; Spiewak, Kerry A; Ekman, Gail C; Kim, Jaeyeon; Lydon, John P; Bagchi, Milan K; Bagchi, Indrani C; DeMayo, Francesco J; Cooke, Paul S

    2009-08-01

    Uterine receptivity to embryo implantation depends on appropriate progesterone (P4) and estrogen stimulation. P4 rapidly stimulates production of the morphogen Indian hedgehog (IHH) in murine uterine epithelium as well as downstream molecules in the hedgehog pathway such as Patched homolog 1 (PTCH1) and nuclear receptor subfamily 2, group F, member 2 (NR2F2) in uterine stroma. Studies using IHH-null mice indicate that IHH is obligatory for the normal P4 response in the uterus. To determine whether IHH induction in uterine epithelium is mediated through P4 receptor (PR) in epithelium (E) and/or stroma (S), we produced tissue recombinants using uteri from neonatal PR knockout (ko) mice and wild-type (wt) mice containing PR in S and/or E or lacking PR altogether using a tissue recombinant methodology and assessed their response to P4. In tissue recombinants containing wt-S (wt-S + wt-E and wt-S + ko-E), P4 induced Ihh mRNA expression at 6 h that was 6-fold greater than in oil-treated controls (P < 0.05; n = 6) in both types of tissue recombinants despite the absence of epithelial PR in wt-S + ko-E grafts. Conversely, Ihh mRNA expression was unaffected by P4 in ko-S + ko-E and ko-S + wt-E grafts despite epithelial PR expression in the latter. Nr2f2 and Ptch1 mRNA expression was similar in that it was stimulated by P4 only in recombinants containing stromal PR. These results indicate that stromal PR is both necessary and sufficient for P4 stimulation of epithelial IHH as well as downstream events such as PTCH1 and NR2F2 increases in stroma. PMID:19372202

  7. [Gastrointestinal stromal tumors. A case of small intestine stromal tumor (SIST) with an uncertain biological aspect].

    PubMed

    Quaglino, F; Borello, M; Cumbo, P; Pietribiasi, F; Poma, A; Seglie, E; Do, D

    2000-05-01

    Tumors of the small intestine are relatively rare. The diagnosis is difficult to establish because the symptoms are vague and non-specific. Although the small intestine constitutes 75% of the length and over 90% of the mucosal surface area of the gastrointestinal tract, only 1 to 2% of gastrointestinal malignancies occur in this segment. Metastases are usually present at the time of diagnosis. The outcome of these patients can be improved if the possibility of a malignant small bowel tumor is considered in all cases of unexplained abdominal pain or gastrointestinal bleeding, especially in younger age. Malignant tumors occur with increasing frequency in distal small bowel with a preponderance of malignant lesions in the ileum compared with the jejunum and the duodenum. Adenocarcinoma is the most common tumor of the primary malignant small bowel tumors, followed by carcinoid, lymphoma and leiomyosarcoma. Mesenchymal tumors of the gastrointestinal tract, traditionally regarded as smooth muscle tumors, have demonstrated different cellular differentiations based on immunohistochemical and ultrastructural features. Therefore the terms leiomyoma and leiomyosarcoma have been replaced by a more encompassing term, gastrointestinal stromal tumor (GIST). The majority of GISTs occurs in the stomach; stromal tumors involving the small intestine (SISTs) are far less common but seem to have greater malignant potential. The clinical a case of a small intestinal stromal tumor (SIST), localised in the jejunum and characterised by an uncertain histological aspect, is presented and a review of the literature is made. PMID:10953571

  8. [Soft tissue sarcomas and gastrointestinal stromal tumors].

    PubMed

    Reichardt, P

    2016-03-01

    Soft tissue sarcomas are rare tumors that represent a major challenge due to varying clinical presentations and often interdisciplinary treatment concepts. Gold standard for the treatment of localized resectable soft tissue sarcomas is complete surgical removal. In metastatic soft tissue sarcoma, systemic therapy is the treatment of choice. The most active drugs are anthracyclines and ifosfamide. Combination chemotherapy has improved both response rate and progression-free survival at the cost of increased toxicity. Imatinib at a dose of 400 mg/day is the gold standard for patients with advanced or metastatic gastrointestinal stromal tumors (GIST). In patients with a mutation in KIT exon 9, 800 mg/day is the recommended dose. In imatinib refractory or intolerant patients, sunitinib is recommended. Regorafenib has been approved for third-line therapy. PMID:26907871

  9. Gastrointestinal Stromal Tumor – An Evolving Concept

    PubMed Central

    Tornillo, Luigi

    2014-01-01

    Gastrointestinal stromal tumors (GISTs) are the most frequent mesenchymal tumors of the gastrointestinal tract. The discovery that these tumors, formerly thought of smooth muscle origin, are indeed better characterized by specific activating mutation in genes coding for the receptor tyrosine kinases (RTKs) CKIT and PDGFRA and that these mutations are strongly predictive for the response to targeted therapy with RTK inhibitors has made GISTs the typical example of the integration of basic molecular knowledge in the daily clinical activity. The information on the mutational status of these tumors is essential to predict (and subsequently to plan) the therapy. As resistant cases are frequently wild type, other possible oncogenic events, defining other “entities,” have been discovered (e.g., succinil dehydrogenase mutation/dysregulation, insuline growth factor expression, and mutations in the RAS-RAF-MAPK pathway). The classification of disease must nowadays rely on the integration of the clinico-morphological characteristics with the molecular data. PMID:25593916

  10. Gastrointestinal Stromal Tumor: May Mimic Adnexal Mass

    PubMed Central

    Karaca, Nilay; Akpak, Yaşam Kemal; Tatar, Zeynep; Batmaz, Gonca; Erken, Aslihan

    2016-01-01

    Gastrointestinal stromal tumors (GISTs) are rare tumor of the gastrointestinal tract. GISTs occur in the entire gastrointestinal tract and may also arise from the retroperitoneum, omentum and mesenteries. They are originated from gastrointestinal pacemaker cells (Cajal’s interstitial cells) and range from benign tumors to sarcomas at all sites of occurrence. Diagnosis of GIST could be deceptive because of their similarity in appearance to gynecological neoplasms. We would like to present a case of a woman with GIST in the small intestine giving a imprint of an adnexal mass was diagnosed correctly during surgery. The diagnosis and treatment of GIST has been reformed over the past years. It is crucial to separate GISTs from possible misdiagnosis because their prognosis and treatment could be unlike clearly. The purpose of this case is to evaluate this rarely seen clinical entity, and thus, make some contribution to the literature. PMID:26383211

  11. Pseudoangiomatous stromal hyperplasia causing massive breast enlargement.

    PubMed

    Bourke, Anita Geraldine; Tiang, Stephen; Harvey, Nathan; McClure, Robert

    2015-01-01

    Pseudoangiomatous stromal hyperplasia (PASH) of the breast is a benign mesenchymal proliferative process, initially described by Vuitch et al. We report an unusual case of a 46-year-old woman who presented with a 6-week history of bilateral massive, asymmetrical, painful enlargement of her breasts, without a history of trauma. On clinical examination, both breasts were markedly enlarged and oedematous, but there were no discrete palpable masses. Preoperative image-guided core biopsies and surgery showed PASH. PASH is increasingly recognised as an incidental finding on image-guided core biopsy performed for screen detected lesions. There are a few reported cases of PASH presenting as rapid breast enlargement. In our case, the patient presented with painful, asymmetrical, massive breast enlargement. Awareness needs to be raised of this entity as a differential diagnosis in massive, painful breast enlargement. PMID:26475873

  12. Gastrointestinal Stromal Tumor: May Mimic Adnexal Mass.

    PubMed

    Karaca, Nilay; Akpak, Yasam Kemal; Tatar, Zeynep; Batmaz, Gonca; Erken, Aslihan

    2016-02-01

    Gastrointestinal stromal tumors (GISTs) are rare tumor of the gastrointestinal tract. GISTs occur in the entire gastrointestinal tract and may also arise from the retroperitoneum, omentum and mesenteries. They are originated from gastrointestinal pacemaker cells (Cajal's interstitial cells) and range from benign tumors to sarcomas at all sites of occurrence. Diagnosis of GIST could be deceptive because of their similarity in appearance to gynecological neoplasms. We would like to present a case of a woman with GIST in the small intestine giving a imprint of an adnexal mass was diagnosed correctly during surgery. The diagnosis and treatment of GIST has been reformed over the past years. It is crucial to separate GISTs from possible misdiagnosis because their prognosis and treatment could be unlike clearly. The purpose of this case is to evaluate this rarely seen clinical entity, and thus, make some contribution to the literature. PMID:26383211

  13. Ex vivo expansion of mesenchymal stromal cells.

    PubMed

    Bernardo, Maria Ester; Cometa, Angela Maria; Pagliara, Daria; Vinti, Luciana; Rossi, Francesca; Cristantielli, Rosaria; Palumbo, Giuseppe; Locatelli, Franco

    2011-03-01

    Mesenchymal stromal cells (MSCs) are adult multipotent cells that can be isolated from several human tissues. MSCs represent a novel and attractive tool in strategies of cellular therapy. For in vivo use, MSCs have to be ex vivo expanded in order to reach the numbers suitable for their clinical application. Despite being efficacious, the use of fetal calf serum for MSC ex vivo expansion for clinical purposes raises concerns related to immunization and transmission of zoonoses; the standardization of expansion methods, possibly devoid of animal components, such as those based on platelet lysate, are discussed in this paper. Moreover, this review focuses on the search of novel markers for the prospective identification/isolation of MSCs and on the potential risks connected with ex vivo expansion of MSCs, in particular that of their malignant transformation. Available tests to study the genetic stability of ex vivo expanded MSCs are also analyzed. PMID:21396595

  14. Are mesenchymal stromal cells immune cells?

    PubMed

    Hoogduijn, Martin J

    2015-01-01

    Mesenchymal stromal cells (MSCs) are considered to be promising agents for the treatment of immunological disease. Although originally identified as precursor cells for mesenchymal lineages, in vitro studies have demonstrated that MSCs possess diverse immune regulatory capacities. Pre-clinical models have shown beneficial effects of MSCs in multiple immunological diseases and a number of phase 1/2 clinical trials carried out so far have reported signs of immune modulation after MSC infusion. These data indicate that MSCs play a central role in the immune response. This raises the academic question whether MSCs are immune cells or whether they are tissue precursor cells with immunoregulatory capacity. Correct understanding of the immunological properties and origin of MSCs will aid in the appropriate and safe use of the cells for clinical therapy. In this review the whole spectrum of immunological properties of MSCs is discussed with the aim of determining the position of MSCs in the immune system. PMID:25880839

  15. Epithelial Cell Adhesion Molecule

    PubMed Central

    Trzpis, Monika; McLaughlin, Pamela M.J.; de Leij, Lou M.F.H.; Harmsen, Martin C.

    2007-01-01

    The epithelial cell adhesion molecule (EpCAM, CD326) is a glycoprotein of ∼40 kd that was originally identified as a marker for carcinoma, attributable to its high expression on rapidly proliferating tumors of epithelial origin. Normal epithelia express EpCAM at a variable but generally lower level than carcinoma cells. In early studies, EpCAM was proposed to be a cell-cell adhesion molecule. However, recent insights revealed a more versatile role for EpCAM that is not limited only to cell adhesion but includes diverse processes such as signaling, cell migration, proliferation, and differentiation. Cell surface expression of EpCAM may actually prevent cell-cell adhesion. Here, we provide a comprehensive review of the current knowledge on EpCAM biology in relation to other cell adhesion molecules. We discuss the implications of the newly identified functions of EpCAM in view of its prognostic relevance in carcinoma, inflammatory pathophysiology, and tissue development and regeneration as well as its role in normal epithelial homeostasis. PMID:17600130

  16. miR-146b-5p mediates p16-dependent repression of IL-6 and suppresses paracrine procarcinogenic effects of breast stromal fibroblasts

    PubMed Central

    Al-Ansari, Mysoon M.; Aboussekhra, Abdelilah

    2015-01-01

    Increasing evidence support the critical roles of active stromal fibroblasts in breast cancer development and spread. However, the mediators and the mechanisms of regulation are still not well defined. We have shown here that the tumor suppressor p16INK4A protein inhibits the pro-carcinogenic effects of breast stromal fibroblasts through repressing the expression/secretion of IL-6. Indeed, p16INK4A suppresses IL-6 at the mRNA and protein levels. This effect is mediated trough miR-146b-5p, which inhibits IL-6 expression through a specific sequence at the IL-6 3′UTR. In addition, we present clear evidence that miR-146b-5p inhibition is sufficient to transactivate breast stromal fibroblasts, which promote epithelial-to-mesenchymal-transition in breast cancer cells in a paracrine manner. By contrast, ectopic expression of miR-146b-5p in active fibroblasts abrogated their pro-carcinogenic effects. The physiological importance of miR-146b-5p inhibition was revealed by showing that the levels of pre-miR-146b-5p as well as its mature form are reduced in cancer-associated fibroblasts as compared with their normal adjacent counterparts from cancer-free tissues isolated from the same patients. Interestingly, treatment of active breast stromal fibroblasts with curcumin increased the level of the p16INK4A coding CDKN2A mRNA and miR-146b-5p and suppressed IL-6, which confirms the repressive effect of these two tumor suppressor molecules on IL-6, and shows the possible “normalization” of cancer-related active fibroblasts. These results show that miR-146b-5p has non-cell-autonomous tumor suppressor function through inhibition of IL-6, suggesting that targeting this microRNA in breast stromal fibroblasts could be of great therapeutic value. PMID:26338965

  17. Extra gonadal sclerosing stromal tumour in the transverse mesocolon.

    PubMed

    Mensah, Samuel; Kyei, Ishmael; Ohene-Yeboah, Michael; Adjei, Ernest

    2016-03-01

    Sclerosing stromal tumour (SST) is a rare benign sex cord stromal tumour of the ovary. We report a case of sclerosing stromal tumour of the mesentery in a 32-year-old Para one who presented with intra abdominal mass, menstrual irregularity and secondary infertility. Histopathology and immunohistochemistry of the completely excised tumour was consistent with sclerosing stromal tumour, immunoreactive only to vimentin. No ovarian tissue was found in the sectioned tumour. Her menses became regular and she conceived 3 months after complete excision and delivered after 9 months. Hormonal assay was not done because SST was least suspected. From literature this is the first case of SST in the transverse mesocolon reported in the West African subregion, and may probably be one of the rare cases of hormonally active SST. PMID:27605726

  18. Stromal-Based Signatures for the Classification of Gastric Cancer.

    PubMed

    Uhlik, Mark T; Liu, Jiangang; Falcon, Beverly L; Iyer, Seema; Stewart, Julie; Celikkaya, Hilal; O'Mahony, Marguerita; Sevinsky, Christopher; Lowes, Christina; Douglass, Larry; Jeffries, Cynthia; Bodenmiller, Diane; Chintharlapalli, Sudhakar; Fischl, Anthony; Gerald, Damien; Xue, Qi; Lee, Jee-Yun; Santamaria-Pang, Alberto; Al-Kofahi, Yousef; Sui, Yunxia; Desai, Keyur; Doman, Thompson; Aggarwal, Amit; Carter, Julia H; Pytowski, Bronislaw; Jaminet, Shou-Ching; Ginty, Fiona; Nasir, Aejaz; Nagy, Janice A; Dvorak, Harold F; Benjamin, Laura E

    2016-05-01

    Treatment of metastatic gastric cancer typically involves chemotherapy and monoclonal antibodies targeting HER2 (ERBB2) and VEGFR2 (KDR). However, reliable methods to identify patients who would benefit most from a combination of treatment modalities targeting the tumor stroma, including new immunotherapy approaches, are still lacking. Therefore, we integrated a mouse model of stromal activation and gastric cancer genomic information to identify gene expression signatures that may inform treatment strategies. We generated a mouse model in which VEGF-A is expressed via adenovirus, enabling a stromal response marked by immune infiltration and angiogenesis at the injection site, and identified distinct stromal gene expression signatures. With these data, we designed multiplexed IHC assays that were applied to human primary gastric tumors and classified each tumor to a dominant stromal phenotype representative of the vascular and immune diversity found in gastric cancer. We also refined the stromal gene signatures and explored their relation to the dominant patient phenotypes identified by recent large-scale studies of gastric cancer genomics (The Cancer Genome Atlas and Asian Cancer Research Group), revealing four distinct stromal phenotypes. Collectively, these findings suggest that a genomics-based systems approach focused on the tumor stroma can be used to discover putative predictive biomarkers of treatment response, especially to antiangiogenesis agents and immunotherapy, thus offering an opportunity to improve patient stratification. Cancer Res; 76(9); 2573-86. ©2016 AACR. PMID:27197264

  19. Solid and papillary epithelial neoplasm of the pancreas

    SciTech Connect

    Friedman, A.C.; Lichtenstein, J.E.; Fishman, E.K.; Oertel, J.E.; Dachman, A.H.; Siegelman, S.S.

    1985-02-01

    Solid and papillary epithelial neoplasm of the pancreas is an uncommon low grade malignant tumor histologically distinct from the usual ductal adenocarcinoma and amenable to cure by surgical excision. It tends to occur in black women in their second or third decade of life and has often been misclassified as nonfunctional islet cell tumor or as cystadenoma or cystadenocarcinoma. Twelve cases were reviewed. Sonography and CT of solid and pipillary epithelial neoplasms depict a well-demarcated mass that can be solid, mixed cystic and solid, or largely cystic. The radiologic appearance is dependent on the maintenance of the integrity of the neoplasm versus the extent of retrogressive changes that have occurred.

  20. Imaging and Clinicopathologic Features of Esophageal Gastrointestinal Stromal Tumors

    PubMed Central

    Winant, Abbey J.; Gollub, Marc J.; Shia, Jinru; Antonescu, Christina; Bains, Manjit S.; Levine, Marc S.

    2016-01-01

    OBJECTIVE The purpose of this article is to describe the imaging and clinicopathologic characteristics of esophageal gastrointestinal stromal tumors (GISTs) and to emphasize the features that differentiate esophageal GISTs from esophageal leiomyomas. MATERIALS AND METHODS A pathology database search identified all surgically resected or biopsied esophageal GISTs, esophageal leiomyomas, and esophageal leiomyosarcomas from 1994 to 2012. Esophageal GISTs were included only if imaging studies (including CT, fluoroscopic, or 18F-FDG PET/CT scans) and clinical data were available. RESULTS Nineteen esophageal mesenchymal tumors were identified, including eight esophageal GISTs (42%), 10 esophageal leiomyomas (53%), and one esophageal leiomyosarcoma (5%). Four patients (50%) with esophageal GIST had symptoms, including dysphagia in three (38%), cough in one (13%), and chest pain in one (13%). One esophageal GIST appeared on barium study as a smooth submucosal mass. All esophageal GISTs appeared on CT as well-marginated predominantly distal lesions, isoattenuating to muscle, that moderately enhanced after IV contrast agent administration. Compared with esophageal leiomyomas, esophageal GISTs tended to be more distal, larger, and more heterogeneous and showed greater IV enhancement on CT. All esophageal GISTs showed marked avidity (mean maximum standardized uptake value, 16) on PET scans. All esophageal GISTs were positive for c-KIT (a cell-surface transmembrane tyrosine kinase also known as CD117) and CD34. On histopathology, six esophageal GISTs (75%) were of the spindle pattern and two (25%) were of a mixed spindle and epithelioid pattern. Five esophageal GISTs had exon 11 mutations (with imatinib sensitivity). Clinical outcome correlated with treatment strategy (resection plus adjuvant therapy or resection alone) rather than risk stratification. CONCLUSION Esophageal GISTs are unusual but clinically important mesenchymal neoplasms. Although esophageal GISTs and

  1. Direct Reprogramming of Human Bone Marrow Stromal Cells into Functional Renal Cells Using Cell-free Extracts

    PubMed Central

    Papadimou, Evangelia; Morigi, Marina; Iatropoulos, Paraskevas; Xinaris, Christodoulos; Tomasoni, Susanna; Benedetti, Valentina; Longaretti, Lorena; Rota, Cinzia; Todeschini, Marta; Rizzo, Paola; Introna, Martino; Grazia de Simoni, Maria; Remuzzi, Giuseppe; Goligorsky, Michael S.; Benigni, Ariela

    2015-01-01

    Summary The application of cell-based therapies in regenerative medicine is gaining recognition. Here, we show that human bone marrow stromal cells (BMSCs), also known as bone-marrow-derived mesenchymal cells, can be reprogrammed into renal proximal tubular-like epithelial cells using cell-free extracts. Streptolysin-O-permeabilized BMSCs exposed to HK2-cell extracts underwent morphological changes—formation of “domes” and tubule-like structures—and acquired epithelial functional properties such as transepithelial-resistance, albumin-binding, and uptake and specific markers E-cadherin and aquaporin-1. Transmission electron microscopy revealed the presence of brush border microvilli and tight intercellular contacts. RNA sequencing showed tubular epithelial transcript abundance and revealed the upregulation of components of the EGFR pathway. Reprogrammed BMSCs integrated into self-forming kidney tissue and formed tubular structures. Reprogrammed BMSCs infused in immunodeficient mice with cisplatin-induced acute kidney injury engrafted into proximal tubuli, reduced renal injury and improved function. Thus, reprogrammed BMSCs are a promising cell resource for future cell therapy. PMID:25754206

  2. Characterization of the interactions between stromal and haematopoietic progenitor cells in expansion cell culture models.

    PubMed

    Bilko, N M; Votyakova, I A; Vasylovska, S V; Bilko, D I

    2005-01-01

    Development of the long-term culture models of haematopoietic stem cells (HSCs) is one of the important tasks in modern biotechnology. It has been suggested that stromal presence is important for haematopoiesis in vitro and in vivo, but the question remains: whether diffusible factors produced by stromal cells are sufficient for the regeneration of primitive and definitive haematopoietic cells, or direct cell-to-cell contacts of the cultured material with underlying stromal base would be required. During present studies, influence of various feeder layers and feeder layer conditioned media on proliferative, differentiative and clonogenic activity of human AC133+ derived from human umbilical cord blood was investigated. Cell extracts for feeder layers were prepared from 4-6 weeks old human embryos and co-cultured feeder cells. Effects of the conditioned media were also determined. Culture and feeder layer media were additionally supplemented with commonly implemented factors such as GM-CSF, IL-3 and LIF. Estimation of morpho-functional properties of AC133+ cultivated suspension cultures was performed in subculture experiments using semisolid agar culture conditions. Multipotential CFU-MIX (CFU-GEMM) and unipotential progenitor cells CFU-GM, BFU-E and CFU-E were observed and analyzed. Our data suggest that haematopoiesis can be sustained for prolonged cultivation periods in the presence of feeder layer cells or conditioned media supported culture models. Prolonged support of primitive haematopoietic cells and their clonogenic capacity and functional characteristics in feeder layer positive cultures, indicates that diffusible factors are sufficient for haematopoiesis and suggests that direct cell-to-cell contacts may not be exclusively required for successful long-term in vitro haematopoiesis. PMID:15763504

  3. Tumor Exosomal RNAs Promote Lung Pre-metastatic Niche Formation by Activating Alveolar Epithelial TLR3 to Recruit Neutrophils.

    PubMed

    Liu, Yanfang; Gu, Yan; Han, Yanmei; Zhang, Qian; Jiang, Zhengping; Zhang, Xiang; Huang, Bo; Xu, Xiaoqing; Zheng, Jianming; Cao, Xuetao

    2016-08-01

    The pre-metastatic niche educated by primary tumor-derived elements contributes to cancer metastasis. However, the role of host stromal cells in metastatic niche formation and organ-specific metastatic tropism is not clearly defined. Here, we demonstrate that lung epithelial cells are critical for initiating neutrophil recruitment and lung metastatic niche formation by sensing tumor exosomal RNAs via Toll-like receptor 3 (TLR3). TLR3-deficient mice show reduced lung metastasis in the spontaneous metastatic models. Mechanistically, primary tumor-derived exosomal RNAs, which are enriched in small nuclear RNAs, activate TLR3 in lung epithelial cells, consequently inducing chemokine secretion in the lung and promoting neutrophil recruitment. Identification of metastatic axis of tumor exosomal RNAs and host lung epithelial cell TLR3 activation provides potential targets to control cancer metastasis to the lung. PMID:27505671

  4. Up-regulation of stromal versican expression in advanced stage serous ovarian cancer

    PubMed Central

    Ghosh, Sue; Albitar, Lina; LeBaron, Richard; Welch, William R.; Samimi, Goli; Birrer, Michael J.; Berkowitz, Ross S.; Mok, Samuel C.

    2010-01-01

    Objective The purpose of this study is to examine the role of versican (VCAN) in advanced stage serous ovarian cancer by investigating its expression, its function, and its correlation with clinical outcomes. Methods Microarray analysis was performed on RNA isolated from tumor and stromal components of advanced stage serous ovarian cancer and normal ovarian epithelial tissue to identify genes up-regulated in ovarian tumor stroma. Validation studies using immunohistochemistry and quantitative real-time PCR (Q-RT-PCR) was performed on one of the up-regulated genes, VCAN. Immunolocalization of VCAN (n=111) and CD31 (n= 56) were done on serous ovarian tumors. CD31 staining was performed to examine microvessel density (MVD). Q-RT-PCR was performed on 65 samples to evaluate the differential expression of VCAN isoforms. Cell proliferation and invasion assays were performed to examine how V1-treated ovarian cancer cell lines and an endothelial cell line would differ from controls. Univariate survival analyses were done with VCAN expression. Correlation analysis was done with CD31, platinum resistance, and clinical data. Results Validation studies using Q-RT-PCR and immunohistochemistry showed significantly higher VCAN V1 isoform expression in ovarian cancer stroma compared with normal ovarian stroma and ovarian cancer cells. Correlation studies showed stromal VCAN expression was associated with poorer overall and progression free survival, platinum resistance, and increased MVD. VCAN-treated ovarian cancer and endothelial cells showed increased invasion potential. Conclusions VCAN overexpression is associated with increased MVD and invasion potential, which may lead to poorer overall and progression free survival and platinum resistance. PMID:20619446

  5. Alternate protein kinase A activity identifies a unique population of stromal cells in adult bone.

    PubMed

    Tsang, Kit Man; Starost, Matthew F; Nesterova, Maria; Boikos, Sosipatros A; Watkins, Tonya; Almeida, Madson Q; Harran, Michelle; Li, Andrew; Collins, Michael T; Cheadle, Christopher; Mertz, Edward L; Leikin, Sergey; Kirschner, Lawrence S; Robey, Pamela; Stratakis, Constantine A

    2010-05-11

    A population of stromal cells that retains osteogenic capacity in adult bone (adult bone stromal cells or aBSCs) exists and is under intense investigation. Mice heterozygous for a null allele of prkar1a (Prkar1a(+/-)), the primary receptor for cyclic adenosine monophosphate (cAMP) and regulator of protein kinase A (PKA) activity, developed bone lesions that were derived from cAMP-responsive osteogenic cells and resembled fibrous dysplasia (FD). Prkar1a(+/-) mice were crossed with mice that were heterozygous for catalytic subunit Calpha (Prkaca(+/-)), the main PKA activity-mediating molecule, to generate a mouse model with double heterozygosity for prkar1a and prkaca (Prkar1a(+/-)Prkaca(+/-)). Unexpectedly, Prkar1a(+/-)Prkaca(+/-) mice developed a greater number of osseous lesions starting at 3 months of age that varied from the rare chondromas in the long bones and the ubiquitous osteochondrodysplasia of vertebral bodies to the occasional sarcoma in older animals. Cells from these lesions originated from an area proximal to the growth plate, expressed osteogenic cell markers, and showed higher PKA activity that was mostly type II (PKA-II) mediated by an alternate pattern of catalytic subunit expression. Gene expression profiling confirmed a preosteoblastic nature for these cells but also showed a signature that was indicative of mesenchymal-to-epithelial transition and increased Wnt signaling. These studies show that a specific subpopulation of aBSCs can be stimulated in adult bone by alternate PKA and catalytic subunit activity; abnormal proliferation of these cells leads to skeletal lesions that have similarities to human FD and bone tumors. PMID:20421483

  6. Epithelial hyperplasia, alveoli —

    Cancer.gov

    Solitary or multiple foci of increased cellularity distal to terminal bronchioles. The background of broncho-alveolar architecture remains detectable, and epithelial cells are usually single layered. Round to oval hypertrophic type II pneumocytes with abundant eosinophilic cytoplasm line alveolar walls. In bronchiolar subvariant, also called bronchiolization of alveoli, alveolar walls are lined by cuboidal to columnar cells with features of bronchiolar differentiation, such as formation of cilia, Clara cell resemblance, and presence of mucous granules. Foci of consolidation may indicate early stages of adenoma formation. Macrophages may be present in the alveolar lumens.

  7. Epithelial stem cells.

    PubMed

    Draheim, Kyle M; Lyle, Stephen

    2011-01-01

    It is likely that adult epithelial stem cells will be useful in the treatment of diseases, such as ectodermal dysplasias, monilethrix, Netherton syndrome, Menkes disease, hereditary epidermolysis bullosa, and alopecias. Additionally, other skin problems such as burn wounds, chronic wounds, and ulcers will benefit from stem cell-related therapies. However, there are many questions that need to be answered before this goal can be realized. The most important of these questions is what regulates the adhesion of stem cells to the niche versus migration to the site of injury. We have started to identify the mechanisms involved in this decision-making process. PMID:21618097

  8. Targeting Disease Persistence in Gastrointestinal Stromal Tumors

    PubMed Central

    Zörnig, Martin; Hayashi, Yujiro

    2015-01-01

    Summary Gastrointestinal stromal tumors (GISTs) represent 20%–40% of human sarcomas. Although approximately half of GISTs are cured by surgery, prognosis of advanced disease used to be poor due to the high resistance of these tumors to conventional chemo- and radiotherapy. The introduction of molecularly targeted therapy (e.g., with imatinib mesylate) following the discovery of the role of oncogenic mutations in the receptor tyrosine kinases KIT and platelet-derived growth factor α (PDGFRA) significantly increased patient survival. However, GIST cells persist in 95%–97% of imatinib-treated patients who eventually progress and die of the disease because of the emergence of clones with drug-resistant mutations. Because these secondary mutations are highly heterogeneous, even second- and third-line drugs that are effective against certain genotypes have only moderately increased progression-free survival. Consequently, alternative strategies such as targeting molecular mechanisms underlying disease persistence should be considered. We reviewed recently discovered cell-autonomous and microenvironmental mechanisms that could promote the survival of GIST cells in the presence of tyrosine kinase inhibitor therapy. We particularly focused on the potential role of adult precursors for interstitial cells of Cajal (ICCs), the normal counterpart of GISTs. ICC precursors share phenotypic characteristics with cells that emerge in a subset of patients treated with imatinib and in young patients with GIST characterized by loss of succinate dehydrogenase complex proteins and lack of KIT or PDGFRA mutations. Eradication of residual GIST cells and cure of GIST will likely require individualized combinations of several approaches tailored to tumor genotype and phenotype. Significance Gastrointestinal stromal tumors (GISTs) are one of the most common connective tissue cancers. Most GISTs that cannot be cured by surgery respond to molecularly targeted therapy (e.g., with imatinib

  9. Functional imaging and assessment of the glucose diffusion rate in epithelial tissues in optical coherence tomography

    SciTech Connect

    Larin, K V; Tuchin, V V

    2008-06-30

    Functional imaging, monitoring and quantitative description of glucose diffusion in epithelial and underlying stromal tissues in vivo and controlling of the optical properties of tissues are extremely important for many biomedical applications including the development of noninvasive or minimally invasive glucose sensors as well as for therapy and diagnostics of various diseases, such as cancer, diabetic retinopathy, and glaucoma. Recent progress in the development of a noninvasive molecular diffusion biosensor based on optical coherence tomography (OCT) is described. The diffusion of glucose was studied in several epithelial tissues both in vitro and in vivo. Because OCT provides depth-resolved imaging of tissues with high in-depth resolution, the glucose diffusion is described not only as a function of time but also as a function of depth. (special issue devoted to application of laser technologies in biophotonics and biomedical studies)

  10. Epithelial derived CTGF promotes breast tumor progression via inducing EMT and collagen I fibers deposition

    PubMed Central

    Zhao, Zhen; Sheng, Jianting; Wang, Jiang; Liu, Jiyong; Cui, Kemi; Chang, Jenny; Zhao, Hong; Wong, Stephen

    2015-01-01

    Interactions among tumor cells, stromal cells, and extracellular matrix compositions are mediated through cytokines during tumor progression. Our analysis of 132 known cytokines and growth factors in published clinical breast cohorts and our 84 patient-derived xenograft models revealed that the elevated connective tissue growth factor (CTGF) in tumor epithelial cells significantly correlated with poor clinical prognosis and outcomes. CTGF was able to induce tumor cell epithelial-mesenchymal transition (EMT), and promote stroma deposition of collagen I fibers to stimulate tumor growth and metastasis. This process was mediated through CTGF-tumor necrosis factor receptor I (TNFR1)-IκB autocrine signaling. Drug treatments targeting CTGF, TNFR1, and IκB signaling each prohibited the EMT and tumor progression. PMID:26318291

  11. Role of Crosstalk between Epithelial and Immune Cells, the Epimmunome, in Allergic Rhinitis Pathogenesis.

    PubMed

    Kamekura, Ryuta; Yamashita, Keiji; Jitsukawa, Sumito; Nagaya, Tomonori; Ito, Fumie; Ichimiya, Shingo; Himi, Tetsuo

    2016-01-01

    Recently, the prevalence of allergic rhinitis has been dramatically increasing worldwide. As conventional therapies for allergic rhinitis, such as antihistamines, leukotriene receptor antagonists, nasal sprays and allergen immunotherapy, have limitations, the development of new drugs is required. Recent studies have revealed that epithelial cell-derived cytokines, including thymic stromal lymphopoietin, interleukin (IL)-25 and IL-33, are able to control immune cells, such as dendritic cells and T cells, thereby acting as 'master switches' in allergic disease. In addition, new roles have been identified for follicular helper T cells and regulatory B cells in allergic disease, and they are considered to be promising targets for new therapies. Thus, crosstalk between epithelial and immune cells, the epimmunome, underlies the pathogenesis of allergic rhinitis. Greater understanding of the epimmunome may lead to breakthroughs in the development of new treatments for allergic rhinitis and will help us cure many patients suffering from its severe symptoms in the future. PMID:27116609

  12. β-Catenin activation contributes to the pathogenesis of adenomyosis through epithelial-mesenchymal transition.

    PubMed

    Oh, Seo Jin; Shin, Jung-Ho; Kim, Tae Hoon; Lee, Hee Sun; Yoo, Jung-Yoon; Ahn, Ji Yeon; Broaddus, Russell R; Taketo, Makoto M; Lydon, John P; Leach, Richard E; Lessey, Bruce A; Fazleabas, Asgerally T; Lim, Jeong Mook; Jeong, Jae-Wook

    2013-10-01

    Adenomyosis is defined by the presence of endometrial glands and stroma within the myometrium. Despite its frequent occurrence, the precise aetiology and physiopathology of adenomyosis is still unknown. WNT/β-catenin signalling molecules are important and should be tightly regulated for uterine function. To investigate the role of β-catenin signalling in adenomyosis, the expression of β-catenin was examined. Nuclear and cytoplasmic β-catenin expression was significantly higher in epithelial cells of human adenomyosis compared to control endometrium. To determine whether constitutive activation of β-catenin in the murine uterus leads to development of adenomyosis, mice that expressed a dominant stabilized β-catenin in the uterus were used by crossing PR-Cre mice with Ctnnb1(f(ex3)/+) mice. Uteri of PR(cre) (/+) Ctnnb1(f(ex3)/+) mice displayed an abnormal irregular structure and highly active proliferation in the myometrium, and subsequently developed adenomyosis. Interestingly, the expression of E-cadherin was repressed in epithelial cells of PR(cre) (/+) Ctnnb1(f(ex3)/+) mice compared to control mice. Repression of E-cadherin is one of the hallmarks of epithelial-mesenchymal transition (EMT). The expression of SNAIL and ZEB1 was observed in some epithelial cells of the uterus in PR(cre) (/+) Ctnnb1(f(ex3)/+) mice but not in control mice. Vimentin and COUP-TFII, mesenchymal cell markers, were expressed in some epithelial cells of PR(cre) (/+) Ctnnb1(f(ex3)/+) mice. In human adenomyosis, the expression of E-cadherin was decreased in epithelial cells compared to control endometrium, while CD10, an endometrial stromal marker, was expressed in some epithelial cells of human adenomyosis. These results suggest that abnormal activation of β-catenin contributes to adenomyosis development through the induction of EMT. PMID:23784889

  13. The Ets transcription factor EHF as a regulator of cornea epithelial cell identity.

    PubMed

    Stephens, Denise N; Klein, Rachel Herndon; Salmans, Michael L; Gordon, William; Ho, Hsiang; Andersen, Bogi

    2013-11-29

    The cornea is the clear, outermost portion of the eye composed of three layers: an epithelium that provides a protective barrier while allowing transmission of light into the eye, a collagen-rich stroma, and an endothelium monolayer. How cornea development and aging is controlled is poorly understood. Here we characterize the mouse cornea transcriptome from early embryogenesis through aging and compare it with transcriptomes of other epithelial tissues, identifying cornea-enriched genes, pathways, and transcriptional regulators. Additionally, we profiled cornea epithelium and stroma, defining genes enriched in these layers. Over 10,000 genes are differentially regulated in the mouse cornea across the time course, showing dynamic expression during development and modest expression changes in fewer genes during aging. A striking transition time point for gene expression between postnatal days 14 and 28 corresponds with completion of cornea development at the transcriptional level. Clustering classifies co-expressed, and potentially co-regulated, genes into biologically informative categories, including groups that exhibit epithelial or stromal enriched expression. Based on these findings, and through loss of function studies and ChIP-seq, we show that the Ets transcription factor EHF promotes cornea epithelial fate through complementary gene activating and repressing activities. Furthermore, we identify potential interactions between EHF, KLF4, and KLF5 in promoting cornea epithelial differentiation. These data provide insights into the mechanisms underlying epithelial development and aging, identifying EHF as a regulator of cornea epithelial identity and pointing to interactions between Ets and KLF factors in promoting epithelial fate. Furthermore, this comprehensive gene expression data set for the cornea is a powerful tool for discovery of novel cornea regulators and pathways. PMID:24142692

  14. The Ets Transcription Factor EHF as a Regulator of Cornea Epithelial Cell Identity*

    PubMed Central

    Stephens, Denise N.; Klein, Rachel Herndon; Salmans, Michael L.; Gordon, William; Ho, Hsiang; Andersen, Bogi

    2013-01-01

    The cornea is the clear, outermost portion of the eye composed of three layers: an epithelium that provides a protective barrier while allowing transmission of light into the eye, a collagen-rich stroma, and an endothelium monolayer. How cornea development and aging is controlled is poorly understood. Here we characterize the mouse cornea transcriptome from early embryogenesis through aging and compare it with transcriptomes of other epithelial tissues, identifying cornea-enriched genes, pathways, and transcriptional regulators. Additionally, we profiled cornea epithelium and stroma, defining genes enriched in these layers. Over 10,000 genes are differentially regulated in the mouse cornea across the time course, showing dynamic expression during development and modest expression changes in fewer genes during aging. A striking transition time point for gene expression between postnatal days 14 and 28 corresponds with completion of cornea development at the transcriptional level. Clustering classifies co-expressed, and potentially co-regulated, genes into biologically informative categories, including groups that exhibit epithelial or stromal enriched expression. Based on these findings, and through loss of function studies and ChIP-seq, we show that the Ets transcription factor EHF promotes cornea epithelial fate through complementary gene activating and repressing activities. Furthermore, we identify potential interactions between EHF, KLF4, and KLF5 in promoting cornea epithelial differentiation. These data provide insights into the mechanisms underlying epithelial development and aging, identifying EHF as a regulator of cornea epithelial identity and pointing to interactions between Ets and KLF factors in promoting epithelial fate. Furthermore, this comprehensive gene expression data set for the cornea is a powerful tool for discovery of novel cornea regulators and pathways. PMID:24142692

  15. Adult thymus contains FoxN1(-) epithelial stem cells that are bipotent for medullary and cortical thymic epithelial lineages.

