Science.gov

Sample records for mixed quantum classical

  1. Classical-quantum mixing in the random 2-satisfiability problem

    NASA Astrophysics Data System (ADS)

    Potirniche, Ionut-Dragos; Laumann, C. R.; Sondhi, S. L.

    2015-10-01

    Classical satisfiability (SAT) and quantum satisfiability (QSAT) are complete problems for the complexity classes NP and QMA, respectively, and they are believed to be intractable for both classical and quantum computers. Statistical ensembles of instances of these problems have been studied previously in an attempt to elucidate their typical, as opposed to worst-case, behavior. In this paper, we introduce a statistical ensemble that interpolates between classical and quantum. For the simplest 2-SAT-2-QSAT ensemble, we find the exact boundary that separates SAT and UNSAT instances. We do so by establishing coincident lower and upper bounds, in the limit of large instances, on the extent of the UNSAT and SAT regions, respectively.

  2. Mixed quantum-classical versus full quantum dynamics: Coupled quasiparticle-oscillator system

    NASA Astrophysics Data System (ADS)

    Schanz, Holger; Esser, Bernd

    1997-05-01

    The relation between the dynamical properties of a coupled quasiparticle-oscillator system in the mixed quantum-classical and fully quantized descriptions is investigated. The system is considered as a model for applying a stepwise quantization. Features of the nonlinear dynamics in the mixed description such as the presence of a separatrix structure or regular and chaotic motion are shown to be reflected in the evolu- tion of the quantum state vector of the fully quantized system. In particular, it is demonstrated how wave packets propagate along the separatrix structure of the mixed description, and that chaotic dynamics leads to a strongly entangled quantum state vector. Special emphasis is given to viewing the system from a dyn- amical Born-Oppenheimer approximation defining integrable reference oscillators, and elucidating the role of the nonadiabatic couplings which complement this approximation into a rigorous quantization scheme.

  3. Mixed quantum-classical equilibrium in global flux surface hopping

    SciTech Connect

    Sifain, Andrew E.; Wang, Linjun; Prezhdo, Oleg V.

    2015-06-14

    Global flux surface hopping (GFSH) generalizes fewest switches surface hopping (FSSH)—one of the most popular approaches to nonadiabatic molecular dynamics—for processes exhibiting superexchange. We show that GFSH satisfies detailed balance and leads to thermodynamic equilibrium with accuracy similar to FSSH. This feature is particularly important when studying electron-vibrational relaxation and phonon-assisted transport. By studying the dynamics in a three-level quantum system coupled to a classical atom in contact with a classical bath, we demonstrate that both FSSH and GFSH achieve the Boltzmann state populations. Thermal equilibrium is attained significantly faster with GFSH, since it accurately represents the superexchange process. GFSH converges closer to the Boltzmann averages than FSSH and exhibits significantly smaller statistical errors.

  4. Dynamically consistent method for mixed quantum-classical simulations: A semiclassical approach

    NASA Astrophysics Data System (ADS)

    Antipov, Sergey V.; Ye, Ziyu; Ananth, Nandini

    2015-05-01

    We introduce a new semiclassical (SC) framework, the Mixed Quantum-Classical Initial Value Representation (MQC-IVR), that can be tuned to reproduce existing quantum-limit and classical-limit SC approximations to quantum real-time correlation functions. Applying a modified Filinov transformation to a quantum-limit SC formulation leads to the association of a Filinov parameter with each degree of freedom in the system; varying this parameter from zero to infinity controls the extent of quantization of the corresponding mode. The resulting MQC-IVR expression provides a consistent dynamic framework for mixed quantum-classical simulations and we demonstrate its numerical accuracy in the calculation of real-time correlation functions for a model 1D system and a model 2D system over the full range of quantum- to classical-limit behaviors.

  5. Dynamically consistent method for mixed quantum-classical simulations: A semiclassical approach

    SciTech Connect

    Antipov, Sergey V.; Ye, Ziyu; Ananth, Nandini

    2015-05-14

    We introduce a new semiclassical (SC) framework, the Mixed Quantum-Classical Initial Value Representation (MQC-IVR), that can be tuned to reproduce existing quantum-limit and classical-limit SC approximations to quantum real-time correlation functions. Applying a modified Filinov transformation to a quantum-limit SC formulation leads to the association of a Filinov parameter with each degree of freedom in the system; varying this parameter from zero to infinity controls the extent of quantization of the corresponding mode. The resulting MQC-IVR expression provides a consistent dynamic framework for mixed quantum-classical simulations and we demonstrate its numerical accuracy in the calculation of real-time correlation functions for a model 1D system and a model 2D system over the full range of quantum- to classical-limit behaviors.

  6. Mixed Quantum-Classical Liouville Approach for Calculating Proton-Coupled Electron-Transfer Rate Constants.

    PubMed

    Shakib, Farnaz; Hanna, Gabriel

    2016-07-12

    In this work, we derive a general mixed quantum-classical formula for calculating thermal proton-coupled electron-transfer (PCET) rate constants, starting from the time integral of the quantum flux-flux correlation function. This formula allows for the direct simulation of PCET reaction dynamics via the mixed quantum-classical Liouville approach. Owing to the general nature of the derivation, this formula does not rely on any prior mechanistic assumptions and can be applied across a wide range of electronic and protonic coupling regimes. To test the validity of this formula, we applied it to a reduced model of a condensed-phase PCET reaction. Good agreement with the numerically exact rate constant is obtained, demonstrating the accuracy of our formalism. We believe that this approach constitutes a solid foundation for future investigations of the rates and mechanisms of a wide range of PCET reactions. PMID:27232936

  7. Mixed quantum-classical simulations of the vibrational relaxation of photolyzed carbon monoxide in a hemoprotein

    NASA Astrophysics Data System (ADS)

    Schubert, Alexander; Falvo, Cyril; Meier, Christoph

    2016-08-01

    We present mixed quantum-classical simulations on relaxation and dephasing of vibrationally excited carbon monoxide within a protein environment. The methodology is based on a vibrational surface hopping approach treating the vibrational states of CO quantum mechanically, while all remaining degrees of freedom are described by means of classical molecular dynamics. The CO vibrational states form the "surfaces" for the classical trajectories of protein and solvent atoms. In return, environmentally induced non-adiabatic couplings between these states cause transitions describing the vibrational relaxation from first principles. The molecular dynamics simulation yields a detailed atomistic picture of the energy relaxation pathways, taking the molecular structure and dynamics of the protein and its solvent fully into account. Using the ultrafast photolysis of CO in the hemoprotein FixL as an example, we study the relaxation of vibrationally excited CO and evaluate the role of each of the FixL residues forming the heme pocket.

  8. Mixed quantum-classical simulations of the vibrational relaxation of photolyzed carbon monoxide in a hemoprotein.

    PubMed

    Schubert, Alexander; Falvo, Cyril; Meier, Christoph

    2016-08-01

    We present mixed quantum-classical simulations on relaxation and dephasing of vibrationally excited carbon monoxide within a protein environment. The methodology is based on a vibrational surface hopping approach treating the vibrational states of CO quantum mechanically, while all remaining degrees of freedom are described by means of classical molecular dynamics. The CO vibrational states form the "surfaces" for the classical trajectories of protein and solvent atoms. In return, environmentally induced non-adiabatic couplings between these states cause transitions describing the vibrational relaxation from first principles. The molecular dynamics simulation yields a detailed atomistic picture of the energy relaxation pathways, taking the molecular structure and dynamics of the protein and its solvent fully into account. Using the ultrafast photolysis of CO in the hemoprotein FixL as an example, we study the relaxation of vibrationally excited CO and evaluate the role of each of the FixL residues forming the heme pocket. PMID:27497540

  9. Mixed Quantum/Classical Approach for Description of Molecular Collisions in Astrophysical Environments.

    PubMed

    Semenov, Alexander; Babikov, Dmitri

    2015-05-21

    An efficient and accurate mixed quantum/classical theory approach for computational treatment of inelastic scattering is extended to describe collision of an atom with a general asymmetric-top rotor polyatomic molecule. Quantum mechanics, employed to describe transitions between the internal states of the molecule, and classical mechanics, employed for description of scattering of the atom, are used in a self-consistent manner. Such calculations for rotational excitation of HCOOCH3 in collisions with He produce accurate results at scattering energies above 15 cm(-1), although resonances near threshold, below 5 cm(-1), cannot be reproduced. Importantly, the method remains computationally affordable at high scattering energies (here up to 1000 cm(-1)), which enables calculations for larger molecules and at higher collision energies than was possible previously with the standard full-quantum approach. Theoretical prediction of inelastic cross sections for a number of complex organic molecules observed in space becomes feasible using this new computational tool. PMID:26263260

  10. Tunneling dynamics with a mixed quantum-classical method: Quantum corrected propagator combined with frozen Gaussian wave packets

    SciTech Connect

    Gelman, David; Schwartz, Steven D.

    2008-07-14

    The recently developed mixed quantum-classical propagation method is extended to treat tunneling effects in multidimensional systems. Formulated for systems consisting of a quantum primary part and a classical bath of heavier particles, the method employs a frozen Gaussian description for the bath degrees of freedom, while the dynamics of the quantum subsystem is governed by a corrected propagator. The corrections are defined in terms of matrix elements of zeroth-order propagators. The method is applied to a model system of a double-well potential bilinearly coupled to a harmonic oscillator. The extension of the method, which includes nondiagonal elements of the correction propagator, enables an accurate treatment of tunneling in an antisymmetric double-well potential.

  11. Mixed Quantum-Classical Study of Nonadiabatic Curve Crossing in Condensed Phases.

    PubMed

    Xie, Weiwei; Xu, Meng; Bai, Shuming; Shi, Qiang

    2016-05-19

    We apply the mixed quantum-classical Liouville (MQCL) equation to investigate the nonadiabatic curve crossing in condensed phases. More specifically, electron transfer rate constants of the spin-Boson model are calculated by employing a rate constant expression using the collective solvent polarization as the reaction coordinate. In the calculation, classical nuclear degrees of freedom are initially sampled at the transition state configuration, and the initial state for the electronic degree of freedom is obtained from a mixed quantum-classical Boltzmann distribution. Different contributions to the electron transfer rate from the diagonal and off-diagonal elements of the initial density matrix, and contributions from trajectories with positive and negative initial velocities are analyzed. It is shown that the off-diagonal elements of the initial density matrix play an important role in the total electron transfer rate. The MQCL results are also compared with those calculated using Ehrenfest dynamics. It is found that, although the Ehrenfest dynamics is inaccurate when the reactive flux rate expression is used directly, it can give reasonably accurate results when individual contributions from the diagonal and off-diagonal elements of the initial density matrix are calculated. PMID:26840040

  12. Fast Numerical Evaluation of Time-Derivative Nonadiabatic Couplings for Mixed Quantum-Classical Methods.

    PubMed

    Ryabinkin, Ilya G; Nagesh, Jayashree; Izmaylov, Artur F

    2015-11-01

    We have developed a numerical differentiation scheme that eliminates evaluation of overlap determinants in calculating the time-derivative nonadiabatic couplings (TDNACs). Evaluation of these determinants was the bottleneck in previous implementations of mixed quantum-classical methods using numerical differentiation of electronic wave functions in the Slater determinant representation. The central idea of our approach is, first, to reduce the analytic time derivatives of Slater determinants to time derivatives of molecular orbitals and then to apply a finite-difference formula. Benchmark calculations prove the efficiency of the proposed scheme showing impressive several-order-of-magnitude speedups of the TDNAC calculation step for midsize molecules. PMID:26538034

  13. Recent Advances in Development and Applications of the Mixed Quantum/Classical Theory for Inelastic Scattering.

    PubMed

    Babikov, Dmitri; Semenov, Alexander

    2016-01-28

    A mixed quantum/classical approach to inelastic scattering (MQCT) is developed in which the relative motion of two collision partners is treated classically, and the rotational and vibrational motion of each molecule is treated quantum mechanically. The cases of molecule + atom and molecule + molecule are considered including diatomics, symmetric-top rotors, and asymmetric-top rotor molecules. Phase information is taken into consideration, permitting calculations of elastic and inelastic, total and differential cross sections for excitation and quenching. The method is numerically efficient and intrinsically parallel. The scaling law of MQCT is favorable, which enables calculations at high collision energies and for complicated molecules. Benchmark studies are carried out for several quite different molecular systems (N2 + Na, H2 + He, CO + He, CH3 + He, H2O + He, HCOOCH3 + He, and H2 + N2) in a broad range of collision energies, which demonstrates that MQCT is a viable approach to inelastic scattering. At higher collision energies it can confidently replace the computationally expensive full-quantum calculations. At low collision energies and for low-mass systems results of MQCT are less accurate but are still reasonable. A proposal is made for blending MQCT calculations at higher energies with full-quantum calculations at low energies. PMID:26618533

  14. Mixed quantum-classical theory for the collisional energy transfer and the rovibrational energy flow: application to ozone stabilization.

    PubMed

    Ivanov, Mikhail V; Babikov, Dmitri

    2011-04-14

    A mixed quantum-classical approach to the description of collisional energy transfer is proposed in which the vibrational motion of an energized molecule is treated quantum mechanically using wave packets, while the collisional motion of the molecule and quencher and the rotational motion of the molecule are treated using classical trajectories. This accounts rigorously for quantization of vibrational states, zero-point energy, scattering resonances, and permutation symmetry of identical atoms, while advantage is taken of the classical scattering regime. Energy is exchanged between vibrational, rotational, and translational degrees of freedom while the total energy is conserved. Application of this method to stabilization of the van der Waals states in ozone is presented. Examples of mixed quantum-classical trajectories are discussed, including an interesting example of supercollision. When combined with an efficient grid mapping procedure and the reduced dimensionality approximation, the method becomes very affordable computationally. PMID:21495742

  15. How Van der Waals Interactions Influence the Absorption Spectra of Pheophorbide a Complexes: A Mixed Quantum-Classical Study.

    PubMed

    Megow, Jörg

    2015-10-01

    The computation of dispersive site energy shifts due to van der Waals interaction (London dispersion forces) was combined with mixed quantum-classical methodology to calculate the linear optical absorption spectra of large pheophorbide a (Pheo) dendrimers. The computed spectra agreed very well with the measurements considering three characteristic optical features occurring with increasing aggregate size: a strong line broadening, a redshift, and a low-energy shoulder. The improved mixed quantum-classical methodology is considered a powerful tool in investigating molecular aggregates. PMID:26275373

  16. Rotational quenching of H{sub 2}O by He: Mixed quantum/classical theory and comparison with quantum results

    SciTech Connect

    Ivanov, Mikhail; Dubernet, Marie-Lise; Babikov, Dmitri

    2014-04-07

    The mixed quantum/classical theory (MQCT) formulated in the space-fixed reference frame is used to compute quenching cross sections of several rotationally excited states of water molecule by impact of He atom in a broad range of collision energies, and is tested against the full-quantum calculations on the same potential energy surface. In current implementation of MQCT method, there are two major sources of errors: one affects results at energies below 10 cm{sup −1}, while the other shows up at energies above 500 cm{sup −1}. Namely, when the collision energy E is below the state-to-state transition energy ΔE the MQCT method becomes less accurate due to its intrinsic classical approximation, although employment of the average-velocity principle (scaling of collision energy in order to satisfy microscopic reversibility) helps dramatically. At higher energies, MQCT is expected to be accurate but in current implementation, in order to make calculations computationally affordable, we had to cut off the basis set size. This can be avoided by using a more efficient body-fixed formulation of MQCT. Overall, the errors of MQCT method are within 20% of the full-quantum results almost everywhere through four-orders-of-magnitude range of collision energies, except near resonances, where the errors are somewhat larger.

  17. Rotational quenching of H2O by He: mixed quantum/classical theory and comparison with quantum results.

    PubMed

    Ivanov, Mikhail; Dubernet, Marie-Lise; Babikov, Dmitri

    2014-04-01

    The mixed quantum/classical theory (MQCT) formulated in the space-fixed reference frame is used to compute quenching cross sections of several rotationally excited states of water molecule by impact of He atom in a broad range of collision energies, and is tested against the full-quantum calculations on the same potential energy surface. In current implementation of MQCT method, there are two major sources of errors: one affects results at energies below 10 cm(-1), while the other shows up at energies above 500 cm(-1). Namely, when the collision energy E is below the state-to-state transition energy ΔE the MQCT method becomes less accurate due to its intrinsic classical approximation, although employment of the average-velocity principle (scaling of collision energy in order to satisfy microscopic reversibility) helps dramatically. At higher energies, MQCT is expected to be accurate but in current implementation, in order to make calculations computationally affordable, we had to cut off the basis set size. This can be avoided by using a more efficient body-fixed formulation of MQCT. Overall, the errors of MQCT method are within 20% of the full-quantum results almost everywhere through four-orders-of-magnitude range of collision energies, except near resonances, where the errors are somewhat larger. PMID:24712787

  18. On the equivalence between non-factorizable mixed-strategy classical games and quantum games

    PubMed Central

    Iqbal, Azhar; Chappell, James M.; Abbott, Derek

    2016-01-01

    A game-theoretic setting provides a mathematical basis for analysis of strategic interaction among competing agents and provides insights into both classical and quantum decision theory and questions of strategic choice. An outstanding mathematical question is to understand the conditions under which a classical game-theoretic setting can be transformed to a quantum game, and under which conditions there is an equivalence. In this paper, we consider quantum games as those that allow non-factorizable probabilities. We discuss two approaches for obtaining a non-factorizable game and study the outcome of such games. We demonstrate how the standard version of a quantum game can be analysed as a non-factorizable game and determine the limitations of our approach. PMID:26909174

  19. Mixed quantum classical calculation of proton transfer reaction rates: from deep tunneling to over the barrier regimes.

    PubMed

    Xie, Weiwei; Xu, Yang; Zhu, Lili; Shi, Qiang

    2014-05-01

    We present mixed quantum classical calculations of the proton transfer (PT) reaction rates represented by a double well system coupled to a dissipative bath. The rate constants are calculated within the so called nontraditional view of the PT reaction, where the proton motion is quantized and the solvent polarization is used as the reaction coordinate. Quantization of the proton degree of freedom results in a problem of non-adiabatic dynamics. By employing the reactive flux formulation of the rate constant, the initial sampling starts from the transition state defined using the collective reaction coordinate. Dynamics of the collective reaction coordinate is treated classically as over damped diffusive motion, for which the equation of motion can be derived using the path integral, or the mixed quantum classical Liouville equation methods. The calculated mixed quantum classical rate constants agree well with the results from the numerically exact hierarchical equation of motion approach for a broad range of model parameters. Moreover, we are able to obtain contributions from each vibrational state to the total reaction rate, which helps to understand the reaction mechanism from the deep tunneling to over the barrier regimes. The numerical results are also compared with those from existing approximate theories based on calculations of the non-adiabatic transmission coefficients. It is found that the two-surface Landau-Zener formula works well in calculating the transmission coefficients in the deep tunneling regime, where the crossing point between the two lowest vibrational states dominates the total reaction rate. When multiple vibrational levels are involved, including additional crossing points on the free energy surfaces is important to obtain the correct reaction rate using the Landau-Zener formula. PMID:24811623

  20. Mixed quantum classical calculation of proton transfer reaction rates: From deep tunneling to over the barrier regimes

    SciTech Connect

    Xie, Weiwei; Xu, Yang; Zhu, Lili; Shi, Qiang

    2014-05-07

    We present mixed quantum classical calculations of the proton transfer (PT) reaction rates represented by a double well system coupled to a dissipative bath. The rate constants are calculated within the so called nontraditional view of the PT reaction, where the proton motion is quantized and the solvent polarization is used as the reaction coordinate. Quantization of the proton degree of freedom results in a problem of non-adiabatic dynamics. By employing the reactive flux formulation of the rate constant, the initial sampling starts from the transition state defined using the collective reaction coordinate. Dynamics of the collective reaction coordinate is treated classically as over damped diffusive motion, for which the equation of motion can be derived using the path integral, or the mixed quantum classical Liouville equation methods. The calculated mixed quantum classical rate constants agree well with the results from the numerically exact hierarchical equation of motion approach for a broad range of model parameters. Moreover, we are able to obtain contributions from each vibrational state to the total reaction rate, which helps to understand the reaction mechanism from the deep tunneling to over the barrier regimes. The numerical results are also compared with those from existing approximate theories based on calculations of the non-adiabatic transmission coefficients. It is found that the two-surface Landau-Zener formula works well in calculating the transmission coefficients in the deep tunneling regime, where the crossing point between the two lowest vibrational states dominates the total reaction rate. When multiple vibrational levels are involved, including additional crossing points on the free energy surfaces is important to obtain the correct reaction rate using the Landau-Zener formula.

  1. Mixed Quantum-Classical Dynamics Methods for Strong-Field Processes: Multiple-trajectory Ehrenfest dynamics + decoherence terms

    NASA Astrophysics Data System (ADS)

    Suzuki, Yasumitsu; Watanabe, Kazuyuki; Abedi, Ali; Agostini, Federica; Min, Seung Kyu; Maitra, Neepa; Gross, E. K. U.

    The exact factorization of the electron-nuclear wave function allows to define the time-dependent potential energy surfaces (TDPESs) responsible for the nuclear dynamics and electron dynamics. Recently a novel coupled-trajectory mixed quantum-classical (CT-MQC) approach based on this TDPES has been developed, which accurately reproduces both nuclear and electron dynamics. Here we study the TDPES for laser-induced electron localization with a view to developing a MQC method for strong-field processes. We show our recent progress in applying the CT-MQC approach to the systems with many degrees of freedom.

  2. Mixed quantum-classical simulations of charge transport in organic materials: Numerical benchmark of the Su-Schrieffer-Heeger model

    SciTech Connect

    Wang Linjun; Beljonne, David; Chen Liping; Shi Qiang

    2011-06-28

    The electron-phonon coupling is critical in determining the intrinsic charge carrier and exciton transport properties in organic materials. In this study, we consider a Su-Schrieffer-Heeger (SSH) model for molecular crystals, and perform numerical benchmark studies for different strategies of simulating the mixed quantum-classical dynamics. These methods, which differ in the selection of initial conditions and the representation used to solve the time evolution of the quantum carriers, are shown to yield similar equilibrium diffusion properties. A hybrid approach combining molecular dynamics simulations of nuclear motion and quantum-chemical calculations of the electronic Hamiltonian at each geometric configuration appears as an attractive strategy to model charge dynamics in large size systems ''on the fly,'' yet it relies on the assumption that the quantum carriers do not impact the nuclear dynamics. We find that such an approximation systematically results in overestimated charge-carrier mobilities, with the associated error being negligible when the room-temperature mobility exceeds {approx}4.8 cm{sup 2}/Vs ({approx}0.14 cm{sup 2}/Vs) in one-dimensional (two-dimensional) crystals.

  3. A molecular dynamics study of intramolecular proton transfer reaction of malonaldehyde in solutions based upon mixed quantum-classical approximation. I. Proton transfer reaction in water

    SciTech Connect

    Yamada, Atsushi; Kojima, Hidekazu; Okazaki, Susumu

    2014-08-28

    In order to investigate proton transfer reaction in solution, mixed quantum-classical molecular dynamics calculations have been carried out based on our previously proposed quantum equation of motion for the reacting system [A. Yamada and S. Okazaki, J. Chem. Phys. 128, 044507 (2008)]. Surface hopping method was applied to describe forces acting on the solvent classical degrees of freedom. In a series of our studies, quantum and solvent effects on the reaction dynamics in solutions have been analysed in detail. Here, we report our mixed quantum-classical molecular dynamics calculations for intramolecular proton transfer of malonaldehyde in water. Thermally activated proton transfer process, i.e., vibrational excitation in the reactant state followed by transition to the product state and vibrational relaxation in the product state, as well as tunneling reaction can be described by solving the equation of motion. Zero point energy is, of course, included, too. The quantum simulation in water has been compared with the fully classical one and the wave packet calculation in vacuum. The calculated quantum reaction rate in water was 0.70 ps{sup −1}, which is about 2.5 times faster than that in vacuum, 0.27 ps{sup −1}. This indicates that the solvent water accelerates the reaction. Further, the quantum calculation resulted in the reaction rate about 2 times faster than the fully classical calculation, which indicates that quantum effect enhances the reaction rate, too. Contribution from three reaction mechanisms, i.e., tunneling, thermal activation, and barrier vanishing reactions, is 33:46:21 in the mixed quantum-classical calculations. This clearly shows that the tunneling effect is important in the reaction.

  4. Inelastic Scattering of Identical Molecules within Framework of the Mixed Quantum/Classical Theory: Application to Rotational Excitations in H2 + H2.

    PubMed

    Semenov, Alexander; Babikov, Dmitri

    2016-06-01

    Theoretical foundation is laid out for description of permutation symmetry in the inelastic scattering processes that involve collisions of two identical molecules, within the framework of the mixed quantum/classical theory (MQCT). In this approach, the rotational (and vibrational) states of two molecules are treated quantum-mechanically, whereas their translational motion (responsible for scattering) is treated classically. This theory is applied to H2 + H2 system, and the state-to-state transition cross sections are compared versus those obtained from the full-quantum calculations and experimental results from the literature. Good agreement is found in all cases. It is also found that results of MQCT, where the Coriolis coupling is included classically, are somewhat closer to exact full-quantum results than results of the other approximate quantum methods, where those coupling terms are neglected. These new developments allow applications of MQCT to a broad variety of molecular systems and processes. PMID:27187769

  5. Subnuclear realm: classical in quantum and quantum in classical

    SciTech Connect

    Kosyakov, B. P.

    1999-03-11

    Exact solutions in the classical Yang-Mills-Wong theory enable explaining a number of enigmatic classical features of subnuclear realm. Moreover, they reveal some unexpected quantum features of this classical treatment.

  6. Computational quantum-classical boundary of noisy commuting quantum circuits

    PubMed Central

    Fujii, Keisuke; Tamate, Shuhei

    2016-01-01

    It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being subject to decoherence. Or equivalently, we can regard them as measurement-based quantum computation on decohered weighted graph states. To show intractability of classical simulation in the quantum side, we utilize the postselection argument and crucially strengthen it by taking noise effect into account. Classical simulatability in the classical side is also shown constructively by using both separable criteria in a projected-entangled-pair-state picture and the Gottesman-Knill theorem for mixed state Clifford circuits. We found that when each qubit is subject to a single-qubit complete-positive-trace-preserving noise, the computational quantum-classical boundary is sharply given by the noise rate required for the distillability of a magic state. The obtained quantum-classical boundary of noisy quantum dynamics reveals a complexity landscape of controlled quantum systems. This paves a way to an experimentally feasible verification of quantum mechanics in a high complexity limit beyond classically simulatable region. PMID:27189039

  7. Computational quantum-classical boundary of noisy commuting quantum circuits

    NASA Astrophysics Data System (ADS)

    Fujii, Keisuke; Tamate, Shuhei

    2016-05-01

    It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being subject to decoherence. Or equivalently, we can regard them as measurement-based quantum computation on decohered weighted graph states. To show intractability of classical simulation in the quantum side, we utilize the postselection argument and crucially strengthen it by taking noise effect into account. Classical simulatability in the classical side is also shown constructively by using both separable criteria in a projected-entangled-pair-state picture and the Gottesman-Knill theorem for mixed state Clifford circuits. We found that when each qubit is subject to a single-qubit complete-positive-trace-preserving noise, the computational quantum-classical boundary is sharply given by the noise rate required for the distillability of a magic state. The obtained quantum-classical boundary of noisy quantum dynamics reveals a complexity landscape of controlled quantum systems. This paves a way to an experimentally feasible verification of quantum mechanics in a high complexity limit beyond classically simulatable region.

  8. Computational quantum-classical boundary of noisy commuting quantum circuits.

    PubMed

    Fujii, Keisuke; Tamate, Shuhei

    2016-01-01

    It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being subject to decoherence. Or equivalently, we can regard them as measurement-based quantum computation on decohered weighted graph states. To show intractability of classical simulation in the quantum side, we utilize the postselection argument and crucially strengthen it by taking noise effect into account. Classical simulatability in the classical side is also shown constructively by using both separable criteria in a projected-entangled-pair-state picture and the Gottesman-Knill theorem for mixed state Clifford circuits. We found that when each qubit is subject to a single-qubit complete-positive-trace-preserving noise, the computational quantum-classical boundary is sharply given by the noise rate required for the distillability of a magic state. The obtained quantum-classical boundary of noisy quantum dynamics reveals a complexity landscape of controlled quantum systems. This paves a way to an experimentally feasible verification of quantum mechanics in a high complexity limit beyond classically simulatable region. PMID:27189039

  9. Quantum Computing's Classical Problem, Classical Computing's Quantum Problem

    NASA Astrophysics Data System (ADS)

    Van Meter, Rodney

    2014-08-01

    Tasked with the challenge to build better and better computers, quantum computing and classical computing face the same conundrum: the success of classical computing systems. Small quantum computing systems have been demonstrated, and intermediate-scale systems are on the horizon, capable of calculating numeric results or simulating physical systems far beyond what humans can do by hand. However, to be commercially viable, they must surpass what our wildly successful, highly advanced classical computers can already do. At the same time, those classical computers continue to advance, but those advances are now constrained by thermodynamics, and will soon be limited by the discrete nature of atomic matter and ultimately quantum effects. Technological advances benefit both quantum and classical machinery, altering the competitive landscape. Can we build quantum computing systems that out-compute classical systems capable of some logic gates per month? This article will discuss the interplay in these competing and cooperating technological trends.

