Solving mixed integer nonlinear programming problems using spiral dynamics optimization algorithm
NASA Astrophysics Data System (ADS)
Kania, Adhe; Sidarto, Kuntjoro Adji
2016-02-01
Many engineering and practical problem can be modeled by mixed integer nonlinear programming. This paper proposes to solve the problem with modified spiral dynamics inspired optimization method of Tamura and Yasuda. Four test cases have been examined, including problem in engineering and sport. This method succeeds in obtaining the optimal result in all test cases.
Optimal control of polymer flooding based on mixed-integer iterative dynamic programming
NASA Astrophysics Data System (ADS)
Lei, Yang; Li, Shurong; Zhang, Xiaodong; Zhang, Qiang; Guo, Lanlei
2011-11-01
Polymer flooding is one of the most important technologies for enhanced oil recovery. In this article, a mixed-integer optimal control model of distributed parameter systems (DPS) for the injection strategies is established, which involves the performance index as maximum of the profit, the governing equations as the fluid flow equations of polymer flooding and some inequalities constraints, such as polymer concentration and injection amount limitation. The control variables are the volume size, the injection concentration of each slug and the terminal flooding time. For the constant injection rate, the slug size is determined by the integer time stage length, and thus the integer variables are introduced in the DPS. To cope with the optimal control problem (OCP) of this DPS, a mixed-integer iterative dynamic programming incorporating a special truncation procedure to handle integer restrictions on stage lengths is proposed. First, the OCP with variable time stage lengths is transformed into a fixed time stage problem by introducing a normalised time variable. Then, the optimisation procedure is carried out at each stage and preceded backwards in a systematic way. Finally, the numerical results of an example illustrate the effectiveness of the proposed method.
Mixed integer evolution strategies for parameter optimization.
Li, Rui; Emmerich, Michael T M; Eggermont, Jeroen; Bäck, Thomas; Schütz, M; Dijkstra, J; Reiber, J H C
2013-01-01
Evolution strategies (ESs) are powerful probabilistic search and optimization algorithms gleaned from biological evolution theory. They have been successfully applied to a wide range of real world applications. The modern ESs are mainly designed for solving continuous parameter optimization problems. Their ability to adapt the parameters of the multivariate normal distribution used for mutation during the optimization run makes them well suited for this domain. In this article we describe and study mixed integer evolution strategies (MIES), which are natural extensions of ES for mixed integer optimization problems. MIES can deal with parameter vectors consisting not only of continuous variables but also with nominal discrete and integer variables. Following the design principles of the canonical evolution strategies, they use specialized mutation operators tailored for the aforementioned mixed parameter classes. For each type of variable, the choice of mutation operators is governed by a natural metric for this variable type, maximal entropy, and symmetry considerations. All distributions used for mutation can be controlled in their shape by means of scaling parameters, allowing self-adaptation to be implemented. After introducing and motivating the conceptual design of the MIES, we study the optimality of the self-adaptation of step sizes and mutation rates on a generalized (weighted) sphere model. Moreover, we prove global convergence of the MIES on a very general class of problems. The remainder of the article is devoted to performance studies on artificial landscapes (barrier functions and mixed integer NK landscapes), and a case study in the optimization of medical image analysis systems. In addition, we show that with proper constraint handling techniques, MIES can also be applied to classical mixed integer nonlinear programming problems. PMID:22122384
Henriques, David; Rocha, Miguel; Saez-Rodriguez, Julio; Banga, Julio R.
2015-01-01
Motivation: Systems biology models can be used to test new hypotheses formulated on the basis of previous knowledge or new experimental data, contradictory with a previously existing model. New hypotheses often come in the shape of a set of possible regulatory mechanisms. This search is usually not limited to finding a single regulation link, but rather a combination of links subject to great uncertainty or no information about the kinetic parameters. Results: In this work, we combine a logic-based formalism, to describe all the possible regulatory structures for a given dynamic model of a pathway, with mixed-integer dynamic optimization (MIDO). This framework aims to simultaneously identify the regulatory structure (represented by binary parameters) and the real-valued parameters that are consistent with the available experimental data, resulting in a logic-based differential equation model. The alternative to this would be to perform real-valued parameter estimation for each possible model structure, which is not tractable for models of the size presented in this work. The performance of the method presented here is illustrated with several case studies: a synthetic pathway problem of signaling regulation, a two-component signal transduction pathway in bacterial homeostasis, and a signaling network in liver cancer cells. Supplementary information: Supplementary data are available at Bioinformatics online. Contact: julio@iim.csic.es or saezrodriguez@ebi.ac.uk PMID:26002881
NASA Astrophysics Data System (ADS)
Li, J. C.; Gong, B.; Wang, H. G.
2016-08-01
Optimal development of shale gas fields involves designing a most productive fracturing network for hydraulic stimulation processes and operating wells appropriately throughout the production time. A hydraulic fracturing network design-determining well placement, number of fracturing stages, and fracture lengths-is defined by specifying a set of integer ordered blocks to drill wells and create fractures in a discrete shale gas reservoir model. The well control variables such as bottom hole pressures or production rates for well operations are real valued. Shale gas development problems, therefore, can be mathematically formulated with mixed-integer optimization models. A shale gas reservoir simulator is used to evaluate the production performance for a hydraulic fracturing and well control plan. To find the optimal fracturing design and well operation is challenging because the problem is a mixed integer optimization problem and entails computationally expensive reservoir simulation. A dynamic simplex interpolation-based alternate subspace (DSIAS) search method is applied for mixed integer optimization problems associated with shale gas development projects. The optimization performance is demonstrated with the example case of the development of the Barnett Shale field. The optimization results of DSIAS are compared with those of a pattern search algorithm.
NASA Astrophysics Data System (ADS)
Wang, Bin; Chiang, Hsiao-Dong
Many applications of smart grid can be formulated as constrained optimization problems. Because of the discrete controls involved in power systems, these problems are essentially mixed-integer nonlinear programs. In this paper, we review the Trust-Tech-based methodology for solving mixed-integer nonlinear optimization. Specifically, we have developed a two-stage Trust-Tech-based methodology to systematically compute all the local optimal solutions for constrained mixed-integer nonlinear programming (MINLP) problems. In the first stage, for a given MINLP problem this methodology starts with the construction of a new, continuous, unconstrained problem through relaxation and the penalty function method. A corresponding dynamical system is then constructed to search for a set of local optimal solutions for the unconstrained problem. In the second stage, a reduced constrained NLP is defined for each local optimal solution by determining and fixing the values of integral variables of the MINLP problem. The Trust-Tech-based method is used to compute a set of local optimal solutions for these reduced NLP problems, from which the optimal solution of the original MINLP problem is determined. A numerical simulation of several testing problems is provided to illustrate the effectiveness of our proposed method.
Enhanced index tracking modeling in portfolio optimization with mixed-integer programming z approach
NASA Astrophysics Data System (ADS)
Siew, Lam Weng; Jaaman, Saiful Hafizah Hj.; Ismail, Hamizun bin
2014-09-01
Enhanced index tracking is a popular form of portfolio management in stock market investment. Enhanced index tracking aims to construct an optimal portfolio to generate excess return over the return achieved by the stock market index without purchasing all of the stocks that make up the index. The objective of this paper is to construct an optimal portfolio using mixed-integer programming model which adopts regression approach in order to generate higher portfolio mean return than stock market index return. In this study, the data consists of 24 component stocks in Malaysia market index which is FTSE Bursa Malaysia Kuala Lumpur Composite Index from January 2010 until December 2012. The results of this study show that the optimal portfolio of mixed-integer programming model is able to generate higher mean return than FTSE Bursa Malaysia Kuala Lumpur Composite Index return with only selecting 30% out of the total stock market index components.
Comparison of penalty functions on a penalty approach to mixed-integer optimization
NASA Astrophysics Data System (ADS)
Francisco, Rogério B.; Costa, M. Fernanda P.; Rocha, Ana Maria A. C.; Fernandes, Edite M. G. P.
2016-06-01
In this paper, we present a comparative study involving several penalty functions that can be used in a penalty approach for globally solving bound mixed-integer nonlinear programming (bMIMLP) problems. The penalty approach relies on a continuous reformulation of the bMINLP problem by adding a particular penalty term to the objective function. A penalty function based on the `erf' function is proposed. The continuous nonlinear optimization problems are sequentially solved by the population-based firefly algorithm. Preliminary numerical experiments are carried out in order to analyze the quality of the produced solutions, when compared with other penalty functions available in the literature.
A Mixed-Integer Optimization Framework for De Novo Peptide Identification
DiMaggio, Peter A.
2009-01-01
A novel methodology for the de novo identification of peptides by mixed-integer optimization and tandem mass spectrometry is presented in this article. The various features of the mathematical model are presented and examples are used to illustrate the key concepts of the proposed approach. Several problems are examined to illustrate the proposed method's ability to address (1) residue-dependent fragmentation properties and (2) the variability of resolution in different mass analyzers. A preprocessing algorithm is used to identify important m/z values in the tandem mass spectrum. Missing peaks, resulting from residue-dependent fragmentation characteristics, are dealt with using a two-stage algorithmic framework. A cross-correlation approach is used to resolve missing amino acid assignments and to identify the most probable peptide by comparing the theoretical spectra of the candidate sequences that were generated from the MILP sequencing stages with the experimental tandem mass spectrum. PMID:19412358
Optimization of a wood dryer kiln using the mixed integer programming technique: A case study
Gustafsson, S.I.
1999-07-01
When wood is to be utilized as a raw material for furniture, buildings, etc., it must be dried from approximately 100% to 6% moisture content. This is achieved at least partly in a drying kiln. Heat for this purpose is provided by electrical means, or by steam from boilers fired with wood chips or oil. By making a close examination of monitored values from an actual drying kiln it has been possible to optimize the use of steam and electricity using the so called mixed integer programming technique. Owing to the operating schedule for the drying kiln it has been necessary to divide the drying process in very short time intervals, i.e., a number of minutes. Since a drying cycle takes about two or three weeks, a considerable mathematical problem is presented and this has to be solved.
NASA Astrophysics Data System (ADS)
Baran, Ismet; Tutum, Cem C.; Hattel, Jesper H.
2013-08-01
In this paper thermo-chemical simulation of the pultrusion process of a composite rod is first used as a validation case to ensure that the utilized numerical scheme is stable and converges to results given in literature. Following this validation case, a cylindrical die block with heaters is added to the pultrusion domain of a composite part and thermal contact resistance (TCR) regions at the die-part interface are defined. Two optimization case studies are performed on this new configuration. In the first one, optimal die radius and TCR values are found by using a hybrid genetic algorithm based on a sequential combination of a genetic algorithm (GA) and a local search technique to fit the centerline temperature of the composite with the one calculated in the validation case. In the second optimization study, the productivity of the process is improved by using a mixed integer genetic algorithm (MIGA) such that the total number of heaters is minimized while satisfying the constraints for the maximum composite temperature, the mean of the cure degree at the die exit and the pulling speed.
Li, Zukui; Ding, Ran; Floudas, Christodoulos A.
2011-01-01
Robust counterpart optimization techniques for linear optimization and mixed integer linear optimization problems are studied in this paper. Different uncertainty sets, including those studied in literature (i.e., interval set; combined interval and ellipsoidal set; combined interval and polyhedral set) and new ones (i.e., adjustable box; pure ellipsoidal; pure polyhedral; combined interval, ellipsoidal, and polyhedral set) are studied in this work and their geometric relationship is discussed. For uncertainty in the left hand side, right hand side, and objective function of the optimization problems, robust counterpart optimization formulations induced by those different uncertainty sets are derived. Numerical studies are performed to compare the solutions of the robust counterpart optimization models and applications in refinery production planning and batch process scheduling problem are presented. PMID:21935263
NASA Astrophysics Data System (ADS)
Shoemaker, Christine; Wan, Ying
2016-04-01
Optimization of nonlinear water resources management issues which have a mixture of fixed (e.g. construction cost for a well) and variable (e.g. cost per gallon of water pumped) costs has been not well addressed because prior algorithms for the resulting nonlinear mixed integer problems have required many groundwater simulations (with different configurations of decision variable), especially when the solution space is multimodal. In particular heuristic methods like genetic algorithms have often been used in the water resources area, but they require so many groundwater simulations that only small systems have been solved. Hence there is a need to have a method that reduces the number of expensive groundwater simulations. A recently published algorithm for nonlinear mixed integer programming using surrogates was shown in this study to greatly reduce the computational effort for obtaining accurate answers to problems involving fixed costs for well construction as well as variable costs for pumping because of a substantial reduction in the number of groundwater simulations required to obtain an accurate answer. Results are presented for a US EPA hazardous waste site. The nonlinear mixed integer surrogate algorithm is general and can be used on other problems arising in hydrology with open source codes in Matlab and python ("pySOT" in Bitbucket).
Gorissen, Bram L; den Hertog, Dick; Hoffmann, Aswin L
2013-02-21
Current inverse treatment planning methods that optimize both catheter positions and dwell times in prostate HDR brachytherapy use surrogate linear or quadratic objective functions that have no direct interpretation in terms of dose-volume histogram (DVH) criteria, do not result in an optimum or have long solution times. We decrease the solution time of the existing linear and quadratic dose-based programming models (LP and QP, respectively) to allow optimizing over potential catheter positions using mixed integer programming. An additional average speed-up of 75% can be obtained by stopping the solver at an early stage, without deterioration of the plan quality. For a fixed catheter configuration, the dwell time optimization model LP solves to optimality in less than 15 s, which confirms earlier results. We propose an iterative procedure for QP that allows us to prescribe the target dose as an interval, while retaining independence between the solution time and the number of dose calculation points. This iterative procedure is comparable in speed to the LP model and produces better plans than the non-iterative QP. We formulate a new dose-volume-based model that maximizes V(100%) while satisfying pre-set DVH criteria. This model optimizes both catheter positions and dwell times within a few minutes depending on prostate volume and number of catheters, optimizes dwell times within 35 s and gives better DVH statistics than dose-based models. The solutions suggest that the correlation between the objective value and the clinical plan quality is weak in the existing dose-based models. PMID:23363622
Designing cost-effective biopharmaceutical facilities using mixed-integer optimization.
Liu, Songsong; Simaria, Ana S; Farid, Suzanne S; Papageorgiou, Lazaros G
2013-01-01
Chromatography operations are identified as critical steps in a monoclonal antibody (mAb) purification process and can represent a significant proportion of the purification material costs. This becomes even more critical with increasing product titers that result in higher mass loads onto chromatography columns, potentially causing capacity bottlenecks. In this work, a mixed-integer nonlinear programming (MINLP) model was created and applied to an industrially relevant case study to optimize the design of a facility by determining the most cost-effective chromatography equipment sizing strategies for the production of mAbs. Furthermore, the model was extended to evaluate the ability of a fixed facility to cope with higher product titers up to 15 g/L. Examination of the characteristics of the optimal chromatography sizing strategies across different titer values enabled the identification of the maximum titer that the facility could handle using a sequence of single column chromatography steps as well as multi-column steps. The critical titer levels for different ratios of upstream to dowstream trains where multiple parallel columns per step resulted in the removal of facility bottlenecks were identified. Different facility configurations in terms of number of upstream trains were considered and the trade-off between their cost and ability to handle higher titers was analyzed. The case study insights demonstrate that the proposed modeling approach, combining MINLP models with visualization tools, is a valuable decision-support tool for the design of cost-effective facility configurations and to aid facility fit decisions. 2013. PMID:23956206
NASA Astrophysics Data System (ADS)
Tang, Jiafu; Liu, Yang; Fung, Richard; Luo, Xinggang
2008-12-01
Manufacturers have a legal accountability to deal with industrial waste generated from their production processes in order to avoid pollution. Along with advances in waste recovery techniques, manufacturers may adopt various recycling strategies in dealing with industrial waste. With reuse strategies and technologies, byproducts or wastes will be returned to production processes in the iron and steel industry, and some waste can be recycled back to base material for reuse in other industries. This article focuses on a recovery strategies optimization problem for a typical class of industrial waste recycling process in order to maximize profit. There are multiple strategies for waste recycling available to generate multiple byproducts; these byproducts are then further transformed into several types of chemical products via different production patterns. A mixed integer programming model is developed to determine which recycling strategy and which production pattern should be selected with what quantity of chemical products corresponding to this strategy and pattern in order to yield maximum marginal profits. The sales profits of chemical products and the set-up costs of these strategies, patterns and operation costs of production are considered. A simulated annealing (SA) based heuristic algorithm is developed to solve the problem. Finally, an experiment is designed to verify the effectiveness and feasibility of the proposed method. By comparing a single strategy to multiple strategies in an example, it is shown that the total sales profit of chemical products can be increased by around 25% through the simultaneous use of multiple strategies. This illustrates the superiority of combinatorial multiple strategies. Furthermore, the effects of the model parameters on profit are discussed to help manufacturers organize their waste recycling network.
Mixed integer programming model for optimizing the layout of an ICU vehicle
2009-01-01
Background This paper presents a Mixed Integer Programming (MIP) model for designing the layout of the Intensive Care Units' (ICUs) patient care space. In particular, this MIP model was developed for optimizing the layout for materials to be used in interventions. This work was developed within the framework of a joint project between the Madrid Technical Unverstity and the Medical Emergency Services of the Madrid Regional Government (SUMMA 112). Methods The first task was to identify the relevant information to define the characteristics of the new vehicles and, in particular, to obtain a satisfactory interior layout to locate all the necessary materials. This information was gathered from health workers related to ICUs. With that information an optimization model was developed in order to obtain a solution. From the MIP model, a first solution was obtained, consisting of a grid to locate the different materials needed for the ICUs. The outcome from the MIP model was discussed with health workers to tune the solution, and after slightly altering that solution to meet some requirements that had not been included in the mathematical model, the eventual solution was approved by the persons responsible for specifying the characteristics of the new vehicles. According to the opinion stated by the SUMMA 112's medical group responsible for improving the ambulances (the so-called "coaching group"), the outcome was highly satisfactory. Indeed, the final design served as a basis to draw up the requirements of a public tender. Results As a result from solving the Optimization model, a grid was obtained to locate the different necessary materials for the ICUs. This grid had to be slightly altered to meet some requirements that had not been included in the mathematical model. The results were discussed with the persons responsible for specifying the characteristics of the new vehicles. Conclusion The outcome was highly satisfactory. Indeed, the final design served as a basis
NASA Astrophysics Data System (ADS)
Skulovich, Olya; Bent, Russell; Judi, David; Perelman, Lina Sela; Ostfeld, Avi
2015-06-01
Despite their potential catastrophic impact, transients are often ignored or presented ad hoc when designing water distribution systems. To address this problem, we introduce a new piece-wise function fitting model that is integrated with mixed integer programming to optimally place and size surge tanks for transient control. The key features of the algorithm are a model-driven discretization of the search space, a linear approximation nonsmooth system response surface to transients, and a mixed integer linear programming optimization. Results indicate that high quality solutions can be obtained within a reasonable number of function evaluations and demonstrate the computational effectiveness of the approach through two case studies. The work investigates one type of surge control devices (closed surge tank) for a specified set of transient events. The performance of the algorithm relies on the assumption that there exists a smooth relationship between the objective function and tank size. Results indicate the potential of the approach for the optimal surge control design in water systems.
Winebrake, James J; Corbett, James J; Wang, Chengfeng; Farrell, Alexander E; Woods, Pippa
2005-04-01
Emissions from passenger ferries operating in urban harbors may contribute significantly to emissions inventories and commuter exposure to air pollution. In particular, ferries are problematic because of high emissions of oxides of nitrogen (NOx) and particulate matter (PM) from primarily unregulated diesel engines. This paper explores technical solutions to reduce pollution from passenger ferries operating in the New York-New Jersey Harbor. The paper discusses and demonstrates a mixed-integer, non-linear programming model used to identify optimal control strategies for meeting NOx and PM reduction targets for 45 privately owned commuter ferries in the harbor. Results from the model can be used by policy-makers to craft programs aimed at achieving least-cost reduction targets. PMID:15887889
Mixed Integer Programming and Heuristic Scheduling for Space Communication Networks
NASA Technical Reports Server (NTRS)
Cheung, Kar-Ming; Lee, Charles H.
2012-01-01
We developed framework and the mathematical formulation for optimizing communication network using mixed integer programming. The design yields a system that is much smaller, in search space size, when compared to the earlier approach. Our constrained network optimization takes into account the dynamics of link performance within the network along with mission and operation requirements. A unique penalty function is introduced to transform the mixed integer programming into the more manageable problem of searching in a continuous space. The constrained optimization problem was proposed to solve in two stages: first using the heuristic Particle Swarming Optimization algorithm to get a good initial starting point, and then feeding the result into the Sequential Quadratic Programming algorithm to achieve the final optimal schedule. We demonstrate the above planning and scheduling methodology with a scenario of 20 spacecraft and 3 ground stations of a Deep Space Network site. Our approach and framework have been simple and flexible so that problems with larger number of constraints and network can be easily adapted and solved.
NASA Astrophysics Data System (ADS)
Rashid, Kashif; Ambani, Saumil; Cetinkaya, Eren
2013-02-01
Many real-world optimization problems comprise objective functions that are based on the output of one or more simulation models. As these underlying processes can be time and computation intensive, the objective function is deemed expensive to evaluate. While methods to alleviate this cost in the optimization procedure have been explored previously, less attention has been given to the treatment of expensive constraints. This article presents a methodology for treating expensive simulation-based nonlinear constraints alongside an expensive simulation-based objective function using adaptive radial basis function techniques. Specifically, a multiquadric radial basis function approximation scheme is developed, together with a robust training method, to model not only the costly objective function, but also each expensive simulation-based constraint defined in the problem. The article presents the methodology developed for expensive nonlinear constrained optimization problems comprising both continuous and integer variables. Results from various test cases, both analytical and simulation-based, are presented.
Ko, Andi Setiady; Chang, Ni-Bin
2008-07-01
Energy supply and use is of fundamental importance to society. Although the interactions between energy and environment were originally local in character, they have now widened to cover regional and global issues, such as acid rain and the greenhouse effect. It is for this reason that there is a need for covering the direct and indirect economic and environmental impacts of energy acquisition, transport, production and use. In this paper, particular attention is directed to ways of resolving conflict between economic and environmental goals by encouraging a power plant to consider co-firing biomass and refuse-derived fuel (RDF) with coal simultaneously. It aims at reducing the emission level of sulfur dioxide (SO(2)) in an uncertain environment, using the power plant in Michigan City, Indiana as an example. To assess the uncertainty by a comparative way both deterministic and grey nonlinear mixed integer programming (MIP) models were developed to minimize the net operating cost with respect to possible fuel combinations. It aims at generating the optimal portfolio of alternative fuels while maintaining the same electricity generation simultaneously. To ease the solution procedure stepwise relaxation algorithm was developed for solving the grey nonlinear MIP model. Breakeven alternative fuel value can be identified in the post-optimization stage for decision-making. Research findings show that the inclusion of RDF does not exhibit comparative advantage in terms of the net cost, albeit relatively lower air pollution impact. Yet it can be sustained by a charge system, subsidy program, or emission credit as the price of coal increases over time. PMID:17395362
Mixed Integer Programming and Heuristic Scheduling for Space Communication
NASA Technical Reports Server (NTRS)
Lee, Charles H.; Cheung, Kar-Ming
2013-01-01
Optimal planning and scheduling for a communication network was created where the nodes within the network are communicating at the highest possible rates while meeting the mission requirements and operational constraints. The planning and scheduling problem was formulated in the framework of Mixed Integer Programming (MIP) to introduce a special penalty function to convert the MIP problem into a continuous optimization problem, and to solve the constrained optimization problem using heuristic optimization. The communication network consists of space and ground assets with the link dynamics between any two assets varying with respect to time, distance, and telecom configurations. One asset could be communicating with another at very high data rates at one time, and at other times, communication is impossible, as the asset could be inaccessible from the network due to planetary occultation. Based on the network's geometric dynamics and link capabilities, the start time, end time, and link configuration of each view period are selected to maximize the communication efficiency within the network. Mathematical formulations for the constrained mixed integer optimization problem were derived, and efficient analytical and numerical techniques were developed to find the optimal solution. By setting up the problem using MIP, the search space for the optimization problem is reduced significantly, thereby speeding up the solution process. The ratio of the dimension of the traditional method over the proposed formulation is approximately an order N (single) to 2*N (arraying), where N is the number of receiving antennas of a node. By introducing a special penalty function, the MIP problem with non-differentiable cost function and nonlinear constraints can be converted into a continuous variable problem, whose solution is possible.
Constrained spacecraft reorientation using mixed integer convex programming
NASA Astrophysics Data System (ADS)
Tam, Margaret; Glenn Lightsey, E.
2016-10-01
A constrained attitude guidance (CAG) system is developed using convex optimization to autonomously achieve spacecraft pointing objectives while meeting the constraints imposed by on-board hardware. These constraints include bounds on the control input and slew rate, as well as pointing constraints imposed by the sensors. The pointing constraints consist of inclusion and exclusion cones that dictate permissible orientations of the spacecraft in order to keep objects in or out of the field of view of the sensors. The optimization scheme drives a body vector towards a target inertial vector along a trajectory that consists solely of permissible orientations in order to achieve the desired attitude for a given mission mode. The non-convex rotational kinematics are handled by discretization, which also ensures that the quaternion stays unity norm. In order to guarantee an admissible path, the pointing constraints are relaxed. Depending on how strict the pointing constraints are, the degree of relaxation is tuneable. The use of binary variables permits the inclusion of logical expressions in the pointing constraints in the case that a set of sensors has redundancies. The resulting mixed integer convex programming (MICP) formulation generates a steering law that can be easily integrated into an attitude determination and control (ADC) system. A sample simulation of the system is performed for the Bevo-2 satellite, including disturbance torques and actuator dynamics which are not modeled by the controller. Simulation results demonstrate the robustness of the system to disturbances while meeting the mission requirements with desirable performance characteristics.
Mixed-Integer Formulations for Constellation Scheduling
NASA Astrophysics Data System (ADS)
Valicka, C.; Hart, W.; Rintoul, M.
Remote sensing systems have expanded the set of capabilities available for and critical to national security. Cooperating, high-fidelity sensing systems and growing mission applications have exponentially increased the set of potential schedules. A definitive lack of advanced tools places an increased burden on operators, as planning and scheduling remain largely manual tasks. This is particularly true in time-critical planning activities where operators aim to accomplish a large number of missions through optimal utilization of single or multiple sensor systems. Automated scheduling through identification and comparison of alternative schedules remains a challenging problem applicable across all remote sensing systems. Previous approaches focused on a subset of sensor missions and do not consider ad-hoc tasking. We have begun development of a robust framework that leverages the Pyomo optimization modeling language for the design of a tool to assist sensor operators planning under the constraints of multiple concurrent missions and uncertainty. Our scheduling models have been formulated to address the stochastic nature of ad-hoc tasks inserted under a variety of scenarios. Operator experience is being leveraged to select appropriate model objectives. Successful development of the framework will include iterative development of high-fidelity mission models that consider and expose various schedule performance metrics. Creating this tool will aid time-critical scheduling by increasing planning efficiency, clarifying the value of alternative modalities uniquely provided by multi-sensor systems, and by presenting both sets of organized information to operators. Such a tool will help operators more quickly and fully utilize sensing systems, a high interest objective within the current remote sensing operations community. Preliminary results for mixed-integer programming formulations of a sensor scheduling problem will be presented. Assumptions regarding sensor geometry
Smalley, Hannah K; Keskinocak, Pinar; Swann, Julie; Hinman, Alan
2015-11-17
In addition to improved sanitation, hygiene, and better access to safe water, oral cholera vaccines can help to control the spread of cholera in the short term. However, there is currently no systematic method for determining the best allocation of oral cholera vaccines to minimize disease incidence in a population where the disease is endemic and resources are limited. We present a mathematical model for optimally allocating vaccines in a region under varying levels of demographic and incidence data availability. The model addresses the questions of where, when, and how many doses of vaccines to send. Considering vaccine efficacies (which may vary based on age and the number of years since vaccination), we analyze distribution strategies which allocate vaccines over multiple years. Results indicate that, given appropriate surveillance data, targeting age groups and regions with the highest disease incidence should be the first priority, followed by other groups primarily in order of disease incidence, as this approach is the most life-saving and cost-effective. A lack of detailed incidence data results in distribution strategies which are not cost-effective and can lead to thousands more deaths from the disease. The mathematical model allows for what-if analysis for various vaccine distribution strategies by providing the ability to easily vary parameters such as numbers and sizes of regions and age groups, risk levels, vaccine price, vaccine efficacy, production capacity and budget. PMID:26458806
Orbital rendezvous mission planning using mixed integer nonlinear programming
NASA Astrophysics Data System (ADS)
Zhang, Jin; Tang, Guo-jin; Luo, Ya-Zhong; Li, Hai-yang
2011-04-01
The rendezvous and docking mission is usually divided into several phases, and the mission planning is performed phase by phase. A new planning method using mixed integer nonlinear programming, which investigates single phase parameters and phase connecting parameters simultaneously, is proposed to improve the rendezvous mission's overall performance. The design variables are composed of integers and continuous-valued numbers. The integer part consists of the parameters for station-keeping and sensor-switching, the number of maneuvers in each rendezvous phase and the number of repeating periods to start the rendezvous mission. The continuous part consists of the orbital transfer time and the station-keeping duration. The objective function is a combination of the propellant consumed, the sun angle which represents the power available, and the terminal precision of each rendezvous phase. The operational requirements for the spacecraft-ground communication, sun illumination and the sensor transition are considered. The simple genetic algorithm, which is a combination of the integer-coded and real-coded genetic algorithm, is chosen to obtain the optimal solution. A practical rendezvous mission planning problem is solved by the proposed method. The results show that the method proposed can solve the integral rendezvous mission planning problem effectively, and the solution obtained can satisfy the operational constraints and has a good overall performance.
Multi-objective mixed integer strategy for the optimisation of biological networks.
Sendín, J O H; Exler, O; Banga, J R
2010-05-01
In this contribution, the authors consider multi-criteria optimisation problems arising from the field of systems biology when both continuous and integer decision variables are involved. Mathematically, they are formulated as mixed-integer non-linear programming problems. The authors present a novel solution strategy based on a global optimisation approach for dealing with this class of problems. Its usefulness and capabilities are illustrated with two metabolic engineering case studies. For these problems, the authors show how the set of optimal solutions (the so-called Pareto front) is successfully and efficiently obtained, providing further insight into the systems under consideration regarding their optimal manipulation. PMID:20500003
Guo, P; Huang, G H
2009-01-01
In this study, an inexact fuzzy chance-constrained two-stage mixed-integer linear programming (IFCTIP) approach is proposed for supporting long-term planning of waste-management systems under multiple uncertainties in the City of Regina, Canada. The method improves upon the existing inexact two-stage programming and mixed-integer linear programming techniques by incorporating uncertainties expressed as multiple uncertainties of intervals and dual probability distributions within a general optimization framework. The developed method can provide an effective linkage between the predefined environmental policies and the associated economic implications. Four special characteristics of the proposed method make it unique compared with other optimization techniques that deal with uncertainties. Firstly, it provides a linkage to predefined policies that have to be respected when a modeling effort is undertaken; secondly, it is useful for tackling uncertainties presented as intervals, probabilities, fuzzy sets and their incorporation; thirdly, it facilitates dynamic analysis for decisions of facility-expansion planning and waste-flow allocation within a multi-facility, multi-period, multi-level, and multi-option context; fourthly, the penalties are exercised with recourse against any infeasibility, which permits in-depth analyses of various policy scenarios that are associated with different levels of economic consequences when the promised solid waste-generation rates are violated. In a companion paper, the developed method is applied to a real case for the long-term planning of waste management in the City of Regina, Canada. PMID:19800164
PySP : modeling and solving stochastic mixed-integer programs in Python.
Woodruff, David L.; Watson, Jean-Paul
2010-08-01
Although stochastic programming is a powerful tool for modeling decision-making under uncertainty, various impediments have historically prevented its widespread use. One key factor involves the ability of non-specialists to easily express stochastic programming problems as extensions of deterministic models, which are often formulated first. A second key factor relates to the difficulty of solving stochastic programming models, particularly the general mixed-integer, multi-stage case. Intricate, configurable, and parallel decomposition strategies are frequently required to achieve tractable run-times. We simultaneously address both of these factors in our PySP software package, which is part of the COIN-OR Coopr open-source Python project for optimization. To formulate a stochastic program in PySP, the user specifies both the deterministic base model and the scenario tree with associated uncertain parameters in the Pyomo open-source algebraic modeling language. Given these two models, PySP provides two paths for solution of the corresponding stochastic program. The first alternative involves writing the extensive form and invoking a standard deterministic (mixed-integer) solver. For more complex stochastic programs, we provide an implementation of Rockafellar and Wets Progressive Hedging algorithm. Our particular focus is on the use of Progressive Hedging as an effective heuristic for approximating general multi-stage, mixed-integer stochastic programs. By leveraging the combination of a high-level programming language (Python) and the embedding of the base deterministic model in that language (Pyomo), we are able to provide completely generic and highly configurable solver implementations. PySP has been used by a number of research groups, including our own, to rapidly prototype and solve difficult stochastic programming problems.
Munguia, Lluis-Miquel; Oxberry, Geoffrey; Rajan, Deepak
2016-05-01
Stochastic mixed-integer programs (SMIPs) deal with optimization under uncertainty at many levels of the decision-making process. When solved as extensive formulation mixed- integer programs, problem instances can exceed available memory on a single workstation. In order to overcome this limitation, we present PIPS-SBB: a distributed-memory parallel stochastic MIP solver that takes advantage of parallelism at multiple levels of the optimization process. We also show promising results on the SIPLIB benchmark by combining methods known for accelerating Branch and Bound (B&B) methods with new ideas that leverage the structure of SMIPs. Finally, we expect the performance of PIPS-SBB to improve furthermore » as more functionality is added in the future.« less
ERIC Educational Resources Information Center
Han, Kyung T.; Rudner, Lawrence M.
2014-01-01
This study uses mixed integer quadratic programming (MIQP) to construct multiple highly equivalent item pools simultaneously, and compares the results from mixed integer programming (MIP). Three different MIP/MIQP models were implemented and evaluated using real CAT item pool data with 23 different content areas and a goal of equal information…
Linderoth, Jeff T.; Luedtke, James R.
2013-05-30
The mathematical modeling of systems often requires the use of both nonlinear and discrete components. Problems involving both discrete and nonlinear components are known as mixed-integer nonlinear programs (MINLPs) and are among the most challenging computational optimization problems. This research project added to the understanding of this area by making a number of fundamental advances. First, the work demonstrated many novel, strong, tractable relaxations designed to deal with non-convexities arising in mathematical formulation. Second, the research implemented the ideas in software that is available to the public. Finally, the work demonstrated the importance of these ideas on practical applications and disseminated the work through scholarly journals, survey publications, and conference presentations.
Automatic design of synthetic gene circuits through mixed integer non-linear programming.
Huynh, Linh; Kececioglu, John; Köppe, Matthias; Tagkopoulos, Ilias
2012-01-01
Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the constraints and best approximates the objective function given by the user. We evaluated the proposed method in the design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework for the automated design of biological circuits. PMID:22536398
A Mixed Integer Linear Program for Airport Departure Scheduling
NASA Technical Reports Server (NTRS)
Gupta, Gautam; Jung, Yoon Chul
2009-01-01
Aircraft departing from an airport are subject to numerous constraints while scheduling departure times. These constraints include wake-separation constraints for successive departures, miles-in-trail separation for aircraft bound for the same departure fixes, and time-window or prioritization constraints for individual flights. Besides these, emissions as well as increased fuel consumption due to inefficient scheduling need to be included. Addressing all the above constraints in a single framework while allowing for resequencing of the aircraft using runway queues is critical to the implementation of the Next Generation Air Transport System (NextGen) concepts. Prior work on airport departure scheduling has addressed some of the above. However, existing methods use pre-determined runway queues, and schedule aircraft from these departure queues. The source of such pre-determined queues is not explicit, and could potentially be a subjective controller input. Determining runway queues and scheduling within the same framework would potentially result in better scheduling. This paper presents a mixed integer linear program (MILP) for the departure-scheduling problem. The program takes as input the incoming sequence of aircraft for departure from a runway, along with their earliest departure times and an optional prioritization scheme based on time-window of departure for each aircraft. The program then assigns these aircraft to the available departure queues and schedules departure times, explicitly considering wake separation and departure fix restrictions to minimize total delay for all aircraft. The approach is generalized and can be used in a variety of situations, and allows for aircraft prioritization based on operational as well as environmental considerations. We present the MILP in the paper, along with benefits over the first-come-first-serve (FCFS) scheme for numerous randomized problems based on real-world settings. The MILP results in substantially reduced
NASA Technical Reports Server (NTRS)
Laird, Philip
1992-01-01
We distinguish static and dynamic optimization of programs: whereas static optimization modifies a program before runtime and is based only on its syntactical structure, dynamic optimization is based on the statistical properties of the input source and examples of program execution. Explanation-based generalization is a commonly used dynamic optimization method, but its effectiveness as a speedup-learning method is limited, in part because it fails to separate the learning process from the program transformation process. This paper describes a dynamic optimization technique called a learn-optimize cycle that first uses a learning element to uncover predictable patterns in the program execution and then uses an optimization algorithm to map these patterns into beneficial transformations. The technique has been used successfully for dynamic optimization of pure Prolog.
A Mixed Integer Linear Program for Solving a Multiple Route Taxi Scheduling Problem
NASA Technical Reports Server (NTRS)
Montoya, Justin Vincent; Wood, Zachary Paul; Rathinam, Sivakumar; Malik, Waqar Ahmad
2010-01-01
Aircraft movements on taxiways at busy airports often create bottlenecks. This paper introduces a mixed integer linear program to solve a Multiple Route Aircraft Taxi Scheduling Problem. The outputs of the model are in the form of optimal taxi schedules, which include routing decisions for taxiing aircraft. The model extends an existing single route formulation to include routing decisions. An efficient comparison framework compares the multi-route formulation and the single route formulation. The multi-route model is exercised for east side airport surface traffic at Dallas/Fort Worth International Airport to determine if any arrival taxi time savings can be achieved by allowing arrivals to have two taxi routes: a route that crosses an active departure runway and a perimeter route that avoids the crossing. Results indicate that the multi-route formulation yields reduced arrival taxi times over the single route formulation only when a perimeter taxiway is used. In conditions where the departure aircraft are given an optimal and fixed takeoff sequence, accumulative arrival taxi time savings in the multi-route formulation can be as high as 3.6 hours more than the single route formulation. If the departure sequence is not optimal, the multi-route formulation results in less taxi time savings made over the single route formulation, but the average arrival taxi time is significantly decreased.
Estimating Tree-Structured Covariance Matrices via Mixed-Integer Programming
Bravo, Héctor Corrada; Wright, Stephen; Eng, Kevin H.; Keles, Sündüz; Wahba, Grace
2011-01-01
We present a novel method for estimating tree-structured covariance matrices directly from observed continuous data. Specifically, we estimate a covariance matrix from observations of p continuous random variables encoding a stochastic process over a tree with p leaves. A representation of these classes of matrices as linear combinations of rank-one matrices indicating object partitions is used to formulate estimation as instances of well-studied numerical optimization problems. In particular, our estimates are based on projection, where the covariance estimate is the nearest tree-structured covariance matrix to an observed sample covariance matrix. The problem is posed as a linear or quadratic mixed-integer program (MIP) where a setting of the integer variables in the MIP specifies a set of tree topologies of the structured covariance matrix. We solve these problems to optimality using efficient and robust existing MIP solvers. We present a case study in phylogenetic analysis of gene expression and a simulation study comparing our method to distance-based tree estimating procedures. PMID:22081761
A Two-Stage Stochastic Mixed-Integer Programming Approach to the Smart House Scheduling Problem
NASA Astrophysics Data System (ADS)
Ozoe, Shunsuke; Tanaka, Yoichi; Fukushima, Masao
A “Smart House” is a highly energy-optimized house equipped with photovoltaic systems (PV systems), electric battery systems, fuel cell cogeneration systems (FC systems), electric vehicles (EVs) and so on. Smart houses are attracting much attention recently thanks to their enhanced ability to save energy by making full use of renewable energy and by achieving power grid stability despite an increased power draw for installed PV systems. Yet running a smart house's power system, with its multiple power sources and power storages, is no simple task. In this paper, we consider the problem of power scheduling for a smart house with a PV system, an FC system and an EV. We formulate the problem as a mixed integer programming problem, and then extend it to a stochastic programming problem involving recourse costs to cope with uncertain electricity demand, heat demand and PV power generation. Using our method, we seek to achieve the optimal power schedule running at the minimum expected operation cost. We present some results of numerical experiments with data on real-life demands and PV power generation to show the effectiveness of our method.
Synchronic interval Gaussian mixed-integer programming for air quality management.
Cheng, Guanhui; Huang, Guohe Gordon; Dong, Cong
2015-12-15
To reveal the synchronism of interval uncertainties, the tradeoff between system optimality and security, the discreteness of facility-expansion options, the uncertainty of pollutant dispersion processes, and the seasonality of wind features in air quality management (AQM) systems, a synchronic interval Gaussian mixed-integer programming (SIGMIP) approach is proposed in this study. A robust interval Gaussian dispersion model is developed for approaching the pollutant dispersion process under interval uncertainties and seasonal variations. The reflection of synchronic effects of interval uncertainties in the programming objective is enabled through introducing interval functions. The proposition of constraint violation degrees helps quantify the tradeoff between system optimality and constraint violation under interval uncertainties. The overall optimality of system profits of an SIGMIP model is achieved based on the definition of an integrally optimal solution. Integer variables in the SIGMIP model are resolved by the existing cutting-plane method. Combining these efforts leads to an effective algorithm for the SIGMIP model. An application to an AQM problem in a region in Shandong Province, China, reveals that the proposed SIGMIP model can facilitate identifying the desired scheme for AQM. The enhancement of the robustness of optimization exercises may be helpful for increasing the reliability of suggested schemes for AQM under these complexities. The interrelated tradeoffs among control measures, emission sources, flow processes, receptors, influencing factors, and economic and environmental goals are effectively balanced. Interests of many stakeholders are reasonably coordinated. The harmony between economic development and air quality control is enabled. Results also indicate that the constraint violation degree is effective at reflecting the compromise relationship between constraint-violation risks and system optimality under interval uncertainties. This can
Li, Y P; Huang, G H
2006-11-01
In this study, an interval-parameter two-stage mixed integer linear programming (ITMILP) model is developed for supporting long-term planning of waste management activities in the City of Regina. In the ITMILP, both two-stage stochastic programming and interval linear programming are introduced into a general mixed integer linear programming framework. Uncertainties expressed as not only probability density functions but also discrete intervals can be reflected. The model can help tackle the dynamic, interactive and uncertain characteristics of the solid waste management system in the City, and can address issues concerning plans for cost-effective waste diversion and landfill prolongation. Three scenarios are considered based on different waste management policies. The results indicate that reasonable solutions have been generated. They are valuable for supporting the adjustment or justification of the existing waste flow allocation patterns, the long-term capacity planning of the City's waste management system, and the formulation of local policies and regulations regarding waste generation and management. PMID:16678336
Mixed Integer Programming and Heuristic Scheduling for Space Communication Networks
NASA Technical Reports Server (NTRS)
Lee, Charles H.; Cheung, Kar-Ming
2012-01-01
In this paper, we propose to solve the constrained optimization problem in two phases. The first phase uses heuristic methods such as the ant colony method, particle swarming optimization, and genetic algorithm to seek a near optimal solution among a list of feasible initial populations. The final optimal solution can be found by using the solution of the first phase as the initial condition to the SQP algorithm. We demonstrate the above problem formulation and optimization schemes with a large-scale network that includes the DSN ground stations and a number of spacecraft of deep space missions.
Solution of Mixed-Integer Programming Problems on the XT5
Hartman-Baker, Rebecca J; Busch, Ingrid Karin; Hilliard, Michael R; Middleton, Richard S; Schultze, Michael
2009-01-01
In this paper, we describe our experience with solving difficult mixed-integer linear programming problems (MILPs) on the petaflop Cray XT5 system at the National Center for Computational Sciences at Oak Ridge National Laboratory. We describe the algorithmic, software, and hardware needs for solving MILPs and present the results of using PICO, an open-source, parallel, mixed-integer linear programming solver developed at Sandia National Laboratories, to solve canonical MILPs as well as problems of interest arising from the logistics and supply chain management field.
NASA Astrophysics Data System (ADS)
Guo, P.; Huang, G. H.; Li, Y. P.
2010-01-01
In this study, an inexact fuzzy-chance-constrained two-stage mixed-integer linear programming (IFCTIP) approach is developed for flood diversion planning under multiple uncertainties. A concept of the distribution with fuzzy boundary interval probability is defined to address multiple uncertainties expressed as integration of intervals, fuzzy sets and probability distributions. IFCTIP integrates the inexact programming, two-stage stochastic programming, integer programming and fuzzy-stochastic programming within a general optimization framework. IFCTIP incorporates the pre-regulated water-diversion policies directly into its optimization process to analyze various policy scenarios; each scenario has different economic penalty when the promised targets are violated. More importantly, it can facilitate dynamic programming for decisions of capacity-expansion planning under fuzzy-stochastic conditions. IFCTIP is applied to a flood management system. Solutions from IFCTIP provide desired flood diversion plans with a minimized system cost and a maximized safety level. The results indicate that reasonable solutions are generated for objective function values and decision variables, thus a number of decision alternatives can be generated under different levels of flood flows.
Guo, P.; Huang, G.H.
2010-03-15
In this study, an interval-parameter semi-infinite fuzzy-chance-constrained mixed-integer linear programming (ISIFCIP) approach is developed for supporting long-term planning of waste-management systems under multiple uncertainties in the City of Regina, Canada. The method improves upon the existing interval-parameter semi-infinite programming (ISIP) and fuzzy-chance-constrained programming (FCCP) by incorporating uncertainties expressed as dual uncertainties of functional intervals and multiple uncertainties of distributions with fuzzy-interval admissible probability of violating constraint within a general optimization framework. The binary-variable solutions represent the decisions of waste-management-facility expansion, and the continuous ones are related to decisions of waste-flow allocation. The interval solutions can help decision-makers to obtain multiple decision alternatives, as well as provide bases for further analyses of tradeoffs between waste-management cost and system-failure risk. In the application to the City of Regina, Canada, two scenarios are considered. In Scenario 1, the City's waste-management practices would be based on the existing policy over the next 25 years. The total diversion rate for the residential waste would be approximately 14%. Scenario 2 is associated with a policy for waste minimization and diversion, where 35% diversion of residential waste should be achieved within 15 years, and 50% diversion over 25 years. In this scenario, not only landfill would be expanded, but also CF and MRF would be expanded. Through the scenario analyses, useful decision support for the City's solid-waste managers and decision-makers has been generated. Three special characteristics of the proposed method make it unique compared with other optimization techniques that deal with uncertainties. Firstly, it is useful for tackling multiple uncertainties expressed as intervals, functional intervals, probability distributions, fuzzy sets, and their
Obtaining lower bounds from the progressive hedging algorithm for stochastic mixed-integer programs
Gade, Dinakar; Hackebeil, Gabriel; Ryan, Sarah M.; Watson, Jean -Paul; Wets, Roger J.-B.; Woodruff, David L.
2016-04-02
We present a method for computing lower bounds in the progressive hedging algorithm (PHA) for two-stage and multi-stage stochastic mixed-integer programs. Computing lower bounds in the PHA allows one to assess the quality of the solutions generated by the algorithm contemporaneously. The lower bounds can be computed in any iteration of the algorithm by using dual prices that are calculated during execution of the standard PHA. In conclusion, we report computational results on stochastic unit commitment and stochastic server location problem instances, and explore the relationship between key PHA parameters and the quality of the resulting lower bounds.
DRIESSEN,BRIAN; SADEGH,NADER
2000-04-25
This work presents a method of finding near global optima to minimum-time trajectory generation problem for systems that would be linear if it were not for the presence of Coloumb friction. The required final state of the system is assumed to be maintainable by the system, and the input bounds are assumed to be large enough so that they can overcome the maximum static Coloumb friction force. Other than the previous work for generating minimum-time trajectories for non redundant robotic manipulators for which the path in joint space is already specified, this work represents, to the best of the authors' knowledge, the first approach for generating near global optima for minimum-time problems involving a nonlinear class of dynamic systems. The reason the optima generated are near global optima instead of exactly global optima is due to a discrete-time approximation of the system (which is usually used anyway to simulate such a system numerically). The method closely resembles previous methods for generating minimum-time trajectories for linear systems, where the core operation is the solution of a Phase I linear programming problem. For the nonlinear systems considered herein, the core operation is instead the solution of a mixed integer linear programming problem.
NASA Astrophysics Data System (ADS)
Sawyer, Charles S.; Ahlfeld, David P.; King, Alan J.
1995-05-01
A three-dimensional groundwater flow management model for making decisions on the design of hydrodynamic control of a groundwater flow system using a combination of extraction and/or injection wells is developed. The model takes into account constraints imposed on the system to stop the horizontal spread of contaminants and to ensure a net upward flow in areas where downward vertical gradients exist. The mathematical formulation of the groundwater remediation problem as a mixed-integer model and the strategy for solving the model are presented. Numerical results are presented for the Toms River Plant site, which is modeled as a five-layer aquifer system with interconnecting aquitards. A sensitivity analysis on the relative magnitude of the continuous operating costs and the fixed-charge costs is also presented.
An Application of Parametric Mixed-Integer Linear Programming to Hydropower Development
NASA Astrophysics Data System (ADS)
Turgeon, André
1987-03-01
The problem consists in selecting the sites on the river where reservoirs and hydroelectric power plants are to be built and then determining the type and size of the projected installations. The solution obviously depends on the amount of money the utility is willing to invest, which itself is a function of what the new installations will produce. It is therefore necessary to solve the problem for all possible amounts of firm energy produced, since it is not known at the outset which production level the utility will select. This is done in the paper by a parametric mixed-integer linear programming (MILP) method whose efficiency derives from the fact that the branch-and-bound algorithm for selecting the sites to be developed (and consuming most of the computer time) is solved a minimum number of times. Between the points where the MILP problem is solved, LP parametric analysis is applied.
Zhang, Huiling; Huang, Qingsheng; Bei, Zhendong; Wei, Yanjie; Floudas, Christodoulos A
2016-03-01
In this article, we present COMSAT, a hybrid framework for residue contact prediction of transmembrane (TM) proteins, integrating a support vector machine (SVM) method and a mixed integer linear programming (MILP) method. COMSAT consists of two modules: COMSAT_SVM which is trained mainly on position-specific scoring matrix features, and COMSAT_MILP which is an ab initio method based on optimization models. Contacts predicted by the SVM model are ranked by SVM confidence scores, and a threshold is trained to improve the reliability of the predicted contacts. For TM proteins with no contacts above the threshold, COMSAT_MILP is used. The proposed hybrid contact prediction scheme was tested on two independent TM protein sets based on the contact definition of 14 Å between Cα-Cα atoms. First, using a rigorous leave-one-protein-out cross validation on the training set of 90 TM proteins, an accuracy of 66.8%, a coverage of 12.3%, a specificity of 99.3% and a Matthews' correlation coefficient (MCC) of 0.184 were obtained for residue pairs that are at least six amino acids apart. Second, when tested on a test set of 87 TM proteins, the proposed method showed a prediction accuracy of 64.5%, a coverage of 5.3%, a specificity of 99.4% and a MCC of 0.106. COMSAT shows satisfactory results when compared with 12 other state-of-the-art predictors, and is more robust in terms of prediction accuracy as the length and complexity of TM protein increase. COMSAT is freely accessible at http://hpcc.siat.ac.cn/COMSAT/. PMID:26756402
NASA Astrophysics Data System (ADS)
Irmeilyana, Puspita, Fitri Maya; Indrawati
2016-02-01
The pricing for wireless networks is developed by considering linearity factors, elasticity price and price factors. Mixed Integer Nonlinear Programming of wireless pricing model is proposed as the nonlinear programming problem that can be solved optimally using LINGO 13.0. The solutions are expected to give some information about the connections between the acceptance factor and the price. Previous model worked on the model that focuses on bandwidth as the QoS attribute. The models attempt to maximize the total price for a connection based on QoS parameter. The QoS attributes used will be the bandwidth and the end to end delay that affect the traffic. The maximum goal to maximum price is achieved when the provider determine the requirement for the increment or decrement of price change due to QoS change and amount of QoS value.
Poos, Alexandra M; Maicher, André; Dieckmann, Anna K; Oswald, Marcus; Eils, Roland; Kupiec, Martin; Luke, Brian; König, Rainer
2016-06-01
Understanding telomere length maintenance mechanisms is central in cancer biology as their dysregulation is one of the hallmarks for immortalization of cancer cells. Important for this well-balanced control is the transcriptional regulation of the telomerase genes. We integrated Mixed Integer Linear Programming models into a comparative machine learning based approach to identify regulatory interactions that best explain the discrepancy of telomerase transcript levels in yeast mutants with deleted regulators showing aberrant telomere length, when compared to mutants with normal telomere length. We uncover novel regulators of telomerase expression, several of which affect histone levels or modifications. In particular, our results point to the transcription factors Sum1, Hst1 and Srb2 as being important for the regulation of EST1 transcription, and we validated the effect of Sum1 experimentally. We compiled our machine learning method leading to a user friendly package for R which can straightforwardly be applied to similar problems integrating gene regulator binding information and expression profiles of samples of e.g. different phenotypes, diseases or treatments. PMID:26908654
Poos, Alexandra M.; Maicher, André; Dieckmann, Anna K.; Oswald, Marcus; Eils, Roland; Kupiec, Martin; Luke, Brian; König, Rainer
2016-01-01
Understanding telomere length maintenance mechanisms is central in cancer biology as their dysregulation is one of the hallmarks for immortalization of cancer cells. Important for this well-balanced control is the transcriptional regulation of the telomerase genes. We integrated Mixed Integer Linear Programming models into a comparative machine learning based approach to identify regulatory interactions that best explain the discrepancy of telomerase transcript levels in yeast mutants with deleted regulators showing aberrant telomere length, when compared to mutants with normal telomere length. We uncover novel regulators of telomerase expression, several of which affect histone levels or modifications. In particular, our results point to the transcription factors Sum1, Hst1 and Srb2 as being important for the regulation of EST1 transcription, and we validated the effect of Sum1 experimentally. We compiled our machine learning method leading to a user friendly package for R which can straightforwardly be applied to similar problems integrating gene regulator binding information and expression profiles of samples of e.g. different phenotypes, diseases or treatments. PMID:26908654
Mixed-integer programming methods for transportation and power generation problems
NASA Astrophysics Data System (ADS)
Damci Kurt, Pelin
This dissertation conducts theoretical and computational research to solve challenging problems in application areas such as supply chain and power systems. The first part of the dissertation studies a transportation problem with market choice (TPMC) which is a variant of the classical transportation problem in which suppliers with limited capacities have a choice of which demands (markets) to satisfy. We show that TPMC is strongly NP-complete. We consider a version of the problem with a service level constraint on the maximum number of markets that can be rejected and show that if the original problem is polynomial, its cardinality-constrained version is also polynomial. We propose valid inequalities for mixed-integer cover and knapsack sets with variable upper bound constraints, which appear as substructures of TPMC and use them in a branch-and-cut algorithm to solve this problem. The second part of this dissertation studies a unit commitment (UC) problem in which the goal is to minimize the operational cost of power generators over a time period subject to physical constraints while satisfying demand. We provide several exponential classes of multi-period ramping and multi-period variable upper bound inequalities. We prove the strength of these inequalities and describe polynomial-time separation algorithms. Computational results show the effectiveness of the proposed inequalities when used as cuts in a branch-and-cut algorithm to solve the UC problem. The last part of this dissertation investigates the effects of uncertain wind power on the UC problem. A two-stage robust model and a three-stage stochastic program are compared.
NASA Astrophysics Data System (ADS)
Purnomo, Muhammad Ridwan Andi; Satrio Wiwoho, Yoga
2016-01-01
Facility layout becomes one of production system factor that should be managed well, as it is designated for the location of production. In managing the layout, designing the layout by considering the optimal layout condition that supports the work condition is essential. One of the method for facility layout optimization is Mixed Integer Programming (MIP). In this study, the MIP is solved using Lingo 9.0 software and considering quantitative and qualitative objectives to be achieved simultaneously: minimizing material handling cost, maximizing closeness rating, and minimizing re-layout cost. The research took place in Rekayasa Wangdi as a make to order company, focusing on the making of concrete brick dough stirring machine with 10 departments involved. The result shows an improvement in the new layout for 333,72 points of objective value compared with the initial layout. As the conclusion, the proposed MIP is proven to be used to model facility layout problem under multi objective consideration for a more realistic look.
Zou, Meng; Zhang, Peng-Jun; Wen, Xin-Yu; Chen, Luonan; Tian, Ya-Ping; Wang, Yong
2015-07-15
Multi-biomarker panels can capture the nonlinear synergy among biomarkers and they are important to aid in the early diagnosis and ultimately battle complex diseases. However, identification of these multi-biomarker panels from case and control data is challenging. For example, the exhaustive search method is computationally infeasible when the data dimension is high. Here, we propose a novel method, MILP_k, to identify serum-based multi-biomarker panel to distinguish colorectal cancers (CRC) from benign colorectal tumors. Specifically, the multi-biomarker panel detection problem is modeled by a mixed integer programming to maximize the classification accuracy. Then we measured the serum profiling data for 101 CRC patients and 95 benign patients. The 61 biomarkers were analyzed individually and further their combinations by our method. We discovered 4 biomarkers as the optimal small multi-biomarker panel, including known CRC biomarkers CEA and IL-10 as well as novel biomarkers IMA and NSE. This multi-biomarker panel obtains leave-one-out cross-validation (LOOCV) accuracy to 0.7857 by nearest centroid classifier. An independent test of this panel by support vector machine (SVM) with threefold cross validation gets an AUC 0.8438. This greatly improves the predictive accuracy by 20% over the single best biomarker. Further extension of this 4-biomarker panel to a larger 13-biomarker panel improves the LOOCV to 0.8673 with independent AUC 0.8437. Comparison with the exhaustive search method shows that our method dramatically reduces the searching time by 1000-fold. Experiments on the early cancer stage samples reveal two panel of biomarkers and show promising accuracy. The proposed method allows us to select the subset of biomarkers with best accuracy to distinguish case and control samples given the number of selected biomarkers. Both receiver operating characteristic curve and precision-recall curve show our method's consistent performance gain in accuracy. Our method
Final Report---Optimization Under Nonconvexity and Uncertainty: Algorithms and Software
Jeff Linderoth
2011-11-06
the goal of this work was to develop new algorithmic techniques for solving large-scale numerical optimization problems, focusing on problems classes that have proven to be among the most challenging for practitioners: those involving uncertainty and those involving nonconvexity. This research advanced the state-of-the-art in solving mixed integer linear programs containing symmetry, mixed integer nonlinear programs, and stochastic optimization problems. The focus of the work done in the continuation was on Mixed Integer Nonlinear Programs (MINLP)s and Mixed Integer Linear Programs (MILP)s, especially those containing a great deal of symmetry.
NASA Astrophysics Data System (ADS)
Yin, Sisi; Nishi, Tatsushi
2014-11-01
Quantity discount policy is decision-making for trade-off prices between suppliers and manufacturers while production is changeable due to demand fluctuations in a real market. In this paper, quantity discount models which consider selection of contract suppliers, production quantity and inventory simultaneously are addressed. The supply chain planning problem with quantity discounts under demand uncertainty is formulated as a mixed-integer nonlinear programming problem (MINLP) with integral terms. We apply an outer-approximation method to solve MINLP problems. In order to improve the efficiency of the proposed method, the problem is reformulated as a stochastic model replacing the integral terms by using a normalisation technique. We present numerical examples to demonstrate the efficiency of the proposed method.
On Revenue-Optimal Dynamic Auctions for Bidders with Interdependent Values
NASA Astrophysics Data System (ADS)
Constantin, Florin; Parkes, David C.
In a dynamic market, being able to update one's value based on information available to other bidders currently in the market can be critical to having profitable transactions. This is nicely captured by the model of interdependent values (IDV): a bidder's value can explicitly depend on the private information of other bidders. In this paper we present preliminary results about the revenue properties of dynamic auctions for IDV bidders. We adopt a computational approach to design single-item revenue-optimal dynamic auctions with known arrivals and departures but (private) signals that arrive online. In leveraging a characterization of truthful auctions, we present a mixed-integer programming formulation of the design problem. Although a discretization is imposed on bidder signals the solution is a mechanism applicable to continuous signals. The formulation size grows exponentially in the dependence of bidders' values on other bidders' signals. We highlight general properties of revenue-optimal dynamic auctions in a simple parametrized example and study the sensitivity of prices and revenue to model parameters.
Armutlu, Pelin; Ozdemir, Muhittin E; Uney-Yuksektepe, Fadime; Kavakli, I Halil; Turkay, Metin
2008-01-01
Background A priori analysis of the activity of drugs on the target protein by computational approaches can be useful in narrowing down drug candidates for further experimental tests. Currently, there are a large number of computational methods that predict the activity of drugs on proteins. In this study, we approach the activity prediction problem as a classification problem and, we aim to improve the classification accuracy by introducing an algorithm that combines partial least squares regression with mixed-integer programming based hyper-boxes classification method, where drug molecules are classified as low active or high active regarding their binding activity (IC50 values) on target proteins. We also aim to determine the most significant molecular descriptors for the drug molecules. Results We first apply our approach by analyzing the activities of widely known inhibitor datasets including Acetylcholinesterase (ACHE), Benzodiazepine Receptor (BZR), Dihydrofolate Reductase (DHFR), Cyclooxygenase-2 (COX-2) with known IC50 values. The results at this stage proved that our approach consistently gives better classification accuracies compared to 63 other reported classification methods such as SVM, Naïve Bayes, where we were able to predict the experimentally determined IC50 values with a worst case accuracy of 96%. To further test applicability of this approach we first created dataset for Cytochrome P450 C17 inhibitors and then predicted their activities with 100% accuracy. Conclusion Our results indicate that this approach can be utilized to predict the inhibitory effects of inhibitors based on their molecular descriptors. This approach will not only enhance drug discovery process, but also save time and resources committed. PMID:18834515
Optimization techniques in molecular structure and function elucidation.
Sahinidis, Nikolaos V
2009-12-01
This paper discusses recent optimization approaches to the protein side-chain prediction problem, protein structural alignment, and molecular structure determination from X-ray diffraction measurements. The machinery employed to solve these problems has included algorithms from linear programming, dynamic programming, combinatorial optimization, and mixed-integer nonlinear programming. Many of these problems are purely continuous in nature. Yet, to this date, they have been approached mostly via combinatorial optimization algorithms that are applied to discrete approximations. The main purpose of the paper is to offer an introduction and motivate further systems approaches to these problems. PMID:20160866
A DSN optimal spacecraft scheduling model
NASA Technical Reports Server (NTRS)
Webb, W. A.
1982-01-01
A computer model is described which uses mixed-integer linear programming to provide optimal DSN spacecraft schedules given a mission set and specified scheduling requirements. A solution technique is proposed which uses Bender's Method and a heuristic starting algorithm.
