Science.gov

Sample records for mixed-mode crack propagation

  1. Double noding technique for mixed mode crack propagation studies

    NASA Technical Reports Server (NTRS)

    Liaw, B. M.; Kobayashi, A. S.; Emery, A. F.

    1984-01-01

    A simple dynamic finite element algorithm for analyzing a propagating mixed mode crack tip is presented. A double noding technique, which can be easily incorporated into existing dynamic finite element codes, is used together with a corrected J integral to extract modes I and II dynamic stress intensity factors of a propagating crack. The utility of the procedure is demonstrated by analyzing test problems involving a mode I central crack propagating in a plate subjected to uniaxial tension, a mixed mode I and II stationary, slanted central crack in a plate subjected to uniaxial impact loading, and a mixed mode I and II extending, slanted single edge crack in a plate subjected to uniaxial tension. Previously announced in STAR as N83-13491

  2. Analysis of mixed-mode crack propagation using the boundary integral method

    NASA Technical Reports Server (NTRS)

    Mendelson, A.; Ghosn, L. J.

    1986-01-01

    Crack propagation in a rotating inner raceway of a high speed roller bearing is analyzed using the boundary integral equation method. The method consists of an edge crack in a plate under tension, upon which varying Hertzian stress fields are superimposed. A computer program for the boundary integral equation method was written using quadratic elements to determine the stress and displacement fields for discrete roller positions. Mode I and Mode II stress intensity factors and crack extension forces G sub 00 (energy release rate due to tensile opening mode) and G sub r0 (energy release rate due to shear displacement mode) were computed. These calculations permit determination of that crack growth angle for which the change in the crack extension forces is maximum. The crack driving force was found to be the alternating mixed-mode loading that occurs with each passage of the most heavily loaded roller. The crack is predicted to propagate in a step-like fashion alternating between radial and inclined segments, and this pattern was observed experimentally. The maximum changes DeltaG sub 00 and DeltaG sub r0 of the crack extension forces are found to be good measures of the crack propagation rate and direction.

  3. Analysis of crack propagation in roller bearings using the boundary integral equation method - A mixed-mode loading problem

    NASA Technical Reports Server (NTRS)

    Ghosn, L. J.

    1988-01-01

    Crack propagation in a rotating inner raceway of a high-speed roller bearing is analyzed using the boundary integral method. The model consists of an edge plate under plane strain condition upon which varying Hertzian stress fields are superimposed. A multidomain boundary integral equation using quadratic elements was written to determine the stress intensity factors KI and KII at the crack tip for various roller positions. The multidomain formulation allows the two faces of the crack to be modeled in two different subregions, making it possible to analyze crack closure when the roller is positioned on or close to the crack line. KI and KII stress intensity factors along any direction were computed. These calculations permit determination of crack growth direction along which the average KI times the alternating KI is maximum.

  4. Mixed-mode crack behavior. ASTM special technical publication 1325

    SciTech Connect

    Miller, K.J.; McDowell, D.L.

    1999-07-01

    This conference was international and balanced in scope, as witnessed by the presentation of over 20 papers addressing the following topics: (1) Elastic-Plastic Fracture; (2) Three-Dimensional Cracks; (3) Anisotropic Fracture and Applications; (4) Fracture of Composite Materials; (5) Mixed-Mode Fracture Toughness; (6) Mixed-Mode Fatigue Crack Growth; and (7) Experimental Studies in Mixed-Mode Fatigue and Fracture. Separate abstracts were prepared for all papers.

  5. Atomic simulation of cracks under mixed mode loading

    NASA Technical Reports Server (NTRS)

    Mullins, M.

    1984-01-01

    A discrete atomic model of a crack tip in iron under mixed mode loads is examined. The results indicate that the behavior of the crack at the atomic scale as a function of the ratio of mode I to mode II component of load is quite complex. In general, crack tip plasticity appears to increase as the mode II component of load increases.

  6. Crack Front Segmentation and Facet Coarsening in Mixed-Mode Fracture

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Hung; Cambonie, Tristan; Lazarus, Veronique; Nicoli, Matteo; Pons, Antonio J.; Karma, Alain

    2015-12-01

    A planar crack generically segments into an array of "daughter cracks" shaped as tilted facets when loaded with both a tensile stress normal to the crack plane (mode I) and a shear stress parallel to the crack front (mode III). We investigate facet propagation and coarsening using in situ microscopy observations of fracture surfaces at different stages of quasistatic mixed-mode crack propagation and phase-field simulations. The results demonstrate that the bifurcation from propagating a planar to segmented crack front is strongly subcritical, reconciling previous theoretical predictions of linear stability analysis with experimental observations. They further show that facet coarsening is a self-similar process driven by a spatial period-doubling instability of facet arrays.

  7. Crack Front Segmentation and Facet Coarsening in Mixed-Mode Fracture.

    PubMed

    Chen, Chih-Hung; Cambonie, Tristan; Lazarus, Veronique; Nicoli, Matteo; Pons, Antonio J; Karma, Alain

    2015-12-31

    A planar crack generically segments into an array of "daughter cracks" shaped as tilted facets when loaded with both a tensile stress normal to the crack plane (mode I) and a shear stress parallel to the crack front (mode III). We investigate facet propagation and coarsening using in situ microscopy observations of fracture surfaces at different stages of quasistatic mixed-mode crack propagation and phase-field simulations. The results demonstrate that the bifurcation from propagating a planar to segmented crack front is strongly subcritical, reconciling previous theoretical predictions of linear stability analysis with experimental observations. They further show that facet coarsening is a self-similar process driven by a spatial period-doubling instability of facet arrays. PMID:26765005

  8. Assessment of Crack Path Prediction in Non-Proportional Mixed-Mode Fatigue

    NASA Technical Reports Server (NTRS)

    Highsmith, Shelby, Jr.; Johnson, Steve; Swanson, Gregory; Sayyah, Tarek; Pettit, Richard

    2008-01-01

    Non-proportional mixed-mode loading is present in many systems and a growing crack can experience any manner of mixed-mode loading. Prediction of the resulting crack path is important when assessing potential failure modes or when performing a failure investigation. Current crack path selection criteria are presented along with data for Inconel 718 under non-proportional mixed-mode loading. Mixed-mode crack growth can transition between path deflection mechanisms with very different orientations. Non-proportional fatigue loadings lack a single parameter for input to current crack path criteria. Crack growth transitions were observed in proportional and non-proportional FCG tests. Different paths displayed distinct fracture surface morphologies. New crack path drivers & transition criteria must be developed.

  9. Measurements of mixed-mode crack surface displacements and comparison with theory

    NASA Technical Reports Server (NTRS)

    Altiero, N. J., Jr.; Sharpe, W. N., Jr.

    1978-01-01

    A theoretical and an experimental technique is used to determine crack surface displacements under mixed-mode conditions. Crack surface displacements proved to be quite useful in mode 1 fracture analysis in that they are directly related to strain energy release rate and stress intensity factor. It is felt that similar relationships can be developed for the mixed-mode case. A boundary-integral method was developed for application to two-dimensional fracture mechanics problems. This technique was applied to the mixed-mode problem. A laser interferometry technique, for measurement of crack surface displacements under mixed-mode conditions, is presented. The experimental measurements are reported and the results of the two approaches are compared and discussed.

  10. Mixed mode stress intensity factors for semielliptical surface cracks

    NASA Technical Reports Server (NTRS)

    Smith, F. W.; Sorensen, D. R.

    1974-01-01

    The three-dimensional equations of elasticity are solved for a flat elliptical crack which has nonuniform shear stresses applied to its surfaces. An alternating method is used to determine the mode two and mode three stress intensity factors for a semielliptical surface crack in the surface of a finite thickness solid. These stress intensity factors are presented as a function of position along the crack border for a number of crack shapes and crack depths. This same technique is followed to determine the mode one stress intensity factors for the semielliptical surface crack which has normal loading applied to its surface. Mode one stress intensity factors are presented and compared with the results obtained from previous work.

  11. Numerical Analysis of Crack Tip Plasticity and History Effects under Mixed Mode Conditions

    NASA Astrophysics Data System (ADS)

    Lopez-Crespo, Pablo; Pommier, Sylvie

    The plastic behaviour in the crack tip region has a strong influence on the fatigue life of engineering components. In general, residual stresses developed as a consequence of the plasticity being constrained around the crack tip have a significant role on both the direction of crack propagation and the propagation rate. Finite element methods (FEM) are commonly employed in order to model plasticity. However, if millions of cycles need to be modelled to predict the fatigue behaviour of a component, the method becomes computationally too expensive. By employing a multiscale approach, very precise analyses computed by FEM can be brought to a global scale. The data generated using the FEM enables us to identify a global cyclic elastic-plastic model for the crack tip region. Once this model is identified, it can be employed directly, with no need of additional FEM computations, resulting in fast computations. This is done by partitioning local displacement fields computed by FEM into intensity factors (global data) and spatial fields. A Karhunen-Loeve algorithm developed for image processing was employed for this purpose. In addition, the partitioning is done such as to distinguish into elastic and plastic components. Each of them is further divided into opening mode and shear mode parts. The plastic flow direction was determined with the above approach on a centre cracked panel subjected to a wide range of mixed-mode loading conditions. It was found to agree well with the maximum tangential stress criterion developed by Erdogan and Sih, provided that the loading direction is corrected for residual stresses. In this approach, residual stresses are measured at the global scale through internal intensity factors.

  12. Three-Dimensional Gear Crack Propagation Studies

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Sane, Ashok D.; Drago, Raymond J.; Wawrzynek, Paul A.

    1998-01-01

    Three-dimensional crack growth simulation was performed on a split-tooth gear design using boundary element modeling and linear elastic fracture mechanics. Initial cracks in the fillet of the teeth produced stress intensity factors of greater magnitude (and thus, greater crack growth rates) than those in the root or groove areas of the teeth. Crack growth simulation was performed on a case study to evaluate crack propagation paths. Tooth fracture was predicted from the crack growth simulation for an initial crack in the tooth fillet region. Tooth loads on the uncracked mesh of the split-tooth design were up to five times greater than those on the cracked mesh if equal deflections of the cracked and uncracked teeth were considered. Predicted crack shapes as well as crack propagation life are presented based on calculated stress intensity factors, mixed-mode crack propagation trajectory theories, and fatigue crack growth theories.

  13. Mixed-mode I and II fatigue threshold and crack deflection angle in SiCp/2024Al composite

    SciTech Connect

    Liu, P.; Wang, Z.

    1996-04-15

    In the past decade, extensive studies were made on fatigue crack propagation behavior in particle or whisker reinforced metal-matrix composites (MMCs) with specific emphasis on the pure mode I fatigue crack growth threshold condition. However, the pure mode I case seldom occurred in practice. In many components cracks are not normal to the maximum principal stress direction and the crack may not grow in the plane of initial crack. Therefore, it is important to study the fatigue behavior under mixed-mode condition. A particle reinforced metal-matrix composite and its matrix alloy were selected for this study. Special attention has been paid to the influence of crack faces friction on the mixed-mode thresholds and crack deflection angle {theta}c. The composite used in the present work is a 15% vol. SiC particulate (nominal size 14 {micro}m) reinforced 2024Al which was produced by casting and extruded at an extrusion ratio of 10:1 into 28 mm diameter rod. Also an unreinforced 2024 Al alloy with a processing history identical to that of the composite was used for comparison.

  14. A Mixed-Mode I/II Fracture Criterion and Its Application in Crack Growth Predictions

    NASA Technical Reports Server (NTRS)

    Sutton, Michael A.; Deng, Xiaomin; Ma, Fashang; Newman, James S., Jr.