  10. Quantum transitions between classical histories

    NASA Astrophysics Data System (ADS)

    Hartle, James; Hertog, Thomas

    2015-09-01

    In a quantum theory of gravity spacetime behaves classically when quantum probabilities are high for histories of geometry and field that are correlated in time by the Einstein equation. Probabilities follow from the quantum state. This quantum perspective on classicality has important implications. (a) Classical histories are generally available only in limited patches of the configuration space on which the state lives. (b) In a given patch, states generally predict relative probabilities for an ensemble of possible classical histories. (c) In between patches classical predictability breaks down and is replaced by quantum evolution connecting classical histories in different patches. (d) Classical predictability can break down on scales well below the Planck scale, and with no breakdown in the classical equations of motion. We support and illustrate (a)-(d) by calculating the quantum transition across the de Sitter-like throat connecting asymptotically classical, inflating histories in the no-boundary quantum state. This supplies probabilities for how a classical history on one side transitions and branches into a range of classical histories on the opposite side. We also comment on the implications of (a)-(d) for the dynamics of black holes and eternal inflation.

  11. Classical and quantum ghosts

    NASA Astrophysics Data System (ADS)

    Sbisà, Fulvio

    2015-01-01

    The aim of these notes is to provide a self-contained review of why it is generically a problem when a solution of a theory possesses ghost fields among the perturbation modes. We define what a ghost field is and we show that its presence is associated with a classical instability whenever the ghost field interacts with standard fields. We then show that the instability is more severe at quantum level, and that perturbative ghosts can exist only in low energy effective theories. However, if we do not consider very ad hoc choices, compatibility with observational constraints implies that low energy effective ghosts can exist only at the price of giving up Lorentz invariance or locality above the cut-off, in which case the cut-off has to be much lower that the energy scales we currently probe in particle colliders. We also comment on the possible role of extra degrees of freedom which break Lorentz invariance spontaneously.

  12. Quantum money with classical verification

    SciTech Connect

    Gavinsky, Dmitry

    2014-12-04

    We propose and construct a quantum money scheme that allows verification through classical communication with a bank. This is the first demonstration that a secure quantum money scheme exists that does not require quantum communication for coin verification. Our scheme is secure against adaptive adversaries - this property is not directly related to the possibility of classical verification, nevertheless none of the earlier quantum money constructions is known to possess it.

  13. Quantum money with classical verification

    NASA Astrophysics Data System (ADS)

    Gavinsky, Dmitry

    2014-12-01

    We propose and construct a quantum money scheme that allows verification through classical communication with a bank. This is the first demonstration that a secure quantum money scheme exists that does not require quantum communication for coin verification. Our scheme is secure against adaptive adversaries - this property is not directly related to the possibility of classical verification, nevertheless none of the earlier quantum money constructions is known to possess it.

  14. Classicality of a quantum oscillator

    NASA Astrophysics Data System (ADS)

    Ahmadzadegan, Aida; Mann, Robert B.; Terno, Daniel R.

    2016-03-01

    Gaussian quantum systems exhibit many explicitly quantum effects but can be simulated classically. By using both the Hilbert space (Koopman) and the phase-space (Moyal) formalisms we investigate how robust this classicality is. We find failures of consistency of the dynamics of hybrid classical-quantum systems from both perspectives. By demanding that no unobservable operators couple to the quantum sector in the Koopmanian formalism, we show that the classical equations of motion act on their quantum counterparts without experiencing any back reaction, resulting in nonconservation of energy in the quantum system. By using the phase-space formalism we study the short-time evolution of the moment equations of a hybrid classical-Gaussian quantum system and observe violations of the Heisenberg uncertainty relation in the quantum sector for a broad range of initial conditions. We estimate the timescale for these violations, which is generically rather short. This inconsistency indicates that while many explicitly quantum effects can be represented classically, quantum aspects of the system cannot be fully masked. We comment on the implications of our results for quantum gravity.

  15. Mixed Quantum/Classical Theory for Molecule-Molecule Inelastic Scattering: Derivations of Equations and Application to N2 + H2 System.

    PubMed

    Semenov, Alexander; Babikov, Dmitri

    2015-12-17

    The mixed quantum classical theory, MQCT, for inelastic scattering of two molecules is developed, in which the internal (rotational, vibrational) motion of both collision partners is treated with quantum mechanics, and the molecule-molecule scattering (translational motion) is described by classical trajectories. The resultant MQCT formalism includes a system of coupled differential equations for quantum probability amplitudes, and the classical equations of motion in the mean-field potential. Numerical tests of this theory are carried out for several most important rotational state-to-state transitions in the N2 + H2 system, in a broad range of collision energies. Besides scattering resonances (at low collision energies) excellent agreement with full-quantum results is obtained, including the excitation thresholds, the maxima of cross sections, and even some smaller features, such as slight oscillations of energy dependencies. Most importantly, at higher energies the results of MQCT are nearly identical to the full quantum results, which makes this approach a good alternative to the full-quantum calculations that become computationally expensive at higher collision energies and for heavier collision partners. Extensions of this theory to include vibrational transitions or general asymmetric-top rotor (polyatomic) molecules are relatively straightforward. PMID:26323089

  16. Quantum mechanics from classical statistics

    SciTech Connect

    Wetterich, C.

    2010-04-15

    Quantum mechanics can emerge from classical statistics. A typical quantum system describes an isolated subsystem of a classical statistical ensemble with infinitely many classical states. The state of this subsystem can be characterized by only a few probabilistic observables. Their expectation values define a density matrix if they obey a 'purity constraint'. Then all the usual laws of quantum mechanics follow, including Heisenberg's uncertainty relation, entanglement and a violation of Bell's inequalities. No concepts beyond classical statistics are needed for quantum physics - the differences are only apparent and result from the particularities of those classical statistical systems which admit a quantum mechanical description. Born's rule for quantum mechanical probabilities follows from the probability concept for a classical statistical ensemble. In particular, we show how the non-commuting properties of quantum operators are associated to the use of conditional probabilities within the classical system, and how a unitary time evolution reflects the isolation of the subsystem. As an illustration, we discuss a classical statistical implementation of a quantum computer.

  17. Classical versus quantum completeness

    NASA Astrophysics Data System (ADS)

    Hofmann, Stefan; Schneider, Marc

    2015-06-01

    The notion of quantum-mechanical completeness is adapted to situations where the only adequate description is in terms of quantum field theory in curved space-times. It is then shown that Schwarzschild black holes, although geodesically incomplete, are quantum complete.

  18. Quantum localization of classical mechanics

    NASA Astrophysics Data System (ADS)

    Batalin, Igor A.; Lavrov, Peter M.

    2016-07-01

    Quantum localization of classical mechanics within the BRST-BFV and BV (or field-antifield) quantization methods are studied. It is shown that a special choice of gauge fixing functions (or BRST-BFV charge) together with the unitary limit leads to Hamiltonian localization in the path integral of the BRST-BFV formalism. In turn, we find that a special choice of gauge fixing functions being proportional to extremals of an initial non-degenerate classical action together with a very special solution of the classical master equation result in Lagrangian localization in the partition function of the BV formalism.

  19. Classical dynamics of quantum entanglement.

    PubMed

    Casati, Giulio; Guarneri, Italo; Reslen, Jose

    2012-03-01

    We analyze numerically the dynamical generation of quantum entanglement in a system of two interacting particles, started in a coherent separable state, for decreasing values of ℏ. As ℏ→0 the entanglement entropy, computed at any finite time, converges to a finite nonzero value. The limit law that rules the time dependence of entropy is well reproduced by purely classical computations. Its general features can be explained by simple classical arguments, which expose the different ways entanglement is generated in systems that are classically chaotic or regular. PMID:22587162

  20. Classical communication cost of quantum steering

    NASA Astrophysics Data System (ADS)

    Sainz, Ana Belén; Aolita, Leandro; Brunner, Nicolas; Gallego, Rodrigo; Skrzypczyk, Paul

    2016-07-01

    Quantum steering is observed when performing appropriate local measurements on an entangled state. Here we discuss the possibility of simulating classically this effect, using classical communication instead of entanglement. We show that infinite communication is necessary for exactly simulating steering for any pure entangled state, as well as for a class of mixed entangled states. Moreover, we discuss the communication cost of steering for general entangled states, as well as approximate simulation. Our findings reveal striking differences between Bell nonlocality and steering and provide a natural way of measuring the strength of the latter.

  1. Quantum remnants in the classical limit

    NASA Astrophysics Data System (ADS)

    Kowalski, A. M.; Plastino, A.

    2016-09-01

    We analyze here the common features of two dynamical regimes: a quantum and a classical one. We deal with a well known semi-classic system in its route towards the classical limit, together with its purely classic counterpart. We wish to ascertain i) whether some quantum remnants can be found in the classical limit and ii) the details of the quantum-classic transition. The so-called mutual information is the appropriate quantifier for this task. Additionally, we study the Bandt-Pompe's symbolic patterns that characterize dynamical time series (representative of the semi-classical system under scrutiny) in their evolution towards the classical limit.

  2. Classical Concepts in Quantum Programming

    NASA Astrophysics Data System (ADS)

    Ömer, Bernhard

    2005-07-01

    The rapid progress of computer technology has been accompanied by a corresponding evolution of software development, from hardwired components and binary machine code to high level programming languages, which allowed to master the increasing hardware complexity and fully exploit its potential. This paper investigates, how classical concepts like hardware abstraction, hierarchical programs, data types, memory management, flow of control, and structured programming can be used in quantum computing. The experimental language QCL will be introduced as an example, how elements like irreversible functions, local variables, and conditional branching, which have no direct quantum counterparts, can be implemented, and how nonclassical features like the reversibility of unitary transformation or the nonobservability of quantum states can be accounted for within the framework of a procedural programming language.

  3. Classical analog of quantum phase

    SciTech Connect

    Ord, G.N.

    1992-07-01

    A modified version of the Feynman relativistic chessboard model (FCM) is investigated in which the paths involved are spirals in the space-time. Portions of the paths in which the particle`s proper time is reversed are interpreted in terms of antiparticles. With this intepretation the particle-antiparticle field produced by such trajectories provides a classical analog of the phase associated with particle paths in the unmodified FCM. It is shwon that in the nonrelativistic limit the resulting kernel is the correct Dirac propagator and that particle-antiparticle symmetry is in this case responsible for quantum interference. 7 refs., 3 figs.

  4. Classical oscillators in the control of quantum tunneling: Numerical experiments

    NASA Astrophysics Data System (ADS)

    Kar, Susmita; Bhattacharyya, S. P.

    2016-06-01

    The dynamics of a classical anharmonic oscillator is exploited to control the tunneling dynamics of a quantum particle to which the classical oscillator is coupled. The mixed quantum classical problem is investigated at a mean-field like level. The anharmonic strength (λ) , particle mass (Mc) and harmonic stiffness (ωc) of the classical controller are explored as possible control parameters for the tunneling dynamics. The strength, the type of coupling between the quantum system and classical controller and the effective frequency of the controller emerge as crucial factors in shaping the nature and extent of the control. A whole spectrum of possibilities starting from enhancement, suppression to complete destruction of tunneling emerge depending on values assigned to the control parameters, the type of coupling and the control configuration used. When classical controller is replaced by a quantum controller, the control landscape becomes much simpler.

  5. Moving solvated electrons with light: Nonadiabatic mixed quantum/classical molecular dynamics simulations of the relocalization of photoexcited solvated electrons in tetrahydrofuran (THF)

    SciTech Connect

    Bedard-Hearn, Michael J.; Larsen, Ross E.; Schwartz, Benjamin J.

    2006-11-21

    Motivated by recent ultrafast spectroscopic experiments [Martini et al., Science 293, 462 (2001)], which suggest that photoexcited solvated electrons in tetrahydrofuran (THF) can relocalize (that is, return to equilibrium in solvent cavities far from where they started), we performed a series of nonequilibrium, nonadiabatic, mixed quantum/classical molecular dynamics simulations that mimic one-photon excitation of the THF-solvated electron. We find that as photoexcited THF-solvated electrons relax to their ground states either by continuous mixing from the excited state or via nonadiabatic transitions, {approx}30% of them relocalize into cavities that can be over 1 nm away from where they originated, in close agreement with the experiments. A detailed investigation shows that the ability of excited THF-solvated electrons to undergo photoinduced relocalization stems from the existence of preexisting cavity traps that are an intrinsic part of the structure of liquid THF. This explains why solvated electrons can undergo photoinduced relocalization in solvents like THF but not in solvents like water, which lack the preexisting traps necessary to stabilize the excited electron in other places in the fluid. We also find that even when they do not ultimately relocalize, photoexcited solvated electrons in THF temporarily visit other sites in the fluid, explaining why the photoexcitation of THF-solvated electrons is so efficient at promoting recombination with nearby scavengers. Overall, our study shows that the defining characteristic of a liquid that permits the photoassisted relocalization of solvated electrons is the existence of nascent cavities that are attractive to an excess electron; we propose that other such liquids can be found from classical computer simulations or neutron diffraction experiments.

  6. Racing in parallel: Quantum versus Classical

    NASA Astrophysics Data System (ADS)

    Steiger, Damian S.; Troyer, Matthias

    In a fair comparison of the performance of a quantum algorithm to a classical one it is important to treat them on equal footing, both regarding resource usage and parallelism. We show how one may otherwise mistakenly attribute speedup due to parallelism as quantum speedup. We apply such an analysis both to analog quantum devices (quantum annealers) and gate model algorithms and give several examples where a careful analysis of parallelism makes a significant difference in the comparison between classical and quantum algorithms.

  7. Secure quantum communication using classical correlated channel

    NASA Astrophysics Data System (ADS)

    Costa, D.; de Almeida, N. G.; Villas-Boas, C. J.

    2016-07-01

    We propose a secure protocol to send quantum information from one part to another without a quantum channel. In our protocol, which resembles quantum teleportation, a sender (Alice) and a receiver (Bob) share classical correlated states instead of EPR ones, with Alice performing measurements in two different bases and then communicating her results to Bob through a classical channel. Our secure quantum communication protocol requires the same amount of classical bits as the standard quantum teleportation protocol. In our scheme, as in the usual quantum teleportation protocol, once the classical channel is established in a secure way, a spy (Eve) will never be able to recover the information of the unknown quantum state, even if she is aware of Alice's measurement results. Security, advantages, and limitations of our protocol are discussed and compared with the standard quantum teleportation protocol.

  8. Mixed quantum-classical dynamics of an amide-I vibrational excitation in a protein α -helix

    NASA Astrophysics Data System (ADS)

    Freedman, Holly; Martel, Paulo; Cruzeiro, Leonor

    2010-11-01

    Adenosine triphosphate (ATP) is known to be the main energy currency of the living cell, and is used as a coenzyme to generate energy for many cellular processes through hydrolysis to adenosine diphosphate (ADP), although the mechanism of energy transfer is not well understood. It has been proposed that following hydrolysis of the ATP cofactor bound to a protein, up to two quanta of amide-I vibrational energy are excited and utilized to bring about important structural changes in the protein. To study whether, and how, amide-I vibrational excitations are capable of leading to protein structural changes, we have added components arising from quantum-mechanical amide-I vibrational excitations to the total energy and force terms within a molecular-dynamics simulation. This model is applied to helical deca-alanine as a test case to investigate how its dynamics differs in the presence or absence of an amide-I excitation. We find that the presence of an amide-I excitation can bias the structure toward a more helical state.

  9. Hydrogen-bond assisted enormous broadening of infrared spectra of phenol-water cationic cluster: An ab initio mixed quantum-classical study

    NASA Astrophysics Data System (ADS)

    Yamashita, Takefumi; Takatsuka, Kazuo

    2007-02-01

    The infrared spectrum of phenol-water cationic cluster, [PhOH•H2O]+, taken by Sawamura et al. [J. Phys. Chem. 100, 8131 (1996)] is puzzling in that the peak due to the stretching mode of the phenolic OH (3657cm-1 for a neutral monomer and 3524cm-1 for PhOH•H2O) seemingly disappears and instead an extremely broad tail extending down to 2900cm-1 is observed. The present authors theoretically ascribe this anomalous spectrum to an inhomogeneous broadening of the OH stretching peak caused by the hydrogen bond, the strength of which has been greatly enhanced by ionization of the phenyl ring. Indeed they estimate that the peak position is at 2300cm-1 and the spectral width can become as wide as 1000cm-1 at the cluster energy of 32kcal/mol. This surprisingly wide broadening can be generic in hydrogen-bond systems, which in turn is useful to study the nature of the hydrogen-bond assisted dynamics in various systems such as those in DNA and proteins. To study the present system quantitatively, the authors have developed an ab initio mixed quantum-classical method, in which the nuclear motions on an adiabatic ab initio potential surface are treated such that only the OH stretching motion is described quantum mechanically, while all the other remaining modes are treated classically with on-the-fly scheme. This method includes the implementation of many numerical methodologies, which enables it to deal with a relatively large molecular system. With this theoretical method, the authors analyze the present anomalous broadening in a great detail. In particular, they suggest that one can extract direct information about the hydrogen-bond dynamics with respect to the clear correlation between the vibrational excitation energy of the OH stretching and intermolecular distance by means of a time-resolved infrared spectroscopy: Reflecting the slow and wide-range variation of the intermolecular distance of the relevant hydrogen bond, the time-resolved spectrum is predicted to vary

  10. New insights into the nonadiabatic state population dynamics of model proton-coupled electron transfer reactions from the mixed quantum-classical Liouville approach

    NASA Astrophysics Data System (ADS)

    Shakib, Farnaz A.; Hanna, Gabriel

    2016-01-01

    In a previous study [F. A. Shakib and G. Hanna, J. Chem. Phys. 141, 044122 (2014)], we investigated a model proton-coupled electron transfer (PCET) reaction via the mixed quantum-classical Liouville (MQCL) approach and found that the trajectories spend the majority of their time on the mean of two coherently coupled adiabatic potential energy surfaces. This suggested a need for mean surface evolution to accurately simulate observables related to ultrafast PCET processes. In this study, we simulate the time-dependent populations of the three lowest adiabatic states in the ET-PT (i.e., electron transfer preceding proton transfer) version of the same PCET model via the MQCL approach and compare them to the exact quantum results and those obtained via the fewest switches surface hopping (FSSH) approach. We find that the MQCL population profiles are in good agreement with the exact quantum results and show a significant improvement over the FSSH results. All of the mean surfaces are shown to play a direct role in the dynamics of the state populations. Interestingly, our results indicate that the population transfer to the second-excited state can be mediated by dynamics on the mean of the ground and second-excited state surfaces, as part of a sequence of nonadiabatic transitions that bypasses the first-excited state surface altogether. This is made possible through nonadiabatic transitions between different mean surfaces, which is the manifestation of coherence transfer in MQCL dynamics. We also investigate the effect of the strength of the coupling between the proton/electron and the solvent coordinate on the state population dynamics. Drastic changes in the population dynamics are observed, which can be understood in terms of the changes in the potential energy surfaces and the nonadiabatic couplings. Finally, we investigate the state population dynamics in the PT-ET (i.e., proton transfer preceding electron transfer) and concerted versions of the model. The PT

  11. Classical data compression with quantum side information

    SciTech Connect

    Devetak, I.; Winter, A.

    2003-10-01

    The problem of classical data compression when the decoder has quantum side information at his disposal is considered. This is a quantum generalization of the classical Slepian-Wolf theorem. The optimal compression rate is found to be reduced from the Shannon entropy of the source by the Holevo information between the source and side information.

  12. Dynamics in the quantum/classical limit based on selective use of the quantum potential

    SciTech Connect

    Garashchuk, Sophya Dell’Angelo, David; Rassolov, Vitaly A.

    2014-12-21

    A classical limit of quantum dynamics can be defined by compensation of the quantum potential in the time-dependent Schrödinger equation. The quantum potential is a non-local quantity, defined in the trajectory-based form of the Schrödinger equation, due to Madelung, de Broglie, and Bohm, which formally generates the quantum-mechanical features in dynamics. Selective inclusion of the quantum potential for the degrees of freedom deemed “quantum,” defines a hybrid quantum/classical dynamics, appropriate for molecular systems comprised of light and heavy nuclei. The wavefunction is associated with all of the nuclei, and the Ehrenfest, or mean-field, averaging of the force acting on the classical degrees of freedom, typical of the mixed quantum/classical methods, is avoided. The hybrid approach is used to examine evolution of light/heavy systems in the harmonic and double-well potentials, using conventional grid-based and approximate quantum-trajectory time propagation. The approximate quantum force is defined on spatial domains, which removes unphysical coupling of the wavefunction fragments corresponding to distinct classical channels or configurations. The quantum potential, associated with the quantum particle, generates forces acting on both quantum and classical particles to describe the backreaction.

  13. Dynamics in the quantum/classical limit based on selective use of the quantum potential.

    PubMed

    Garashchuk, Sophya; Dell'Angelo, David; Rassolov, Vitaly A

    2014-12-21

    A classical limit of quantum dynamics can be defined by compensation of the quantum potential in the time-dependent Schrödinger equation. The quantum potential is a non-local quantity, defined in the trajectory-based form of the Schrödinger equation, due to Madelung, de Broglie, and Bohm, which formally generates the quantum-mechanical features in dynamics. Selective inclusion of the quantum potential for the degrees of freedom deemed "quantum," defines a hybrid quantum/classical dynamics, appropriate for molecular systems comprised of light and heavy nuclei. The wavefunction is associated with all of the nuclei, and the Ehrenfest, or mean-field, averaging of the force acting on the classical degrees of freedom, typical of the mixed quantum/classical methods, is avoided. The hybrid approach is used to examine evolution of light/heavy systems in the harmonic and double-well potentials, using conventional grid-based and approximate quantum-trajectory time propagation. The approximate quantum force is defined on spatial domains, which removes unphysical coupling of the wavefunction fragments corresponding to distinct classical channels or configurations. The quantum potential, associated with the quantum particle, generates forces acting on both quantum and classical particles to describe the backreaction. PMID:25527919

  14. First principles multielectron mixed quantum/classical simulations in the condensed phase. I. An efficient Fourier-grid method for solving the many-electron problem

    NASA Astrophysics Data System (ADS)

    Glover, William J.; Larsen, Ross E.; Schwartz, Benjamin J.

    2010-04-01

    We introduce an efficient multielectron first-principles based electronic structure method, the two-electron Fourier-grid (2EFG) approach, that is particularly suited for use in mixed quantum/classical simulations of condensed-phase systems. The 2EFG method directly solves for the six-dimensional wave function of a two-electron Hamiltonian in a Fourier-grid representation such that the effects of electron correlation and exchange are treated exactly for both the ground and excited states. Due to the simplicity of a Fourier-grid representation, the 2EFG is readily parallelizable and we discuss its computational implementation in a distributed-memory parallel environment. We show our method is highly efficient, being able to find two-electron wave functions in ˜20 s on a modern desktop computer for a calculation this is equivalent to full configuration interaction (FCI) in a basis of 17 million Slater determinants. We benchmark the accuracy of the 2EFG by applying it to two electronic structure test problems: the harmonium atom and the sodium dimer. We find that even with a modest grid basis size, our method converges to the analytically exact solutions of harmonium in both the weakly and strongly correlated electron regimes. Our method also reproduces the low-lying potential energy curves of the sodium dimer to a similar level of accuracy as a valence CI calculation, thus demonstrating its applicability to molecular systems. In the following paper [W. J. Glover, R. E. Larsen, and B. J. Schwartz, J. Chem. Phys. 132, 144102 (2010)], we use the 2EFG method to explore the nature of the electronic states that comprise the charge-transfer-to-solvent absorption band of sodium anions in liquid tetrahydrofuran.

  15. Entropic inequalities in classical and quantum domains

    NASA Astrophysics Data System (ADS)

    Man'ko, Margarita A.

    2010-09-01

    Different kinds of entropy associated with probability distribution functions characterizing the system state in classical and quantum domains are reviewed. Shannon entropy and Rényi entropy are discussed. The notion of tomographic entropy determined by the probability distribution in the phase space of the classical system and by the density operator of the quantum system is considered. Inequalities for the tomographic entropies in classical and quantum domains are studied, and a difference in the form of these inequalities in corresponding domains is suggested as a test to clarify the classicality and quantumness of the system state in quantum optics experiments. A new bound for tomographic entropy (ln πe)Φ(θ) depending on the local oscillator phase difference in homodyne photon detection experiments is discussed.

  16. Classical Trajectories and Quantum Spectra

    NASA Technical Reports Server (NTRS)

    Mielnik, Bogdan; Reyes, Marco A.

    1996-01-01

    A classical model of the Schrodinger's wave packet is considered. The problem of finding the energy levels corresponds to a classical manipulation game. It leads to an approximate but non-perturbative method of finding the eigenvalues, exploring the bifurcations of classical trajectories. The role of squeezing turns out decisive in the generation of the discrete spectra.

  17. Unraveling Quantum Annealers using Classical Hardness.

    PubMed

    Martin-Mayor, Victor; Hen, Itay

    2015-01-01

    Recent advances in quantum technology have led to the development and manufacturing of experimental programmable quantum annealing optimizers that contain hundreds of quantum bits. These optimizers, commonly referred to as 'D-Wave' chips, promise to solve practical optimization problems potentially faster than conventional 'classical' computers. Attempts to quantify the quantum nature of these chips have been met with both excitement and skepticism but have also brought up numerous fundamental questions pertaining to the distinguishability of experimental quantum annealers from their classical thermal counterparts. Inspired by recent results in spin-glass theory that recognize 'temperature chaos' as the underlying mechanism responsible for the computational intractability of hard optimization problems, we devise a general method to quantify the performance of quantum annealers on optimization problems suffering from varying degrees of temperature chaos: A superior performance of quantum annealers over classical algorithms on these may allude to the role that quantum effects play in providing speedup. We utilize our method to experimentally study the D-Wave Two chip on different temperature-chaotic problems and find, surprisingly, that its performance scales unfavorably as compared to several analogous classical algorithms. We detect, quantify and discuss several purely classical effects that possibly mask the quantum behavior of the chip. PMID:26483257

  18. Mixed quantum/classical calculations of total and differential elastic and rotationally inelastic scattering cross sections for light and heavy reduced masses in a broad range of collision energies

    SciTech Connect

    Semenov, Alexander; Babikov, Dmitri

    2014-01-28

    The mixed quantum/classical theory (MQCT) for rotationally inelastic scattering developed recently [A. Semenov and D. Babikov, J. Chem. Phys. 139, 174108 (2013)] is benchmarked against the full quantum calculations for two molecular systems: He + H{sub 2} and Na + N{sub 2}. This allows testing new method in the cases of light and reasonably heavy reduced masses, for small and large rotational quanta, in a broad range of collision energies and rotational excitations. The resultant collision cross sections vary through ten-orders of magnitude range of values. Both inelastic and elastic channels are considered, as well as differential (over scattering angle) cross sections. In many cases results of the mixed quantum/classical method are hard to distinguish from the full quantum results. In less favorable cases (light masses, larger quanta, and small collision energies) some deviations are observed but, even in the worst cases, they are within 25% or so. The method is computationally cheap and particularly accurate at higher energies, heavier masses, and larger densities of states. At these conditions MQCT represents a useful alternative to the standard full-quantum scattering theory.

  19. Mixed quantum/classical calculations of total and differential elastic and rotationally inelastic scattering cross sections for light and heavy reduced masses in a broad range of collision energies

    NASA Astrophysics Data System (ADS)

    Semenov, Alexander; Babikov, Dmitri

    2014-01-01

    The mixed quantum/classical theory (MQCT) for rotationally inelastic scattering developed recently [A. Semenov and D. Babikov, J. Chem. Phys. 139, 174108 (2013)] is benchmarked against the full quantum calculations for two molecular systems: He + H2 and Na + N2. This allows testing new method in the cases of light and reasonably heavy reduced masses, for small and large rotational quanta, in a broad range of collision energies and rotational excitations. The resultant collision cross sections vary through ten-orders of magnitude range of values. Both inelastic and elastic channels are considered, as well as differential (over scattering angle) cross sections. In many cases results of the mixed quantum/classical method are hard to distinguish from the full quantum results. In less favorable cases (light masses, larger quanta, and small collision energies) some deviations are observed but, even in the worst cases, they are within 25% or so. The method is computationally cheap and particularly accurate at higher energies, heavier masses, and larger densities of states. At these conditions MQCT represents a useful alternative to the standard full-quantum scattering theory.

  20. Decoherence, chaos, the quantum and the classical

    NASA Astrophysics Data System (ADS)

    Zurek, W. H.; Paz, J. P.