2013-01-01
Background Phylogeny estimation from aligned haplotype sequences has attracted more and more attention in the recent years due to its importance in analysis of many fine-scale genetic data. Its application fields range from medical research, to drug discovery, to epidemiology, to population dynamics. The literature on molecular phylogenetics proposes a number of criteria for selecting a phylogeny from among plausible alternatives. Usually, such criteria can be expressed by means of objective functions, and the phylogenies that optimize them are referred to as optimal. One of the most important estimation criteria is the parsimony which states that the optimal phylogeny T∗for a set H of n haplotype sequences over a common set of variable loci is the one that satisfies the following requirements: (i) it has the shortest length and (ii) it is such that, for each pair of distinct haplotypes hi,hj∈H, the sum of the edge weights belonging to the path from hi to hj in T∗ is not smaller than the observed number of changes between hi and hj. Finding the most parsimonious phylogeny for H involves solving an optimization problem, called the Most Parsimonious Phylogeny Estimation Problem (MPPEP), which is NP-hard in many of its versions. Results In this article we investigate a recent version of the MPPEP that arises when input data consist of single nucleotide polymorphism haplotypes extracted from a population of individuals on a common genomic region. Specifically, we explore the prospects for improving on the implicit enumeration strategy of implicit enumeration strategy used in previous work using a novel problem formulation and a series of strengthening valid inequalities and preliminary symmetry breaking constraints to more precisely bound the solution space and accelerate implicit enumeration of possible optimal phylogenies. We present the basic formulation and then introduce a series of provable valid constraints to reduce the solution space. We then prove
Optimization using Extremal Dynamics
NASA Astrophysics Data System (ADS)
Boettcher, Stefan
2001-03-01
We explore a new heuristic for finding high-quality solutions to NP-hard optimization problems which we have recently introduced [see ``Nature's Way of Optimizing," Artificial Intelligence 119, 275-286 (2000) and cond-mat/0010337]. The method, called extremal optimization, is inspired by self-organized criticality, a concept introduced to describe emergent complexity in physical systems. Extremal optimization successively replaces extremely undesirable elements of a single sub-optimal solution with new, random ones. Large fluctuations ensue that efficiently explore many local optima. With only one adjustable parameter, its performance has proved competitive with more elaborate methods, especially near phase transitions which are believed to contain the hardest instances. In particular, extremal optimization is superior to simulated annealing in the partitioning of sparse graphs, it finds the overlap of all ground-states at the phase transition of the 3-coloring problem, and it provides independent confirmation for the ground-state energy of spin glasses, previously obtained with elaborate genetic algorithms.
Adaptive critics for dynamic optimization.
Kulkarni, Raghavendra V; Venayagamoorthy, Ganesh Kumar
2010-06-01
A novel action-dependent adaptive critic design (ACD) is developed for dynamic optimization. The proposed combination of a particle swarm optimization-based actor and a neural network critic is demonstrated through dynamic sleep scheduling of wireless sensor motes for wildlife monitoring. The objective of the sleep scheduler is to dynamically adapt the sleep duration to node's battery capacity and movement pattern of animals in its environment in order to obtain snapshots of the animal on its trajectory uniformly. Simulation results show that the sleep time of the node determined by the actor critic yields superior quality of sensory data acquisition and enhanced node longevity. PMID:20223635
2012-01-01
Background The estimation of parameter values for mathematical models of biological systems is an optimization problem that is particularly challenging due to the nonlinearities involved. One major difficulty is the existence of multiple minima in which standard optimization methods may fall during the search. Deterministic global optimization methods overcome this limitation, ensuring convergence to the global optimum within a desired tolerance. Global optimization techniques are usually classified into stochastic and deterministic. The former typically lead to lower CPU times but offer no guarantee of convergence to the global minimum in a finite number of iterations. In contrast, deterministic methods provide solutions of a given quality (i.e., optimality gap), but tend to lead to large computational burdens. Results This work presents a deterministic outer approximation-based algorithm for the global optimization of dynamic problems arising in the parameter estimation of models of biological systems. Our approach, which offers a theoretical guarantee of convergence to global minimum, is based on reformulating the set of ordinary differential equations into an equivalent set of algebraic equations through the use of orthogonal collocation methods, giving rise to a nonconvex nonlinear programming (NLP) problem. This nonconvex NLP is decomposed into two hierarchical levels: a master mixed-integer linear programming problem (MILP) that provides a rigorous lower bound on the optimal solution, and a reduced-space slave NLP that yields an upper bound. The algorithm iterates between these two levels until a termination criterion is satisfied. Conclusion The capabilities of our approach were tested in two benchmark problems, in which the performance of our algorithm was compared with that of the commercial global optimization package BARON. The proposed strategy produced near optimal solutions (i.e., within a desired tolerance) in a fraction of the CPU time required by
Lu, H W; Huang, G H; He, L; Zeng, G M
2009-01-01
Municipal solid waste (MSW) should be properly disposed in order to help protect environmental quality and human health, as well as to preserve natural resources. During MSW disposal processes, a large amount of greenhouse gas (GHG) is emitted, leading to a significant impact on climate change. In this study, an inexact dynamic optimization model (IDOM) is developed for MSW-management systems under uncertainty. It grounds upon conventional mixed-integer linear programming (MILP) approaches, and integrates GHG components into the modeling framework. Compared with the existing models, IDOM can not only deal with the complex tradeoff between system cost minimization and GHG-emission mitigation, but also provide optimal allocation strategies under various emission-control standards. A case study is then provided for demonstrating applicability of the developed model. The results indicate that desired waste-flow patterns with a minimized system cost and GHG-emission amount can be obtained. Of more importance, the IDOM solution is associated with over 5.5 million tonnes of TEC reduction, which is of significant economic implication for real implementations. Therefore, the proposed model could be regarded as a useful tool for realizing comprehensive MSW management with regard to mitigating climate-change impacts. PMID:18096299
Optimal multi-stage planning of power distribution systems
Gonen, T.; Ramirez-Rosado, I.J.
1987-04-01
This paper presents a completely-dynamic mixed-integer model to solve the optimal sizing, timing, and location of distribution substation and feeder expansion problems simultaneously. The objective function of the model represents the present worth of costs of investment, energy, and demand losses of the system which takes place throughout the planning time horizon. It is minimized subject to the Kirchhoff's current law, power capacity limits, and logical constraints by using a standard mathematical programming system. The developed model allows to include the explicit constraints of radiality and voltage drop in its formulation.
Optimal operation of a potable water distribution network.
Biscos, C; Mulholland, M; Le Lann, M V; Brouckaert, C J; Bailey, R; Roustan, M
2002-01-01
This paper presents an approach to an optimal operation of a potable water distribution network. The main control objective defined during the preliminary steps was to maximise the use of low-cost power, maintaining at the same time minimum emergency levels in all reservoirs. The combination of dynamic elements (e.g. reservoirs) and discrete elements (pumps, valves, routing) makes this a challenging predictive control and constrained optimisation problem, which is being solved by MINLP (Mixed Integer Non-linear Programming). Initial experimental results show the performance of this algorithm and its ability to control the water distribution process. PMID:12448464
Optimal dynamic detection of explosives
Moore, David Steven; Mcgrane, Shawn D; Greenfield, Margo T; Scharff, R J; Rabitz, Herschel A; Roslund, J
2009-01-01
The detection of explosives is a notoriously difficult problem, especially at stand-off distances, due to their (generally) low vapor pressure, environmental and matrix interferences, and packaging. We are exploring optimal dynamic detection to exploit the best capabilities of recent advances in laser technology and recent discoveries in optimal shaping of laser pulses for control of molecular processes to significantly enhance the standoff detection of explosives. The core of the ODD-Ex technique is the introduction of optimally shaped laser pulses to simultaneously enhance sensitivity of explosives signatures while reducing the influence of noise and the signals from background interferents in the field (increase selectivity). These goals are being addressed by operating in an optimal nonlinear fashion, typically with a single shaped laser pulse inherently containing within it coherently locked control and probe sub-pulses. With sufficient bandwidth, the technique is capable of intrinsically providing orthogonal broad spectral information for data fusion, all from a single optimal pulse.
An optimal spacecraft scheduling model for the NASA deep space network
NASA Technical Reports Server (NTRS)
Webb, W. A.
1985-01-01
A computer model is described which uses mixed-integer linear programming to provide optimal DSN spacecraft schedules given a mission set and specified scheduling requirements. A solution technique is proposed which uses Bender's method and a heuristic starting algorithm.
New numerical methods for open-loop and feedback solutions to dynamic optimization problems
NASA Astrophysics Data System (ADS)
Ghosh, Pradipto
The topic of the first part of this research is trajectory optimization of dynamical systems via computational swarm intelligence. Particle swarm optimization is a nature-inspired heuristic search method that relies on a group of potential solutions to explore the fitness landscape. Conceptually, each particle in the swarm uses its own memory as well as the knowledge accumulated by the entire swarm to iteratively converge on an optimal or near-optimal solution. It is relatively straightforward to implement and unlike gradient-based solvers, does not require an initial guess or continuity in the problem definition. Although particle swarm optimization has been successfully employed in solving static optimization problems, its application in dynamic optimization, as posed in optimal control theory, is still relatively new. In the first half of this thesis particle swarm optimization is used to generate near-optimal solutions to several nontrivial trajectory optimization problems including thrust programming for minimum fuel, multi-burn spacecraft orbit transfer, and computing minimum-time rest-to-rest trajectories for a robotic manipulator. A distinct feature of the particle swarm optimization implementation in this work is the runtime selection of the optimal solution structure. Optimal trajectories are generated by solving instances of constrained nonlinear mixed-integer programming problems with the swarming technique. For each solved optimal programming problem, the particle swarm optimization result is compared with a nearly exact solution found via a direct method using nonlinear programming. Numerical experiments indicate that swarm search can locate solutions to very great accuracy. The second half of this research develops a new extremal-field approach for synthesizing nearly optimal feedback controllers for optimal control and two-player pursuit-evasion games described by general nonlinear differential equations. A notable revelation from this development
Final Report-Optimization Under Uncertainty and Nonconvexity: Algorithms and Software
Jeff Linderoth
2008-10-10
The goal of this research was to develop new algorithmic techniques for solving large-scale numerical optimization problems, focusing on problems classes that have proven to be among the most challenging for practitioners: those involving uncertainty and those involving nonconvexity. This research advanced the state-of-the-art in solving mixed integer linear programs containing symmetry, mixed integer nonlinear programs, and stochastic optimization problems.
Demystifying optimal dynamic treatment regimes.
Moodie, Erica E M; Richardson, Thomas S; Stephens, David A
2007-06-01
A dynamic regime is a function that takes treatment and covariate history and baseline covariates as inputs and returns a decision to be made. Murphy (2003, Journal of the Royal Statistical Society, Series B 65, 331-366) and Robins (2004, Proceedings of the Second Seattle Symposium on Biostatistics, 189-326) have proposed models and developed semiparametric methods for making inference about the optimal regime in a multi-interval trial that provide clear advantages over traditional parametric approaches. We show that Murphy's model is a special case of Robins's and that the methods are closely related but not equivalent. Interesting features of the methods are highlighted using the Multicenter AIDS Cohort Study and through simulation. PMID:17688497
Optimization of Dynamical Decoupling Using Measurement Feedback
NASA Astrophysics Data System (ADS)
Uys, Hermann; Biercuk, Michael; Vandevender, Aaron; Shiga, Nobuyasu; Itano, Wayne; Bollinger, John
2009-05-01
We study the optimization of dynamical decoupling sequences using ^9Be^+ ions in a Penning ion trap. We artificially synthesize the noise environment the ions see to emulate a variety of physical systems. By incorporating measurement feedback with a Nelder-Mead search algorithm, our locally optimized dynamical decoupling sequences (LODD) attain an order of magnitude improved error suppression compared to known sequences in noise environments with power spectra that have sharp, high-frequency cutoffs. The technique requires no prior knowledge of the noise spectrum. This work shows that optimized dynamical decoupling will be a useful tool in suppressing qubit errors below the fault-tolerant threshold for quantum computation.
TRACKING CODE DEVELOPMENT FOR BEAM DYNAMICS OPTIMIZATION
Yang, L.
2011-03-28
Dynamic aperture (DA) optimization with direct particle tracking is a straight forward approach when the computing power is permitted. It can have various realistic errors included and is more close than theoretical estimations. In this approach, a fast and parallel tracking code could be very helpful. In this presentation, we describe an implementation of storage ring particle tracking code TESLA for beam dynamics optimization. It supports MPI based parallel computing and is robust as DA calculation engine. This code has been used in the NSLS-II dynamics optimizations and obtained promising performance.
Baliban, Richard C; Dimaggio, Peter A; Plazas-Mayorca, Mariana D; Garcia, Benjamin A; Floudas, Christodoulos A
2012-09-01
A novel protein identification framework, PILOT_PROTEIN, has been developed to construct a comprehensive list of all unmodified proteins that are present in a living sample. It uses the peptide identification results from the PILOT_SEQUEL algorithm to initially determine all unmodified proteins within the sample. Using a rigorous biclustering approach that groups incorrect peptide sequences with other homologous sequences, the number of false positives reported is minimized. A sequence tag procedure is then incorporated along with the untargeted PTM identification algorithm, PILOT_PTM, to determine a list of all modification types and sites for each protein. The unmodified protein identification algorithm, PILOT_PROTEIN, is compared to the methods SEQUEST, InsPecT, X!Tandem, VEMS, and ProteinProspector using both prepared protein samples and a more complex chromatin digest. The algorithm demonstrates superior protein identification accuracy with a lower false positive rate. All materials are freely available to the scientific community at http://pumpd.princeton.edu. PMID:22788846
Semiclassical guided optimal control of molecular dynamics
Kondorskiy, A.; Mil'nikov, G.; Nakamura, H.
2005-10-15
An efficient semiclassical optimal control theory applicable to multidimensional systems is formulated for controlling wave packet dynamics on a single adiabatic potential energy surface. The approach combines advantages of different formulations of optimal control theory: quantum and classical on one hand and global and local on the other. Numerical applications to the control of HCN-CNH isomerization demonstrate that this theory can provide an efficient tool to manipulate molecular dynamics of many degrees of freedom by laser pulses.
Two Characterizations of Optimality in Dynamic Programming
Karatzas, Ioannis; Sudderth, William D.
2010-06-15
It holds in great generality that a plan is optimal for a dynamic programming problem, if and only if it is 'thrifty' and 'equalizing.' An alternative characterization of an optimal plan, that applies in many economic models, is that the plan must satisfy an appropriate Euler equation and a transversality condition. Here we explore the connections between these two characterizations.
Streak camera dynamic range optimization
Wiedwald, J.D.; Lerche, R.A.
1987-09-01
The LLNL optical streak camera is used by the Laser Fusion Program in a wide range of applications. Many of these applications require a large recorded dynamic range. Recent work has focused on maximizing the dynamic range of the streak camera recording system. For our streak cameras, image intensifier saturation limits the upper end of the dynamic range. We have developed procedures to set the image intensifier gain such that the system dynamic range is maximized. Specifically, the gain is set such that a single streak tube photoelectron is recorded with an exposure of about five times the recording system noise. This ensures detection of single photoelectrons, while not consuming intensifier or recording system dynamic range through excessive intensifier gain. The optimum intensifier gain has been determined for two types of film and for a lens-coupled CCD camera. We have determined that by recording the streak camera image with a CCD camera, the system is shot-noise limited up to the onset of image intensifier nonlinearity. When recording on film, the film determines the noise at high exposure levels. There is discussion of the effects of slit width and image intensifier saturation on dynamic range. 8 refs.
Dynamic optimization and adaptive controller design
NASA Astrophysics Data System (ADS)
Inamdar, S. R.
2010-10-01
In this work I present a new type of controller which is an adaptive tracking controller which employs dynamic optimization for optimizing current value of controller action for the temperature control of nonisothermal continuously stirred tank reactor (CSTR). We begin with a two-state model of nonisothermal CSTR which are mass and heat balance equations and then add cooling system dynamics to eliminate input multiplicity. The initial design value is obtained using local stability of steady states where approach temperature for cooling action is specified as a steady state and a design specification. Later we make a correction in the dynamics where material balance is manipulated to use feed concentration as a system parameter as an adaptive control measure in order to avoid actuator saturation for the main control loop. The analysis leading to design of dynamic optimization based parameter adaptive controller is presented. The important component of this mathematical framework is reference trajectory generation to form an adaptive control measure.
Optimizing Dynamical Network Structure for Pinning Control
Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo
2016-01-01
Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights. PMID:27067020
Optimizing Dynamical Network Structure for Pinning Control.
Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo
2016-01-01
Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights. PMID:27067020
Optimizing Dynamical Network Structure for Pinning Control
NASA Astrophysics Data System (ADS)
Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo
2016-04-01
Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights.
Efficient dynamic optimization of logic programs
NASA Technical Reports Server (NTRS)
Laird, Phil
1992-01-01
A summary is given of the dynamic optimization approach to speed up learning for logic programs. The problem is to restructure a recursive program into an equivalent program whose expected performance is optimal for an unknown but fixed population of problem instances. We define the term 'optimal' relative to the source of input instances and sketch an algorithm that can come within a logarithmic factor of optimal with high probability. Finally, we show that finding high-utility unfolding operations (such as EBG) can be reduced to clause reordering.
Optimizing dissolution dynamic nuclear polarization
NASA Astrophysics Data System (ADS)
Bornet, Aurélien; Jannin, Sami
2016-03-01
This article is a short review of some of our recent developments in dissolution dynamic nuclear polarization (d-DNP). We present the basic principles of d-DNP, and motivate our choice to step away from conventional approaches. We then introduce a modified d-DNP recipe that can be summed up as follows:
Optimizing dissolution dynamic nuclear polarization.
Bornet, Aurélien; Jannin, Sami
2016-03-01
This article is a short review of some of our recent developments in dissolution dynamic nuclear polarization (d-DNP). We present the basic principles of d-DNP, and motivate our choice to step away from conventional approaches. We then introduce a modified d-DNP recipe that can be summed up as follows. PMID:26920826
Dynamic optimization case studies in DYNOPT tool
NASA Astrophysics Data System (ADS)
Ozana, Stepan; Pies, Martin; Docekal, Tomas
2016-06-01
Dynamic programming is typically applied to optimization problems. As the analytical solutions are generally very difficult, chosen software tools are used widely. These software packages are often third-party products bound for standard simulation software tools on the market. As typical examples of such tools, TOMLAB and DYNOPT could be effectively applied for solution of problems of dynamic programming. DYNOPT will be presented in this paper due to its licensing policy (free product under GPL) and simplicity of use. DYNOPT is a set of MATLAB functions for determination of optimal control trajectory by given description of the process, the cost to be minimized, subject to equality and inequality constraints, using orthogonal collocation on finite elements method. The actual optimal control problem is solved by complete parameterization both the control and the state profile vector. It is assumed, that the optimized dynamic model may be described by a set of ordinary differential equations (ODEs) or differential-algebraic equations (DAEs). This collection of functions extends the capability of the MATLAB Optimization Tool-box. The paper will introduce use of DYNOPT in the field of dynamic optimization problems by means of case studies regarding chosen laboratory physical educational models.
Optimizing dissolution dynamic nuclear polarization
NASA Astrophysics Data System (ADS)
Bornet, Aurélien; Jannin, Sami
2016-03-01
This article is a short review of some of our recent developments in dissolution dynamic nuclear polarization (d-DNP). We present the basic principles of d-DNP, and motivate our choice to step away from conventional approaches. We then introduce a modified d-DNP recipe that can be summed up as follows: Using broad line polarizing agents to efficiently polarize 1H spins. Increasing the magnetic field to 6.7 T and above. Applying microwave frequency modulation. Applying 1H-13C cross polarization. Transferring hyperpolarized solution through a magnetic tunnel.
Dynamic programming in applied optimization problems
NASA Astrophysics Data System (ADS)
Zavalishchin, Dmitry
2015-11-01
Features of the use dynamic programming in applied problems are investigated. In practice such problems as finding the critical paths in network planning and control, finding the optimal supply plan in transportation problem, objects territorial distribution are traditionally solved by special methods of operations research. It should be noted that the dynamic programming is not provided computational advantages, but facilitates changes and modifications of tasks. This follows from the Bellman's optimality principle. The features of the multistage decision processes construction in applied problems are provided.
Role of controllability in optimizing quantum dynamics
Wu Rebing; Hsieh, Michael A.; Rabitz, Herschel
2011-06-15
This paper reveals an important role that controllability plays in the complexity of optimizing quantum control dynamics. We show that the loss of controllability generally leads to multiple locally suboptimal controls when gate fidelity in a quantum control system is maximized, which does not happen if the system is controllable. Such local suboptimal controls may attract an optimization algorithm into a local trap when a global optimal solution is sought, even if the target gate can be perfectly realized. This conclusion results from an analysis of the critical topology of the corresponding quantum control landscape, which refers to the gate fidelity objective as a functional of the control fields. For uncontrollable systems, due to SU(2) and SU(3) dynamical symmetries, the control landscape corresponding to an implementable target gate is proven to possess multiple locally optimal critical points, and its ruggedness can be further increased if the target gate is not realizable. These results imply that the optimization of quantum dynamics can be seriously impeded when operating with local search algorithms under these conditions, and thus full controllability is demanded.
Optimizing replica exchange moves for molecular dynamics.
Nadler, Walter; Hansmann, Ulrich H E
2007-11-01
We sketch the statistical physics framework of the replica exchange technique when applied to molecular dynamics simulations. In particular, we draw attention to generalized move sets that allow a variety of optimizations as well as new applications of the method. PMID:18233794
Optimal BLS: Optimizing transit-signal detection for Keplerian dynamics
NASA Astrophysics Data System (ADS)
Ofir, Aviv
2015-08-01
Transit surveys, both ground- and space-based, have already accumulated a large number of light curves that span several years. We optimize the search for transit signals for both detection and computational efficiencies by assuming that the searched systems can be described by Keplerian, and propagating the effects of different system parameters to the detection parameters. Importnantly, we mainly consider the information content of the transit signal and not any specific algorithm - and use BLS (Kovács, Zucker, & Mazeh 2002) just as a specific example.We show that the frequency information content of the light curve is primarily determined by the duty cycle of the transit signal, and thus the optimal frequency sampling is found to be cubic and not linear. Further optimization is achieved by considering duty-cycle dependent binning of the phased light curve. By using the (standard) BLS, one is either fairly insensitive to long-period planets or less sensitive to short-period planets and computationally slower by a significant factor of ~330 (for a 3 yr long dataset). We also show how the physical system parameters, such as the host star's size and mass, directly affect transit detection. This understanding can then be used to optimize the search for every star individually.By considering Keplerian dynamics explicitly rather than implicitly one can optimally search the transit signal parameter space. The presented Optimal BLS enhances the detectability of both very short and very long period planets, while allowing such searches to be done with much reduced resources and time. The Matlab/Octave source code for Optimal BLS is made available.
Modeling the dynamics of ant colony optimization.
Merkle, Daniel; Middendorf, Martin
2002-01-01
The dynamics of Ant Colony Optimization (ACO) algorithms is studied using a deterministic model that assumes an average expected behavior of the algorithms. The ACO optimization metaheuristic is an iterative approach, where in every iteration, artificial ants construct solutions randomly but guided by pheromone information stemming from former ants that found good solutions. The behavior of ACO algorithms and the ACO model are analyzed for certain types of permutation problems. It is shown analytically that the decisions of an ant are influenced in an intriguing way by the use of the pheromone information and the properties of the pheromone matrix. This explains why ACO algorithms can show a complex dynamic behavior even when there is only one ant per iteration and no competition occurs. The ACO model is used to describe the algorithm behavior as a combination of situations with different degrees of competition between the ants. This helps to better understand the dynamics of the algorithm when there are several ants per iteration as is always the case when using ACO algorithms for optimization. Simulations are done to compare the behavior of the ACO model with the ACO algorithm. Results show that the deterministic model describes essential features of the dynamics of ACO algorithms quite accurately, while other aspects of the algorithms behavior cannot be found in the model. PMID:12227995
Optimizing Motion Planning for Hyper Dynamic Manipulator
NASA Astrophysics Data System (ADS)
Aboura, Souhila; Omari, Abdelhafid; Meguenni, Kadda Zemalache
2012-01-01
This paper investigates the optimal motion planning for an hyper dynamic manipulator. As case study, we consider a golf swing robot which is consisting with two actuated joint and a mechanical stoppers. Genetic Algorithm (GA) technique is proposed to solve the optimal golf swing motion which is generated by Fourier series approximation. The objective function for GA approach is to minimizing the intermediate and final state, minimizing the robot's energy consummation and maximizing the robot's speed. Obtained simulation results show the effectiveness of the proposed scheme.
Pareto optimization in algebraic dynamic programming.
Saule, Cédric; Giegerich, Robert
2015-01-01
Pareto optimization combines independent objectives by computing the Pareto front of its search space, defined as the set of all solutions for which no other candidate solution scores better under all objectives. This gives, in a precise sense, better information than an artificial amalgamation of different scores into a single objective, but is more costly to compute. Pareto optimization naturally occurs with genetic algorithms, albeit in a heuristic fashion. Non-heuristic Pareto optimization so far has been used only with a few applications in bioinformatics. We study exact Pareto optimization for two objectives in a dynamic programming framework. We define a binary Pareto product operator [Formula: see text] on arbitrary scoring schemes. Independent of a particular algorithm, we prove that for two scoring schemes A and B used in dynamic programming, the scoring scheme [Formula: see text] correctly performs Pareto optimization over the same search space. We study different implementations of the Pareto operator with respect to their asymptotic and empirical efficiency. Without artificial amalgamation of objectives, and with no heuristics involved, Pareto optimization is faster than computing the same number of answers separately for each objective. For RNA structure prediction under the minimum free energy versus the maximum expected accuracy model, we show that the empirical size of the Pareto front remains within reasonable bounds. Pareto optimization lends itself to the comparative investigation of the behavior of two alternative scoring schemes for the same purpose. For the above scoring schemes, we observe that the Pareto front can be seen as a composition of a few macrostates, each consisting of several microstates that differ in the same limited way. We also study the relationship between abstract shape analysis and the Pareto front, and find that they extract information of a different nature from the folding space and can be meaningfully combined. PMID
Application of optimal prediction to molecular dynamics
Barber IV, John Letherman
2004-12-01
Optimal prediction is a general system reduction technique for large sets of differential equations. In this method, which was devised by Chorin, Hald, Kast, Kupferman, and Levy, a projection operator formalism is used to construct a smaller system of equations governing the dynamics of a subset of the original degrees of freedom. This reduced system consists of an effective Hamiltonian dynamics, augmented by an integral memory term and a random noise term. Molecular dynamics is a method for simulating large systems of interacting fluid particles. In this thesis, I construct a formalism for applying optimal prediction to molecular dynamics, producing reduced systems from which the properties of the original system can be recovered. These reduced systems require significantly less computational time than the original system. I initially consider first-order optimal prediction, in which the memory and noise terms are neglected. I construct a pair approximation to the renormalized potential, and ignore three-particle and higher interactions. This produces a reduced system that correctly reproduces static properties of the original system, such as energy and pressure, at low-to-moderate densities. However, it fails to capture dynamical quantities, such as autocorrelation functions. I next derive a short-memory approximation, in which the memory term is represented as a linear frictional force with configuration-dependent coefficients. This allows the use of a Fokker-Planck equation to show that, in this regime, the noise is {delta}-correlated in time. This linear friction model reproduces not only the static properties of the original system, but also the autocorrelation functions of dynamical variables.
Optimal Campaign in the Smoking Dynamics
Zaman, Gul
2011-01-01
We present the optimal campaigns in the smoking dynamics. Assuming that the giving up smoking model is described by the simplified PLSQ (potential-light-smoker-quit smoker) model, we consider two possible control variables in the form of education and treatment campaigns oriented to decrease the attitude towards smoking. In order to do this we minimize the number of light (occasional) and persistent smokers and maximize the number of quit smokers in a community. We first show the existence of an optimal control for the control problem and then derive the optimality system by using the Pontryagin maximum principle. Finally numerical results of real epidemic are presented to show the applicability and efficiency of this approach. PMID:21461044
Rigorous bounds for optimal dynamical decoupling
Uhrig, Goetz S.; Lidar, Daniel A.
2010-07-15
We present rigorous performance bounds for the optimal dynamical decoupling pulse sequence protecting a quantum bit (qubit) against pure dephasing. Our bounds apply under the assumption of instantaneous pulses and of bounded perturbing environment and qubit-environment Hamiltonians such as those realized by baths of nuclear spins in quantum dots. We show that if the total sequence time is fixed the optimal sequence can be used to make the distance between the protected and unperturbed qubit states arbitrarily small in the number of applied pulses. If, on the other hand, the minimum pulse interval is fixed and the total sequence time is allowed to scale with the number of pulses, then longer sequences need not always be advantageous. The rigorous bound may serve as a testbed for approximate treatments of optimal decoupling in bounded models of decoherence.
Direct Optimal Control of Duffing Dynamics
NASA Technical Reports Server (NTRS)
Oz, Hayrani; Ramsey, John K.
2002-01-01
The "direct control method" is a novel concept that is an attractive alternative and competitor to the differential-equation-based methods. The direct method is equally well applicable to nonlinear, linear, time-varying, and time-invariant systems. For all such systems, the method yields explicit closed-form control laws based on minimization of a quadratic control performance measure. We present an application of the direct method to the dynamics and optimal control of the Duffing system where the control performance measure is not restricted to a quadratic form and hence may include a quartic energy term. The results we present in this report also constitute further generalizations of our earlier work in "direct optimal control methodology." The approach is demonstrated for the optimal control of the Duffing equation with a softening nonlinear stiffness.
Utilizing parallel optimization in computational fluid dynamics
NASA Astrophysics Data System (ADS)
Kokkolaras, Michael
1998-12-01
General problems of interest in computational fluid dynamics are investigated by means of optimization. Specifically, in the first part of the dissertation, a method of optimal incremental function approximation is developed for the adaptive solution of differential equations. Various concepts and ideas utilized by numerical techniques employed in computational mechanics and artificial neural networks (e.g. function approximation and error minimization, variational principles and weighted residuals, and adaptive grid optimization) are combined to formulate the proposed method. The basis functions and associated coefficients of a series expansion, representing the solution, are optimally selected by a parallel direct search technique at each step of the algorithm according to appropriate criteria; the solution is built sequentially. In this manner, the proposed method is adaptive in nature, although a grid is neither built nor adapted in the traditional sense using a-posteriori error estimates. Variational principles are utilized for the definition of the objective function to be extremized in the associated optimization problems, ensuring that the problem is well-posed. Complicated data structures and expensive remeshing algorithms and systems solvers are avoided. Computational efficiency is increased by using low-order basis functions and concurrent computing. Numerical results and convergence rates are reported for a range of steady-state problems, including linear and nonlinear differential equations associated with general boundary conditions, and illustrate the potential of the proposed method. Fluid dynamics applications are emphasized. Conclusions are drawn by discussing the method's limitations, advantages, and possible extensions. The second part of the dissertation is concerned with the optimization of the viscous-inviscid-interaction (VII) mechanism in an airfoil flow analysis code. The VII mechanism is based on the concept of a transpiration velocity
Robust optimization with transiently chaotic dynamical systems
NASA Astrophysics Data System (ADS)
Sumi, R.; Molnár, B.; Ercsey-Ravasz, M.
2014-05-01
Efficiently solving hard optimization problems has been a strong motivation for progress in analog computing. In a recent study we presented a continuous-time dynamical system for solving the NP-complete Boolean satisfiability (SAT) problem, with a one-to-one correspondence between its stable attractors and the SAT solutions. While physical implementations could offer great efficiency, the transiently chaotic dynamics raises the question of operability in the presence of noise, unavoidable on analog devices. Here we show that the probability of finding solutions is robust to noise intensities well above those present on real hardware. We also developed a cellular neural network model realizable with analog circuits, which tolerates even larger noise intensities. These methods represent an opportunity for robust and efficient physical implementations.
Optimized Noise Filtration through Dynamical Decoupling
NASA Astrophysics Data System (ADS)
Uys, Hermann; Biercuk, Michael J.; Bollinger, John J.
2009-07-01
Recent studies have shown that applying a sequence of Hahn spin-echo pulses to a qubit system at judiciously chosen intervals can, in certain noise environments, greatly improve the suppression of phase errors compared to traditional dynamical decoupling approaches. By enforcing a simple analytical condition, we obtain sets of dynamical decoupling sequences that are designed for optimized noise filtration, but are independent of the noise spectrum up to a single scaling factor set by the coherence time of the system. These sequences are tested in a model qubit system, Be+9 ions in a Penning trap. Our combined theoretical and experimental studies show that in high-frequency-dominated noise environments with sharp high-frequency cutoffs this approach may suppress phase errors orders of magnitude more efficiently than comparable techniques can.
Optimized noise filtration through dynamical decoupling.
Uys, Hermann; Biercuk, Michael J; Bollinger, John J
2009-07-24
Recent studies have shown that applying a sequence of Hahn spin-echo pulses to a qubit system at judiciously chosen intervals can, in certain noise environments, greatly improve the suppression of phase errors compared to traditional dynamical decoupling approaches. By enforcing a simple analytical condition, we obtain sets of dynamical decoupling sequences that are designed for optimized noise filtration, but are independent of the noise spectrum up to a single scaling factor set by the coherence time of the system. These sequences are tested in a model qubit system, ;{9}Be;{+} ions in a Penning trap. Our combined theoretical and experimental studies show that in high-frequency-dominated noise environments with sharp high-frequency cutoffs this approach may suppress phase errors orders of magnitude more efficiently than comparable techniques can. PMID:19659335
Optimal Empirical Prognostic Models of Climate Dynamics
NASA Astrophysics Data System (ADS)
Loskutov, E. M.; Mukhin, D.; Gavrilov, A.; Feigin, A. M.
2014-12-01
In this report the empirical methodology for prediction of climate dynamics is suggested. We construct the dynamical models of data patterns connected with climate indices, from observed spatially distributed time series. The models are based on artificial neural network (ANN) parameterization and have a form of discrete stochastic evolution operator mapping some sequence of systems state on the next one [1]. Different approaches to reconstruction of empirical basis (phase variables) for system's phase space representation, which is appropriate for forecasting the climate index of interest, are discussed in the report; for this purpose both linear and non-linear data expansions are considered. The most important point of the methodology is finding the optimal structural parameters of the model such as dimension of variable vector, i.e. number of principal components used for modeling, the time lag used for prediction, and number of neurons in ANN determining the quality of approximation. Actually, we need to solve the model selection problem, i.e. we want to obtain a model of optimal complexity in relation to analyzed time series. We use MDL approach [2] for this purpose: the model providing best data compression is chosen. The method is applied to space-distributed time-series of sea surface temperature and sea level pressure taken from IRI datasets [3]: the ability of proposed models to predict different climate indices (incl. Multivariate ENSO index, Pacific Decadal Oscillation index, North-Atlantic Oscillation index) is investigated. References:1. Molkov Ya. I., E. M. Loskutov, D. N. Mukhin, and A. M. Feigin, Random dynamical models from time series. Phys. Rev. E, 85, 036216, 2012.2. Molkov, Ya.I., D.N. Mukhin, E.M. Loskutov, A.M. Feigin, and G.A. Fidelin, Using the minimum description length principle for global reconstruction of dynamic systems from noisy time series. Phys. Rev. E, 80, 046207, 2009.3. IRI/LDEO Climate Data Library (http://iridl.ldeo.columbia.edu/)
Deriving statistical closure from dynamical optimization
NASA Astrophysics Data System (ADS)
Turkington, Bruce
2015-11-01
Turbulence theorists have traditionally deduced statistical models by generating a hierarchy of moment equations and invoking some closure rules to truncate the hierarchy. In this talk a conceptually different approach to model reduction and statistical closure will be presented, and its implications for coarse-graining fluid turbulence will be indicated. The author has developed this method in the context of nonequilibrium statistical descriptions of Hamiltonian systems with many degrees of freedom. With respect to a chosen parametric statistical model, the lack-of-fit of model paths to the full dynamics is minimized in a time-integrated, mean-squared sense. This optimal closure method is applied to coarse-grain spectrally-truncated inviscid dynamics, including the Burgers-Hopf equation and incompressible two-dimensional flow, using the means and/or variances of low modes as resolved variables. The derived reduced dynamics for these test cases contain (1) scale-dependent dissipation which is not a local eddy viscosity, (2) modified nonlinear interactions between resolved modes, and (3) coupling between the mean and variance of each resolved mode. These predictions are validated against direct numerical simulations of ensembles for the fully resolved dynamics.
Optimally designed fields for controlling molecular dynamics
NASA Astrophysics Data System (ADS)
Rabitz, Herschel
1991-10-01
This research concerns the development of molecular control theory techniques for designing optical fields capable of manipulating molecular dynamic phenomena. Although is has been long recognized that lasers should be capable of manipulating dynamic events, many frustrating years of intuitively driven laboratory studies only serve to illustrate the point that the task is complex and defies intuition. The principal new component in the present research is the recognition that this problem falls into the category of control theory and its inherent complexities require the use of modern control theory tools largely developed in the engineering disciplines. Thus, the research has initiated a transfer of the control theory concepts to the molecular scale. Although much contained effort will be needed to fully develop these concepts, the research in this grant set forth the basic components of the theory and carried out illustrative studies involving the design of optical fields capable of controlling rotational, vibrational and electronic degrees of freedom. Optimal control within the quantum mechanical molecular realm represents a frontier area with many possible ultimate applications. At this stage, the theoretical tools need to be joined with merging laboratory optical pulse shaping capabilities to illustrate the power of the concepts.
Optimal caching algorithm based on dynamic programming
NASA Astrophysics Data System (ADS)
Guo, Changjie; Xiang, Zhe; Zhong, Yuzhuo; Long, Jidong
2001-07-01
With the dramatic growth of multimedia streams, the efficient distribution of stored videos has become a major concern. There are two basic caching strategies: the whole caching strategy and the caching strategy based on layered encoded video, the latter can satisfy the requirement of the highly heterogeneous access to the Internet. Conventional caching strategies assign each object a cache gain by calculating popularity or density popularity, and determine which videos and which layers should be cached. In this paper, we first investigate the delivery model of stored video based on proxy, and propose two novel caching algorithms, DPLayer (for layered encoded caching scheme) and DPWhole (for whole caching scheme) for multimedia proxy caching. The two algorithms are based on the resource allocation model of dynamic programming to select the optimal subset of objects to be cached in proxy. Simulation proved that our algorithms achieve better performance than other existing schemes. We also analyze the computational complexity and space complexity of the algorithms, and introduce a regulative parameter to compress the states space of the dynamic programming problem and reduce the complexity of algorithms.
Dynamic optimization of a copolymerization reactor using tabu search.
Anand, P; Rao, M Bhagvanth; Venkateswarlu, Ch
2015-03-01
A novel multistage dynamic optimization strategy based on meta-heuristic tabu search (TS) is proposed and evaluated through sequential and simultaneous implementation procedures by applying it to a semi-batch styrene-acrylonitrile (SAN) copolymerization reactor. The adaptive memory and responsive exploration features of TS are exploited to design the dynamic optimization strategy and compute the optimal control policies for temperature and monomer addition rate so as to achieve the desired product quality parameters expressed in terms of single and multiple objectives. The dynamic optimization results of TS sequential and TS simultaneous implementation strategies are analyzed and compared with those of a conventional optimization technique based on iterative dynamic programming (IDP). The simulation results demonstrate the usefulness of TS for optimal control of transient dynamic systems. PMID:25466914
Chaotic dynamics in optimal monetary policy
NASA Astrophysics Data System (ADS)
Gomes, O.; Mendes, V. M.; Mendes, D. A.; Sousa Ramos, J.
2007-05-01
There is by now a large consensus in modern monetary policy. This consensus has been built upon a dynamic general equilibrium model of optimal monetary policy as developed by, e.g., Goodfriend and King [ NBER Macroeconomics Annual 1997 edited by B. Bernanke and J. Rotemberg (Cambridge, Mass.: MIT Press, 1997), pp. 231 282], Clarida et al. [J. Econ. Lit. 37, 1661 (1999)], Svensson [J. Mon. Econ. 43, 607 (1999)] and Woodford [ Interest and Prices: Foundations of a Theory of Monetary Policy (Princeton, New Jersey, Princeton University Press, 2003)]. In this paper we extend the standard optimal monetary policy model by introducing nonlinearity into the Phillips curve. Under the specific form of nonlinearity proposed in our paper (which allows for convexity and concavity and secures closed form solutions), we show that the introduction of a nonlinear Phillips curve into the structure of the standard model in a discrete time and deterministic framework produces radical changes to the major conclusions regarding stability and the efficiency of monetary policy. We emphasize the following main results: (i) instead of a unique fixed point we end up with multiple equilibria; (ii) instead of saddle-path stability, for different sets of parameter values we may have saddle stability, totally unstable equilibria and chaotic attractors; (iii) for certain degrees of convexity and/or concavity of the Phillips curve, where endogenous fluctuations arise, one is able to encounter various results that seem intuitively correct. Firstly, when the Central Bank pays attention essentially to inflation targeting, the inflation rate has a lower mean and is less volatile; secondly, when the degree of price stickiness is high, the inflation rate displays a larger mean and higher volatility (but this is sensitive to the values given to the parameters of the model); and thirdly, the higher the target value of the output gap chosen by the Central Bank, the higher is the inflation rate and its
Decentralized optimal control of dynamical systems under uncertainty
NASA Astrophysics Data System (ADS)
Gabasov, R.; Dmitruk, N. M.; Kirillova, F. M.
2011-07-01
The problem of optimal control of a group of interconnected dynamical objects under uncertainty is considered. The cases are examined in which the centralized control of the group of objects is impossible due to delay in the channel for information exchange between the group members. Optimal self-control algorithms in real time for each dynamical object are proposed. Various types of a priori and current information about the behavior of the group members and about uncertainties in the system are examined. The proposed methods supplement the earlier developed optimal control methods for an individual dynamical system and the methods of decentralized optimal control of deterministic objects. The results are illustrated with examples.
Online optimization of storage ring nonlinear beam dynamics
NASA Astrophysics Data System (ADS)
Huang, Xiaobiao; Safranek, James
2015-08-01
We propose to optimize the nonlinear beam dynamics of existing and future storage rings with direct online optimization techniques. This approach may have crucial importance for the implementation of diffraction limited storage rings. In this paper considerations and algorithms for the online optimization approach are discussed. We have applied this approach to experimentally improve the dynamic aperture of the SPEAR3 storage ring with the robust conjugate direction search method and the particle swarm optimization method. The dynamic aperture was improved by more than 5 mm within a short period of time. Experimental setup and results are presented.
Optimal control of HIV/AIDS dynamic: Education and treatment
NASA Astrophysics Data System (ADS)
Sule, Amiru; Abdullah, Farah Aini
2014-07-01
A mathematical model which describes the transmission dynamics of HIV/AIDS is developed. The optimal control representing education and treatment for this model is explored. The existence of optimal Control is established analytically by the use of optimal control theory. Numerical simulations suggest that education and treatment for the infected has a positive impact on HIV/AIDS control.
Dynamic systems of regional economy management optimization
NASA Astrophysics Data System (ADS)
Trofimov, S.; Kudzh, S.
directions of an industrial policy of region. The situational-analytical centers (SAC) of regional administration The major component of SAC is dynamic modeling, analysis, forecasting and optimization systems, based on modern intellectual information technologies. Spheres of SAC are not only financial streams management and investments optimization, but also strategic forecasting functions, which provide an optimum choice, "aiming", search of optimum ways of regional development and corresponding investments. It is expedient to consider an opportunity of formation of the uniform organizational-methodical center of an industrial policy of region. This organization can be directly connected to the scheduled-analytical services of the largest economic structures, local authorities, the ministries and departments. Such "direct communication" is capable to provide an effective regional development strategic management. Anyway, the output on foreign markets demands concentration of resources and support of authorities. Offered measures are capable to provide a necessary coordination of efforts of a various level economic structures. For maintenance of a regional industrial policy an attraction of all newest methods of strategic planning and management is necessary. Their activity should be constructed on the basis of modern approaches of economic systems management, cause the essence of an industrial policy is finally reduced to an effective regional and corporate economic activities control centers formation. Opportunities of optimum regional economy planning and management as uniform system Approaches to planning regional economic systems can be different. We will consider some most effective methods of planning and control over a regional facilities condition. All of them are compact and evident, that allows to put them into the group of average complexity technologies. At the decision of problems of a regional resource management is rather perspective the so
Multi-objective optimization for deepwater dynamic umbilical installation analysis
NASA Astrophysics Data System (ADS)
Yang, HeZhen; Wang, AiJun; Li, HuaJun
2012-08-01
We suggest a method of multi-objective optimization based on approximation model for dynamic umbilical installation. The optimization aims to find out the most cost effective size, quantity and location of buoyancy modules for umbilical installation while maintaining structural safety. The approximation model is constructed by the design of experiment (DOE) sampling and is utilized to solve the problem of time-consuming analyses. The non-linear dynamic analyses considering environmental loadings are executed on these sample points from DOE. Non-dominated Sorting Genetic Algorithm (NSGA-II) is employed to obtain the Pareto solution set through an evolutionary optimization process. Intuitionist fuzzy set theory is applied for selecting the best compromise solution from Pareto set. The optimization results indicate this optimization strategy with approximation model and multiple attribute decision-making method is valid, and provide the optimal deployment method for deepwater dynamic umbilical buoyancy modules.
Review of Optimization Methods in Groundwater Modeling and Management
NASA Astrophysics Data System (ADS)
Yeh, W. W.
2001-12-01
This paper surveys nonlinear optimization methods developed for groundwater modeling and management. The first part reviews algorithms used for model calibration, that is, the inverse problem of parameter estimation. In recent years, groundwater models are combined with optimization models to identify the best management alternatives. Once the objectives and constraints are specified, most problems lend themselves to solution techniques developed in operations research, optimal control, and combinatorial optimization. The second part reviews methods developed for groundwater management. Algorithms and methods reviewed include quadratic programming, differential dynamic programming, nonlinear programming, mixed integer programming, stochastic programming, and non-gradient-based search algorithms. Advantages and drawbacks associated with each approach are discussed. A recent tendency has been toward combining the gradient-based algorithms with the non-gradient-based search algorithms, in that, a non-gradient-based search algorithm is used to identify a near optimum solution and a gradient-based algorithm uses the near optimum solution as its initial estimate for rapid convergence.
Dynamic systems of regional economy management optimization
NASA Astrophysics Data System (ADS)
Trofimov, S.; Kudzh, S.
directions of an industrial policy of region. The situational-analytical centers (SAC) of regional administration The major component of SAC is dynamic modeling, analysis, forecasting and optimization systems, based on modern intellectual information technologies. Spheres of SAC are not only financial streams management and investments optimization, but also strategic forecasting functions, which provide an optimum choice, "aiming", search of optimum ways of regional development and corresponding investments. It is expedient to consider an opportunity of formation of the uniform organizational-methodical center of an industrial policy of region. This organization can be directly connected to the scheduled-analytical services of the largest economic structures, local authorities, the ministries and departments. Such "direct communication" is capable to provide an effective regional development strategic management. Anyway, the output on foreign markets demands concentration of resources and support of authorities. Offered measures are capable to provide a necessary coordination of efforts of a various level economic structures. For maintenance of a regional industrial policy an attraction of all newest methods of strategic planning and management is necessary. Their activity should be constructed on the basis of modern approaches of economic systems management, cause the essence of an industrial policy is finally reduced to an effective regional and corporate economic activities control centers formation. Opportunities of optimum regional economy planning and management as uniform system Approaches to planning regional economic systems can be different. We will consider some most effective methods of planning and control over a regional facilities condition. All of them are compact and evident, that allows to put them into the group of average complexity technologies. At the decision of problems of a regional resource management is rather perspective the so
Method to describe stochastic dynamics using an optimal coordinate.
Krivov, Sergei V
2013-12-01
A general method to describe the stochastic dynamics of Markov processes is suggested. The method aims to solve three related problems: the determination of an optimal coordinate for the description of stochastic dynamics; the reconstruction of time from an ensemble of stochastic trajectories; and the decomposition of stationary stochastic dynamics into eigenmodes which do not decay exponentially with time. The problems are solved by introducing additive eigenvectors which are transformed by a stochastic matrix in a simple way - every component is translated by a constant distance. Such solutions have peculiar properties. For example, an optimal coordinate for stochastic dynamics with detailed balance is a multivalued function. An optimal coordinate for a random walk on a line corresponds to the conventional eigenvector of the one-dimensional Dirac equation. The equation for the optimal coordinate in a slowly varying potential reduces to the Hamilton-Jacobi equation for the action function. PMID:24483410
An Optimization Framework for Dynamic, Distributed Real-Time Systems
NASA Technical Reports Server (NTRS)
Eckert, Klaus; Juedes, David; Welch, Lonnie; Chelberg, David; Bruggerman, Carl; Drews, Frank; Fleeman, David; Parrott, David; Pfarr, Barbara
2003-01-01
Abstract. This paper presents a model that is useful for developing resource allocation algorithms for distributed real-time systems .that operate in dynamic environments. Interesting aspects of the model include dynamic environments, utility and service levels, which provide a means for graceful degradation in resource-constrained situations and support optimization of the allocation of resources. The paper also provides an allocation algorithm that illustrates how to use the model for producing feasible, optimal resource allocations.
An Optimization Framework for Dynamic Hybrid Energy Systems
Wenbo Du; Humberto E Garcia; Christiaan J.J. Paredis
2014-03-01
A computational framework for the efficient analysis and optimization of dynamic hybrid energy systems (HES) is developed. A microgrid system with multiple inputs and multiple outputs (MIMO) is modeled using the Modelica language in the Dymola environment. The optimization loop is implemented in MATLAB, with the FMI Toolbox serving as the interface between the computational platforms. Two characteristic optimization problems are selected to demonstrate the methodology and gain insight into the system performance. The first is an unconstrained optimization problem that optimizes the dynamic properties of the battery, reactor and generator to minimize variability in the HES. The second problem takes operating and capital costs into consideration by imposing linear and nonlinear constraints on the design variables. The preliminary optimization results obtained in this study provide an essential step towards the development of a comprehensive framework for designing HES.
Review of dynamic optimization methods in renewable natural resource management
Williams, B.K.
1989-01-01
In recent years, the applications of dynamic optimization procedures in natural resource management have proliferated. A systematic review of these applications is given in terms of a number of optimization methodologies and natural resource systems. The applicability of the methods to renewable natural resource systems are compared in terms of system complexity, system size, and precision of the optimal solutions. Recommendations are made concerning the appropriate methods for certain kinds of biological resource problems.
First principles molecular dynamics without self-consistent field optimization
Souvatzis, Petros; Niklasson, Anders M. N.
2014-01-28
We present a first principles molecular dynamics approach that is based on time-reversible extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] in the limit of vanishing self-consistent field optimization. The optimization-free dynamics keeps the computational cost to a minimum and typically provides molecular trajectories that closely follow the exact Born-Oppenheimer potential energy surface. Only one single diagonalization and Hamiltonian (or Fockian) construction are required in each integration time step. The proposed dynamics is derived for a general free-energy potential surface valid at finite electronic temperatures within hybrid density functional theory. Even in the event of irregular functional behavior that may cause a dynamical instability, the optimization-free limit represents a natural starting guess for force calculations that may require a more elaborate iterative electronic ground state optimization. Our optimization-free dynamics thus represents a flexible theoretical framework for a broad and general class of ab initio molecular dynamics simulations.
Dynamic positioning configuration and its first-order optimization
NASA Astrophysics Data System (ADS)
Xue, Shuqiang; Yang, Yuanxi; Dang, Yamin; Chen, Wu
2014-02-01
Traditional geodetic network optimization deals with static and discrete control points. The modern space geodetic network is, on the other hand, composed of moving control points in space (satellites) and on the Earth (ground stations). The network configuration composed of these facilities is essentially dynamic and continuous. Moreover, besides the position parameter which needs to be estimated, other geophysical information or signals can also be extracted from the continuous observations. The dynamic (continuous) configuration of the space network determines whether a particular frequency of signals can be identified by this system. In this paper, we employ the functional analysis and graph theory to study the dynamic configuration of space geodetic networks, and mainly focus on the optimal estimation of the position and clock-offset parameters. The principle of the D-optimization is introduced in the Hilbert space after the concept of the traditional discrete configuration is generalized from the finite space to the infinite space. It shows that the D-optimization developed in the discrete optimization is still valid in the dynamic configuration optimization, and this is attributed to the natural generalization of least squares from the Euclidean space to the Hilbert space. Then, we introduce the principle of D-optimality invariance under the combination operation and rotation operation, and propose some D-optimal simplex dynamic configurations: (1) (Semi) circular configuration in 2-dimensional space; (2) the D-optimal cone configuration and D-optimal helical configuration which is close to the GPS constellation in 3-dimensional space. The initial design of GPS constellation can be approximately treated as a combination of 24 D-optimal helixes by properly adjusting the ascending node of different satellites to realize a so-called Walker constellation. In the case of estimating the receiver clock-offset parameter, we show that the circular configuration, the
Integrated Network Decompositions and Dynamic Programming for Graph Optimization (INDDGO)
Energy Science and Technology Software Center (ESTSC)
2012-05-31
The INDDGO software package offers a set of tools for finding exact solutions to graph optimization problems via tree decompositions and dynamic programming algorithms. Currently the framework offers serial and parallel (distributed memory) algorithms for finding tree decompositions and solving the maximum weighted independent set problem. The parallel dynamic programming algorithm is implemented on top of the MADNESS task-based runtime.
Computer aided analysis and optimization of mechanical system dynamics
NASA Technical Reports Server (NTRS)
Haug, E. J.
1984-01-01
The purpose is to outline a computational approach to spatial dynamics of mechanical systems that substantially enlarges the scope of consideration to include flexible bodies, feedback control, hydraulics, and related interdisciplinary effects. Design sensitivity analysis and optimization is the ultimate goal. The approach to computer generation and solution of the system dynamic equations and graphical methods for creating animations as output is outlined.
Optimal exposure sets for high dynamic range scenes
NASA Astrophysics Data System (ADS)
Valli Kumari, V.; RaviKiran, B.; Raju, K. V. S. V. N.; Shajahan Basha, S. A.
2011-10-01
The dynamic range of many natural scenes is far greater than the dynamic range of the imaging devices. These scenes present a challenge to the consumer digital cameras. The well-known technique to capture the full dynamic range of the scene is by fusing multiple images of the same scene. Usually people combine three or five different exposures to get the full dynamic range of the scene. Some cameras like Pentax K-7, always combines fixed exposures together to produce the output result. However, this should be adaptive to the scene characteristics. We propose an optimal solution for dynamically selecting the exposure sets.
Solving Optimal Control Problems by Exploiting Inherent Dynamical Systems Structures
NASA Astrophysics Data System (ADS)
Flaßkamp, Kathrin; Ober-Blöbaum, Sina; Kobilarov, Marin
2012-08-01
Computing globally efficient solutions is a major challenge in optimal control of nonlinear dynamical systems. This work proposes a method combining local optimization and motion planning techniques based on exploiting inherent dynamical systems structures, such as symmetries and invariant manifolds. Prior to the optimal control, the dynamical system is analyzed for structural properties that can be used to compute pieces of trajectories that are stored in a motion planning library. In the context of mechanical systems, these motion planning candidates, termed primitives, are given by relative equilibria induced by symmetries and motions on stable or unstable manifolds of e.g. fixed points in the natural dynamics. The existence of controlled relative equilibria is studied through Lagrangian mechanics and symmetry reduction techniques. The proposed framework can be used to solve boundary value problems by performing a search in the space of sequences of motion primitives connected using optimized maneuvers. The optimal sequence can be used as an admissible initial guess for a post-optimization. The approach is illustrated by two numerical examples, the single and the double spherical pendula, which demonstrates its benefit compared to standard local optimization techniques.
Bridging developmental systems theory and evolutionary psychology using dynamic optimization.
Frankenhuis, Willem E; Panchanathan, Karthik; Clark Barrett, H
2013-07-01
Interactions between evolutionary psychologists and developmental systems theorists have been largely antagonistic. This is unfortunate because potential synergies between the two approaches remain unexplored. This article presents a method that may help to bridge the divide, and that has proven fruitful in biology: dynamic optimization. Dynamic optimization integrates developmental systems theorists' focus on dynamics and contingency with the 'design stance' of evolutionary psychology. It provides a theoretical framework as well as a set of tools for exploring the properties of developmental systems that natural selection might favor, given particular evolutionary ecologies. We also discuss limitations of the approach. PMID:23786476
Practical synchronization on complex dynamical networks via optimal pinning control.
Li, Kezan; Sun, Weigang; Small, Michael; Fu, Xinchu
2015-07-01
We consider practical synchronization on complex dynamical networks under linear feedback control designed by optimal control theory. The control goal is to minimize global synchronization error and control strength over a given finite time interval, and synchronization error at terminal time. By utilizing the Pontryagin's minimum principle, and based on a general complex dynamical network, we obtain an optimal system to achieve the control goal. The result is verified by performing some numerical simulations on Star networks, Watts-Strogatz networks, and Barabási-Albert networks. Moreover, by combining optimal control and traditional pinning control, we propose an optimal pinning control strategy which depends on the network's topological structure. Obtained results show that optimal pinning control is very effective for synchronization control in real applications. PMID:26274112
Application of dynamic merit function to nonimaging systems optimization
NASA Astrophysics Data System (ADS)
Fernández-Balbuena, Antonio Álvarez; Montes, Mario González; García-Botella, Angel; Vázquez-Moliní, Daniel
2015-02-01
Automatic optimization algorithms have been recently introduced as nonimaging optics design techniques. Unlike optimization of imaging systems, nonsequential ray tracing simulations and complex noncentered systems design must be considered, adding complexity to the problem. The merit function is a key element in the automatic optimization algorithm; nevertheless, the selection of each objective's weight, {wi}, inside the merit function needs a prior trial and error process for each optimization. The problem then is to determine appropriate weights' values for each objective. We propose a new dynamic merit function with variable weight factors {wi(n)}. The proposed algorithm automatically adapts weight factors during the evolution of the optimization process. This dynamic merit function avoids the previous trial and error procedure by selecting the right merit function and provides better results than conventional merit functions.
Combining Optimal Control Theory and Molecular Dynamics for Protein Folding
Arkun, Yaman; Gur, Mert
2012-01-01
A new method to develop low-energy folding routes for proteins is presented. The novel aspect of the proposed approach is the synergistic use of optimal control theory with Molecular Dynamics (MD). In the first step of the method, optimal control theory is employed to compute the force field and the optimal folding trajectory for the atoms of a Coarse-Grained (CG) protein model. The solution of this CG optimization provides an harmonic approximation of the true potential energy surface around the native state. In the next step CG optimization guides the MD simulation by specifying the optimal target positions for the atoms. In turn, MD simulation provides an all-atom conformation whose positions match closely the reference target positions determined by CG optimization. This is accomplished by Targeted Molecular Dynamics (TMD) which uses a bias potential or harmonic restraint in addition to the usual MD potential. Folding is a dynamical process and as such residues make different contacts during the course of folding. Therefore CG optimization has to be reinitialized and repeated over time to accomodate these important changes. At each sampled folding time, the active contacts among the residues are recalculated based on the all-atom conformation obtained from MD. Using the new set of contacts, the CG potential is updated and the CG optimal trajectory for the atoms is recomputed. This is followed by MD. Implementation of this repetitive CG optimization - MD simulation cycle generates the folding trajectory. Simulations on a model protein Villin demonstrate the utility of the method. Since the method is founded on the general tools of optimal control theory and MD without any restrictions, it is widely applicable to other systems. It can be easily implemented with available MD software packages. PMID:22238629
Energy-optimal path planning by stochastic dynamically orthogonal level-set optimization
NASA Astrophysics Data System (ADS)
Subramani, Deepak N.; Lermusiaux, Pierre F. J.
2016-04-01
A stochastic optimization methodology is formulated for computing energy-optimal paths from among time-optimal paths of autonomous vehicles navigating in a dynamic flow field. Based on partial differential equations, the methodology rigorously leverages the level-set equation that governs time-optimal reachability fronts for a given relative vehicle-speed function. To set up the energy optimization, the relative vehicle-speed and headings are considered to be stochastic and new stochastic Dynamically Orthogonal (DO) level-set equations are derived. Their solution provides the distribution of time-optimal reachability fronts and corresponding distribution of time-optimal paths. An optimization is then performed on the vehicle's energy-time joint distribution to select the energy-optimal paths for each arrival time, among all stochastic time-optimal paths for that arrival time. Numerical schemes to solve the reduced stochastic DO level-set equations are obtained, and accuracy and efficiency considerations are discussed. These reduced equations are first shown to be efficient at solving the governing stochastic level-sets, in part by comparisons with direct Monte Carlo simulations. To validate the methodology and illustrate its accuracy, comparisons with semi-analytical energy-optimal path solutions are then completed. In particular, we consider the energy-optimal crossing of a canonical steady front and set up its semi-analytical solution using a energy-time nested nonlinear double-optimization scheme. We then showcase the inner workings and nuances of the energy-optimal path planning, considering different mission scenarios. Finally, we study and discuss results of energy-optimal missions in a wind-driven barotropic quasi-geostrophic double-gyre ocean circulation.
Optimal dynamic remapping of parallel computations
NASA Technical Reports Server (NTRS)
Nicol, David M.; Reynolds, Paul F., Jr.
1987-01-01
A large class of computations are characterized by a sequence of phases, with phase changes occurring unpredictably. The decision problem was considered regarding the remapping of workload to processors in a parallel computation when the utility of remapping and the future behavior of the workload is uncertain, and phases exhibit stable execution requirements during a given phase, but requirements may change radically between phases. For these problems a workload assignment generated for one phase may hinder performance during the next phase. This problem is treated formally for a probabilistic model of computation with at most two phases. The fundamental problem of balancing the expected remapping performance gain against the delay cost was addressed. Stochastic dynamic programming is used to show that the remapping decision policy minimizing the expected running time of the computation has an extremely simple structure. Because the gain may not be predictable, the performance of a heuristic policy that does not require estimnation of the gain is examined. The heuristic method's feasibility is demonstrated by its use on an adaptive fluid dynamics code on a multiprocessor. The results suggest that except in extreme cases, the remapping decision problem is essentially that of dynamically determining whether gain can be achieved by remapping after a phase change. The results also suggest that this heuristic is applicable to computations with more than two phases.
Optimal dynamic allocation of conservation funding among priority regions.
Bode, Michael; Wilson, Kerrie; McBride, Marissa; Possingham, Hugh
2008-10-01
The optimal allocation of conservation resources between biodiverse conservation regions has generally been calculated using stochastic dynamic programming, or using myopic heuristics. These solutions are hard to interpret and may not be optimal. To overcome these two limitations, this paper approaches the optimal conservation resource allocation problem using optimal control theory. A solution using Pontryagin's maximum principle provides novel insight into the general properties of efficient conservation resource allocation strategies, and allows more extensive testing of the performance of myopic heuristics. We confirmed that a proposed heuristic (minimize short-term loss) yields near-optimal results in complex allocation situations, and found that a qualitative allocation feature observed in previous analyses (bang-bang allocation) is a general property of the optimal allocation strategy. PMID:18712571
Dynamic optimization of district energy grid
NASA Astrophysics Data System (ADS)
Salsbery, Scott
The University of Iowa Power Plant operates utility generation and distribution for campus facilities, including electricity, steam, and chilled water. It is desirable to evaluate the optimal load combination of boilers, engines and chillers to meet the demand at minimal cost, particularly for future demand scenarios. An algorithm has been developed which takes into account the performance of individual units as part of the mix which ultimately supplies the campus and determine the degree that each should be operating to most efficiently meet demand. The algorithm is part of an integrated simulation tool which is specifically designed to apply traditional optimization techniques for a given (both current and possible) circumstance. The second component is to couple the algorithm with accurate estimates and historical data through which expected demand could be predicted. The simulation tool can account for any theoretical circumstance, which will be highly beneficial for strategic planning. As part of the process it is also necessary to determine the unique operating characteristics of the system components. The algorithms rely upon performance curves of individual system components (boiler, chiller, etc.) and those must be developed and refined when possible from experimental testing and commissioning or manufacturer supplied data.
