Solving mixed integer nonlinear programming problems using spiral dynamics optimization algorithm
NASA Astrophysics Data System (ADS)
Kania, Adhe; Sidarto, Kuntjoro Adji
2016-02-01
Many engineering and practical problem can be modeled by mixed integer nonlinear programming. This paper proposes to solve the problem with modified spiral dynamics inspired optimization method of Tamura and Yasuda. Four test cases have been examined, including problem in engineering and sport. This method succeeds in obtaining the optimal result in all test cases.
Optimal control of polymer flooding based on mixed-integer iterative dynamic programming
NASA Astrophysics Data System (ADS)
Lei, Yang; Li, Shurong; Zhang, Xiaodong; Zhang, Qiang; Guo, Lanlei
2011-11-01
Polymer flooding is one of the most important technologies for enhanced oil recovery. In this article, a mixed-integer optimal control model of distributed parameter systems (DPS) for the injection strategies is established, which involves the performance index as maximum of the profit, the governing equations as the fluid flow equations of polymer flooding and some inequalities constraints, such as polymer concentration and injection amount limitation. The control variables are the volume size, the injection concentration of each slug and the terminal flooding time. For the constant injection rate, the slug size is determined by the integer time stage length, and thus the integer variables are introduced in the DPS. To cope with the optimal control problem (OCP) of this DPS, a mixed-integer iterative dynamic programming incorporating a special truncation procedure to handle integer restrictions on stage lengths is proposed. First, the OCP with variable time stage lengths is transformed into a fixed time stage problem by introducing a normalised time variable. Then, the optimisation procedure is carried out at each stage and preceded backwards in a systematic way. Finally, the numerical results of an example illustrate the effectiveness of the proposed method.
Mixed integer evolution strategies for parameter optimization.
Li, Rui; Emmerich, Michael T M; Eggermont, Jeroen; Bäck, Thomas; Schütz, M; Dijkstra, J; Reiber, J H C
2013-01-01
Evolution strategies (ESs) are powerful probabilistic search and optimization algorithms gleaned from biological evolution theory. They have been successfully applied to a wide range of real world applications. The modern ESs are mainly designed for solving continuous parameter optimization problems. Their ability to adapt the parameters of the multivariate normal distribution used for mutation during the optimization run makes them well suited for this domain. In this article we describe and study mixed integer evolution strategies (MIES), which are natural extensions of ES for mixed integer optimization problems. MIES can deal with parameter vectors consisting not only of continuous variables but also with nominal discrete and integer variables. Following the design principles of the canonical evolution strategies, they use specialized mutation operators tailored for the aforementioned mixed parameter classes. For each type of variable, the choice of mutation operators is governed by a natural metric for this variable type, maximal entropy, and symmetry considerations. All distributions used for mutation can be controlled in their shape by means of scaling parameters, allowing self-adaptation to be implemented. After introducing and motivating the conceptual design of the MIES, we study the optimality of the self-adaptation of step sizes and mutation rates on a generalized (weighted) sphere model. Moreover, we prove global convergence of the MIES on a very general class of problems. The remainder of the article is devoted to performance studies on artificial landscapes (barrier functions and mixed integer NK landscapes), and a case study in the optimization of medical image analysis systems. In addition, we show that with proper constraint handling techniques, MIES can also be applied to classical mixed integer nonlinear programming problems. PMID:22122384
Henriques, David; Rocha, Miguel; Saez-Rodriguez, Julio; Banga, Julio R.
2015-01-01
Motivation: Systems biology models can be used to test new hypotheses formulated on the basis of previous knowledge or new experimental data, contradictory with a previously existing model. New hypotheses often come in the shape of a set of possible regulatory mechanisms. This search is usually not limited to finding a single regulation link, but rather a combination of links subject to great uncertainty or no information about the kinetic parameters. Results: In this work, we combine a logic-based formalism, to describe all the possible regulatory structures for a given dynamic model of a pathway, with mixed-integer dynamic optimization (MIDO). This framework aims to simultaneously identify the regulatory structure (represented by binary parameters) and the real-valued parameters that are consistent with the available experimental data, resulting in a logic-based differential equation model. The alternative to this would be to perform real-valued parameter estimation for each possible model structure, which is not tractable for models of the size presented in this work. The performance of the method presented here is illustrated with several case studies: a synthetic pathway problem of signaling regulation, a two-component signal transduction pathway in bacterial homeostasis, and a signaling network in liver cancer cells. Supplementary information: Supplementary data are available at Bioinformatics online. Contact: julio@iim.csic.es or saezrodriguez@ebi.ac.uk PMID:26002881
NASA Astrophysics Data System (ADS)
Li, J. C.; Gong, B.; Wang, H. G.
2016-08-01
Optimal development of shale gas fields involves designing a most productive fracturing network for hydraulic stimulation processes and operating wells appropriately throughout the production time. A hydraulic fracturing network design-determining well placement, number of fracturing stages, and fracture lengths-is defined by specifying a set of integer ordered blocks to drill wells and create fractures in a discrete shale gas reservoir model. The well control variables such as bottom hole pressures or production rates for well operations are real valued. Shale gas development problems, therefore, can be mathematically formulated with mixed-integer optimization models. A shale gas reservoir simulator is used to evaluate the production performance for a hydraulic fracturing and well control plan. To find the optimal fracturing design and well operation is challenging because the problem is a mixed integer optimization problem and entails computationally expensive reservoir simulation. A dynamic simplex interpolation-based alternate subspace (DSIAS) search method is applied for mixed integer optimization problems associated with shale gas development projects. The optimization performance is demonstrated with the example case of the development of the Barnett Shale field. The optimization results of DSIAS are compared with those of a pattern search algorithm.
NASA Astrophysics Data System (ADS)
Wang, Bin; Chiang, Hsiao-Dong
Many applications of smart grid can be formulated as constrained optimization problems. Because of the discrete controls involved in power systems, these problems are essentially mixed-integer nonlinear programs. In this paper, we review the Trust-Tech-based methodology for solving mixed-integer nonlinear optimization. Specifically, we have developed a two-stage Trust-Tech-based methodology to systematically compute all the local optimal solutions for constrained mixed-integer nonlinear programming (MINLP) problems. In the first stage, for a given MINLP problem this methodology starts with the construction of a new, continuous, unconstrained problem through relaxation and the penalty function method. A corresponding dynamical system is then constructed to search for a set of local optimal solutions for the unconstrained problem. In the second stage, a reduced constrained NLP is defined for each local optimal solution by determining and fixing the values of integral variables of the MINLP problem. The Trust-Tech-based method is used to compute a set of local optimal solutions for these reduced NLP problems, from which the optimal solution of the original MINLP problem is determined. A numerical simulation of several testing problems is provided to illustrate the effectiveness of our proposed method.
Enhanced index tracking modeling in portfolio optimization with mixed-integer programming z approach
NASA Astrophysics Data System (ADS)
Siew, Lam Weng; Jaaman, Saiful Hafizah Hj.; Ismail, Hamizun bin
2014-09-01
Enhanced index tracking is a popular form of portfolio management in stock market investment. Enhanced index tracking aims to construct an optimal portfolio to generate excess return over the return achieved by the stock market index without purchasing all of the stocks that make up the index. The objective of this paper is to construct an optimal portfolio using mixed-integer programming model which adopts regression approach in order to generate higher portfolio mean return than stock market index return. In this study, the data consists of 24 component stocks in Malaysia market index which is FTSE Bursa Malaysia Kuala Lumpur Composite Index from January 2010 until December 2012. The results of this study show that the optimal portfolio of mixed-integer programming model is able to generate higher mean return than FTSE Bursa Malaysia Kuala Lumpur Composite Index return with only selecting 30% out of the total stock market index components.
Comparison of penalty functions on a penalty approach to mixed-integer optimization
NASA Astrophysics Data System (ADS)
Francisco, Rogério B.; Costa, M. Fernanda P.; Rocha, Ana Maria A. C.; Fernandes, Edite M. G. P.
2016-06-01
In this paper, we present a comparative study involving several penalty functions that can be used in a penalty approach for globally solving bound mixed-integer nonlinear programming (bMIMLP) problems. The penalty approach relies on a continuous reformulation of the bMINLP problem by adding a particular penalty term to the objective function. A penalty function based on the `erf' function is proposed. The continuous nonlinear optimization problems are sequentially solved by the population-based firefly algorithm. Preliminary numerical experiments are carried out in order to analyze the quality of the produced solutions, when compared with other penalty functions available in the literature.
A Mixed-Integer Optimization Framework for De Novo Peptide Identification
DiMaggio, Peter A.
2009-01-01
A novel methodology for the de novo identification of peptides by mixed-integer optimization and tandem mass spectrometry is presented in this article. The various features of the mathematical model are presented and examples are used to illustrate the key concepts of the proposed approach. Several problems are examined to illustrate the proposed method's ability to address (1) residue-dependent fragmentation properties and (2) the variability of resolution in different mass analyzers. A preprocessing algorithm is used to identify important m/z values in the tandem mass spectrum. Missing peaks, resulting from residue-dependent fragmentation characteristics, are dealt with using a two-stage algorithmic framework. A cross-correlation approach is used to resolve missing amino acid assignments and to identify the most probable peptide by comparing the theoretical spectra of the candidate sequences that were generated from the MILP sequencing stages with the experimental tandem mass spectrum. PMID:19412358
Optimization of a wood dryer kiln using the mixed integer programming technique: A case study
Gustafsson, S.I.
1999-07-01
When wood is to be utilized as a raw material for furniture, buildings, etc., it must be dried from approximately 100% to 6% moisture content. This is achieved at least partly in a drying kiln. Heat for this purpose is provided by electrical means, or by steam from boilers fired with wood chips or oil. By making a close examination of monitored values from an actual drying kiln it has been possible to optimize the use of steam and electricity using the so called mixed integer programming technique. Owing to the operating schedule for the drying kiln it has been necessary to divide the drying process in very short time intervals, i.e., a number of minutes. Since a drying cycle takes about two or three weeks, a considerable mathematical problem is presented and this has to be solved.
NASA Astrophysics Data System (ADS)
Baran, Ismet; Tutum, Cem C.; Hattel, Jesper H.
2013-08-01
In this paper thermo-chemical simulation of the pultrusion process of a composite rod is first used as a validation case to ensure that the utilized numerical scheme is stable and converges to results given in literature. Following this validation case, a cylindrical die block with heaters is added to the pultrusion domain of a composite part and thermal contact resistance (TCR) regions at the die-part interface are defined. Two optimization case studies are performed on this new configuration. In the first one, optimal die radius and TCR values are found by using a hybrid genetic algorithm based on a sequential combination of a genetic algorithm (GA) and a local search technique to fit the centerline temperature of the composite with the one calculated in the validation case. In the second optimization study, the productivity of the process is improved by using a mixed integer genetic algorithm (MIGA) such that the total number of heaters is minimized while satisfying the constraints for the maximum composite temperature, the mean of the cure degree at the die exit and the pulling speed.
Li, Zukui; Ding, Ran; Floudas, Christodoulos A.
2011-01-01
Robust counterpart optimization techniques for linear optimization and mixed integer linear optimization problems are studied in this paper. Different uncertainty sets, including those studied in literature (i.e., interval set; combined interval and ellipsoidal set; combined interval and polyhedral set) and new ones (i.e., adjustable box; pure ellipsoidal; pure polyhedral; combined interval, ellipsoidal, and polyhedral set) are studied in this work and their geometric relationship is discussed. For uncertainty in the left hand side, right hand side, and objective function of the optimization problems, robust counterpart optimization formulations induced by those different uncertainty sets are derived. Numerical studies are performed to compare the solutions of the robust counterpart optimization models and applications in refinery production planning and batch process scheduling problem are presented. PMID:21935263
NASA Astrophysics Data System (ADS)
Shoemaker, Christine; Wan, Ying
2016-04-01
Optimization of nonlinear water resources management issues which have a mixture of fixed (e.g. construction cost for a well) and variable (e.g. cost per gallon of water pumped) costs has been not well addressed because prior algorithms for the resulting nonlinear mixed integer problems have required many groundwater simulations (with different configurations of decision variable), especially when the solution space is multimodal. In particular heuristic methods like genetic algorithms have often been used in the water resources area, but they require so many groundwater simulations that only small systems have been solved. Hence there is a need to have a method that reduces the number of expensive groundwater simulations. A recently published algorithm for nonlinear mixed integer programming using surrogates was shown in this study to greatly reduce the computational effort for obtaining accurate answers to problems involving fixed costs for well construction as well as variable costs for pumping because of a substantial reduction in the number of groundwater simulations required to obtain an accurate answer. Results are presented for a US EPA hazardous waste site. The nonlinear mixed integer surrogate algorithm is general and can be used on other problems arising in hydrology with open source codes in Matlab and python ("pySOT" in Bitbucket).
Gorissen, Bram L; den Hertog, Dick; Hoffmann, Aswin L
2013-02-21
Current inverse treatment planning methods that optimize both catheter positions and dwell times in prostate HDR brachytherapy use surrogate linear or quadratic objective functions that have no direct interpretation in terms of dose-volume histogram (DVH) criteria, do not result in an optimum or have long solution times. We decrease the solution time of the existing linear and quadratic dose-based programming models (LP and QP, respectively) to allow optimizing over potential catheter positions using mixed integer programming. An additional average speed-up of 75% can be obtained by stopping the solver at an early stage, without deterioration of the plan quality. For a fixed catheter configuration, the dwell time optimization model LP solves to optimality in less than 15 s, which confirms earlier results. We propose an iterative procedure for QP that allows us to prescribe the target dose as an interval, while retaining independence between the solution time and the number of dose calculation points. This iterative procedure is comparable in speed to the LP model and produces better plans than the non-iterative QP. We formulate a new dose-volume-based model that maximizes V(100%) while satisfying pre-set DVH criteria. This model optimizes both catheter positions and dwell times within a few minutes depending on prostate volume and number of catheters, optimizes dwell times within 35 s and gives better DVH statistics than dose-based models. The solutions suggest that the correlation between the objective value and the clinical plan quality is weak in the existing dose-based models. PMID:23363622
Designing cost-effective biopharmaceutical facilities using mixed-integer optimization.
Liu, Songsong; Simaria, Ana S; Farid, Suzanne S; Papageorgiou, Lazaros G
2013-01-01
Chromatography operations are identified as critical steps in a monoclonal antibody (mAb) purification process and can represent a significant proportion of the purification material costs. This becomes even more critical with increasing product titers that result in higher mass loads onto chromatography columns, potentially causing capacity bottlenecks. In this work, a mixed-integer nonlinear programming (MINLP) model was created and applied to an industrially relevant case study to optimize the design of a facility by determining the most cost-effective chromatography equipment sizing strategies for the production of mAbs. Furthermore, the model was extended to evaluate the ability of a fixed facility to cope with higher product titers up to 15 g/L. Examination of the characteristics of the optimal chromatography sizing strategies across different titer values enabled the identification of the maximum titer that the facility could handle using a sequence of single column chromatography steps as well as multi-column steps. The critical titer levels for different ratios of upstream to dowstream trains where multiple parallel columns per step resulted in the removal of facility bottlenecks were identified. Different facility configurations in terms of number of upstream trains were considered and the trade-off between their cost and ability to handle higher titers was analyzed. The case study insights demonstrate that the proposed modeling approach, combining MINLP models with visualization tools, is a valuable decision-support tool for the design of cost-effective facility configurations and to aid facility fit decisions. 2013. PMID:23956206
NASA Astrophysics Data System (ADS)
Tang, Jiafu; Liu, Yang; Fung, Richard; Luo, Xinggang
2008-12-01
Manufacturers have a legal accountability to deal with industrial waste generated from their production processes in order to avoid pollution. Along with advances in waste recovery techniques, manufacturers may adopt various recycling strategies in dealing with industrial waste. With reuse strategies and technologies, byproducts or wastes will be returned to production processes in the iron and steel industry, and some waste can be recycled back to base material for reuse in other industries. This article focuses on a recovery strategies optimization problem for a typical class of industrial waste recycling process in order to maximize profit. There are multiple strategies for waste recycling available to generate multiple byproducts; these byproducts are then further transformed into several types of chemical products via different production patterns. A mixed integer programming model is developed to determine which recycling strategy and which production pattern should be selected with what quantity of chemical products corresponding to this strategy and pattern in order to yield maximum marginal profits. The sales profits of chemical products and the set-up costs of these strategies, patterns and operation costs of production are considered. A simulated annealing (SA) based heuristic algorithm is developed to solve the problem. Finally, an experiment is designed to verify the effectiveness and feasibility of the proposed method. By comparing a single strategy to multiple strategies in an example, it is shown that the total sales profit of chemical products can be increased by around 25% through the simultaneous use of multiple strategies. This illustrates the superiority of combinatorial multiple strategies. Furthermore, the effects of the model parameters on profit are discussed to help manufacturers organize their waste recycling network.
Mixed integer programming model for optimizing the layout of an ICU vehicle
2009-01-01
Background This paper presents a Mixed Integer Programming (MIP) model for designing the layout of the Intensive Care Units' (ICUs) patient care space. In particular, this MIP model was developed for optimizing the layout for materials to be used in interventions. This work was developed within the framework of a joint project between the Madrid Technical Unverstity and the Medical Emergency Services of the Madrid Regional Government (SUMMA 112). Methods The first task was to identify the relevant information to define the characteristics of the new vehicles and, in particular, to obtain a satisfactory interior layout to locate all the necessary materials. This information was gathered from health workers related to ICUs. With that information an optimization model was developed in order to obtain a solution. From the MIP model, a first solution was obtained, consisting of a grid to locate the different materials needed for the ICUs. The outcome from the MIP model was discussed with health workers to tune the solution, and after slightly altering that solution to meet some requirements that had not been included in the mathematical model, the eventual solution was approved by the persons responsible for specifying the characteristics of the new vehicles. According to the opinion stated by the SUMMA 112's medical group responsible for improving the ambulances (the so-called "coaching group"), the outcome was highly satisfactory. Indeed, the final design served as a basis to draw up the requirements of a public tender. Results As a result from solving the Optimization model, a grid was obtained to locate the different necessary materials for the ICUs. This grid had to be slightly altered to meet some requirements that had not been included in the mathematical model. The results were discussed with the persons responsible for specifying the characteristics of the new vehicles. Conclusion The outcome was highly satisfactory. Indeed, the final design served as a basis
NASA Astrophysics Data System (ADS)
Skulovich, Olya; Bent, Russell; Judi, David; Perelman, Lina Sela; Ostfeld, Avi
2015-06-01
Despite their potential catastrophic impact, transients are often ignored or presented ad hoc when designing water distribution systems. To address this problem, we introduce a new piece-wise function fitting model that is integrated with mixed integer programming to optimally place and size surge tanks for transient control. The key features of the algorithm are a model-driven discretization of the search space, a linear approximation nonsmooth system response surface to transients, and a mixed integer linear programming optimization. Results indicate that high quality solutions can be obtained within a reasonable number of function evaluations and demonstrate the computational effectiveness of the approach through two case studies. The work investigates one type of surge control devices (closed surge tank) for a specified set of transient events. The performance of the algorithm relies on the assumption that there exists a smooth relationship between the objective function and tank size. Results indicate the potential of the approach for the optimal surge control design in water systems.
Winebrake, James J; Corbett, James J; Wang, Chengfeng; Farrell, Alexander E; Woods, Pippa
2005-04-01
Emissions from passenger ferries operating in urban harbors may contribute significantly to emissions inventories and commuter exposure to air pollution. In particular, ferries are problematic because of high emissions of oxides of nitrogen (NOx) and particulate matter (PM) from primarily unregulated diesel engines. This paper explores technical solutions to reduce pollution from passenger ferries operating in the New York-New Jersey Harbor. The paper discusses and demonstrates a mixed-integer, non-linear programming model used to identify optimal control strategies for meeting NOx and PM reduction targets for 45 privately owned commuter ferries in the harbor. Results from the model can be used by policy-makers to craft programs aimed at achieving least-cost reduction targets. PMID:15887889
Mixed Integer Programming and Heuristic Scheduling for Space Communication Networks
NASA Technical Reports Server (NTRS)
Cheung, Kar-Ming; Lee, Charles H.
2012-01-01
We developed framework and the mathematical formulation for optimizing communication network using mixed integer programming. The design yields a system that is much smaller, in search space size, when compared to the earlier approach. Our constrained network optimization takes into account the dynamics of link performance within the network along with mission and operation requirements. A unique penalty function is introduced to transform the mixed integer programming into the more manageable problem of searching in a continuous space. The constrained optimization problem was proposed to solve in two stages: first using the heuristic Particle Swarming Optimization algorithm to get a good initial starting point, and then feeding the result into the Sequential Quadratic Programming algorithm to achieve the final optimal schedule. We demonstrate the above planning and scheduling methodology with a scenario of 20 spacecraft and 3 ground stations of a Deep Space Network site. Our approach and framework have been simple and flexible so that problems with larger number of constraints and network can be easily adapted and solved.
NASA Astrophysics Data System (ADS)
Rashid, Kashif; Ambani, Saumil; Cetinkaya, Eren
2013-02-01
Many real-world optimization problems comprise objective functions that are based on the output of one or more simulation models. As these underlying processes can be time and computation intensive, the objective function is deemed expensive to evaluate. While methods to alleviate this cost in the optimization procedure have been explored previously, less attention has been given to the treatment of expensive constraints. This article presents a methodology for treating expensive simulation-based nonlinear constraints alongside an expensive simulation-based objective function using adaptive radial basis function techniques. Specifically, a multiquadric radial basis function approximation scheme is developed, together with a robust training method, to model not only the costly objective function, but also each expensive simulation-based constraint defined in the problem. The article presents the methodology developed for expensive nonlinear constrained optimization problems comprising both continuous and integer variables. Results from various test cases, both analytical and simulation-based, are presented.
Ko, Andi Setiady; Chang, Ni-Bin
2008-07-01
Energy supply and use is of fundamental importance to society. Although the interactions between energy and environment were originally local in character, they have now widened to cover regional and global issues, such as acid rain and the greenhouse effect. It is for this reason that there is a need for covering the direct and indirect economic and environmental impacts of energy acquisition, transport, production and use. In this paper, particular attention is directed to ways of resolving conflict between economic and environmental goals by encouraging a power plant to consider co-firing biomass and refuse-derived fuel (RDF) with coal simultaneously. It aims at reducing the emission level of sulfur dioxide (SO(2)) in an uncertain environment, using the power plant in Michigan City, Indiana as an example. To assess the uncertainty by a comparative way both deterministic and grey nonlinear mixed integer programming (MIP) models were developed to minimize the net operating cost with respect to possible fuel combinations. It aims at generating the optimal portfolio of alternative fuels while maintaining the same electricity generation simultaneously. To ease the solution procedure stepwise relaxation algorithm was developed for solving the grey nonlinear MIP model. Breakeven alternative fuel value can be identified in the post-optimization stage for decision-making. Research findings show that the inclusion of RDF does not exhibit comparative advantage in terms of the net cost, albeit relatively lower air pollution impact. Yet it can be sustained by a charge system, subsidy program, or emission credit as the price of coal increases over time. PMID:17395362
Mixed Integer Programming and Heuristic Scheduling for Space Communication
NASA Technical Reports Server (NTRS)
Lee, Charles H.; Cheung, Kar-Ming
2013-01-01
Optimal planning and scheduling for a communication network was created where the nodes within the network are communicating at the highest possible rates while meeting the mission requirements and operational constraints. The planning and scheduling problem was formulated in the framework of Mixed Integer Programming (MIP) to introduce a special penalty function to convert the MIP problem into a continuous optimization problem, and to solve the constrained optimization problem using heuristic optimization. The communication network consists of space and ground assets with the link dynamics between any two assets varying with respect to time, distance, and telecom configurations. One asset could be communicating with another at very high data rates at one time, and at other times, communication is impossible, as the asset could be inaccessible from the network due to planetary occultation. Based on the network's geometric dynamics and link capabilities, the start time, end time, and link configuration of each view period are selected to maximize the communication efficiency within the network. Mathematical formulations for the constrained mixed integer optimization problem were derived, and efficient analytical and numerical techniques were developed to find the optimal solution. By setting up the problem using MIP, the search space for the optimization problem is reduced significantly, thereby speeding up the solution process. The ratio of the dimension of the traditional method over the proposed formulation is approximately an order N (single) to 2*N (arraying), where N is the number of receiving antennas of a node. By introducing a special penalty function, the MIP problem with non-differentiable cost function and nonlinear constraints can be converted into a continuous variable problem, whose solution is possible.
Constrained spacecraft reorientation using mixed integer convex programming
NASA Astrophysics Data System (ADS)
Tam, Margaret; Glenn Lightsey, E.
2016-10-01
A constrained attitude guidance (CAG) system is developed using convex optimization to autonomously achieve spacecraft pointing objectives while meeting the constraints imposed by on-board hardware. These constraints include bounds on the control input and slew rate, as well as pointing constraints imposed by the sensors. The pointing constraints consist of inclusion and exclusion cones that dictate permissible orientations of the spacecraft in order to keep objects in or out of the field of view of the sensors. The optimization scheme drives a body vector towards a target inertial vector along a trajectory that consists solely of permissible orientations in order to achieve the desired attitude for a given mission mode. The non-convex rotational kinematics are handled by discretization, which also ensures that the quaternion stays unity norm. In order to guarantee an admissible path, the pointing constraints are relaxed. Depending on how strict the pointing constraints are, the degree of relaxation is tuneable. The use of binary variables permits the inclusion of logical expressions in the pointing constraints in the case that a set of sensors has redundancies. The resulting mixed integer convex programming (MICP) formulation generates a steering law that can be easily integrated into an attitude determination and control (ADC) system. A sample simulation of the system is performed for the Bevo-2 satellite, including disturbance torques and actuator dynamics which are not modeled by the controller. Simulation results demonstrate the robustness of the system to disturbances while meeting the mission requirements with desirable performance characteristics.
Mixed-Integer Formulations for Constellation Scheduling
NASA Astrophysics Data System (ADS)
Valicka, C.; Hart, W.; Rintoul, M.
Remote sensing systems have expanded the set of capabilities available for and critical to national security. Cooperating, high-fidelity sensing systems and growing mission applications have exponentially increased the set of potential schedules. A definitive lack of advanced tools places an increased burden on operators, as planning and scheduling remain largely manual tasks. This is particularly true in time-critical planning activities where operators aim to accomplish a large number of missions through optimal utilization of single or multiple sensor systems. Automated scheduling through identification and comparison of alternative schedules remains a challenging problem applicable across all remote sensing systems. Previous approaches focused on a subset of sensor missions and do not consider ad-hoc tasking. We have begun development of a robust framework that leverages the Pyomo optimization modeling language for the design of a tool to assist sensor operators planning under the constraints of multiple concurrent missions and uncertainty. Our scheduling models have been formulated to address the stochastic nature of ad-hoc tasks inserted under a variety of scenarios. Operator experience is being leveraged to select appropriate model objectives. Successful development of the framework will include iterative development of high-fidelity mission models that consider and expose various schedule performance metrics. Creating this tool will aid time-critical scheduling by increasing planning efficiency, clarifying the value of alternative modalities uniquely provided by multi-sensor systems, and by presenting both sets of organized information to operators. Such a tool will help operators more quickly and fully utilize sensing systems, a high interest objective within the current remote sensing operations community. Preliminary results for mixed-integer programming formulations of a sensor scheduling problem will be presented. Assumptions regarding sensor geometry
Smalley, Hannah K; Keskinocak, Pinar; Swann, Julie; Hinman, Alan
2015-11-17
In addition to improved sanitation, hygiene, and better access to safe water, oral cholera vaccines can help to control the spread of cholera in the short term. However, there is currently no systematic method for determining the best allocation of oral cholera vaccines to minimize disease incidence in a population where the disease is endemic and resources are limited. We present a mathematical model for optimally allocating vaccines in a region under varying levels of demographic and incidence data availability. The model addresses the questions of where, when, and how many doses of vaccines to send. Considering vaccine efficacies (which may vary based on age and the number of years since vaccination), we analyze distribution strategies which allocate vaccines over multiple years. Results indicate that, given appropriate surveillance data, targeting age groups and regions with the highest disease incidence should be the first priority, followed by other groups primarily in order of disease incidence, as this approach is the most life-saving and cost-effective. A lack of detailed incidence data results in distribution strategies which are not cost-effective and can lead to thousands more deaths from the disease. The mathematical model allows for what-if analysis for various vaccine distribution strategies by providing the ability to easily vary parameters such as numbers and sizes of regions and age groups, risk levels, vaccine price, vaccine efficacy, production capacity and budget. PMID:26458806
Orbital rendezvous mission planning using mixed integer nonlinear programming
NASA Astrophysics Data System (ADS)
Zhang, Jin; Tang, Guo-jin; Luo, Ya-Zhong; Li, Hai-yang
2011-04-01
The rendezvous and docking mission is usually divided into several phases, and the mission planning is performed phase by phase. A new planning method using mixed integer nonlinear programming, which investigates single phase parameters and phase connecting parameters simultaneously, is proposed to improve the rendezvous mission's overall performance. The design variables are composed of integers and continuous-valued numbers. The integer part consists of the parameters for station-keeping and sensor-switching, the number of maneuvers in each rendezvous phase and the number of repeating periods to start the rendezvous mission. The continuous part consists of the orbital transfer time and the station-keeping duration. The objective function is a combination of the propellant consumed, the sun angle which represents the power available, and the terminal precision of each rendezvous phase. The operational requirements for the spacecraft-ground communication, sun illumination and the sensor transition are considered. The simple genetic algorithm, which is a combination of the integer-coded and real-coded genetic algorithm, is chosen to obtain the optimal solution. A practical rendezvous mission planning problem is solved by the proposed method. The results show that the method proposed can solve the integral rendezvous mission planning problem effectively, and the solution obtained can satisfy the operational constraints and has a good overall performance.
Multi-objective mixed integer strategy for the optimisation of biological networks.