    The key ideas of the environment-induced decoherence approach are reviewed. Application of decoherence to the transition from quantum to classical in open quantum systems with chaotic classical analogs is described. The arrow of time is, in this context, a result of the information loss to the correlations with the environment. The asymptotic rate of entropy production (which is reached quickly, on the dynamical timescale) is independent of the details of the coupling of the quantum system to the environment, and is set by the Lyapunov exponents. We also briefly outline the existential interpretation of quantum mechanics, justifying the slogan, no information without representation.

  1. Decoherence, chaos, the quantum and the classical

    SciTech Connect

    Zurek, W.H.; Paz, J.P.

    1994-04-01

    The key ideas of the environment-induced decoherence approach are reviewed. Application of decoherence to the transition from quantum to classical in open quantum systems with chaotic classical analogs is described. The arrow of time is, in this context, a result of the information loss to the correlations with the environment. The asymptotic rate of entropy production (which is reached quickly, on the dynamical timescale) is independent of the details of the coupling of the quantum system to the environment, and is set by the Lyapunov exponents. We also briefly outline the existential interpretation of quantum mechanics, justifying the slogan ``No information without representation.``

  2. Thermodynamic integration from classical to quantum mechanics

    SciTech Connect

    Habershon, Scott; Manolopoulos, David E.

    2011-12-14

    We present a new method for calculating quantum mechanical corrections to classical free energies, based on thermodynamic integration from classical to quantum mechanics. In contrast to previous methods, our method is numerically stable even in the presence of strong quantum delocalization. We first illustrate the method and its relationship to a well-established method with an analysis of a one-dimensional harmonic oscillator. We then show that our method can be used to calculate the quantum mechanical contributions to the free energies of ice and water for a flexible water model, a problem for which the established method is unstable.

  3. Quantum and Classical Electrostatics Among Atoms

    NASA Astrophysics Data System (ADS)

    Doerr, T. P.; Obolensky, O. I.; Ogurtsov, A. Y.; Yu, Yi-Kuo

    Quantum theory has been unquestionably successful at describing physics at the atomic scale. However, it becomes more difficult to apply as the system size grows. On the other hand, classical physics breaks down at sufficiently short length scales but is clearly correct at larger distances. The purpose of methods such as QM/MM is to gain the advantages of both quantum and classical regimes: quantum theory should provide accuracy at the shortest scales, and classical theory, with its somewhat more tractable computational demands, allows results to be computed for systems that would be inaccessible with a purely quantum approach. This strategy will be most effective when one knows with good accuracy the length scale at which quantum calculations are no longer necessary and classical calculations are sufficient. To this end, we have performed both classical and quantum calculations for systems comprising a small number of atoms for which experimental data is also available. The classical calculations are fully exact; the quantum calculations are at the MP4(SDTQ)/aug-cc-pV5Z and CCSD(T)/aug-cc-pV5Z levels. The precision of both sets of calculations along with the existence of experimental results allows us to draw conclusions about the range of utility of the respective calculations. This research was supported by the Intramural Research Program of the NIH, NLM and utilized the computational resources of the NIH HPC Biowulf cluster.

  4. Mixed Quantum-Classical Simulations of Transient Absorption Pump-Probe Signals for a Photo-Induced Electron Transfer Reaction Coupled to an Inner-Sphere Vibrational Mode.

    PubMed

    Martinez, Franz; Hanna, Gabriel

    2016-05-19

    In a previous study (Martinez, F.; Hanna, G. Chem. Phys. Lett. 2013, 573, 77-83), we demonstrated the ability of two approximate solutions of the quantum-classical Liouville equation (QCLE) for qualitatively capturing the electronic dynamics in the pump-probe transient absorption (TA) signal of a model of a condensed phase photoinduced electron transfer reaction whose ground and excited donor states have the same equilibrium geometry. However, the question remained as to the ability of these solutions to treat the more complex situation in which the electronic states are coupled to a low-frequency inner-sphere harmonic vibrational mode (representing an intramolecular mode of the donor-acceptor complex) that shifts their equilibrium geometries with respect to each other and thereby gives rise to signatures of vibrational dynamics in the TA signal. Thus, in this study, we investigated this situation by treating the vibrational mode both quantum mechanically and classically within the context of the approximate Poisson bracket mapping equation (PBME) and forward-backward trajectory solutions (FBTS) of the QCLE. Depending on the definition of the quantum subsystem, both PBME and FBTS are capable of qualitatively capturing several of the main features in the exact TA signal and quantitatively capturing the characteristic time scale of the vibrational dynamics, despite the moderately strong subsystem-bath coupling in this model. Particularly, we found that treating the vibrational mode quantum mechanically using either PBME or FBTS better captures the signatures of the vibrational dynamics, while treating it classically using FBTS better captures the decay in the signal. These findings underscore the utility of the PBME and FBTS approaches for efficiently modeling and interpreting TA signals. PMID:26766568

  5. Unraveling Quantum Annealers using Classical Hardness

    PubMed Central

    Martin-Mayor, Victor; Hen, Itay

    2015-01-01

    Recent advances in quantum technology have led to the development and manufacturing of experimental programmable quantum annealing optimizers that contain hundreds of quantum bits. These optimizers, commonly referred to as ‘D-Wave’ chips, promise to solve practical optimization problems potentially faster than conventional ‘classical’ computers. Attempts to quantify the quantum nature of these chips have been met with both excitement and skepticism but have also brought up numerous fundamental questions pertaining to the distinguishability of experimental quantum annealers from their classical thermal counterparts. Inspired by recent results in spin-glass theory that recognize ‘temperature chaos’ as the underlying mechanism responsible for the computational intractability of hard optimization problems, we devise a general method to quantify the performance of quantum annealers on optimization problems suffering from varying degrees of temperature chaos: A superior performance of quantum annealers over classical algorithms on these may allude to the role that quantum effects play in providing speedup. We utilize our method to experimentally study the D-Wave Two chip on different temperature-chaotic problems and find, surprisingly, that its performance scales unfavorably as compared to several analogous classical algorithms. We detect, quantify and discuss several purely classical effects that possibly mask the quantum behavior of the chip. PMID:26483257

  6. Understanding singularities — Classical and quantum

    NASA Astrophysics Data System (ADS)

    Konkowski, Deborah A.; Helliwell, Thomas M.

    2016-01-01

    The definitions of classical and quantum singularities are reviewed. Examples are given of both as well as their utility in general relativity. In particular, the classical and quantum singularity structure of certain interesting conformally static spherically symmetric spacetimes modeling scalar field collapse are reviewed. The spacetimes include the Roberts spacetime, the Husain-Martinez-Nuñez spacetime and the Fonarev spacetime. The importance of understanding spacetime singularity structure is discussed.

  7. Quantum dynamics simulation with classical oscillators

    NASA Astrophysics Data System (ADS)

    Briggs, John S.; Eisfeld, Alexander

    2013-12-01

    In a previous paper [J. S. Briggs and A. Eisfeld, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.85.052111 85, 052111 (2012)] we showed that the time development of the complex amplitudes of N coupled quantum states can be mapped by the time development of positions and velocities of N coupled classical oscillators. Here we examine to what extent this mapping can be realized to simulate the “quantum,” properties of entanglement and qubit manipulation. By working through specific examples, e.g., of quantum gate operation, we seek to illuminate quantum and classical differences which hitherto have been treated more mathematically. In addition, we show that important quantum coupled phenomena, such as the Landau-Zener transition and the occurrence of Fano resonances can be simulated by classical oscillators.

  8. Quantum Backreaction on Classical'' Variables

    SciTech Connect

    Anderson, A. Blackett Laboratory, Imperial College, Prince Consort Rd., London SW7 2BZ )

    1995-01-30

    A mathematically consistent procedure for coupling quasiclassical and quantum variables through coupled Hamilton-Heisenberg equations of motion is derived from a variational principle. During evolution, the quasiclassical variables become entangled with the quantum variables with the result that the value of the quasiclassical variables depends on the quantum state. This provides a formalism to compute the backreaction of any quantum system on a quasiclassical one. In particular, it leads to a natural candidate for a theory of gravity coupled to quantized matter in which the gravitational field is not quantized.

  9. Quantum phase uncertainties in the classical limit

    NASA Technical Reports Server (NTRS)

    Franson, James D.

    1994-01-01

    Several sources of phase noise, including spontaneous emission noise and the loss of coherence due to which-path information, are examined in the classical limit of high field intensities. Although the origin of these effects may appear to be quantum-mechanical in nature, it is found that classical analogies for these effects exist in the form of chaos.

  10. Classical and Quantum-Mechanical State Reconstruction

    ERIC Educational Resources Information Center

    Khanna, F. C.; Mello, P. A.; Revzen, M.

    2012-01-01

    The aim of this paper is to present the subject of state reconstruction in classical and in quantum physics, a subject that deals with the experimentally acquired information that allows the determination of the physical state of a system. Our first purpose is to explain a method for retrieving a classical state in phase space, similar to that…

  11. Classical underpinnings of gravitationally induced quantum interference

    SciTech Connect

    Mannheim, P.D.

    1998-02-01

    We show that the gravitational modification of the phase of a neutron beam [the Colella-Overhauser-Werner (COW) experiment] has a classical origin, being due to the time delay that classical particles experience in traversing a background gravitational field. Similarly, we show that classical light waves also undergo a phase shift in traversing a gravitational field. We show that the COW experiment respects the equivalence principle even in the presence of quantum mechanics. {copyright} {ital 1998} {ital The American Physical Society}

  12. Multiple-Access Quantum-Classical Networks

    NASA Astrophysics Data System (ADS)

    Razavi, Mohsen

    2011-10-01

    A multi-user network that supports both classical and quantum communication is proposed. By relying on optical code-division multiple access techniques, this system offers simultaneous key exchange between multiple pairs of network users. A lower bound on the secure key generation rate will be derived for decoy-state quantum key distribution protocols.

  13. Classical and quantum correlations under decoherence

    SciTech Connect

    Maziero, J.; Celeri, L. C.; Serra, R. M.; Vedral, V.

    2009-10-15

    Recently some authors have pointed out that there exist nonclassical correlations which are more general, and possibly more fundamental, than entanglement. For these general quantum correlations and their classical counterparts, under the action of decoherence, we identify three general types of dynamics that include a peculiar sudden change in their decay rates. We show that, under suitable conditions, the classical correlation is unaffected by decoherence. Such dynamic behavior suggests an operational measure of both classical and quantum correlations that can be computed without any extremization procedur000.

  14. Classical noise, quantum noise and secure communication

    NASA Astrophysics Data System (ADS)

    Tannous, C.; Langlois, J.

    2016-01-01

    Secure communication based on message encryption might be performed by combining the message with controlled noise (called pseudo-noise) as performed in spread-spectrum communication used presently in Wi-Fi and smartphone telecommunication systems. Quantum communication based on entanglement is another route for securing communications as demonstrated by several important experiments described in this work. The central role played by the photon in unifying the description of classical and quantum noise as major ingredients of secure communication systems is highlighted and described on the basis of the classical and quantum fluctuation dissipation theorems.

  15. Classical and quantum correlative capacities of quantum systems

    SciTech Connect

    Li Nan; Luo Shunlong

    2011-10-15

    How strongly can one system be correlated with another? In the classical world, this basic question concerning correlative capacity has a very satisfying answer: The ''effective size'' of the marginal system, as quantified by the Shannon entropy, sets a tight upper bound to the correlations, as quantified by the mutual information. Although in the quantum world bipartite correlations, like their classical counterparts, are also well quantified by mutual information, the similarity ends here: The correlations in a bipartite quantum system can be twice as large as the marginal entropy. In the paradigm of quantum discord, the correlations are split into classical and quantum components, and it was conjectured that both the classical and quantum correlations are (like the classical mutual information) bounded above by each subsystem's entropy. In this work, by exploiting the interplay between entanglement of formation, mutual information, and quantum discord, we disprove that conjecture. We further indicate a scheme to restore harmony between quantum and classical correlative capacities. The results illustrate dramatically the asymmetric nature of quantum discord and highlight some subtle and unusual features of quantum correlations.

  16. NUCLEAR MIXING METERS FOR CLASSICAL NOVAE

    SciTech Connect

    Kelly, Keegan J.; Iliadis, Christian; Downen, Lori; Champagne, Art; José, Jordi

    2013-11-10

    Classical novae are caused by mass transfer episodes from a main-sequence star onto a white dwarf via Roche lobe overflow. This material possesses angular momentum and forms an accretion disk around the white dwarf. Ultimately, a fraction of this material spirals in and piles up on the white dwarf surface under electron-degenerate conditions. The subsequently occurring thermonuclear runaway reaches hundreds of megakelvin and explosively ejects matter into the interstellar medium. The exact peak temperature strongly depends on the underlying white dwarf mass, the accreted mass and metallicity, and the initial white dwarf luminosity. Observations of elemental abundance enrichments in these classical nova events imply that the ejected matter consists not only of processed solar material from the main-sequence partner but also of material from the outer layers of the underlying white dwarf. This indicates that white dwarf and accreted matter mix prior to the thermonuclear runaway. The processes by which this mixing occurs require further investigation to be understood. In this work, we analyze elemental abundances ejected from hydrodynamic nova models in search of elemental abundance ratios that are useful indicators of the total amount of mixing. We identify the abundance ratios ΣCNO/H, Ne/H, Mg/H, Al/H, and Si/H as useful mixing meters in ONe novae. The impact of thermonuclear reaction rate uncertainties on the mixing meters is investigated using Monte Carlo post-processing network calculations with temperature-density evolutions of all mass zones computed by the hydrodynamic models. We find that the current uncertainties in the {sup 30}P(p, γ){sup 31}S rate influence the Si/H abundance ratio, but overall the mixing meters found here are robust against nuclear physics uncertainties. A comparison of our results with observations of ONe novae provides strong constraints for classical nova models.

  17. Entanglement in the classical limit: Quantum correlations from classical probabilities

    SciTech Connect

    Matzkin, A.

    2011-08-15

    We investigate entanglement for a composite closed system endowed with a scaling property which allows the dynamics to be kept invariant while the effective Planck constant ({Dirac_h}/2{pi}){sub eff} of the system is varied. Entanglement increases as ({Dirac_h}/2{pi}){sub eff}{yields}0. Moreover, for sufficiently low ({Dirac_h}/2{pi}){sub eff} the evolution of the quantum correlations, encapsulated, for example, in the quantum discord, can be obtained from the mutual information of the corresponding classical system. We show this behavior is due to the local suppression of path interferences in the interaction that generates the entanglement.

  18. Quantum and classical phases in optomechanics

    NASA Astrophysics Data System (ADS)

    Armata, Federico; Latmiral, Ludovico; Pikovski, Igor; Vanner, Michael R.; Brukner, Časlav; Kim, M. S.

    2016-06-01

    The control of quantum systems requires the ability to change and read-out the phase of a system. The noncommutativity of canonical conjugate operators can induce phases on quantum systems, which can be employed for implementing phase gates and for precision measurements. Here we study the phase acquired by a radiation field after its radiation pressure interaction with a mechanical oscillator, and compare the classical and quantum contributions. The classical description can reproduce the nonlinearity induced by the mechanical oscillator and the loss of correlations between mechanics and optical field at certain interaction times. Such features alone are therefore insufficient for probing the quantum nature of the interaction. Our results thus isolate genuine quantum contributions of the optomechanical interaction that could be probed in current experiments.

  19. Trading Classical and Quantum Computational Resources

    NASA Astrophysics Data System (ADS)

    Bravyi, Sergey; Smith, Graeme; Smolin, John A.

    2016-04-01

    We propose examples of a hybrid quantum-classical simulation where a classical computer assisted by a small quantum processor can efficiently simulate a larger quantum system. First, we consider sparse quantum circuits such that each qubit participates in O (1 ) two-qubit gates. It is shown that any sparse circuit on n +k qubits can be simulated by sparse circuits on n qubits and a classical processing that takes time 2O (k )poly (n ) . Second, we study Pauli-based computation (PBC), where allowed operations are nondestructive eigenvalue measurements of n -qubit Pauli operators. The computation begins by initializing each qubit in the so-called magic state. This model is known to be equivalent to the universal quantum computer. We show that any PBC on n +k qubits can be simulated by PBCs on n qubits and a classical processing that takes time 2O (k )poly (n ). Finally, we propose a purely classical algorithm that can simulate a PBC on n qubits in a time 2α npoly (n ) , where α ≈0.94 . This improves upon the brute-force simulation method, which takes time 2npoly (n ). Our algorithm exploits the fact that n -fold tensor products of magic states admit a low-rank decomposition into n -qubit stabilizer states.

  20. Quantum-classical crossover in electrodynamics

    SciTech Connect

    Polonyi, Janos

    2006-09-15

    A classical field theory is proposed for the electric current and the electromagnetic field interpolating between microscopic and macroscopic domains. It represents a generalization of the density functional for the dynamics of the current and the electromagnetic field in the quantum side of the crossover and reproduces standard classical electrodynamics on the other side. The effective action derived in the closed time path formalism and the equations of motion follow from the variational principle. The polarization of the Dirac-sea can be taken into account in the quadratic approximation of the action by the introduction of the deplacement field strengths as in conventional classical electrodynamics. Decoherence appears naturally as a simple one-loop effect in this formalism. It is argued that the radiation time arrow is generated from the quantum boundary conditions in time by decoherence at the quantum-classical crossover and the Abraham-Lorentz force arises from the accelerating charge or from other charges in the macroscopic or the microscopic side, respectively. The functional form of the quantum renormalization group, the generalization of the renormalization group method for the density matrix, is proposed to follow the scale dependence through the quantum-classical crossover in a systematical manner.

  1. Entanglement in Quantum-Classical Hybrid

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2011-01-01

    It is noted that the phenomenon of entanglement is not a prerogative of quantum systems, but also occurs in other, non-classical systems such as quantum-classical hybrids, and covers the concept of entanglement as a special type of global constraint imposed upon a broad class of dynamical systems. Application of hybrid systems for physics of life, as well as for quantum-inspired computing, has been outlined. In representing the Schroedinger equation in the Madelung form, there is feedback from the Liouville equation to the Hamilton-Jacobi equation in the form of the quantum potential. Preserving the same topology, the innovators replaced the quantum potential with other types of feedback, and investigated the property of these hybrid systems. A function of probability density has been introduced. Non-locality associated with a global geometrical constraint that leads to an entanglement effect was demonstrated. Despite such a quantum like characteristic, the hybrid can be of classical scale and all the measurements can be performed classically. This new emergence of entanglement sheds light on the concept of non-locality in physics.

  2. Large classical universes emerging from quantum cosmology

    SciTech Connect

    Pinto-Neto, Nelson

    2009-04-15

    It is generally believed that one cannot obtain a large universe from quantum cosmological models without an inflationary phase in the classical expanding era because the typical size of the universe after leaving the quantum regime should be around the Planck length, and the standard decelerated classical expansion after that is not sufficient to enlarge the universe in the time available. For instance, in many quantum minisuperspace bouncing models studied in the literature, solutions where the universe leaves the quantum regime in the expanding phase with appropriate size have negligible probability amplitude with respect to solutions leaving this regime around the Planck length. In this paper, I present a general class of moving Gaussian solutions of the Wheeler-DeWitt equation where the velocity of the wave in minisuperspace along the scale factor axis, which is the new large parameter introduced in order to circumvent the above-mentioned problem, induces a large acceleration around the quantum bounce, forcing the universe to leave the quantum regime sufficiently big to increase afterwards to the present size, without needing any classical inflationary phase in between, and with reasonable relative probability amplitudes with respect to models leaving the quantum regime around the Planck scale. Furthermore, linear perturbations around this background model are free of any trans-Planckian problem.

  3. Classical versus quantum errors in quantum computation of dynamical systems.

    PubMed

    Rossini, Davide; Benenti, Giuliano; Casati, Giulio

    2004-11-01

    We analyze the stability of a quantum algorithm simulating the quantum dynamics of a system with different regimes, ranging from global chaos to integrability. We compare, in these different regimes, the behavior of the fidelity of quantum motion when the system's parameters are perturbed or when there are unitary errors in the quantum gates implementing the quantum algorithm. While the first kind of errors has a classical limit, the second one has no classical analog. It is shown that, whereas in the first case ("classical errors") the decay of fidelity is very sensitive to the dynamical regime, in the second case ("quantum errors") it is almost independent of the dynamical behavior of the simulated system. Therefore, the rich variety of behaviors found in the study of the stability of quantum motion under "classical" perturbations has no correspondence in the fidelity of quantum computation under its natural perturbations. In particular, in this latter case it is not possible to recover the semiclassical regime in which the fidelity decays with a rate given by the classical Lyapunov exponent. PMID:15600737

  4. Correspondence between quantum and classical information: Generalized quantum measurements

    SciTech Connect

    Grishanin, Boris A.; Zadkov, Victor N.

    2006-04-15

    The concept of generalized quantum measurement is introduced as a transformation that sets a one-to-one correspondence between the initial states of the measured object system and final states of the object-meter system with the help of a classical informational index, unambiguously linked to a classically compatible set of quantum states. It is shown that the generalized quantum measurement concept covers all key types of quantum measurement--standard projective, entangling, fuzzy, and generalized measurements with a partial or complete destruction of initial information associated with the object. A special class of soft quantum measurements as a basic model for the fuzzy measurements widespread in physics is introduced and its information properties are studied in detail. Also, a special class of partially destructive measurements mapping all states of the Hilbert space of a finite-dimensional quantum system onto the basis states of an infinite-dimensional quantum system is considered.

  5. Crossover from quantum to classical transport

    NASA Astrophysics Data System (ADS)

    Morr, Dirk K.

    2016-01-01

    Understanding the crossover from quantum to classical transport has become of fundamental importance not only for technological applications due to the creation of sub-10-nm transistors - an important building block of our modern life - but also for elucidating the role played by quantum mechanics in the evolutionary fitness of biological complexes. This article provides a basic introduction into the nature of charge and energy transport in the quantum and classical regimes. It discusses the characteristic transport properties in both limits and demonstrates how they can be connected through the loss of quantum mechanical coherence. The salient features of the crossover physics are identified, and their importance in opening new transport regimes and in understanding efficient and robust energy transport in biological complexes are demonstrated.

  6. Classical and quantum routes to linear magnetoresistance.

    PubMed

    Hu, Jingshi; Rosenbaum, T F

    2008-09-01

    The hallmark of materials science is the ability to tailor the microstructure of a given material to provide a desired response. Carbon mixed with iron provides the steel of buildings and bridges; impurities sprinkled in silicon single crystals form the raw materials of the electronics revolution; pinning centres in superconductors let them become powerful magnets. Here, we show that either adding a few parts per million of the proper chemical impurities to indium antimonide, a well-known semiconductor, or redesigning the material's structure on the micrometre scale, can transform its response to an applied magnetic field. The former approach is purely quantum mechanical; the latter a classical outgrowth of disorder, turned to advantage. In both cases, the magnetoresistive response--at the heart of magnetic sensor technology--can be converted to a simple, large and linear function of field that does not saturate. Harnessing the effects of disorder has the further advantage of extending the useful applications range of such a magnetic sensor to very high temperatures by circumventing the usual limitations imposed by phonon scattering. PMID:18719705

  7. Quantum Correlations in Mixed-State Metrology

    NASA Astrophysics Data System (ADS)

    Modi, Kavan; Cable, Hugo; Williamson, Mark; Vedral, Vlatko

    2011-10-01

    We analyze the effects of quantum correlations, such as entanglement and discord, on the efficiency of phase estimation by studying four quantum circuits that can be readily implemented using NMR techniques. These circuits define a standard strategy of repeated single-qubit measurements, a classical strategy where only classical correlations are allowed, and two quantum strategies where nonclassical correlations are allowed. In addition to counting space (number of qubits) and time (number of gates) requirements, we introduce mixedness as a key constraint of the experiment. We compare the efficiency of the four strategies as a function of the mixedness parameter. We find that the quantum strategy gives N enhancement over the standard strategy for the same amount of mixedness. This result applies even for highly mixed states that have nonclassical correlations but no entanglement.

  8. Applying classical geometry intuition to quantum spin

    NASA Astrophysics Data System (ADS)

    Durfee, Dallin S.; Archibald, James L.

    2016-09-01

    Using concepts of geometric orthogonality and linear independence, we logically deduce the form of the Pauli spin matrices and the relationships between the three spatially orthogonal basis sets of the spin-1/2 system. Rather than a mathematically rigorous derivation, the relationships are found by forcing expectation values of the different basis states to have the properties we expect of a classical, geometric coordinate system. The process highlights the correspondence of quantum angular momentum with classical notions of geometric orthogonality, even for the inherently non-classical spin-1/2 system. In the process, differences in and connections between geometrical space and Hilbert space are illustrated.

  9. Classical Simulated Annealing Using Quantum Analogues

    NASA Astrophysics Data System (ADS)

    La Cour, Brian R.; Troupe, James E.; Mark, Hans M.

    2016-08-01

    In this paper we consider the use of certain classical analogues to quantum tunneling behavior to improve the performance of simulated annealing on a discrete spin system of the general Ising form. Specifically, we consider the use of multiple simultaneous spin flips at each annealing step as an analogue to quantum spin coherence as well as modifications of the Boltzmann acceptance probability to mimic quantum tunneling. We find that the use of multiple spin flips can indeed be advantageous under certain annealing schedules, but only for long anneal times.

  10. Classical Simulated Annealing Using Quantum Analogues

    NASA Astrophysics Data System (ADS)

    La Cour, Brian R.; Troupe, James E.; Mark, Hans M.

    2016-06-01

    In this paper we consider the use of certain classical analogues to quantum tunneling behavior to improve the performance of simulated annealing on a discrete spin system of the general Ising form. Specifically, we consider the use of multiple simultaneous spin flips at each annealing step as an analogue to quantum spin coherence as well as modifications of the Boltzmann acceptance probability to mimic quantum tunneling. We find that the use of multiple spin flips can indeed be advantageous under certain annealing schedules, but only for long anneal times.

  11. Comparison of Classical and Quantum Mechanical Uncertainties.

    ERIC Educational Resources Information Center

    Peslak, John, Jr.

    1979-01-01

    Comparisons are made for the particle-in-a-box, the harmonic oscillator, and the one-electron atom. A classical uncertainty principle is derived and compared with its quantum-mechanical counterpart. The results are discussed in terms of the statistical interpretation of the uncertainty principle. (Author/BB)

  12. Classical and quantum Kummer shape algebras

    NASA Astrophysics Data System (ADS)

    Odzijewicz, A.; Wawreniuk, E.

    2016-07-01

    We study a family of integrable systems of nonlinearly coupled harmonic oscillators on the classical and quantum levels. We show that the integrability of these systems follows from their symmetry characterized by algebras, here called Kummer shape algebras. The resolution of identity for a wide class of reproducing kernels is found. A number of examples, illustrating this theory, are also presented.

  13. Quantum-to-classical crossover near quantum critical point

    SciTech Connect

    Vasin, M.; Ryzhov, V.; Vinokur, V. M.

    2015-12-21

    A quantum phase transition (QPT) is an inherently dynamic phenomenon. However, while non-dissipative quantum dynamics is described in detail, the question, that is not thoroughly understood is how the omnipresent dissipative processes enter the critical dynamics near a quantum critical point (QCP). Here we report a general approach enabling inclusion of both adiabatic and dissipative processes into the critical dynamics on the same footing. We reveal three distinct critical modes, the adiabatic quantum mode (AQM), the dissipative classical mode [classical critical dynamics mode (CCDM)], and the dissipative quantum critical mode (DQCM). We find that as a result of the transition from the regime dominated by thermal fluctuations to that governed by the quantum ones, the system acquires effective dimension d+zΛ(T), where z is the dynamical exponent, and temperature-depending parameter Λ(T)ε[0, 1] decreases with the temperature such that Λ(T=0) = 1 and Λ(T →∞) = 0. Lastly, our findings lead to a unified picture of quantum critical phenomena including both dissipation- and dissipationless quantum dynamic effects and offer a quantitative description of the quantum-to-classical crossover.

  14. Quantum-to-classical crossover near quantum critical point

    DOE PAGESBeta

    Vasin, M.; Ryzhov, V.; Vinokur, V. M.

    2015-12-21

    A quantum phase transition (QPT) is an inherently dynamic phenomenon. However, while non-dissipative quantum dynamics is described in detail, the question, that is not thoroughly understood is how the omnipresent dissipative processes enter the critical dynamics near a quantum critical point (QCP). Here we report a general approach enabling inclusion of both adiabatic and dissipative processes into the critical dynamics on the same footing. We reveal three distinct critical modes, the adiabatic quantum mode (AQM), the dissipative classical mode [classical critical dynamics mode (CCDM)], and the dissipative quantum critical mode (DQCM). We find that as a result of the transitionmore » from the regime dominated by thermal fluctuations to that governed by the quantum ones, the system acquires effective dimension d+zΛ(T), where z is the dynamical exponent, and temperature-depending parameter Λ(T)ε[0, 1] decreases with the temperature such that Λ(T=0) = 1 and Λ(T →∞) = 0. Lastly, our findings lead to a unified picture of quantum critical phenomena including both dissipation- and dissipationless quantum dynamic effects and offer a quantitative description of the quantum-to-classical crossover.« less

  15. Quantum-to-classical crossover near quantum critical point

    NASA Astrophysics Data System (ADS)

    Vasin, M.; Ryzhov, V.; Vinokur, V. M.