Fully integrated aerodynamic/dynamic optimization of helicopter rotor blades
NASA Technical Reports Server (NTRS)
Walsh, Joanne L.; Lamarsh, William J., II; Adelman, Howard M.
1992-01-01
A fully integrated aerodynamic/dynamic optimization procedure is described for helicopter rotor blades. The procedure combines performance and dynamic analyses with a general purpose optimizer. The procedure minimizes a linear combination of power required (in hover, forward flight, and maneuver) and vibratory hub shear. The design variables include pretwist, taper initiation, taper ratio, root chord, blade stiffnesses, tuning masses, and tuning mass locations. Aerodynamic constraints consist of limits on power required in hover, forward flight and maneuvers; airfoil section stall; drag divergence Mach number; minimum tip chord; and trim. Dynamic constraints are on frequencies, minimum autorotational inertia, and maximum blade weight. The procedure is demonstrated for two cases. In the first case, the objective function involves power required (in hover, forward flight and maneuver) and dynamics. The second case involves only hover power and dynamics. The designs from the integrated procedure are compared with designs from a sequential optimization approach in which the blade is first optimized for performance and then for dynamics. In both cases, the integrated approach is superior.
Optimized reduction of uncertainty in bursty human dynamics
NASA Astrophysics Data System (ADS)
Jo, Hang-Hyun; Moon, Eunyoung; Kaski, Kimmo
2012-01-01
Human dynamics is known to be inhomogeneous and bursty but the detailed understanding of the role of human factors in bursty dynamics is still lacking. In order to investigate their role we devise an agent-based model, where an agent in an uncertain situation tries to reduce the uncertainty by communicating with information providers while having to wait time for responses. Here the waiting time can be considered as cost. We show that the optimal choice of the waiting time under uncertainty gives rise to the bursty dynamics, characterized by the heavy tailed distribution of optimal waiting time. We find that in all cases the efficiency for communication is relevant to the scaling behavior of the optimal waiting time distribution. On the other hand, the cost turns out in some cases to be irrelevant depending on the degree of uncertainty and efficiency.
On the Optimal Dynamic Camber Formation in Insect Flight
NASA Astrophysics Data System (ADS)
Ren, Yan; Dong, Haibo
2012-11-01
It is widely thought that wing flexibility and wing deformation could significantly affect aerodynamic force productions over completely rigid wings in insect flights. However, there is a lack of quantitative discussion of dynamic formation of wing camber and its effect on wing's aerodynamic performance. In this work, a deformable wing is used to model the wing camber and its dynamic formation. A Direct Numerical Simulation (DNS) based computational optimization frame has been developed to obtain the optimal dynamic camber formation of dragonfly in takeoff and cruising flight. Comparative study is then performed between the optimized flexible wing and real dragonfly wing. Results have shown the maximum camber happens around 30% (downstroke) and 80% (upstroke) of one wing beat. Force production and unsteady flows of the flexible wing are also discussed.
Aerospace Applications of Integer and Combinatorial Optimization
NASA Technical Reports Server (NTRS)
Padula, S. L.; Kincaid, R. K.
1995-01-01
Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in formulating and solving integer and combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem, for example, seeks the optimal locations for vibration-damping devices on an orbiting platform and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.
Aerospace applications on integer and combinatorial optimization
NASA Technical Reports Server (NTRS)
Padula, S. L.; Kincaid, R. K.
1995-01-01
Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in formulating and solving integer and combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem. for example, seeks the optimal locations for vibration-damping devices on an orbiting platform and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.
Aerospace applications of integer and combinatorial optimization
NASA Technical Reports Server (NTRS)
Padula, S. L.; Kincaid, R. K.
1995-01-01
Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in solving combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem, for example, seeks the optimal locations for vibration-damping devices on a large space structure and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.
Particle swarm optimization with recombination and dynamic linkage discovery.
Chen, Ying-Ping; Peng, Wen-Chih; Jian, Ming-Chung
2007-12-01
In this paper, we try to improve the performance of the particle swarm optimizer by incorporating the linkage concept, which is an essential mechanism in genetic algorithms, and design a new linkage identification technique called dynamic linkage discovery to address the linkage problem in real-parameter optimization problems. Dynamic linkage discovery is a costless and effective linkage recognition technique that adapts the linkage configuration by employing only the selection operator without extra judging criteria irrelevant to the objective function. Moreover, a recombination operator that utilizes the discovered linkage configuration to promote the cooperation of particle swarm optimizer and dynamic linkage discovery is accordingly developed. By integrating the particle swarm optimizer, dynamic linkage discovery, and recombination operator, we propose a new hybridization of optimization methodologies called particle swarm optimization with recombination and dynamic linkage discovery (PSO-RDL). In order to study the capability of PSO-RDL, numerical experiments were conducted on a set of benchmark functions as well as on an important real-world application. The benchmark functions used in this paper were proposed in the 2005 Institute of Electrical and Electronics Engineers Congress on Evolutionary Computation. The experimental results on the benchmark functions indicate that PSO-RDL can provide a level of performance comparable to that given by other advanced optimization techniques. In addition to the benchmark, PSO-RDL was also used to solve the economic dispatch (ED) problem for power systems, which is a real-world problem and highly constrained. The results indicate that PSO-RDL can successfully solve the ED problem for the three-unit power system and obtain the currently known best solution for the 40-unit system. PMID:18179066
Optimizing Laboratory Experiments for Dynamic Astrophysical Phenomena
Ryutov, D; Remington, B
2005-09-13
To make a laboratory experiment an efficient tool for the studying the dynamical astrophysical phenomena, it is desirable to perform them in such a way as to observe the scaling invariance with respect to the astrophysical system under study. Several examples are presented of such scalings in the area of magnetohydrodynamic phenomena, where a number of scaled experiments have been performed. A difficult issue of the effect of fine-scale dissipative structures on the global scale dissipation-free flow is discussed. The second part of the paper is concerned with much less developed area of the scalings relevant to the interaction of an ultra-intense laser pulse with a pre-formed plasma. The use of the symmetry arguments in such experiments is also considered.
Optimal dynamic bandwidth allocation for complex networks
NASA Astrophysics Data System (ADS)
Jiang, Zhong-Yuan; Liang, Man-Gui; Li, Qian; Guo, Dong-Chao
2013-03-01
Traffic capacity of one network strongly depends on the link’s bandwidth allocation strategy. In previous bandwidth allocation mechanisms, once one link’s bandwidth is allocated, it will be fixed throughout the overall traffic transmission process. However, the traffic load of every link changes from time to time. In this paper, with finite total bandwidth resource of the network, we propose to dynamically allocate the total bandwidth resource in which each link’s bandwidth is proportional to the queue length of the output buffer of the link per time step. With plenty of data packets in the network, the traffic handling ability of all links of the network achieves full utilization. The theoretical analysis and the extensive simulation results on complex networks are consistent. This work is valuable for network service providers to improve network performance or to do reasonable network design efficiently.
Experimental Testing of Dynamically Optimized Photoelectron Beams
Rosenzweig, J. B.; Cook, A. M.; Dunning, M.; England, R. J.; Musumeci, P.; Bellaveglia, M.; Boscolo, M.; Catani, L.; Cianchi, A.; Di Pirro, G.; Ferrario, M.; Fillipetto, D.; Gatti, G.; Palumbo, L.; Vicario, C.; Serafini, L.; Jones, S.
2006-11-27
We discuss the design of and initial results from an experiment in space-charge dominated beam dynamics which explores a new regime of high-brightness electron beam generation at the SPARC photoinjector. The scheme under study employs the tendency of intense electron beams to rearrange to produce uniform density, giving a nearly ideal beam from the viewpoint of space charge-induced emittance. The experiments are aimed at testing the marriage of this idea with a related concept, emittance compensation. We show that this new regime of operating photoinjector may be the preferred method of obtaining highest brightness beams with lower energy spread. We discuss the design of the experiment, including developing of a novel time-dependent, aerogel-based imaging system. This system has been installed at SPARC, and first evidence for nearly uniformly filled ellipsoidal charge distributions recorded.
Evolutionary dynamics and highly optimized tolerance.
Zhou, Tong; Carlson, J M; Doyle, John
2005-10-21
We develop a numerical model of a lattice community based on Highly Optimized Tolerance (HOT), which relates the evolution of complexity to robustness tradeoffs in an uncertain environment. With the model, we explore scenarios for evolution and extinction which are abstractions of processes which are commonly discussed in biological and ecological case studies. These include the effects of different habitats on the phenotypic traits of the organisms, the effects of different mutation rates on adaptation, fitness, and diversity, and competition between generalists and specialists. The model exhibits a wide variety of microevolutionary and macroevolutionary phenomena which can arise in organisms which are subject to random mutation, and selection based on fitness evaluated in a specific environment. Generalists arise in uniform habitats, where different disturbances occur with equal frequency, while specialists arise when the relative frequency of different disturbances is skewed. Fast mutators are seen to play a primary role in adaptation, while slow mutators preserve well-adapted configurations. When uniform and skewed habitats are coupled through migration of the organisms, we observe a primitive form of punctuated equilibrium. Rare events in the skewed habitat lead to extinction of the specialists, whereupon generalists invade from the uniform habitat, adapt to their new surroundings, ultimately leading their progeny to become vulnerable to extinction in a subsequent rare disturbance. PMID:15904934
Optimization of Conformational Dynamics in an Epistatic Evolutionary Trajectory.
González, Mariano M; Abriata, Luciano A; Tomatis, Pablo E; Vila, Alejandro J
2016-07-01
The understanding of protein evolution depends on the ability to relate the impact of mutations on molecular traits to organismal fitness. Biological activity and robustness have been regarded as important features in shaping protein evolutionary landscapes. Conformational dynamics, which is essential for protein function, has received little attention in the context of evolutionary analyses. Here we employ NMR spectroscopy, the chief experimental tool to describe protein dynamics at atomic level in solution at room temperature, to study the intrinsic dynamic features of a metallo- Β: -lactamase enzyme and three variants identified during a directed evolution experiment that led to an expanded substrate profile. We show that conformational dynamics in the catalytically relevant microsecond to millisecond timescale is optimized along the favored evolutionary trajectory. In addition, we observe that the effects of mutations on dynamics are epistatic. Mutation Gly262Ser introduces slow dynamics on several residues that surround the active site when introduced in the wild-type enzyme. Mutation Asn70Ser removes the slow dynamics observed for few residues of the wild-type enzyme, but increases the number of residues that undergo slow dynamics when introduced in the Gly262Ser mutant. These effects on dynamics correlate with the epistatic interaction between these two mutations on the bacterial phenotype. These findings indicate that conformational dynamics is an evolvable trait, and that proteins endowed with more dynamic active sites also display a larger potential for promoting evolution. PMID:26983555
Shape optimization for maximum stability and dynamic stiffness
NASA Technical Reports Server (NTRS)
Szyszkowski, W.
1990-01-01
Any optimization of structures for maximum stability or for maximum dynamic stiffness deals with an eigenvalue problem. The goal of this optimization is to raise the lowest eigenvalue (or eigenvalues) of the problem to its highest (optimal) level at a constant volume of the structure. Likely the lowest eigenvalue may be either inherently multi-modal or it can become multi-modal as a result of the optimization process. The multimodeness introduces some ambiguity to the eigenvalue problem and make the optimization difficult to handle. Thus far, only the simplest cases of multi-modal structures have been effectively optimized using rather elaborate analytical methods. Numerous publications report design of a minimum volume structure with different eigenvalues constraints, in which, however, the modality of the problem is assumed a priori. The method presented here utilizes a multi-modal optimality criteria and allows for inclusion of an arbitrary number of buckling or vibrations modes which might influence the optimization process. The real multi-modality of the problem, that is the number of modes participating in the final optimal design is determined iteratively. Because of a natural use of the FEM technique the method is easy to program and might be helpful in design of large flexible space structures.
Bridging Developmental Systems Theory and Evolutionary Psychology Using Dynamic Optimization
ERIC Educational Resources Information Center
Frankenhuis, Willem E.; Panchanathan, Karthik; Clark Barrett, H.
2013-01-01
Interactions between evolutionary psychologists and developmental systems theorists have been largely antagonistic. This is unfortunate because potential synergies between the two approaches remain unexplored. This article presents a method that may help to bridge the divide, and that has proven fruitful in biology: dynamic optimization. Dynamic…
Multiobjective Optimization of Low-Energy Trajectories Using Optimal Control on Dynamical Channels
NASA Technical Reports Server (NTRS)
Coffee, Thomas M.; Anderson, Rodney L.; Lo, Martin W.
2011-01-01
We introduce a computational method to design efficient low-energy trajectories by extracting initial solutions from dynamical channels formed by invariant manifolds, and improving these solutions through variational optimal control. We consider trajectories connecting two unstable periodic orbits in the circular restricted 3-body problem (CR3BP). Our method leverages dynamical channels to generate a range of solutions, and approximates the areto front for impulse and time of flight through a multiobjective optimization of these solutions based on primer vector theory. We demonstrate the application of our method to a libration orbit transfer in the Earth-Moon system.
Voronoi Diagram Based Optimization of Dynamic Reactive Power Sources
Huang, Weihong; Sun, Kai; Qi, Junjian; Xu, Yan
2015-01-01
Dynamic var sources can effectively mitigate fault-induced delayed voltage recovery (FIDVR) issues or even voltage collapse. This paper proposes a new approach to optimization of the sizes of dynamic var sources at candidate locations by a Voronoi diagram based algorithm. It first disperses sample points of potential solutions in a searching space, evaluates a cost function at each point by barycentric interpolation for the subspaces around the point, and then constructs a Voronoi diagram about cost function values over the entire space. Accordingly, the final optimal solution can be obtained. Case studies on the WSCC 9-bus system and NPCC 140-bus system have validated that the new approach can quickly identify the boundary of feasible solutions in searching space and converge to the global optimal solution.
A dynamic optimization model for solid waste recycling.
Anghinolfi, Davide; Paolucci, Massimo; Robba, Michela; Taramasso, Angela Celeste
2013-02-01
Recycling is an important part of waste management (that includes different kinds of issues: environmental, technological, economic, legislative, social, etc.). Differently from many works in literature, this paper is focused on recycling management and on the dynamic optimization of materials collection. The developed dynamic decision model is characterized by state variables, corresponding to the quantity of waste in each bin per each day, and control variables determining the quantity of material that is collected in the area each day and the routes for collecting vehicles. The objective function minimizes the sum of costs minus benefits. The developed decision model is integrated in a GIS-based Decision Support System (DSS). A case study related to the Cogoleto municipality is presented to show the effectiveness of the proposed model. From optimal results, it has been found that the net benefits of the optimized collection are about 2.5 times greater than the estimated current policy. PMID:23158873
Analysis and Optimization of Pulse Dynamics for Magnetic Stimulation
Goetz, Stefan M.; Truong, Cong Nam; Gerhofer, Manuel G.; Peterchev, Angel V.; Herzog, Hans-Georg; Weyh, Thomas
2013-01-01
Magnetic stimulation is a standard tool in brain research and has found important clinical applications in neurology, psychiatry, and rehabilitation. Whereas coil designs and the spatial field properties have been intensively studied in the literature, the temporal dynamics of the field has received less attention. Typically, the magnetic field waveform is determined by available device circuit topologies rather than by consideration of what is optimal for neural stimulation. This paper analyzes and optimizes the waveform dynamics using a nonlinear model of a mammalian axon. The optimization objective was to minimize the pulse energy loss. The energy loss drives power consumption and heating, which are the dominating limitations of magnetic stimulation. The optimization approach is based on a hybrid global-local method. Different coordinate systems for describing the continuous waveforms in a limited parameter space are defined for numerical stability. The optimization results suggest that there are waveforms with substantially higher efficiency than that of traditional pulse shapes. One class of optimal pulses is analyzed further. Although the coil voltage profile of these waveforms is almost rectangular, the corresponding current shape presents distinctive characteristics, such as a slow low-amplitude first phase which precedes the main pulse and reduces the losses. Representatives of this class of waveforms corresponding to different maximum voltages are linked by a nonlinear transformation. The main phase, however, scales with time only. As with conventional magnetic stimulation pulses, briefer pulses result in lower energy loss but require higher coil voltage than longer pulses. PMID:23469168
Dynamic characterization of bolted joints using FRF decoupling and optimization
NASA Astrophysics Data System (ADS)
Tol, Şerife; O¨zgu¨ven, H. Nevzat
2015-03-01
Mechanical connections play a significant role in predicting dynamic characteristics of assembled structures. Therefore, equivalent dynamic models for joints are needed. Due to the complexity of joints, it is difficult to describe joint dynamics with analytical models. Reliable models are generally obtained using experimental measurements. In this paper an experimental identification method based on FRF decoupling and optimization algorithm is proposed for modeling joints. In the method the FRFs of two substructures connected with a joint are measured, while the FRFs of the substructures are obtained numerically or experimentally. Then the joint properties are calculated in terms of translational, rotational and cross-coupling stiffness and damping values by using FRF decoupling. In order to eliminate the numerical errors associated with matrix inversion an optimization algorithm is used to update the joint values obtained from FRF decoupling. The validity of the proposed method is demonstrated with experimental studies with bolted joints.
Optimal experimental dynamical decoupling of both longitudinal and transverse relaxations
NASA Astrophysics Data System (ADS)
Zhen, Xing-Long; Zhang, Fei-Hao; Feng, Guanru; Li, Hang; Long, Gui-Lu
2016-02-01
Both longitudinal and transverse relaxations exist in the practical environment. Their simultaneous eliminations are extremely demanding in real applications. Previous experimental work has focused mainly on the suppression of transverse relaxation. In this paper we investigate the performance of three important dynamical decoupling schemes—quadratic dynamical decoupling, periodic dynamical decoupling, and concatenated dynamical decoupling—in an environment with hybrid errors. We propose a method to engineer arbitrary environment by modulating the control field. The technique developed here is universal and can be applied to other quantum information processing systems. Three-dimensional filter functions technique is utilized to analyze the fidelity decay of a one-qubit state protected by dynamical decoupling sequences. This enables us to quantitatively compare the performance of different dynamical decoupling sequences and demonstrate the superiority of quadratic dynamical decoupling in experiments for the first time. Our work reveals that quadratic dynamical decoupling is optimal conditioned on the appropriate noise properties. The difference of constructing dynamical decoupling sequences with various Pauli pulses is also investigated.
Successive linear optimization approach to the dynamic traffic assignment problem
Ho, J.K.
1980-11-01
A dynamic model for the optimal control of traffic flow over a network is considered. The model, which treats congestion explicitly in the flow equations, gives rise to nonlinear, nonconvex mathematical programming problems. It has been shown for a piecewise linear version of this model that a global optimum is contained in the set of optimal solutions of a certain linear program. A sufficient condition for optimality which implies that a global optimum can be obtained by successively optimizing at most N + 1 objective functions for the linear program, where N is the number of time periods in the planning horizon is presented. Computational results are reported to indicate the efficiency of this approach.
Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem
NASA Astrophysics Data System (ADS)
Chen, Wei
2015-07-01
In this paper, we discuss the portfolio optimization problem with real-world constraints under the assumption that the returns of risky assets are fuzzy numbers. A new possibilistic mean-semiabsolute deviation model is proposed, in which transaction costs, cardinality and quantity constraints are considered. Due to such constraints the proposed model becomes a mixed integer nonlinear programming problem and traditional optimization methods fail to find the optimal solution efficiently. Thus, a modified artificial bee colony (MABC) algorithm is developed to solve the corresponding optimization problem. Finally, a numerical example is given to illustrate the effectiveness of the proposed model and the corresponding algorithm.
Optimization Research of Generation Investment Based on Linear Programming Model
NASA Astrophysics Data System (ADS)
Wu, Juan; Ge, Xueqian
Linear programming is an important branch of operational research and it is a mathematical method to assist the people to carry out scientific management. GAMS is an advanced simulation and optimization modeling language and it will combine a large number of complex mathematical programming, such as linear programming LP, nonlinear programming NLP, MIP and other mixed-integer programming with the system simulation. In this paper, based on the linear programming model, the optimized investment decision-making of generation is simulated and analyzed. At last, the optimal installed capacity of power plants and the final total cost are got, which provides the rational decision-making basis for optimized investments.
Optimizing legacy molecular dynamics software with directive-based offload
Michael Brown, W.; Carrillo, Jan-Michael Y.; Gavhane, Nitin; Thakkar, Foram M.; Plimpton, Steven J.
2015-05-14
The directive-based programming models are one solution for exploiting many-core coprocessors to increase simulation rates in molecular dynamics. They offer the potential to reduce code complexity with offload models that can selectively target computations to run on the CPU, the coprocessor, or both. In our paper, we describe modifications to the LAMMPS molecular dynamics code to enable concurrent calculations on a CPU and coprocessor. We also demonstrate that standard molecular dynamics algorithms can run efficiently on both the CPU and an x86-based coprocessor using the same subroutines. As a consequence, we demonstrate that code optimizations for the coprocessor also result in speedups on the CPU; in extreme cases up to 4.7X. We provide results for LAMMAS benchmarks and for production molecular dynamics simulations using the Stampede hybrid supercomputer with both Intel (R) Xeon Phi (TM) coprocessors and NVIDIA GPUs: The optimizations presented have increased simulation rates by over 2X for organic molecules and over 7X for liquid crystals on Stampede. The optimizations are available as part of the "Intel package" supplied with LAMMPS. (C) 2015 Elsevier B.V. All rights reserved.
Optimizing legacy molecular dynamics software with directive-based offload
Michael Brown, W.; Carrillo, Jan-Michael Y.; Gavhane, Nitin; Thakkar, Foram M.; Plimpton, Steven J.
2015-05-14
The directive-based programming models are one solution for exploiting many-core coprocessors to increase simulation rates in molecular dynamics. They offer the potential to reduce code complexity with offload models that can selectively target computations to run on the CPU, the coprocessor, or both. In our paper, we describe modifications to the LAMMPS molecular dynamics code to enable concurrent calculations on a CPU and coprocessor. We also demonstrate that standard molecular dynamics algorithms can run efficiently on both the CPU and an x86-based coprocessor using the same subroutines. As a consequence, we demonstrate that code optimizations for the coprocessor also resultmore » in speedups on the CPU; in extreme cases up to 4.7X. We provide results for LAMMAS benchmarks and for production molecular dynamics simulations using the Stampede hybrid supercomputer with both Intel (R) Xeon Phi (TM) coprocessors and NVIDIA GPUs: The optimizations presented have increased simulation rates by over 2X for organic molecules and over 7X for liquid crystals on Stampede. The optimizations are available as part of the "Intel package" supplied with LAMMPS. (C) 2015 Elsevier B.V. All rights reserved.« less
Optimizing legacy molecular dynamics software with directive-based offload
NASA Astrophysics Data System (ADS)
Michael Brown, W.; Carrillo, Jan-Michael Y.; Gavhane, Nitin; Thakkar, Foram M.; Plimpton, Steven J.
2015-10-01
Directive-based programming models are one solution for exploiting many-core coprocessors to increase simulation rates in molecular dynamics. They offer the potential to reduce code complexity with offload models that can selectively target computations to run on the CPU, the coprocessor, or both. In this paper, we describe modifications to the LAMMPS molecular dynamics code to enable concurrent calculations on a CPU and coprocessor. We demonstrate that standard molecular dynamics algorithms can run efficiently on both the CPU and an x86-based coprocessor using the same subroutines. As a consequence, we demonstrate that code optimizations for the coprocessor also result in speedups on the CPU; in extreme cases up to 4.7X. We provide results for LAMMPS benchmarks and for production molecular dynamics simulations using the Stampede hybrid supercomputer with both Intel® Xeon Phi™ coprocessors and NVIDIA GPUs. The optimizations presented have increased simulation rates by over 2X for organic molecules and over 7X for liquid crystals on Stampede. The optimizations are available as part of the "Intel package" supplied with LAMMPS.
Adaptive optimal spectral range for dynamically changing scene
NASA Astrophysics Data System (ADS)
Pinsky, Ephi; Siman-tov, Avihay; Peles, David
2012-06-01
A novel multispectral video system that continuously optimizes both its spectral range channels and the exposure time of each channel autonomously, under dynamic scenes, varying from short range-clear scene to long range-poor visibility, is currently being developed. Transparency and contrast of high scattering medium of channels with spectral ranges in the near infrared is superior to the visible channels, particularly to the blue range. Longer wavelength spectral ranges that induce higher contrast are therefore favored. Images of 3 spectral channels are fused and displayed for (pseudo) color visualization, as an integrated high contrast video stream. In addition to the dynamic optimization of the spectral channels, optimal real-time exposure time is adjusted simultaneously and autonomously for each channel. A criterion of maximum average signal, derived dynamically from previous frames of the video stream is used (Patent Application - International Publication Number: WO2009/093110 A2, 30.07.2009). This configuration enables dynamic compatibility with the optimal exposure time of a dynamically changing scene. It also maximizes the signal to noise ratio and compensates each channel for the specified value of daylight reflections and sensors response for each spectral range. A possible implementation is a color video camera based on 4 synchronized, highly responsive, CCD imaging detectors, attached to a 4CCD dichroic prism and combined with a common, color corrected, lens. Principal Components Analysis (PCA) technique is then applied for real time "dimensional collapse" in color space, in order to select and fuse, for clear color visualization, the 3 most significant principal channels out of at least 4 characterized by high contrast and rich details in the image data.
Optimization of the dynamic inducer wind turbine system
NASA Astrophysics Data System (ADS)
Lissaman, P. B. S.; Zalay, A. D.; Hibbs, B.
The dynamic inducer, essentially a horizontal axis wind turbine (HAWT) rotor with small vanes at the tips is a promising, advanced technology wind turbine concept. By adding small vanes to the tip of the conventional rotor, significant increases in power can be obtained with the dynamic inducer system. The development of the system is reviewed, including past theoretical and experimental programs. Recent tow tests and wind tunnel tests established the predicted augmentation power. A new optimization program is outlined, based on advanced theory back by extensive wind tunnel testing, aimed at developing an advanced dynamic inducer system for a state-of-the art high performance, two-bladed rotor system. It is estimated that the dynamic inducer rotor is about 20% more cost-effective than a conventional system.
Airframe structural dynamic considerations in rotor design optimization
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.; Murthy, T. Sreekanta
1989-01-01
An an overview and discussion of those aspects of airframe structural dynamics that have a strong influence on rotor design optimization is provided. Primary emphasis is on vibration requirements. The vibration problem is described, the key vibratory forces are identified, the role of airframe response in rotor design is summarized, and the types of constraints which need to be imposed on rotor design due to airframe dynamics are discussed. Some considerations of ground and air resonance as they might affect rotor design are included.
Sequential activation of metabolic pathways: a dynamic optimization approach.
Oyarzún, Diego A; Ingalls, Brian P; Middleton, Richard H; Kalamatianos, Dimitrios
2009-11-01
The regulation of cellular metabolism facilitates robust cellular operation in the face of changing external conditions. The cellular response to this varying environment may include the activation or inactivation of appropriate metabolic pathways. Experimental and numerical observations of sequential timing in pathway activation have been reported in the literature. It has been argued that such patterns can be rationalized by means of an underlying optimal metabolic design. In this paper we pose a dynamic optimization problem that accounts for time-resource minimization in pathway activation under constrained total enzyme abundance. The optimized variables are time-dependent enzyme concentrations that drive the pathway to a steady state characterized by a prescribed metabolic flux. The problem formulation addresses unbranched pathways with irreversible kinetics. Neither specific reaction kinetics nor fixed pathway length are assumed.In the optimal solution, each enzyme follows a switching profile between zero and maximum concentration, following a temporal sequence that matches the pathway topology. This result provides an analytic justification of the sequential activation previously described in the literature. In contrast with the existent numerical approaches, the activation sequence is proven to be optimal for a generic class of monomolecular kinetics. This class includes, but is not limited to, Mass Action, Michaelis-Menten, Hill, and some Power-law models. This suggests that sequential enzyme expression may be a common feature of metabolic regulation, as it is a robust property of optimal pathway activation. PMID:19412635
Tensor-optimized antisymmetrized molecular dynamics in nuclear physics
NASA Astrophysics Data System (ADS)
Myo, Takayuki; Toki, Hiroshi; Ikeda, Kiyomi; Horiuchi, Hisashi; Suhara, Tadahiro
2015-07-01
We develop a new formalism to treat nuclear many-body systems using the bare nucleon-nucleon interaction. It has become evident that the tensor interaction plays an important role in nuclear many-body systems due to the role of the pion in strongly interacting systems. We take the antisymmetrized molecular dynamics (AMD) as a basic framework and add a tensor correlation operator acting on the AMD wave function using the concept of the tensor-optimized shell model. We demonstrate a systematical and straightforward formulation utilizing the Gaussian integration and differentiation method and the antisymmetrization technique to calculate all the matrix elements of the many-body Hamiltonian. We can include the three-body interaction naturally and calculate the matrix elements systematically in the progressive order of the tensor correlation operator. We call the new formalism "tensor-optimized antisymmetrized molecular dynamics".
Rethinking design parameters in the search for optimal dynamic seating.
Pynt, Jennifer
2015-04-01
Dynamic seating design purports to lessen damage incurred during sedentary occupations by increasing sitter movement while modifying muscle activity. Dynamic sitting is currently defined by O'Sullivan et al. ( 2013a) as relating to 'the increased motion in sitting which is facilitated by the use of specific chairs or equipment' (p. 628). Yet the evidence is conflicting that dynamic seating creates variation in the sitter's lumbar posture or muscle activity with the overall consensus being that current dynamic seating design fails to fulfill its goals. Research is needed to determine if a new generation of chairs requiring active sitter involvement fulfills the goals of dynamic seating and aids cardio/metabolic health. This paper summarises the pursuit of knowledge regarding optimal seated spinal posture and seating design. Four new forms of dynamic seating encouraging active sitting are discussed. These are 1) The Core-flex with a split seatpan to facilitate a walking action while seated 2) the Duo balans requiring body action to create rocking 3) the Back App and 4) Locus pedestal stools both using the sitter's legs to drive movement. Unsubstantiated claims made by the designers of these new forms of dynamic seating are outlined. Avenues of research are suggested to validate designer claims and investigate whether these designs fulfill the goals of dynamic seating and assist cardio/metabolic health. Should these claims be efficacious then a new definition of dynamic sitting is suggested; 'Sitting in which the action is provided by the sitter, while the dynamic mechanism of the chair accommodates that action'. PMID:25892386
Neighboring extremals of dynamic optimization problems with path equality constraints
NASA Technical Reports Server (NTRS)
Lee, A. Y.
1988-01-01
Neighboring extremals of dynamic optimization problems with path equality constraints and with an unknown parameter vector are considered in this paper. With some simplifications, the problem is reduced to solving a linear, time-varying two-point boundary-value problem with integral path equality constraints. A modified backward sweep method is used to solve this problem. Two example problems are solved to illustrate the validity and usefulness of the solution technique.
Topology optimization for nonlinear dynamic problems: Considerations for automotive crashworthiness
NASA Astrophysics Data System (ADS)
Kaushik, Anshul; Ramani, Anand
2014-04-01
Crashworthiness of automotive structures is most often engineered after an optimal topology has been arrived at using other design considerations. This study is an attempt to incorporate crashworthiness requirements upfront in the topology synthesis process using a mathematically consistent framework. It proposes the use of equivalent linear systems from the nonlinear dynamic simulation in conjunction with a discrete-material topology optimizer. Velocity and acceleration constraints are consistently incorporated in the optimization set-up. Issues specific to crash problems due to the explicit solution methodology employed, nature of the boundary conditions imposed on the structure, etc. are discussed and possible resolutions are proposed. A demonstration of the methodology on two-dimensional problems that address some of the structural requirements and the types of loading typical of frontal and side impact is provided in order to show that this methodology has the potential for topology synthesis incorporating crashworthiness requirements.
Optimal flow rates and well locations for soil vapor extraction design
NASA Astrophysics Data System (ADS)
Sawyer, Charles S.; Kamakoti, Madhavi
1998-07-01
A mixed-integer programming model to determine the optimum number of wells, their locations and pumping rates for soil vapor extraction (SVE) is developed by coupling an air flow simulation model (AIR3D) to the GAMS optimization software. The model was tested for sensitivity of the vertical discretization of the domain, the number of potential well locations, the number of constraints, and the screen length of the wells. It was shown that these variables affected the optimal solution. It was also shown that the installation costs of the wells in the model influenced the optimal design. This was demonstrated by comparing the results of the mixed-integer programming model to a linear programming model in which the installation costs of the wells were neglected. The mixed-integer programming model could be useful in the design process in cases of short remediation times when the installation costs of wells could be significant. Numerous test cases with results are presented to demonstrate the applicability and usefulness of the model.
Confronting dynamics and uncertainty in optimal decision making for conservation
Williams, Byron K.; Johnson, Fred A.
2013-01-01
The effectiveness of conservation efforts ultimately depends on the recognition that decision making, and the systems that it is designed to affect, are inherently dynamic and characterized by multiple sources of uncertainty. To cope with these challenges, conservation planners are increasingly turning to the tools of decision analysis, especially dynamic optimization methods. Here we provide a general framework for optimal, dynamic conservation and then explore its capacity for coping with various sources and degrees of uncertainty. In broadest terms, the dynamic optimization problem in conservation is choosing among a set of decision options at periodic intervals so as to maximize some conservation objective over the planning horizon. Planners must account for immediate objective returns, as well as the effect of current decisions on future resource conditions and, thus, on future decisions. Undermining the effectiveness of such a planning process are uncertainties concerning extant resource conditions (partial observability), the immediate consequences of decision choices (partial controllability), the outcomes of uncontrolled, environmental drivers (environmental variation), and the processes structuring resource dynamics (structural uncertainty). Where outcomes from these sources of uncertainty can be described in terms of probability distributions, a focus on maximizing the expected objective return, while taking state-specific actions, is an effective mechanism for coping with uncertainty. When such probability distributions are unavailable or deemed unreliable, a focus on maximizing robustness is likely to be the preferred approach. Here the idea is to choose an action (or state-dependent policy) that achieves at least some minimum level of performance regardless of the (uncertain) outcomes. We provide some examples of how the dynamic optimization problem can be framed for problems involving management of habitat for an imperiled species, conservation of a
Confronting dynamics and uncertainty in optimal decision making for conservation
NASA Astrophysics Data System (ADS)
Williams, Byron K.; Johnson, Fred A.
2013-06-01
The effectiveness of conservation efforts ultimately depends on the recognition that decision making, and the systems that it is designed to affect, are inherently dynamic and characterized by multiple sources of uncertainty. To cope with these challenges, conservation planners are increasingly turning to the tools of decision analysis, especially dynamic optimization methods. Here we provide a general framework for optimal, dynamic conservation and then explore its capacity for coping with various sources and degrees of uncertainty. In broadest terms, the dynamic optimization problem in conservation is choosing among a set of decision options at periodic intervals so as to maximize some conservation objective over the planning horizon. Planners must account for immediate objective returns, as well as the effect of current decisions on future resource conditions and, thus, on future decisions. Undermining the effectiveness of such a planning process are uncertainties concerning extant resource conditions (partial observability), the immediate consequences of decision choices (partial controllability), the outcomes of uncontrolled, environmental drivers (environmental variation), and the processes structuring resource dynamics (structural uncertainty). Where outcomes from these sources of uncertainty can be described in terms of probability distributions, a focus on maximizing the expected objective return, while taking state-specific actions, is an effective mechanism for coping with uncertainty. When such probability distributions are unavailable or deemed unreliable, a focus on maximizing robustness is likely to be the preferred approach. Here the idea is to choose an action (or state-dependent policy) that achieves at least some minimum level of performance regardless of the (uncertain) outcomes. We provide some examples of how the dynamic optimization problem can be framed for problems involving management of habitat for an imperiled species, conservation of a
Optimization of Dynamic Aperture of PEP-X Baseline Design
Wang, Min-Huey; Cai, Yunhai; Nosochkov, Yuri; /SLAC
2010-08-23
SLAC is developing a long-range plan to transfer the evolving scientific programs at SSRL from the SPEAR3 light source to a much higher performing photon source. Storage ring design is one of the possibilities that would be housed in the 2.2-km PEP-II tunnel. The design goal of PEPX storage ring is to approach an optimal light source design with horizontal emittance less than 100 pm and vertical emittance of 8 pm to reach the diffraction limit of 1-{angstrom} x-ray. The low emittance design requires a lattice with strong focusing leading to high natural chromaticity and therefore to strong sextupoles. The latter caused reduction of dynamic aperture. The dynamic aperture requirement for horizontal injection at injection point is about 10 mm. In order to achieve the desired dynamic aperture the transverse non-linearity of PEP-X is studied. The program LEGO is used to simulate the particle motion. The technique of frequency map is used to analyze the nonlinear behavior. The effect of the non-linearity is tried to minimize at the given constrains of limited space. The details and results of dynamic aperture optimization are discussed in this paper.
Human opinion dynamics: An inspiration to solve complex optimization problems
NASA Astrophysics Data System (ADS)
Kaur, Rishemjit; Kumar, Ritesh; Bhondekar, Amol P.; Kapur, Pawan
2013-10-01
Human interactions give rise to the formation of different kinds of opinions in a society. The study of formations and dynamics of opinions has been one of the most important areas in social physics. The opinion dynamics and associated social structure leads to decision making or so called opinion consensus. Opinion formation is a process of collective intelligence evolving from the integrative tendencies of social influence with the disintegrative effects of individualisation, and therefore could be exploited for developing search strategies. Here, we demonstrate that human opinion dynamics can be utilised to solve complex mathematical optimization problems. The results have been compared with a standard algorithm inspired from bird flocking behaviour and the comparison proves the efficacy of the proposed approach in general. Our investigation may open new avenues towards understanding the collective decision making.
Human opinion dynamics: An inspiration to solve complex optimization problems
Kaur, Rishemjit; Kumar, Ritesh; Bhondekar, Amol P.; Kapur, Pawan
2013-01-01
Human interactions give rise to the formation of different kinds of opinions in a society. The study of formations and dynamics of opinions has been one of the most important areas in social physics. The opinion dynamics and associated social structure leads to decision making or so called opinion consensus. Opinion formation is a process of collective intelligence evolving from the integrative tendencies of social influence with the disintegrative effects of individualisation, and therefore could be exploited for developing search strategies. Here, we demonstrate that human opinion dynamics can be utilised to solve complex mathematical optimization problems. The results have been compared with a standard algorithm inspired from bird flocking behaviour and the comparison proves the efficacy of the proposed approach in general. Our investigation may open new avenues towards understanding the collective decision making. PMID:24141795
Optimized Uncertainty Quantification Algorithm Within a Dynamic Event Tree Framework
J. W. Nielsen; Akira Tokuhiro; Robert Hiromoto
2014-06-01
Methods for developing Phenomenological Identification and Ranking Tables (PIRT) for nuclear power plants have been a useful tool in providing insight into modelling aspects that are important to safety. These methods have involved expert knowledge with regards to reactor plant transients and thermal-hydraulic codes to identify are of highest importance. Quantified PIRT provides for rigorous method for quantifying the phenomena that can have the greatest impact. The transients that are evaluated and the timing of those events are typically developed in collaboration with the Probabilistic Risk Analysis. Though quite effective in evaluating risk, traditional PRA methods lack the capability to evaluate complex dynamic systems where end states may vary as a function of transition time from physical state to physical state . Dynamic PRA (DPRA) methods provide a more rigorous analysis of complex dynamic systems. A limitation of DPRA is its potential for state or combinatorial explosion that grows as a function of the number of components; as well as, the sampling of transition times from state-to-state of the entire system. This paper presents a method for performing QPIRT within a dynamic event tree framework such that timing events which result in the highest probabilities of failure are captured and a QPIRT is performed simultaneously while performing a discrete dynamic event tree evaluation. The resulting simulation results in a formal QPIRT for each end state. The use of dynamic event trees results in state explosion as the number of possible component states increases. This paper utilizes a branch and bound algorithm to optimize the solution of the dynamic event trees. The paper summarizes the methods used to implement the branch-and-bound algorithm in solving the discrete dynamic event trees.
Optimizing spread dynamics on graphs by message passing
NASA Astrophysics Data System (ADS)
Altarelli, F.; Braunstein, A.; Dall'Asta, L.; Zecchina, R.
2013-09-01
Cascade processes are responsible for many important phenomena in natural and social sciences. Simple models of irreversible dynamics on graphs, in which nodes activate depending on the state of their neighbors, have been successfully applied to describe cascades in a large variety of contexts. Over the past decades, much effort has been devoted to understanding the typical behavior of the cascades arising from initial conditions extracted at random from some given ensemble. However, the problem of optimizing the trajectory of the system, i.e. of identifying appropriate initial conditions to maximize (or minimize) the final number of active nodes, is still considered to be practically intractable, with the only exception being models that satisfy a sort of diminishing returns property called submodularity. Submodular models can be approximately solved by means of greedy strategies, but by definition they lack cooperative characteristics which are fundamental in many real systems. Here we introduce an efficient algorithm based on statistical physics for the optimization of trajectories in cascade processes on graphs. We show that for a wide class of irreversible dynamics, even in the absence of submodularity, the spread optimization problem can be solved efficiently on large networks. Analytic and algorithmic results on random graphs are complemented by the solution of the spread maximization problem on a real-world network (the Epinions consumer reviews network).
Khawaja, Sajid Gul; Mushtaq, Mian Hamza; Khan, Shoab A.; Akram, M. Usman; Jamal, Habib ullah
2015-01-01
With the increase of transistors' density, popularity of System on Chip (SoC) has increased exponentially. As a communication module for SoC, Network on Chip (NoC) framework has been adapted as its backbone. In this paper, we propose a methodology for designing area-optimized application specific NoC while providing hard Quality of Service (QoS) guarantees for real time flows. The novelty of the proposed system lies in derivation of a Mixed Integer Linear Programming model which is then used to generate a resource optimal Network on Chip (NoC) topology and architecture while considering traffic and QoS requirements. We also present the micro-architectural design features used for enabling traffic and latency guarantees and discuss how the solution adapts for dynamic variations in the application traffic. The paper highlights the effectiveness of proposed method by generating resource efficient NoC solutions for both industrial and benchmark applications. The area-optimized results are generated in few seconds by proposed technique, without resorting to heuristics, even for an application with 48 traffic flows. PMID:25898016
Exposure Time Optimization for Highly Dynamic Star Trackers
Wei, Xinguo; Tan, Wei; Li, Jian; Zhang, Guangjun
2014-01-01
Under highly dynamic conditions, the star-spots on the image sensor of a star tracker move across many pixels during the exposure time, which will reduce star detection sensitivity and increase star location errors. However, this kind of effect can be compensated well by setting an appropriate exposure time. This paper focuses on how exposure time affects the star tracker under highly dynamic conditions and how to determine the most appropriate exposure time for this case. Firstly, the effect of exposure time on star detection sensitivity is analyzed by establishing the dynamic star-spot imaging model. Then the star location error is deduced based on the error analysis of the sub-pixel centroiding algorithm. Combining these analyses, the effect of exposure time on attitude accuracy is finally determined. Some simulations are carried out to validate these effects, and the results show that there are different optimal exposure times for different angular velocities of a star tracker with a given configuration. In addition, the results of night sky experiments using a real star tracker agree with the simulation results. The summarized regularities in this paper should prove helpful in the system design and dynamic performance evaluation of the highly dynamic star trackers. PMID:24618776
Exposure time optimization for highly dynamic star trackers.
Wei, Xinguo; Tan, Wei; Li, Jian; Zhang, Guangjun
2014-01-01
Under highly dynamic conditions, the star-spots on the image sensor of a star tracker move across many pixels during the exposure time, which will reduce star detection sensitivity and increase star location errors. However, this kind of effect can be compensated well by setting an appropriate exposure time. This paper focuses on how exposure time affects the star tracker under highly dynamic conditions and how to determine the most appropriate exposure time for this case. Firstly, the effect of exposure time on star detection sensitivity is analyzed by establishing the dynamic star-spot imaging model. Then the star location error is deduced based on the error analysis of the sub-pixel centroiding algorithm. Combining these analyses, the effect of exposure time on attitude accuracy is finally determined. Some simulations are carried out to validate these effects, and the results show that there are different optimal exposure times for different angular velocities of a star tracker with a given configuration. In addition, the results of night sky experiments using a real star tracker agree with the simulation results. The summarized regularities in this paper should prove helpful in the system design and dynamic performance evaluation of the highly dynamic star trackers. PMID:24618776
Optimal contrast enhancement liquid for dynamic MRI of swallowing.
Ohkubo, M; Higaki, T; Nishikawa, K; Otonari-Yamamoto, M; Sugiyama, T; Ishida, R; Wakoh, M
2016-09-01
Several dynamic magnetic resonance imaging (MRI) techniques to observe swallowing and their parameters have been reported. Although these studies used several contrast enhancement liquids, no studies were conducted to investigate the most suitable liquids. The purpose of this study was to identify the optimal contrast enhancement liquid for dynamic MRI of swallowing. MRI was performed using a new sequence consisting of true fast imaging with steady-state precession, generalised auto-calibrating partially parallel acquisition and a keyhole imaging technique. Seven liquids were studied, including pure distilled water, distilled water with thickener at 10, 20 and 30 mg mL(-1) concentrations and oral MRI contrast medium at 1, 2 or 3 mg mL(-1) . Distilled water showed the highest signal intensity. There were statistically significant differences among the following contrast media: distilled water with thickener at 20 mg mL(-1) and the oral MRI contrast medium at 2 mg mL(-1) and 1 mg mL(-1) . It can be concluded that the optimal liquid for dynamic MRI of swallowing is a water-based substance that allows variations in viscosity. PMID:27328011
Super-Learning of an Optimal Dynamic Treatment Rule.
Luedtke, Alexander R; van der Laan, Mark J
2016-05-01
We consider the estimation of an optimal dynamic two time-point treatment rule defined as the rule that maximizes the mean outcome under the dynamic treatment, where the candidate rules are restricted to depend only on a user-supplied subset of the baseline and intermediate covariates. This estimation problem is addressed in a statistical model for the data distribution that is nonparametric, beyond possible knowledge about the treatment and censoring mechanisms. We propose data adaptive estimators of this optimal dynamic regime which are defined by sequential loss-based learning under both the blip function and weighted classification frameworks. Rather than a priori selecting an estimation framework and algorithm, we propose combining estimators from both frameworks using a super-learning based cross-validation selector that seeks to minimize an appropriate cross-validated risk. The resulting selector is guaranteed to asymptotically perform as well as the best convex combination of candidate algorithms in terms of loss-based dissimilarity under conditions. We offer simulation results to support our theoretical findings. PMID:27227726
Dynamic imaging model and parameter optimization for a star tracker.
Yan, Jinyun; Jiang, Jie; Zhang, Guangjun
2016-03-21
Under dynamic conditions, star spots move across the image plane of a star tracker and form a smeared star image. This smearing effect increases errors in star position estimation and degrades attitude accuracy. First, an analytical energy distribution model of a smeared star spot is established based on a line segment spread function because the dynamic imaging process of a star tracker is equivalent to the static imaging process of linear light sources. The proposed model, which has a clear physical meaning, explicitly reflects the key parameters of the imaging process, including incident flux, exposure time, velocity of a star spot in an image plane, and Gaussian radius. Furthermore, an analytical expression of the centroiding error of the smeared star spot is derived using the proposed model. An accurate and comprehensive evaluation of centroiding accuracy is obtained based on the expression. Moreover, analytical solutions of the optimal parameters are derived to achieve the best performance in centroid estimation. Finally, we perform numerical simulations and a night sky experiment to validate the correctness of the dynamic imaging model, the centroiding error expression, and the optimal parameters. PMID:27136791
Dynamic optimization of bioprocesses: efficient and robust numerical strategies.
Banga, Julio R; Balsa-Canto, Eva; Moles, Carmen G; Alonso, Antonio A
2005-06-29
The dynamic optimization (open loop optimal control) of non-linear bioprocesses is considered in this contribution. These processes can be described by sets of non-linear differential and algebraic equations (DAEs), usually subject to constraints in the state and control variables. A review of the available solution techniques for this class of problems is presented, highlighting the numerical difficulties arising from the non-linear, constrained and often discontinuous nature of these systems. In order to surmount these difficulties, we present several alternative stochastic and hybrid techniques based on the control vector parameterization (CVP) approach. The CVP approach is a direct method which transforms the original problem into a non-linear programming (NLP) problem, which must be solved by a suitable (efficient and robust) solver. In particular, a hybrid technique uses a first global optimization phase followed by a fast second phase based on a local deterministic method, so it can handle the nonconvexity of many of these NLPs. The efficiency and robustness of these techniques is illustrated by solving several challenging case studies regarding the optimal control of fed-batch bioreactors and other bioprocesses. In order to fairly evaluate their advantages, a careful and critical comparison with several other direct approaches is provided. The results indicate that the two-phase hybrid approach presents the best compromise between robustness and efficiency. PMID:15888349
Optimal approach to quantum communication using dynamic programming.
Jiang, Liang; Taylor, Jacob M; Khaneja, Navin; Lukin, Mikhail D
2007-10-30
Reliable preparation of entanglement between distant systems is an outstanding problem in quantum information science and quantum communication. In practice, this has to be accomplished by noisy channels (such as optical fibers) that generally result in exponential attenuation of quantum signals at large distances. A special class of quantum error correction protocols, quantum repeater protocols, can be used to overcome such losses. In this work, we introduce a method for systematically optimizing existing protocols and developing more efficient protocols. Our approach makes use of a dynamic programming-based searching algorithm, the complexity of which scales only polynomially with the communication distance, letting us efficiently determine near-optimal solutions. We find significant improvements in both the speed and the final-state fidelity for preparing long-distance entangled states. PMID:17959783
Dynamic stochastic optimization models for air traffic flow management
NASA Astrophysics Data System (ADS)
Mukherjee, Avijit
This dissertation presents dynamic stochastic optimization models for Air Traffic Flow Management (ATFM) that enables decisions to adapt to new information on evolving capacities of National Airspace System (NAS) resources. Uncertainty is represented by a set of capacity scenarios, each depicting a particular time-varying capacity profile of NAS resources. We use the concept of a scenario tree in which multiple scenarios are possible initially. Scenarios are eliminated as possibilities in a succession of branching points, until the specific scenario that will be realized on a particular day is known. Thus the scenario tree branching provides updated information on evolving scenarios, and allows ATFM decisions to be re-addressed and revised. First, we propose a dynamic stochastic model for a single airport ground holding problem (SAGHP) that can be used for planning Ground Delay Programs (GDPs) when there is uncertainty about future airport arrival capacities. Ground delays of non-departed flights can be revised based on updated information from scenario tree branching. The problem is formulated so that a wide range of objective functions, including non-linear delay cost functions and functions that reflect equity concerns can be optimized. Furthermore, the model improves on existing practice by ensuring efficient use of available capacity without necessarily exempting long-haul flights. Following this, we present a methodology and optimization models that can be used for decentralized decision making by individual airlines in the GDP planning process, using the solutions from the stochastic dynamic SAGHP. Airlines are allowed to perform cancellations, and re-allocate slots to remaining flights by substitutions. We also present an optimization model that can be used by the FAA, after the airlines perform cancellation and substitutions, to re-utilize vacant arrival slots that are created due to cancellations. Finally, we present three stochastic integer programming
Dynamic Simulation and Optimization of Nuclear Hydrogen Production Systems
Paul I. Barton; Mujid S. Kaximi; Georgios Bollas; Patricio Ramirez Munoz
2009-07-31
This project is part of a research effort to design a hydrogen plant and its interface with a nuclear reactor. This project developed a dynamic modeling, simulation and optimization environment for nuclear hydrogen production systems. A hybrid discrete/continuous model captures both the continuous dynamics of the nuclear plant, the hydrogen plant, and their interface, along with discrete events such as major upsets. This hybrid model makes us of accurate thermodynamic sub-models for the description of phase and reaction equilibria in the thermochemical reactor. Use of the detailed thermodynamic models will allow researchers to examine the process in detail and have confidence in the accurary of the property package they use.
Optimized dynamical decoupling for power-law noise spectra
Pasini, S.; Uhrig, G. S.
2010-01-15
We analyze the suppression of decoherence by means of dynamical decoupling in the pure-dephasing spin-boson model for baths with power law spectra. The sequence of ideal pi pulses is optimized according to the power of the bath. We expand the decoherence function and separate the canceling divergences from the relevant terms. The proposed sequence is chosen to be the one minimizing the decoherence function. By construction, it provides the best performance. We analytically derive the conditions that must be satisfied. The resulting equations are solved numerically. The solutions are very close to the Carr-Purcell-Meiboom-Gill sequence for a soft cutoff of the bath while they approach the Uhrig dynamical-decoupling sequence as the cutoff becomes harder.
Optimization of phonon dynamics protocols in ion traps
NASA Astrophysics Data System (ADS)
Dutta, T.; Mukherjee, M.; Sengupta, K.
2016-03-01
We develop a theory to address the non equilibrium dynamics of phonons in a one-dimensional finite size trapped ion system for non linear ramp and periodic protocols. Our analysis, which is based on our earlier proposal of dynamics-induced cooling and entanglement generation between phonons in these systems when subjected to a linear ramp protocol [1], identifies the optimal protocol within the above-mentioned classes, which minimizes both the cooling and entanglement generation time. We also introduce single-/two-site addressing to achieve cooling/entanglement, which is expected to lead to simpler implementation of these protocols. Finally, we discuss the effect of noise due to the fluctuation of the intensity of the laser used to generate the trap on entanglement generation. We also discuss realistic experimental setups that may serve as test beds for our theory.
NASA Astrophysics Data System (ADS)
St. Germain, Brad David
The development and optimization of liquid rocket engines is an integral part of space vehicle design, since most Earth-to-orbit launch vehicles to date have used liquid rockets as their main propulsion system. Rocket engine design tools range in fidelity from very simple conceptual level tools to full computational fluid dynamics (CFD) simulations. The level of fidelity of interest in this research is a design tool that determines engine thrust and specific impulse as well as models the powerhead of the engine. This is the highest level of fidelity applicable to a conceptual level design environment where faster running analyses are desired. The optimization of liquid rocket engines using a powerhead analysis tool is a difficult problem, because it involves both continuous and discrete inputs as well as a nonlinear design space. Example continuous inputs are the main combustion chamber pressure, nozzle area ratio, engine mixture ratio, and desired thrust. Example discrete variable inputs are the engine cycle (staged-combustion, gas generator, etc.), fuel/oxidizer combination, and engine material choices. Nonlinear optimization problems involving both continuous and discrete inputs are referred to as Mixed-Integer Nonlinear Programming (MINLP) problems. Many methods exist in literature for solving MINLP problems; however none are applicable for this research. All of the existing MINLP methods require the relaxation of the discrete variables as part of their analysis procedure. This means that the discrete choices must be evaluated at non-discrete values. This is not possible with an engine powerhead design code. Therefore, a new optimization method was developed that uses modified response surface equations to provide lower bounds of the continuous design space for each unique discrete variable combination. These lower bounds are then used to efficiently solve the optimization problem. The new optimization procedure was used to find optimal rocket engine designs
Clustering Molecular Dynamics Trajectories for Optimizing Docking Experiments
De Paris, Renata; Quevedo, Christian V.; Ruiz, Duncan D.; Norberto de Souza, Osmar; Barros, Rodrigo C.
2015-01-01
Molecular dynamics simulations of protein receptors have become an attractive tool for rational drug discovery. However, the high computational cost of employing molecular dynamics trajectories in virtual screening of large repositories threats the feasibility of this task. Computational intelligence techniques have been applied in this context, with the ultimate goal of reducing the overall computational cost so the task can become feasible. Particularly, clustering algorithms have been widely used as a means to reduce the dimensionality of molecular dynamics trajectories. In this paper, we develop a novel methodology for clustering entire trajectories using structural features from the substrate-binding cavity of the receptor in order to optimize docking experiments on a cloud-based environment. The resulting partition was selected based on three clustering validity criteria, and it was further validated by analyzing the interactions between 20 ligands and a fully flexible receptor (FFR) model containing a 20 ns molecular dynamics simulation trajectory. Our proposed methodology shows that taking into account features of the substrate-binding cavity as input for the k-means algorithm is a promising technique for accurately selecting ensembles of representative structures tailored to a specific ligand. PMID:25873944
Clustering molecular dynamics trajectories for optimizing docking experiments.
De Paris, Renata; Quevedo, Christian V; Ruiz, Duncan D; Norberto de Souza, Osmar; Barros, Rodrigo C
2015-01-01
Molecular dynamics simulations of protein receptors have become an attractive tool for rational drug discovery. However, the high computational cost of employing molecular dynamics trajectories in virtual screening of large repositories threats the feasibility of this task. Computational intelligence techniques have been applied in this context, with the ultimate goal of reducing the overall computational cost so the task can become feasible. Particularly, clustering algorithms have been widely used as a means to reduce the dimensionality of molecular dynamics trajectories. In this paper, we develop a novel methodology for clustering entire trajectories using structural features from the substrate-binding cavity of the receptor in order to optimize docking experiments on a cloud-based environment. The resulting partition was selected based on three clustering validity criteria, and it was further validated by analyzing the interactions between 20 ligands and a fully flexible receptor (FFR) model containing a 20 ns molecular dynamics simulation trajectory. Our proposed methodology shows that taking into account features of the substrate-binding cavity as input for the k-means algorithm is a promising technique for accurately selecting ensembles of representative structures tailored to a specific ligand. PMID:25873944
Aircraft path planning for optimal imaging using dynamic cost functions
NASA Astrophysics Data System (ADS)
Christie, Gordon; Chaudhry, Haseeb; Kochersberger, Kevin
2015-05-01
Unmanned aircraft development has accelerated with recent technological improvements in sensing and communications, which has resulted in an "applications lag" for how these aircraft can best be utilized. The aircraft are becoming smaller, more maneuverable and have longer endurance to perform sensing and sampling missions, but operating them aggressively to exploit these capabilities has not been a primary focus in unmanned systems development. This paper addresses a means of aerial vehicle path planning to provide a realistic optimal path in acquiring imagery for structure from motion (SfM) reconstructions and performing radiation surveys. This method will allow SfM reconstructions to occur accurately and with minimal flight time so that the reconstructions can be executed efficiently. An assumption is made that we have 3D point cloud data available prior to the flight. A discrete set of scan lines are proposed for the given area that are scored based on visibility of the scene. Our approach finds a time-efficient path and calculates trajectories between scan lines and over obstacles encountered along those scan lines. Aircraft dynamics are incorporated into the path planning algorithm as dynamic cost functions to create optimal imaging paths in minimum time. Simulations of the path planning algorithm are shown for an urban environment. We also present our approach for image-based terrain mapping, which is able to efficiently perform a 3D reconstruction of a large area without the use of GPS data.
Data-driven optimization of dynamic reconfigurable systems of systems.
Tucker, Conrad S.; Eddy, John P.
2010-11-01
This report documents the results of a Strategic Partnership (aka University Collaboration) LDRD program between Sandia National Laboratories and the University of Illinois at Urbana-Champagne. The project is titled 'Data-Driven Optimization of Dynamic Reconfigurable Systems of Systems' and was conducted during FY 2009 and FY 2010. The purpose of this study was to determine and implement ways to incorporate real-time data mining and information discovery into existing Systems of Systems (SoS) modeling capabilities. Current SoS modeling is typically conducted in an iterative manner in which replications are carried out in order to quantify variation in the simulation results. The expense of many replications for large simulations, especially when considering the need for optimization, sensitivity analysis, and uncertainty quantification, can be prohibitive. In addition, extracting useful information from the resulting large datasets is a challenging task. This work demonstrates methods of identifying trends and other forms of information in datasets that can be used on a wide range of applications such as quantifying the strength of various inputs on outputs, identifying the sources of variation in the simulation, and potentially steering an optimization process for improved efficiency.
Optimal control and cold war dynamics between plant and herbivore.
Low, Candace; Ellner, Stephen P; Holden, Matthew H
2013-08-01
Herbivores eat the leaves that a plant needs for photosynthesis. However, the degree of antagonism between plant and herbivore may depend critically on the timing of their interactions and the intrinsic value of a leaf. We present a model that investigates whether and when the timing of plant defense and herbivore feeding activity can be optimized by evolution so that their interactions can move from antagonistic to neutral. We assume that temporal changes in environmental conditions will affect intrinsic leaf value, measured as potential carbon gain. Using optimal-control theory, we model herbivore evolution, first in response to fixed plant strategies and then under coevolutionary dynamics in which the plant also evolves in response to the herbivore. In the latter case, we solve for the evolutionarily stable strategies of plant defense induction and herbivore hatching rate under different ecological conditions. Our results suggest that the optimal strategies for both plant and herbivore are to avoid direct conflict. As long as the plant has the capability for moderately lethal defense, the herbivore will modify its hatching rate to avoid plant defenses, and the plant will never have to use them. Insights from this model offer a possible solution to the paradox of sublethal defenses and provide a mechanism for stable plant-herbivore interactions without the need for natural enemy control. PMID:23852361
An optimal strategy for functional mapping of dynamic trait loci.
Jin, Tianbo; Li, Jiahan; Guo, Ying; Zhou, Xiaojing; Yang, Runqing; Wu, Rongling
2010-02-01
As an emerging powerful approach for mapping quantitative trait loci (QTLs) responsible for dynamic traits, functional mapping models the time-dependent mean vector with biologically meaningful equations and are likely to generate biologically relevant and interpretable results. Given the autocorrelation nature of a dynamic trait, functional mapping needs the implementation of the models for the structure of the covariance matrix. In this article, we have provided a comprehensive set of approaches for modelling the covariance structure and incorporated each of these approaches into the framework of functional mapping. The Bayesian information criterion (BIC) values are used as a model selection criterion to choose the optimal combination of the submodels for the mean vector and covariance structure. In an example for leaf age growth from a rice molecular genetic project, the best submodel combination was found between the Gaussian model for the correlation structure, power equation of order 1 for the variance and the power curve for the mean vector. Under this combination, several significant QTLs for leaf age growth trajectories were detected on different chromosomes. Our model can be well used to study the genetic architecture of dynamic traits of agricultural values. PMID:20196894
A Formal Approach to Empirical Dynamic Model Optimization and Validation
NASA Technical Reports Server (NTRS)
Crespo, Luis G; Morelli, Eugene A.; Kenny, Sean P.; Giesy, Daniel P.
2014-01-01
A framework was developed for the optimization and validation of empirical dynamic models subject to an arbitrary set of validation criteria. The validation requirements imposed upon the model, which may involve several sets of input-output data and arbitrary specifications in time and frequency domains, are used to determine if model predictions are within admissible error limits. The parameters of the empirical model are estimated by finding the parameter realization for which the smallest of the margins of requirement compliance is as large as possible. The uncertainty in the value of this estimate is characterized by studying the set of model parameters yielding predictions that comply with all the requirements. Strategies are presented for bounding this set, studying its dependence on admissible prediction error set by the analyst, and evaluating the sensitivity of the model predictions to parameter variations. This information is instrumental in characterizing uncertainty models used for evaluating the dynamic model at operating conditions differing from those used for its identification and validation. A practical example based on the short period dynamics of the F-16 is used for illustration.
Combining dynamical decoupling with optimal control for improved QIP.