Sendín, J O H; Exler, O; Banga, J R
2010-05-01
In this contribution, the authors consider multi-criteria optimisation problems arising from the field of systems biology when both continuous and integer decision variables are involved. Mathematically, they are formulated as mixed-integer non-linear programming problems. The authors present a novel solution strategy based on a global optimisation approach for dealing with this class of problems. Its usefulness and capabilities are illustrated with two metabolic engineering case studies. For these problems, the authors show how the set of optimal solutions (the so-called Pareto front) is successfully and efficiently obtained, providing further insight into the systems under consideration regarding their optimal manipulation. PMID:20500003
Guo, P; Huang, G H
2009-01-01
In this study, an inexact fuzzy chance-constrained two-stage mixed-integer linear programming (IFCTIP) approach is proposed for supporting long-term planning of waste-management systems under multiple uncertainties in the City of Regina, Canada. The method improves upon the existing inexact two-stage programming and mixed-integer linear programming techniques by incorporating uncertainties expressed as multiple uncertainties of intervals and dual probability distributions within a general optimization framework. The developed method can provide an effective linkage between the predefined environmental policies and the associated economic implications. Four special characteristics of the proposed method make it unique compared with other optimization techniques that deal with uncertainties. Firstly, it provides a linkage to predefined policies that have to be respected when a modeling effort is undertaken; secondly, it is useful for tackling uncertainties presented as intervals, probabilities, fuzzy sets and their incorporation; thirdly, it facilitates dynamic analysis for decisions of facility-expansion planning and waste-flow allocation within a multi-facility, multi-period, multi-level, and multi-option context; fourthly, the penalties are exercised with recourse against any infeasibility, which permits in-depth analyses of various policy scenarios that are associated with different levels of economic consequences when the promised solid waste-generation rates are violated. In a companion paper, the developed method is applied to a real case for the long-term planning of waste management in the City of Regina, Canada. PMID:19800164
PySP : modeling and solving stochastic mixed-integer programs in Python.
Woodruff, David L.; Watson, Jean-Paul
2010-08-01
Although stochastic programming is a powerful tool for modeling decision-making under uncertainty, various impediments have historically prevented its widespread use. One key factor involves the ability of non-specialists to easily express stochastic programming problems as extensions of deterministic models, which are often formulated first. A second key factor relates to the difficulty of solving stochastic programming models, particularly the general mixed-integer, multi-stage case. Intricate, configurable, and parallel decomposition strategies are frequently required to achieve tractable run-times. We simultaneously address both of these factors in our PySP software package, which is part of the COIN-OR Coopr open-source Python project for optimization. To formulate a stochastic program in PySP, the user specifies both the deterministic base model and the scenario tree with associated uncertain parameters in the Pyomo open-source algebraic modeling language. Given these two models, PySP provides two paths for solution of the corresponding stochastic program. The first alternative involves writing the extensive form and invoking a standard deterministic (mixed-integer) solver. For more complex stochastic programs, we provide an implementation of Rockafellar and Wets Progressive Hedging algorithm. Our particular focus is on the use of Progressive Hedging as an effective heuristic for approximating general multi-stage, mixed-integer stochastic programs. By leveraging the combination of a high-level programming language (Python) and the embedding of the base deterministic model in that language (Pyomo), we are able to provide completely generic and highly configurable solver implementations. PySP has been used by a number of research groups, including our own, to rapidly prototype and solve difficult stochastic programming problems.
Munguia, Lluis-Miquel; Oxberry, Geoffrey; Rajan, Deepak
2016-05-01
Stochastic mixed-integer programs (SMIPs) deal with optimization under uncertainty at many levels of the decision-making process. When solved as extensive formulation mixed- integer programs, problem instances can exceed available memory on a single workstation. In order to overcome this limitation, we present PIPS-SBB: a distributed-memory parallel stochastic MIP solver that takes advantage of parallelism at multiple levels of the optimization process. We also show promising results on the SIPLIB benchmark by combining methods known for accelerating Branch and Bound (B&B) methods with new ideas that leverage the structure of SMIPs. Finally, we expect the performance of PIPS-SBB to improve furthermore » as more functionality is added in the future.« less
ERIC Educational Resources Information Center
Han, Kyung T.; Rudner, Lawrence M.
2014-01-01
This study uses mixed integer quadratic programming (MIQP) to construct multiple highly equivalent item pools simultaneously, and compares the results from mixed integer programming (MIP). Three different MIP/MIQP models were implemented and evaluated using real CAT item pool data with 23 different content areas and a goal of equal information…
Linderoth, Jeff T.; Luedtke, James R.
2013-05-30
The mathematical modeling of systems often requires the use of both nonlinear and discrete components. Problems involving both discrete and nonlinear components are known as mixed-integer nonlinear programs (MINLPs) and are among the most challenging computational optimization problems. This research project added to the understanding of this area by making a number of fundamental advances. First, the work demonstrated many novel, strong, tractable relaxations designed to deal with non-convexities arising in mathematical formulation. Second, the research implemented the ideas in software that is available to the public. Finally, the work demonstrated the importance of these ideas on practical applications and disseminated the work through scholarly journals, survey publications, and conference presentations.
Automatic design of synthetic gene circuits through mixed integer non-linear programming.
Huynh, Linh; Kececioglu, John; Köppe, Matthias; Tagkopoulos, Ilias
2012-01-01
Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the constraints and best approximates the objective function given by the user. We evaluated the proposed method in the design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework for the automated design of biological circuits. PMID:22536398
A Mixed Integer Linear Program for Airport Departure Scheduling
NASA Technical Reports Server (NTRS)
Gupta, Gautam; Jung, Yoon Chul
2009-01-01
Aircraft departing from an airport are subject to numerous constraints while scheduling departure times. These constraints include wake-separation constraints for successive departures, miles-in-trail separation for aircraft bound for the same departure fixes, and time-window or prioritization constraints for individual flights. Besides these, emissions as well as increased fuel consumption due to inefficient scheduling need to be included. Addressing all the above constraints in a single framework while allowing for resequencing of the aircraft using runway queues is critical to the implementation of the Next Generation Air Transport System (NextGen) concepts. Prior work on airport departure scheduling has addressed some of the above. However, existing methods use pre-determined runway queues, and schedule aircraft from these departure queues. The source of such pre-determined queues is not explicit, and could potentially be a subjective controller input. Determining runway queues and scheduling within the same framework would potentially result in better scheduling. This paper presents a mixed integer linear program (MILP) for the departure-scheduling problem. The program takes as input the incoming sequence of aircraft for departure from a runway, along with their earliest departure times and an optional prioritization scheme based on time-window of departure for each aircraft. The program then assigns these aircraft to the available departure queues and schedules departure times, explicitly considering wake separation and departure fix restrictions to minimize total delay for all aircraft. The approach is generalized and can be used in a variety of situations, and allows for aircraft prioritization based on operational as well as environmental considerations. We present the MILP in the paper, along with benefits over the first-come-first-serve (FCFS) scheme for numerous randomized problems based on real-world settings. The MILP results in substantially reduced
NASA Technical Reports Server (NTRS)
Laird, Philip
1992-01-01
We distinguish static and dynamic optimization of programs: whereas static optimization modifies a program before runtime and is based only on its syntactical structure, dynamic optimization is based on the statistical properties of the input source and examples of program execution. Explanation-based generalization is a commonly used dynamic optimization method, but its effectiveness as a speedup-learning method is limited, in part because it fails to separate the learning process from the program transformation process. This paper describes a dynamic optimization technique called a learn-optimize cycle that first uses a learning element to uncover predictable patterns in the program execution and then uses an optimization algorithm to map these patterns into beneficial transformations. The technique has been used successfully for dynamic optimization of pure Prolog.
A Mixed Integer Linear Program for Solving a Multiple Route Taxi Scheduling Problem
NASA Technical Reports Server (NTRS)
Montoya, Justin Vincent; Wood, Zachary Paul; Rathinam, Sivakumar; Malik, Waqar Ahmad
2010-01-01
Aircraft movements on taxiways at busy airports often create bottlenecks. This paper introduces a mixed integer linear program to solve a Multiple Route Aircraft Taxi Scheduling Problem. The outputs of the model are in the form of optimal taxi schedules, which include routing decisions for taxiing aircraft. The model extends an existing single route formulation to include routing decisions. An efficient comparison framework compares the multi-route formulation and the single route formulation. The multi-route model is exercised for east side airport surface traffic at Dallas/Fort Worth International Airport to determine if any arrival taxi time savings can be achieved by allowing arrivals to have two taxi routes: a route that crosses an active departure runway and a perimeter route that avoids the crossing. Results indicate that the multi-route formulation yields reduced arrival taxi times over the single route formulation only when a perimeter taxiway is used. In conditions where the departure aircraft are given an optimal and fixed takeoff sequence, accumulative arrival taxi time savings in the multi-route formulation can be as high as 3.6 hours more than the single route formulation. If the departure sequence is not optimal, the multi-route formulation results in less taxi time savings made over the single route formulation, but the average arrival taxi time is significantly decreased.
Estimating Tree-Structured Covariance Matrices via Mixed-Integer Programming
Bravo, Héctor Corrada; Wright, Stephen; Eng, Kevin H.; Keles, Sündüz; Wahba, Grace
2011-01-01
We present a novel method for estimating tree-structured covariance matrices directly from observed continuous data. Specifically, we estimate a covariance matrix from observations of p continuous random variables encoding a stochastic process over a tree with p leaves. A representation of these classes of matrices as linear combinations of rank-one matrices indicating object partitions is used to formulate estimation as instances of well-studied numerical optimization problems. In particular, our estimates are based on projection, where the covariance estimate is the nearest tree-structured covariance matrix to an observed sample covariance matrix. The problem is posed as a linear or quadratic mixed-integer program (MIP) where a setting of the integer variables in the MIP specifies a set of tree topologies of the structured covariance matrix. We solve these problems to optimality using efficient and robust existing MIP solvers. We present a case study in phylogenetic analysis of gene expression and a simulation study comparing our method to distance-based tree estimating procedures. PMID:22081761
A Two-Stage Stochastic Mixed-Integer Programming Approach to the Smart House Scheduling Problem
NASA Astrophysics Data System (ADS)
Ozoe, Shunsuke; Tanaka, Yoichi; Fukushima, Masao
A “Smart House” is a highly energy-optimized house equipped with photovoltaic systems (PV systems), electric battery systems, fuel cell cogeneration systems (FC systems), electric vehicles (EVs) and so on. Smart houses are attracting much attention recently thanks to their enhanced ability to save energy by making full use of renewable energy and by achieving power grid stability despite an increased power draw for installed PV systems. Yet running a smart house's power system, with its multiple power sources and power storages, is no simple task. In this paper, we consider the problem of power scheduling for a smart house with a PV system, an FC system and an EV. We formulate the problem as a mixed integer programming problem, and then extend it to a stochastic programming problem involving recourse costs to cope with uncertain electricity demand, heat demand and PV power generation. Using our method, we seek to achieve the optimal power schedule running at the minimum expected operation cost. We present some results of numerical experiments with data on real-life demands and PV power generation to show the effectiveness of our method.
Synchronic interval Gaussian mixed-integer programming for air quality management.
Cheng, Guanhui; Huang, Guohe Gordon; Dong, Cong
2015-12-15
To reveal the synchronism of interval uncertainties, the tradeoff between system optimality and security, the discreteness of facility-expansion options, the uncertainty of pollutant dispersion processes, and the seasonality of wind features in air quality management (AQM) systems, a synchronic interval Gaussian mixed-integer programming (SIGMIP) approach is proposed in this study. A robust interval Gaussian dispersion model is developed for approaching the pollutant dispersion process under interval uncertainties and seasonal variations. The reflection of synchronic effects of interval uncertainties in the programming objective is enabled through introducing interval functions. The proposition of constraint violation degrees helps quantify the tradeoff between system optimality and constraint violation under interval uncertainties. The overall optimality of system profits of an SIGMIP model is achieved based on the definition of an integrally optimal solution. Integer variables in the SIGMIP model are resolved by the existing cutting-plane method. Combining these efforts leads to an effective algorithm for the SIGMIP model. An application to an AQM problem in a region in Shandong Province, China, reveals that the proposed SIGMIP model can facilitate identifying the desired scheme for AQM. The enhancement of the robustness of optimization exercises may be helpful for increasing the reliability of suggested schemes for AQM under these complexities. The interrelated tradeoffs among control measures, emission sources, flow processes, receptors, influencing factors, and economic and environmental goals are effectively balanced. Interests of many stakeholders are reasonably coordinated. The harmony between economic development and air quality control is enabled. Results also indicate that the constraint violation degree is effective at reflecting the compromise relationship between constraint-violation risks and system optimality under interval uncertainties. This can
Li, Y P; Huang, G H
2006-11-01
In this study, an interval-parameter two-stage mixed integer linear programming (ITMILP) model is developed for supporting long-term planning of waste management activities in the City of Regina. In the ITMILP, both two-stage stochastic programming and interval linear programming are introduced into a general mixed integer linear programming framework. Uncertainties expressed as not only probability density functions but also discrete intervals can be reflected. The model can help tackle the dynamic, interactive and uncertain characteristics of the solid waste management system in the City, and can address issues concerning plans for cost-effective waste diversion and landfill prolongation. Three scenarios are considered based on different waste management policies. The results indicate that reasonable solutions have been generated. They are valuable for supporting the adjustment or justification of the existing waste flow allocation patterns, the long-term capacity planning of the City's waste management system, and the formulation of local policies and regulations regarding waste generation and management. PMID:16678336
Mixed Integer Programming and Heuristic Scheduling for Space Communication Networks
NASA Technical Reports Server (NTRS)
Lee, Charles H.; Cheung, Kar-Ming
2012-01-01
In this paper, we propose to solve the constrained optimization problem in two phases. The first phase uses heuristic methods such as the ant colony method, particle swarming optimization, and genetic algorithm to seek a near optimal solution among a list of feasible initial populations. The final optimal solution can be found by using the solution of the first phase as the initial condition to the SQP algorithm. We demonstrate the above problem formulation and optimization schemes with a large-scale network that includes the DSN ground stations and a number of spacecraft of deep space missions.
Solution of Mixed-Integer Programming Problems on the XT5
Hartman-Baker, Rebecca J; Busch, Ingrid Karin; Hilliard, Michael R; Middleton, Richard S; Schultze, Michael
2009-01-01
In this paper, we describe our experience with solving difficult mixed-integer linear programming problems (MILPs) on the petaflop Cray XT5 system at the National Center for Computational Sciences at Oak Ridge National Laboratory. We describe the algorithmic, software, and hardware needs for solving MILPs and present the results of using PICO, an open-source, parallel, mixed-integer linear programming solver developed at Sandia National Laboratories, to solve canonical MILPs as well as problems of interest arising from the logistics and supply chain management field.
NASA Astrophysics Data System (ADS)
Guo, P.; Huang, G. H.; Li, Y. P.
2010-01-01
In this study, an inexact fuzzy-chance-constrained two-stage mixed-integer linear programming (IFCTIP) approach is developed for flood diversion planning under multiple uncertainties. A concept of the distribution with fuzzy boundary interval probability is defined to address multiple uncertainties expressed as integration of intervals, fuzzy sets and probability distributions. IFCTIP integrates the inexact programming, two-stage stochastic programming, integer programming and fuzzy-stochastic programming within a general optimization framework. IFCTIP incorporates the pre-regulated water-diversion policies directly into its optimization process to analyze various policy scenarios; each scenario has different economic penalty when the promised targets are violated. More importantly, it can facilitate dynamic programming for decisions of capacity-expansion planning under fuzzy-stochastic conditions. IFCTIP is applied to a flood management system. Solutions from IFCTIP provide desired flood diversion plans with a minimized system cost and a maximized safety level. The results indicate that reasonable solutions are generated for objective function values and decision variables, thus a number of decision alternatives can be generated under different levels of flood flows.
Guo, P.; Huang, G.H.
2010-03-15
In this study, an interval-parameter semi-infinite fuzzy-chance-constrained mixed-integer linear programming (ISIFCIP) approach is developed for supporting long-term planning of waste-management systems under multiple uncertainties in the City of Regina, Canada. The method improves upon the existing interval-parameter semi-infinite programming (ISIP) and fuzzy-chance-constrained programming (FCCP) by incorporating uncertainties expressed as dual uncertainties of functional intervals and multiple uncertainties of distributions with fuzzy-interval admissible probability of violating constraint within a general optimization framework. The binary-variable solutions represent the decisions of waste-management-facility expansion, and the continuous ones are related to decisions of waste-flow allocation. The interval solutions can help decision-makers to obtain multiple decision alternatives, as well as provide bases for further analyses of tradeoffs between waste-management cost and system-failure risk. In the application to the City of Regina, Canada, two scenarios are considered. In Scenario 1, the City's waste-management practices would be based on the existing policy over the next 25 years. The total diversion rate for the residential waste would be approximately 14%. Scenario 2 is associated with a policy for waste minimization and diversion, where 35% diversion of residential waste should be achieved within 15 years, and 50% diversion over 25 years. In this scenario, not only landfill would be expanded, but also CF and MRF would be expanded. Through the scenario analyses, useful decision support for the City's solid-waste managers and decision-makers has been generated. Three special characteristics of the proposed method make it unique compared with other optimization techniques that deal with uncertainties. Firstly, it is useful for tackling multiple uncertainties expressed as intervals, functional intervals, probability distributions, fuzzy sets, and their
Obtaining lower bounds from the progressive hedging algorithm for stochastic mixed-integer programs
Gade, Dinakar; Hackebeil, Gabriel; Ryan, Sarah M.; Watson, Jean -Paul; Wets, Roger J.-B.; Woodruff, David L.
2016-04-02
We present a method for computing lower bounds in the progressive hedging algorithm (PHA) for two-stage and multi-stage stochastic mixed-integer programs. Computing lower bounds in the PHA allows one to assess the quality of the solutions generated by the algorithm contemporaneously. The lower bounds can be computed in any iteration of the algorithm by using dual prices that are calculated during execution of the standard PHA. In conclusion, we report computational results on stochastic unit commitment and stochastic server location problem instances, and explore the relationship between key PHA parameters and the quality of the resulting lower bounds.
DRIESSEN,BRIAN; SADEGH,NADER
2000-04-25
This work presents a method of finding near global optima to minimum-time trajectory generation problem for systems that would be linear if it were not for the presence of Coloumb friction. The required final state of the system is assumed to be maintainable by the system, and the input bounds are assumed to be large enough so that they can overcome the maximum static Coloumb friction force. Other than the previous work for generating minimum-time trajectories for non redundant robotic manipulators for which the path in joint space is already specified, this work represents, to the best of the authors' knowledge, the first approach for generating near global optima for minimum-time problems involving a nonlinear class of dynamic systems. The reason the optima generated are near global optima instead of exactly global optima is due to a discrete-time approximation of the system (which is usually used anyway to simulate such a system numerically). The method closely resembles previous methods for generating minimum-time trajectories for linear systems, where the core operation is the solution of a Phase I linear programming problem. For the nonlinear systems considered herein, the core operation is instead the solution of a mixed integer linear programming problem.
NASA Astrophysics Data System (ADS)
Sawyer, Charles S.; Ahlfeld, David P.; King, Alan J.
1995-05-01
A three-dimensional groundwater flow management model for making decisions on the design of hydrodynamic control of a groundwater flow system using a combination of extraction and/or injection wells is developed. The model takes into account constraints imposed on the system to stop the horizontal spread of contaminants and to ensure a net upward flow in areas where downward vertical gradients exist. The mathematical formulation of the groundwater remediation problem as a mixed-integer model and the strategy for solving the model are presented. Numerical results are presented for the Toms River Plant site, which is modeled as a five-layer aquifer system with interconnecting aquitards. A sensitivity analysis on the relative magnitude of the continuous operating costs and the fixed-charge costs is also presented.
An Application of Parametric Mixed-Integer Linear Programming to Hydropower Development
NASA Astrophysics Data System (ADS)
Turgeon, André
1987-03-01
The problem consists in selecting the sites on the river where reservoirs and hydroelectric power plants are to be built and then determining the type and size of the projected installations. The solution obviously depends on the amount of money the utility is willing to invest, which itself is a function of what the new installations will produce. It is therefore necessary to solve the problem for all possible amounts of firm energy produced, since it is not known at the outset which production level the utility will select. This is done in the paper by a parametric mixed-integer linear programming (MILP) method whose efficiency derives from the fact that the branch-and-bound algorithm for selecting the sites to be developed (and consuming most of the computer time) is solved a minimum number of times. Between the points where the MILP problem is solved, LP parametric analysis is applied.
Zhang, Huiling; Huang, Qingsheng; Bei, Zhendong; Wei, Yanjie; Floudas, Christodoulos A
2016-03-01
In this article, we present COMSAT, a hybrid framework for residue contact prediction of transmembrane (TM) proteins, integrating a support vector machine (SVM) method and a mixed integer linear programming (MILP) method. COMSAT consists of two modules: COMSAT_SVM which is trained mainly on position-specific scoring matrix features, and COMSAT_MILP which is an ab initio method based on optimization models. Contacts predicted by the SVM model are ranked by SVM confidence scores, and a threshold is trained to improve the reliability of the predicted contacts. For TM proteins with no contacts above the threshold, COMSAT_MILP is used. The proposed hybrid contact prediction scheme was tested on two independent TM protein sets based on the contact definition of 14 Å between Cα-Cα atoms. First, using a rigorous leave-one-protein-out cross validation on the training set of 90 TM proteins, an accuracy of 66.8%, a coverage of 12.3%, a specificity of 99.3% and a Matthews' correlation coefficient (MCC) of 0.184 were obtained for residue pairs that are at least six amino acids apart. Second, when tested on a test set of 87 TM proteins, the proposed method showed a prediction accuracy of 64.5%, a coverage of 5.3%, a specificity of 99.4% and a MCC of 0.106. COMSAT shows satisfactory results when compared with 12 other state-of-the-art predictors, and is more robust in terms of prediction accuracy as the length and complexity of TM protein increase. COMSAT is freely accessible at http://hpcc.siat.ac.cn/COMSAT/. PMID:26756402
NASA Astrophysics Data System (ADS)
Irmeilyana, Puspita, Fitri Maya; Indrawati
2016-02-01
The pricing for wireless networks is developed by considering linearity factors, elasticity price and price factors. Mixed Integer Nonlinear Programming of wireless pricing model is proposed as the nonlinear programming problem that can be solved optimally using LINGO 13.0. The solutions are expected to give some information about the connections between the acceptance factor and the price. Previous model worked on the model that focuses on bandwidth as the QoS attribute. The models attempt to maximize the total price for a connection based on QoS parameter. The QoS attributes used will be the bandwidth and the end to end delay that affect the traffic. The maximum goal to maximum price is achieved when the provider determine the requirement for the increment or decrement of price change due to QoS change and amount of QoS value.
Poos, Alexandra M; Maicher, André; Dieckmann, Anna K; Oswald, Marcus; Eils, Roland; Kupiec, Martin; Luke, Brian; König, Rainer
2016-06-01
Understanding telomere length maintenance mechanisms is central in cancer biology as their dysregulation is one of the hallmarks for immortalization of cancer cells. Important for this well-balanced control is the transcriptional regulation of the telomerase genes. We integrated Mixed Integer Linear Programming models into a comparative machine learning based approach to identify regulatory interactions that best explain the discrepancy of telomerase transcript levels in yeast mutants with deleted regulators showing aberrant telomere length, when compared to mutants with normal telomere length. We uncover novel regulators of telomerase expression, several of which affect histone levels or modifications. In particular, our results point to the transcription factors Sum1, Hst1 and Srb2 as being important for the regulation of EST1 transcription, and we validated the effect of Sum1 experimentally. We compiled our machine learning method leading to a user friendly package for R which can straightforwardly be applied to similar problems integrating gene regulator binding information and expression profiles of samples of e.g. different phenotypes, diseases or treatments. PMID:26908654
Poos, Alexandra M.; Maicher, André; Dieckmann, Anna K.; Oswald, Marcus; Eils, Roland; Kupiec, Martin; Luke, Brian; König, Rainer
2016-01-01
Understanding telomere length maintenance mechanisms is central in cancer biology as their dysregulation is one of the hallmarks for immortalization of cancer cells. Important for this well-balanced control is the transcriptional regulation of the telomerase genes. We integrated Mixed Integer Linear Programming models into a comparative machine learning based approach to identify regulatory interactions that best explain the discrepancy of telomerase transcript levels in yeast mutants with deleted regulators showing aberrant telomere length, when compared to mutants with normal telomere length. We uncover novel regulators of telomerase expression, several of which affect histone levels or modifications. In particular, our results point to the transcription factors Sum1, Hst1 and Srb2 as being important for the regulation of EST1 transcription, and we validated the effect of Sum1 experimentally. We compiled our machine learning method leading to a user friendly package for R which can straightforwardly be applied to similar problems integrating gene regulator binding information and expression profiles of samples of e.g. different phenotypes, diseases or treatments. PMID:26908654
Mixed-integer programming methods for transportation and power generation problems
NASA Astrophysics Data System (ADS)
Damci Kurt, Pelin
This dissertation conducts theoretical and computational research to solve challenging problems in application areas such as supply chain and power systems. The first part of the dissertation studies a transportation problem with market choice (TPMC) which is a variant of the classical transportation problem in which suppliers with limited capacities have a choice of which demands (markets) to satisfy. We show that TPMC is strongly NP-complete. We consider a version of the problem with a service level constraint on the maximum number of markets that can be rejected and show that if the original problem is polynomial, its cardinality-constrained version is also polynomial. We propose valid inequalities for mixed-integer cover and knapsack sets with variable upper bound constraints, which appear as substructures of TPMC and use them in a branch-and-cut algorithm to solve this problem. The second part of this dissertation studies a unit commitment (UC) problem in which the goal is to minimize the operational cost of power generators over a time period subject to physical constraints while satisfying demand. We provide several exponential classes of multi-period ramping and multi-period variable upper bound inequalities. We prove the strength of these inequalities and describe polynomial-time separation algorithms. Computational results show the effectiveness of the proposed inequalities when used as cuts in a branch-and-cut algorithm to solve the UC problem. The last part of this dissertation investigates the effects of uncertain wind power on the UC problem. A two-stage robust model and a three-stage stochastic program are compared.
NASA Astrophysics Data System (ADS)
Purnomo, Muhammad Ridwan Andi; Satrio Wiwoho, Yoga
2016-01-01
Facility layout becomes one of production system factor that should be managed well, as it is designated for the location of production. In managing the layout, designing the layout by considering the optimal layout condition that supports the work condition is essential. One of the method for facility layout optimization is Mixed Integer Programming (MIP). In this study, the MIP is solved using Lingo 9.0 software and considering quantitative and qualitative objectives to be achieved simultaneously: minimizing material handling cost, maximizing closeness rating, and minimizing re-layout cost. The research took place in Rekayasa Wangdi as a make to order company, focusing on the making of concrete brick dough stirring machine with 10 departments involved. The result shows an improvement in the new layout for 333,72 points of objective value compared with the initial layout. As the conclusion, the proposed MIP is proven to be used to model facility layout problem under multi objective consideration for a more realistic look.
Zou, Meng; Zhang, Peng-Jun; Wen, Xin-Yu; Chen, Luonan; Tian, Ya-Ping; Wang, Yong
2015-07-15
Multi-biomarker panels can capture the nonlinear synergy among biomarkers and they are important to aid in the early diagnosis and ultimately battle complex diseases. However, identification of these multi-biomarker panels from case and control data is challenging. For example, the exhaustive search method is computationally infeasible when the data dimension is high. Here, we propose a novel method, MILP_k, to identify serum-based multi-biomarker panel to distinguish colorectal cancers (CRC) from benign colorectal tumors. Specifically, the multi-biomarker panel detection problem is modeled by a mixed integer programming to maximize the classification accuracy. Then we measured the serum profiling data for 101 CRC patients and 95 benign patients. The 61 biomarkers were analyzed individually and further their combinations by our method. We discovered 4 biomarkers as the optimal small multi-biomarker panel, including known CRC biomarkers CEA and IL-10 as well as novel biomarkers IMA and NSE. This multi-biomarker panel obtains leave-one-out cross-validation (LOOCV) accuracy to 0.7857 by nearest centroid classifier. An independent test of this panel by support vector machine (SVM) with threefold cross validation gets an AUC 0.8438. This greatly improves the predictive accuracy by 20% over the single best biomarker. Further extension of this 4-biomarker panel to a larger 13-biomarker panel improves the LOOCV to 0.8673 with independent AUC 0.8437. Comparison with the exhaustive search method shows that our method dramatically reduces the searching time by 1000-fold. Experiments on the early cancer stage samples reveal two panel of biomarkers and show promising accuracy. The proposed method allows us to select the subset of biomarkers with best accuracy to distinguish case and control samples given the number of selected biomarkers. Both receiver operating characteristic curve and precision-recall curve show our method's consistent performance gain in accuracy. Our method
Final Report---Optimization Under Nonconvexity and Uncertainty: Algorithms and Software
Jeff Linderoth
2011-11-06
the goal of this work was to develop new algorithmic techniques for solving large-scale numerical optimization problems, focusing on problems classes that have proven to be among the most challenging for practitioners: those involving uncertainty and those involving nonconvexity. This research advanced the state-of-the-art in solving mixed integer linear programs containing symmetry, mixed integer nonlinear programs, and stochastic optimization problems. The focus of the work done in the continuation was on Mixed Integer Nonlinear Programs (MINLP)s and Mixed Integer Linear Programs (MILP)s, especially those containing a great deal of symmetry.
NASA Astrophysics Data System (ADS)
Yin, Sisi; Nishi, Tatsushi
2014-11-01
Quantity discount policy is decision-making for trade-off prices between suppliers and manufacturers while production is changeable due to demand fluctuations in a real market. In this paper, quantity discount models which consider selection of contract suppliers, production quantity and inventory simultaneously are addressed. The supply chain planning problem with quantity discounts under demand uncertainty is formulated as a mixed-integer nonlinear programming problem (MINLP) with integral terms. We apply an outer-approximation method to solve MINLP problems. In order to improve the efficiency of the proposed method, the problem is reformulated as a stochastic model replacing the integral terms by using a normalisation technique. We present numerical examples to demonstrate the efficiency of the proposed method.
On Revenue-Optimal Dynamic Auctions for Bidders with Interdependent Values
NASA Astrophysics Data System (ADS)
Constantin, Florin; Parkes, David C.
In a dynamic market, being able to update one's value based on information available to other bidders currently in the market can be critical to having profitable transactions. This is nicely captured by the model of interdependent values (IDV): a bidder's value can explicitly depend on the private information of other bidders. In this paper we present preliminary results about the revenue properties of dynamic auctions for IDV bidders. We adopt a computational approach to design single-item revenue-optimal dynamic auctions with known arrivals and departures but (private) signals that arrive online. In leveraging a characterization of truthful auctions, we present a mixed-integer programming formulation of the design problem. Although a discretization is imposed on bidder signals the solution is a mechanism applicable to continuous signals. The formulation size grows exponentially in the dependence of bidders' values on other bidders' signals. We highlight general properties of revenue-optimal dynamic auctions in a simple parametrized example and study the sensitivity of prices and revenue to model parameters.