    PubMed

    Ucar, Ahmet; Ucar, Olga; Klug, Paula; Matt, Sonja; Brunk, Fabian; Hofmann, Thomas G; Kyewski, Bruno

    2014-08-21

    Within the thymus, two major thymic epithelial cell (TEC) subsets-cortical and medullary TECs-provide unique structural and functional niches for T cell development and establishment of central tolerance. Both lineages are believed to originate from a common progenitor cell, yet the cellular and molecular identity of these bipotent TEC progenitors/stem cells remains ill defined. Here we identify rare stromal cells in the murine adult thymus, which under low-attachment conditions formed spheres (termed "thymospheres"). These thymosphere-forming cells (TSFCs) displayed the stemness features of being slow cycling, self-renewing, and bipotent. TSFCs could be significantly enriched based on their distinct surface antigen phenotype. The FoxN1 transcription factor was dispensable for TSFCs maintenance in situ and for commitment to the medullary and cortical TEC lineages. In summary, this study presents the characterization of the adult thymic epithelial stem cells and demonstrates the dispensability of FoxN1 function for their stemness. PMID:25148026

  16. Periostin Facilitates the Epithelial-Mesenchymal Transition of Endometrial Epithelial Cells through ILK-Akt Signaling Pathway

    PubMed Central

    Zheng, Qiao-mei; Lu, Jing-jing; Zhao, Jing; Wei, Xuan; Wang, Lu

    2016-01-01

    Although periostin was confirmed to facilitate the pathogenesis of endometriosis by enhancing the migration, invasion, and adhesion of human endometrial stromal cells (ESCs), its effect on the endometrial epithelial cells (EECs) is still unknown. The current study aimed to determine whether periostin enhanced the epithelial-mesenchymal transition (EMT) of EECs. EECs were isolated from 12 women with endometriosis. The migration and invasion abilities of EECs were evaluated by transwell assays. Expressions of proteins were detected by western blot. After treatment with periostin, the migration and invasion abilities of EECs were enhanced. Additionally, E-cadherin and keratin were downregulated while N-cadherin and vimentin were upregulated in EECs. Simultaneously, levels of ILK, p-Akt, slug, and Zeb1 were all upregulated in EECs. After silencing the expression of ILK in EECs, levels of p-Akt, slug, Zeb1, N-cadherin, and vimentin were downregulated while E-cadherin and keratin were upregulated. Although periostin weakened the above effects in EECs after silencing the expression of ILK, it failed to induce the EMT of EECs. Thus, periostin enhanced invasion and migration abilities of EECs and facilitated the EMT of EECs through ILK-Akt signaling pathway. Playing a pivotal role in the pathogenesis of endometriosis, periostin may be a new clinical therapy target for endometriosis. PMID:27034956

  17. Epigenetic Classification of Human Mesenchymal Stromal Cells.

    PubMed

    de Almeida, Danilo Candido; Ferreira, Marcelo R P; Franzen, Julia; Weidner, Carola I; Frobel, Joana; Zenke, Martin; Costa, Ivan G; Wagner, Wolfgang

    2016-02-01

    Standardization of mesenchymal stromal cells (MSCs) is hampered by the lack of a precise definition for these cell preparations; for example, there are no molecular markers to discern MSCs and fibroblasts. In this study, we followed the hypothesis that specific DNA methylation (DNAm) patterns can assist classification of MSCs. We utilized 190 DNAm profiles to address the impact of tissue of origin, donor age, replicative senescence, and serum supplements on the epigenetic makeup. Based on this, we elaborated a simple epigenetic signature based on two CpG sites to classify MSCs and fibroblasts, referred to as the Epi-MSC-Score. Another two-CpG signature can distinguish between MSCs from bone marrow and adipose tissue, referred to as the Epi-Tissue-Score. These assays were validated by site-specific pyrosequencing analysis in 34 primary cell preparations. Furthermore, even individual subclones of MSCs were correctly classified by our epigenetic signatures. In summary, we propose an alternative concept to use DNAm patterns for molecular definition of cell preparations, and our epigenetic scores facilitate robust and cost-effective quality control of MSC cultures. PMID:26862701

  18. Succinate dehydrogenase-deficient gastrointestinal stromal tumors

    PubMed Central

    Wang, Ya-Mei; Gu, Meng-Li; Ji, Feng

    2015-01-01

    Most gastrointestinal stromal tumors (GISTs) are characterized by KIT or platelet-derived growth factor alpha (PDGFRA) activating mutations. However, there are still 10%-15% of GISTs lacking KIT and PDGFRA mutations, called wild-type GISTs (WT GISTs). Among these so-called WT GISTs, a small subset is associated with succinate dehydrogenase (SDH) deficiency, known as SDH-deficient GISTs. In addition, GISTs that occur in Carney triad and Carney-Stratakis syndrome represent specific examples of SDH-deficient GISTs. SDH-deficient GISTs locate exclusively in the stomach, showing predilection for children and young adults with female preponderance. The tumor generally pursues an indolent course and exhibits primary resistance to imatinib therapy in most cases. Loss of succinate dehydrogenase subunit B expression and overexpression of insulin-like growth factor 1 receptor (IGF1R) are common features of SDH-deficient GISTs. In WT GISTs without succinate dehydrogenase activity, upregulation of hypoxia-inducible factor 1α may lead to increased growth signaling through IGF1R and vascular endothelial growth factor receptor (VEGFR). As a result, IGF1R and VEGFR are promising to be the novel therapeutic targets of GISTs. This review will update the current knowledge on characteristics of SDH-deficient GISTs and further discuss the possible mechanisms of tumorigenesis and clinical management of SDH-deficient GISTs. PMID:25741136

  19. Mesenchymal stromal cells for sphincter regeneration.

    PubMed

    Klein, Gerd; Hart, Melanie L; Brinchmann, Jan E; Rolauffs, Bernd; Stenzl, Arnulf; Sievert, Karl-Dietrich; Aicher, Wilhelm K

    2015-03-01

    Stress urinary incontinence (SUI), defined as the involuntary loss of considerable amounts of urine during increased abdominal pressure (exertion, effort, sneezing, coughing, etc.), is a severe problem to the individuals affected and a significant medical, social and economic challenge. SUI is associated with pelvic floor debility, absence of detrusor contraction, or a loss of control over the sphincter muscle apparatus. The pathology includes an increasing loss of muscle cells, replacement of muscular tissue with fibrous tissue, and general aging associated processes of the sphincter complex. When current therapies fail to cure or improve SUI, application of regeneration-competent cells may be an alternative therapeutic option. Here we discuss different aspects of the biology of mesenchymal stromal cells, which are relevant to their clinical applications and for regenerating the sphincter complex. However, there are reports in favor of and against cell-based therapies. We therefore summarize the potential and the risks of cell-based therapies for the treatment of SUI. PMID:25451135

  20. Imatinib treatment for gastrointestinal stromal tumour (GIST)

    PubMed Central

    Lopes, Lisandro F; Bacchi, Carlos E

    2010-01-01

    Abstract Gastrointestinal stromal tumour (GIST) is the most common mesenchymal neoplasm of the gastrointestinal tract. GISTs are believed to originate from intersticial cells of Cajal (the pacemaker cells of the gastrointestinal tract) or related stem cells, and are characterized by KIT or platelet-derived growth factor receptor alpha (PDGFRA) activating mutations. The use of imatinib has revolutionized the management of GIST and altered its natural history, substantially improving survival time and delaying disease progression in many patients. The success of imatinib in controlling advanced GIST led to interest in the neoadjuvant and adjuvant use of the drug. The neoadjuvant (preoperative) use of imatinib is recommended to facilitate resection and avoid mutilating surgery by decreasing tumour size, and adjuvant therapy is indicated for patients at high risk of recurrence. The molecular characterization (genotyping) of GISTs has become an essential part of the routine management of the disease as KIT and PDGFRA mutation status predicts the likelihood of achieving response to imatinib. However, the vast majority of patients who initially responded to imatinib will develop tumour progression (secondary resistance). Secondary resistance is often related to secondary KIT or PDGFRA mutations that interfere with drug binding. Multiple novel tyrosine kinase inhibitors may be potentially useful for the treatment of imatinib-resistant GISTs as they interfere with KIT and PDGFRA receptors or with the downstream-signalling proteins. PMID:19968734

  1. Drug repurposing for gastrointestinal stromal tumor.

    PubMed

    Pessetto, Ziyan Y; Weir, Scott J; Sethi, Geetika; Broward, Melinda A; Godwin, Andrew K

    2013-07-01

    Despite significant treatment advances over the past decade, metastatic gastrointestinal stromal tumor (GIST) remains largely incurable. Rare diseases, such as GIST, individually affect small groups of patients but collectively are estimated to affect 25 to 30 million people in the United States alone. Given the costs associated with the discovery, development, and registration of new drugs, orphan diseases such as GIST are often not pursued by mainstream pharmaceutical companies. As a result, "drug repurposing" or "repositioning," has emerged as an alternative to the traditional drug development process. In this study, we screened 796 U.S. Food and Drug Administration (FDA)-approved drugs and found that two of these compounds, auranofin (Ridaura) and fludarabine phosphate, effectively and selectively inhibited the proliferation of GISTs, including imatinib-resistant cells. One of the most notable drug hits, auranofin, an oral, gold-containing agent approved by the FDA in 1985 for the treatment of rheumatoid arthritis, was found to inhibit thioredoxin reductase activity and induce reactive oxygen species (ROS) production, leading to dramatic inhibition of GIST cell growth and viability. Importantly, the anticancer activity associated with auranofin was independent of imatinib-resistant status, but was closely related to the endogenous and inducible levels of ROS. Coupled with the fact that auranofin has an established safety profile in patients, these findings suggest for the first time that auranofin may have clinical benefit for patients with GIST, particularly in those suffering from imatinib-resistant and recurrent forms of this disease. PMID:23657945

  2. Targeted therapy of gastrointestinal stromal tumours

    PubMed Central

    Jakhetiya, Ashish; Garg, Pankaj Kumar; Prakash, Gaurav; Sharma, Jyoti; Pandey, Rambha; Pandey, Durgatosh

    2016-01-01

    Gastrointestinal stromal tumours (GISTs) are mesenchymal neoplasms originating in the gastrointestinal tract, usually in the stomach or the small intestine, and rarely elsewhere in the abdomen. The malignant potential of GISTs is variable ranging from small lesions with a benign behaviour to fatal sarcomas. The majority of the tumours stain positively for the CD-117 (KIT) and discovered on GIST-1 (DOG-1 or anoctamin 1) expression, and they are characterized by the presence of a driver kinase-activating mutation in either KIT or platelet-derived growth factor receptor α. Although surgery is the primary modality of treatment, almost half of the patients have disease recurrence following surgery, which highlights the need for an effective adjuvant therapy. Traditionally, GISTs are considered chemotherapy and radiotherapy resistant. With the advent of targeted therapy (tyrosine kinase inhibitors), there has been a paradigm shift in the management of GISTs in the last decade. We present a comprehensive review of targeted therapy in the management of GISTs. PMID:27231512

  3. Targeted therapy of gastrointestinal stromal tumours.

    PubMed

    Jakhetiya, Ashish; Garg, Pankaj Kumar; Prakash, Gaurav; Sharma, Jyoti; Pandey, Rambha; Pandey, Durgatosh

    2016-05-27

    Gastrointestinal stromal tumours (GISTs) are mesenchymal neoplasms originating in the gastrointestinal tract, usually in the stomach or the small intestine, and rarely elsewhere in the abdomen. The malignant potential of GISTs is variable ranging from small lesions with a benign behaviour to fatal sarcomas. The majority of the tumours stain positively for the CD-117 (KIT) and discovered on GIST-1 (DOG-1 or anoctamin 1) expression, and they are characterized by the presence of a driver kinase-activating mutation in either KIT or platelet-derived growth factor receptor α. Although surgery is the primary modality of treatment, almost half of the patients have disease recurrence following surgery, which highlights the need for an effective adjuvant therapy. Traditionally, GISTs are considered chemotherapy and radiotherapy resistant. With the advent of targeted therapy (tyrosine kinase inhibitors), there has been a paradigm shift in the management of GISTs in the last decade. We present a comprehensive review of targeted therapy in the management of GISTs. PMID:27231512

  4. Epigenetic Classification of Human Mesenchymal Stromal Cells

    PubMed Central

    de Almeida, Danilo Candido; Ferreira, Marcelo R.P.; Franzen, Julia; Weidner, Carola I.; Frobel, Joana; Zenke, Martin; Costa, Ivan G.; Wagner, Wolfgang

    2016-01-01

    Summary Standardization of mesenchymal stromal cells (MSCs) is hampered by the lack of a precise definition for these cell preparations; for example, there are no molecular markers to discern MSCs and fibroblasts. In this study, we followed the hypothesis that specific DNA methylation (DNAm) patterns can assist classification of MSCs. We utilized 190 DNAm profiles to address the impact of tissue of origin, donor age, replicative senescence, and serum supplements on the epigenetic makeup. Based on this, we elaborated a simple epigenetic signature based on two CpG sites to classify MSCs and fibroblasts, referred to as the Epi-MSC-Score. Another two-CpG signature can distinguish between MSCs from bone marrow and adipose tissue, referred to as the Epi-Tissue-Score. These assays were validated by site-specific pyrosequencing analysis in 34 primary cell preparations. Furthermore, even individual subclones of MSCs were correctly classified by our epigenetic signatures. In summary, we propose an alternative concept to use DNAm patterns for molecular definition of cell preparations, and our epigenetic scores facilitate robust and cost-effective quality control of MSC cultures. PMID:26862701

  5. Co-culture with endometrial stromal cells enhances the differentiation of human embryonic stem cells into endometrium-like cells

    PubMed Central

    YU, WENZHU; NIU, WENBIN; WANG, SHUNA; CHEN, XUEMEI; SUN, BO; WANG, FANG; SUN, YINGPU

    2015-01-01

    In vitro differentiation of human embryonic stem cells (hESCs) into endometrium-like cells may provide a useful tool for clinical treatment. The aim of the present study was to investigate the differentiation potential of hESCs into endometrium-like cells using three methods, which included induction by feeder cells, co-culture with endometrial stromal cells and induction with embryoid bodies. Following differentiation, the majority of cells positively expressed cytokeratin and epithelial cell adhesion molecule (EPCAM). Factors associated with endometrium cell function, namely the estrogen and progesterone receptors (ER and PR), were also detected. At day 21 following the induction of differentiation, the expression levels of cytokeratin, EPCAM, ER and PR were significantly increased in the co-culture method group, as compared with the other two methods. Furthermore, these cells became decidualized in response to progesterone and prolactin. In addition, the number of cytokeratin-positive or EPCAM-positive cells significantly increased following the induction of differentiation using the co-culture method, as compared with the other two methods. The mRNA expression levels of Wnt members that are associated with endometrial development were subsequently examined, and Wnt5a was found to be significantly upregulated in the differentiated cells induced by feeder cells and co-culture with endometrial stromal cells; however, Wnt4 and Wnt7a expression levels were unaffected. Additionally, the mRNA expression levels of Wnt5a in the differentiated cells co-cultured with endometrial stromal cells were higher when compared with those induced by feeder cells. In conclusion, the present findings indicated that the co-culture system is the optimal protocol for the induction of hESC differentiation into endometrium-like cells, and Wnt5a signaling may be involved in this process. PMID:26170910

  6. Altered features and increased chemosensitivity of human breast cancer cells mediated by adipose tissue-derived mesenchymal stromal cells

    PubMed Central

    2013-01-01

    Background Mesenchymal stromal cells (MSCs) represent heterogeneous cell population suitable for cell therapies in regenerative medicine. MSCs can also substantially affect tumor biology due to their ability to be recruited to the tumor stroma and interact with malignant cells via direct contacts and paracrine signaling. The aim of our study was to characterize molecular changes dictated by adipose tissue-derived mesenchymal stromal cells (AT-MSCs) and the effects on drug responses in human breast cancer cells SKBR3. Methods The tumor cells were either directly cocultured with AT-MSCs or exposed to MSCs-conditioned medium (MSC-CM). Changes in cell biology were evaluated by kinetic live cell imaging, fluorescent microscopy, scratch wound assay, expression analysis, cytokine secretion profiling, ATP-based viability and apoptosis assays. The efficiency of cytotoxic treatment in the presence of AT-MSCs or MSCs-CM was analyzed. Results The AT-MSCs altered tumor cell morphology, induced epithelial-to-mesenchymal transition, increased mammosphere formation, cell confluence and migration of SKBR3. These features were attributed to molecular changes induced by MSCs-secreted cytokines and chemokines in breast cancer cells. AT-MSCs significantly inhibited the proliferation of SKBR3 cells in direct cocultures which was shown to be dependent on the SDF-1α/CXCR4 signaling axis. MSC-CM-exposed SKBR3 or SKBR3 in direct coculture with AT-MSCs exhibited increased chemosensitivity and induction of apoptosis in response to doxorubicin and 5-fluorouracil. Conclusions Our work further highlights the multi-level nature of tumor-stromal cell interplay and demonstrates the capability of AT-MSCs and MSC-secreted factors to alter the anti-tumor drug responses. PMID:24209831

  7. Periostin in tumor microenvironment is associated with poor prognosis and platinum resistance in epithelial ovarian carcinoma

    PubMed Central

    Sung, Pi-Lin; Jan, Yi-Hua; Lin, Shih-Chieh; Huang, Chao-Cheng; Lin, Hao; Wen, Kuo-Chang; Chao, Kuan-Chong; Lai, Chiung-Ru; Wang, Peng-Hui; Chuang, Chi-Mu; Wu, Hua-Hsi; Twu, Nae-Fang; Yen, Ming-Shyen; Hsiao, Michael; Huang, Chi-Ying F.

    2016-01-01

    The interplay between tumor microenvironment and cancer that causes chemoresistance remains unclear. By analyzing public available microarray datasets, we identified that periostin (POSTN) was overexpressed in cancer stroma in epithelial ovarian cancer (EOC) patients. Immunohistochemistry analysis showed overexpression of stromal POSTN is a powerful independent poor prognostic predictor for EOC patients. Furthermore, patients with high levels of stromal POSTN tend to have higher percentage of cisplatin resistance compared to those with low levels of stromal POSTN. Moreover, we found POSTN treatment can induce cisplatin resistant and activate AKT pathway in A2780 cells in vitro. Inhibition of AKT activity by AKT inhibitor MK-2206 abolished POSTN-induced AKT activation and cisplatin resistance in vitro. Taken together, we found high POSTN expression in cancer microenvironment is correlated with poor prognosis in EOC patients and associated with platinum resistance. The effect of POSTN in cancer stroma cells may activate AKT pathway in tumor and AKT inhibitor can be beneficial to augment the efficacy of existing cancer therapeutics. PMID:26716408

  8. Periostin in tumor microenvironment is associated with poor prognosis and platinum resistance in epithelial ovarian carcinoma.

    PubMed

    Sung, Pi-Lin; Jan, Yi-Hua; Lin, Shih-Chieh; Huang, Chao-Cheng; Lin, Hao; Wen, Kuo-Chang; Chao, Kuan-Chong; Lai, Chiung-Ru; Wang, Peng-Hui; Chuang, Chi-Mu; Wu, Hua-Hsi; Twu, Nae-Fang; Yen, Ming-Shyen; Hsiao, Michael; Huang, Chi-Ying F

    2016-01-26

    The interplay between tumor microenvironment and cancer that causes chemoresistance remains unclear. By analyzing public available microarray datasets, we identified that periostin (POSTN) was overexpressed in cancer stroma in epithelial ovarian cancer (EOC) patients. Immunohistochemistry analysis showed overexpression of stromal POSTN is a powerful independent poor prognostic predictor for EOC patients. Furthermore, patients with high levels of stromal POSTN tend to have higher percentage of cisplatin resistance compared to those with low levels of stromal POSTN. Moreover, we found POSTN treatment can induce cisplatin resistant and activate AKT pathway in A2780 cells in vitro. Inhibition of AKT activity by AKT inhibitor MK-2206 abolished POSTN-induced AKT activation and cisplatin resistance in vitro. Taken together, we found high POSTN expression in cancer microenvironment is correlated with poor prognosis in EOC patients and associated with platinum resistance. The effect of POSTN in cancer stroma cells may activate AKT pathway in tumor and AKT inhibitor can be beneficial to augment the efficacy of existing cancer therapeutics. PMID:26716408

  9. Hydraulic fracture during epithelial stretching

    NASA Astrophysics Data System (ADS)

    Casares, Laura; Vincent, Romaric; Zalvidea, Dobryna; Campillo, Noelia; Navajas, Daniel; Arroyo, Marino; Trepat, Xavier

    2015-03-01

    The origin of fracture in epithelial cell sheets subject to stretch is commonly attributed to excess tension in the cells’ cytoskeleton, in the plasma membrane, or in cell-cell contacts. Here, we demonstrate that for a variety of synthetic and physiological hydrogel substrates the formation of epithelial cracks is caused by tissue stretching independently of epithelial tension. We show that the origin of the cracks is hydraulic; they result from a transient pressure build-up in the substrate during stretch and compression manoeuvres. After pressure equilibration, cracks heal readily through actomyosin-dependent mechanisms. The observed phenomenology is captured by the theory of poroelasticity, which predicts the size and healing dynamics of epithelial cracks as a function of the stiffness, geometry and composition of the hydrogel substrate. Our findings demonstrate that epithelial integrity is determined in a tension-independent manner by the coupling between tissue stretching and matrix hydraulics.

  10. Hydraulic fracture during epithelial stretching.

    PubMed

    Casares, Laura; Vincent, Romaric; Zalvidea, Dobryna; Campillo, Noelia; Navajas, Daniel; Arroyo, Marino; Trepat, Xavier

    2015-03-01

    The origin of fracture in epithelial cell sheets subject to stretch is commonly attributed to excess tension in the cells' cytoskeleton, in the plasma membrane, or in cell-cell contacts. Here, we demonstrate that for a variety of synthetic and physiological hydrogel substrates the formation of epithelial cracks is caused by tissue stretching independently of epithelial tension. We show that the origin of the cracks is hydraulic; they result from a transient pressure build-up in the substrate during stretch and compression manoeuvres. After pressure equilibration, cracks heal readily through actomyosin-dependent mechanisms. The observed phenomenology is captured by the theory of poroelasticity, which predicts the size and healing dynamics of epithelial cracks as a function of the stiffness, geometry and composition of the hydrogel substrate. Our findings demonstrate that epithelial integrity is determined in a tension-independent manner by the coupling between tissue stretching and matrix hydraulics. PMID:25664452

  11. Hydraulic fracture during epithelial stretching

    PubMed Central

    Casares, Laura; Vincent, Romaric; Zalvidea, Dobryna; Campillo, Noelia; Navajas, Daniel; Arroyo, Marino; Trepat, Xavier

    2015-01-01

    The origin of fracture in epithelial cell sheets subject to stretch is commonly attributed to excess tension in the cells’ cytoskeleton, in the plasma membrane, or in cell-cell contacts. Here we demonstrate that for a variety of synthetic and physiological hydrogel substrates the formation of epithelial cracks is caused by tissue stretching independently of epithelial tension. We show that the origin of the cracks is hydraulic; they result from a transient pressure build-up in the substrate during stretch and compression maneuvers. After pressure equilibration cracks heal readily through actomyosin-dependent mechanisms. The observed phenomenology is captured by the theory of poroelasticity, which predicts the size and healing dynamics of epithelial cracks as a function of the stiffness, geometry and composition of the hydrogel substrate. Our findings demonstrate that epithelial integrity is determined in a tension-independent manner by the coupling between tissue stretching and matrix hydraulics. PMID:25664452

  12. Thymic stromal lymphopoetin-induced expression of the endogenous inhibitory enzyme SLPI mediates recovery from colonic inflammation

    PubMed Central

    Reardon, Colin; Lechmann, Matthias; Brüstle, Anne; Gareau, Mélanie G; Shuman, Naomi; Philpott, Dana; Ziegler, Steven F.; Mak, Tak W

    2011-01-01

    Summary Thymic stromal lymphopoetin (TSLP) influences numerous immune functions, including those in the colonic mucosa. Here we report that TSLP-deficient (Tslp-/-) mice, did not exhibit increased inflammation during dextran sodium sulfate (DSS)-induced colitis, but failed to recover from disease, resulting in death. Increased localized neutrophil elastase (NE) activity during overt inflammation was observed in Tslp-/- mice, and was paralleled by reduced expression of an endogenous inhibitor, secretory leukocyte peptidase inhibitor (SLPI). Pharmacological inhibition of NE, or treatment with rSLPI reduced DSS-induced mortality in Tslp-/- mice. Signaling through TSLPR on non-hematopoietic cells was sufficient for recovery from DSS-induced colitis. Expression of the receptor occurred on intestinal epithelial cells (IEC), with stimulation inducing SLPI expression. Therefore, TSLP is critical in mediating mucosal healing following insult, and functions in a non-redundant capacity that is independent of restraining T helper 1 (Th1) and Th17 cell cytokine production. PMID:21820333

  13. Platelet-Derived Growth Factor in the Ovarian Follicle Attracts the Stromal Cells of the Fallopian Tube Fimbriae

    PubMed Central

    Chen, Chiu-Hua; Hsu, Che-Fang; Huang, Rui-Len; Ding, Dah-Ching; Chu, Tang-Yuan

    2016-01-01

    During human ovulation, the fallopian tube fimbriae must move to the ovulation site to catch the oocyte. As the tissue-of-origin of the majority of ovarian high-grade serous carcinoma (HGSC), the fallopian tube fimbriae carrying a precursor cancer lesion may also approach the ovulatory site for metastasis. We hypothesize that platelet-derived growth factor (PDGF) in mature follicle fluid (FF) attracts the migration of PDGFR-expressing fimbriae toward the ovulating follicle. We observed that more PDGFR-β was expressed in the distal part than in the proximal parts of the fallopian tube, particularly in stromal cells in the lamina propria. The stromal cells, but not the epithelial cells, from normal fimbriae and fallopian tube HGSC were highly chemotactic to mature FF. The chemotactic activities were positively correlated with PDGF-BB and estradiol levels in FF and were abolished by a blocking antibody of PDGFR-β and by tyrosine kinase inhibitor imatinib. When PDGF-BB/AB was depleted from the FF, more than 80% of chemotaxis activities were diminished. This study suggests an ovarian follicle-directed and PDGF-dependent attraction of fallopian tube fimbriae before ovulation. The same mechanism may also be crucial for the ovarian homing of HGSC, which largely originates in the fimbriae. PMID:27379403

  14. Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells.

    PubMed

    Magri, Giuliana; Miyajima, Michio; Bascones, Sabrina; Mortha, Arthur; Puga, Irene; Cassis, Linda; Barra, Carolina M; Comerma, Laura; Chudnovskiy, Aleksey; Gentile, Maurizio; Llige, David; Cols, Montserrat; Serrano, Sergi; Aróstegui, Juan Ignacio; Juan, Manel; Yagüe, Jordi; Merad, Miriam; Fagarasan, Sidonia; Cerutti, Andrea

    2014-04-01

    Innate lymphoid cells (ILCs) regulate stromal cells, epithelial cells and cells of the immune system, but their effect on B cells remains unclear. Here we identified RORγt(+) ILCs near the marginal zone (MZ), a splenic compartment that contains innate-like B cells highly responsive to circulating T cell-independent (TI) antigens. Splenic ILCs established bidirectional crosstalk with MAdCAM-1(+) marginal reticular cells by providing tumor-necrosis factor (TNF) and lymphotoxin, and they stimulated MZ B cells via B cell-activation factor (BAFF), the ligand of the costimulatory receptor CD40 (CD40L) and the Notch ligand Delta-like 1 (DLL1). Splenic ILCs further helped MZ B cells and their plasma-cell progeny by coopting neutrophils through release of the cytokine GM-CSF. Consequently, depletion of ILCs impaired both pre- and post-immune TI antibody responses. Thus, ILCs integrate stromal and myeloid signals to orchestrate innate-like antibody production at the interface between the immune system and circulatory system. PMID:24562309

  15. Complement and Humoral Adaptive Immunity in the Human Choroid Plexus: Roles for Stromal Concretions, Basement Membranes, and Epithelium

    PubMed Central

    Laule, Cornelia; Leung, Esther; Pavlova, Vladimira; Morgan, B. Paul; Esiri, Margaret M.

    2016-01-01

    The choroid plexus (CP) provides a barrier to entry of toxic molecules from the blood into the brain and transports vital molecules into the cerebrospinal fluid. While a great deal is known about CP physiology, relatively little is known about its immunology. Here, we show immunohistochemical data that help define the role of the CP in innate and adaptive humoral immunity. The results show that complement, in the form of C1q, C3d, C9, or C9neo, is preferentially deposited in stromal concretions. In contrast, immunoglobulin (Ig) G (IgG) and IgA are more often found in CP epithelial cells, and IgM is found in either locale. C4d, IgD, and IgE are rarely, if ever, seen in the CP. In multiple sclerosis CP, basement membrane C9 or stromal IgA patterns were common but were not specific for the disease. These findings indicate that the CP may orchestrate the clearance of complement, particularly by deposition in its concretions, IgA and IgG preferentially via its epithelium, and IgM by either mechanism. PMID:26994633

  16. The Action of Discoidin Domain Receptor 2 in Basal Tumor Cells and Stromal Cancer-Associated Fibroblasts Is Critical for Breast Cancer Metastasis.

    PubMed

    Corsa, Callie A S; Brenot, Audrey; Grither, Whitney R; Van Hove, Samantha; Loza, Andrew J; Zhang, Kun; Ponik, Suzanne M; Liu, Yuming; DeNardo, David G; Eliceiri, Kevin W; Keely, Patricia J; Longmore, Gregory D

    2016-06-14

    High levels of collagen deposition in human and mouse breast tumors are associated with poor outcome due to increased local invasion and distant metastases. Using a genetic approach, we show that, in mice, the action of the fibrillar collagen receptor discoidin domain receptor 2 (DDR2) in both tumor and tumor-stromal cells is critical for breast cancer metastasis yet does not affect primary tumor growth. In tumor cells, DDR2 in basal epithelial cells regulates the collective invasion of tumor organoids. In stromal cancer-associated fibroblasts (CAFs), DDR2 is critical for extracellular matrix production and the organization of collagen fibers. The action of DDR2 in CAFs also enhances tumor cell collective invasion through a pathway distinct from the tumor-cell-intrinsic function of DDR2. This work identifies DDR2 as a potential therapeutic target that controls breast cancer metastases through its action in both tumor cells and tumor-stromal cells at the primary tumor site. PMID:27264173

  17. Rbbp7 Is Required for Uterine Stromal Decidualization in Mice.

    PubMed

    He, Hui; Kong, Shuangbo; Liu, Fei; Zhang, Shuang; Jiang, Yaling; Liao, Yixin; Jiang, Yufei; Li, Qian; Wang, Bingyan; Zhou, Zuomin; Wang, Haibin; Huo, Ran

    2015-07-01

    Uterine stromal cells undergo extensive proliferation and differentiation during postimplantation development, a process known as decidualization. While a range of signaling molecules have been demonstrated to play essential roles in this event, its potential epigenetic regulatory mechanisms remain largely unknown. Retinoblastoma binding protein 7 (Rbbp7) is a protein reported as a core component of many histone modification and chromatin remodeling complexes. In the present study, our in situ hybridization and immunochemistry analysis first reveals a spatiotemporal expression of Rbbp7 in the uterus during the peri-implantation period. Observations of remarkable induction of Rbbp7 expression in uterine stromal cells in response to progesterone-nuclear receptor PR signaling point to its potential physiological significance during postimplantation uterine development. Employing a stealth RNA knockdown approach, combined with primary murine uterine stromal cell culture and an in vitro-induced decidualization model, we further demonstrate that Rbbp7 silencing compromises stromal cell decidualization via attenuating histone H4 acetylation and cyclin D3 expression. The results collectively suggest that Rbbp7 is a potentially functional player regulating normal histone acetylation modification and cyclin D3 expression in stromal cells during postimplantation decidual development. PMID:26040671

  18. Stromal cells and stem cells in clinical bone regeneration

    PubMed Central

    Grayson, Warren L.; Bunnell, Bruce A.; Martin, Elizabeth; Frazier, Trivia; Hung, Ben P.; Gimble, Jeffrey M.

    2015-01-01

    Stem-cell-mediated bone repair has been used in clinical trials for the regeneration of large craniomaxillofacial defects, to slow the process of bone degeneration in patients with osteonecrosis of the femoral head and for prophylactic treatment of distal tibial fractures. Successful regenerative outcomes in these investigations have provided a solid foundation for wider use of stromal cells in skeletal repair therapy. However, employing stromal cells to facilitate or enhance bone repair is far from being adopted into clinical practice. Scientific, technical, practical and regulatory obstacles prevent the widespread therapeutic use of stromal cells. Ironically, one of the major challenges lies in the limited understanding of the mechanisms via which transplanted cells mediate regeneration. Animal models have been used to provide insight, but these models largely fail to reproduce the nuances of human diseases and bone defects. Consequently, the development of targeted approaches to optimize cell-mediated outcomes is difficult. In this Review, we highlight the successes and challenges reported in several clinical trials that involved the use of bone-marrow-derived mesenchymal or adipose-tissue-derived stromal cells. We identify several obstacles blocking the mainstream use of stromal cells to enhance skeletal repair and highlight technological innovations or areas in which novel techniques might be particularly fruitful in continuing to advance the field of skeletal regenerative medicine. PMID:25560703

  19. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis

    PubMed Central

    Ruhland, Megan K.; Loza, Andrew J.; Capietto, Aude-Helene; Luo, Xianmin; Knolhoff, Brett L.; Flanagan, Kevin C.; Belt, Brian A.; Alspach, Elise; Leahy, Kathleen; Luo, Jingqin; Schaffer, Andras; Edwards, John R.; Longmore, Gregory; Faccio, Roberta; DeNardo, David G.; Stewart, Sheila A.

    2016-01-01

    Age is a significant risk factor for the development of cancer. However, the mechanisms that drive age-related increases in cancer remain poorly understood. To determine if senescent stromal cells influence tumorigenesis, we develop a mouse model that mimics the aged skin microenvironment. Using this model, here we find that senescent stromal cells are sufficient to drive localized increases in suppressive myeloid cells that contributed to tumour promotion. Further, we find that the stromal-derived senescence-associated secretory phenotype factor interleukin-6 orchestrates both increases in suppressive myeloid cells and their ability to inhibit anti-tumour T-cell responses. Significantly, in aged, cancer-free individuals, we find similar increases in immune cells that also localize near senescent stromal cells. This work provides evidence that the accumulation of senescent stromal cells is sufficient to establish a tumour-permissive, chronic inflammatory microenvironment that can shelter incipient tumour cells, thus allowing them to proliferate and progress unabated by the immune system. PMID:27272654

  20. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis.