Grace, Matthew D.; Carroll, Malcolm S.; Dominy, Jason; Witzel, Wayne
2010-03-01
Constructing high-fidelity control pulses that are robust to control and system/environment fluctuations is a crucial objective for quantum information processing (QIP). We combine dynamical decoupling (DD) with optimal control (OC) to identify control pulses that achieve this objective numerically. Previous DD work has shown that general errors up to (but not including) third order can be removed from {pi}- and {pi}/2-pulses without concatenation. By systematically integrating DD and OC, we are able to increase pulse fidelity beyond this limit. Our hybrid method of quantum control incorporates a newly-developed algorithm for robust OC, providing a nested DD-OC approach to generate robust controls. Motivated by solid-state QIP, we also incorporate relevant experimental constraints into this DD-OC formalism. To demonstrate the advantage of our approach, the resulting quantum controls are compared to previous DD results in open and uncertain model systems.
A relaxed reduced space SQP strategy for dynamic optimization problems.
Logsdon, J. S.; Biegler, L. T.; Carnegie-Mellon Univ.
1993-01-01
Recently, strategies have been developed to solve dynamic simulation and optimization problems in a simultaneous manner by applying orthogonal collocation on finite elements and solving the nonlinear program (NLP) with a reduced space successive quadratic programming (SQP) approach. We develop a relaxed simultaneous approach that leads to faster performance. The method operates in the reduced space of the control variables and solves the collocation equations inexactly at each SQP iteration. Unlike previous simultaneous formulations, it is able to consider the state variables one element at a time. Also, this approach is compared on two process examples to the reduced gradient, feasible path approach outlined in Logsdon and Biegler. Nonlinear programs with up to 5500 variables are solved with only 40% of the effort. Finally, a theoretical analysis of this approach is provided.
Performance Study and Dynamic Optimization Design for Thread Pool Systems
Dongping Xu
2004-12-19
Thread pools have been widely used by many multithreaded applications. However, the determination of the pool size according to the application behavior still remains problematic. To automate this process, in this thesis we have developed a set of performance metrics for quantitatively analyzing thread pool performance. For our experiments, we built a thread pool system which provides a general framework for thread pool research. Based on this simulation environment, we studied the performance impact brought by the thread pool on different multithreaded applications. Additionally, the correlations between internal characterizations of thread pools and their throughput were also examined. We then proposed and evaluated a heuristic algorithm to dynamically determine the optimal thread pool size. The simulation results show that this approach is effective in improving overall application performance.
Improved self-protection using dynamically optimized expendable countermeasures
NASA Astrophysics Data System (ADS)
Hovland, Harald
2007-04-01
The use of expendable countermeasures is still found to be a viable choice for self protection against Man Portable Air Defense Systems (MANPADS) due to their simplicity, low cost, flexibility, recent improvements in decoy technology, the ability to handle multiple threats simultaneously and the off-board nature of these countermeasures. In civil aviation, the risk of general hazards linked to the use of pyrotechnics is the main argument against expendable countermeasures, whereas for military platforms, the limitation in capacity due to a limited number of rounds is often used as an argument to replace expendable countermeasures by laser-based countermeasures. This latter argument is in general not substantiated by modelling or figures of merit, although it is often argued that a laser based system allows for more false alarms, hence enabling a more sensitive missile approach warning system. The author has developed a model that accounts for the statistical effects of running out of expendable countermeasures during a mission, in terms of the overall mission survival probability. The model includes key parameters of the missile approach warning system (MAWS), and can handle multiple missile types and missile attack configurations, as well as various statistical models of missile attacks. The model enables quantitative comparison between laser based and expendable countermeasures, but also a dynamic optimization of the countermeasures in terms of whether to use small or large countermeasure programs, as well as the dynamic tuning of MAWS key parameters to optimize the overall performance. The model is also well suited for determination of the contributions of the different components of the system in the overall survival probability.
Geometry optimization for micro-pressure sensor considering dynamic interference
NASA Astrophysics Data System (ADS)
Yu, Zhongliang; Zhao, Yulong; Li, Lili; Tian, Bian; Li, Cun
2014-09-01
Presented is the geometry optimization for piezoresistive absolute micro-pressure sensor. A figure of merit called the performance factor (PF) is defined as a quantitative index to describe the comprehensive performances of a sensor including sensitivity, resonant frequency, and acceleration interference. Three geometries are proposed through introducing islands and sensitive beams into typical flat diaphragm. The stress distributions of sensitive elements are analyzed by finite element method. Multivariate fittings based on ANSYS simulation results are performed to establish the equations about surface stress, deflection, and resonant frequency. Optimization by MATLAB is carried out to determine the dimensions of the geometries. Convex corner undercutting is evaluated. Each PF of the three geometries with the determined dimensions is calculated and compared. Silicon bulk micromachining is utilized to fabricate the prototypes of the sensors. The outputs of the sensors under both static and dynamic conditions are tested. Experimental results demonstrate the rationality of the defined performance factor and reveal that the geometry with quad islands presents the highest PF of 210.947 Hz1/4. The favorable overall performances enable the sensor more suitable for altimetry.
Prediction uncertainty and optimal experimental design for learning dynamical systems
NASA Astrophysics Data System (ADS)
Letham, Benjamin; Letham, Portia A.; Rudin, Cynthia; Browne, Edward P.
2016-06-01
Dynamical systems are frequently used to model biological systems. When these models are fit to data, it is necessary to ascertain the uncertainty in the model fit. Here, we present prediction deviation, a metric of uncertainty that determines the extent to which observed data have constrained the model's predictions. This is accomplished by solving an optimization problem that searches for a pair of models that each provides a good fit for the observed data, yet has maximally different predictions. We develop a method for estimating a priori the impact that additional experiments would have on the prediction deviation, allowing the experimenter to design a set of experiments that would most reduce uncertainty. We use prediction deviation to assess uncertainty in a model of interferon-alpha inhibition of viral infection, and to select a sequence of experiments that reduces this uncertainty. Finally, we prove a theoretical result which shows that prediction deviation provides bounds on the trajectories of the underlying true model. These results show that prediction deviation is a meaningful metric of uncertainty that can be used for optimal experimental design.
Geometry optimization for micro-pressure sensor considering dynamic interference
Yu, Zhongliang; Zhao, Yulong Li, Lili; Tian, Bian; Li, Cun
2014-09-15
Presented is the geometry optimization for piezoresistive absolute micro-pressure sensor. A figure of merit called the performance factor (PF) is defined as a quantitative index to describe the comprehensive performances of a sensor including sensitivity, resonant frequency, and acceleration interference. Three geometries are proposed through introducing islands and sensitive beams into typical flat diaphragm. The stress distributions of sensitive elements are analyzed by finite element method. Multivariate fittings based on ANSYS simulation results are performed to establish the equations about surface stress, deflection, and resonant frequency. Optimization by MATLAB is carried out to determine the dimensions of the geometries. Convex corner undercutting is evaluated. Each PF of the three geometries with the determined dimensions is calculated and compared. Silicon bulk micromachining is utilized to fabricate the prototypes of the sensors. The outputs of the sensors under both static and dynamic conditions are tested. Experimental results demonstrate the rationality of the defined performance factor and reveal that the geometry with quad islands presents the highest PF of 210.947 Hz{sup 1/4}. The favorable overall performances enable the sensor more suitable for altimetry.
Geometry optimization for micro-pressure sensor considering dynamic interference.
Yu, Zhongliang; Zhao, Yulong; Li, Lili; Tian, Bian; Li, Cun
2014-09-01
Presented is the geometry optimization for piezoresistive absolute micro-pressure sensor. A figure of merit called the performance factor (PF) is defined as a quantitative index to describe the comprehensive performances of a sensor including sensitivity, resonant frequency, and acceleration interference. Three geometries are proposed through introducing islands and sensitive beams into typical flat diaphragm. The stress distributions of sensitive elements are analyzed by finite element method. Multivariate fittings based on ANSYS simulation results are performed to establish the equations about surface stress, deflection, and resonant frequency. Optimization by MATLAB is carried out to determine the dimensions of the geometries. Convex corner undercutting is evaluated. Each PF of the three geometries with the determined dimensions is calculated and compared. Silicon bulk micromachining is utilized to fabricate the prototypes of the sensors. The outputs of the sensors under both static and dynamic conditions are tested. Experimental results demonstrate the rationality of the defined performance factor and reveal that the geometry with quad islands presents the highest PF of 210.947 Hz(1/4). The favorable overall performances enable the sensor more suitable for altimetry. PMID:25273764
4500 V SPT+ IGBT optimization on static and dynamic losses
NASA Astrophysics Data System (ADS)
Qingyun, Dai; Xiaoli, Tian; Wenliang, Zhang; Shuojin, Lu; Yangjun, Zhu
2015-09-01
This paper concerns the need for improving the static and dynamic performance of the high voltage insulated gate bipolar transistor (HV IGBTs). A novel structure with a carrier stored layer on the cathode side, known as an enhanced planar IGBT of the 4500 V voltage class is investigated. With the adoption of a soft punch through (SPT) concept as the vertical structure and an enhanced planar concept as the top structure, signed as SPT+ IGBT, the simulation results indicate the turn-off switching waveform of the 4500 V SPT+ IGBT is soft and also realizes an improved trade-off relationship between on-state voltage drop (Von) and turn-off loss (Eoff) in comparison with the SPT IGBT. Attention is also paid to the influences caused by different carrier stored layer doping dose on static and dynamic performances, to optimize on-state and switching losses of SPT+ IGBT. Project supported by the National Major Science and Technology Special Project of China (No. 2011ZX02504-002).
Dynamic Range Size Analysis of Territorial Animals: An Optimality Approach.
Tao, Yun; Börger, Luca; Hastings, Alan
2016-10-01
Home range sizes of territorial animals are often observed to vary periodically in response to seasonal changes in foraging opportunities. Here we develop the first mechanistic model focused on the temporal dynamics of home range expansion and contraction in territorial animals. We demonstrate how simple movement principles can lead to a rich suite of range size dynamics, by balancing foraging activity with defensive requirements and incorporating optimal behavioral rules into mechanistic home range analysis. Our heuristic model predicts three general temporal patterns that have been observed in empirical studies across multiple taxa. First, a positive correlation between age and territory quality promotes shrinking home ranges over an individual's lifetime, with maximal range size variability shortly before the adult stage. Second, poor sensory information, low population density, and large resource heterogeneity may all independently facilitate range size instability. Finally, aggregation behavior toward forage-rich areas helps produce divergent home range responses between individuals from different age classes. This model has broad applications for addressing important unknowns in animal space use, with potential applications also in conservation and health management strategies. PMID:27622879
Campaign-level dynamic network modelling for spaceflight logistics for the flexible path concept
NASA Astrophysics Data System (ADS)
Ho, Koki; de Weck, Olivier L.; Hoffman, Jeffrey A.; Shishko, Robert
2016-06-01
This paper develops a network optimization formulation for dynamic campaign-level space mission planning. Although many past space missions have been designed mainly from a mission-level perspective, a campaign-level perspective will be important for future space exploration. In order to find the optimal campaign-level space transportation architecture, a mixed-integer linear programming (MILP) formulation with a generalized multi-commodity flow and a time-expanded network is developed. Particularly, a new heuristics-based method, a partially static time-expanded network, is developed to provide a solution quickly. The developed method is applied to a case study containing human exploration of a near-Earth object (NEO) and Mars, related to the concept of the Flexible Path. The numerical results show that using the specific combinations of propulsion technologies, in-situ resource utilization (ISRU), and other space infrastructure elements can reduce the initial mass in low-Earth orbit (IMLEO) significantly. In addition, the case study results also show that we can achieve large IMLEO reduction by designing NEO and Mars missions together as a campaign compared with designing them separately owing to their common space infrastructure pre-deployment. This research will be an important step toward efficient and flexible campaign-level space mission planning.
Optimal spatiotemporal reduced order modeling for nonlinear dynamical systems
NASA Astrophysics Data System (ADS)
LaBryer, Allen
Proposed in this dissertation is a novel reduced order modeling (ROM) framework called optimal spatiotemporal reduced order modeling (OPSTROM) for nonlinear dynamical systems. The OPSTROM approach is a data-driven methodology for the synthesis of multiscale reduced order models (ROMs) which can be used to enhance the efficiency and reliability of under-resolved simulations for nonlinear dynamical systems. In the context of nonlinear continuum dynamics, the OPSTROM approach relies on the concept of embedding subgrid-scale models into the governing equations in order to account for the effects due to unresolved spatial and temporal scales. Traditional ROMs neglect these effects, whereas most other multiscale ROMs account for these effects in ways that are inconsistent with the underlying spatiotemporal statistical structure of the nonlinear dynamical system. The OPSTROM framework presented in this dissertation begins with a general system of partial differential equations, which are modified for an under-resolved simulation in space and time with an arbitrary discretization scheme. Basic filtering concepts are used to demonstrate the manner in which residual terms, representing subgrid-scale dynamics, arise with a coarse computational grid. Models for these residual terms are then developed by accounting for the underlying spatiotemporal statistical structure in a consistent manner. These subgrid-scale models are designed to provide closure by accounting for the dynamic interactions between spatiotemporal macroscales and microscales which are otherwise neglected in a ROM. For a given resolution, the predictions obtained with the modified system of equations are optimal (in a mean-square sense) as the subgrid-scale models are based upon principles of mean-square error minimization, conditional expectations and stochastic estimation. Methods are suggested for efficient model construction, appraisal, error measure, and implementation with a couple of well-known time
Optimized dynamical decoupling in a model quantum memory.
Biercuk, Michael J; Uys, Hermann; VanDevender, Aaron P; Shiga, Nobuyasu; Itano, Wayne M; Bollinger, John J
2009-04-23
Any quantum system, such as those used in quantum information or magnetic resonance, is subject to random phase errors that can dramatically affect the fidelity of a desired quantum operation or measurement. In the context of quantum information, quantum error correction techniques have been developed to correct these errors, but resource requirements are extraordinary. The realization of a physically tractable quantum information system will therefore be facilitated if qubit (quantum bit) error rates are far below the so-called fault-tolerance error threshold, predicted to be of the order of 10(-3)-10(-6). The need to realize such low error rates motivates a search for alternative strategies to suppress dephasing in quantum systems. Here we experimentally demonstrate massive suppression of qubit error rates by the application of optimized dynamical decoupling pulse sequences, using a model quantum system capable of simulating a variety of qubit technologies. We demonstrate an analytically derived pulse sequence, UDD, and find novel sequences through active, real-time experimental feedback. The latter sequences are tailored to maximize error suppression without the need for a priori knowledge of the ambient noise environment, and are capable of suppressing errors by orders of magnitude compared to other existing sequences (including the benchmark multi-pulse spin echo). Our work includes the extension of a treatment to predict qubit decoherence under realistic conditions, yielding strong agreement between experimental data and theory for arbitrary pulse sequences incorporating nonidealized control pulses. These results demonstrate the robustness of qubit memory error suppression through dynamical decoupling techniques across a variety of qubit technologies. PMID:19396139
An optimization model for energy generation and distribution in a dynamic facility
NASA Technical Reports Server (NTRS)
Lansing, F. L.
1981-01-01
An analytical model is described using linear programming for the optimum generation and distribution of energy demands among competing energy resources and different economic criteria. The model, which will be used as a general engineering tool in the analysis of the Deep Space Network ground facility, considers several essential decisions for better design and operation. The decisions sought for the particular energy application include: the optimum time to build an assembly of elements, inclusion of a storage medium of some type, and the size or capacity of the elements that will minimize the total life-cycle cost over a given number of years. The model, which is structured in multiple time divisions, employ the decomposition principle for large-size matrices, the branch-and-bound method in mixed-integer programming, and the revised simplex technique for efficient and economic computer use.
NASA Astrophysics Data System (ADS)
Bulgakov, V. K.; Strigunov, V. V.
2009-05-01
The Pontryagin maximum principle is used to prove a theorem concerning optimal control in regional macroeconomics. A boundary value problem for optimal trajectories of the state and adjoint variables is formulated, and optimal curves are analyzed. An algorithm is proposed for solving the boundary value problem of optimal control. The performance of the algorithm is demonstrated by computing an optimal control and the corresponding optimal trajectories.
Photocathode Optimization for a Dynamic Transmission Electron Microscope: Final Report
Ellis, P; Flom, Z; Heinselman, K; Nguyen, T; Tung, S; Haskell, R; Reed, B W; LaGrange, T
2011-08-04
The Dynamic Transmission Electron Microscope (DTEM) team at Harvey Mudd College has been sponsored by LLNL to design and build a test setup for optimizing the performance of the DTEM's electron source. Unlike a traditional TEM, the DTEM achieves much faster exposure times by using photoemission from a photocathode to produce electrons for imaging. The DTEM team's work is motivated by the need to improve the coherence and current density of the electron cloud produced by the electron gun in order to increase the image resolution and contrast achievable by DTEM. The photoemission test setup is nearly complete and the team will soon complete baseline tests of electron gun performance. The photoemission laser and high voltage power supply have been repaired; the optics path for relaying the laser to the photocathode has been finalized, assembled, and aligned; the internal setup of the vacuum chamber has been finalized and mostly implemented; and system control, synchronization, and data acquisition has been implemented in LabVIEW. Immediate future work includes determining a consistent alignment procedure to place the laser waist on the photocathode, and taking baseline performance measurements of the tantalum photocathode. Future research will examine the performance of the electron gun as a function of the photoemission laser profile, the photocathode material, and the geometry and voltages of the accelerating and focusing components in the electron gun. This report presents the team's progress and outlines the work that remains.
Optimal spectral tracking--adapting to dynamic regime change.
Brittain, John-Stuart; Halliday, David M
2011-01-30
Real world data do not always obey the statistical restraints imposed upon them by sophisticated analysis techniques. In spectral analysis for instance, an ergodic process--the interchangeability of temporal for spatial averaging--is assumed for a repeat-trial design. Many evolutionary scenarios, such as learning and motor consolidation, do not conform to such linear behaviour and should be approached from a more flexible perspective. To this end we previously introduced the method of optimal spectral tracking (OST) in the study of trial-varying parameters. In this extension to our work we modify the OST routines to provide an adaptive implementation capable of reacting to dynamic transitions in the underlying system state. In so doing, we generalise our approach to characterise both slow-varying and rapid fluctuations in time-series, simultaneously providing a metric of system stability. The approach is first applied to a surrogate dataset and compared to both our original non-adaptive solution and spectrogram approaches. The adaptive OST is seen to display fast convergence and desirable statistical properties. All three approaches are then applied to a neurophysiological recording obtained during a study on anaesthetic monitoring. Local field potentials acquired from the posterior hypothalamic region of a deep brain stimulation patient undergoing anaesthesia were analysed. The characterisation of features such as response delay, time-to-peak and modulation brevity are considered. PMID:21115043
Conceptualizing a Tool to Optimize Therapy Based on Dynamic Heterogeneity
Liao, David; Estévez-Salmerón, Luis; Tlsty, Thea D.
2012-01-01
Complex biological systems often display a randomness paralleled in processes studied in fundamental physics. This simple stochasticity emerges owing to the complexity of the system and underlies a fundamental aspect of biology called phenotypic stochasticity. Ongoing stochastic fluctuations in phenotype at the single-unit level can contribute to two emergent population phenotypes. Phenotypic stochasticity not only generates heterogeneity within a cell population, but also allows reversible transitions back and forth between multiple states. This phenotypic interconversion tends to restore a population to a previous composition after that population has been depleted of specific members. We call this tendency homeostatic heterogeneity. These concepts of dynamic heterogeneity can be applied to populations composed of molecules, cells, individuals, etc. Here we discuss the concept that phenotypic stochasticity both underlies the generation of heterogeneity within a cell population and can be used to control population composition, contributing, in particular, to both the ongoing emergence of drug resistance and an opportunity for depleting drug-resistant cells. Using notions of both “large” and “small” numbers of biomolecular components, we rationalize our use of Markov processes to model the generation and eradication of drug-resistant cells. Using these insights, we have developed a graphical tool, called a metronomogram, that we propose will allow us to optimize dosing frequencies and total course durations for clinical benefit. PMID:23197078
Conceptualizing a tool to optimize therapy based on dynamic heterogeneity
NASA Astrophysics Data System (ADS)
Liao, David; Estévez-Salmerón, Luis; Tlsty, Thea D.
2012-12-01
Complex biological systems often display a randomness paralleled in processes studied in fundamental physics. This simple stochasticity emerges owing to the complexity of the system and underlies a fundamental aspect of biology called phenotypic stochasticity. Ongoing stochastic fluctuations in phenotype at the single-unit level can contribute to two emergent population phenotypes. Phenotypic stochasticity not only generates heterogeneity within a cell population, but also allows reversible transitions back and forth between multiple states. This phenotypic interconversion tends to restore a population to a previous composition after that population has been depleted of specific members. We call this tendency homeostatic heterogeneity. These concepts of dynamic heterogeneity can be applied to populations composed of molecules, cells, individuals, etc. Here we discuss the concept that phenotypic stochasticity both underlies the generation of heterogeneity within a cell population and can be used to control population composition, contributing, in particular, to both the ongoing emergence of drug resistance and an opportunity for depleting drug-resistant cells. Using notions of both ‘large’ and ‘small’ numbers of biomolecular components, we rationalize our use of Markov processes to model the generation and eradication of drug-resistant cells. Using these insights, we have developed a graphical tool, called a metronomogram, that we propose will allow us to optimize dosing frequencies and total course durations for clinical benefit. The authors dedicate this paper to Dr Barton Kamen who inspired its initiation and enthusiastically supported its pursuit.
New Statistical Learning Methods for Estimating Optimal Dynamic Treatment Regimes
Zhao, Ying-Qi; Zeng, Donglin; Laber, Eric B.; Kosorok, Michael R.
2014-01-01
Dynamic treatment regimes (DTRs) are sequential decision rules for individual patients that can adapt over time to an evolving illness. The goal is to accommodate heterogeneity among patients and find the DTR which will produce the best long term outcome if implemented. We introduce two new statistical learning methods for estimating the optimal DTR, termed backward outcome weighted learning (BOWL), and simultaneous outcome weighted learning (SOWL). These approaches convert individualized treatment selection into an either sequential or simultaneous classification problem, and can thus be applied by modifying existing machine learning techniques. The proposed methods are based on directly maximizing over all DTRs a nonparametric estimator of the expected long-term outcome; this is fundamentally different than regression-based methods, for example Q-learning, which indirectly attempt such maximization and rely heavily on the correctness of postulated regression models. We prove that the resulting rules are consistent, and provide finite sample bounds for the errors using the estimated rules. Simulation results suggest the proposed methods produce superior DTRs compared with Q-learning especially in small samples. We illustrate the methods using data from a clinical trial for smoking cessation. PMID:26236062
Metamodeling and the Critic-based approach to multi-level optimization.
Werbos, Ludmilla; Kozma, Robert; Silva-Lugo, Rodrigo; Pazienza, Giovanni E; Werbos, Paul J
2012-08-01
Large-scale networks with hundreds of thousands of variables and constraints are becoming more and more common in logistics, communications, and distribution domains. Traditionally, the utility functions defined on such networks are optimized using some variation of Linear Programming, such as Mixed Integer Programming (MIP). Despite enormous progress both in hardware (multiprocessor systems and specialized processors) and software (Gurobi) we are reaching the limits of what these tools can handle in real time. Modern logistic problems, for example, call for expanding the problem both vertically (from one day up to several days) and horizontally (combining separate solution stages into an integrated model). The complexity of such integrated models calls for alternative methods of solution, such as Approximate Dynamic Programming (ADP), which provide a further increase in the performance necessary for the daily operation. In this paper, we present the theoretical basis and related experiments for solving the multistage decision problems based on the results obtained for shorter periods, as building blocks for the models and the solution, via Critic-Model-Action cycles, where various types of neural networks are combined with traditional MIP models in a unified optimization system. In this system architecture, fast and simple feed-forward networks are trained to reasonably initialize more complicated recurrent networks, which serve as approximators of the value function (Critic). The combination of interrelated neural networks and optimization modules allows for multiple queries for the same system, providing flexibility and optimizing performance for large-scale real-life problems. A MATLAB implementation of our solution procedure for a realistic set of data and constraints shows promising results, compared to the iterative MIP approach. PMID:22386785
Orellana, Liliana; Rotnitzky, Andrea; Robins, James M
2010-01-01
In this companion article to "Dynamic Regime Marginal Structural Mean Models for Estimation of Optimal Dynamic Treatment Regimes, Part I: Main Content" [Orellana, Rotnitzky and Robins (2010), IJB, Vol. 6, Iss. 2, Art. 7] we present (i) proofs of the claims in that paper, (ii) a proposal for the computation of a confidence set for the optimal index when this lies in a finite set, and (iii) an example to aid the interpretation of the positivity assumption. PMID:20405047
NASA Astrophysics Data System (ADS)
Sutrisno; Widowati; Solikhin
2016-06-01
In this paper, we propose a mathematical model in stochastic dynamic optimization form to determine the optimal strategy for an integrated single product inventory control problem and supplier selection problem where the demand and purchasing cost parameters are random. For each time period, by using the proposed model, we decide the optimal supplier and calculate the optimal product volume purchased from the optimal supplier so that the inventory level will be located at some point as close as possible to the reference point with minimal cost. We use stochastic dynamic programming to solve this problem and give several numerical experiments to evaluate the model. From the results, for each time period, the proposed model was generated the optimal supplier and the inventory level was tracked the reference point well.
Wang, Xiaolong; Jiang, Aipeng; Jiangzhou, Shu; Li, Ping
2014-01-01
A large-scale parallel-unit seawater reverse osmosis desalination plant contains many reverse osmosis (RO) units. If the operating conditions change, these RO units will not work at the optimal design points which are computed before the plant is built. The operational optimization problem (OOP) of the plant is to find out a scheduling of operation to minimize the total running cost when the change happens. In this paper, the OOP is modelled as a mixed-integer nonlinear programming problem. A two-stage differential evolution algorithm is proposed to solve this OOP. Experimental results show that the proposed method is satisfactory in solution quality. PMID:24701180
An optimal operational advisory system for a brewery's energy supply plant
Ito, K.; Shiba, T.; Yokoyama, R. . Dept. of Energy Systems Engineering); Sakashita, S. . Mayekawa Energy Management Research Center)
1994-03-01
An optimal operational advisory system is proposed to operate rationally a brewery's energy supply plant from the economical viewpoint. A mixed-integer linear programming problem is formulated so as to minimize the daily operational cost subject to constraints such as equipment performance characteristics, energy supply-demand relations, and some practical operational restrictions. This problem includes lots of unknown variables and a hierarchical approach is adopted to derive numerical solutions. The optimal solution obtained by this methods is indicated to the plant operators so as to support their decision making. Through the numerical study for a real brewery plant, the possibility of saving operational cost is ascertained.
A MILP-Based Distribution Optimal Power Flow Model for Microgrid Operation
Liu, Guodong; Starke, Michael R; Zhang, Xiaohu; Tomsovic, Kevin
2016-01-01
This paper proposes a distribution optimal power flow (D-OPF) model for the operation of microgrids. The proposed model minimizes not only the operating cost, including fuel cost, purchasing cost and demand charge, but also several performance indices, including voltage deviation, network power loss and power factor. It co-optimizes the real and reactive power form distributed generators (DGs) and batteries considering their capacity and power factor limits. The D-OPF is formulated as a mixed-integer linear programming (MILP). Numerical simulation results show the effectiveness of the proposed model.
Wang, Jian; Wang, Xiaolong; Jiang, Aipeng; Jiangzhou, Shu; Li, Ping
2014-01-01
A large-scale parallel-unit seawater reverse osmosis desalination plant contains many reverse osmosis (RO) units. If the operating conditions change, these RO units will not work at the optimal design points which are computed before the plant is built. The operational optimization problem (OOP) of the plant is to find out a scheduling of operation to minimize the total running cost when the change happens. In this paper, the OOP is modelled as a mixed-integer nonlinear programming problem. A two-stage differential evolution algorithm is proposed to solve this OOP. Experimental results show that the proposed method is satisfactory in solution quality. PMID:24701180
NASA Technical Reports Server (NTRS)
Lan, C. Edward; Ge, Fuying
1989-01-01
Control system design for general nonlinear flight dynamic models is considered through numerical simulation. The design is accomplished through a numerical optimizer coupled with analysis of flight dynamic equations. The general flight dynamic equations are numerically integrated and dynamic characteristics are then identified from the dynamic response. The design variables are determined iteratively by the optimizer to optimize a prescribed objective function which is related to desired dynamic characteristics. Generality of the method allows nonlinear effects to aerodynamics and dynamic coupling to be considered in the design process. To demonstrate the method, nonlinear simulation models for an F-5A and an F-16 configurations are used to design dampers to satisfy specifications on flying qualities and control systems to prevent departure. The results indicate that the present method is simple in formulation and effective in satisfying the design objectives.
Evacuation dynamic and exit optimization of a supermarket based on particle swarm optimization
NASA Astrophysics Data System (ADS)
Li, Lin; Yu, Zhonghai; Chen, Yang
2014-12-01
A modified particle swarm optimization algorithm is proposed in this paper to investigate the dynamic of pedestrian evacuation from a fire in a public building-a supermarket with multiple exits and configurations of counters. Two distinctive evacuation behaviours featured by the shortest-path strategy and the following-up strategy are simulated in the model, accounting for different categories of age and sex of the pedestrians along with the impact of the fire, including gases, heat and smoke. To examine the relationship among the progress of the overall evacuation and the layout and configuration of the site, a series of simulations are conducted in various settings: without a fire and with a fire at different locations. Those experiments reveal a general pattern of two-phase evacuation, i.e., a steep section and a flat section, in addition to the impact of the presence of multiple exits on the evacuation along with the geographic locations of the exits. For the study site, our simulations indicated the deficiency of the configuration and the current layout of this site in the process of evacuation and verified the availability of proposed solutions to resolve the deficiency. More specifically, for improvement of the effectiveness of the evacuation from the site, adding an exit between Exit 6 and Exit 7 and expanding the corridor at the right side of Exit 7 would significantly reduce the evacuation time.
Optimal GENCO bidding strategy
NASA Astrophysics Data System (ADS)
Gao, Feng
Electricity industries worldwide are undergoing a period of profound upheaval. The conventional vertically integrated mechanism is being replaced by a competitive market environment. Generation companies have incentives to apply novel technologies to lower production costs, for example: Combined Cycle units. Economic dispatch with Combined Cycle units becomes a non-convex optimization problem, which is difficult if not impossible to solve by conventional methods. Several techniques are proposed here: Mixed Integer Linear Programming, a hybrid method, as well as Evolutionary Algorithms. Evolutionary Algorithms share a common mechanism, stochastic searching per generation. The stochastic property makes evolutionary algorithms robust and adaptive enough to solve a non-convex optimization problem. This research implements GA, EP, and PS algorithms for economic dispatch with Combined Cycle units, and makes a comparison with classical Mixed Integer Linear Programming. The electricity market equilibrium model not only helps Independent System Operator/Regulator analyze market performance and market power, but also provides Market Participants the ability to build optimal bidding strategies based on Microeconomics analysis. Supply Function Equilibrium (SFE) is attractive compared to traditional models. This research identifies a proper SFE model, which can be applied to a multiple period situation. The equilibrium condition using discrete time optimal control is then developed for fuel resource constraints. Finally, the research discusses the issues of multiple equilibria and mixed strategies, which are caused by the transmission network. Additionally, an advantage of the proposed model for merchant transmission planning is discussed. A market simulator is a valuable training and evaluation tool to assist sellers, buyers, and regulators to understand market performance and make better decisions. A traditional optimization model may not be enough to consider the distributed
An archived multi-objective simulated annealing for a dynamic cellular manufacturing system
NASA Astrophysics Data System (ADS)
Shirazi, Hossein; Kia, Reza; Javadian, Nikbakhsh; Tavakkoli-Moghaddam, Reza
2014-05-01
To design a group layout of a cellular manufacturing system (CMS) in a dynamic environment, a multi-objective mixed-integer non-linear programming model is developed. The model integrates cell formation, group layout and production planning (PP) as three interrelated decisions involved in the design of a CMS. This paper provides an extensive coverage of important manufacturing features used in the design of CMSs and enhances the flexibility of an existing model in handling the fluctuations of part demands more economically by adding machine depot and PP decisions. Two conflicting objectives to be minimized are the total costs and the imbalance of workload among cells. As the considered objectives in this model are in conflict with each other, an archived multi-objective simulated annealing (AMOSA) algorithm is designed to find Pareto-optimal solutions. Matrix-based solution representation, a heuristic procedure generating an initial and feasible solution and efficient mutation operators are the advantages of the designed AMOSA. To demonstrate the efficiency of the proposed algorithm, the performance of AMOSA is compared with an exact algorithm (i.e., ∈-constraint method) solved by the GAMS software and a well-known evolutionary algorithm, namely NSGA-II for some randomly generated problems based on some comparison metrics. The obtained results show that the designed AMOSA can obtain satisfactory solutions for the multi-objective model.
Simultaneous model discrimination and parameter estimation in dynamic models of cellular systems
2013-01-01
Background Model development is a key task in systems biology, which typically starts from an initial model candidate and, involving an iterative cycle of hypotheses-driven model modifications, leads to new experimentation and subsequent model identification steps. The final product of this cycle is a satisfactory refined model of the biological phenomena under study. During such iterative model development, researchers frequently propose a set of model candidates from which the best alternative must be selected. Here we consider this problem of model selection and formulate it as a simultaneous model selection and parameter identification problem. More precisely, we consider a general mixed-integer nonlinear programming (MINLP) formulation for model selection and identification, with emphasis on dynamic models consisting of sets of either ODEs (ordinary differential equations) or DAEs (differential algebraic equations). Results We solved the MINLP formulation for model selection and identification using an algorithm based on Scatter Search (SS). We illustrate the capabilities and efficiency of the proposed strategy with a case study considering the KdpD/KdpE system regulating potassium homeostasis in Escherichia coli. The proposed approach resulted in a final model that presents a better fit to the in silico generated experimental data. Conclusions The presented MINLP-based optimization approach for nested-model selection and identification is a powerful methodology for model development in systems biology. This strategy can be used to perform model selection and parameter estimation in one single step, thus greatly reducing the number of experiments and computations of traditional modeling approaches. PMID:23938131
The optimal dynamic immunization under a controlled heterogeneous node-based SIRS model
NASA Astrophysics Data System (ADS)
Yang, Lu-Xing; Draief, Moez; Yang, Xiaofan
2016-05-01
Dynamic immunizations, under which the state of the propagation network of electronic viruses can be changed by adjusting the control measures, are regarded as an alternative to static immunizations. This paper addresses the optimal dynamical immunization under the widely accepted SIRS assumption. First, based on a controlled heterogeneous node-based SIRS model, an optimal control problem capturing the optimal dynamical immunization is formulated. Second, the existence of an optimal dynamical immunization scheme is shown, and the corresponding optimality system is derived. Next, some numerical examples are given to show that an optimal immunization strategy can be worked out by numerically solving the optimality system, from which it is found that the network topology has a complex impact on the optimal immunization strategy. Finally, the difference between a payoff and the minimum payoff is estimated in terms of the deviation of the corresponding immunization strategy from the optimal immunization strategy. The proposed optimal immunization scheme is justified, because it can achieve a low level of infections at a low cost.
Optimal Dynamic Advertising Strategy Under Age-Specific Market Segmentation
NASA Astrophysics Data System (ADS)
Krastev, Vladimir
2011-12-01
We consider the model proposed by Faggian and Grosset for determining the advertising efforts and goodwill in the long run of a company under age segmentation of consumers. Reducing this model to optimal control sub problems we find the optimal advertising strategy and goodwill.
Computing the optimal path in stochastic dynamical systems.
Bauver, Martha; Forgoston, Eric; Billings, Lora
2016-08-01
In stochastic systems, one is often interested in finding the optimal path that maximizes the probability of escape from a metastable state or of switching between metastable states. Even for simple systems, it may be impossible to find an analytic form of the optimal path, and in high-dimensional systems, this is almost always the case. In this article, we formulate a constructive methodology that is used to compute the optimal path numerically. The method utilizes finite-time Lyapunov exponents, statistical selection criteria, and a Newton-based iterative minimizing scheme. The method is applied to four examples. The first example is a two-dimensional system that describes a single population with internal noise. This model has an analytical solution for the optimal path. The numerical solution found using our computational method agrees well with the analytical result. The second example is a more complicated four-dimensional system where our numerical method must be used to find the optimal path. The third example, although a seemingly simple two-dimensional system, demonstrates the success of our method in finding the optimal path where other numerical methods are known to fail. In the fourth example, the optimal path lies in six-dimensional space and demonstrates the power of our method in computing paths in higher-dimensional spaces. PMID:27586597
Computing the optimal path in stochastic dynamical systems
NASA Astrophysics Data System (ADS)
Bauver, Martha; Forgoston, Eric; Billings, Lora
2016-08-01
In stochastic systems, one is often interested in finding the optimal path that maximizes the probability of escape from a metastable state or of switching between metastable states. Even for simple systems, it may be impossible to find an analytic form of the optimal path, and in high-dimensional systems, this is almost always the case. In this article, we formulate a constructive methodology that is used to compute the optimal path numerically. The method utilizes finite-time Lyapunov exponents, statistical selection criteria, and a Newton-based iterative minimizing scheme. The method is applied to four examples. The first example is a two-dimensional system that describes a single population with internal noise. This model has an analytical solution for the optimal path. The numerical solution found using our computational method agrees well with the analytical result. The second example is a more complicated four-dimensional system where our numerical method must be used to find the optimal path. The third example, although a seemingly simple two-dimensional system, demonstrates the success of our method in finding the optimal path where other numerical methods are known to fail. In the fourth example, the optimal path lies in six-dimensional space and demonstrates the power of our method in computing paths in higher-dimensional spaces.
A multilevel optimization of large-scale dynamic systems
NASA Technical Reports Server (NTRS)
Siljak, D. D.; Sundareshan, M. K.
1976-01-01
A multilevel feedback control scheme is proposed for optimization of large-scale systems composed of a number of (not necessarily weakly coupled) subsystems. Local controllers are used to optimize each subsystem, ignoring the interconnections. Then, a global controller may be applied to minimize the effect of interconnections and improve the performance of the overall system. At the cost of suboptimal performance, this optimization strategy ensures invariance of suboptimality and stability of the systems under structural perturbations whereby subsystems are disconnected and again connected during operation.
Optimized dynamic framing for PET-based myocardial blood flow estimation
NASA Astrophysics Data System (ADS)
Kolthammer, Jeffrey A.; Muzic, Raymond F.
2013-08-01
An optimal experiment design methodology was developed to select the framing schedule to be used in dynamic positron emission tomography (PET) for estimation of myocardial blood flow using 82Rb. A compartment model and an arterial input function based on measured data were used to calculate a D-optimality criterion for a wide range of candidate framing schedules. To validate the optimality calculation, noisy time-activity curves were simulated, from which parameter values were estimated using an efficient and robust decomposition of the estimation problem. D-optimized schedules improved estimate precision compared to non-optimized schedules, including previously published schedules. To assess robustness, a range of physiologic conditions were simulated. Schedules that were optimal for one condition were nearly-optimal for others. The effect of infusion duration was investigated. Optimality was better for shorter than for longer tracer infusion durations, with the optimal schedule for the shortest infusion duration being nearly optimal for other durations. Together this suggests that a framing schedule optimized for one set of conditions will also work well for others and it is not necessary to use different schedules for different infusion durations or for rest and stress studies. The method for optimizing schedules is general and could be applied in other dynamic PET imaging studies.
Huang, G.H.; Cohen, S.J.; Yin, Y.Y.; Bass, B. |
1996-09-01
A climatic change impact assessment was performed for agricultural and timbering activities. An inexact dynamic optimization model was utilized that can reflect complex system features and a related fuzzy system relation analysis method for comprehensive impact patterns assessment.
Optimal dynamic control of resources in a distributed system
NASA Technical Reports Server (NTRS)
Shin, Kang G.; Krishna, C. M.; Lee, Yann-Hang
1989-01-01
The authors quantitatively formulate the problem of controlling resources in a distributed system so as to optimize a reward function and derive optimal control strategies using Markov decision theory. The control variables treated are quite general; they could be control decisions related to system configuration, repair, diagnostics, files, or data. Two algorithms for resource control in distributed systems are derived for time-invariant and periodic environments, respectively. A detailed example to demonstrate the power and usefulness of the approach is provided.
A dynamic, optimal disease control model for foot-and-mouth disease: I. Model description.
Kobayashi, Mimako; Carpenter, Tim E; Dickey, Bradley F; Howitt, Richard E
2007-05-16
A dynamic optimization model was developed and used to evaluate alternative foot-and-mouth disease (FMD) control strategies. The model chose daily control strategies of depopulation and vaccination that minimized total regional cost for the entire epidemic duration, given disease dynamics and resource constraints. The disease dynamics and the impacts of control strategies on these dynamics were characterized in a set of difference equations; effects of movement restrictions on the disease dynamics were also considered. The model was applied to a three-county region in the Central Valley of California; the epidemic relationships were parameterized and validated using the information obtained from an FMD simulation model developed for the same region. The optimization model enables more efficient searches for desirable control strategies by considering all strategies simultaneously, providing the simulation model with optimization results to direct it in generating detailed predictions of potential FMD outbreaks. PMID:17280729
Optimization of the Dynamic Aperture for SPEAR3 Low-Emittance Upgrade
Wang, Lanfa; Huang, Xiaobiao; Nosochkov, Yuri; Safranek, James A.; Borland, Michael; /Argonne
2012-05-30
A low emittance upgrade is planned for SPEAR3. As the first phase, the emittance is reduced from 10nm to 7nm without additional magnets. A further upgrade with even lower emittance will require a damping wiggler. There is a smaller dynamic aperture for the lower emittance optics due to a stronger nonlinearity. Elegant based Multi-Objective Genetic Algorithm (MOGA) is used to maximize the dynamic aperture. Both the dynamic aperture and beam lifetime are optimized simultaneously. Various configurations of the sextupole magnets have been studied in order to find the best configuration. The betatron tune also can be optimized to minimize resonance effects. The optimized dynamic aperture increases more than 15% from the nominal case and the lifetime increases from 14 hours to 17 hours. It is important that the increase of the dynamic aperture is mainly in the beam injection direction. Therefore the injection efficiency will benefit from this improvement.
Tan, Q; Huang, G H; Cai, Y P
2010-09-01
The existing inexact optimization methods based on interval-parameter linear programming can hardly address problems where coefficients in objective functions are subject to dual uncertainties. In this study, a superiority-inferiority-based inexact fuzzy two-stage mixed-integer linear programming (SI-IFTMILP) model was developed for supporting municipal solid waste management under uncertainty. The developed SI-IFTMILP approach is capable of tackling dual uncertainties presented as fuzzy boundary intervals (FuBIs) in not only constraints, but also objective functions. Uncertainties expressed as a combination of intervals and random variables could also be explicitly reflected. An algorithm with high computational efficiency was provided to solve SI-IFTMILP. SI-IFTMILP was then applied to a long-term waste management case to demonstrate its applicability. Useful interval solutions were obtained. SI-IFTMILP could help generate dynamic facility-expansion and waste-allocation plans, as well as provide corrective actions when anticipated waste management plans are violated. It could also greatly reduce system-violation risk and enhance system robustness through examining two sets of penalties resulting from variations in fuzziness and randomness. Moreover, four possible alternative models were formulated to solve the same problem; solutions from them were then compared with those from SI-IFTMILP. The results indicate that SI-IFTMILP could provide more reliable solutions than the alternatives. PMID:20580864
Liu, Ping; Li, Guodong; Liu, Xinggao
2015-09-01
Control vector parameterization (CVP) is an important approach of the engineering optimization for the industrial dynamic processes. However, its major defect, the low optimization efficiency caused by calculating the relevant differential equations in the generated nonlinear programming (NLP) problem repeatedly, limits its wide application in the engineering optimization for the industrial dynamic processes. A novel highly effective control parameterization approach, fast-CVP, is first proposed to improve the optimization efficiency for industrial dynamic processes, where the costate gradient formulae is employed and a fast approximate scheme is presented to solve the differential equations in dynamic process simulation. Three well-known engineering optimization benchmark problems of the industrial dynamic processes are demonstrated as illustration. The research results show that the proposed fast approach achieves a fine performance that at least 90% of the computation time can be saved in contrast to the traditional CVP method, which reveals the effectiveness of the proposed fast engineering optimization approach for the industrial dynamic processes. PMID:26117286
Performance optimization of web-based medical simulation.
Halic, Tansel; Ahn, Woojin; De, Suvranu
2013-01-01
This paper presents a technique for performance optimization of multimodal interactive web-based medical simulation. A web-based simulation framework is promising for easy access and wide dissemination of medical simulation. However, the real-time performance of the simulation highly depends on hardware capability on the client side. Providing consistent simulation in different hardware is critical for reliable medical simulation. This paper proposes a non-linear mixed integer programming model to optimize the performance of visualization and physics computation while considering hardware capability and application specific constraints. The optimization model identifies and parameterizes the rendering and computing capabilities of the client hardware using an exploratory proxy code. The parameters are utilized to determine the optimized simulation conditions including texture sizes, mesh sizes and canvas resolution. The test results show that the optimization model not only achieves a desired frame per second but also resolves visual artifacts due to low performance hardware. PMID:23400151
An inverse dynamics approach to trajectory optimization for an aerospace plane
NASA Technical Reports Server (NTRS)
Lu, Ping
1992-01-01
An inverse dynamics approach for trajectory optimization is proposed. This technique can be useful in many difficult trajectory optimization and control problems. The application of the approach is exemplified by ascent trajectory optimization for an aerospace plane. Both minimum-fuel and minimax types of performance indices are considered. When rocket augmentation is available for ascent, it is shown that accurate orbital insertion can be achieved through the inverse control of the rocket in the presence of disturbances.
Time-limited optimal dynamics beyond the quantum speed limit
NASA Astrophysics Data System (ADS)
Gajdacz, Miroslav; Das, Kunal K.; Arlt, Jan; Sherson, Jacob F.; Opatrný, Tomáš
2015-12-01
The quantum speed limit sets the minimum time required to transfer a quantum system completely into a given target state. At shorter times the higher operation speed results in a loss of fidelity. Here we quantify the trade-off between the fidelity and the duration in a system driven by a time-varying control. The problem is addressed in the framework of Hilbert space geometry offering an intuitive interpretation of optimal control algorithms. This approach leads to a necessary criterion for control optimality applicable as a measure of algorithm convergence. The time fidelity trade-off expressed in terms of the direct Hilbert velocity provides a robust prediction of the quantum speed limit and allows one to adapt the control optimization such that it yields a predefined fidelity. The results are verified numerically in a multilevel system with a constrained Hamiltonian and a classification scheme for the control sequences is proposed based on their optimizability.
NASA Astrophysics Data System (ADS)
Huang, Xiaobiao; Safranek, James
2014-09-01
Nonlinear dynamics optimization is carried out for a low emittance upgrade lattice of SPEAR3 in order to improve its dynamic aperture and Touschek lifetime. Two multi-objective optimization algorithms, a genetic algorithm and a particle swarm algorithm, are used for this study. The performance of the two algorithms are compared. The result shows that the particle swarm algorithm converges significantly faster to similar or better solutions than the genetic algorithm and it does not require seeding of good solutions in the initial population. These advantages of the particle swarm algorithm may make it more suitable for many accelerator optimization applications.
Optimal dynamic pricing for deteriorating items with reference-price effects
NASA Astrophysics Data System (ADS)
Xue, Musen; Tang, Wansheng; Zhang, Jianxiong
2016-07-01
In this paper, a dynamic pricing problem for deteriorating items with the consumers' reference-price effect is studied. An optimal control model is established to maximise the total profit, where the demand not only depends on the current price, but also is sensitive to the historical price. The continuous-time dynamic optimal pricing strategy with reference-price effect is obtained through solving the optimal control model on the basis of Pontryagin's maximum principle. In addition, numerical simulations and sensitivity analysis are carried out. Finally, some managerial suggestions that firm may adopt to formulate its pricing policy are proposed.
Tao, Ye; Xu, Lijia; Zhang, Zhen; Chen, Runfeng; Li, Huanhuan; Xu, Hui; Zheng, Chao; Huang, Wei
2016-08-01
Current static-state explorations of organic semiconductors for optimal material properties and device performance are hindered by limited insights into the dynamically changed molecular states and charge transport and energy transfer processes upon device operation. Here, we propose a simple yet successful strategy, resonance variation-based dynamic adaptation (RVDA), to realize optimized self-adaptive properties in donor-resonance-acceptor molecules by engineering the resonance variation for dynamic tuning of organic semiconductors. Organic light-emitting diodes hosted by these RVDA materials exhibit remarkably high performance, with external quantum efficiencies up to 21.7% and favorable device stability. Our approach, which supports simultaneous realization of dynamically adapted and selectively enhanced properties via resonance engineering, illustrates a feasible design map for the preparation of smart organic semiconductors capable of dynamic structure and property modulations, promoting the studies of organic electronics from static to dynamic. PMID:27403886
Was Your Glass Left Half Full? Family Dynamics and Optimism
ERIC Educational Resources Information Center
Buri, John R.; Gunty, Amy
2008-01-01
Students' levels of a frequently studied adaptive schema (optimism) as a function of parenting variables (parental authority, family intrusiveness, parental overprotection, parentification, parental psychological control, and parental nurturance) were investigated. Results revealed that positive parenting styles were positively related to the…
Dynamic optimization methodology based on subgrid-scale dissipation for large eddy simulation
NASA Astrophysics Data System (ADS)
Yu, Changping; Xiao, Zuoli; Li, Xinliang
2016-01-01
A dynamic procedure based on subgrid-scale dissipation is proposed for large eddy simulation of turbulent flows. In the new method, the model coefficients are determined by minimizing the square error of the resolved dissipation rate based on the Germano identity. A dynamic two-term mixed model is tested and evaluated both a priori and a posteriori in simulations of homogeneous and isotropic turbulence. The new dynamic procedure proves to be more effective to optimize the model coefficients as compared with traditional method. The corresponding dynamic mixed model can predict the physical quantities more accurately than traditional dynamic mixed model.
INDDGO: Integrated Network Decomposition & Dynamic programming for Graph Optimization
Groer, Christopher S; Sullivan, Blair D; Weerapurage, Dinesh P
2012-10-01
It is well-known that dynamic programming algorithms can utilize tree decompositions to provide a way to solve some \\emph{NP}-hard problems on graphs where the complexity is polynomial in the number of nodes and edges in the graph, but exponential in the width of the underlying tree decomposition. However, there has been relatively little computational work done to determine the practical utility of such dynamic programming algorithms. We have developed software to construct tree decompositions using various heuristics and have created a fast, memory-efficient dynamic programming implementation for solving maximum weighted independent set. We describe our software and the algorithms we have implemented, focusing on memory saving techniques for the dynamic programming. We compare the running time and memory usage of our implementation with other techniques for solving maximum weighted independent set, including a commercial integer programming solver and a semi-definite programming solver. Our results indicate that it is possible to solve some instances where the underlying decomposition has width much larger than suggested by the literature. For certain types of problems, our dynamic programming code runs several times faster than these other methods.
NASA Technical Reports Server (NTRS)
Walsh, Joanne L.; Young, Katherine C.; Pritchard, Jocelyn I.; Adelman, Howard M.; Mantay, Wayne R.
1994-01-01
This paper describes an integrated aerodynamic, dynamic, and structural (IADS) optimization procedure for helicopter rotor blades. The procedure combines performance, dynamics, and structural analyses with a general purpose optimizer using multilevel decomposition techniques. At the upper level, the structure is defined in terms of local quantities (stiffnesses, mass, and average strains). At the lower level, the structure is defined in terms of local quantities (detailed dimensions of the blade structure and stresses). The IADS procedure provides an optimization technique that is compatible with industrial design practices in which the aerodynamic and dynamic design is performed at a global level and the structural design is carried out at a detailed level with considerable dialogue and compromise among the aerodynamic, dynamic, and structural groups. The IADS procedure is demonstrated for several cases.
NASA Technical Reports Server (NTRS)
Walsh, Joanne L.; Young, Katherine C.; Pritchard, Jocelyn I.; Adelman, Howard M.; Mantay, Wayne R.
1995-01-01
This paper describes an integrated aerodynamic/dynamic/structural (IADS) optimization procedure for helicopter rotor blades. The procedure combines performance, dynamics, and structural analyses with a general-purpose optimizer using multilevel decomposition techniques. At the upper level, the structure is defined in terms of global quantities (stiffness, mass, and average strains). At the lower level, the structure is defined in terms of local quantities (detailed dimensions of the blade structure and stresses). The IADS procedure provides an optimization technique that is compatible with industrial design practices in which the aerodynamic and dynamic designs are performed at a global level and the structural design is carried out at a detailed level with considerable dialog and compromise among the aerodynamic, dynamic, and structural groups. The IADS procedure is demonstrated for several examples.
Parameter optimization method for the water quality dynamic model based on data-driven theory.
Liang, Shuxiu; Han, Songlin; Sun, Zhaochen
2015-09-15
Parameter optimization is important for developing a water quality dynamic model. In this study, we applied data-driven method to select and optimize parameters for a complex three-dimensional water quality model. First, a data-driven model was developed to train the response relationship between phytoplankton and environmental factors based on the measured data. Second, an eight-variable water quality dynamic model was established and coupled to a physical model. Parameter sensitivity analysis was investigated by changing parameter values individually in an assigned range. The above results served as guidelines for the control parameter selection and the simulated result verification. Finally, using the data-driven model to approximate the computational water quality model, we employed the Particle Swarm Optimization (PSO) algorithm to optimize the control parameters. The optimization routines and results were analyzed and discussed based on the establishment of the water quality model in Xiangshan Bay (XSB). PMID:26277602
Computational Fluid Dynamics-Based Design Optimization Method for Archimedes Screw Blood Pumps.
Yu, Hai; Janiga, Gábor; Thévenin, Dominique
2016-04-01
An optimization method suitable for improving the performance of Archimedes screw axial rotary blood pumps is described in the present article. In order to achieve a more robust design and to save computational resources, this method combines the advantages of the established pump design theory with modern computer-aided, computational fluid dynamics (CFD)-based design optimization (CFD-O) relying on evolutionary algorithms and computational fluid dynamics. The main purposes of this project are to: (i) integrate pump design theory within the already existing CFD-based optimization; (ii) demonstrate that the resulting procedure is suitable for optimizing an Archimedes screw blood pump in terms of efficiency. Results obtained in this study demonstrate that the developed tool is able to meet both objectives. Finally, the resulting level of hemolysis can be numerically assessed for the optimal design, as hemolysis is an issue of overwhelming importance for blood pumps. PMID:26526039
NASA Astrophysics Data System (ADS)
Li, Y.; Kirchengast, G.; Scherllin-Pirscher, B.; Wu, S.; Schwaerz, M.; Fritzer, J.; Zhang, S.; Carter, B. A.; Zhang, K.
2013-12-01
Navigation Satellite System (GNSS)-based radio occultation (RO) is a satellite remote sensing technique providing accurate profiles of the Earth's atmosphere for weather and climate applications. Above about 30 km altitude, however, statistical optimization is a critical process for initializing the RO bending angles in order to optimize the climate monitoring utility of the retrieved atmospheric profiles. Here we introduce an advanced dynamic statistical optimization algorithm, which uses bending angles from multiple days of European Centre for Medium-range Weather Forecasts (ECMWF) short-range forecast and analysis fields, together with averaged-observed bending angles, to obtain background profiles and associated error covariance matrices with geographically varying background uncertainty estimates on a daily updated basis. The new algorithm is evaluated against the existing Wegener Center Occultation Processing System version 5.4 (OPSv5.4) algorithm, using several days of simulated MetOp and observed CHAMP and COSMIC data, for January and July conditions. We find the following for the new method's performance compared to OPSv5.4: 1.) it significantly reduces random errors (standard deviations), down to about half their size, and leaves less or about equal residual systematic errors (biases) in the optimized bending angles; 2.) the dynamic (daily) estimate of the background error correlation matrix alone already improves the optimized bending angles; 3.) the subsequently retrieved refractivity profiles and atmospheric (temperature) profiles benefit by improved error characteristics, especially above about 30 km. Based on these encouraging results, we work to employ similar dynamic error covariance estimation also for the observed bending angles and to apply the method to full months and subsequently to entire climate data records.
Dynamic Task Optimization in Remote Diabetes Monitoring Systems
Suh, Myung-kyung; Woodbridge, Jonathan; Moin, Tannaz; Lan, Mars; Alshurafa, Nabil; Samy, Lauren; Mortazavi, Bobak; Ghasemzadeh, Hassan; Bui, Alex; Ahmadi, Sheila; Sarrafzadeh, Majid
2016-01-01
Diabetes is the seventh leading cause of death in the United States, but careful symptom monitoring can prevent adverse events. A real-time patient monitoring and feedback system is one of the solutions to help patients with diabetes and their healthcare professionals monitor health-related measurements and provide dynamic feedback. However, data-driven methods to dynamically prioritize and generate tasks are not well investigated in the domain of remote health monitoring. This paper presents a wireless health project (WANDA) that leverages sensor technology and wireless communication to monitor the health status of patients with diabetes. The WANDA dynamic task management function applies data analytics in real-time to discretize continuous features, applying data clustering and association rule mining techniques to manage a sliding window size dynamically and to prioritize required user tasks. The developed algorithm minimizes the number of daily action items required by patients with diabetes using association rules that satisfy a minimum support, confidence and conditional probability thresholds. Each of these tasks maximizes information gain, thereby improving the overall level of patient adherence and satisfaction. Experimental results from applying EM-based clustering and Apriori algorithms show that the developed algorithm can predict further events with higher confidence levels and reduce the number of user tasks by up to 76.19 %.
Optimal PMU Placement Evaluation for Power System Dynamic State Estimation
Zhang, Jinghe; Welch, Greg; Bishop, Gary; Huang, Zhenyu
2010-10-10
Abstract - The synchronized phaor measurements unit (PMU), developed in the 1980s, is concidered to be one of the most important devices in the future of power systems. The recent development of PMU technology provides high-speed, precisely synchronized sensor data, which has been found to be usefule for dynamic, state estimation of power the power grid.
Optimization in Quaternion Dynamic Systems: Gradient, Hessian, and Learning Algorithms.
Xu, Dongpo; Xia, Yili; Mandic, Danilo P
2016-02-01
The optimization of real scalar functions of quaternion variables, such as the mean square error or array output power, underpins many practical applications. Solutions typically require the calculation of the gradient and Hessian. However, real functions of quaternion variables are essentially nonanalytic, which are prohibitive to the development of quaternion-valued learning systems. To address this issue, we propose new definitions of quaternion gradient and Hessian, based on the novel generalized Hamilton-real (GHR) calculus, thus making a possible efficient derivation of general optimization algorithms directly in the quaternion field, rather than using the isomorphism with the real domain, as is current practice. In addition, unlike the existing quaternion gradients, the GHR calculus allows for the product and chain rule, and for a one-to-one correspondence of the novel quaternion gradient and Hessian with their real counterparts. Properties of the quaternion gradient and Hessian relevant to numerical applications are also introduced, opening a new avenue of research in quaternion optimization and greatly simplified the derivations of learning algorithms. The proposed GHR calculus is shown to yield the same generic algorithm forms as the corresponding real- and complex-valued algorithms. Advantages of the proposed framework are illuminated over illustrative simulations in quaternion signal processing and neural networks. PMID:26087504
Optimal satisfaction degree in energy harvesting cognitive radio networks
NASA Astrophysics Data System (ADS)
Li, Zan; Liu, Bo-Yang; Si, Jiang-Bo; Zhou, Fu-Hui
2015-12-01
A cognitive radio (CR) network with energy harvesting (EH) is considered to improve both spectrum efficiency and energy efficiency. A hidden Markov model (HMM) is used to characterize the imperfect spectrum sensing process. In order to maximize the whole satisfaction degree (WSD) of the cognitive radio network, a tradeoff between the average throughput of the secondary user (SU) and the interference to the primary user (PU) is analyzed. We formulate the satisfaction degree optimization problem as a mixed integer nonlinear programming (MINLP) problem. The satisfaction degree optimization problem is solved by using differential evolution (DE) algorithm. The proposed optimization problem allows the network to adaptively achieve the optimal solution based on its required quality of service (Qos). Numerical results are given to verify our analysis. Project supported by the National Natural Science Foundation of China (Grant No. 61301179), the Doctorial Programs Foundation of the Ministry of Education of China (Grant No. 20110203110011), and the 111 Project (Grant No. B08038).
NASA Astrophysics Data System (ADS)
Peng, NaiFu; Guan, Hui; Wu, ChuiJie
2016-04-01
In this paper, the theory of constructing optimal dynamical systems based on weighted residual presented by Wu & Sha is applied to three-dimensional Navier-Stokes equations, and the optimal dynamical system modeling equations are derived. Then the multiscale global optimization method based on coarse graining analysis is presented, by which a set of approximate global optimal bases is directly obtained from Navier-Stokes equations and the construction of optimal dynamical systems is realized. The optimal bases show good properties, such as showing the physical properties of complex flows and the turbulent vortex structures, being intrinsic to real physical problem and dynamical systems, and having scaling symmetry in mathematics, etc.. In conclusion, using fewer terms of optimal bases will approach the exact solutions of Navier-Stokes equations, and the dynamical systems based on them show the most optimal behavior.
NASA Astrophysics Data System (ADS)
Lu, Lihao; Zhang, Jianxiong; Tang, Wansheng
2016-04-01
An inventory system for perishable items with limited replenishment capacity is introduced in this paper. The demand rate depends on the stock quantity displayed in the store as well as the sales price. With the goal to realise profit maximisation, an optimisation problem is addressed to seek for the optimal joint dynamic pricing and replenishment policy which is obtained by solving the optimisation problem with Pontryagin's maximum principle. A joint mixed policy, in which the sales price is a static decision variable and the replenishment rate remains to be a dynamic decision variable, is presented to compare with the joint dynamic policy. Numerical results demonstrate the advantages of the joint dynamic one, and further show the effects of different system parameters on the optimal joint dynamic policy and the maximal total profit.
Optimization of fed-batch Saccharomyces cerevisiae fermentation using dynamic flux balance models.