Armutlu, Pelin; Ozdemir, Muhittin E; Uney-Yuksektepe, Fadime; Kavakli, I Halil; Turkay, Metin
2008-01-01
Background A priori analysis of the activity of drugs on the target protein by computational approaches can be useful in narrowing down drug candidates for further experimental tests. Currently, there are a large number of computational methods that predict the activity of drugs on proteins. In this study, we approach the activity prediction problem as a classification problem and, we aim to improve the classification accuracy by introducing an algorithm that combines partial least squares regression with mixed-integer programming based hyper-boxes classification method, where drug molecules are classified as low active or high active regarding their binding activity (IC50 values) on target proteins. We also aim to determine the most significant molecular descriptors for the drug molecules. Results We first apply our approach by analyzing the activities of widely known inhibitor datasets including Acetylcholinesterase (ACHE), Benzodiazepine Receptor (BZR), Dihydrofolate Reductase (DHFR), Cyclooxygenase-2 (COX-2) with known IC50 values. The results at this stage proved that our approach consistently gives better classification accuracies compared to 63 other reported classification methods such as SVM, Naïve Bayes, where we were able to predict the experimentally determined IC50 values with a worst case accuracy of 96%. To further test applicability of this approach we first created dataset for Cytochrome P450 C17 inhibitors and then predicted their activities with 100% accuracy. Conclusion Our results indicate that this approach can be utilized to predict the inhibitory effects of inhibitors based on their molecular descriptors. This approach will not only enhance drug discovery process, but also save time and resources committed. PMID:18834515
Optimization techniques in molecular structure and function elucidation.
Sahinidis, Nikolaos V
2009-12-01
This paper discusses recent optimization approaches to the protein side-chain prediction problem, protein structural alignment, and molecular structure determination from X-ray diffraction measurements. The machinery employed to solve these problems has included algorithms from linear programming, dynamic programming, combinatorial optimization, and mixed-integer nonlinear programming. Many of these problems are purely continuous in nature. Yet, to this date, they have been approached mostly via combinatorial optimization algorithms that are applied to discrete approximations. The main purpose of the paper is to offer an introduction and motivate further systems approaches to these problems. PMID:20160866
A DSN optimal spacecraft scheduling model
NASA Technical Reports Server (NTRS)
Webb, W. A.
1982-01-01
A computer model is described which uses mixed-integer linear programming to provide optimal DSN spacecraft schedules given a mission set and specified scheduling requirements. A solution technique is proposed which uses Bender's Method and a heuristic starting algorithm.
2013-01-01
Background Phylogeny estimation from aligned haplotype sequences has attracted more and more attention in the recent years due to its importance in analysis of many fine-scale genetic data. Its application fields range from medical research, to drug discovery, to epidemiology, to population dynamics. The literature on molecular phylogenetics proposes a number of criteria for selecting a phylogeny from among plausible alternatives. Usually, such criteria can be expressed by means of objective functions, and the phylogenies that optimize them are referred to as optimal. One of the most important estimation criteria is the parsimony which states that the optimal phylogeny T∗for a set H of n haplotype sequences over a common set of variable loci is the one that satisfies the following requirements: (i) it has the shortest length and (ii) it is such that, for each pair of distinct haplotypes hi,hj∈H, the sum of the edge weights belonging to the path from hi to hj in T∗ is not smaller than the observed number of changes between hi and hj. Finding the most parsimonious phylogeny for H involves solving an optimization problem, called the Most Parsimonious Phylogeny Estimation Problem (MPPEP), which is NP-hard in many of its versions. Results In this article we investigate a recent version of the MPPEP that arises when input data consist of single nucleotide polymorphism haplotypes extracted from a population of individuals on a common genomic region. Specifically, we explore the prospects for improving on the implicit enumeration strategy of implicit enumeration strategy used in previous work using a novel problem formulation and a series of strengthening valid inequalities and preliminary symmetry breaking constraints to more precisely bound the solution space and accelerate implicit enumeration of possible optimal phylogenies. We present the basic formulation and then introduce a series of provable valid constraints to reduce the solution space. We then prove
Optimization using Extremal Dynamics
NASA Astrophysics Data System (ADS)
Boettcher, Stefan
2001-03-01
We explore a new heuristic for finding high-quality solutions to NP-hard optimization problems which we have recently introduced [see ``Nature's Way of Optimizing," Artificial Intelligence 119, 275-286 (2000) and cond-mat/0010337]. The method, called extremal optimization, is inspired by self-organized criticality, a concept introduced to describe emergent complexity in physical systems. Extremal optimization successively replaces extremely undesirable elements of a single sub-optimal solution with new, random ones. Large fluctuations ensue that efficiently explore many local optima. With only one adjustable parameter, its performance has proved competitive with more elaborate methods, especially near phase transitions which are believed to contain the hardest instances. In particular, extremal optimization is superior to simulated annealing in the partitioning of sparse graphs, it finds the overlap of all ground-states at the phase transition of the 3-coloring problem, and it provides independent confirmation for the ground-state energy of spin glasses, previously obtained with elaborate genetic algorithms.
Adaptive critics for dynamic optimization.
Kulkarni, Raghavendra V; Venayagamoorthy, Ganesh Kumar
2010-06-01
A novel action-dependent adaptive critic design (ACD) is developed for dynamic optimization. The proposed combination of a particle swarm optimization-based actor and a neural network critic is demonstrated through dynamic sleep scheduling of wireless sensor motes for wildlife monitoring. The objective of the sleep scheduler is to dynamically adapt the sleep duration to node's battery capacity and movement pattern of animals in its environment in order to obtain snapshots of the animal on its trajectory uniformly. Simulation results show that the sleep time of the node determined by the actor critic yields superior quality of sensory data acquisition and enhanced node longevity. PMID:20223635
2012-01-01
Background The estimation of parameter values for mathematical models of biological systems is an optimization problem that is particularly challenging due to the nonlinearities involved. One major difficulty is the existence of multiple minima in which standard optimization methods may fall during the search. Deterministic global optimization methods overcome this limitation, ensuring convergence to the global optimum within a desired tolerance. Global optimization techniques are usually classified into stochastic and deterministic. The former typically lead to lower CPU times but offer no guarantee of convergence to the global minimum in a finite number of iterations. In contrast, deterministic methods provide solutions of a given quality (i.e., optimality gap), but tend to lead to large computational burdens. Results This work presents a deterministic outer approximation-based algorithm for the global optimization of dynamic problems arising in the parameter estimation of models of biological systems. Our approach, which offers a theoretical guarantee of convergence to global minimum, is based on reformulating the set of ordinary differential equations into an equivalent set of algebraic equations through the use of orthogonal collocation methods, giving rise to a nonconvex nonlinear programming (NLP) problem. This nonconvex NLP is decomposed into two hierarchical levels: a master mixed-integer linear programming problem (MILP) that provides a rigorous lower bound on the optimal solution, and a reduced-space slave NLP that yields an upper bound. The algorithm iterates between these two levels until a termination criterion is satisfied. Conclusion The capabilities of our approach were tested in two benchmark problems, in which the performance of our algorithm was compared with that of the commercial global optimization package BARON. The proposed strategy produced near optimal solutions (i.e., within a desired tolerance) in a fraction of the CPU time required by
Lu, H W; Huang, G H; He, L; Zeng, G M
2009-01-01
Municipal solid waste (MSW) should be properly disposed in order to help protect environmental quality and human health, as well as to preserve natural resources. During MSW disposal processes, a large amount of greenhouse gas (GHG) is emitted, leading to a significant impact on climate change. In this study, an inexact dynamic optimization model (IDOM) is developed for MSW-management systems under uncertainty. It grounds upon conventional mixed-integer linear programming (MILP) approaches, and integrates GHG components into the modeling framework. Compared with the existing models, IDOM can not only deal with the complex tradeoff between system cost minimization and GHG-emission mitigation, but also provide optimal allocation strategies under various emission-control standards. A case study is then provided for demonstrating applicability of the developed model. The results indicate that desired waste-flow patterns with a minimized system cost and GHG-emission amount can be obtained. Of more importance, the IDOM solution is associated with over 5.5 million tonnes of TEC reduction, which is of significant economic implication for real implementations. Therefore, the proposed model could be regarded as a useful tool for realizing comprehensive MSW management with regard to mitigating climate-change impacts. PMID:18096299
Optimal multi-stage planning of power distribution systems
Gonen, T.; Ramirez-Rosado, I.J.
1987-04-01
This paper presents a completely-dynamic mixed-integer model to solve the optimal sizing, timing, and location of distribution substation and feeder expansion problems simultaneously. The objective function of the model represents the present worth of costs of investment, energy, and demand losses of the system which takes place throughout the planning time horizon. It is minimized subject to the Kirchhoff's current law, power capacity limits, and logical constraints by using a standard mathematical programming system. The developed model allows to include the explicit constraints of radiality and voltage drop in its formulation.
Optimal operation of a potable water distribution network.
Biscos, C; Mulholland, M; Le Lann, M V; Brouckaert, C J; Bailey, R; Roustan, M
2002-01-01
This paper presents an approach to an optimal operation of a potable water distribution network. The main control objective defined during the preliminary steps was to maximise the use of low-cost power, maintaining at the same time minimum emergency levels in all reservoirs. The combination of dynamic elements (e.g. reservoirs) and discrete elements (pumps, valves, routing) makes this a challenging predictive control and constrained optimisation problem, which is being solved by MINLP (Mixed Integer Non-linear Programming). Initial experimental results show the performance of this algorithm and its ability to control the water distribution process. PMID:12448464
Optimal dynamic detection of explosives
Moore, David Steven; Mcgrane, Shawn D; Greenfield, Margo T; Scharff, R J; Rabitz, Herschel A; Roslund, J
2009-01-01
The detection of explosives is a notoriously difficult problem, especially at stand-off distances, due to their (generally) low vapor pressure, environmental and matrix interferences, and packaging. We are exploring optimal dynamic detection to exploit the best capabilities of recent advances in laser technology and recent discoveries in optimal shaping of laser pulses for control of molecular processes to significantly enhance the standoff detection of explosives. The core of the ODD-Ex technique is the introduction of optimally shaped laser pulses to simultaneously enhance sensitivity of explosives signatures while reducing the influence of noise and the signals from background interferents in the field (increase selectivity). These goals are being addressed by operating in an optimal nonlinear fashion, typically with a single shaped laser pulse inherently containing within it coherently locked control and probe sub-pulses. With sufficient bandwidth, the technique is capable of intrinsically providing orthogonal broad spectral information for data fusion, all from a single optimal pulse.
An optimal spacecraft scheduling model for the NASA deep space network
NASA Technical Reports Server (NTRS)
Webb, W. A.
1985-01-01
A computer model is described which uses mixed-integer linear programming to provide optimal DSN spacecraft schedules given a mission set and specified scheduling requirements. A solution technique is proposed which uses Bender's method and a heuristic starting algorithm.
New numerical methods for open-loop and feedback solutions to dynamic optimization problems
NASA Astrophysics Data System (ADS)
Ghosh, Pradipto
The topic of the first part of this research is trajectory optimization of dynamical systems via computational swarm intelligence. Particle swarm optimization is a nature-inspired heuristic search method that relies on a group of potential solutions to explore the fitness landscape. Conceptually, each particle in the swarm uses its own memory as well as the knowledge accumulated by the entire swarm to iteratively converge on an optimal or near-optimal solution. It is relatively straightforward to implement and unlike gradient-based solvers, does not require an initial guess or continuity in the problem definition. Although particle swarm optimization has been successfully employed in solving static optimization problems, its application in dynamic optimization, as posed in optimal control theory, is still relatively new. In the first half of this thesis particle swarm optimization is used to generate near-optimal solutions to several nontrivial trajectory optimization problems including thrust programming for minimum fuel, multi-burn spacecraft orbit transfer, and computing minimum-time rest-to-rest trajectories for a robotic manipulator. A distinct feature of the particle swarm optimization implementation in this work is the runtime selection of the optimal solution structure. Optimal trajectories are generated by solving instances of constrained nonlinear mixed-integer programming problems with the swarming technique. For each solved optimal programming problem, the particle swarm optimization result is compared with a nearly exact solution found via a direct method using nonlinear programming. Numerical experiments indicate that swarm search can locate solutions to very great accuracy. The second half of this research develops a new extremal-field approach for synthesizing nearly optimal feedback controllers for optimal control and two-player pursuit-evasion games described by general nonlinear differential equations. A notable revelation from this development
Final Report-Optimization Under Uncertainty and Nonconvexity: Algorithms and Software
Jeff Linderoth
2008-10-10
The goal of this research was to develop new algorithmic techniques for solving large-scale numerical optimization problems, focusing on problems classes that have proven to be among the most challenging for practitioners: those involving uncertainty and those involving nonconvexity. This research advanced the state-of-the-art in solving mixed integer linear programs containing symmetry, mixed integer nonlinear programs, and stochastic optimization problems.
Demystifying optimal dynamic treatment regimes.
Moodie, Erica E M; Richardson, Thomas S; Stephens, David A
2007-06-01
A dynamic regime is a function that takes treatment and covariate history and baseline covariates as inputs and returns a decision to be made. Murphy (2003, Journal of the Royal Statistical Society, Series B 65, 331-366) and Robins (2004, Proceedings of the Second Seattle Symposium on Biostatistics, 189-326) have proposed models and developed semiparametric methods for making inference about the optimal regime in a multi-interval trial that provide clear advantages over traditional parametric approaches. We show that Murphy's model is a special case of Robins's and that the methods are closely related but not equivalent. Interesting features of the methods are highlighted using the Multicenter AIDS Cohort Study and through simulation. PMID:17688497
Optimization of Dynamical Decoupling Using Measurement Feedback
NASA Astrophysics Data System (ADS)
Uys, Hermann; Biercuk, Michael; Vandevender, Aaron; Shiga, Nobuyasu; Itano, Wayne; Bollinger, John
2009-05-01
We study the optimization of dynamical decoupling sequences using ^9Be^+ ions in a Penning ion trap. We artificially synthesize the noise environment the ions see to emulate a variety of physical systems. By incorporating measurement feedback with a Nelder-Mead search algorithm, our locally optimized dynamical decoupling sequences (LODD) attain an order of magnitude improved error suppression compared to known sequences in noise environments with power spectra that have sharp, high-frequency cutoffs. The technique requires no prior knowledge of the noise spectrum. This work shows that optimized dynamical decoupling will be a useful tool in suppressing qubit errors below the fault-tolerant threshold for quantum computation.
TRACKING CODE DEVELOPMENT FOR BEAM DYNAMICS OPTIMIZATION
Yang, L.
2011-03-28
Dynamic aperture (DA) optimization with direct particle tracking is a straight forward approach when the computing power is permitted. It can have various realistic errors included and is more close than theoretical estimations. In this approach, a fast and parallel tracking code could be very helpful. In this presentation, we describe an implementation of storage ring particle tracking code TESLA for beam dynamics optimization. It supports MPI based parallel computing and is robust as DA calculation engine. This code has been used in the NSLS-II dynamics optimizations and obtained promising performance.
Baliban, Richard C; Dimaggio, Peter A; Plazas-Mayorca, Mariana D; Garcia, Benjamin A; Floudas, Christodoulos A
2012-09-01
A novel protein identification framework, PILOT_PROTEIN, has been developed to construct a comprehensive list of all unmodified proteins that are present in a living sample. It uses the peptide identification results from the PILOT_SEQUEL algorithm to initially determine all unmodified proteins within the sample. Using a rigorous biclustering approach that groups incorrect peptide sequences with other homologous sequences, the number of false positives reported is minimized. A sequence tag procedure is then incorporated along with the untargeted PTM identification algorithm, PILOT_PTM, to determine a list of all modification types and sites for each protein. The unmodified protein identification algorithm, PILOT_PROTEIN, is compared to the methods SEQUEST, InsPecT, X!Tandem, VEMS, and ProteinProspector using both prepared protein samples and a more complex chromatin digest. The algorithm demonstrates superior protein identification accuracy with a lower false positive rate. All materials are freely available to the scientific community at http://pumpd.princeton.edu. PMID:22788846
Semiclassical guided optimal control of molecular dynamics
Kondorskiy, A.; Mil'nikov, G.; Nakamura, H.
2005-10-15
An efficient semiclassical optimal control theory applicable to multidimensional systems is formulated for controlling wave packet dynamics on a single adiabatic potential energy surface. The approach combines advantages of different formulations of optimal control theory: quantum and classical on one hand and global and local on the other. Numerical applications to the control of HCN-CNH isomerization demonstrate that this theory can provide an efficient tool to manipulate molecular dynamics of many degrees of freedom by laser pulses.
Two Characterizations of Optimality in Dynamic Programming
Karatzas, Ioannis; Sudderth, William D.
2010-06-15
It holds in great generality that a plan is optimal for a dynamic programming problem, if and only if it is 'thrifty' and 'equalizing.' An alternative characterization of an optimal plan, that applies in many economic models, is that the plan must satisfy an appropriate Euler equation and a transversality condition. Here we explore the connections between these two characterizations.
Streak camera dynamic range optimization
Wiedwald, J.D.; Lerche, R.A.
1987-09-01
The LLNL optical streak camera is used by the Laser Fusion Program in a wide range of applications. Many of these applications require a large recorded dynamic range. Recent work has focused on maximizing the dynamic range of the streak camera recording system. For our streak cameras, image intensifier saturation limits the upper end of the dynamic range. We have developed procedures to set the image intensifier gain such that the system dynamic range is maximized. Specifically, the gain is set such that a single streak tube photoelectron is recorded with an exposure of about five times the recording system noise. This ensures detection of single photoelectrons, while not consuming intensifier or recording system dynamic range through excessive intensifier gain. The optimum intensifier gain has been determined for two types of film and for a lens-coupled CCD camera. We have determined that by recording the streak camera image with a CCD camera, the system is shot-noise limited up to the onset of image intensifier nonlinearity. When recording on film, the film determines the noise at high exposure levels. There is discussion of the effects of slit width and image intensifier saturation on dynamic range. 8 refs.
Dynamic optimization and adaptive controller design
NASA Astrophysics Data System (ADS)
Inamdar, S. R.
2010-10-01
In this work I present a new type of controller which is an adaptive tracking controller which employs dynamic optimization for optimizing current value of controller action for the temperature control of nonisothermal continuously stirred tank reactor (CSTR). We begin with a two-state model of nonisothermal CSTR which are mass and heat balance equations and then add cooling system dynamics to eliminate input multiplicity. The initial design value is obtained using local stability of steady states where approach temperature for cooling action is specified as a steady state and a design specification. Later we make a correction in the dynamics where material balance is manipulated to use feed concentration as a system parameter as an adaptive control measure in order to avoid actuator saturation for the main control loop. The analysis leading to design of dynamic optimization based parameter adaptive controller is presented. The important component of this mathematical framework is reference trajectory generation to form an adaptive control measure.
Optimizing Dynamical Network Structure for Pinning Control
Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo
2016-01-01
Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights. PMID:27067020
Optimizing Dynamical Network Structure for Pinning Control.
Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo
2016-01-01
Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights. PMID:27067020
Optimizing Dynamical Network Structure for Pinning Control
NASA Astrophysics Data System (ADS)
Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo
2016-04-01
Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights.
Efficient dynamic optimization of logic programs
NASA Technical Reports Server (NTRS)
Laird, Phil
1992-01-01
A summary is given of the dynamic optimization approach to speed up learning for logic programs. The problem is to restructure a recursive program into an equivalent program whose expected performance is optimal for an unknown but fixed population of problem instances. We define the term 'optimal' relative to the source of input instances and sketch an algorithm that can come within a logarithmic factor of optimal with high probability. Finally, we show that finding high-utility unfolding operations (such as EBG) can be reduced to clause reordering.
Optimizing dissolution dynamic nuclear polarization
NASA Astrophysics Data System (ADS)
Bornet, Aurélien; Jannin, Sami
2016-03-01
This article is a short review of some of our recent developments in dissolution dynamic nuclear polarization (d-DNP). We present the basic principles of d-DNP, and motivate our choice to step away from conventional approaches. We then introduce a modified d-DNP recipe that can be summed up as follows:
Optimizing dissolution dynamic nuclear polarization.
Bornet, Aurélien; Jannin, Sami
2016-03-01
This article is a short review of some of our recent developments in dissolution dynamic nuclear polarization (d-DNP). We present the basic principles of d-DNP, and motivate our choice to step away from conventional approaches. We then introduce a modified d-DNP recipe that can be summed up as follows. PMID:26920826
Dynamic optimization case studies in DYNOPT tool
NASA Astrophysics Data System (ADS)
Ozana, Stepan; Pies, Martin; Docekal, Tomas
2016-06-01
Dynamic programming is typically applied to optimization problems. As the analytical solutions are generally very difficult, chosen software tools are used widely. These software packages are often third-party products bound for standard simulation software tools on the market. As typical examples of such tools, TOMLAB and DYNOPT could be effectively applied for solution of problems of dynamic programming. DYNOPT will be presented in this paper due to its licensing policy (free product under GPL) and simplicity of use. DYNOPT is a set of MATLAB functions for determination of optimal control trajectory by given description of the process, the cost to be minimized, subject to equality and inequality constraints, using orthogonal collocation on finite elements method. The actual optimal control problem is solved by complete parameterization both the control and the state profile vector. It is assumed, that the optimized dynamic model may be described by a set of ordinary differential equations (ODEs) or differential-algebraic equations (DAEs). This collection of functions extends the capability of the MATLAB Optimization Tool-box. The paper will introduce use of DYNOPT in the field of dynamic optimization problems by means of case studies regarding chosen laboratory physical educational models.
Optimizing dissolution dynamic nuclear polarization
NASA Astrophysics Data System (ADS)
Bornet, Aurélien; Jannin, Sami
2016-03-01
This article is a short review of some of our recent developments in dissolution dynamic nuclear polarization (d-DNP). We present the basic principles of d-DNP, and motivate our choice to step away from conventional approaches. We then introduce a modified d-DNP recipe that can be summed up as follows: Using broad line polarizing agents to efficiently polarize 1H spins. Increasing the magnetic field to 6.7 T and above. Applying microwave frequency modulation. Applying 1H-13C cross polarization. Transferring hyperpolarized solution through a magnetic tunnel.
Dynamic programming in applied optimization problems
NASA Astrophysics Data System (ADS)
Zavalishchin, Dmitry
2015-11-01
Features of the use dynamic programming in applied problems are investigated. In practice such problems as finding the critical paths in network planning and control, finding the optimal supply plan in transportation problem, objects territorial distribution are traditionally solved by special methods of operations research. It should be noted that the dynamic programming is not provided computational advantages, but facilitates changes and modifications of tasks. This follows from the Bellman's optimality principle. The features of the multistage decision processes construction in applied problems are provided.
Role of controllability in optimizing quantum dynamics
Wu Rebing; Hsieh, Michael A.; Rabitz, Herschel
2011-06-15
This paper reveals an important role that controllability plays in the complexity of optimizing quantum control dynamics. We show that the loss of controllability generally leads to multiple locally suboptimal controls when gate fidelity in a quantum control system is maximized, which does not happen if the system is controllable. Such local suboptimal controls may attract an optimization algorithm into a local trap when a global optimal solution is sought, even if the target gate can be perfectly realized. This conclusion results from an analysis of the critical topology of the corresponding quantum control landscape, which refers to the gate fidelity objective as a functional of the control fields. For uncontrollable systems, due to SU(2) and SU(3) dynamical symmetries, the control landscape corresponding to an implementable target gate is proven to possess multiple locally optimal critical points, and its ruggedness can be further increased if the target gate is not realizable. These results imply that the optimization of quantum dynamics can be seriously impeded when operating with local search algorithms under these conditions, and thus full controllability is demanded.
Optimizing replica exchange moves for molecular dynamics.
Nadler, Walter; Hansmann, Ulrich H E
2007-11-01
We sketch the statistical physics framework of the replica exchange technique when applied to molecular dynamics simulations. In particular, we draw attention to generalized move sets that allow a variety of optimizations as well as new applications of the method. PMID:18233794
Optimal BLS: Optimizing transit-signal detection for Keplerian dynamics
NASA Astrophysics Data System (ADS)
Ofir, Aviv
2015-08-01
Transit surveys, both ground- and space-based, have already accumulated a large number of light curves that span several years. We optimize the search for transit signals for both detection and computational efficiencies by assuming that the searched systems can be described by Keplerian, and propagating the effects of different system parameters to the detection parameters. Importnantly, we mainly consider the information content of the transit signal and not any specific algorithm - and use BLS (Kovács, Zucker, & Mazeh 2002) just as a specific example.We show that the frequency information content of the light curve is primarily determined by the duty cycle of the transit signal, and thus the optimal frequency sampling is found to be cubic and not linear. Further optimization is achieved by considering duty-cycle dependent binning of the phased light curve. By using the (standard) BLS, one is either fairly insensitive to long-period planets or less sensitive to short-period planets and computationally slower by a significant factor of ~330 (for a 3 yr long dataset). We also show how the physical system parameters, such as the host star's size and mass, directly affect transit detection. This understanding can then be used to optimize the search for every star individually.By considering Keplerian dynamics explicitly rather than implicitly one can optimally search the transit signal parameter space. The presented Optimal BLS enhances the detectability of both very short and very long period planets, while allowing such searches to be done with much reduced resources and time. The Matlab/Octave source code for Optimal BLS is made available.
Modeling the dynamics of ant colony optimization.
Merkle, Daniel; Middendorf, Martin
2002-01-01
The dynamics of Ant Colony Optimization (ACO) algorithms is studied using a deterministic model that assumes an average expected behavior of the algorithms. The ACO optimization metaheuristic is an iterative approach, where in every iteration, artificial ants construct solutions randomly but guided by pheromone information stemming from former ants that found good solutions. The behavior of ACO algorithms and the ACO model are analyzed for certain types of permutation problems. It is shown analytically that the decisions of an ant are influenced in an intriguing way by the use of the pheromone information and the properties of the pheromone matrix. This explains why ACO algorithms can show a complex dynamic behavior even when there is only one ant per iteration and no competition occurs. The ACO model is used to describe the algorithm behavior as a combination of situations with different degrees of competition between the ants. This helps to better understand the dynamics of the algorithm when there are several ants per iteration as is always the case when using ACO algorithms for optimization. Simulations are done to compare the behavior of the ACO model with the ACO algorithm. Results show that the deterministic model describes essential features of the dynamics of ACO algorithms quite accurately, while other aspects of the algorithms behavior cannot be found in the model. PMID:12227995
Optimizing Motion Planning for Hyper Dynamic Manipulator
NASA Astrophysics Data System (ADS)
Aboura, Souhila; Omari, Abdelhafid; Meguenni, Kadda Zemalache
2012-01-01
This paper investigates the optimal motion planning for an hyper dynamic manipulator. As case study, we consider a golf swing robot which is consisting with two actuated joint and a mechanical stoppers. Genetic Algorithm (GA) technique is proposed to solve the optimal golf swing motion which is generated by Fourier series approximation. The objective function for GA approach is to minimizing the intermediate and final state, minimizing the robot's energy consummation and maximizing the robot's speed. Obtained simulation results show the effectiveness of the proposed scheme.
Pareto optimization in algebraic dynamic programming.
Saule, Cédric; Giegerich, Robert
2015-01-01
Pareto optimization combines independent objectives by computing the Pareto front of its search space, defined as the set of all solutions for which no other candidate solution scores better under all objectives. This gives, in a precise sense, better information than an artificial amalgamation of different scores into a single objective, but is more costly to compute. Pareto optimization naturally occurs with genetic algorithms, albeit in a heuristic fashion. Non-heuristic Pareto optimization so far has been used only with a few applications in bioinformatics. We study exact Pareto optimization for two objectives in a dynamic programming framework. We define a binary Pareto product operator [Formula: see text] on arbitrary scoring schemes. Independent of a particular algorithm, we prove that for two scoring schemes A and B used in dynamic programming, the scoring scheme [Formula: see text] correctly performs Pareto optimization over the same search space. We study different implementations of the Pareto operator with respect to their asymptotic and empirical efficiency. Without artificial amalgamation of objectives, and with no heuristics involved, Pareto optimization is faster than computing the same number of answers separately for each objective. For RNA structure prediction under the minimum free energy versus the maximum expected accuracy model, we show that the empirical size of the Pareto front remains within reasonable bounds. Pareto optimization lends itself to the comparative investigation of the behavior of two alternative scoring schemes for the same purpose. For the above scoring schemes, we observe that the Pareto front can be seen as a composition of a few macrostates, each consisting of several microstates that differ in the same limited way. We also study the relationship between abstract shape analysis and the Pareto front, and find that they extract information of a different nature from the folding space and can be meaningfully combined. PMID
Application of optimal prediction to molecular dynamics
Barber IV, John Letherman
2004-12-01
Optimal prediction is a general system reduction technique for large sets of differential equations. In this method, which was devised by Chorin, Hald, Kast, Kupferman, and Levy, a projection operator formalism is used to construct a smaller system of equations governing the dynamics of a subset of the original degrees of freedom. This reduced system consists of an effective Hamiltonian dynamics, augmented by an integral memory term and a random noise term. Molecular dynamics is a method for simulating large systems of interacting fluid particles. In this thesis, I construct a formalism for applying optimal prediction to molecular dynamics, producing reduced systems from which the properties of the original system can be recovered. These reduced systems require significantly less computational time than the original system. I initially consider first-order optimal prediction, in which the memory and noise terms are neglected. I construct a pair approximation to the renormalized potential, and ignore three-particle and higher interactions. This produces a reduced system that correctly reproduces static properties of the original system, such as energy and pressure, at low-to-moderate densities. However, it fails to capture dynamical quantities, such as autocorrelation functions. I next derive a short-memory approximation, in which the memory term is represented as a linear frictional force with configuration-dependent coefficients. This allows the use of a Fokker-Planck equation to show that, in this regime, the noise is {delta}-correlated in time. This linear friction model reproduces not only the static properties of the original system, but also the autocorrelation functions of dynamical variables.