    1999-01-01

    A crack tip opening displacement (CTOD)-based, mixed mode fracture criterion is developed for predicting the onset and direction of crack growth. The criterion postulates that crack growth occurs in either the Mode I or Mode II direction, depending on whether the maximum in either the opening or the shear component of CTOD, measured at a specified distance behind the crack tip, attains a critical value. For crack growth direction prediction, the proposed CTOD criterion is shown to be equivalent to seven commonly used crack growth criteria under linearly elastic and asymptotic conditions. Under elastic-plastic conditions the CTOD criterion's prediction of the dependence of the crack growth direction on the crack-up mode mixity is in excellent agreement with the Arcan test results. Furthermore, the CTOD criterion correctly predicts the existence of a crack growth transition from mode I to mode II as the mode mixity approaches the mode II loading condition. The proposed CTOD criterion has been implemented in finite element crack growth simulation codes Z1P2DL and FRANC2DL to predict the crack growth paths in (a) a modified Arcan test specimen and fixture made of AL 2024-T34 and (b) a double cantilever beam (DCB) specimen made of AL 7050. A series of crack growth simulations have been carried out for the crack growth tests in the Arcan and DCB specimens and the results further demonstrate the applicability of the mixed mode CTOD fracture criterion crack growth predictions and residual strength analyses for airframe materials.

  15. A surface crack in shells under mixed-mode loading conditions

    NASA Technical Reports Server (NTRS)

    Joseph, P. F.; Erdogan, F.

    1988-01-01

    The present consideration of a shallow shell's surface crack under general loading conditions notes that while the mode I state can be separated, modes II and III remain coupled. A line spring model is developed to formulate the part-through crack problem under mixed-mode conditions, and then to consider a shallow shell of arbitrary curvature having a part-through crack located on the outer or the inner surface of the shell; Reissner's transverse shear theory is used to formulate the problem under the assumption that the shell is subjected to all five moment and stress resultants.

  16. A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity

    NASA Technical Reports Server (NTRS)

    Yau, J. F.; Wang, S. S.; Corten, H. T.

    1980-01-01

    A simple and convenient method of analysis for studying two-dimensional mixed-mode crack problems is presented. The analysis is formulated on the basis of conservation laws of elasticity and of fundamental relationships in fracture mechanics. The problem is reduced to the determination of mixed-mode stress-intensity factor solutions in terms of conservation integrals involving known auxiliary solutions. One of the salient features of the present analysis is that the stress-intensity solutions can be determined directly by using information extracted in the far field. Several examples with solutions available in the literature are solved to examine the accuracy and other characteristics of the current approach. This method is demonstrated to be superior in its numerical simplicity and computational efficiency to other approaches. Solutions of more complicated and practical engineering fracture problems dealing with the crack emanating from a circular hole are presented also to illustrate the capacity of this method

  17. Axial crack propagation and arrest in pressurized fuselage

    NASA Technical Reports Server (NTRS)

    Kosai, M.; Shimamoto, A.; Yu, C.-T.; Walker, S. I.; Kobayashi, A. S.; Tan, P.

    1994-01-01

    The crack arrest capability of a tear strap in a pressurized precracked fuselage was studied through instrumented axial rupture tests of small scale models of an idealized fuselage. Upon pressurization, rapid crack propagation initiated at an axial through crack along the stringer and immediately kinked due to the mixed modes 1 and 2 state caused by the one-sided opening of the crack flap. The diagonally running crack further turned at the tear straps. Dynamic finite element analysis of the rupturing cylinder showed that the crack kinked and also ran straight in the presence of a mixed mode state according to a modified two-parameter crack kinking criterion.

  18. Development and Application of Benchmark Examples for Mixed-Mode I/II Quasi-Static Delamination Propagation Predictions

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2012-01-01

    The development of benchmark examples for quasi-static delamination propagation prediction is presented and demonstrated for a commercial code. The examples are based on finite element models of the Mixed-Mode Bending (MMB) specimen. The examples are independent of the analysis software used and allow the assessment of the automated delamination propagation prediction capability in commercial finite element codes based on the virtual crack closure technique (VCCT). First, quasi-static benchmark examples were created for the specimen. Second, starting from an initially straight front, the delamination was allowed to propagate under quasi-static loading. Third, the load-displacement relationship from a propagation analysis and the benchmark results were compared, and good agreement could be achieved by selecting the appropriate input parameters. Good agreement between the results obtained from the automated propagation analysis and the benchmark results could be achieved by selecting input parameters that had previously been determined during analyses of mode I Double Cantilever Beam and mode II End Notched Flexure specimens. The benchmarking procedure proved valuable by highlighting the issues associated with choosing the input parameters of the particular implementation. Overall the results are encouraging, but further assessment for mixed-mode delamination fatigue onset and growth is required.

  19. Gear Crack Propagation Investigation

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Reduced weight is a major design goal in aircraft power transmissions. Some gear designs incorporate thin rims to help meet this goal. Thin rims, however, may lead to bending fatigue cracks. These cracks may propagate through a gear tooth or into the gear rim. A crack that propagates through a tooth would probably not be catastrophic, and ample warning of a failure could be possible. On the other hand, a crack that propagates through the rim would be catastrophic. Such cracks could lead to disengagement of a rotor or propeller from an engine, loss of an aircraft, and fatalities. To help create and validate tools for the gear designer, the NASA Lewis Research Center performed in-house analytical and experimental studies to investigate the effect of rim thickness on gear-tooth crack propagation. Our goal was to determine whether cracks grew through gear teeth (benign failure mode) or through gear rims (catastrophic failure mode) for various rim thicknesses. In addition, we investigated the effect of rim thickness on crack propagation life. A finite-element-based computer program simulated gear-tooth crack propagation. The analysis used principles of linear elastic fracture mechanics, and quarter-point, triangular elements were used at the crack tip to represent the stress singularity. The program had an automated crack propagation option in which cracks were grown numerically via an automated remeshing scheme. Crack-tip stress-intensity factors were estimated to determine crack-propagation direction. Also, various fatigue crack growth models were used to estimate crack-propagation life. Experiments were performed in Lewis' Spur Gear Fatigue Rig to validate predicted crack propagation results. Gears with various backup ratios were tested to validate crack-path predictions. Also, test gears were installed with special crack-propagation gages in the tooth fillet region to measure bending-fatigue crack growth. From both predictions and tests, gears with backup ratios

  20. Gear crack propagation investigations

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Ballarini, Roberto

    1996-01-01

    Analytical and experimental studies were performed to investigate the effect of gear rim thickness on crack propagation life. The FRANC (FRacture ANalysis Code) computer program was used to simulate crack propagation. The FRANC program used principles of linear elastic fracture mechanics, finite element modeling, and a unique re-meshing scheme to determine crack tip stress distributions, estimate stress intensity factors, and model crack propagation. Various fatigue crack growth models were used to estimate crack propagation life based on the calculated stress intensity factors. Experimental tests were performed in a gear fatigue rig to validate predicted crack propagation results. Test gears were installed with special crack propagation gages in the tooth fillet region to measure bending fatigue crack growth. Good correlation between predicted and measured crack growth was achieved when the fatigue crack closure concept was introduced into the analysis. As the gear rim thickness decreased, the compressive cyclic stress in the gear tooth fillet region increased. This retarded crack growth and increased the number of crack propagation cycles to failure.

  1. Development and Application of Benchmark Examples for Mixed-Mode I/II Quasi-Static Delamination Propagation Predictions

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2012-01-01

    The development of benchmark examples for quasi-static delamination propagation prediction is presented. The example is based on a finite element model of the Mixed-Mode Bending (MMB) specimen for 50% mode II. The benchmarking is demonstrated for Abaqus/Standard, however, the example is independent of the analysis software used and allows the assessment of the automated delamination propagation prediction capability in commercial finite element codes based on the virtual crack closure technique (VCCT). First, a quasi-static benchmark example was created for the specimen. Second, starting from an initially straight front, the delamination was allowed to propagate under quasi-static loading. Third, the load-displacement as well as delamination length versus applied load/displacement relationships from a propagation analysis and the benchmark results were compared, and good agreement could be achieved by selecting the appropriate input parameters. The benchmarking procedure proved valuable by highlighting the issues associated with choosing the input parameters of the particular implementation. Overall, the results are encouraging, but further assessment for mixed-mode delamination fatigue onset and growth is required.

  2. An equivalent domain integral method in the two-dimensional analysis of mixed mode crack problems

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Shivakumar, K. N.

    1990-01-01

    An equivalent domain integral (EDI) method for calculating J-integrals for two-dimensional cracked elastic bodies is presented. The details of the method and its implementation are presented for isoparametric elements. The EDI method gave accurate values of the J-integrals for two mode I and two mixed mode problems. Numerical studies showed that domains consisting of one layer of elements are sufficient to obtain accurate J-integral values. Two procedures for separating the individual modes from the domain integrals are presented.

  3. Crack propagation in graphene

    NASA Astrophysics Data System (ADS)

    Budarapu, P. R.; Javvaji, B.; Sutrakar, V. K.; Roy Mahapatra, D.; Zi, G.; Rabczuk, T.

    2015-08-01

    The crack initiation and growth mechanisms in an 2D graphene lattice structure are studied based on molecular dynamics simulations. Crack growth in an initial edge crack model in the arm-chair and the zig-zag lattice configurations of graphene are considered. Influence of the time steps on the post yielding behaviour of graphene is studied. Based on the results, a time step of 0.1 fs is recommended for consistent and accurate simulation of crack propagation. Effect of temperature on the crack propagation in graphene is also studied, considering adiabatic and isothermal conditions. Total energy and stress fields are analyzed. A systematic study of the bond stretching and bond reorientation phenomena is performed, which shows that the crack propagates after significant bond elongation and rotation in graphene. Variation of the crack speed with the change in crack length is estimated.

  4. Automatic crack propagation tracking

    NASA Technical Reports Server (NTRS)

    Shephard, M. S.; Weidner, T. J.; Yehia, N. A. B.; Burd, G. S.

    1985-01-01

    A finite element based approach to fully automatic crack propagation tracking is presented. The procedure presented combines fully automatic mesh generation with linear fracture mechanics techniques in a geometrically based finite element code capable of automatically tracking cracks in two-dimensional domains. The automatic mesh generator employs the modified-quadtree technique. Crack propagation increment and direction are predicted using a modified maximum dilatational strain energy density criterion employing the numerical results obtained by meshes of quadratic displacement and singular crack tip finite elements. Example problems are included to demonstrate the procedure.

  5. Domain switching emission from the mixed-mode crack in ferroelectrics by birefringence measurement and phase field modeling

    NASA Astrophysics Data System (ADS)

    Li, Qun; Pan, Suxin; Liu, Qida; Wang, Jie

    2016-07-01

    The spatial and temporal evolution of domain switching near the tip of a mixed-mode crack (e.g., an inclined crack) is observed in ferroelectrics. The birefringence technique is used to measure the optical quantities to demonstrate the domain switching near the crack tip. The results show an intriguing feature that there appears electrical creep and domain switching emission from the crack tip. The actual time-dependence of domain switching emission and its anisotropic velocity is approximately measured. Moreover, the phase field modeling is developed to simulate polarization distribution and domain switching near the crack tip where the time-dependent Ginzburg–Landau equation is used to describe the change of polarization. The phase field results indicate the same features of domain switching emission from the mixed-mode crack. A good agreement between phase field simulation and birefringence measurement is concluded by setting the appropriate kinetic coefficient in the time-dependent Ginzburg–Landau equation.

  6. Crack front échelon instability in mixed mode fracture of a strongly nonlinear elastic solid

    NASA Astrophysics Data System (ADS)

    Ronsin, O.; Caroli, C.; Baumberger, T.

    2014-02-01

    In order to assess the role of elastic nonlinearity in gel fracture, we study the échelon instability in gelatin under mixed mode tensile and antiplane shear loading —i.e. the emergence of segmented crack front structures connected by steps. We evidence the existence of an energy-release-rate-dependent mode mixity threshold. We show that échelons appear via nucleation of localized helical front distortions, and that their emergence is the continuation of the cross-hatching instability of gels and rubbers under pure tensile loading, shifted by the biasing effect of the antiplane shear. This result, at odds with the direct bifurcation predicted by linear elastic fracture mechanics, can be assigned to the controlling role of elastic nonlinearity.