    2015-12-01

    A quantum phase transition (QPT) is an inherently dynamic phenomenon. However, while non-dissipative quantum dynamics is described in detail, the question, that is not thoroughly understood is how the omnipresent dissipative processes enter the critical dynamics near a quantum critical point (QCP). Here we report a general approach enabling inclusion of both adiabatic and dissipative processes into the critical dynamics on the same footing. We reveal three distinct critical modes, the adiabatic quantum mode (AQM), the dissipative classical mode [classical critical dynamics mode (CCDM)], and the dissipative quantum critical mode (DQCM). We find that as a result of the transition from the regime dominated by thermal fluctuations to that governed by the quantum ones, the system acquires effective dimension d + zΛ(T), where z is the dynamical exponent, and temperature-depending parameter Λ(T) ∈ [0, 1] decreases with the temperature such that Λ(T = 0) = 1 and Λ(T → ∞) = 0. Our findings lead to a unified picture of quantum critical phenomena including both dissipation- and dissipationless quantum dynamic effects and offer a quantitative description of the quantum-to-classical crossover.

  16. Quantum-to-classical crossover near quantum critical point

    PubMed Central

    Vasin, M.; Ryzhov, V.; Vinokur, V. M.

    2015-01-01

    A quantum phase transition (QPT) is an inherently dynamic phenomenon. However, while non-dissipative quantum dynamics is described in detail, the question, that is not thoroughly understood is how the omnipresent dissipative processes enter the critical dynamics near a quantum critical point (QCP). Here we report a general approach enabling inclusion of both adiabatic and dissipative processes into the critical dynamics on the same footing. We reveal three distinct critical modes, the adiabatic quantum mode (AQM), the dissipative classical mode [classical critical dynamics mode (CCDM)], and the dissipative quantum critical mode (DQCM). We find that as a result of the transition from the regime dominated by thermal fluctuations to that governed by the quantum ones, the system acquires effective dimension d + zΛ(T), where z is the dynamical exponent, and temperature-depending parameter Λ(T) ∈ [0, 1] decreases with the temperature such that Λ(T = 0) = 1 and Λ(T → ∞) = 0. Our findings lead to a unified picture of quantum critical phenomena including both dissipation- and dissipationless quantum dynamic effects and offer a quantitative description of the quantum-to-classical crossover. PMID:26688102

  17. Quantum and classical optics–emerging links

    NASA Astrophysics Data System (ADS)

    Eberly, J. H.; Qian, Xiao-Feng; Qasimi, Asma Al; Ali, Hazrat; Alonso, M. A.; Gutiérrez-Cuevas, R.; Little, Bethany J.; Howell, John C.; Malhotra, Tanya; Vamivakas, A. N.

    2016-06-01

    Quantum optics and classical optics are linked in ways that are becoming apparent as a result of numerous recent detailed examinations of the relationships that elementary notions of optics have with each other. These elementary notions include interference, polarization, coherence, complementarity and entanglement. All of them are present in both quantum and classical optics. They have historic origins, and at least partly for this reason not all of them have quantitative definitions that are universally accepted. This makes further investigation into their engagement in optics very desirable. We pay particular attention to effects that arise from the mere co-existence of separately identifiable and readily available vector spaces. Exploitation of these vector-space relationships are shown to have unfamiliar theoretical implications and new options for observation. It is our goal to bring emerging quantum–classical links into wider view and to indicate directions in which forthcoming and future work will promote discussion and lead to unified understanding.

  18. Experimental tests of classical and quantum dimensionality.

    PubMed

    Ahrens, Johan; Badziąg, Piotr; Pawłowski, Marcin; Zukowski, Marek; Bourennane, Mohamed

    2014-04-11

    We report on an experimental test of classical and quantum dimension. We have used a dimension witness that can distinguish between quantum and classical systems of dimensions two, three, and four and performed the experiment for all five cases. The witness we have chosen is a base of semi-device-independent cryptographic and randomness expansion protocols. Therefore, the part of the experiment in which qubits were used is a realization of these protocols. In our work we also present an analytic method for finding the maximum quantum value of the witness along with corresponding measurements and preparations. This method is quite general and can be applied to any linear dimension witness. PMID:24765923

  19. A molecular dynamics study of intramolecular proton transfer reaction of malonaldehyde in solution based upon a mixed quantum-classical approximation. II. Proton transfer reaction in non-polar solvent

    NASA Astrophysics Data System (ADS)

    Kojima, H.; Yamada, A.; Okazaki, S.

    2015-05-01

    The intramolecular proton transfer reaction of malonaldehyde in neon solvent has been investigated by mixed quantum-classical molecular dynamics (QCMD) calculations and fully classical molecular dynamics (FCMD) calculations. Comparing these calculated results with those for malonaldehyde in water reported in Part I [A. Yamada, H. Kojima, and S. Okazaki, J. Chem. Phys. 141, 084509 (2014)], the solvent dependence of the reaction rate, the reaction mechanism involved, and the quantum effect therein have been investigated. With FCMD, the reaction rate in weakly interacting neon is lower than that in strongly interacting water. However, with QCMD, the order of the reaction rates is reversed. To investigate the mechanisms in detail, the reactions were categorized into three mechanisms: tunneling, thermal activation, and barrier vanishing. Then, the quantum and solvent effects were analyzed from the viewpoint of the reaction mechanism focusing on the shape of potential energy curve and its fluctuations. The higher reaction rate that was found for neon in QCMD compared with that found for water solvent arises from the tunneling reactions because of the nearly symmetric double-well shape of the potential curve in neon. The thermal activation and barrier vanishing reactions were also accelerated by the zero-point energy. The number of reactions based on these two mechanisms in water was greater than that in neon in both QCMD and FCMD because these reactions are dominated by the strength of solute-solvent interactions.

  20. A molecular dynamics study of intramolecular proton transfer reaction of malonaldehyde in solution based upon a mixed quantum-classical approximation. II. Proton transfer reaction in non-polar solvent.

    PubMed

    Kojima, H; Yamada, A; Okazaki, S

    2015-05-01

    The intramolecular proton transfer reaction of malonaldehyde in neon solvent has been investigated by mixed quantum-classical molecular dynamics (QCMD) calculations and fully classical molecular dynamics (FCMD) calculations. Comparing these calculated results with those for malonaldehyde in water reported in Part I [A. Yamada, H. Kojima, and S. Okazaki, J. Chem. Phys. 141, 084509 (2014)], the solvent dependence of the reaction rate, the reaction mechanism involved, and the quantum effect therein have been investigated. With FCMD, the reaction rate in weakly interacting neon is lower than that in strongly interacting water. However, with QCMD, the order of the reaction rates is reversed. To investigate the mechanisms in detail, the reactions were categorized into three mechanisms: tunneling, thermal activation, and barrier vanishing. Then, the quantum and solvent effects were analyzed from the viewpoint of the reaction mechanism focusing on the shape of potential energy curve and its fluctuations. The higher reaction rate that was found for neon in QCMD compared with that found for water solvent arises from the tunneling reactions because of the nearly symmetric double-well shape of the potential curve in neon. The thermal activation and barrier vanishing reactions were also accelerated by the zero-point energy. The number of reactions based on these two mechanisms in water was greater than that in neon in both QCMD and FCMD because these reactions are dominated by the strength of solute-solvent interactions. PMID:25956108

  1. Monogamy properties of quantum and classical correlations

    SciTech Connect

    Giorgi, Gian Luca

    2011-11-15

    In contrast with entanglement, as measured by concurrence, in general, quantum discord does not possess the property of monogamy; that is, there is no tradeoff between the quantum discord shared by a pair of subsystems and the quantum discord that both of them can share with a third party. Here, we show that, as far as monogamy is considered, quantum discord of pure states is equivalent to the entanglement of formation. This result allows one to analytically prove that none of the pure three-qubit states belonging to the subclass of W states is monogamous. A suitable physical interpretation of the meaning of the correlation information as a quantifier of monogamy for the total information is also given. Finally, we prove that, for rank 2 two-qubit states, discord and classical correlations are bounded from above by single-qubit von Neumann entropies.

  2. Classical codes in quantum state space

    NASA Astrophysics Data System (ADS)

    Howard, Mark

    2015-12-01

    We present a construction of Hermitian operators and quantum states labelled by strings from a finite field. The distance between these operators or states is then simply related (typically, proportional) to the Hamming distance between their corresponding strings. This allows a straightforward application of classical coding theory to find arrangements of operators or states with a given distance distribution. Using the simplex or extended Reed-Solomon code in our construction recovers the discrete Wigner function, which has important applications in quantum information theory.

  3. Quantum and classical dissipation of charged particles

    SciTech Connect

    Ibarra-Sierra, V.G.; Anzaldo-Meneses, A.; Cardoso, J.L.; Hernández-Saldaña, H.; Kunold, A.; Roa-Neri, J.A.E.

    2013-08-15

    A Hamiltonian approach is presented to study the two dimensional motion of damped electric charges in time dependent electromagnetic fields. The classical and the corresponding quantum mechanical problems are solved for particular cases using canonical transformations applied to Hamiltonians for a particle with variable mass. Green’s function is constructed and, from it, the motion of a Gaussian wave packet is studied in detail. -- Highlights: •Hamiltonian of a damped charged particle in time dependent electromagnetic fields. •Exact Green’s function of a charged particle in time dependent electromagnetic fields. •Time evolution of a Gaussian wave packet of a damped charged particle. •Classical and quantum dynamics of a damped electric charge.

  4. Monodisperse cluster crystals: Classical and quantum dynamics.

    PubMed

    Díaz-Méndez, Rogelio; Mezzacapo, Fabio; Cinti, Fabio; Lechner, Wolfgang; Pupillo, Guido

    2015-11-01

    We study the phases and dynamics of a gas of monodisperse particles interacting via soft-core potentials in two spatial dimensions, which is of interest for soft-matter colloidal systems and quantum atomic gases. Using exact theoretical methods, we demonstrate that the equilibrium low-temperature classical phase simultaneously breaks continuous translational symmetry and dynamic space-time homogeneity, whose absence is usually associated with out-of-equilibrium glassy phenomena. This results in an exotic self-assembled cluster crystal with coexisting liquidlike long-time dynamical properties, which corresponds to a classical analog of supersolid behavior. We demonstrate that the effects of quantum fluctuations and bosonic statistics on cluster-glassy crystals are separate and competing: Zero-point motion tends to destabilize crystalline order, which can be restored by bosonic statistics. PMID:26651695

  5. Mesoscopic systems: classical irreversibility and quantum coherence.

    PubMed

    Barbara, Bernard

    2012-09-28

    Mesoscopic physics is a sub-discipline of condensed-matter physics that focuses on the properties of solids in a size range intermediate between bulk matter and individual atoms. In particular, it is characteristic of a domain where a certain number of interacting objects can easily be tuned between classical and quantum regimes, thus enabling studies at the border of the two. In magnetism, such a tuning was first realized with large-spin magnetic molecules called single-molecule magnets (SMMs) with archetype Mn(12)-ac. In general, the mesoscopic scale can be relatively large (e.g. micrometre-sized superconducting circuits), but, in magnetism, it is much smaller and can reach the atomic scale with rare earth (RE) ions. In all cases, it is shown how quantum relaxation can drastically reduce classical irreversibility. Taking the example of mesoscopic spin systems, the origin of irreversibility is discussed on the basis of the Landau-Zener model. A classical counterpart of this model is described enabling, in particular, intuitive understanding of most aspects of quantum spin dynamics. The spin dynamics of mesoscopic spin systems (SMM or RE systems) becomes coherent if they are well isolated. The study of the damping of their Rabi oscillations gives access to most relevant decoherence mechanisms by different environmental baths, including the electromagnetic bath of microwave excitation. This type of decoherence, clearly seen with spin systems, is easily recovered in quantum simulations. It is also observed with other types of qubits such as a single spin in a quantum dot or a superconducting loop, despite the presence of other competitive decoherence mechanisms. As in the molecular magnet V(15), the leading decoherence terms of superconducting qubits seem to be associated with a non-Markovian channel in which short-living entanglements with distributions of two-level systems (nuclear spins, impurity spins and/or charges) leading to 1/f noise induce τ(1)-like

  6. Time in classical and in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Elçi, A.

    2010-07-01

    This paper presents an analysis of the time concept in classical mechanics from the perspective of the invariants of a motion. The analysis shows that there is a conceptual gap concerning time in the Dirac-Heisenberg-von Neumann formalism and that Bohr's complementarity principle does not fill the gap. In the Dirac-Heisenberg-von Neumann formalism, a particle's properties are represented by Heisenberg matrices. This axiom is the source of the time problem in quantum mechanics.

  7. New variables for classical and quantum gravity

    NASA Technical Reports Server (NTRS)

    Ashtekar, Abhay

    1986-01-01

    A Hamiltonian formulation of general relativity based on certain spinorial variables is introduced. These variables simplify the constraints of general relativity considerably and enable one to imbed the constraint surface in the phase space of Einstein's theory into that of Yang-Mills theory. The imbedding suggests new ways of attacking a number of problems in both classical and quantum gravity. Some illustrative applications are discussed.

  8. Quantum particles from coarse grained classical probabilities in phase space

    SciTech Connect

    Wetterich, C.

    2010-07-15

    Quantum particles can be obtained from a classical probability distribution in phase space by a suitable coarse graining, whereby simultaneous classical information about position and momentum can be lost. For a suitable time evolution of the classical probabilities and choice of observables all features of a quantum particle in a potential follow from classical statistics. This includes interference, tunneling and the uncertainty relation.

  9. Quantum uncertainty of mixed states based on skew information

    SciTech Connect

    Luo Shunlong

    2006-02-15

    The uncertainty of a mixed state has two quite different origins: classical mixing and quantum randomness. While the classical aspect (mixedness) is significantly quantified by the von Neumann entropy, it seems that we still do not have a well accepted measure of quantum uncertainty. In terms of the skew information introduced by Wigner and Yanase in 1963 in the context of quantum measurements, we will propose an intrinsic measure for synthesizing quantum uncertainty of a mixed state and investigate its fundamental properties. We illustrate how it arises naturally from a naive hidden-variable approach to entanglement and how it exhibits a simple relation to the notion of negativity, which is an entanglement monotone introduced quite recently. We further show that it has a dramatic nonextensive feature resembling the probability law relating operations of two events. This measure of quantum uncertainty provides an alternative quantity complementary to the von Neumann entropy for studying mixedness and quantum correlations.

  10. Sharing the Quantum State and the Classical Information Simultaneously

    NASA Astrophysics Data System (ADS)

    Qin, Huawang; Dai, Yuewei

    2016-08-01

    An efficient quantum secret sharing scheme is proposed, in which the quantum state and the classical information can be shared simultaneously through only one distribution. The dealer uses the operations of quantum-controlled-not and Hadamard gate to encode the secret quantum state and classical information, and the participants use the single-particle measurements to recover the original quantum state and classical information. Compared to the existing schemes, our scheme is more efficient when the quantum state and the classical information need to be shared simultaneously.

  11. Sharing the Quantum State and the Classical Information Simultaneously

    NASA Astrophysics Data System (ADS)

    Qin, Huawang; Dai, Yuewei

    2016-04-01

    An efficient quantum secret sharing scheme is proposed, in which the quantum state and the classical information can be shared simultaneously through only one distribution. The dealer uses the operations of quantum-controlled-not and Hadamard gate to encode the secret quantum state and classical information, and the participants use the single-particle measurements to recover the original quantum state and classical information. Compared to the existing schemes, our scheme is more efficient when the quantum state and the classical information need to be shared simultaneously.

  12. How quantum are classical spin ices?

    NASA Astrophysics Data System (ADS)

    Gingras, Michel J. P.; Rau, Jeffrey G.

    The pyrochlore spin ice compounds Dy2TiO7 and Ho2Ti2O7 are well described by classical Ising models down to low temperatures. Given the empirical success of this description, the question of the importance of quantum effects in these materials has been mostly ignored. We argue that the common wisdom that the strictly Ising moments of non-interacting Dy3+ and Ho3+ ions imply Ising interactions is too naive and that a more complex argument is needed to explain the close agreement between the classical Ising model theory and experiments. By considering a microscopic picture of the interactions in rare-earth oxides, we show that the high-rank multipolar interactions needed to induce quantum effects in these two materials are generated only very weakly by superexchange. Using this framework, we formulate an estimate of the scale of quantum effects in Dy2Ti2O7 and Ho2Ti2O7, finding it to be well below experimentally relevant temperatures. Published as: PHYSICAL REVIEW B 92, 144417 (2015).

  13. Quantum to classical transition in quantum field theory

    NASA Astrophysics Data System (ADS)

    Lombardo, Fernando C.

    1998-12-01

    We study the quatum to classical transition process in the context of quantum field theory. Extending the influence functional formalism of Feynman and Vernon, we study the decoherence process for self-interacting quantum fields in flat space. We also use this formalism for arbitrary geometries to analyze the quantum to classical transition in quantum gravity. After summarizing the main results known for the quantum Brownian motion, we consider a self-interacting field theory in Minkowski spacetime. We compute a coarse grained effective action by integrating out the field modes with wavelength shorter than a critical value. From this effective action we obtain the evolution equation for the reduced density matrix (master equation). We compute the diffusion coefficients for this equation and analyze the decoherence induced on the long-wavelength modes. We generalize the results to the case of a conformally coupled scalar field in de Sitter spacetime. We show that the decoherence is effective as long as the critical wavelength is taken to be not shorter than the Hubble radius. On the other hand, we study the classical limit for scalar-tensorial models in two dimensions. We consider different couplings between the dilaton and the scalar field. We discuss the Hawking radiation process and, from an exact evaluation of the influence functional, we study the conditions by which decoherence ensures the validity of the semiclassical approximation in cosmological metrics. Finally we consider four dimensional models with massive scalar fields, arbitrary coupled to the geometry. We compute the Einstein-Langevin equations in order to study the effect of the fluctuations induced by the quantum fields on the classical geometry.

  14. Classical and Quantum Probability for Biologists - Introduction

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei.

    2010-01-01

    The aim of this review (oriented to biologists looking for applications of QM) is to provide a detailed comparative analysis of classical (Kolmogorovian) and quantum (Dirac-von Neumann) models. We will stress differences in the definition of conditional probability and as a consequence in the structures of matrices of transition probabilities, especially the condition of double stochasticity which arises naturally in QM. One of the most fundamental differences between two models is deformation of the classical formula of total probability (FTP) which plays an important role in statistics and decision making. An additional term appears in the QM-version of FTP - so called interference term. Finally, we discuss Bell's inequality and show that the common viewpoint that its violation induces either nonlocality or "death of realism" has not been completely justified. For us it is merely a sign of non-Kolmogorovianity of probabilistic data collected in a few experiments with incompatible setups of measurement devices.

  15. Quantum manifestations of classical nonlinear resonances

    NASA Astrophysics Data System (ADS)

    Wisniacki, Diego A.; Schlagheck, Peter

    2015-12-01

    When an integrable classical system is perturbed, nonlinear resonances are born, grow, and eventually disappear due to chaos. In this paper the quantum manifestations of such a transition are studied in the standard map. We show that nonlinear resonances act as a perturbation that break eigenphase degeneracies for unperturbed states with quantum numbers that differ in a multiple of the order of the resonance. We show that the eigenphase splittings are well described by a semiclassical expression based on an integrable approximation of the Hamiltonian in the vicinity of the resonance. The morphology in phase space of these states is also studied. We show that the nonlinear resonance imprints a systematic influence in their localization properties

  16. Quantum manifestations of classical nonlinear resonances.

    PubMed

    Wisniacki, Diego A; Schlagheck, Peter

    2015-12-01

    When an integrable classical system is perturbed, nonlinear resonances are born, grow, and eventually disappear due to chaos. In this paper the quantum manifestations of such a transition are studied in the standard map. We show that nonlinear resonances act as a perturbation that break eigenphase degeneracies for unperturbed states with quantum numbers that differ in a multiple of the order of the resonance. We show that the eigenphase splittings are well described by a semiclassical expression based on an integrable approximation of the Hamiltonian in the vicinity of the resonance. The morphology in phase space of these states is also studied. We show that the nonlinear resonance imprints a systematic influence in their localization properties. PMID:26764790

  17. Classical Information Storage in an n-Level Quantum System

    NASA Astrophysics Data System (ADS)

    Frenkel, Péter E.; Weiner, Mihály

    2015-12-01

    A game is played by a team of two—say Alice and Bob—in which the value of a random variable x is revealed to Alice only, who cannot freely communicate with Bob. Instead, she is given a quantum n-level system, respectively a classical n-state system, which she can put in possession of Bob in any state she wishes. We evaluate how successfully they managed to store and recover the value of x by requiring Bob to specify a value z and giving a reward of value f ( x, z) to the team. We show that whatever the probability distribution of x and the reward function f are, when using a quantum n-level system, the maximum expected reward obtainable with the best possible team strategy is equal to that obtainable with the use of a classical n-state system. The proof relies on mixed discriminants of positive matrices and—perhaps surprisingly—an application of the Supply-Demand Theorem for bipartite graphs. As a corollary, we get an infinite set of new, dimension dependent inequalities regarding positive operator valued measures and density operators on complex n-space. As a further corollary, we see that the greatest value, with respect to a given distribution of x, of the mutual information I ( x; z) that is obtainable using an n-level quantum system equals the analogous maximum for a classical n-state system.

  18. Exploring Classically Chaotic Potentials with a Matter Wave Quantum Probe

    SciTech Connect

    Gattobigio, G. L.; Couvert, A.; Georgeot, B.; Guery-Odelin, D.

    2011-12-16

    We study an experimental setup in which a quantum probe, provided by a quasimonomode guided atom laser, interacts with a static localized attractive potential whose characteristic parameters are tunable. In this system, classical mechanics predicts a transition from regular to chaotic behavior as a result of the coupling between the different degrees of freedom. Our experimental results display a clear signature of this transition. On the basis of extensive numerical simulations, we discuss the quantum versus classical physics predictions in this context. This system opens new possibilities for investigating quantum scattering, provides a new testing ground for classical and quantum chaos, and enables us to revisit the quantum-classical correspondence.

  19. Probing quantum entanglement, quantum discord, classical correlation, and the quantum state without disturbing them

    SciTech Connect

    Li Zhenni; Jin Jiasen; Yu Changshui

    2011-01-15

    We present schemes for a type of one-parameter bipartite quantum state to probe quantum entanglement, quantum discord, the classical correlation, and the quantum state based on cavity QED. It is shown that our detection does not influence all these measured quantities. We also discuss how the spontaneous emission introduced by our probe atom influences our detection.

  20. Arbiter as the Third Man in Classical and Quantum Games

    NASA Astrophysics Data System (ADS)

    Pykacz, Jarosław; FraÇkiewicz, Piotr

    2010-12-01

    We study the possible influence of a not necessarily sincere arbiter on the course of classical and quantum 2×2 games and we show that this influence in the quantum case is much bigger than in the classical case. Extreme sensitivity of quantum games on initial states of quantum objects used as carriers of information in a game shows that a quantum game, contrary to a classical game, is not defined by a payoff matrix alone but also by an initial state of objects used to play a game. Therefore, two quantum games that have the same payoff matrices but begin with different initial states should be considered as different games.

  1. Mixed quantum/classical theory for inelastic scattering of asymmetric-top-rotor + atom in the body-fixed reference frame and application to the H2O + He system

    NASA Astrophysics Data System (ADS)

    Semenov, Alexander; Dubernet, Marie-Lise; Babikov, Dmitri

    2014-09-01

    The mixed quantum/classical theory (MQCT) for inelastic molecule-atom scattering developed recently [A. Semenov and D. Babikov, J. Chem. Phys. 139, 174108 (2013)] is extended to treat a general case of an asymmetric-top-rotor molecule in the body-fixed reference frame. This complements a similar theory formulated in the space-fixed reference-frame [M. Ivanov, M.-L. Dubernet, and D. Babikov, J. Chem. Phys. 140, 134301 (2014)]. Here, the goal was to develop an approximate computationally affordable treatment of the rotationally inelastic scattering and apply it to H2O + He. We found that MQCT is somewhat less accurate at lower scattering energies. For example, below E = 1000 cm-1 the typical errors in the values of inelastic scattering cross sections are on the order of 10%. However, at higher scattering energies MQCT method appears to be rather accurate. Thus, at scattering energies above 2000 cm-1 the errors are consistently in the range of 1%-2%, which is basically our convergence criterion with respect to the number of trajectories. At these conditions our MQCT method remains computationally affordable. We found that computational cost of the fully-coupled MQCT calculations scales as n2, where n is the number of channels. This is more favorable than the full-quantum inelastic scattering calculations that scale as n3. Our conclusion is that for complex systems (heavy collision partners with many internal states) and at higher scattering energies MQCT may offer significant computational advantages.

  2. Quantum-classical equivalence and ground-state factorization

    NASA Astrophysics Data System (ADS)

    Abouie, Jahanfar; Sepehrinia, Reza

    2016-02-01

    We have performed an analytical study of quantum-classical equivalence for quantum XY-spin chains with arbitrary interactions to explore the classical counterpart of the factorizing magnetic fields that drive the system into a separable ground state. We demonstrate that the factorizing line in the parameter space of a quantum model is equivalent to the so-called natural boundary that emerges in mapping the quantum XY-model onto the two-dimensional classical Ising model. As a result, we show that the quantum systems with the non-factorizable ground state could not be mapped onto the classical Ising model. Based on the presented correspondence we suggest a promising method for obtaining the factorizing field of quantum systems through the commutation of the quantum Hamiltonian and the transfer matrix of the classical model.

  3. Quantum-Classical Hybrid for Information Processing

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2011-01-01

    Based upon quantum-inspired entanglement in quantum-classical hybrids, a simple algorithm for instantaneous transmissions of non-intentional messages (chosen at random) to remote distances is proposed. The idea is to implement instantaneous transmission of conditional information on remote distances via a quantum-classical hybrid that preserves superposition of random solutions, while allowing one to measure its state variables using classical methods. Such a hybrid system reinforces the advantages, and minimizes the limitations, of both quantum and classical characteristics. Consider n observers, and assume that each of them gets a copy of the system and runs it separately. Although they run identical systems, the outcomes of even synchronized runs may be different because the solutions of these systems are random. However, the global constrain must be satisfied. Therefore, if the observer #1 (the sender) made a measurement of the acceleration v(sub 1) at t =T, then the receiver, by measuring the corresponding acceleration v(sub 1) at t =T, may get a wrong value because the accelerations are random, and only their ratios are deterministic. Obviously, the transmission of this knowledge is instantaneous as soon as the measurements have been performed. In addition to that, the distance between the observers is irrelevant because the x-coordinate does not enter the governing equations. However, the Shannon information transmitted is zero. None of the senders can control the outcomes of their measurements because they are random. The senders cannot transmit intentional messages. Nevertheless, based on the transmitted knowledge, they can coordinate their actions based on conditional information. If the observer #1 knows his own measurements, the measurements of the others can be fully determined. It is important to emphasize that the origin of entanglement of all the observers is the joint probability density that couples their actions. There is no centralized source

  4. Coarsening Measurement References and the Quantum-to-Classical Transition

    NASA Astrophysics Data System (ADS)

    Jeong, Hyunseok; Lim, Youngrong; Kim, M. S.

    2014-01-01

    We investigate the role of inefficiency in quantum measurements in the quantum-to-classical transition, and consistently observe the quantum-to-classical transition by coarsening the references of the measurements (e.g., when and where to measure). Our result suggests that the definition of measurement precision in quantum theory should include the degree of the observer's ability to precisely control the measurement references.

  5. Nonlinear quantum equations: Classical field theory

    SciTech Connect

    Rego-Monteiro, M. A.; Nobre, F. D.

    2013-10-15

    An exact classical field theory for nonlinear quantum equations is presented herein. It has been applied recently to a nonlinear Schrödinger equation, and it is shown herein to hold also for a nonlinear generalization of the Klein-Gordon equation. These generalizations were carried by introducing nonlinear terms, characterized by exponents depending on an index q, in such a way that the standard, linear equations, are recovered in the limit q→ 1. The main characteristic of this field theory consists on the fact that besides the usual Ψ(x(vector sign),t), a new field Φ(x(vector sign),t) needs to be introduced in the Lagrangian, as well. The field Φ(x(vector sign),t), which is defined by means of an additional equation, becomes Ψ{sup *}(x(vector sign),t) only when q→ 1. The solutions for the fields Ψ(x(vector sign),t) and Φ(x(vector sign),t) are found herein, being expressed in terms of a q-plane wave; moreover, both field equations lead to the relation E{sup 2}=p{sup 2}c{sup 2}+m{sup 2}c{sup 4}, for all values of q. The fact that such a classical field theory works well for two very distinct nonlinear quantum equations, namely, the Schrödinger and Klein-Gordon ones, suggests that this procedure should be appropriate for a wider class nonlinear equations. It is shown that the standard global gauge invariance is broken as a consequence of the nonlinearity.