    PubMed

    Ruhland, Megan K; Loza, Andrew J; Capietto, Aude-Helene; Luo, Xianmin; Knolhoff, Brett L; Flanagan, Kevin C; Belt, Brian A; Alspach, Elise; Leahy, Kathleen; Luo, Jingqin; Schaffer, Andras; Edwards, John R; Longmore, Gregory; Faccio, Roberta; DeNardo, David G; Stewart, Sheila A

    2016-01-01

    Age is a significant risk factor for the development of cancer. However, the mechanisms that drive age-related increases in cancer remain poorly understood. To determine if senescent stromal cells influence tumorigenesis, we develop a mouse model that mimics the aged skin microenvironment. Using this model, here we find that senescent stromal cells are sufficient to drive localized increases in suppressive myeloid cells that contributed to tumour promotion. Further, we find that the stromal-derived senescence-associated secretory phenotype factor interleukin-6 orchestrates both increases in suppressive myeloid cells and their ability to inhibit anti-tumour T-cell responses. Significantly, in aged, cancer-free individuals, we find similar increases in immune cells that also localize near senescent stromal cells. This work provides evidence that the accumulation of senescent stromal cells is sufficient to establish a tumour-permissive, chronic inflammatory microenvironment that can shelter incipient tumour cells, thus allowing them to proliferate and progress unabated by the immune system. PMID:27272654

  1. A6 in Treating Patients With Persistent or Recurrent Ovarian Epithelial Cancer, Fallopian Tube Cancer, or Primary Peritoneal Cancer

    ClinicalTrials.gov

    2015-02-27

    Fallopian Tube Carcinoma; Malignant Ovarian Mixed Epithelial Tumor; Ovarian Brenner Tumor; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Primary Peritoneal Carcinoma; Recurrent Ovarian Carcinoma; Undifferentiated Ovarian Carcinoma

  2. Implications of the Hybrid Epithelial/Mesenchymal Phenotype in Metastasis

    PubMed Central

    Jolly, Mohit Kumar; Boareto, Marcelo; Huang, Bin; Jia, Dongya; Lu, Mingyang; Ben-Jacob, Eshel; Onuchic, José N.; Levine, Herbert

    2015-01-01

    Transitions between epithelial and mesenchymal phenotypes – the epithelial to ­mesenchymal transition (EMT) and its reverse the mesenchymal to epithelial transition (MET) – are hallmarks of cancer metastasis. While transitioning between the epithelial and mesenchymal phenotypes, cells can also attain a hybrid epithelial/mesenchymal (E/M) (i.e., partial or intermediate EMT) phenotype. Cells in this phenotype have mixed epithelial (e.g., adhesion) and mesenchymal (e.g., migration) properties, thereby allowing them to move collectively as clusters. If these clusters reach the bloodstream intact, they can give rise to clusters of circulating tumor cells (CTCs), as have often been seen experimentally. Here, we review the operating principles of the core regulatory network for EMT/MET that acts as a “three-way” switch giving rise to three distinct phenotypes – E, M and hybrid E/M – and present a theoretical framework that can elucidate the role of many other players in regulating epithelial plasticity. Furthermore, we highlight recent studies on partial EMT and its association with drug resistance and tumor-initiating potential; and discuss how cell–cell communication between cells in a partial EMT phenotype can enable the formation of clusters of CTCs. These clusters can be more apoptosis-resistant and have more tumor-initiating potential than singly moving CTCs with a wholly mesenchymal (complete EMT) phenotype. Also, more such clusters can be formed under inflammatory conditions that are often generated by various therapies. Finally, we discuss the multiple advantages that the partial EMT or hybrid E/M phenotype have as compared to a complete EMT phenotype and argue that these collectively migrating cells are the primary “bad actors” of metastasis. PMID:26258068

  3. Thymic epithelial cell expansion through matricellular protein CYR61 boosts progenitor homing and T-cell output

    NASA Astrophysics Data System (ADS)

    Emre, Yalin; Irla, Magali; Dunand-Sauthier, Isabelle; Ballet, Romain; Meguenani, Mehdi; Jemelin, Stephane; Vesin, Christian; Reith, Walter; Imhof, Beat A.

    2013-11-01

    Thymic epithelial cells (TEC) are heterogeneous stromal cells that generate microenvironments required for the formation of T cells within the thymus. Defects in TEC lead to immunodeficiency or autoimmunity. Here we identify TEC as the major source of cysteine-rich protein 61 (CYR61), a matricellular protein implicated in cell proliferation and migration. Binding of CYR61 to LFA-1, ICAM-1 and integrin α6 supports the adhesion of TEC and thymocytes as well as their interaction. Treatment of thymic lobes with recombinant CYR61 expands the stromal compartment by inducing the proliferation of TEC and activates Akt signalling. Engraftment of CYR61-overexpressing thymic lobes into athymic nude mice drastically boosts the yield of thymic output via expansion of TEC. This increases the space for the recruitment of circulating hematopoietic progenitors and the development of T cells. Our discovery paves the way for therapeutic interventions designed to restore thymus stroma and T-cell generation.

  4. Generation and characterization of novel stromal specific antibodies

    PubMed Central

    HALDER, Sapna; HARDIE, Debbie L.; SCHEEL-TOELLNER, Dagmar; SALMON, Mike; BUCKLEY, Christopher D.

    2011-01-01

    Rheumatoid synovial fibroblasts were used as an immunogen to produce monoclonal antibodies selected for their reactivity with stromal cell antigens. Mice were immunised with low passage whole cell preparations and the subsequent hybridomas were screened by immunohistochemistry on rheumatoid synovium and tonsil sections. The aim was to identify those antibodies that recognised antigens that were restricted to stromal cells and were not expressed on CD45 positive leucocytes. A significant number of antibodies detected antigen that identified endothelial cells. These antibodies were further characterised to determine whether the vessels identified by these antibodies were vascular or lymphatic. From five fusions clones were identified with predominant reactivity with: 1) fibroblasts and endothelial cells; or 2) broad stromal elements (fibroblast, endothelium, epithelium, follicular dendritic cells). A fibroblast-specific antibody that did not also identify vessels was not generated. Examples of each reactivity pattern are discussed. PMID:16212881

  5. Ovarian hemangioma associated with concomitant stromal luteinization and ascites.

    PubMed

    Yamawaki, T; Hirai, Y; Takeshima, N; Hasumi, K

    1996-06-01

    A 62-year-old female presented with a pelvic mass and ascites. The Papanicolaou vaginal smear showed an unusual maturation, maturation index being 0/80/20. The serum level of estradiol was 48.7 pg/ml. The preoperative checkup suggested a pelvic malignancy with a differential diagnosis of hormone-secreting ovarian tumor. On surgical exploration, she had a hemangioma of the ovary without malignant cytology in the ascitic fluid. Histologically, this tumor was associated with stromal luteinization. This is the first case, reported in the literature, possessing ovarian hemangioma with stromal luteinization accompanying massive ascites. It should be noted that an ovarian hemangioma can be associated with stromal luteinization and ascites, and that MR imaging is sometimes of value for making a preoperative diagnosis of ovarian hemangioma. PMID:8641629

  6. Sex cord-gonadal stromal tumor of the rete testis.

    PubMed

    Sajadi, Kamran P; Dalton, Rory R; Brown, James A

    2009-01-01

    A 34-year-old tetraplegic patient with suppurative epididymitis was found on follow-up examination and ultrasonography to have a testicular mass. The radical orchiectomy specimen contained an undifferentiated spindled sex cord-stromal tumor arising in the rete testis. Testicular sex cord-stromal tumors are far less common than germ cell neoplasms and are usually benign. The close relationship between sex cords and ductules of the rete testis during development provides the opportunity for these uncommon tumors to arise anatomically within the rete tesis. This undifferentiated sex cord-stromal tumor, occurring in a previously unreported location, is an example of an unusual lesion mimicking an intratesticular malignant neoplasm. PMID:19125206

  7. Sex Cord-Gonadal Stromal Tumor of the Rete Testis

    PubMed Central

    Sajadi, Kamran P.; Dalton, Rory R.; Brown, James A.

    2009-01-01

    A 34-year-old tetraplegic patient with suppurative epididymitis was found on follow-up examination and ultrasonography to have a testicular mass. The radical orchiectomy specimen contained an undifferentiated spindled sex cord-stromal tumor arising in the rete testis. Testicular sex cord-stromal tumors are far less common than germ cell neoplasms and are usually benign. The close relationship between sex cords and ductules of the rete testis during development provides the opportunity for these uncommon tumors to arise anatomically within the rete tesis. This undifferentiated sex cord-stromal tumor, occurring in a previously unreported location, is an example of an unusual lesion mimicking an intratesticular malignant neoplasm. PMID:19125206

  8. Drug Repurposing for Gastrointestinal Stromal Tumor

    PubMed Central

    Pessetto, Ziyan Y.; Weir, Scott J.; Sethi, Geetika; Broward, Melinda A.; Godwin, Andrew K.

    2013-01-01

    Despite significant treatment advances over the past decade, metastatic gastrointestinal stromal tumor (GIST) remains largely incurable. Rare diseases, such as GIST, individually affect small groups of patients but collectively are estimated to affect 25–30 million people in the U.S. alone. Given the costs associated with the discovery, development and registration of new drugs, orphan diseases such as GIST are often not pursued by mainstream pharmaceutical companies. As a result, “drug repurposing” or “repositioning”, has emerged as an alternative to the traditional drug development process. In this study we screened 796 FDA-approved drugs and found that two of these compounds, auranofin and fludarabine phosphate, effectively and selectively inhibited the proliferation of GISTs including imatinib-resistant cells. One of the most notable drug hits, auranofin (Ridaura®), an oral, gold-containing agent approved by the FDA in 1985 for the treatment of rheumatoid arthritis (RA), was found to inhibit thioredoxin reductase (TrxR) activity and induce reactive oxygen species (ROS) production, leading to dramatic inhibition of GIST cell growth and viability. Importantly, the anti-cancer activity associated with auranofin was independent of IM resistant status, but was closely related to the endogenous and inducible levels of ROS, therefore is prior to IM response. Coupled with the fact auranofin has an established safety profile in patients, these findings suggest for the first time that auranofin may have clinical benefit for GIST patients, particularly in those suffering from imatinib-resistant and recurrent forms of this disease. PMID:23657945

  9. Ovarian yolk sac tumors in older women arising from epithelial ovarian tumors or with no detectable epithelial component.

    PubMed

    Roth, Lawrence M; Talerman, Aleksander; Levy, Tally; Sukmanov, Oleg; Czernobilsky, Bernard

    2011-09-01

    Yolk sac tumor (YST) occurs rarely in older women, either in association with a variety of ovarian epithelial tumors or, considerably less often, without an identifiable epithelial precursor. The patients often have elevated serum levels of α-fetoprotein that roughly correlate with the amount of the YST component. In postmenopausal women with an ovarian mass and elevated serum levels of α-fetoprotein, a tumor of this type should be suspected. Endometrioid carcinoma is the most common putative precursor, and the tumor is often associated with an endometriotic cyst; however, malignant Müllerian mixed tumor and mucinous neoplasms have also been reported as precursors. We report 4 cases of YST in postmenopausal women. Of the 3 cases with an identified epithelial component, 1 was serous carcinoma, another was clear cell adenocarcinoma, and the third was an admixture of endometrioid and clear cell adenocarcinoma arising from an endometriotic cyst. Although a precursor epithelial ovarian neoplasm, typically a malignancy (somatic carcinoma), is usually identified, no precursor neoplasm was observed in 1 of our cases and in 5 cases from the literature. We believe that YSTs in older women, whether or not an epithelial component is detected histologically, constitute a single entity that is distinct from YSTs in younger patients and should be treated aggressively. Neoplasms with a YST component in older women are less responsive to the chemotherapy currently used for ovarian germ cell tumors; therefore, adjuvant therapy should include platinum-based chemotherapy designed to treat both epithelial ovarian cancer and germ cell tumors. Of the 24 reported cases, including our own, 17 died of neoplasms within 25 months and another was living with disease at 2 months. However, 2 more recent patients treated aggressively with platinum-based chemotherapy designed to treat both epithelial and germ cell tumor components with stage 1 disease are living and have been disease free >1

  10. Stress Signaling from Human Mammary Epithelial Cells Contributes to Phenotypes of Mammographic Density

    PubMed Central

    Patten, Kelley; Chang, Hang; Zhao, Jianxin; Fontenay, Gerald V.; Kerlikowske, Karla; Parvin, Bahram; Tlsty, Thea D.

    2014-01-01

    Telomere malfunction and other types of DNA damage induce an activin A-dependent stress response in mortal non-tumorigenic human mammary epithelial cells that subsequently induces desmoplastic-like phenotypes in neighboring fibroblasts. Some characteristics of this fibroblast/stromal response, such as reduced adipocytes and increased extracellular matrix content, are observed not only in tumor tissues but also in disease-free breast tissues at high risk for developing cancer, especially high mammographic density tissues. We found that these phenotypes are induced by repression of the fatty acid translocase CD36, which is seen in desmoplastic and disease-free high mammographic density tissues. In this study, we show that epithelial cells from high mammographic density tissues have more DNA damage signaling, shorter telomeres, increased activin A secretion and an altered DNA damage response compared to epithelial cells from low mammographic density tissues. Strikingly, both telomere malfunction and activin A expression in epithelial cells can repress CD36 expression in adjacent fibroblasts. These results provide new insights into how high mammographic density arises and why it is associated with breast cancer risk, with implications for the definition of novel invention targets (e.g. activin A, CD36) to prevent breast cancer. PMID:25172842

  11. Influence of substrate on corneal epithelial cell viability within ocular surface models.

    PubMed

    Feng, Yun; Foster, James; Mi, Shengli; Chen, Bo; Connon, Che John

    2012-08-01

    Corneal tissue engineering has improved dramatically over recent years. It is now possible to apply these technological advancements to the development of superior in vitro ocular surface models to reduce animal testing. We aim to show the effect different substrates can have on the viability of expanded corneal epithelial cells and that those which more accurately mimic the stromal surface provide the most protection against toxic assault. Compressed collagen gel as a substrate for the expansion of a human epithelial cell line was compared against two well-known substrates for modelling the ocular surface (polycarbonate membrane and conventional collagen gel). Cells were expanded over 10 days at which point cell stratification, cell number and expression of junctional proteins were assessed by electron microscopy, immunohistochemistry and RT-PCR. The effect of increasing concentrations of sodium lauryl sulphate on epithelial cell viability was quantified by MTT assay. Results showed improvement in terms of stratification, cell number and tight junction expression in human epithelial cells expanded upon either the polycarbonate membrane or compressed collagen gel when compared to a the use of a conventional collagen gel. However, cell viability was significantly higher in cells expanded upon the compressed collagen gel. We conclude that the more naturalistic composition and mechanical properties of compressed collagen gels produces a more robust corneal model. PMID:22683913

  12. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit.

    PubMed

    von Moltke, Jakob; Ji, Ming; Liang, Hong-Erh; Locksley, Richard M

    2016-01-14

    Parasitic helminths and allergens induce a type 2 immune response leading to profound changes in tissue physiology, including hyperplasia of mucus-secreting goblet cells and smooth muscle hypercontractility. This response, known as 'weep and sweep', requires interleukin (IL)-13 production by tissue-resident group 2 innate lymphoid cells (ILC2s) and recruited type 2 helper T cells (TH2 cells). Experiments in mice and humans have demonstrated requirements for the epithelial cytokines IL-33, thymic stromal lymphopoietin (TSLP) and IL-25 in the activation of ILC2s, but the sources and regulation of these signals remain poorly defined. In the small intestine, the epithelium consists of at least five distinct cellular lineages, including the tuft cell, whose function is unclear. Here we show that tuft cells constitutively express IL-25 to sustain ILC2 homeostasis in the resting lamina propria in mice. After helminth infection, tuft-cell-derived IL-25 further activates ILC2s to secrete IL-13, which acts on epithelial crypt progenitors to promote differentiation of tuft and goblet cells, leading to increased frequencies of both. Tuft cells, ILC2s and epithelial progenitors therefore comprise a response circuit that mediates epithelial remodelling associated with type 2 immunity in the small intestine, and perhaps at other mucosal barriers populated by these cells. PMID:26675736

  13. Tuft-cell-derived IL-25 regulates an intestinal ILC2–epithelial response circuit

    PubMed Central

    von Moltke, Jakob; Ji, Ming; Liang, Hong-Erh; Locksley, Richard M.

    2016-01-01

    Parasitic helminths and allergens induce a type 2 immune response leading to profound changes in tissue physiology, including hyperplasia of mucus-secreting goblet cells1 and smooth muscle hypercontractility2. This response, known as ‘weep and sweep’, requires interleukin (IL)-13 production by tissue-resident group 2 innate lymphoid cells (ILC2s) and recruited type 2 helper T cells (TH2 cells)3. Experiments in mice and humans have demonstrated requirements for the epithelial cytokines IL-33, thymic stromal lymphopoietin (TSLP) and IL-25 in the activation of ILC2s4–11, but the sources and regulation of these signals remain poorly defined. In the small intestine, the epithelium consists of at least five distinct cellular lineages12, including the tuft cell, whose function is unclear. Here we show that tuft cells constitutively express IL-25 to sustain ILC2 homeostasis in the resting lamina propria in mice. After helminth infection, tuft-cell-derived IL-25 further activates ILC2s to secrete IL-13, which acts on epithelial crypt progenitors to promote differentiation of tuft and goblet cells, leading to increased frequencies of both. Tuft cells, ILC2s and epithelial progenitors therefore comprise a response circuit that mediates epithelial remodelling associated with type 2 immunity in the small intestine, and perhaps at other mucosal barriers populated by these cells. PMID:26675736

  14. STAT3 accelerates uterine epithelial regeneration in a mouse model of decellularized uterine matrix transplantation

    PubMed Central

    Hiraoka, Takehiro; Hirota, Yasushi; Saito-Fujita, Tomoko; Matsuo, Mitsunori; Egashira, Mahiro; Matsumoto, Leona; Haraguchi, Hirofumi; Dey, Sudhansu K.; Furukawa, Katsuko S.; Fujii, Tomoyuki; Osuga, Yutaka

    2016-01-01

    Although a close connection between uterine regeneration and successful pregnancy in both humans and mice has been consistently observed, its molecular basis remains unclear. We here established a mouse model of decellularized uterine matrix (DUM) transplantation. Resected mouse uteri were processed with SDS to make DUMs without any intact cells. DUMs were transplanted into the mouse uteri with artificially induced defects, and all the uterine layers were recovered at the DUM transplantation sites within a month. In the regenerated uteri, normal hormone responsiveness in early pregnancy was observed, suggesting the regeneration of functional uteri. Uterine epithelial cells rapidly migrated and formed a normal uterine epithelial layer within a week, indicating a robust epithelial-regenerating capacity. Stromal and myometrial regeneration occurred following epithelial regeneration. In ovariectomized mice, uterine regeneration of the DUM transplantation was similarly observed, suggesting that ovarian hormones are not essential for this regeneration process. Importantly, the regenerating epithelium around the DUM demonstrated heightened STAT3 phosphorylation and cell proliferation, which was suppressed in uteri of Stat3 conditional knockout mice. These data suggest a key role of STAT3 in the initial step of the uterine regeneration process. The DUM transplantation model is a powerful tool for uterine regeneration research. PMID:27358915

  15. Prognostic significance of epithelial-mesenchymal transition proteins Twist and Foxc2 in phyllodes tumours of the breast.

    PubMed

    Lim, Jeffrey Chun Tatt; Koh, Valerie Cui Yun; Tan, Jane Sie Yong; Tan, Wai Jin; Thike, Aye Aye; Tan, Puay Hoon

    2015-02-01

    Epithelial-mesenchymal transition (EMT), an important process during embryonic development, is reportedly exploited during tumour progression. Deregulation of EMT-related molecules has been shown in many malignancies, including breast carcinoma. We aim to investigate the clinical relevance and prognostic significance of EMT proteins, Twist and Foxc2, in breast phyllodes tumours (PTs). The study cohort comprised 271 PTs diagnosed from 2003 to 2010. Of these, 188 (69.4 %) were benign, 60 (22.1 %) borderline, and 23 (8.5 %) malignant. Immunohistochemistry for Twist and Foxc2 was performed on tissue microarray sections. Percentage of tumour cells stained was evaluated and correlated with clinicopathological parameters and clinical outcome. Twist and Foxc2 stromal nuclear expression was associated with tumour grade (P = 0.038 and 0.012). Foxc2 stromal nuclear expression was positively correlated with epithelial expression (P < 0.001), tumour relapse, and metastasis (P = 0.037). Furthermore, stromal nuclear immunoreactivity of Twist and Foxc2 was interrelated (P < 0.001). Tumours expressing Foxc2 and those co-expressing both Twist and Foxc2 revealed a shorter time to recurrence (P < 0.001 and 0.001) and death (P = 0.044 and 0.015). Twist and Foxc2 stromal expression in PTs was significantly correlated with tumour grade and worse histological features. In addition, expression of Foxc2 and co-expression of Twist and Foxc2 in the stroma of PTs contributed to poorer prognosis. Clinical relevance of EMT-related molecules may be worthy of further investigation in PTs. PMID:25677742

  16. Visible red and infrared light alters gene expression in human marrow stromal fibroblast cells

    PubMed Central

    Guo, Jie; Wang, Qing; Wai, Daniel; Zhou, Qunzhou; Shi, Shihong; Le, Anh D; Shi, Songtao; Yen, Stephen L-K

    2015-01-01

    Objectives This study tested whether or not gene expression in human marrow stromal fibroblast (MSF) cells depends on light wavelength and energy density. Material and Methods Primary cultures of isolated human bone marrow stem cells (hBMSC) were exposed to visible red (VR, 633 nm) and infrared (IR, 830) radiation wavelengths from a light emitting diode (LED) over a range of energy densities (0.5, 1.0, 1.5, 2.0 Joules/cm2) Cultured cells were assayed for cell proliferation, osteogenic potential, adipogenesis, mRNA and protein content. mRNA was analyzed by microarray, and compared among different wavelengths and energy densities. Mesenchymal and epithelial cell responses were compared to determine whether responses were cell-type specific. Protein array analysis was used to further analyze key pathways identified by microarrays. Result Different wavelengths and energy densities produced unique sets of genes identified by microarray analysis. Pathway analysis pointed to TGF beta 1 in the visible red and Akt 1 in the infrared wavelengths as key pathways to study. TGF beta protein arrays suggested switching from canonical to non-canonical TGF beta pathways with increases to longer IR wavelengths. Microarrays suggest RANKL and TIMP 10 followed IR energy density dose response curves. Epithelial and mesenchymal cells respond differently to stimulation by light suggesting cell-type specific response is possible. Conclusions These studies demonstrate differential gene expression with different wavelengths, energy densities and cell types. These differences in gene expression have the potential to be exploited for therapeutic purposes and can help explain contradictory results in the literature when wavelengths, energy densities and cell types differ. PMID:25865533

  17. Tumeur stromale rectale: à propos d'une observation

    PubMed Central

    Rejab, Haitham; Kridis, Wala Ben; Ben Ameur, Hazem; Feki, Jihene; Frikha, Mounir; Beyrouti, Mohamed Issam

    2014-01-01

    Les tumeurs stromales gastro-intestinales sont des tumeurs mésenchymateuses peu fréquentes. Elles sont localisées préférentiellement eu niveau de l'estomac. La localisation rectale reste rare. A un nouveau cas de tumeur stromale du rectum ainsi qu'une bref revue de la littérature, on se propose d’étudier les particularités cliniques, radiologiques et thérapeutiques de cette entité rare. PMID:25120863

  18. Ovarian signet-ring stromal tumor: a potential diagnostic pitfall.

    PubMed

    Shaco-Levy, Ruthy; Kachko, Leonid; Mazor, Moshe; Piura, Benjamin

    2008-04-01

    Signet-ring stromal tumor is a rare ovarian neoplasm with only 10 reported cases in the literature. We report an unusual case of ovarian signet-ring stromal tumor in a 69-year-old woman who presented with right adnexal mass and underwent total abdominal hysterectomy and bilateral salpingo-oophorectomy. The diagnosis was based on histological, histochemical, immunohistochemical, and electron microscopy characteristics. The main significance is to differentiate this benign tumor from the highly malignant Krukenberg tumor, and this differential diagnosis is discussed. PMID:18417676

  19. Stromal vascular progenitors in adult human adipose tissue

    PubMed Central

    Zimmerlin, Ludovic; Donnenberg, Vera S.; Pfeifer, Melanie E.; Meyer, E. Michael; Péault, Bruno; Rubin, J. Peter; Donnenberg, Albert D.

    2014-01-01

    Background The in vivo progenitor of culture-expanded mesenchymal-like adipose-derived stem cells (ADSC) remains elusive, owing in part to the complex organization of stromal cells surrounding the small vessels, and the rapidity with which adipose stromal vascular cells adopt a mesenchymal phenotype in vitro. Methods Immunohistostaining of intact adipose tissue was used to identify 3 markers (CD31, CD34, CD146) which together unambiguously discriminate histologically distinct inner and outer rings of vessel-associated stromal cells, as well as capillary and small vessel endothelial cells. These markers were used in multiparameter flow cytometry in conjunction with stem/progenitor markers (CD90, CD117) to further characterize stromal vascular fraction (SVF) subpopulations. Two mesenchymal and two endothelial populations were isolated by high speed flow cytometric sorting, expanded in short term culture and tested for adipogenesis. Results The inner layer of stromal cells in contact with small vessel endothelium (pericytes) was CD146+/α-SMA+/CD90±/CD34−/CD31−; the outer adventitial stromal ring (designated supra adventitial-adipose stromal cells, SA-ASC) was CD146−/α-SMA−/CD90+/CD34+/CD31−. Capillary endothelial cells were CD31+/CD34+/CD90+ (endothelial progenitor), while small vessel endothelium was CD31+/CD34−/CD90− (endothelial mature). Flow cytometry confirmed these expression patterns and revealed a CD146+/CD90+/CD34+/CD31− pericyte subset that may be transitional between pericytes and SA-ASC. Pericytes had the most potent adipogenic potential, followed by the more numerous SA-ASC. Endothelial populations had significantly reduced adipogenic potential compared to unsorted expanded SVF cells. Conclusions In adipose tissue perivascular stromal cells are organized in two discrete layers, the innermost consisting of CD146+/CD34− pericytes, and the outermost of CD146−/CD34+ SA-ASC, both of which have adipogenic potential in culture. A CD146+/CD

  20. Single cell dual adherent-suspension co-culture micro-environment for studying tumor-stromal interactions with functionally selected cancer stem-like cells.

    PubMed

    Chen, Yu-Chih; Zhang, Zhixiong; Fouladdel, Shamileh; Deol, Yadwinder; Ingram, Patrick N; McDermott, Sean P; Azizi, Ebrahim; Wicha, Max S; Yoon, Euisik

    2016-08-01

    Considerable evidence suggests that cancer stem-like cells (CSCs) are critical in tumor pathogenesis, but their rarity and transience has led to much controversy about their exact nature. Although CSCs can be functionally identified using dish-based tumorsphere assays, it is difficult to handle and monitor single cells in dish-based approaches; single cell-based microfluidic approaches offer better control and reliable single cell derived sphere formation. However, like normal stem cells, CSCs are heavily regulated by their microenvironment, requiring tumor-stromal interactions for tumorigenic and proliferative behaviors. To enable single cell derived tumorsphere formation within a stromal microenvironment, we present a dual adherent/suspension co-culture device, which combines a suspension environment for single-cell tumorsphere assays and an adherent environment for co-culturing stromal cells in close proximity by selectively patterning polyHEMA in indented microwells. By minimizing dead volume and improving cell capture efficiency, the presented platform allows for the use of small numbers of cells (<100 cells). As a proof of concept, we co-cultured single T47D (breast cancer) cells and primary cancer associated fibroblasts (CAF) on-chip for 14 days to monitor sphere formation and growth. Compared to mono-culture, co-cultured T47D have higher tumorigenic potential (sphere formation rate) and proliferation rates (larger sphere size). Furthermore, 96-multiplexed single-cell transcriptome analyses were performed to compare the gene expression of co-cultured and mono-cultured T47D cells. Phenotypic changes observed in co-culture correlated with expression changes in genes associated with proliferation, apoptotic suppression, tumorigenicity and even epithelial-to-mesechymal transition. Combining the presented platform with single cell transcriptome analysis, we successfully identified functional CSCs and investigated the phenotypic and transcriptome effects induced

  1. Interleukin-4 and interleukin-13 cause barrier dysfunction in human airway epithelial cells.

    PubMed

    Saatian, Bahman; Rezaee, Fariba; Desando, Samantha; Emo, Jason; Chapman, Tim; Knowlden, Sara; Georas, Steve N

    2013-04-01

    Emerging evidence indicates that airway epithelial barrier function is compromised in asthma, a disease characterized by Th2-skewed immune response against inhaled allergens, but the mechanisms involved are not well understood. The purpose of this study was to investigate the effects of Th2-type cytokines on airway epithelial barrier function. 16HBE14o- human bronchial epithelial cells monolayers were grown on collagen coated Transwell inserts. The basolateral or apical surfaces of airway epithelia were exposed to human interleukin-4 (IL-4), IL-13, IL-25, IL-33, thymic stromal lymphopoietin (TSLP) alone or in combination at various concentrations and time points. We analyzed epithelial apical junctional complex (AJC) function by measuring transepithelial electrical resistance (TEER) and permeability to FITC-conjugated dextran over time. We analyzed AJC structure using immunofluorescence with antibodies directed against key junctional components including occludin, ZO-1, β-catenin and E-cadherin. Transepithelial resistance was significantly decreased after both basolateral and apical exposure to IL-4. Permeability to 3 kDa dextran was also increased in IL-4-exposed cells. Similar results were obtained with IL-13, but none of the innate type 2 cytokines examined (TSLP, IL-25 or IL-33) significantly affected barrier function. IL-4 and IL-13-induced barrier dysfunction was accompanied by reduced expression of membrane AJC components but not by induction of claudin- 2. Enhanced permeability caused by IL-4 was not affected by wortmannin, an inhibitor of PI3 kinase signaling, but was attenuated by a broad spectrum inhibitor of janus associated kinases. Our study indicates that IL-4 and IL-13 have disruptive effect on airway epithelial barrier function. Th2-cytokine induced epithelial barrier dysfunction may contribute to airway inflammation in allergic asthma. PMID:24665390

  2. CXCL1 mediates obesity-associated adipose stromal cell trafficking and function in the tumour microenvironment

    PubMed Central

    Zhang, Tao; Tseng, Chieh; Zhang, Yan; Sirin, Olga; Corn, Paul G.; Li-Ning-Tapia, Elsa M.; Troncoso, Patricia; Davis, John; Pettaway, Curtis; Ward, John; Frazier, Marsha L.; Logothetis, Christopher; Kolonin, Mikhail G.

    2016-01-01

    White adipose tissue (WAT) overgrowth in obesity is linked with increased aggressiveness of certain cancers. Adipose stromal cells (ASCs) can become mobilized from WAT, recruited by tumours and promote cancer progression. Mechanisms underlying ASC trafficking are unclear. Here we demonstrate that chemokines CXCL1 and CXCL8 chemoattract ASC by signalling through their receptors, CXCR1 and CXCR2, in cell culture models. We further show that obese patients with prostate cancer have increased epithelial CXCL1 expression. Concomitantly, we observe that cells with ASC phenotype are mobilized and infiltrate tumours in obese patients. Using mouse models, we show that the CXCL1 chemokine gradient is required for the obesity-dependent tumour ASC recruitment, vascularization and tumour growth promotion. We demonstrate that αSMA expression in ASCs is induced by chemokine signalling and mediates the stimulatory effects of ASCs on endothelial cells. Our data suggest that ASC recruitment to tumours, driven by CXCL1 and CXCL8, promotes prostate cancer progression. PMID:27241286

  3. CXCL1 mediates obesity-associated adipose stromal cell trafficking and function in the tumour microenvironment.

    PubMed

    Zhang, Tao; Tseng, Chieh; Zhang, Yan; Sirin, Olga; Corn, Paul G; Li-Ning-Tapia, Elsa M; Troncoso, Patricia; Davis, John; Pettaway, Curtis; Ward, John; Frazier, Marsha L; Logothetis, Christopher; Kolonin, Mikhail G

    2016-01-01

    White adipose tissue (WAT) overgrowth in obesity is linked with increased aggressiveness of certain cancers. Adipose stromal cells (ASCs) can become mobilized from WAT, recruited by tumours and promote cancer progression. Mechanisms underlying ASC trafficking are unclear. Here we demonstrate that chemokines CXCL1 and CXCL8 chemoattract ASC by signalling through their receptors, CXCR1 and CXCR2, in cell culture models. We further show that obese patients with prostate cancer have increased epithelial CXCL1 expression. Concomitantly, we observe that cells with ASC phenotype are mobilized and infiltrate tumours in obese patients. Using mouse models, we show that the CXCL1 chemokine gradient is required for the obesity-dependent tumour ASC recruitment, vascularization and tumour growth promotion. We demonstrate that αSMA expression in ASCs is induced by chemokine signalling and mediates the stimulatory effects of ASCs on endothelial cells. Our data suggest that ASC recruitment to tumours, driven by CXCL1 and CXCL8, promotes prostate cancer progression. PMID:27241286

  4. Mechanisms of tumor escape from immune system: role of mesenchymal stromal cells.

    PubMed

    Poggi, Alessandro; Musso, Alessandra; Dapino, Irene; Zocchi, Maria Raffaella

    2014-01-01

    Tumor microenvironment represents the site where the tumor tries to survive and escape from immune system-mediated recognition. Indeed, to proliferate tumor cells can divert the immune response inducing the generation of myeloid derived suppressor cells and regulatory T cells which can limit the efficiency of effector antitumor lymphocytes in eliminating neoplastic cells. Many components of the tumor microenvironment can serve as a double sword for the tumor and the host. Several types of fibroblast-like cells, which herein we define mesenchymal stromal cells (MSC), secrete extracellular matrix components and surrounding the tumor mass can limit the expansion of the tumor. On the other hand, MSC can interfere with the immune recognition of tumor cells producing immunoregulatory cytokines as transforming growth factor (TGF)ß, releasing soluble ligands of the activating receptors expressed on cytolytic effector cells as decoy molecules, affecting the correct interaction among lymphocytes and tumor cells. MSC can also serve as target for the same anti-tumor effector lymphocytes or simply impede the interaction between these lymphocytes and neoplastic cells. Thus, several evidences point out the role of MSC, both in epithelial solid tumors and hematological malignancies, in regulating tumor cell growth and immune response. Herein, we review these evidences and suggest that MSC can be a suitable target for a more efficient anti-tumor therapy. PMID:24657523

  5. Single Cell Analysis of Complex Thymus Stromal Cell Populations: Rapid Thymic Epithelia Preparation Characterizes Radiation Injury

    PubMed Central

    Williams, Kirsten M.; Mella, Heather; Lucas, Philip J.; Williams, Joy A.; Telford, William; Gress, Ronald E.