Hjersted, Jared L; Henson, Michael A
2006-01-01
We developed a dynamic flux balance model for fed-batch Saccharomyces cerevisiae fermentation that couples a detailed steady-state description of primary carbon metabolism with dynamic mass balances on key extracellular species. Model-based dynamic optimization is performed to determine fed-batch operating policies that maximize ethanol productivity and/or ethanol yield on glucose. The initial volume and glucose concentrations, the feed flow rate and dissolved oxygen concentration profiles, and the final batch time are treated as decision variables in the dynamic optimization problem. Optimal solutions are generated to analyze the tradeoff between maximal productivity and yield objectives. We find that for both cases the prediction of a microaerobic region is significant. The optimization results are sensitive to network model parameters for the growth associated maintenance and P/O ratio. The results of our computational study motivate continued development of dynamic flux balance models and further exploration of their application to productivity optimization in biochemical reactors. PMID:17022660
Orellana, Liliana; Rotnitzky, Andrea; Robins, James M
2010-01-01
Dynamic treatment regimes are set rules for sequential decision making based on patient covariate history. Observational studies are well suited for the investigation of the effects of dynamic treatment regimes because of the variability in treatment decisions found in them. This variability exists because different physicians make different decisions in the face of similar patient histories. In this article we describe an approach to estimate the optimal dynamic treatment regime among a set of enforceable regimes. This set is comprised by regimes defined by simple rules based on a subset of past information. The regimes in the set are indexed by a Euclidean vector. The optimal regime is the one that maximizes the expected counterfactual utility over all regimes in the set. We discuss assumptions under which it is possible to identify the optimal regime from observational longitudinal data. Murphy et al. (2001) developed efficient augmented inverse probability weighted estimators of the expected utility of one fixed regime. Our methods are based on an extension of the marginal structural mean model of Robins (1998, 1999) which incorporate the estimation ideas of Murphy et al. (2001). Our models, which we call dynamic regime marginal structural mean models, are specially suitable for estimating the optimal treatment regime in a moderately small class of enforceable regimes of interest. We consider both parametric and semiparametric dynamic regime marginal structural models. We discuss locally efficient, double-robust estimation of the model parameters and of the index of the optimal treatment regime in the set. In a companion paper in this issue of the journal we provide proofs of the main results. PMID:21969994
Bacterial Temporal Dynamics Enable Optimal Design of Antibiotic Treatment
Meredith, Hannah R.; Lopatkin, Allison J.; Anderson, Deverick J.; You, Lingchong
2015-01-01
There is a critical need to better use existing antibiotics due to the urgent threat of antibiotic resistant bacteria coupled with the reduced effort in developing new antibiotics. β-lactam antibiotics represent one of the most commonly used classes of antibiotics to treat a broad spectrum of Gram-positive and -negative bacterial pathogens. However, the rise of extended spectrum β-lactamase (ESBL) producing bacteria has limited the use of β-lactams. Due to the concern of complex drug responses, many β-lactams are typically ruled out if ESBL-producing pathogens are detected, even if these pathogens test as susceptible to some β-lactams. Using quantitative modeling, we show that β-lactams could still effectively treat pathogens producing low or moderate levels of ESBLs when administered properly. We further develop a metric to guide the design of a dosing protocol to optimize treatment efficiency for any antibiotic-pathogen combination. Ultimately, optimized dosing protocols could allow reintroduction of a repertoire of first-line antibiotics with improved treatment outcomes and preserve last-resort antibiotics. PMID:25905796
A stable elemental decomposition for dynamic process optimization
NASA Astrophysics Data System (ADS)
Cervantes, Arturo M.; Biegler, Lorenz T.
2000-08-01
In Cervantes and Biegler (A.I.Ch.E.J. 44 (1998) 1038), we presented a simultaneous nonlinear programming problem (NLP) formulation for the solution of DAE optimization problems. Here, by applying collocation on finite elements, the DAE system is transformed into a nonlinear system. The resulting optimization problem, in which the element placement is fixed, is solved using a reduced space successive quadratic programming (rSQP) algorithm. The space is partitioned into range and null spaces. This partitioning is performed by choosing a pivot sequence for an LU factorization with partial pivoting which allows us to detect unstable modes in the DAE system. The system is stabilized without imposing new boundary conditions. The decomposition of the range space can be performed in a single step by exploiting the overall sparsity of the collocation matrix but not its almost block diagonal structure. In order to solve larger problems a new decomposition approach and a new method for constructing the quadratic programming (QP) subproblem are presented in this work. The decomposition of the collocation matrix is now performed element by element, thus reducing the storage requirements and the computational effort. Under this scheme, the unstable modes are considered in each element and a range-space move is constructed sequentially based on decomposition in each element. This new decomposition improves the efficiency of our previous approach and at the same time preserves its stability. The performance of the algorithm is tested on several examples. Finally, some future directions for research are discussed.
Optimized explicit-solvent replica exchange molecular dynamics from scratch.
Nadler, Walter; Hansmann, Ulrich H E
2008-08-28
Replica exchange molecular dynamics (REMD) simulations have become an important tool to study proteins and other biological molecules in silico. However, such investigations require considerable, and often prohibitive, numerical effort when the molecules are simulated in explicit solvents. In this communication we show that in this case the cost can be minimized by choosing the number of replicas as N(opt) approximately 1+0.594 radical C ln(Tmax/Tmin), where C is the specific heat, and the temperatures distributed according to Ti(opt) approximately T min(Tmax/Tmin)(i-1)/(N-1). PMID:18671362
Scaling and optimization of the radiation temperature in dynamic hohlraums
SLUTZ,STEPHEN A.; DOUGLAS,MELISSA R.; LASH,JOEL S.; VESEY,ROGER A.; CHANDLER,GORDON A.; NASH,THOMAS J.; DERZON,MARK S.
2000-04-13
The authors have constructed a quasi-analytic model of the dynamic hohlraum. Solutions only require a numerical root solve, which can be done very quickly. Results of the model are compared to both experiments and full numerical simulations with good agreement. The computational simplicity of the model allows one to find the behavior of the hohlraum temperature as a function the various parameters of the system and thus find optimum parameters as a function of the driving current. The model is used to investigate the benefits of ablative standoff and axial convergence.
Optimal control methods for controlling bacterial populations with persister dynamics
NASA Astrophysics Data System (ADS)
Cogan, N. G.
2016-06-01
Bacterial tolerance to antibiotics is a well-known phenomena; however, only recent studies of bacterial biofilms have shown how multifaceted tolerance really is. By joining into a structured community and offering shared protection and gene transfer, bacterial populations can protect themselves genotypically, phenotypically and physically. In this study, we collect a line of research that focuses on phenotypic (or plastic) tolerance. The dynamics of persister formation are becoming better understood, even though there are major questions that remain. The thrust of our results indicate that even without detailed description of the biological mechanisms, theoretical studies can offer strategies that can eradicate bacterial populations with existing drugs.
A wave dynamics criterion for optimization of mammalian cardiovascular system.
Pahlevan, Niema M; Gharib, Morteza
2014-05-01
The cardiovascular system in mammals follows various optimization criteria covering the heart, the vascular network, and the coupling of the two. Through a simple dimensional analysis we arrived at a non-dimensional number (wave condition number) that can predict the optimum wave state in which the left ventricular (LV) pulsatile power (LV workload) is minimized in a mammalian cardiovascular system. This number is also universal among all mammals independent of animal size maintaining a value of around 0.1. By utilizing a unique in vitro model of human aorta, we tested our hypothesis against a wide range of aortic compliance (pulse wave velocity). We concluded that the optimum value of the wave condition number remains to be around 0.1 for a wide range of aorta compliance that we could simulate in our in-vitro system. PMID:24642352
Optimizing quantum correlation dynamics by weak measurement in dissipative environment
NASA Astrophysics Data System (ADS)
Du, Shao-Jiang; Xia, Yun-Jie; Duan, De-Yang; Zhang, Lu; Gao, Qiang
2015-04-01
We investigate the protection of quantum correlations of two qubits in independent vacuum reservoirs by means of weak measurements. It is found that the weak measurement can reduce the amount of quantum correlation for one type of initial state at the beginning in a non-Markovian environment and meanwhile it can reduce the occurrence time of entanglement sudden death (ESD) in the process of time evolution. In a Markovian environment, the quantum entanglements of the two kinds of initial states decay rapidly and the weak measurement can further weaken the quantum entanglement, therefore in this case the entanglement cannot be optimized in the evolution process. Project supported by the National Natural Science Foundation of China (Grant Nos. 61178012 and No.11147019).
Discrete Adjoint-Based Design Optimization of Unsteady Turbulent Flows on Dynamic Unstructured Grids
NASA Technical Reports Server (NTRS)
Nielsen, Eric J.; Diskin, Boris; Yamaleev, Nail K.
2009-01-01
An adjoint-based methodology for design optimization of unsteady turbulent flows on dynamic unstructured grids is described. The implementation relies on an existing unsteady three-dimensional unstructured grid solver capable of dynamic mesh simulations and discrete adjoint capabilities previously developed for steady flows. The discrete equations for the primal and adjoint systems are presented for the backward-difference family of time-integration schemes on both static and dynamic grids. The consistency of sensitivity derivatives is established via comparisons with complex-variable computations. The current work is believed to be the first verified implementation of an adjoint-based optimization methodology for the true time-dependent formulation of the Navier-Stokes equations in a practical computational code. Large-scale shape optimizations are demonstrated for turbulent flows over a tiltrotor geometry and a simulated aeroelastic motion of a fighter jet.
NASA Astrophysics Data System (ADS)
Zhou, Xu; Liu, Yanheng; Li, Bin; Sun, Geng
2015-10-01
Identifying community structures in static network misses the opportunity to capture the evolutionary patterns. So community detection in dynamic network has attracted many researchers. In this paper, a multiobjective biogeography based optimization algorithm with decomposition (MBBOD) is proposed to solve community detection problem in dynamic networks. In the proposed algorithm, the decomposition mechanism is adopted to optimize two evaluation objectives named modularity and normalized mutual information simultaneously, which measure the quality of the community partitions and temporal cost respectively. A novel sorting strategy for multiobjective biogeography based optimization is presented for comparing quality of habitats to get species counts. In addition, problem-specific migration and mutation model are introduced to improve the effectiveness of the new algorithm. Experimental results both on synthetic and real networks demonstrate that our algorithm is effective and promising, and it can detect communities more accurately in dynamic networks compared with DYNMOGA and FaceNet.
Dynamic Layered Dual-Cluster Heads Routing Algorithm Based on Krill Herd Optimization in UWSNs.
Jiang, Peng; Feng, Yang; Wu, Feng; Yu, Shanen; Xu, Huan
2016-01-01
Aimed at the limited energy of nodes in underwater wireless sensor networks (UWSNs) and the heavy load of cluster heads in clustering routing algorithms, this paper proposes a dynamic layered dual-cluster routing algorithm based on Krill Herd optimization in UWSNs. Cluster size is first decided by the distance between the cluster head nodes and sink node, and a dynamic layered mechanism is established to avoid the repeated selection of the same cluster head nodes. Using Krill Herd optimization algorithm selects the optimal and second optimal cluster heads, and its Lagrange model directs nodes to a high likelihood area. It ultimately realizes the functions of data collection and data transition. The simulation results show that the proposed algorithm can effectively decrease cluster energy consumption, balance the network energy consumption, and prolong the network lifetime. PMID:27589744
Performance evaluation of the inverse dynamics method for optimal spacecraft reorientation
NASA Astrophysics Data System (ADS)
Ventura, Jacopo; Romano, Marcello; Walter, Ulrich
2015-05-01
This paper investigates the application of the inverse dynamics in the virtual domain method to Euler angles, quaternions, and modified Rodrigues parameters for rapid optimal attitude trajectory generation for spacecraft reorientation maneuvers. The impact of the virtual domain and attitude representation is numerically investigated for both minimum time and minimum energy problems. Owing to the nature of the inverse dynamics method, it yields sub-optimal solutions for minimum time problems. Furthermore, the virtual domain improves the optimality of the solution, but at the cost of more computational time. The attitude representation also affects solution quality and computational speed. For minimum energy problems, the optimal solution can be obtained without the virtual domain with any considered attitude representation.
Dynamic multiobjective optimization algorithm based on average distance linear prediction model.
Li, Zhiyong; Chen, Hengyong; Xie, Zhaoxin; Chen, Chao; Sallam, Ahmed
2014-01-01
Many real-world optimization problems involve objectives, constraints, and parameters which constantly change with time. Optimization in a changing environment is a challenging task, especially when multiple objectives are required to be optimized simultaneously. Nowadays the common way to solve dynamic multiobjective optimization problems (DMOPs) is to utilize history information to guide future search, but there is no common successful method to solve different DMOPs. In this paper, we define a kind of dynamic multiobjectives problem with translational Paretooptimal set (DMOP-TPS) and propose a new prediction model named ADLM for solving DMOP-TPS. We have tested and compared the proposed prediction model (ADLM) with three traditional prediction models on several classic DMOP-TPS test problems. The simulation results show that our proposed prediction model outperforms other prediction models for DMOP-TPS. PMID:24616625
Optimizing bandwidth and dynamic range of lumped Josephson parametric amplifiers
NASA Astrophysics Data System (ADS)
Eddins, A.; Vijay, R.; Macklin, C.; Minev, Z.; Siddiqi, I.
2013-03-01
Superconducting parametric amplifiers have revolutionized the field of quantum measurement by providing high gain, ultra-low noise amplification. They have been used successfully for high-fidelity qubit state measurements, probing nano-mechanical resonators, quantum feedback, and for microwave quantum optics experiments. Though several designs exist, a simple and robust architecture is the Lumped Josephson Parametric Amplifier (LJPA). This device consists of a capacitively shunted SQUID directly coupled to a transmission line to form a low quality factor (Q) nonlinear resonator. We discuss amplifiers which can be tuned over the full 4-8 GHz band with 20-25 dB of gain and 10 - 50 MHz of signal bandwidth. However, similar to other parametric amplifiers employing a resonant circuit, the LJPA suffers from low dynamic range and has a -1 dB gain compression point of order -130 dBm. We explore new designs comprised of an array of SQUIDs to improve the dynamic range. We will present the results of numerical simulations and preliminary experiments. We will also briefly discuss improvements obtained from different biasing methods and packaging. This research was supported by the Army Research Office under a QCT grant.
NASA Technical Reports Server (NTRS)
Athans, M.; Ku, R.; Gershwin, S. B.
1977-01-01
This note shows that the optimal control of dynamic systems with uncertain parameters has certain limitations. In particular, by means of a simple scalar linear-quadratic optimal control example, it is shown that the infinite horizon solution does not exist if the parameter uncertainty exceeds a certain quantifiable threshold; we call this the uncertainty threshold principle. The philosophical and design implications of this result are discussed.
NASA Technical Reports Server (NTRS)
Athans, M.; Ku, R.; Gershwin, S. B.
1977-01-01
This note shows that the optimal control of dynamic systems with uncertain parameters has certain limitations. In particular, by means of a simple scalar linear-quadratic optimal control example, it is shown that the infinite horizon solution does not exist if the parameter uncertainty exceeds a certain quantifiable threshold; we call this the uncertainty threshold principle. The philosophical and design implications of this result are discussed.
Integration of dynamic, aerodynamic, and structural optimization of helicopter rotor blades
NASA Technical Reports Server (NTRS)
Peters, David A.
1991-01-01
Summarized here is the first six years of research into the integration of structural, dynamic, and aerodynamic considerations in the design-optimization process for rotor blades. Specifically discussed here is the application of design optimization techniques for helicopter rotor blades. The reduction of vibratory shears and moments at the blade root, aeroelastic stability of the rotor, optimum airframe design, and an efficient procedure for calculating system sensitivities with respect to the design variables used are discussed.
Optimization of the dynamic behavior of strongly nonlinear heterogeneous materials
NASA Astrophysics Data System (ADS)
Herbold, Eric B.
New aspects of strongly nonlinear wave and structural phenomena in granular media are developed numerically, theoretically and experimentally. One-dimensional chains of particles and compressed powder composites are the two main types of materials considered here. Typical granular assemblies consist of linearly elastic spheres or layers of masses and effective nonlinear springs in one-dimensional columns for dynamic testing. These materials are highly sensitive to initial and boundary conditions, making them useful for acoustic and shock-mitigating applications. One-dimensional assemblies of spherical particles are examples of strongly nonlinear systems with unique properties. For example, if initially uncompressed, these materials have a sound speed equal to zero (sonic vacuum), supporting strongly nonlinear compression solitary waves with a finite width. Different types of assembled metamaterials will be presented with a discussion of the material's response to static compression. The acoustic diode effect will be presented, which may be useful in shock mitigation applications. Systems with controlled dissipation will also be discussed from an experimental and theoretical standpoint emphasizing the critical viscosity that defines the transition from an oscillatory to monotonous shock profile. The dynamic compression of compressed powder composites may lead to self-organizing mesoscale structures in two and three dimensions. A reactive granular material composed of a compressed mixture of polytetrafluoroethylene (PTFE), tungsten (W) and aluminum (Al) fine-grain powders exhibit this behavior. Quasistatic, Hopkinson bar, and drop-weight experiments show that composite materials with a high porosity and fine metallic particles exhibit a higher strength than less porous mixtures with larger particles, given the same mass fraction of constituents. A two-dimensional Eulerian hydrocode is implemented to investigate the mechanical deformation and failure of the compressed
Optimal Input Design for Aircraft Parameter Estimation using Dynamic Programming Principles
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.; Klein, Vladislav
1990-01-01
A new technique was developed for designing optimal flight test inputs for aircraft parameter estimation experiments. The principles of dynamic programming were used for the design in the time domain. This approach made it possible to include realistic practical constraints on the input and output variables. A description of the new approach is presented, followed by an example for a multiple input linear model describing the lateral dynamics of a fighter aircraft. The optimal input designs produced by the new technique demonstrated improved quality and expanded capability relative to the conventional multiple input design method.
Optimal input design for aircraft parameter estimation using dynamic programming principles
NASA Technical Reports Server (NTRS)
Klein, Vladislav; Morelli, Eugene A.
1990-01-01
A new technique was developed for designing optimal flight test inputs for aircraft parameter estimation experiments. The principles of dynamic programming were used for the design in the time domain. This approach made it possible to include realistic practical constraints on the input and output variables. A description of the new approach is presented, followed by an example for a multiple input linear model describing the lateral dynamics of a fighter aircraft. The optimal input designs produced by the new technique demonstrated improved quality and expanded capability relative to the conventional multiple input design method.
NASA Technical Reports Server (NTRS)
Athans, M.; Ku, R.; Gershwin, S. B.
1976-01-01
The fundamental limitations of the optimal control of dynamic systems with random parameters are analyzed by studying a scalar linear-quadratic optimal control example. It is demonstrated that optimum long-range decision making is possible only if the dynamic uncertainty (quantified by the means and covariances of the random parameters) is below a certain threshold. If this threshold is exceeded, there do not exist optimum decision rules. This phenomenon is called the 'uncertainty threshold principle'. The implications of this phenomenon to the field of modelling, identification, and adaptive control are discussed.
OPTIMIZING THE DYNAMIC APERTURE FOR TRIPLE BEND ACHROMATIC LATTICES.
KRAMER, S.L.; BENGTSSON, J.
2006-06-26
The Triple Bend Achromatic (TBA) lattice has the potential for lower natural emittance per period than the Double Bend Achromatic (DBA) lattice for high brightness light sources. However, the DBA has been chosen for 3rd generation light sources more often due to the higher number of undulator straight section available for a comparable emittance. The TBA has considerable flexibility in linear optics tuning while maintaining this emittance advantage. We have used the tune and chromaticity flexibility of a TBA lattice to minimize the lowest order nonlinearities to implement a 3rd order achromatic tune, while maintaining a constant emittance. This frees the geometric sextupoles to counter the higher order nonlinearities. This procedure is being used to improve the nonlinear dynamics of the TBA as a proposed lattice for NSLS-II facility. The flexibility of the TBA lattice will also provide for future upgrade capabilities of the beam parameters.
Optimal Perceived Timing: Integrating Sensory Information with Dynamically Updated Expectations
Di Luca, Massimiliano; Rhodes, Darren
2016-01-01
The environment has a temporal structure, and knowing when a stimulus will appear translates into increased perceptual performance. Here we investigated how the human brain exploits temporal regularity in stimulus sequences for perception. We find that the timing of stimuli that occasionally deviate from a regularly paced sequence is perceptually distorted. Stimuli presented earlier than expected are perceptually delayed, whereas stimuli presented on time and later than expected are perceptually accelerated. This result suggests that the brain regularizes slightly deviant stimuli with an asymmetry that leads to the perceptual acceleration of expected stimuli. We present a Bayesian model for the combination of dynamically-updated expectations, in the form of a priori probability of encountering future stimuli, with incoming sensory information. The asymmetries in the results are accounted for by the asymmetries in the distributions involved in the computational process. PMID:27385184
Endocrine Flexibility: Optimizing Phenotypes in a Dynamic World?
Taff, Conor C; Vitousek, Maren N
2016-06-01
Responding appropriately to changing conditions is crucial in dynamic environments. Individual variation in the flexibility of physiological mediators of phenotype may influence the capacity to mount an integrated response to unpredictable changes in social or ecological context. We propose here a conceptual framework of rapid endocrine flexibility that integrates ecological endocrinology with theoretical and empirical studies of phenotypic plasticity and behavioral syndromes. We highlight the need for research addressing variation in the scope and speed of flexibility, and provide suggestions for future studies of these potentially evolving traits. Elucidating the causes and consequences of variation in endocrine flexibility may have important implications for the evolution of behavior, and for predicting the response of individuals and populations to rapidly changing environments. PMID:27055729
Dynamical Arrest, Structural Disorder, and Optimization of Organic Photovoltaic Devices
Gould, Ian; Dmitry, Matyushov
2014-09-11
This project describes fundamental experimental and theoretical work that relates to charge separation and migration in the solid, heterogeneous or aggregated state. Marcus theory assumes a system in equilibrium with all possible solvent (dipolar) configurations, with rapid interconversion among these on the ET timescale. This project has addressed the more general situation where the medium is at least partially frozen on the ET timescale, i.e. under conditions of dynamical arrest. The approach combined theory and experiment and includes: (1) Computer simulations of model systems, (2) Development of analytical procedures consistent with computer experiment and (3) Experimental studies and testing of the formal theories on this data. Electron transfer processes are unique as a consequence of the close connection between kinetics, spectroscopy and theory, which is an essential component of this work.
Optimal Perceived Timing: Integrating Sensory Information with Dynamically Updated Expectations.
Di Luca, Massimiliano; Rhodes, Darren
2016-01-01
The environment has a temporal structure, and knowing when a stimulus will appear translates into increased perceptual performance. Here we investigated how the human brain exploits temporal regularity in stimulus sequences for perception. We find that the timing of stimuli that occasionally deviate from a regularly paced sequence is perceptually distorted. Stimuli presented earlier than expected are perceptually delayed, whereas stimuli presented on time and later than expected are perceptually accelerated. This result suggests that the brain regularizes slightly deviant stimuli with an asymmetry that leads to the perceptual acceleration of expected stimuli. We present a Bayesian model for the combination of dynamically-updated expectations, in the form of a priori probability of encountering future stimuli, with incoming sensory information. The asymmetries in the results are accounted for by the asymmetries in the distributions involved in the computational process. PMID:27385184
Modeling Illicit Drug Use Dynamics and Its Optimal Control Analysis
2015-01-01
The global burden of death and disability attributable to illicit drug use, remains a significant threat to public health for both developed and developing nations. This paper presents a new mathematical modeling framework to investigate the effects of illicit drug use in the community. In our model the transmission process is captured as a social “contact” process between the susceptible individuals and illicit drug users. We conduct both epidemic and endemic analysis, with a focus on the threshold dynamics characterized by the basic reproduction number. Using our model, we present illustrative numerical results with a case study in Cape Town, Gauteng, Mpumalanga and Durban communities of South Africa. In addition, the basic model is extended to incorporate time dependent intervention strategies. PMID:26819625
Wave packet dynamics in the optimal superadiabatic approximation
NASA Astrophysics Data System (ADS)
Betz, V.; Goddard, B. D.; Manthe, U.
2016-06-01
We explain the concept of superadiabatic representations and show how in the context of electronically non-adiabatic transitions they lead to an explicit formula that can be used to predict transitions at avoided crossings. Based on this formula, we present a simple method for computing wave packet dynamics across avoided crossings. Only knowledge of the adiabatic potential energy surfaces near the avoided crossing is required for the computation. In particular, this means that no diabatization procedure is necessary, the adiabatic electronic energies can be computed on the fly, and they only need to be computed to higher accuracy when an avoided crossing is detected. We test the quality of our method on the paradigmatic example of photo-dissociation of NaI, finding very good agreement with results of exact wave packet calculations.
Dynamic modeling and optimization for space logistics using time-expanded networks
NASA Astrophysics Data System (ADS)
Ho, Koki; de Weck, Olivier L.; Hoffman, Jeffrey A.; Shishko, Robert
2014-12-01
This research develops a dynamic logistics network formulation for lifecycle optimization of mission sequences as a system-level integrated method to find an optimal combination of technologies to be used at each stage of the campaign. This formulation can find the optimal transportation architecture considering its technology trades over time. The proposed methodologies are inspired by the ground logistics analysis techniques based on linear programming network optimization. Particularly, the time-expanded network and its extension are developed for dynamic space logistics network optimization trading the quality of the solution with the computational load. In this paper, the methodologies are applied to a human Mars exploration architecture design problem. The results reveal multiple dynamic system-level trades over time and give recommendation of the optimal strategy for the human Mars exploration architecture. The considered trades include those between In-Situ Resource Utilization (ISRU) and propulsion technologies as well as the orbit and depot location selections over time. This research serves as a precursor for eventual permanent settlement and colonization of other planets by humans and us becoming a multi-planet species.
Dynamic Stability Optimization of Laminated Composite Plates under Combined Boundary Loading
NASA Astrophysics Data System (ADS)
Shafei, Erfan; Kabir, Mohammad Zaman
2011-12-01
Dynamic stability and design optimization of laminated simply supported plates under planar conservative boundary loads are investigated in current study. Examples can be found in internal connecting elements of spacecraft and aerospace structures subjected to edge axial and shear loads. Designation of such elements is function of layup configuration, plate aspect ratio, loading combinations, and layup thickness. An optimum design aims maximum stability load satisfying a predefined stable vibration frequency. The interaction between compound loading and layup angle parameter affects the order of merging vibration modes and may stabilize the dynamic response. Laminated plates are assumed to be angle-plies symmetric to mid-plane surface. Dynamic equilibrium PDE has been solved using kernel integral transformation for modal frequency values and eigenvalue-based orthogonal functions for critical stability loads. The dictating dynamic stability mode is shown to be controlled by geometric stiffness distributions of composite plates. Solution of presented design optimization problem has been done using analytical approach combined with interior penalty multiplier algorithm. The results are verified by FEA approach and stability zones of original and optimized plates are stated as final data. Presented method can help designers to stabilize the dynamic response of composite plates by selecting an optimized layup orientation and thickness for prescribed design circumstances.
An optimized ultrasound digital beamformer with dynamic focusing implemented on FPGA.
Almekkawy, Mohamed; Xu, Jingwei; Chirala, Mohan
2014-01-01
We present a resource-optimized dynamic digital beamformer for an ultrasound system based on a field-programmable gate array (FPGA). A comprehensive 64-channel receive beamformer with full dynamic focusing is embedded in the Altera Arria V FPGA chip. To improve spatial and contrast resolution, full dynamic beamforming is implemented by a novel method with resource optimization. This was conceived using the implementation of the delay summation through a bulk (coarse) delay and fractional (fine) delay. The sampling frequency is 40 MHz and the beamformer includes a 240 MHz polyphase filter that enhances the temporal resolution of the system while relaxing the Analog-to-Digital converter (ADC) bandwidth requirement. The results indicate that our 64-channel dynamic beamformer architecture is amenable for a low power FPGA-based implementation in a portable ultrasound system. PMID:25570695
Stochastic Optimal Scheduling of Residential Appliances with Renewable Energy Sources
Wu, Hongyu; Pratt, Annabelle; Chakraborty, Sudipta
2015-07-03
This paper proposes a stochastic, multi-objective optimization model within a Model Predictive Control (MPC) framework, to determine the optimal operational schedules of residential appliances operating in the presence of renewable energy source (RES). The objective function minimizes the weighted sum of discomfort, energy cost, total and peak electricity consumption, and carbon footprint. A heuristic method is developed for combining different objective components. The proposed stochastic model utilizes Monte Carlo simulation (MCS) for representing uncertainties in electricity price, outdoor temperature, RES generation, water usage, and non-controllable loads. The proposed model is solved using a mixed integer linear programming (MILP) solver and numerical results show the validity of the model. Case studies show the benefit of using the proposed optimization model.
Optimal purchasing of raw materials: A data-driven approach
Muteki, K.; MacGregor, J.F.
2008-06-15
An approach to the optimal purchasing of raw materials that will achieve a desired product quality at a minimum cost is presented. A PLS (Partial Least Squares) approach to formulation modeling is used to combine databases on raw material properties and on past process operations and to relate these to final product quality. These PLS latent variable models are then used in a sequential quadratic programming (SQP) or mixed integer nonlinear programming (MINLP) optimization to select those raw-materials, among all those available on the market, the ratios in which to combine them and the process conditions under which they should be processed. The approach is illustrated for the optimal purchasing of metallurgical coals for coke making in the steel industry.
Synthesizing optimal waste blends
Narayan, V.; Diwekar, W.M.; Hoza, M.
1996-10-01
Vitrification of tank wastes to form glass is a technique that will be used for the disposal of high-level waste at Hanford. Process and storage economics show that minimizing the total number of glass logs produced is the key to keeping cost as low as possible. The amount of glass produced can be reduced by blending of the wastes. The optimal way to combine the tanks to minimize the vole of glass can be determined from a discrete blend calculation. However, this problem results in a combinatorial explosion as the number of tanks increases. Moreover, the property constraints make this problem highly nonconvex where many algorithms get trapped in local minima. In this paper the authors examine the use of different combinatorial optimization approaches to solve this problem. A two-stage approach using a combination of simulated annealing and nonlinear programming (NLP) is developed. The results of different methods such as the heuristics approach based on human knowledge and judgment, the mixed integer nonlinear programming (MINLP) approach with GAMS, and branch and bound with lower bound derived from the structure of the given blending problem are compared with this coupled simulated annealing and NLP approach.
A new method of optimal design for a two-dimensional diffuser by using dynamic programming
NASA Technical Reports Server (NTRS)
Gu, Chuangang; Zhang, Moujin; Chen, XI; Miao, Yongmiao
1991-01-01
A new method for predicting the optimal velocity distribution on the wall of a two dimensional diffuser is presented. The method uses dynamic programming to solve the optimal control problem with inequality constraints of state variables. The physical model of optimization is designed to prevent the separation of the boundary layer while approaching the maximum pressure ratio in a diffuser of a specified length. The computational results are in fair agreement with the experimental ones. Optimal velocity distribution on a diffuser wall is said to occur when the flow decelerates quickly at first and then smoothly, while the flow is near separation, but always protected from it. The optimal velocity distribution can be used to design the contour of the diffuser.
Shape optimization of the diffuser blade of an axial blood pump by computational fluid dynamics.
Zhu, Lailai; Zhang, Xiwen; Yao, Zhaohui
2010-03-01
Computational fluid dynamics (CFD) has been a viable and effective way to predict hydraulic performance, flow field, and shear stress distribution within a blood pump. We developed an axial blood pump with CFD and carried out a CFD-based shape optimization of the diffuser blade to enhance pressure output and diminish backflow in the impeller-diffuser connecting region at a fixed design point. Our optimization combined a computer-aided design package, a mesh generator, and a CFD solver in an automation environment with process integration and optimization software. A genetic optimization algorithm was employed to find the pareto-optimal designs from which we could make trade-off decisions. Finally, a set of representative designs was analyzed and compared on the basis of the energy equation. The role of the inlet angle of the diffuser blade was analyzed, accompanied by its relationship with pressure output and backflow in the impeller-diffuser connecting region. PMID:20447042
Tahriri, Farzad; Dawal, Siti Zawiah Md; Taha, Zahari
2014-01-01
A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data. An improved genetic algorithm called fuzzy adaptive genetic algorithm (FAGA) is proposed in order to solve this optimization model. In establishing the FAGA, five dynamic fuzzy parameter controllers are devised in which fuzzy expert experience controller (FEEC) is integrated with automatic learning dynamic fuzzy controller (ALDFC) technique. The enhanced algorithm dynamically adjusts the population size, number of generations, tournament candidate, crossover rate, and mutation rate compared with using fixed control parameters. The main idea is to improve the performance and effectiveness of existing GAs by dynamic adjustment and control of the five parameters. Verification and validation of the dynamic fuzzy GA are carried out by developing test-beds and testing using a multiobjective fuzzy mixed production assembly line sequencing optimization problem. The simulation results highlight that the performance and efficacy of the proposed novel optimization algorithm are more efficient than the performance of the standard genetic algorithm in mixed assembly line sequencing model. PMID:24982962
Credibility theory based dynamic control bound optimization for reservoir flood limited water level
NASA Astrophysics Data System (ADS)
Jiang, Zhiqiang; Sun, Ping; Ji, Changming; Zhou, Jianzhong
2015-10-01
The dynamic control operation of reservoir flood limited water level (FLWL) can solve the contradictions between reservoir flood control and beneficial operation well, and it is an important measure to make sure the security of flood control and realize the flood utilization. The dynamic control bound of FLWL is a fundamental key element for implementing reservoir dynamic control operation. In order to optimize the dynamic control bound of FLWL by considering flood forecasting error, this paper took the forecasting error as a fuzzy variable, and described it with the emerging credibility theory in recent years. By combining the flood forecasting error quantitative model, a credibility-based fuzzy chance constrained model used to optimize the dynamic control bound was proposed in this paper, and fuzzy simulation technology was used to solve the model. The FENGTAN reservoir in China was selected as a case study, and the results show that, compared with the original operation water level, the initial operation water level (IOWL) of FENGTAN reservoir can be raised 4 m, 2 m and 5.5 m respectively in the three division stages of flood season, and without increasing flood control risk. In addition, the rationality and feasibility of the proposed forecasting error quantitative model and credibility-based dynamic control bound optimization model are verified by the calculation results of extreme risk theory.
Tahriri, Farzad; Dawal, Siti Zawiah Md; Taha, Zahari
2014-01-01
A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data. An improved genetic algorithm called fuzzy adaptive genetic algorithm (FAGA) is proposed in order to solve this optimization model. In establishing the FAGA, five dynamic fuzzy parameter controllers are devised in which fuzzy expert experience controller (FEEC) is integrated with automatic learning dynamic fuzzy controller (ALDFC) technique. The enhanced algorithm dynamically adjusts the population size, number of generations, tournament candidate, crossover rate, and mutation rate compared with using fixed control parameters. The main idea is to improve the performance and effectiveness of existing GAs by dynamic adjustment and control of the five parameters. Verification and validation of the dynamic fuzzy GA are carried out by developing test-beds and testing using a multiobjective fuzzy mixed production assembly line sequencing optimization problem. The simulation results highlight that the performance and efficacy of the proposed novel optimization algorithm are more efficient than the performance of the standard genetic algorithm in mixed assembly line sequencing model. PMID:24982962
Optimizing electromagnetic induction sensors for dynamic munitions classification surveys
NASA Astrophysics Data System (ADS)
Miller, Jonathan S.; Keranen, Joe; Schultz, Gregory
2014-06-01
Standard protocol for detection and classification of Unexploded Ordnance (UXO) comprises a two-step process that includes an initial digital geophysical mapping (DGM) survey to detect magnetic field anomalies followed by a cued survey at each anomaly location that enables classification of these anomalies. The initial DGM survey is typically performed using a low resolution single axis electromagnetic induction (EMI) sensor while the follow-up cued survey requires revisiting each anomaly location with a multi-axis high resolution EMI sensor. The DGM survey comprises data collection in tightly spaced transects over the entire survey area. Once data collection in this area is complete, a threshold analysis is applied to the resulting magnetic field anomaly map to identify anomalies corresponding to potential targets of interest (TOI). The cued sensor is deployed in static mode where this higher resolution sensor is placed over the location of each anomaly to record a number of soundings that may be stacked and averaged to produce low noise data. These data are of sufficient quality to subsequently classify the object as either TOI or clutter. While this approach has demonstrated success in producing effective classification of UXO, conducting successive surveys is time consuming. Additionally, the low resolution of the initial DGM survey often produces errors in the target picking process that results in poor placement of the cued sensor and often requires several revisits to the anomaly location to ensure adequate characterization of the target space. We present data and test results from an advanced multi-axis EMI sensor optimized to provide both detection and classification from a single survey. We demonstrate how the large volume of data from this sensor may be used to produce effective detection and classification decisions while only requiring one survey of the munitions response area.
Simulating the Dynamics of Scale-Free Networks via Optimization
Schieber, Tiago Alves; Ravetti, Martín Gómez
2013-01-01
We deal here with the issue of complex network evolution. The analysis of topological evolution of complex networks plays a crucial role in predicting their future. While an impressive amount of work has been done on the issue, very little attention has been so far devoted to the investigation of how information theory quantifiers can be applied to characterize networks evolution. With the objective of dynamically capture the topological changes of a network's evolution, we propose a model able to quantify and reproduce several characteristics of a given network, by using the square root of the Jensen-Shannon divergence in combination with the mean degree and the clustering coefficient. To support our hypothesis, we test the model by copying the evolution of well-known models and real systems. The results show that the methodology was able to mimic the test-networks. By using this copycat model, the user is able to analyze the networks behavior over time, and also to conjecture about the main drivers of its evolution, also providing a framework to predict its evolution. PMID:24353752
Stokesian dynamics optimization of three linked spheres microswimmers
NASA Astrophysics Data System (ADS)
Marconi, V. I.; Berdakin, I.; Banchio, A. J.
2014-03-01
Self-propulsion of swimmers is only possible due to motility strategies able to overcome the absence of inertia. Only the swimming strategies that are time-irreversible are successful. One of the simplest swimmers fulfilling this requirement is the three-linked-spheres swimmer, TLS, a toy model swimmer built upon three spheres linked by two arms that contracts asynchronously. This TLS has received significant attention because it can be studied both, analytically and numerically. Using stokesian dynamics we investigate in detail the net displacement, velocities, forces and power consumption. We compare two swimming strategies: square and circular phase-space cycles. If the efficiency is defined as the ratio between power dissipation and the work needed to produce the same motion by an external force, we show that the most efficient swimmer is the one with almost maximum (maximum) arms contraction for square (circular) cycles. Interestingly, under these optimum conditions, the analytical predictions based on point force approximations of the hydrodynamic mobility tensor differ significantly from those found in our more accurate simulations. This fact highlights the importance of a proper treatment of the hydrodynamic interactions. Supported by CONICET and SeCyt-UNC, Cordoba, Argentina, and NSF(USA)-CONICET(Argentina).
Investigating molecular dynamics-guided lead optimization of EGFR inhibitors.
Lavecchia, Martin J; Puig de la Bellacasa, Raimon; Borrell, José I; Cavasotto, Claudio N
2016-02-15
The epidermal growth factor receptor (EGFR) is part of an extended family of proteins that together control aspects of cell growth and development, and thus a validated target for drug discovery. We explore in this work the suitability of a molecular dynamics-based end-point binding free energy protocol to estimate the relative affinities of a virtual combinatorial library designed around the EGFR model inhibitor 6{1} as a tool to guide chemical synthesis toward the most promising compounds. To investigate the validity of this approach, selected analogs including some with better and worse predicted affinities relative to 6{1} were synthesized, and their biological activity determined. To understand the binding determinants of the different analogs, hydrogen bonding and van der Waals contributions, and water molecule bridging in the EGFR-analog complexes were analyzed. The experimental validation was in good qualitative agreement with our theoretical calculations, while also a 6-dibromophenyl-substituted compound with enhanced inhibitory effect on EGFR compared to the reference ligand was obtained. PMID:26810832
Optimizing the temporal dynamics of light to human perception
Rieiro, Hector; Martinez-Conde, Susana; Danielson, Andrew P.; Pardo-Vazquez, Jose L.; Srivastava, Nishit; Macknik, Stephen L.
2012-01-01
No previous research has tuned the temporal characteristics of light-emitting devices to enhance brightness perception in human vision, despite the potential for significant power savings. The role of stimulus duration on perceived contrast is unclear, due to contradiction between the models proposed by Bloch and by Broca and Sulzer over 100 years ago. We propose that the discrepancy is accounted for by the observer’s “inherent expertise bias,” a type of experimental bias in which the observer’s life-long experience with interpreting the sensory world overcomes perceptual ambiguities and biases experimental outcomes. By controlling for this and all other known biases, we show that perceived contrast peaks at durations of 50–100 ms, and we conclude that the Broca–Sulzer effect best describes human temporal vision. We also show that the plateau in perceived brightness with stimulus duration, described by Bloch’s law, is a previously uncharacterized type of temporal brightness constancy that, like classical constancy effects, serves to enhance object recognition across varied lighting conditions in natural vision—although this is a constancy effect that normalizes perception across temporal modulation conditions. A practical outcome of this study is that tuning light-emitting devices to match the temporal dynamics of the human visual system’s temporal response function will result in significant power savings. PMID:23150557
On the optimal reconstruction and control of adaptive optical systems with mirror dynamics.
Correia, Carlos; Raynaud, Henri-François; Kulcsár, Caroline; Conan, Jean-Marc
2010-02-01
In adaptive optics (AO) the deformable mirror (DM) dynamics are usually neglected because, in general, the DM can be considered infinitely fast. Such assumption may no longer apply for the upcoming Extremely Large Telescopes (ELTs) with DM that are several meters in diameter with slow and/or resonant responses. For such systems an important challenge is to design an optimal regulator minimizing the variance of the residual phase. In this contribution, the general optimal minimum-variance (MV) solution to the full dynamical reconstruction and control problem of AO systems (AOSs) is established. It can be looked upon as the parent solution from which simpler (used hitherto) suboptimal solutions can be derived as special cases. These include either partial DM-dynamics-free solutions or solutions derived from the static minimum-variance reconstruction (where both atmospheric disturbance and DM dynamics are neglected altogether). Based on a continuous stochastic model of the disturbance, a state-space approach is developed that yields a fully optimal MV solution in the form of a discrete-time linear-quadratic-Gaussian (LQG) regulator design. From this LQG standpoint, the control-oriented state-space model allows one to (1) derive the optimal state-feedback linear regulator and (2) evaluate the performance of both the optimal and the sub-optimal solutions. Performance results are given for weakly damped second-order oscillatory DMs with large-amplitude resonant responses, in conditions representative of an ELT AO system. The highly energetic optical disturbance caused on the tip/tilt (TT) modes by the wind buffeting is considered. Results show that resonant responses are correctly handled with the MV regulator developed here. The use of sub-optimal regulators results in prohibitive performance losses in terms of residual variance; in addition, the closed-loop system may become unstable for resonant frequencies in the range of interest. PMID:20126246
Targeted Learning of the Mean Outcome under an Optimal Dynamic Treatment Rule
van der Laan, Mark J.; Luedtke, Alexander R.
2015-01-01
We consider estimation of and inference for the mean outcome under the optimal dynamic two time-point treatment rule defined as the rule that maximizes the mean outcome under the dynamic treatment, where the candidate rules are restricted to depend only on a user-supplied subset of the baseline and intermediate covariates. This estimation problem is addressed in a statistical model for the data distribution that is nonparametric beyond possible knowledge about the treatment and censoring mechanism. This contrasts from the current literature that relies on parametric assumptions. We establish that the mean of the counterfactual outcome under the optimal dynamic treatment is a pathwise differentiable parameter under conditions, and develop a targeted minimum loss-based estimator (TMLE) of this target parameter. We establish asymptotic linearity and statistical inference for this estimator under specified conditions. In a sequentially randomized trial the statistical inference relies upon a second-order difference between the estimator of the optimal dynamic treatment and the optimal dynamic treatment to be asymptotically negligible, which may be a problematic condition when the rule is based on multivariate time-dependent covariates. To avoid this condition, we also develop TMLEs and statistical inference for data adaptive target parameters that are defined in terms of the mean outcome under the estimate of the optimal dynamic treatment. In particular, we develop a novel cross-validated TMLE approach that provides asymptotic inference under minimal conditions, avoiding the need for any empirical process conditions. We offer simulation results to support our theoretical findings. PMID:26236571
Improving the Dynamic Characteristics of Body-in-White Structure Using Structural Optimization
Yahaya Rashid, Aizzat S.; Mohamed Haris, Sallehuddin; Alias, Anuar
2014-01-01
The dynamic behavior of a body-in-white (BIW) structure has significant influence on the noise, vibration, and harshness (NVH) and crashworthiness of a car. Therefore, by improving the dynamic characteristics of BIW, problems and failures associated with resonance and fatigue can be prevented. The design objectives attempt to improve the existing torsion and bending modes by using structural optimization subjected to dynamic load without compromising other factors such as mass and stiffness of the structure. The natural frequency of the design was modified by identifying and reinforcing the structure at critical locations. These crucial points are first identified by topology optimization using mass and natural frequencies as the design variables. The individual components obtained from the analysis go through a size optimization step to find their target thickness of the structure. The thickness of affected regions of the components will be modified according to the analysis. The results of both optimization steps suggest several design modifications to achieve the target vibration specifications without compromising the stiffness of the structure. A method of combining both optimization approaches is proposed to improve the design modification process. PMID:25101312
Improving the dynamic characteristics of body-in-white structure using structural optimization.
Yahaya Rashid, Aizzat S; Ramli, Rahizar; Mohamed Haris, Sallehuddin; Alias, Anuar
2014-01-01
The dynamic behavior of a body-in-white (BIW) structure has significant influence on the noise, vibration, and harshness (NVH) and crashworthiness of a car. Therefore, by improving the dynamic characteristics of BIW, problems and failures associated with resonance and fatigue can be prevented. The design objectives attempt to improve the existing torsion and bending modes by using structural optimization subjected to dynamic load without compromising other factors such as mass and stiffness of the structure. The natural frequency of the design was modified by identifying and reinforcing the structure at critical locations. These crucial points are first identified by topology optimization using mass and natural frequencies as the design variables. The individual components obtained from the analysis go through a size optimization step to find their target thickness of the structure. The thickness of affected regions of the components will be modified according to the analysis. The results of both optimization steps suggest several design modifications to achieve the target vibration specifications without compromising the stiffness of the structure. A method of combining both optimization approaches is proposed to improve the design modification process. PMID:25101312
Luo, Biao; Wu, Huai-Ning; Li, Han-Xiong
2015-04-01
Highly dissipative nonlinear partial differential equations (PDEs) are widely employed to describe the system dynamics of industrial spatially distributed processes (SDPs). In this paper, we consider the optimal control problem of the general highly dissipative SDPs, and propose an adaptive optimal control approach based on neuro-dynamic programming (NDP). Initially, Karhunen-Loève decomposition is employed to compute empirical eigenfunctions (EEFs) of the SDP based on the method of snapshots. These EEFs together with singular perturbation technique are then used to obtain a finite-dimensional slow subsystem of ordinary differential equations that accurately describes the dominant dynamics of the PDE system. Subsequently, the optimal control problem is reformulated on the basis of the slow subsystem, which is further converted to solve a Hamilton-Jacobi-Bellman (HJB) equation. HJB equation is a nonlinear PDE that has proven to be impossible to solve analytically. Thus, an adaptive optimal control method is developed via NDP that solves the HJB equation online using neural network (NN) for approximating the value function; and an online NN weight tuning law is proposed without requiring an initial stabilizing control policy. Moreover, by involving the NN estimation error, we prove that the original closed-loop PDE system with the adaptive optimal control policy is semiglobally uniformly ultimately bounded. Finally, the developed method is tested on a nonlinear diffusion-convection-reaction process and applied to a temperature cooling fin of high-speed aerospace vehicle, and the achieved results show its effectiveness. PMID:25794375
Optimal control landscape for the generation of unitary transformations with constrained dynamics
Hsieh, Michael; Wu, Rebing; Rabitz, Herschel; Lidar, Daniel
2010-06-15
The reliable and precise generation of quantum unitary transformations is essential for the realization of a number of fundamental objectives, such as quantum control and quantum information processing. Prior work has explored the optimal control problem of generating such unitary transformations as a surface-optimization problem over the quantum control landscape, defined as a metric for realizing a desired unitary transformation as a function of the control variables. It was found that under the assumption of nondissipative and controllable dynamics, the landscape topology is trap free, which implies that any reasonable optimization heuristic should be able to identify globally optimal solutions. The present work is a control landscape analysis, which incorporates specific constraints in the Hamiltonian that correspond to certain dynamical symmetries in the underlying physical system. It is found that the presence of such symmetries does not destroy the trap-free topology. These findings expand the class of quantum dynamical systems on which control problems are intrinsically amenable to a solution by optimal control.
Multi-host transmission dynamics of schistosomiasis and its optimal control.
Ding, Chunxiao; Qiu, Zhipeng; Zhu, Huaiping
2015-10-01
In this paper we formulate a dynamical model to study the transmission dynamics of schistosomiasis in humans and snails. We also incorporate bovines in the model to study their impact on transmission and controlling the spread of Schistosoma japonicum in humans in China. The dynamics of the model is rigorously analyzed by using the theory of dynamical systems. The theoretical results show that the disease free equilibrium is globally asymptotically stable if R0 < 1, and if R0 > 1 the system has only one positive equilibrium. The local stability of the unique positive equilibrium is investigated and sufficient conditions are also provided for the global stability of the positive equilibrium. The optimal control theory are further applied to the model to study the corresponding optimal control problem. Both analytical and numerical results suggest that: (a) the infected bovines play an important role in the spread of schistosomiasis among humans, and killing the infected bovines will be useful to prevent transmission of schistosomiasis among humans; (b) optimal control strategy performs better than the constant controls in reducing the prevalence of the infected human and the cost for implementing optimal control is much less than that for constant controls; and PMID:26280190
Technology Transfer Automated Retrieval System (TEKTRAN)
The primary advantage of Dynamically Dimensioned Search algorithm (DDS) is that it outperforms many other optimization techniques in both convergence speed and the ability in searching for parameter sets that satisfy statistical guidelines while requiring only one algorithm parameter (perturbation f...
An Optimal Algorithm towards Successive Location Privacy in Sensor Networks with Dynamic Programming
NASA Astrophysics Data System (ADS)
Zhao, Baokang; Wang, Dan; Shao, Zili; Cao, Jiannong; Chan, Keith C. C.; Su, Jinshu
In wireless sensor networks, preserving location privacy under successive inference attacks is extremely critical. Although this problem is NP-complete in general cases, we propose a dynamic programming based algorithm and prove it is optimal in special cases where the correlation only exists between p immediate adjacent observations.
NASA Astrophysics Data System (ADS)
Liu, Derong; Huang, Yuzhu; Wang, Ding; Wei, Qinglai
2013-09-01
In this paper, an observer-based optimal control scheme is developed for unknown nonlinear systems using adaptive dynamic programming (ADP) algorithm. First, a neural-network (NN) observer is designed to estimate system states. Then, based on the observed states, a neuro-controller is constructed via ADP method to obtain the optimal control. In this design, two NN structures are used: a three-layer NN is used to construct the observer which can be applied to systems with higher degrees of nonlinearity and without a priori knowledge of system dynamics, and a critic NN is employed to approximate the value function. The optimal control law is computed using the critic NN and the observer NN. Uniform ultimate boundedness of the closed-loop system is guaranteed. The actor, critic, and observer structures are all implemented in real-time, continuously and simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control scheme.
NASA Technical Reports Server (NTRS)
Pilkey, W. D.; Wang, B. P.; Yoo, Y.; Clark, B.
1973-01-01
A description and applications of a computer capability for determining the ultimate optimal behavior of a dynamically loaded structural-mechanical system are presented. This capability provides characteristics of the theoretically best, or limiting, design concept according to response criteria dictated by design requirements. Equations of motion of the system in first or second order form include incompletely specified elements whose characteristics are determined in the optimization of one or more performance indices subject to the response criteria in the form of constraints. The system is subject to deterministic transient inputs, and the computer capability is designed to operate with a large linear programming on-the-shelf software package which performs the desired optimization. The report contains user-oriented program documentation in engineering, problem-oriented form. Applications cover a wide variety of dynamics problems including those associated with such diverse configurations as a missile-silo system, impacting freight cars, and an aircraft ride control system.
NASA Astrophysics Data System (ADS)
Salkuti, Surender Reddy; Bijwe, P. R.; Abhyankar, A. R.
2016-04-01
This paper proposes an optimal dynamic reserve activation plan after the occurrence of an emergency situation (generator/transmission line outage, load increase or both). An optimal plan is developed to handle the emergency situation, using coordinated action of fast and slow reserves, for secure operation with minimum overall cost. This paper considers the reserves supplied by generators (spinning reserves) and loads (demand-side reserves). The optimal backing down of costly/fast reserves and bringing up of slow reserves in each sub-interval in an integrated manner is proposed. The simulation studies are performed on IEEE 30, 57 and 300 bus test systems to demonstrate the advantage of proposed integrated/dynamic reserve activation plan over the conventional/sequential approach.
Zhong, Xiangnan; He, Haibo; Zhang, Huaguang; Wang, Zhanshan
2014-12-01
In this paper, we develop and analyze an optimal control method for a class of discrete-time nonlinear Markov jump systems (MJSs) with unknown system dynamics. Specifically, an identifier is established for the unknown systems to approximate system states, and an optimal control approach for nonlinear MJSs is developed to solve the Hamilton-Jacobi-Bellman equation based on the adaptive dynamic programming technique. We also develop detailed stability analysis of the control approach, including the convergence of the performance index function for nonlinear MJSs and the existence of the corresponding admissible control. Neural network techniques are used to approximate the proposed performance index function and the control law. To demonstrate the effectiveness of our approach, three simulation studies, one linear case, one nonlinear case, and one single link robot arm case, are used to validate the performance of the proposed optimal control method. PMID:25420238
Nonlinear dynamical systems of fed-batch fermentation and their optimal control
NASA Astrophysics Data System (ADS)
Liu, Chongyang; Gong, Zhaohua; Feng, Enmin; Yin, Hongchao
2012-05-01
In this article, we propose a controlled nonlinear dynamical system with variable switching instants, in which the feeding rate of glycerol is regarded as the control function and the moments between the batch and feeding processes as switching instants, to formulate the fed-batch fermentation of glycerol bioconversion to 1,3-propanediol (1,3-PD). Some important properties of the proposed system and its solution are then discussed. Taking the concentration of 1,3-PD at the terminal time as the cost functional, we establish an optimal control model involving the controlled nonlinear dynamical system and subject to continuous state inequality constraints. The existence of the optimal control is also proved. A computational approach is constructed on the basis of constraint transcription and smoothing approximation techniques. Numerical results show that, by employing the optimal control strategy, the concentration of 1,3-PD at the terminal time can be increased considerably.
NASA Technical Reports Server (NTRS)
Welstead, Jason
2014-01-01
This research focused on incorporating stability and control into a multidisciplinary de- sign optimization on a Boeing 737-class advanced concept called the D8.2b. A new method of evaluating the aircraft handling performance using quantitative evaluation of the sys- tem to disturbances, including perturbations, continuous turbulence, and discrete gusts, is presented. A multidisciplinary design optimization was performed using the D8.2b transport air- craft concept. The con guration was optimized for minimum fuel burn using a design range of 3,000 nautical miles. Optimization cases were run using xed tail volume coecients, static trim constraints, and static trim and dynamic response constraints. A Cessna 182T model was used to test the various dynamic analysis components, ensuring the analysis was behaving as expected. Results of the optimizations show that including stability and con- trol in the design process drastically alters the optimal design, indicating that stability and control should be included in conceptual design to avoid system level penalties later in the design process.
Optimization of rotor blades for combined structural, dynamic, and aerodynamic properties
NASA Technical Reports Server (NTRS)
He, Cheng-Jian; Peters, David A.
1990-01-01
Optimal helicopter blade design with computer-based mathematical programming has received more and more attention in recent years. Most of the research has focused on optimum dynamic characteristics of rotor blades to reduce vehicle vibration. There is also work on optimization of aerodynamic performance and on composite structural design. This research has greatly increased our understanding of helicopter optimum design in each of these aspects. Helicopter design is an inherently multidisciplinary process involving strong interactions among various disciplines which can appropriately include aerodynamics; dynamics, both flight dynamics and structural dynamics; aeroelasticity: vibrations and stability; and even acoustics. Therefore, the helicopter design process must satisfy manifold requirements related to the aforementioned diverse disciplines. In our present work, we attempt to combine several of these important effects in a unified manner. First, we design a blade with optimum aerodynamic performance by proper layout of blade planform and spanwise twist. Second, the blade is designed to have natural frequencies that are placed away from integer multiples of the rotor speed for a good dynamic characteristics. Third, the structure is made as light as possible with sufficient rotational inertia to allow for autorotational landing, with safe stress margins and flight fatigue life at each cross-section, and with aeroelastical stability and low vibrations. Finally, a unified optimization refines the solution.
NASA Technical Reports Server (NTRS)
Zang, Thomas A.; Green, Lawrence L.
1999-01-01
A challenge for the fluid dynamics community is to adapt to and exploit the trend towards greater multidisciplinary focus in research and technology. The past decade has witnessed substantial growth in the research field of Multidisciplinary Design Optimization (MDO). MDO is a methodology for the design of complex engineering systems and subsystems that coherently exploits the synergism of mutually interacting phenomena. As evidenced by the papers, which appear in the biannual AIAA/USAF/NASA/ISSMO Symposia on Multidisciplinary Analysis and Optimization, the MDO technical community focuses on vehicle and system design issues. This paper provides an overview of the MDO technology field from a fluid dynamics perspective, giving emphasis to suggestions of specific applications of recent MDO technologies that can enhance fluid dynamics research itself across the spectrum, from basic flow physics to full configuration aerodynamics.
Mdluli, Thembi; Buzzard, Gregery T.; Rundell, Ann E.
2015-01-01
This model-based design of experiments (MBDOE) method determines the input magnitudes of an experimental stimuli to apply and the associated measurements that should be taken to optimally constrain the uncertain dynamics of a biological system under study. The ideal global solution for this experiment design problem is generally computationally intractable because of parametric uncertainties in the mathematical model of the biological system. Others have addressed this issue by limiting the solution to a local estimate of the model parameters. Here we present an approach that is independent of the local parameter constraint. This approach is made computationally efficient and tractable by the use of: (1) sparse grid interpolation that approximates the biological system dynamics, (2) representative parameters that uniformly represent the data-consistent dynamical space, and (3) probability weights of the represented experimentally distinguishable dynamics. Our approach identifies data-consistent representative parameters using sparse grid interpolants, constructs the optimal input sequence from a greedy search, and defines the associated optimal measurements using a scenario tree. We explore the optimality of this MBDOE algorithm using a 3-dimensional Hes1 model and a 19-dimensional T-cell receptor model. The 19-dimensional T-cell model also demonstrates the MBDOE algorithm’s scalability to higher dimensions. In both cases, the dynamical uncertainty region that bounds the trajectories of the target system states were reduced by as much as 86% and 99% respectively after completing the designed experiments in silico. Our results suggest that for resolving dynamical uncertainty, the ability to design an input sequence paired with its associated measurements is particularly important when limited by the number of measurements. PMID:26379275
Mdluli, Thembi; Buzzard, Gregery T; Rundell, Ann E
2015-09-01
This model-based design of experiments (MBDOE) method determines the input magnitudes of an experimental stimuli to apply and the associated measurements that should be taken to optimally constrain the uncertain dynamics of a biological system under study. The ideal global solution for this experiment design problem is generally computationally intractable because of parametric uncertainties in the mathematical model of the biological system. Others have addressed this issue by limiting the solution to a local estimate of the model parameters. Here we present an approach that is independent of the local parameter constraint. This approach is made computationally efficient and tractable by the use of: (1) sparse grid interpolation that approximates the biological system dynamics, (2) representative parameters that uniformly represent the data-consistent dynamical space, and (3) probability weights of the represented experimentally distinguishable dynamics. Our approach identifies data-consistent representative parameters using sparse grid interpolants, constructs the optimal input sequence from a greedy search, and defines the associated optimal measurements using a scenario tree. We explore the optimality of this MBDOE algorithm using a 3-dimensional Hes1 model and a 19-dimensional T-cell receptor model. The 19-dimensional T-cell model also demonstrates the MBDOE algorithm's scalability to higher dimensions. In both cases, the dynamical uncertainty region that bounds the trajectories of the target system states were reduced by as much as 86% and 99% respectively after completing the designed experiments in silico. Our results suggest that for resolving dynamical uncertainty, the ability to design an input sequence paired with its associated measurements is particularly important when limited by the number of measurements. PMID:26379275
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Ming; Ding, Han
2008-11-01
The concept of uncertainty plays an important role in the design of practical mechanical system. The most common methods for solving uncertainty problems are to model the parameters as a random vector. A natural way to handle the randomness is to admit that a given probability density function represents the uncertainty distribution. However, the drawback of this approach is that the probability distribution is difficult to obtain. In this paper, we use the non-probabilistic convex model to deal with the uncertain parameters in which there is no need for probability density functions. Using the convex model theory, a new method to optimize the dynamic response of mechanical system with uncertain parameters is derived. Because the uncertain parameters can be selected as the optimization parameters, the present method can provide more information about the optimization results than those obtained by the deterministic optimization. The present method is implemented for a torsional vibration system. The numerical results show that the method is effective.
Pinning distributed synchronization of stochastic dynamical networks: a mixed optimization approach.
Tang, Yang; Gao, Huijun; Lu, Jianquan; Kurths, Jürgen Kurthsrgen
2014-10-01
This paper is concerned with the problem of pinning synchronization of nonlinear dynamical networks with multiple stochastic disturbances. Two kinds of pinning schemes are considered: 1) pinned nodes are fixed along the time evolution and 2) pinned nodes are switched from time to time according to a set of Bernoulli stochastic variables. Using Lyapunov function methods and stochastic analysis techniques, several easily verifiable criteria are derived for the problem of pinning distributed synchronization. For the case of fixed pinned nodes, a novel mixed optimization method is developed to select the pinned nodes and find feasible solutions, which is composed of a traditional convex optimization method and a constraint optimization evolutionary algorithm. For the case of switching pinning scheme, upper bounds of the convergence rate and the mean control gain are obtained theoretically. Simulation examples are provided to show the advantages of our proposed optimization method over previous ones and verify the effectiveness of the obtained results. PMID:25291734
NASA Astrophysics Data System (ADS)
Koch, Caleb; Winfrey, Leigh
2014-10-01
Natural Gas is a major energy source in Europe, yet political instabilities have the potential to disrupt access and supply. Energy resilience is an increasingly essential construct and begins with transmission network design. This study proposes a new way of thinking about modelling natural gas flow. Rather than relying on classical economic models, this problem is cast into a time-dependent Hamiltonian dynamics discussion. Traditional Natural Gas constraints, including inelastic demand and maximum/minimum pipe flows, are portrayed as energy functions and built into the dynamics of each pipe flow. Doing so allows the constraints to be built into the dynamics of each pipeline. As time progresses in the model, natural gas flow rates find the minimum energy, thus the optimal gas flow rates. The most important result of this study is using dynamical principles to ensure the output of natural gas at demand nodes remains constant, which is important for country to country natural gas transmission. Another important step in this study is building the dynamics of each flow in a decentralized algorithm format. Decentralized regulation has solved congestion problems for internet data flow, traffic flow, epidemiology, and as demonstrated in this study can solve the problem of Natural Gas congestion. A mathematical description is provided for how decentralized regulation leads to globally optimized network flow. Furthermore, the dynamical principles and decentralized algorithm are applied to a case study of the Fluxys Belgium Natural Gas Network.
NASA Astrophysics Data System (ADS)
Lv, Yongfeng; Na, Jing; Yang, Qinmin; Wu, Xing; Guo, Yu
2016-01-01
An online adaptive optimal control is proposed for continuous-time nonlinear systems with completely unknown dynamics, which is achieved by developing a novel identifier-critic-based approximate dynamic programming algorithm with a dual neural network (NN) approximation structure. First, an adaptive NN identifier is designed to obviate the requirement of complete knowledge of system dynamics, and a critic NN is employed to approximate the optimal value function. Then, the optimal control law is computed based on the information from the identifier NN and the critic NN, so that the actor NN is not needed. In particular, a novel adaptive law design method with the parameter estimation error is proposed to online update the weights of both identifier NN and critic NN simultaneously, which converge to small neighbourhoods around their ideal values. The closed-loop system stability and the convergence to small vicinity around the optimal solution are all proved by means of the Lyapunov theory. The proposed adaptation algorithm is also improved to achieve finite-time convergence of the NN weights. Finally, simulation results are provided to exemplify the efficacy of the proposed methods.