  6. Classical Physics and the Bounds of Quantum Correlations.

    PubMed

    Frustaglia, Diego; Baltanás, José P; Velázquez-Ahumada, María C; Fernández-Prieto, Armando; Lujambio, Aintzane; Losada, Vicente; Freire, Manuel J; Cabello, Adán

    2016-06-24

    A unifying principle explaining the numerical bounds of quantum correlations remains elusive, despite the efforts devoted to identifying it. Here, we show that these bounds are indeed not exclusive to quantum theory: for any abstract correlation scenario with compatible measurements, models based on classical waves produce probability distributions indistinguishable from those of quantum theory and, therefore, share the same bounds. We demonstrate this finding by implementing classical microwaves that propagate along meter-size transmission-line circuits and reproduce the probabilities of three emblematic quantum experiments. Our results show that the "quantum" bounds would also occur in a classical universe without quanta. The implications of this observation are discussed. PMID:27391707

  7. Classical Physics and the Bounds of Quantum Correlations

    NASA Astrophysics Data System (ADS)

    Frustaglia, Diego; Baltanás, José P.; Velázquez-Ahumada, María C.; Fernández-Prieto, Armando; Lujambio, Aintzane; Losada, Vicente; Freire, Manuel J.; Cabello, Adán

    2016-06-01

    A unifying principle explaining the numerical bounds of quantum correlations remains elusive, despite the efforts devoted to identifying it. Here, we show that these bounds are indeed not exclusive to quantum theory: for any abstract correlation scenario with compatible measurements, models based on classical waves produce probability distributions indistinguishable from those of quantum theory and, therefore, share the same bounds. We demonstrate this finding by implementing classical microwaves that propagate along meter-size transmission-line circuits and reproduce the probabilities of three emblematic quantum experiments. Our results show that the "quantum" bounds would also occur in a classical universe without quanta. The implications of this observation are discussed.

  8. Fate of classical solitons in one-dimensional quantum systems.

    SciTech Connect

    Pustilnik, M.; Matveev, K. A.

    2015-11-23

    We study one-dimensional quantum systems near the classical limit described by the Korteweg-de Vries (KdV) equation. The excitations near this limit are the well-known solitons and phonons. The classical description breaks down at long wavelengths, where quantum effects become dominant. Focusing on the spectra of the elementary excitations, we describe analytically the entire classical-to-quantum crossover. We show that the ultimate quantum fate of the classical KdV excitations is to become fermionic quasiparticles and quasiholes. We discuss in detail two exactly solvable models exhibiting such crossover, the Lieb-Liniger model of bosons with weak contact repulsion and the quantum Toda model, and argue that the results obtained for these models are universally applicable to all quantum one-dimensional systems with a well-defined classical limit described by the KdV equation.

  9. Beyond quantum-classical analogies: high time for agreement?

    NASA Astrophysics Data System (ADS)

    Marrocco, Michele

    Lately, many quantum-classical analogies have been investigated and published in many acknowledged journals. Such a surge of research on conceptual connections between quantum and classical physics forces us to ask whether the correspondence between the quantum and classical interpretation of the reality is deeper than the correspondence principle stated by Bohr. Here, after a short introduction to quantum-classical analogies from the recent literature, we try to examine the question from the perspective of a possible agreement between quantum and classical laws. A paradigmatic example is given in the striking equivalence between the classical Mie theory of electromagnetic scattering from spherical scatterers and the corresponding quantum-mechanical wave scattering analyzed in terms of partial waves. The key features that make the correspondence possible are examined and finally employed to deal with the fundamental blackbody problem that marks the initial separation between classical and quantum physics. The procedure allows us to recover the blackbody spectrum in classical terms and the proof is rich in consequences. Among them, the strong analogy between the quantum vacuum and its classical counterpart.

  10. Quantum evaporation of flavor-mixed particles

    NASA Astrophysics Data System (ADS)

    Medvedev, Mikhail V.

    2014-03-01

    Particles whose propagation (mass) and interaction (flavor) bases are misaligned are mixed, e.g., neutrinos, quarks, Kaons, etc. We show that interactions (elastic scattering) of individual mass-eigenstates can result in their inter-conversions. Most intriguing and counter-intuitive implication of this process is a new process, which we refer to as the ``quantum evaporation.'' Consider a mixed particle trapped in a gravitational potential. If such a particle scatters off something (e.g., from another mixed particle) elastically from time to time, this particle (or both particles, respectively) can eventually escape to infinity with no extra energy supplied. That is as if a ``flavor-mixed satellite'' hauled along a bumpy road puts itself in space without a rocket, fuel, etc. Of course, the process at hand is entirely quantum and has no counterpart in classical mechanics. It also has nothing to do with tunneling or other known processes. We discuss some implications to the dark matter physics, cosmology and cosmic neutrino background. Supported by grant DOE grant DE-FG02-07ER54940 and NSF grant AST-1209665.

  11. INCLINATION MIXING IN THE CLASSICAL KUIPER BELT

    SciTech Connect

    Volk, Kathryn; Malhotra, Renu

    2011-07-20

    We investigate the long-term evolution of the inclinations of the known classical and resonant Kuiper Belt objects (KBOs). This is partially motivated by the observed bimodal inclination distribution and by the putative physical differences between the low- and high-inclination populations. We find that some classical KBOs undergo large changes in inclination over gigayear timescales, which means that a current member of the low-inclination population may have been in the high-inclination population in the past, and vice versa. The dynamical mechanisms responsible for the time variability of inclinations are predominantly distant encounters with Neptune and chaotic diffusion near the boundaries of mean motion resonances. We reassess the correlations between inclination and physical properties including inclination time variability. We find that the size-inclination and color-inclination correlations are less statistically significant than previously reported (mostly due to the increased size of the data set since previous works with some contribution from inclination variability). The time variability of inclinations does not change the previous finding that binary classical KBOs have lower inclinations than non-binary objects. Our study of resonant objects in the classical Kuiper Belt region includes objects in the 3:2, 7:4, 2:1, and eight higher-order mean motion resonances. We find that these objects (some of which were previously classified as non-resonant) undergo larger changes in inclination compared to the non-resonant population, indicating that their current inclinations are not generally representative of their original inclinations. They are also less stable on gigayear timescales.

  12. Ergodicity and mixing in quantum dynamics.

    PubMed

    Zhang, Dongliang; Quan, H T; Wu, Biao

    2016-08-01

    After a brief historical review of ergodicity and mixing in dynamics, particularly in quantum dynamics, we introduce definitions of quantum ergodicity and mixing using the structure of the system's energy levels and spacings. Our definitions are consistent with the usual understanding of ergodicity and mixing. Two parameters concerning the degeneracy in energy levels and spacings are introduced. They are computed for right triangular billiards and the results indicate a very close relation between quantum ergodicity (mixing) and quantum chaos. At the end, we argue that, besides ergodicity and mixing, there may exist a third class of quantum dynamics which is characterized by a maximized entropy. PMID:27627289

  13. Extracting classical correlations from a bipartite quantum system

    SciTech Connect

    Hamieh, S.; Qi, J.; Siminovitch, D.; Ali, M.K.

    2003-01-01

    In this paper, we discuss the problem of splitting of the total correlations for a bipartite quantum state described by the Von Neumann mutual information into classical and quantum parts. We propose a measure of the classical correlations as the difference between the Von Neumann mutual information and the relative entropy of entanglement. We compare this measure with different measures proposed in the literature.

  14. Classical and thermodynamic limits for generalised quantum spin systems

    NASA Astrophysics Data System (ADS)

    Duffield, N. G.

    1990-01-01

    We prove that the rescaled upper and lower symbols for arbitrary generalised quantum spin systems converge in the classical limit. For a large class of models this enables us to derive the asyptotics of quantum free energies in the classical and in the thermodynamic limit.

  15. Complementarity of quantum discord and classically accessible information

    DOE PAGESBeta

    Zwolak, Michael P.; Zurek, Wojciech H.

    2013-05-20

    The sum of the Holevo quantity (that bounds the capacity of quantum channels to transmit classical information about an observable) and the quantum discord (a measure of the quantumness of correlations of that observable) yields an observable-independent total given by the quantum mutual information. This split naturally delineates information about quantum systems accessible to observers – information that is redundantly transmitted by the environment – while showing that it is maximized for the quasi-classical pointer observable. Other observables are accessible only via correlations with the pointer observable. In addition, we prove an anti-symmetry property relating accessible information and discord. Itmore » shows that information becomes objective – accessible to many observers – only as quantum information is relegated to correlations with the global environment, and, therefore, locally inaccessible. Lastly, the resulting complementarity explains why, in a quantum Universe, we perceive objective classical reality while flagrantly quantum superpositions are out of reach.« less

  16. Complementarity of quantum discord and classically accessible information

    SciTech Connect

    Zwolak, Michael P.; Zurek, Wojciech H.

    2013-05-20

    The sum of the Holevo quantity (that bounds the capacity of quantum channels to transmit classical information about an observable) and the quantum discord (a measure of the quantumness of correlations of that observable) yields an observable-independent total given by the quantum mutual information. This split naturally delineates information about quantum systems accessible to observers – information that is redundantly transmitted by the environment – while showing that it is maximized for the quasi-classical pointer observable. Other observables are accessible only via correlations with the pointer observable. In addition, we prove an anti-symmetry property relating accessible information and discord. It shows that information becomes objective – accessible to many observers – only as quantum information is relegated to correlations with the global environment, and, therefore, locally inaccessible. Lastly, the resulting complementarity explains why, in a quantum Universe, we perceive objective classical reality while flagrantly quantum superpositions are out of reach.

  17. Mixed quantum/classical theory for inelastic scattering of asymmetric-top-rotor + atom in the body-fixed reference frame and application to the H{sub 2}O + He system

    SciTech Connect

    Semenov, Alexander; Dubernet, Marie-Lise; Babikov, Dmitri

    2014-09-21

    The mixed quantum/classical theory (MQCT) for inelastic molecule-atom scattering developed recently [A. Semenov and D. Babikov, J. Chem. Phys. 139, 174108 (2013)] is extended to treat a general case of an asymmetric-top-rotor molecule in the body-fixed reference frame. This complements a similar theory formulated in the space-fixed reference-frame [M. Ivanov, M.-L. Dubernet, and D. Babikov, J. Chem. Phys. 140, 134301 (2014)]. Here, the goal was to develop an approximate computationally affordable treatment of the rotationally inelastic scattering and apply it to H{sub 2}O + He. We found that MQCT is somewhat less accurate at lower scattering energies. For example, below E = 1000 cm{sup −1} the typical errors in the values of inelastic scattering cross sections are on the order of 10%. However, at higher scattering energies MQCT method appears to be rather accurate. Thus, at scattering energies above 2000 cm{sup −1} the errors are consistently in the range of 1%–2%, which is basically our convergence criterion with respect to the number of trajectories. At these conditions our MQCT method remains computationally affordable. We found that computational cost of the fully-coupled MQCT calculations scales as n{sup 2}, where n is the number of channels. This is more favorable than the full-quantum inelastic scattering calculations that scale as n{sup 3}. Our conclusion is that for complex systems (heavy collision partners with many internal states) and at higher scattering energies MQCT may offer significant computational advantages.

  18. Heterotic quantum and classical computing on convergence spaces

    NASA Astrophysics Data System (ADS)

    Patten, D. R.; Jakel, D. W.; Irwin, R. J.; Blair, H. A.

    2015-05-01

    Category-theoretic characterizations of heterotic models of computation, introduced by Stepney et al., combine computational models such as classical/quantum, digital/analog, synchronous/asynchronous, etc. to obtain increased computational power. A highly informative classical/quantum heterotic model of computation is represented by Abramsky's simple sequential imperative quantum programming language which extends the classical simple imperative programming language to encompass quantum computation. The mathematical (denotational) semantics of this classical language serves as a basic foundation upon which formal verification methods can be developed. We present a more comprehensive heterotic classical/quantum model of computation based on heterotic dynamical systems on convergence spaces. Convergence spaces subsume topological spaces but admit finer structure from which, in prior work, we obtained differential calculi in the cartesian closed category of convergence spaces allowing us to define heterotic dynamical systems, given by coupled systems of first order differential equations whose variables are functions from the reals to convergence spaces.

  19. On the correspondence between quantum and classical variational principles

    DOE PAGESBeta

    Ruiz, D. E.; Dodin, I. Y.

    2015-10-01

    Classical variational principles can be deduced from quantum variational principles via formal reparameterization of the latter. It is shown that such reparameterization is possible without invoking any assumptions other than classicality and without appealing to dynamical equations. As examples, first principle variational formulations of classical point-particle and cold-fluid motion are derived from their quantum counterparts for Schrodinger, Pauli, and Klein-Gordon particles. (C) 2015 Elsevier B.V. All rights reserved.

  20. On the correspondence between quantum and classical variational principles

    SciTech Connect

    Ruiz, D. E.; Dodin, I. Y.

    2015-06-10

    Here, classical variational principles can be deduced from quantum variational principles via formal reparameterization of the latter. It is shown that such reparameterization is possible without invoking any assumptions other than classicality and without appealing to dynamical equations. As examples, first principle variational formulations of classical point-particle and cold-fluid motion are derived from their quantum counterparts for Schrodinger, Pauli, and Klein-Gordon particles.

  1. On the correspondence between quantum and classical variational principles

    NASA Astrophysics Data System (ADS)

    Ruiz, D. E.; Dodin, I. Y.

    2015-10-01

    Classical variational principles can be deduced from quantum variational principles via formal reparameterization of the latter. It is shown that such reparameterization is possible without invoking any assumptions other than classicality and without appealing to dynamical equations. As examples, first principle variational formulations of classical point-particle and cold-fluid motion are derived from their quantum counterparts for Schrödinger, Pauli, and Klein-Gordon particles.

  2. Classical and quantum superintegrability with applications

    NASA Astrophysics Data System (ADS)

    Miller, Willard, Jr.; Post, Sarah; Winternitz, Pavel

    2013-10-01

    A superintegrable system is, roughly speaking, a system that allows more integrals of motion than degrees of freedom. This review is devoted to finite dimensional classical and quantum superintegrable systems with scalar potentials and integrals of motion that are polynomials in the momenta. We present a classification of second-order superintegrable systems in two-dimensional Riemannian and pseudo-Riemannian spaces. It is based on the study of the quadratic algebras of the integrals of motion and on the equivalence of different systems under coupling constant metamorphosis. The determining equations for the existence of integrals of motion of arbitrary order in real Euclidean space E2 are presented and partially solved for the case of third-order integrals. A systematic exposition is given of systems in two and higher dimensional space that allow integrals of arbitrary order. The algebras of integrals of motions are not necessarily quadratic but close polynomially or rationally. The relation between superintegrability and the classification of orthogonal polynomials is analyzed.

  3. Quantum-classical lifetimes of Rydberg molecules

    NASA Astrophysics Data System (ADS)

    Junginger, Andrej; Main, Jörg; Wunner, Günter

    2013-04-01

    A remarkable property of Rydberg atoms is the possibility of creating molecules formed by one highly excited atom and another atom in the ground state. The first realization of such a Rydberg molecule has opened an active field of physical investigations, and showed that its basic properties can be described within a simple model regarding the ground state atom as a small perturber that is bound by a low-energy scattering process with the Rydberg electron (Greene et al 2000 Phys. Rev. Lett. 85 2458). Besides the good agreement between theory and the experiment concerning the vibrational states of the molecule, the experimental observations yield the astonishing feature that the lifetime of the molecule is clearly reduced as compared to the bare Rydberg atom (Butscher et al 2011 J. Phys. B: At. Mol. Opt. Phys. 44 184004). With focus on this yet unexplained observation, we investigate in this paper the vibrational ground state of the molecule in a quantum-classical framework. We show that the Rydberg wavefunction is continuously detuned by the presence of the moving ground state atom and that the timescale on which the detuning significantly exceeds the natural linewidth is in good agreement with the observed reduced lifetimes of the Rydberg molecule.

  4. Embedding quantum into classical: contextualization vs conditionalization.

    PubMed

    Dzhafarov, Ehtibar N; Kujala, Janne V

    2014-01-01

    We compare two approaches to embedding joint distributions of random variables recorded under different conditions (such as spins of entangled particles for different settings) into the framework of classical, Kolmogorovian probability theory. In the contextualization approach each random variable is "automatically" labeled by all conditions under which it is recorded, and the random variables across a set of mutually exclusive conditions are probabilistically coupled (imposed a joint distribution upon). Analysis of all possible probabilistic couplings for a given set of random variables allows one to characterize various relations between their separate distributions (such as Bell-type inequalities or quantum-mechanical constraints). In the conditionalization approach one considers the conditions under which the random variables are recorded as if they were values of another random variable, so that the observed distributions are interpreted as conditional ones. This approach is uninformative with respect to relations between the distributions observed under different conditions because any set of such distributions is compatible with any distribution assigned to the conditions. PMID:24681665

  5. Embedding Quantum into Classical: Contextualization vs Conditionalization

    PubMed Central

    Dzhafarov, Ehtibar N.; Kujala, Janne V.

    2014-01-01

    We compare two approaches to embedding joint distributions of random variables recorded under different conditions (such as spins of entangled particles for different settings) into the framework of classical, Kolmogorovian probability theory. In the contextualization approach each random variable is “automatically” labeled by all conditions under which it is recorded, and the random variables across a set of mutually exclusive conditions are probabilistically coupled (imposed a joint distribution upon). Analysis of all possible probabilistic couplings for a given set of random variables allows one to characterize various relations between their separate distributions (such as Bell-type inequalities or quantum-mechanical constraints). In the conditionalization approach one considers the conditions under which the random variables are recorded as if they were values of another random variable, so that the observed distributions are interpreted as conditional ones. This approach is uninformative with respect to relations between the distributions observed under different conditions because any set of such distributions is compatible with any distribution assigned to the conditions. PMID:24681665

  6. Opening up three quantum boxes causes classically undetectable wavefunction collapse

    PubMed Central

    George, Richard E.; Robledo, Lucio M.; Maroney, Owen J. E.; Blok, Machiel S.; Bernien, Hannes; Markham, Matthew L.; Twitchen, Daniel J.; Morton, John J. L.; Briggs, G. Andrew D.; Hanson, Ronald

    2013-01-01

    One of the most striking features of quantum mechanics is the profound effect exerted by measurements alone. Sophisticated quantum control is now available in several experimental systems, exposing discrepancies between quantum and classical mechanics whenever measurement induces disturbance of the interrogated system. In practice, such discrepancies may frequently be explained as the back-action required by quantum mechanics adding quantum noise to a classical signal. Here, we implement the “three-box” quantum game [Aharonov Y, et al. (1991) J Phys A Math Gen 24(10):2315–2328] by using state-of-the-art control and measurement of the nitrogen vacancy center in diamond. In this protocol, the back-action of quantum measurements adds no detectable disturbance to the classical description of the game. Quantum and classical mechanics then make contradictory predictions for the same experimental procedure; however, classical observers are unable to invoke measurement-induced disturbance to explain the discrepancy. We quantify the residual disturbance of our measurements and obtain data that rule out any classical model by ≳7.8 standard deviations, allowing us to exclude the property of macroscopic state definiteness from our system. Our experiment is then equivalent to the test of quantum noncontextuality [Kochen S, Specker E (1967) J Math Mech 17(1):59–87] that successfully addresses the measurement detectability loophole. PMID:23412336

  7. Quasi-superactivation for the classical capacity of quantum channels

    SciTech Connect

    Gyongyosi, Laszlo; Imre, Sandor

    2014-12-04

    The superactivation effect has its roots in the extreme violation of additivity of the channel capacity and enables to reliably transmit quantum information over zero-capacity quantum channels. In this work we demonstrate a similar effect for the classical capacity of a quantum channel which previously was thought to be impossible.

  8. Macroscopicity and classicality of quantum fluctuations in de Sitter space

    SciTech Connect

    Wada, S.

    1988-08-01

    On the basis of the non-probabilistic interpretation of quantum mechanics, the authors define ''macroscopicity'' and ''classicality'' of quantum fluctuations as closely related but separate concepts. Then these properties are examined in quantum states (wave functions) of matter fields in de Sitter spacetime.

  9. Arbitrated quantum signature of classical messages without using authenticated classical channels

    NASA Astrophysics Data System (ADS)

    Luo, Yi-Ping; Hwang, Tzonelih

    2014-01-01

    This paper points out design confusion existing in all the arbitrated quantum signatures (AQS) that require public discussions over authenticated classical channels. Instead, an AQS scheme of classical messages without using authenticated classical channels is proposed here. A cryptographic hash function is used in combine with quantum mechanics to check the existence of an eavesdropping or to verify a signature. In addition, by using only single photons, this scheme provides higher efficiency both in quantum transmissions and generations. The proposed AQS scheme is shown to be immune to several well-known attacks, i.e., the Trojan-horse attacks and the existential forgery attack.

  10. Interpretation neutrality in the classical domain of quantum theory

    NASA Astrophysics Data System (ADS)

    Rosaler, Joshua

    2016-02-01

    I show explicitly how concerns about wave function collapse and ontology can be decoupled from the bulk of technical analysis necessary to recover localized, approximately Newtonian trajectories from quantum theory. In doing so, I demonstrate that the account of classical behavior provided by decoherence theory can be straightforwardly tailored to give accounts of classical behavior on multiple interpretations of quantum theory, including the Everett, de Broglie-Bohm and GRW interpretations. I further show that this interpretation-neutral, decoherence-based account conforms to a general view of inter-theoretic reduction in physics that I have elaborated elsewhere, which differs from the oversimplified picture that treats reduction as a matter of simply taking limits. This interpretation-neutral account rests on a general three-pronged strategy for reduction between quantum and classical theories that combines decoherence, an appropriate form of Ehrenfest's Theorem, and a decoherence-compatible mechanism for collapse. It also incorporates a novel argument as to why branch-relative trajectories should be approximately Newtonian, which is based on a little-discussed extension of Ehrenfest's Theorem to open systems, rather than on the more commonly cited but less germane closed-systems version. In the Conclusion, I briefly suggest how the strategy for quantum-classical reduction described here might be extended to reduction between other classical and quantum theories, including classical and quantum field theory and classical and quantum gravity.

  11. Models on the boundary between classical and quantum mechanics.

    PubMed

    Hooft, Gerard 't

    2015-08-01

    Arguments that quantum mechanics cannot be explained in terms of any classical theory using only classical logic seem to be based on sound mathematical considerations: there cannot be physical laws that require 'conspiracy'. It may therefore be surprising that there are several explicit quantum systems where these considerations apparently do not apply. In this report, several such counterexamples are shown. These are quantum models that do have a classical origin. The most curious of these models is superstring theory. So now the question is asked: how can such a model feature 'conspiracy', and how bad is that? Is there conspiracy in the vacuum fluctuations? Arguments concerning Bell's theorem are further sharpened. PMID:26124246

  12. Two-slit experiment: quantum and classical probabilities

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei

    2015-06-01

    Inter-relation between quantum and classical probability models is one of the most fundamental problems of quantum foundations. Nowadays this problem also plays an important role in quantum technologies, in quantum cryptography and the theory of quantum random generators. In this letter, we compare the viewpoint of Richard Feynman that the behavior of quantum particles cannot be described by classical probability theory with the viewpoint that quantum-classical inter-relation is more complicated (cf, in particular, with the tomographic model of quantum mechanics developed in detail by Vladimir Man'ko). As a basic example, we consider the two-slit experiment, which played a crucial role in quantum foundational debates at the beginning of quantum mechanics (QM). In particular, its analysis led Niels Bohr to the formulation of the principle of complementarity. First, we demonstrate that in complete accordance with Feynman's viewpoint, the probabilities for the two-slit experiment have the non-Kolmogorovian structure, since they violate one of basic laws of classical probability theory, the law of total probability (the heart of the Bayesian analysis). However, then we show that these probabilities can be embedded in a natural way into the classical (Kolmogorov, 1933) probability model. To do this, one has to take into account the randomness of selection of different experimental contexts, the joint consideration of which led Feynman to a conclusion about the non-classicality of quantum probability. We compare this embedding of non-Kolmogorovian quantum probabilities into the Kolmogorov model with well-known embeddings of non-Euclidean geometries into Euclidean space (e.g., the Poincaré disk model for the Lobachvesky plane).

  13. Classical and quantum distinctions between weak and strong coupling

    NASA Astrophysics Data System (ADS)

    Rahimzadeh-Kalaleh Rodriguez, Said

    2016-03-01

    Coupled systems subject to dissipation exhibit two different regimes known as weak coupling and strong coupling. Two damped coupled harmonic oscillators (CHOs) constitute a model system where the key features of weak and strong coupling can be identified. Several of these features are common to classical and quantum systems, as a number of quantum-classical correspondences have shown. However, the condition defining the boundary between weak and strong coupling is distinct in classical and quantum formalisms. Here we describe the origin of two widely used definitions of strong coupling. Using a classical CHO model, we show that energy exchange cycles and avoided resonance crossings signal the onset of strong coupling according to one criterion. From the classical CHO model we derive a non-Hermitian Hamiltonian describing open quantum systems. Based on the analytic properties of the Hamiltonian, we identify the boundary between weak and strong coupling with a different feature: a non-Hermitian degeneracy known as the exceptional point. For certain parameter ranges the classical and quantum criterion for strong coupling coincide; for other ranges they do not. Examples of systems in strong coupling according to one or another criterion, but not both, are illustrated. The framework here presented is suitable for introducing graduate or advanced undegraduate students to the basic properties of strongly coupled systems, as well as to the similarities and subtle differences between classical and quantum descriptions of coupled dissipative systems.

  14. Sharing of classical and quantum correlations via XY interaction

    SciTech Connect

    Wang, Jieci; Silva, Jaime; Lanceros-Mendez, Senentxu

    2014-09-15

    The sharing of classical and quantum correlations via XY interaction is investigated. The model includes two identical networks consisting of n nodes, the ith node of one network sharing a correlated state with the jth node of the other network, while all other nodes are initially unconnected. It is shown that classical correlation, quantum discord as well as entanglement can be shared between any two nodes of the network via XY interaction and that quantum information can be transferred effectively between them. It is found that there is no simple dominating relation between the quantum correlation and entanglement in inertial system.

  15. Entanglement, the quantum formalism and the classical world

    SciTech Connect

    Matzkin, A.

    2011-09-23

    75 years after the term 'entanglement' was coined to a peculiar feature inherent to quantum systems, the connection between quantum and classical mechanics remains an open problem. Drawing on recent results obtained in semiclassical systems, we discuss here the fate of entanglement in a closed system as Planck's constant becomes vanishingly small. In that case the generation of entanglement in a quantum system is perfectly reproduced by properly defined correlations of the corresponding classical system. We speculate on what these results could imply regarding the status of entanglement and of the ensuing quantum correlations.

  16. Quantum-classical correspondence in steady states of nonadiabatic systems

    SciTech Connect

    Fujii, Mikiya; Yamashita, Koichi

    2015-12-31

    We first present nonadiabatic path integral which is exact formulation of quantum dynamics in nonadiabatic systems. Then, by applying the stationary phase approximations to the nonadiabatic path integral, a semiclassical quantization condition, i.e., quantum-classical correspondence, for steady states of nonadiabatic systems is presented as a nonadiabatic trace formula. The present quantum-classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow degree of freedom, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels.

  17. Is classical flat Kasner spacetime flat in quantum gravity?

    NASA Astrophysics Data System (ADS)

    Singh, Parampreet

    2016-05-01

    Quantum nature of classical flat Kasner spacetime is studied using effective spacetime description in loop quantum cosmology (LQC). We find that even though the spacetime curvature vanishes at the classical level, nontrivial quantum gravitational effects can arise. For the standard loop quantization of Bianchi-I spacetime, which uniquely yields universal bounds on expansion and shear scalars and results in a generic resolution of strong singularities, we find that a flat Kasner metric is not a physical solution of the effective spacetime description, except in a limit. The lack of a flat Kasner metric at the quantum level results from a novel feature of the loop quantum Bianchi-I spacetime: quantum geometry induces nonvanishing spacetime curvature components, making it not Ricci flat even when no matter is present. The noncurvature singularity of the classical flat Kasner spacetime is avoided, and the effective spacetime transits from a flat Kasner spacetime in asymptotic future, to a Minkowski spacetime in asymptotic past. Interestingly, for an alternate loop quantization which does not share some of the fine features of the standard quantization, flat Kasner spacetime with expected classical features exists. In this case, even with nontrivial quantum geometric effects, the spacetime curvature vanishes. These examples show that the character of even a flat classical vacuum spacetime can alter in a fundamental way in quantum gravity and is sensitive to the quantization procedure.

  18. Quantum-Classical Nonadiabatic Dynamics: Coupled- vs Independent-Trajectory Methods.

    PubMed

    Agostini, Federica; Min, Seung Kyu; Abedi, Ali; Gross, E K U

    2016-05-10

    Trajectory-based mixed quantum-classical approaches to coupled electron-nuclear dynamics suffer from well-studied problems such as the lack of (or incorrect account for) decoherence in the trajectory surface hopping method and the inability of reproducing the spatial splitting of a nuclear wave packet in Ehrenfest-like dynamics. In the context of electronic nonadiabatic processes, these problems can result in wrong predictions for quantum populations and in unphysical outcomes for the nuclear dynamics. In this paper, we propose a solution to these issues by approximating the coupled electronic and nuclear equations within the framework of the exact factorization of the electron-nuclear wave function. We present a simple quantum-classical scheme based on coupled classical trajectories and test it against the full quantum mechanical solution from wave packet dynamics for some model situations which represent particularly challenging problems for the above-mentioned traditional methods. PMID:27030209

  19. The roles of electronic exchange and correlation in charge-transfer- to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase

    NASA Astrophysics Data System (ADS)

    Glover, William J.; Larsen, Ross E.; Schwartz, Benjamin J.