    2009-01-01

    Thymic epithelial cells (TECs) and dendritic cells are essential for the maintenance of thymopoiesis. Because these stromal elements define the progenitor niche, provide critical survival signals and growth factors, and direct positive and negative selection, detailed study of these populations is necessary to understand important elements for thymic renewal after cytotoxic injury. Study of TEC is currently hindered by lengthy enzymatic separation techniques with decreased viability. We present a new rapid separation technique that yields consistent viable TEC numbers in a quarter of the prior preparation time. Using this new procedure, we identify changes in stroma populations following total body irradiation (TBI). By flow cytometry, we show that TBI significantly depletes UEA+ medullary TEC, while sparing Ly51+ CD45− cells. Further characterization of the Ly51+ subset reveals enrichment of fibroblasts (CD45− Ly51+ MHCII−), while cortical TECs (CD45− Ly51+ MHCII+) were markedly reduced. Dendritic cells (CD11lc+ CD45+) were also decreased following TBI. These data suggest that cytotoxic preparative regimens may impair thymic renewal by reducing critical populations of cortical and medullary TEC, and that such thymic damage can be assessed by this new rapid separation technique, thereby providing a means of assessing optimal conditioning pretransplantfor enhancing thymic-dependent immune reconstitution posttranspiant. PMID:19750208

  6. Multiple Functions of the New Cytokine-Based Antimicrobial Peptide Thymic Stromal Lymphopoietin (TSLP).

    PubMed

    Bjerkan, Louise; Sonesson, Andreas; Schenck, Karl

    2016-01-01

    Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine, hitherto mostly known to be involved in inflammatory responses and immunoregulation. The human tslp gene gives rise to two transcription and translation variants: a long form (lfTSLP) that is induced by inflammation, and a short, constitutively-expressed form (sfTSLP), that appears to be downregulated by inflammation. The TSLP forms can be produced by a number of cell types, including epithelial and dendritic cells (DCs). lfTSLP can activate mast cells, DCs, and T cells through binding to the lfTSLP receptor (TSLPR) and has a pro-inflammatory function. In contrast, sfTSLP inhibits cytokine secretion of DCs, but the receptor mediating this effect is unknown. Our recent studies have demonstrated that both forms of TSLP display potent antimicrobial activity, exceeding that of many other known antimicrobial peptides (AMPs), with sfTSLP having the strongest effect. The AMP activity is primarily mediated by the C-terminal region of the protein and is localized within a 34-mer peptide (MKK34) that spans the C-terminal α-helical region in TSLP. Fluorescent studies of peptide-treated bacteria, electron microscopy, and liposome leakage models showed that MKK34 exerted membrane-disrupting effects comparable to those of LL-37. Expression of TSLP in skin, oral mucosa, salivary glands, and intestine is part of the defense barrier that aids in the control of both commensal and pathogenic microbes. PMID:27399723

  7. Adipose-Derived Mesenchymal Stromal/Stem Cells: Tissue Localization, Characterization, and Heterogeneity

    PubMed Central

    Baer, Patrick C.; Geiger, Helmut

    2012-01-01

    Adipose tissue as a stem cell source is ubiquitously available and has several advantages compared to other sources. It is easily accessible in large quantities with minimal invasive harvesting procedure, and isolation of adipose-derived mesenchymal stromal/stem cells (ASCs) yields a high amount of stem cells, which is essential for stem-cell-based therapies and tissue engineering. Several studies have provided evidence that ASCs in situ reside in a perivascular niche, whereas the exact localization of ASCs in native adipose tissue is still under debate. ASCs are isolated by their capacity to adhere to plastic. Nevertheless, recent isolation and culture techniques lack standardization. Cultured cells are characterized by their expression of characteristic markers and their capacity to differentiate into cells from meso-, ecto-, and entodermal lineages. ASCs possess a high plasticity and differentiate into various cell types, including adipocytes, osteoblasts, chondrocytes, myocytes, hepatocytes, neural cells, and endothelial and epithelial cells. Nevertheless, recent studies suggest that ASCs are a heterogeneous mixture of cells containing subpopulations of stem and more committed progenitor cells. This paper summarizes and discusses the current knowledge of the tissue localization of ASCs in situ, their characterization and heterogeneity in vitro, and the lack of standardization in isolation and culture methods. PMID:22577397

  8. Beyond Standard Therapy: Drugs Under Investigation for The Treatment of Gastrointestinal Stromal Tumor

    PubMed Central

    Alturkmani, Hani J; Pessetto, Ziyan Y; Godwin, Andrew K

    2015-01-01

    Introduction Gastrointestinal stromal tumor (GIST) is the most common non-epithelial malignancy of the GI tract. With the discovery of KIT and later PDGFRA gain-of-function mutations as factors in the pathogenesis of the disease, GIST was the quintessential model for targeted therapy. Despite the successful clinical use of imatinib mesylate, a selective receptor tyrosine kinase (RTK) inhibitor that targets KIT, PDGFRA and BCR-ABL, we still do not have treatment for the long-term control of advanced GIST. Areas covered This review summarizes the drugs that are under investigation or have been assessed in trials for GIST treatment. The article focuses on their mechanisms of actions, the preclinical evidence of efficacy, and the clinical trials concerning safety and efficacy in humans. Expert opinion It is known that KIT and PDGFRA mutations in GIST patients influence the response to treatment. This observation should be taken into consideration when investigating new drugs. RECIST was developed to help uniformly report efficacy trials in oncology. Despite the usefulness of this system, many questions are being addressed about its validity in evaluating the true efficacy of drugs knowing that new targeted therapies do not affect the tumor size as much as they halt progression and prolong survival. PMID:26098203

  9. Theory of epithelial elasticity

    NASA Astrophysics Data System (ADS)

    Krajnc, Matej; Ziherl, Primož

    2015-11-01

    We propose an elastic theory of epithelial monolayers based on a two-dimensional discrete model of dropletlike cells characterized by differential surface tensions of their apical, basal, and lateral sides. We show that the effective tissue bending modulus depends on the apicobasal differential tension and changes sign at the transition from the flat to the fold morphology. We discuss three mechanisms that stabilize the finite-wavelength fold structures: Physical constraint on cell geometry, hard-core interaction between non-neighboring cells, and bending elasticity of the basement membrane. We show that the thickness of the monolayer changes along the waveform and thus needs to be considered as a variable rather than a parameter. Next we show that the coupling between the curvature and the thickness is governed by the apicobasal polarity and that the amplitude of thickness modulation along the waveform is proportional to the apicobasal differential tension. This suggests that intracellular stresses can be measured indirectly by observing easily measurable morphometric parameters. We also study the mechanics of three-dimensional structures with cylindrical symmetry.

  10. Human Adipose Stromal Vascular Cell Delivery in a Fibrin Spray

    PubMed Central

    Zimmerlin, Ludovic; Rubin, J. Peter; Pfeifer, Melanie E.; Moore, L.R.; Donnenberg, Vera S.; Donnenberg, Albert D.

    2014-01-01

    Background Adipose tissue represents a practical source of autologous mesenchymal stromal cells (MSC) and vascular-endothelial progenitor cells, available for regenerative therapy without in vitro expansion. One of the problems confronting the therapeutic application of such cells is how to immobilize them at the wound site. Here, we evaluated in vitro the growth and differentiation of human adipose stromal vascular fraction (SVF) cells after delivery using a fibrin spray system. Methods SVF cells were harvested from four human adult patients undergoing elective abdominoplasty using the LipiVage™ system. After collagenase digestion, mesenchymal and endothelial progenitor cells (pericytes, supra-adventitial stromal cells, endothelial progenitors) were quantified by flow cytometry before culture. SVF cells were applied to culture vessels using the Tisseel™ fibrin spray system. SVF cell growth and differentiation was documented by immunofluorescence staining and photomicrography. Results SVF cells remained viable following application and were expanded up to three weeks, when they reached confluence and adipogenic differentiation. Under angiogenic conditions, SVF cells formed endothelial (vWF+, CD31+ and CD34+) tubules surrounded by CD146+ and α-SMA+ perivascular/stromal cells. Discussion Human adipose tissue is a rich source of autologous stem cells, which are readily available for regenerative applications such as wound healing, without in vitro expansion. Our results indicate that mesenchymal and endothelial progenitor cells, prepared in a closed system from unpassaged lipoaspirate samples, retain their growth and differentiation capacity when applied and immobilized on a substrate using a clinically approved fibrin sealant spray system. PMID:23260090

  11. Pseudoangiomatous stromal hyperplasia (PASH) of the breast: intraductal appearance.

    PubMed

    Gur, Akif Serhat; Unal, Bulent; Edington, Howard; Kanbour-Shakir, Amal; Soran, Atilla

    2009-08-01

    Pseudoangiomatous stromal hyperplasia (PASH) is a benign proliferative lesion of breast stroma. The diagnosis of PASH can be made using imaging techniques such as ultrasound, magnetic resonance or mammography. Ductoscopy is a relatively new technique which is used for imaging the intraductal surface. We report a patient with PASH in whom ductoscopy was performed successfully. PMID:19751351

  12. Therapy Effects of Bone Marrow Stromal Cells on Ischemic Stroke

    PubMed Central

    Ye, Xinchun; Hu, Jinxia; Cui, Guiyun

    2016-01-01

    Stroke is the second most common cause of death and major cause of disability worldwide. Recently, bone marrow stromal cells (BMSCs) have been shown to improve functional outcome after stroke. In this review, we will focus on the protective effects of BMSCs on ischemic brain and the relative molecular mechanisms underlying the protective effects of BMSCs on stroke. PMID:27069533

  13. Simulated Reflux Decreases Vocal Fold Epithelial Barrier Resistance

    PubMed Central

    Erickson, Elizabeth; Sivasankar, Mahalakshmi

    2010-01-01

    Objectives/Hypothesis The vocal fold epithelium provides a barrier to the entry of inhaled and systemic challenges. However, the location of the epithelium makes it vulnerable to damage. Past research suggests, but does not directly demonstrate, that exposure to gastric reflux adversely affects the function of the epithelial barrier. Understanding the nature of reflux-induced epithelial barrier dysfunction is necessary to better recognize the mechanisms for vocal fold susceptibility to this disease. Therefore, we examined the effects of physiologically relevant reflux challenges on vocal fold transepithelial resistance and gross epithelial and subepithelial appearance. Study Design Ex vivo, mixed design with between-group and repeated-measures analyses. Methods Healthy, native porcine vocal folds (N = 52) were exposed to physiologically relevant acidic pepsin, acid-only, or pepsin-only challenges and examined with electrophysiology and light microscopy. For all challenges, vocal folds exposed to a neutral pH served as control. Results Acidic pepsin and acid-only challenges, but not pepsin-only or control challenges significantly reduced transepithelial resistance within 30 minutes. Reductions in transepithelial resistance were irreversible. Challenge exposure produced minimal gross changes in vocal fold epithelial or subepithelial appearance as evidenced by light microscopy. Conclusions These findings demonstrate that acidic environments characteristic of gastric reflux compromise epithelial barrier function without gross structural changes. In healthy, native vocal folds, reductions in transepithelial resistance could reflect reflux-related epithelial disruption. These results might guide the development of pharmacologic and therapeutic recommendations for patients with reflux, such as continued acid-suppression therapy and patient antireflux behavioral education. PMID:20564752

  14. Epithelial Sodium Channels in Pulmonary Epithelial Progenitor and Stem Cells

    PubMed Central

    Liu, Yang; Jiang, Bi-Jie; Zhao, Run-Zhen; Ji, Hong-Long

    2016-01-01

    Regeneration of the epithelium of mammalian lungs is essential for restoring normal function following injury, and various cells and mechanisms contribute to this regeneration and repair. Club cells, bronchioalveolar stem cells (BASCs), and alveolar type II epithelial cells (ATII) are dominant stem/progenitor cells for maintaining epithelial turnover and repair. Epithelial Na+ channels (ENaC), a critical pathway for transapical salt and fluid transport, are expressed in lung epithelial progenitors, including club and ATII cells. Since ENaC activity and expression are development- and differentiation-dependent, apically located ENaC activity has therefore been used as a functional biomarker of lung injury repair. ENaC activity may be involved in the migration and differentiation of local and circulating stem/progenitor cells with diverse functions, eventually benefiting stem cells spreading to re-epithelialize injured lungs. This review summarizes the potential roles of ENaC expressed in native progenitor and stem cells in the development and regeneration of the respiratory epithelium. PMID:27570489

  15. Integrins and epithelial cell polarity

    PubMed Central

    Lee, Jessica L.; Streuli, Charles H.

    2014-01-01

    ABSTRACT Cell polarity is characterised by differences in structure, composition and function between at least two poles of a cell. In epithelial cells, these spatial differences allow for the formation of defined apical and basal membranes. It has been increasingly recognised that cell–matrix interactions and integrins play an essential role in creating epithelial cell polarity, although key gaps in our knowledge remain. This Commentary will discuss the mounting evidence for the role of integrins in polarising epithelial cells. We build a model in which both inside-out signals to polarise basement membrane assembly at the basal surface, and outside-in signals to control microtubule apical–basal orientation and vesicular trafficking are required for establishing and maintaining the orientation of epithelial cell polarity. Finally, we discuss the relevance of the basal integrin polarity axis to cancer. This article is part of a Minifocus on Establishing polarity. For further reading, please see related articles: ‘ERM proteins at a glance’ by Andrea McClatchey (J. Cell Sci. 127, 3199–3204). ‘Establishment of epithelial polarity – GEF who's minding the GAP?’ by Siu Ngok et al. (J. Cell Sci. 127, 3205–3215). PMID:24994933

  16. Reversible Nerve Damage and Corneal Pathology in Murine Herpes Simplex Stromal Keratitis

    PubMed Central

    Yun, Hongmin; Rowe, Alexander M.; Lathrop, Kira L.; Harvey, Stephen A. K.

    2014-01-01

    ABSTRACT Herpes simplex virus type 1 (HSV-1) shedding from sensory neurons can trigger recurrent bouts of herpes stromal keratitis (HSK), an inflammatory response that leads to progressive corneal scarring and blindness. A mouse model of HSK is often used to delineate immunopathogenic mechanisms and bears many of the characteristics of human disease, but it tends to be more chronic and severe than human HSK. Loss of blink reflex (BR) in human HSK is common and due to a dramatic retraction of corneal sensory nerve termini in the epithelium and the nerve plexus at the epithelial/stromal interface. However, the relationship between loss of BR due to nerve damage and corneal pathology associated with HSK remains largely unexplored. Here, we show a similar retraction of corneal nerves in mice with HSK. Indeed, we show that much of the HSK-associated corneal inflammation in mice is actually attributable to damage to the corneal nerves and accompanying loss of BR and can be prevented or ameliorated by tarsorrhaphy (suturing eyelids closed), a clinical procedure commonly used to prevent corneal exposure and desiccation. In addition, we show that HSK-associated nerve retraction, loss of BR, and severe pathology all are reversible and regulated by CD4+ T cells. Thus, defining immunopathogenic mechanisms of HSK in the mouse model will necessitate distinguishing mechanisms associated with the immunopathologic response to the virus from those associated with loss of corneal sensation. Based on our findings, investigation of a possible contribution of nerve damage and BR loss to human HSK also appears warranted. IMPORTANCE HSK in humans is a potentially blinding disease characterized by recurrent inflammation and progressive scarring triggered by viral release from corneal nerves. Corneal nerve damage is a known component of HSK, but the causes and consequences of HSK-associated nerve damage remain obscure. We show that desiccation of the corneal surface due to nerve damage and

  17. Lung epithelial cell death induced by oil-dispersant mixtures.

    PubMed

    Wang, He; Shi, Yongli; Major, Danielle; Yang, Zhanjun

    2012-08-01

    The dispersants used in oil spill disasters are claimed to be safe, but increased solubility of high-molecular-weight components in crude oil is of public health concern. The water-accommodated fractions (WAF) of crude oil mixed with dispersants may become airborne and cause lung epithelial damage when inhaled. This study was designed to examine the cell death and related death pathways of lung epithelial cells in response to WAF. Cultured A549 cells were treated for 2 or 24h with different concentrations of WAF. The WAF was prepared by mixing each of the dispersants (Corexit EC9527A, Corexit EC9500A and Corexit EC9580A) with crude oil for extraction with PBS. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT assay, lactate dehydrogenase assay, morphology and cleaved caspase 9 protein, and microtubule-associated protein 1 light chain 3 were all used to measure cell viability, necrosis, apoptosis and autophagy quantitation, respectively. Results showed that the WAF of oil-dispersant mixtures caused cell death in the lung epithelial cells, in a dose-dependent manner, with the major cellular pathways of necrosis and apoptosis involved. Autophagy also occurred in cells exposed to WAF mixtures at lower concentrations before any detectable cell death, indicating greater sensitivity to WAF exposure. The three types of cell behavior, namely necrosis, apoptosis and autophagy, may play different roles in oil spill-related respiratory disorders. PMID:22504303

  18. NME genes in epithelial morphogenesis

    PubMed Central

    2012-01-01

    The NME family of genes encodes highly conserved multifunctional proteins that have been shown to participate in nucleic acid metabolism, energy homeostasis, cell signaling, and cancer progression. Some family members, particularly isoforms 1 and 2, have attracted extensive interests because of their potential anti-metastasis activity. Unfortunately, there have been few consensus mechanistic explanations for this critical function because of the numerous molecular functions ascribed to these proteins, including nucleoside diphosphate kinase, protein kinase, nuclease, transcription factor, growth factor, among others. In addition, different studies showed contradictory prognostic correlations between NME expression levels and tumor progression in clinical samples. Thus, analyses using pliable in vivo systems have become critical for unraveling at least some aspects of the complex functions of this family of genes. Recent works using the Drosophila genetic system have suggested a role for NME in regulating epithelial cell motility and morphogenesis, which has also been demonstrated in mammalian epithelial cell culture. This function is mediated by promoting internalization of growth factor receptors in motile epithelial cells, and the adherens junction components such as E-cadherin and β-catenin in epithelia that form the tissue linings. Interestingly, NME genes in epithelial cells appear to function in a defined range of expression levels. Either down-regulation or over-expression can perturb epithelial integrity, resulting in different aspects of epithelial abnormality. Such biphasic functions provide a plausible explanation for the documented anti-metastatic activity and the suspected oncogenic function. This review summarizes these recent findings and discusses their implications. PMID:21336542

  19. Nkx2-5+Islet1+ mesenchymal precursors generate distinct spleen stromal cell subsets and participate in restoring stromal network integrity

    PubMed Central

    Castagnaro, Laura; Lenti, Elisa; Maruzzelli, Sara; Spinardi, Laura; Migliori, Edoardo; Farinello, Diego; Sitia, Giovanni; Harrelson, Zachary; Evans, Sylvia; Guidotti, Luca G.; Harvey, Richard P.; Brendolan, Andrea

    2013-01-01

    Lymphoid organ stromal cells comprise different subsets whose origin remains unknown. Herein, we exploit a genetic lineage-tracing approach to show that splenic fibroblastic reticular cells (FRCs), follicular dendritic cells (FDCs), marginal reticular cells (MRCs), and mural cells, but not endothelial cells, originated from embryonic mesenchymal progenitors of the Nkx2-5+Islet1+ lineage. This lineage included embryonic mesenchymal cells with lymphoid tissue organizer (LTo) activity capable of supporting ectopic lymphoid-like structures, and a subset of resident spleen stromal cells that proliferated and regenerated the splenic stromal microenvironment following resolution of a viral infection. These findings identify progenitor cells that generate stromal diversity in spleen development and repair, and suggest the existence of multipotent stromal progenitors in the adult spleen with regenerative capacity. PMID:23601687

  20. Expression of SDF-1 and CXCR4 transcript variants and CXCR7 in epithelial ovarian cancer

    PubMed Central

    JASZCZYNSKA-NOWINKA, KAROLINA; RUCINSKI, MARCIN; ZIOLKOWSKA, AGNIESZKA; MARKOWSKA, ANNA; MALENDOWICZ, LUDWIK K.

    2014-01-01

    Chemokine stromal cell-derived factor-1 (SDF-1) and its receptors, CXCR4 and CXCR7, have been implicated in epithelial ovarian cancer progression and metastasis. However, limited data are available on the expression levels of SDF-1 and CXCR4 variants and CXCR7 in human epithelial ovarian cancer. The present study aimed to characterize the expression pattern and levels of SDF-1, CXCR4 and CXCR7 in normal human ovaries and epithelial ovarian cancer. The expression of SDF-1 and CXCR4 transcript variants and CXCR7 was determined by quantitative polymerase chain reaction (qPCR). Plasma SDF-1α levels were determined by commercially available EIA kits and cancer antigen 125 (CA 125) levels were quantified by automated microparticle enzyme immunosorbent assay. High expression levels of SDF-1 transcript variant 1 were identified in ovarian cancer and control ovaries. By contrast, in both groups the expression levels of SDF-1 transcript variants 3 and 4 were extremely low. Furthermore, SDF-1 variant 1 levels were notably higher in epithelial ovarian cancer than in control ovaries, while data for the remaining transcripts were similar in both groups. CXCR4 transcript variant 2 and CXCR7 expression levels in normal and neoplastic ovaries were similar. In both groups, CXCR4 transcript variant 2 was not detected. Plasma SDF-1α levels were notably higher in females with epithelial ovarian cancer than in the control ovaries. Elevated levels of blood SDF-1α were found prior to surgery, 6 days after surgery and following completion of the first chemotherapy course. These increases were independent of the type of epithelial ovarian cancer. Our results suggest that the expression of SDF-1 and the genes controlling alternative splicing are elevated in epithelial ovarian cancer, leading to an increased formation of SDF-1 variant 1. Elevated plasma SDF-1α levels in epithelial ovarian cancer patients are not associated with the presence of tumors and/or metastases, however reflect a

  1. Expression of SDF-1 and CXCR4 transcript variants and CXCR7 in epithelial ovarian cancer.

    PubMed

    Jaszczynska-Nowinka, Karolina; Rucinski, Marcin; Ziolkowska, Agnieszka; Markowska, Anna; Malendowicz, Ludwik K

    2014-05-01

    Chemokine stromal cell-derived factor-1 (SDF-1) and its receptors, CXCR4 and CXCR7, have been implicated in epithelial ovarian cancer progression and metastasis. However, limited data are available on the expression levels of SDF-1 and CXCR4 variants and CXCR7 in human epithelial ovarian cancer. The present study aimed to characterize the expression pattern and levels of SDF-1, CXCR4 and CXCR7 in normal human ovaries and epithelial ovarian cancer. The expression of SDF-1 and CXCR4 transcript variants and CXCR7 was determined by quantitative polymerase chain reaction (qPCR). Plasma SDF-1α levels were determined by commercially available EIA kits and cancer antigen 125 (CA 125) levels were quantified by automated microparticle enzyme immunosorbent assay. High expression levels of SDF-1 transcript variant 1 were identified in ovarian cancer and control ovaries. By contrast, in both groups the expression levels of SDF-1 transcript variants 3 and 4 were extremely low. Furthermore, SDF-1 variant 1 levels were notably higher in epithelial ovarian cancer than in control ovaries, while data for the remaining transcripts were similar in both groups. CXCR4 transcript variant 2 and CXCR7 expression levels in normal and neoplastic ovaries were similar. In both groups, CXCR4 transcript variant 2 was not detected. Plasma SDF-1α levels were notably higher in females with epithelial ovarian cancer than in the control ovaries. Elevated levels of blood SDF-1α were found prior to surgery, 6 days after surgery and following completion of the first chemotherapy course. These increases were independent of the type of epithelial ovarian cancer. Our results suggest that the expression of SDF-1 and the genes controlling alternative splicing are elevated in epithelial ovarian cancer, leading to an increased formation of SDF-1 variant 1. Elevated plasma SDF-1α levels in epithelial ovarian cancer patients are not associated with the presence of tumors and/or metastases, however reflect a

  2. Mixed tumour of salivary gland type of the male breast.

    PubMed

    Simha, M R; Doctor, V M; Udwadia, T E

    1992-03-01

    Benign breast tumours with a mixed cartilaginous and epithelial component are distinctly rare as evident from the literature. A case of Mixed Tumour of the breast presenting pre-operatively as a hard mass in a 65 year old male is reported. Histologically, it was composed of a mixture of benign cartilage, myoepithelial cells, tubules and a myxoid stroma in fat. A brief review of cartilage bearing lesions and mixed tumour in the mammary region is discussed. PMID:1328037

  3. Ion Channels in Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Palmer, Lawrence G.

    Ion channels in epithelial cells serve to move ions, and in some cases fluid, between compartments of the body. This function of the transfer of material is fundamentally different from that of the transfer of information, which is the main job of most channels in excitable cells. Nevertheless the basic construction of the channels is similar in many respects in the two tissue types. This chapter reviews the nature of channels in epithelia and discusses how their functions have evolved to accomplish the basic tasks for which they are responsible. I will focus on three channel types: epithelial Na+ channels, inward-rectifier K+ channels, and CFTR Cl- channels.

  4. Corneal limbal microenvironment can induce transdifferentiation of hair follicle stem cells into corneal epithelial-like cells.

    PubMed

    Blazejewska, Ewa Anna; Schlötzer-Schrehardt, Ursula; Zenkel, Matthias; Bachmann, Björn; Chankiewitz, Erik; Jacobi, Christina; Kruse, Friedrich E

    2009-03-01

    The aim of this study was to investigate the transdifferentiation potential of murine vibrissa hair follicle (HF) stem cells into corneal epithelial-like cells through modulation by corneal- or limbus-specific microenvironmental factors. Adult epithelial stem cells were isolated from the HF bulge region by mechanical dissection or fluorescence-activated cell sorting using antibodies to alpha6 integrin, enriched by clonal expansion, and subcultivated on various extracellular matrices (type IV collagen, laminin-1, laminin-5, fibronectin) and in different conditioned media derived from central and peripheral corneal fibroblasts, limbal stromal fibroblasts, and 3T3 fibroblasts. Cellular phenotype and differentiation were evaluated by light and electron microscopy, real-time reverse transcription-polymerase chain reaction, immunocytochemistry, and Western blotting, using antibodies against putative stem cell markers (K15, alpha6 integrin) and differentiation markers characteristic for corneal epithelium (K12, Pax6) or epidermis (K10). Using laminin-5, a major component of the corneo-limbal basement membrane zone, and conditioned medium from limbal stromal fibroblasts, clonally enriched HF stem and progenitor cells adhered rapidly and formed regularly arranged stratified cell sheets. Conditioned medium derived from limbal fibroblasts markedly upregulated expression of cornea-specific K12 and Pax6 on the mRNA and protein level, whereas expression of the epidermal keratinocyte marker K10 was strongly downregulated. These findings suggest that adult HF epithelial stem cells are capable of differentiating into corneal epithelial-like cells in vitro when exposed to a limbus-specific microenvironment. Therefore, the HF may be an easily accessible alternative therapeutic source of autologous adult stem cells for replacement of the corneal epithelium and restoration of visual function in patients with ocular surface disorders. PMID:19074417

  5. Invasive characteristics of human prostatic epithelial cells: understanding the metastatic process

    PubMed Central

    Hart, C A; Brown, M; Bagley, S; Sharrard, M; Clarke, N W

    2005-01-01

    Prostate cancer has a predilection to metastasise to the bone marrow stroma (BMS) by an as yet uncharacterised mechanism. We have defined a series of coculture models of invasion, which simulate the blood/BMS boundary and allow the elucidation of the signalling and mechanics of trans-endothelial migration within the complex bone marrow environment. Confocal microscopy shows that prostate epithelial cells bind specifically to bone marrow endothelial-to-endothelial cell junctions and initiate endothelial cell retraction. Trans-endothelial migration proceeds via an epithelial cell pseudopodial process, with complete epithelial migration occurring after 232±43 min. Stromal-derived factor-1 (SDF-1)/CXCR4 signalling induced PC-3 to invade across a basement membrane although the level of invasion was 3.5-fold less than invasion towards BMS (P=0.0007) or bone marrow endothelial cells (P=0.004). Maximal SDF-1 signalling of invasion was completely inhibited by 10 μM of the SDF-1 inhibitor T140. However, 10 μM T140 only reduced invasion towards BMS and bone marrow endothelial cells by 59% (P=0.001) and 29% (P=0.011), respectively. This study highlights the need to examine the potential roles of signalling molecules and/or inhibitors, not just in single-cell models but in coculture models that mimic the complex environment of the bone marrow. PMID:15668715

  6. Reprogramming during epithelial to mesenchymal transition under the control of TGFβ

    PubMed Central

    Tan, E-Jean; Olsson, Anna-Karin; Moustakas, Aristidis

    2015-01-01

    Epithelial-mesenchymal transition (EMT) refers to plastic changes in epithelial tissue architecture. Breast cancer stromal cells provide secreted molecules, such as transforming growth factor β (TGFβ), that promote EMT on tumor cells to facilitate breast cancer cell invasion, stemness and metastasis. TGFβ signaling is considered to be abnormal in the context of cancer development; however, TGFβ acting on breast cancer EMT resembles physiological signaling during embryonic development, when EMT generates or patterns new tissues. Interestingly, while EMT promotes metastatic fate, successful metastatic colonization seems to require the inverse process of mesenchymal-epithelial transition (MET). EMT and MET are interconnected in a time-dependent and tissue context-dependent manner and are coordinated by TGFβ, other extracellular proteins, intracellular signaling cascades, non-coding RNAs and chromatin-based molecular alterations. Research on breast cancer EMT/MET aims at delivering biomolecules that can be used diagnostically in cancer pathology and possibly provide ideas for how to improve breast cancer therapy. PMID:25482613

  7. Butyrate and bioactive proteolytic form of Wnt-5a regulate colonic epithelial proliferation and spatial development.

    PubMed

    Uchiyama, Kazuhiko; Sakiyama, Toshio; Hasebe, Takumu; Musch, Mark W; Miyoshi, Hiroyuki; Nakagawa, Yasushi; He, Tong-Chuan; Lichtenstein, Lev; Naito, Yuji; Itoh, Yoshito; Yoshikawa, Toshikazu; Jabri, Bana; Stappenbeck, Thaddeus; Chang, Eugene B

    2016-01-01

    Proliferation and spatial development of colonic epithelial cells are highly regulated along the crypt vertical axis, which, when perturbed, can result in aberrant growth and carcinogenesis. In this study, two key factors were identified that have important and counterbalancing roles regulating these processes: pericrypt myofibroblast-derived Wnt-5a and the microbial metabolite butyrate. Cultured YAMC cell proliferation and heat shock protein induction were analzyed after butryate, conditioned medium with Wnt5a activity, and FrzB containing conditioned medium. In vivo studies to modulate Hsp25 employed intra-colonic wall Hsp25 encoding lentivirus. To silence Wnt-5a in vivo, intra-colonic wall Wnt-5a silencing RNA was used. Wnt-5a, secreted by stromal myofibroblasts of the lower crypt, promotes proliferation through canonical β-catenin activation. Essential to this are two key requirements: (1) proteolytic conversion of the highly insoluble ~40 kD Wnt-5a protein to a soluble 36 mer amino acid peptide that activates epithelial β-catenin and cellular proliferation, and (2) the simultaneous inhibition of butyrate-induced Hsp25 by Wnt-5a which is necessary to arrest the proliferative process in the upper colonic crypt. The interplay and spatial gradients of these factors insures that crypt epithelial cell proliferation and development proceed in an orderly fashion, but with sufficient plasticity to adapt to physiological perturbations including inflammation. PMID:27561676

  8. Airway epithelial SPDEF integrates goblet cell differentiation and pulmonary Th2 inflammation.

    PubMed

    Rajavelu, Priya; Chen, Gang; Xu, Yan; Kitzmiller, Joseph A; Korfhagen, Thomas R; Whitsett, Jeffrey A

    2015-05-01

    Epithelial cells that line the conducting airways provide the initial barrier and innate immune responses to the abundant particles, microbes, and allergens that are inhaled throughout life. The transcription factors SPDEF and FOXA3 are both selectively expressed in epithelial cells lining the conducting airways, where they regulate goblet cell differentiation and mucus production. Moreover, these transcription factors are upregulated in chronic lung disorders, including asthma. Here, we show that expression of SPDEF or FOXA3 in airway epithelial cells in neonatal mice caused goblet cell differentiation, spontaneous eosinophilic inflammation, and airway hyperresponsiveness to methacholine. SPDEF expression promoted DC recruitment and activation in association with induction of Il33, Csf2, thymic stromal lymphopoietin (Tslp), and Ccl20 transcripts. Increased Il4, Il13, Ccl17, and Il25 expression was accompanied by recruitment of Th2 lymphocytes, group 2 innate lymphoid cells, and eosinophils to the lung. SPDEF was required for goblet cell differentiation and pulmonary Th2 inflammation in response to house dust mite (HDM) extract, as both were decreased in neonatal and adult Spdef(-/-) mice compared with control animals. Together, our results indicate that SPDEF causes goblet cell differentiation and Th2 inflammation during postnatal development and is required for goblet cell metaplasia and normal Th2 inflammatory responses to HDM aeroallergen. PMID:25866971

  9. Butyrate and bioactive proteolytic form of Wnt-5a regulate colonic epithelial proliferation and spatial development

    PubMed Central

    Uchiyama, Kazuhiko; Sakiyama, Toshio; Hasebe, Takumu; Musch, Mark W.; Miyoshi, Hiroyuki; Nakagawa, Yasushi; He, Tong-Chuan; Lichtenstein, Lev; Naito, Yuji; Itoh, Yoshito; Yoshikawa, Toshikazu; Jabri, Bana; Stappenbeck, Thaddeus; Chang, Eugene B.

    2016-01-01

    Proliferation and spatial development of colonic epithelial cells are highly regulated along the crypt vertical axis, which, when perturbed, can result in aberrant growth and carcinogenesis. In this study, two key factors were identified that have important and counterbalancing roles regulating these processes: pericrypt myofibroblast-derived Wnt-5a and the microbial metabolite butyrate. Cultured YAMC cell proliferation and heat shock protein induction were analzyed after butryate, conditioned medium with Wnt5a activity, and FrzB containing conditioned medium. In vivo studies to modulate Hsp25 employed intra-colonic wall Hsp25 encoding lentivirus. To silence Wnt-5a in vivo, intra-colonic wall Wnt-5a silencing RNA was used. Wnt-5a, secreted by stromal myofibroblasts of the lower crypt, promotes proliferation through canonical β-catenin activation. Essential to this are two key requirements: (1) proteolytic conversion of the highly insoluble ~40 kD Wnt-5a protein to a soluble 36 mer amino acid peptide that activates epithelial β-catenin and cellular proliferation, and (2) the simultaneous inhibition of butyrate-induced Hsp25 by Wnt-5a which is necessary to arrest the proliferative process in the upper colonic crypt. The interplay and spatial gradients of these factors insures that crypt epithelial cell proliferation and development proceed in an orderly fashion, but with sufficient plasticity to adapt to physiological perturbations including inflammation. PMID:27561676

  10. Molecular and morphological correlation in gastrointestinal stromal tumours (GISTs): an update and primer.

    PubMed

    Chetty, Runjan; Serra, Stefano

    2016-09-01

    Gastrointestinal stromal tumours (GISTs) are a commonly encountered tumour in routine practice. In the main, the morphology of spindle, epithelioid or mixed are well recognised along with mutations of c-kit However, there are other genes that are mutated resulting in characteristic clinicopathological correlations. GISTs harbouring platelet-derived growth factor receptor α (PDGFRα) gene mutations lead to a typical morphological constellation of findings: gastric and omental location, gross tumour that is cystic and haemorrhagic, composed of epithelioid, plasmacytoid cells exhibiting pleomorphism, low mitotic count and containing characteristic giant cells with peripherally placed nuclei. These cells are set in a myxoid stroma containing several mast cells. In addition, perivascular/intratumoural hyalinisation is often seen. These tumours are CD117 and DOG-1 positive. GISTs with SDH mutations are multinodular/bilobed/dumb-bell shape tumour masses with mucosal ulceration and histologically characterised by fibrous bands around and within nodules of epithelioid or mixed epithelioid/spindle cells. Lymphovascular invasion with lymph node metastases are usual. Immunohistochemically, the GISTs are CD117, DOG-1 positive, SDHA negative (if SDHA mutated), SDHA positive (if SDHA intact) and SDHB negative. BRAF and NF-1 mutated GISTs do not have any characteristic morphological features. PMID:27317811

  11. [Mammary hamartoma with atypical stromal cells: a potential diagnostic dilemma].

    PubMed

    Agabiti, S; Gurrera, A; Amico, P; Vasquez, E; Magro, G

    2007-12-01

    Hamartoma of the breast is a pseudotumoural lesion that does not usually pose diagnostic problems for the pathologist. Although atypical stromal cell (ASCs) can be encountered in several benign and malignant breast lesions, their occurrence in hamartoma has not been reported to date. The authors report a case of breast hamartoma containing numerous atypical mono- or multinucleated stromal cells within the fibro-fatty component. This unusual feature raised differential diagnostic problems with pleomorphic lipoma, well-differentiated liposarcoma and malignant phylloid tumour with a lipomatous heterologous component. Immunohistochemistry, showing positivity to vimentin and CD34, revealed that ASCs are fibroblastic in nature, and thus are likely to represent a morphological variant of the fibroblasts of the native mammary stroma. PMID:18416336

  12. Rapidly growing bilateral pseudoangiomatous stromal hyperplasia of the breast.

    PubMed

    Ryu, Eun Mi; Whang, In Yong; Chang, Eun Deok

    2010-01-01

    A tumoral pseudoangiomatous stromal hyperplasia (PASH) that causes huge breast enlargement is very rare. Only two cases of huge tumoral PASHs have been reported in the English medical literature. We report here on a surgically confirmed case of bilateral huge tumoral PASH in a 47-year-old woman, and we present the imaging and histopathology findings. We also review the relevant medical literature. PMID:20461190

  13. Acetyl-L-Carnitine Hydrochloride in Preventing Peripheral Neuropathy in Patients With Recurrent Ovarian Epithelial Cancer, Primary Peritoneal Cavity Cancer, or Fallopian Tube Cancer Undergoing Chemotherapy

    ClinicalTrials.gov

    2014-12-29

    Fatigue; Malignant Ovarian Mixed Epithelial Tumor; Neuropathy; Neurotoxicity Syndrome; Ovarian Brenner Tumor; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Pain; Recurrent Fallopian Tube Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Primary Peritoneal Carcinoma

  14. Elesclomol Sodium and Paclitaxel in Treating Patients With Recurrent or Persistent Ovarian Epithelial Cancer, Fallopian Tube Cancer, or Primary Peritoneal Cancer

    ClinicalTrials.gov

    2014-12-23

    Malignant Ovarian Mixed Epithelial Tumor; Ovarian Brenner Tumor; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Recurrent Fallopian Tube Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Primary Peritoneal Carcinoma; Undifferentiated Ovarian Carcinoma

  15. TLR8 Agonist VTX-2337 and Pegylated Liposomal Doxorubicin Hydrochloride or Paclitaxel in Treating Patients With Recurrent or Persistent Ovarian Epithelial, Fallopian Tube, or Peritoneal Cavity Cancer

    ClinicalTrials.gov

    2014-12-23

    Malignant Ovarian Mixed Epithelial Tumor; Ovarian Brenner Tumor; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Recurrent Fallopian Tube Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Primary Peritoneal Carcinoma; Undifferentiated Ovarian Carcinoma

  16. Stromal Targets for Fluorescent-Guided Oncologic Surgery

    PubMed Central

    Boonstra, Martin C.; Prakash, Jai; Van De Velde, Cornelis J. H.; Mesker, Wilma E.; Kuppen, Peter J. K.; Vahrmeijer, Alexander L.; Sier, Cornelis F. M.