Optimal Campaign in the Smoking Dynamics
Zaman, Gul
2011-01-01
We present the optimal campaigns in the smoking dynamics. Assuming that the giving up smoking model is described by the simplified PLSQ (potential-light-smoker-quit smoker) model, we consider two possible control variables in the form of education and treatment campaigns oriented to decrease the attitude towards smoking. In order to do this we minimize the number of light (occasional) and persistent smokers and maximize the number of quit smokers in a community. We first show the existence of an optimal control for the control problem and then derive the optimality system by using the Pontryagin maximum principle. Finally numerical results of real epidemic are presented to show the applicability and efficiency of this approach. PMID:21461044
Rigorous bounds for optimal dynamical decoupling
Uhrig, Goetz S.; Lidar, Daniel A.
2010-07-15
We present rigorous performance bounds for the optimal dynamical decoupling pulse sequence protecting a quantum bit (qubit) against pure dephasing. Our bounds apply under the assumption of instantaneous pulses and of bounded perturbing environment and qubit-environment Hamiltonians such as those realized by baths of nuclear spins in quantum dots. We show that if the total sequence time is fixed the optimal sequence can be used to make the distance between the protected and unperturbed qubit states arbitrarily small in the number of applied pulses. If, on the other hand, the minimum pulse interval is fixed and the total sequence time is allowed to scale with the number of pulses, then longer sequences need not always be advantageous. The rigorous bound may serve as a testbed for approximate treatments of optimal decoupling in bounded models of decoherence.
Direct Optimal Control of Duffing Dynamics
NASA Technical Reports Server (NTRS)
Oz, Hayrani; Ramsey, John K.
2002-01-01
The "direct control method" is a novel concept that is an attractive alternative and competitor to the differential-equation-based methods. The direct method is equally well applicable to nonlinear, linear, time-varying, and time-invariant systems. For all such systems, the method yields explicit closed-form control laws based on minimization of a quadratic control performance measure. We present an application of the direct method to the dynamics and optimal control of the Duffing system where the control performance measure is not restricted to a quadratic form and hence may include a quartic energy term. The results we present in this report also constitute further generalizations of our earlier work in "direct optimal control methodology." The approach is demonstrated for the optimal control of the Duffing equation with a softening nonlinear stiffness.
Utilizing parallel optimization in computational fluid dynamics
NASA Astrophysics Data System (ADS)
Kokkolaras, Michael
1998-12-01
General problems of interest in computational fluid dynamics are investigated by means of optimization. Specifically, in the first part of the dissertation, a method of optimal incremental function approximation is developed for the adaptive solution of differential equations. Various concepts and ideas utilized by numerical techniques employed in computational mechanics and artificial neural networks (e.g. function approximation and error minimization, variational principles and weighted residuals, and adaptive grid optimization) are combined to formulate the proposed method. The basis functions and associated coefficients of a series expansion, representing the solution, are optimally selected by a parallel direct search technique at each step of the algorithm according to appropriate criteria; the solution is built sequentially. In this manner, the proposed method is adaptive in nature, although a grid is neither built nor adapted in the traditional sense using a-posteriori error estimates. Variational principles are utilized for the definition of the objective function to be extremized in the associated optimization problems, ensuring that the problem is well-posed. Complicated data structures and expensive remeshing algorithms and systems solvers are avoided. Computational efficiency is increased by using low-order basis functions and concurrent computing. Numerical results and convergence rates are reported for a range of steady-state problems, including linear and nonlinear differential equations associated with general boundary conditions, and illustrate the potential of the proposed method. Fluid dynamics applications are emphasized. Conclusions are drawn by discussing the method's limitations, advantages, and possible extensions. The second part of the dissertation is concerned with the optimization of the viscous-inviscid-interaction (VII) mechanism in an airfoil flow analysis code. The VII mechanism is based on the concept of a transpiration velocity
Robust optimization with transiently chaotic dynamical systems
NASA Astrophysics Data System (ADS)
Sumi, R.; Molnár, B.; Ercsey-Ravasz, M.
2014-05-01
Efficiently solving hard optimization problems has been a strong motivation for progress in analog computing. In a recent study we presented a continuous-time dynamical system for solving the NP-complete Boolean satisfiability (SAT) problem, with a one-to-one correspondence between its stable attractors and the SAT solutions. While physical implementations could offer great efficiency, the transiently chaotic dynamics raises the question of operability in the presence of noise, unavoidable on analog devices. Here we show that the probability of finding solutions is robust to noise intensities well above those present on real hardware. We also developed a cellular neural network model realizable with analog circuits, which tolerates even larger noise intensities. These methods represent an opportunity for robust and efficient physical implementations.
Optimized Noise Filtration through Dynamical Decoupling
NASA Astrophysics Data System (ADS)
Uys, Hermann; Biercuk, Michael J.; Bollinger, John J.
2009-07-01
Recent studies have shown that applying a sequence of Hahn spin-echo pulses to a qubit system at judiciously chosen intervals can, in certain noise environments, greatly improve the suppression of phase errors compared to traditional dynamical decoupling approaches. By enforcing a simple analytical condition, we obtain sets of dynamical decoupling sequences that are designed for optimized noise filtration, but are independent of the noise spectrum up to a single scaling factor set by the coherence time of the system. These sequences are tested in a model qubit system, Be+9 ions in a Penning trap. Our combined theoretical and experimental studies show that in high-frequency-dominated noise environments with sharp high-frequency cutoffs this approach may suppress phase errors orders of magnitude more efficiently than comparable techniques can.
Optimized noise filtration through dynamical decoupling.
Uys, Hermann; Biercuk, Michael J; Bollinger, John J
2009-07-24
Recent studies have shown that applying a sequence of Hahn spin-echo pulses to a qubit system at judiciously chosen intervals can, in certain noise environments, greatly improve the suppression of phase errors compared to traditional dynamical decoupling approaches. By enforcing a simple analytical condition, we obtain sets of dynamical decoupling sequences that are designed for optimized noise filtration, but are independent of the noise spectrum up to a single scaling factor set by the coherence time of the system. These sequences are tested in a model qubit system, ;{9}Be;{+} ions in a Penning trap. Our combined theoretical and experimental studies show that in high-frequency-dominated noise environments with sharp high-frequency cutoffs this approach may suppress phase errors orders of magnitude more efficiently than comparable techniques can. PMID:19659335
Optimal Empirical Prognostic Models of Climate Dynamics
NASA Astrophysics Data System (ADS)
Loskutov, E. M.; Mukhin, D.; Gavrilov, A.; Feigin, A. M.
2014-12-01
In this report the empirical methodology for prediction of climate dynamics is suggested. We construct the dynamical models of data patterns connected with climate indices, from observed spatially distributed time series. The models are based on artificial neural network (ANN) parameterization and have a form of discrete stochastic evolution operator mapping some sequence of systems state on the next one [1]. Different approaches to reconstruction of empirical basis (phase variables) for system's phase space representation, which is appropriate for forecasting the climate index of interest, are discussed in the report; for this purpose both linear and non-linear data expansions are considered. The most important point of the methodology is finding the optimal structural parameters of the model such as dimension of variable vector, i.e. number of principal components used for modeling, the time lag used for prediction, and number of neurons in ANN determining the quality of approximation. Actually, we need to solve the model selection problem, i.e. we want to obtain a model of optimal complexity in relation to analyzed time series. We use MDL approach [2] for this purpose: the model providing best data compression is chosen. The method is applied to space-distributed time-series of sea surface temperature and sea level pressure taken from IRI datasets [3]: the ability of proposed models to predict different climate indices (incl. Multivariate ENSO index, Pacific Decadal Oscillation index, North-Atlantic Oscillation index) is investigated. References:1. Molkov Ya. I., E. M. Loskutov, D. N. Mukhin, and A. M. Feigin, Random dynamical models from time series. Phys. Rev. E, 85, 036216, 2012.2. Molkov, Ya.I., D.N. Mukhin, E.M. Loskutov, A.M. Feigin, and G.A. Fidelin, Using the minimum description length principle for global reconstruction of dynamic systems from noisy time series. Phys. Rev. E, 80, 046207, 2009.3. IRI/LDEO Climate Data Library (http://iridl.ldeo.columbia.edu/)
Deriving statistical closure from dynamical optimization
NASA Astrophysics Data System (ADS)
Turkington, Bruce
2015-11-01
Turbulence theorists have traditionally deduced statistical models by generating a hierarchy of moment equations and invoking some closure rules to truncate the hierarchy. In this talk a conceptually different approach to model reduction and statistical closure will be presented, and its implications for coarse-graining fluid turbulence will be indicated. The author has developed this method in the context of nonequilibrium statistical descriptions of Hamiltonian systems with many degrees of freedom. With respect to a chosen parametric statistical model, the lack-of-fit of model paths to the full dynamics is minimized in a time-integrated, mean-squared sense. This optimal closure method is applied to coarse-grain spectrally-truncated inviscid dynamics, including the Burgers-Hopf equation and incompressible two-dimensional flow, using the means and/or variances of low modes as resolved variables. The derived reduced dynamics for these test cases contain (1) scale-dependent dissipation which is not a local eddy viscosity, (2) modified nonlinear interactions between resolved modes, and (3) coupling between the mean and variance of each resolved mode. These predictions are validated against direct numerical simulations of ensembles for the fully resolved dynamics.
Optimally designed fields for controlling molecular dynamics
NASA Astrophysics Data System (ADS)
Rabitz, Herschel
1991-10-01
This research concerns the development of molecular control theory techniques for designing optical fields capable of manipulating molecular dynamic phenomena. Although is has been long recognized that lasers should be capable of manipulating dynamic events, many frustrating years of intuitively driven laboratory studies only serve to illustrate the point that the task is complex and defies intuition. The principal new component in the present research is the recognition that this problem falls into the category of control theory and its inherent complexities require the use of modern control theory tools largely developed in the engineering disciplines. Thus, the research has initiated a transfer of the control theory concepts to the molecular scale. Although much contained effort will be needed to fully develop these concepts, the research in this grant set forth the basic components of the theory and carried out illustrative studies involving the design of optical fields capable of controlling rotational, vibrational and electronic degrees of freedom. Optimal control within the quantum mechanical molecular realm represents a frontier area with many possible ultimate applications. At this stage, the theoretical tools need to be joined with merging laboratory optical pulse shaping capabilities to illustrate the power of the concepts.
Optimal caching algorithm based on dynamic programming
NASA Astrophysics Data System (ADS)
Guo, Changjie; Xiang, Zhe; Zhong, Yuzhuo; Long, Jidong
2001-07-01
With the dramatic growth of multimedia streams, the efficient distribution of stored videos has become a major concern. There are two basic caching strategies: the whole caching strategy and the caching strategy based on layered encoded video, the latter can satisfy the requirement of the highly heterogeneous access to the Internet. Conventional caching strategies assign each object a cache gain by calculating popularity or density popularity, and determine which videos and which layers should be cached. In this paper, we first investigate the delivery model of stored video based on proxy, and propose two novel caching algorithms, DPLayer (for layered encoded caching scheme) and DPWhole (for whole caching scheme) for multimedia proxy caching. The two algorithms are based on the resource allocation model of dynamic programming to select the optimal subset of objects to be cached in proxy. Simulation proved that our algorithms achieve better performance than other existing schemes. We also analyze the computational complexity and space complexity of the algorithms, and introduce a regulative parameter to compress the states space of the dynamic programming problem and reduce the complexity of algorithms.
Dynamic optimization of a copolymerization reactor using tabu search.
Anand, P; Rao, M Bhagvanth; Venkateswarlu, Ch
2015-03-01
A novel multistage dynamic optimization strategy based on meta-heuristic tabu search (TS) is proposed and evaluated through sequential and simultaneous implementation procedures by applying it to a semi-batch styrene-acrylonitrile (SAN) copolymerization reactor. The adaptive memory and responsive exploration features of TS are exploited to design the dynamic optimization strategy and compute the optimal control policies for temperature and monomer addition rate so as to achieve the desired product quality parameters expressed in terms of single and multiple objectives. The dynamic optimization results of TS sequential and TS simultaneous implementation strategies are analyzed and compared with those of a conventional optimization technique based on iterative dynamic programming (IDP). The simulation results demonstrate the usefulness of TS for optimal control of transient dynamic systems. PMID:25466914
Chaotic dynamics in optimal monetary policy
NASA Astrophysics Data System (ADS)
Gomes, O.; Mendes, V. M.; Mendes, D. A.; Sousa Ramos, J.
2007-05-01
There is by now a large consensus in modern monetary policy. This consensus has been built upon a dynamic general equilibrium model of optimal monetary policy as developed by, e.g., Goodfriend and King [ NBER Macroeconomics Annual 1997 edited by B. Bernanke and J. Rotemberg (Cambridge, Mass.: MIT Press, 1997), pp. 231 282], Clarida et al. [J. Econ. Lit. 37, 1661 (1999)], Svensson [J. Mon. Econ. 43, 607 (1999)] and Woodford [ Interest and Prices: Foundations of a Theory of Monetary Policy (Princeton, New Jersey, Princeton University Press, 2003)]. In this paper we extend the standard optimal monetary policy model by introducing nonlinearity into the Phillips curve. Under the specific form of nonlinearity proposed in our paper (which allows for convexity and concavity and secures closed form solutions), we show that the introduction of a nonlinear Phillips curve into the structure of the standard model in a discrete time and deterministic framework produces radical changes to the major conclusions regarding stability and the efficiency of monetary policy. We emphasize the following main results: (i) instead of a unique fixed point we end up with multiple equilibria; (ii) instead of saddle-path stability, for different sets of parameter values we may have saddle stability, totally unstable equilibria and chaotic attractors; (iii) for certain degrees of convexity and/or concavity of the Phillips curve, where endogenous fluctuations arise, one is able to encounter various results that seem intuitively correct. Firstly, when the Central Bank pays attention essentially to inflation targeting, the inflation rate has a lower mean and is less volatile; secondly, when the degree of price stickiness is high, the inflation rate displays a larger mean and higher volatility (but this is sensitive to the values given to the parameters of the model); and thirdly, the higher the target value of the output gap chosen by the Central Bank, the higher is the inflation rate and its
Decentralized optimal control of dynamical systems under uncertainty
NASA Astrophysics Data System (ADS)
Gabasov, R.; Dmitruk, N. M.; Kirillova, F. M.
2011-07-01
The problem of optimal control of a group of interconnected dynamical objects under uncertainty is considered. The cases are examined in which the centralized control of the group of objects is impossible due to delay in the channel for information exchange between the group members. Optimal self-control algorithms in real time for each dynamical object are proposed. Various types of a priori and current information about the behavior of the group members and about uncertainties in the system are examined. The proposed methods supplement the earlier developed optimal control methods for an individual dynamical system and the methods of decentralized optimal control of deterministic objects. The results are illustrated with examples.
Online optimization of storage ring nonlinear beam dynamics
NASA Astrophysics Data System (ADS)
Huang, Xiaobiao; Safranek, James
2015-08-01
We propose to optimize the nonlinear beam dynamics of existing and future storage rings with direct online optimization techniques. This approach may have crucial importance for the implementation of diffraction limited storage rings. In this paper considerations and algorithms for the online optimization approach are discussed. We have applied this approach to experimentally improve the dynamic aperture of the SPEAR3 storage ring with the robust conjugate direction search method and the particle swarm optimization method. The dynamic aperture was improved by more than 5 mm within a short period of time. Experimental setup and results are presented.
Optimal control of HIV/AIDS dynamic: Education and treatment
NASA Astrophysics Data System (ADS)
Sule, Amiru; Abdullah, Farah Aini
2014-07-01
A mathematical model which describes the transmission dynamics of HIV/AIDS is developed. The optimal control representing education and treatment for this model is explored. The existence of optimal Control is established analytically by the use of optimal control theory. Numerical simulations suggest that education and treatment for the infected has a positive impact on HIV/AIDS control.
Dynamic systems of regional economy management optimization
NASA Astrophysics Data System (ADS)
Trofimov, S.; Kudzh, S.
directions of an industrial policy of region. The situational-analytical centers (SAC) of regional administration The major component of SAC is dynamic modeling, analysis, forecasting and optimization systems, based on modern intellectual information technologies. Spheres of SAC are not only financial streams management and investments optimization, but also strategic forecasting functions, which provide an optimum choice, "aiming", search of optimum ways of regional development and corresponding investments. It is expedient to consider an opportunity of formation of the uniform organizational-methodical center of an industrial policy of region. This organization can be directly connected to the scheduled-analytical services of the largest economic structures, local authorities, the ministries and departments. Such "direct communication" is capable to provide an effective regional development strategic management. Anyway, the output on foreign markets demands concentration of resources and support of authorities. Offered measures are capable to provide a necessary coordination of efforts of a various level economic structures. For maintenance of a regional industrial policy an attraction of all newest methods of strategic planning and management is necessary. Their activity should be constructed on the basis of modern approaches of economic systems management, cause the essence of an industrial policy is finally reduced to an effective regional and corporate economic activities control centers formation. Opportunities of optimum regional economy planning and management as uniform system Approaches to planning regional economic systems can be different. We will consider some most effective methods of planning and control over a regional facilities condition. All of them are compact and evident, that allows to put them into the group of average complexity technologies. At the decision of problems of a regional resource management is rather perspective the so
Multi-objective optimization for deepwater dynamic umbilical installation analysis
NASA Astrophysics Data System (ADS)
Yang, HeZhen; Wang, AiJun; Li, HuaJun
2012-08-01
We suggest a method of multi-objective optimization based on approximation model for dynamic umbilical installation. The optimization aims to find out the most cost effective size, quantity and location of buoyancy modules for umbilical installation while maintaining structural safety. The approximation model is constructed by the design of experiment (DOE) sampling and is utilized to solve the problem of time-consuming analyses. The non-linear dynamic analyses considering environmental loadings are executed on these sample points from DOE. Non-dominated Sorting Genetic Algorithm (NSGA-II) is employed to obtain the Pareto solution set through an evolutionary optimization process. Intuitionist fuzzy set theory is applied for selecting the best compromise solution from Pareto set. The optimization results indicate this optimization strategy with approximation model and multiple attribute decision-making method is valid, and provide the optimal deployment method for deepwater dynamic umbilical buoyancy modules.
Review of Optimization Methods in Groundwater Modeling and Management
NASA Astrophysics Data System (ADS)
Yeh, W. W.
2001-12-01
This paper surveys nonlinear optimization methods developed for groundwater modeling and management. The first part reviews algorithms used for model calibration, that is, the inverse problem of parameter estimation. In recent years, groundwater models are combined with optimization models to identify the best management alternatives. Once the objectives and constraints are specified, most problems lend themselves to solution techniques developed in operations research, optimal control, and combinatorial optimization. The second part reviews methods developed for groundwater management. Algorithms and methods reviewed include quadratic programming, differential dynamic programming, nonlinear programming, mixed integer programming, stochastic programming, and non-gradient-based search algorithms. Advantages and drawbacks associated with each approach are discussed. A recent tendency has been toward combining the gradient-based algorithms with the non-gradient-based search algorithms, in that, a non-gradient-based search algorithm is used to identify a near optimum solution and a gradient-based algorithm uses the near optimum solution as its initial estimate for rapid convergence.
Dynamic systems of regional economy management optimization
NASA Astrophysics Data System (ADS)
Trofimov, S.; Kudzh, S.
directions of an industrial policy of region. The situational-analytical centers (SAC) of regional administration The major component of SAC is dynamic modeling, analysis, forecasting and optimization systems, based on modern intellectual information technologies. Spheres of SAC are not only financial streams management and investments optimization, but also strategic forecasting functions, which provide an optimum choice, "aiming", search of optimum ways of regional development and corresponding investments. It is expedient to consider an opportunity of formation of the uniform organizational-methodical center of an industrial policy of region. This organization can be directly connected to the scheduled-analytical services of the largest economic structures, local authorities, the ministries and departments. Such "direct communication" is capable to provide an effective regional development strategic management. Anyway, the output on foreign markets demands concentration of resources and support of authorities. Offered measures are capable to provide a necessary coordination of efforts of a various level economic structures. For maintenance of a regional industrial policy an attraction of all newest methods of strategic planning and management is necessary. Their activity should be constructed on the basis of modern approaches of economic systems management, cause the essence of an industrial policy is finally reduced to an effective regional and corporate economic activities control centers formation. Opportunities of optimum regional economy planning and management as uniform system Approaches to planning regional economic systems can be different. We will consider some most effective methods of planning and control over a regional facilities condition. All of them are compact and evident, that allows to put them into the group of average complexity technologies. At the decision of problems of a regional resource management is rather perspective the so
Method to describe stochastic dynamics using an optimal coordinate.
Krivov, Sergei V
2013-12-01
A general method to describe the stochastic dynamics of Markov processes is suggested. The method aims to solve three related problems: the determination of an optimal coordinate for the description of stochastic dynamics; the reconstruction of time from an ensemble of stochastic trajectories; and the decomposition of stationary stochastic dynamics into eigenmodes which do not decay exponentially with time. The problems are solved by introducing additive eigenvectors which are transformed by a stochastic matrix in a simple way - every component is translated by a constant distance. Such solutions have peculiar properties. For example, an optimal coordinate for stochastic dynamics with detailed balance is a multivalued function. An optimal coordinate for a random walk on a line corresponds to the conventional eigenvector of the one-dimensional Dirac equation. The equation for the optimal coordinate in a slowly varying potential reduces to the Hamilton-Jacobi equation for the action function. PMID:24483410
An Optimization Framework for Dynamic, Distributed Real-Time Systems
NASA Technical Reports Server (NTRS)
Eckert, Klaus; Juedes, David; Welch, Lonnie; Chelberg, David; Bruggerman, Carl; Drews, Frank; Fleeman, David; Parrott, David; Pfarr, Barbara
2003-01-01
Abstract. This paper presents a model that is useful for developing resource allocation algorithms for distributed real-time systems .that operate in dynamic environments. Interesting aspects of the model include dynamic environments, utility and service levels, which provide a means for graceful degradation in resource-constrained situations and support optimization of the allocation of resources. The paper also provides an allocation algorithm that illustrates how to use the model for producing feasible, optimal resource allocations.
An Optimization Framework for Dynamic Hybrid Energy Systems
Wenbo Du; Humberto E Garcia; Christiaan J.J. Paredis
2014-03-01
A computational framework for the efficient analysis and optimization of dynamic hybrid energy systems (HES) is developed. A microgrid system with multiple inputs and multiple outputs (MIMO) is modeled using the Modelica language in the Dymola environment. The optimization loop is implemented in MATLAB, with the FMI Toolbox serving as the interface between the computational platforms. Two characteristic optimization problems are selected to demonstrate the methodology and gain insight into the system performance. The first is an unconstrained optimization problem that optimizes the dynamic properties of the battery, reactor and generator to minimize variability in the HES. The second problem takes operating and capital costs into consideration by imposing linear and nonlinear constraints on the design variables. The preliminary optimization results obtained in this study provide an essential step towards the development of a comprehensive framework for designing HES.
Review of dynamic optimization methods in renewable natural resource management
Williams, B.K.
1989-01-01
In recent years, the applications of dynamic optimization procedures in natural resource management have proliferated. A systematic review of these applications is given in terms of a number of optimization methodologies and natural resource systems. The applicability of the methods to renewable natural resource systems are compared in terms of system complexity, system size, and precision of the optimal solutions. Recommendations are made concerning the appropriate methods for certain kinds of biological resource problems.
First principles molecular dynamics without self-consistent field optimization
Souvatzis, Petros; Niklasson, Anders M. N.
2014-01-28
We present a first principles molecular dynamics approach that is based on time-reversible extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] in the limit of vanishing self-consistent field optimization. The optimization-free dynamics keeps the computational cost to a minimum and typically provides molecular trajectories that closely follow the exact Born-Oppenheimer potential energy surface. Only one single diagonalization and Hamiltonian (or Fockian) construction are required in each integration time step. The proposed dynamics is derived for a general free-energy potential surface valid at finite electronic temperatures within hybrid density functional theory. Even in the event of irregular functional behavior that may cause a dynamical instability, the optimization-free limit represents a natural starting guess for force calculations that may require a more elaborate iterative electronic ground state optimization. Our optimization-free dynamics thus represents a flexible theoretical framework for a broad and general class of ab initio molecular dynamics simulations.
Dynamic positioning configuration and its first-order optimization
NASA Astrophysics Data System (ADS)
Xue, Shuqiang; Yang, Yuanxi; Dang, Yamin; Chen, Wu
2014-02-01
Traditional geodetic network optimization deals with static and discrete control points. The modern space geodetic network is, on the other hand, composed of moving control points in space (satellites) and on the Earth (ground stations). The network configuration composed of these facilities is essentially dynamic and continuous. Moreover, besides the position parameter which needs to be estimated, other geophysical information or signals can also be extracted from the continuous observations. The dynamic (continuous) configuration of the space network determines whether a particular frequency of signals can be identified by this system. In this paper, we employ the functional analysis and graph theory to study the dynamic configuration of space geodetic networks, and mainly focus on the optimal estimation of the position and clock-offset parameters. The principle of the D-optimization is introduced in the Hilbert space after the concept of the traditional discrete configuration is generalized from the finite space to the infinite space. It shows that the D-optimization developed in the discrete optimization is still valid in the dynamic configuration optimization, and this is attributed to the natural generalization of least squares from the Euclidean space to the Hilbert space. Then, we introduce the principle of D-optimality invariance under the combination operation and rotation operation, and propose some D-optimal simplex dynamic configurations: (1) (Semi) circular configuration in 2-dimensional space; (2) the D-optimal cone configuration and D-optimal helical configuration which is close to the GPS constellation in 3-dimensional space. The initial design of GPS constellation can be approximately treated as a combination of 24 D-optimal helixes by properly adjusting the ascending node of different satellites to realize a so-called Walker constellation. In the case of estimating the receiver clock-offset parameter, we show that the circular configuration, the
Integrated Network Decompositions and Dynamic Programming for Graph Optimization (INDDGO)
Energy Science and Technology Software Center (ESTSC)
2012-05-31
The INDDGO software package offers a set of tools for finding exact solutions to graph optimization problems via tree decompositions and dynamic programming algorithms. Currently the framework offers serial and parallel (distributed memory) algorithms for finding tree decompositions and solving the maximum weighted independent set problem. The parallel dynamic programming algorithm is implemented on top of the MADNESS task-based runtime.
Computer aided analysis and optimization of mechanical system dynamics
NASA Technical Reports Server (NTRS)
Haug, E. J.
1984-01-01
The purpose is to outline a computational approach to spatial dynamics of mechanical systems that substantially enlarges the scope of consideration to include flexible bodies, feedback control, hydraulics, and related interdisciplinary effects. Design sensitivity analysis and optimization is the ultimate goal. The approach to computer generation and solution of the system dynamic equations and graphical methods for creating animations as output is outlined.
Optimal exposure sets for high dynamic range scenes
NASA Astrophysics Data System (ADS)
Valli Kumari, V.; RaviKiran, B.; Raju, K. V. S. V. N.; Shajahan Basha, S. A.
2011-10-01
The dynamic range of many natural scenes is far greater than the dynamic range of the imaging devices. These scenes present a challenge to the consumer digital cameras. The well-known technique to capture the full dynamic range of the scene is by fusing multiple images of the same scene. Usually people combine three or five different exposures to get the full dynamic range of the scene. Some cameras like Pentax K-7, always combines fixed exposures together to produce the output result. However, this should be adaptive to the scene characteristics. We propose an optimal solution for dynamically selecting the exposure sets.
Solving Optimal Control Problems by Exploiting Inherent Dynamical Systems Structures
NASA Astrophysics Data System (ADS)
Flaßkamp, Kathrin; Ober-Blöbaum, Sina; Kobilarov, Marin
2012-08-01
Computing globally efficient solutions is a major challenge in optimal control of nonlinear dynamical systems. This work proposes a method combining local optimization and motion planning techniques based on exploiting inherent dynamical systems structures, such as symmetries and invariant manifolds. Prior to the optimal control, the dynamical system is analyzed for structural properties that can be used to compute pieces of trajectories that are stored in a motion planning library. In the context of mechanical systems, these motion planning candidates, termed primitives, are given by relative equilibria induced by symmetries and motions on stable or unstable manifolds of e.g. fixed points in the natural dynamics. The existence of controlled relative equilibria is studied through Lagrangian mechanics and symmetry reduction techniques. The proposed framework can be used to solve boundary value problems by performing a search in the space of sequences of motion primitives connected using optimized maneuvers. The optimal sequence can be used as an admissible initial guess for a post-optimization. The approach is illustrated by two numerical examples, the single and the double spherical pendula, which demonstrates its benefit compared to standard local optimization techniques.
Bridging developmental systems theory and evolutionary psychology using dynamic optimization.
Frankenhuis, Willem E; Panchanathan, Karthik; Clark Barrett, H
2013-07-01
Interactions between evolutionary psychologists and developmental systems theorists have been largely antagonistic. This is unfortunate because potential synergies between the two approaches remain unexplored. This article presents a method that may help to bridge the divide, and that has proven fruitful in biology: dynamic optimization. Dynamic optimization integrates developmental systems theorists' focus on dynamics and contingency with the 'design stance' of evolutionary psychology. It provides a theoretical framework as well as a set of tools for exploring the properties of developmental systems that natural selection might favor, given particular evolutionary ecologies. We also discuss limitations of the approach. PMID:23786476
Practical synchronization on complex dynamical networks via optimal pinning control.
Li, Kezan; Sun, Weigang; Small, Michael; Fu, Xinchu
2015-07-01
We consider practical synchronization on complex dynamical networks under linear feedback control designed by optimal control theory. The control goal is to minimize global synchronization error and control strength over a given finite time interval, and synchronization error at terminal time. By utilizing the Pontryagin's minimum principle, and based on a general complex dynamical network, we obtain an optimal system to achieve the control goal. The result is verified by performing some numerical simulations on Star networks, Watts-Strogatz networks, and Barabási-Albert networks. Moreover, by combining optimal control and traditional pinning control, we propose an optimal pinning control strategy which depends on the network's topological structure. Obtained results show that optimal pinning control is very effective for synchronization control in real applications. PMID:26274112
Application of dynamic merit function to nonimaging systems optimization
NASA Astrophysics Data System (ADS)
Fernández-Balbuena, Antonio Álvarez; Montes, Mario González; García-Botella, Angel; Vázquez-Moliní, Daniel
2015-02-01
Automatic optimization algorithms have been recently introduced as nonimaging optics design techniques. Unlike optimization of imaging systems, nonsequential ray tracing simulations and complex noncentered systems design must be considered, adding complexity to the problem. The merit function is a key element in the automatic optimization algorithm; nevertheless, the selection of each objective's weight, {wi}, inside the merit function needs a prior trial and error process for each optimization. The problem then is to determine appropriate weights' values for each objective. We propose a new dynamic merit function with variable weight factors {wi(n)}. The proposed algorithm automatically adapts weight factors during the evolution of the optimization process. This dynamic merit function avoids the previous trial and error procedure by selecting the right merit function and provides better results than conventional merit functions.