    2008-10-01

    The charge-transfer-to-solvent (CTTS) reactions of solvated atomic anions serve as ideal models for studying the dynamics of electron transfer: The fact that atomic anions have no internal degrees of freedom provides one of the most direct routes to understanding how the motions of solvent molecules influence charge transfer, and the relative simplicity of atomic electronic structure allows for direct contact between theory and experiment. To date, molecular dynamics simulations of the CTTS process have relied on a single-electron description of the atomic anion—only the electron involved in the charge transfer has been treated quantum mechanically, and the electronic structure of the atomic solute has been treated via pseudopotentials. In this paper, we examine the severity of approximating the electronic structure of CTTS anions with a one-electron model and address the role of electronic exchange and correlation in both CTTS electronic structure and dynamics. To do this, we perform many-electron mixed quantum/classical molecular dynamics simulations of the ground- and excited-state properties of the aqueous sodium anion (sodide). We treat both of the sodide valence electrons quantum mechanically and solve the Schrödinger equation using configuration interaction with singles and doubles (CISD), which provides an exact solution for two electrons. We find that our multielectron simulations give excellent general agreement with experimental results on the CTTS spectroscopy and dynamics of sodide in related solvents. We also compare the results of our multielectron simulations to those from one-electron simulations on the same system [C. J. Smallwood et al., J. Chem. Phys. 119, 11263 (2003)] and find substantial differences in the equilibrium CTTS properties and the nonadiabatic relaxation dynamics of one- and two-electron aqueous sodide. For example, the one-electron model substantially underpredicts the size of sodide, which in turn results in a dramatically

  20. The roles of electronic exchange and correlation in charge-transfer- to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase.

    PubMed

    Glover, William J; Larsen, Ross E; Schwartz, Benjamin J

    2008-10-28

    The charge-transfer-to-solvent (CTTS) reactions of solvated atomic anions serve as ideal models for studying the dynamics of electron transfer: The fact that atomic anions have no internal degrees of freedom provides one of the most direct routes to understanding how the motions of solvent molecules influence charge transfer, and the relative simplicity of atomic electronic structure allows for direct contact between theory and experiment. To date, molecular dynamics simulations of the CTTS process have relied on a single-electron description of the atomic anion-only the electron involved in the charge transfer has been treated quantum mechanically, and the electronic structure of the atomic solute has been treated via pseudopotentials. In this paper, we examine the severity of approximating the electronic structure of CTTS anions with a one-electron model and address the role of electronic exchange and correlation in both CTTS electronic structure and dynamics. To do this, we perform many-electron mixed quantum/classical molecular dynamics simulations of the ground- and excited-state properties of the aqueous sodium anion (sodide). We treat both of the sodide valence electrons quantum mechanically and solve the Schrodinger equation using configuration interaction with singles and doubles (CISD), which provides an exact solution for two electrons. We find that our multielectron simulations give excellent general agreement with experimental results on the CTTS spectroscopy and dynamics of sodide in related solvents. We also compare the results of our multielectron simulations to those from one-electron simulations on the same system [C. J. Smallwood et al., J. Chem. Phys. 119, 11263 (2003)] and find substantial differences in the equilibrium CTTS properties and the nonadiabatic relaxation dynamics of one- and two-electron aqueous sodide. For example, the one-electron model substantially underpredicts the size of sodide, which in turn results in a dramatically

  1. Entropies and correlations in classical and quantum systems

    NASA Astrophysics Data System (ADS)

    Man'ko, Margarita A.; Man'ko, Vladimir I.; Marmo, Giuseppe

    2016-09-01

    We present a review of entropy properties for classical and quantum systems including Shannon entropy, von Neumann entropy, Rényi entropy, and Tsallis entropy. We discuss known and new entropic and information inequalities for classical and quantum systems, both composite and noncomposite. We demonstrate matrix inequalities associated with the entropic subadditivity and strong subadditivity conditions and give a new inequality for matrix elements of unitary matrices.

  2. Geodesics in information geometry: classical and quantum phase transitions.

    PubMed

    Kumar, Prashant; Mahapatra, Subhash; Phukon, Prabwal; Sarkar, Tapobrata

    2012-11-01

    We study geodesics on the parameter manifold for systems exhibiting second order classical and quantum phase transitions. The coupled nonlinear geodesic equations are solved numerically for a variety of models which show such phase transitions in the thermodynamic limit. It is established that both in the classical as well as in the quantum cases, geodesics are confined to a single phase and exhibit turning behavior near critical points. Our results are indicative of a geometric universality in widely different physical systems. PMID:23214748

  3. Statistical mechanics based on fractional classical and quantum mechanics

    SciTech Connect

    Korichi, Z.; Meftah, M. T.

    2014-03-15

    The purpose of this work is to study some problems in statistical mechanics based on the fractional classical and quantum mechanics. At first stage we have presented the thermodynamical properties of the classical ideal gas and the system of N classical oscillators. In both cases, the Hamiltonian contains fractional exponents of the phase space (position and momentum). At the second stage, in the context of the fractional quantum mechanics, we have calculated the thermodynamical properties for the black body radiation, studied the Bose-Einstein statistics with the related problem of the condensation and the Fermi-Dirac statistics.

  4. The structure of classical extensions of quantum probability theory

    NASA Astrophysics Data System (ADS)

    Stulpe, Werner; Busch, Paul

    2008-03-01

    On the basis of a suggestive definition of a classical extension of quantum mechanics in terms of statistical models, we prove that every such classical extension is essentially given by the so-called Misra-Bugajski reduction map. We consider how this map enables one to understand quantum mechanics as a reduced classical statistical theory on the projective Hilbert space as phase space and discuss features of the induced hidden-variable model. Moreover, some relevant technical results on the topology and Borel structure of the projective Hilbert space are reviewed.

  5. PREFACE: Particles and Fields: Classical and Quantum

    NASA Astrophysics Data System (ADS)

    Asorey, M.; Clemente-Gallardo, J.; Marmo, G.

    2007-07-01

    This volume contains some of the contributions to the Conference Particles and Fields: Classical and Quantum, which was held at Jaca (Spain) in September 2006 to honour George Sudarshan on his 75th birthday. Former and current students, associates and friends came to Jaca to share a few wonderful days with George and his family and to present some contributions of their present work as influenced by George's impressive achievements. This book summarizes those scientific contributions which are presented as a modest homage to the master, collaborator and friend. At the social ceremonies various speakers were able to recall instances of his life-long activity in India, the United States and Europe, adding colourful remarks on the friendly and intense atmosphere which surrounded those collaborations, some of which continued for several decades. This meeting would not have been possible without the financial support of several institutions. We are deeply indebted to Universidad de Zaragoza, Ministerio de Educación y Ciencia de España (CICYT), Departamento de Ciencia, Tecnología y Universidad del Gobierno de Aragón, Universitá di Napoli 'Federico II' and Istituto Nazionale di Fisica Nucleare. Finally, we would like to thank the participants, and particularly George's family, for their contribution to the wonderful atmosphere achieved during the Conference. We would like also to acknowledge the authors of the papers collected in the present volume, the members of the Scientific Committee for their guidance and support and the referees for their generous work. M Asorey, J Clemente-Gallardo and G Marmo The Local Organizing Committee George Sudarshan George Sudarshan

    International Advisory Committee

    A. Ashtekhar (Pennsylvania State University, USA)
    L. J. Boya (Universidad de Zaragoza, Spain)
    I. Cirac (Max Planck Institute, Garching

  6. Communication Tasks with Infinite Quantum-Classical Separation.

    PubMed

    Perry, Christopher; Jain, Rahul; Oppenheim, Jonathan

    2015-07-17

    Quantum resources can be more powerful than classical resources-a quantum computer can solve certain problems exponentially faster than a classical computer, and computing a function of two parties' inputs can be done with exponentially less communication with quantum messages than with classical ones. Here we consider a task between two players, Alice and Bob where quantum resources are infinitely more powerful than their classical counterpart. Alice is given a string of length n, and Bob's task is to exclude certain combinations of bits that Alice might have. If Alice must send classical messages, then she must reveal nearly n bits of information to Bob, but if she is allowed to send quantum bits, the amount of information she must reveal goes to zero with increasing n. Next, we consider a version of the task where the parties may have access to entanglement. With this assistance, Alice only needs to send a constant number of bits, while without entanglement, the number of bits Alice must send grows linearly with n. The task is related to the Pusey-Barrett-Rudolph theorem which arises in the context of the foundations of quantum theory. PMID:26230777

  7. Maximal Parrondo's Paradox for Classical and Quantum Markov Chains

    NASA Astrophysics Data System (ADS)

    Grünbaum, F. Alberto; Pejic, Michael

    2016-02-01

    Parrondo's paradox refers to the situation where two, multi-round games with a fixed winning criteria, both with probability greater than one-half for one player to win, are combined. Using a possibly biased coin to determine the rule to employ for each round, paradoxically, the previously losing player now wins the combined game with probability greater than one-half. In this paper, we will analyze classical observed, classical hidden, and quantum versions of a game that displays this paradox. The game we have utilized is simpler than games for which this behavior has been previously noted in the classical and quantum cases. We will show that in certain situations the paradox can occur to a greater degree in the quantum version than is possible in the classical versions.

  8. Classical and quantum mechanical motion in magnetic fields

    NASA Astrophysics Data System (ADS)

    Franklin, J.; Cole Newton, K.

    2016-04-01

    We study the motion of a particle in a particular magnetic field configuration both classically and quantum mechanically. For flux-free radially symmetric magnetic fields defined on circular regions, we establish that particle escape speeds depend, classically, on a gauge-fixed magnetic vector potential, and we demonstrate some trajectories associated with this special type of magnetic field. Then we show that some of the geometric features of the classical trajectory (perpendicular exit from the field region, trapped and escape behavior) are reproduced quantum mechanically, using a numerical method that extends the norm-preserving Crank-Nicolson method to problems involving magnetic fields. While there are similarities between the classical trajectory and the position expectation value of the quantum-mechanical solution, there are also differences, and we demonstrate some of these.

  9. Classical and Quantum Mechanical Motion in Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Newton, K. Cole; Franklin, Joel

    2016-03-01

    We study the motion of a particle in a particular magnetic field configuration both classically and quantum mechanically. For flux-free radially symmetric magnetic fields defined on circular regions, we establish that particle escape speeds depend, classically, on a gauge-fixed magnetic vector potential, and demonstrate some trajectories associated with this special type of magnetic field. Then we show that some of the geometric features of the classical trajectory (perpendicular exit from the field region, trapped and escape behavior) are reproduced quantum mechanically using a numerical method that extends the norm-preserving Crank-Nicolson method to problems involving magnetic fields. While there are similarities between the classical trajectory and the position expectation value of the quantum mechanical solution, there are also differences, and we demonstrate some of these.

  10. A wave equation interpolating between classical and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Schleich, W. P.; Greenberger, D. M.; Kobe, D. H.; Scully, M. O.

    2015-10-01

    We derive a ‘master’ wave equation for a family of complex-valued waves {{Φ }}\\equiv R{exp}[{{{i}}S}({cl)}/{{\\hbar }}] whose phase dynamics is dictated by the Hamilton-Jacobi equation for the classical action {S}({cl)}. For a special choice of the dynamics of the amplitude R which eliminates all remnants of classical mechanics associated with {S}({cl)} our wave equation reduces to the Schrödinger equation. In this case the amplitude satisfies a Schrödinger equation analogous to that of a charged particle in an electromagnetic field where the roles of the scalar and the vector potentials are played by the classical energy and the momentum, respectively. In general this amplitude is complex and thereby creates in addition to the classical phase {S}({cl)}/{{\\hbar }} a quantum phase. Classical statistical mechanics, as described by a classical matter wave, follows from our wave equation when we choose the dynamics of the amplitude such that it remains real for all times. Our analysis shows that classical and quantum matter waves are distinguished by two different choices of the dynamics of their amplitudes rather than two values of Planck’s constant. We dedicate this paper to the memory of Richard Lewis Arnowitt—a pioneer of many-body theory, a path finder at the interface of gravity and quantum mechanics, and a true leader in non-relativistic and relativistic quantum field theory.

  11. Absorbing State Phase Transition with Competing Quantum and Classical Fluctuations.

    PubMed

    Marcuzzi, Matteo; Buchhold, Michael; Diehl, Sebastian; Lesanovsky, Igor

    2016-06-17

    Stochastic processes with absorbing states feature examples of nonequilibrium universal phenomena. While the classical regime has been thoroughly investigated in the past, relatively little is known about the behavior of these nonequilibrium systems in the presence of quantum fluctuations. Here, we theoretically address such a scenario in an open quantum spin model which, in its classical limit, undergoes a directed percolation phase transition. By mapping the problem to a nonequilibrium field theory, we show that the introduction of quantum fluctuations stemming from coherent, rather than statistical, spin flips alters the nature of the transition such that it becomes first order. In the intermediate regime, where classical and quantum dynamics compete on equal terms, we highlight the presence of a bicritical point with universal features different from the directed percolation class in a low dimension. We finally propose how this physics could be explored within gases of interacting atoms excited to Rydberg states. PMID:27367395

  12. Absorbing State Phase Transition with Competing Quantum and Classical Fluctuations

    NASA Astrophysics Data System (ADS)

    Marcuzzi, Matteo; Buchhold, Michael; Diehl, Sebastian; Lesanovsky, Igor

    2016-06-01

    Stochastic processes with absorbing states feature examples of nonequilibrium universal phenomena. While the classical regime has been thoroughly investigated in the past, relatively little is known about the behavior of these nonequilibrium systems in the presence of quantum fluctuations. Here, we theoretically address such a scenario in an open quantum spin model which, in its classical limit, undergoes a directed percolation phase transition. By mapping the problem to a nonequilibrium field theory, we show that the introduction of quantum fluctuations stemming from coherent, rather than statistical, spin flips alters the nature of the transition such that it becomes first order. In the intermediate regime, where classical and quantum dynamics compete on equal terms, we highlight the presence of a bicritical point with universal features different from the directed percolation class in a low dimension. We finally propose how this physics could be explored within gases of interacting atoms excited to Rydberg states.

  13. Information security: from classical to quantum

    NASA Astrophysics Data System (ADS)

    Barnett, Stephen M.; Brougham, Thomas

    2012-09-01

    Quantum cryptography was designed to provide a new approach to the problem of distributing keys for private-key cryptography. The principal idea is that security can be ensured by exploiting the laws of quantum physics and, in particular, by the fact that any attempt to measure a quantum state will change it uncontrollably. This change can be detected by the legitimate users of the communication channel and so reveal to them the presence of an eavesdropper. In this paper I explain (briefly) how quantum key distribution works and some of the progress that has been made towards making this a viable technology. With the principles of quantum communication and quantum key distribution firmly established, it is perhaps time to consider how efficient it can be made. It is interesting to ask, in particular, how many bits of information might reasonably be encoded securely on each photon. The use of photons entangled in their time of arrival might make it possible to achieve data rates in excess of 10 bits per photon.

  14. Planck's radiation law: is a quantum-classical perspective possible?

    NASA Astrophysics Data System (ADS)

    Marrocco, Michele

    2016-05-01

    Planck's radiation law provides the solution to the blackbody problem that marks the decline of classical physics and the rise of the quantum theory of the radiation field. Here, we venture to suggest the possibility that classical physics might be equally suitable to deal with the blackbody problem. A classical version of the Planck's radiation law seems to be achievable if we learn from the quantum-classical correspondence between classical Mie theory and quantum-mechanical wave scattering from spherical scatterers (partial wave analysis). This correspondence designs a procedure for countable energy levels of the radiation trapped within the blackbody treated within the multipole approach of classical electrodynamics (in place of the customary and problematic expansion in terms of plane waves that give rise to the ultraviolet catastrophe). In turn, introducing the Boltzmann discretization of energy levels, the tools of classical thermodynamics and statistical theory become available for the task. On the other hand, the final result depends on a free parameter whose physical units are those of an action. Tuning this parameter on the value given by the Planck constant makes the classical result agree with the canonical Planck's radiation law.

  15. Improved Classical Simulation of Quantum Circuits Dominated by Clifford Gates

    NASA Astrophysics Data System (ADS)

    Bravyi, Sergey; Gosset, David

    2016-06-01

    We present a new algorithm for classical simulation of quantum circuits over the Clifford+T gate set. The runtime of the algorithm is polynomial in the number of qubits and the number of Clifford gates in the circuit but exponential in the number of T gates. The exponential scaling is sufficiently mild that the algorithm can be used in practice to simulate medium-sized quantum circuits dominated by Clifford gates. The first demonstrations of fault-tolerant quantum circuits based on 2D topological codes are likely to be dominated by Clifford gates due to a high implementation cost associated with logical T gates. Thus our algorithm may serve as a verification tool for near-term quantum computers which cannot in practice be simulated by other means. To demonstrate the power of the new method, we performed a classical simulation of a hidden shift quantum algorithm with 40 qubits, a few hundred Clifford gates, and nearly 50 T gates.

  16. Quantum Plasma Effects in the Classical Regime

    SciTech Connect

    Brodin, G.; Marklund, M.; Manfredi, G.

    2008-05-02

    For quantum effects to be significant in plasmas it is often assumed that the temperature over density ratio must be small. In this paper we challenge this assumption by considering the contribution to the dynamics from the electron spin properties. As a starting point we consider a multicomponent plasma model, where electrons with spin-up and spin-down are regarded as different fluids. By studying the propagation of Alfven wave solitons we demonstrate that quantum effects can survive in a relatively high-temperature plasma. The consequences of our results are discussed.

  17. Quantum stochastic walks: A generalization of classical random walks and quantum walks

    NASA Astrophysics Data System (ADS)

    Whitfield, James D.; Rodríguez-Rosario, César A.; Aspuru-Guzik, Alán

    2010-02-01

    We introduce the quantum stochastic walk (QSW), which determines the evolution of a generalized quantum-mechanical walk on a graph that obeys a quantum stochastic equation of motion. Using an axiomatic approach, we specify the rules for all possible quantum, classical, and quantum-stochastic transitions from a vertex as defined by its connectivity. We show how the family of possible QSWs encompasses both the classical random walk (CRW) and the quantum walk (QW) as special cases but also includes more general probability distributions. As an example, we study the QSW on a line and the glued tree of depth three to observe the behavior of the QW-to-CRW transition.

  18. Relativistic classical integrable tops and quantum R-matrices

    NASA Astrophysics Data System (ADS)

    Levin, A.; Olshanetsky, M.; Zotov, A.

    2014-07-01

    We describe classical top-like integrable systems arising from the quantum exchange relations and corresponding Sklyanin algebras. The Lax operator is expressed in terms of the quantum non-dynamical R-matrix even at the classical level, where the Planck constant plays the role of the relativistic deformation parameter in the sense of Ruijsenaars and Schneider (RS). The integrable systems (relativistic tops) are described as multidimensional Euler tops, and the inertia tensors are written in terms of the quantum and classical R-matrices. A particular case of gl N system is gauge equivalent to the N-particle RS model while a generic top is related to the spin generalization of the RS model. The simple relation between quantum R-matrices and classical Lax operators is exploited in two ways. In the elliptic case we use the Belavin's quantum R-matrix to describe the relativistic classical tops. Also by the passage to the noncommutative torus we study the large N limit corresponding to the relativistic version of the nonlocal 2d elliptic hydrodynamics. Conversely, in the rational case we obtain a new gl N quantum rational non-dynamical R-matrix via the relativistic top, which we get in a different way — using the factorized form of the RS Lax operator and the classical Symplectic Hecke (gauge) transformation. In particular case of gl2 the quantum rational R-matrix is 11-vertex. It was previously found by Cherednik. At last, we describe the integrable spin chains and Gaudin models related to the obtained R-matrix.

  19. Electromagnetically induced classical and quantum Lau effect

    NASA Astrophysics Data System (ADS)

    Qiu, Tianhui; Yang, Guojian; Xiong, Jun; Xu, Deqin

    2016-07-01

    We present two schemes of Lau effect for an object, an electromagnetically induced grating generated based on the electromagnetically induced effect. The Lau interference pattern is detected either directly in the way of the traditional Lau effect measurement with a classical thermal light being the imaging light, or indirectly and nonlocally in the way of two-photon coincidence measurement with a pair of entangled photons being the imaging light.

  20. Observation of Quantum Fingerprinting Beating the Classical Limit

    NASA Astrophysics Data System (ADS)

    Guan, Jian-Yu; Xu, Feihu; Yin, Hua-Lei; Li, Yuan; Zhang, Wei-Jun; Chen, Si-Jing; Yang, Xiao-Yan; Li, Li; You, Li-Xing; Chen, Teng-Yun; Wang, Zhen; Zhang, Qiang; Pan, Jian-Wei

    2016-06-01

    Quantum communication has historically been at the forefront of advancements, from fundamental tests of quantum physics to utilizing the quantum-mechanical properties of physical systems for practical applications. In the field of communication complexity, quantum communication allows the advantage of an exponential reduction in the transmitted information over classical communication to accomplish distributed computational tasks. However, to date, demonstrating this advantage in a practical setting continues to be a central challenge. Here, we report a proof-of-principle experimental demonstration of a quantum fingerprinting protocol that for the first time surpasses the ultimate classical limit to transmitted information. Ultralow noise superconducting single-photon detectors and a stable fiber-based Sagnac interferometer are used to implement a quantum fingerprinting system that is capable of transmitting less information than the classical proven lower bound over 20 km standard telecom fiber for input sizes of up to 2 Gbits. The results pave the way for experimentally exploring the advanced features of quantum communication and open a new window of opportunity for research in communication complexity and testing the foundations of physics.

    1. Observation of Quantum Fingerprinting Beating the Classical Limit.

      PubMed

      Guan, Jian-Yu; Xu, Feihu; Yin, Hua-Lei; Li, Yuan; Zhang, Wei-Jun; Chen, Si-Jing; Yang, Xiao-Yan; Li, Li; You, Li-Xing; Chen, Teng-Yun; Wang, Zhen; Zhang, Qiang; Pan, Jian-Wei

      2016-06-17

      Quantum communication has historically been at the forefront of advancements, from fundamental tests of quantum physics to utilizing the quantum-mechanical properties of physical systems for practical applications. In the field of communication complexity, quantum communication allows the advantage of an exponential reduction in the transmitted information over classical communication to accomplish distributed computational tasks. However, to date, demonstrating this advantage in a practical setting continues to be a central challenge. Here, we report a proof-of-principle experimental demonstration of a quantum fingerprinting protocol that for the first time surpasses the ultimate classical limit to transmitted information. Ultralow noise superconducting single-photon detectors and a stable fiber-based Sagnac interferometer are used to implement a quantum fingerprinting system that is capable of transmitting less information than the classical proven lower bound over 20 km standard telecom fiber for input sizes of up to 2 Gbits. The results pave the way for experimentally exploring the advanced features of quantum communication and open a new window of opportunity for research in communication complexity and testing the foundations of physics. PMID:27367371

    2. PREFACE: Particles and Fields: Classical and Quantum

      NASA Astrophysics Data System (ADS)

      Asorey, M.; Clemente-Gallardo, J.; Marmo, G.

      2007-07-01

      This volume contains some of the contributions to the Conference Particles and Fields: Classical and Quantum, which was held at Jaca (Spain) in September 2006 to honour George Sudarshan on his 75th birthday. Former and current students, associates and friends came to Jaca to share a few wonderful days with George and his family and to present some contributions of their present work as influenced by George's impressive achievements. This book summarizes those scientific contributions which are presented as a modest homage to the master, collaborator and friend. At the social ceremonies various speakers were able to recall instances of his life-long activity in India, the United States and Europe, adding colourful remarks on the friendly and intense atmosphere which surrounded those collaborations, some of which continued for several decades. This meeting would not have been possible without the financial support of several institutions. We are deeply indebted to Universidad de Zaragoza, Ministerio de Educación y Ciencia de España (CICYT), Departamento de Ciencia, Tecnología y Universidad del Gobierno de Aragón, Universitá di Napoli 'Federico II' and Istituto Nazionale di Fisica Nucleare. Finally, we would like to thank the participants, and particularly George's family, for their contribution to the wonderful atmosphere achieved during the Conference. We would like also to acknowledge the authors of the papers collected in the present volume, the members of the Scientific Committee for their guidance and support and the referees for their generous work. M Asorey, J Clemente-Gallardo and G Marmo The Local Organizing Committee George Sudarshan George Sudarshan

      International Advisory Committee

      A. Ashtekhar (Pennsylvania State University, USA)
      L. J. Boya (Universidad de Zaragoza, Spain)
      I. Cirac (Max Planck Institute, Garching

    3. A generalization of Fermat's principle for classical and quantum systems

      NASA Astrophysics Data System (ADS)

      Elsayed, Tarek A.

      2014-09-01

      The analogy between dynamics and optics had a great influence on the development of the foundations of classical and quantum mechanics. We take this analogy one step further and investigate the validity of Fermat's principle in many-dimensional spaces describing dynamical systems (i.e., the quantum Hilbert space and the classical phase and configuration space). We propose that if the notion of a metric distance is well defined in that space and the velocity of the representative point of the system is an invariant of motion, then a generalized version of Fermat's principle will hold. We substantiate this conjecture for time-independent quantum systems and for a classical system consisting of coupled harmonic oscillators. An exception to this principle is the configuration space of a charged particle in a constant magnetic field; in this case the principle is valid in a frame rotating by half the Larmor frequency, not the stationary lab frame.

    4. Quantum-classical transition and quantum activation of ratchet currents in the parameter space.

      PubMed

      Beims, M W; Schlesinger, M; Manchein, C; Celestino, A; Pernice, A; Strunz, W T

      2015-05-01

      The quantum ratchet current is studied in the parameter space of the dissipative kicked rotor model coupled to a zero-temperature quantum environment. We show that vacuum fluctuations blur the generic isoperiodic stable structures found in the classical case. Such structures tend to survive when a measure of statistical dependence between the quantum and classical currents are displayed in the parameter space. In addition, we show that quantum fluctuations can be used to overcome transport barriers in the phase space. Related quantum ratchet current activation regions are spotted in the parameter space. Results are discussed based on quantum, semiclassical, and classical calculations. While the semiclassical dynamics involves vacuum fluctuations, the classical map is driven by thermal noise. PMID:26066230

    5. The quantum-to-classical transition: contraction of associative products

      NASA Astrophysics Data System (ADS)

      Ibort, A.; Man'ko, V. I.; Marmo, G.; Simoni, A.; Stornaiolo, C.; Ventriglia, F.

      2016-04-01

      The quantum-to-classical transition is considered from the point of view of contractions of associative algebras. Various methods and ideas to deal with contractions of associative algebras are discussed that account for a large family of examples. As an instance of them, the commutative algebra of functions in phase space, corresponding to classical physical observables, is obtained as a contraction of the Moyal star-product which characterizes the quantum case. Contractions of associative algebras associated to Lie algebras are discussed, in particular the Weyl-Heisenberg and SU(2) groups are considered.

    6. Trigonometric version of quantum-classical duality in integrable systems

      NASA Astrophysics Data System (ADS)

      Beketov, M.; Liashyk, A.; Zabrodin, A.; Zotov, A.

      2016-02-01

      We extend the quantum-classical duality to the trigonometric (hyperbolic) case. The duality establishes an explicit relationship between the classical N-body trigonometric Ruijsenaars-Schneider model and the inhomogeneous twisted XXZ spin chain on N sites. Similarly to the rational version, the spin chain data fixes a certain Lagrangian submanifold in the phase space of the classical integrable system. The inhomogeneity parameters are equal to the coordinates of particles while the velocities of classical particles are proportional to the eigenvalues of the spin chain Hamiltonians (residues of the properly normalized transfer matrix). In the rational version of the duality, the action variables of the Ruijsenaars-Schneider model are equal to the twist parameters with some multiplicities defined by quantum (occupation) numbers. In contrast to the rational version, in the trigonometric case there is a splitting of the spectrum of action variables (eigenvalues of the classical Lax matrix). The limit corresponding to the classical Calogero-Sutherland system and quantum trigonometric Gaudin model is also described as well as the XX limit to free fermions.

    7. Quantum and classical probability distributions for arbitrary Hamiltonians

      NASA Astrophysics Data System (ADS)

      Semay, Claude; Ducobu, Ludovic

      2016-07-01

      In the limit of large quantum excitations, the classical and quantum probability distributions for a Schrödinger equation can be compared by using the corresponding WKBJ solutions whose rapid oscillations are averaged. This result is extended for one-dimensional Hamiltonians with a non-usual kinetic part. The validity of the approach is tested with a Hamiltonian containing a relativistic kinetic energy operator.