    2015-01-01

    Pre-operative imaging techniques are essential for tumor detection and diagnosis, but offer limited help during surgery. Recently, the applicability of imaging during oncologic surgery has been recognized, using near-infrared fluorescent dyes conjugated to targeting antibodies, peptides, or other vehicles. Image-guided oncologic surgery (IGOS) assists the surgeFon to distinguish tumor from normal tissue during operation, and can aid in recognizing vital structures. IGOS relies on an optimized combination of a dedicated fluorescent camera system and specific probes for targeting. IGOS probes for clinical use are not widely available yet, but numerous pre-clinical studies have been published and clinical trials are being established or prepared. Most of the investigated probes are based on antibodies or peptides against proteins on the membranes of malignant cells, whereas others are directed against stromal cells. Targeting stroma cells for IGOS has several advantages. Besides the high stromal content in more aggressive tumor types, the stroma is often primarily located at the periphery/invasive front of the tumor, which makes stromal targets particularly suited for imaging purposes. Moreover, because stroma up-regulation is a physiological reaction, most proteins to be targeted on these cells are “universal” and not derived from a specific genetic variation, as is the case with many upregulated proteins on malignant cancer cells. PMID:26636036

  17. Characterization of bone marrow mesenchymal stromal cells in aplastic anaemia.

    PubMed

    Hamzic, Edita; Whiting, Karen; Gordon Smith, Edward; Pettengell, Ruth

    2015-06-01

    In aplastic anaemia (AA), haemopoietic activity is significantly reduced and generally attributed to failure of haemopoietic stem cells (HSC) within the bone marrow (BM). The regulation of haemopoiesis depends on the interaction between HSC and various cells of the BM microenvironment, including mesenchymal stromal cells (MSC). MSC involvement in the functional restriction of HSC in AA is largely unknown and therefore, the physical and functional properties of AA MSC were studied in vitro. MSC were characterized by their phenotype and ability to form adherent stromal layers. The functional properties of AA MSC were assessed through proliferative, clonogenic and cross-over culture assays. Results indicate that although AA MSC presented typical morphology and distinctive mesenchymal markers, stromal formation was reduced, with 50% of BM samples failing to produce adherent layers. Furthermore, their proliferative and clonogenic capacity was markedly decreased (P = 0·03 and P = 0·04 respectively) and the ability to sustain haemopoiesis was significantly reduced, as assessed by total cell proliferation (P = 0·032 and P = 0·019 at Week 5 and 6, respectively) and clonogenic potential of HSC (P = 0·02 at Week 6). It was concluded that the biological characteristics of AA MSC are different from those of control MSC and their in vitro haemopoiesis-supporting ability is significantly reduced. PMID:25819548

  18. Isolation and characterization of primary bone marrow mesenchymal stromal cells.

    PubMed

    Li, Hongzhe; Ghazanfari, Roshanak; Zacharaki, Dimitra; Lim, Hooi Ching; Scheding, Stefan

    2016-04-01

    Bone marrow (BM) contains a rare population of mesenchymal stromal cells (MSCs), which have been characterized as nonhematopoietic skeletal progenitor cells with central importance for the hematopoietic microenvironment. Classically, MSCs are isolated by plastic adherence and subsequent culture. However, as cultured stromal cells differ from their in vivo progenitors, it is important to identify the phenotype of the primary MSCs to study these cells in more detail. In the past years, several surface markers have been reported to be suitable for effective enrichment of BM-MSCs, and recent data indicate that the putative MSC stem/progenitor cell population in human adult BM is highly enriched in Lin(-) CD45(-) CD271(+) CD140a (PDGFRα)(low/-) cells. Moreover, surface marker combinations have been described for the isolation of MSCs from murine BM. On the basis of these findings, the role of primary MSCs can now be studied in normal and, importantly, diseased BM. Furthermore, genetically engineered mouse models have been developed as powerful tools to investigate well-defined BM stromal cell populations in vivo. Our discussion aims to provide a concise overview of the current state of the art in BM-MSC isolation in humans and briefly present murine MSC isolation approaches and genetic models. PMID:27270495

  19. Targeted Proapoptotic Peptides Depleting Adipose Stromal Cells Inhibit Tumor Growth.

    PubMed

    Daquinag, Alexes C; Tseng, Chieh; Zhang, Yan; Amaya-Manzanares, Felipe; Florez, Fernando; Dadbin, Ali; Zhang, Tao; Kolonin, Mikhail G

    2016-02-01

    Progression of many cancers is associated with tumor infiltration by mesenchymal stromal cells (MSC). Adipose stromal cells (ASC) are MSC that serve as adipocyte progenitors and endothelium-supporting cells in white adipose tissue (WAT). Clinical and animal model studies indicate that ASC mobilized from WAT are recruited by tumors. Direct evidence for ASC function in tumor microenvironment has been lacking due to unavailability of approaches to specifically inactivate these cells. Here, we investigate the effects of a proteolysis-resistant targeted hunter-killer peptide D-WAT composed of a cyclic domain CSWKYWFGEC homing to ASC and of a proapoptotic domain KLAKLAK2. Using mouse bone marrow transplantation models, we show that D-WAT treatment specifically depletes tumor stromal and perivascular cells without directly killing malignant cells or tumor-infiltrating leukocytes. In several mouse carcinoma models, targeted ASC cytoablation reduced tumor vascularity and cell proliferation resulting in hemorrhaging, necrosis, and suppressed tumor growth. We also validated a D-WAT derivative with a proapoptotic domain KFAKFAK2 that was found to have an improved cytoablative activity. Our results for the first time demonstrate that ASC, recruited as a component of tumor microenvironment, support cancer progression. We propose that drugs targeting ASC can be developed as a combination therapy complementing conventional cancer treatments. PMID:26316391

  20. Mixed Dementia

    MedlinePlus

    ... bodies , What Is Alzheimer's? NIA-Funded Memory & Aging Project Reveals Mixed Dementia Common Data from the first ... disease. For example, in the Memory and Aging Project study involving long-term cognitive assessments followed by ...

  1. Epithelial histogenesis during tooth development.

    PubMed

    Lesot, H; Brook, A H

    2009-12-01

    This paper reviews the current understanding of the progressive changes mediating dental epithelial histogenesis as a basis for future collaborative studies. Tooth development involves morphogenesis, epithelial histogenesis and cell differentiation. The consecutive morphological stages of lamina, bud, cap and bell are also characterized by changes in epithelial histogenesis. Differential cell proliferation rates, apoptosis, and alterations in adhesion and shape lead to the positioning of groups of cells with different functions. During tooth histo-morphogenesis changes occur in basement membrane composition, expression of signalling molecules and the localization of cell surface components. Cell positional identity may be related to cell history. Another important parameter is cell plasticity. Independently of signalling molecules, which play a major role in inducing or modulating specific steps, cell-cell and cell-matrix interactions regulate the plasticity/rigidity of particular domains of the enamel organ. This involves specifying in space the differential growth and influences the progressive tooth morphogenesis by shaping the epithelial-mesenchymal junction. Deposition of a mineralized matrix determines the final shape of the crown. All data reviewed in this paper were investigated in the mouse. PMID:18656852

  2. High Stromal Carbonic Anhydrase IX Expression Is Associated With Decreased Survival in p16-Negative Head-and-Neck Tumors

    SciTech Connect

    Brockton, Nigel; Dort, Joseph; Lau, Harold; Hao, Desiree; Brar, Sony; Klimowicz, Alexander; Petrillo, Stephanie; Diaz, Roman; Doll, Corinne; Magliocco, Anthony

    2011-05-01

    Purpose: Head-and-neck squamous cell carcinoma (HNSCC) is the fifth most common malignancy worldwide. Alcohol use and tobacco use are the most established risk factors; however, human papilloma virus (HPV) infection is a major risk factor for a subset of HNSCCs. Although HPV-positive tumors typically present at a more advanced stage at diagnosis, they are associated with a better prognosis. Tumor hypoxia confers poor prognosis and treatment failure, but direct tumor oxygen measurement is challenging. Endogenous markers of hypoxia (EMHs) have been proposed but have not replicated the prognostic utility of direct oxygen measurement. The expression of endogenous markers of hypoxia may be influenced by oxygen-independent factors, such as the HPV status of the tumor. Methods and Materials: Consecutive cases of locally advanced HNSCC, treated with a uniform regimen of combined radiotherapy and chemotherapy, were identified. Tissue microarrays were assembled from triplicate 0.6-mm cores of archived tumor tissue. HPV status was inferred from semiquantitative p16 immunostaining and directly measured by use of HPV-specific chromogenic in situ hybridization and polymerase chain reaction. Automated quantitative fluorescent immunohistochemistry was conducted to measure epithelial and stromal expression of carbonic anhydrase IX (CAIX) and glucose transporter 1 (GLUT1). Results: High stromal CAIX expression was associated with significantly reduced overall survival (p = 0.03) in patients with p16-negative tumors. Conclusions: This is the first study to use quantitative immunohistochemistry to examine endogenous markers of hypoxia stratified by tumor p16/HPV status. Assessment of CAIX expression in p16-negative HNSCC could identify patients with the least favorable prognosis and inform therapeutic strategies.

  3. Regeneration of cartilage and bone by defined subsets of mesenchymal stromal cells--potential and pitfalls.

    PubMed

    Aicher, Wilhelm K; Bühring, Hans-Jörg; Hart, Melanie; Rolauffs, Bernd; Badke, Andreas; Klein, Gerd

    2011-04-30

    Mesenchymal stromal cells, also referred to as mesenchymal stem cells, can be obtained from various tissues. Today the main source for isolation of mesenchymal stromal cells in mammals is the bone marrow. Mesenchymal stromal cells play an important role in tissue formation and organogenesis during embryonic development. Moreover, they provide the cellular and humoral basis for many processes of tissue regeneration and wound healing in infancy, adolescence and adulthood as well. There is increasing evidence that mesenchymal stromal cells from bone marrow and other sources including term placenta or adipose tissue are not a homogenous cell population. Only a restricted number of appropriate stem cells markers have been explored so far. But routine preparations of mesenchymal stromal cells contain phenotypically and functionally distinct subsets of stromal cells. Knowledge on the phenotypical characteristics and the functional consequences of such subsets will not only extend our understanding of stem cell biology, but might allow to develop improved regimen for regenerative medicine and wound healing and novel protocols for tissue engineering as well. In this review we will discuss novel strategies for regenerative medicine by specific selection or separation of subsets of mesenchymal stromal cells in the context of osteogenesis and bone regeneration. Mesenchymal stromal cells, which express the specific cell adhesion molecule CD146, also known as MCAM or MUC18, are prone for bone repair. Other cell surface proteins may allow the selection of chondrogenic, myogenic, adipogenic or other pre-determined subsets of mesenchymal stromal cells for improved regenerative applications as well. PMID:21184789

  4. Tbx18 Regulates the Differentiation of Periductal Smooth Muscle Stroma and the Maintenance of Epithelial Integrity in the Prostate

    PubMed Central

    Guimarães-Camboa, Nuno; Zhang, Huimin; Troy, Joseph M.; Lu, Xiaochen; Kispert, Andreas; Evans, Sylvia M.; Stubbs, Lisa

    2016-01-01

    The T-box transcription factor TBX18 is essential to mesenchymal cell differentiation in several tissues and Tbx18 loss-of-function results in dramatic organ malformations and perinatal lethality. Here we demonstrate for the first time that Tbx18 is required for the normal development of periductal smooth muscle stromal cells in prostate, particularly in the anterior lobe, with a clear impact on prostate health in adult mice. Prostate abnormalities are only subtly apparent in Tbx18 mutants at birth; to examine postnatal prostate development we utilized a relatively long-lived hypomorphic mutant and a novel conditional Tbx18 allele. Similar to the ureter, cells that fail to express Tbx18 do not condense normally into smooth muscle cells of the periductal prostatic stroma. However, in contrast to ureter, the periductal stromal cells in mutant prostate assume a hypertrophic, myofibroblastic state and the adjacent epithelium becomes grossly disorganized. To identify molecular events preceding the onset of this pathology, we compared gene expression in the urogenital sinus (UGS), from which the prostate develops, in Tbx18-null and wild type littermates at two embryonic stages. Genes that regulate cell proliferation, smooth muscle differentiation, prostate epithelium development, and inflammatory response were significantly dysregulated in the mutant urogenital sinus around the time that Tbx18 is first expressed in the wild type UGS, suggesting a direct role in regulating those genes. Together, these results argue that Tbx18 is essential to the differentiation and maintenance of the prostate periurethral mesenchyme and that it indirectly regulates epithelial differentiation through control of stromal-epithelial signaling. PMID:27120339

  5. The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells

    SciTech Connect

    Simian, M.; Harail, Y.; Navre, M.; Werb, Z.; Lochter, A.; Bissell, M.J.

    2002-03-06

    The mammary gland develops its adult form by a process referred to as branching morphogenesis. Many factors have been reported to affect this process. We have used cultured primary mammary epithelial organoids and mammary epithelial cell lines in three-dimensional collagen gels to elucidate which growth factors, matrix metalloproteinases (MMPs) and mammary morphogens interact in branching morphogenesis. Branching stimulated by stromal fibroblasts, epidermal growth factor, fibroblast growth factor 7, fibroblast growth factor 2 and hepatocyte growth factor was strongly reduced by inhibitors of MMPs, indicating the requirement of MMPs for three-dimensional growth involved in morphogenesis. Recombinant stromelysin 1/MMP-3 alone was sufficient to drive branching in the absence of growth factors in the organoids. Plasmin also stimulated branching; however, plasmin-dependent branching was abolished by both inhibitors of plasmin and MMPs, suggesting that plasmin activates MMPs. To differentiate between signals for proliferation and morphogenesis, we used a cloned mammary epithelial cell line that lacks epimorphin, an essential mammary morphogen. Both epimorphin and MMPs were required for morphogenesis, but neither was required for epithelial cell proliferation. These results provide direct evidence for a critical role of MMPs in branching in mammary epithelium and suggest that, in addition to epimorphin, MMP activity is a minimum requirement for branching morphogenesis in the mammary gland.

  6. MicroRNAs and Epithelial Immunity

    PubMed Central

    Liu, Jun; Drescher, Kristen M.; Chen, Xian-Ming

    2009-01-01

    MicroRNAs are required for development and maintenance of the epithelial barrier. It is hypothesized that microRNAs are involved in regulating epithelial anti-microbial defenses by targeting key epithelial effector molecules and/or influencing intracellular signaling pathways. Additionally, aberrant microRNA expression has been implicated in the pathogenesis of various diseases at the skin and mucosa. Increased understanding of the role of microRNAs in epithelial immunoregulation and identification of microRNAs of pathogenetic significance will enhance our understanding of epithelial immunobiology and immunopathology. PMID:19811319

  7. Cell and Molecular Biology of Ataxia Telangiectasia Heterozygous Human Mammary Epithelial Cells Irradiated in Culture

    NASA Technical Reports Server (NTRS)

    Richmond, Robert C.

    2001-01-01

    Autologous isolates of cell types from obligate heterozygotes with the autosomal disorder ataxia-telangiectasia (A-T)were used to begin a tissue culture model for assessing pathways of radiation-induced cancer formation in this target tissue. This was done by establishing cultures of stromal fibroblasts and long-term growth human mammary epithelial cells (HMEC) in standard 2-dimensional tissue culture in order to establish expression of markers detailing early steps of carcinogenesis. The presumptive breast cancer susceptibility of A-T heterozygotes as a sequel to damage caused by ionizing radiation provided reason to study expression of markers in irradiated HMEC. Findings from our study with HMEC have included determination of differences in specific protein expression amongst growth phase (e.g., log vs stationary) and growth progression (e.g., pass 7 vs pass 9), as well as differences in morphologic markers within populations of irradiated HMEC (e.g., development of multinucleated cells).

  8. Epithelial TRPV1 signaling accelerates gingival epithelial cell proliferation.

    PubMed

    Takahashi, N; Matsuda, Y; Yamada, H; Tabeta, K; Nakajima, T; Murakami, S; Yamazaki, K

    2014-11-01

    Transient receptor potential cation channel subfamily V member 1 (TRPV1), a member of the calcium-permeable thermosensitive transient receptor potential superfamily, is a sensor of thermal and chemical stimuli. TRPV1 is activated by noxious heat (> 43°C), acidic conditions (pH < 6.6), capsaicin, and endovanilloids. This pain receptor was discovered on nociceptive fibers in the peripheral nervous system. TRPV1 was recently found to be expressed by non-neuronal cells, such as epithelial cells. The oral gingival epithelium is exposed to multiple noxious stimuli, including heat and acids derived from endogenous and exogenous substances; however, whether gingival epithelial cells (GECs) express TRPV1 is unknown. We show that both TRPV1 mRNA and protein are expressed by GECs. Capsaicin, a TRPV1 agonist, elevated intracellular Ca(2+) levels in the gingival epithelial cell line, epi 4. Moreover, TRPV1 activation in epi 4 cells accelerated proliferation. These responses to capsaicin were inhibited by a specific TRPV1 antagonist, SB-366791. We also observed GEC proliferation in capsaicin-treated mice in vivo. No effects were observed on GEC apoptosis by epithelial TRPV1 signaling. To examine the molecular mechanisms underlying this proliferative effect, we performed complementary (c)DNA microarray analysis of capsaicin-stimulated epi 4 cells. Compared with control conditions, 227 genes were up-regulated and 232 genes were down-regulated following capsaicin stimulation. Several proliferation-related genes were validated by independent experiments. Among them, fibroblast growth factor-17 and neuregulin 2 were significantly up-regulated in capsaicin-treated epi 4 cells. Our results suggest that functional TRPV1 is expressed by GECs and contributes to the regulation of cell proliferation. PMID:25266715

  9. Dysregulated estrogen receptor signaling in the hypothalamic-pituitary-ovarian axis leads to ovarian epithelial tumorigenesis in mice.

    PubMed

    Laws, Mary J; Kannan, Athilakshmi; Pawar, Sandeep; Haschek, Wanda M; Bagchi, Milan K; Bagchi, Indrani C

    2014-03-01

    The etiology of ovarian epithelial cancer is poorly understood, mainly due to the lack of an appropriate experimental model for studying the onset and progression of this disease. We have created a mutant mouse model in which aberrant estrogen receptor alpha (ERα) signaling in the hypothalamic-pituitary-ovarian axis leads to ovarian epithelial tumorigenesis. In these mice, termed ERαd/d, the ERα gene was conditionally deleted in the anterior pituitary, but remained intact in the hypothalamus and the ovary. The loss of negative-feedback regulation by estrogen (E) at the level of the pituitary led to increased production of luteinizing hormone (LH) by this tissue. Hyperstimulation of the ovarian cells by LH resulted in elevated steroidogenesis, producing high circulating levels of steroid hormones, including E. The ERαd/d mice exhibited formation of palpable ovarian epithelial tumors starting at 5 months of age with 100% penetrance. By 15 months of age, 80% of ERαd/d mice die. Besides proliferating epithelial cells, these tumors also contained an expanded population of luteinized stromal cells, which acquire the ability to express P450 aromatase and synthesize E locally. In response to the elevated levels of E, the ERα signaling was accentuated in the ovarian epithelial cells of ERαd/d mice, triggering increased ERα-dependent gene expression, abnormal cell proliferation, and tumorigenesis. Consistent with these findings, treatment of ERαd/d mice with letrozole, an aromatase inhibitor, markedly reduced circulating E and ovarian tumor volume. We have, therefore, developed a unique animal model, which serves as a useful tool for exploring the involvement of E-dependent signaling pathways in ovarian epithelial tumorigenesis. PMID:24603706

  10. Safety and Efficacy of Epithelium-On Corneal Collagen Cross-Linking Using a Multifactorial Approach to Achieve Proper Stromal Riboflavin Saturation

    PubMed Central

    Stojanovic, Aleksandar; Chen, Xiangjun; Jin, Nan; Zhang, Ting; Stojanovic, Filip; Raeder, Sten; Utheim, Tor Paaske

    2012-01-01

    Purpose. To evaluate the efficacy and safety of epithelium-on corneal collagen cross-linking (CXL) using a multifactorial approach to achieve proper stromal riboflavin saturation. Methods. This non-randomized retrospective study comprised 61 eyes with progressive keratoconus treated with epithelium-on CXL. Chemical epithelial penetration enhancement (benzalkonium chloride-containing local medication and hypotonic riboflavin solution), mechanical disruption of the superficial epithelium, and prolongation of the riboflavin-induction time until verification of stromal saturation were used before the UVA irradiation. Uncorrected and corrected distance visual acuity (UDVA, CDVA), refraction, corneal topography, and aberrometry were evaluated at baseline and at 1, 3, 6, and 12 months postoperative. Results. At 12-month, UDVA and CDVA improved significantly. None of the eyes lost lines of CDVA, while 27.4% of the eyes gained 2 or more lines. Mean spherical equivalent decreased by 0.74 D, and mean cylindrical reduction was 1.15 D. Irregularity index and asymmetry from Scheimpflug-based topography and Max-K at the location of cone from Placido-based topography showed a significant decrease. Higher-order-aberration data demonstrated a slight reduction in odd-order aberrations S 3, 5,7 (P = 0.04). Postoperative pain without other complications was recorded. Conclusion. Epithelium-on CXL with our novel protocol appeared to be safe and effective in the treatment of progressive keratoconus. PMID:22900147

  11. Adherence of streptococcus pyogenes, Escherichia coli, and Pseudomonas aeruginosa to fibronectin-coated and uncoated epithelial cells.

    PubMed Central

    Abraham, S N; Beachey, E H; Simpson, W A

    1983-01-01

    The relationship between the variability in the fibronectin (Fn) content on human buccal epithelial cells and the capacity of the cells to bind gram-positive (Streptococcus pyogenes) or gram-negative (Escherichia coli or Pseudomonas aeruginosa) bacteria was investigated. Adhesion experiments performed with mixtures of epithelial cells and mixed suspensions of either S. pyogenes and E. coli or S. pyogenes and P. aeruginosa exhibited three major populations of buccal cells: one of these was able to bind S. pyogenes (gram positive) but neither of the gram-negative bacteria; a second population was able to bind the gram-negative but not the gram-positive bacteria; and a third was able to bind various numbers of both types of organisms. Further adhesion experiments performed with a mixture of epithelial cells and a mixed suspension of S. pyrogens, E. coli, and fluoresceinconjugated methacrylate beads coated with immune immunoglobulin G directed against Fn revealed that the epithelial cells recognizing the gram-positive bacteria were rich in Fn, whereas those recognizing the gram-negative organisms were poor in Fn. Immunoelectron microscopy confirmed that cells of S. pyogenes bound to epithelial cells coated with Fn, whereas cells of E. coli bound to epithelial cells lacking Fn. These results suggest that Fn on the surfaces of epithelial cells may modulate the ecology of the human oropharyngeal cavity, especially with respect to the colonization of these surfaces by pathogenic gram-negative or gram-positive bacteria. Images PMID:6411621

  12. Adenovirus mediated homozygous endometrial epithelial Pten deletion results in aggressive endometrial carcinoma

    SciTech Connect

    Joshi, Ayesha; Ellenson, Lora Hedrick

    2011-07-01

    Pten is the most frequently mutated gene in uterine endometriod carcinoma (UEC) and its precursor complex atypical hyperplasia (CAH). Because the mutation frequency is similar in CAH and UEC, Pten mutations are thought to occur relatively early in endometrial tumorigenesis. Previous work from our laboratory using the Pten{sup +/-} mouse model has demonstrated somatic inactivation of the wild type allele of Pten in both CAH and UEC. In the present study, we injected adenoviruses expressing Cre into the uterine lumen of adult Pten floxed mice in an attempt to somatically delete both alleles of Pten specifically in the endometrium. Our results demonstrate that biallelic inactivation of Pten results in an increased incidence of carcinoma as compared to the Pten{sup +/-} mouse model. In addition, the carcinomas were more aggressive with extension beyond the uterus into adjacent tissues and were associated with decreased expression of nuclear ER{alpha} as compared to associated CAH. Primary cultures of epithelial and stromal cells were prepared from uteri of Pten floxed mice and Pten was deleted in vitro using Cre expressing adenovirus. Pten deletion was evident in both the epithelial and stromal cells and the treatment of the primary cultures with estrogen had different effects on Akt activation as well as Cyclin D3 expression in the two purified components. This study demonstrates that somatic biallelic inactivation of Pten in endometrial epithelium in vivo results in an increased incidence and aggressiveness of endometrial carcinoma compared to mice carrying a germline deletion of one allele and provides an important in vivo and in vitro model system for understanding the genetic underpinnings of endometrial carcinoma.

  13. Adult Thymus Contains FoxN1− Epithelial Stem Cells that Are Bipotent for Medullary and Cortical Thymic Epithelial Lineages

    PubMed Central

    Ucar, Ahmet; Ucar, Olga; Klug, Paula; Matt, Sonja; Brunk, Fabian; Hofmann, Thomas G.; Kyewski, Bruno

    2014-01-01

    Summary Within the thymus, two major thymic epithelial cell (TEC) subsets—cortical and medullary TECs—provide unique structural and functional niches for T cell development and establishment of central tolerance. Both lineages are believed to originate from a common progenitor cell, yet the cellular and molecular identity of these bipotent TEC progenitors/stem cells remains ill defined. Here we identify rare stromal cells in the murine adult thymus, which under low-attachment conditions formed spheres (termed “thymospheres”). These thymosphere-forming cells (TSFCs) displayed the stemness features of being slow cycling, self-renewing, and bipotent. TSFCs could be significantly enriched based on their distinct surface antigen phenotype. The FoxN1 transcription factor was dispensable for TSFCs maintenance in situ and for commitment to the medullary and cortical TEC lineages. In summary, this study presents the characterization of the adult thymic epithelial stem cells and demonstrates the dispensability of FoxN1 function for their stemness. PMID:25148026

  14. Quantitative Morphology of Epithelial Folds.

    PubMed

    Štorgel, Nick; Krajnc, Matej; Mrak, Polona; Štrus, Jasna; Ziherl, Primož

    2016-01-01

    The shape of spatially modulated epithelial morphologies such as villi and crypts is usually associated with the epithelium-stroma area mismatch leading to buckling. We propose an alternative mechanical model based on intraepithelial stresses generated by differential tensions of apical, lateral, and basal sides of cells as well as on the elasticity of the basement membrane. We use it to theoretically study longitudinal folds in simple epithelia and we identify four types of corrugated morphologies: compact, invaginated, evaginated, and wavy. The obtained tissue contours and thickness profiles are compared to epithelial folds observed in invertebrates and vertebrates, and for most samples, the agreement is within the estimated experimental error. Our model establishes the groove-crest modulation of tissue thickness as a morphometric parameter that can, together with the curvature profile, be used to estimate the relative differential apicobasal tension in the epithelium. PMID:26745429

  15. [Epithelial hepatoblastomas in the adult].

    PubMed

    Mondragón Sánchez, R; Bernal Maldonado, R; Sada Navarro, L A; Hernández, A I; Hurtado Andrade, H; Cortés Espinoza, T; Sánchez Cisneros, R

    1994-01-01

    Hepatoblastoma is the most frequent primary malignant liver neoplasm in childhood; in adults it is extremely rare and only 27 cases have been published. The prognosis of this neoplasm is poor because it is usually discovered late. Surgery, chemotherapy and liver transplantation have been tried with poor results. We present two adult patients who were diagnosed with an epithelial hepatoblastoma. The pathogenesis, histologic features and current management is reviewed. PMID:7716366

  16. Potential Effect of CD271 on Human Mesenchymal Stromal Cell Proliferation and Differentiation.

    PubMed

    Calabrese, Giovanna; Giuffrida, Raffaella; Lo Furno, Debora; Parrinello, Nunziatina Laura; Forte, Stefano; Gulino, Rosario; Colarossi, Cristina; Schinocca, Luciana Rita; Giuffrida, Rosario; Cardile, Venera; Memeo, Lorenzo

    2015-01-01

    The Low-Affinity Nerve Growth Factor Receptor (LNGFR), also known as CD271, is a member of the tumor necrosis factor receptor superfamily. The CD271 cell surface marker defines a subset of multipotential mesenchymal stromal cells and may be used to isolate and enrich cells derived from bone marrow aspirate. In this study, we compare the proliferative and differentiation potentials of CD271+ and CD271- mesenchymal stromal cells. Mesenchymal stromal cells were isolated from bone marrow aspirate and adipose tissue by plastic adherence and positive selection. The proliferation and differentiation potentials of CD271+ and CD271- mesenchymal stromal cells were assessed by inducing osteogenic, adipogenic and chondrogenic in vitro differentiation. Compared to CD271+, CD271- mesenchymal stromal cells showed a lower proliferation rate and a decreased ability to give rise to osteocytes, adipocytes and chondrocytes. Furthermore, we observed that CD271+ mesenchymal stromal cells isolated from adipose tissue displayed a higher efficiency of proliferation and trilineage differentiation compared to CD271+ mesenchymal stromal cells isolated from bone marrow samples, although the CD271 expression levels were comparable. In conclusion, these data show that both the presence of CD271 antigen and the source of mesenchymal stromal cells represent important factors in determining the ability of the cells to proliferate and differentiate. PMID:26184166

  17. Stromal vascular cells and adipogenesis: Cells within adipose depots regulate adipogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A collection of investigations indicate the importance of adipose tissue stromal/stem cells to vasculogenesis and angiogenesis during adipogenesis. Early in development the stromal-vascular (S-V) elements control and dictate the extent of adipogenesis in a depot dependent manner. For instance, the...

  18. Resolving Cancer-Stroma Interfacial Signaling and Interventions with Micropatterned Tumor-Stromal Assays

    PubMed Central

    Shen, Keyue; Luk, Samantha; Hicks, Daniel F; Elman, Jessica S; Bohr, Stefan; Iwamoto, Yoshiko; Murray, Ryan; Pena, Kristen; Wang, Fangjing; Seker, Erkin; Weissleder, Ralph; Yarmush, Martin L; Toner, Mehmet; Sgroi, Dennis; Parekkadan, Biju

    2014-01-01

    Tumor-stromal interactions are a determining factor in cancer progression. In vivo, the interaction interface is associated with spatially-resolved distributions of cancer and stromal phenotypes. Here, we establish a micropatterned tumor-stromal assay (μTSA) with laser capture microdissection to control the location of co-cultured cells and analyze bulk and interfacial tumor-stromal signaling in driving cancer progression. μTSA reveals a spatial distribution of phenotypes in concordance with human estrogen receptor-positive (ER+) breast cancer samples, and heterogeneous drug activity relative to the tumor-stroma interface. Specifically, an unknown mechanism of reversine is shown in targeting tumor-stromal interfacial interactions using ER+ MCF-7 breast cancer and bone marrow-derived stromal cells. Reversine suppresses MCF-7 tumor growth and bone metastasis in vivo by reducing tumor stromalization including collagen deposition and recruitment of activated stromal cells. This study advocates μTSA as a platform for studying tumor microenvironmental interactions and cancer field effects with applications in drug discovery and development. PMID:25489927

  19. Estrogen Receptor (ER) β Regulates ERα Expression in Stromal Cells Derived from Ovarian Endometriosis

    PubMed Central

    Trukhacheva, Elena; Lin, Zhihong; Reierstad, Scott; Cheng, You-Hong; Milad, Magdy; Bulun, Serdar E.

    2009-01-01

    Context: Estradiol and its nuclear receptors, estrogen receptor (ER) α and ERβ, play critical roles in endometrium and endometriosis. Levels of ERβ, due to pathological hypomethylation of its promoter, are significantly higher in endometriotic vs. endometrial tissue and stromal cells, whereas ERα levels are lower in endometriosis. Estradiol regulates ERα gene expression via its alternatively used promoters A, B, and C. Objective: The aim of the study was to determine whether high levels of ERβ in endometriotic stromal cells from ovarian endometriomas regulate ERα gene expression. Results: ERβ knockdown significantly increased ERα mRNA and protein levels in endometriotic stromal cells. Conversely, ERβ overexpression in endometrial stromal cells decreased ERα mRNA and protein levels. ERβ knockdown significantly decreased proliferation of endometriotic stromal cells. Chromatin immunoprecipitation assays demonstrated that estradiol enhanced ERβ binding to nonclassical activator protein 1 and specificity protein 1 motifs in the ERα gene promoters A and C and a classic estrogen response element in promoter B in endometriotic stromal cells. Conclusions: High levels of ERβ suppress ERα expression and response to estradiol in endometrial and endometriotic stromal cells via binding to classic and nonclassic DNA motifs in alternatively used ERα promoters. ERβ also regulates cell cycle progression and might contribute to proliferation of endometriotic stromal cells. We speculate that a significantly increased ratio of ERβ:ERα in endometriotic tissues may also suppress progesterone receptor expression and contribute to progesterone resistance. Thus, ERβ may serve as a significant therapeutic target for endometriosis. PMID:19001520

  20. Dissecting Tumor-Stromal Interactions in Breast Cancer Bone Metastasis.

    PubMed

    Kang, Yibin

    2016-06-01

    Bone metastasis is a frequent occurrence in breast cancer, affecting more than 70% of late stage cancer patients with severe complications such as fracture, bone pain, and hypercalcemia. The pathogenesis of osteolytic bone metastasis depends on cross-communications between tumor cells and various stromal cells residing in the bone microenvironment. Several growth factor signaling pathways, secreted micro RNAs (miRNAs) and exosomes are functional mediators of tumor-stromal interactions in bone metastasis. We developed a functional genomic approach to systemically identified molecular pathways utilized by breast cancer cells to engage the bone stroma in order to generate osteolytic bone metastasis. We showed that elevated expression of vascular cell adhesion molecule 1 (VCAM1) in disseminated breast tumor cells mediates the recruitment of pre-osteoclasts and promotes their differentiation to mature osteoclasts during the bone metastasis formation. Transforming growth factor β (TGF-β) is released from bone matrix upon bone destruction, and signals to breast cancer to further enhance their malignancy in developing bone metastasis. We furthered identified Jagged1 as a TGF-β target genes in tumor cells that engaged bone stromal cells through the activation of Notch signaling to provide a positive feedback to promote tumor growth and to activate osteoclast differentiation. Substantially change in miRNA expression was observed in osteoclasts during their differentiation and maturation, which can be exploited as circulating biomarkers of emerging bone metastasis and therapeutic targets for the treatment of bone metastasis. Further research in this direction may lead to improved diagnosis and treatment strategies for bone metastasis. PMID:27184014

  1. Dissecting Tumor-Stromal Interactions in Breast Cancer Bone Metastasis

    PubMed Central

    2016-01-01

    Bone metastasis is a frequent occurrence in breast cancer, affecting more than 70% of late stage cancer patients with severe complications such as fracture, bone pain, and hypercalcemia. The pathogenesis of osteolytic bone metastasis depends on cross-communications between tumor cells and various stromal cells residing in the bone microenvironment. Several growth factor signaling pathways, secreted micro RNAs (miRNAs) and exosomes are functional mediators of tumor-stromal interactions in bone metastasis. We developed a functional genomic approach to systemically identified molecular pathways utilized by breast cancer cells to engage the bone stroma in order to generate osteolytic bone metastasis. We showed that elevated expression of vascular cell adhesion molecule 1 (VCAM1) in disseminated breast tumor cells mediates the recruitment of pre-osteoclasts and promotes their differentiation to mature osteoclasts during the bone metastasis formation. Transforming growth factor β (TGF-β) is released from bone matrix upon bone destruction, and signals to breast cancer to further enhance their malignancy in developing bone metastasis. We furthered identified Jagged1 as a TGF-β target genes in tumor cells that engaged bone stromal cells through the activation of Notch signaling to provide a positive feedback to promote tumor growth and to activate osteoclast differentiation. Substantially change in miRNA expression was observed in osteoclasts during their differentiation and maturation, which can be exploited as circulating biomarkers of emerging bone metastasis and therapeutic targets for the treatment of bone metastasis. Further research in this direction may lead to improved diagnosis and treatment strategies for bone metastasis. PMID:27184014

  2. Identification of the 64 kilodalton chloroplast stromal phosphoprotein as phosphoglucomutase. [Pisum sativum

    SciTech Connect

    Salvucci, M.E.; Drake, R.R.; Broadbent, K.P.; Haley, B.E. ); Hanson, K.R.; McHale, N.A. )

    1990-05-01

    Phosphorylation of the 64 kilodalton stromal phosphoprotein by incubation of pea (Pisum sativum) chloroplast extracts with ({gamma}-{sup 32}P)ATP decreased in the presence of Glc-6-P and Glc-1,6-P{sub 2}, but was stimulated by glucose. Two-dimensional gel electrophoresis following incubation of intact chloroplasts and stromal extracts with ({gamma}-{sup 32}P)ATP, or incubation of stromal extracts and partially purified phosphoglucomutase (EC 2.7.5.1) with ({sup 32}P)Glc-1-P showed that the identical 64 kilodalton polypeptide was labeled. A 62 kilodalton polypeptide was phosphorylated by incubation of tobacco (Nicotiana sylvestris) stromal extracts with either ({gamma}-{sup 32}P)ATP or ({sup 32}P)Glc-1-P. In contrast, an analogous polypeptide was not phosphorylated in extracts from a tobacco mutant deficient in plastid phosphoglucomutase activity. The results indicate that the 64 (or 62) kilodalton chloroplast stromal phosphoprotein is phosphoglucomutase.

  3. Targeting gastrointestinal stromal tumors: the role of regorafenib

    PubMed Central

    Schroeder, Brett; Li, Zula; Cranmer, Lee D; Jones, Robin L; Pollack, Seth M

    2016-01-01

    Gastrointestinal stromal tumor (GIST) is a devastating disease in the metastatic setting, but its natural history has been dramatically altered by the development of small molecule tyrosine kinase inhibitors, most notably imatinib. Although patients with advanced GIST live much longer today than they did in the past, imatinib-refractory disease remains a tremendous problem. For disease that is refractory to imatinib and sunitinib, regorafenib is an excellent option. In this review, we discuss the biology and clinical work establishing regorafenib as the standard of care for advanced GIST refractory to both imatinib and sunitinib. PMID:27284251

  4. Targeting stromal microenvironment in pancreatic ductal adenocarcinoma: controversies and promises

    PubMed Central

    Mei, Lin; Du, Wei

    2016-01-01

    Pancreatic cancer is a highly lethal disease. Conventional therapeutics targeting pancreas cancer cell compartment using cytotoxics improved patient survival but at the expense of significant toxicity. Microscopically, the tumor is characterized by thick desmoplastic stroma that surrounds islands of pancreatic cancer cells. The tumor microenvironment has been found to play important roles in carcinogenesis, the development of drug resistance, and mediating immunosuppression. The understanding the tumor-stromal interaction has led to the development of novel therapeutic approaches. Here, we review the strategies that are currently in (or, near to) clinical evaluation and the underlying preclinical rationales. PMID:27284483

  5. Targeting gastrointestinal stromal tumors: the role of regorafenib.

    PubMed

    Schroeder, Brett; Li, Zula; Cranmer, Lee D; Jones, Robin L; Pollack, Seth M

    2016-01-01

    Gastrointestinal stromal tumor (GIST) is a devastating disease in the metastatic setting, but its natural history has been dramatically altered by the development of small molecule tyrosine kinase inhibitors, most notably imatinib. Although patients with advanced GIST live much longer today than they did in the past, imatinib-refractory disease remains a tremendous problem. For disease that is refractory to imatinib and sunitinib, regorafenib is an excellent option. In this review, we discuss the biology and clinical work establishing regorafenib as the standard of care for advanced GIST refractory to both imatinib and sunitinib. PMID:27284251

  6. [Therapeutic Effects of Multipotent Mesenchymal Stromal Cells after Irradiation].