  7. Elevated Temperature Crack Propagation

    NASA Technical Reports Server (NTRS)

    Orange, Thomas W.

    1994-01-01

    This paper is a summary of two NASA contracts on high temperature fatigue crack propagation in metals. The first evaluated the ability of fairly simple nonlinear fracture parameters to correlate crack propagation. Hastelloy-X specimens were tested under isothermal and thermomechanical cycling at temperatures up to 980 degrees C (1800 degrees F). The most successful correlating parameter was the crack tip opening displacement derived from the J-integral. The second evaluated the ability of several path-independent integrals to correlate crack propagation behavior. Inconel 718 specimens were tested under isothermal, thermomechanical, temperature gradient, and creep conditions at temperatures up to 650 degrees C (1200 degrees F). The integrals formulated by Blackburn and by Kishimoto correlated the data reasonably well under all test conditions.

  8. Application of Benchmark Examples to Assess the Single and Mixed-Mode Static Delamination Propagation Capabilities in ANSYS

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2012-01-01

    The application of benchmark examples for the assessment of quasi-static delamination propagation capabilities is demonstrated for ANSYS. The examples are independent of the analysis software used and allow the assessment of the automated delamination propagation in commercial finite element codes based on the virtual crack closure technique (VCCT). The examples selected are based on two-dimensional finite element models of Double Cantilever Beam (DCB), End-Notched Flexure (ENF), Mixed-Mode Bending (MMB) and Single Leg Bending (SLB) specimens. First, the quasi-static benchmark examples were recreated for each specimen using the current implementation of VCCT in ANSYS . Second, the delamination was allowed to propagate under quasi-static loading from its initial location using the automated procedure implemented in the finite element software. Third, the load-displacement relationship from a propagation analysis and the benchmark results were compared, and good agreement could be achieved by selecting the appropriate input parameters. The benchmarking procedure proved valuable by highlighting the issues associated with choosing the input parameters of the particular implementation. Overall the results are encouraging, but further assessment for three-dimensional solid models is required.

  9. Numerical Observation of Three-Dimensional Wing Cracking of Cracked Chevron Notched Brazilian Disc Rock Specimen Subjected to Mixed Mode Loading

    NASA Astrophysics Data System (ADS)

    Xu, N. W.; Dai, F.; Wei, M. D.; Xu, Y.; Zhao, T.

    2016-01-01

    The cracked chevron notched Brazilian disc (CCNBD) specimen has been suggested by International Society for Rock Mechanics for measuring mode I fracture toughness of rocks. Subsequently, this specimen geometry has been widely extended to conduct mixed mode fracture tests on rocks as well. A straight through crack front during the fracturing process upon the root of the chevron notch is assumed in the testing principle, but has never been thoroughly evaluated before. In this study, for the first time, the progressive rock fracture mechanism of the CCNBD rock specimen under mixed mode loading is numerically simulated. Specimens under representative mixed mode loading angles are modelled; and the assumption of the straight through crack front growth is critically assessed. The results show that not only the notch tip but also the saw-cut chevron notch cracks during the experiments, yielding a prominent twisted front, far from being straight. The crack front never grows up to the root of the notch ligament and the straight through crack front assumption is never satisfied in the realistic rock fracture progress of this chevron notched specimen subjected to mixed mode loads. In contrast, the fracture progress features typical three-dimensional wing cracking towards the loading ends. The numerically observed progressive fracture mechanism reveals that the measuring principle of mixed mode fracture tests employing CCNBD specimens is significantly violated and the measures of both modes I and II fracture toughness are uncertain.

  10. Polycrystal orientation effects on microslip and mixed-mode behavior of microstructural small cracks

    SciTech Connect

    Bennett, V.; McDowell, D.L.

    1999-07-01

    There are two sources of mode mixity--on a macro level (combined loading situation), and on the micro level--that affect the propagation of small crystallographic cracks. This work explores mode mixity on the micro level by utilizing a computational model to simulate microstructural influences on driving forces for the formation and growth of small cracks. Two-dimensional computational cyclic crystal plasticity calculations are conducted to study the distribution of cyclic slip and critical plane-type fatigue parameters in a material with nominal stress-strain characteristics of 4340 steel. Cases of applied cyclic tension-compression and cyclic shear are analyzed at strain amplitudes below macroscopic yielding. Emphasis is placed on stress state and amplitude dependence of the distribution of these parameters among grains. The role of anisotropic plasticity is isolated by assuming the elastic behavior of grains to obey homogeneous, isotropic linear elasticity. All grains are of equal dimension and are assigned a random orientation distribution. It is found that the distribution of the Fatemi-Socie critical plane fatigue parameter among grains is Weibull-distributed, and it is argued that it forms an improved linkage to cyclic crack tip displacement for microstructurally small cracks. The authors also present computed crack tip opening and sliding displacements as a function of maximum applied tensile strain (from well below to just above nominal yielding) for small cracks within surface grains surrounded by a nearly random orientation distribution of grains. Multiple realizations of the local microstructure are examined for each crack length for sub-grain size cracks, with results normalized to the ratio of crack length to grain size. Key results include a very strong role of the free surface on crack tip displacement, with opening displacement being much greater than the sliding for suitably small crystallographic cracks in the surface grains. There is also a

  11. Mixed-mode toughness of human cortical bone containing a longitudinal crack in far-field compression.

    PubMed

    Olvera, Diana; Zimmermann, Elizabeth A; Ritchie, Robert O

    2012-01-01

    Bone is generally loaded under multiaxial conditions in vivo; as it invariably contains microcracks, this leads to complex mixed-mode stress-states involving combinations of tension, compression and shear. In previous work on the mixed-mode loading of human cortical bone (using an asymmetric bend test geometry), we found that the bone toughness was lower when loaded in far-field shear than in tension (opposite to the trend in most brittle materials), although only for the transverse orientation. This is a consequence of the competition between preferred mechanical vs. microstructural crack-path directions, the former dictated by the direction of the maximum mechanical "driving force" (which changes with the mode-mixity), and the latter by the "weakest" microstructural path (which in human bone is along the osteonal interfaces or cement lines). As most microcracks are oriented longitudinally, we investigate here the corresponding mixed-mode toughness of human cortical bone in the longitudinal (proximal-distal) orientation using a "double cleavage drilled compression" test geometry, which provides a physiologically-relevant loading condition for bone in that it characterizes the toughness of a longitudinal crack loaded in far-field compression. In contrast to the transverse toughness, results show that the longitudinal toughness, measured using the strain-energy release rate, is significantly higher in shear (mode II) than in tension (mode I). This is consistent, however, with the individual criteria of preferred mechanical vs. microstructural crack paths being commensurate in this orientation. PMID:22115793

  12. The significance of crack-resistance curves to the mixed-mode fracture toughness of human cortical bone

    SciTech Connect

    Zimmermann, Elizabeth A.; Launey, Maximilien E.; Ritchie, Robert O.

    2010-03-25

    The majority of fracture mechanics studies on the toughness of bone have been performed under tensile loading. However, it has recently been shown that the toughness of human cortical bone in the transverse (breaking) orientation is actually much lower in shear (mode II) than in tension (mode I); a fact that is physiologically relevant as in vivo bone is invariably loaded multiaxially. Since bone is a material that derives its fracture resistance primarily during crack growth through extrinsic toughening mechanisms, such as crack deflection and bridging, evaluation of its toughness is best achieved through measurements of the crack-resistance or R-curve, which describes the fracture toughness as a function of crack extension. Accordingly, in this study, we attempt to measure for the first time the R-curve fracture toughness of human cortical bone under physiologically relevant mixed-mode loading conditions. We show that the resulting mixed-mode (mode I + II) toughness depends strongly on the crack trajectory and is the result of the competition between the paths of maximum mechanical driving force and 'weakest' microstructural resistance.

  13. The significance of crack-resistance curves to the mixed-mode fracture toughness of human cortical bone

    PubMed Central

    Zimmermann, Elizabeth A.; Launey, Maximilien E.; Ritchie, Robert O.

    2011-01-01

    The majority of fracture mechanics studies on the toughness of bone have been performed under tensile loading. However, it has recently been shown that the toughness of human cortical bone in the transverse (breaking) orientation is actually much lower in shear (mode II) than in tension (mode I); a fact that is physiologically relevant as in vivo bone is invariably loaded multiaxially. Since bone is a material that derives its fracture resistance primarily during crack growth through extrinsic toughening mechanisms, such as crack deflection and bridging, evaluation of its toughness is best achieved through measurements of the crack-resistance or R-curve, which describes the fracture toughness as a function of crack extension. Accordingly, in this study, we attempt to measure for the first time the R-curve fracture toughness of human cortical bone under physiologically relevant mixed-mode loading conditions. We show that the resulting mixed-mode (mode I + II) toughness depends strongly on the crack trajectory and is the result of the competition between the paths of maximum mechanical driving force and “weakest” microstructural resistance. PMID:20409579

  14. Mixed-mode fatigue-crack growth thresholds in Ti-6Al-4V at high frequency

    SciTech Connect

    Campbell, J.P.; Ritchie, R.O.

    1999-10-22

    Multiaxial loading conditions exist at fatigue-critical locations within turbine engine components, particularly in association with fretting fatigue in the blade dovetail/disk contact section. For fatigue-crack growth in such situations, the resultant crack-driving force is a combination of the influence of a mode I (tensile opening) stress-intensity range, {Delta}K{sub I}, as well as mode II (in-plane shear) and/or mode III (anti-plane shear) stress-intensity ranges, {Delta}K{sub II} and {Delta}K{sub III}, respectively. For the case of the high-cycle fatigue of turbine-engine alloys, it is critical to quantify such behavior, as the extremely high cyclic loading frequencies ({approximately}1--2 kHz) and correspondingly short times to failure may necessitate a design approached based on the fatigue-crack growth threshold. Moreover, knowledge of such thresholds is required for accurate prediction of fretting fatigue failures. Accordingly, this paper presents the mixed-mode fatigue crack growth thresholds for mode I + II loading (phase angles from 0{degree} to 82{degree}) in a Ti-6Al-4V blade alloy. These results indicate that when fatigue-crack growth in this alloy is characterized in terms of the crack-driving force {Delta}G, which incorporates both the applied tensile and shear loading, the mode 1 fatigue-crack growth threshold is a lower bound (worst case) with respect to mixed-mode (I + II) crack-growth behavior.

  15. Three-Dimensional Gear Crack Propagation Studied

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.

    1999-01-01

    Gears used in current helicopters and turboprops are designed for light weight, high margins of safety, and high reliability. However, unexpected gear failures may occur even with adequate tooth design. To design an extremely safe system, the designer must ask and address the question, "What happens when a failure occurs?" With gear-tooth bending fatigue, tooth or rim fractures may occur. A crack that propagates through a rim will be catastrophic, leading to disengagement of the rotor or propeller, loss of an aircraft, and possible fatalities. This failure mode should be avoided. A crack that propagates through a tooth may or may not be catastrophic, depending on the design and operating conditions. Also, early warning of this failure mode may be possible because of advances in modern diagnostic systems. One concept proposed to address bending fatigue fracture from a safety aspect is a splittooth gear design. The prime objective of this design would be to control crack propagation in a desired direction such that at least half of the tooth would remain operational should a bending failure occur. A study at the NASA Lewis Research Center analytically validated the crack-propagation failsafe characteristics of a split-tooth gear. It used a specially developed three-dimensional crack analysis program that was based on boundary element modeling and principles of linear elastic fracture mechanics. Crack shapes as well as the crack-propagation life were predicted on the basis of the calculated stress intensity factors, mixed-mode crack-propagation trajectory theories, and fatigue crack-growth theories. The preceding figures show the effect of the location of initial cracks on crack propagation. Initial cracks in the fillet of the teeth produced stress intensity factors of greater magnitude (and thus, greater crack growth rates) than those in the root or groove areas of the teeth. Crack growth was simulated in a case study to evaluate crack-propagation paths. Tooth

  16. A comparison of pure mode I and mixed mode I-III cracking of an adhesive containing an open knit cloth carrier

    NASA Technical Reports Server (NTRS)

    Ripling, E. J.; Crosley, P. B.; Johnson, W. S.