Combining Optimal Control Theory and Molecular Dynamics for Protein Folding
Arkun, Yaman; Gur, Mert
2012-01-01
A new method to develop low-energy folding routes for proteins is presented. The novel aspect of the proposed approach is the synergistic use of optimal control theory with Molecular Dynamics (MD). In the first step of the method, optimal control theory is employed to compute the force field and the optimal folding trajectory for the atoms of a Coarse-Grained (CG) protein model. The solution of this CG optimization provides an harmonic approximation of the true potential energy surface around the native state. In the next step CG optimization guides the MD simulation by specifying the optimal target positions for the atoms. In turn, MD simulation provides an all-atom conformation whose positions match closely the reference target positions determined by CG optimization. This is accomplished by Targeted Molecular Dynamics (TMD) which uses a bias potential or harmonic restraint in addition to the usual MD potential. Folding is a dynamical process and as such residues make different contacts during the course of folding. Therefore CG optimization has to be reinitialized and repeated over time to accomodate these important changes. At each sampled folding time, the active contacts among the residues are recalculated based on the all-atom conformation obtained from MD. Using the new set of contacts, the CG potential is updated and the CG optimal trajectory for the atoms is recomputed. This is followed by MD. Implementation of this repetitive CG optimization - MD simulation cycle generates the folding trajectory. Simulations on a model protein Villin demonstrate the utility of the method. Since the method is founded on the general tools of optimal control theory and MD without any restrictions, it is widely applicable to other systems. It can be easily implemented with available MD software packages. PMID:22238629
Energy-optimal path planning by stochastic dynamically orthogonal level-set optimization
NASA Astrophysics Data System (ADS)
Subramani, Deepak N.; Lermusiaux, Pierre F. J.
2016-04-01
A stochastic optimization methodology is formulated for computing energy-optimal paths from among time-optimal paths of autonomous vehicles navigating in a dynamic flow field. Based on partial differential equations, the methodology rigorously leverages the level-set equation that governs time-optimal reachability fronts for a given relative vehicle-speed function. To set up the energy optimization, the relative vehicle-speed and headings are considered to be stochastic and new stochastic Dynamically Orthogonal (DO) level-set equations are derived. Their solution provides the distribution of time-optimal reachability fronts and corresponding distribution of time-optimal paths. An optimization is then performed on the vehicle's energy-time joint distribution to select the energy-optimal paths for each arrival time, among all stochastic time-optimal paths for that arrival time. Numerical schemes to solve the reduced stochastic DO level-set equations are obtained, and accuracy and efficiency considerations are discussed. These reduced equations are first shown to be efficient at solving the governing stochastic level-sets, in part by comparisons with direct Monte Carlo simulations. To validate the methodology and illustrate its accuracy, comparisons with semi-analytical energy-optimal path solutions are then completed. In particular, we consider the energy-optimal crossing of a canonical steady front and set up its semi-analytical solution using a energy-time nested nonlinear double-optimization scheme. We then showcase the inner workings and nuances of the energy-optimal path planning, considering different mission scenarios. Finally, we study and discuss results of energy-optimal missions in a wind-driven barotropic quasi-geostrophic double-gyre ocean circulation.
Optimal dynamic remapping of parallel computations
NASA Technical Reports Server (NTRS)
Nicol, David M.; Reynolds, Paul F., Jr.
1987-01-01
A large class of computations are characterized by a sequence of phases, with phase changes occurring unpredictably. The decision problem was considered regarding the remapping of workload to processors in a parallel computation when the utility of remapping and the future behavior of the workload is uncertain, and phases exhibit stable execution requirements during a given phase, but requirements may change radically between phases. For these problems a workload assignment generated for one phase may hinder performance during the next phase. This problem is treated formally for a probabilistic model of computation with at most two phases. The fundamental problem of balancing the expected remapping performance gain against the delay cost was addressed. Stochastic dynamic programming is used to show that the remapping decision policy minimizing the expected running time of the computation has an extremely simple structure. Because the gain may not be predictable, the performance of a heuristic policy that does not require estimnation of the gain is examined. The heuristic method's feasibility is demonstrated by its use on an adaptive fluid dynamics code on a multiprocessor. The results suggest that except in extreme cases, the remapping decision problem is essentially that of dynamically determining whether gain can be achieved by remapping after a phase change. The results also suggest that this heuristic is applicable to computations with more than two phases.
Optimal dynamic allocation of conservation funding among priority regions.
Bode, Michael; Wilson, Kerrie; McBride, Marissa; Possingham, Hugh
2008-10-01
The optimal allocation of conservation resources between biodiverse conservation regions has generally been calculated using stochastic dynamic programming, or using myopic heuristics. These solutions are hard to interpret and may not be optimal. To overcome these two limitations, this paper approaches the optimal conservation resource allocation problem using optimal control theory. A solution using Pontryagin's maximum principle provides novel insight into the general properties of efficient conservation resource allocation strategies, and allows more extensive testing of the performance of myopic heuristics. We confirmed that a proposed heuristic (minimize short-term loss) yields near-optimal results in complex allocation situations, and found that a qualitative allocation feature observed in previous analyses (bang-bang allocation) is a general property of the optimal allocation strategy. PMID:18712571
Dynamic optimization of district energy grid
NASA Astrophysics Data System (ADS)
Salsbery, Scott
The University of Iowa Power Plant operates utility generation and distribution for campus facilities, including electricity, steam, and chilled water. It is desirable to evaluate the optimal load combination of boilers, engines and chillers to meet the demand at minimal cost, particularly for future demand scenarios. An algorithm has been developed which takes into account the performance of individual units as part of the mix which ultimately supplies the campus and determine the degree that each should be operating to most efficiently meet demand. The algorithm is part of an integrated simulation tool which is specifically designed to apply traditional optimization techniques for a given (both current and possible) circumstance. The second component is to couple the algorithm with accurate estimates and historical data through which expected demand could be predicted. The simulation tool can account for any theoretical circumstance, which will be highly beneficial for strategic planning. As part of the process it is also necessary to determine the unique operating characteristics of the system components. The algorithms rely upon performance curves of individual system components (boiler, chiller, etc.) and those must be developed and refined when possible from experimental testing and commissioning or manufacturer supplied data.
Fully integrated aerodynamic/dynamic optimization of helicopter rotor blades
NASA Technical Reports Server (NTRS)
Walsh, Joanne L.; Lamarsh, William J., II; Adelman, Howard M.
1992-01-01
A fully integrated aerodynamic/dynamic optimization procedure is described for helicopter rotor blades. The procedure combines performance and dynamic analyses with a general purpose optimizer. The procedure minimizes a linear combination of power required (in hover, forward flight, and maneuver) and vibratory hub shear. The design variables include pretwist, taper initiation, taper ratio, root chord, blade stiffnesses, tuning masses, and tuning mass locations. Aerodynamic constraints consist of limits on power required in hover, forward flight and maneuvers; airfoil section stall; drag divergence Mach number; minimum tip chord; and trim. Dynamic constraints are on frequencies, minimum autorotational inertia, and maximum blade weight. The procedure is demonstrated for two cases. In the first case, the objective function involves power required (in hover, forward flight and maneuver) and dynamics. The second case involves only hover power and dynamics. The designs from the integrated procedure are compared with designs from a sequential optimization approach in which the blade is first optimized for performance and then for dynamics. In both cases, the integrated approach is superior.
Optimized reduction of uncertainty in bursty human dynamics
NASA Astrophysics Data System (ADS)
Jo, Hang-Hyun; Moon, Eunyoung; Kaski, Kimmo
2012-01-01
Human dynamics is known to be inhomogeneous and bursty but the detailed understanding of the role of human factors in bursty dynamics is still lacking. In order to investigate their role we devise an agent-based model, where an agent in an uncertain situation tries to reduce the uncertainty by communicating with information providers while having to wait time for responses. Here the waiting time can be considered as cost. We show that the optimal choice of the waiting time under uncertainty gives rise to the bursty dynamics, characterized by the heavy tailed distribution of optimal waiting time. We find that in all cases the efficiency for communication is relevant to the scaling behavior of the optimal waiting time distribution. On the other hand, the cost turns out in some cases to be irrelevant depending on the degree of uncertainty and efficiency.
On the Optimal Dynamic Camber Formation in Insect Flight
NASA Astrophysics Data System (ADS)
Ren, Yan; Dong, Haibo
2012-11-01
It is widely thought that wing flexibility and wing deformation could significantly affect aerodynamic force productions over completely rigid wings in insect flights. However, there is a lack of quantitative discussion of dynamic formation of wing camber and its effect on wing's aerodynamic performance. In this work, a deformable wing is used to model the wing camber and its dynamic formation. A Direct Numerical Simulation (DNS) based computational optimization frame has been developed to obtain the optimal dynamic camber formation of dragonfly in takeoff and cruising flight. Comparative study is then performed between the optimized flexible wing and real dragonfly wing. Results have shown the maximum camber happens around 30% (downstroke) and 80% (upstroke) of one wing beat. Force production and unsteady flows of the flexible wing are also discussed.
Aerospace Applications of Integer and Combinatorial Optimization
NASA Technical Reports Server (NTRS)
Padula, S. L.; Kincaid, R. K.
1995-01-01
Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in formulating and solving integer and combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem, for example, seeks the optimal locations for vibration-damping devices on an orbiting platform and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.
Aerospace applications on integer and combinatorial optimization
NASA Technical Reports Server (NTRS)
Padula, S. L.; Kincaid, R. K.
1995-01-01
Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in formulating and solving integer and combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem. for example, seeks the optimal locations for vibration-damping devices on an orbiting platform and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.
Aerospace applications of integer and combinatorial optimization
NASA Technical Reports Server (NTRS)
Padula, S. L.; Kincaid, R. K.
1995-01-01
Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in solving combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem, for example, seeks the optimal locations for vibration-damping devices on a large space structure and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.
Particle swarm optimization with recombination and dynamic linkage discovery.
Chen, Ying-Ping; Peng, Wen-Chih; Jian, Ming-Chung
2007-12-01
In this paper, we try to improve the performance of the particle swarm optimizer by incorporating the linkage concept, which is an essential mechanism in genetic algorithms, and design a new linkage identification technique called dynamic linkage discovery to address the linkage problem in real-parameter optimization problems. Dynamic linkage discovery is a costless and effective linkage recognition technique that adapts the linkage configuration by employing only the selection operator without extra judging criteria irrelevant to the objective function. Moreover, a recombination operator that utilizes the discovered linkage configuration to promote the cooperation of particle swarm optimizer and dynamic linkage discovery is accordingly developed. By integrating the particle swarm optimizer, dynamic linkage discovery, and recombination operator, we propose a new hybridization of optimization methodologies called particle swarm optimization with recombination and dynamic linkage discovery (PSO-RDL). In order to study the capability of PSO-RDL, numerical experiments were conducted on a set of benchmark functions as well as on an important real-world application. The benchmark functions used in this paper were proposed in the 2005 Institute of Electrical and Electronics Engineers Congress on Evolutionary Computation. The experimental results on the benchmark functions indicate that PSO-RDL can provide a level of performance comparable to that given by other advanced optimization techniques. In addition to the benchmark, PSO-RDL was also used to solve the economic dispatch (ED) problem for power systems, which is a real-world problem and highly constrained. The results indicate that PSO-RDL can successfully solve the ED problem for the three-unit power system and obtain the currently known best solution for the 40-unit system. PMID:18179066
Optimizing Laboratory Experiments for Dynamic Astrophysical Phenomena
Ryutov, D; Remington, B
2005-09-13
To make a laboratory experiment an efficient tool for the studying the dynamical astrophysical phenomena, it is desirable to perform them in such a way as to observe the scaling invariance with respect to the astrophysical system under study. Several examples are presented of such scalings in the area of magnetohydrodynamic phenomena, where a number of scaled experiments have been performed. A difficult issue of the effect of fine-scale dissipative structures on the global scale dissipation-free flow is discussed. The second part of the paper is concerned with much less developed area of the scalings relevant to the interaction of an ultra-intense laser pulse with a pre-formed plasma. The use of the symmetry arguments in such experiments is also considered.
Optimal dynamic bandwidth allocation for complex networks
NASA Astrophysics Data System (ADS)
Jiang, Zhong-Yuan; Liang, Man-Gui; Li, Qian; Guo, Dong-Chao
2013-03-01
Traffic capacity of one network strongly depends on the link’s bandwidth allocation strategy. In previous bandwidth allocation mechanisms, once one link’s bandwidth is allocated, it will be fixed throughout the overall traffic transmission process. However, the traffic load of every link changes from time to time. In this paper, with finite total bandwidth resource of the network, we propose to dynamically allocate the total bandwidth resource in which each link’s bandwidth is proportional to the queue length of the output buffer of the link per time step. With plenty of data packets in the network, the traffic handling ability of all links of the network achieves full utilization. The theoretical analysis and the extensive simulation results on complex networks are consistent. This work is valuable for network service providers to improve network performance or to do reasonable network design efficiently.
Experimental Testing of Dynamically Optimized Photoelectron Beams
Rosenzweig, J. B.; Cook, A. M.; Dunning, M.; England, R. J.; Musumeci, P.; Bellaveglia, M.; Boscolo, M.; Catani, L.; Cianchi, A.; Di Pirro, G.; Ferrario, M.; Fillipetto, D.; Gatti, G.; Palumbo, L.; Vicario, C.; Serafini, L.; Jones, S.
2006-11-27
We discuss the design of and initial results from an experiment in space-charge dominated beam dynamics which explores a new regime of high-brightness electron beam generation at the SPARC photoinjector. The scheme under study employs the tendency of intense electron beams to rearrange to produce uniform density, giving a nearly ideal beam from the viewpoint of space charge-induced emittance. The experiments are aimed at testing the marriage of this idea with a related concept, emittance compensation. We show that this new regime of operating photoinjector may be the preferred method of obtaining highest brightness beams with lower energy spread. We discuss the design of the experiment, including developing of a novel time-dependent, aerogel-based imaging system. This system has been installed at SPARC, and first evidence for nearly uniformly filled ellipsoidal charge distributions recorded.
Evolutionary dynamics and highly optimized tolerance.
Zhou, Tong; Carlson, J M; Doyle, John
2005-10-21
We develop a numerical model of a lattice community based on Highly Optimized Tolerance (HOT), which relates the evolution of complexity to robustness tradeoffs in an uncertain environment. With the model, we explore scenarios for evolution and extinction which are abstractions of processes which are commonly discussed in biological and ecological case studies. These include the effects of different habitats on the phenotypic traits of the organisms, the effects of different mutation rates on adaptation, fitness, and diversity, and competition between generalists and specialists. The model exhibits a wide variety of microevolutionary and macroevolutionary phenomena which can arise in organisms which are subject to random mutation, and selection based on fitness evaluated in a specific environment. Generalists arise in uniform habitats, where different disturbances occur with equal frequency, while specialists arise when the relative frequency of different disturbances is skewed. Fast mutators are seen to play a primary role in adaptation, while slow mutators preserve well-adapted configurations. When uniform and skewed habitats are coupled through migration of the organisms, we observe a primitive form of punctuated equilibrium. Rare events in the skewed habitat lead to extinction of the specialists, whereupon generalists invade from the uniform habitat, adapt to their new surroundings, ultimately leading their progeny to become vulnerable to extinction in a subsequent rare disturbance. PMID:15904934
Optimization of Conformational Dynamics in an Epistatic Evolutionary Trajectory.
González, Mariano M; Abriata, Luciano A; Tomatis, Pablo E; Vila, Alejandro J
2016-07-01
The understanding of protein evolution depends on the ability to relate the impact of mutations on molecular traits to organismal fitness. Biological activity and robustness have been regarded as important features in shaping protein evolutionary landscapes. Conformational dynamics, which is essential for protein function, has received little attention in the context of evolutionary analyses. Here we employ NMR spectroscopy, the chief experimental tool to describe protein dynamics at atomic level in solution at room temperature, to study the intrinsic dynamic features of a metallo- Β: -lactamase enzyme and three variants identified during a directed evolution experiment that led to an expanded substrate profile. We show that conformational dynamics in the catalytically relevant microsecond to millisecond timescale is optimized along the favored evolutionary trajectory. In addition, we observe that the effects of mutations on dynamics are epistatic. Mutation Gly262Ser introduces slow dynamics on several residues that surround the active site when introduced in the wild-type enzyme. Mutation Asn70Ser removes the slow dynamics observed for few residues of the wild-type enzyme, but increases the number of residues that undergo slow dynamics when introduced in the Gly262Ser mutant. These effects on dynamics correlate with the epistatic interaction between these two mutations on the bacterial phenotype. These findings indicate that conformational dynamics is an evolvable trait, and that proteins endowed with more dynamic active sites also display a larger potential for promoting evolution. PMID:26983555
Shape optimization for maximum stability and dynamic stiffness
NASA Technical Reports Server (NTRS)
Szyszkowski, W.
1990-01-01
Any optimization of structures for maximum stability or for maximum dynamic stiffness deals with an eigenvalue problem. The goal of this optimization is to raise the lowest eigenvalue (or eigenvalues) of the problem to its highest (optimal) level at a constant volume of the structure. Likely the lowest eigenvalue may be either inherently multi-modal or it can become multi-modal as a result of the optimization process. The multimodeness introduces some ambiguity to the eigenvalue problem and make the optimization difficult to handle. Thus far, only the simplest cases of multi-modal structures have been effectively optimized using rather elaborate analytical methods. Numerous publications report design of a minimum volume structure with different eigenvalues constraints, in which, however, the modality of the problem is assumed a priori. The method presented here utilizes a multi-modal optimality criteria and allows for inclusion of an arbitrary number of buckling or vibrations modes which might influence the optimization process. The real multi-modality of the problem, that is the number of modes participating in the final optimal design is determined iteratively. Because of a natural use of the FEM technique the method is easy to program and might be helpful in design of large flexible space structures.
Bridging Developmental Systems Theory and Evolutionary Psychology Using Dynamic Optimization
ERIC Educational Resources Information Center
Frankenhuis, Willem E.; Panchanathan, Karthik; Clark Barrett, H.
2013-01-01
Interactions between evolutionary psychologists and developmental systems theorists have been largely antagonistic. This is unfortunate because potential synergies between the two approaches remain unexplored. This article presents a method that may help to bridge the divide, and that has proven fruitful in biology: dynamic optimization. Dynamic…
Multiobjective Optimization of Low-Energy Trajectories Using Optimal Control on Dynamical Channels
NASA Technical Reports Server (NTRS)
Coffee, Thomas M.; Anderson, Rodney L.; Lo, Martin W.
2011-01-01
We introduce a computational method to design efficient low-energy trajectories by extracting initial solutions from dynamical channels formed by invariant manifolds, and improving these solutions through variational optimal control. We consider trajectories connecting two unstable periodic orbits in the circular restricted 3-body problem (CR3BP). Our method leverages dynamical channels to generate a range of solutions, and approximates the areto front for impulse and time of flight through a multiobjective optimization of these solutions based on primer vector theory. We demonstrate the application of our method to a libration orbit transfer in the Earth-Moon system.
Voronoi Diagram Based Optimization of Dynamic Reactive Power Sources
Huang, Weihong; Sun, Kai; Qi, Junjian; Xu, Yan
2015-01-01
Dynamic var sources can effectively mitigate fault-induced delayed voltage recovery (FIDVR) issues or even voltage collapse. This paper proposes a new approach to optimization of the sizes of dynamic var sources at candidate locations by a Voronoi diagram based algorithm. It first disperses sample points of potential solutions in a searching space, evaluates a cost function at each point by barycentric interpolation for the subspaces around the point, and then constructs a Voronoi diagram about cost function values over the entire space. Accordingly, the final optimal solution can be obtained. Case studies on the WSCC 9-bus system and NPCC 140-bus system have validated that the new approach can quickly identify the boundary of feasible solutions in searching space and converge to the global optimal solution.
A dynamic optimization model for solid waste recycling.
Anghinolfi, Davide; Paolucci, Massimo; Robba, Michela; Taramasso, Angela Celeste
2013-02-01
Recycling is an important part of waste management (that includes different kinds of issues: environmental, technological, economic, legislative, social, etc.). Differently from many works in literature, this paper is focused on recycling management and on the dynamic optimization of materials collection. The developed dynamic decision model is characterized by state variables, corresponding to the quantity of waste in each bin per each day, and control variables determining the quantity of material that is collected in the area each day and the routes for collecting vehicles. The objective function minimizes the sum of costs minus benefits. The developed decision model is integrated in a GIS-based Decision Support System (DSS). A case study related to the Cogoleto municipality is presented to show the effectiveness of the proposed model. From optimal results, it has been found that the net benefits of the optimized collection are about 2.5 times greater than the estimated current policy. PMID:23158873
Analysis and Optimization of Pulse Dynamics for Magnetic Stimulation
Goetz, Stefan M.; Truong, Cong Nam; Gerhofer, Manuel G.; Peterchev, Angel V.; Herzog, Hans-Georg; Weyh, Thomas
2013-01-01
Magnetic stimulation is a standard tool in brain research and has found important clinical applications in neurology, psychiatry, and rehabilitation. Whereas coil designs and the spatial field properties have been intensively studied in the literature, the temporal dynamics of the field has received less attention. Typically, the magnetic field waveform is determined by available device circuit topologies rather than by consideration of what is optimal for neural stimulation. This paper analyzes and optimizes the waveform dynamics using a nonlinear model of a mammalian axon. The optimization objective was to minimize the pulse energy loss. The energy loss drives power consumption and heating, which are the dominating limitations of magnetic stimulation. The optimization approach is based on a hybrid global-local method. Different coordinate systems for describing the continuous waveforms in a limited parameter space are defined for numerical stability. The optimization results suggest that there are waveforms with substantially higher efficiency than that of traditional pulse shapes. One class of optimal pulses is analyzed further. Although the coil voltage profile of these waveforms is almost rectangular, the corresponding current shape presents distinctive characteristics, such as a slow low-amplitude first phase which precedes the main pulse and reduces the losses. Representatives of this class of waveforms corresponding to different maximum voltages are linked by a nonlinear transformation. The main phase, however, scales with time only. As with conventional magnetic stimulation pulses, briefer pulses result in lower energy loss but require higher coil voltage than longer pulses. PMID:23469168
Dynamic characterization of bolted joints using FRF decoupling and optimization
NASA Astrophysics Data System (ADS)
Tol, Şerife; O¨zgu¨ven, H. Nevzat
2015-03-01
Mechanical connections play a significant role in predicting dynamic characteristics of assembled structures. Therefore, equivalent dynamic models for joints are needed. Due to the complexity of joints, it is difficult to describe joint dynamics with analytical models. Reliable models are generally obtained using experimental measurements. In this paper an experimental identification method based on FRF decoupling and optimization algorithm is proposed for modeling joints. In the method the FRFs of two substructures connected with a joint are measured, while the FRFs of the substructures are obtained numerically or experimentally. Then the joint properties are calculated in terms of translational, rotational and cross-coupling stiffness and damping values by using FRF decoupling. In order to eliminate the numerical errors associated with matrix inversion an optimization algorithm is used to update the joint values obtained from FRF decoupling. The validity of the proposed method is demonstrated with experimental studies with bolted joints.
Optimal experimental dynamical decoupling of both longitudinal and transverse relaxations
NASA Astrophysics Data System (ADS)
Zhen, Xing-Long; Zhang, Fei-Hao; Feng, Guanru; Li, Hang; Long, Gui-Lu
2016-02-01
Both longitudinal and transverse relaxations exist in the practical environment. Their simultaneous eliminations are extremely demanding in real applications. Previous experimental work has focused mainly on the suppression of transverse relaxation. In this paper we investigate the performance of three important dynamical decoupling schemes—quadratic dynamical decoupling, periodic dynamical decoupling, and concatenated dynamical decoupling—in an environment with hybrid errors. We propose a method to engineer arbitrary environment by modulating the control field. The technique developed here is universal and can be applied to other quantum information processing systems. Three-dimensional filter functions technique is utilized to analyze the fidelity decay of a one-qubit state protected by dynamical decoupling sequences. This enables us to quantitatively compare the performance of different dynamical decoupling sequences and demonstrate the superiority of quadratic dynamical decoupling in experiments for the first time. Our work reveals that quadratic dynamical decoupling is optimal conditioned on the appropriate noise properties. The difference of constructing dynamical decoupling sequences with various Pauli pulses is also investigated.
Successive linear optimization approach to the dynamic traffic assignment problem
Ho, J.K.
1980-11-01
A dynamic model for the optimal control of traffic flow over a network is considered. The model, which treats congestion explicitly in the flow equations, gives rise to nonlinear, nonconvex mathematical programming problems. It has been shown for a piecewise linear version of this model that a global optimum is contained in the set of optimal solutions of a certain linear program. A sufficient condition for optimality which implies that a global optimum can be obtained by successively optimizing at most N + 1 objective functions for the linear program, where N is the number of time periods in the planning horizon is presented. Computational results are reported to indicate the efficiency of this approach.
Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem
NASA Astrophysics Data System (ADS)
Chen, Wei
2015-07-01
In this paper, we discuss the portfolio optimization problem with real-world constraints under the assumption that the returns of risky assets are fuzzy numbers. A new possibilistic mean-semiabsolute deviation model is proposed, in which transaction costs, cardinality and quantity constraints are considered. Due to such constraints the proposed model becomes a mixed integer nonlinear programming problem and traditional optimization methods fail to find the optimal solution efficiently. Thus, a modified artificial bee colony (MABC) algorithm is developed to solve the corresponding optimization problem. Finally, a numerical example is given to illustrate the effectiveness of the proposed model and the corresponding algorithm.
Optimization Research of Generation Investment Based on Linear Programming Model
NASA Astrophysics Data System (ADS)
Wu, Juan; Ge, Xueqian
Linear programming is an important branch of operational research and it is a mathematical method to assist the people to carry out scientific management. GAMS is an advanced simulation and optimization modeling language and it will combine a large number of complex mathematical programming, such as linear programming LP, nonlinear programming NLP, MIP and other mixed-integer programming with the system simulation. In this paper, based on the linear programming model, the optimized investment decision-making of generation is simulated and analyzed. At last, the optimal installed capacity of power plants and the final total cost are got, which provides the rational decision-making basis for optimized investments.
Optimizing legacy molecular dynamics software with directive-based offload
Michael Brown, W.; Carrillo, Jan-Michael Y.; Gavhane, Nitin; Thakkar, Foram M.; Plimpton, Steven J.
2015-05-14
The directive-based programming models are one solution for exploiting many-core coprocessors to increase simulation rates in molecular dynamics. They offer the potential to reduce code complexity with offload models that can selectively target computations to run on the CPU, the coprocessor, or both. In our paper, we describe modifications to the LAMMPS molecular dynamics code to enable concurrent calculations on a CPU and coprocessor. We also demonstrate that standard molecular dynamics algorithms can run efficiently on both the CPU and an x86-based coprocessor using the same subroutines. As a consequence, we demonstrate that code optimizations for the coprocessor also result in speedups on the CPU; in extreme cases up to 4.7X. We provide results for LAMMAS benchmarks and for production molecular dynamics simulations using the Stampede hybrid supercomputer with both Intel (R) Xeon Phi (TM) coprocessors and NVIDIA GPUs: The optimizations presented have increased simulation rates by over 2X for organic molecules and over 7X for liquid crystals on Stampede. The optimizations are available as part of the "Intel package" supplied with LAMMPS. (C) 2015 Elsevier B.V. All rights reserved.
Optimizing legacy molecular dynamics software with directive-based offload
Michael Brown, W.; Carrillo, Jan-Michael Y.; Gavhane, Nitin; Thakkar, Foram M.; Plimpton, Steven J.
2015-05-14
The directive-based programming models are one solution for exploiting many-core coprocessors to increase simulation rates in molecular dynamics. They offer the potential to reduce code complexity with offload models that can selectively target computations to run on the CPU, the coprocessor, or both. In our paper, we describe modifications to the LAMMPS molecular dynamics code to enable concurrent calculations on a CPU and coprocessor. We also demonstrate that standard molecular dynamics algorithms can run efficiently on both the CPU and an x86-based coprocessor using the same subroutines. As a consequence, we demonstrate that code optimizations for the coprocessor also resultmore » in speedups on the CPU; in extreme cases up to 4.7X. We provide results for LAMMAS benchmarks and for production molecular dynamics simulations using the Stampede hybrid supercomputer with both Intel (R) Xeon Phi (TM) coprocessors and NVIDIA GPUs: The optimizations presented have increased simulation rates by over 2X for organic molecules and over 7X for liquid crystals on Stampede. The optimizations are available as part of the "Intel package" supplied with LAMMPS. (C) 2015 Elsevier B.V. All rights reserved.« less
Optimizing legacy molecular dynamics software with directive-based offload
NASA Astrophysics Data System (ADS)
Michael Brown, W.; Carrillo, Jan-Michael Y.; Gavhane, Nitin; Thakkar, Foram M.; Plimpton, Steven J.
2015-10-01
Directive-based programming models are one solution for exploiting many-core coprocessors to increase simulation rates in molecular dynamics. They offer the potential to reduce code complexity with offload models that can selectively target computations to run on the CPU, the coprocessor, or both. In this paper, we describe modifications to the LAMMPS molecular dynamics code to enable concurrent calculations on a CPU and coprocessor. We demonstrate that standard molecular dynamics algorithms can run efficiently on both the CPU and an x86-based coprocessor using the same subroutines. As a consequence, we demonstrate that code optimizations for the coprocessor also result in speedups on the CPU; in extreme cases up to 4.7X. We provide results for LAMMPS benchmarks and for production molecular dynamics simulations using the Stampede hybrid supercomputer with both Intel® Xeon Phi™ coprocessors and NVIDIA GPUs. The optimizations presented have increased simulation rates by over 2X for organic molecules and over 7X for liquid crystals on Stampede. The optimizations are available as part of the "Intel package" supplied with LAMMPS.