Dynamic reconstruction of sub-sampled data using Optimal Mode Decomposition
NASA Astrophysics Data System (ADS)
Krol, Jakub; Wynn, Andrew
2015-11-01
The Nyquist-Shannon criterion indicates the sample rate necessary to identify information with particular frequency content from a dynamical system. However, in experimental applications such as the interrogation of a flow field using Particle Image Velocimetry (PIV), it may be expensive to obtain data at the desired temporal resolution. To address this problem, we propose a new approach to identify temporal information from undersampled data, using ideas from modal decomposition algorithms such as Dynamic Mode Decomposition (DMD) and Optimal Mode Decomposition (OMD). The novel method takes a vector-valued signal sampled at random time instances (but at Sub-Nyquist rate) and projects onto a low-order subspace. Subsequently, dynamical characteristics are approximated by iteratively approximating the flow evolution by a low order model and solving a certain convex optimization problem. Furthermore, it is shown that constraints may be added to the optimization problem to improve spatial resolution of missing data points. The methodology is demonstrated on two dynamical systems, a cylinder flow at Re = 60 and Kuramoto-Sivashinsky equation. In both cases the algorithm correctly identifies the characteristic frequencies and oscillatory structures present in the flow.
Optimal bipedal interactions with dynamic terrain: synthesis and analysis via nonlinear programming
NASA Astrophysics Data System (ADS)
Hubicki, Christian; Goldman, Daniel; Ames, Aaron
In terrestrial locomotion, gait dynamics and motor control behaviors are tuned to interact efficiently and stably with the dynamics of the terrain (i.e. terradynamics). This controlled interaction must be particularly thoughtful in bipeds, as their reduced contact points render them highly susceptible to falls. While bipedalism under rigid terrain assumptions is well-studied, insights for two-legged locomotion on soft terrain, such as sand and dirt, are comparatively sparse. We seek an understanding of how biological bipeds stably and economically negotiate granular media, with an eye toward imbuing those abilities in bipedal robots. We present a trajectory optimization method for controlled systems subject to granular intrusion. By formulating a large-scale nonlinear program (NLP) with reduced-order resistive force theory (RFT) models and jamming cone dynamics, the optimized motions are informed and shaped by the dynamics of the terrain. Using a variant of direct collocation methods, we can express all optimization objectives and constraints in closed-form, resulting in rapid solving by standard NLP solvers, such as IPOPT. We employ this tool to analyze emergent features of bipedal locomotion in granular media, with an eye toward robotic implementation.
Using closed-loop dynamic optimization to improve boiler efficiency at Chemopetrol's Litvinov Plant
Jarc, C.A.; Lang, R.
1998-07-01
Due to ever increasing demands by shareholders, environmental and governmental agencies, and customers, power generation and co-generating companies are looking more and more into advanced technologies to help them gain an edge on their competitors. Intelligent empirical optimization is a promising family of technologies to tune boilers for maximum efficiency and/or minimum emissions. A recent project teamed the Ultramax Corporation and Honeywell to install an on-line, closed-loop optimization solution on four new boilers at the Chemopetrol plant in Litvinov, Czech Republic, Honeywell has created an engineered solution called Individual Boiler Optimization (IBO) which utilizes the Ultramax Method and Dynamic Optimization, known as ULTRAMAX{reg{underscore}sign}, to optimize combustion of the boilers which are controlled by Honeywell's TotalPlant{reg{underscore}sign} solutions (TPS) System. IBO provides a real-time shell providing for automatic Ultramax operation in either open or closed-loop. With this system, Chemopetrol will be able to improve their boiler efficiency and NO{sub x} emissions on-line with little operator intervention. It can safely maintain best operating settings and compensate for changes that could potentially cause poor performance. The integrated dynamic solution enables greater emissions control fuel savings, and the ability to respond rapidly and flexibly to changes in operating conditions, compliance regulations and plant demands.
Risk-Constrained Dynamic Programming for Optimal Mars Entry, Descent, and Landing
NASA Technical Reports Server (NTRS)
Ono, Masahiro; Kuwata, Yoshiaki
2013-01-01
A chance-constrained dynamic programming algorithm was developed that is capable of making optimal sequential decisions within a user-specified risk bound. This work handles stochastic uncertainties over multiple stages in the CEMAT (Combined EDL-Mobility Analyses Tool) framework. It was demonstrated by a simulation of Mars entry, descent, and landing (EDL) using real landscape data obtained from the Mars Reconnaissance Orbiter. Although standard dynamic programming (DP) provides a general framework for optimal sequential decisionmaking under uncertainty, it typically achieves risk aversion by imposing an arbitrary penalty on failure states. Such a penalty-based approach cannot explicitly bound the probability of mission failure. A key idea behind the new approach is called risk allocation, which decomposes a joint chance constraint into a set of individual chance constraints and distributes risk over them. The joint chance constraint was reformulated into a constraint on an expectation over a sum of an indicator function, which can be incorporated into the cost function by dualizing the optimization problem. As a result, the chance-constraint optimization problem can be turned into an unconstrained optimization over a Lagrangian, which can be solved efficiently using a standard DP approach.
Optimal placement of excitations and sensors for verification of large dynamical systems
NASA Technical Reports Server (NTRS)
Salama, M.; Rose, T.; Garba, J.
1987-01-01
The computationally difficult problem of the optimal placement of excitations and sensors to maximize the observed measurements is studied within the framework of combinatorial optimization, and is solved numerically using a variation of the simulated annealing heuristic algorithm. Results of numerical experiments including a square plate and a 960 degrees-of-freedom Control of Flexible Structure (COFS) truss structure, are presented. Though the algorithm produces suboptimal solutions, its generality and simplicity allow the treatment of complex dynamical systems which would otherwise be difficult to handle.
Optimized stiffness for linear time-invariant dynamic system according to a new system design
NASA Astrophysics Data System (ADS)
Veeraklaew, Tawiwat
2012-11-01
This paper deals with a linear time-invariant dynamic system such as spring-mass-damper system. General dynamic systems are quite commonly to be redesigned for another purpose of using. For example, if one automobile must be redesigned to have more weights, the existing suspension must be replaced due to that gained weight. Therefore the stiffness and damping coefficient must be recomputed in order to make the automobile become suitable for using as previous. Here the spring-mass-damper system is used as an example to demonstrate the technique through dynamic optimization where the problem is solved in two categories as minimum energy and maximum jerk. Once the state and control variables are provided from the problem of minimum energy and maximum jerk, respectively, these parameter will be substituted in dynamic equations and leave the stiffness and damping coefficient as the unknown parameters to be solved.
Reduced-Order Model for Dynamic Optimization of Pressure Swing Adsorption
Agarwal, Anshul; Biegler, L.T.; Zitney, S.E.
2007-11-01
optimization, if dynamic PSA models are incorporated with other steady state models in the flowsheet then it will require much faster approaches for integrated optimization.
Analysis and formulation of a class of complex dynamic optimization problems
NASA Astrophysics Data System (ADS)
Kameswaran, Shivakumar
The Direct Transcription approach, also known as the direct simultaneous approach, is a widely used solution strategy for the solution of dynamic optimization problems involving differential-algebraic equations (DAEs). Direct transcription refers to the procedure of approximating the infinite dimensional problem by a finite dimensional one, which is then solved using a nonlinear programming (NLP) solver tailored to large-scale problems. Systems governed by partial differential equations (PDEs) can also be handled by spatially discretizing the PDEs to convert them to a system of DAEs. The objective of this thesis is firstly to ensure that direct transcription using Radau collocation is provably correct, and secondly to widen the applicability of the direct simultaneous approach to a larger class of dynamic optimization and optimal control problems (OCPs). This thesis aims at addressing these issues using rigorous theoretical tools and/or characteristic examples, and at the same time use the results for solving large-scale industrial applications to realize the benefits. The first part of this work deals with the analysis of convergence rates for direct transcription of unconstrained and final-time equality constrained optimal control problems. The problems are discretized using collocation at Radau points. Convergence is analyzed from an NLP/matrix-algebra perspective, which enables the prediction of the conditioning of the direct transcription NLP as the mesh size becomes finer. Several convergence results are presented along with tests on numerous example problems. These convergence results lead to an adjoint estimation procedure given the Lagrange multipliers for the large-scale NLP. The work also reveals the role of process control concepts such as controllability on the convergence analysis, and provides a very important link between control and optimization inside the framework of dynamic optimization. As an effort to extend the applicability of the direct
An Approach for Dynamic Optimization of Prevention Program Implementation in Stochastic Environments
NASA Astrophysics Data System (ADS)
Kang, Yuncheol; Prabhu, Vittal
The science of preventing youth problems has significantly advanced in developing evidence-based prevention program (EBP) by using randomized clinical trials. Effective EBP can reduce delinquency, aggression, violence, bullying and substance abuse among youth. Unfortunately the outcomes of EBP implemented in natural settings usually tend to be lower than in clinical trials, which has motivated the need to study EBP implementations. In this paper we propose to model EBP implementations in natural settings as stochastic dynamic processes. Specifically, we propose Markov Decision Process (MDP) for modeling and dynamic optimization of such EBP implementations. We illustrate these concepts using simple numerical examples and discuss potential challenges in using such approaches in practice.
NASA Astrophysics Data System (ADS)
Xu, Jiuping; Zeng, Ziqiang; Han, Bernard; Lei, Xiao
2013-07-01
This article presents a dynamic programming-based particle swarm optimization (DP-based PSO) algorithm for solving an inventory management problem for large-scale construction projects under a fuzzy random environment. By taking into account the purchasing behaviour and strategy under rules of international bidding, a multi-objective fuzzy random dynamic programming model is constructed. To deal with the uncertainties, a hybrid crisp approach is used to transform fuzzy random parameters into fuzzy variables that are subsequently defuzzified by using an expected value operator with optimistic-pessimistic index. The iterative nature of the authors' model motivates them to develop a DP-based PSO algorithm. More specifically, their approach treats the state variables as hidden parameters. This in turn eliminates many redundant feasibility checks during initialization and particle updates at each iteration. Results and sensitivity analysis are presented to highlight the performance of the authors' optimization method, which is very effective as compared to the standard PSO algorithm.
PSO-based multiobjective optimization with dynamic population size and adaptive local archives.
Leong, Wen-Fung; Yen, Gary G
2008-10-01
Recently, various multiobjective particle swarm optimization (MOPSO) algorithms have been developed to efficiently and effectively solve multiobjective optimization problems. However, the existing MOPSO designs generally adopt a notion to "estimate" a fixed population size sufficiently to explore the search space without incurring excessive computational complexity. To address the issue, this paper proposes the integration of a dynamic population strategy within the multiple-swarm MOPSO. The proposed algorithm is named dynamic population multiple-swarm MOPSO. An additional feature, adaptive local archives, is designed to improve the diversity within each swarm. Performance metrics and benchmark test functions are used to examine the performance of the proposed algorithm compared with that of five selected MOPSOs and two selected multiobjective evolutionary algorithms. In addition, the computational cost of the proposed algorithm is quantified and compared with that of the selected MOPSOs. The proposed algorithm shows competitive results with improved diversity and convergence and demands less computational cost. PMID:18784011
Human motion planning based on recursive dynamics and optimal control techniques
NASA Technical Reports Server (NTRS)
Lo, Janzen; Huang, Gang; Metaxas, Dimitris
2002-01-01
This paper presents an efficient optimal control and recursive dynamics-based computer animation system for simulating and controlling the motion of articulated figures. A quasi-Newton nonlinear programming technique (super-linear convergence) is implemented to solve minimum torque-based human motion-planning problems. The explicit analytical gradients needed in the dynamics are derived using a matrix exponential formulation and Lie algebra. Cubic spline functions are used to make the search space for an optimal solution finite. Based on our formulations, our method is well conditioned and robust, in addition to being computationally efficient. To better illustrate the efficiency of our method, we present results of natural looking and physically correct human motions for a variety of human motion tasks involving open and closed loop kinematic chains.
Rashid, A; Kim, S; Liu, D; Kim, K Y
2016-06-01
Dynamic electrical impedance tomography-based image reconstruction using conventional algorithms such as the extended Kalman filter often exhibits inferior performance due to the presence of measurement noise, the inherent ill-posed nature of the problem and its critical dependence on the selection of the initial guess as well as the state evolution model. Moreover, many of these conventional algorithms require the calculation of a Jacobian matrix. This paper proposes a dynamic oppositional biogeography-based optimization (OBBO) technique to estimate the shape, size and location of the non-stationary region boundaries, expressed as coefficients of truncated Fourier series, inside an object domain using electrical impedance tomography. The conductivity of the object domain is assumed to be known a priori. Dynamic OBBO is a novel addition to the family of dynamic evolutionary algorithms. Moreover, it is the first such study on the application of dynamic evolutionary algorithms for dynamic electrical impedance tomography-based image reconstruction. The performance of the algorithm is tested through numerical simulations and experimental study and is compared with state-of-the-art gradient-based extended Kalman filter. The dynamic OBBO is shown to be far superior compared to the extended Kalman filter. It is found to be robust to measurement noise as well as the initial guess, and does not rely on a priori knowledge of the state evolution model. PMID:27203482
McVay, M.; Patterson, P.D.
1998-07-01
Illinois Power Company (IP) is a leader in implementing online dynamic optimization at its fossil-fired power stations. As part of the company's Phase II CAAA compliance plan, IP proceeded with similar online systems at its Baldwin, Wood River, Havana, and Vermilion stations for all 10 of its coal-fired units. These Operator Advisory Systems utilize the Ultramax Method{trademark} and Dynamic Optimization, known as ULTRAMAX{reg{underscore}sign}. Of particular interest are the installations on Baldwin Units 1 and 2, which are 575 MW B and W cyclone units. Throughout the power generation industry, there has been great concern about how to deal with high NO{sub x} levels and meet EPA regulations while avoiding excessive capital costs. Based on previous applications of ULTRAMAX to cyclone units, a successful control strategy was employed for optimization of the Baldwin cyclones. These empirical model structures were then integrated with Baldwin's Distributed Control System (DCS), a Westinghouse WDPF interfaced with an Oil Systems Plant Information System (PI), to provide continuous online optimization. The online optimization system meets IP's objectives of NO{sub x} reduction and concurrent improvement in boiler efficiency. IP benefits by achieving compliance with emission regulations while securing cost savings and a rapid return on investment. Implementing ULTRAMAX as an integrated online solution on the Baldwin cyclone boilers, as well as Unit 3, a 595 MW ABB-CE tangential unit, assists the operator when conditions change, simplifies data collection and enables daily updating of boiler models. This continuous use of an integrated dynamic solution offers the opportunity for greater emissions control, fuel savings, and the ability to respond rapidly and flexibly to changes in operating conditions, compliance regulations and the market environment.
NASA Astrophysics Data System (ADS)
Sklarz, Shlomo E.; Tannor, David J.; Khaneja, Navin
2004-05-01
We study the problem of optimal control of dissipative quantum dynamics. Although under most circumstances dissipation leads to an increase in entropy (or a decrease in purity) of the system, there is an important class of problems for which dissipation with external control can decrease the entropy (or increase the purity) of the system. An important example is laser cooling. In such systems, there is an interplay of the Hamiltonian part of the dynamics, which is controllable, and the dissipative part of the dynamics, which is uncontrollable. The strategy is to control the Hamiltonian portion of the evolution in such a way that the dissipation causes the purity of the system to increase rather than decrease. The goal of this paper is to find the strategy that leads to maximal purity at the final time. Under the assumption that Hamiltonian control is complete and arbitrarily fast, we provide a general framework by which to calculate optimal cooling strategies. These assumptions lead to a great simplification, in which the control problem can be reformulated in terms of the spectrum of eigenvalues of ρ , rather than ρ itself. By combining this formulation with the Hamilton-Jacobi-Bellman theorem we are able to obtain an equation for the globally optimal cooling strategy in terms of the spectrum of the density matrix. For the three-level Λ system, we provide a complete analytic solution for the optimal cooling strategy. For this system it is found that the optimal strategy does not exploit system coherences and is a “greedy” strategy, in which the purity is increased maximally at each instant.
Sklarz, Shlomo E.; Tannor, David J.; Khaneja, Navin
2004-05-01
We study the problem of optimal control of dissipative quantum dynamics. Although under most circumstances dissipation leads to an increase in entropy (or a decrease in purity) of the system, there is an important class of problems for which dissipation with external control can decrease the entropy (or increase the purity) of the system. An important example is laser cooling. In such systems, there is an interplay of the Hamiltonian part of the dynamics, which is controllable, and the dissipative part of the dynamics, which is uncontrollable. The strategy is to control the Hamiltonian portion of the evolution in such a way that the dissipation causes the purity of the system to increase rather than decrease. The goal of this paper is to find the strategy that leads to maximal purity at the final time. Under the assumption that Hamiltonian control is complete and arbitrarily fast, we provide a general framework by which to calculate optimal cooling strategies. These assumptions lead to a great simplification, in which the control problem can be reformulated in terms of the spectrum of eigenvalues of {rho}, rather than {rho} itself. By combining this formulation with the Hamilton-Jacobi-Bellman theorem we are able to obtain an equation for the globally optimal cooling strategy in terms of the spectrum of the density matrix. For the three-level {lambda} system, we provide a complete analytic solution for the optimal cooling strategy. For this system it is found that the optimal strategy does not exploit system coherences and is a 'greedy' strategy, in which the purity is increased maximally at each instant.
Effect of natural damping on the dynamics and control of a class of optimally designed structures
NASA Technical Reports Server (NTRS)
Satyanarayana, K.; Bainum, M.
1988-01-01
In this study the vibration control of large space structures with structural damping is investigated. Emphasis is made on the control of both a class of optimally designed (stepped) structures and also the corresponding uniform structures using a cantilever beam as an example. The open loop and closed loop dynamics are compared and the transient responses are determined to study the effect of damping on the control system design.
Dynamic traffic grooming for port number optimization in WDM optical mesh networks
NASA Astrophysics Data System (ADS)
Huang, Jun; Zeng, Qingji; Liu, Jimin; Xiao, Pengcheng; Liu, Hua; Xiao, Shilin
2004-04-01
In this paper, the objective was optimizing the port number with dynamic traffic grooming of SDH/SONET WDM mesh networks to give useful referenced data to networks design and the cost control of networks. The performances of different path select routing algorithms were evaluated in WDM grooming networks by considering traffic of different bandwidth requests. Finally, the results were presented and compared with in distributed-controlled WDM mesh networks.
Balasubramonian, Rajeev; Dwarkadas, Sandhya; Albonesi, David
2012-01-24
In a processor having multiple clusters which operate in parallel, the number of clusters in use can be varied dynamically. At the start of each program phase, the configuration option for an interval is run to determine the optimal configuration, which is used until the next phase change is detected. The optimum instruction interval is determined by starting with a minimum interval and doubling it until a low stability factor is reached.
Liu, Derong; Li, Hongliang; Wang, Ding
2015-06-01
In this paper, we establish error bounds of adaptive dynamic programming algorithms for solving undiscounted infinite-horizon optimal control problems of discrete-time deterministic nonlinear systems. We consider approximation errors in the update equations of both value function and control policy. We utilize a new assumption instead of the contraction assumption in discounted optimal control problems. We establish the error bounds for approximate value iteration based on a new error condition. Furthermore, we also establish the error bounds for approximate policy iteration and approximate optimistic policy iteration algorithms. It is shown that the iterative approximate value function can converge to a finite neighborhood of the optimal value function under some conditions. To implement the developed algorithms, critic and action neural networks are used to approximate the value function and control policy, respectively. Finally, a simulation example is given to demonstrate the effectiveness of the developed algorithms. PMID:25751878
NASA Astrophysics Data System (ADS)
Grond, Julian; Schmiedmayer, Jörg; Hohenester, Ulrich
2010-01-01
We apply optimal control theory to the dynamic splitting process of a Bose-Einstein condensate (BEC). Number squeezing of two spatially separated BECs is important for interferometry applications and inhibits phase diffusion due to the nonlinear atom-atom interactions. We show how optimal number squeezing can be obtained on time scales much shorter compared to adiabatic splitting. The non-adiabatic time evolution of the condensates is controlled via the trap geometry, thus making our control schemes directly applicable to experiments. We find that the optimal solution for the trap is oscillatory, where a counterintuitive shaking during the ramp produces highly squeezed states. The underlying process can be identified as a parametric amplification.
Optimal control study for the Space Station Solar Dynamic power module
NASA Technical Reports Server (NTRS)
Papadopoulos, P. M.; Laub, A. J.; Kenney, C. S.; Pandey, P.; Ianculescu, G.; Ly, J.
1991-01-01
The authors present the design of an optimal control system for the Space Station Freedom's Solar Dynamic Fine Pointing and Tracking (SDFPT) module. A very large state model of six rigid body modes and 272 flexible modes is used in conjunction with classical LQG optimal control to produce a full-order controller which satisfies the requirements. The results obtained are compared with those of a classically designed PID (proportional plus integral plus derivative) controller that was implemented for a six-rigid-body-mode forty-flexible-mode model. A major difficulty with designing LQG controllers for large models is solving the Riccati equation that arises from the optimal formulation. A Riccati solver based on a Pade approximation to the matrix sign function is used. A symmetric version of this algorithm is derived for the special class of Hamiltonion matrices, thereby yielding, for large problems, a nearly twofold speed increase over a previous algorithm.
Giordano, Nils; Mairet, Francis; Gouzé, Jean-Luc
2016-01-01
Microbial physiology exhibits growth laws that relate the macromolecular composition of the cell to the growth rate. Recent work has shown that these empirical regularities can be derived from coarse-grained models of resource allocation. While these studies focus on steady-state growth, such conditions are rarely found in natural habitats, where microorganisms are continually challenged by environmental fluctuations. The aim of this paper is to extend the study of microbial growth strategies to dynamical environments, using a self-replicator model. We formulate dynamical growth maximization as an optimal control problem that can be solved using Pontryagin’s Maximum Principle. We compare this theoretical gold standard with different possible implementations of growth control in bacterial cells. We find that simple control strategies enabling growth-rate maximization at steady state are suboptimal for transitions from one growth regime to another, for example when shifting bacterial cells to a medium supporting a higher growth rate. A near-optimal control strategy in dynamical conditions is shown to require information on several, rather than a single physiological variable. Interestingly, this strategy has structural analogies with the regulation of ribosomal protein synthesis by ppGpp in the enterobacterium Escherichia coli. It involves sensing a mismatch between precursor and ribosome concentrations, as well as the adjustment of ribosome synthesis in a switch-like manner. Our results show how the capability of regulatory systems to integrate information about several physiological variables is critical for optimizing growth in a changing environment. PMID:26958858
Optimized dynamic contrast-enhanced cone-beam CT for target visualization during liver SBRT
NASA Astrophysics Data System (ADS)
Jones, Bernard L.; Altunbas, Cem; Kavanagh, Brian; Schefter, Tracey; Miften, Moyed
2014-03-01
The pharmacokinetic behavior of iodine contrast agents makes it difficult to achieve significant enhancement during contrast-enhanced cone-beam CT (CE-CBCT). This study modeled this dynamic behavior to optimize CE-CBCT and improve the localization of liver lesions for SBRT. We developed a model that allows for controlled study of changing iodine concentrations using static phantoms. A projection database consisting of multiple phantom images of differing iodine/scan conditions was built. To reconstruct images of dynamic hepatic concentrations, hepatic contrast enhancement data from conventional CT scans were used to re-assemble the projections to match the expected amount of contrast. In this way the effect of various parameters on image quality was isolated, and using our dynamic model we found parameters for iodine injection, CBCT scanning, and injection/scanning timing which optimize contrast enhancement. Increasing the iodine dose, iodine injection rate, and imaging dose led to significant increases in signal-to-noise ratio (SNR). Reducing the CBCT imaging time also increased SNR, as the image can be completed before the iodine exits the liver. Proper timing of image acquisition played a significant role, as a 30 second error in start time resulted in a 40% SNR decrease. The effect of IV contrast is severely degraded in CBCT, but there is promise that, with optimization of the injection and scan parameters to account for iodine pharmacokinetics, CE-CBCT which models venous-phase blood flow kinetics will be feasible for accurate localization of liver lesions.
Optimizing zonal advection of the Advanced Research WRF (ARW) dynamics for Intel MIC
NASA Astrophysics Data System (ADS)
Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.
2014-10-01
The Weather Research and Forecast (WRF) model is the most widely used community weather forecast and research model in the world. There are two distinct varieties of WRF. The Advanced Research WRF (ARW) is an experimental, advanced research version featuring very high resolution. The WRF Nonhydrostatic Mesoscale Model (WRF-NMM) has been designed for forecasting operations. WRF consists of dynamics code and several physics modules. The WRF-ARW core is based on an Eulerian solver for the fully compressible nonhydrostatic equations. In the paper, we will use Intel Intel Many Integrated Core (MIC) architecture to substantially increase the performance of a zonal advection subroutine for optimization. It is of the most time consuming routines in the ARW dynamics core. Advection advances the explicit perturbation horizontal momentum equations by adding in the large-timestep tendency along with the small timestep pressure gradient tendency. We will describe the challenges we met during the development of a high-speed dynamics code subroutine for MIC architecture. Furthermore, lessons learned from the code optimization process will be discussed. The results show that the optimizations improved performance of the original code on Xeon Phi 5110P by a factor of 2.4x.
NASA Astrophysics Data System (ADS)
Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.-L.
2015-05-01
The most widely used community weather forecast and research model in the world is the Weather Research and Forecast (WRF) model. Two distinct varieties of WRF exist. The one we are interested is the Advanced Research WRF (ARW) is an experimental, advanced research version featuring very high resolution. The WRF Nonhydrostatic Mesoscale Model (WRF-NMM) has been designed for forecasting operations. WRF consists of dynamics code and several physics modules. The WRF-ARW core is based on an Eulerian solver for the fully compressible nonhydrostatic equations. In the paper, we optimize a meridional (north-south direction) advection subroutine for Intel Xeon Phi coprocessor. Advection is of the most time consuming routines in the ARW dynamics core. It advances the explicit perturbation horizontal momentum equations by adding in the large-timestep tendency along with the small timestep pressure gradient tendency. We will describe the challenges we met during the development of a high-speed dynamics code subroutine for MIC architecture. Furthermore, lessons learned from the code optimization process will be discussed. The results show that the optimizations improved performance of the original code on Xeon Phi 7120P by a factor of 1.2x.
NASA Astrophysics Data System (ADS)
Grafton, R. Quentin; Chu, Hoang Long; Stewardson, Michael; Kompas, Tom
2011-12-01
A key challenge in managing semiarid basins, such as in the Murray-Darling in Australia, is to balance the trade-offs between the net benefits of allocating water for irrigated agriculture, and other uses, versus the costs of reduced surface flows for the environment. Typically, water planners do not have the tools to optimally and dynamically allocate water among competing uses. We address this problem by developing a general stochastic, dynamic programming model with four state variables (the drought status, the current weather, weather correlation, and current storage) and two controls (environmental release and irrigation allocation) to optimally allocate water between extractions and in situ uses. The model is calibrated to Australia's Murray River that generates: (1) a robust qualitative result that "pulse" or artificial flood events are an optimal way to deliver environmental flows over and above conveyance of base flows; (2) from 2001 to 2009 a water reallocation that would have given less to irrigated agriculture and more to environmental flows would have generated between half a billion and over 3 billion U.S. dollars in overall economic benefits; and (3) water markets increase optimal environmental releases by reducing the losses associated with reduced water diversions.
Optimal discrete-time dynamic output-feedback design - A w-domain approach
NASA Technical Reports Server (NTRS)
Ha, Cheolkeun; Ly, Uy-Loi
1991-01-01
An alternative method for optimal digital control design is described in this paper. The method is based on the usage of the w-transform and has many attractive design features. One of these is its immediate connection with frequency loop-shaping techniques that are now popular and effective for multivariable control synthesis in continuous-time domain. Furthermore, any design algorithms originally developed for continuous-time systems can now be immediately extended to the discrete-time domain. The main results presented in this paper are the exact problem formulation and solution of an optimal discrete-time dynamic output-feedback design in the w-domain involving a quadratic performance index to random disturbances. In addition, necessary conditions for optimality are obtained for the numerical solution of the optimal output-feedback compensator design. A numerical example is presented illustrating its application to the design of a low-order dynamic compensator in a stability augmentation system of a commercial transport.
NASA Astrophysics Data System (ADS)
Trombetti, Tomaso
This thesis presents an Experimental/Analytical approach to modeling and calibrating shaking tables for structural dynamic applications. This approach was successfully applied to the shaking table recently built in the structural laboratory of the Civil Engineering Department at Rice University. This shaking table is capable of reproducing model earthquake ground motions with a peak acceleration of 6 g's, a peak velocity of 40 inches per second, and a peak displacement of 3 inches, for a maximum payload of 1500 pounds. It has a frequency bandwidth of approximately 70 Hz and is designed to test structural specimens up to 1/5 scale. The rail/table system is mounted on a reaction mass of about 70,000 pounds consisting of three 12 ft x 12 ft x 1 ft reinforced concrete slabs, post-tensioned together and connected to the strong laboratory floor. The slip table is driven by a hydraulic actuator governed by a 407 MTS controller which employs a proportional-integral-derivative-feedforward-differential pressure algorithm to control the actuator displacement. Feedback signals are provided by two LVDT's (monitoring the slip table relative displacement and the servovalve main stage spool position) and by one differential pressure transducer (monitoring the actuator force). The dynamic actuator-foundation-specimen system is modeled and analyzed by combining linear control theory and linear structural dynamics. The analytical model developed accounts for the effects of actuator oil compressibility, oil leakage in the actuator, time delay in the response of the servovalve spool to a given electrical signal, foundation flexibility, and dynamic characteristics of multi-degree-of-freedom specimens. In order to study the actual dynamic behavior of the shaking table, the transfer function between target and actual table accelerations were identified using experimental results and spectral estimation techniques. The power spectral density of the system input and the cross power spectral
Dynamic modeling and optimal joint torque coordination of advanced robotic systems
NASA Astrophysics Data System (ADS)
Kang, Hee-Jun
The development is documented of an efficient dynamic modeling algorithm and the subsequent optimal joint input load coordination of advanced robotic systems for industrial application. A closed-form dynamic modeling algorithm for the general closed-chain robotic linkage systems is presented. The algorithm is based on the transfer of system dependence from a set of open chain Lagrangian coordinates to any desired system generalized coordinate set of the closed-chain. Three different techniques for evaluation of the kinematic closed chain constraints allow the representation of the dynamic modeling parameters in terms of system generalized coordinates and have no restriction with regard to kinematic redundancy. The total computational requirement of the closed-chain system model is largely dependent on the computation required for the dynamic model of an open kinematic chain. In order to improve computational efficiency, modification of an existing open-chain KIC based dynamic formulation is made by the introduction of the generalized augmented body concept. This algorithm allows a 44 pct. computational saving over the current optimized one (O(N4), 5995 when N = 6). As means of resolving redundancies in advanced robotic systems, local joint torque optimization is applied for effectively using actuator power while avoiding joint torque limits. The stability problem in local joint torque optimization schemes is eliminated by using fictitious dissipating forces which act in the necessary null space. The performance index representing the global torque norm is shown to be satisfactory. In addition, the resulting joint motion trajectory becomes conservative, after a transient stage, for repetitive cyclic end-effector trajectories. The effectiveness of the null space damping method is shown. The modular robot, which is built of well defined structural modules from a finite-size inventory and is controlled by one general computer system, is another class of evolving
NASA Astrophysics Data System (ADS)
Qi, Wei; Zhang, Chi; Fu, Guangtao; Zhou, Huicheng
2016-02-01
It is widely recognized that optimization algorithm parameters have significant impacts on algorithm performance, but quantifying the influence is very complex and difficult due to high computational demands and dynamic nature of search parameters. The overall aim of this paper is to develop a global sensitivity analysis based framework to dynamically quantify the individual and interactive influence of algorithm parameters on algorithm performance. A variance decomposition sensitivity analysis method, Analysis of Variance (ANOVA), is used for sensitivity quantification, because it is capable of handling small samples and more computationally efficient compared with other approaches. The Shuffled Complex Evolution method developed at the University of Arizona algorithm (SCE-UA) is selected as an optimization algorithm for investigation, and two criteria, i.e., convergence speed and success rate, are used to measure the performance of SCE-UA. Results show the proposed framework can effectively reveal the dynamic sensitivity of algorithm parameters in the search processes, including individual influences of parameters and their interactive impacts. Interactions between algorithm parameters have significant impacts on SCE-UA performance, which has not been reported in previous research. The proposed framework provides a means to understand the dynamics of algorithm parameter influence, and highlights the significance of considering interactive parameter influence to improve algorithm performance in the search processes.
2011-01-01
Background We address the task of parameter estimation in models of the dynamics of biological systems based on ordinary differential equations (ODEs) from measured data, where the models are typically non-linear and have many parameters, the measurements are imperfect due to noise, and the studied system can often be only partially observed. A representative task is to estimate the parameters in a model of the dynamics of endocytosis, i.e., endosome maturation, reflected in a cut-out switch transition between the Rab5 and Rab7 domain protein concentrations, from experimental measurements of these concentrations. The general parameter estimation task and the specific instance considered here are challenging optimization problems, calling for the use of advanced meta-heuristic optimization methods, such as evolutionary or swarm-based methods. Results We apply three global-search meta-heuristic algorithms for numerical optimization, i.e., differential ant-stigmergy algorithm (DASA), particle-swarm optimization (PSO), and differential evolution (DE), as well as a local-search derivative-based algorithm 717 (A717) to the task of estimating parameters in ODEs. We evaluate their performance on the considered representative task along a number of metrics, including the quality of reconstructing the system output and the complete dynamics, as well as the speed of convergence, both on real-experimental data and on artificial pseudo-experimental data with varying amounts of noise. We compare the four optimization methods under a range of observation scenarios, where data of different completeness and accuracy of interpretation are given as input. Conclusions Overall, the global meta-heuristic methods (DASA, PSO, and DE) clearly and significantly outperform the local derivative-based method (A717). Among the three meta-heuristics, differential evolution (DE) performs best in terms of the objective function, i.e., reconstructing the output, and in terms of convergence. These
Game Theory and Extremal Optimization for Community Detection in Complex Dynamic Networks
Lung, Rodica Ioana; Chira, Camelia; Andreica, Anca
2014-01-01
The detection of evolving communities in dynamic complex networks is a challenging problem that recently received attention from the research community. Dynamics clearly add another complexity dimension to the difficult task of community detection. Methods should be able to detect changes in the network structure and produce a set of community structures corresponding to different timestamps and reflecting the evolution in time of network data. We propose a novel approach based on game theory elements and extremal optimization to address dynamic communities detection. Thus, the problem is formulated as a mathematical game in which nodes take the role of players that seek to choose a community that maximizes their profit viewed as a fitness function. Numerical results obtained for both synthetic and real-world networks illustrate the competitive performance of this game theoretical approach. PMID:24586257
A Lyapunov-Based Extension to Particle Swarm Dynamics for Continuous Function Optimization
Bhattacharya, Sayantani; Konar, Amit; Das, Swagatam; Han, Sang Yong
2009-01-01
The paper proposes three alternative extensions to the classical global-best particle swarm optimization dynamics, and compares their relative performance with the standard particle swarm algorithm. The first extension, which readily follows from the well-known Lyapunov's stability theorem, provides a mathematical basis of the particle dynamics with a guaranteed convergence at an optimum. The inclusion of local and global attractors to this dynamics leads to faster convergence speed and better accuracy than the classical one. The second extension augments the velocity adaptation equation by a negative randomly weighted positional term of individual particle, while the third extension considers the negative positional term in place of the inertial term. Computer simulations further reveal that the last two extensions outperform both the classical and the first extension in terms of convergence speed and accuracy. PMID:22303158
NASA Astrophysics Data System (ADS)
Igeta, Hideki; Hasegawa, Mikio
Chaotic dynamics have been effectively applied to improve various heuristic algorithms for combinatorial optimization problems in many studies. Currently, the most used chaotic optimization scheme is to drive heuristic solution search algorithms applicable to large-scale problems by chaotic neurodynamics including the tabu effect of the tabu search. Alternatively, meta-heuristic algorithms are used for combinatorial optimization by combining a neighboring solution search algorithm, such as tabu, gradient, or other search method, with a global search algorithm, such as genetic algorithms (GA), ant colony optimization (ACO), or others. In these hybrid approaches, the ACO has effectively optimized the solution of many benchmark problems in the quadratic assignment problem library. In this paper, we propose a novel hybrid method that combines the effective chaotic search algorithm that has better performance than the tabu search and global search algorithms such as ACO and GA. Our results show that the proposed chaotic hybrid algorithm has better performance than the conventional chaotic search and conventional hybrid algorithms. In addition, we show that chaotic search algorithm combined with ACO has better performance than when combined with GA.
Hartmann, András; Lemos, João M; Vinga, Susana
2015-08-01
The aim of inverse modeling is to capture the systems׳ dynamics through a set of parameterized Ordinary Differential Equations (ODEs). Parameters are often required to fit multiple repeated measurements or different experimental conditions. This typically leads to a multi-objective optimization problem that can be formulated as a non-convex optimization problem. Modeling of glucose utilization of Lactococcus lactis bacteria is considered using in vivo Nuclear Magnetic Resonance (NMR) measurements in perturbation experiments. We propose an ODE model based on a modified time-varying exponential decay that is flexible enough to model several different experimental conditions. The starting point is an over-parameterized non-linear model that will be further simplified through an optimization procedure with regularization penalties. For the parameter estimation, a stochastic global optimization method, particle swarm optimization (PSO) is used. A regularization is introduced to the identification, imposing that parameters should be the same across several experiments in order to identify a general model. On the remaining parameter that varies across the experiments a function is fit in order to be able to predict new experiments for any initial condition. The method is cross-validated by fitting the model to two experiments and validating the third one. Finally, the proposed model is integrated with existing models of glycolysis in order to reconstruct the remaining metabolites. The method was found useful as a general procedure to reduce the number of parameters of unidentifiable and over-parameterized models, thus supporting feature selection methods for parametric models. PMID:25248561
Dynamic sensing optimization strategy for mobile nodes deployment in wireless sensor networks
NASA Astrophysics Data System (ADS)
Wang, Sheng; Wang, Xue; Ma, Junjie
2006-11-01
Sensor nodes deployment problem is one of the fundamental issues in wireless sensor networks (WSNs) which should consider a tradeoff among several metrics, such as coverage area, reliability, accuracy, lifetime etc. The mobile sensor nodes which can relocate themselves can be used to optimize the nodes deployment under various kinds of situations. Because coverage area is hard to be calculated by analytical method, an areas division method is introduced to evaluate the coverage area metric for simplifying calculation. Then we introduce a practically feasible combined metric which refers to coverage area, reliability, accuracy and lifetime, which uses areas division, detecting reliability, Mahalanobis distance and energy entropy as metric functions. Here, nodes deployment is considered as an optimization problem. Particle swarm optimization (PSO) algorithm, which has a series of advantages, such as, high-speed regional convergence, efficient global searching ability, and so on, is suitable for solving multi-dimension function optimization in continuous space. So we adopt PSO for nodes deployment optimization where the combined metric is considered as fitness function. Because the combined metric is multiform and changeable in PSO, we can adopt different combined metrics for different applications, while other strategies just consider the coverage area in nodes deployment. The experimental results verify that the PSO based mobile nodes deployment strategy has good performance in quickness, which can improve the capabilities of WSNs and dynamically adjust the deployment according to the changes of situation, especially when some areas need multiple-node-measurement.
H∞ optimization of dynamic vibration absorber variant for vibration control of damped linear systems
NASA Astrophysics Data System (ADS)
Chun, Semin; Lee, Youngil; Kim, Tae-Hyoung
2015-01-01
This study focuses on the H∞ optimal design of a dynamic vibration absorber (DVA) variant for suppressing high-amplitude vibrations of damped primary systems. Unlike traditional DVA configurations, the damping element in this type of DVA is connected directly to the ground instead of the primary mass. First, a thorough graphical analysis of the variations in the maximum amplitude magnification factor depending on two design parameters, natural frequency and absorber damping ratios, is performed. The results of this analysis clearly show that any fixed-points-theory-based conventional method could provide, at best, only locally but not globally optimal parameters. Second, for directly handling the H∞ optimization for its optimal design, a novel meta-heuristic search engine, called the diversity-guided cyclic-network-topology-based constrained particle swarm optimization (Div-CNT-CPSO), is developed. The variant DVA system developed using the proposed Div-CNT-CPSO scheme is compared with those reported in the literature. The results of this comparison verified that the proposed system is better than the existing methods for suppressing the steady-state vibration amplitude of a controlled primary system.
Optimal Reference Strain Structure for Studying Dynamic Responses of Flexible Rockets
NASA Technical Reports Server (NTRS)
Tsushima, Natsuki; Su, Weihua; Wolf, Michael G.; Griffin, Edwin D.; Dumoulin, Marie P.
2017-01-01
In the proposed paper, the optimal design of reference strain structures (RSS) will be performed targeting for the accurate observation of the dynamic bending and torsion deformation of a flexible rocket. It will provide the detailed description of the finite-element (FE) model of a notional flexible rocket created in MSC.Patran. The RSS will be attached longitudinally along the side of the rocket and to track the deformation of the thin-walled structure under external loads. An integrated surrogate-based multi-objective optimization approach will be developed to find the optimal design of the RSS using the FE model. The Kriging method will be used to construct the surrogate model. For the data sampling and the performance evaluation, static/transient analyses will be performed with MSC.Natran/Patran. The multi-objective optimization will be solved with NSGA-II to minimize the difference between the strains of the launch vehicle and RSS. Finally, the performance of the optimal RSS will be evaluated by checking its strain-tracking capability in different numerical simulations of the flexible rocket.
Hough, Patricia Diane (Sandia National Laboratories, Livermore, CA); Gray, Genetha Anne (Sandia National Laboratories, Livermore, CA); Castro, Joseph Pete Jr.; Giunta, Anthony Andrew
2006-01-01
Many engineering application problems use optimization algorithms in conjunction with numerical simulators to search for solutions. The formulation of relevant objective functions and constraints dictate possible optimization algorithms. Often, a gradient based approach is not possible since objective functions and constraints can be nonlinear, nonconvex, non-differentiable, or even discontinuous and the simulations involved can be computationally expensive. Moreover, computational efficiency and accuracy are desirable and also influence the choice of solution method. With the advent and increasing availability of massively parallel computers, computational speed has increased tremendously. Unfortunately, the numerical and model complexities of many problems still demand significant computational resources. Moreover, in optimization, these expenses can be a limiting factor since obtaining solutions often requires the completion of numerous computationally intensive simulations. Therefore, we propose a multifidelity optimization algorithm (MFO) designed to improve the computational efficiency of an optimization method for a wide range of applications. In developing the MFO algorithm, we take advantage of the interactions between multi fidelity models to develop a dynamic and computational time saving optimization algorithm. First, a direct search method is applied to the high fidelity model over a reduced design space. In conjunction with this search, a specialized oracle is employed to map the design space of this high fidelity model to that of a computationally cheaper low fidelity model using space mapping techniques. Then, in the low fidelity space, an optimum is obtained using gradient or non-gradient based optimization, and it is mapped back to the high fidelity space. In this paper, we describe the theory and implementation details of our MFO algorithm. We also demonstrate our MFO method on some example problems and on two applications: earth penetrators and
Dynamic biclustering of microarray data by multi-objective immune optimization
2011-01-01
Abstract Background Newly microarray technologies yield large-scale datasets. The microarray datasets are usually presented in 2D matrices, where rows represent genes and columns represent experimental conditions. Systematic analysis of those datasets provides the increasing amount of information, which is urgently needed in the post-genomic era. Biclustering, which is a technique developed to allow simultaneous clustering of rows and columns of a dataset, might be useful to extract more accurate information from those datasets. Biclustering requires the optimization of two conflicting objectives (residue and volume), and a multi-objective artificial immune system capable of performing a multi-population search. As a heuristic search technique, artificial immune systems (AISs) can be considered a new computational paradigm inspired by the immunological system of vertebrates and designed to solve a wide range of optimization problems. During biclustering several objectives in conflict with each other have to be optimized simultaneously, so multi-objective optimization model is suitable for solving biclustering problem. Results Based on dynamic population, this paper proposes a novel dynamic multi-objective immune optimization biclustering (DMOIOB) algorithm to mine coherent patterns from microarray data. Experimental results on two common and public datasets of gene expression profiles show that our approach can effectively find significant localized structures related to sets of genes that show consistent expression patterns across subsets of experimental conditions. The mined patterns present a significant biological relevance in terms of related biological processes, components and molecular functions in a species-independent manner. Conclusions The proposed DMOIOB algorithm is an efficient tool to analyze large microarray datasets. It achieves a good diversity and rapid convergence. PMID:21989068
On PDE solution in transient optimization of gas networks
NASA Astrophysics Data System (ADS)
Steinbach, Marc C.
2007-06-01
Operative planning in gas distribution networks leads to large-scale mixed-integer optimization problems involving a hyperbolic PDE defined on a graph. We consider the NLP obtained under prescribed combinatorial decisions--or as relaxation in a branch-and-bound framework, addressing in particular the KKT systems arising in primal-dual interior methods. We propose a custom solution algorithm using sparse projections locally in time, based on the KKT systems' structural properties in space as induced by the discretized gas flow equations in combination with the underlying network topology. The numerical efficiency and accuracy of the algorithm are investigated, and detailed computational comparisons with a previously developed control space method and with the multifrontal solver MA27 are provided.
An optimization model for long-range transmission expansion planning
Santos, A. Jr.; Franca, P.M.; Said, A.
1989-02-01
In this paper is presented a static network synthesis method applied to transmission expansion planning. The static synthesis problem is formulated as a mixed-integer network flow model that is solved by an implicit enumeration algorithm. This model considers as the objective function the most productive trade off, resulting in low investment costs and good electrical performance. The load and generation nodal equations are considered in the constraints of the model. The power transmission law of DC load flow is implicit in the optimization model. Results of computational tests are presented and they show the advantage of this method compared with a heuristic procedure. The case studies show a comparison of computational times and costs of solutions obtained for the Brazilian North-Northeast transmission system.
Process simulation and dynamic control for marine oily wastewater treatment using UV irradiation.
Jing, Liang; Chen, Bing; Zhang, Baiyu; Li, Pu
2015-09-15
UV irradiation and advanced oxidation processes have been recently regarded as promising solutions in removing polycyclic aromatic hydrocarbons (PAHs) from marine oily wastewater. However, such treatment methods are generally not sufficiently understood in terms of reaction mechanisms, process simulation and process control. These deficiencies can drastically hinder their application in shipping and offshore petroleum industries which produce bilge/ballast water and produced water as the main streams of marine oily wastewater. In this study, the factorial design of experiment was carried out to investigate the degradation mechanism of a typical PAH, namely naphthalene, under UV irradiation in seawater. Based on the experimental results, a three-layer feed-forward artificial neural network simulation model was developed to simulate the treatment process and to forecast the removal performance. A simulation-based dynamic mixed integer nonlinear programming (SDMINP) approach was then proposed to intelligently control the treatment process by integrating the developed simulation model, genetic algorithm and multi-stage programming. The applicability and effectiveness of the developed approach were further tested though a case study. The experimental results showed that the influences of fluence rate and temperature on the removal of naphthalene were greater than those of salinity and initial concentration. The developed simulation model could well predict the UV-induced removal process under varying conditions. The case study suggested that the SDMINP approach, with the aid of the multi-stage control strategy, was able to significantly reduce treatment cost when comparing to the traditional single-stage process optimization. The developed approach and its concept/framework have high potential of applicability in other environmental fields where a treatment process is involved and experimentation and modeling are used for process simulation and control. PMID:26043376
Sabesan, Shivkumar; Chakravarthy, Niranjan; Tsakalis, Kostas; Pardalos, Panos; Iasemidis, Leon
2009-01-01
Epileptic seizures are manifestations of intermittent spatiotemporal transitions of the human brain from chaos to order. Measures of chaos, namely maximum Lyapunov exponents (STL(max)), from dynamical analysis of the electroencephalograms (EEGs) at critical sites of the epileptic brain, progressively converge (diverge) before (after) epileptic seizures, a phenomenon that has been called dynamical synchronization (desynchronization). This dynamical synchronization/desynchronization has already constituted the basis for the design and development of systems for long-term (tens of minutes), on-line, prospective prediction of epileptic seizures. Also, the criterion for the changes in the time constants of the observed synchronization/desynchronization at seizure points has been used to show resetting of the epileptic brain in patients with temporal lobe epilepsy (TLE), a phenomenon that implicates a possible homeostatic role for the seizures themselves to restore normal brain activity. In this paper, we introduce a new criterion to measure this resetting that utilizes changes in the level of observed synchronization/desynchronization. We compare this criterion's sensitivity of resetting with the old one based on the time constants of the observed synchronization/desynchronization. Next, we test the robustness of the resetting phenomena in terms of the utilized measures of EEG dynamics by a comparative study involving STL(max), a measure of phase (ϕ(max)) and a measure of energy (E) using both criteria (i.e. the level and time constants of the observed synchronization/desynchronization). The measures are estimated from intracranial electroencephalographic (iEEG) recordings with subdural and depth electrodes from two patients with focal temporal lobe epilepsy and a total of 43 seizures. Techniques from optimization theory, in particular quadratic bivalent programming, are applied to optimize the performance of the three measures in detecting preictal entrainment. It is
MINLP models for the synthesis of optimal peptide tags and downstream protein processing.
Simeonidis, Evangelos; Pinto, Jose M; Lienqueo, M Elena; Tsoka, Sophia; Papageorgiou, Lazaros G
2005-01-01
The development of systematic methods for the synthesis of downstream protein processing operations has seen growing interest in recent years, as purification is often the most complex and costly stage in biochemical production plants. The objective of the work presented here is to develop mathematical models based on mixed integer optimization techniques, which integrate the selection of optimal peptide purification tags into an established framework for the synthesis of protein purification processes. Peptide tags are comparatively short sequences of amino acids fused onto the protein product, capable of reducing the required purification steps. The methodology is illustrated through its application on two example protein mixtures involving up to 13 contaminants and a set of 11 candidate chromatographic steps. The results are indicative of the benefits resulting by the appropriate use of peptide tags in purification processes and provide a guideline for both optimal tag design and downstream process synthesis. PMID:15932268
The Automatic Formulating Method of the Optimal Operating Planning Problem for Energy Supply Systems
NASA Astrophysics Data System (ADS)
Suzuki, Naohiko; Ueda, Takaharu; Sasakawa, Koichi
The problem of the optimal operating planning for energy supply system is formulated as mixed-integer linear programming (MILP), but, it is too complicated for most untrained operators with little experience to apply the method. This paper proposes an automatic evaluating method of the optimal operating planning for energy supply system in using simple data. The problem can be formulated only from characteristics of equipment, tariff of input energy, and energy demands. The connection of equipment is defined as a matrix, and generated from property data of equipment. The constraints and objective function of the problem are generated from relation-ship data in the matrix and characteristics of equipment. An optimization calculation for the problem is automatically carried out. It is confirmed that any operator can evaluate many alternative configurations of the energy supply systems.
NASA Astrophysics Data System (ADS)
Fukuyama, Yoshikazu
This paper compares particle swarm optimization (PSO) techniques for a reactive power allocation planning problem in power systems. The problem can be formulated as a mixed-integer nonlinear optimization problem (MINLP). The PSO based methods determines a reactive power allocation strategy with continuous and discrete state variables such as automatic voltage regulator (AVR) operating values of electric power generators, tap positions of on-load tap changer (OLTC) of transformers, and the number of reactive power compensation equipment. Namely, this paper investigates applicability of PSO techniques to one of the practical MINLPs in power systems. Four variations of PSO: PSO with inertia weight approach (IWA), PSO with constriction factor approach (CFA), hybrid particle swarm optimization (HPSO) with IWA, and HPSO with CFA are compared. The four methods are applied to the standard IEEE14 bus system and a practical 112 bus system.
Large Scale Multi-area Static/Dynamic Economic Dispatch using Nature Inspired Optimization
NASA Astrophysics Data System (ADS)
Pandit, Manjaree; Jain, Kalpana; Dubey, Hari Mohan; Singh, Rameshwar
2016-07-01
Economic dispatch (ED) ensures that the generation allocation to the power units is carried out such that the total fuel cost is minimized and all the operating equality/inequality constraints are satisfied. Classical ED does not take transmission constraints into consideration, but in the present restructured power systems the tie-line limits play a very important role in deciding operational policies. ED is a dynamic problem which is performed on-line in the central load dispatch centre with changing load scenarios. The dynamic multi-area ED (MAED) problem is more complex due to the additional tie-line, ramp-rate and area-wise power balance constraints. Nature inspired (NI) heuristic optimization methods are gaining popularity over the traditional methods for complex problems. This work presents the modified particle swarm optimization (PSO) based techniques where parameter automation is effectively used for improving the search efficiency by avoiding stagnation to a sub-optimal result. This work validates the performance of the PSO variants with traditional solver GAMS for single as well as multi-area economic dispatch (MAED) on three test cases of a large 140-unit standard test system having complex constraints.
Pharmacokinetic modeling of dynamic MR images using a simulated annealing-based optimization
NASA Astrophysics Data System (ADS)
Sawant, Amit R.; Reece, John H.; Reddick, Wilburn E.
2000-04-01
The aim of this work was to use dynamic contrast enhanced MR image (DEMRI) data to generate 'parameter images' which provide functional information about contrast agent access, in bone sarcoma. A simulated annealing based technique was applied to optimize the parameters of a pharmacokinetic model used to describe the kinetics of the tissue response during and after intravenous infusion of a paramagnetic contrast medium, Gd-DTPA. Optimization was performed on a pixel by pixel basis so as to minimize the sum of square deviations of the calculated values from the values obtained experimentally during dynamic contrast enhanced MR imaging. A cost function based on a priori information was introduced during the annealing procedure to ensure that the values obtained were within the expected ranges. The optimized parameters were used in the model to generate parameter images, which reveal functional information that is normally not visible in conventional Gd-DTPA enhanced MR images. This functional information, during and upon completion of pre-operative chemotherapy, is useful in predicting the probability of disease free survival.
Dynamics of hepatitis C under optimal therapy and sampling based analysis
NASA Astrophysics Data System (ADS)
Pachpute, Gaurav; Chakrabarty, Siddhartha P.
2013-08-01
We examine two models for hepatitis C viral (HCV) dynamics, one for monotherapy with interferon (IFN) and the other for combination therapy with IFN and ribavirin. Optimal therapy for both the models is determined using the steepest gradient method, by defining an objective functional which minimizes infected hepatocyte levels, virion population and side-effects of the drug(s). The optimal therapies for both the models show an initial period of high efficacy, followed by a gradual decline. The period of high efficacy coincides with a significant decrease in the viral load, whereas the efficacy drops after hepatocyte levels are restored. We use the Latin hypercube sampling technique to randomly generate a large number of patient scenarios and study the dynamics of each set under the optimal therapy already determined. Results show an increase in the percentage of responders (indicated by drop in viral load below detection levels) in case of combination therapy (72%) as compared to monotherapy (57%). Statistical tests performed to study correlations between sample parameters and time required for the viral load to fall below detection level, show a strong monotonic correlation with the death rate of infected hepatocytes, identifying it to be an important factor in deciding individual drug regimens.
Vegetal Optimality and Macro-Scale Dynamic Vegetation - Scaling from Leaf to Landscape
NASA Astrophysics Data System (ADS)
Quebbeman, J.; Ramirez, J. A.
2014-12-01
Macro-scale spatially distributed hydrologic models require extensive parameterization of both soil and vegetal properties. Proper parameterization of vegetation is critical for understanding vegetal response to hydro-climatic variability, as vegetation provides a key feedback to climate. A common practice for Dynamic Global Vegetation Models is to use plant functional types (PFTs), which limit vegetation to discrete classes. We present a physically based long-term macro-scale coupled vegetation and hydrology model capable of responding dynamically to climate variability, and parameterize it assuming vegetal optimality hypotheses. We hypothesize that canopy scale vegetation will adopt a strategy that maximizes the expected net assimilation, minus photosynthetic system construction and maintenance costs, over an annual basis. We perform stochastic multi-decadal simulations to estimate the expected fitness for a unique vegetal parameterization and water use strategy. As a result, optimal parameter sets are defined, which can be used instead of a PFT characterization of land cover. Estimates of evaporation, transpiration and gross primary production obtained using the optimal parameter sets over a range of climates are then compared against FLUXNET data.
Fast optimization of binary clusters using a novel dynamic lattice searching method
Wu, Xia Cheng, Wen
2014-09-28
Global optimization of binary clusters has been a difficult task despite of much effort and many efficient methods. Directing toward two types of elements (i.e., homotop problem) in binary clusters, two classes of virtual dynamic lattices are constructed and a modified dynamic lattice searching (DLS) method, i.e., binary DLS (BDLS) method, is developed. However, it was found that the BDLS can only be utilized for the optimization of binary clusters with small sizes because homotop problem is hard to be solved without atomic exchange operation. Therefore, the iterated local search (ILS) method is adopted to solve homotop problem and an efficient method based on the BDLS method and ILS, named as BDLS-ILS, is presented for global optimization of binary clusters. In order to assess the efficiency of the proposed method, binary Lennard-Jones clusters with up to 100 atoms are investigated. Results show that the method is proved to be efficient. Furthermore, the BDLS-ILS method is also adopted to study the geometrical structures of (AuPd){sub 79} clusters with DFT-fit parameters of Gupta potential.
NASA Technical Reports Server (NTRS)
Welstead, Jason; Crouse, Gilbert L., Jr.
2014-01-01
Empirical sizing guidelines such as tail volume coefficients have long been used in the early aircraft design phases for sizing stabilizers, resulting in conservatively stable aircraft. While successful, this results in increased empty weight, reduced performance, and greater procurement and operational cost relative to an aircraft with optimally sized surfaces. Including flight dynamics in the conceptual design process allows the design to move away from empirical methods while implementing modern control techniques. A challenge of flight dynamics and control is the numerous design variables, which are changing fluidly throughout the conceptual design process, required to evaluate the system response to some disturbance. This research focuses on addressing that challenge not by implementing higher order tools, such as computational fluid dynamics, but instead by linking the lower order tools typically used within the conceptual design process so each discipline feeds into the other. In thisresearch, flight dynamics and control was incorporated into the conceptual design process along with the traditional disciplines of vehicle sizing, weight estimation, aerodynamics, and performance. For the controller, a linear quadratic regulator structure with constant gains has been specified to reduce the user input. Coupling all the disciplines in the conceptual design phase allows the aircraft designer to explore larger design spaces where stabilizers are sized according to dynamic response constraints rather than historical static margin and volume coefficient guidelines.
Yamasaki, Taiga; Idehara, Katsutoshi; Xin, Xin
2016-07-01
We propose a new method to estimate muscle activity in a straightforward manner with high accuracy and relatively small computational costs by using the external input of the joint angle and its first to fourth derivatives with respect to time. The method solves the inverse dynamics problem of the skeletal system, the forward dynamics problem of the muscular system, and the load-sharing problem of muscles as a static optimization of neural excitation signals. The external input including the higher-order derivatives is required for a calculation of constraints imposed on the load-sharing problem. The feasibility of the method is demonstrated by the simulation of a simple musculoskeletal model with a single joint. Moreover, the influences of the muscular dynamics, and the higher-order derivatives on the estimation of the muscle activity are demonstrated, showing the results when the time constants of the activation dynamics are very small, and the third and fourth derivatives of the external input are ignored, respectively. It is concluded that the method can have the potential to improve estimation accuracy of muscle activity of highly dynamic motions. PMID:27211782
Empirical prediction of climate dynamics: optimal models, derived from time series
NASA Astrophysics Data System (ADS)
Mukhin, D.; Loskutov, E. M.; Gavrilov, A.; Feigin, A. M.
2013-12-01
The new empirical method for prediction of climate indices by the analysis of climatic fields' time series is suggested. The method is based on construction of prognostic models of evolution operator (EO) in low-dimensional subspaces of system's phase space. One of the main points of suggested analysis is reconstruction of appropriate basis of dynamical variables (predictors) from spatially distributed data: different ways of data decomposition are discussed in the report including EOFs, MSSA and other relevant data rotations. We consider the models of different complexity for EO reconstruction, from linear statistical models of particular indices to more complex artificial neural network (ANN) models of climatic patterns dynamics, which take the form of discrete random dynamical systems [1]. Very important problem, that always arises in empirical modeling approaches, is optimal model selection criterium: appropriate regularization procedure is needed to avoid overfitted model. Particulary, it includes finding the optimal structural parameters of the model such as dimension of variables vector, i.e. number of principal components used for modeling, number of states used for prediction, and number of parameters determining quality of approximation. In this report the minimal descriptive length (MDL) approach [2] is proposed for this purpose: the model providing most data compression is chosen. Results of application of suggested method to analysis of SST and SLP fields' time series [3] covering last 30-50 years are presented: predictions of different climate indices time series including NINO 3.4, MEI, PDO, NOA are shown. References: 1. Y. I. Molkov, E. M. Loskutov, D. N. Mukhin, and A. M. Feigin, Random dynamical models from time series, Phys. Rev. E 85, 036216, 2012 2. Molkov, Ya.I., D.N. Mukhin, E.M. Loskutov, A.M. Feigin, and G.A. Fidelin, Using the minimum description length principle for global reconstruction of dynamic systems from noisy time series. Phys
Dynameomics: a multi-dimensional analysis-optimized database for dynamic protein data.
Kehl, Catherine; Simms, Andrew M; Toofanny, Rudesh D; Daggett, Valerie
2008-06-01
The Dynameomics project is our effort to characterize the native-state dynamics and folding/unfolding pathways of representatives of all known protein folds by way of molecular dynamics simulations, as described by Beck et al. (in Protein Eng. Des. Select., the first paper in this series). The data produced by these simulations are highly multidimensional in structure and multi-terabytes in size. Both of these features present significant challenges for storage, retrieval and analysis. For optimal data modeling and flexibility, we needed a platform that supported both multidimensional indices and hierarchical relationships between related types of data and that could be integrated within our data warehouse, as described in the accompanying paper directly preceding this one. For these reasons, we have chosen On-line Analytical Processing (OLAP), a multi-dimensional analysis optimized database, as an analytical platform for these data. OLAP is a mature technology in the financial sector, but it has not been used extensively for scientific analysis. Our project is further more unusual for its focus on the multidimensional and analytical capabilities of OLAP rather than its aggregation capacities. The dimensional data model and hierarchies are very flexible. The query language is concise for complex analysis and rapid data retrieval. OLAP shows great promise for the dynamic protein analysis for bioengineering and biomedical applications. In addition, OLAP may have similar potential for other scientific and engineering applications involving large and complex datasets. PMID:18411222
Dynamic reliability-based robust design optimization with time-variant probabilistic constraints
NASA Astrophysics Data System (ADS)
Wang, Pingfeng; Wang, Zequn; Almaktoom, Abdulaziz T.
2014-06-01
With the increasing complexity of engineering systems, ensuring high system reliability and system performance robustness throughout a product life cycle is of vital importance in practical engineering design. Dynamic reliability analysis, which is generally encountered due to time-variant system random inputs, becomes a primary challenge in reliability-based robust design optimization (RBRDO). This article presents a new approach to efficiently carry out dynamic reliability analysis for RBRDO. The key idea of the proposed approach is to convert time-variant probabilistic constraints to time-invariant ones by efficiently constructing a nested extreme response surface (NERS) and then carry out dynamic reliability analysis using NERS in an iterative RBRDO process. The NERS employs an efficient global optimization technique to identify the extreme time responses that correspond to the worst case scenario of system time-variant limit state functions. With these extreme time samples, a kriging-based time prediction model is built and used to estimate extreme responses for any given arbitrary design in the design space. An adaptive response prediction and model maturation mechanism is developed to guarantee the accuracy and efficiency of the proposed NERS approach. The NERS is integrated with RBRDO with time-variant probabilistic constraints to achieve optimum designs of engineered systems with desired reliability and performance robustness. Two case studies are used to demonstrate the efficacy of the proposed approach.