    8. Superfluid Turbulence from Quantum Kelvin Wave to Classical Kolmogorov Cascades

      SciTech Connect

      Yepez, Jeffrey; Vahala, George; Vahala, Linda; Soe, Min

      2009-08-21

      The main topological feature of a superfluid is a quantum vortex with an identifiable inner and outer radius. A novel unitary quantum lattice gas algorithm is used to simulate quantum turbulence of a Bose-Einstein condensate superfluid described by the Gross-Pitaevskii equation on grids up to 5760{sup 3}. For the first time, an accurate power-law scaling for the quantum Kelvin wave cascade is determined: k{sup -3}. The incompressible kinetic energy spectrum exhibits very distinct power-law spectra in 3 ranges of k space: a classical Kolmogorov k{sup -(5/3)} spectrum at scales greater than the outer radius of individual quantum vortex cores and a quantum Kelvin wave cascade spectrum k{sup -3} on scales smaller than the inner radius of the quantum vortex core. The k{sup -3} quantum Kelvin wave spectrum due to phonon radiation is robust, while the k{sup -(5/3)} classical Kolmogorov spectrum becomes robust on large grids.

    9. Classical to quantum transition of a driven nonlinear nanomechanical resonator

      NASA Astrophysics Data System (ADS)

      Katz, Itamar; Lifshitz, Ron; Retzker, Alex; Straub, Raphael

      2008-12-01

      Much experimental effort is invested these days in fabricating nanoelectromechanical systems (NEMS) that are sufficiently small, cold and clean, so as to approach quantum mechanical behavior as their typical quantum energy scale \\hbar\\Omega becomes comparable with that of the ambient thermal energy kBT. Such systems will hopefully enable one to observe the quantum behavior of human-made objects, and test some of the basic principles of quantum mechanics. Here, we expand and elaborate on our recent suggestion (Katz et al 2007 Phys. Rev. Lett. 99 040404) to exploit the nonlinear nature of a nanoresonator in order to observe its transition into the quantum regime. We study this transition for an isolated resonator, as well as one that is coupled to a heat bath at either zero or finite temperature. We argue that by exploiting nonlinearities, quantum dynamics can be probed using technology that is almost within reach. Numerical solutions of the equations of motion display the first quantum corrections to classical dynamics that appear as the classical-to-quantum transition occurs. This provides practical signatures to look for in future experiments with NEMS resonators.

    10. Physics on the boundary between classical and quantum mechanics

      NASA Astrophysics Data System (ADS)

      't Hooft, Gerard

      2014-04-01

      Nature's laws in the domain where relativistic effects, gravitational effects and quantum effects are all comparatively strong are far from understood. This domain is called the Planck scale. Conceivably, a theory can be constructed where the quantum nature of phenomena at such scales can be attributed to something fundamentally simpler. However, arguments that quantum mechanics cannot be explained in terms of any classical theory using only classical logic seem to be based on sound mathematical considerations: there can't be physical laws that require "conspiracy". It may therefore be surprising that there are several explicit quantum systems where these considerations apparently do not apply. In the lecture we will show several such counterexamples. These are quantum models that do have a classical origin. The most curious of these models is superstring theory. This theory is often portrayed as to underly the quantum field theory of the subatomic particles, including the "Standard Model". So now the question is asked: how can this model feature "conspiracy", and how bad is that? Is there conspiracy in the vacuum fluctuations?

    11. Unpolarized light: Classical and quantum states

      NASA Astrophysics Data System (ADS)

      Lehner, J.; Leonhardt, U.; Paul, H.

      1996-04-01

      We give a general definition of unpolarized light that rests on invariance properties rather than specific values of second-order field correlations or, equivalently, the Stokes parameters. It turns out that to require invariance with respect to rotation around the propagation axis and symmetry with respect to left- and right-handed circular polarization is not sufficient to fully characterize completely unpolarized light, such as natural light. Actually, a third requirement demanding invariance with respect to phase retardation is needed. Depending on whether it is satisfied or not, we speak of type I or type II unpolarized light, and we specify the general form of both classical distribution functions and density operators consistent with the respective conditions.

    12. Classical and quantum optics of hyperbolic metamaterials

      NASA Astrophysics Data System (ADS)

      Jacob, Zubin

      Nanotechnology has paved the way for artificial materials which have electromagnetic, mechanical, thermal and acoustic properties beyond those which are ordinarily found in nature. Photonic nanomaterials hold the promise:- to usher in a new generation of photonic devices with imaging capabilities well beyond the reach of conventional optics, to drive CMOS compatible nanophotonics research for sustaining Moores law and even address pressing societal needs of solar energy harvesting. The central theme of this thesis is the understanding of the essential physics for new devices based on nanofabricated metamaterials, where the bulk macroscopic material properties are governed and tailored at will, according to the constituent nanostructured building blocks. The particular class of metamaterials considered are uniaxial media with an extreme dielectric anisotropy i.e. materials with dielectric constants of opposite signs in the dielectric tensor. This gives rise to a hyperbolic dispersion relation for extraordinary propagating waves in the medium. We unravel a unique singularity in the photonic density of states (PDOS) of such hyperbolic metamaterials. The remarkable property which sets it apart from other photonic systems is the broad spectral bandwidth in which the PDOS diverges, paving the way for a new approach to controlling broadband light-matter interaction. We use the unique electromagnetic metamaterial states that cause the divergence in the PDOS for two specific device applications: subdiffraction imaging and quantum optics. We solve the long standing problem of the fundamental diffraction limit which plagues all conventional optical imaging systems using a device called the hyperlens, comprising of nanostructured hyperbolic metamaterials. The hyperlens produces magnified images of subwavelength objects in the far-field, promising to revolutionize applications such as nano-bio imaging and subdiffraction lithography. We show that the hyperlens can be understood

    13. Coulomb crystallization in classical and quantum systems

      NASA Astrophysics Data System (ADS)

      Bonitz, Michael

      2007-11-01

      Coulomb crystallization occurs in one-component plasmas when the average interaction energy exceeds the kinetic energy by about two orders of magnitude. A simple road to reach such strong coupling consists in using external confinement potentials the strength of which controls the density. This has been succsessfully realized with ions in traps and storage rings and also in dusty plasma. Recently a three-dimensional spherical confinement could be created [1] which allows to produce spherical dust crystals containing concentric shells. I will give an overview on our recent results for these ``Yukawa balls'' and compare them to experiments. The shell structure of these systems can be very well explained by using an isotropic statically screened pair interaction. Further, the thermodynamic properties of these systems, such as the radial density distribution are discussed based on an analytical theory [3]. I then will discuss Coulomb crystallization in trapped quantum systems, such as mesoscopic electron and electron hole plasmas in coupled layers [4,5]. These systems show a very rich correlation behavior, including liquid and solid like states and bound states (excitons, biexcitons) and their crystals. On the other hand, also collective quantum and spin effects are observed, including Bose-Einstein condensation and superfluidity of bound electron-hole pairs [4]. Finally, I consider Coulomb crystallization in two-component neutral plasmas in three dimensions. I discuss the necessary conditions for crystals of heavy charges to exist in the presence of a light component which typically is in the Fermi gas or liquid state. It can be shown that their exists a critical ratio of the masses of the species of the order of 80 [5] which is confirmed by Quantum Monte Carlo simulations [6]. Familiar examples are crystals of nuclei in the core of White dwarf stars, but the results also suggest the existence of other crystals, including proton or α-particle crystals in dense matter

    14. Classical and quantum temperature fluctuations via holography

      SciTech Connect

      Balatsky, Alexander V.; Gudnason, Sven Bjarke; Thorlacius, Larus; Zarembo, Konstantin; Krikun, Alexander; Kedem, Yaron

      2014-05-27

      We study local temperature fluctuations in a 2+1 dimensional CFT on the sphere, dual to a black hole in asymptotically AdS space-time. The fluctuation spectrum is governed by the lowest-lying hydrodynamic sound modes of the system whose frequency and damping rate determine whether temperature fluctuations are thermal or quantum. We calculate numerically the corresponding quasinormal frequencies and match the result with the hydrodynamics of the dual CFT at large temperature. As a by-product of our analysis we determine the appropriate boundary conditions for calculating low-lying quasinormal modes for a four-dimensional Reissner-Nordstrom black hole in global AdS.

    15. A quantum version of the classical Szilard engine

      NASA Astrophysics Data System (ADS)

      Bracken, Paul

      2014-01-01

      A reinvention of the classical Maxwel demon was proposed by Szilard around the time quantum mechanics was developed. His model continues to attract great interest, especially quantum versions of it. A quantum formulation of the Szilard engine is introduced and investigated here. It is made to operate through specified cycles in such a way that all thermodynamic quantities which pertain to the system can be evaluated exactly in closed form along each sequence of steps through a cycle. It is shown that as a result of the structure of the model, it is possible to calculate and compare various thermodynamic quantities as the engine proceeds around a well defined specific cycle.

    16. From Classical to Quantum Saturation in the Nuclear Wavefunction

      NASA Astrophysics Data System (ADS)

      Triantafyllopoulos, D. N.

      2005-01-01

      We study the gluon content of a large nucleus (i) in the semi-classical McLerran-Venugopalan model and (ii) in the high energy limit as given by the quantum evolution of the Color Glass Condensate. We give a qualitative description of the Cronin effect and high-p⊥ suppression in proton-nucleus collisions.

    17. From classical to quantum saturationin the nuclear gluon distribution

      NASA Astrophysics Data System (ADS)

      Triantafyllopoulos, D. N.

      2005-08-01

      We study the gluon content of a large nucleus (i) in the semi-classical McLerran-Venugopalan model and (ii) in the high-energy limit as given by the quantum evolution of the color glass condensate. We give a simple and qualitative description of the Cronin effect and high- pT suppression in proton-nucleus collisions.

    18. Making the Transition from Classical to Quantum Physics

      ERIC Educational Resources Information Center

      Dutt, Amit

      2011-01-01

      This paper reports on the nature of the conceptual understandings developed by Year 12 Victorian Certificate of Education (VCE) physics students as they made the transition from the essentially deterministic notions of classical physics, to interpretations characteristic of quantum theory. The research findings revealed the fact that the…

    19. Autonomous quantum to classical transitions and the generalized imaging theorem

      NASA Astrophysics Data System (ADS)

      Briggs, John S.; Feagin, James M.

      2016-03-01

      The mechanism of the transition of a dynamical system from quantum to classical mechanics is of continuing interest. Practically it is of importance for the interpretation of multi-particle coincidence measurements performed at macroscopic distances from a microscopic reaction zone. Here we prove the generalized imaging theorem which shows that the spatial wave function of any multi-particle quantum system, propagating over distances and times large on an atomic scale but still microscopic, and subject to deterministic external fields and particle interactions, becomes proportional to the initial momentum wave function where the position and momentum coordinates define a classical trajectory. Currently, the quantum to classical transition is considered to occur via decoherence caused by stochastic interaction with an environment. The imaging theorem arises from unitary Schrödinger propagation and so is valid without any environmental interaction. It implies that a simultaneous measurement of both position and momentum will define a unique classical trajectory, whereas a less complete measurement of say position alone can lead to quantum interference effects.

    20. Grover's quantum search algorithm for an arbitrary initial mixed state

      SciTech Connect

      Biham, Eli; Kenigsberg, Dan

      2002-12-01

      The Grover quantum search algorithm is generalized to deal with an arbitrary mixed initial state. The probability to measure a marked state as a function of time is calculated, and found to depend strongly on the specific initial state. The form of the function, though, remains as it is in the case of initial pure state. We study the role of the von Neumann entropy of the initial state, and show that the entropy cannot be a measure for the usefulness of the algorithm. We give few examples and show that for some extremely mixed initial states (carrying high entropy), the generalized Grover algorithm is considerably faster than any classical algorithm.

      1. Quantum stochastic walks: A generalization of classical random walks and quantum walks

        NASA Astrophysics Data System (ADS)

        Aspuru-Guzik, Alan

        2010-03-01

        We introduce the quantum stochastic walk (QSW), which determines the evolution of generalized quantum mechanical walk on a graph that obeys a quantum stochastic equation of motion. Using an axiomatic approach, we specify the rules for all possible quantum, classical and quantum-stochastic transitions from a vertex as defined by its connectivity. We show how the family of possible QSWs encompasses both the classical random walk (CRW) and the quantum walk (QW) as special cases, but also includes more general probability distributions. As an example, we study the QSW on a line, the QW to CRW transition and transitions to genearlized QSWs that go beyond the CRW and QW. QSWs provide a new framework to the study of quantum algorithms as well as of quantum walks with environmental effects.

      2. Quantum classical transition in scale relativity

        NASA Astrophysics Data System (ADS)

        Célérier, Marie-Noëlle; Nottale, Laurent

        2004-01-01

        The theory of scale relativity provides a new insight into the origin of fundamental laws in physics. Its application to microphysics allows us to recover quantum mechanics as mechanics on a non-differentiable (fractal) spacetime. The Schrödinger and Klein-Gordon equations are demonstrated as geodesic equations in this framework. A development of the intrinsic properties of this theory, using the mathematical tool of Hamilton's bi-quaternions, leads us to a derivation of the Dirac equation within the scale-relativity paradigm. The complex form of the wavefunction in the Schrödinger and Klein-Gordon equations follows from the non-differentiability of the geometry, since it involves a breaking of the invariance under the reflection symmetry on the (proper) time differential element (ds harr -ds). This mechanism is generalized for obtaining the bi-quaternionic nature of the Dirac spinor by adding a further symmetry breaking due to non-differentiability, namely the differential coordinate reflection symmetry (dxmgr harr -dxmgr) and by requiring invariance under the parity and time inversion. The Pauli equation is recovered as a non-motion-relativistic approximation of the Dirac equation.

      3. Engineering arbitrary pure and mixed quantum states

        SciTech Connect

        Pechen, Alexander

        2011-10-15

        Controlled manipulation by atomic- and molecular-scale quantum systems has attracted a lot of research attention in recent years. A fundamental problem is to provide deterministic methods for controlled engineering of arbitrary quantum states. This work proposes a deterministic method for engineering arbitrary pure and mixed states of a wide class of quantum systems. The method exploits a special combination of incoherent and coherent controls (incoherent and coherent radiation) and has two properties which are specifically important for manipulating by quantum systems: it realizes the strongest possible degree of their state control, complete density matrix controllability, meaning the ability to steer arbitrary pure and mixed initial states into any desired pure or mixed final state, and it is all-to-one, such that each particular control transfers all initial system states into one target state.

      4. de Broglie Swapping Metadynamics for Quantum and Classical Sampling.

        PubMed

        Nava, Marco; Quhe, Ruge; Palazzesi, Ferruccio; Tiwary, Pratyush; Parrinello, Michele

        2015-11-10

        This paper builds on our previous work on Path Integral Metadynamics [ Ruge et al. J. Chem. Theory Comput. 2015 , 11 , 1383 ] in which we have accelerated sampling in quantum systems described by Feynman's Path Integrals using Metadynamics. We extend the scope of Path Integral Metadynamics by combining it with a replica exchange scheme in which artificially enhanced quantum effects play the same role as temperature does in parallel tempering. Our scheme can be adapted so as to be used in an ancillary way to sample systems described by classical statistical mechanics. Contrary to Metadynamics and many other sampling methods no collective variables need to be defined. The method in its two variants, quantum and classical, is tested in a number of examples. PMID:26574309

      5. Classical-Quantum Correspondence for Above-Threshold Ionization

        NASA Astrophysics Data System (ADS)

        Li, Min; Geng, Ji-Wei; Liu, Hong; Deng, Yongkai; Wu, Chengyin; Peng, Liang-You; Gong, Qihuang; Liu, Yunquan

        2014-03-01

        We measure high resolution photoelectron angular distributions (PADs) for above-threshold ionization of xenon atoms in infrared laser fields. Based on the Ammosov-Delone-Krainov theory, we develop an intuitive quantum-trajectory Monte Carlo model encoded with Feynman's path-integral approach, in which the Coulomb effect on electron trajectories and interference patterns are fully considered. We achieve a good agreement with the measured PADs of atoms for above-threshold ionization. The quantum-trajectory Monte Carlo theory sheds light on the role of ionic potential on PADs along the longitudinal and transverse direction with respect to the laser polarization, allowing us to unravel the classical coordinates (i.e., tunneling phase and initial momentum) at the tunnel exit for all of the photoelectrons of the PADs. We study the classical-quantum correspondence and build a bridge between the above-threshold ionization and the tunneling theory.

      6. Quantum correlations of three-qubit states driven by a classical random external field

        NASA Astrophysics Data System (ADS)

        Guo, Youneng; Fang, Maofa; Zhang, Shiyang; Liu, Xiang

        2015-03-01

        In this paper, we exploit the notions of tripartite quantum discord {{D}(3)}, tripartite negativity {{N}(3)}, and entanglement witnesses (EWs), respectively, as a measure of quantum correlations in a model of three noninteracting qubits subject to a classical random external field. We compare the dynamics of {{D}(3)} with that of entanglement for the initial entangled pure or mixed GHZ- and W-type states. We find that the quantum correlations dynamics depend on the input configuration of the purity of the initial states. The results show that {{D}(3)} may be more robust than entanglement and no sudden death of the {{D}(3)} occurs, whereas entanglement displays periodically sudden death and revivals in the regions for GHZ- and W-type states driven by a classical random external field. Furthermore, we also show that the survival partial entanglement can be detected by means of the suitable EWs.

      7. Can fluctuations of classical random field produce quantum averages?

        NASA Astrophysics Data System (ADS)

        Khrennikov, Andrei

        2009-08-01

        Albert Einstein did not believe in completeness of QM. He dreamed of creation of prequantum classical statistical mechanics such that QM will be reproduced as its approximation. He also dreamed of total exclusion of corpuscules from the future model. Reality of Einstein's dream was pure fields' reality. Recently I made his dream come true in the form of so called prequantum classical statistical field theory (PCSFT). In this approach quantum systems are described by classical random fields, e.g., electromagnetic field (instead of photon), electron field or neutron field. In this paper we generalize PCSFT to composite quantum system. It is well known that in QM, unlike classical mechanics, the state of a composite system is described by the tensor product of state spaces for its subsystems. In PCSFT one can still use Cartesian product, but state spaces are spaces of classical fields (not particles). In particular, entanglement is nothing else than correlation of classical random fields, cf. again Einstein. Thus entanglement was finally demystified.

      8. Observation of a Dissipation-Induced Classical to Quantum Transition

        NASA Astrophysics Data System (ADS)

        Raftery, James; Sadri, Darius; Schmidt, Sebastian; Türeci, Hakan; Houck, Andrew

        2014-03-01

        The emergence of non-trivial structure in many-body physics has been a central topic of research bearing on many branches of science. Important recent work has explored the nonequilibrium quantum dynamics of closed many-body systems. With the rapid technological advances in solid state quantum optics, it is now possible to experimentally study strongly correlated photons, and to build model systems whose open nature gives rise to rich emergent behavior. We report the experimental observation of a novel dissipation driven dynamical localization transition of strongly correlated photons in an extended superconducting circuit. Interaction with an environment has been argued to provide a mechanism for the emergence of classical behavior from a quantum system. Surprisingly, homodyne measurements reveal the observed localization transition to be from a regime of classical oscillations into a macroscopically self-trapped state manifesting revivals, a fundamentally quantum phenomenon. This experiment also demonstrates a new class of scalable quantum simulators with well controlled coherent and dissipative dynamics suited to the study of quantum many-body phenomena out of equilibrium. Supported by The Eric and Wendy Schmidt Transformative Technology Fund, the US National Science Foundation, the David and Lucile Packard Foundation, and the US Army Research Office.

      9. The theory of variational hybrid quantum-classical algorithms

        NASA Astrophysics Data System (ADS)

        McClean, Jarrod R.; Romero, Jonathan; Babbush, Ryan; Aspuru-Guzik, Alán

        2016-02-01

        Many quantum algorithms have daunting resource requirements when compared to what is available today. To address this discrepancy, a quantum-classical hybrid optimization scheme known as ‘the quantum variational eigensolver’ was developed (Peruzzo et al 2014 Nat. Commun. 5 4213) with the philosophy that even minimal quantum resources could be made useful when used in conjunction with classical routines. In this work we extend the general theory of this algorithm and suggest algorithmic improvements for practical implementations. Specifically, we develop a variational adiabatic ansatz and explore unitary coupled cluster where we establish a connection from second order unitary coupled cluster to universal gate sets through a relaxation of exponential operator splitting. We introduce the concept of quantum variational error suppression that allows some errors to be suppressed naturally in this algorithm on a pre-threshold quantum device. Additionally, we analyze truncation and correlated sampling in Hamiltonian averaging as ways to reduce the cost of this procedure. Finally, we show how the use of modern derivative free optimization techniques can offer dramatic computational savings of up to three orders of magnitude over previously used optimization techniques.

      10. Theoretical Studies of Classical and Quantum Systems

        NASA Astrophysics Data System (ADS)

        Wu, Jian

        1995-01-01

        Two implementations of the Backward Euler method for simulating molecular fluids are compared with brownian dynamics and molecular dynamics simulations. The four methods are used to compute equilibrium and time-dependent properties of a single diatomic molecule, liquid argon, a single butane molecule and liquid butane. We show that the Backward Euler simulation under-estimates the thermodynamic properties of the liquids, predicts liquid structures which are too solid-like, and incorrectly represents dynamical relaxation processes. Also, we show that any agreement between results from the Backward Euler simulation and quantum mechanics is accidental. Although the Backward Euler method allows longer time-steps to be used in simulations, the time-consuming energy minimization required at every time-step decreases significantly the overall computational efficiency. Even when time-steps more than 20 times larger than that required for energy and momentum conservation are used, neither implementation of the Backward Euler algorithm is more accurate than standard molecular dynamics calculations with the same time-step. We conclude that the new method offers no advantage over more usual methods for simulations and that it often predicts incorrect results. In particular, we see no evidence that the method will allow long-time dynamics of polymers and macromolecules to be simulated either accurately or efficiently. Neural and charged xenon in ^4 He clusters at zero temperature have been studied systematically for clusters of different size, up to a thousand particles, by employing variational and diffusion Monte Carlo methods with different choices of pairwise wave functions to describe the correlation between atoms. The static structure characterizing the atomic impurities is discussed with respect to helium density profiles and energy changes induced by adding helium atoms to a cluster one at a time. The effect of the uncertainty of the interaction potential between

      11. Quantum versus classical hyperfine-induced dynamics in a quantum dota)

        NASA Astrophysics Data System (ADS)

        Coish, W. A.; Loss, Daniel; Yuzbashyan, E. A.; Altshuler, B. L.

        2007-04-01

        In this article we analyze spin dynamics for electrons confined to semiconductor quantum dots due to the contact hyperfine interaction. We compare mean-field (classical) evolution of an electron spin in the presence of a nuclear field with the exact quantum evolution for the special case of uniform hyperfine coupling constants. We find that (in this special case) the zero-magnetic-field dynamics due to the mean-field approximation and quantum evolution are similar. However, in a finite magnetic field, the quantum and classical solutions agree only up to a certain time scale t <τc, after which they differ markedly.

      12. Information flow during the quantum-classical transition

        NASA Astrophysics Data System (ADS)

        Kowalski, A. M.; Martin, M. T.; Plastino, A.; Zunino, L.

        2010-04-01

        We have exhaustively investigated the classical limit of the semi-classical evolution with reference to a well-known model that represents the interaction between matter and a given field. In this Letter we approach this issue by recourse to a new statistical quantifier called the “symbolic transfer entropy” [T. Schreiber, Phys. Rev. Lett. 85 (2000) 461; M. Staniek, K. Lehnertz, Phys. Rev. Lett. 100 (2008) 158101]. We encounter that the quantum-classical transition gets thereby described as the sign reversal of the dominating direction of the information flow between classical and quantal variables. This can be considered as an evidence of the physical useful of this new statistical quantifier.

      13. Experimental multiplexing of quantum key distribution with classical optical communication

        NASA Astrophysics Data System (ADS)

        Wang, Liu-Jun; Chen, Luo-Kan; Ju, Lei; Xu, Mu-Lan; Zhao, Yong; Chen, Kai; Chen, Zeng-Bing; Chen, Teng-Yun; Pan, Jian-Wei

        2015-02-01

        We demonstrate the realization of quantum key distribution (QKD) when combined with classical optical communication, and synchronous signals within a single optical fiber. In the experiment, the classical communication sources use Fabry-Pérot (FP) lasers, which are implemented extensively in optical access networks. To perform QKD, multistage band-stop filtering techniques are developed, and a wavelength-division multiplexing scheme is designed for the multi-longitudinal-mode FP lasers. We have managed to maintain sufficient isolation among the quantum channel, the synchronous channel and the classical channels to guarantee good QKD performance. Finally, the quantum bit error rate remains below a level of 2% across the entire practical application range. The proposed multiplexing scheme can ensure low classical light loss, and enables QKD over fiber lengths of up to 45 km simultaneously when the fibers are populated with bidirectional FP laser communications. Our demonstration paves the way for application of QKD to current optical access networks, where FP lasers are widely used by the end users.

      14. Experimental multiplexing of quantum key distribution with classical optical communication

        SciTech Connect

        Wang, Liu-Jun; Chen, Luo-Kan; Ju, Lei; Xu, Mu-Lan; Zhao, Yong; Chen, Kai; Chen, Zeng-Bing; Chen, Teng-Yun Pan, Jian-Wei

        2015-02-23

        We demonstrate the realization of quantum key distribution (QKD) when combined with classical optical communication, and synchronous signals within a single optical fiber. In the experiment, the classical communication sources use Fabry-Pérot (FP) lasers, which are implemented extensively in optical access networks. To perform QKD, multistage band-stop filtering techniques are developed, and a wavelength-division multiplexing scheme is designed for the multi-longitudinal-mode FP lasers. We have managed to maintain sufficient isolation among the quantum channel, the synchronous channel and the classical channels to guarantee good QKD performance. Finally, the quantum bit error rate remains below a level of 2% across the entire practical application range. The proposed multiplexing scheme can ensure low classical light loss, and enables QKD over fiber lengths of up to 45 km simultaneously when the fibers are populated with bidirectional FP laser communications. Our demonstration paves the way for application of QKD to current optical access networks, where FP lasers are widely used by the end users.

      15. A quantum algorithm for Viterbi decoding of classical convolutional codes

        NASA Astrophysics Data System (ADS)

        Grice, Jon R.; Meyer, David A.

        2015-07-01

        We present a quantum Viterbi algorithm (QVA) with better than classical performance under certain conditions. In this paper, the proposed algorithm is applied to decoding classical convolutional codes, for instance, large constraint length and short decode frames . Other applications of the classical Viterbi algorithm where is large (e.g., speech processing) could experience significant speedup with the QVA. The QVA exploits the fact that the decoding trellis is similar to the butterfly diagram of the fast Fourier transform, with its corresponding fast quantum algorithm. The tensor-product structure of the butterfly diagram corresponds to a quantum superposition that we show can be efficiently prepared. The quantum speedup is possible because the performance of the QVA depends on the fanout (number of possible transitions from any given state in the hidden Markov model) which is in general much less than . The QVA constructs a superposition of states which correspond to all legal paths through the decoding lattice, with phase as a function of the probability of the path being taken given received data. A specialized amplitude amplification procedure is applied one or more times to recover a superposition where the most probable path has a high probability of being measured.

      16. Team decision problems with classical and quantum signals

        PubMed Central

        Brandenburger, Adam; La Mura, Pierfrancesco

        2016-01-01

        We study team decision problems where communication is not possible, but coordination among team members can be realized via signals in a shared environment. We consider a variety of decision problems that differ in what team members know about one another's actions and knowledge. For each type of decision problem, we investigate how different assumptions on the available signals affect team performance. Specifically, we consider the cases of perfectly correlated, i.i.d., and exchangeable classical signals, as well as the case of quantum signals. We find that, whereas in perfect-recall trees (Kuhn 1950 Proc. Natl Acad. Sci. USA 36, 570–576; Kuhn 1953 In Contributions to the theory of games, vol. II (eds H Kuhn, A Tucker), pp. 193–216) no type of signal improves performance, in imperfect-recall trees quantum signals may bring an improvement. Isbell (Isbell 1957 In Contributions to the theory of games, vol. III (eds M Drescher, A Tucker, P Wolfe), pp. 79–96) proved that, in non-Kuhn trees, classical i.i.d. signals may improve performance. We show that further improvement may be possible by use of classical exchangeable or quantum signals. We include an example of the effect of quantum signals in the context of high-frequency trading. PMID:26621985

      17. Controlling the sense of molecular rotation: Classical versus quantum analysis

        SciTech Connect

        Khodorkovsky, Yuri; Averbukh, Ilya Sh.; Kitano, Kenta; Hasegawa, Hirokazu; Ohshima, Yasuhiro

        2011-02-15

        Recently, it was predicted theoretically and verified experimentally that a pair of delayed and cross-polarized short laser pulses can create molecular ensembles with a well-defined sense of rotation (clockwise or counterclockwise). Here we provide a comparative study of the classical and quantum aspects of the underlying mechanism for linear molecules and for symmetric tops, like benzene molecules, that were used for the first experimental demonstration of the effect. Very good quantitative agreement is found between the classical description of the process and the rigorous quantum-mechanical analysis at the relevant experimental conditions. Both approaches predict the same optimal values for the delay between pulses and the angle between them, and deliver the same magnitude of the induced oriented angular momentum of the molecular ensemble. As expected, quantum and classical analyses substantially deviate when the delay between pulses is comparable with the period of quantum rotational revivals. However, time-averaged characteristics of the excited molecular ensemble are equally well described by these two approaches. This is illustrated by calculating the anisotropic time-averaged angular distribution of the double-pulse excited molecules, which reflects persistent confinement of the molecular axes to the rotation plane defined by two polarization vectors of the pulses.