    1988-01-01

    Static and fatigue tests were carried out on two commercial modified epoxy film adhesives with a wide open knit polyester carrier in order to compare crack resistance in mode I and mixed mode I-III loading. The carrier cloth is found to have a significant influence on the cracking behavior of the adhesives. The open air net carrier used in this study separates from the adhesive in mode I cracking but shreds during mixed-mode crack extension. This decreases the opening mode toughness but increases the mixed-mode toughness as compared with results obtained earlier using a heavier knit carrier. The results suggest that the type of carrier may have a far larger influence on crack resistance than is generally recognized.

  17. Development of a numerical procedure for mixed mode K-solutions and fatigue crack growth in FCC single crystal superalloys

    NASA Astrophysics Data System (ADS)

    Ranjan, Srikant

    2005-11-01

    Fatigue-induced failures in aircraft gas turbine and rocket engine turbopump blades and vanes are a pervasive problem. Turbine blades and vanes represent perhaps the most demanding structural applications due to the combination of high operating temperature, corrosive environment, high monotonic and cyclic stresses, long expected component lifetimes and the enormous consequence of structural failure. Single crystal nickel-base superalloy turbine blades are being utilized in rocket engine turbopumps and jet engines because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities over polycrystalline alloys. These materials have orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. Computation of stress intensity factors (SIFs) and the ability to model fatigue crack growth rate at single crystal cracks subject to mixed-mode loading conditions are important parts of developing a mechanistically based life prediction for these complex alloys. A general numerical procedure has been developed to calculate SIFs for a crack in a general anisotropic linear elastic material subject to mixed-mode loading conditions, using three-dimensional finite element analysis (FEA). The procedure does not require an a priori assumption of plane stress or plane strain conditions. The SIFs KI, KII, and KIII are shown to be a complex function of the coupled 3D crack tip displacement field. A comprehensive study of variation of SIFs as a function of crystallographic orientation, crack length, and mode-mixity ratios is presented, based on the 3D elastic orthotropic finite element modeling of tensile and Brazilian Disc (BD) specimens in specific crystal orientations. Variation of SIF through the thickness of the specimens is also analyzed. The resolved shear stress intensity coefficient or effective SIF, Krss, can be computed as a function of crack tip SIFs and the

  18. Measurements of mixed-mode crack surface displacements and comparison with theory

    NASA Technical Reports Server (NTRS)

    Sharpe, W. N., Jr.; Altiero, N. J.; Mirmohamadsadegh, A.

    1980-01-01

    The problem of a finite-width tension specimen containing a crack oriented at various angles to the load axis is attacked from experimental and theoretical viewpoints. Displacements of an electro-machined slot, 12.5 mm long and oriented at angles of 0, 15, 30, 45, 60, and 75 deg, are measured using a laser-based in-plane measuring technique. Various width specimens, ranging from a crack-length/width ratio of 0.167 to 0.794, are tested. A boundary-integral equation method is extended to deal with the presence of a sharp crack. Agreement between the two approaches is generally good except near the tips of the cracks.

  19. Mode I and mixed I/III crack initiation and propagation behavior of V-4Cr-4Ti alloy at 25{degrees}C

    SciTech Connect

    Li, H.X.; Kurtz, R.J.; Jones, R.H.

    1997-04-01

    The mode I and mixed-mode I/III fracture behavior of the production-scale heat (No. 832665) of V-4Cr-4Ti has been investigated at 25{degrees}C using compact tension (CT) specimens for a mode I crack and modified CT specimens for a mixed-mode I/III crack. The mode III to mode I load ratio was 0.47. Test specimens were vacuum annealed at 1000{degrees}C for 1 h after final machining. Both mode I and mixed-mode I/III specimens were fatigue cracked prior to J-integral testing. It was noticed that the mixed-mode I/III crack angle decreased from an initial 25 degrees to approximately 23 degrees due to crack plane rotation during fatigue cracking. No crack plane rotation occurred in the mode I specimen. The crack initiation and propagation behavior was evaluated by generating J-R curves. Due to the high ductility of this alloy and the limited specimen thickness (6.35 mm), plane strain requirements were not met so valid critical J-integral values were not obtained. However, it was found that the crack initiation and propagation behavior was significantly different between the mode I and the mixed-mode I/III specimens. In the mode I specimen crack initiation did not occur, only extensive crack tip blunting due to plastic deformation. During J-integral testing the mixed-mode crack rotated to an increased crack angle (in contrast to fatigue precracking) by crack blunting. When the crack initiated, the crack angle was about 30 degrees. After crack initiation the crack plane remained at 30 degrees until the test was completed. Mixed-mode crack initiation was difficult, but propagation was easy. The fracture surface of the mixed-mode specimen was characterized by microvoid coalescence.

  20. Mode II fatigue crack propagation.

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Kibler, J. J.

    1971-01-01

    Fatigue crack propagation rates were obtained for 2024-T3 bare aluminum plates subjected to in-plane, mode I, extensional loads and transverse, mode II, bending loads. These results were compared to the results of Iida and Kobayashi for in-plane mode I-mode II extensional loads. The engineering significance of mode I-mode II fatigue crack growth is considered in view of the present results. A fatigue crack growth equation for handling mode I-mode II fatigue crack growth rates from existing mode I data is also discussed.

  1. Analysis of fatigue crack propagation

    NASA Technical Reports Server (NTRS)

    Liu, H. W.

    1972-01-01

    The correlation between fatigue crack propagation and stress intensity factor is analyzed. When determining fatigue crack propagation rate, a crack increment, delta a, and its corresponding increment in load cycles, delta N, are measured. Fatigue crack propagation must be caused by a shear and/or a normal separation mode. Both of these two processes are discrete if one looks at the atomic level. If the average deformation and fracture properties over the crack increments, delta a, can be considered as homogeneous, if the characteristic discrete lengths of sigma a, if the plastic zone size is small, and if a plate is thick enough to insure a plane strain case, da/dN is proportional to delta K squared. Any deviation of empirical data from this relation must be caused by the fact that one or more of these conditions are not satisfied. The effects of plate thickness and material inhomogeneity are discussed in detail. A shear separation mode of fatigue crack propagation is described and is used to illustrate the effects of material inhomogeneity.

  2. Numerical analysis of blunting of a crack tip in a ductile material under small-scale yielding and mixed mode loading

    NASA Astrophysics Data System (ADS)

    Saka, M.; Abé, H.; Tanaka, S.

    1986-03-01

    The blunting of the tip of a crack in a ductile material is analysed under the conditions of plane strain, small-scale yielding, and mixed mode loading of Modes I and II. The material is assumed to be an elastic-perfectly plastic solid with Poisson's ratio being 1/2. The stress and strain fields for a sharp crack under mixed mode loading are first determined by means of elastic-plastic finite element analysis. It is shown that only one elastic sector exists around the crack tip, in contrast with the possibility of existence of two elastic sectors as discussed by Gao. The results obtained for a sharp crack are used as the boundary conditions for the subsequent numerical analysis of crack tip blunting under mixed mode loading, based on slip line theory. The characteristic shapes of the blunted crack tip are obtained for a wide range of Mode I and Mode II combinations, and found to resemble the tip of Japanese sword. Also the stress field around the blunted crack tip is determined.

  3. Experimental and simulation predicted crack paths for al-2024-t351 under mixed-mode i/ii fatigue loading using an arcan fixture

    NASA Astrophysics Data System (ADS)

    Miller, Eileen

    Mixed mode I/II fatigue experiments and simulations are performed for an Arcan fixture and a 6.35mm thick Al-2024-T351 specimen. Experiments were performed for Arcan loading angles that gave rise to a range of Mode I/II crack tip conditions from 0 ¡U ¦¤KII/¦¤KI ¡U ¡TH. Measurements include the crack paths, loading cycles and maximum and minimum loads for each loading angle. Simulations were performed using three-dimensional finite element analysis (3D-FEA) with 10-noded tetrahedral elements via CRACK3D. While modeling the entire fixture-specimen geometry, a modified version of VCCT with automatic crack tip re-meshing and a maximum normal stress criterion were used to predict the direction of crack growth. Results indicate excellent agreement between experiments and simulations for the measured crack paths during the first several millimeters of crack extension.

  4. Consideration of Moving Tooth Load in Gear Crack Propagation Predictions

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Handschuh, Robert F.; Spievak, Lisa E.; Wawrzynek, Paul A.; Ingraffea, Anthony R.

    2001-01-01

    Robust gear designs consider not only crack initiation, but crack propagation trajectories for a fail-safe design. In actual gear operation, the magnitude as well as the position of the force changes as the gear rotates through the mesh. A study to determine the effect of moving gear tooth load on crack propagation predictions was performed. Two-dimensional analysis of an involute spur gear and three-dimensional analysis of a spiral-bevel pinion gear using the finite element method and boundary element method were studied and compared to experiments. A modified theory for predicting gear crack propagation paths based on the criteria of Erdogan and Sih was investigated. Crack simulation based on calculated stress intensity factors and mixed mode crack angle prediction techniques using a simple static analysis in which the tooth load was located at the highest point of single tooth contact was validated. For three-dimensional analysis, however, the analysis was valid only as long as the crack did not approach the contact region on the tooth.

  5. Crack propagation driven by crystal growth

    SciTech Connect

    A. Royne; Paul Meaking; A. Malthe-Sorenssen; B. Jamtveit; D. K. Dysthe

    2011-10-01

    Crystals that grow in confinement may exert a force on their surroundings and thereby drive crack propagation in rocks and other materials. We describe a model of crystal growth in an idealized crack geometry in which the crystal growth and crack propagation are coupled through the stress in the surrounding bulk solid. Subcritical crack propagation takes place during a transient period, which may be very long, during which the crack velocity is limited by the kinetics of crack propagation. When the crack is sufficiently large, the crack velocity becomes limited by the kinetics of crystal growth. The duration of the subcritical regime is determined by two non-dimensional parameters, which relate the kinetics of crack propagation and crystal growth to the supersaturation of the fluid and the elastic properties of the surrounding material.

  6. Effects of mixed mode I/II loading and grain orientation on crack initiation and stable tearing in 2024-T3 aluminum

    SciTech Connect

    Amstutz, B.E.; Sutton, M.A.; Boone, M.L.; Dawicke, D.S.

    1997-12-01

    The effects of material grain orientation and mixed mode I/II loading on crack initiation and stable tearing in 2.3-mm-thick, unclad 2024-T3 aluminum is experimentally investigated. Mode I experiments were performed on center-cracked specimens with the crack being oriented at various angles relative to the rolling direction. Defining {theta} to be the angle between the normal to the initial crack plane and the loading direction, Mode I/II experiments were performed using an Arcan test fixture for 0{degree} {le} {theta} {le} 90{degree} [corresponding to 90{degree} {ge} {beta} {ge} 0{degree}, where {beta} = atan (K{sub II}/K{sub I})] with the crack oriented either along the rolling direction (T-L) or perpendicular to the rolling direction (L-T). Results indicate that: 1. The Mode I crack tip opening displacement (CTOD) is a strong function of the orientation of the crack relative to the rolling direction; CTOD for a T-L specimen is 0.84 mm, increasing linearly with orientation angle to 1.05 mm for an L-T case. 2. The Mode I/II CTOD increases rapidly during initial increments of crack growth and then decreases towards a constant value as crack growth continues. 3. For {theta} < 68{degree} ({beta} > 29{degree}), all cracks kinked and the Mode I/II plastic zones are similar to rotated Mode I plastic zones throughout the crack growth process. 4. J{sub II} = 0 reasonably predicts the direction of tension-dominated crack growth, but does not predict the transition to shear crack growth which occurs for {theta} {ge} 75{degree}. 5. K{sub II} {ge} K{sub I} for {theta} {approx} 58{degree} ({beta} = 45{degree}) does not quantitatively predict the transition to shear crack growth for {theta} {ge} 75{degree} ({beta} {le} 22{degree}), but does provide an indication of changing conditions in the crack tip region.