Adaptive optimal spectral range for dynamically changing scene
NASA Astrophysics Data System (ADS)
Pinsky, Ephi; Siman-tov, Avihay; Peles, David
2012-06-01
A novel multispectral video system that continuously optimizes both its spectral range channels and the exposure time of each channel autonomously, under dynamic scenes, varying from short range-clear scene to long range-poor visibility, is currently being developed. Transparency and contrast of high scattering medium of channels with spectral ranges in the near infrared is superior to the visible channels, particularly to the blue range. Longer wavelength spectral ranges that induce higher contrast are therefore favored. Images of 3 spectral channels are fused and displayed for (pseudo) color visualization, as an integrated high contrast video stream. In addition to the dynamic optimization of the spectral channels, optimal real-time exposure time is adjusted simultaneously and autonomously for each channel. A criterion of maximum average signal, derived dynamically from previous frames of the video stream is used (Patent Application - International Publication Number: WO2009/093110 A2, 30.07.2009). This configuration enables dynamic compatibility with the optimal exposure time of a dynamically changing scene. It also maximizes the signal to noise ratio and compensates each channel for the specified value of daylight reflections and sensors response for each spectral range. A possible implementation is a color video camera based on 4 synchronized, highly responsive, CCD imaging detectors, attached to a 4CCD dichroic prism and combined with a common, color corrected, lens. Principal Components Analysis (PCA) technique is then applied for real time "dimensional collapse" in color space, in order to select and fuse, for clear color visualization, the 3 most significant principal channels out of at least 4 characterized by high contrast and rich details in the image data.
Optimization of the dynamic inducer wind turbine system
NASA Astrophysics Data System (ADS)
Lissaman, P. B. S.; Zalay, A. D.; Hibbs, B.
The dynamic inducer, essentially a horizontal axis wind turbine (HAWT) rotor with small vanes at the tips is a promising, advanced technology wind turbine concept. By adding small vanes to the tip of the conventional rotor, significant increases in power can be obtained with the dynamic inducer system. The development of the system is reviewed, including past theoretical and experimental programs. Recent tow tests and wind tunnel tests established the predicted augmentation power. A new optimization program is outlined, based on advanced theory back by extensive wind tunnel testing, aimed at developing an advanced dynamic inducer system for a state-of-the art high performance, two-bladed rotor system. It is estimated that the dynamic inducer rotor is about 20% more cost-effective than a conventional system.
Airframe structural dynamic considerations in rotor design optimization
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.; Murthy, T. Sreekanta
1989-01-01
An an overview and discussion of those aspects of airframe structural dynamics that have a strong influence on rotor design optimization is provided. Primary emphasis is on vibration requirements. The vibration problem is described, the key vibratory forces are identified, the role of airframe response in rotor design is summarized, and the types of constraints which need to be imposed on rotor design due to airframe dynamics are discussed. Some considerations of ground and air resonance as they might affect rotor design are included.
Sequential activation of metabolic pathways: a dynamic optimization approach.
Oyarzún, Diego A; Ingalls, Brian P; Middleton, Richard H; Kalamatianos, Dimitrios
2009-11-01
The regulation of cellular metabolism facilitates robust cellular operation in the face of changing external conditions. The cellular response to this varying environment may include the activation or inactivation of appropriate metabolic pathways. Experimental and numerical observations of sequential timing in pathway activation have been reported in the literature. It has been argued that such patterns can be rationalized by means of an underlying optimal metabolic design. In this paper we pose a dynamic optimization problem that accounts for time-resource minimization in pathway activation under constrained total enzyme abundance. The optimized variables are time-dependent enzyme concentrations that drive the pathway to a steady state characterized by a prescribed metabolic flux. The problem formulation addresses unbranched pathways with irreversible kinetics. Neither specific reaction kinetics nor fixed pathway length are assumed.In the optimal solution, each enzyme follows a switching profile between zero and maximum concentration, following a temporal sequence that matches the pathway topology. This result provides an analytic justification of the sequential activation previously described in the literature. In contrast with the existent numerical approaches, the activation sequence is proven to be optimal for a generic class of monomolecular kinetics. This class includes, but is not limited to, Mass Action, Michaelis-Menten, Hill, and some Power-law models. This suggests that sequential enzyme expression may be a common feature of metabolic regulation, as it is a robust property of optimal pathway activation. PMID:19412635
Tensor-optimized antisymmetrized molecular dynamics in nuclear physics
NASA Astrophysics Data System (ADS)
Myo, Takayuki; Toki, Hiroshi; Ikeda, Kiyomi; Horiuchi, Hisashi; Suhara, Tadahiro
2015-07-01
We develop a new formalism to treat nuclear many-body systems using the bare nucleon-nucleon interaction. It has become evident that the tensor interaction plays an important role in nuclear many-body systems due to the role of the pion in strongly interacting systems. We take the antisymmetrized molecular dynamics (AMD) as a basic framework and add a tensor correlation operator acting on the AMD wave function using the concept of the tensor-optimized shell model. We demonstrate a systematical and straightforward formulation utilizing the Gaussian integration and differentiation method and the antisymmetrization technique to calculate all the matrix elements of the many-body Hamiltonian. We can include the three-body interaction naturally and calculate the matrix elements systematically in the progressive order of the tensor correlation operator. We call the new formalism "tensor-optimized antisymmetrized molecular dynamics".
Rethinking design parameters in the search for optimal dynamic seating.
Pynt, Jennifer
2015-04-01
Dynamic seating design purports to lessen damage incurred during sedentary occupations by increasing sitter movement while modifying muscle activity. Dynamic sitting is currently defined by O'Sullivan et al. ( 2013a) as relating to 'the increased motion in sitting which is facilitated by the use of specific chairs or equipment' (p. 628). Yet the evidence is conflicting that dynamic seating creates variation in the sitter's lumbar posture or muscle activity with the overall consensus being that current dynamic seating design fails to fulfill its goals. Research is needed to determine if a new generation of chairs requiring active sitter involvement fulfills the goals of dynamic seating and aids cardio/metabolic health. This paper summarises the pursuit of knowledge regarding optimal seated spinal posture and seating design. Four new forms of dynamic seating encouraging active sitting are discussed. These are 1) The Core-flex with a split seatpan to facilitate a walking action while seated 2) the Duo balans requiring body action to create rocking 3) the Back App and 4) Locus pedestal stools both using the sitter's legs to drive movement. Unsubstantiated claims made by the designers of these new forms of dynamic seating are outlined. Avenues of research are suggested to validate designer claims and investigate whether these designs fulfill the goals of dynamic seating and assist cardio/metabolic health. Should these claims be efficacious then a new definition of dynamic sitting is suggested; 'Sitting in which the action is provided by the sitter, while the dynamic mechanism of the chair accommodates that action'. PMID:25892386
Neighboring extremals of dynamic optimization problems with path equality constraints
NASA Technical Reports Server (NTRS)
Lee, A. Y.
1988-01-01
Neighboring extremals of dynamic optimization problems with path equality constraints and with an unknown parameter vector are considered in this paper. With some simplifications, the problem is reduced to solving a linear, time-varying two-point boundary-value problem with integral path equality constraints. A modified backward sweep method is used to solve this problem. Two example problems are solved to illustrate the validity and usefulness of the solution technique.
Topology optimization for nonlinear dynamic problems: Considerations for automotive crashworthiness
NASA Astrophysics Data System (ADS)
Kaushik, Anshul; Ramani, Anand
2014-04-01
Crashworthiness of automotive structures is most often engineered after an optimal topology has been arrived at using other design considerations. This study is an attempt to incorporate crashworthiness requirements upfront in the topology synthesis process using a mathematically consistent framework. It proposes the use of equivalent linear systems from the nonlinear dynamic simulation in conjunction with a discrete-material topology optimizer. Velocity and acceleration constraints are consistently incorporated in the optimization set-up. Issues specific to crash problems due to the explicit solution methodology employed, nature of the boundary conditions imposed on the structure, etc. are discussed and possible resolutions are proposed. A demonstration of the methodology on two-dimensional problems that address some of the structural requirements and the types of loading typical of frontal and side impact is provided in order to show that this methodology has the potential for topology synthesis incorporating crashworthiness requirements.
Optimal flow rates and well locations for soil vapor extraction design
NASA Astrophysics Data System (ADS)
Sawyer, Charles S.; Kamakoti, Madhavi
1998-07-01
A mixed-integer programming model to determine the optimum number of wells, their locations and pumping rates for soil vapor extraction (SVE) is developed by coupling an air flow simulation model (AIR3D) to the GAMS optimization software. The model was tested for sensitivity of the vertical discretization of the domain, the number of potential well locations, the number of constraints, and the screen length of the wells. It was shown that these variables affected the optimal solution. It was also shown that the installation costs of the wells in the model influenced the optimal design. This was demonstrated by comparing the results of the mixed-integer programming model to a linear programming model in which the installation costs of the wells were neglected. The mixed-integer programming model could be useful in the design process in cases of short remediation times when the installation costs of wells could be significant. Numerous test cases with results are presented to demonstrate the applicability and usefulness of the model.
Confronting dynamics and uncertainty in optimal decision making for conservation
Williams, Byron K.; Johnson, Fred A.
2013-01-01
The effectiveness of conservation efforts ultimately depends on the recognition that decision making, and the systems that it is designed to affect, are inherently dynamic and characterized by multiple sources of uncertainty. To cope with these challenges, conservation planners are increasingly turning to the tools of decision analysis, especially dynamic optimization methods. Here we provide a general framework for optimal, dynamic conservation and then explore its capacity for coping with various sources and degrees of uncertainty. In broadest terms, the dynamic optimization problem in conservation is choosing among a set of decision options at periodic intervals so as to maximize some conservation objective over the planning horizon. Planners must account for immediate objective returns, as well as the effect of current decisions on future resource conditions and, thus, on future decisions. Undermining the effectiveness of such a planning process are uncertainties concerning extant resource conditions (partial observability), the immediate consequences of decision choices (partial controllability), the outcomes of uncontrolled, environmental drivers (environmental variation), and the processes structuring resource dynamics (structural uncertainty). Where outcomes from these sources of uncertainty can be described in terms of probability distributions, a focus on maximizing the expected objective return, while taking state-specific actions, is an effective mechanism for coping with uncertainty. When such probability distributions are unavailable or deemed unreliable, a focus on maximizing robustness is likely to be the preferred approach. Here the idea is to choose an action (or state-dependent policy) that achieves at least some minimum level of performance regardless of the (uncertain) outcomes. We provide some examples of how the dynamic optimization problem can be framed for problems involving management of habitat for an imperiled species, conservation of a
Confronting dynamics and uncertainty in optimal decision making for conservation
NASA Astrophysics Data System (ADS)
Williams, Byron K.; Johnson, Fred A.
2013-06-01
The effectiveness of conservation efforts ultimately depends on the recognition that decision making, and the systems that it is designed to affect, are inherently dynamic and characterized by multiple sources of uncertainty. To cope with these challenges, conservation planners are increasingly turning to the tools of decision analysis, especially dynamic optimization methods. Here we provide a general framework for optimal, dynamic conservation and then explore its capacity for coping with various sources and degrees of uncertainty. In broadest terms, the dynamic optimization problem in conservation is choosing among a set of decision options at periodic intervals so as to maximize some conservation objective over the planning horizon. Planners must account for immediate objective returns, as well as the effect of current decisions on future resource conditions and, thus, on future decisions. Undermining the effectiveness of such a planning process are uncertainties concerning extant resource conditions (partial observability), the immediate consequences of decision choices (partial controllability), the outcomes of uncontrolled, environmental drivers (environmental variation), and the processes structuring resource dynamics (structural uncertainty). Where outcomes from these sources of uncertainty can be described in terms of probability distributions, a focus on maximizing the expected objective return, while taking state-specific actions, is an effective mechanism for coping with uncertainty. When such probability distributions are unavailable or deemed unreliable, a focus on maximizing robustness is likely to be the preferred approach. Here the idea is to choose an action (or state-dependent policy) that achieves at least some minimum level of performance regardless of the (uncertain) outcomes. We provide some examples of how the dynamic optimization problem can be framed for problems involving management of habitat for an imperiled species, conservation of a
Optimization of Dynamic Aperture of PEP-X Baseline Design
Wang, Min-Huey; Cai, Yunhai; Nosochkov, Yuri; /SLAC
2010-08-23
SLAC is developing a long-range plan to transfer the evolving scientific programs at SSRL from the SPEAR3 light source to a much higher performing photon source. Storage ring design is one of the possibilities that would be housed in the 2.2-km PEP-II tunnel. The design goal of PEPX storage ring is to approach an optimal light source design with horizontal emittance less than 100 pm and vertical emittance of 8 pm to reach the diffraction limit of 1-{angstrom} x-ray. The low emittance design requires a lattice with strong focusing leading to high natural chromaticity and therefore to strong sextupoles. The latter caused reduction of dynamic aperture. The dynamic aperture requirement for horizontal injection at injection point is about 10 mm. In order to achieve the desired dynamic aperture the transverse non-linearity of PEP-X is studied. The program LEGO is used to simulate the particle motion. The technique of frequency map is used to analyze the nonlinear behavior. The effect of the non-linearity is tried to minimize at the given constrains of limited space. The details and results of dynamic aperture optimization are discussed in this paper.
Human opinion dynamics: An inspiration to solve complex optimization problems
NASA Astrophysics Data System (ADS)
Kaur, Rishemjit; Kumar, Ritesh; Bhondekar, Amol P.; Kapur, Pawan
2013-10-01
Human interactions give rise to the formation of different kinds of opinions in a society. The study of formations and dynamics of opinions has been one of the most important areas in social physics. The opinion dynamics and associated social structure leads to decision making or so called opinion consensus. Opinion formation is a process of collective intelligence evolving from the integrative tendencies of social influence with the disintegrative effects of individualisation, and therefore could be exploited for developing search strategies. Here, we demonstrate that human opinion dynamics can be utilised to solve complex mathematical optimization problems. The results have been compared with a standard algorithm inspired from bird flocking behaviour and the comparison proves the efficacy of the proposed approach in general. Our investigation may open new avenues towards understanding the collective decision making.
Human opinion dynamics: An inspiration to solve complex optimization problems
Kaur, Rishemjit; Kumar, Ritesh; Bhondekar, Amol P.; Kapur, Pawan
2013-01-01
Human interactions give rise to the formation of different kinds of opinions in a society. The study of formations and dynamics of opinions has been one of the most important areas in social physics. The opinion dynamics and associated social structure leads to decision making or so called opinion consensus. Opinion formation is a process of collective intelligence evolving from the integrative tendencies of social influence with the disintegrative effects of individualisation, and therefore could be exploited for developing search strategies. Here, we demonstrate that human opinion dynamics can be utilised to solve complex mathematical optimization problems. The results have been compared with a standard algorithm inspired from bird flocking behaviour and the comparison proves the efficacy of the proposed approach in general. Our investigation may open new avenues towards understanding the collective decision making. PMID:24141795
Optimized Uncertainty Quantification Algorithm Within a Dynamic Event Tree Framework
J. W. Nielsen; Akira Tokuhiro; Robert Hiromoto
2014-06-01
Methods for developing Phenomenological Identification and Ranking Tables (PIRT) for nuclear power plants have been a useful tool in providing insight into modelling aspects that are important to safety. These methods have involved expert knowledge with regards to reactor plant transients and thermal-hydraulic codes to identify are of highest importance. Quantified PIRT provides for rigorous method for quantifying the phenomena that can have the greatest impact. The transients that are evaluated and the timing of those events are typically developed in collaboration with the Probabilistic Risk Analysis. Though quite effective in evaluating risk, traditional PRA methods lack the capability to evaluate complex dynamic systems where end states may vary as a function of transition time from physical state to physical state . Dynamic PRA (DPRA) methods provide a more rigorous analysis of complex dynamic systems. A limitation of DPRA is its potential for state or combinatorial explosion that grows as a function of the number of components; as well as, the sampling of transition times from state-to-state of the entire system. This paper presents a method for performing QPIRT within a dynamic event tree framework such that timing events which result in the highest probabilities of failure are captured and a QPIRT is performed simultaneously while performing a discrete dynamic event tree evaluation. The resulting simulation results in a formal QPIRT for each end state. The use of dynamic event trees results in state explosion as the number of possible component states increases. This paper utilizes a branch and bound algorithm to optimize the solution of the dynamic event trees. The paper summarizes the methods used to implement the branch-and-bound algorithm in solving the discrete dynamic event trees.
Optimizing spread dynamics on graphs by message passing
NASA Astrophysics Data System (ADS)
Altarelli, F.; Braunstein, A.; Dall'Asta, L.; Zecchina, R.
2013-09-01
Cascade processes are responsible for many important phenomena in natural and social sciences. Simple models of irreversible dynamics on graphs, in which nodes activate depending on the state of their neighbors, have been successfully applied to describe cascades in a large variety of contexts. Over the past decades, much effort has been devoted to understanding the typical behavior of the cascades arising from initial conditions extracted at random from some given ensemble. However, the problem of optimizing the trajectory of the system, i.e. of identifying appropriate initial conditions to maximize (or minimize) the final number of active nodes, is still considered to be practically intractable, with the only exception being models that satisfy a sort of diminishing returns property called submodularity. Submodular models can be approximately solved by means of greedy strategies, but by definition they lack cooperative characteristics which are fundamental in many real systems. Here we introduce an efficient algorithm based on statistical physics for the optimization of trajectories in cascade processes on graphs. We show that for a wide class of irreversible dynamics, even in the absence of submodularity, the spread optimization problem can be solved efficiently on large networks. Analytic and algorithmic results on random graphs are complemented by the solution of the spread maximization problem on a real-world network (the Epinions consumer reviews network).
Khawaja, Sajid Gul; Mushtaq, Mian Hamza; Khan, Shoab A.; Akram, M. Usman; Jamal, Habib ullah
2015-01-01
With the increase of transistors' density, popularity of System on Chip (SoC) has increased exponentially. As a communication module for SoC, Network on Chip (NoC) framework has been adapted as its backbone. In this paper, we propose a methodology for designing area-optimized application specific NoC while providing hard Quality of Service (QoS) guarantees for real time flows. The novelty of the proposed system lies in derivation of a Mixed Integer Linear Programming model which is then used to generate a resource optimal Network on Chip (NoC) topology and architecture while considering traffic and QoS requirements. We also present the micro-architectural design features used for enabling traffic and latency guarantees and discuss how the solution adapts for dynamic variations in the application traffic. The paper highlights the effectiveness of proposed method by generating resource efficient NoC solutions for both industrial and benchmark applications. The area-optimized results are generated in few seconds by proposed technique, without resorting to heuristics, even for an application with 48 traffic flows. PMID:25898016
Exposure Time Optimization for Highly Dynamic Star Trackers
Wei, Xinguo; Tan, Wei; Li, Jian; Zhang, Guangjun
2014-01-01
Under highly dynamic conditions, the star-spots on the image sensor of a star tracker move across many pixels during the exposure time, which will reduce star detection sensitivity and increase star location errors. However, this kind of effect can be compensated well by setting an appropriate exposure time. This paper focuses on how exposure time affects the star tracker under highly dynamic conditions and how to determine the most appropriate exposure time for this case. Firstly, the effect of exposure time on star detection sensitivity is analyzed by establishing the dynamic star-spot imaging model. Then the star location error is deduced based on the error analysis of the sub-pixel centroiding algorithm. Combining these analyses, the effect of exposure time on attitude accuracy is finally determined. Some simulations are carried out to validate these effects, and the results show that there are different optimal exposure times for different angular velocities of a star tracker with a given configuration. In addition, the results of night sky experiments using a real star tracker agree with the simulation results. The summarized regularities in this paper should prove helpful in the system design and dynamic performance evaluation of the highly dynamic star trackers. PMID:24618776
Exposure time optimization for highly dynamic star trackers.
Wei, Xinguo; Tan, Wei; Li, Jian; Zhang, Guangjun
2014-01-01
Under highly dynamic conditions, the star-spots on the image sensor of a star tracker move across many pixels during the exposure time, which will reduce star detection sensitivity and increase star location errors. However, this kind of effect can be compensated well by setting an appropriate exposure time. This paper focuses on how exposure time affects the star tracker under highly dynamic conditions and how to determine the most appropriate exposure time for this case. Firstly, the effect of exposure time on star detection sensitivity is analyzed by establishing the dynamic star-spot imaging model. Then the star location error is deduced based on the error analysis of the sub-pixel centroiding algorithm. Combining these analyses, the effect of exposure time on attitude accuracy is finally determined. Some simulations are carried out to validate these effects, and the results show that there are different optimal exposure times for different angular velocities of a star tracker with a given configuration. In addition, the results of night sky experiments using a real star tracker agree with the simulation results. The summarized regularities in this paper should prove helpful in the system design and dynamic performance evaluation of the highly dynamic star trackers. PMID:24618776
Optimal contrast enhancement liquid for dynamic MRI of swallowing.
Ohkubo, M; Higaki, T; Nishikawa, K; Otonari-Yamamoto, M; Sugiyama, T; Ishida, R; Wakoh, M
2016-09-01
Several dynamic magnetic resonance imaging (MRI) techniques to observe swallowing and their parameters have been reported. Although these studies used several contrast enhancement liquids, no studies were conducted to investigate the most suitable liquids. The purpose of this study was to identify the optimal contrast enhancement liquid for dynamic MRI of swallowing. MRI was performed using a new sequence consisting of true fast imaging with steady-state precession, generalised auto-calibrating partially parallel acquisition and a keyhole imaging technique. Seven liquids were studied, including pure distilled water, distilled water with thickener at 10, 20 and 30 mg mL(-1) concentrations and oral MRI contrast medium at 1, 2 or 3 mg mL(-1) . Distilled water showed the highest signal intensity. There were statistically significant differences among the following contrast media: distilled water with thickener at 20 mg mL(-1) and the oral MRI contrast medium at 2 mg mL(-1) and 1 mg mL(-1) . It can be concluded that the optimal liquid for dynamic MRI of swallowing is a water-based substance that allows variations in viscosity. PMID:27328011
Super-Learning of an Optimal Dynamic Treatment Rule.
Luedtke, Alexander R; van der Laan, Mark J
2016-05-01
We consider the estimation of an optimal dynamic two time-point treatment rule defined as the rule that maximizes the mean outcome under the dynamic treatment, where the candidate rules are restricted to depend only on a user-supplied subset of the baseline and intermediate covariates. This estimation problem is addressed in a statistical model for the data distribution that is nonparametric, beyond possible knowledge about the treatment and censoring mechanisms. We propose data adaptive estimators of this optimal dynamic regime which are defined by sequential loss-based learning under both the blip function and weighted classification frameworks. Rather than a priori selecting an estimation framework and algorithm, we propose combining estimators from both frameworks using a super-learning based cross-validation selector that seeks to minimize an appropriate cross-validated risk. The resulting selector is guaranteed to asymptotically perform as well as the best convex combination of candidate algorithms in terms of loss-based dissimilarity under conditions. We offer simulation results to support our theoretical findings. PMID:27227726
Dynamic imaging model and parameter optimization for a star tracker.
Yan, Jinyun; Jiang, Jie; Zhang, Guangjun
2016-03-21
Under dynamic conditions, star spots move across the image plane of a star tracker and form a smeared star image. This smearing effect increases errors in star position estimation and degrades attitude accuracy. First, an analytical energy distribution model of a smeared star spot is established based on a line segment spread function because the dynamic imaging process of a star tracker is equivalent to the static imaging process of linear light sources. The proposed model, which has a clear physical meaning, explicitly reflects the key parameters of the imaging process, including incident flux, exposure time, velocity of a star spot in an image plane, and Gaussian radius. Furthermore, an analytical expression of the centroiding error of the smeared star spot is derived using the proposed model. An accurate and comprehensive evaluation of centroiding accuracy is obtained based on the expression. Moreover, analytical solutions of the optimal parameters are derived to achieve the best performance in centroid estimation. Finally, we perform numerical simulations and a night sky experiment to validate the correctness of the dynamic imaging model, the centroiding error expression, and the optimal parameters. PMID:27136791
Dynamic optimization of bioprocesses: efficient and robust numerical strategies.
Banga, Julio R; Balsa-Canto, Eva; Moles, Carmen G; Alonso, Antonio A
2005-06-29
The dynamic optimization (open loop optimal control) of non-linear bioprocesses is considered in this contribution. These processes can be described by sets of non-linear differential and algebraic equations (DAEs), usually subject to constraints in the state and control variables. A review of the available solution techniques for this class of problems is presented, highlighting the numerical difficulties arising from the non-linear, constrained and often discontinuous nature of these systems. In order to surmount these difficulties, we present several alternative stochastic and hybrid techniques based on the control vector parameterization (CVP) approach. The CVP approach is a direct method which transforms the original problem into a non-linear programming (NLP) problem, which must be solved by a suitable (efficient and robust) solver. In particular, a hybrid technique uses a first global optimization phase followed by a fast second phase based on a local deterministic method, so it can handle the nonconvexity of many of these NLPs. The efficiency and robustness of these techniques is illustrated by solving several challenging case studies regarding the optimal control of fed-batch bioreactors and other bioprocesses. In order to fairly evaluate their advantages, a careful and critical comparison with several other direct approaches is provided. The results indicate that the two-phase hybrid approach presents the best compromise between robustness and efficiency. PMID:15888349
Optimal approach to quantum communication using dynamic programming.
Jiang, Liang; Taylor, Jacob M; Khaneja, Navin; Lukin, Mikhail D
2007-10-30
Reliable preparation of entanglement between distant systems is an outstanding problem in quantum information science and quantum communication. In practice, this has to be accomplished by noisy channels (such as optical fibers) that generally result in exponential attenuation of quantum signals at large distances. A special class of quantum error correction protocols, quantum repeater protocols, can be used to overcome such losses. In this work, we introduce a method for systematically optimizing existing protocols and developing more efficient protocols. Our approach makes use of a dynamic programming-based searching algorithm, the complexity of which scales only polynomially with the communication distance, letting us efficiently determine near-optimal solutions. We find significant improvements in both the speed and the final-state fidelity for preparing long-distance entangled states. PMID:17959783
Dynamic stochastic optimization models for air traffic flow management
NASA Astrophysics Data System (ADS)
Mukherjee, Avijit
This dissertation presents dynamic stochastic optimization models for Air Traffic Flow Management (ATFM) that enables decisions to adapt to new information on evolving capacities of National Airspace System (NAS) resources. Uncertainty is represented by a set of capacity scenarios, each depicting a particular time-varying capacity profile of NAS resources. We use the concept of a scenario tree in which multiple scenarios are possible initially. Scenarios are eliminated as possibilities in a succession of branching points, until the specific scenario that will be realized on a particular day is known. Thus the scenario tree branching provides updated information on evolving scenarios, and allows ATFM decisions to be re-addressed and revised. First, we propose a dynamic stochastic model for a single airport ground holding problem (SAGHP) that can be used for planning Ground Delay Programs (GDPs) when there is uncertainty about future airport arrival capacities. Ground delays of non-departed flights can be revised based on updated information from scenario tree branching. The problem is formulated so that a wide range of objective functions, including non-linear delay cost functions and functions that reflect equity concerns can be optimized. Furthermore, the model improves on existing practice by ensuring efficient use of available capacity without necessarily exempting long-haul flights. Following this, we present a methodology and optimization models that can be used for decentralized decision making by individual airlines in the GDP planning process, using the solutions from the stochastic dynamic SAGHP. Airlines are allowed to perform cancellations, and re-allocate slots to remaining flights by substitutions. We also present an optimization model that can be used by the FAA, after the airlines perform cancellation and substitutions, to re-utilize vacant arrival slots that are created due to cancellations. Finally, we present three stochastic integer programming
Dynamic Simulation and Optimization of Nuclear Hydrogen Production Systems
Paul I. Barton; Mujid S. Kaximi; Georgios Bollas; Patricio Ramirez Munoz
2009-07-31
This project is part of a research effort to design a hydrogen plant and its interface with a nuclear reactor. This project developed a dynamic modeling, simulation and optimization environment for nuclear hydrogen production systems. A hybrid discrete/continuous model captures both the continuous dynamics of the nuclear plant, the hydrogen plant, and their interface, along with discrete events such as major upsets. This hybrid model makes us of accurate thermodynamic sub-models for the description of phase and reaction equilibria in the thermochemical reactor. Use of the detailed thermodynamic models will allow researchers to examine the process in detail and have confidence in the accurary of the property package they use.
Optimized dynamical decoupling for power-law noise spectra
Pasini, S.; Uhrig, G. S.
2010-01-15
We analyze the suppression of decoherence by means of dynamical decoupling in the pure-dephasing spin-boson model for baths with power law spectra. The sequence of ideal pi pulses is optimized according to the power of the bath. We expand the decoherence function and separate the canceling divergences from the relevant terms. The proposed sequence is chosen to be the one minimizing the decoherence function. By construction, it provides the best performance. We analytically derive the conditions that must be satisfied. The resulting equations are solved numerically. The solutions are very close to the Carr-Purcell-Meiboom-Gill sequence for a soft cutoff of the bath while they approach the Uhrig dynamical-decoupling sequence as the cutoff becomes harder.
Optimization of phonon dynamics protocols in ion traps
NASA Astrophysics Data System (ADS)
Dutta, T.; Mukherjee, M.; Sengupta, K.
2016-03-01
We develop a theory to address the non equilibrium dynamics of phonons in a one-dimensional finite size trapped ion system for non linear ramp and periodic protocols. Our analysis, which is based on our earlier proposal of dynamics-induced cooling and entanglement generation between phonons in these systems when subjected to a linear ramp protocol [1], identifies the optimal protocol within the above-mentioned classes, which minimizes both the cooling and entanglement generation time. We also introduce single-/two-site addressing to achieve cooling/entanglement, which is expected to lead to simpler implementation of these protocols. Finally, we discuss the effect of noise due to the fluctuation of the intensity of the laser used to generate the trap on entanglement generation. We also discuss realistic experimental setups that may serve as test beds for our theory.