    PubMed

    Kalmykova, N V; Alexandrova, S A

    2016-01-01

    Multipotent mesenchymal stromal cells (MSC) are now considered to be a perspective multifunctional treatment option for radiation side effects. At present.a great number of sufficient evidence has been collected in favor of therapeutic effects of MSCs in acute radiation reactions. It has been shown that MSC-based products injected locally or systemically have therapeutic effects on irradiated organs and tissues. This review presents summarized experimental and clinical data about protective and regenerative effects of MSCs on different radiation-injured organs and tissues; the main probable therapeutic mechanisms of their action are also discussed. PMID:27534063

  7. Prostatic Stromal Sarcoma in an Adolescent: The Role of Chemotherapy

    PubMed Central

    Cavaliere, Elena; Alaggio, Rita; Castagnetti, Marco; Scarzello, Giovanni; Bisogno, Gianni

    2014-01-01

    Prostatic stromal sarcoma (PSS) is a rare tumor that normally occurs in adult age. Its management relies mainly on surgery. We report the first case of PSS occurring in an adolescent. There was evidence of a good response to chemotherapy including ifosfamide, doxorubicin, vincristine and actinomycin-D, although the final outcome was dismal. A review of the English literature revealed 14 additional patients with PSS treated with chemotherapy: tumor shrinkage was reported in 4 of the 6 evaluable patients. Patients with PSS may benefit from the use of chemotherapy in combination with early aggressive local treatment. PMID:25568753

  8. Gastrointestinal Stromal Tumor Arising From a Gastric Duplication Cyst

    PubMed Central

    Machicado, Jorge; Davogustto, Giovanni

    2016-01-01

    Gastric duplication cysts (GDC) are rarely diagnosed in adults, but previous cases have been associated with malignancy. We present a case of gastrointestinal stromal tumor (GIST) arising from a GDC in a 71-year-old woman who presented with 3 years of early satiety, anorexia, abdominal distention, and weight loss. Abdominal CT showed a 9.3 x 5.2 x 9.5-cm well-circumscribed cystic mass arising 3 cm above the gastroduodenal junction. The cyst was resected, and histopathology was consistent with GDC. Future studies are needed to clarify the malignant potential of GDC and the molecular pathways for its development. PMID:27144196

  9. [Surgical principles of gastrointestinal stromal tumors at different locations].

    PubMed

    Ye, Yingjiang; Gao, Zhidong; Wang, Shan

    2015-04-01

    Gastrointestinal stromal tumors(GIST) are the most common mesenchymal tumors in gastrointestinal tract. At present, surgical and molecular targeted therapies are the main treatments. Operation is properly the only way of radical resection. The general principles of surgery are complete resection of the tumor, negative margins, as well as no intraoperative tumor rupture. The choice of surgical skills for GIST is obviously affected by different locations. This paper reviews current literatures combined with our experiences, and elaborates relevant contents in detail. PMID:25940165

  10. Knowns and Known Unknowns of Gastrointestinal Stromal Tumor Adjuvant Therapy.

    PubMed

    Martínez-Marín, Virginia; Maki, Robert G

    2016-09-01

    The first 15 years of management of gastrointestinal stromal tumor (GIST) have led to 3 lines of therapy for metastatic disease: imatinib, sunitinib, and regorafenib. In the adjuvant setting, imatinib is usually given for 3 years postoperatively to patients with higher-risk primary tumors that are completely resected. In this review, issues regarding GIST adjuvant therapy are discussed. It is hoped this review will help the reader understand the present standard of care to improve upon it in years to come. PMID:27546844

  11. Primary gastrointestinal stromal tumor of the liver: A case report

    PubMed Central

    Luo, Xiao-Li; Liu, Dan; Yang, Jian-Jun; Zheng, Min-Wen; Zhang, Jing; Zhou, Xiao-Dong

    2009-01-01

    We report a case of primary gastrointestinal stromal tumor (GIST) of the liver. A 17-year-old man with a solid mass in the anterior segment of the right liver was asymptomatic with negative laboratory examinations with the exception of positive HBV. Contrast-enhanced ultrasound (CEUS) revealed a hypervascular lesion in the arterial phase and hypoechoic features during the portal and late phases. However, enhanced spiral computed tomography (CT) showed hypoattenuation in all three phases. Following biopsy, immunohistochemical evaluation demonstrated positive CD117. Different imaging features of primary GISTs of the liver are due to pathological properties and different working systems between CEUS and enhanced spiral CT. PMID:19653356

  12. Manufacturing mesenchymal stromal cells for phase I clinical trials.

    PubMed

    Hanley, Patrick J; Mei, Zhuyong; da Graca Cabreira-Hansen, Maria; Klis, Mariola; Li, Wei; Zhao, Yali; Durett, April G; Zheng, Xingwu; Wang, Yongping; Gee, Adrian P; Horwitz, Edwin M

    2013-04-01

    Mesenchymal stromal cells (MSCs) are multipotent progenitor cells capable of differentiating into adipocytes, osteoblasts and chondroblasts as well as secreting a vast array of soluble mediators. This potentially makes MSCs important mediators of a variety of therapeutic applications. They are actively under evaluation for immunomodulatory purposes such as graft-versus-host disease and Crohn's disease as well as regenerative applications such as stroke and congestive heart failure. We report our method of generating clinical-grade MSCs together with suggestions gathered from manufacturing experience in our Good Manufacturing Practices facility. PMID:23480951

  13. Gastrointestinal stromal tumors: molecular markers and genetic subtypes.

    PubMed

    Barnett, Christine M; Corless, Christopher L; Heinrich, Michael C

    2013-10-01

    Mutation-activated signaling from the KIT and PDGFRA kinases has been successfully targeted in gastrointestinal stromal tumors (GISTs), with subtle differences between the mutations serving to refine prognosis and more precisely tailor therapy. There is a growing understanding of the molecular drivers of GISTs lacking mutations in KIT or PDGFRA, so called wild-type GISTs, further aiding in management decisions. This article provides an overview of all the known molecular subtypes of GIST and provides information about clinical correlates, treatment, and prognosis depending on the subtype. PMID:24093165

  14. Thymic Stromal Lymphopoietin-Activated Plasmacytoid Dendritic Cells Induce the Generation of FOXP3+ Regulatory T Cells in Human Thymus

    PubMed Central

    Hanabuchi, Shino; Ito, Tomoki; Park, Woon-Ryon; Watanabe, Norihiko; Shaw, Joanne L.; Roman, Eulogia; Arima, Kazuhiko; Wang, Yui-Hsi; Voo, Kui Shin; Cao, Wei; Liu, Yong-Jun

    2012-01-01

    Human thymus contains major dendritic cell (DC) subsets, myeloid DCs (mDCs), and plasmacytoid DCs (pDCs). We previously showed that mDCs, educated by thymic stromal lymphopoietin (TSLP) produced by the epithelial cells of the Hassall’s corpuscles, induced differentiation of CD4+CD25− thymocytes into Forkhead Box P3+ (FOXP3+) regulatory T cells (TR) within the medulla of human thymus. In this study, we show that pDCs expressed the TSLP receptor and IL-7 receptor a complexes upon activation and became responsive to TSLP. TSLP-activated human pDCs secrete macrophage-derived chemokine CCL-22 and thymus- and activation-regulated chemokine CCL-17 but not Th1- or Th2-polarizing cytokines. TSLP-activated pDCs induced the generation of FOXP3+ TR from CD4+CD8−CD25− thymocytes, which could be strongly inhibited by Th1-polarizing cytokine IL-12 or Th2-polarizing cytokine IL-4. Interestingly, the FOXP3+ TR induced by the TSLP-pDCs expressed more IL-10 but less TGF-b than that induced by the TSLP-mDCs. These data suggest that TSLP expressed by thymic epithelial cells can activate mDCs and pDCs to positively select the FOXP3+ TR with different cytokine production potential in human thymus. The inability of TSLP to induce DC maturation without producing Th1- or Th2-polarizing cytokines may provide a thymic niche for TR development. PMID:20173030

  15. Immunomodulation of airway epithelium cell activation by mesenchymal stromal cells ameliorates house dust mite-induced airway inflammation in mice.

    PubMed

    Duong, Khang M; Arikkatt, Jaisy; Ullah, M Ashik; Lynch, Jason P; Zhang, Vivian; Atkinson, Kerry; Sly, Peter D; Phipps, Simon

    2015-11-01

    Allergic asthma is underpinned by T helper 2 (Th2) inflammation. Redundancy in Th2 cytokine function and production by innate and adaptive immune cells suggests that strategies aimed at immunomodulation may prove more beneficial. Hence, we sought to determine whether administration of mesenchymal stromal cells (MSCs) to house dust mite (HDM) (Dermatophagoides pteronyssinus)-sensitized mice would suppress the development of Th2 inflammation and airway hyperresponsiveness (AHR) after HDM challenge. We report that the intravenous administration of allogeneic donor MSCs 1 hour before allergen challenge significantly attenuated the features of allergic asthma, including tissue eosinophilia, Th2 cytokine (IL-5 and IL-13) levels in bronchoalveolar lavage fluid, and AHR. The number of infiltrating type 2 innate lymphoid cells was not affected by MSC transfer, suggesting that MSCs may modulate the adaptive arm of Th2 immunity. The effect of MSC administration was long lasting; all features of allergic airway disease were significantly suppressed in response to a second round of HDM challenge 4 weeks after MSC administration. Further, we observed that MSCs decreased the release of epithelial cell-derived alarmins IL-1α and high mobility group box-1 in an IL-1 receptor antagonist-dependent manner. This significantly decreased the expression of the pro-Th2 cytokine IL-25 and reduced the number of activated and antigen-acquiring CD11c(+)CD11b(+) dendritic cells in the lung and mediastinal lymph nodes. Our findings suggest that MSC administration can ameliorate allergic airway inflammation by blunting the amplification of epithelial-derived inflammatory cytokines induced by HDM exposure and may offer long-term protection against Th2-mediated allergic airway inflammation and AHR. PMID:25789608

  16. Early soy exposure via maternal diet regulates rat mammary epithelial differentiation by paracrine signaling from stromal adipocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diet-mediated changes in transcriptional programs that promote the early differentiation of the mammary gland may lead to reduced breast cancer risk. The disparity in adult breast cancer incidence between Asian women and Western counterparts is attributed partly to high soy food intake. Here, we con...

  17. Differential accumulation and organ-specific metabolism of 5-aminolevulinic acid between cancer cells and normal epithelial and stromal cells

    NASA Astrophysics Data System (ADS)

    Krieg, Rene C.; Rauch, Joachim; Seidl, Juergen; Stepp, Herbert G.; Messmann, Helmut; Knuechel, Ruth

    2001-01-01

    To optimize conditions of photodynamic therapy (PDT) with ALA induced protoporphyrin IX (PPIX), topography of accumulation and metabolism of PPIX were analyzed in vitro. Adenocarcinoma cell lines, urothelial carcinoma cell lines, and a normal fibroblast cell line were cultured in plateau phase. ALA-induced PPIX accumulation, porphobilinogendeaminase-, ferrochelatase- activity, intracellular iron content, transferrin receptor expression and PPIX localization were determined using standard techniques. PBG activity as well as PPIX content were found higher in adenocarcinoma cells than in urothelial cells. Urothelial cell lines showed significant alterations in FC values in contrast to similar levels of FC in adenocarcinoma cell lines overall. Well differentiated cells showed higher iron content than lower differentiated cells. Transferrin receptor expression was found independent of PPIX content and intracellular iron content. In HT29, PPIX localizes mostly in the cell membrane, in SW480 and CaCo2 in mitochondria, and in urothelial cells mainly in cytosol. Data presented encourage the systematic and organ- related analysis of PPIX metabolism, since significant differences have been found between urothelial tumor cells and adenocarcinoma cells which may demand different strategies of therapy optimization and combination therapy regimens.

  18. Epithelial cells and Von Gierke's disease.

    PubMed

    Negishi, H; Benke, P J

    1977-08-01

    Epithelial cells and not fibroblasts from human liver and amniotic fluid contain inducible glucose-6-phosphatase (G-6-Pase) activity. The diagnosis of Von Gierke's disease has been made in a patient with hepatomegaly utilizing cultured epithelial cells grown from a liver biopsy. G-6-Pase activity in epithelial cells from this patient could not be induced by dibutyryl cyclic AMP and theophylline. This is the first use of epithelial cells for diagnosis of a metabolic disease. G-6-Pase activity in cloned epithelial cells from amniotic fluid increases 2- to 3-fold after 24-hr exposure to dibutyryl cyclic AMP and theophylline. The prenatal diagnosis of Von Gierke's disease may be possible in a laboratory experienced with these techniques if epithelial cell growth is obtained from amniotic fluid. PMID:196249

  19. Stromal vascular fraction: A regenerative reality? Part 1: Current concepts and review of the literature.

    PubMed

    Nguyen, Andrew; Guo, James; Banyard, Derek A; Fadavi, Darya; Toranto, Jason D; Wirth, Garrett A; Paydar, Keyianoosh Z; Evans, Gregory R D; Widgerow, Alan D

    2016-02-01

    Stromal Vascular Fraction (SVF) is a heterogeneous collection of cells contained within adipose tissue that is traditionally isolated using enzymes such as collagenase. With the removal of adipose cells, connective tissue and blood from lipoaspirate, comes the SVF, a mix including mesenchymal stem cells, endothelial precursor cells, T regulatory cells, macrophages, smooth muscle cells, pericytes and preadipocytes. In part 1 of our 2-part series, we review the literature with regards to the intensifying interest that has shifted toward this mixture of cells, particularly due to its component synergy and translational potential. Trials assessing the regenerative potential of cultured Adipose Derived Stem Cells (ADSCs) and SVF demonstrate that SVF is comparably effective in treating conditions ranging from radiation injuries, burn wounds and diabetes, amongst others. Aside from their use in chronic conditions, SVF enrichment of fat grafts has proven a major advance in maintaining fat graft volume and viability. Many SVF studies are currently in preclinical phases or are moving to human trials. Overall, regenerative cell therapy based on SVF is at an early investigative stage but its potential for clinical application is enormous. PMID:26565755

  20. Cutaneous and subcutaneous metastases of gastrointestinal stromal tumors: a series of 5 cases with molecular analysis.

    PubMed

    Wang, Wei-Lien; Hornick, Jason L; Mallipeddi, Raj; Zelger, Bettina G; Rother, Joshua D; Yang, Dan; Lev, Dina C; Trent, Jonathan C; Prieto, Victor G; Brenn, Thomas; Robson, Alistair; Calonje, Eduardo; Lazar, Alexander J F

    2009-05-01

    Gastrointestinal stromal tumors (GISTs) rarely metastasize to the skin. We describe 5 patients with GIST with subcutaneous and cutaneous metastases. The mean age at metastasis was 54 years (range 30-68 years) with a male predominance (4:1). Primary tumors occurred in the stomach (n = 3), small bowel (n = 1), and abdomen, not otherwise specified (n = 1). The average time from primary tumor resection to the resection of skin metastases was 59 months (range 11-155 months). The metastases occurred in the scalp (n = 2), cheek (n = 1), and abdomen (n = 2) with 3 patients presenting with solitary nodules and 2 patients with multiple nodules. The average size was 2 cm (range 0.6-4 cm). Histologically, 2 cases were spindled and 3 cases demonstrated mixed epithelioid and spindle cell morphology. All were confirmed to have CD117 reactivity. KIT genotyping was performed in 4 of 5 cases. Two cases harbored a mutation in exon 11, and the remaining 2 cases were wild type in exons 9, 11, 13, and 17. All 5 patients had multiple concurrent or subsequent abdominal and/or hepatic metastases. In 4 patients with an average follow-up of 32 months (range 6-75 months), after the resection of the metastases, 2 were alive with disease and 2 died of disease. Cutaneous metastases seem to be a late complication of GIST, but their presence does not necessarily herald a rapid demise of the patient. PMID:19384074

  1. Delivery of improved oncolytic adenoviruses by mesenchymal stromal cells for elimination of tumorigenic pancreatic cancer cells

    PubMed Central

    Kaczorowski, Adam; Hammer, Katharina; Liu, Li; Villhauer, Sabine; Nwaeburu, Clifford; Fan, Pei; Zhao, Zhefu; Gladkich, Jury; Groß, Wolfgang; Nettelbeck, Dirk M.; Herr, Ingrid

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDA) is one of the most aggressive malignancies and has poor therapeutic options. We evaluated improved oncolytic adenoviruses (OAds), in which the adenoviral gene E1B19K was deleted or a TRAIL transgene was inserted. Bone marrow mesenchymal stromal cells (MSCs) served as carriers for protected and tumor-specific virus transfers. The infection competence, tumor migration, and oncolysis were measured in cancer stem cell (CSC) models of primary and established tumor cells and in tumor xenografts. All OAds infected and lysed CSCs and prevented colony formation. MSCs migrated into PDA spheroids without impaired homing capacity. Xenotransplantation of non-infected PDA cells mixed with infected tumor cells strongly reduced the tumor volume and the expression of the proliferation marker Ki67 along with a necrotic morphology. Adenoviral capsid protein was detected in tumor xenograft tissue after intravenous injection of infected MSCs, but not in normal tissue, implying tumor-specific migration. Likewise, direct in vivo treatment correlated with a strongly reduced tumor volume, lower expression of Ki67 and CD24, and enhanced activity of caspase 3. These data demonstrate that the improved OAds induced efficient oncolysis with the OAd-TRAIL as most promising candidate for future clinical application. PMID:26824985

  2. [Mixed marriages].

    PubMed

    Harmsen, C N

    1998-08-01

    The author examines the extent and characteristics of mixed marriages in the Netherlands. "Nine out of ten married persons born in Turkey or Morocco have a partner who was born in the same country. The majority of married Surinamese also have a partner originating from the same country. Those who spend (a part of) their youth in Indonesia (the former Dutch East Indies), on the other hand, are mostly married to someone born in the Netherlands." (EXCERPT) PMID:12294179

  3. From The Cover: Induction of antiviral immunity requires Toll-like receptor signaling in both stromal and dendritic cell compartments

    NASA Astrophysics Data System (ADS)

    Sato, Ayuko; Iwasaki, Akiko

    2004-11-01

    Pattern recognition by Toll-like receptors (TLRs) is known to be important for the induction of dendritic cell (DC) maturation. DCs, in turn, are critically important in the initiation of T cell responses. However, most viruses do not infect DCs. This recognition system poses a biological problem in ensuring that most viral infections be detected by pattern recognition receptors. Furthermore, it is unknown what, if any, is the contribution of TLRs expressed by cells that are infected by a virus, versus TLRs expressed by DCs, in the initiation of antiviral adaptive immunity. Here we address these issues using a physiologically relevant model of mucosal infection with herpes simplex virus type 2. We demonstrate that innate immune recognition of viral infection occurs in two distinct stages, one at the level of the infected epithelial cells and the other at the level of the noninfected DCs. Importantly, both TLR-mediated recognition events are required for the induction of effector T cells. Our results demonstrate that virally infected tissues instruct DCs to initiate the appropriate class of effector T cell responses and reveal the critical importance of the stromal cells in detecting infectious agents through their own pattern recognition receptors. mucosal immunity | pattern recognition | viral infection

  4. Mesenchymal Stem/Stromal Cells Protect the Ocular Surface by Suppressing Inflammation in an Experimental Dry Eye

    PubMed Central

    Lee, Min Joung; Ko, Ah Young; Ko, Jung Hwa; Lee, Hyun Ju; Kim, Mee Kum; Wee, Won Ryang; Khwarg, Sang In; Oh, Joo Youn

    2015-01-01

    Dry eye syndrome (DES) is one of the most common ocular diseases affecting nearly 10% of the US population. Most of the currently available treatments are palliative, and few therapeutic agents target biological pathway of DES. Although DES is a multifactorial disease, it is well-known that inflammation in the ocular surface plays an important role in the pathogenesis of DES. Mesenchymal stem/stromal cells (MSCs) have been shown to repair tissues by modulating excessive immune responses in various diseases. Therefore, we here investigated the therapeutic potential of MSCs in a murine model of an inflammation-mediated dry eye that was induced by an intraorbital injection of concanavalin A. We found that a periorbital administration of MSCs reduced the infiltration of CD4+ T cells and the levels of inflammatory cytokines in the intraorbital gland and ocular surface. Also, MSCs significantly increased aqueous tear production and the number of conjunctival goblet cells. Subsequently, corneal epithelial integrity was well-preserved by MSCs. Together, the results demonstrate that MSCs protect the ocular surface by suppressing inflammation in DES, and suggest that MSCs may offer a therapy for a number of ocular surface diseases where inflammation plays a key role. PMID:25152016

  5. Estrogen-producing endometrioid adenocarcinoma resembling sex cord-stromal tumor of the ovary: a review of four postmenopausal cases

    PubMed Central

    2012-01-01

    Abstract The 4 present cases with endometrioid adenocarcinoma (EMA) of the ovary were characterized by estrogen overproduction and resemblance to sex cord-stromal tumor (SCST). The patients were all postmenopausal, at ages ranging from 60 to 79 years (av. 67.5), who complained of abdominal discomfort or distention and also atypical genital bleeding. Cytologically, maturation of the cervicovaginal squamous epithelium and active endometrial proliferation were detected. The serum estrogen (estradiol, E2) value was preoperatively found to be elevated, ranging from 48.7 to 83.0 pg/mL (av. 58.4). In contrast, follicle stimulating hormone was suppressed to below the normal value. MR imaging diagnoses included SCSTs such as granulosa cell tumor or thecoma for 3 cases because of predominantly solid growth, and epithelial malignancy for one case because of cystic and solid structure. Grossly, the solid part of 3 cases was homogeneously yellow in color. Histologically, varying amounts of tumor components were arranged in solid nests, hollow tubules, cord-like strands and cribriform-like nests in addition to the conventional EMA histology. In summary, postmenopausal ovarian solid tumors with the estrogenic manifestations tend to be preoperatively diagnosed as SCST. Due to this, in the histological diagnosis, this variant of ovarian EMA may be challenging and misdiagnosed as SCST because of its wide range in morphology. Virtual slides http://www.diagnosticpathology.diagnomx.eu/vs/6096841358065394 PMID:23190574

  6. Proliferation and phenotypic changes of stromal cells in response to varying estrogen/androgen levels in castrated rats

    PubMed Central

    Zhou, Ying; Xiao, Xiang-Qian; Chen, Lin-Feng; Yang, Rui; Shi, Jian-Dang; Du, Xiao-Ling; Klocker, Helmut; Park, Irwin; Lee, Chung; Zhang, Ju

    2009-01-01

    It is known that human benign prostatic hyperplasia might arise from an estrogen/androgen (E/T) imbalance. We studied the response of castrated rat prostate to different ratios of circulating E/T. The castrated male Wistar rats were randomly injected with E/T at different ratios for 4 weeks. The prostates of E/T (1:100) group showed a distinct prostatic hyperplasia response by prostatic index, hematoxylin and eosin staining, and quantitative immunohistochemical analysis of α-smooth muscle actin (SMA). In this group, cells positive for Vimentin, non-muscle myosin heavy chain (NMMHC) and proliferating cell nuclear antigen (PCNA) increased in the stroma and epithelium. Furthermore, the mRNA levels of smooth muscle myosin heavy chain (SMMHC) and NMMHC increased. So E/T at a ratio of 1:100 can induce a stromal hyperplastic response in the prostate of castrated rats. The main change observed was an increase of smooth muscle cells, whereas some epithelial changes were also seen in the rat prostates. PMID:19483715

  7. The influence of stromal cells on the pigmentation of tissue-engineered dermo-epidermal skin grafts.

    PubMed

    Biedermann, Thomas; Böttcher-Haberzeth, Sophie; Klar, Agnieszka S; Widmer, Daniel S; Pontiggia, Luca; Weber, Andreas D; Weber, Daniel M; Schiestl, Clemens; Meuli, Martin; Reichmann, Ernst

    2015-03-01

    It has been shown in vitro that melanocyte proliferation and function in palmoplantar skin is regulated by mesenchymal factors derived from fibroblasts. In this study, we investigated in vivo the influence of mesenchymal-epithelial interactions in human tissue-engineered skin substitutes reconstructed from palmar- and nonpalmoplantar-derived fibroblasts. Tissue-engineered dermo-epidermal analogs based on collagen type I hydrogels were populated with either human palmar or nonpalmoplantar fibroblasts and seeded with human nonpalmoplantar-derived melanocytes and keratinocytes. These skin substitutes were transplanted onto full-thickness skin wounds of immunoincompetent rats. Four weeks after transplantation the development of skin color was measured and grafts were excised and analyzed with regard to epidermal characteristics, in particular melanocyte number and function. Skin substitutes containing palmar-derived fibroblasts in comparison to nonpalmoplantar-derived fibroblasts showed (a) a significantly lighter pigmentation; (b) a reduced amount of epidermal melanin granules; and (c) a distinct melanosome expression. However, the number of melanocytes in the basal layer remained similar in both transplantation groups. These findings demonstrate that human palmar fibroblasts regulate the function of melanocytes in human pigmented dermo-epidermal skin substitutes after transplantation, whereas the number of melanocytes remains constant. This underscores the influence of site-specific stromal cells and their importance when constructing skin substitutes for clinical application. PMID:25300246

  8. Lipopolysaccharide-Activated Leukocytes Enhance Thymic Stromal Lymphopoietin Production in a Mouse Air-Pouch-Type Inflammation Model.

    PubMed

    Segawa, Ryosuke; Mizuno, Natsumi; Hatayama, Takahiro; Jiangxu, Dong; Hiratsuka, Masahiro; Endo, Yasuo; Hirasawa, Noriyasu

    2016-08-01

    Thymic stromal lymphopoietin (TSLP) is a key cytokine that exacerbates allergic and fibrotic reactions. Several microbes and virus components have been shown to induce TSLP production, mainly in epithelial cells. TLR4 activators, such as lipopolysaccharide (LPS), induce TSLP production in vivo, although the underlying mechanisms remain unclear. In this study, we investigated the contribution of LPS-activated leukocytes to the production of TSLP in a mouse air-pouch-type inflammation model. LPS induced the production of TSLP in this model but not in the mouse keratinocyte cell line PAM212. Transfer of the infiltrated leukocytes collected from an LPS-injected air pouch to the air pouch of another mouse enhanced TSLP production. Further, the LPS-activated leukocytes produced tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β); a deficiency in these cytokines attenuated the LPS-induced production of TSLP. TSLP production was induced by TNF-α and enhanced by IL-1β and LPS in the PAM212 cells. These results demonstrated that TNF-α and IL-1β, which are partly produced by LPS-activated leukocytes, contribute to TSLP production via TLR4 activation in vivo. PMID:27271511

  9. A Chemically Defined Carrier for the Delivery of Human Mesenchymal Stem/Stromal Cells to Skin Wounds

    PubMed Central

    Walker, Nathan G.; Mistry, Anita R.; Smith, Louise E.; Eves, Paula C.; Tsaknakis, Grigorios; Forster, Simon; Watt, Suzanne M.

    2012-01-01

    Skin has a remarkable capacity for regeneration, but age- and diabetes-related vascular problems lead to chronic non-healing wounds for many thousands of U.K. patients. There is a need for new therapeutic approaches to treat these resistant wounds. Donor mesenchymal stem/stromal cells (MSCs) have been shown to assist cutaneous wound healing by accelerating re-epithelialization. The aim of this work was to devise a low risk and convenient delivery method for transferring these cells to wound beds. Plasma polymerization was used to functionalize the surface of medical-grade silicone with acrylic acid. Cells attached well to these carriers, and culture for up to 3 days on the carriers did not significantly affect their phenotype or ability to support vascular tubule formation. These carriers were then used to transfer MSCs onto human dermis. Cell transfer was confirmed using an MTT assay to assess viable cell numbers and enhanced green fluorescent protein–labeled MSCs to demonstrate that the cells post-transfer attached to the dermis. We conclude that this synthetic carrier membrane is a promising approach for delivery of therapeutic MSCs and opens the way for future studies to evaluate its impact on repairing difficult skin wounds. PMID:21943098

  10. The Influence of Stromal Cells on the Pigmentation of Tissue-Engineered Dermo-Epidermal Skin Grafts

    PubMed Central

    Biedermann, Thomas; Böttcher-Haberzeth, Sophie; Klar, Agnieszka S.; Widmer, Daniel S.; Pontiggia, Luca; Weber, Andreas D.; Weber, Daniel M.; Schiestl, Clemens; Meuli, Martin

    2015-01-01

    It has been shown in vitro that melanocyte proliferation and function in palmoplantar skin is regulated by mesenchymal factors derived from fibroblasts. In this study, we investigated in vivo the influence of mesenchymal–epithelial interactions in human tissue-engineered skin substitutes reconstructed from palmar- and nonpalmoplantar-derived fibroblasts. Tissue-engineered dermo-epidermal analogs based on collagen type I hydrogels were populated with either human palmar or nonpalmoplantar fibroblasts and seeded with human nonpalmoplantar-derived melanocytes and keratinocytes. These skin substitutes were transplanted onto full-thickness skin wounds of immunoincompetent rats. Four weeks after transplantation the development of skin color was measured and grafts were excised and analyzed with regard to epidermal characteristics, in particular melanocyte number and function. Skin substitutes containing palmar-derived fibroblasts in comparison to nonpalmoplantar-derived fibroblasts showed (a) a significantly lighter pigmentation; (b) a reduced amount of epidermal melanin granules; and (c) a distinct melanosome expression. However, the number of melanocytes in the basal layer remained similar in both transplantation groups. These findings demonstrate that human palmar fibroblasts regulate the function of melanocytes in human pigmented dermo-epidermal skin substitutes after transplantation, whereas the number of melanocytes remains constant. This underscores the influence of site-specific stromal cells and their importance when constructing skin substitutes for clinical application. PMID:25300246

  11. Functional Characteristics of Multipotent Mesenchymal Stromal Cells from Pituitary Adenomas

    PubMed Central

    Megnis, Kaspars; Mandrika, Ilona; Petrovska, Ramona; Stukens, Janis; Rovite, Vita; Balcere, Inga; Jansone, Laima Sabine; Peculis, Raitis; Pirags, Valdis

    2016-01-01

    Pituitary adenomas are one of the most common endocrine and intracranial neoplasms. Although they are theoretically monoclonal in origin, several studies have shown that they contain different multipotent cell types that are thought to play an important role in tumor initiation, maintenance, and recurrence after therapy. In the present study, we isolated and characterized cell populations from seven pituitary somatotroph, nonhormonal, and lactotroph adenomas. The obtained cells showed characteristics of multipotent mesenchymal stromal cells as observed by cell morphology, cell surface marker CD90, CD105, CD44, and vimentin expression, as well as differentiation to osteogenic and adipogenic lineages. They are capable of growth and passaging under standard laboratory cell culture conditions and do not manifest any hormonal cell characteristics. Multipotent mesenchymal stromal cells are present in pituitary adenomas regardless of their clinical manifestation and show no considerable expression of somatostatin 1–5 and dopamine 2 receptors. Most likely obtained cells are a part of tissue-supportive cells in pituitary adenoma microenvironment. PMID:27340409

  12. Mesenchymal stromal cells and fibroblasts: a case of mistaken identity?

    PubMed

    Hematti, Peiman

    2012-05-01

    The plastic-adherent fibroblast-looking cells that can be isolated and culture-expanded from bone marrow and many other tissues are widely known as mesenchymal stromal cells (MSC). In addition to their fibroblast-like morphology, they are characterized by a panel of cell-surface markers and their potential to differentiate into bone, fat and cartilage. Based on their intriguing immunomodulatory and regenerative properties, MSC are being investigated as cellular therapeutics for a variety of clinical indications. However, many questions regarding the true identity and functionality of these cells in vivo remain unanswered. Fibroblasts, known for a much longer time but still poorly characterized, are also considered to be a ubiquitous stromal element of almost all tissues and are believed to play a role in tissue homeostasis. Despite the presence of MSC and fibroblasts in almost all tissues, similar morphology and other shared characteristics, the exact relationship between MSC and fibroblasts has remained undetermined. In this review, based on recent and old, but often neglected, literature it is suggested that ex vivo culture-expanded MSC and fibroblasts are indistinguishable by morphology, cell-surface markers, differentiation potential and immunologic properties. PMID:22458957

  13. Functional Characteristics of Multipotent Mesenchymal Stromal Cells from Pituitary Adenomas.

    PubMed

    Megnis, Kaspars; Mandrika, Ilona; Petrovska, Ramona; Stukens, Janis; Rovite, Vita; Balcere, Inga; Jansone, Laima Sabine; Peculis, Raitis; Pirags, Valdis; Klovins, Janis

    2016-01-01

    Pituitary adenomas are one of the most common endocrine and intracranial neoplasms. Although they are theoretically monoclonal in origin, several studies have shown that they contain different multipotent cell types that are thought to play an important role in tumor initiation, maintenance, and recurrence after therapy. In the present study, we isolated and characterized cell populations from seven pituitary somatotroph, nonhormonal, and lactotroph adenomas. The obtained cells showed characteristics of multipotent mesenchymal stromal cells as observed by cell morphology, cell surface marker CD90, CD105, CD44, and vimentin expression, as well as differentiation to osteogenic and adipogenic lineages. They are capable of growth and passaging under standard laboratory cell culture conditions and do not manifest any hormonal cell characteristics. Multipotent mesenchymal stromal cells are present in pituitary adenomas regardless of their clinical manifestation and show no considerable expression of somatostatin 1-5 and dopamine 2 receptors. Most likely obtained cells are a part of tissue-supportive cells in pituitary adenoma microenvironment. PMID:27340409

  14. Melanoma educates mesenchymal stromal cells towards vasculogenic mimicry

    PubMed Central

    VARTANIAN, AMALIA; KARSHIEVA, SAIDA; DOMBROVSKY, VLADISLAV; BELYAVSKY, ALEXANDER

    2016-01-01

    Accumulating evidence suggests that mesenchymal stromal cells (MSCs) are recruited to the tumor, and promote tumor development and growth. The present study was performed to investigate the communication between aggressive melanoma and MSCs in vasculogenic mimicry (VM). Normal human MSCs plated on Matrigel were unable to form capillary-like structures (CLSs). By contrast, MSCs co-cultured with aggressive melanoma cell lines, namely, Mel Cher, Mel Kor and Mel P, generated CLSs. Significantly, MSCs co-cultured with poorly aggressive melanoma cells, namely, Mel Me, failed to form CLSs. To identify factors responsible for VM, the effects of vascular endothelial growth factor A (VEGFA), pro-epidermal growth factor, basic fibroblast growth factor and stromal cell-derived factor 1α on the formation of CLSs by MSCs were tested. VM was induced by the addition of VEGFA, whereas other cytokines were inefficient. To confirm the hypothesis that aggressive tumor cells can increase the vasculogenic ability of MSCs, a standard B16/F10 mouse melanoma test system was used. MSCs isolated from the adipose tissues of C57BL/6 mice with melanoma formed a vascular-like network on Matrigel, whereas MSCs from healthy mice failed to form such structures. This study provides the first direct evidence that melanoma tumors educate MSCs to engage in VM. The education may occur distantly. These findings offer promise for novel therapeutic directions in the treatment of metastatic melanoma. PMID:27313776

  15. Oncogenic KRAS Regulates Tumor Cell Signaling via Stromal Reciprocation

    PubMed Central

    Tape, Christopher J.; Ling, Stephanie; Dimitriadi, Maria; McMahon, Kelly M.; Worboys, Jonathan D.; Leong, Hui Sun; Norrie, Ida C.; Miller, Crispin J.; Poulogiannis, George; Lauffenburger, Douglas A.; Jørgensen, Claus

    2016-01-01

    Summary Oncogenic mutations regulate signaling within both tumor cells and adjacent stromal cells. Here, we show that oncogenic KRAS (KRASG12D) also regulates tumor cell signaling via stromal cells. By combining cell-specific proteome labeling with multivariate phosphoproteomics, we analyzed heterocellular KRASG12D signaling in pancreatic ductal adenocarcinoma (PDA) cells. Tumor cell KRASG12D engages heterotypic fibroblasts, which subsequently instigate reciprocal signaling in the tumor cells. Reciprocal signaling employs additional kinases and doubles the number of regulated signaling nodes from cell-autonomous KRASG12D. Consequently, reciprocal KRASG12D produces a tumor cell phosphoproteome and total proteome that is distinct from cell-autonomous KRASG12D alone. Reciprocal signaling regulates tumor cell proliferation and apoptosis and increases mitochondrial capacity via an IGF1R/AXL-AKT axis. These results demonstrate that oncogene signaling should be viewed as a heterocellular process and that our existing cell-autonomous perspective underrepresents the extent of oncogene signaling in cancer. Video Abstract PMID:27087446

  16. Oncogenic KRAS Regulates Tumor Cell Signaling via Stromal Reciprocation.

    PubMed

    Tape, Christopher J; Ling, Stephanie; Dimitriadi, Maria; McMahon, Kelly M; Worboys, Jonathan D; Leong, Hui Sun; Norrie, Ida C; Miller, Crispin J; Poulogiannis, George; Lauffenburger, Douglas A; Jørgensen, Claus

    2016-05-01

    Oncogenic mutations regulate signaling within both tumor cells and adjacent stromal cells. Here, we show that oncogenic KRAS (KRAS(G12D)) also regulates tumor cell signaling via stromal cells. By combining cell-specific proteome labeling with multivariate phosphoproteomics, we analyzed heterocellular KRAS(G12D) signaling in pancreatic ductal adenocarcinoma (PDA) cells. Tumor cell KRAS(G12D) engages heterotypic fibroblasts, which subsequently instigate reciprocal signaling in the tumor cells. Reciprocal signaling employs additional kinases and doubles the number of regulated signaling nodes from cell-autonomous KRAS(G12D). Consequently, reciprocal KRAS(G12D) produces a tumor cell phosphoproteome and total proteome that is distinct from cell-autonomous KRAS(G12D) alone. Reciprocal signaling regulates tumor cell proliferation and apoptosis and increases mitochondrial capacity via an IGF1R/AXL-AKT axis. These results demonstrate that oncogene signaling should be viewed as a heterocellular process and that our existing cell-autonomous perspective underrepresents the extent of oncogene signaling in cancer. VIDEO ABSTRACT. PMID:27087446

  17. Insidious Changes in Stromal Matrix Fuel Cancer Progression

    PubMed Central

    Miles, Fayth L.