  7. J-integral evaluation for 2D mixed-mode crack problems employing a meshfree stabilized conforming nodal integration method

    NASA Astrophysics Data System (ADS)

    Tanaka, Satoyuki; Suzuki, Hirotaka; Sadamoto, Shota; Sannomaru, Shogo; Yu, Tiantang; Bui, Tinh Quoc

    2016-08-01

    Two-dimensional (2D) in-plane mixed-mode fracture mechanics problems are analyzed employing an efficient meshfree Galerkin method based on stabilized conforming nodal integration (SCNI). In this setting, the reproducing kernel function as meshfree interpolant is taken, while employing the SCNI for numerical integration of stiffness matrix in the Galerkin formulation. The strain components are smoothed and stabilized employing Gauss divergence theorem. The path-independent integral ( J-integral) is solved based on the nodal integration by summing the smoothed physical quantities and the segments of the contour integrals. In addition, mixed-mode stress intensity factors (SIFs) are extracted from the J-integral by decomposing the displacement and stress fields into symmetric and antisymmetric parts. The advantages and features of the present formulation and discretization in evaluation of the J-integral of in-plane 2D fracture problems are demonstrated through several representative numerical examples. The mixed-mode SIFs are evaluated and compared with reference solutions. The obtained results reveal high accuracy and good performance of the proposed meshfree method in the analysis of 2D fracture problems.

  8. Mixed-Mode Fracture and Fatigue Analysis of Cracked 3D Complex Structures using a 3D SGBEM-FEM Alternating Method

    NASA Astrophysics Data System (ADS)

    Bhavanam, Sharada

    The aim of this thesis is to numerically evaluate the mixed-mode Stress Intensity Factors (SIFs) of complex 3D structural geometries with arbitrary 3D cracks using the Symmetric Galerkin Boundary Element Method-Finite Element Method (SGBEM-FEM) Alternating Method. Various structural geometries with different loading scenarios and crack configurations were examined in this thesis to understand the behavior and trends of the mixed-mode SIFs as well as the fatigue life for these complex structural geometries. Although some 3D structures have empirical and numerical solutions that are readily available in the open literature, some do not; therefore this thesis presents the results of fracture and fatigue analyses of these 3D complex structures using the SGBEM-FEM Alternating Method to serve as reference for future studies. Furthermore, there are advantages of using the SGBEM-FEM Alternating Method compared to traditional FEM methods. For example, the fatigue-crack-growth and fatigue life can be better estimated for a structure because different fatigue models (i.e. Walker, Paris, and NASGRO) can be used within the same framework of the SGBEM-FEM Alternating Method. The FEM (un-cracked structure)/BEM(crack model) meshes are modeled independently, which speeds up the computation process and reduces the cost of human labor. A simple coarse mesh can be used for all fracture and fatigue analyses of complex structures. In this thesis, simple coarse meshes were used for 3D complex structures, which were below 5000 elements as compared to traditional FEM, which require meshes where the elements range on the order of ˜250,000 to ˜106 and sometimes even more than that.

  9. TECHNICAL NOTE: Active control for stress intensity of crack-tips under mixed mode by shape memory TiNi fiber epoxy composites

    NASA Astrophysics Data System (ADS)

    Shimamoto, A.; Zhao, H.; Azakami, T.

    2007-06-01

    The paper presented the effectiveness of a shape memory alloy hybrid composite. It was designed to actively suppress stress intensity in the vicinity of a crack-tip. A shape memory alloy (SMA) TiNi fiber reinforced epoxy composite was fabricated based on the proposed design concept and its material and mechanical properties were investigated by photoelastic examinations. The stress intensity factors, KI and KII, at a crack-tip decreased temperatures greater than Af under mixed mode. The phenomenon was caused by the recovery force of the TiNi fiber. The relationship of the stress intensity factors with the prestrain in the SMA fiber as well as with the ambient temperature in an isothermal furnace was clarified. On this basis, the active control for stress intensity by a shape memory composite was discussed.

  10. Corrosion fatigue crack propagation in metals

    SciTech Connect

    Gangloff, R.P.

    1990-06-01

    This review assesses fracture mechanics data and mechanistic models for corrosion fatigue crack propagation in structural alloys exposed to ambient temperature gases and electrolytes. Extensive stress intensity-crack growth rate data exist for ferrous, aluminum and nickel based alloys in a variety of environments. Interactive variables (viz., stress intensity range, mean stress, alloy composition and microstructure, loading frequency, temperature, gas pressure and electrode potential) strongly affect crack growth kinetics and complicate fatigue control. Mechanistic models to predict crack growth rates were formulated by coupling crack tip mechanics with occluded crack chemistry, and from both the hydrogen embrittlement and anodic dissolution/film rupture perspectives. Research is required to better define: (1) environmental effects near threshold and on crack closure; (2) damage tolerant life prediction codes and the validity of similitude; (3) the behavior of microcrack; (4) probes and improved models of crack tip damage; and (5) the cracking performance of advanced alloys and composites.

  11. Corrosion fatigue crack propagation in metals

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.

    1990-01-01

    This review assesses fracture mechanics data and mechanistic models for corrosion fatigue crack propagation in structural alloys exposed to ambient temperature gases and electrolytes. Extensive stress intensity-crack growth rate data exist for ferrous, aluminum and nickel based alloys in a variety of environments. Interactive variables (viz., stress intensity range, mean stress, alloy composition and microstructure, loading frequency, temperature, gas pressure and electrode potential) strongly affect crack growth kinetics and complicate fatigue control. Mechanistic models to predict crack growth rates were formulated by coupling crack tip mechanics with occluded crack chemistry, and from both the hydrogen embrittlement and anodic dissolution/film rupture perspectives. Research is required to better define: (1) environmental effects near threshold and on crack closure; (2) damage tolerant life prediction codes and the validity of similitude; (3) the behavior of microcrack; (4) probes and improved models of crack tip damage; and (5) the cracking performance of advanced alloys and composites.

  12. Quantity Effect of Radial Cracks on the Cracking Propagation Behavior and the Crack Morphology

    PubMed Central

    Chen, Jingjing; Xu, Jun; Liu, Bohan; Yao, Xuefeng; Li, Yibing

    2014-01-01

    In this letter, the quantity effect of radial cracks on the cracking propagation behavior as well as the circular crack generation on the impacted glass plate within the sandwiched glass sheets are experimentally investigated via high-speed photography system. Results show that the radial crack velocity on the backing glass layer decreases with the crack number under the same impact conditions during large quantities of repeated experiments. Thus, the “energy conversion factor” is suggested to elucidate the physical relation between the cracking number and the crack propagation speed. Besides, the number of radial crack also takes the determinative effect in the crack morphology of the impacted glass plate. This study may shed lights on understanding the cracking and propagation mechanism in laminated glass structures and provide useful tool to explore the impact information on the cracking debris. PMID:25048684

  13. Crack Propagation in Bamboo's Hierarchical Cellular Structure

    PubMed Central

    Habibi, Meisam K.; Lu, Yang

    2014-01-01

    Bamboo, as a natural hierarchical cellular material, exhibits remarkable mechanical properties including excellent flexibility and fracture toughness. As far as bamboo as a functionally graded bio-composite is concerned, the interactions of different constituents (bamboo fibers; parenchyma cells; and vessels.) alongside their corresponding interfacial areas with a developed crack should be of high significance. Here, by using multi-scale mechanical characterizations coupled with advanced environmental electron microscopy (ESEM), we unambiguously show that fibers' interfacial areas along with parenchyma cells' boundaries were preferred routes for crack growth in both radial and longitudinal directions. Irrespective of the honeycomb structure of fibers along with cellular configuration of parenchyma ground, the hollow vessels within bamboo culm affected the crack propagation too, by crack deflection or crack-tip energy dissipation. It is expected that the tortuous crack propagation mode exhibited in the present study could be applicable to other cellular natural materials as well. PMID:24998298

  14. Molecular dynamics simulation of propagating cracks

    NASA Technical Reports Server (NTRS)

    Mullins, M.

    1982-01-01

    Steady state crack propagation is investigated numerically using a model consisting of 236 free atoms in two (010) planes of bcc alpha iron. The continuum region is modeled using the finite element method with 175 nodes and 288 elements. The model shows clear (010) plane fracture to the edge of the discrete region at moderate loads. Analysis of the results obtained indicates that models of this type can provide realistic simulation of steady state crack propagation.

  15. Fracture mechanics of propagating 3-D fatigue cracks with parametric dislocations

    NASA Astrophysics Data System (ADS)

    Takahashi, Akiyuki; Ghoniem, Nasr M.

    2013-07-01

    Propagation of 3-D fatigue cracks is analyzed using a discrete dislocation representation of the crack opening displacement. Three dimensional cracks are represented with Volterra dislocation loops in equilibrium with the applied external load. The stress intensity factor (SIF) is calculated using the Peach-Koehler (PK) force acting on the crack tip dislocation loop. Loading mode decomposition of the SIF is achieved by selection of Burgers vector components to correspond to each fracture mode in the PK force calculations. The interaction between 3-D cracks and free surfaces is taken into account through application of the superposition principle. A boundary integral solution of an elasticity problem in a finite domain is superposed onto the elastic field solution of the discrete dislocation method in an infinite medium. The numerical accuracy of the SIF is ascertained by comparison with known analytical solution of a 3-D crack problem in pure mode I, and for mixed-mode loading. Finally, fatigue crack growth simulations are performed with the Paris law, showing that 3-D cracks do not propagate in a self-similar shape, but they re-configure as a result of their interaction with external boundaries. A specific numerical example of fatigue crack growth is presented to demonstrate the utility of the developed method for studies of 3-D crack growth during fatigue.

  16. Evaluation of Mixed-mode Integral Invariant for Polymer Material Trough The Couple Experimental-Numerical Process

    NASA Astrophysics Data System (ADS)

    Meite, M.; Pop, O.; Dubois, F.; Absi, J.

    2010-06-01

    Usually the element of real structures is subject of the mixed mode loadings. This fact can be explained by the elements geometry and the loading orientations. In this case the propagation of the eventual cracks is characterised by the mixed mode kinematics. In order to characterize the fracture process in mixed mode it’s necessary to separate the fracture process in order to evaluate the influence of each mode. Our study is limited to plane configurations. The mixed mode is considered as an association of opening and shear modes. The mixed mode fracture is evaluated trough the experimental tests using the SEN specimen for different mixed mode ratios. The fracture process separation is operated by the invariant integral Mθ. Moreover, our study regroups an experimental and a numerical approaches.

  17. Fatigue crack layer propagation in silicon-iron

    NASA Technical Reports Server (NTRS)

    Birol, Y.; Welsch, G.; Chudnovsky, A.

    1986-01-01

    Fatigue crack propagation in metal is almost always accompanied by plastic deformation unless conditions strongly favor brittle fracture. The analysis of the plastic zone is crucial to the understanding of crack propagation behavior as it governs the crack growth kinetics. This research was undertaken to study the fatigue crack propagation in a silicon iron alloy. Kinetic and plasticity aspects of fatigue crack propagation in the alloy were obtained, including the characterization of damage evolution.