Detectability Thresholds and Optimal Algorithms for Community Structure in Dynamic Networks
NASA Astrophysics Data System (ADS)
Ghasemian, Amir; Zhang, Pan; Clauset, Aaron; Moore, Cristopher; Peel, Leto
2016-07-01
The detection of communities within a dynamic network is a common means for obtaining a coarse-grained view of a complex system and for investigating its underlying processes. While a number of methods have been proposed in the machine learning and physics literature, we lack a theoretical analysis of their strengths and weaknesses, or of the ultimate limits on when communities can be detected. Here, we study the fundamental limits of detecting community structure in dynamic networks. Specifically, we analyze the limits of detectability for a dynamic stochastic block model where nodes change their community memberships over time, but where edges are generated independently at each time step. Using the cavity method, we derive a precise detectability threshold as a function of the rate of change and the strength of the communities. Below this sharp threshold, we claim that no efficient algorithm can identify the communities better than chance. We then give two algorithms that are optimal in the sense that they succeed all the way down to this threshold. The first uses belief propagation, which gives asymptotically optimal accuracy, and the second is a fast spectral clustering algorithm, based on linearizing the belief propagation equations. These results extend our understanding of the limits of community detection in an important direction, and introduce new mathematical tools for similar extensions to networks with other types of auxiliary information.
Fregly, Benjamin J.
2011-01-01
Disorders of the human neuromusculoskeletal system such as osteoarthritis, stroke, cerebral palsy, and paraplegia significantly affect mobility and result in a decreased quality of life. Surgical and rehabilitation treatment planning for these disorders is based primarily on static anatomic measurements and dynamic functional measurements filtered through clinical experience. While this subjective treatment planning approach works well in many cases, it does not predict accurate functional outcome in many others. This paper presents a vision for how patient-specific multibody dynamic models can serve as the foundation for an objective treatment planning approach that identifies optimal treatments and treatment parameters on an individual patient basis. First, a computational paradigm is presented for constructing patient-specific multibody dynamic models. This paradigm involves a combination of patient-specific skeletal models, muscle-tendon models, neural control models, and articular contact models, with the complexity of the complete model being dictated by the requirements of the clinical problem being addressed. Next, three clinical applications are presented to illustrate how such models could be used in the treatment design process. One application involves the design of patient-specific gait modification strategies for knee osteoarthritis rehabilitation, a second involves the selection of optimal patient-specific surgical parameters for a particular knee osteoarthritis surgery, and the third involves the design of patient-specific muscle stimulation patterns for stroke rehabilitation. The paper concludes by discussing important challenges that need to be overcome to turn this vision into reality. PMID:21785529
Modeling of CMM dynamic error based on optimization of neural network using genetic algorithm
NASA Astrophysics Data System (ADS)
Ying, Qu; Zai, Luo; Yi, Lu
2010-08-01
By analyzing the dynamic error of CMM, a model is established using BP neural network for CMM .The most important 5 input parameters which affect the dynamic error of CMM are approximate rate, length of rod, diameter of probe, coordinate values of X and coordinate values of Y. But the training of BP neural network can be easily trapped in local minimums and its training speed is slow. In order to overcome these disadvantages, genetic algorithm (GA) is introduced for optimization. So the model of GA-BP network is built up. In order to verify the model, experiments are done on the CMM of type 9158. Experimental results indicate that the entire optimizing capability of genetic algorithm is perfect. Compared with traditional BP network, the GA-BP network has better accuracy and adaptability and the training time is halved using GA-BP network. The average dynamic error can be reduced from 3.5μm to 0.7μm. So the precision is improved by 76%.
NASA Technical Reports Server (NTRS)
Whiffen, Gregory J.
2006-01-01
Mystic software is designed to compute, analyze, and visualize optimal high-fidelity, low-thrust trajectories, The software can be used to analyze inter-planetary, planetocentric, and combination trajectories, Mystic also provides utilities to assist in the operation and navigation of low-thrust spacecraft. Mystic will be used to design and navigate the NASA's Dawn Discovery mission to orbit the two largest asteroids, The underlying optimization algorithm used in the Mystic software is called Static/Dynamic Optimal Control (SDC). SDC is a nonlinear optimal control method designed to optimize both 'static variables' (parameters) and dynamic variables (functions of time) simultaneously. SDC is a general nonlinear optimal control algorithm based on Bellman's principal.
Optimal investment for enhancing social concern about biodiversity conservation: a dynamic approach.
Lee, Joung Hun; Iwasa, Yoh
2012-11-01
To maintain biodiversity conservation areas, we need to invest in activities, such as monitoring the condition of the ecosystem, preventing illegal exploitation, and removing harmful alien species. These require a constant supply of resources, the level of which is determined by the concern of the society about biodiversity conservation. In this paper, we study the optimal fraction of the resources to invest in activities for enhancing the social concern y(t) by environmental education, museum displays, publications, and media exposure. We search for the strategy that maximizes the time-integral of the quality of the conservation area x(t) with temporal discounting. Analyses based on dynamic programming and Pontryagin's maximum principle show that the optimal control consists of two phases: (1) in the first phase, the social concern level approaches to the final optimal value y(∗), (2) in the second phase, resources are allocated to both activities, and the social concern level is kept constant y(t) = y(∗). If the social concern starts from a low initial level, the optimal path includes a period in which the quality of the conservation area declines temporarily, because all the resources are invested to enhance the social concern. When the support rate increases with the quality of the conservation area itself x(t) as well as with the level of social concern y(t), both variables may increase simultaneously in the second phase. We discuss the implication of the results to good management of biodiversity conservation areas. PMID:22789811
NASA Astrophysics Data System (ADS)
Eisa, Fabian; Brauweiler, Robert; Peetz, Alexander; Hupfer, Martin; Nowak, Tristan; Kalender, Willi A.
2012-05-01
One of the biggest challenges in dynamic contrast-enhanced CT is the optimal synchronization of scan start and duration with contrast medium administration in order to optimize image contrast and to reduce the amount of contrast medium. We present a new optically based approach, which was developed to investigate and optimize bolus timing and shape. The time-concentration curve of an intravenously injected test bolus of a dye is measured in peripheral vessels with an optical sensor prior to the diagnostic CT scan. The curves can be used to assess bolus shapes as a function of injection protocols and to determine contrast medium arrival times. Preliminary results for phantom and animal experiments showed the expected linear behavior between dye concentration and absorption. The kinetics of the dye was compared to iodinated contrast medium and was found to be in good agreement. The contrast enhancement curves were reliably detected in three mice with individual bolus shapes and delay times of 2.1, 3.5 and 6.1 s, respectively. The optical sensor appears to be a promising approach to optimize injection protocols and contrast enhancement timing and is applicable to all modalities without implying any additional radiation dose. Clinical tests are still necessary.
Optimization of a hydrodynamic separator using a multiscale computational fluid dynamics approach.
Schmitt, Vivien; Dufresne, Matthieu; Vazquez, Jose; Fischer, Martin; Morin, Antoine
2013-01-01
This article deals with the optimization of a hydrodynamic separator working on the tangential separation mechanism along a screen. The aim of this study is to optimize the shape of the device to avoid clogging. A multiscale approach is used. This methodology combines measurements and computational fluid dynamics (CFD). A local model enables us to observe the different phenomena occurring at the orifice scale, which shows the potential of expanded metal screens. A global model is used to simulate the flow within the device using a conceptual model of the screen (porous wall). After validation against the experimental measurements, the global model was used to investigate the influence of deflectors and disk plates in the structure. PMID:24135107
Using support vector machine and dynamic parameter encoding to enhance global optimization
NASA Astrophysics Data System (ADS)
Zheng, Z.; Chen, X.; Liu, C.; Huang, K.
2016-05-01
This study presents an approach which combines support vector machine (SVM) and dynamic parameter encoding (DPE) to enhance the run-time performance of global optimization with time-consuming fitness function evaluations. SVMs are used as surrogate models to partly substitute for fitness evaluations. To reduce the computation time and guarantee correct convergence, this work proposes a novel strategy to adaptively adjust the number of fitness evaluations needed according to the approximate error of the surrogate model. Meanwhile, DPE is employed to compress the solution space, so that it not only accelerates the convergence but also decreases the approximate error. Numerical results of optimizing a few benchmark functions and an antenna in a practical application are presented, which verify the feasibility, efficiency and robustness of the proposed approach.
Optimal dynamics for quantum-state and entanglement transfer through homogeneous quantum systems
Banchi, L.; Apollaro, T. J. G.; Cuccoli, A.; Vaia, R.; Verrucchi, P.
2010-11-15
The capability of faithfully transmit quantum states and entanglement through quantum channels is one of the key requirements for the development of quantum devices. Different solutions have been proposed to accomplish such a challenging task, which, however, require either an ad hoc engineering of the internal interactions of the physical system acting as the channel or specific initialization procedures. Here we show that optimal dynamics for efficient quantum-state and entanglement transfer can be attained in generic quantum systems with homogeneous interactions by tuning the coupling between the system and the two attached qubits. We devise a general procedure to determine the optimal coupling, and we explicitly implement it in the case of a channel consisting of a spin-(1/2)XY chain. The quality of quantum-state and entanglement transfer is found to be very good and, remarkably, almost independent of the channel length.
Dynamic Optimization of Multi-Spacecraft Relative Navigation Configurations in the Earth-Moon System
NASA Technical Reports Server (NTRS)
Villac, Benjamin; Chow, Channing; Lo, Martin; Hintz, Gerald; Nazari, Zahra
2010-01-01
In this paper, the notion of relative navigation introduced by Hill, Lo and Born is analyzed for a large class of periodic orbits in the Earth-Moon three-body problem, due to its potential in supporting Moon exploration efforts. In particular, a navigation metric is introduced and used as a cost function to optimize over a class of periodic orbits. While the problem could be solve locally as an optimal control problem, a dynamical based approach that allows for a global/systematic view of the problem is proposed. First, the simpler problem of multiple spacecraft placement on a given periodic orbit is solved before the notion of continuation and bifurcation analysis is used to expand the range of solutions thus obtained.
Optimizing the dynamic range extension of a radiochromic film dosimetry system
Devic, Slobodan; Tomic, Nada; Soares, Christopher G.; Podgorsak, Ervin B.
2009-02-15
The authors present a radiochromic film dosimetry protocol for a multicolor channel radiochromic film dosimetry system consisting of the external beam therapy (EBT) model GAFCHROMIC film and the Epson Expression 1680 flat-bed document scanner. Instead of extracting only the red color channel, the authors are using all three color channels in the absorption spectrum of the EBT film to extend the dynamic dose range of the radiochromic film dosimetry system. By optimizing the dose range for each color channel, they obtained a system that has both precision and accuracy below 1.5%, and the optimized ranges are 0-4 Gy for the red channel, 4-50 Gy for the green channel, and above 50 Gy for the blue channel.
NASA Technical Reports Server (NTRS)
Nguyen, Howard; Willacy, Karen; Allen, Mark
2012-01-01
KINETICS is a coupled dynamics and chemistry atmosphere model that is data intensive and computationally demanding. The potential performance gain from using a supercomputer motivates the adaptation from a serial version to a parallelized one. Although the initial parallelization had been done, bottlenecks caused by an abundance of communication calls between processors led to an unfavorable drop in performance. Before starting on the parallel optimization process, a partial overhaul was required because a large emphasis was placed on streamlining the code for user convenience and revising the program to accommodate the new supercomputers at Caltech and JPL. After the first round of optimizations, the partial runtime was reduced by a factor of 23; however, performance gains are dependent on the size of the data, the number of processors requested, and the computer used.
Cluster statistics and quasisoliton dynamics in microscopic optimal-velocity models
NASA Astrophysics Data System (ADS)
Yang, Bo; Xu, Xihua; Pang, John Z. F.; Monterola, Christopher
2016-04-01
Using the non-linear optimal velocity models as an example, we show that there exists an emergent intrinsic scale that characterizes the interaction strength between multiple clusters appearing in the solutions of such models. The interaction characterizes the dynamics of the localized quasisoliton structures given by the time derivative of the headways, and the intrinsic scale is analogous to the "charge" of the quasisolitons, leading to non-trivial cluster statistics from the random perturbations to the initial steady states of uniform headways. The cluster statistics depend both on the quasisoliton charge and the density of the traffic. The intrinsic scale is also related to an emergent quantity that gives the extremum headways in the cluster formation, as well as the coexistence curve separating the absolute stable phase from the metastable phase. The relationship is qualitatively universal for general optimal velocity models.
NASA Astrophysics Data System (ADS)
Bhole, Gaurav; Anjusha, V. S.; Mahesh, T. S.
2016-04-01
A robust control over quantum dynamics is of paramount importance for quantum technologies. Many of the existing control techniques are based on smooth Hamiltonian modulations involving repeated calculations of basic unitaries resulting in time complexities scaling rapidly with the length of the control sequence. Here we show that bang-bang controls need one-time calculation of basic unitaries and hence scale much more efficiently. By employing a global optimization routine such as the genetic algorithm, it is possible to synthesize not only highly intricate unitaries, but also certain nonunitary operations. We demonstrate the unitary control through the implementation of the optimal fixed-point quantum search algorithm in a three-qubit nuclear magnetic resonance (NMR) system. Moreover, by combining the bang-bang pulses with the crusher gradients, we also demonstrate nonunitary transformations of thermal equilibrium states into effective pure states in three- as well as five-qubit NMR systems.
Coherent control of plasma dynamics by feedback-optimized wavefront manipulation
He, Z.-H.; Hou, B.; Gao, G.; Nees, J. A.; Krushelnick, K.; Thomas, A. G. R.; Lebailly, V.; Clarke, R.
2015-05-15
Plasmas generated by an intense laser pulse can support coherent structures such as large amplitude wakefield that can affect the outcome of an experiment. We investigate the coherent control of plasma dynamics by feedback-optimized wavefront manipulation using a deformable mirror. The experimental outcome is directly used as feedback in an evolutionary algorithm for optimization of the phase front of the driving laser pulse. In this paper, we applied this method to two different experiments: (i) acceleration of electrons in laser driven plasma waves and (ii) self-compression of optical pulses induced by ionization nonlinearity. The manipulation of the laser wavefront leads to orders of magnitude improvement to electron beam properties such as the peak charge, beam divergence, and transverse emittance. The demonstration of coherent control for plasmas opens new possibilities for future laser-based accelerators and their applications.
Hurtado, F J; Kaiser, A S; Zamora, B
2015-03-15
Continuous stirred tank reactors (CSTR) are widely used in wastewater treatment plants to reduce the organic matter and microorganism present in sludge by anaerobic digestion. The present study carries out a numerical analysis of the fluid dynamic behaviour of a CSTR in order to optimize the process energetically. The characterization of the sludge flow inside the digester tank, the residence time distribution and the active volume of the reactor under different criteria are determined. The effects of design and power of the mixing system on the active volume of the CSTR are analyzed. The numerical model is solved under non-steady conditions by examining the evolution of the flow during the stop and restart of the mixing system. An intermittent regime of the mixing system, which kept the active volume between 94% and 99%, is achieved. The results obtained can lead to the eventual energy optimization of the mixing system of the CSTR. PMID:25635665
Optimization of Fluid Front Dynamics in Porous Media Using Rate Control: I. Equal Mobility Fluids
Sundaryanto, Bagus; Yortsos, Yanis C.
1999-10-18
In applications involving this injection of a fluid in a porous medium to displace another fluid, a main objective is the maximization of the displacement efficiency. For a fixed arrangement of injection and production points (sources and sinks), such optimization is possible by controlling the injection rate policy. Despite its practical relevance, however, this aspect has received scant attention in the literature. In this paper, a fundamental approach based on optimal control theory, for the case when the fluids are miscible, of equal viscosity and in the absence of dispersion and gravity effects. Both homogeneous and heterogeneous porous media are considered. From a fluid dynamics viewpoint, this is a problem in the deformation of material lines in porous media, as a function of time-varying injection rates.
Coherent control of plasma dynamics by feedback-optimized wavefront manipulationa)
NASA Astrophysics Data System (ADS)
He, Z.-H.; Hou, B.; Gao, G.; Lebailly, V.; Nees, J. A.; Clarke, R.; Krushelnick, K.; Thomas, A. G. R.
2015-05-01
Plasmas generated by an intense laser pulse can support coherent structures such as large amplitude wakefield that can affect the outcome of an experiment. We investigate the coherent control of plasma dynamics by feedback-optimized wavefront manipulation using a deformable mirror. The experimental outcome is directly used as feedback in an evolutionary algorithm for optimization of the phase front of the driving laser pulse. In this paper, we applied this method to two different experiments: (i) acceleration of electrons in laser driven plasma waves and (ii) self-compression of optical pulses induced by ionization nonlinearity. The manipulation of the laser wavefront leads to orders of magnitude improvement to electron beam properties such as the peak charge, beam divergence, and transverse emittance. The demonstration of coherent control for plasmas opens new possibilities for future laser-based accelerators and their applications.
Yan, Xiaoxu; Xiao, Kang; Liang, Shuai; Lei, Ting; Liang, Peng; Xue, Tao; Yu, Kaichang; Guan, Jing; Huang, Xia
2014-11-01
Baffles are a key component of an airlift membrane bioreactor (MBR), which could enhance membrane surface shear for fouling control. In order to obtain an optimal hydraulic condition of the reactor, the effects of baffle location and size were systematically explored in this study. Computational fluid dynamics (CFD) was used to investigate the hydrodynamics in a bench-scale airlift flat sheet MBR with various baffle locations and sizes. Validated simulation results showed that side baffles were more effective in elevating membrane surface shear than front baffles. The maximum average shear stress was achieved by adjusting baffle size when both front and side baffles were installed. With the optimized baffle configuration, the shear stress was 10-30% higher than that without baffles at a same aeration intensity (specific air demand per membrane area in the range of 0-0.45m(3)m(-2)h(-1)). The effectiveness of baffles was particularly prominent at lower aeration intensities. PMID:25465790
Optimal control in nonequilibrium systems: Dynamic Riemannian geometry of the Ising model
NASA Astrophysics Data System (ADS)
Rotskoff, Grant M.; Crooks, Gavin E.
2015-12-01
A general understanding of optimal control in nonequilibrium systems would illuminate the operational principles of biological and artificial nanoscale machines. Recent work has shown that a system driven out of equilibrium by a linear response protocol is endowed with a Riemannian metric related to generalized susceptibilities, and that geodesics on this manifold are the nonequilibrium control protocols with the lowest achievable dissipation. While this elegant mathematical framework has inspired numerous studies of exactly solvable systems, no description of the thermodynamic geometry yet exists when the metric cannot be derived analytically. Herein, we numerically construct the dynamic metric of the two-dimensional Ising model in order to study optimal protocols for reversing the net magnetization.
A Dynamic Programming Algorithm for Optimal Design of Tidal Power Plants
NASA Astrophysics Data System (ADS)
Nag, B.
2013-03-01
A dynamic programming algorithm is proposed and demonstrated on a test case to determine the optimum operating schedule of a barrage tidal power plant to maximize the energy generation over a tidal cycle. Since consecutive sets of high and low tides can be predicted accurately for any tidal power plant site, this algorithm can be used to calculate the annual energy generation for different technical configurations of the plant. Thus an optimal choice of a tidal power plant design can be made from amongst different design configurations yielding the least cost of energy generation. Since this algorithm determines the optimal time of operation of sluice gate opening and turbine gates opening to maximize energy generation over a tidal cycle, it can also be used to obtain the annual schedule of operation of a tidal power plant and the minute-to-minute energy generation, for dissemination amongst power distribution utilities.
NASA Astrophysics Data System (ADS)
Xia, Shu; Ge, Xiaolin
2016-04-01
In this study, according to various grid-connected demands, the optimization scheduling models of Combined Heat and Power (CHP) units are established with three scheduling modes, which are tracking the total generation scheduling mode, tracking steady output scheduling mode and tracking peaking curve scheduling mode. In order to reduce the solution difficulty, based on the principles of modern algebraic integers, linearizing techniques are developed to handle complex nonlinear constrains of the variable conditions, and the optimized operation problem of CHP units is converted into a mixed-integer linear programming problem. Finally, with specific examples, the 96 points day ahead, heat and power supply plans of the systems are optimized. The results show that, the proposed models and methods can develop appropriate coordination heat and power optimization programs according to different grid-connected control.
The salt marsh vegetation spread dynamics simulation and prediction based on conditions optimized CA
NASA Astrophysics Data System (ADS)
Guan, Yujuan; Zhang, Liquan
2006-10-01
The biodiversity conservation and management of the salt marsh vegetation relies on processing their spatial information. Nowadays, more attentions are focused on their classification surveying and describing qualitatively dynamics based on RS images interpreted, rather than on simulating and predicting their dynamics quantitatively, which is of greater importance for managing and planning the salt marsh vegetation. In this paper, our notion is to make a dynamic model on large-scale and to provide a virtual laboratory in which researchers can run it according requirements. Firstly, the characteristic of the cellular automata was analyzed and a conclusion indicated that it was necessary for a CA model to be extended geographically under varying conditions of space-time circumstance in order to make results matched the facts accurately. Based on the conventional cellular automata model, the author introduced several new conditions to optimize it for simulating the vegetation objectively, such as elevation, growth speed, invading ability, variation and inheriting and so on. Hence the CA cells and remote sensing image pixels, cell neighbors and pixel neighbors, cell rules and nature of the plants were unified respectively. Taking JiuDuanSha as the test site, where holds mainly Phragmites australis (P.australis) community, Scirpus mariqueter (S.mariqueter) community and Spartina alterniflora (S.alterniflora) community. The paper explored the process of making simulation and predictions about these salt marsh vegetable changing with the conditions optimized CA (COCA) model, and examined the links among data, statistical models, and ecological predictions. This study exploited the potential of applying Conditioned Optimized CA model technique to solve this problem.
NASA Astrophysics Data System (ADS)
Liu, Bo; Cao, Peng; Zhu, Min; Yang, Jun; Liu, Leibo; Wei, Shaojun; Shi, Longxing
This paper presents a novel architecture design to optimize the reconfiguration process of a coarse-grained reconfigurable architecture (CGRA) called Reconfigurable Multimedia System II (REMUS-II). In REMUS-II, the tasks in multi-media applications are divided into two parts: computing-intensive tasks and control-intensive tasks. Two Reconfigurable Processor Units (RPUs) for accelerating computing-intensive tasks and a Micro-Processor Unit (µPU) for accelerating control-intensive tasks are contained in REMUS-II. As a large-scale CGRA, REMUS-II can provide satisfying solutions in terms of both efficiency and flexibility. This feature makes REMUS-II well-suited for video processing, where higher flexibility requirements are posed and a lot of computation tasks are involved. To meet the high requirement of the dynamic reconfiguration performance for multimedia applications, the reconfiguration architecture of REMUS-II should be well designed. To optimize the reconfiguration architecture of REMUS-II, a hierarchical configuration storage structure and a 3-stage reconfiguration processing structure are proposed. Furthermore, several optimization methods for configuration reusing are also introduced, to further improve the performance of reconfiguration process. The optimization methods include two aspects: the multi-target reconfiguration method and the configuration caching strategies. Experimental results showed that, with the reconfiguration architecture proposed, the performance of reconfiguration process will be improved by 4 times. Based on RTL simulation, REMUS-II can support the 1080p@32fps of H.264 HiP@Level4 and 1080p@40fps High-level MPEG-2 stream decoding at the clock frequency of 200MHz. The proposed REMUS-II system has been implemented on a TSMC 65nm process. The die size is 23.7mm2 and the estimated on-chip dynamic power is 620mW.
Solving the equation for the Iberian upwelling biogeochemical dynamics: an optimization experience
NASA Astrophysics Data System (ADS)
Reboreda, R.; Santaren, D.; Castro, C. G.; Alvarez-Salgado, X. A.; Nolasco, R.; Queiroga, H.; Dubert, J.
2012-04-01
Trying to find a set of parameters to properly reproduce the biogeochemical dynamics of the region of study is a major concern in biogeochemical ocean modelling. Model parameters are constant values introduced in the equations that calculate the time and space evolution of the state variables of the biogeochemical model. A good set of parameters allows for a better representation of the biological and chemical processes in the system, and thus to model results more approximated to reality. However, it is not a straightforward task, because many parameters are not well constrained in the literature, or they may be unknown or vary considerably between different regions. Usually, the approach to find the appropriate values is running several simulations, after some sensitivity test to individual parameters, until a satisfactory result is obtained. This may be very time consuming and quite subjective. A more systematic way to find this set of parameters has arisen over the last years by using mathematical optimization techniques. The basic principle under optimization is to minimize the difference between an observed and a simulated data series by using a cost function. We have applied an optimization technique to find an appropriate set of parameters for modelling the biogeochemical dynamics of the western Iberian shelf, off the Atlantic coast of Portugal and Galicia (NW Spain), which is characterized by a conspicuous seasonal upwelling. The ocean model is a high resolution 3D regional configuration of ROMS coupled to a N2PZD2 biogeochemical model. Results using the a priori parameters and the optimized parameters are compared and discussed. The study is the result of a multidisciplinary collaborative effort between the University of Aveiro ocean modelling group (Portugal), the ETHZ (Switzerland) and the IIM-CSIC Vigo oceanography group (Spain).
Dynamic optimization model of energy related economic planning and development for the Navajo nation
Beladi, S.A.
1983-01-01
The Navajo reservation located in portions of Arizona, New Mexico and Utah is rich in low sulfur coal deposits, ideal for strip mining operation. The Navajo Nation has been leasing the mineral resources to non-Indian enterprises for purposes of extraction. Since the early 1950s the Navajo Nation has entered into extensive coal leases with several large companies and utilities. Contracts have committed huge quantities of Navajo coal for mining. This research was directed to evaluate the shadow prices of Navajo coal and identify optimal coal extraction. An economic model of coal resource extraction over time was structured within an optimal control theory framework. The control problem was formulated as a discrete dynamic optimization problem. A comparison of the shadow prices of coal deposits derived from the dynamic model with the royalty payments the tribe receives on the basis of the present long-term lease contracts indicates that, in most cases, the tribe is paid considerably less than the amount of royalty projected by the model. Part of these discrepancies may be explained in terms of the low coal demand condition at the time of leasing and due to greater uncertainties with respect to the geologic information and other risks associated with mining operations. However, changes in the demand for coal with rigidly fixed terms of royalty rates will lead to non-optimal extraction of coal. A corrective tax scheme is suggested on the basis of the results of this research. The proposed tax per unit of coal shipped from a site is the difference between the shadow price and the present royalty rate. The estimated tax rates over time are derived.
Dynamic topology multi force particle swarm optimization algorithm and its application
NASA Astrophysics Data System (ADS)
Chen, Dongning; Zhang, Ruixing; Yao, Chengyu; Zhao, Zheyu
2016-01-01
Particle swarm optimization (PSO) algorithm is an effective bio-inspired algorithm but it has shortage of premature convergence. Researchers have made some improvements especially in force rules and population topologies. However, the current algorithms only consider a single kind of force rules and lack consideration of comprehensive improvement in both multi force rules and population topologies. In this paper, a dynamic topology multi force particle swarm optimization (DTMFPSO) algorithm is proposed in order to get better search performance. First of all, the principle of the presented multi force particle swarm optimization (MFPSO) algorithm is that different force rules are used in different search stages, which can balance the ability of global and local search. Secondly, a fitness-driven edge-changing (FE) topology based on the probability selection mechanism of roulette method is designed to cut and add edges between the particles, and the DTMFPSO algorithm is proposed by combining the FE topology with the MFPSO algorithm through concurrent evolution of both algorithm and structure in order to further improve the search accuracy. Thirdly, Benchmark functions are employed to evaluate the performance of the DTMFPSO algorithm, and test results show that the proposed algorithm is better than the well-known PSO algorithms, such as µPSO, MPSO, and EPSO algorithms. Finally, the proposed algorithm is applied to optimize the process parameters for ultrasonic vibration cutting on SiC wafer, and the surface quality of the SiC wafer is improved by 12.8% compared with the PSO algorithm in Ref. [25]. This research proposes a DTMFPSO algorithm with multi force rules and dynamic population topologies evolved simultaneously, and it has better search performance.
Integrated aerodynamic and dynamic optimization of tiltrotor wing and rotor systems
NASA Astrophysics Data System (ADS)
Orr, Stanley
Rotorcraft analysis and design must account for interdisciplinary interactions, especially between aerodynamics, structural, and dynamics responses. In this design domain, the work of disciplinary experts is segregated to a large extent. Furthermore, the design of subsystems is also segregated. In this environment it is difficult to account for interdisciplinary interactions and exploit the coupling between sub systems. This work examined the multidisciplinary nature of a tiltrotor aircraft focusing on the aerodynamic design of the rotor, and the structural and dynamic design of the rotor and wing systems. The design was considered to be in the preliminary design phase, after the basic configuration is set and before fine details of the design are defined. Attention was focused on developing an optimization problem formulation that was sufficiently complete so that optimization technologies and heuristic strategies could be developed and evaluated for tiltrotor design. Furthermore the level of detail in the analysis was consistent with the phase of design. Coupling between the aerodynamic, dynamic, and structural design was shown to be significant. Additionally, the coupling between the design of the wing and rotor systems was also significant, so that an integrated design was required. This work developed integrated design strategies for solving this design problem efficiently, while exploiting the couplings. Sum of system weights was the main objective along with vibratory rotor hub loads while hover performance, strength, frequency placement, and stability were constraints. Design variables included blade aerodynamic planform and twist as well as the details of composite D-spar blade sections, and details of composite torque-box wing sections. Cruise mode rotor speed and wing thickness were also included as design variables. A genetic algorithm based collaborative optimization was used as the solution framework for the global optimal search. The problem was
NASA Astrophysics Data System (ADS)
Davidsen, Claus; Liu, Suxia; Mo, Xingguo; Rosbjerg, Dan; Bauer-Gottwein, Peter
2014-05-01
Optimal management of conjunctive use of surface water and groundwater has been attempted with different algorithms in the literature. In this study, a hydro-economic modelling approach to optimize conjunctive use of scarce surface water and groundwater resources under uncertainty is presented. A stochastic dynamic programming (SDP) approach is used to minimize the basin-wide total costs arising from water allocations and water curtailments. Dynamic allocation problems with inclusion of groundwater resources proved to be more complex to solve with SDP than pure surface water allocation problems due to head-dependent pumping costs. These dynamic pumping costs strongly affect the total costs and can lead to non-convexity of the future cost function. The water user groups (agriculture, industry, domestic) are characterized by inelastic demands and fixed water allocation and water supply curtailment costs. As in traditional SDP approaches, one step-ahead sub-problems are solved to find the optimal management at any time knowing the inflow scenario and reservoir/aquifer storage levels. These non-linear sub-problems are solved using a genetic algorithm (GA) that minimizes the sum of the immediate and future costs for given surface water reservoir and groundwater aquifer end storages. The immediate cost is found by solving a simple linear allocation sub-problem, and the future costs are assessed by interpolation in the total cost matrix from the following time step. Total costs for all stages, reservoir states, and inflow scenarios are used as future costs to drive a forward moving simulation under uncertain water availability. The use of a GA to solve the sub-problems is computationally more costly than a traditional SDP approach with linearly interpolated future costs. However, in a two-reservoir system the future cost function would have to be represented by a set of planes, and strict convexity in both the surface water and groundwater dimension cannot be maintained
Demonstration of open-quantum-system optimal control in dynamic nuclear polarization
NASA Astrophysics Data System (ADS)
Sheldon, S.; Cory, D. G.
2015-10-01
Dynamic nuclear polarization (DNP) is used in nuclear magnetic resonance to transfer polarization from electron spins to nuclear spins. The resulting nuclear polarization enhancement can, in theory, be two or three orders of magnitude depending on the sample. In solid-state systems, however, there are competing mechanisms of DNP, which, when occurring simultaneously, reduce the net polarization enhancement of the nuclear spin. We present a simple quantum description of DNP and apply optimal control theory (OCT) with an open-quantum-system framework to design pulses that select one DNP process and suppress the others. We demonstrate experimentally an order of magnitude improvement in the DNP enhancement using OCT pulses.
Progress on optimization of the nonlinear beam dynamics in the MEIC collider rings
None, None
2015-07-13
One of the key design features of the Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab is a small beta function at the interaction point (IP) allowing one to achieve a high luminosity of up to 10^{34} cm^{-2}s^{-1}. The required strong beam focusing unavoidably causes large chromatic effects such as chromatic tune spread and beam smear at the IP, which need to be compensated. This paper reports recent progress in our development of a chromaticity correction scheme for the ion ring including optimization of dynamic aperture and momentum acceptance.
Progress on Optimization of the Nonlinear Beam Dynamics in the MEIC Collider Rings
Morozov, Vasiliy S.; Derbenev, Yaroslav S.; Lin, Fanglei; Pilat, Fulvia; Zhang, Yuhong; Cai, Y.; Nosochkov, Y. M.; Sullivan, Michael; Wang, M.-H.; Wienands, Uli
2015-09-01
One of the key design features of the Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab is a small beta function at the interaction point (IP) allowing one to achieve a high luminosity of up to 10^{34} cm^{-2}s^{-1}. The required strong beam focusing unavoidably causes large chromatic effects such as chromatic tune spread and beam smear at the IP, which need to be compensated. This paper reports recent progress in our development of a chromaticity correction scheme for the ion ring including optimization of dynamic aperture and momentum acceptance.
Ali, Hussnain; Hazrati, Oldooz; Tobey, Emily A.; Hansen, John H. L
2014-01-01
The aim of this study is to investigate the effect of Adaptive Dynamic Range Optimization (ADRO) on speech identification for cochlear implant (CI) users in adverse listening conditions. In this study, anechoic quiet, noisy, reverberant, noisy reverberant, and reverberant noisy conditions are evaluated. Two scenarios are considered when modeling the combined effects of reverberation and noise: (a) noise is added to the reverberant speech, and (b) noisy speech is reverberated. CI users were tested in different listening environments using IEEE sentences presented at 65 dB sound pressure level. No significant effect of ADRO processing on speech intelligibility was observed. PMID:25190428
Ali, Hussnain; Hazrati, Oldooz; Tobey, Emily A; Hansen, John H L
2014-09-01
The aim of this study is to investigate the effect of Adaptive Dynamic Range Optimization (ADRO) on speech identification for cochlear implant (CI) users in adverse listening conditions. In this study, anechoic quiet, noisy, reverberant, noisy reverberant, and reverberant noisy conditions are evaluated. Two scenarios are considered when modeling the combined effects of reverberation and noise: (a) noise is added to the reverberant speech, and (b) noisy speech is reverberated. CI users were tested in different listening environments using IEEE sentences presented at 65 dB sound pressure level. No significant effect of ADRO processing on speech intelligibility was observed. PMID:25190428
Optimization for Hub-and-Spoke Port Logistics Network of Dynamic Hinterland
NASA Astrophysics Data System (ADS)
Ming-Jun, Ji; Yan-Ling, Chu
The port logistics and its regional economic react on each other and develop in unison. This paper studies the Hub-and-Spoke port logistics network which is a transportation system between the sea routes and ports hinterland transport routes. An optimization model is proposed with the objective of the total transportation cost in the regional port group based on the conditions of dynamic hinterland. This paper not only ensures every port in the hub-and spoke port logistics network to achieve its maximum economic benefits, but also makes the entire system get the minimum total transportation cost in the view of quantitative point. In order to illustrate the validity of the model, the example was solved. The results show that the model is feasible. Furthermore, the competitiveness power of the port, the demarcation of hinterland and the traffic capacity are changed dynamically in the model, which is closer to the real system.
Optimal control of transient dynamics in balanced networks supports generation of complex movements.
Hennequin, Guillaume; Vogels, Tim P; Gerstner, Wulfram
2014-06-18
Populations of neurons in motor cortex engage in complex transient dynamics of large amplitude during the execution of limb movements. Traditional network models with stochastically assigned synapses cannot reproduce this behavior. Here we introduce a class of cortical architectures with strong and random excitatory recurrence that is stabilized by intricate, fine-tuned inhibition, optimized from a control theory perspective. Such networks transiently amplify specific activity states and can be used to reliably execute multidimensional movement patterns. Similar to the experimental observations, these transients must be preceded by a steady-state initialization phase from which the network relaxes back into the background state by way of complex internal dynamics. In our networks, excitation and inhibition are as tightly balanced as recently reported in experiments across several brain areas, suggesting inhibitory control of complex excitatory recurrence as a generic organizational principle in cortex. PMID:24945778
Efficiency optimization of a fast Poisson solver in beam dynamics simulation
NASA Astrophysics Data System (ADS)
Zheng, Dawei; Pöplau, Gisela; van Rienen, Ursula
2016-01-01
Calculating the solution of Poisson's equation relating to space charge force is still the major time consumption in beam dynamics simulations and calls for further improvement. In this paper, we summarize a classical fast Poisson solver in beam dynamics simulations: the integrated Green's function method. We introduce three optimization steps of the classical Poisson solver routine: using the reduced integrated Green's function instead of the integrated Green's function; using the discrete cosine transform instead of discrete Fourier transform for the Green's function; using a novel fast convolution routine instead of an explicitly zero-padded convolution. The new Poisson solver routine preserves the advantages of fast computation and high accuracy. This provides a fast routine for high performance calculation of the space charge effect in accelerators.
NASA Astrophysics Data System (ADS)
Hashim, M.; Pour, A. B.; Onn, C. H.
2014-02-01
Remote sensing technology is an important tool to analyze vegetation dynamics, quantifying vegetation fraction of Earth's agricultural and natural vegetation. In optical remote sensing analysis removing atmospheric interferences, particularly distribution of cloud contaminations, are always a critical task in the tropical climate. This paper suggests a fast and alternative approach to remove cloud and shadow contaminations for Landsat Enhanced Thematic Mapper+ (ETM+) multi temporal datasets. Band 3 and Band 4 from all the Landsat ETM+ dataset are two main spectral bands that are very crucial in this study for cloud removal technique. The Normalise difference vegetation index (NDVI) and the normalised difference soil index (NDSI) are two main derivatives derived from the datasets. Change vector analysis is used in this study to seek the vegetation dynamics. The approach developed in this study for cloud optimizing can be broadly applicable for optical remote sensing satellite data, which are seriously obscured with heavy cloud contamination in the tropical climate.
Riemannian geometric approach to human arm dynamics, movement optimization, and invariance
NASA Astrophysics Data System (ADS)
Biess, Armin; Flash, Tamar; Liebermann, Dario G.
2011-03-01
We present a generally covariant formulation of human arm dynamics and optimization principles in Riemannian configuration space. We extend the one-parameter family of mean-squared-derivative (MSD) cost functionals from Euclidean to Riemannian space, and we show that they are mathematically identical to the corresponding dynamic costs when formulated in a Riemannian space equipped with the kinetic energy metric. In particular, we derive the equivalence of the minimum-jerk and minimum-torque change models in this metric space. Solutions of the one-parameter family of MSD variational problems in Riemannian space are given by (reparametrized) geodesic paths, which correspond to movements with least muscular effort. Finally, movement invariants are derived from symmetries of the Riemannian manifold. We argue that the geometrical structure imposed on the arm’s configuration space may provide insights into the emerging properties of the movements generated by the motor system.
The importance of functional form in optimal control solutions of problems in population dynamics
Runge, M.C.; Johnson, F.A.
2002-01-01
Optimal control theory is finding increased application in both theoretical and applied ecology, and it is a central element of adaptive resource management. One of the steps in an adaptive management process is to develop alternative models of system dynamics, models that are all reasonable in light of available data, but that differ substantially in their implications for optimal control of the resource. We explored how the form of the recruitment and survival functions in a general population model for ducks affected the patterns in the optimal harvest strategy, using a combination of analytical, numerical, and simulation techniques. We compared three relationships between recruitment and population density (linear, exponential, and hyperbolic) and three relationships between survival during the nonharvest season and population density (constant, logistic, and one related to the compensatory harvest mortality hypothesis). We found that the form of the component functions had a dramatic influence on the optimal harvest strategy and the ultimate equilibrium state of the system. For instance, while it is commonly assumed that a compensatory hypothesis leads to higher optimal harvest rates than an additive hypothesis, we found this to depend on the form of the recruitment function, in part because of differences in the optimal steady-state population density. This work has strong direct consequences for those developing alternative models to describe harvested systems, but it is relevant to a larger class of problems applying optimal control at the population level. Often, different functional forms will not be statistically distinguishable in the range of the data. Nevertheless, differences between the functions outside the range of the data can have an important impact on the optimal harvest strategy. Thus, development of alternative models by identifying a single functional form, then choosing different parameter combinations from extremes on the likelihood
A synergic simulation-optimization approach for analyzing biomolecular dynamics in living organisms.
Sadegh Zadeh, Kouroush
2011-01-01
A synergic duo simulation-optimization approach was developed and implemented to study protein-substrate dynamics and binding kinetics in living organisms. The forward problem is a system of several coupled nonlinear partial differential equations which, with a given set of kinetics and diffusion parameters, can provide not only the commonly used bleached area-averaged time series in fluorescence microscopy experiments but more informative full biomolecular/drug space-time series and can be successfully used to study dynamics of both Dirac and Gaussian fluorescence-labeled biomacromolecules in vivo. The incomplete Cholesky preconditioner was coupled with the finite difference discretization scheme and an adaptive time-stepping strategy to solve the forward problem. The proposed approach was validated with analytical as well as reference solutions and used to simulate dynamics of GFP-tagged glucocorticoid receptor (GFP-GR) in mouse cancer cell during a fluorescence recovery after photobleaching experiment. Model analysis indicates that the commonly practiced bleach spot-averaged time series is not an efficient approach to extract physiological information from the fluorescence microscopy protocols. It was recommended that experimental biophysicists should use full space-time series, resulting from experimental protocols, to study dynamics of biomacromolecules and drugs in living organisms. It was also concluded that in parameterization of biological mass transfer processes, setting the norm of the gradient of the penalty function at the solution to zero is not an efficient stopping rule to end the inverse algorithm. Theoreticians should use multi-criteria stopping rules to quantify model parameters by optimization. PMID:21106190
NASA Astrophysics Data System (ADS)
Balian, S. J.; Liu, Ren-Bao; Monteiro, T. S.
2015-06-01
There are two distinct techniques of proven effectiveness for extending the coherence lifetime of spin qubits in environments of other spins. One is dynamical decoupling, whereby the qubit is subjected to a carefully timed sequence of control pulses; the other is tuning the qubit towards "optimal working points" (OWPs), which are sweet spots for reduced decoherence in magnetic fields. By means of quantum many-body calculations, we investigate the effects of dynamical decoupling pulse sequences far from and near OWPs for a central donor qubit subject to decoherence from a nuclear spin bath. Key to understanding the behavior is to analyze the degree of suppression of the usually dominant contribution from independent pairs of flip-flopping spins within the many-body quantum bath. We find that to simulate recently measured Hahn echo decays at OWPs (lowest-order dynamical decoupling), one must consider clusters of three interacting spins since independent pairs do not even give finite-T2 decay times. We show that while operating near OWPs, dynamical decoupling sequences require hundreds of pulses for a single order of magnitude enhancement of T2, in contrast to regimes far from OWPs, where only about 10 pulses are required.
Kumar, Navneet; Raj Chelliah, Thanga; Srivastava, S P
2015-07-01
Model Based Control (MBC) is one of the energy optimal controllers used in vector-controlled Induction Motor (IM) for controlling the excitation of motor in accordance with torque and speed. MBC offers energy conservation especially at part-load operation, but it creates ripples in torque and speed during load transition, leading to poor dynamic performance of the drive. This study investigates the opportunity for improving dynamic performance of a three-phase IM operating with MBC and proposes three control schemes: (i) MBC with a low pass filter (ii) torque producing current (iqs) injection in the output of speed controller (iii) Variable Structure Speed Controller (VSSC). The pre and post operation of MBC during load transition is also analyzed. The dynamic performance of a 1-hp, three-phase squirrel-cage IM with mine-hoist load diagram is tested. Test results are provided for the conventional field-oriented (constant flux) control and MBC (adjustable excitation) with proposed schemes. The effectiveness of proposed schemes is also illustrated for parametric variations. The test results and subsequent analysis confer that the motor dynamics improves significantly with all three proposed schemes in terms of overshoot/undershoot peak amplitude of torque and DC link power in addition to energy saving during load transitions. PMID:25820090
Uzawa, H
1996-01-01
In the present paper, the endogenous theory of time preference is extended to analyze those processes of capital accumulation and changes in environmental quality that are dynamically optimum with respect to the intertemporal preference ordering of the representative individual of the society in question. The analysis is carried out within the conceptual framework of the dynamic analysis of environmental quality, as has been developed by a number of economists for specific cases of the fisheries and forestry commons. The duality principles on intertemporal preference ordering and capital accumulation are extended to the situation where processes of capital accumulation are subject to the Penrose effect, which exhibit the marginal decrease in the effect of investment in private and social overhead capital upon the rate at which capital is accumulated. The dynamically optimum time-path of economic activities is characterized by the proportionality of two systems of imputed, or efficient, prices, one associated with the given intertemporal ordering and another associated with processes of accumulation of private and social overhead capital. It is particularly shown that the dynamically optimality of the processes of capital accumulation involving both private and social overhead capital is characterized by the conditions that are identical with those involving private capital, with the role of social overhead capital only indirectly exhibited. PMID:11607685
Dynamic optimization for commercialization of renewable energy: an example for solar photovoltaics
Richards, Kenneth, R.; Ashton, W. Bradley; McVeigh, James
2000-04-21
There are several studies of optimal allocation of research and development resources over the time horizon of a project. The primary result of the basic noncompetitive models in this literature is that the optimal strategy is to choose a research intensity and ending date for the project such that the marginal costs of accelerating the project equals the marginal benefits of introducing the product sooner. This literature provides useful insights for the government planner who must allocate R&D resources for renewable energy development. However, several characteristics distinguish the process from the typical R&D planning problem. Specifically, with PV development, where the goal is to maximize the net present value of activities leading to cost reduction in commercial modules, there are (1) significant lag-times between investment in laboratory research and resulting effects in the marketplace, (2) a learning curve associated with the manufacturing process that also reduces the cost s of PV modules, (3) interim benefits from technical advances, (4) no clear end point to the R&D process, but rather a tapering off of the value of advances in technical efficiency, (5) significant uncertainty in the R&D process, (6) a family of products rather than an individual technology, (7) a co-mingling of government and private resources with implications for efficient management. A dynamic model is developed to characterize the optimal intensity and timing of government and private resource allocation for basic research in improving the technical efficiency of cells and subsidies to the manufacturing process to encourage progress on the learning curve. A series of propositions regarding optimal paths for each are examined. While the research is purely analytical, the results are useful for conceptualizing the R&D planning process. They also provide a basis for a numerical study that can address whether current levels and historic patterns of funding are optimal.
Optimization of stomatal conductance for maximum carbon gain under dynamic soil moisture
NASA Astrophysics Data System (ADS)
Manzoni, Stefano; Vico, Giulia; Palmroth, Sari; Porporato, Amilcare; Katul, Gabriel
2013-12-01
Optimization theories explain a variety of forms and functions in plants. At the leaf scale, it is often hypothesized that carbon gain is maximized, thus providing a quantifiable objective for a mathematical definition of optimality conditions. Eco-physiological trade-offs and limited resource availability introduce natural bounds to this optimization process. In particular, carbon uptake from the atmosphere is inherently linked to water losses from the soil as water is taken up by roots and evaporated. Hence, water availability in soils constrains the amount of carbon that can be taken up and assimilated into new biomass. The problem of maximizing photosynthesis at a given water availability by modifying stomatal conductance, the plant-controlled variable to be optimized, has been traditionally formulated for short time intervals over which soil moisture changes can be neglected. This simplification led to a mathematically open solution, where the undefined Lagrange multiplier of the optimization (equivalent to the marginal water use efficiency, λ) is then heuristically determined via data fitting. Here, a set of models based on different assumptions that account for soil moisture dynamics over an individual dry-down are proposed so as to provide closed analytical expressions for the carbon gain maximization problem. These novel solutions link the observed variability in λ over time, across soil moisture changes, and at different atmospheric CO2 concentrations to water use strategies ranging from intensive, in which all soil water is consumed by the end of the dry-down period, to more conservative, in which water stress is avoided by reducing transpiration.
Dynamic nuclear polarization and optimal control spatial-selective 13C MRI and MRS
NASA Astrophysics Data System (ADS)
Vinding, Mads S.; Laustsen, Christoffer; Maximov, Ivan I.; Søgaard, Lise Vejby; Ardenkjær-Larsen, Jan H.; Nielsen, Niels Chr.
2013-02-01
Aimed at 13C metabolic magnetic resonance imaging (MRI) and spectroscopy (MRS) applications, we demonstrate that dynamic nuclear polarization (DNP) may be combined with optimal control 2D spatial selection to simultaneously obtain high sensitivity and well-defined spatial restriction. This is achieved through the development of spatial-selective single-shot spiral-readout MRI and MRS experiments combined with dynamic nuclear polarization hyperpolarized [1-13C]pyruvate on a 4.7 T pre-clinical MR scanner. The method stands out from related techniques by facilitating anatomic shaped region-of-interest (ROI) single metabolite signals available for higher image resolution or single-peak spectra. The 2D spatial-selective rf pulses were designed using a novel Krotov-based optimal control approach capable of iteratively fast providing successful pulse sequences in the absence of qualified initial guesses. The technique may be important for early detection of abnormal metabolism, monitoring disease progression, and drug research.
Optimization of dynamic roughness elements for reducing drag in a laminar boundary layer
NASA Astrophysics Data System (ADS)
Sayadi, Taraneh; Sayadi, Peter
2015-11-01
Roughness elements can serve as controllers in both laminar and turbulent regimes to, for example, reduce the skin friction or drag. In this study, adjoint-based optimization is employed to extract the optimal shape of roughness elements for reducing drag, in a laminar setting, given an initial condition. The roughness elements considered here are of the ``dynamic'' type, varying both in space and time, which allows control over the spatial distribution of the roughness but also the inherent timescales of the flow. Dynamic roughness is modeled here using the linearized boundary conditions previously introduced by McKeon (2008), where the no-slip and impermeability boundary conditions are replaced by stream-wise and wall-normal distributions at the wall. The adjoint equation is then implemented using the discretized approach by Fosas et al. (2012). This approach is particularly efficient, since the linearized operators are computed simply by using the local differentiation technique, without explicitly forming the resulting matrices for both forward and adjoint operators. Using the described framework we investigate the effect of the initial condition on the spatial distribution of the roughness elements and their variation in time as the drag coefficient is minimized.
Dynamic Allocation of SPM Based on Time-Slotted Cache Conflict Graph for System Optimization
NASA Astrophysics Data System (ADS)
Wu, Jianping; Ling, Ming; Zhang, Yang; Mei, Chen; Wang, Huan
This paper proposes a novel dynamic Scratch-pad Memory allocation strategy to optimize the energy consumption of the memory sub-system. Firstly, the whole program execution process is sliced into several time slots according to the temporal dimension; thereafter, a Time-Slotted Cache Conflict Graph (TSCCG) is introduced to model the behavior of Data Cache (D-Cache) conflicts within each time slot. Then, Integer Nonlinear Programming (INP) is implemented, which can avoid time-consuming linearization process, to select the most profitable data pages. Virtual Memory System (VMS) is adopted to remap those data pages, which will cause severe Cache conflicts within a time slot, to SPM. In order to minimize the swapping overhead of dynamic SPM allocation, a novel SPM controller with a tightly coupled DMA is introduced to issue the swapping operations without CPU's intervention. Last but not the least, this paper discusses the fluctuation of system energy profit based on different MMU page size as well as the Time Slot duration quantitatively. According to our design space exploration, the proposed method can optimize all of the data segments, including global data, heap and stack data in general, and reduce the total energy consumption by 27.28% on average, up to 55.22% with a marginal performance promotion. And comparing to the conventional static CCG (Cache Conflicts Graph), our approach can obtain 24.7% energy profit on average, up to 30.5% with a sight boost in performance.
Fluid-Dynamic Optimal Design of Helical Vascular Graft for Stenotic Disturbed Flow
Ha, Hojin; Hwang, Dongha; Choi, Woo-Rak; Baek, Jehyun; Lee, Sang Joon
2014-01-01
Although a helical configuration of a prosthetic vascular graft appears to be clinically beneficial in suppressing thrombosis and intimal hyperplasia, an optimization of a helical design has yet to be achieved because of the lack of a detailed understanding on hemodynamic features in helical grafts and their fluid dynamic influences. In the present study, the swirling flow in a helical graft was hypothesized to have beneficial influences on a disturbed flow structure such as stenotic flow. The characteristics of swirling flows generated by helical tubes with various helical pitches and curvatures were investigated to prove the hypothesis. The fluid dynamic influences of these helical tubes on stenotic flow were quantitatively analysed by using a particle image velocimetry technique. Results showed that the swirling intensity and helicity of the swirling flow have a linear relation with a modified Germano number (Gn*) of the helical pipe. In addition, the swirling flow generated a beneficial flow structure at the stenosis by reducing the size of the recirculation flow under steady and pulsatile flow conditions. Therefore, the beneficial effects of a helical graft on the flow field can be estimated by using the magnitude of Gn*. Finally, an optimized helical design with a maximum Gn* was suggested for the future design of a vascular graft. PMID:25360705
Dynamic Response and Optimal Design of Curved Metallic Sandwich Panels under Blast Loading
Yang, Shu; Han, Shou-Hong; Lu, Zhen-Hua
2014-01-01
It is important to understand the effect of curvature on the blast response of curved structures so as to seek the optimal configurations of such structures with improved blast resistance. In this study, the dynamic response and protective performance of a type of curved metallic sandwich panel subjected to air blast loading were examined using LS-DYNA. The numerical methods were validated using experimental data in the literature. The curved panel consisted of an aluminum alloy outer face and a rolled homogeneous armour (RHA) steel inner face in addition to a closed-cell aluminum foam core. The results showed that the configuration of a “soft” outer face and a “hard” inner face worked well for the curved sandwich panel against air blast loading in terms of maximum deflection (MaxD) and energy absorption. The panel curvature was found to have a monotonic effect on the specific energy absorption (SEA) and a nonmonotonic effect on the MaxD of the panel. Based on artificial neural network (ANN) metamodels, multiobjective optimization designs of the panel were carried out. The optimization results revealed the trade-off relationships between the blast-resistant and the lightweight objectives and showed the great use of Pareto front in such design circumstances. PMID:25126606
NASA Technical Reports Server (NTRS)
Nguyen, Nhan
2013-01-01
This paper presents the optimal control modification for linear uncertain plants. The Lyapunov analysis shows that the modification parameter has a limiting value depending on the nature of the uncertainty. The optimal control modification exhibits a linear asymptotic property that enables it to be analyzed in a linear time invariant framework for linear uncertain plants. The linear asymptotic property shows that the closed-loop plants in the limit possess a scaled input-output mapping. Using this property, we can derive an analytical closed-loop transfer function in the limit as the adaptive gain tends to infinity. The paper revisits the Rohrs counterexample problem that illustrates the nature of non-robustness of model-reference adaptive control in the presence of unmodeled dynamics. An analytical approach is developed to compute exactly the modification parameter for the optimal control modification that stabilizes the plant in the Rohrs counterexample. The linear asymptotic property is also used to address output feedback adaptive control for non-minimum phase plants with a relative degree 1.
NASA Astrophysics Data System (ADS)
Fang, Jun; Gao, Xingyu; Song, Haifeng; Wang, Han
2016-06-01
Wavefunction extrapolation greatly reduces the number of self-consistent field (SCF) iterations and thus the overall computational cost of Born-Oppenheimer molecular dynamics (BOMD) that is based on the Kohn-Sham density functional theory. Going against the intuition that the higher order of extrapolation possesses a better accuracy, we demonstrate, from both theoretical and numerical perspectives, that the extrapolation accuracy firstly increases and then decreases with respect to the order, and an optimal extrapolation order in terms of minimal number of SCF iterations always exists. We also prove that the optimal order tends to be larger when using larger MD time steps or more strict SCF convergence criteria. By example BOMD simulations of a solid copper system, we show that the optimal extrapolation order covers a broad range when varying the MD time step or the SCF convergence criterion. Therefore, we suggest the necessity for BOMD simulation packages to open the user interface and to provide more choices on the extrapolation order. Another factor that may influence the extrapolation accuracy is the alignment scheme that eliminates the discontinuity in the wavefunctions with respect to the atomic or cell variables. We prove the equivalence between the two existing schemes, thus the implementation of either of them does not lead to essential difference in the extrapolation accuracy.
Time-optimal path planning in dynamic flows using level set equations: theory and schemes
NASA Astrophysics Data System (ADS)
Lolla, Tapovan; Lermusiaux, Pierre F. J.; Ueckermann, Mattheus P.; Haley, Patrick J.
2014-09-01
We develop an accurate partial differential equation-based methodology that predicts the time-optimal paths of autonomous vehicles navigating in any continuous, strong, and dynamic ocean currents, obviating the need for heuristics. The goal is to predict a sequence of steering directions so that vehicles can best utilize or avoid currents to minimize their travel time. Inspired by the level set method, we derive and demonstrate that a modified level set equation governs the time-optimal path in any continuous flow. We show that our algorithm is computationally efficient and apply it to a number of experiments. First, we validate our approach through a simple benchmark application in a Rankine vortex flow for which an analytical solution is available. Next, we apply our methodology to more complex, simulated flow fields such as unsteady double-gyre flows driven by wind stress and flows behind a circular island. These examples show that time-optimal paths for multiple vehicles can be planned even in the presence of complex flows in domains with obstacles. Finally, we present and support through illustrations several remarks that describe specific features of our methodology.
Time-optimal path planning in dynamic flows using level set equations: theory and schemes
NASA Astrophysics Data System (ADS)
Lolla, Tapovan; Lermusiaux, Pierre F. J.; Ueckermann, Mattheus P.; Haley, Patrick J.
2014-10-01
We develop an accurate partial differential equation-based methodology that predicts the time-optimal paths of autonomous vehicles navigating in any continuous, strong, and dynamic ocean currents, obviating the need for heuristics. The goal is to predict a sequence of steering directions so that vehicles can best utilize or avoid currents to minimize their travel time. Inspired by the level set method, we derive and demonstrate that a modified level set equation governs the time-optimal path in any continuous flow. We show that our algorithm is computationally efficient and apply it to a number of experiments. First, we validate our approach through a simple benchmark application in a Rankine vortex flow for which an analytical solution is available. Next, we apply our methodology to more complex, simulated flow fields such as unsteady double-gyre flows driven by wind stress and flows behind a circular island. These examples show that time-optimal paths for multiple vehicles can be planned even in the presence of complex flows in domains with obstacles. Finally, we present and support through illustrations several remarks that describe specific features of our methodology.
Using stochastic dual dynamic programming in problems with multiple near-optimal solutions
NASA Astrophysics Data System (ADS)
Rougé, Charles; Tilmant, Amaury
2016-05-01
Stochastic dual dynamic programming (SDDP) is one of the few algorithmic solutions available to optimize large-scale water resources systems while explicitly considering uncertainty. This paper explores the consequences of, and proposes a solution to, the existence of multiple near-optimal solutions (MNOS) when using SDDP for mid or long-term river basin management. These issues arise when the optimization problem cannot be properly parametrized due to poorly defined and/or unavailable data sets. This work shows that when MNOS exists, (1) SDDP explores more than one solution trajectory in the same run, suggesting different decisions in distinct simulation years even for the same point in the state-space, and (2) SDDP is shown to be very sensitive to even minimal variations of the problem setting, e.g., initial conditions—we call this "algorithmic chaos." Results that exhibit such sensitivity are difficult to interpret. This work proposes a reoptimization method, which simulates system decisions by periodically applying cuts from one given year from the SDDP run. Simulation results obtained through this reoptimization approach are steady state solutions, meaning that their probability distributions are stable from year to year.
Dynamic response and optimal design of curved metallic sandwich panels under blast loading.
Qi, Chang; Yang, Shu; Yang, Li-Jun; Han, Shou-Hong; Lu, Zhen-Hua
2014-01-01
It is important to understand the effect of curvature on the blast response of curved structures so as to seek the optimal configurations of such structures with improved blast resistance. In this study, the dynamic response and protective performance of a type of curved metallic sandwich panel subjected to air blast loading were examined using LS-DYNA. The numerical methods were validated using experimental data in the literature. The curved panel consisted of an aluminum alloy outer face and a rolled homogeneous armour (RHA) steel inner face in addition to a closed-cell aluminum foam core. The results showed that the configuration of a "soft" outer face and a "hard" inner face worked well for the curved sandwich panel against air blast loading in terms of maximum deflection (MaxD) and energy absorption. The panel curvature was found to have a monotonic effect on the specific energy absorption (SEA) and a nonmonotonic effect on the MaxD of the panel. Based on artificial neural network (ANN) metamodels, multiobjective optimization designs of the panel were carried out. The optimization results revealed the trade-off relationships between the blast-resistant and the lightweight objectives and showed the great use of Pareto front in such design circumstances. PMID:25126606
NASA Astrophysics Data System (ADS)
Asadzadeh, Masoud; Tolson, Bryan
2013-12-01
Pareto archived dynamically dimensioned search (PA-DDS) is a parsimonious multi-objective optimization algorithm with only one parameter to diminish the user's effort for fine-tuning algorithm parameters. This study demonstrates that hypervolume contribution (HVC) is a very effective selection metric for PA-DDS and Monte Carlo sampling-based HVC is very effective for higher dimensional problems (five objectives in this study). PA-DDS with HVC performs comparably to algorithms commonly applied to water resources problems (ɛ-NSGAII and AMALGAM under recommended parameter values). Comparisons on the CEC09 competition show that with sufficient computational budget, PA-DDS with HVC performs comparably to 13 benchmark algorithms and shows improved relative performance as the number of objectives increases. Lastly, it is empirically demonstrated that the total optimization runtime of PA-DDS with HVC is dominated (90% or higher) by solution evaluation runtime whenever evaluation exceeds 10 seconds/solution. Therefore, optimization algorithm runtime associated with the unbounded archive of PA-DDS is negligible in solving computationally intensive problems.