    2014-01-01

    Reciprocal interactions between tumor and stromal cells propel cancer progression and metastasis. An understanding of the complex contributions of the tumor stroma to cancer progression necessitates a careful examination of the extracellular matrix (ECM), which is largely synthesized and modulated by Cancer Associated Fibroblasts (CAFs). This structurally supportive meshwork serves as a signaling scaffold for a myriad of biological processes and responses favoring tumor progression. The ECM is a repository for growth factors and cytokines that promote tumor growth, proliferation, and metastasis through diverse interactions with soluble and insoluble ECM components. Growth factors activated by proteases are involved in the initiation of cell signaling pathways essential to invasion and survival. Various transmembrane proteins produced by the cancer stroma bind the collagen and fibronectin-rich matrix to induce proliferation, adhesion and migration of cancer cells, as well as protease activation. Integrins are critical liaisons between tumor cells and the surrounding stroma, and with their mechano-sensing ability induce cell signaling pathways associated with contractility and migration. Proteoglycans also bind and interact with various matrix proteins in the tumor microenvironment to promote cancer progression. Together, these components function to mediate crosstalk between tumor cells and fibroblasts ultimately to promote tumor survival and metastasis. These stromal factors, which may be expressed differentially according to cancer stage, have prognostic utility and potential. In this review, we examine changes in the ECM of cancer associated fibroblasts induced through carcinogenesis, and the implications of these changes on cancer progression. PMID:24452359

  18. Regenerative Potential of Mesenchymal Stromal Cells: Age-Related Changes

    PubMed Central

    Bruna, Flavia; Contador, David; Conget, Paulette; Erranz, Benjamín; Sossa, Claudia L.; Arango-Rodríguez, Martha L.

    2016-01-01

    Preclinical and clinical studies have shown that a therapeutic effect results from mesenchymal stromal cells (MSCs) transplant. No systematic information is currently available regarding whether donor age modifies MSC regenerative potential on cutaneous wound healing. Here, we evaluate whether donor age influences this potential. Two different doses of bone marrow MSCs (BM-MSCs) from young, adult, or old mouse donors or two doses of their acellular derivatives mesenchymal stromal cells (acd-MSCs) were intradermally injected around wounds in the midline of C57BL/6 mice. Every two days, wound healing was macroscopically assessed (wound closure) and microscopically assessed (reepithelialization, dermal-epidermal junction, skin appendage regeneration, granulation tissue, leukocyte infiltration, and density dermal collagen fibers) after 12 days from MSC transplant. Significant differences in the wound closure kinetic, quality, and healing of skin regenerated were observed in lesions which received BM-MSCs from different ages or their acd-MSCs compared to lesions which received vehicle. Nevertheless, our data shows that adult's BM-MSCs or their acd-MSCs were the most efficient for recovery of most parameters analyzed. Our data suggest that MSC efficacy was negatively affected by donor age, where the treatment with adult's BM-MSCs or their acd-MSCs in cutaneous wound promotes a better tissue repair/regeneration. This is due to their paracrine factors secretion. PMID:27247575

  19. Anchored and soluble gangliosides contribute to myelosupportivity of stromal cells

    SciTech Connect

    Ziulkoski, Ana L.; Santos, Aline X.S. dos; Andrade, Claudia M.B.; Trindade, Vera M.T.; Daniotti, Jose Luis; Borojevic, Radovan; Guma, Fatima C.R.

    2009-10-09

    Stroma-mediated myelopoiesis depends upon growth factors and an appropriate intercellular microenvironment. Previous studies have demonstrated that gangliosides, produced by hepatic stromal cell types, are required for optimal myelosupportive function. Here, we compared the mielossuportive functions of a bone marrow stroma (S17) and skin fibroblasts (SF) regarding their ganglioside pattern of synthesis and shedding. The survival and proliferation of a myeloid precursor cell (FDC-P1) were used as reporter. Although the ganglioside synthesis of the two stromal cells was similar, their relative content and shedding were distinct. The ganglioside requirement for mielossuportive function was confirmed by the decreased proliferation of FDC-P1 cells in ganglioside synthesis-inhibited cultures and in presence of an antibody to GM3 ganglioside. The distinct mielossuportive activities of the S17 and SF stromata may be related to differences on plasma membrane ganglioside concentrations or to differences on the gangliosides shed and their subsequent uptake by myeloid cells, specially, GM3 ganglioside.

  20. Differentiation of tumour-promoting stromal myofibroblasts by cancer exosomes.

    PubMed

    Webber, J P; Spary, L K; Sanders, A J; Chowdhury, R; Jiang, W G; Steadman, R; Wymant, J; Jones, A T; Kynaston, H; Mason, M D; Tabi, Z; Clayton, A

    2015-01-15

    Activation of myofibroblast rich stroma is a rate-limiting step essential for cancer progression. The responsible factors are not fully understood, but TGFβ1 is probably critical. A proportion of TGFβ1 is associated with extracellular nano-vesicles termed exosomes, secreted by carcinoma cells, and the relative importance of soluble and vesicular TGFβ in stromal activation is presented. Prostate cancer exosomes triggered TGFβ1-dependent fibroblast differentiation, to a distinctive myofibroblast phenotype resembling stromal cells isolated from cancerous prostate tissue; supporting angiogenesis in vitro and accelerating tumour growth in vivo. Myofibroblasts generated using soluble TGFβ1 were not pro-angiogenic or tumour-promoting. Cleaving heparan sulphate side chains from the exosome surface had no impact on TGFβ levels yet attenuated SMAD-dependent signalling and myofibroblastic differentiation. Eliminating exosomes from the cancer cell secretome, targeting Rab27a, abolished differentiation and lead to failure in stroma-assisted tumour growth in vivo. Exosomal TGFβ1 is therefore required for the formation of tumour-promoting stroma. PMID:24441045

  1. Noncontraceptive estrogen use and epithelial ovarian cancer.

    PubMed

    Kaufman, D W; Kelly, J P; Welch, W R; Rosenberg, L; Stolley, P D; Warshauer, M E; Lewis, J; Woodruff, J; Shapiro, S

    1989-12-01

    The relation of noncontraceptive estrogen use to epithelial ovarian cancer was evaluated in a case-control study conducted in hospitals mainly in the northeastern United States. There were 377 cases diagnosed within the year before hospital admission and 2,030 hospital controls; data were collected by interview in the hospital. Compared with women who never took noncontraceptive estrogens, the overall relative risk estimate for women whose estrogen use lasted at least one year and was not combined with progestogens or testosterone was 1.2 (95% confidence interval (CI) 0.8-1.9), after taking into account risk factors for ovarian cancer. There were 55 cases of the endometrioid, clear cell, or malignant mixed mesodermal cell type; the corresponding relative risk estimate was 0.9 (95% CI 0.3-3.0). There were 26 cases of undifferentiated cell type, with a relative risk estimate of 3.6 (95% CI 1.2-11). Relative risk estimates were similar in a subset of the cases (57%) for which pathology slides were reviewed. For estrogen use of long duration, use of high-dose preparations, or use in the distant past, the relative risk estimates were not significantly different from 1.0. The estimates were elevated for some categories of use, but not consistently--for example, for an interval of 5-9 years since estrogen use began (relative risk (RR) = 2.7), but not after shorter or longer intervals, and for use of conjugated estrogens with a dose of 0.3 mg (RR = 3.2) or 1.25 mg (RR = 2.4), but not for doses of 0.625 mg or 2.5 mg. The relative risk estimate was also elevated for use by nulliparous women (RR = 2.4). The results suggest that, overall, noncontraceptive estrogen use is not associated with the risk of epithelial ovarian cancer. Furthermore, our data do not support the hypothesis that estrogens increase the risk of endometrioid ovarian cancer. The elevated estimates could be due to multiple stratification of the data, but they should be explored in further studies, given the

  2. VDR Activity is Differentially Affected by Hic-5 in Prostate Cancer and Stromal Cells

    PubMed Central

    Solomon, Joshua D; Heitzer, Marjet D; Liu, Teresa T; Beumer, Jan H; Parise, Robert A; Normolle, Daniel P; Leach, Damien A; Buchanan, Grant; DeFranco, Donald B

    2014-01-01

    Prostate cancer patients treated with androgen deprivation therapy (ADT) eventually develop castrate-resistant prostate cancer (CRPC). 1,25-dihydroxyvitamin D3 (1,25D3/calcitriol) is a potential adjuvant therapy that confers anti-proliferative and pro-differentiation effects in vitro, but has had mixed results in clinical trials. The impact of the tumor microenvironment on 1,25D3 therapy in CRPC patients has not been assessed. Transforming growth factor-β (TGF-β), which is associated with the development of tumorigenic “reactive stroma” in prostate cancer, induced VDR expression in the human WPMY-1 prostate stromal cell line. Similarly, TGF-β enhanced 1,25D3-induced up-regulation of CYP24A1, which metabolizes 1,25D3 and thereby limits VDR activity. Ablation of Hic-5, a TGF-β-inducible nuclear receptor co-regulator, inhibited basal VDR expression, 1,25D3-induced CYP24A1 expression and metabolism of 1,25D3 and TGF-β-enhanced CYP24A1 expression. A Hic-5-responsive sequence was identified upstream (392-451 bp) of the CYP24A1 transcription start site that is occupied by VDR only in the presence of Hic-5. Ectopic expression of Hic-5 sensitized LNCaP prostate tumor cells to growth-inhibitory effects of 1,25D3 independent of CYP24A1. The sensitivity of Hic-5-expressing LNCaP cells to 1,25D3-induced growth inhibition was accentuated in co-culture with Hic-5-ablated WPMY-1 cells. Therefore, these findings indicate that the search for mechanisms to sensitize prostate cancer cells to the anti-proliferative effects of VDR ligands needs to account for the impact of VDR activity in the tumor microenvironment. Implications Hic-5 acts as a co-regulator with distinct effects on VDR transactivation, in prostate cancer and stromal cells, and may exert diverse effects on adjuvant therapy designed to exploit VDR activity in prostate cancer. PMID:24825850

  3. Epithelial ovarian cancer: An overview

    PubMed Central

    Desai, Arpita; Xu, Jingyao; Aysola, Kartik; Qin, Yunlong; Okoli, Chika; Hariprasad, Ravipati; Chinemerem, Ugorji; Gates, Candace; Reddy, Avinash; Danner, Omar; Franklin, Geary; Ngozi, Anachebe; Cantuaria, Guilherme; Singh, Karan; Grizzle, William; Landen, Charles; Partridge, Edward E; Rice, Valerie Montgomery; Reddy, E Shyam P; Rao, Veena N

    2014-01-01

    Ovarian cancer is the second most common gynecological cancer and the leading cause of death in the United States. In this article we review the diagnosis and current management of epithelial ovarian cancer which accounts for over 95 percent of the ovarian malignancies. We will present various theories about the potential origin of ovarian malignancies. We will discuss the genetic anomalies and syndromes that may cause ovarian cancers with emphasis on Breast cancer type 1/2 mutations. The pathology and pathogenesis of ovarian carcinoma will also be presented. Lastly, we provide a comprehensive overview of treatment strategies and staging of ovarian cancer, conclusions and future directions. PMID:25525571

  4. Mixed results with mixed disulfides.

    PubMed

    Brigelius-Flohé, Regina

    2016-04-01

    A period of research with Helmut Sies in the 1980s is recalled. Our experiments aimed at an in-depth understanding of metabolic changes due to oxidative challenges under near-physiological conditions, i.e. perfused organs. A major focus were alterations of the glutathione and the NADPH/NADP(+) system by different kinds of oxidants, in particular formation of glutathione mixed disulfides with proteins. To analyze mixed disulfides, a test was adapted which is widely used until today. The observations in perfused rat livers let us believe that glutathione-6-phosphate dehydrogenase (G6PDH), i.a. might be activated by glutathionylation. Although we did not succeed to verify this hypothesis for the special case of G6PDH, the regulation of enzyme/protein activities by glutathionylation today is an accepted posttranslational mechanism in redox biology in general. Our early experimental approaches are discussed in the context of present knowledge. PMID:27095221

  5. Corneal nerve architecture in a donor with unilateral epithelial basement membrane dystrophy

    PubMed Central

    He, Jiucheng; Bazan, Haydee E.P.

    2014-01-01

    Background: Epithelial basement membrane dystrophy (EBMD) is by far the most common corneal dystrophy. In this study, we used a newly developed method of immunofluorescence staining and imaging to study the entire corneal nerve architecture of a donor with unilateral EBMD. Method: Two fresh eyes from a 56-year-old male donor were obtained; the right eye of the donor was diagnosed with EBMD and the left was normal. After slit lamp examination, the corneas were immunostained with anti-β-tubulin III antibody. Images were recorded by a fluorescent microscope equipped with a Photometrics digital camera using MetaVue imaginig software. Results: The left cornea appeared normal as observed by slit lamp and stereomicroscope, but the right eye had numerous irregular geographic patches in the basement membrane. Immunofluorescence showed no difference in the stromal nerve distribution between the two eyes, but there were areas without innervations in the EBMD cornea. Subbasal nerve fibers also showed tortuous courses and fewer divisions. There was a significant decrease in the density of subbasal nerve fibers and the number of terminals in the right eye. Conclusion: We show for the first time detailed nerve architecture in an EBMD cornea. Our results suggest that EBMD-induced abnormalities of basement membrane altered epithelial nerve architecture and decreased nerve density, contributing to the pathology of the disease. PMID:23306594

  6. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche

    PubMed Central

    Ootani, Akifumi; Li, Xingnan; Sangiorgi, Eugenio; Ho, Quoc T; Ueno, Hiroo; Toda, Shuji; Sugihara, Hajime; Fujimoto, Kazuma; Weissman, Irving L; Capecchi, Mario R; Kuo, Calvin J

    2010-01-01

    The in vitro analysis of intestinal epithelium has been hampered by a lack of suitable culture systems. Here we describe robust long-term methodology for small and large intestinal culture, incorporating an air-liquid interface and underlying stromal elements. These cultures showed prolonged intestinal epithelial expansion as sphere-like organoids with proliferation and multilineage differentiation. The Wnt growth factor family positively regulates proliferation of the intestinal epithelium in vivo. Accordingly, culture growth was inhibited by the Wnt antagonist Dickkopf-1 (Dkk1) and markedly stimulated by a fusion protein between the Wnt agonist R-spondin-1 and immunoglobulin Fc (RSpo1-Fc). Furthermore, treatment with the γ-secretase inhibitor dibenzazepine and neurogenin-3 overexpression induced goblet cell and enteroendocrine cell differentiation, respectively, consistent with endogenous Notch signaling and lineage plasticity. Epithelial cells derived from both leucine-rich repeat-containing G protein–coupled receptor-5–positive (Lgr5+) and B lymphoma moloney murine leukemia virus insertion region homolog-1–positive (Bmi1+) lineages, representing putative intestinal stem cell (ISC) populations, were present in vitro and were expanded by treatment with RSpo1-Fc; this increased number of Lgr5+ cells upon RSpo1-Fc treatment was subsequently confirmed in vivo. Our results indicate successful long-term intestinal culture within a microenvironment accurately recapitulating the Wnt- and Notch-dependent ISC niche. PMID:19398967

  7. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche.

    PubMed

    Ootani, Akifumi; Li, Xingnan; Sangiorgi, Eugenio; Ho, Quoc T; Ueno, Hiroo; Toda, Shuji; Sugihara, Hajime; Fujimoto, Kazuma; Weissman, Irving L; Capecchi, Mario R; Kuo, Calvin J

    2009-06-01

    The in vitro analysis of intestinal epithelium has been hampered by a lack of suitable culture systems. Here we describe robust long-term methodology for small and large intestinal culture, incorporating an air-liquid interface and underlying stromal elements. These cultures showed prolonged intestinal epithelial expansion as sphere-like organoids with proliferation and multilineage differentiation. The Wnt growth factor family positively regulates proliferation of the intestinal epithelium in vivo. Accordingly, culture growth was inhibited by the Wnt antagonist Dickkopf-1 (Dkk1) and markedly stimulated by a fusion protein between the Wnt agonist R-spondin-1 and immunoglobulin Fc (RSpo1-Fc). Furthermore, treatment with the gamma-secretase inhibitor dibenzazepine and neurogenin-3 overexpression induced goblet cell and enteroendocrine cell differentiation, respectively, consistent with endogenous Notch signaling and lineage plasticity. Epithelial cells derived from both leucine-rich repeat-containing G protein-coupled receptor-5-positive (Lgr5(+)) and B lymphoma moloney murine leukemia virus insertion region homolog-1-positive (Bmi1(+)) lineages, representing putative intestinal stem cell (ISC) populations, were present in vitro and were expanded by treatment with RSpo1-Fc; this increased number of Lgr5(+) cells upon RSpo1-Fc treatment was subsequently confirmed in vivo. Our results indicate successful long-term intestinal culture within a microenvironment accurately recapitulating the Wnt- and Notch-dependent ISC niche. PMID:19398967

  8. Chronic caffeine intake increases androgenic stimuli, epithelial cell proliferation and hyperplasia in rat ventral prostate

    PubMed Central

    Sarobo, Carolina; Lacorte, Lívia M; Martins, Marcela; Rinaldi, Jaqueline C; Moroz, Andrei; Scarano, Wellerson R; Delella, Flavia K; Felisbino, Sérgio L

    2012-01-01

    Coffee intake has been associated with a low risk of developing cancer, including prostate cancer, which is one of the most commonly diagnosed cancer in men. However, few studies have evaluated the chronic effects of caffeine, which is the most abundant methylxanthine in coffee, on prostate morphology and physiology. In the present study, we investigated the effects of chronic, low-dose caffeine intake on rat prostate morphology from puberty to adulthood. Five-week-old male Wistar rats were randomized into two experimental groups: caffeine-treated (20 ppm in drinking water, n = 12) and control (n = 12). The ventral and dorsolateral prostates were dissected, weighted and submitted to morphological, morphometrical and immunohistochemical analysis of cellular proliferation, apoptosis and androgen receptor (AR) tissue expression. The testosterone (T) and dihydrotestosterone (DHT) concentrations were measured in the plasma. Our results show that caffeine intake increased the concentrations of T and DHT, organ weight, epithelial cell proliferation and AR tissue expression in the ventral prostatic lobe. All the ventral prostates from the caffeine-treated animals presented various degrees of epithelial and stromal hyperplasia. Our results suggest that chronic caffeine intake from puberty increases androgenic signalling and cell proliferation in the rat prostate gland and can be related to the development of benign prostatic hyperplasia. PMID:23136995

  9. Whom to blame for metastasis, the epithelial-mesenchymal transition or the tumor microenvironment?

    PubMed

    Pietilä, M; Ivaska, J; Mani, S A

    2016-09-28

    Changes in the tumor microenvironment (TME) can trigger the activation of otherwise non-malignant cells to become highly aggressive and motile. This is evident during initial tumor growth when the poor vascularization in tumors generates hypoxic regions that trigger the latent embryonic program, epithelial-to-mesenchymal transition (EMT), in epithelial carcinoma cells (e-cars) leading to highly motile mesenchymal-like carcinoma cells (m-cars), which also acquire cancer stem cell properties. After that, specific bidirectional interactions take place between m-cars and the cellular components of TME at different stages of metastasis. These interactions include several vicious positive feedback loops in which m-cars trigger a phenotypic switch, causing normal stromal cells to become pro-tumorigenic, which then further promote the survival, motility, and proliferation of m-cars. Accordingly, there is not a single culprit accounting for metastasis. Instead both m-cars and the TME dynamically interact, evolve and promote metastasis. In this review, we discuss the current status of the known interactions between m-cars and the TME during different stages of metastasis and how these interactions promote the metastatic activity of highly malignant m-cars by promoting their invasive mesenchymal phenotype and CSC properties. PMID:26791236

  10. Rare non-epithelial ovarian neoplasms: Pathology, genetics and treatment.

    PubMed

    Foulkes, William D; Gore, Martin; McCluggage, W Glenn

    2016-07-01

    Rare non-epithelial ovarian neoplasms have posed management challenges for many years. Their rarity means that most specialist practitioners will see one such case every several years, and most generalists may never see a case. The first step in management is to establish the correct diagnosis and this may necessitate specialist pathology review. Here, we review recent developments in the pathology, genetics and treatment of small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) and sex cord-stromal tumours. Pathologically, these tumours often display morphological overlap with other neoplasms; for example, SCCOHT overlaps with many other "small round blue cell" tumours. Specific immunohistochemical stains, while useful, may not always be definitive. The discovery of somatic mutations in FOXL2 (adult granulosa cell tumours) and germline and somatic mutations in DICER1 (Sertoli-Leydig cell tumours) and SMARCA4 (SCCOHT) has demonstrated the value of molecular investigation as an adjunct to traditional histopathological approaches. In addition, the presence of germline mutations in a significant proportion of some of these neoplasms points to the need for genetic counselling and testing, offering the prospect of prevention and early diagnosis. Treatment of these rare tumours, as a group, should be on the basis of sound oncological principles, given that level 1 evidence will almost always be lacking. The rationale for experimental therapies must be clearly established. In view of the complex issues involved in the management of these conditions, expert opinion in pathology, genetics and treatment may be essential to offer the patient and her family the best chance of a good outcome. PMID:27079213

  11. A histological study of rabbit corneas after transepithelial corneal crosslinking using partial epithelial photoablation or ethanol treatment

    PubMed Central

    Ozmen, Mehmet Cuneyt; Hondur, Ahmet; Yilmaz, Guldal; Bilgihan, Kamil; Hasanreisoglu, Berati

    2014-01-01

    AIM To evaluate the histological changes after transepithelial corneal crosslinking (CXL) using partial thickness excimer laser ablation or epithelial ethanol application in an experimental rabbit study. METHODS Right eyes of twenty-four rabbits were studied. Four eyes received total epithelial debridement (group I). Four eyes received partial thickness epithelial ablation with excimer laser (group II). Twelve eyes were treated with different durations (30s and 60s) and concentrations (18% to 48%) of ethanol (group III). Riboflavin was applied for 30min intervals along with topical proparacaine drops with benzalkonium chloride, and 370 nm irradiation was performed for 30min, while riboflavin was instilled every 3min. Four eyes (group IV) received 48% ethanol for 30s without riboflavin and irradiation. Eyes were collected after 24h and examined histologically. RESULTS All eyes in group I showed keratocyte loss in the superficial 300 µ of corneal storma. In group II, 1-4 layers of epithelium were preserved and no keratocyte loss occurred. In group III, CXL after treatment with ethanol up to 24% concentration and up to 60s revealed no keratocyte loss. CXL after treatment with 48% and higher ethanol concentrations yielded keratocyte loss in the superficial 200 µ to 300 µ of cornea. CONCLUSION Incomplete excimer laser ablation of the epithelium or treatment with ethanol up to 24% concentration and up to 60s duration yielded no stromal keratocyte loss. To get the same histological appearance seen in epithelial debridement group, partial thickness excimer laser epithelial ablation or ethanol application is not adequate for transepithelial CXL. PMID:25540746

  12. CXCR4 regulates migration of lung alveolar epithelial cells through activation of Rac1 and matrix metalloproteinase-2

    PubMed Central

    Ghosh, Manik C.; Makena, Patrudu S.; Gorantla, Vijay; Sinclair, Scott E.

    2012-01-01

    Restoration of the epithelial barrier following acute lung injury is critical for recovery of lung homeostasis. After injury, alveolar type II epithelial (ATII) cells spread and migrate to cover the denuded surface and, eventually, proliferate and differentiate into type I cells. The chemokine CXCL12, also known as stromal cell-derived factor 1α, has well-recognized roles in organogenesis, hematopoiesis, and immune responses through its binding to the chemokine receptor CXCR4. While CXCL12/CXCR4 signaling is known to be important in immune cell migration, the role of this chemokine-receptor interaction has not been studied in alveolar epithelial repair mechanisms. In this study, we demonstrated that secretion of CXCL12 was increased in the bronchoalveolar lavage of rats ventilated with an injurious tidal volume (25 ml/kg). We also found that CXCL12 secretion was increased by primary rat ATII cells and a mouse alveolar epithelial (MLE12) cell line following scratch wounding and that both types of cells express CXCR4. CXCL12 significantly increased ATII cell migration in a scratch-wound assay. When we treated cells with a specific antagonist for CXCR4, AMD-3100, cell migration was significantly inhibited. Knockdown of CXCR4 by short hairpin RNA (shRNA) caused decreased cell migration compared with cells expressing a nonspecific shRNA. Treatment with AMD-3100 decreased matrix metalloproteinase-14 expression, increased tissue inhibitor of metalloproteinase-3 expression, decreased matrix metalloproteinase-2 activity, and prevented CXCL12-induced Rac1 activation. Similar results were obtained with shRNA knockdown of CXCR4. These findings may help identify a therapeutic target for augmenting epithelial repair following acute lung injury. PMID:22345572

  13. Tumor-associated stromal cells as key contributors to the tumor microenvironment.

    PubMed

    Bussard, Karen M; Mutkus, Lysette; Stumpf, Kristina; Gomez-Manzano, Candelaria; Marini, Frank C

    2016-01-01

    The tumor microenvironment is a heterogeneous population of cells consisting of the tumor bulk plus supporting cells. It is becoming increasingly evident that these supporting cells are recruited by cancer cells from nearby endogenous host stroma and promote events such as tumor angiogenesis, proliferation, invasion, and metastasis, as well as mediate mechanisms of therapeutic resistance. In addition, recruited stromal cells range in type and include vascular endothelial cells, pericytes, adipocytes, fibroblasts, and bone-marrow mesenchymal stromal cells. During normal wound healing and inflammatory processes, local stromal cells change their phenotype to become that of reactive stroma. Under certain conditions, however, tumor cells can co-opt these reactive stromal cells and further transition them into tumor-associated stromal cells (TASCs). These TASCs express higher levels of proteins, including alpha-smooth muscle actin, fibroblast activating protein, and matrix metalloproteinases, compared with their normal, non-reactive counterparts. TASCs are also known to secrete many pro-tumorigenic factors, including IL-6, IL-8, stromal-derived factor-1 alpha, vascular endothelial growth factor, tenascin-C, and matrix metalloproteinases, among others, which recruit additional tumor and pro-tumorigenic cells to the developing microenvironment. Here, we review the current literature pertaining to the origins of recruited host stroma, contributions toward tumor progression, tumor-associated stromal cells, and mechanisms of crosstalk between endogenous host stroma and tumor cells. PMID:27515302

  14. Magnetic stromal layers for enhanced and unbiased recovery of co-cultured hematopoietic cells.

    PubMed

    Savvateeva, Maria V; Demin, Alexander M; Krasnov, Victor P; Belyavsky, Alexander V

    2016-09-15

    Cell co-culture systems have a long history of application in hematology and hold promise for successful hematopoietic stem and progenitor cell expansion. Here we report that various types of stromal cells used in such co-cultures can be rapidly and efficiently labeled with l-lysine-modified Fe3O4 magnetic nanoparticles. Hematopoiesis-supporting activity does not seem to be compromised after magnetic labeling of stromal cells, and the loss of the label by stromal layers during extended culturing is negligible. Magnetic labeling allows for simple and efficient removal of stromal component, yielding unbiased hematopoietic cell populations. When Lin(-) bone mouse marrow fraction was co-cultured with magnetic stromal layers and resulting cell populations were harvested by trypsinization, the yields of total nucleated cells, colony forming cells, and phenotypically primitive Lin(-)Sca-1(+)c-kit(+) subset were substantially higher as compared with nonadherent cell fractions harvested after conventional stromal co-culture. The advantage offered by the magnetic stroma approach over the traditional one was even more significant after a second round of co-culture and was more dramatic for more primitive hematopoietic cells. We conclude that magnetic stromal layers represent a simple, efficient, and convenient tool for co-culturing and subsequent recovery of sufficiently pure unbiased populations of hematopoietic cells. PMID:27318238

  15. Macrophage-derived LIF and IL1B regulate alpha(1,2)fucosyltransferase 2 (Fut2) expression in mouse uterine epithelial cells during early pregnancy.

    PubMed

    Jasper, Melinda J; Care, Alison S; Sullivan, Brad; Ingman, Wendy V; Aplin, John D; Robertson, Sarah A

    2011-01-01

    Macrophages accumulate within stromal tissue subjacent to the luminal epithelium in the mouse uterus during early pregnancy after seminal fluid exposure at coitus. To investigate their role in regulating epithelial cell expression of fucosylated structures required for embryo attachment and implantation, fucosyltransferase enzymes Fut1, Fut2 (Enzyme Commission number [EC] 2.4.1.69), and Fut4 (EC 2.4.1.214) and Muc1 and Muc4 mRNAs were quantified by quantitative real-time PCR in uterine epithelial cells after laser capture microdissection in situ or after epithelial cell coculture with macrophages or macrophage-secreted factors. When uterine macrophage recruitment was impaired by mating with seminal plasma-deficient males, epithelial cell Fut2 expression on Day 3.5 postcoitus (pc) was reduced compared to intact-mated controls. Epithelial cell Fut2 was upregulated in vitro by coculture with macrophages or macrophage-conditioned medium (MCM). Macrophage-derived cytokines LIF, IL1B, and IL12 replicated the effect of MCM on Fut2 mRNA expression, and MCM-stimulated expression was inhibited by anti-LIF and anti-IL1B neutralizing antibodies. The effects of acute macrophage depletion on fucosylated structures detected with lectins Ulex europaeus 1 (UEA-1) and Lotus tetragonolobus purpureas (LTP), or LewisX immunoreactivity, were quantified in vivo in Cd11b-dtr transgenic mice. Depletion of macrophages caused a 30% reduction in luminal epithelial UEA-1 staining and a 67% reduction in LewisX staining in uterine tissues of mice hormonally treated to mimic early pregnancy. Together, these data demonstrate that uterine epithelial Fut2 mRNA expression and terminal fucosylation of embryo attachment ligands is regulated in preparation for implantation by factors including LIF and IL1B secreted from macrophages recruited during the inflammatory response to insemination. PMID:20864644

  16. Pseudoangiomatous stromal hyperplasia with multinucleated stromal giant cells is neither exceptional in gynecomastia nor characteristic of neurofibromatosis type 1.

    PubMed

    Pižem, Jože; Velikonja, Mojca; Matjašič, Alenka; Jerše, Maja; Glavač, Damjan

    2015-04-01

    Six cases of gynecomastia with pseudoangiomatous stromal hyperplasia (PASH) and multinucleated stromal giant cells (MSGC) associated with neurofibromatosis type 1 (NF1) have been reported, and finding MSGC within PASH in gynecomastia has been suggested as being a characteristic of NF1. The frequency of PASH with MSGC in gynecomastia and its specificity for NF1 have not, however, been systematically studied. A total of 337 gynecomastia specimens from 215 patients, aged from 8 to 78 years (median, 22 years) were reevaluated for the presence of PASH with MSGC. Breast tissue samples of 25 patients were analyzed for the presence of an NF1 gene mutation using next generation sequencing. Rare MSGC, usually in the background of PASH, were noted at least unilaterally in 27 (13 %) patients; and prominent MSGC, always in the background of PASH, were noted in 8 (4 %) patients. The NF1 gene was mutated in only 1 (an 8-year-old boy with known NF1 and prominent MSGC) of the 25 tested patients, including 6 patients with prominent MSGC and 19 patients with rare MSGC. MSGC, usually in the background of PASH, are not characteristic of NF1. PMID:25586494

  17. Herpetic keratouveitis mixed with bilateral Pseudomonas corneal ulcers in vitamin A deficiency.

    PubMed

    Hsu, Hung-Yuan; Tsai, I-Lun; Kuo, Li-Lin; Tsai, Ching-Yao; Liou, Shiow-Wen; Woung, Lin-Chung

    2015-02-01

    A 56-year-old woman complained of blurred vision and pain in her right eye for several days. Slit lamp examination revealed a large epithelial defect and disciform stromal edema with ring infiltration in her right cornea. Unfortunately, hypopyon and purulent discharge subsequently developed in both eyes. Herpetic keratouveitis and a superimposed pseudomonas infection were diagnosed. A systemic review on the patient showed malnutrition due to her dietary preference and vegetarianism. After the infection was controlled, bilateral epithelial defects persisted for a long time. We performed amniotic membrane transplantation on both eyes and the clinical status improved with administration of vitamin and protein supplements. Although rare in Taiwan, vitamin A deficiency should be kept in mind when conjunctival and corneal xerosis occurred. Vitamin A supplements are suggested because of the increased susceptibility to infection in patients with this clinical status. PMID:25678182

  18. Shape Transformations of Epithelial Shells.

    PubMed

    Misra, Mahim; Audoly, Basile; Kevrekidis, Ioannis G; Shvartsman, Stanislav Y

    2016-04-12

    Regulated deformations of epithelial sheets are frequently foreshadowed by patterning of their mechanical properties. The connection between patterns of cell properties and the emerging tissue deformations is studied in multiple experimental systems, but the general principles remain poorly understood. For instance, it is in general unclear what determines the direction in which the patterned sheet is going to bend and whether the resulting shape transformation will be discontinuous or smooth. Here these questions are explored computationally, using vertex models of epithelial shells assembled from prismlike cells. In response to rings and patches of apical cell contractility, model epithelia smoothly deform into invaginated or evaginated shapes similar to those observed in embryos and tissue organoids. Most of the observed effects can be captured by a simpler model with polygonal cells, modified to include the effects of the apicobasal polarity and natural curvature of epithelia. Our models can be readily extended to include the effects of multiple constraints and used to describe a wide range of morphogenetic processes. PMID:27074691

  19. In vitro differentiation of bone marrow mesenchymal stem cells into endometrial epithelial cells in mouse: a proteomic analysis

    PubMed Central

    Cong, Qing; Li, Bin; Wang, Yisheng; Zhang, Wenbi; Cheng, Mingjun; Wu, Zhiyong; Zhang, Xiaoyan; Jiang, Wei; Xu, Congjian

    2014-01-01

    Objective: Mouse bone marrow mesenchymal stem cells (BMSCs) have been demonstrated to differentiate into female endometrial epithelial cells (EECs) in vivo. Our previous studies demonstrated that BMSCs can differentiate in the direction of EECs when co-cultured with endometrial stromal cells in vitro. Here, we obtain and analyse differential proteins and their relevant pathways in the process of BMSCs differentiating into EECs by isobaric tags for relative and absolute quantitation (iTRAQ) proteomic analysis. Methods: A 0.4-μm pore size indirect co-culture system was established with female mice endometrial stromal cells (EStCs) restricted in the upper Transwell chamber and BMSCs in the lower well plate. After indirect co-culture for several days, the BMSCs were revealed to progressively differentiate towards EECs in vitro. Then, four groups were divided according to different co-culture days with single culture groups of BMSCs as controls. Proteins were detected using iTRAQ based on 2DLC-ESI-MS/MS and data were analysed by bioinformatics. Results: A total number of 311 proteins were detected, of which 210 proteins were identified with relative quantitation. Among them, 107 proteins were differentially expressed with a 1.2-fold change as the benchmark, with 61 up-regulated and 46 down-regulated proteins. Differential proteins CK19 and CK8 were epithelial markers and upregulated. Stromal marker vimentin were downregulated. Top canonical pathways was “remodeling of epithelial adhesions junctions” and “actin cytoskeleton signaling”. Top networks was “cell-to-cell signaling and interaction, tissue development and cellular movement” regulated by ERK/MAPK and α-catenin. Conclusion: To the best of our knowledge, this is the first preliminary study of differential protein expression in the differentiation process of BMSCs into EECs in vitro. We further elucidated BMSCs differentiated in the direction of EECs. In addition, ERK/MAPK and α-catenin played

  20. Epithelialization in Wound Healing: A Comprehensive Review

    PubMed Central

    Pastar, Irena; Stojadinovic, Olivera; Yin, Natalie C.; Ramirez, Horacio; Nusbaum, Aron G.; Sawaya, Andrew; Patel, Shailee B.; Khalid, Laiqua; Isseroff, Rivkah R.; Tomic-Canic, Marjana