NASA Astrophysics Data System (ADS)
St. Germain, Brad David
The development and optimization of liquid rocket engines is an integral part of space vehicle design, since most Earth-to-orbit launch vehicles to date have used liquid rockets as their main propulsion system. Rocket engine design tools range in fidelity from very simple conceptual level tools to full computational fluid dynamics (CFD) simulations. The level of fidelity of interest in this research is a design tool that determines engine thrust and specific impulse as well as models the powerhead of the engine. This is the highest level of fidelity applicable to a conceptual level design environment where faster running analyses are desired. The optimization of liquid rocket engines using a powerhead analysis tool is a difficult problem, because it involves both continuous and discrete inputs as well as a nonlinear design space. Example continuous inputs are the main combustion chamber pressure, nozzle area ratio, engine mixture ratio, and desired thrust. Example discrete variable inputs are the engine cycle (staged-combustion, gas generator, etc.), fuel/oxidizer combination, and engine material choices. Nonlinear optimization problems involving both continuous and discrete inputs are referred to as Mixed-Integer Nonlinear Programming (MINLP) problems. Many methods exist in literature for solving MINLP problems; however none are applicable for this research. All of the existing MINLP methods require the relaxation of the discrete variables as part of their analysis procedure. This means that the discrete choices must be evaluated at non-discrete values. This is not possible with an engine powerhead design code. Therefore, a new optimization method was developed that uses modified response surface equations to provide lower bounds of the continuous design space for each unique discrete variable combination. These lower bounds are then used to efficiently solve the optimization problem. The new optimization procedure was used to find optimal rocket engine designs
Clustering Molecular Dynamics Trajectories for Optimizing Docking Experiments
De Paris, Renata; Quevedo, Christian V.; Ruiz, Duncan D.; Norberto de Souza, Osmar; Barros, Rodrigo C.
2015-01-01
Molecular dynamics simulations of protein receptors have become an attractive tool for rational drug discovery. However, the high computational cost of employing molecular dynamics trajectories in virtual screening of large repositories threats the feasibility of this task. Computational intelligence techniques have been applied in this context, with the ultimate goal of reducing the overall computational cost so the task can become feasible. Particularly, clustering algorithms have been widely used as a means to reduce the dimensionality of molecular dynamics trajectories. In this paper, we develop a novel methodology for clustering entire trajectories using structural features from the substrate-binding cavity of the receptor in order to optimize docking experiments on a cloud-based environment. The resulting partition was selected based on three clustering validity criteria, and it was further validated by analyzing the interactions between 20 ligands and a fully flexible receptor (FFR) model containing a 20 ns molecular dynamics simulation trajectory. Our proposed methodology shows that taking into account features of the substrate-binding cavity as input for the k-means algorithm is a promising technique for accurately selecting ensembles of representative structures tailored to a specific ligand. PMID:25873944
Clustering molecular dynamics trajectories for optimizing docking experiments.
De Paris, Renata; Quevedo, Christian V; Ruiz, Duncan D; Norberto de Souza, Osmar; Barros, Rodrigo C
2015-01-01
Molecular dynamics simulations of protein receptors have become an attractive tool for rational drug discovery. However, the high computational cost of employing molecular dynamics trajectories in virtual screening of large repositories threats the feasibility of this task. Computational intelligence techniques have been applied in this context, with the ultimate goal of reducing the overall computational cost so the task can become feasible. Particularly, clustering algorithms have been widely used as a means to reduce the dimensionality of molecular dynamics trajectories. In this paper, we develop a novel methodology for clustering entire trajectories using structural features from the substrate-binding cavity of the receptor in order to optimize docking experiments on a cloud-based environment. The resulting partition was selected based on three clustering validity criteria, and it was further validated by analyzing the interactions between 20 ligands and a fully flexible receptor (FFR) model containing a 20 ns molecular dynamics simulation trajectory. Our proposed methodology shows that taking into account features of the substrate-binding cavity as input for the k-means algorithm is a promising technique for accurately selecting ensembles of representative structures tailored to a specific ligand. PMID:25873944
Aircraft path planning for optimal imaging using dynamic cost functions
NASA Astrophysics Data System (ADS)
Christie, Gordon; Chaudhry, Haseeb; Kochersberger, Kevin
2015-05-01
Unmanned aircraft development has accelerated with recent technological improvements in sensing and communications, which has resulted in an "applications lag" for how these aircraft can best be utilized. The aircraft are becoming smaller, more maneuverable and have longer endurance to perform sensing and sampling missions, but operating them aggressively to exploit these capabilities has not been a primary focus in unmanned systems development. This paper addresses a means of aerial vehicle path planning to provide a realistic optimal path in acquiring imagery for structure from motion (SfM) reconstructions and performing radiation surveys. This method will allow SfM reconstructions to occur accurately and with minimal flight time so that the reconstructions can be executed efficiently. An assumption is made that we have 3D point cloud data available prior to the flight. A discrete set of scan lines are proposed for the given area that are scored based on visibility of the scene. Our approach finds a time-efficient path and calculates trajectories between scan lines and over obstacles encountered along those scan lines. Aircraft dynamics are incorporated into the path planning algorithm as dynamic cost functions to create optimal imaging paths in minimum time. Simulations of the path planning algorithm are shown for an urban environment. We also present our approach for image-based terrain mapping, which is able to efficiently perform a 3D reconstruction of a large area without the use of GPS data.
Data-driven optimization of dynamic reconfigurable systems of systems.
Tucker, Conrad S.; Eddy, John P.
2010-11-01
This report documents the results of a Strategic Partnership (aka University Collaboration) LDRD program between Sandia National Laboratories and the University of Illinois at Urbana-Champagne. The project is titled 'Data-Driven Optimization of Dynamic Reconfigurable Systems of Systems' and was conducted during FY 2009 and FY 2010. The purpose of this study was to determine and implement ways to incorporate real-time data mining and information discovery into existing Systems of Systems (SoS) modeling capabilities. Current SoS modeling is typically conducted in an iterative manner in which replications are carried out in order to quantify variation in the simulation results. The expense of many replications for large simulations, especially when considering the need for optimization, sensitivity analysis, and uncertainty quantification, can be prohibitive. In addition, extracting useful information from the resulting large datasets is a challenging task. This work demonstrates methods of identifying trends and other forms of information in datasets that can be used on a wide range of applications such as quantifying the strength of various inputs on outputs, identifying the sources of variation in the simulation, and potentially steering an optimization process for improved efficiency.
Optimal control and cold war dynamics between plant and herbivore.
Low, Candace; Ellner, Stephen P; Holden, Matthew H
2013-08-01
Herbivores eat the leaves that a plant needs for photosynthesis. However, the degree of antagonism between plant and herbivore may depend critically on the timing of their interactions and the intrinsic value of a leaf. We present a model that investigates whether and when the timing of plant defense and herbivore feeding activity can be optimized by evolution so that their interactions can move from antagonistic to neutral. We assume that temporal changes in environmental conditions will affect intrinsic leaf value, measured as potential carbon gain. Using optimal-control theory, we model herbivore evolution, first in response to fixed plant strategies and then under coevolutionary dynamics in which the plant also evolves in response to the herbivore. In the latter case, we solve for the evolutionarily stable strategies of plant defense induction and herbivore hatching rate under different ecological conditions. Our results suggest that the optimal strategies for both plant and herbivore are to avoid direct conflict. As long as the plant has the capability for moderately lethal defense, the herbivore will modify its hatching rate to avoid plant defenses, and the plant will never have to use them. Insights from this model offer a possible solution to the paradox of sublethal defenses and provide a mechanism for stable plant-herbivore interactions without the need for natural enemy control. PMID:23852361
An optimal strategy for functional mapping of dynamic trait loci.
Jin, Tianbo; Li, Jiahan; Guo, Ying; Zhou, Xiaojing; Yang, Runqing; Wu, Rongling
2010-02-01
As an emerging powerful approach for mapping quantitative trait loci (QTLs) responsible for dynamic traits, functional mapping models the time-dependent mean vector with biologically meaningful equations and are likely to generate biologically relevant and interpretable results. Given the autocorrelation nature of a dynamic trait, functional mapping needs the implementation of the models for the structure of the covariance matrix. In this article, we have provided a comprehensive set of approaches for modelling the covariance structure and incorporated each of these approaches into the framework of functional mapping. The Bayesian information criterion (BIC) values are used as a model selection criterion to choose the optimal combination of the submodels for the mean vector and covariance structure. In an example for leaf age growth from a rice molecular genetic project, the best submodel combination was found between the Gaussian model for the correlation structure, power equation of order 1 for the variance and the power curve for the mean vector. Under this combination, several significant QTLs for leaf age growth trajectories were detected on different chromosomes. Our model can be well used to study the genetic architecture of dynamic traits of agricultural values. PMID:20196894
A Formal Approach to Empirical Dynamic Model Optimization and Validation
NASA Technical Reports Server (NTRS)
Crespo, Luis G; Morelli, Eugene A.; Kenny, Sean P.; Giesy, Daniel P.
2014-01-01
A framework was developed for the optimization and validation of empirical dynamic models subject to an arbitrary set of validation criteria. The validation requirements imposed upon the model, which may involve several sets of input-output data and arbitrary specifications in time and frequency domains, are used to determine if model predictions are within admissible error limits. The parameters of the empirical model are estimated by finding the parameter realization for which the smallest of the margins of requirement compliance is as large as possible. The uncertainty in the value of this estimate is characterized by studying the set of model parameters yielding predictions that comply with all the requirements. Strategies are presented for bounding this set, studying its dependence on admissible prediction error set by the analyst, and evaluating the sensitivity of the model predictions to parameter variations. This information is instrumental in characterizing uncertainty models used for evaluating the dynamic model at operating conditions differing from those used for its identification and validation. A practical example based on the short period dynamics of the F-16 is used for illustration.
Combining dynamical decoupling with optimal control for improved QIP.
Grace, Matthew D.; Carroll, Malcolm S.; Dominy, Jason; Witzel, Wayne
2010-03-01
Constructing high-fidelity control pulses that are robust to control and system/environment fluctuations is a crucial objective for quantum information processing (QIP). We combine dynamical decoupling (DD) with optimal control (OC) to identify control pulses that achieve this objective numerically. Previous DD work has shown that general errors up to (but not including) third order can be removed from {pi}- and {pi}/2-pulses without concatenation. By systematically integrating DD and OC, we are able to increase pulse fidelity beyond this limit. Our hybrid method of quantum control incorporates a newly-developed algorithm for robust OC, providing a nested DD-OC approach to generate robust controls. Motivated by solid-state QIP, we also incorporate relevant experimental constraints into this DD-OC formalism. To demonstrate the advantage of our approach, the resulting quantum controls are compared to previous DD results in open and uncertain model systems.
A relaxed reduced space SQP strategy for dynamic optimization problems.
Logsdon, J. S.; Biegler, L. T.; Carnegie-Mellon Univ.
1993-01-01
Recently, strategies have been developed to solve dynamic simulation and optimization problems in a simultaneous manner by applying orthogonal collocation on finite elements and solving the nonlinear program (NLP) with a reduced space successive quadratic programming (SQP) approach. We develop a relaxed simultaneous approach that leads to faster performance. The method operates in the reduced space of the control variables and solves the collocation equations inexactly at each SQP iteration. Unlike previous simultaneous formulations, it is able to consider the state variables one element at a time. Also, this approach is compared on two process examples to the reduced gradient, feasible path approach outlined in Logsdon and Biegler. Nonlinear programs with up to 5500 variables are solved with only 40% of the effort. Finally, a theoretical analysis of this approach is provided.
Performance Study and Dynamic Optimization Design for Thread Pool Systems
Dongping Xu
2004-12-19
Thread pools have been widely used by many multithreaded applications. However, the determination of the pool size according to the application behavior still remains problematic. To automate this process, in this thesis we have developed a set of performance metrics for quantitatively analyzing thread pool performance. For our experiments, we built a thread pool system which provides a general framework for thread pool research. Based on this simulation environment, we studied the performance impact brought by the thread pool on different multithreaded applications. Additionally, the correlations between internal characterizations of thread pools and their throughput were also examined. We then proposed and evaluated a heuristic algorithm to dynamically determine the optimal thread pool size. The simulation results show that this approach is effective in improving overall application performance.
Improved self-protection using dynamically optimized expendable countermeasures
NASA Astrophysics Data System (ADS)
Hovland, Harald
2007-04-01
The use of expendable countermeasures is still found to be a viable choice for self protection against Man Portable Air Defense Systems (MANPADS) due to their simplicity, low cost, flexibility, recent improvements in decoy technology, the ability to handle multiple threats simultaneously and the off-board nature of these countermeasures. In civil aviation, the risk of general hazards linked to the use of pyrotechnics is the main argument against expendable countermeasures, whereas for military platforms, the limitation in capacity due to a limited number of rounds is often used as an argument to replace expendable countermeasures by laser-based countermeasures. This latter argument is in general not substantiated by modelling or figures of merit, although it is often argued that a laser based system allows for more false alarms, hence enabling a more sensitive missile approach warning system. The author has developed a model that accounts for the statistical effects of running out of expendable countermeasures during a mission, in terms of the overall mission survival probability. The model includes key parameters of the missile approach warning system (MAWS), and can handle multiple missile types and missile attack configurations, as well as various statistical models of missile attacks. The model enables quantitative comparison between laser based and expendable countermeasures, but also a dynamic optimization of the countermeasures in terms of whether to use small or large countermeasure programs, as well as the dynamic tuning of MAWS key parameters to optimize the overall performance. The model is also well suited for determination of the contributions of the different components of the system in the overall survival probability.
Geometry optimization for micro-pressure sensor considering dynamic interference
NASA Astrophysics Data System (ADS)
Yu, Zhongliang; Zhao, Yulong; Li, Lili; Tian, Bian; Li, Cun
2014-09-01
Presented is the geometry optimization for piezoresistive absolute micro-pressure sensor. A figure of merit called the performance factor (PF) is defined as a quantitative index to describe the comprehensive performances of a sensor including sensitivity, resonant frequency, and acceleration interference. Three geometries are proposed through introducing islands and sensitive beams into typical flat diaphragm. The stress distributions of sensitive elements are analyzed by finite element method. Multivariate fittings based on ANSYS simulation results are performed to establish the equations about surface stress, deflection, and resonant frequency. Optimization by MATLAB is carried out to determine the dimensions of the geometries. Convex corner undercutting is evaluated. Each PF of the three geometries with the determined dimensions is calculated and compared. Silicon bulk micromachining is utilized to fabricate the prototypes of the sensors. The outputs of the sensors under both static and dynamic conditions are tested. Experimental results demonstrate the rationality of the defined performance factor and reveal that the geometry with quad islands presents the highest PF of 210.947 Hz1/4. The favorable overall performances enable the sensor more suitable for altimetry.
Prediction uncertainty and optimal experimental design for learning dynamical systems
NASA Astrophysics Data System (ADS)
Letham, Benjamin; Letham, Portia A.; Rudin, Cynthia; Browne, Edward P.
2016-06-01
Dynamical systems are frequently used to model biological systems. When these models are fit to data, it is necessary to ascertain the uncertainty in the model fit. Here, we present prediction deviation, a metric of uncertainty that determines the extent to which observed data have constrained the model's predictions. This is accomplished by solving an optimization problem that searches for a pair of models that each provides a good fit for the observed data, yet has maximally different predictions. We develop a method for estimating a priori the impact that additional experiments would have on the prediction deviation, allowing the experimenter to design a set of experiments that would most reduce uncertainty. We use prediction deviation to assess uncertainty in a model of interferon-alpha inhibition of viral infection, and to select a sequence of experiments that reduces this uncertainty. Finally, we prove a theoretical result which shows that prediction deviation provides bounds on the trajectories of the underlying true model. These results show that prediction deviation is a meaningful metric of uncertainty that can be used for optimal experimental design.
Geometry optimization for micro-pressure sensor considering dynamic interference
Yu, Zhongliang; Zhao, Yulong Li, Lili; Tian, Bian; Li, Cun
2014-09-15
Presented is the geometry optimization for piezoresistive absolute micro-pressure sensor. A figure of merit called the performance factor (PF) is defined as a quantitative index to describe the comprehensive performances of a sensor including sensitivity, resonant frequency, and acceleration interference. Three geometries are proposed through introducing islands and sensitive beams into typical flat diaphragm. The stress distributions of sensitive elements are analyzed by finite element method. Multivariate fittings based on ANSYS simulation results are performed to establish the equations about surface stress, deflection, and resonant frequency. Optimization by MATLAB is carried out to determine the dimensions of the geometries. Convex corner undercutting is evaluated. Each PF of the three geometries with the determined dimensions is calculated and compared. Silicon bulk micromachining is utilized to fabricate the prototypes of the sensors. The outputs of the sensors under both static and dynamic conditions are tested. Experimental results demonstrate the rationality of the defined performance factor and reveal that the geometry with quad islands presents the highest PF of 210.947 Hz{sup 1/4}. The favorable overall performances enable the sensor more suitable for altimetry.
Geometry optimization for micro-pressure sensor considering dynamic interference.
Yu, Zhongliang; Zhao, Yulong; Li, Lili; Tian, Bian; Li, Cun
2014-09-01
Presented is the geometry optimization for piezoresistive absolute micro-pressure sensor. A figure of merit called the performance factor (PF) is defined as a quantitative index to describe the comprehensive performances of a sensor including sensitivity, resonant frequency, and acceleration interference. Three geometries are proposed through introducing islands and sensitive beams into typical flat diaphragm. The stress distributions of sensitive elements are analyzed by finite element method. Multivariate fittings based on ANSYS simulation results are performed to establish the equations about surface stress, deflection, and resonant frequency. Optimization by MATLAB is carried out to determine the dimensions of the geometries. Convex corner undercutting is evaluated. Each PF of the three geometries with the determined dimensions is calculated and compared. Silicon bulk micromachining is utilized to fabricate the prototypes of the sensors. The outputs of the sensors under both static and dynamic conditions are tested. Experimental results demonstrate the rationality of the defined performance factor and reveal that the geometry with quad islands presents the highest PF of 210.947 Hz(1/4). The favorable overall performances enable the sensor more suitable for altimetry. PMID:25273764
4500 V SPT+ IGBT optimization on static and dynamic losses
NASA Astrophysics Data System (ADS)
Qingyun, Dai; Xiaoli, Tian; Wenliang, Zhang; Shuojin, Lu; Yangjun, Zhu
2015-09-01
This paper concerns the need for improving the static and dynamic performance of the high voltage insulated gate bipolar transistor (HV IGBTs). A novel structure with a carrier stored layer on the cathode side, known as an enhanced planar IGBT of the 4500 V voltage class is investigated. With the adoption of a soft punch through (SPT) concept as the vertical structure and an enhanced planar concept as the top structure, signed as SPT+ IGBT, the simulation results indicate the turn-off switching waveform of the 4500 V SPT+ IGBT is soft and also realizes an improved trade-off relationship between on-state voltage drop (Von) and turn-off loss (Eoff) in comparison with the SPT IGBT. Attention is also paid to the influences caused by different carrier stored layer doping dose on static and dynamic performances, to optimize on-state and switching losses of SPT+ IGBT. Project supported by the National Major Science and Technology Special Project of China (No. 2011ZX02504-002).
Dynamic Range Size Analysis of Territorial Animals: An Optimality Approach.
Tao, Yun; Börger, Luca; Hastings, Alan
2016-10-01
Home range sizes of territorial animals are often observed to vary periodically in response to seasonal changes in foraging opportunities. Here we develop the first mechanistic model focused on the temporal dynamics of home range expansion and contraction in territorial animals. We demonstrate how simple movement principles can lead to a rich suite of range size dynamics, by balancing foraging activity with defensive requirements and incorporating optimal behavioral rules into mechanistic home range analysis. Our heuristic model predicts three general temporal patterns that have been observed in empirical studies across multiple taxa. First, a positive correlation between age and territory quality promotes shrinking home ranges over an individual's lifetime, with maximal range size variability shortly before the adult stage. Second, poor sensory information, low population density, and large resource heterogeneity may all independently facilitate range size instability. Finally, aggregation behavior toward forage-rich areas helps produce divergent home range responses between individuals from different age classes. This model has broad applications for addressing important unknowns in animal space use, with potential applications also in conservation and health management strategies. PMID:27622879
Campaign-level dynamic network modelling for spaceflight logistics for the flexible path concept
NASA Astrophysics Data System (ADS)
Ho, Koki; de Weck, Olivier L.; Hoffman, Jeffrey A.; Shishko, Robert
2016-06-01
This paper develops a network optimization formulation for dynamic campaign-level space mission planning. Although many past space missions have been designed mainly from a mission-level perspective, a campaign-level perspective will be important for future space exploration. In order to find the optimal campaign-level space transportation architecture, a mixed-integer linear programming (MILP) formulation with a generalized multi-commodity flow and a time-expanded network is developed. Particularly, a new heuristics-based method, a partially static time-expanded network, is developed to provide a solution quickly. The developed method is applied to a case study containing human exploration of a near-Earth object (NEO) and Mars, related to the concept of the Flexible Path. The numerical results show that using the specific combinations of propulsion technologies, in-situ resource utilization (ISRU), and other space infrastructure elements can reduce the initial mass in low-Earth orbit (IMLEO) significantly. In addition, the case study results also show that we can achieve large IMLEO reduction by designing NEO and Mars missions together as a campaign compared with designing them separately owing to their common space infrastructure pre-deployment. This research will be an important step toward efficient and flexible campaign-level space mission planning.
Optimal spatiotemporal reduced order modeling for nonlinear dynamical systems
NASA Astrophysics Data System (ADS)
LaBryer, Allen
Proposed in this dissertation is a novel reduced order modeling (ROM) framework called optimal spatiotemporal reduced order modeling (OPSTROM) for nonlinear dynamical systems. The OPSTROM approach is a data-driven methodology for the synthesis of multiscale reduced order models (ROMs) which can be used to enhance the efficiency and reliability of under-resolved simulations for nonlinear dynamical systems. In the context of nonlinear continuum dynamics, the OPSTROM approach relies on the concept of embedding subgrid-scale models into the governing equations in order to account for the effects due to unresolved spatial and temporal scales. Traditional ROMs neglect these effects, whereas most other multiscale ROMs account for these effects in ways that are inconsistent with the underlying spatiotemporal statistical structure of the nonlinear dynamical system. The OPSTROM framework presented in this dissertation begins with a general system of partial differential equations, which are modified for an under-resolved simulation in space and time with an arbitrary discretization scheme. Basic filtering concepts are used to demonstrate the manner in which residual terms, representing subgrid-scale dynamics, arise with a coarse computational grid. Models for these residual terms are then developed by accounting for the underlying spatiotemporal statistical structure in a consistent manner. These subgrid-scale models are designed to provide closure by accounting for the dynamic interactions between spatiotemporal macroscales and microscales which are otherwise neglected in a ROM. For a given resolution, the predictions obtained with the modified system of equations are optimal (in a mean-square sense) as the subgrid-scale models are based upon principles of mean-square error minimization, conditional expectations and stochastic estimation. Methods are suggested for efficient model construction, appraisal, error measure, and implementation with a couple of well-known time
Optimized dynamical decoupling in a model quantum memory.
Biercuk, Michael J; Uys, Hermann; VanDevender, Aaron P; Shiga, Nobuyasu; Itano, Wayne M; Bollinger, John J
2009-04-23
Any quantum system, such as those used in quantum information or magnetic resonance, is subject to random phase errors that can dramatically affect the fidelity of a desired quantum operation or measurement. In the context of quantum information, quantum error correction techniques have been developed to correct these errors, but resource requirements are extraordinary. The realization of a physically tractable quantum information system will therefore be facilitated if qubit (quantum bit) error rates are far below the so-called fault-tolerance error threshold, predicted to be of the order of 10(-3)-10(-6). The need to realize such low error rates motivates a search for alternative strategies to suppress dephasing in quantum systems. Here we experimentally demonstrate massive suppression of qubit error rates by the application of optimized dynamical decoupling pulse sequences, using a model quantum system capable of simulating a variety of qubit technologies. We demonstrate an analytically derived pulse sequence, UDD, and find novel sequences through active, real-time experimental feedback. The latter sequences are tailored to maximize error suppression without the need for a priori knowledge of the ambient noise environment, and are capable of suppressing errors by orders of magnitude compared to other existing sequences (including the benchmark multi-pulse spin echo). Our work includes the extension of a treatment to predict qubit decoherence under realistic conditions, yielding strong agreement between experimental data and theory for arbitrary pulse sequences incorporating nonidealized control pulses. These results demonstrate the robustness of qubit memory error suppression through dynamical decoupling techniques across a variety of qubit technologies. PMID:19396139
An optimization model for energy generation and distribution in a dynamic facility
NASA Technical Reports Server (NTRS)
Lansing, F. L.
1981-01-01
An analytical model is described using linear programming for the optimum generation and distribution of energy demands among competing energy resources and different economic criteria. The model, which will be used as a general engineering tool in the analysis of the Deep Space Network ground facility, considers several essential decisions for better design and operation. The decisions sought for the particular energy application include: the optimum time to build an assembly of elements, inclusion of a storage medium of some type, and the size or capacity of the elements that will minimize the total life-cycle cost over a given number of years. The model, which is structured in multiple time divisions, employ the decomposition principle for large-size matrices, the branch-and-bound method in mixed-integer programming, and the revised simplex technique for efficient and economic computer use.
NASA Astrophysics Data System (ADS)
Bulgakov, V. K.; Strigunov, V. V.
2009-05-01
The Pontryagin maximum principle is used to prove a theorem concerning optimal control in regional macroeconomics. A boundary value problem for optimal trajectories of the state and adjoint variables is formulated, and optimal curves are analyzed. An algorithm is proposed for solving the boundary value problem of optimal control. The performance of the algorithm is demonstrated by computing an optimal control and the corresponding optimal trajectories.
Photocathode Optimization for a Dynamic Transmission Electron Microscope: Final Report
Ellis, P; Flom, Z; Heinselman, K; Nguyen, T; Tung, S; Haskell, R; Reed, B W; LaGrange, T
2011-08-04
The Dynamic Transmission Electron Microscope (DTEM) team at Harvey Mudd College has been sponsored by LLNL to design and build a test setup for optimizing the performance of the DTEM's electron source. Unlike a traditional TEM, the DTEM achieves much faster exposure times by using photoemission from a photocathode to produce electrons for imaging. The DTEM team's work is motivated by the need to improve the coherence and current density of the electron cloud produced by the electron gun in order to increase the image resolution and contrast achievable by DTEM. The photoemission test setup is nearly complete and the team will soon complete baseline tests of electron gun performance. The photoemission laser and high voltage power supply have been repaired; the optics path for relaying the laser to the photocathode has been finalized, assembled, and aligned; the internal setup of the vacuum chamber has been finalized and mostly implemented; and system control, synchronization, and data acquisition has been implemented in LabVIEW. Immediate future work includes determining a consistent alignment procedure to place the laser waist on the photocathode, and taking baseline performance measurements of the tantalum photocathode. Future research will examine the performance of the electron gun as a function of the photoemission laser profile, the photocathode material, and the geometry and voltages of the accelerating and focusing components in the electron gun. This report presents the team's progress and outlines the work that remains.
Optimal spectral tracking--adapting to dynamic regime change.
Brittain, John-Stuart; Halliday, David M
2011-01-30
Real world data do not always obey the statistical restraints imposed upon them by sophisticated analysis techniques. In spectral analysis for instance, an ergodic process--the interchangeability of temporal for spatial averaging--is assumed for a repeat-trial design. Many evolutionary scenarios, such as learning and motor consolidation, do not conform to such linear behaviour and should be approached from a more flexible perspective. To this end we previously introduced the method of optimal spectral tracking (OST) in the study of trial-varying parameters. In this extension to our work we modify the OST routines to provide an adaptive implementation capable of reacting to dynamic transitions in the underlying system state. In so doing, we generalise our approach to characterise both slow-varying and rapid fluctuations in time-series, simultaneously providing a metric of system stability. The approach is first applied to a surrogate dataset and compared to both our original non-adaptive solution and spectrogram approaches. The adaptive OST is seen to display fast convergence and desirable statistical properties. All three approaches are then applied to a neurophysiological recording obtained during a study on anaesthetic monitoring. Local field potentials acquired from the posterior hypothalamic region of a deep brain stimulation patient undergoing anaesthesia were analysed. The characterisation of features such as response delay, time-to-peak and modulation brevity are considered. PMID:21115043
Conceptualizing a Tool to Optimize Therapy Based on Dynamic Heterogeneity
Liao, David; Estévez-Salmerón, Luis; Tlsty, Thea D.
2012-01-01
Complex biological systems often display a randomness paralleled in processes studied in fundamental physics. This simple stochasticity emerges owing to the complexity of the system and underlies a fundamental aspect of biology called phenotypic stochasticity. Ongoing stochastic fluctuations in phenotype at the single-unit level can contribute to two emergent population phenotypes. Phenotypic stochasticity not only generates heterogeneity within a cell population, but also allows reversible transitions back and forth between multiple states. This phenotypic interconversion tends to restore a population to a previous composition after that population has been depleted of specific members. We call this tendency homeostatic heterogeneity. These concepts of dynamic heterogeneity can be applied to populations composed of molecules, cells, individuals, etc. Here we discuss the concept that phenotypic stochasticity both underlies the generation of heterogeneity within a cell population and can be used to control population composition, contributing, in particular, to both the ongoing emergence of drug resistance and an opportunity for depleting drug-resistant cells. Using notions of both “large” and “small” numbers of biomolecular components, we rationalize our use of Markov processes to model the generation and eradication of drug-resistant cells. Using these insights, we have developed a graphical tool, called a metronomogram, that we propose will allow us to optimize dosing frequencies and total course durations for clinical benefit. PMID:23197078
Conceptualizing a tool to optimize therapy based on dynamic heterogeneity
NASA Astrophysics Data System (ADS)
Liao, David; Estévez-Salmerón, Luis; Tlsty, Thea D.
2012-12-01
Complex biological systems often display a randomness paralleled in processes studied in fundamental physics. This simple stochasticity emerges owing to the complexity of the system and underlies a fundamental aspect of biology called phenotypic stochasticity. Ongoing stochastic fluctuations in phenotype at the single-unit level can contribute to two emergent population phenotypes. Phenotypic stochasticity not only generates heterogeneity within a cell population, but also allows reversible transitions back and forth between multiple states. This phenotypic interconversion tends to restore a population to a previous composition after that population has been depleted of specific members. We call this tendency homeostatic heterogeneity. These concepts of dynamic heterogeneity can be applied to populations composed of molecules, cells, individuals, etc. Here we discuss the concept that phenotypic stochasticity both underlies the generation of heterogeneity within a cell population and can be used to control population composition, contributing, in particular, to both the ongoing emergence of drug resistance and an opportunity for depleting drug-resistant cells. Using notions of both ‘large’ and ‘small’ numbers of biomolecular components, we rationalize our use of Markov processes to model the generation and eradication of drug-resistant cells. Using these insights, we have developed a graphical tool, called a metronomogram, that we propose will allow us to optimize dosing frequencies and total course durations for clinical benefit. The authors dedicate this paper to Dr Barton Kamen who inspired its initiation and enthusiastically supported its pursuit.