Önal, Hayri; Woodford, Philip; Tweddale, Scott A; Westervelt, James D; Chen, Mengye; Dissanayake, Sahan T M; Pitois, Gauthier
2016-04-15
Intensive use of military vehicles on Department of Defense training installations causes deterioration in ground surface quality. Degraded lands restrict the scheduled training activities and jeopardize personnel and equipment safety. We present a simulation-optimization approach and develop a discrete dynamic optimization model to determine an optimum land restoration for a given training schedule and availability of financial resources to minimize the adverse effects of training on military lands. The model considers weather forecasts, scheduled maneuver exercises, and unique qualities and importance of the maneuver areas. An application of this approach to Fort Riley, Kansas, shows that: i) starting with natural conditions, the total amount of training damages would increase almost linearly and exceed a quarter of the training area and 228 gullies would be formed (mostly in the intensive training areas) if no restoration is carried out over 10 years; ii) assuming an initial state that resembles the present conditions, sustaining the landscape requires an annual restoration budget of $957 thousand; iii) targeting a uniform distribution of maneuver damages would increase the total damages and adversely affect the overall landscape quality, therefore a selective restoration strategy may be preferred; and iv) a proactive restoration strategy would be optimal where land degradations are repaired before they turn into more severe damages that are more expensive to repair and may pose a higher training risk. The last finding can be used as a rule-of-thumb for land restoration efforts in other installations with similar characteristics. PMID:26895721
NASA Astrophysics Data System (ADS)
Roslund, Jonathan; Roth, Matthias; Guyon, Laurent; Boutou, Véronique; Courvoisier, Francois; Wolf, Jean-Pierre; Rabitz, Herschel
2011-01-01
Fundamental molecular selectivity limits are probed by exploiting laser-controlled quantum interferences for the creation of distinct spectral signatures in two flavin molecules, erstwhile nearly indistinguishable via steady-state methods. Optimal dynamic discrimination (ODD) uses optimally shaped laser fields to transiently amplify minute molecular variations that would otherwise go unnoticed with linear absorption and fluorescence techniques. ODD is experimentally demonstrated by combining an optimally shaped UV pump pulse with a time-delayed, fluorescence-depleting IR pulse for discrimination amongst riboflavin and flavin mononucleotide in aqueous solution, which are structurally and spectroscopically very similar. Closed-loop, adaptive pulse shaping discovers a set of UV pulses that induce disparate responses from the two flavins and allows for concomitant flavin discrimination of ˜16σ. Additionally, attainment of ODD permits quantitative, analytical detection of the individual constituents in a flavin mixture. The successful implementation of ODD on quantum systems of such high complexity bodes well for the future development of the field and the use of ODD techniques in a variety of demanding practical applications.
NASA Astrophysics Data System (ADS)
Hai-yang, Zhao; Min-qiang, Xu; Jin-dong, Wang; Yong-bo, Li
2015-05-01
In order to improve the accuracy of dynamics response simulation for mechanism with joint clearance, a parameter optimization method for planar joint clearance contact force model was presented in this paper, and the optimized parameters were applied to the dynamics response simulation for mechanism with oversized joint clearance fault. By studying the effect of increased clearance on the parameters of joint clearance contact force model, the relation of model parameters between different clearances was concluded. Then the dynamic equation of a two-stage reciprocating compressor with four joint clearances was developed using Lagrange method, and a multi-body dynamic model built in ADAMS software was used to solve this equation. To obtain a simulated dynamic response much closer to that of experimental tests, the parameters of joint clearance model, instead of using the designed values, were optimized by genetic algorithms approach. Finally, the optimized parameters were applied to simulate the dynamics response of model with oversized joint clearance fault according to the concluded parameter relation. The dynamics response of experimental test verified the effectiveness of this application.
Combating obesity through healthy eating behavior: a call for system dynamics optimization.
Abidin, Norhaslinda Zainal; Mamat, Mustafa; Dangerfield, Brian; Zulkepli, Jafri Haji; Baten, Md Azizul; Wibowo, Antoni
2014-01-01
Poor eating behavior has been identified as one of the core contributory factors of the childhood obesity epidemic. The consequences of obesity on numerous aspects of life are thoroughly explored in the existing literature. For instance, evidence shows that obesity is linked to incidences of diseases such as heart disease, type-2 diabetes, and some cancers, as well as psychosocial problems. To respond to the increasing trends in the UK, in 2008 the government set a target to reverse the prevalence of obesity (POB) back to 2000 levels by 2020. This paper will outline the application of system dynamics (SD) optimization to simulate the effect of changes in the eating behavior of British children (aged 2 to 15 years) on weight and obesity. This study also will identify how long it will take to achieve the government's target. This paper proposed a simulation model called Intervention Childhood Obesity Dynamics (ICOD) by focusing the interrelations between various strands of knowledge in one complex human weight regulation system. The model offers distinct insights into the dynamics by capturing the complex interdependencies from the causal loop and feedback structure, with the intention to better understand how eating behaviors influence children's weight, body mass index (BMI), and POB measurement. This study proposed a set of equations that are revised from the original (baseline) equations. The new functions are constructed using a RAMP function of linear decrement in portion size and number of meal variables from 2013 until 2020 in order to achieve the 2020 desired target. Findings from the optimization analysis revealed that the 2020 target won't be achieved until 2026 at the earliest, six years late. Thus, the model suggested that a longer period may be needed to significantly reduce obesity in this population. PMID:25502170
Combating Obesity through Healthy Eating Behavior: A Call for System Dynamics Optimization
Zainal Abidin, Norhaslinda; Mamat, Mustafa; Dangerfield, Brian; Zulkepli, Jafri Haji; Baten, Md. Azizul; Wibowo, Antoni
2014-01-01
Poor eating behavior has been identified as one of the core contributory factors of the childhood obesity epidemic. The consequences of obesity on numerous aspects of life are thoroughly explored in the existing literature. For instance, evidence shows that obesity is linked to incidences of diseases such as heart disease, type-2 diabetes, and some cancers, as well as psychosocial problems. To respond to the increasing trends in the UK, in 2008 the government set a target to reverse the prevalence of obesity (POB) back to 2000 levels by 2020. This paper will outline the application of system dynamics (SD) optimization to simulate the effect of changes in the eating behavior of British children (aged 2 to 15 years) on weight and obesity. This study also will identify how long it will take to achieve the government’s target. This paper proposed a simulation model called Intervention Childhood Obesity Dynamics (ICOD) by focusing the interrelations between various strands of knowledge in one complex human weight regulation system. The model offers distinct insights into the dynamics by capturing the complex interdependencies from the causal loop and feedback structure, with the intention to better understand how eating behaviors influence children’s weight, body mass index (BMI), and POB measurement. This study proposed a set of equations that are revised from the original (baseline) equations. The new functions are constructed using a RAMP function of linear decrement in portion size and number of meal variables from 2013 until 2020 in order to achieve the 2020 desired target. Findings from the optimization analysis revealed that the 2020 target won’t be achieved until 2026 at the earliest, six years late. Thus, the model suggested that a longer period may be needed to significantly reduce obesity in this population. PMID:25502170
Optimization of fluid front dynamics in porous media using rate control. I. Equal mobility fluids
Sudaryanto, Bagus; Yortsos, Yannis C.
2000-07-01
In applications involving the injection of a fluid in a porous medium to displace another fluid, a main objective is the maximization of the displacement efficiency. For a fixed arrangement of injection and production points (sources and sinks), such optimization is possible by controling the injection rate policy. Despite its practical relevance, however, this aspect has received scant attention in the literature. In this paper, we provide a fundamental approach based on optimal control theory, for the simplified case when the fluids are miscible, of equal viscosity, and in the absence of dispersion and gravity effects. Both homogeneous and heterogeneous porous media are considered. From a fluid dynamics viewpoint, this is a problem in the deformation of material lines in porous media, as a function of time-varying injection rates. It is shown that the optimal injection policy that maximizes the displacement efficiency, at the time of arrival of the injected fluid, is of the ''bang-bang'' type, in which the rates take their extreme values in the range allowed. This result applies to both homogeneous and heterogeneous media. Examples in simple geometries and for various constraints are shown, illustrating the efficiency improvement over the conventional approach of constant rate injection. In the heterogeneous case, the effect of the permeability heterogeneity, particularly its spatial correlation structure, on diverting the flow paths, is analyzed. It is shown that bang-bang injection remains the optimal approach, compared to constant rate, particularly if they were both designed under the assumption that the medium was homogeneous. Experiments in a homogeneous Hele-Shaw cell are found to be in good agreement with the theory. (c) 2000 American Institute of Physics.
NASA Astrophysics Data System (ADS)
Kollet, S. J.
2014-12-01
Theories of optimality and self-organization are appealing when dealing with non-linear systems, because based on first principles of thermodynamic these theories may lead to an intuitive interpretation and prediction of absolute values, directions, and interactions of gradients and fluxes, and universal inference laws for effective conductances. In this context, for example, the maximum entropy production principle received attention, because of its foundation in non-equilibrium thermodynamics, which appears to be useful in e.g., eco-hydrologic and atmospheric applications. A number of studies successfully applied this principle in the optimization of conductances in simplified and well-mixed open systems with external (periodic) forcing. In support-scale simulations of a variably saturated hillslope, the study presented here relaxes major simplifying assumptions by applying a realistic, arid atmospheric time series in spinup simulations to create a dynamic equilibrium utilizing the integrated hydrologic model ParFlow-CLM. The simulated hillslope exhibits time-varying internal circulation patterns due to the periodic atmospheric forcing, topography, and also heterogeneity by utilizing and optimizing all degrees of freedom provided by the soil-water retention relationship and free-moving water table. Because of the extreme non-linearity of variably saturated flow under arid climate conditions, the system is never well mixed and optimality principles relying on time-integrated gradients and fluxes do not appear to be applicable in the currently available theoretical framework. Here, integrated support-scale simulations may be useful in deriving novel theories for the application to real systems in future.
Trajectory optimization for dynamic couch rotation during volumetric modulated arc radiotherapy
NASA Astrophysics Data System (ADS)
Smyth, Gregory; Bamber, Jeffrey C.; Evans, Philip M.; Bedford, James L.
2013-11-01
Non-coplanar radiation beams are often used in three-dimensional conformal and intensity modulated radiotherapy to reduce dose to organs at risk (OAR) by geometric avoidance. In volumetric modulated arc radiotherapy (VMAT) non-coplanar geometries are generally achieved by applying patient couch rotations to single or multiple full or partial arcs. This paper presents a trajectory optimization method for a non-coplanar technique, dynamic couch rotation during VMAT (DCR-VMAT), which combines ray tracing with a graph search algorithm. Four clinical test cases (partial breast, brain, prostate only, and prostate and pelvic nodes) were used to evaluate the potential OAR sparing for trajectory-optimized DCR-VMAT plans, compared with standard coplanar VMAT. In each case, ray tracing was performed and a cost map reflecting the number of OAR voxels intersected for each potential source position was generated. The least-cost path through the cost map, corresponding to an optimal DCR-VMAT trajectory, was determined using Dijkstra’s algorithm. Results show that trajectory optimization can reduce dose to specified OARs for plans otherwise comparable to conventional coplanar VMAT techniques. For the partial breast case, the mean heart dose was reduced by 53%. In the brain case, the maximum lens doses were reduced by 61% (left) and 77% (right) and the globes by 37% (left) and 40% (right). Bowel mean dose was reduced by 15% in the prostate only case. For the prostate and pelvic nodes case, the bowel V50 Gy and V60 Gy were reduced by 9% and 45% respectively. Future work will involve further development of the algorithm and assessment of its performance over a larger number of cases in site-specific cohorts.
Observability-Based Approach to Design, Analysis and Optimization of Dynamical Systems
NASA Astrophysics Data System (ADS)
Alaeddini, Atiye
The present dissertation aims to use the coupling between actuation and sensing in nonlinear systems to alternatively design a set of feasible control policies, to find the minimum number of sensors, or to find an optimal sensors configuration. Feasibility, here, means a combination of sensory system and control policy which guarantees observability. In some cases the optimality of the obtained solution is also considered. In some nonlinear systems, full observability requires active sensing, and will be shown how control policies that guarantee observability can be obtained by considering the geometry of the system dynamics. The observability matrix is used to test observability, whereas for the optimization problem observability Gramian matrix is used. This dissertation also considers the stability in designing controllers. The problem of designing a stabilizing control policy for a control-affine nonlinear system is addressed. The effect of time-varying control on the observability is investigated and shown to potentially improve the system observability. A particular application of the techniques considered here is the problem of designing network sensing and topology based on the observability criteria. The goal is to develop a protocol for the network which guarantees privacy. Furthermore, given a network of connected agents, we would like to determine which nodes should be observed to maximize information about the entire network. This dissertation begins with theoretical basis then moves towards applications of the theory. The first application is navigation of an autonomous ground robot with limited inertial sensing, motivated by the visuomotor system of insects. The second application is the problem of detecting an epidemic disease, which demonstrates design of an observability-based optimal network.
Bouncing between model and data: stability, passivity, and optimality in hybrid dynamics.
Ronsse, Renaud; Sternad, Dagmar
2010-11-01
Rhythmically bouncing a ball with a racket is a seemingly simple task, but it poses all the challenges critical for coordinative behavior: perceiving the ball's trajectory to adapt position and velocity of the racket for the next ball contact. To gain insight into the underlying control strategies, the authors conducted a series of studies that tested models with experimental data, with an emphasis on deriving model-based hypotheses and trying to falsify them. Starting with a simple dynamical model of the racket and ball interactions, stability analyses showed that open-loop dynamics affords dynamical stability, such that small perturbations do not require corrections. To obtain this passive stability, the ball has to be impacted with negative acceleration--a strategy that subjects adopted in a variety of conditions at steady state. However, experimental tests that applied perturbations revealed that after perturbations, subjects applied active perceptually guided corrections to reestablish steady state faster than by relying on the passive model's relaxation alone. Hence, the authors derived a model with active control based on optimality principles that considered each impact as a separate reaching-like movement. This model captured some additional features of the racket trajectory but failed to predict more fine-grained aspects of performance. The authors proceed to present a new model that accounts not only for fine-grained behavior but also reconciles passive and active control approaches with new predictions that will be put to test in the next set of experiments. PMID:21184357
Export dynamics as an optimal growth problem in the network of global economy.
Caraglio, Michele; Baldovin, Fulvio; Stella, Attilio L
2016-01-01
We analyze export data aggregated at world global level of 219 classes of products over a period of 39 years. Our main goal is to set up a dynamical model to identify and quantify plausible mechanisms by which the evolutions of the various exports affect each other. This is pursued through a stochastic differential description, partly inspired by approaches used in population dynamics or directed polymers in random media. We outline a complex network of transfer rates which describes how resources are shifted between different product classes, and determines how casual favorable conditions for one export can spread to the other ones. A calibration procedure allows to fit four free model-parameters such that the dynamical evolution becomes consistent with the average growth, the fluctuations, and the ranking of the export values observed in real data. Growth crucially depends on the balance between maintaining and shifting resources to different exports, like in an explore-exploit problem. Remarkably, the calibrated parameters warrant a close-to-maximum growth rate under the transient conditions realized in the period covered by data, implying an optimal self organization of the global export. According to the model, major structural changes in the global economy take tens of years. PMID:27530505
Optimal Identification of Semi-Rigid Domains in Macromolecules from Molecular Dynamics Simulation
Bernhard, Stefan; Noé, Frank
2010-01-01
Biological function relies on the fact that biomolecules can switch between different conformations and aggregation states. Such transitions involve a rearrangement of parts of the biomolecules involved that act as dynamic domains. The reliable identification of such domains is thus a key problem in biophysics. In this work we present a method to identify semi-rigid domains based on dynamical data that can be obtained from molecular dynamics simulations or experiments. To this end the average inter-atomic distance-deviations are computed. The resulting matrix is then clustered by a constrained quadratic optimization problem. The reliability and performance of the method are demonstrated for two artificial peptides. Furthermore we correlate the mechanical properties with biological malfunction in three variants of amyloidogenic transthyretin protein, where the method reveals that a pathological mutation destabilizes the natural dimer structure of the protein. Finally the method is used to identify functional domains of the GroEL-GroES chaperone, thus illustrating the efficiency of the method for large biomolecular machines. PMID:20498702
Export dynamics as an optimal growth problem in the network of global economy
Caraglio, Michele; Baldovin, Fulvio; Stella, Attilio L.
2016-01-01
We analyze export data aggregated at world global level of 219 classes of products over a period of 39 years. Our main goal is to set up a dynamical model to identify and quantify plausible mechanisms by which the evolutions of the various exports affect each other. This is pursued through a stochastic differential description, partly inspired by approaches used in population dynamics or directed polymers in random media. We outline a complex network of transfer rates which describes how resources are shifted between different product classes, and determines how casual favorable conditions for one export can spread to the other ones. A calibration procedure allows to fit four free model-parameters such that the dynamical evolution becomes consistent with the average growth, the fluctuations, and the ranking of the export values observed in real data. Growth crucially depends on the balance between maintaining and shifting resources to different exports, like in an explore-exploit problem. Remarkably, the calibrated parameters warrant a close-to-maximum growth rate under the transient conditions realized in the period covered by data, implying an optimal self organization of the global export. According to the model, major structural changes in the global economy take tens of years. PMID:27530505
Dynamic Modeling, Model-Based Control, and Optimization of Solid Oxide Fuel Cells
NASA Astrophysics Data System (ADS)
Spivey, Benjamin James
2011-07-01
Solid oxide fuel cells are a promising option for distributed stationary power generation that offers efficiencies ranging from 50% in stand-alone applications to greater than 80% in cogeneration. To advance SOFC technology for widespread market penetration, the SOFC should demonstrate improved cell lifetime and load-following capability. This work seeks to improve lifetime through dynamic analysis of critical lifetime variables and advanced control algorithms that permit load-following while remaining in a safe operating zone based on stress analysis. Control algorithms typically have addressed SOFC lifetime operability objectives using unconstrained, single-input-single-output control algorithms that minimize thermal transients. Existing SOFC controls research has not considered maximum radial thermal gradients or limits on absolute temperatures in the SOFC. In particular, as stress analysis demonstrates, the minimum cell temperature is the primary thermal stress driver in tubular SOFCs. This dissertation presents a dynamic, quasi-two-dimensional model for a high-temperature tubular SOFC combined with ejector and prereformer models. The model captures dynamics of critical thermal stress drivers and is used as the physical plant for closed-loop control simulations. A constrained, MIMO model predictive control algorithm is developed and applied to control the SOFC. Closed-loop control simulation results demonstrate effective load-following, constraint satisfaction for critical lifetime variables, and disturbance rejection. Nonlinear programming is applied to find the optimal SOFC size and steady-state operating conditions to minimize total system costs.
NASA Astrophysics Data System (ADS)
Ribeiro, Eduardo Afonso; Pereira, Jucélio Tomás; Alberto Bavastri, Carlos
2015-09-01
One of the major reasons for inserting damping into bearings is that rotating machines are often requested in critical functioning conditions having sometimes to function under dynamic instability or close to critical speeds. Hydrodynamic and magnetic bearings have usually been used for this purpose, but they present limitations regarding costs and operation, rendering the use of viscoelastic supports a feasible solution for vibration control in rotating machines. Most papers in the area use simple analytic or single degree of freedom models for the rotor as well as classic mechanical models of linear viscoelasticity for the support - like Maxwell, Kelvin-Voigt, Zenner, four-element, GHM models and even frequency independent models - but they lack the accuracy of fractional models in a large range of frequency and temperature regarding the same number of coefficients. Even in those works, the need to consider the addition of degrees of freedom to the support is evident. However, so far no paper has been published focusing on a methodology to determine the optimal constructive form for any viscoelastic support in which the rotor is discretized by finite elements associated to an accurate model for characterizing the viscoelastic material. In general, the support is meant to be a simple isolation system, and the fact the stiffness matrix is complex and frequency-temperature dependent - due to its viscoelastic properties - forces the traditional methods to require an extremely long computing time, thus rendering them too time consuming in an optimization environment. The present work presents a robust methodology based mainly on generalized equivalent parameters (GEP) - for an optimal design of viscoelastic supports for rotating machinery - aiming at minimizing the unbalance frequency response of the system using a hybrid optimization technique (genetic algorithms and Nelder-Mead method). The rotor is modeled based on the finite element method using Timoshenko's thick
NASA Astrophysics Data System (ADS)
Kodali, Anuradha
In this thesis, we develop dynamic multiple fault diagnosis (DMFD) algorithms to diagnose faults that are sporadic and coupled. Firstly, we formulate a coupled factorial hidden Markov model-based (CFHMM) framework to diagnose dependent faults occurring over time (dynamic case). Here, we implement a mixed memory Markov coupling model to determine the most likely sequence of (dependent) fault states, the one that best explains the observed test outcomes over time. An iterative Gauss-Seidel coordinate ascent optimization method is proposed for solving the problem. A soft Viterbi algorithm is also implemented within the framework for decoding dependent fault states over time. We demonstrate the algorithm on simulated and real-world systems with coupled faults; the results show that this approach improves the correct isolation rate as compared to the formulation where independent fault states are assumed. Secondly, we formulate a generalization of set-covering, termed dynamic set-covering (DSC), which involves a series of coupled set-covering problems over time. The objective of the DSC problem is to infer the most probable time sequence of a parsimonious set of failure sources that explains the observed test outcomes over time. The DSC problem is NP-hard and intractable due to the fault-test dependency matrix that couples the failed tests and faults via the constraint matrix, and the temporal dependence of failure sources over time. Here, the DSC problem is motivated from the viewpoint of a dynamic multiple fault diagnosis problem, but it has wide applications in operations research, for e.g., facility location problem. Thus, we also formulated the DSC problem in the context of a dynamically evolving facility location problem. Here, a facility can be opened, closed, or can be temporarily unavailable at any time for a given requirement of demand points. These activities are associated with costs or penalties, viz., phase-in or phase-out for the opening or closing of a
Eldred, Michael Scott; Dalbey, Keith R.; Bohnhoff, William J.; Adams, Brian M.; Swiler, Laura Painton; Hough, Patricia Diane; Gay, David M.; Eddy, John P.; Haskell, Karen H.
2010-05-01
The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a reference manual for the commands specification for the DAKOTA software, providing input overviews, option descriptions, and example specifications.
Griffin, Joshua D. (Sandai National Labs, Livermore, CA); Eldred, Michael Scott; Martinez-Canales, Monica L.; Watson, Jean-Paul; Kolda, Tamara Gibson; Adams, Brian M.; Swiler, Laura Painton; Williams, Pamela J.; Hough, Patricia Diane; Gay, David M.; Dunlavy, Daniel M.; Eddy, John P.; Hart, William Eugene; Guinta, Anthony A.; Brown, Shannon L.
2006-10-01
The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a reference manual for the commands specification for the DAKOTA software, providing input overviews, option descriptions, and example specifications.
Q- and A-learning Methods for Estimating Optimal Dynamic Treatment Regimes
Schulte, Phillip J.; Tsiatis, Anastasios A.; Laber, Eric B.; Davidian, Marie
2013-01-01
In clinical practice, physicians make a series of treatment decisions over the course of a patient’s disease based on his/her baseline and evolving characteristics. A dynamic treatment regime is a set of sequential decision rules that operationalizes this process. Each rule corresponds to a decision point and dictates the next treatment action based on the accrued information. Using existing data, a key goal is estimating the optimal regime, that, if followed by the patient population, would yield the most favorable outcome on average. Q- and A-learning are two main approaches for this purpose. We provide a detailed account of these methods, study their performance, and illustrate them using data from a depression study. PMID:25620840
NASA Astrophysics Data System (ADS)
Zhao, Hong-Liang; Lv, Chao; Liu, Yan; Zhang, Ting-An
2015-07-01
The complex fluid flow in a large-scale tank stirred with multiple Ekato Intermig impellers used in the seed precipitation process was numerically analyzed by the computational fluid dynamics method. The flow field, liquid-solid mixing, and power consumption were simulated by adopting the Eulerian granular multiphase model and standard k- ɛ turbulence model. A steady multiple reference frame approach was used to represent impeller rotation. The simulated results showed that the five-stage multiple Intermig impeller coupled with sloped baffles could generate circulation loops in axial, which is good for solid uniform mixing. The fluid is overmixed under the current industrial condition. Compared with the current process conditions, a three-stage impeller with L/ D of 1.25 not only could meet the industrial requirements, but also more than 20% power could be saved. The results have important implications for reliable design and optimal performance for industry.
Salazar-Cavazos, Emanuel; Santillán, Moisés
2014-02-01
In this work, we develop a detailed, stochastic, dynamical model for the tryptophan operon of E. coli, and estimate all of the model parameters from reported experimental data. We further employ the model to study the system performance, considering the amount of biochemical noise in the trp level, the system rise time after a nutritional shift, and the amount of repressor molecules necessary to maintain an adequate level of repression, as indicators of the system performance regime. We demonstrate that the level of cooperativity between repressor molecules bound to the first two operators in the trp promoter affects all of the above enlisted performance characteristics. Moreover, the cooperativity level found in the wild-type bacterial strain optimizes a cost-benefit function involving low biochemical noise in the tryptophan level, short rise time after a nutritional shift, and low number of regulatory molecules. PMID:24307084
NASA Astrophysics Data System (ADS)
Rocha, M. C.; Saraiva, J. T.
2012-10-01
The basic objective of Transmission Expansion Planning (TEP) is to schedule a number of transmission projects along an extended planning horizon minimizing the network construction and operational costs while satisfying the requirement of delivering power safely and reliably to load centres along the horizon. This principle is quite simple, but the complexity of the problem and the impact on society transforms TEP on a challenging issue. This paper describes a new approach to solve the dynamic TEP problem, based on an improved discrete integer version of the Evolutionary Particle Swarm Optimization (EPSO) meta-heuristic algorithm. The paper includes sections describing in detail the EPSO enhanced approach, the mathematical formulation of the TEP problem, including the objective function and the constraints, and a section devoted to the application of the developed approach to this problem. Finally, the use of the developed approach is illustrated using a case study based on the IEEE 24 bus 38 branch test system.
Sadovsky, Michael; Senashova, Mariya
2016-04-01
We consider the model of spatially distributed community consisting of two species with "predator-prey" interaction; each of the species occupies two stations. Transfer of individuals between the stations (migration) is not random, and migration stipulates the maximization of net reproduction of each species. The spatial distribution pattern is provided by discrete stations, and the dynamics runs in discrete time. For each time moment, firstly a redistribution of individuals between the stations is carried out to maximize the net reproduction, and then the reproduction takes place, with the upgraded abundances. Besides, three versions of the basic model are implemented where each species implements reflexive behaviour strategy to determine the optimal migration flow. It was found that reflexivity gives an advantage to the species realizing such strategy, for some specific sets of parameters. Nevertheless, the regular scanning of the parameters area shows that non-reflexive behaviour yields an advantage in the great majority of parameters combinations. PMID:27125654
An 'optimal' spawning algorithm for adaptive basis set expansion in nonadiabatic dynamics
Yang, Sandy; Coe, Joshua D.; Kaduk, Benjamin; Martinez, Todd J.
2009-04-07
The full multiple spawning (FMS) method has been developed to simulate quantum dynamics in the multistate electronic problem. In FMS, the nuclear wave function is represented in a basis of coupled, frozen Gaussians, and a 'spawning' procedure prescribes a means of adaptively increasing the size of this basis in order to capture population transfer between electronic states. Herein we detail a new algorithm for specifying the initial conditions of newly spawned basis functions that minimizes the number of spawned basis functions needed for convergence. 'Optimally' spawned basis functions are placed to maximize the coupling between parent and child trajectories at the point of spawning. The method is tested with a two-state, one-mode avoided crossing model and a two-state, two-mode conical intersection model.
Design and construction of miniature artificial ecosystem based on dynamic response optimization
NASA Astrophysics Data System (ADS)
Hu, Dawei; Liu, Hong; Tong, Ling; Li, Ming; Hu, Enzhu
The miniature artificial ecosystem (MAES) is a combination of man, silkworm, salad and mi-croalgae to partially regenerate O2 , sanitary water and food, simultaneously dispose CO2 and wastes, therefore it have a fundamental life support function. In order to enhance the safety and reliability of MAES and eliminate the influences of internal variations and external dis-turbances, it was necessary to configure MAES as a closed-loop control system, and it could be considered as a prototype for future bioregenerative life support system. However, MAES is a complex system possessing large numbers of parameters, intricate nonlinearities, time-varying factors as well as uncertainties, hence it is difficult to perfectly design and construct a prototype through merely conducting experiments by trial and error method. Our research presented an effective way to resolve preceding problem by use of dynamic response optimiza-tion. Firstly the mathematical model of MAES with first-order nonlinear ordinary differential equations including parameters was developed based on relevant mechanisms and experimental data, secondly simulation model of MAES was derived on the platform of MatLab/Simulink to perform model validation and further digital simulations, thirdly reference trajectories of de-sired dynamic response of system outputs were specified according to prescribed requirements, and finally optimization for initial values, tuned parameter and independent parameters was carried out using the genetic algorithm, the advanced direct search method along with parallel computing methods through computer simulations. The result showed that all parameters and configurations of MAES were determined after a series of computer experiments, and its tran-sient response performances and steady characteristics closely matched the reference curves. Since the prototype is a physical system that represents the mathematical model with reason-able accuracy, so the process of designing and
Rapid maneuvering of multi-body dynamic systems with optimal motion compensation
NASA Astrophysics Data System (ADS)
Bishop, B.; Gargano, R.; Sears, A.; Karpenko, M.
2015-12-01
Rapid maneuvering of multi-body dynamical systems is an important, yet challenging, problem in many applications. Even in the case of rigid bodies, it can be difficult to maintain precise control over nominally stationary links if it is required to move some of the other links quickly because of the various nonlinearities and coupled interactions that occur between the bodies. Typical control concepts treat the multi-body motion control problem in two-stages. First, the nonlinear and coupling terms are treated as disturbances and a trajectory tracking control law is designed in order to attenuate their effects. Next, motion profiles are designed, based on kinematics parameterizations, and these are used as inputs to the closed loop system to move the links. This paper describes an approach for rapid maneuvering of multi-body systems that uses optimal control theory to account for dynamic nonlinearities and coupling as part of the motion trajectory design. Incorporating appropriate operational constraints automatically compensates for these multi-body effects so that motion time can be reduced while simultaneously achieving other objectives such as reducing the excitation of selected links. Since the compensatory effect is embedded within the optimal motion trajectories, the performance improvement can be obtained even when using simple closed-loop architectures for maneuver implementation. Simulation results for minimum time control of a two-axis gimbal system and for rapid maneuvering of a TDRS single-access antenna, wherein it is desired to limit the excitation of the satellite body to which the antenna is attached, are presented to illustrate the concepts.
Dynamically optimizing experiment schedules of a laboratory robot system with simulated annealing.
Cabrera, Cristina; Fine-Morris, Morgan; Pokross, Matthew; Kish, Kevin; Michalczyk, Stephen; Cahn, Matthew; Klei, Herbert; Russo, Mark F
2014-12-01
A scheduler has been developed for an integrated laboratory robot system that operates in an always-on mode. The integrated system is designed for imaging plates containing protein crystallization experiments, and it allows crystallographers to enter plates at any time and request that they be imaged at multiple time points in the future. The scheduler must rearrange tasks within the time it takes to image one plate, trading off the quality of the schedule for the speed of the computation. For this reason, the scheduler was based on a simulated annealing algorithm with an objective function that makes use of a linear programming solver. To optimize the scheduler, extensive computational simulations were performed involving a difficult but representative scheduling problem. The simulations explore multiple configurations of the simulated annealing algorithm, including both geometric and adaptive annealing schedules, 3 neighborhood functions, and 20 neighborhood diameters. An optimal configuration was found that produced the best results in less than 60 seconds, well within the window necessary to dynamically reschedule imaging tasks as new plates are entered into the system. PMID:25117530
Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond
Farfurnik, D.; Jarmola, A.; Pham, L. M.; Wang, Z. H.; Dobrovitski, V. V.; Walsworth, R. L.; Budker, D.; Bar-Gill, N.
2015-08-24
In this study, we demonstrate significant improvements of the spin coherence time of a dense ensemble of nitrogen-vacancy (NV) centers in diamond through optimized dynamical decoupling (DD). Cooling the sample down to 77 K suppresses longitudinal spin relaxation T_{1} effects and DD microwave pulses are used to increase the transverse coherence time T_{2} from ~0.7ms up to ~30ms. Furthermore, we extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. Following a theoretical and experimental characterization of pulse and detuning errors, we compare the performance of various DD protocols. We also identify that the optimal control scheme for preserving an arbitrary spin state is a recursive protocol, the concatenated version of the XY8 pulse sequence. The improved spin coherence might have an immediate impact on improvements of the sensitivities of ac magnetometry. Moreover, the protocol can be used on denser diamond samples to increase coherence times up to NV-NV interaction time scales, a major step towards the creation of quantum collective NV spin states.
Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond
Farfurnik, D.; Jarmola, A.; Pham, L. M.; Wang, Z. H.; Dobrovitski, V. V.; Walsworth, R. L.; Budker, D.; Bar-Gill, N.
2015-08-24
In this study, we demonstrate significant improvements of the spin coherence time of a dense ensemble of nitrogen-vacancy (NV) centers in diamond through optimized dynamical decoupling (DD). Cooling the sample down to 77 K suppresses longitudinal spin relaxation T1 effects and DD microwave pulses are used to increase the transverse coherence time T2 from ~0.7ms up to ~30ms. Furthermore, we extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. Following a theoretical and experimental characterization of pulse and detuning errors, we compare the performance of various DD protocols. We also identify that the optimal controlmore » scheme for preserving an arbitrary spin state is a recursive protocol, the concatenated version of the XY8 pulse sequence. The improved spin coherence might have an immediate impact on improvements of the sensitivities of ac magnetometry. Moreover, the protocol can be used on denser diamond samples to increase coherence times up to NV-NV interaction time scales, a major step towards the creation of quantum collective NV spin states.« less
Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond
NASA Astrophysics Data System (ADS)
Farfurnik, D.; Jarmola, A.; Pham, L. M.; Wang, Z. H.; Dobrovitski, V. V.; Walsworth, R. L.; Budker, D.; Bar-Gill, N.
2015-08-01
We demonstrate significant improvements of the spin coherence time of a dense ensemble of nitrogen-vacancy (NV) centers in diamond through optimized dynamical decoupling (DD). Cooling the sample down to 77 K suppresses longitudinal spin relaxation T1 effects and DD microwave pulses are used to increase the transverse coherence time T2 from ˜0.7 ms up to ˜30 ms . We extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. Following a theoretical and experimental characterization of pulse and detuning errors, we compare the performance of various DD protocols. We identify that the optimal control scheme for preserving an arbitrary spin state is a recursive protocol, the concatenated version of the XY8 pulse sequence. The improved spin coherence might have an immediate impact on improvements of the sensitivities of ac magnetometry. Moreover, the protocol can be used on denser diamond samples to increase coherence times up to NV-NV interaction time scales, a major step towards the creation of quantum collective NV spin states.
Improving the coherence properties of solid-state spin ensembles via optimized dynamical decoupling
NASA Astrophysics Data System (ADS)
Farfurnik, D.; Jarmola, A.; Pham, L. M.; Wang, Z. H.; Dobrovitski, V. V.; Walsworth, R. L.; Budker, D.; Bar-Gill, N.
2016-04-01
In this work, we optimize a dynamical decoupling (DD) protocol to improve the spin coherence properties of a dense ensemble of nitrogen-vacancy (NV) centers in diamond. Using liquid nitrogen-based cooling and DD microwave pulses, we increase the transverse coherence time T2 from ˜ 0.7 ms up to ˜ 30 ms. We extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. After performing a detailed analysis of pulse and detuning errors, we compare the performance of various DD protocols. We identify that the concatenated XY8 pulse sequences serves as the optimal control scheme for preserving an arbitrary spin state. Finally, we use the concatenated sequences to demonstrate an immediate improvement of the AC magnetic sensitivity up to a factor of two at 250 kHz. For future work, similar protocols may be used to increase coherence times up to NV-NV interaction time scales, a major step toward the creation of quantum collective NV spin states.
NASA Technical Reports Server (NTRS)
Brown, Jonathan M.; Petersen, Jeremy D.
2014-01-01
NASA's WIND mission has been operating in a large amplitude Lissajous orbit in the vicinity of the interior libration point of the Sun-Earth/Moon system since 2004. Regular stationkeeping maneuvers are required to maintain the orbit due to the instability around the collinear libration points. Historically these stationkeeping maneuvers have been performed by applying an incremental change in velocity, or (delta)v along the spacecraft-Sun vector as projected into the ecliptic plane. Previous studies have shown that the magnitude of libration point stationkeeping maneuvers can be minimized by applying the (delta)v in the direction of the local stable manifold found using dynamical systems theory. This paper presents the analysis of this new maneuver strategy which shows that the magnitude of stationkeeping maneuvers can be decreased by 5 to 25 percent, depending on the location in the orbit where the maneuver is performed. The implementation of the optimized maneuver method into operations is discussed and results are presented for the first two optimized stationkeeping maneuvers executed by WIND.
Lang, Katharina M H; Kittelmann, Jörg; Pilgram, Florian; Osberghaus, Anna; Hubbuch, Jürgen
2015-09-25
The performance of functionalized materials, e.g., ion exchange resins, depends on multiple resin characteristics, such as type of ligand, ligand density, the pore accessibility for a molecule, and backbone characteristics. Therefore, the screening and identification process for optimal resin characteristics for separation is very time and material consuming. Previous studies on the influence of resin characteristics have focused on an experimental approach and to a lesser extent on the mechanistic understanding of the adsorption mechanism. In this in silico study, a previously developed molecular dynamics (MD) tool is used, which simulates any given biomolecule on resins with varying ligand densities. We describe a set of simulations and experiments with four proteins and six resins varying in ligand density, and show that simulations and experiments correlate well in a wide range of ligand density. With this new approach simulations can be used as pre-experimental screening for optimal adsorber characteristics, reducing the actual number of screening experiments, which results in a faster and more knowledge-based development of custom-tailored adsorbers. PMID:26319376
NASA Astrophysics Data System (ADS)
Shen, Chengcheng; Shi, Honghua; Liu, Yongzhi; Li, Fen; Ding, Dewen
2015-12-01
Marine ecosystem dynamic models (MEDMs) are important tools for the simulation and prediction of marine ecosystems. This article summarizes the methods and strategies used for the improvement and assessment of MEDM skill, and it attempts to establish a technical framework to inspire further ideas concerning MEDM skill improvement. The skill of MEDMs can be improved by parameter optimization (PO), which is an important step in model calibration. An efficient approach to solve the problem of PO constrained by MEDMs is the global treatment of both sensitivity analysis and PO. Model validation is an essential step following PO, which validates the efficiency of model calibration by analyzing and estimating the goodness-of-fit of the optimized model. Additionally, by focusing on the degree of impact of various factors on model skill, model uncertainty analysis can supply model users with a quantitative assessment of model confidence. Research on MEDMs is ongoing; however, improvement in model skill still lacks global treatments and its assessment is not integrated. Thus, the predictive performance of MEDMs is not strong and model uncertainties lack quantitative descriptions, limiting their application. Therefore, a large number of case studies concerning model skill should be performed to promote the development of a scientific and normative technical framework for the improvement of MEDM skill.
NASA Astrophysics Data System (ADS)
Shen, Chengcheng; Shi, Honghua; Liu, Yongzhi; Li, Fen; Ding, Dewen
2016-07-01
Marine ecosystem dynamic models (MEDMs) are important tools for the simulation and prediction of marine ecosystems. This article summarizes the methods and strategies used for the improvement and assessment of MEDM skill, and it attempts to establish a technical framework to inspire further ideas concerning MEDM skill improvement. The skill of MEDMs can be improved by parameter optimization (PO), which is an important step in model calibration. An efficient approach to solve the problem of PO constrained by MEDMs is the global treatment of both sensitivity analysis and PO. Model validation is an essential step following PO, which validates the efficiency of model calibration by analyzing and estimating the goodness-of-fit of the optimized model. Additionally, by focusing on the degree of impact of various factors on model skill, model uncertainty analysis can supply model users with a quantitative assessment of model confidence. Research on MEDMs is ongoing; however, improvement in model skill still lacks global treatments and its assessment is not integrated. Thus, the predictive performance of MEDMs is not strong and model uncertainties lack quantitative descriptions, limiting their application. Therefore, a large number of case studies concerning model skill should be performed to promote the development of a scientific and normative technical framework for the improvement of MEDM skill.
Decomposition and coordination of large-scale operations optimization
NASA Astrophysics Data System (ADS)
Cheng, Ruoyu
Nowadays, highly integrated manufacturing has resulted in more and more large-scale industrial operations. As one of the most effective strategies to ensure high-level operations in modern industry, large-scale engineering optimization has garnered a great amount of interest from academic scholars and industrial practitioners. Large-scale optimization problems frequently occur in industrial applications, and many of them naturally present special structure or can be transformed to taking special structure. Some decomposition and coordination methods have the potential to solve these problems at a reasonable speed. This thesis focuses on three classes of large-scale optimization problems: linear programming, quadratic programming, and mixed-integer programming problems. The main contributions include the design of structural complexity analysis for investigating scaling behavior and computational efficiency of decomposition strategies, novel coordination techniques and algorithms to improve the convergence behavior of decomposition and coordination methods, as well as the development of a decentralized optimization framework which embeds the decomposition strategies in a distributed computing environment. The complexity study can provide fundamental guidelines to practical applications of the decomposition and coordination methods. In this thesis, several case studies imply the viability of the proposed decentralized optimization techniques for real industrial applications. A pulp mill benchmark problem is used to investigate the applicability of the LP/QP decentralized optimization strategies, while a truck allocation problem in the decision support of mining operations is used to study the MILP decentralized optimization strategies.
Francis, Patrick; Martinez, D Mark; Taghipour, Fariborz; Bowen, Bruce D; Haynes, Charles A
2006-12-20
Controlled shear affinity filtration (CSAF) is a novel integrated processing technology that positions a rotor directly above an affinity membrane chromatography column to permit protein capture and purification directly from cell culture. The conical rotor is intended to provide a uniform and tunable shear stress at the membrane surface that inhibits membrane fouling and cell cake formation by providing a hydrodynamic force away from and a drag force parallel to the membrane surface. Computational fluid dynamics (CFD) simulations are used to show that the rotor in the original CSAF device (Vogel et al., 2002) does not provide uniform shear stress at the membrane surface. This results in the need to operate the system at unnecessarily high rotor speeds to reach a required shear stress of at least 0.17 Pa at every radial position of the membrane surface, compromising the scale-up of the technology. Results from CFD simulations are compared with particle image velocimetry (PIV) experiments and a numerical solution for low Reynolds number conditions to confirm that our CFD model accurately describes the hydrodynamics in the rotor chamber of the CSAF device over a range of rotor velocities, filtrate fluxes, and (both laminar and turbulent) retentate flows. CFD simulations were then carried out in combination with a root-finding method to optimize the shape of the CSAF rotor. The optimized rotor geometry produces a nearly constant shear stress of 0.17 Pa at a rotational velocity of 250 rpm, 60% lower than the original CSAF design. This permits the optimized CSAF device to be scaled up to a maximum rotor diameter 2.5 times larger than is permissible in the original device, thereby providing more than a sixfold increase in volumetric throughput. PMID:16937405
Dong, Bing; Li, Yan; Han, Xin-Li; Hu, Bin
2016-01-01
For high-speed aircraft, a conformal window is used to optimize the aerodynamic performance. However, the local shape of the conformal window leads to large amounts of dynamic aberrations varying with look angle. In this paper, deformable mirror (DM) and model-based wavefront sensorless adaptive optics (WSLAO) are used for dynamic aberration correction of an infrared remote sensor equipped with a conformal window and scanning mirror. In model-based WSLAO, aberration is captured using Lukosz mode, and we use the low spatial frequency content of the image spectral density as the metric function. Simulations show that aberrations induced by the conformal window are dominated by some low-order Lukosz modes. To optimize the dynamic correction, we can only correct dominant Lukosz modes and the image size can be minimized to reduce the time required to compute the metric function. In our experiment, a 37-channel DM is used to mimic the dynamic aberration of conformal window with scanning rate of 10 degrees per second. A 52-channel DM is used for correction. For a 128 × 128 image, the mean value of image sharpness during dynamic correction is 1.436 × 10(-5) in optimized correction and is 1.427 × 10(-5) in un-optimized correction. We also demonstrated that model-based WSLAO can achieve convergence two times faster than traditional stochastic parallel gradient descent (SPGD) method. PMID:27598161
NASA Astrophysics Data System (ADS)
Cohen, Nadav; Bucher, Izhak
2014-09-01
Bistable nonlinear oscillators can transform slow sinusoidal excitations into higher frequency periodic or quasi-periodic oscillations. This behaviour can be exploited to efficiently convert mechanical oscillations into electrical power, but being nonlinear, their dynamical behaviour is relatively complicated. In order to better understand the dynamics of bistable oscillators, an approximate bilinear analytical model, which is valid for narrow potential barriers, is developed. This model is expanded to the case of wider potential with experimental verification. Indeed, the model is verified by numerical simulations and a suitable Poincaré section that the analytical model captures most of bifurcations for large amplitude vibrations and can be used to optimize the harvested power of such devices. The method of Shaw and Holmes [1] is enhanced by exploiting symmetry to obtain closed form expressions of the Poincaré section and mapping. The approximate non-smooth model proves useful in the study of orbital stability, large amplitude oscillations and in explaining most of the period doubling and symmetry breaking bifurcations arising when such an oscillator is subjected to sinusoidal excitation. The proposed model is successfully verified through analytical numerical analysis and some experimental results.
Optimal GPS/accelerometer integration algorithm for monitoring the vertical structural dynamics
NASA Astrophysics Data System (ADS)
Meng, Xiaolin; Wang, Jian; Han, Houzeng
2014-11-01
The vertical structural dynamics is a crucial factor for structural health monitoring (SHM) of civil structures such as high-rise buildings, suspension bridges and towers. This paper presents an optimal GPS/accelerometer integration algorithm for an automated multi-sensor monitoring system. The closed loop feedback algorithm for integrating the vertical GPS and accelerometer measurements is proposed based on a 5 state extended KALMAN filter (EKF) and then the narrow moving window Fast Fourier Transform (FFT) analysis is applied to extract structural dynamics. A civil structural vibration is simulated and the analysed result shows the proposed algorithm can effectively integrate the online vertical measurements produced by GPS and accelerometer. Furthermore, the accelerometer bias and scale factor can also be estimated which is impossible with traditional integration algorithms. Further analysis shows the vibration frequencies detected in GPS or accelerometer are all included in the integrated vertical defection time series and the accelerometer can effectively compensate the short-term GPS outages with high quality. Finally, the data set collected with a time synchronised and integrated GPS/accelerometer monitoring system installed on the Nottingham Wilford Bridge when excited by 15 people jumping together at its mid-span are utilised to verify the effectiveness of this proposed algorithm. Its implementations are satisfactory and the detected vibration frequencies are 1.720 Hz, 1.870 Hz, 2.104 Hz, 2.905 Hz and also 10.050 Hz, which is not found in GPS or accelerometer only measurements.
A parallel dynamic programming algorithm for multi-reservoir system optimization
NASA Astrophysics Data System (ADS)
Li, Xiang; Wei, Jiahua; Li, Tiejian; Wang, Guangqian; Yeh, William W.-G.
2014-05-01
This paper develops a parallel dynamic programming algorithm to optimize the joint operation of a multi-reservoir system. First, a multi-dimensional dynamic programming (DP) model is formulated for a multi-reservoir system. Second, the DP algorithm is parallelized using a peer-to-peer parallel paradigm. The parallelization is based on the distributed memory architecture and the message passing interface (MPI) protocol. We consider both the distributed computing and distributed computer memory in the parallelization. The parallel paradigm aims at reducing the computation time as well as alleviating the computer memory requirement associated with running a multi-dimensional DP model. Next, we test the parallel DP algorithm on the classic, benchmark four-reservoir problem on a high-performance computing (HPC) system with up to 350 cores. Results indicate that the parallel DP algorithm exhibits good performance in parallel efficiency; the parallel DP algorithm is scalable and will not be restricted by the number of cores. Finally, the parallel DP algorithm is applied to a real-world, five-reservoir system in China. The results demonstrate the parallel efficiency and practical utility of the proposed methodology.
Zou, Ji-Ping; Sautivet, Anne-Marie; Fils, Jérôme; Martin, Luc; Abdeli, Kahina; Sauteret, Christian; Wattellier, Benoit
2008-02-10
The wavefront aberrations in a large-scale, flash-lamp-pumped, high-energy, high-power glass laser system can degrade considerably the quality of the final focal spot, and limit severely the repetition rate. The various aberrations induced on the Laboratoire pour l'Utilisation des Lasers Intenses (LULI), laser facility (LULI2000) throughout the amplification are identified and analyzed in detail. Based on these analyses, an optimized procedure for dynamic wavefront control is then designed and implemented. The lower-order Zernike aberrations can be effectively reduced by combining an adaptive-optics setup, comprising a bimorph deformable mirror and a four-wave lateral shearing interferometer, with a precise alignment system. This enables the laser chain to produce a reproducible focal spot close to the diffraction limit (Strehl ratio approximately 0.7). This allows also to increase the repetition rate, initially limited by the recovery time of the laser amplifiers, by a factor of 2 (one shot per hour). The proposed procedure provides an attractive alternative for dynamic correction of the wavefront aberrations of a laser facility as complex as the LULI2000. PMID:18268782
NASA Astrophysics Data System (ADS)
Zou, Ji-Ping; Sautivet, Anne-Marie; Fils, Jérôme; Martin, Luc; Abdeli, Kahina; Sauteret, Christian; Wattellier, Benoit
2008-02-01
The wavefront aberrations in a large-scale, flash-lamp-pumped, high-energy, high-power glass laser system can degrade considerably the quality of the final focal spot, and limit severely the repetition rate. The various aberrations induced on the Laboratoire pour l'Utilisation des Lasers Intenses (LULI), laser facility (LULI2000) throughout the amplification are identified and analyzed in detail. Based on these analyses, an optimized procedure for dynamic wavefront control is then designed and implemented. The lower-order Zernike aberrations can be effectively reduced by combining an adaptive-optics setup, comprising a bimorph deformable mirror and a four-wave lateral shearing interferometer, with a precise alignment system. This enables the laser chain to produce a reproducible focal spot close to the diffraction limit (Strehl ratio ~0.7). This allows also to increase the repetition rate, initially limited by the recovery time of the laser amplifiers, by a factor of 2 (one shot per hour). The proposed procedure provides an attractive alternative for dynamic correction of the wavefront aberrations of a laser facility as complex as the LULI2000.
Study of the Bus Dynamic Coscheduling Optimization Method under Urban Rail Transit Line Emergency
Yan, Xuedong; Wang, Jiaxi; Chen, Shasha
2014-01-01
As one of the most important urban commuter transportation modes, urban rail transit (URT) has been acting as a key solution for supporting mobility needs in high-density urban areas. However, in recent years, high frequency of unexpected events has caused serious service disruptions in URT system, greatly harming passenger safety and resulting in severe traffic delays. Therefore, there is an urgent need to study emergency evacuation problem in URT. In this paper, a method of bus dynamic coscheduling is proposed and two models are built based on different evacuation destinations including URT stations and surrounding bus parking spots. A dynamic coscheduling scheme for buses can be obtained by the models. In the model solution process, a new concept—the equivalent parking spot—is proposed to transform the nonlinear model into an integer linear programming (ILP) problem. A case study is conducted to verify the feasibility of models. Also, sensitivity analysis of two vital factors is carried out to analyze their effects on the total evacuation time. The results reveal that the designed capacity of buses has a negative influence on the total evacuation time, while an increase in the number of passengers has a positive effect. Finally, some significant optimizing strategies are proposed. PMID:25530750
Non-resonant dynamic stark control of vibrational motion with optimized laser pulses.
Thomas, Esben F; Henriksen, Niels E
2016-06-28
The term dynamic Stark control (DSC) has been used to describe methods of quantum control related to the dynamic Stark effect, i.e., a time-dependent distortion of energy levels. Here, we employ analytical models that present clear and concise interpretations of the principles behind DSC. Within a linearly forced harmonic oscillator model of vibrational excitation, we show how the vibrational amplitude is related to the pulse envelope, and independent of the carrier frequency of the laser pulse, in the DSC regime. Furthermore, we shed light on the DSC regarding the construction of optimal pulse envelopes - from a time-domain as well as a frequency-domain perspective. Finally, in a numerical study beyond the linearly forced harmonic oscillator model, we show that a pulse envelope can be constructed such that a vibrational excitation into a specific excited vibrational eigenstate is accomplished. The pulse envelope is constructed such that high intensities are avoided in order to eliminate the process of ionization. PMID:27369515
Non-resonant dynamic stark control of vibrational motion with optimized laser pulses
NASA Astrophysics Data System (ADS)
Thomas, Esben F.; Henriksen, Niels E.
2016-06-01
The term dynamic Stark control (DSC) has been used to describe methods of quantum control related to the dynamic Stark effect, i.e., a time-dependent distortion of energy levels. Here, we employ analytical models that present clear and concise interpretations of the principles behind DSC. Within a linearly forced harmonic oscillator model of vibrational excitation, we show how the vibrational amplitude is related to the pulse envelope, and independent of the carrier frequency of the laser pulse, in the DSC regime. Furthermore, we shed light on the DSC regarding the construction of optimal pulse envelopes - from a time-domain as well as a frequency-domain perspective. Finally, in a numerical study beyond the linearly forced harmonic oscillator model, we show that a pulse envelope can be constructed such that a vibrational excitation into a specific excited vibrational eigenstate is accomplished. The pulse envelope is constructed such that high intensities are avoided in order to eliminate the process of ionization.
Multidisciplinary optimization for the design and control of uncertain dynamical systems
NASA Astrophysics Data System (ADS)
Sridharan, Srikanth
This dissertation considers an integrated approach to system design and controller design based on analyzing limits of system performance. Historically, plant design methodologies have not incorporated control relevant considerations. Such an approach could result in a system that might not meet its specifications (or one that requires a complex control architecture to do so). System and controller designers often go through several iterations in order to converge to an acceptable plant and controller design. The focus of this dissertation is on the design and control an air-breathing hypersonic vehicle using such an integrated system-control design framework. The goal is to reduce the number of system-control design iterations (by explicitly incorporate control considerations in the system design process), as well as to influence the guidance/trajectory specifications for the system. Due to the high computational costs associated with obtaining a dynamic model for each plant configuration considered, approximations to the system dynamics are used in the control design process. By formulating the control design problem using bilinear and polynomial matrix inequalities, several common control and system design constraints can be simultaneously incorporated into a vehicle design optimization. Several design problems are examined to illustrate the effectiveness of this approach (and to compare the computational burden of this methodology against more traditional approaches).
Dynamic emulation modelling for the optimal operation of water systems: an overview
NASA Astrophysics Data System (ADS)
Castelletti, A.; Galelli, S.; Giuliani, M.
2014-12-01
Despite sustained increase in computing power over recent decades, computational limitations remain a major barrier to the effective and systematic use of large-scale, process-based simulation models in rational environmental decision-making. Whereas complex models may provide clear advantages when the goal of the modelling exercise is to enhance our understanding of the natural processes, they introduce problems of model identifiability caused by over-parameterization and suffer from high computational burden when used in management and planning problems. As a result, increasing attention is now being devoted to emulation modelling (or model reduction) as a way of overcoming these limitations. An emulation model, or emulator, is a low-order approximation of the process-based model that can be substituted for it in order to solve high resource-demanding problems. In this talk, an overview of emulation modelling within the context of the optimal operation of water systems will be provided. Particular emphasis will be given to Dynamic Emulation Modelling (DEMo), a special type of model complexity reduction in which the dynamic nature of the original process-based model is preserved, with consequent advantages in a wide range of problems, particularly feedback control problems. This will be contrasted with traditional non-dynamic emulators (e.g. response surface and surrogate models) that have been studied extensively in recent years and are mainly used for planning purposes. A number of real world numerical experiences will be used to support the discussion ranging from multi-outlet water quality control in water reservoir through erosion/sedimentation rebalancing in the operation of run-off-river power plants to salinity control in lake and reservoirs.
Sabar, Nasser R; Ayob, Masri; Kendall, Graham; Qu, Rong
2015-02-01
Hyper-heuristics are search methodologies that aim to provide high-quality solutions across a wide variety of problem domains, rather than developing tailor-made methodologies for each problem instance/domain. A traditional hyper-heuristic framework has two levels, namely, the high level strategy (heuristic selection mechanism and the acceptance criterion) and low level heuristics (a set of problem specific heuristics). Due to the different landscape structures of different problem instances, the high level strategy plays an important role in the design of a hyper-heuristic framework. In this paper, we propose a new high level strategy for a hyper-heuristic framework. The proposed high-level strategy utilizes a dynamic multiarmed bandit-extreme value-based reward as an online heuristic selection mechanism to select the appropriate heuristic to be applied at each iteration. In addition, we propose a gene expression programming framework to automatically generate the acceptance criterion for each problem instance, instead of using human-designed criteria. Two well-known, and very different, combinatorial optimization problems, one static (exam timetabling) and one dynamic (dynamic vehicle routing) are used to demonstrate the generality of the proposed framework. Compared with state-of-the-art hyper-heuristics and other bespoke methods, empirical results demonstrate that the proposed framework is able to generalize well across both domains. We obtain competitive, if not better results, when compared to the best known results obtained from other methods that have been presented in the scientific literature. We also compare our approach against the recently released hyper-heuristic competition test suite. We again demonstrate the generality of our approach when we compare against other methods that have utilized the same six benchmark datasets from this test suite. PMID:24951713
NASA Astrophysics Data System (ADS)
Karakatsanis, Nicolas A.; Lodge, Martin A.; Tahari, Abdel K.; Zhou, Y.; Wahl, Richard L.; Rahmim, Arman
2013-10-01
Static whole-body PET/CT, employing the standardized uptake value (SUV), is considered the standard clinical approach to diagnosis and treatment response monitoring for a wide range of oncologic malignancies. Alternative PET protocols involving dynamic acquisition of temporal images have been implemented in the research setting, allowing quantification of tracer dynamics, an important capability for tumor characterization and treatment response monitoring. Nonetheless, dynamic protocols have been confined to single-bed-coverage limiting the axial field-of-view to ˜15-20 cm, and have not been translated to the routine clinical context of whole-body PET imaging for the inspection of disseminated disease. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. We investigate solutions to address the challenges of: (i) long acquisitions, (ii) small number of dynamic frames per bed, and (iii) non-invasive quantification of kinetics in the plasma. In the present study, a novel dynamic (4D) whole-body PET acquisition protocol of ˜45 min total length is presented, composed of (i) an initial 6 min dynamic PET scan (24 frames) over the heart, followed by (ii) a sequence of multi-pass multi-bed PET scans (six passes × seven bed positions, each scanned for 45 s). Standard Patlak linear graphical analysis modeling was employed, coupled with image-derived plasma input function measurements. Ordinary least squares Patlak estimation was used as the baseline regression method to quantify the physiological parameters of tracer uptake rate Ki and total blood distribution volume V on an individual voxel basis. Extensive Monte Carlo simulation studies, using a wide set of published kinetic FDG parameters and GATE and XCAT platforms, were conducted to optimize the acquisition protocol from a range of ten different clinically
The role of residence times in two-patch dengue transmission dynamics and optimal strategies.
Lee, Sunmi; Castillo-Chavez, Carlos
2015-06-01
The reemergence and geographical dispersal of vector-borne diseases challenge global health experts around the world and in particular, dengue poses increasing difficulties in the Americas, due in part to explosive urban and semi-urban growth, increases of within and between region mobility, the absence of a vaccine, and the limited resources available for public health services. In this work, a simple deterministic two-patch model is introduced to assess the impact of dengue transmission dynamics in heterogeneous environments. The two-patch system models the movement (e.g. urban versus rural areas residence times) of individuals between and within patches/environments using residence-time matrices with entries that budget within and between host patch relative residence times, under the assumption that only the human budgets their residence time across regions. Three scenarios are considered: (i) resident hosts in Patch i visit patch j, where i≠j but not the other way around, a scenario referred to as unidirectional motion; (ii) symmetric bi-directional motion; and (iii) asymmetric bi-directional motion. Optimal control theory is used to identify and evaluate patch-specific control measures aimed at reducing dengue prevalence in humans and vectors at a minimal cost. Optimal policies are computed under different residence-matrix configurations mentioned above as well as transmissibility scenarios characterized by the magnitude of the basic reproduction number. Optimal patch-specific polices can ameliorate the impact of epidemic outbreaks substantially when the basic reproduction number is moderate. The final patch-specific epidemic size variation increases as the residence time matrix moves away from the symmetric case (asymmetry). As expected, the patch where individuals spend most of their time or in the patch where transmissibility is higher tend to support larger patch-specific final epidemic sizes. Hence, focusing on intervention that target areas where
Optimization of municipal solid waste collection and transportation routes
Das, Swapan Bhattacharyya, Bidyut Kr.
2015-09-15
Graphical abstract: Display Omitted - Highlights: • Profitable integrated solid waste management system. • Optimal municipal waste collection scheme between the sources and waste collection centres. • Optimal path calculation between waste collection centres and transfer stations. • Optimal waste routing between the transfer stations and processing plants. - Abstract: Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scatter throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length.
Fuzzy multiobjective models for optimal operation of a hydropower system
NASA Astrophysics Data System (ADS)
Teegavarapu, Ramesh S. V.; Ferreira, André R.; Simonovic, Slobodan P.
2013-06-01
Optimal operation models for a hydropower system using new fuzzy multiobjective mathematical programming models are developed and evaluated in this study. The models use (i) mixed integer nonlinear programming (MINLP) with binary variables and (ii) integrate a new turbine unit commitment formulation along with water quality constraints used for evaluation of reservoir downstream impairment. Reardon method used in solution of genetic algorithm optimization problems forms the basis for development of a new fuzzy multiobjective hydropower system optimization model with creation of Reardon type fuzzy membership functions. The models are applied to a real-life hydropower reservoir system in Brazil. Genetic Algorithms (GAs) are used to (i) solve the optimization formulations to avoid computational intractability and combinatorial problems associated with binary variables in unit commitment, (ii) efficiently address Reardon method formulations, and (iii) deal with local optimal solutions obtained from the use of traditional gradient-based solvers. Decision maker's preferences are incorporated within fuzzy mathematical programming formulations to obtain compromise operating rules for a multiobjective reservoir operation problem dominated by conflicting goals of energy production, water quality and conservation releases. Results provide insight into compromise operation rules obtained using the new Reardon fuzzy multiobjective optimization framework and confirm its applicability to a variety of multiobjective water resources problems.
A multi-period optimization model for energy planning with CO(2) emission consideration.
Mirzaesmaeeli, H; Elkamel, A; Douglas, P L; Croiset, E; Gupta, M
2010-05-01
A novel deterministic multi-period mixed-integer linear programming (MILP) model for the power generation planning of electric systems is described and evaluated in this paper. The model is developed with the objective of determining the optimal mix of energy supply sources and pollutant mitigation options that meet a specified electricity demand and CO(2) emission targets at minimum cost. Several time-dependent parameters are included in the model formulation; they include forecasted energy demand, fuel price variability, construction lead time, conservation initiatives, and increase in fixed operational and maintenance costs over time. The developed model is applied to two case studies. The objective of the case studies is to examine the economical, structural, and environmental effects that would result if the electricity sector was required to reduce its CO(2) emissions to a specified limit. PMID:20149519
A Bell-Curved Based Algorithm for Mixed Continuous and Discrete Structural Optimization
NASA Technical Reports Server (NTRS)
Kincaid, Rex K.; Weber, Michael; Sobieszczanski-Sobieski, Jaroslaw
2001-01-01
An evolutionary based strategy utilizing two normal distributions to generate children is developed to solve mixed integer nonlinear programming problems. This Bell-Curve Based (BCB) evolutionary algorithm is similar in spirit to (mu + mu) evolutionary strategies and evolutionary programs but with fewer parameters to adjust and no mechanism for self adaptation. First, a new version of BCB to solve purely discrete optimization problems is described and its performance tested against a tabu search code for an actuator placement problem. Next, the performance of a combined version of discrete and continuous BCB is tested on 2-dimensional shape problems and on a minimum weight hub design problem. In the latter case the discrete portion is the choice of the underlying beam shape (I, triangular, circular, rectangular, or U).