  18. Burrowing mechanics: burrow extension by crack propagation.

    PubMed

    Dorgan, Kelly M; Jumars, Peter A; Johnson, Bruce; Boudreau, B P; Landis, Eric

    2005-02-01

    Until now, the analysis of burrowing mechanics has neglected the mechanical properties of impeding, muddy, cohesive sediments, which behave like elastic solids. Here we show that burrowers can progress through such sediments by using a mechanically efficient, previously unsuspected mechanism--crack propagation--in which an alternating 'anchor' system of burrowing serves as a wedge to extend the crack-shaped burrow. The force required to propagate cracks through sediment in this way is relatively small: we find that the force exerted by the annelid worm Nereis virens in making and moving into such a burrow amounts to less than one-tenth of the force it needs to use against rigid aquarium walls. PMID:15690029

  19. Crack propagation and arrest in pressurized containers

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Delale, F.; Owczarek, J. A.

    1976-01-01

    The problem of crack propagation and arrest in a finite volume cylindrical container filled with pressurized gas is considered. It is assumed that the cylinder contains a symmetrically located longitudinal part-through crack with a relatively small net ligament. The net ligament suddenly ruptures initiating the process of fracture propagation and depressurization in the cylinder. Thus the problem is a coupled gas dynamics and solid mechanics problem the exact formulation of which does not seem to be possible. The problem is reduced to a proper initial value problem by introducing a dynamic fracture criterion which relates the crack acceleration to the difference between a load factor and the corresponding strength parameter. The results indicate that generally in gas filled cylinders fracture arrest is not possible unless the material behaves in a ductile manner and the container is relatively long.

  20. Crack propagation modeling using Peridynamic theory

    NASA Astrophysics Data System (ADS)

    Hafezi, M. H.; Alebrahim, R.; Kundu, T.

    2016-04-01

    Crack propagation and branching are modeled using nonlocal peridynamic theory. One major advantage of this nonlocal theory based analysis tool is the unifying approach towards material behavior modeling - irrespective of whether the crack is formed in the material or not. No separate damage law is needed for crack initiation and propagation. This theory overcomes the weaknesses of existing continuum mechanics based numerical tools (e.g. FEM, XFEM etc.) for identifying fracture modes and does not require any simplifying assumptions. Cracks grow autonomously and not necessarily along a prescribed path. However, in some special situations such as in case of ductile fracture, the damage evolution and failure depend on parameters characterizing the local stress state instead of peridynamic damage modeling technique developed for brittle fracture. For brittle fracture modeling the bond is simply broken when the failure criterion is satisfied. This simulation helps us to design more reliable modeling tool for crack propagation and branching in both brittle and ductile materials. Peridynamic analysis has been found to be very demanding computationally, particularly for real-world structures (e.g. vehicles, aircrafts, etc.). It also requires a very expensive visualization process. The goal of this paper is to bring awareness to researchers the impact of this cutting-edge simulation tool for a better understanding of the cracked material response. A computer code has been developed to implement the peridynamic theory based modeling tool for two-dimensional analysis. A good agreement between our predictions and previously published results is observed. Some interesting new results that have not been reported earlier by others are also obtained and presented in this paper. The final objective of this investigation is to increase the mechanics knowledge of self-similar and self-affine cracks.

  1. Fatigue crack propagation analysis of plaque rupture.

    PubMed

    Pei, Xuan; Wu, Baijian; Li, Zhi-Yong

    2013-10-01

    Rupture of atheromatous plaque is the major cause of stroke or heart attack. Considering that the cardiovascular system is a classic fatigue environment, plaque rupture was treated as a chronic fatigue crack growth process in this study. Fracture mechanics theory was introduced to describe the stress status at the crack tip and Paris' law was used to calculate the crack growth rate. The effect of anatomical variation of an idealized plaque cross-section model was investigated. The crack initiation was considered to be either at the maximum circumferential stress location or at any other possible locations around the lumen. Although the crack automatically initialized at the maximum circumferential stress location usually propagated faster than others, it was not necessarily the most critical location where the fatigue life reached its minimum. We found that the fatigue life was minimum for cracks initialized in the following three regions: the midcap zone, the shoulder zone, and the backside zone. The anatomical variation has a significant influence on the fatigue life. Either a decrease in cap thickness or an increase in lipid pool size resulted in a significant decrease in fatigue life. Comparing to the previously used stress analysis, this fatigue model provides some possible explanations of plaque rupture at a low stress level in a pulsatile cardiovascular environment, and the method proposed here may be useful for further investigation of the mechanism of plaque rupture based on in vivo patient data. PMID:23897295

  2. Mixed Mode Fracture of Plasma Sprayed Thermal Barrier Coatings: Effects of Anisotropy and Heterogeneity

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Ghosn, Louis L.

    2008-01-01

    The combined mode I-mode II fracture behavior of anisotropic ZrO2-8wt%Y2O3 thermal barrier coatings was determined in asymmetric flexure loading at both ambient and elevated temperatures. A fracture envelope of KI versus KII was determined for the coating material at ambient and elevated temperatures. Propagation angles of fracture as a function of KI/KII were also determined. The mixed-mode fracture behavior of the microsplat coating material was modeled using Finite Element approach to account for anisotropy and micro cracked structures, and predicted in terms of fracture envelope and propagation angle using mixed-mode fracture theories.

  3. Ductile fracture in HY100 steel under mixed mode I/mode II loading

    SciTech Connect

    Bhattacharjee, D. . Dept. of Materials Science and Metallurgy); Knott, J.F. . School of Metallurgy and Materials)

    1994-05-01

    A number of criteria have been proposed which predict the direction of cracking under mixed Mode 1/Mode 2 loading. All have been evaluated for brittle materials, in which a crack subjected to tension and shear propagates normal to the maximum tensile stress (i.e. fracture is of the Mode 1 type). In a ductile material, however, a notch subjected to mixed Mode 1/Mode 2 loading may initiate a crack in the direction of maximum shear. This paper shows that the profile of the notch tip changes with increasing mixed mode load in such a way that one side of the tip blunts while the other sharpens. Various specimens, subjected to the same mixed mode ratio, were unloaded from different points on the load-displacement curves to study the change in notch-tip profile. Studies under the Scanning Electron Microscope (SEM) have shown that cracks initiate at the sharpened end, along a microscopic shear band. Using a dislocation pile-up model for decohesion of the carbide-matrix interface, a micromechanical model has been proposed for crack initiation in the shear band. It is shown that a theoretical prediction of the shear strain required for decohesion gives a result that is, of magnitude, similar to that of the shear strain at crack initiation measured in the experiments.

  4. Crack propagation and arrest in pressurized containers

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Delale, F.; Owczarek, J. A.

    1977-01-01

    The problem of crack propagation and arrest in a finite volume cylindrical container filled with pressurized gas is considered. It is assumed that the cylinder contains a symmetrically located longitudinal part-through crack with a relatively small net ligament. The net ligament suddenly ruptures initiating the process of fracture propagation and depressurization in the cylinder. The problem is formulated by making two major assumptions, namely, that the shell problem is quasi-static and the gas dynamics problem is one-dimensional. The problem is reduced to a proper initial value problem by introducing a dynamic fracture criterion which relates the crack acceleration to the difference between a load factor and the corresponding strength parameter. The main results are demonstrated by considering two examples, an aluminum cylinder which may behave in a quasi-brittle manner, and a steel cylinder which undergoes ductile fracture. The results indicate that generally in gas-filled cylinders fracture arrest is not possible unless the material behaves in a ductile manner and the container is relatively long.

  5. Mixed-mode fracture of ceramics

    SciTech Connect

    Petrovic, J.J.

    1985-01-01

    The mixed-mode fracture behavior of ceramic materials is of importance for monolithic ceramics in order to predict the onset of fracture under generalized loading conditions and for ceramic composites to describe crack deflection toughening mechanisms. Experimental data on surface flaw mixed-mode fracture in various ceramics indicate that the flaw-plane normal stress at fracture decreases with increasing in-flaw-plane shear stress, although present data exhibit a fairly wide range in details of this sigma - tau relationship. Fracture from large cracks suggests that Mode II has a greater effect on Mode I fracture than Mode III. A comparison of surface flaw and large crack mixed-mode I-II fracture responses indicated that surface flaw behavior is influenced by shear resistance effects.

  6. Dynamic delamination crack propagation in a graphite/epoxy laminate

    NASA Technical Reports Server (NTRS)

    Sun, C. T.; Grady, J. E.

    1986-01-01

    The dynamic delamination crack propagation behavior during ballistic tests of (90/0)5s T-300/934 graphite/epoxy laminates with embedded interfacial cracks was investigated using high speed photography. The impact on the beam-like specimen was produced with a silicon rubber ball, and the crack propagation speeds and the threshold impact velocities required to initiate dynamic crack propagation were determined for several crack positions. The results suggest that the mode of crack propagation depends on the specimen geometry as well as the loading condition. A simplified finite element analysis of the experimental data obtained from one of the midplane-cracked specimens was used to estimate the critical strain energy release rate, which may determine the onset of unstable crack propagation.

  7. Irregular lattice model for quasistatic crack propagation

    NASA Astrophysics Data System (ADS)

    Bolander, J. E.; Sukumar, N.

    2005-03-01

    An irregular lattice model is proposed for simulating quasistatic fracture in softening materials. Lattice elements are defined on the edges of a Delaunay tessellation of the medium. The dual (Voronoi) tessellation is used to scale the elemental stiffness terms in a manner that renders the lattice elastically homogeneous. This property enables the accurate modeling of heterogeneity, as demonstrated through the elastic stress analyses of fiber composites. A cohesive description of fracture is used to model crack initiation and propagation. Numerical simulations, which demonstrate energy-conserving and grid-insensitive descriptions of cracking, are presented. The model provides a framework for the failure analysis of quasibrittle materials and fiber-reinforced brittle-matrix composites.

  8. Dynamic crack propagation through nanoporous media

    NASA Astrophysics Data System (ADS)

    Nguyen, Thao; Wilkerson, Justin

    2015-06-01

    The deformation and failure of nanoporous metals may be considerably different than that of more traditional bulk porous metals. The length scales in traditional bulk porous metals are typically large enough for classic plasticity and buckling to be operative. However, the extremely small length scales associated with nanoporous metals may inhibit classic plasticity mechanisms. Here, we motivate an alternative nanovoid growth mechanism mediated by dislocation emission. Following an approach similar to Lubarda and co-workers, we make use of stability arguments applied to the analytic solutions of the elastic interactions of dislocations and voids to derive a simple stress-based criterion for emission activation. We then propose a dynamic nanovoid growth law that is motivated by the kinetics of dislocation emission. The resulting failure model is implemented into a commercial finite element software to simulate dynamic crack growth. The simulations reveal that crack propagation through a nanoporous media proceeds at somewhat faster velocities than through the more traditional bulk porous metal.

  9. Directional crack propagation of granular water systems.

    PubMed

    Mizuguchi, Tsuyoshi; Nishimoto, Akihiro; Kitsunezaki, So; Yamazaki, Yoshihiro; Aoki, Ichio

    2005-05-01

    Pattern dynamics of directional crack propagation phenomena observed in drying process of starch-water mixture is investigated. To visualize the three-dimensional structure of the drying-fracture process two kinds of experiments are performed, i.e., resin solidification planing method and real-time measurement of water content distribution with MR instruments. A cross section with polygonal structure is visualized in both experiments. The depth dependency of cell size is measured. The phenomenological model for water transportation is also discussed. PMID:16089617

  10. Investigation of Crack Propagation in Rock using Discrete Sphero-Polyhedral Element Method

    NASA Astrophysics Data System (ADS)

    Behraftar, S.; Galindo-torres, S. A.; Scheuermann, A.; Li, L.; Williams, D.