New Statistical Learning Methods for Estimating Optimal Dynamic Treatment Regimes
Zhao, Ying-Qi; Zeng, Donglin; Laber, Eric B.; Kosorok, Michael R.
2014-01-01
Dynamic treatment regimes (DTRs) are sequential decision rules for individual patients that can adapt over time to an evolving illness. The goal is to accommodate heterogeneity among patients and find the DTR which will produce the best long term outcome if implemented. We introduce two new statistical learning methods for estimating the optimal DTR, termed backward outcome weighted learning (BOWL), and simultaneous outcome weighted learning (SOWL). These approaches convert individualized treatment selection into an either sequential or simultaneous classification problem, and can thus be applied by modifying existing machine learning techniques. The proposed methods are based on directly maximizing over all DTRs a nonparametric estimator of the expected long-term outcome; this is fundamentally different than regression-based methods, for example Q-learning, which indirectly attempt such maximization and rely heavily on the correctness of postulated regression models. We prove that the resulting rules are consistent, and provide finite sample bounds for the errors using the estimated rules. Simulation results suggest the proposed methods produce superior DTRs compared with Q-learning especially in small samples. We illustrate the methods using data from a clinical trial for smoking cessation. PMID:26236062
Metamodeling and the Critic-based approach to multi-level optimization.
Werbos, Ludmilla; Kozma, Robert; Silva-Lugo, Rodrigo; Pazienza, Giovanni E; Werbos, Paul J
2012-08-01
Large-scale networks with hundreds of thousands of variables and constraints are becoming more and more common in logistics, communications, and distribution domains. Traditionally, the utility functions defined on such networks are optimized using some variation of Linear Programming, such as Mixed Integer Programming (MIP). Despite enormous progress both in hardware (multiprocessor systems and specialized processors) and software (Gurobi) we are reaching the limits of what these tools can handle in real time. Modern logistic problems, for example, call for expanding the problem both vertically (from one day up to several days) and horizontally (combining separate solution stages into an integrated model). The complexity of such integrated models calls for alternative methods of solution, such as Approximate Dynamic Programming (ADP), which provide a further increase in the performance necessary for the daily operation. In this paper, we present the theoretical basis and related experiments for solving the multistage decision problems based on the results obtained for shorter periods, as building blocks for the models and the solution, via Critic-Model-Action cycles, where various types of neural networks are combined with traditional MIP models in a unified optimization system. In this system architecture, fast and simple feed-forward networks are trained to reasonably initialize more complicated recurrent networks, which serve as approximators of the value function (Critic). The combination of interrelated neural networks and optimization modules allows for multiple queries for the same system, providing flexibility and optimizing performance for large-scale real-life problems. A MATLAB implementation of our solution procedure for a realistic set of data and constraints shows promising results, compared to the iterative MIP approach. PMID:22386785
Orellana, Liliana; Rotnitzky, Andrea; Robins, James M
2010-01-01
In this companion article to "Dynamic Regime Marginal Structural Mean Models for Estimation of Optimal Dynamic Treatment Regimes, Part I: Main Content" [Orellana, Rotnitzky and Robins (2010), IJB, Vol. 6, Iss. 2, Art. 7] we present (i) proofs of the claims in that paper, (ii) a proposal for the computation of a confidence set for the optimal index when this lies in a finite set, and (iii) an example to aid the interpretation of the positivity assumption. PMID:20405047
NASA Astrophysics Data System (ADS)
Sutrisno; Widowati; Solikhin
2016-06-01
In this paper, we propose a mathematical model in stochastic dynamic optimization form to determine the optimal strategy for an integrated single product inventory control problem and supplier selection problem where the demand and purchasing cost parameters are random. For each time period, by using the proposed model, we decide the optimal supplier and calculate the optimal product volume purchased from the optimal supplier so that the inventory level will be located at some point as close as possible to the reference point with minimal cost. We use stochastic dynamic programming to solve this problem and give several numerical experiments to evaluate the model. From the results, for each time period, the proposed model was generated the optimal supplier and the inventory level was tracked the reference point well.
Wang, Xiaolong; Jiang, Aipeng; Jiangzhou, Shu; Li, Ping
2014-01-01
A large-scale parallel-unit seawater reverse osmosis desalination plant contains many reverse osmosis (RO) units. If the operating conditions change, these RO units will not work at the optimal design points which are computed before the plant is built. The operational optimization problem (OOP) of the plant is to find out a scheduling of operation to minimize the total running cost when the change happens. In this paper, the OOP is modelled as a mixed-integer nonlinear programming problem. A two-stage differential evolution algorithm is proposed to solve this OOP. Experimental results show that the proposed method is satisfactory in solution quality. PMID:24701180
An optimal operational advisory system for a brewery's energy supply plant
Ito, K.; Shiba, T.; Yokoyama, R. . Dept. of Energy Systems Engineering); Sakashita, S. . Mayekawa Energy Management Research Center)
1994-03-01
An optimal operational advisory system is proposed to operate rationally a brewery's energy supply plant from the economical viewpoint. A mixed-integer linear programming problem is formulated so as to minimize the daily operational cost subject to constraints such as equipment performance characteristics, energy supply-demand relations, and some practical operational restrictions. This problem includes lots of unknown variables and a hierarchical approach is adopted to derive numerical solutions. The optimal solution obtained by this methods is indicated to the plant operators so as to support their decision making. Through the numerical study for a real brewery plant, the possibility of saving operational cost is ascertained.
A MILP-Based Distribution Optimal Power Flow Model for Microgrid Operation
Liu, Guodong; Starke, Michael R; Zhang, Xiaohu; Tomsovic, Kevin
2016-01-01
This paper proposes a distribution optimal power flow (D-OPF) model for the operation of microgrids. The proposed model minimizes not only the operating cost, including fuel cost, purchasing cost and demand charge, but also several performance indices, including voltage deviation, network power loss and power factor. It co-optimizes the real and reactive power form distributed generators (DGs) and batteries considering their capacity and power factor limits. The D-OPF is formulated as a mixed-integer linear programming (MILP). Numerical simulation results show the effectiveness of the proposed model.
Wang, Jian; Wang, Xiaolong; Jiang, Aipeng; Jiangzhou, Shu; Li, Ping
2014-01-01
A large-scale parallel-unit seawater reverse osmosis desalination plant contains many reverse osmosis (RO) units. If the operating conditions change, these RO units will not work at the optimal design points which are computed before the plant is built. The operational optimization problem (OOP) of the plant is to find out a scheduling of operation to minimize the total running cost when the change happens. In this paper, the OOP is modelled as a mixed-integer nonlinear programming problem. A two-stage differential evolution algorithm is proposed to solve this OOP. Experimental results show that the proposed method is satisfactory in solution quality. PMID:24701180
NASA Technical Reports Server (NTRS)
Lan, C. Edward; Ge, Fuying
1989-01-01
Control system design for general nonlinear flight dynamic models is considered through numerical simulation. The design is accomplished through a numerical optimizer coupled with analysis of flight dynamic equations. The general flight dynamic equations are numerically integrated and dynamic characteristics are then identified from the dynamic response. The design variables are determined iteratively by the optimizer to optimize a prescribed objective function which is related to desired dynamic characteristics. Generality of the method allows nonlinear effects to aerodynamics and dynamic coupling to be considered in the design process. To demonstrate the method, nonlinear simulation models for an F-5A and an F-16 configurations are used to design dampers to satisfy specifications on flying qualities and control systems to prevent departure. The results indicate that the present method is simple in formulation and effective in satisfying the design objectives.
Evacuation dynamic and exit optimization of a supermarket based on particle swarm optimization
NASA Astrophysics Data System (ADS)
Li, Lin; Yu, Zhonghai; Chen, Yang
2014-12-01
A modified particle swarm optimization algorithm is proposed in this paper to investigate the dynamic of pedestrian evacuation from a fire in a public building-a supermarket with multiple exits and configurations of counters. Two distinctive evacuation behaviours featured by the shortest-path strategy and the following-up strategy are simulated in the model, accounting for different categories of age and sex of the pedestrians along with the impact of the fire, including gases, heat and smoke. To examine the relationship among the progress of the overall evacuation and the layout and configuration of the site, a series of simulations are conducted in various settings: without a fire and with a fire at different locations. Those experiments reveal a general pattern of two-phase evacuation, i.e., a steep section and a flat section, in addition to the impact of the presence of multiple exits on the evacuation along with the geographic locations of the exits. For the study site, our simulations indicated the deficiency of the configuration and the current layout of this site in the process of evacuation and verified the availability of proposed solutions to resolve the deficiency. More specifically, for improvement of the effectiveness of the evacuation from the site, adding an exit between Exit 6 and Exit 7 and expanding the corridor at the right side of Exit 7 would significantly reduce the evacuation time.
Optimal GENCO bidding strategy
NASA Astrophysics Data System (ADS)
Gao, Feng
Electricity industries worldwide are undergoing a period of profound upheaval. The conventional vertically integrated mechanism is being replaced by a competitive market environment. Generation companies have incentives to apply novel technologies to lower production costs, for example: Combined Cycle units. Economic dispatch with Combined Cycle units becomes a non-convex optimization problem, which is difficult if not impossible to solve by conventional methods. Several techniques are proposed here: Mixed Integer Linear Programming, a hybrid method, as well as Evolutionary Algorithms. Evolutionary Algorithms share a common mechanism, stochastic searching per generation. The stochastic property makes evolutionary algorithms robust and adaptive enough to solve a non-convex optimization problem. This research implements GA, EP, and PS algorithms for economic dispatch with Combined Cycle units, and makes a comparison with classical Mixed Integer Linear Programming. The electricity market equilibrium model not only helps Independent System Operator/Regulator analyze market performance and market power, but also provides Market Participants the ability to build optimal bidding strategies based on Microeconomics analysis. Supply Function Equilibrium (SFE) is attractive compared to traditional models. This research identifies a proper SFE model, which can be applied to a multiple period situation. The equilibrium condition using discrete time optimal control is then developed for fuel resource constraints. Finally, the research discusses the issues of multiple equilibria and mixed strategies, which are caused by the transmission network. Additionally, an advantage of the proposed model for merchant transmission planning is discussed. A market simulator is a valuable training and evaluation tool to assist sellers, buyers, and regulators to understand market performance and make better decisions. A traditional optimization model may not be enough to consider the distributed
An archived multi-objective simulated annealing for a dynamic cellular manufacturing system
NASA Astrophysics Data System (ADS)
Shirazi, Hossein; Kia, Reza; Javadian, Nikbakhsh; Tavakkoli-Moghaddam, Reza
2014-05-01
To design a group layout of a cellular manufacturing system (CMS) in a dynamic environment, a multi-objective mixed-integer non-linear programming model is developed. The model integrates cell formation, group layout and production planning (PP) as three interrelated decisions involved in the design of a CMS. This paper provides an extensive coverage of important manufacturing features used in the design of CMSs and enhances the flexibility of an existing model in handling the fluctuations of part demands more economically by adding machine depot and PP decisions. Two conflicting objectives to be minimized are the total costs and the imbalance of workload among cells. As the considered objectives in this model are in conflict with each other, an archived multi-objective simulated annealing (AMOSA) algorithm is designed to find Pareto-optimal solutions. Matrix-based solution representation, a heuristic procedure generating an initial and feasible solution and efficient mutation operators are the advantages of the designed AMOSA. To demonstrate the efficiency of the proposed algorithm, the performance of AMOSA is compared with an exact algorithm (i.e., ∈-constraint method) solved by the GAMS software and a well-known evolutionary algorithm, namely NSGA-II for some randomly generated problems based on some comparison metrics. The obtained results show that the designed AMOSA can obtain satisfactory solutions for the multi-objective model.
Simultaneous model discrimination and parameter estimation in dynamic models of cellular systems
2013-01-01
Background Model development is a key task in systems biology, which typically starts from an initial model candidate and, involving an iterative cycle of hypotheses-driven model modifications, leads to new experimentation and subsequent model identification steps. The final product of this cycle is a satisfactory refined model of the biological phenomena under study. During such iterative model development, researchers frequently propose a set of model candidates from which the best alternative must be selected. Here we consider this problem of model selection and formulate it as a simultaneous model selection and parameter identification problem. More precisely, we consider a general mixed-integer nonlinear programming (MINLP) formulation for model selection and identification, with emphasis on dynamic models consisting of sets of either ODEs (ordinary differential equations) or DAEs (differential algebraic equations). Results We solved the MINLP formulation for model selection and identification using an algorithm based on Scatter Search (SS). We illustrate the capabilities and efficiency of the proposed strategy with a case study considering the KdpD/KdpE system regulating potassium homeostasis in Escherichia coli. The proposed approach resulted in a final model that presents a better fit to the in silico generated experimental data. Conclusions The presented MINLP-based optimization approach for nested-model selection and identification is a powerful methodology for model development in systems biology. This strategy can be used to perform model selection and parameter estimation in one single step, thus greatly reducing the number of experiments and computations of traditional modeling approaches. PMID:23938131
The optimal dynamic immunization under a controlled heterogeneous node-based SIRS model
NASA Astrophysics Data System (ADS)
Yang, Lu-Xing; Draief, Moez; Yang, Xiaofan
2016-05-01
Dynamic immunizations, under which the state of the propagation network of electronic viruses can be changed by adjusting the control measures, are regarded as an alternative to static immunizations. This paper addresses the optimal dynamical immunization under the widely accepted SIRS assumption. First, based on a controlled heterogeneous node-based SIRS model, an optimal control problem capturing the optimal dynamical immunization is formulated. Second, the existence of an optimal dynamical immunization scheme is shown, and the corresponding optimality system is derived. Next, some numerical examples are given to show that an optimal immunization strategy can be worked out by numerically solving the optimality system, from which it is found that the network topology has a complex impact on the optimal immunization strategy. Finally, the difference between a payoff and the minimum payoff is estimated in terms of the deviation of the corresponding immunization strategy from the optimal immunization strategy. The proposed optimal immunization scheme is justified, because it can achieve a low level of infections at a low cost.
Optimal Dynamic Advertising Strategy Under Age-Specific Market Segmentation
NASA Astrophysics Data System (ADS)
Krastev, Vladimir
2011-12-01
We consider the model proposed by Faggian and Grosset for determining the advertising efforts and goodwill in the long run of a company under age segmentation of consumers. Reducing this model to optimal control sub problems we find the optimal advertising strategy and goodwill.
Computing the optimal path in stochastic dynamical systems.
Bauver, Martha; Forgoston, Eric; Billings, Lora
2016-08-01
In stochastic systems, one is often interested in finding the optimal path that maximizes the probability of escape from a metastable state or of switching between metastable states. Even for simple systems, it may be impossible to find an analytic form of the optimal path, and in high-dimensional systems, this is almost always the case. In this article, we formulate a constructive methodology that is used to compute the optimal path numerically. The method utilizes finite-time Lyapunov exponents, statistical selection criteria, and a Newton-based iterative minimizing scheme. The method is applied to four examples. The first example is a two-dimensional system that describes a single population with internal noise. This model has an analytical solution for the optimal path. The numerical solution found using our computational method agrees well with the analytical result. The second example is a more complicated four-dimensional system where our numerical method must be used to find the optimal path. The third example, although a seemingly simple two-dimensional system, demonstrates the success of our method in finding the optimal path where other numerical methods are known to fail. In the fourth example, the optimal path lies in six-dimensional space and demonstrates the power of our method in computing paths in higher-dimensional spaces. PMID:27586597
Computing the optimal path in stochastic dynamical systems
NASA Astrophysics Data System (ADS)
Bauver, Martha; Forgoston, Eric; Billings, Lora
2016-08-01
In stochastic systems, one is often interested in finding the optimal path that maximizes the probability of escape from a metastable state or of switching between metastable states. Even for simple systems, it may be impossible to find an analytic form of the optimal path, and in high-dimensional systems, this is almost always the case. In this article, we formulate a constructive methodology that is used to compute the optimal path numerically. The method utilizes finite-time Lyapunov exponents, statistical selection criteria, and a Newton-based iterative minimizing scheme. The method is applied to four examples. The first example is a two-dimensional system that describes a single population with internal noise. This model has an analytical solution for the optimal path. The numerical solution found using our computational method agrees well with the analytical result. The second example is a more complicated four-dimensional system where our numerical method must be used to find the optimal path. The third example, although a seemingly simple two-dimensional system, demonstrates the success of our method in finding the optimal path where other numerical methods are known to fail. In the fourth example, the optimal path lies in six-dimensional space and demonstrates the power of our method in computing paths in higher-dimensional spaces.
A multilevel optimization of large-scale dynamic systems
NASA Technical Reports Server (NTRS)
Siljak, D. D.; Sundareshan, M. K.
1976-01-01
A multilevel feedback control scheme is proposed for optimization of large-scale systems composed of a number of (not necessarily weakly coupled) subsystems. Local controllers are used to optimize each subsystem, ignoring the interconnections. Then, a global controller may be applied to minimize the effect of interconnections and improve the performance of the overall system. At the cost of suboptimal performance, this optimization strategy ensures invariance of suboptimality and stability of the systems under structural perturbations whereby subsystems are disconnected and again connected during operation.
Optimized dynamic framing for PET-based myocardial blood flow estimation
NASA Astrophysics Data System (ADS)
Kolthammer, Jeffrey A.; Muzic, Raymond F.
2013-08-01
An optimal experiment design methodology was developed to select the framing schedule to be used in dynamic positron emission tomography (PET) for estimation of myocardial blood flow using 82Rb. A compartment model and an arterial input function based on measured data were used to calculate a D-optimality criterion for a wide range of candidate framing schedules. To validate the optimality calculation, noisy time-activity curves were simulated, from which parameter values were estimated using an efficient and robust decomposition of the estimation problem. D-optimized schedules improved estimate precision compared to non-optimized schedules, including previously published schedules. To assess robustness, a range of physiologic conditions were simulated. Schedules that were optimal for one condition were nearly-optimal for others. The effect of infusion duration was investigated. Optimality was better for shorter than for longer tracer infusion durations, with the optimal schedule for the shortest infusion duration being nearly optimal for other durations. Together this suggests that a framing schedule optimized for one set of conditions will also work well for others and it is not necessary to use different schedules for different infusion durations or for rest and stress studies. The method for optimizing schedules is general and could be applied in other dynamic PET imaging studies.
Huang, G.H.; Cohen, S.J.; Yin, Y.Y.; Bass, B. |
1996-09-01
A climatic change impact assessment was performed for agricultural and timbering activities. An inexact dynamic optimization model was utilized that can reflect complex system features and a related fuzzy system relation analysis method for comprehensive impact patterns assessment.
Optimal dynamic control of resources in a distributed system
NASA Technical Reports Server (NTRS)
Shin, Kang G.; Krishna, C. M.; Lee, Yann-Hang
1989-01-01
The authors quantitatively formulate the problem of controlling resources in a distributed system so as to optimize a reward function and derive optimal control strategies using Markov decision theory. The control variables treated are quite general; they could be control decisions related to system configuration, repair, diagnostics, files, or data. Two algorithms for resource control in distributed systems are derived for time-invariant and periodic environments, respectively. A detailed example to demonstrate the power and usefulness of the approach is provided.
A dynamic, optimal disease control model for foot-and-mouth disease: I. Model description.
Kobayashi, Mimako; Carpenter, Tim E; Dickey, Bradley F; Howitt, Richard E
2007-05-16
A dynamic optimization model was developed and used to evaluate alternative foot-and-mouth disease (FMD) control strategies. The model chose daily control strategies of depopulation and vaccination that minimized total regional cost for the entire epidemic duration, given disease dynamics and resource constraints. The disease dynamics and the impacts of control strategies on these dynamics were characterized in a set of difference equations; effects of movement restrictions on the disease dynamics were also considered. The model was applied to a three-county region in the Central Valley of California; the epidemic relationships were parameterized and validated using the information obtained from an FMD simulation model developed for the same region. The optimization model enables more efficient searches for desirable control strategies by considering all strategies simultaneously, providing the simulation model with optimization results to direct it in generating detailed predictions of potential FMD outbreaks. PMID:17280729
Optimization of the Dynamic Aperture for SPEAR3 Low-Emittance Upgrade
Wang, Lanfa; Huang, Xiaobiao; Nosochkov, Yuri; Safranek, James A.; Borland, Michael; /Argonne
2012-05-30
A low emittance upgrade is planned for SPEAR3. As the first phase, the emittance is reduced from 10nm to 7nm without additional magnets. A further upgrade with even lower emittance will require a damping wiggler. There is a smaller dynamic aperture for the lower emittance optics due to a stronger nonlinearity. Elegant based Multi-Objective Genetic Algorithm (MOGA) is used to maximize the dynamic aperture. Both the dynamic aperture and beam lifetime are optimized simultaneously. Various configurations of the sextupole magnets have been studied in order to find the best configuration. The betatron tune also can be optimized to minimize resonance effects. The optimized dynamic aperture increases more than 15% from the nominal case and the lifetime increases from 14 hours to 17 hours. It is important that the increase of the dynamic aperture is mainly in the beam injection direction. Therefore the injection efficiency will benefit from this improvement.
Tan, Q; Huang, G H; Cai, Y P
2010-09-01
The existing inexact optimization methods based on interval-parameter linear programming can hardly address problems where coefficients in objective functions are subject to dual uncertainties. In this study, a superiority-inferiority-based inexact fuzzy two-stage mixed-integer linear programming (SI-IFTMILP) model was developed for supporting municipal solid waste management under uncertainty. The developed SI-IFTMILP approach is capable of tackling dual uncertainties presented as fuzzy boundary intervals (FuBIs) in not only constraints, but also objective functions. Uncertainties expressed as a combination of intervals and random variables could also be explicitly reflected. An algorithm with high computational efficiency was provided to solve SI-IFTMILP. SI-IFTMILP was then applied to a long-term waste management case to demonstrate its applicability. Useful interval solutions were obtained. SI-IFTMILP could help generate dynamic facility-expansion and waste-allocation plans, as well as provide corrective actions when anticipated waste management plans are violated. It could also greatly reduce system-violation risk and enhance system robustness through examining two sets of penalties resulting from variations in fuzziness and randomness. Moreover, four possible alternative models were formulated to solve the same problem; solutions from them were then compared with those from SI-IFTMILP. The results indicate that SI-IFTMILP could provide more reliable solutions than the alternatives. PMID:20580864
Liu, Ping; Li, Guodong; Liu, Xinggao
2015-09-01
Control vector parameterization (CVP) is an important approach of the engineering optimization for the industrial dynamic processes. However, its major defect, the low optimization efficiency caused by calculating the relevant differential equations in the generated nonlinear programming (NLP) problem repeatedly, limits its wide application in the engineering optimization for the industrial dynamic processes. A novel highly effective control parameterization approach, fast-CVP, is first proposed to improve the optimization efficiency for industrial dynamic processes, where the costate gradient formulae is employed and a fast approximate scheme is presented to solve the differential equations in dynamic process simulation. Three well-known engineering optimization benchmark problems of the industrial dynamic processes are demonstrated as illustration. The research results show that the proposed fast approach achieves a fine performance that at least 90% of the computation time can be saved in contrast to the traditional CVP method, which reveals the effectiveness of the proposed fast engineering optimization approach for the industrial dynamic processes. PMID:26117286
Performance optimization of web-based medical simulation.
Halic, Tansel; Ahn, Woojin; De, Suvranu
2013-01-01
This paper presents a technique for performance optimization of multimodal interactive web-based medical simulation. A web-based simulation framework is promising for easy access and wide dissemination of medical simulation. However, the real-time performance of the simulation highly depends on hardware capability on the client side. Providing consistent simulation in different hardware is critical for reliable medical simulation. This paper proposes a non-linear mixed integer programming model to optimize the performance of visualization and physics computation while considering hardware capability and application specific constraints. The optimization model identifies and parameterizes the rendering and computing capabilities of the client hardware using an exploratory proxy code. The parameters are utilized to determine the optimized simulation conditions including texture sizes, mesh sizes and canvas resolution. The test results show that the optimization model not only achieves a desired frame per second but also resolves visual artifacts due to low performance hardware. PMID:23400151
An inverse dynamics approach to trajectory optimization for an aerospace plane
NASA Technical Reports Server (NTRS)
Lu, Ping
1992-01-01
An inverse dynamics approach for trajectory optimization is proposed. This technique can be useful in many difficult trajectory optimization and control problems. The application of the approach is exemplified by ascent trajectory optimization for an aerospace plane. Both minimum-fuel and minimax types of performance indices are considered. When rocket augmentation is available for ascent, it is shown that accurate orbital insertion can be achieved through the inverse control of the rocket in the presence of disturbances.
Time-limited optimal dynamics beyond the quantum speed limit
NASA Astrophysics Data System (ADS)
Gajdacz, Miroslav; Das, Kunal K.; Arlt, Jan; Sherson, Jacob F.; Opatrný, Tomáš
2015-12-01
The quantum speed limit sets the minimum time required to transfer a quantum system completely into a given target state. At shorter times the higher operation speed results in a loss of fidelity. Here we quantify the trade-off between the fidelity and the duration in a system driven by a time-varying control. The problem is addressed in the framework of Hilbert space geometry offering an intuitive interpretation of optimal control algorithms. This approach leads to a necessary criterion for control optimality applicable as a measure of algorithm convergence. The time fidelity trade-off expressed in terms of the direct Hilbert velocity provides a robust prediction of the quantum speed limit and allows one to adapt the control optimization such that it yields a predefined fidelity. The results are verified numerically in a multilevel system with a constrained Hamiltonian and a classification scheme for the control sequences is proposed based on their optimizability.
NASA Astrophysics Data System (ADS)
Huang, Xiaobiao; Safranek, James
2014-09-01
Nonlinear dynamics optimization is carried out for a low emittance upgrade lattice of SPEAR3 in order to improve its dynamic aperture and Touschek lifetime. Two multi-objective optimization algorithms, a genetic algorithm and a particle swarm algorithm, are used for this study. The performance of the two algorithms are compared. The result shows that the particle swarm algorithm converges significantly faster to similar or better solutions than the genetic algorithm and it does not require seeding of good solutions in the initial population. These advantages of the particle swarm algorithm may make it more suitable for many accelerator optimization applications.
Optimal dynamic pricing for deteriorating items with reference-price effects
NASA Astrophysics Data System (ADS)
Xue, Musen; Tang, Wansheng; Zhang, Jianxiong
2016-07-01
In this paper, a dynamic pricing problem for deteriorating items with the consumers' reference-price effect is studied. An optimal control model is established to maximise the total profit, where the demand not only depends on the current price, but also is sensitive to the historical price. The continuous-time dynamic optimal pricing strategy with reference-price effect is obtained through solving the optimal control model on the basis of Pontryagin's maximum principle. In addition, numerical simulations and sensitivity analysis are carried out. Finally, some managerial suggestions that firm may adopt to formulate its pricing policy are proposed.
Tao, Ye; Xu, Lijia; Zhang, Zhen; Chen, Runfeng; Li, Huanhuan; Xu, Hui; Zheng, Chao; Huang, Wei
2016-08-01
Current static-state explorations of organic semiconductors for optimal material properties and device performance are hindered by limited insights into the dynamically changed molecular states and charge transport and energy transfer processes upon device operation. Here, we propose a simple yet successful strategy, resonance variation-based dynamic adaptation (RVDA), to realize optimized self-adaptive properties in donor-resonance-acceptor molecules by engineering the resonance variation for dynamic tuning of organic semiconductors. Organic light-emitting diodes hosted by these RVDA materials exhibit remarkably high performance, with external quantum efficiencies up to 21.7% and favorable device stability. Our approach, which supports simultaneous realization of dynamically adapted and selectively enhanced properties via resonance engineering, illustrates a feasible design map for the preparation of smart organic semiconductors capable of dynamic structure and property modulations, promoting the studies of organic electronics from static to dynamic. PMID:27403886
Was Your Glass Left Half Full? Family Dynamics and Optimism
ERIC Educational Resources Information Center
Buri, John R.; Gunty, Amy
2008-01-01
Students' levels of a frequently studied adaptive schema (optimism) as a function of parenting variables (parental authority, family intrusiveness, parental overprotection, parentification, parental psychological control, and parental nurturance) were investigated. Results revealed that positive parenting styles were positively related to the…
Dynamic optimization methodology based on subgrid-scale dissipation for large eddy simulation
NASA Astrophysics Data System (ADS)
Yu, Changping; Xiao, Zuoli; Li, Xinliang
2016-01-01
A dynamic procedure based on subgrid-scale dissipation is proposed for large eddy simulation of turbulent flows. In the new method, the model coefficients are determined by minimizing the square error of the resolved dissipation rate based on the Germano identity. A dynamic two-term mixed model is tested and evaluated both a priori and a posteriori in simulations of homogeneous and isotropic turbulence. The new dynamic procedure proves to be more effective to optimize the model coefficients as compared with traditional method. The corresponding dynamic mixed model can predict the physical quantities more accurately than traditional dynamic mixed model.
INDDGO: Integrated Network Decomposition & Dynamic programming for Graph Optimization
Groer, Christopher S; Sullivan, Blair D; Weerapurage, Dinesh P
2012-10-01
It is well-known that dynamic programming algorithms can utilize tree decompositions to provide a way to solve some \\emph{NP}-hard problems on graphs where the complexity is polynomial in the number of nodes and edges in the graph, but exponential in the width of the underlying tree decomposition. However, there has been relatively little computational work done to determine the practical utility of such dynamic programming algorithms. We have developed software to construct tree decompositions using various heuristics and have created a fast, memory-efficient dynamic programming implementation for solving maximum weighted independent set. We describe our software and the algorithms we have implemented, focusing on memory saving techniques for the dynamic programming. We compare the running time and memory usage of our implementation with other techniques for solving maximum weighted independent set, including a commercial integer programming solver and a semi-definite programming solver. Our results indicate that it is possible to solve some instances where the underlying decomposition has width much larger than suggested by the literature. For certain types of problems, our dynamic programming code runs several times faster than these other methods.