    2014-01-01

    Significance: Keratinocytes, a major cellular component of the epidermis, are responsible for restoring the epidermis after injury through a process termed epithelialization. This review will focus on the pivotal role of keratinocytes in epithelialization, including cellular processes and mechanisms of their regulation during re-epithelialization, and their cross talk with other cell types participating in wound healing. Recent Advances: Discoveries in epidermal stem cells, keratinocyte immune function, and the role of the epidermis as an independent neuroendocrine organ will be reviewed. Novel mechanisms of gene expression regulation important for re-epithelialization, including microRNAs and histone modifications, will also be discussed. Critical Issues: Epithelialization is an essential component of wound healing used as a defining parameter of a successful wound closure. A wound cannot be considered healed in the absence of re-epithelialization. The epithelialization process is impaired in all types of chronic wounds. Future Directions: A comprehensive understanding of the epithelialization process will ultimately lead to the development of novel therapeutic approaches to promote wound closure. PMID:25032064

  1. DNA Damage Response in Neonatal and Adult Stromal Cells Compared With Induced Pluripotent Stem Cells

    PubMed Central

    Liedtke, Stefanie; Biebernick, Sophie; Radke, Teja Falk; Stapelkamp, Daniela; Coenen, Carolin; Zaehres, Holm; Fritz, Gerhard; Kogler, Gesine

    2015-01-01

    Comprehensive analyses comparing individual DNA damage response (DDR) of induced pluripotent stem cells (iPSCs) with neonatal stromal cells with respect to their developmental age are limited. The imperative necessity of providing developmental age-matched cell sources for meaningful toxicological drug safety assessments in replacement of animal-based testing strategies is evident. Here, DDR after radiation or treatment with N-methyl-N-nitrosurea (MNU) was determined in iPSCs compared with neonatal and bone marrow stromal cells. Neonatal and adult stromal cells showed no significant morphologically detectable cytotoxicity following treatment with 1 Gy or 1 mM MNU, whereas iPSCs revealed a much higher sensitivity. Foci analyses revealed an effective DNA repair in stromal cell types and iPSCs, as reflected by a rapid formation and disappearance of phosphorylated ATM and γH2AX foci. Furthermore, quantitative polymerase chain reaction analyses revealed the highest basic expression level of DDR and repair-associated genes in iPSCs, followed by neonatal stromal cells and adult stromal cells with the lowest expression levels. In addition, the influence of genotoxic stress prior to and during osteogenic differentiation of neonatal and adult stromal cells was analyzed applying common differentiation procedures. Experiments presented here suggest a developmental age-dependent basic expression level of genes involved in the processing of DNA damage. In addition a differentiation-dependent downregulation of repair genes was observed during osteogenesis. These results strongly support the requirement to provide adequate cell sources for toxicological in vitro drug testing strategies that match to the developmental age and differentiation status of the presumptive target cell of interest. Significance The results obtained in this study advance the understanding of DNA damage processing in human neonatal stromal cells as compared with adult stromal cells and induced pluripotent

  2. Isolation of Multipotent Mesenchymal Stromal Cells from Cryopreserved Human Umbilical Cord Tissue.

    PubMed

    Romanov, Yu A; Balashova, E E; Volgina, N E; Kabaeva, N V; Dugina, T N; Sukhikh, G T

    2016-02-01

    Umbilical cord stroma is an easily available, convenient, and promising source of multipotent mesenchymal stromal cells for regenerative medicine. Cryogenic storage of umbilical cord tissue provides more possibilities for further isolation of multipotent mesenchymal stromal cells for autologous transplantation or scientific purposes. Here we developed a protocol for preparation of the whole umbilical cord tissue for cryogenic storage that in combination with the previously described modified method of isolation of multipotent mesenchymal stromal cells allowed us to isolate cells with high proliferative potential, typical phenotype, and preserved differentiation potencies. PMID:26902359

  3. A molecular classification of human mesenchymal stromal cells

    PubMed Central

    Rohart, Florian; Mason, Elizabeth A.; Matigian, Nicholas; Mosbergen, Rowland; Korn, Othmar; Chen, Tyrone; Butcher, Suzanne; Patel, Jatin; Atkinson, Kerry; Khosrotehrani, Kiarash; Fisk, Nicholas M.; Lê Cao, Kim-Anh

    2016-01-01

    Mesenchymal stromal cells (MSC) are widely used for the study of mesenchymal tissue repair, and increasingly adopted for cell therapy, despite the lack of consensus on the identity of these cells. In part this is due to the lack of specificity of MSC markers. Distinguishing MSC from other stromal cells such as fibroblasts is particularly difficult using standard analysis of surface proteins, and there is an urgent need for improved classification approaches. Transcriptome profiling is commonly used to describe and compare different cell types; however, efforts to identify specific markers of rare cellular subsets may be confounded by the small sample sizes of most studies. Consequently, it is difficult to derive reproducible, and therefore useful markers. We addressed the question of MSC classification with a large integrative analysis of many public MSC datasets. We derived a sparse classifier (The Rohart MSC test) that accurately distinguished MSC from non-MSC samples with >97% accuracy on an internal training set of 635 samples from 41 studies derived on 10 different microarray platforms. The classifier was validated on an external test set of 1,291 samples from 65 studies derived on 15 different platforms, with >95% accuracy. The genes that contribute to the MSC classifier formed a protein-interaction network that included known MSC markers. Further evidence of the relevance of this new MSC panel came from the high number of Mendelian disorders associated with mutations in more than 65% of the network. These result in mesenchymal defects, particularly impacting on skeletal growth and function. The Rohart MSC test is a simple in silico test that accurately discriminates MSC from fibroblasts, other adult stem/progenitor cell types or differentiated stromal cells. It has been implemented in the www.stemformatics.org resource, to assist researchers wishing to benchmark their own MSC datasets or data from the public domain. The code is available from the CRAN

  4. Zfp423 Promotes Adipogenic Differentiation of Bovine Stromal Vascular Cells

    PubMed Central

    Huang, Yan; Das, Arun Kr; Yang, Qi-Yuan; Zhu, Mei-Jun; Du, Min

    2012-01-01

    Intramuscular fat or marbling is critical for the palatability of beef. In mice, very recent studies show that adipocytes and fibroblasts share a common pool of progenitor cells, with Zinc finger protein 423 (Zfp423) as a key initiator of adipogenic differentiation. To evaluate the role of Zfp423 in intramuscular adipogenesis and marbling in beef cattle, we sampled beef muscle for separation of stromal vascular cells. These cells were immortalized with pCI neo-hEST2 and individual clones were selected by G418. A total of 288 clones (3×96 well plates) were isolated and induced to adipogenesis. The presence of adipocytes was assessed by Oil-Red-O staining. Three clones with high and low adipogenic potential respectively were selected for further analyses. In addition, fibro/adipogenic progenitor cells were selected using a surface marker, platelet derived growth factor receptor (PDGFR) α. The expression of Zfp423 was much higher (307.4±61.9%, P<0.05) in high adipogenic cells, while transforming growth factor (TGF)-β was higher (156.1±48.7%, P<0.05) in low adipogenic cells. Following adipogenic differentiation, the expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) were much higher (239.4±84.1% and 310.7±138.4%, respectively, P<0.05) in high adipogenic cells. Over-expression of Zfp423 in stromal vascular cells and cloned low adipogenic cells dramatically increased their adipogenic differentiation, accompanied with the inhibition of TGF-β expression. Zfp423 knockdown by shRNA in high adipogenic cells largely prevented their adipogenic differentiation. The differential regulation of Zfp423 and TGF-β between low and high adipogenic cells is associated with the DNA methylation in their promoters. In conclusion, data show that Zfp423 is a critical regulator of adipogenesis in stromal vascular cells of bovine muscle, and Zfp423 may provide a molecular target for enhancing intramuscular adipogenesis

  5. A molecular classification of human mesenchymal stromal cells.

    PubMed

    Rohart, Florian; Mason, Elizabeth A; Matigian, Nicholas; Mosbergen, Rowland; Korn, Othmar; Chen, Tyrone; Butcher, Suzanne; Patel, Jatin; Atkinson, Kerry; Khosrotehrani, Kiarash; Fisk, Nicholas M; Lê Cao, Kim-Anh; Wells, Christine A

    2016-01-01

    Mesenchymal stromal cells (MSC) are widely used for the study of mesenchymal tissue repair, and increasingly adopted for cell therapy, despite the lack of consensus on the identity of these cells. In part this is due to the lack of specificity of MSC markers. Distinguishing MSC from other stromal cells such as fibroblasts is particularly difficult using standard analysis of surface proteins, and there is an urgent need for improved classification approaches. Transcriptome profiling is commonly used to describe and compare different cell types; however, efforts to identify specific markers of rare cellular subsets may be confounded by the small sample sizes of most studies. Consequently, it is difficult to derive reproducible, and therefore useful markers. We addressed the question of MSC classification with a large integrative analysis of many public MSC datasets. We derived a sparse classifier (The Rohart MSC test) that accurately distinguished MSC from non-MSC samples with >97% accuracy on an internal training set of 635 samples from 41 studies derived on 10 different microarray platforms. The classifier was validated on an external test set of 1,291 samples from 65 studies derived on 15 different platforms, with >95% accuracy. The genes that contribute to the MSC classifier formed a protein-interaction network that included known MSC markers. Further evidence of the relevance of this new MSC panel came from the high number of Mendelian disorders associated with mutations in more than 65% of the network. These result in mesenchymal defects, particularly impacting on skeletal growth and function. The Rohart MSC test is a simple in silico test that accurately discriminates MSC from fibroblasts, other adult stem/progenitor cell types or differentiated stromal cells. It has been implemented in the www.stemformatics.org resource, to assist researchers wishing to benchmark their own MSC datasets or data from the public domain. The code is available from the CRAN

  6. Epithelial organization, cell polarity and tumorigenesis.

    PubMed

    McCaffrey, Luke Martin; Macara, Ian G

    2011-12-01

    Epithelial cells comprise the foundation for the majority of organs in the mammalian body, and are the source of approximately 90% of all human cancers. Characteristically, epithelial cells form intercellular adhesions, exhibit apical/basal polarity, and orient their mitotic spindles in the plane of the epithelial sheet. Defects in these attributes result in the tissue disorganization associated with cancer. Epithelia undergo self-renewal from stem cells, which might in some cases be the cell of origin for cancers. The PAR polarity proteins are master regulators of epithelial organization, and are closely linked to signaling pathways such as Hippo, which orchestrate proliferation and apoptosis to control organ size. 3D ex vivo culture systems can now faithfully recapitulate epithelial organ morphogenesis, providing a powerful approach to study both normal development and the initiating events in carcinogenesis. PMID:21782440

  7. [Recent studies on corneal epithelial barrier function].

    PubMed

    Liu, F F; Li, W; Liu, Z G; Chen, W S

    2016-08-01

    Corneal epithelium, the outermost layer of eyeball, is the main route for foreign materials to enter the eye. Under physiological conditions, the corneal epithelial superficial cells form a functionally selective permeability barrier. Integral corneal epithelial barrier function not only ensures the enrolling of nutrients which is required for regular metabolism, but also prevents foreign bodies, or disease-causing microorganism invasion. Recently, a large number of clinical and experimental studies have shown that abnormal corneal epithelial barrier function is the pathological basis for many ocular diseases. In addition, some study found that corneal epithelial barrier constitutes a variety of proteins involved in cell proliferation, differentiation, apoptosis, and a series of physiological and pathological processes. This paper reviewed recent studies specifically on the corneal epithelial barrier, highlights of its structure, function and influence factors. (Chin J Ophthalmol, 2016, 52: 631-635). PMID:27562284

  8. A novel protein isoform of the RON tyrosine kinase receptor transforms human pancreatic duct epithelial cells

    PubMed Central

    Chakedis, Jeffery; French, Randall; Babicky, Michele; Jaquish, Dawn; Howard, Haleigh; Mose, Evangeline; Lam, Raymond; Holman, Patrick; Miyamoto, Jaclyn; Walterscheid, Zakk; Lowy, Andrew M.

    2015-01-01

    The MST1R gene is overexpressed in pancreatic cancer producing elevated levels of the RON tyrosine kinase receptor protein. While mutations in MST1R are rare, alternative splice variants have been previously reported in epithelial cancers. We report the discovery of a novel RON isoform discovered in human pancreatic cancer. Partial splicing of exons 5 and 6 (P5P6) produces a RON isoform that lacks the first extracellular immunoglobulin-plexin-transcription (IPT) domain. The splice variant is detected in 73% of pancreatic adenocarcinoma patient derived xenografts and 71% of pancreatic cancer cell lines. Peptides specific to RON P5P6 detected in human pancreatic cancer specimens by mass spectrometry confirms translation of the protein isoform. The P5P6 isoform is found to be constitutively phosphorylated, present in the cytoplasm, and it traffics to the plasma membrane. Expression of P5P6 in immortalized human pancreatic duct epithelial (HPDE) cells activates downstream AKT, and in human pancreatic epithelial nestin-expressing (HPNE) cells activates both the AKT and MAPK pathways. Inhibiting RON P5P6 in HPDE cells using a small molecule inhibitor BMS-777607 blocked constitutive activation and decreased AKT signaling. P5P6 transforms NIH3T3 cells and induces tumorigenicity in HPDE cells. Resultant HPDE-P5P6 tumors develop a dense stromal compartment similar to that seen in pancreatic cancer. In summary, we have identified a novel and constitutively active isoform of the RON tyrosine kinase receptor that has transforming activity and is expressed in human pancreatic cancer. These findings provide additional insight into the biology of the RON receptor in pancreatic cancer and are clinically relevant to the study of RON as a potential therapeutic target. PMID:26477314

  9. A novel protein isoform of the RON tyrosine kinase receptor transforms human pancreatic duct epithelial cells.

    PubMed

    Chakedis, J; French, R; Babicky, M; Jaquish, D; Howard, H; Mose, E; Lam, R; Holman, P; Miyamoto, J; Walterscheid, Z; Lowy, A M

    2016-06-23

    The MST1R gene is overexpressed in pancreatic cancer producing elevated levels of the RON tyrosine kinase receptor protein. While mutations in MST1R are rare, alternative splice variants have been previously reported in epithelial cancers. We report the discovery of a novel RON isoform discovered in human pancreatic cancer. Partial splicing of exons 5 and 6 (P5P6) produces a RON isoform that lacks the first extracellular immunoglobulin-plexin-transcription domain. The splice variant is detected in 73% of xenografts derived from pancreatic adenocarcinoma patients and 71% of pancreatic cancer cell lines. Peptides specific to RON P5P6 detected in human pancreatic cancer specimens by mass spectrometry confirm translation of the protein isoform. The P5P6 isoform is found to be constitutively phosphorylated, present in the cytoplasm, and it traffics to the plasma membrane. Expression of P5P6 in immortalized human pancreatic duct epithelial (HPDE) cells activates downstream AKT, and in human pancreatic epithelial nestin-expressing cells, activates both the AKT and MAPK pathways. Inhibiting RON P5P6 in HPDE cells using a small molecule inhibitor BMS-777607 blocked constitutive activation and decreased AKT signaling. P5P6 transforms NIH3T3 cells and induces tumorigenicity in HPDE cells. Resultant HPDE-P5P6 tumors develop a dense stromal compartment similar to that seen in pancreatic cancer. In summary, we have identified a novel and constitutively active isoform of the RON tyrosine kinase receptor that has transforming activity and is expressed in human pancreatic cancer. These findings provide additional insight into the biology of the RON receptor in pancreatic cancer and are clinically relevant to the study of RON as a potential therapeutic target. PMID:26477314

  10. Epithelial-intrinsic IKKα expression regulates group 3 innate lymphoid cell responses and antibacterial immunity

    PubMed Central

    Giacomin, Paul R.; Moy, Ryan H.; Noti, Mario; Osborne, Lisa C.; Siracusa, Mark C.; Alenghat, Theresa; Liu, Bigang; McCorkell, Kelly A.; Troy, Amy E.; Rak, Gregory D.; Hu, Yinling; May, Michael J.; Ma, Hak-Ling; Fouser, Lynette A.; Sonnenberg, Gregory F.

    2015-01-01

    Innate lymphoid cells (ILCs) are critical for maintaining epithelial barrier integrity at mucosal surfaces; however, the tissue-specific factors that regulate ILC responses remain poorly characterized. Using mice with intestinal epithelial cell (IEC)–specific deletions in either inhibitor of κB kinase (IKK)α or IKKβ, two critical regulators of NFκB activation, we demonstrate that IEC-intrinsic IKKα expression selectively regulates group 3 ILC (ILC3)–dependent antibacterial immunity in the intestine. Although IKKβΔIEC mice efficiently controlled Citrobacter rodentium infection, IKKαΔIEC mice exhibited severe intestinal inflammation, increased bacterial dissemination to peripheral organs, and increased host mortality. Consistent with weakened innate immunity to C. rodentium, IKKαΔIEC mice displayed impaired IL-22 production by RORγt+ ILC3s, and therapeutic delivery of rIL-22 or transfer of sort-purified IL-22–competent ILCs from control mice could protect IKKαΔIEC mice from C. rodentium–induced morbidity. Defective ILC3 responses in IKKαΔIEC mice were associated with overproduction of thymic stromal lymphopoietin (TSLP) by IECs, which negatively regulated IL-22 production by ILC3s and impaired innate immunity to C. rodentium. IEC-intrinsic IKKα expression was similarly critical for regulation of intestinal inflammation after chemically induced intestinal damage and colitis. Collectively, these data identify a previously unrecognized role for epithelial cell–intrinsic IKKα expression and TSLP in regulating ILC3 responses required to maintain intestinal barrier immunity. PMID:26371187

  11. Mesenchymal stromal cells and chronic inflammatory bowel disease.

    PubMed

    Algeri, M; Conforti, A; Pitisci, A; Starc, N; Tomao, L; Bernardo, M E; Locatelli, F

    2015-12-01

    Recent experimental findings have shown the ability of mesenchymal stromal cells (MSCs) to home to damaged tissues and to produce paracrine factors with anti-inflammatory properties, potentially resulting in reduction of inflammation and functional recovery of the damaged tissues. Prompted by these intriguing properties and on the basis of encouraging preclinical data, MSCs are currently being studied in several immune-mediated disorders. Inflammatory bowel diseases (IBD) represent a setting in which MSCs-based therapy has been extensively investigated. Phase I and II studies have documented the safety and feasibility of MSCs. However, efficacy results have so far been conflicting. In this review, we will discuss the biologic rationale that makes MSCs a promising therapeutic tool for IBD, and analyze recent experimental and clinical findings, highlighting current limitations and future perspectives of MSCs-related immunotherapy for IBD. PMID:26170204

  12. [Multipotent mesenchymal stromal and immune cells interaction: reciprocal effects].

    PubMed

    Andreeva, E R; Buravkova, L B

    2012-12-01

    Adult multipotent mesenchymal stromal cells (MMSCs) are considered now as one of the key players in physiological and pathological tissue remodeling. Clarification of the mechanisms that mediate MMSC functions, is one of the most intriguing issues in modern cell physiology. Present Review summarizes current understanding of the MMSC effects on different types of immune cells. The realization of MMSC immunomodulatory capacity is considered as a contribution of direct cell-to-cell contacts, soluble mediators and of local microenvironmental factors, the most important of which is the partial pressure of oxygen. MMSCs and immune cells interaction is discussed in the terms of reciprocal effects, modifying properties of all "partner cells". Special attention is paid to the influence of immune cells on the MMSCs. "Immunosuppressive" phenomenon of MMSCs is considered as the integral part of the "response to injury" mechanism. PMID:23461191

  13. Gastrointestinal stromal tumor with KIT mutation in neurofibromatosis type 1.

    PubMed

    Namgung, Hwan

    2011-10-01

    Multiple jejunalgastrointestinal stromal tumors (GISTs) were found in a 52-year-old woman with a history of neurofibromatosis type 1. These tumors were composed of interlacing fascicles of uniform spindle cells with eosinophilic cytoplasm. Immunohistochemically, the tumor cells were positive for CD117, CD34 and negative for S-100, smooth muscle actin. Molecular analysis for activating mutations of KIT and PDGFRA was performed in two tumors. Contrary to sporadic GISTs, the NF1-associated GISTs are characterized by rare mutations of KIT or PDGFRA. But, one missense point mutation (Trp557Gly) was identified in KIT exon 11 of the extramural portion of the largest tumor in this case. The intramural portion of the largest tumor and the other tumor had wild type KIT and PDGFRA. PMID:22111084

  14. Shaping of the tumor microenvironment: Stromal cells and vessels.

    PubMed

    Blonska, Marzenna; Agarwal, Nitin K; Vega, Francisco

    2015-10-01

    Lymphomas develop and progress in a specialized tissue microenvironment such as bone marrow as well as secondary lymphoid organs such as lymph node and spleen. The lymphoma microenvironment is characterized by a heterogeneous population of stromal cells, including fibroblastic reticular cells, nurse-like cells, mesenchymal stem cells, follicular dendritic cells, and inflammatory cells such as macrophages, T- and B-cells. These cell populations interact with the lymphoma cells to promote lymphoma growth, survival and drug resistance through multiple mechanisms. Angiogenesis is also recognized as an important factor associated with lymphoma progression. In recent years, we have learned that the interaction between the malignant and non-malignant cells is bidirectional and resembles, at least in part, the pattern seen between non-neoplastic lymphoid cells and the normal microenvironment of lymphoid organs. A summary of the current knowledge of lymphoma microenvironment focusing on the cellular components will be reviewed here. PMID:25794825

  15. The neo-adjuvant treatment in gastrointestinal stromal tumor.

    PubMed

    Catania, V; Consoli, A; Cavallaro, A; Liardo, R L E; Malaguarnera, M

    2010-08-01

    Gastrointestinal Stromal Tumor (GIST) is a rare intra-abdominal tumor, characterized by a specific histological and immunohistochemical pattern. These tumors affect with higher frequency stomach and small bowel and occur at a median age of 60 years with a slight male predominance. An early stage of GIST often don't cause any symptoms, so most GISTs are diagnosed in later stages of the disease. We report a case of GIST diagnosed only with clinical data and positron emission tomography (PET). We demonstrate the usefulness of neoadjuvant treatment with Imatinib mesylate, a newly developed tyrosine kinase receptor inhibitor. The neoadjuvant treatment with Imatinib reduced the mass size and vascularization, making possible a surgical approach. PMID:20707293

  16. Low Reactive Level Laser Therapy for Mesenchymal Stromal Cells Therapies

    PubMed Central

    Kushibiki, Toshihiro; Hirasawa, Takeshi; Okawa, Shinpei; Ishihara, Miya

    2015-01-01

    Low reactive level laser therapy (LLLT) is mainly focused on the activation of intracellular or extracellular chromophore and the initiation of cellular signaling by using low power lasers. Over the past forty years, it was realized that the laser therapy had the potential to improve wound healing and reduce pain and inflammation. In recent years, the term LLLT has become widely recognized in the field of regenerative medicine. In this review, we will describe the mechanisms of action of LLLT at a cellular level and introduce the application to mesenchymal stem cells and mesenchymal stromal cells (MSCs) therapies. Finally, our recent research results that LLLT enhanced the MSCs differentiation to osteoblast will also be described. PMID:26273309

  17. Stromal cells as trend-setters for cells migrating into the lymph node.

    PubMed

    Buettner, M; Dittrich-Breiholz, O; Falk, C S; Lochner, M; Smoczek, A; Menzel, F; Bornemann, M; Bode, U

    2015-05-01

    Lymph node stromal cells are known to be immunorelevant during inflammation and tolerance. Differences between peripheral lymph nodes and mesenteric lymph nodes are important for an efficient and effective immune defense. Stromal cells were considered to be perfectly adapted to their draining area and not changeable concerning their expression pattern. Here we show that stromal cells can change their profile after isolation and transplantation into a different draining area. Subsequently, these newly organized lymph nodes are able to induce not only a region-specific but also an antigen-specific immune response. Thus, stromal cells are trend-setters for immune cells in producing a microenvironment that allows an optimized immune defense. PMID:25354321

  18. A Stromal Cell Niche for Human and Mouse Type 3 Innate Lymphoid Cells.

    PubMed

    Hoorweg, Kerim; Narang, Priyanka; Li, Zhi; Thuery, Anne; Papazian, Natalie; Withers, David R; Coles, Mark C; Cupedo, Tom

    2015-11-01

    Adaptive immunity critically depends on the functional compartmentalization of secondary lymphoid organs. Mesenchymal stromal cells create and maintain specialized niches that support survival, activation, and expansion of T and B cells, and integrated analysis of lymphocytes and their niche has been instrumental in understanding adaptive immunity. Lymphoid organs are also home to type 3 innate lymphoid cells (ILC3), innate effector cells essential for barrier immunity. However, a specialized stromal niche for ILC3 has not been identified. A novel lineage-tracing approach now identifies a subset of murine fetal lymphoid tissue organizer cells that gives rise exclusively to adult marginal reticular cells. Moreover, both cell types are conserved from mice to humans and colocalize with ILC3 in secondary lymphoid tissues throughout life. In sum, we provide evidence that fetal stromal organizers give rise to adult marginal reticular cells and form a dedicated stromal niche for innate ILC3 in adaptive lymphoid organs. PMID:26378073

  19. A stromal cell niche for human and mouse type 3 innate lymphoid cells ¶

    PubMed Central

    Li, Zhi; Thuery, Anne; Papazian, Natalie; Withers, David R.; Coles, Mark C.; Cupedo, Tom

    2015-01-01

    Adaptive immunity critically depends on the functional compartmentalization of secondary lymphoid organs. Mesenchymal stromal cells create and maintain specialized niches that support survival, activation and expansion of T and B cells, and integrated analysis of lymphocytes and their niche has been instrumental in understanding adaptive immunity. Lymphoid organs are also home to type 3 innate lymphoid cells (ILC3), innate effector cells essential for barrier immunity. However, a specialized stromal niche for ILC3 has not been identified. A novel lineage-tracing approach now identifies a subset of murine fetal lymphoid tissue organizer cells that gives rise exclusively to adult marginal reticular cells (MRC). Moreover, both cell types are conserved from mouse to human and co-localize with ILC3 in secondary lymphoid tissues throughout life. In sum, we provide evidence that fetal stromal organizers give rise to adult MRC and form a dedicated stromal niche for innate ILC3 in adaptive lymphoid organs. PMID:26378073

  20. CCI-779 in Treating Patients With Soft Tissue Sarcoma or Gastrointestinal Stromal Tumor

    ClinicalTrials.gov

    2013-06-03

    Gastrointestinal Stromal Tumor; Recurrent Adult Soft Tissue Sarcoma; Stage I Adult Soft Tissue Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage IV Adult Soft Tissue Sarcoma

  1. Mesenchymal stromal cells from human umbilical cords display poor chondrogenic potential in scaffold-free three dimensional cultures.

    PubMed

    Islam, A; Hansen, A K; Mennan, C; Martinez-Zubiaurre, I

    2016-01-01

    Many researchers world over are currently investigating the suitability of stromal cells harvested from foetal tissues for allogeneic cell transplantation therapies or for tissue engineering purposes. In this study, we have investigated the chondrogenic potential of mesenchymal stromal cells (MSCs) isolated from whole sections of human umbilical cord or mixed cord (UCSCs-MC), and compared them with cells isolated from synovial membrane (SMSCs), Hoffa's fat pad (HFPSCs) and cartilage. All MSCs were positive for surface markers including CD73, CD90, CD105, CD44, CD146 and CD166, but negative for CD11b, CD19, CD34, CD45 and HLA-DR in addition to CD106 and CD271. Chondrogenic potential of all cell sources was studied using 3D pellet cultures incubated in the presence of different combinations of anabolic substances such as dexamethasone, IGF-1, TGF-β1, TGF-β3, BMP-2 and BMP-7. BMP-2 and dexamethasone in combination with TGF-β1 or TGF-β3 excelled at inducing chondrogenesis on SMSCs, HFPSCs and chondrocytes, as measured by glycosaminoglycans and collagen type II staining of pellets, quantitative glycosaminoglycan expression, quantitative PCR of cartilage signature genes and electron microscopy. In contrast, none of the tested growth factor combinations was sufficient to induce chondrogenesis on UCSCs-MC. Moreover, incubation of UCSCs-MC spheroids in the presence of cartilage pieces or synovial cells in co-cultures did not aid chondrogenic induction. In summary, we show that in comparison with MSCs harvested from adult joint tissues, UCSCs-MC display poor chondrogenic abilities. This observation should alert researchers at the time of considering UCSCs-MC as cartilage forming cells in tissue engineering or repair strategies. PMID:27232667

  2. The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells.

    PubMed

    Coffelt, Seth B; Marini, Frank C; Watson, Keri; Zwezdaryk, Kevin J; Dembinski, Jennifer L; LaMarca, Heather L; Tomchuck, Suzanne L; Honer zu Bentrup, Kerstin; Danka, Elizabeth S; Henkle, Sarah L; Scandurro, Aline B

    2009-03-10

    Bone marrow-derived mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs) have been shown to engraft into the stroma of several tumor types, where they contribute to tumor progression and metastasis. However, the chemotactic signals mediating MSC migration to tumors remain poorly understood. Previous studies have shown that LL-37 (leucine, leucine-37), the C-terminal peptide of human cationic antimicrobial protein 18, stimulates the migration of various cell types and is overexpressed in ovarian, breast, and lung cancers. Although there is evidence to support a pro-tumorigenic role for LL-37, the function of the peptide in tumors remains unclear. Here, we demonstrate that neutralization of LL-37 in vivo significantly reduces the engraftment of MSCs into ovarian tumor xenografts, resulting in inhibition of tumor growth as well as disruption of the fibrovascular network. Migration and invasion experiments conducted in vitro indicated that the LL-37-mediated migration of MSCs to tumors likely occurs through formyl peptide receptor like-1. To assess the response of MSCs to the LL-37-rich tumor microenvironment, conditioned medium from LL-37-treated MSCs was assessed and found to contain increased levels of several cytokines and pro-angiogenic factors compared with controls, including IL-1 receptor antagonist, IL-6, IL-10, CCL5, VEGF, and matrix metalloproteinase-2. Similarly, Matrigel mixed with LL-37, MSCs, or the combination of the two resulted in a significant number of vascular channels in nude mice. These data indicate that LL-37 facilitates ovarian tumor progression through recruitment of progenitor cell populations to serve as pro-angiogenic factor-expressing tumor stromal cells. PMID:19234121

  3. The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells

    PubMed Central

    Coffelt, Seth B.; Marini, Frank C.; Watson, Keri; Zwezdaryk, Kevin J.; Dembinski, Jennifer L.; LaMarca, Heather L.; Tomchuck, Suzanne L.; zu Bentrup, Kerstin Honer; Danka, Elizabeth S.; Henkle, Sarah L.; Scandurro, Aline B.

    2009-01-01

    Bone marrow-derived mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs) have been shown to engraft into the stroma of several tumor types, where they contribute to tumor progression and metastasis. However, the chemotactic signals mediating MSC migration to tumors remain poorly understood. Previous studies have shown that LL-37 (leucine, leucine-37), the C-terminal peptide of human cationic antimicrobial protein 18, stimulates the migration of various cell types and is overexpressed in ovarian, breast, and lung cancers. Although there is evidence to support a pro-tumorigenic role for LL-37, the function of the peptide in tumors remains unclear. Here, we demonstrate that neutralization of LL-37 in vivo significantly reduces the engraftment of MSCs into ovarian tumor xenografts, resulting in inhibition of tumor growth as well as disruption of the fibrovascular network. Migration and invasion experiments conducted in vitro indicated that the LL-37-mediated migration of MSCs to tumors likely occurs through formyl peptide receptor like-1. To assess the response of MSCs to the LL-37-rich tumor microenvironment, conditioned medium from LL-37-treated MSCs was assessed and found to contain increased levels of several cytokines and pro-angiogenic factors compared with controls, including IL-1 receptor antagonist, IL-6, IL-10, CCL5, VEGF, and matrix metalloproteinase-2. Similarly, Matrigel mixed with LL-37, MSCs, or the combination of the two resulted in a significant number of vascular channels in nude mice. These data indicate that LL-37 facilitates ovarian tumor progression through recruitment of progenitor cell populations to serve as pro-angiogenic factor-expressing tumor stromal cells. PMID:19234121

  4. Esophageal epithelial cells acquire functional characteristics of activated myofibroblasts after undergoing an epithelial to mesenchymal transition

    PubMed Central

    Muir, Amanda B.; Dods, Kara; Noah, Yuli; Toltzis, Sarit; Chandramouleeswaran, Prasanna Modayur; Lee, Anna; Benitez, Alain; Bedenbaugh, Adam; Falk, Gary W.; Wells, Rebecca G.; Nakagawa, Hiroshi; Wang, Mei-Lun

    2015-01-01

    Background and Aims Eosinophilic esophagitis (EoE) is an allergic inflammatory disease that leads to esophageal fibrosis and stricture. We have recently shown that in EoE, esophageal epithelial cells undergo an epithelial to mesenchymal transition (EMT), characterized by gain of mesenchymal markers and loss of epithelial gene expression. Whether epithelial cells exposed to profibrotic cytokines can also acquire the functional characteristics of activated myofibroblasts, including migration, contraction, and extracellular matrix deposition, is relevant to our understanding and treatment of EoE-associated fibrogenesis. In the current study, we characterize cell migration, contraction, and collagen production by esophageal epithelial cells that have undergone cytokine-induced EMT in vitro. Methods and Results Stimulation of human non-transformed immortalized esophageal epithelial cells (EPC2-hTERT) with profibrotic cytokines TNFα, TGFβ, and IL1β for three weeks led to acquisition of mesenchymal αSMA and vimentin, and loss of epithelial E-cadherin expression. Upon removal of the profibrotic stimulus, epithelial characteristics were partially rescued. TGFβ stimulation had a robust effect upon epithelial collagen production. Surprisingly, TNFα stimulation had the most potent effect upon cell migration and contraction, exceeding the effects of the prototypical profibrotic cytokine TGFβ. IL1β stimulation alone had minimal effect upon esophageal epithelial migration, contraction, and collagen production. Conclusions Esophageal epithelial cells that have undergone EMT acquire functional characteristics of activated myofibroblasts in vitro. Profibrotic cytokines exert differential effects upon esophageal epithelial cells, underscoring complexities of fibrogenesis in EoE, and implicating esophageal epithelial cells as effector cells in EoE-associated fibrogenesis. PMID:25183431

  5. Airway epithelial cell responses to ozone injury

    SciTech Connect

    Leikauf, G.D.; Simpson, L.G.; Zhao, Qiyu

    1995-03-01

    The airway epithelial cell is an important target in ozone injury. Once activated, the airway epithelium responds in three phases. The initial, or immediate phase, involves activation of constitutive cells, often through direct covalent interactions including the formation of secondary ozonolysis products-hydroxyhydroperoxides, aldehydes, and hydrogen peroxide. Recently, we found hydroxyhydroperoxides to be potent agonists; of bioactive eicosanoid formation by human airway epithelial cells in culture. Other probable immediate events include activation and inactivation of enzymes present on the epithelial surface (e.g., neutral endopeptidase). During the next 2 to 24 hr, or early phase, epithelial cells respond by synthesis and release of chemotactic factors, including chemokines-macrophage inflammatory protein-2, RANTES, and interleukin-8. Infiltrating leukocytes during this period also release elastase, an important agonist of epithelial cell mucus secretion and additional chemokine formation. The third (late) phase of ozone injury is characterized by eosinophil or monocyte infiltration. Cytokine expression leads to alteration of structural protein synthesis, with increases in fibronectin evident by in situ hybridization. Synthesis of epithelial antiproteases, e.g., secretary leukocyte protease inhibitor, may also increase locally 24 to 48 hr after elastase concentrations become excessive. Thus, the epithelium is not merely a passive barrier to ozone injury but has a dynamic role in directing the migration, activating, and then counteracting inflammatory cells. Through these complex interactions, epithelial cells can be viewed as the initiators (alpha) and the receptors (omega) of ozone-induced airway disease. 51 refs., 2 figs., 3 tabs.

  6. The effect of autologous bone marrow stromal cells differentiated on scaffolds for canine tibial bone reconstruction.

    PubMed

    Özdal-Kurt, F; Tuğlu, I; Vatansever, H S; Tong, S; Deliloğlu-Gürhan, S I

    2015-01-01

    Bone marrow contains mesenchymal stem cells that form many tissues. Various scaffolds are available for bone reconstruction by tissue engineering. Osteoblastic differentiated bone marrow stromal cells (BMSC) promote osteogenesis on scaffolds and stimulate bone regeneration. We investigated the use of cultured autologous BMSC on different scaffolds for healing defects in tibias of adult male canines. BMSC were isolated from canine humerus bone marrow, differentiated into osteoblasts in culture and loaded onto porous ceramic scaffolds including hydroxyapatite 1, hydroxyapatite gel and calcium phosphate. Osteoblast differentiation was verified by osteonectine and osteocalcine immunocytochemistry. The scaffolds with stromal cells were implanted in the tibial defect. Scaffolds without stromal cells were used as controls. Sections from the defects were processed for histological, ultrastructural, immunohistochemical and histomorphometric analyses to analyze the healing of the defects. BMSC were spread, allowed to proliferate and differentiate to osteoblasts as shown by alizarin red histochemistry, and osteocalcine and osteonectine immunostaining. Scanning electron microscopy showed that BMSC on the scaffolds were more active and adhesive to the calcium phosphate scaffold compared to the others. Macroscopic bone formation was observed in all groups, but scaffolds with stromal cells produced significantly better results. Bone healing occurred earlier and faster with stromal cells on the calcium phosphate scaffold and produced more callus compared to other scaffolds. Tissue healing and o