    2014-12-01

    In this study a micro-mechanical model is developed to study the fracture propagation process in rocks. The model is represented by an array of bonded particles simulated by the Discrete Sphero-Polyhedral Element Model (DSEM), which was introduced by the authors previously and has been shown to be a suitable technique to model rock [1]. It allows the modelling of particles of general shape, with no internal porosity. The motivation behind using this technique is the desire to microscopically investigate the fracture propagation process and study the relationship between the microscopic and macroscopic behaviour of rock. The DSEM method is used to model the Crack Chevron Notch Brazilian Disc (CCNBD) test suggested by the International Society of Rock Mechanics (ISRM) for determining the fracture toughness of rock specimens. CCNBD samples with different crack inclination angles, are modelled to investigate their fracture mode. The Crack Mouth Opening Displacement (CMOD) is simulated and the results are validated using experimental results obtained from a previous study [2]. Fig. 1 shows the simulated and experimental results of crack propagation for different inclination angles of CCNBD specimens. The DSEM method can be used to predict crack trajectory and quantify crack propagation during loading. References: 1. Galindo-Torres, S. A., et al. "Breaking processes in three-dimensional bonded granular materials with general shapes." Computer Physics Communications 183.2 (2012): 266-277. 2. Erarslan, N., and D. J. Williams. "Mixed-mode fracturing of rocks under static and cyclic loading." Rock mechanics and rock engineering 46.5 (2013): 1035-1052.

  11. Temperature evolution and heat dissipation during crack propagation

    NASA Astrophysics Data System (ADS)

    Lengliné, Olivier; Santucci, Stéphane; Jørgen Måløy, Knut; Vincent-Dospital, Tom; Toussaint, Renaud

    2013-04-01

    During a crack propagation, energy is dissipated in mainly three ways: creation of new fracture surface (possibly at microscopic scale in a process zone), emission of elastic waves that get dissipated in the far field, and local Joule heating during friction in a process zone. There is in addition some reversible elastic energy change associated to the crack advance.Since the temperature variations can have an important impact on the physics of the crack propagation, establishing properly this balance in different crack propagation scenarios is of great importance. Notably, the physics of fracture propagation has been shown to be strongly affected by thermally activated rupture, even when the heterogeneity of material properties determines strongly the microscopic fracture geometry and the intermittency in the fracture propagation. A natural question, in such kinetic crack propagation, is the temperature field during the cracks propagation. This question is also central in earth science, where a lot of attention has been set recently on thermal effects, with the possibility of thermo-pressurization of faults due to thermal expansion of fluids present in faults. Independently of thermo pressurization, the rise of temperature locally, at the zone enduring damage, could significantly affect the creep in this zone, as understood by statistical physics and Arrhenius law, and thus the crack propagation. We are interested in quantifying directly these different effects in an experimental situation. We present results based on infrared and optical imaging of the propagation of a crack in a sheet of paper. The temperature field shows local increases of the temperature of several degrees during the crack propagation. Optical images acquired with a fast video camera are correlated in order to extract the deformation field at each time step. We show how the temperature in our paper sample varies with the deformation rate at the tip of the crack. We also present some numerical

  12. Anomalous crack propagation in reinforced natural rubber

    NASA Astrophysics Data System (ADS)

    Sotta, Paul; Gabrielle, Brice; Long, Didier; Vanel, Loic; Albouy, Pierre-Antoine; Peditto, Francesca

    2009-03-01

    In reinforced natural rubber, crack propagation in mode I exhibits rotation of the tear in a direction perpendicular to the usual one. Our objective is, first, to understand the impact of this phenomenon on fracture toughness of the material, and, secondly, to understand how this phenomenon is related to the specific properties of reinforced natural rubber. To this aim, we combine measurements of ultimate properties, measurements of the number and length of tear rotations as a function of loading velocity and temperature, and investigation of material heterogeneities at sub-micrometric scales, originating both from fillers and strain-induced crystallites (strain-induced crystallinity is measured up to failure by X ray diffraction), in natural rubber samples reinforced by nanometric aggregates. Observations suggest that tear rotation is related both to the mechanical anisotropy induced by strain-induced crystallinity and to the dissipative properties of the material at high strain.

  13. Liquid metal embrittlement. [crack propagation in metals with liquid metal in crack space

    NASA Technical Reports Server (NTRS)

    Tiller, W. A.

    1973-01-01

    Crack propagation is discussed for metals with liquid metal in the crack space. The change in electrochemical potential of an electron in a metal due to changes in stress level along the crack surface was investigated along with the change in local chemistry, and interfacial energy due to atomic redistribution in the liquid. Coupled elastic-elastrostatic equations, stress effects on electron energy states, and crack propagation via surface roughening are discussed.

  14. Propagation of stress corrosion cracks in Zr-1% Nb claddings

    NASA Astrophysics Data System (ADS)

    Bibilashvily, Yu. K.; Dolgov, Yu. N.; Nesterov, B. I.; Novikov, V. V.

    1995-09-01

    Experimental results on iodine induced stress corrosion cracking (SCC) are analyzed. The studies were performed at 350°C using Zr-1% Nb tubular specimens. Fatigue crack at internal surface served as an initial defect. The relationship was derived between crack propagation rate and stress intensity factor; the threshold stress intensity factor of 4.8 MPa m{1}/{2} was determined.

  15. Laser-Based Instrument Measures Propagation Of Cracks

    NASA Technical Reports Server (NTRS)

    Lee, Rupert U.; Cox, Robert B.; Youngquist, Robert C.; Sentz, John T.; Rose, Kenneth A.

    1995-01-01

    Report describes use of commerical laser displacement meter to measure propagation of cracks in stainless-steel specimens in stress tests in corrosive (salt-spray) environment. Measurements directed toward determining time from beginning of each test until onset of propagation of crack.

  16. Morphogenesis and propagation of complex cracks induced by thermal shocks.

    PubMed

    Bourdin, Blaise; Marigo, Jean-Jacques; Maurini, Corrado; Sicsic, Paul

    2014-01-10

    We study the genesis and the selective propagation of complex crack networks induced by thermal shock or drying of brittle materials. We use a quasistatic gradient damage model to perform large-scale numerical simulations showing that the propagation of fully developed cracks follows Griffith criterion and depends only on the fracture toughness, while crack morphogenesis is driven by the material's internal length. Our numerical simulations feature networks of parallel cracks and selective arrest in two dimensions and hexagonal columnar joints in three dimensions, without any hypotheses on cracks geometry, and are in good agreement with available experimental results. PMID:24483901

  17. Multiple Cracks Propagate Simultaneously in Polymer Liquids in Tension.

    PubMed

    Huang, Qian; Alvarez, Nicolas J; Shabbir, Aamir; Hassager, Ole

    2016-08-19

    Understanding the mechanism of fracture is essential for material and process design. While the initiation of fracture in brittle solids is generally associated with the preexistence of material imperfections, the mechanism for initiation of fracture in viscoelastic fluids, e.g., polymer melts and solutions, remains an open question. We use high speed imaging to visualize crack propagation in entangled polymer liquid filaments under tension. The images reveal the simultaneous propagation of multiple cracks. The critical stress and strain for the onset of crack propagation are found to be highly reproducible functions of the stretch rate, while the position of initiation is completely random. The reproducibility of conditions for fracture points to a mechanism for crack initiation that depends on the dynamic state of the material alone, while the crack profiles reveal the mechanism of energy dissipation during crack propagation. PMID:27588883

  18. The equilibrium concentration of hydrogen atoms ahead of a mixed mode I-mode III crack tip in single crystal iron

    SciTech Connect

    Zhang, T.Y.; Hack, J.E.

    1999-01-01

    Calculations of the equilibrium hydrogen concentration profiles about a mixed ode I-mode III crack in single crystal iron were performed. Both material anisotropy and the tetragonal nature of the distortion induced in the iron crystal structure by interstitial hydrogen were incorporated. Results show that, unlike the case of a spherical distortion, a strong coupling exists between the strain field of the interstitial hydrogen and the stress field of the crack for orientations of the crack plane that are not coincident with the cube axes of the lattice. As a result, the predicated enhancement of hydrogen in the crack tip region increases with increasing levels of mode III loading for those orientations. The results may help reconcile conflicting observations concerning the potential role of shear stresses in hydrogen embrittlement and preferential cracking of grains ahead of loaded crack tips in sustained load cracking experiments.

  19. Propagation of stress corrosion cracks in alpha-brasses

    SciTech Connect

    Beggs, Dennis Vinton

    1981-01-01

    Transgranular and intergranular stress corrosion cracks were investigated in alpha-brasses in a tarnishing ammoniacal solution. Surface observation indicated that the transgranular cracks propagated discontinuously by the sudden appearance of a fine crack extending several microns ahead of the previous crack tip, often associated with the detection of a discrete acoustic emission (AE). By periodically increasing the deflection, crack front markings were produced on the resulting fracture surfaces, showing that the discontinuous propagation of the crack trace was representative of the subsurface cracking. The intergranular crack trace appeared to propagate continuously at a relatively blunt crack tip and was not associated with discrete AE. Under load pulsing tests with a time between pulses, ..delta..t greater than or equal to 3 s, the transgranular fracture surfaces always exhibited crack front markings which corresponded with the applied pulses. The spacing between crack front markings, ..delta..x, decreased linearly with ..delta..t. With ..delta..t less than or equal to 1.5 s, the crack front markings were in a one-to-one correspondence with applied pulses only at relatively long crack lengths. In this case, ..delta..x = ..delta..x* which approached a limiting value of 1 ..mu..m. No crack front markings were observed on intergranular fracture surfaces produced during these tests. It is concluded that transgranular cracking occurs by discontinuous mechanical fracture of an embrittled region around the crack tip, while intergranular cracking results from a different mechanism with cracking occurring via the film-rupture mechanism.

  20. Dynamic delamination crack propagation in a graphite/epoxy laminate

    NASA Technical Reports Server (NTRS)

    Grady, J. E.; Sun, C. T.

    1991-01-01

    Dynamic delamination crack propagation in a (90/0) 5s Graphite/Epoxy laminate with an embedded interfacial crack was investigated experimentally using high speed photography. The dynamic motion was produced by impacting the beamlike laminate specimen with a silicon rubber ball. The threshold impact velocities required to initiate dynamic crack propagation in laminates with varying initial crack positions were determined. The crack propagation speeds were estimated from the photographs. Results show that the through the thickness position of the embedded crack can significantly affect the dominant mechanism and the threshold impact velocity for the onset of crack movement. If the initial delamination is placed near the top of bottom surface of the laminate, local buckling of the delaminated plies may cause instability of the crack. If the initial delamination lies on the midplane, local buckling does not occur and the initiation of crack propagation appears to be dominated by Mode II fracture. The crack propagation and arrest observed was seen to be affected by wave motion within the delamination region.

  1. A thermodynamic analysis of propagating subcritical cracks with cohesive zones

    NASA Technical Reports Server (NTRS)

    Allen, David H.

    1993-01-01

    The results of the so-called energetic approach to fracture with particular attention to the issue of energy dissipation due to crack propagation are applied to the case of a crack with cohesive zone. The thermodynamic admissibility of subcritical crack growth (SCG) is discussed together with some hypotheses that lead to the derivation of SCG laws. A two-phase cohesive zone model for discontinuous crack growth is presented and its thermodynamics analyzed, followed by an example of its possible application.

  2. Further progress on the wavy-crack model of dynamic crack propagation

    SciTech Connect

    Gao, H.; Pawlikowski, K.