      18. Team decision problems with classical and quantum signals.

        PubMed

        Brandenburger, Adam; La Mura, Pierfrancesco

        2016-01-13

        We study team decision problems where communication is not possible, but coordination among team members can be realized via signals in a shared environment. We consider a variety of decision problems that differ in what team members know about one another's actions and knowledge. For each type of decision problem, we investigate how different assumptions on the available signals affect team performance. Specifically, we consider the cases of perfectly correlated, i.i.d., and exchangeable classical signals, as well as the case of quantum signals. We find that, whereas in perfect-recall trees (Kuhn 1950 Proc. Natl Acad. Sci. USA 36, 570-576; Kuhn 1953 In Contributions to the theory of games, vol. II (eds H Kuhn, A Tucker), pp. 193-216) no type of signal improves performance, in imperfect-recall trees quantum signals may bring an improvement. Isbell (Isbell 1957 In Contributions to the theory of games, vol. III (eds M Drescher, A Tucker, P Wolfe), pp. 79-96) proved that, in non-Kuhn trees, classical i.i.d. signals may improve performance. We show that further improvement may be possible by use of classical exchangeable or quantum signals. We include an example of the effect of quantum signals in the context of high-frequency trading. PMID:26621985

      19. Classical simulation of quantum many-body systems

        NASA Astrophysics Data System (ADS)

        Huang, Yichen

        Classical simulation of quantum many-body systems is in general a challenging problem for the simple reason that the dimension of the Hilbert space grows exponentially with the system size. In particular, merely encoding a generic quantum many-body state requires an exponential number of bits. However, condensed matter physicists are mostly interested in local Hamiltonians and especially their ground states, which are highly non-generic. Thus, we might hope that at least some physical systems allow efficient classical simulation. Starting with one-dimensional (1D) quantum systems (i.e., the simplest nontrivial case), the first basic question is: Which classes of states have efficient classical representations? It turns out that this question is quantitatively related to the amount of entanglement in the state, for states with "little entanglement'' are well approximated by matrix product states (a data structure that can be manipulated efficiently on a classical computer). At a technical level, the mathematical notion for "little entanglement'' is area law, which has been proved for unique ground states in 1D gapped systems. We establish an area law for constant-fold degenerate ground states in 1D gapped systems and thus explain the effectiveness of matrix-product-state methods in (e.g.) symmetry breaking phases. This result might not be intuitively trivial as degenerate ground states in gapped systems can be long-range correlated. Suppose an efficient classical representation exists. How can one find it efficiently? The density matrix renormalization group is the leading numerical method for computing ground states in 1D quantum systems. However, it is a heuristic algorithm and the possibility that it may fail in some cases cannot be completely ruled out. Recently, a provably efficient variant of the density matrix renormalization group has been developed for frustration-free 1D gapped systems. We generalize this algorithm to all (i.e., possibly frustrated) 1D

      20. The classical and quantum dynamics of molecular spins on graphene.

        PubMed

        Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo

        2016-02-01

        Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets on graphene. Whereas the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly developed model. Coupling to Dirac electrons introduces a dominant quantum relaxation channel that, by driving the spins over Villain's threshold, gives rise to fully coherent, resonant spin tunnelling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin manipulation in graphene nanodevices. PMID:26641019

      1. Quantum and classical separability of spin-orbit laser modes

        NASA Astrophysics Data System (ADS)

        Pereira, L. J.; Khoury, A. Z.; Dechoum, K.

        2014-11-01

        In this paper we investigate the quantum noise properties of polarization vortices in connection with an intensity-based Clauser-Horne-Shimony-Holt (CHSH) inequality for their spin-orbit separability. We evaluate the inequality for different input quantum states and the corresponding intensity fluctuations. The roles played by coherence and photon number squeezing provide a suitable framework for characterizing pure state spin-orbit entanglement. Structural inseparability of the spin-orbit mode requires coherence, an issue concerning either classical or quantum descriptions. In both cases, it can be witnessed by violation of this intensity-based CHSH inequality. However, in the quantum domain, entanglement requires both coherence and reduced photon number fluctuations.

      2. The classical and quantum dynamics of molecular spins on graphene

        NASA Astrophysics Data System (ADS)

        Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo

        2016-02-01

        Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets on graphene. Whereas the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly developed model. Coupling to Dirac electrons introduces a dominant quantum relaxation channel that, by driving the spins over Villain’s threshold, gives rise to fully coherent, resonant spin tunnelling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin manipulation in graphene nanodevices.

      3. Autonomous quantum thermal machines and quantum to classical energy flow

        NASA Astrophysics Data System (ADS)

        Frenzel, Max; Jennings, David; Rudolph, Terry

        We address the issue of autonomous quantum thermal machines that are tailored to achieve some specific thermodynamic primitive, such as work extraction in the presence of a thermal environment, while having minimal or no control from the macroscopic regime. Beyond experimental implementations, this provides an arena in which to address certain foundational aspects such as the role of coherence in thermodynamics, the use of clock degrees of freedom and the simulation of local time-dependent Hamiltonians in a particular quantum subsystem. For small-scale systems additional issues arise. Firstly, it is not clear to what degree genuine ordered thermodynamic work has been extracted, and secondly non-trivial back-actions on the thermal machine must be accounted for. We find that both these aspects can be resolved through a judicious choice of quantum measurements that magnify thermodynamic properties up the ladder of length-scales, while simultaneously stabilizing the quantum thermal machine. Within this framework we show that thermodynamic reversibility is obtained in a particular Zeno limit, and finally illustrate these concepts with a concrete example involving spin-systems.

      4. Classical universes of the no-boundary quantum state

        NASA Astrophysics Data System (ADS)

        Hartle, James B.; Hawking, S. W.; Hertog, Thomas

        2008-06-01

        We analyze the origin of the quasiclassical realm from the no-boundary proposal for the Universe’s quantum state in a class of minisuperspace models. The models assume homogeneous, isotropic, closed spacetime geometries, a single scalar field moving in a quadratic potential, and a fundamental cosmological constant. The allowed classical histories and their probabilities are calculated to leading semiclassical order. For the most realistic range of parameters analyzed, we find that a minimum amount of scalar field is required, if there is any at all, in order for the Universe to behave classically at late times. If the classical late time histories are extended back, they may be singular or bounce at a finite radius. The ensemble of classical histories is time symmetric although individual histories are generally not. The no-boundary proposal selects inflationary histories, but the measure on the classical solutions it provides is heavily biased towards small amounts of inflation. However, the probability for a large number of e-foldings is enhanced by the volume factor needed to obtain the probability for what we observe in our past light cone, given our present age. Our results emphasize that it is the quantum state of the Universe that determines whether or not it exhibits a quasiclassical realm and what histories are possible or probable within that realm.

      5. Twisting all the way: From classical mechanics to quantum fields

        SciTech Connect

        Aschieri, Paolo

        2008-01-15

        We discuss the effects that a noncommutative geometry induced by a Drinfeld twist has on physical theories. We systematically deform all products and symmetries of the theory. We discuss noncommutative classical mechanics, in particular its deformed Poisson bracket and hence time evolution and symmetries. The twisting is then extended to classical fields, and then to the main interest of this work: quantum fields. This leads to a geometric formulation of quantization on noncommutative space-time, i.e., we establish a noncommutative correspondence principle from *-Poisson brackets to * commutators. In particular commutation relations among creation and annihilation operators are deduced.

      6. Quantum tagging for tags containing secret classical data

        SciTech Connect

        Kent, Adrian

        2011-08-15

        Various authors have considered schemes for quantum tagging, that is, authenticating the classical location of a classical tagging device by sending and receiving quantum signals from suitably located distant sites, in an environment controlled by an adversary whose quantum information processing and transmitting power is potentially unbounded. All of the schemes proposed elsewhere in the literature assume that the adversary is able to inspect the interior of the tagging device. All of these schemes have been shown to be breakable if the adversary has unbounded predistributed entanglement. We consider here the case in which the tagging device contains a finite key string shared with distant sites but kept secret from the adversary, and show this allows the location of the tagging device to be authenticated securely and indefinitely. Our protocol relies on quantum key distribution between the tagging device and at least one distant site, and demonstrates a new practical application of quantum key distribution. It also illustrates that the attainable security in position-based cryptography can depend crucially on apparently subtle details in the security scenario considered.

      7. Improved Classical Simulation of Quantum Circuits Dominated by Clifford Gates.

        PubMed

        Bravyi, Sergey; Gosset, David

        2016-06-24

        We present a new algorithm for classical simulation of quantum circuits over the Clifford+T gate set. The runtime of the algorithm is polynomial in the number of qubits and the number of Clifford gates in the circuit but exponential in the number of T gates. The exponential scaling is sufficiently mild that the algorithm can be used in practice to simulate medium-sized quantum circuits dominated by Clifford gates. The first demonstrations of fault-tolerant quantum circuits based on 2D topological codes are likely to be dominated by Clifford gates due to a high implementation cost associated with logical T gates. Thus our algorithm may serve as a verification tool for near-term quantum computers which cannot in practice be simulated by other means. To demonstrate the power of the new method, we performed a classical simulation of a hidden shift quantum algorithm with 40 qubits, a few hundred Clifford gates, and nearly 50 T gates. PMID:27391708

      8. Non-Markovian Complexity in the Quantum-to-Classical Transition

        PubMed Central

        Xiong, Heng-Na; Lo, Ping-Yuan; Zhang, Wei-Min; Feng, Da Hsuan; Nori, Franco

        2015-01-01

        The quantum-to-classical transition is due to environment-induced decoherence, and it depicts how classical dynamics emerges from quantum systems. Previously, the quantum-to-classical transition has mainly been described with memory-less (Markovian) quantum processes. Here we study the complexity of the quantum-to-classical transition through general non-Markovian memory processes. That is, the influence of various reservoirs results in a given initial quantum state evolving into one of the following four scenarios: thermal state, thermal-like state, quantum steady state, or oscillating quantum nonstationary state. In the latter two scenarios, the system maintains partial or full quantum coherence due to the strong non-Markovian memory effect, so that in these cases, the quantum-to-classical transition never occurs. This unexpected new feature provides a new avenue for the development of future quantum technologies because the remaining quantum oscillations in steady states are decoherence-free. PMID:26303002

      9. Non-Markovian Complexity in the Quantum-to-Classical Transition

        NASA Astrophysics Data System (ADS)

        Xiong, Heng-Na; Lo, Ping-Yuan; Zhang, Wei-Min; Feng, Da Hsuan; Nori, Franco

        2015-08-01

        The quantum-to-classical transition is due to environment-induced decoherence, and it depicts how classical dynamics emerges from quantum systems. Previously, the quantum-to-classical transition has mainly been described with memory-less (Markovian) quantum processes. Here we study the complexity of the quantum-to-classical transition through general non-Markovian memory processes. That is, the influence of various reservoirs results in a given initial quantum state evolving into one of the following four scenarios: thermal state, thermal-like state, quantum steady state, or oscillating quantum nonstationary state. In the latter two scenarios, the system maintains partial or full quantum coherence due to the strong non-Markovian memory effect, so that in these cases, the quantum-to-classical transition never occurs. This unexpected new feature provides a new avenue for the development of future quantum technologies because the remaining quantum oscillations in steady states are decoherence-free.

      10. System-reservoir dynamics of quantum and classical correlations

        SciTech Connect

        Maziero, J.; Celeri, L. C.; Serra, R. M.; Werlang, T.; Fanchini, F. F.

        2010-02-15

        We examine the system-reservoir dynamics of classical and quantum correlations in the decoherence phenomenon within a two-qubit composite system interacting with two independent environments. The most common noise channels (amplitude damping, phase damping, bit flip, bit-phase flip, and phase flip) are analyzed. By analytical and numerical analyses we find that, contrary to what is usually stated in the literature, decoherence may occur without entanglement between the system and the environment. We also show that, in some cases, the bipartite quantum correlation initially present in the system is completely evaporated and not transferred to the environments.

      11. Supersymmetric quantum spin chains and classical integrable systems

        NASA Astrophysics Data System (ADS)

        Tsuboi, Zengo; Zabrodin, Anton; Zotov, Andrei

        2015-05-01

        For integrable inhomogeneous supersymmetric spin chains (generalized graded magnets) constructed employing Y( gl( N| M))-invariant R-matrices in finite-dimensional representations we introduce the master T-operator which is a sort of generating function for the family of commuting quantum transfer matrices. Any eigenvalue of the master T-operator is the tau-function of the classical mKP hierarchy. It is a polynomial in the spectral parameter which is identified with the 0-th time of the hierarchy. This implies a remarkable relation between the quantum supersymmetric spin chains and classical many-body integrable systems of particles of the Ruijsenaars-Schneider type. As an outcome, we obtain a system of algebraic equations for the spectrum of the spin chain Hamiltonians.

      12. Direct detection of classically undetectable dark matter through quantum decoherence

        NASA Astrophysics Data System (ADS)

        Riedel, C. Jess

        2013-12-01

        Although various pieces of indirect evidence about the nature of dark matter have been collected, its direct detection has eluded experimental searches despite extensive effort. If the mass of dark matter is below 1 MeV, it is essentially imperceptible to conventional detection methods because negligible energy is transferred to nuclei during collisions. Here I propose directly detecting dark matter through the quantum decoherence it causes rather than its classical effects, such as recoil or ionization. I show that quantum spatial superpositions are sensitive to low-mass dark matter that is inaccessible to classical techniques. This provides new independent motivation for matter interferometry with large masses, especially on spaceborne platforms. The apparent dark matter wind we experience as the Sun travels through the Milky Way ensures interferometers and related devices are directional detectors, and so are able to provide unmistakable evidence that decoherence has Galactic origins.

      13. Classical and quantum mechanics of the nonrelativistic Snyder model

        NASA Astrophysics Data System (ADS)

        Mignemi, S.

        2011-07-01

        The Snyder model is an example of noncommutative spacetime admitting a fundamental length scale β and invariant under Lorentz transformations, that can be interpreted as a realization of the doubly special relativity axioms. Here, we consider its nonrelativistic counterpart, i.e. the Snyder model restricted to three-dimensional Euclidean space. We discuss the classical and the quantum mechanics of a free particle in this framework, and show that they strongly depend on the sign of a coupling constant λ, appearing in the fundamental commutators and proportional to β2. For example, if λ is negative, momenta are bounded. On the contrary, for positive λ, positions and areas are quantized. We also give the exact solution of the harmonic oscillator equations both in the classical and the quantum case, and show that its frequency is energy dependent.

      14. Implementation of quantum and classical discrete fractional Fourier transforms

        NASA Astrophysics Data System (ADS)

        Weimann, Steffen; Perez-Leija, Armando; Lebugle, Maxime; Keil, Robert; Tichy, Malte; Gräfe, Markus; Heilmann, René; Nolte, Stefan; Moya-Cessa, Hector; Weihs, Gregor; Christodoulides, Demetrios N.; Szameit, Alexander

        2016-03-01

        Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importance of the discrete Fourier transform, implementation of fractional orders of the corresponding discrete operation has been elusive. Here we report classical and quantum optical realizations of the discrete fractional Fourier transform. In the context of classical optics, we implement discrete fractional Fourier transforms of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to Fourier transform separable and path-entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools.

      15. Classical simulation of noninteracting-fermion quantum circuits

        NASA Astrophysics Data System (ADS)

        Terhal, Barbara M.; Divincenzo, David P.

        2002-03-01

        We show that a class of quantum computations that was recently shown to be efficiently simulatable on a classical computer by Valiant [in Proceedings of the 33rd ACM Symposium on the Theory of Computing (2001), p. 114] corresponds to a physical model of noninteracting fermions in one dimension. We give an alternative proof of his result using the language of fermions and extend the result to noninteracting fermions with arbitrary pairwise interactions, where gates can be conditioned on outcomes of complete von Neumann measurements in the computational basis on other fermionic modes in the circuit. This last result is in remarkable contrast with the case of noninteracting bosons where universal quantum computation can be achieved by allowing gates to be conditioned on classical bits [E. Knill, R. Laflamme, and G. Milburn, Nature (London) 409, 46 (2001)].

      16. Implementation of quantum and classical discrete fractional Fourier transforms

        PubMed Central

        Weimann, Steffen; Perez-Leija, Armando; Lebugle, Maxime; Keil, Robert; Tichy, Malte; Gräfe, Markus; Heilmann, René; Nolte, Stefan; Moya-Cessa, Hector; Weihs, Gregor; Christodoulides, Demetrios N.; Szameit, Alexander

        2016-01-01

        Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importance of the discrete Fourier transform, implementation of fractional orders of the corresponding discrete operation has been elusive. Here we report classical and quantum optical realizations of the discrete fractional Fourier transform. In the context of classical optics, we implement discrete fractional Fourier transforms of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to Fourier transform separable and path-entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools. PMID:27006089

      17. Time-Dependent Coupled Harmonic Oscillators: Classical and Quantum Solutions

        NASA Astrophysics Data System (ADS)

        Macedo, Diego Ximenes; Guedes, Ilde

        2015-10-01

        In this work we present the classical and quantum solutions for an arbitrary system of time-dependent coupled harmonic oscillators, where the masses (m), frequencies (ω) and coupling parameter (k) are functions of time. To obtain the classical solutions we use a coordinate and momentum transformations along with a canonical transformation to write the original Hamiltonian as the sum of two Hamiltonians of uncoupled harmonic oscillators with modified time-dependent frequencies and unitary masses. To obtain the exact quantum solutions we use a unitary transformation and the Lewis and Riesenfeld invariant method. The exact wave functions are obtained by solving the respective Milne-Pinney equation for each system. We obtain the solutions for the system with m1 = m2 = m0eγt, ω1 = ω01e-γt/2, ω2 = ω02e-γt/2 and k = k0.

      18. Time-dependent coupled harmonic oscillators: Classical and quantum solutions

        NASA Astrophysics Data System (ADS)

        Macedo, D. X.; Guedes, I.

        2014-08-01

        In this work we present the classical and quantum solutions for an arbitrary system of time-dependent coupled harmonic oscillators, where the masses (m), frequencies (ω) and coupling parameter (k) are functions of time. To obtain the classical solutions, we use a coordinate and momentum transformations along with a canonical transformation to write the original Hamiltonian as the sum of two Hamiltonians of uncoupled harmonic oscillators with modified time-dependent frequencies and unitary masses. To obtain the exact quantum solutions we use a unitary transformation and the Lewis and Riesenfeld (LR) invariant method. The exact wave functions are obtained by solving the respective Milne-Pinney (MP) equation for each system. We obtain the solutions for the system with m1 = m2 = m0eγt, ω1 = ω01e-γt/2, ω2 = ω02e-γt/2 and k = k0.

      19. Evading Quantum Mechanics: Engineering a Classical Subsystem within a Quantum Environment

        NASA Astrophysics Data System (ADS)

        Tsang, Mankei; Caves, Carlton M.

        2012-07-01

        Quantum mechanics is potentially advantageous for certain information-processing tasks, but its probabilistic nature and requirement of measurement backaction often limit the precision of conventional classical information-processing devices, such as sensors and atomic clocks. Here we show that, by engineering the dynamics of coupled quantum systems, it is possible to construct a subsystem that evades the measurement backaction of quantum mechanics, at all times of interest, and obeys any classical dynamics, linear or nonlinear, that we choose. We call such a system a quantum-mechanics-free subsystem (QMFS). All of the observables of a QMFS are quantum-nondemolition (QND) observables; moreover, they are dynamical QND observables, thus demolishing the widely held belief that QND observables are constants of motion. QMFSs point to a new strategy for designing classical information-processing devices in regimes where quantum noise is detrimental, unifying previous approaches that employ QND observables, backaction evasion, and quantum noise cancellation. Potential applications include gravitational-wave detection, optomechanical-force sensing, atomic magnetometry, and classical computing. Demonstrations of dynamical QMFSs include the generation of broadband squeezed light for use in interferometric gravitational-wave detection, experiments using entangled atomic-spin ensembles, and implementations of the quantum Toffoli gate.

      20. Evolution of Fractal Patterns during a Classical-Quantum Transition

        SciTech Connect

        Micolich, A. P.; Taylor, R. P.; Davies, A. G.; Bird, J. P.; Newbury, R.; Fromhold, T. M.; Ehlert, A.; Linke, H.; Macks, L. D.; Tribe, W. R.

        2001-07-16

        We investigate how fractals evolve into nonfractal behavior as the generation process is gradually suppressed. Fractals observed in the conductance of semiconductor billiards are of particular interest because the generation process is semiclassical and can be suppressed by transitions towards either fully classical or fully quantum-mechanical conduction. Investigating a range of billiards, we identify a ''universal'' behavior in the changeover from fractal to nonfractal conductance, which is described by a smooth evolution rather than deterioration in the fractal scaling properties.

      1. Quantum-classical electron distributions in atoms and atomic ions

        NASA Technical Reports Server (NTRS)

        Kunc, Joseph A.

        1988-01-01

        A quantum-classical approach is used to obtain the velocity distributions in atoms and positive and negative ions in both ground and excited states. In the analysis, Hartree-Fock electronic wavefunctions are used to determine the radial electron distributions, and the central-field approximation is used to study the the dynamic properties of the localized electrons. The distributions for the outer and inner shells are found to agree well with exact results obtained by numerical calculations.

      2. Authenticated semi-quantum key distributions without classical channel

        NASA Astrophysics Data System (ADS)

        Li, Chuan-Ming; Yu, Kun-Fei; Kao, Shih-Hung; Hwang, Tzonelih

        2016-04-01

        Yu et al. have proposed the first authenticated semi-quantum key distribution (ASQKD) without using an authenticated classical channel. This study further proposes two advanced ASQKD protocols. Compared to Yu et al.'s schemes, the proposed protocols ensure better qubit efficiency and require fewer pre-shared keys. Security analyses show that the proposed ASQKD protocols also can be secure against several well-known outside eavesdropper's attacks.

      3. Redundancy of classical and quantum correlations during decoherence

        SciTech Connect

        Paz, Juan Pablo; Roncaglia, Augusto J.

        2009-10-15

        We analyze the time dependence of entanglement and total correlations between a system and fractions of its environment in the course of decoherence. For the quantum Brownian motion model, we show that the entanglement and total correlations have rather different dependence on the size of the environmental fraction. Redundancy manifests differently in both types of correlations and can be related with induced classicality. To study this, we present a measure of redundancy and compare it to the existing one.

      4. Authenticated semi-quantum key distributions without classical channel

        NASA Astrophysics Data System (ADS)

        Li, Chuan-Ming; Yu, Kun-Fei; Kao, Shih-Hung; Hwang, Tzonelih

        2016-07-01

        Yu et al. have proposed the first authenticated semi-quantum key distribution (ASQKD) without using an authenticated classical channel. This study further proposes two advanced ASQKD protocols. Compared to Yu et al.'s schemes, the proposed protocols ensure better qubit efficiency and require fewer pre-shared keys. Security analyses show that the proposed ASQKD protocols also can be secure against several well-known outside eavesdropper's attacks.

      5. Modeling the quantum evolution of the universe through classical matter

        NASA Astrophysics Data System (ADS)

        Pitelli, João Paulo M.; Letelier, Patricio S.

        2013-07-01

        It is well known that the canonical quantization of the Friedmann-Lemaître-Robertson-Walker (FLRW) filled with a perfect fluid leads to nonsingular universes which, for later times, behave as their classical counterpart. This means that the expectation value of the scale factor (t) never vanishes and, as t→ infty , we recover the classical expression for the scale factor. In this paper, we show that such universes can be reproduced by classical cosmology given that the universe is filled with an exotic matter. In the case of a perfect fluid, we find an implicit equation of state (EoS). We then show that this single fluid with an implict EoS is equivalent to two non-interacting fluids, one of them representing stiff matter with negative energy density. In the case of two non-interacting scalar fields, one of them of the phantom type, we find their potential energy. In both cases we find that quantum mechanics changes completely the configuration of matter for small values of time, by adding a fluid or a scalar field with negative energy density. As time passes, the density of negative energy decreases and we recover the ordinary content of the classical universe. The more the initial wave function of the universe is concentrated around the classical big bang singularity, the more it is necessary to add negative energy, since this type of energy will be responsible for the removal of the classical singularity.

      6. Predictability sieve, pointer states, and the classicality of quantum trajectories

        SciTech Connect

        Dalvit, D. A. R.; Zurek, W. H.; Dziarmaga, J.

        2005-12-15

        We study various measures of classicality of the states of open quantum systems subject to decoherence. Classical states are expected to be stable in spite of decoherence, and are thought to leave conspicuous imprints on the environment. Here these expected features of environment-induced superselection are quantified using four different criteria: predictability sieve (which selects states that produce least entropy), purification time (which looks for states that are the easiest to find out from the imprint they leave on the environment), efficiency threshold (which finds states that can be deduced from measurements on a smallest fraction of the environment), and purity loss time (that looks for states for which it takes the longest to lose a set fraction of their initial purity). We show that when pointer states--the most predictable states of an open quantum system selected by the predictability sieve--are well defined, all four criteria agree that they are indeed the most classical states. We illustrate this with two examples: an underdamped harmonic oscillator, for which coherent states are unanimously chosen by all criteria, and a free particle undergoing quantum Brownian motion, for which most criteria select almost identical Gaussian states (although, in this case, the predictability sieve does not select well defined pointer states)

      7. Crossover from Classical to Quantum Kibble-Zurek Scaling

        NASA Astrophysics Data System (ADS)

        Silvi, Pietro; Morigi, Giovanna; Calarco, Tommaso; Montangero, Simone

        2016-06-01

        The Kibble-Zurek (KZ) hypothesis identifies the relevant time scales in out-of-equilibrium dynamics of critical systems employing concepts valid at equilibrium: It predicts the scaling of the defect formation immediately after quenches across classical and quantum phase transitions as a function of the quench speed. Here, we study the crossover between the scaling dictated by a slow quench, which is ruled by the critical properties of the quantum phase transition, and the excitations due to a faster quench, where the dynamics is often well described by the classical model. We estimate the value of the quench rate that separates the two regimes and support our argument using numerical simulations of the out-of-equilibrium many-body dynamics. For the specific case of a ϕ4 model we demonstrate that the two regimes exhibit two different power-law scalings, which are in agreement with the KZ theory when applied to the quantum and classical cases. This result contributes to extending the prediction power of the Kibble-Zurek mechanism and to providing insight into recent experimental observations in systems of cold atoms and ions.

      8. Compressibility of Quantum Mixed-State Signals

        SciTech Connect

        Koashi, Masato; Imoto, Nobuyuki

        2001-07-02

        We present a formula that determines the optimal number of qubits per message that allows asymptotically faithful compression of the quantum information carried by an ensemble of mixed states. The set of mixed states determines a decomposition of the Hilbert space into the redundant part and the irreducible part. After removing the redundancy, the optimal compression rate is shown to be given by the von Neumann entropy of the reduced ensemble.

      9. Quantum-classical interactions through the path integral

        NASA Astrophysics Data System (ADS)

        Metaxas, Dimitrios

        2007-03-01

        I consider the case of two interacting scalar fields, ϕ and ψ, and use the path integral formalism in order to treat the first classically and the second quantum-mechanically. I derive the Feynman rules and the resulting equation of motion for the classical field which should be an improvement of the usual semiclassical procedure. As an application I use this method in order to enforce Gauss’s law as a classical equation in a non-Abelian gauge theory. I argue that the theory is renormalizable and equivalent to the usual Yang-Mills theory as far as the gauge field terms are concerned. There are additional terms in the effective action that depend on the Lagrange multiplier field λ that is used to enforce the constraint. These terms and their relation to the confining properties of the theory are discussed.

      10. Classical and quantum dynamics in an inverse square potential

        SciTech Connect

        Guillaumín-España, Elisa; Núñez-Yépez, H. N.; Salas-Brito, A. L.

        2014-10-15

        The classical motion of a particle in a 3D inverse square potential with negative energy, E, is shown to be geodesic, i.e., equivalent to the particle's free motion on a non-compact phase space manifold irrespective of the sign of the coupling constant. We thus establish that all its classical orbits with E < 0 are unbounded. To analyse the corresponding quantum problem, the Schrödinger equation is solved in momentum space. No discrete energy levels exist in the unrenormalized case and the system shows a complete “fall-to-the-center” with an energy spectrum unbounded by below. Such behavior corresponds to the non-existence of bound classical orbits. The symmetry of the problem is SO(3) × SO(2, 1) corroborating previously obtained results.