    1995-12-31

    The state-of-the-art theory of dynamic crack propagation has not been able to provide an unequivocal explanation for a number of experimental findings. An important observation is that the crack surfaces, as the trace of fracture path, tend to exhibit a rough surface morphology during rapid crack propagation. In a wavy-crack model proposed recently by the author, the crack surface roughening is attributed to an inherent instability which causes the tip of the crack to propagate along an oscillatory fracture path. It appears that the wavy-crack model is capable of explaining important discrepancies currently existing between theory and experiments. In particular, experimentally observed terminal fracture speeds are significantly lower than the theoretically predicted value, i.e. the Rayleigh wave speed CR. This may be attributed to the oscillatory fracture path which makes the measured crack velocity appear lower than the actual crack speed. Also, the wavy-crack model explains how the local crack tip motion can exhibit high inertia behaviors while the measurable crack motion remains in the low inertia domain. As a result of different inertia effects associated with local and apparent crack motion, the high inertia field near the crack tip tends to induce nucleation of microcrack branches while the low inertia apparent crack field tends to suppress the microbranching. This view of dynamic fracture is not inconsistent with relevant experimental observations (e.g. see and references therein) and recent numerical simulation of fast crack motion. A planar wavy motion of a 3D crack front has been analyzed by Pice et al.. The wavy-crack model has also been applied to dynamic crack propagation along a weak interface having lower fracture resistance than the adjacent material. Further analytical and numerical developments of this model will be discussed in this presentation.

  3. Fatigue crack propagation in aluminum-lithium alloys

    NASA Technical Reports Server (NTRS)

    Rao, K. T. V.; Ritchie, R. O.; Piascik, R. S.; Gangloff, R. P.

    1989-01-01

    The principal mechanisms which govern the fatigue crack propagation resistance of aluminum-lithium alloys are investigated, with emphasis on their behavior in controlled gaseous and aqueous environments. Extensive data describe the growth kinetics of fatigue cracks in ingot metallurgy Al-Li alloys 2090, 2091, 8090, and 8091 and in powder metallurgy alloys exposed to moist air. Results are compared with data for traditional aluminum alloys 2024, 2124, 2618, 7075, and 7150. Crack growth is found to be dominated by shielding from tortuous crack paths and resultant asperity wedging. Beneficial shielding is minimized for small cracks, for high stress ratios, and for certain loading spectra. While water vapor and aqueous chloride environments enhance crack propagation, Al-Li-Cu alloys behave similarly to 2000-series aluminum alloys. Cracking in water vapor is controlled by hydrogen embrittlement, with surface films having little influence on cyclic plasticity.

  4. Fatigue crack propagation behavior in dual-phase steel

    SciTech Connect

    Sarwar, M.; Priestner, R.

    1999-04-01

    The fatigue crack propagation in dual-phase steel was studied with the objective of developing ferritic-martensitic microstructures via intercritical annealing and thermomechanical processing. It was found that the changes in fatigue crack propagation rates and in the threshold stress intensity range, {Delta}K{sub th}, resulting from microstructural variations, were directly related to tensile strength in the same manner that was observed in other types of structural steels. it was also observed that the relationship between tensile strength and fatigue crack propagation in intercritically annealed and thermomechanically processed dual-phase steel was much the same as for conventional steels of similar strength level.

  5. The three thresholds for fatigue crack propagation

    SciTech Connect

    Miller, K.J.

    1997-12-01

    The three governing threshold conditions in metal fatigue are considered, one relating to crack growth in single crystals, one concerned with crack growth in polycrystalline materials, and one based on linear elastic fracture mechanics (LEFM). All three conditions are examined in relation to the two physical processes of cracking, i.e., Stage I (shear) and Stage II (tensile) crack growth. The LEFM threshold is seen as a lower bound condition for fatigue crack growth rate, and the single crystal threshold is viewed in relation to the fundamental threshold pertaining to the fatigue resistance of polycrystalline metals.

  6. On Modeling Hydrogen-Induced Crack Propagation Under Sustained Load

    NASA Astrophysics Data System (ADS)

    Dadfarnia, Mohsen; Somerday, Brian p.; Schembri, Philip E.; Sofronis, Petros; Foulk, James W.; Nibur, Kevin A.; Balch, Dorian K.

    2014-08-01

    The failure of hydrogen containment components is generally associated with subcritical cracking. Understanding subcritical crack growth behavior and its dependence on material and environmental variables can lead to methods for designing structural components in a hydrogen environment and will be beneficial in developing materials resistant to hydrogen embrittlement. In order to identify the issues underlying crack propagation and arrest, we present a model for hydrogen-induced stress-controlled crack propagation under sustained loading. The model is based on the assumptions that (I) hydrogen reduces the material fracture strength and (II) crack propagation takes place when the opening stress over the characteristic distance ahead of a crack tip is greater than the local fracture strength. The model is used in a finite-element simulation of crack propagation coupled with simultaneous hydrogen diffusion in a model material through nodal release. The numerical simulations show that the same physics, i.e., diffusion-controlled crack propagation, can explain the existence of both stages I and II in the velocity versus stress intensity factor ( V- K) curve.

  7. Effect of Speed (Centrifugal Load) on Gear Crack Propagation Direction

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.

    2001-01-01

    The effect of rotational speed (centrifugal force) on gear crack propagation direction was explored. Gears were analyzed using finite element analysis and linear elastic fracture mechanics. The analysis was validated with crack propagation experiments performed in a spur gear fatigue rig. The effects of speed, rim thickness, and initial crack location on gear crack propagation direction were investigated. Crack paths from the finite element method correlated well with those deduced from gear experiments. For the test gear with a backup ratio (rim thickness divided by tooth height) of nib = 0.5, cracks initiating in the tooth fillet propagated to rim fractures when run at a speed of 10,000 rpm and became tooth fractures for speeds slower than 10,000 rpm for both the experiments and anal sis. From additional analysis, speed had little effect on crack propagation direction except when initial crack locations were near the tooth/rim fracture transition point for a given backup ratio. When at that point, higher speeds tended to promote rim fracture while lower speeds (or neglecting centrifugal force) produced tooth fractures.

  8. Crack propagation, arrest and statistics in heterogeneous materials.

    SciTech Connect

    Kierfeld, J.; Vinokur, V.; Materials Science Division; Dortmund Univ. of Technology

    2008-04-01

    We investigate theoretically statistics and thermally activated dynamics of crack nucleation and propagation in a two-dimensional heterogeneous material containing quenched randomly distributed defects. We consider a crack tip dynamics accounting for dissipation, thermal noise and the random forces arising from the elastic interactions of the crack opening with the defects. The equation of motion is based on the generalized Griffith criterion and the dynamic energy release rate and gives rise to Langevin-type stochastic dynamics in a quenched disordered potential. For different types of quenched random forces, which are characterized (a) by the range of elastic interactions with the crack tip and (b) the range of correlations between defects, we derive a number of static and dynamic quantities characterizing crack propagation in heterogeneous materials both at zero temperature and in the presence of thermal activation. In the absence of thermal fluctuations we obtain the nucleation and propagation probabilities, typical arrest lengths, the distribution of crack lengths and of critical forces. For thermally activated crack propagation we calculate the mean time to fracture. Depending on the range of elastic interactions between crack tip and frozen defects, heterogeneous material exhibits brittle or ductile fracture. We find that aggregations of defects generating long-range interaction forces (e.g. clouds of dislocations) lead to anomalously slow creep of the crack tip or even to its complete arrest. We demonstrate that heterogeneous materials with frozen defects contain a large number of arrested microcracks and that their fracture toughness is enhanced to the experimentally accessible timescales.

  9. Mixed Mode Matrix Multiplication

    SciTech Connect

    Meng-Shiou Wu; Srinivas Aluru; Ricky A. Kendall

    2004-09-30

    In modern clustering environments where the memory hierarchy has many layers (distributed memory, shared memory layer, cache,...), an important question is how to fully utilize all available resources and identify the most dominant layer in certain computations. When combining algorithms on all layers together, what would be the best method to get the best performance out of all the resources we have? Mixed mode programming model that uses thread programming on the shared memory layer and message passing programming on the distributed memory layer is a method that many researchers are using to utilize the memory resources. In this paper, they take an algorithmic approach that uses matrix multiplication as a tool to show how cache algorithms affect the performance of both shared memory and distributed memory algorithms. They show that with good underlying cache algorithm, overall performance is stable. When underlying cache algorithm is bad, superlinear speedup may occur, and an increasing number of threads may also improve performance.

  10. Experimental study of thermodynamics propagation fatigue crack in metals

    SciTech Connect

    Vshivkov, A. Iziumova, A. Plekhov, O.

    2015-10-27

    This work is devoted to the development of an experimental method for studying the energy balance during cyclic deformation and fracture. The studies were conducted on 304 stainless steel AISE samples. The investigation of the fatigue crack propagation was carried out on flat samples with stress concentrators. The stress concentrator was three central holes. The heat flux sensor was developed based on the Seebeck effect. This sensor was used for measuring the heat dissipation power in the examined samples during the fatigue tests. The measurements showed that the rate of fatigue crack growth depends on the heat flux at the crack tip and there are two propagation mode of fatigue crack with different link between the propagation mode and heat flux from crack tip.

  11. Scaling of crack propagation in rubber sheets

    NASA Astrophysics Data System (ADS)

    Chen, C. H.; Zhang, H. P.; Niemczura, J.; Ravi-Chandar, K.; Marder, M.

    2011-11-01

    We have conducted experiments and numerical simulations to investigate supersonic cracks. The experiments are performed at 85 °C to suppress strain-induced crystallites that complicate experiments at lower temperature. Calibration experiments were performed to obtain the parameters needed to compare with a theory including viscous dissipation. We find that both experiments and numerical simulations support supersonic cracks, and we discover a transition from subsonic to supersonic as we plot experimental crack speed curves vs. extension ratio for different sized samples. Both experiments and simulations show two different scaling regimes: the speed of subsonic cracks scales with the elastic energy density while the speed of supersonic cracks scales with the extension ratio. Crack openings have qualitatively different shapes in the two scaling regimes.

  12. Fatigue crack propagation at polymer adhesive interfaces

    SciTech Connect

    Ritter, J.E.

    1996-12-31

    Delamination of polymer adhesive interfaces often occurs due to slow crack growth under either monotonic or cyclic loading. The author`s previous research showed that moisture-assisted crack growth at epoxy/glass and epoxy acrylate/glass interfaces under monotonic loading was directly related to the applied energy release rate and relative humidity and that cyclic loading could enhance crack growth. The purpose of the present research is to compare crack growth along epoxy acrylate/glass and epoxy/PMMA interfaces under monotonic and cyclic loading.

  13. Comparison of fatigue crack propagation in Modes I and III

    SciTech Connect

    Ritchie, R.O.

    1985-06-01

    The propagation behavior of fatigue cracks in Mode III (anti-plane shear), measured under cyclic torsion, is described and compared with more commonly encountered behavior under Mode I (tensile opening) loads. It is shown that a unique, global characterization of Mode III growth rates, akin to the Paris ''law'' in Mode I, is only possible if characterizating parameters appropriate to large-scale yielding are employed and allowance is made for crack tip shielding from sliding crack surface interference (i.e., friction and abrasion) between mating fracture surfaces. Based on the crack tip stress and deformation fields for Mode III stationary cracks, the cyclic crack tip displacement, (..delta..CTD/sub III/, and plastic strain intensity range ..delta..GAMMA/sub III/, have been proposed and are found to provide an adequate description of behavior in a range of steels, provided crack surface interference is minimized. The magnitude of this interference, which is somewhat analogous to crack closure in Mode I, is further examined in the light of the complex fractography of torsional fatigue failures and the question of a ''fatigue threshold'' for Mode III crack growth. Finally, micro-mechanical models for cyclic crack extension in anti-plane shear are briefly described, and the contrasting behavior between Mode III and Mode I cracks subjected to simple variable amplitude spectra is examined in terms of the differing role of crack tip blunting and closure in influencing shear, as opposed to tensile opening, modes of crack growth.

  14. Fatigue crack propagation in carburized X-2M steel

    NASA Astrophysics Data System (ADS)

    Averbach, B. L.; Lou, Bingzhe; Pearson, P. K.; Fairchild, R. E.; Bamberger, E. N.

    1985-07-01

    The growth rates of fatigue cracks propagating through the case and into the core have been studied for carburized X-2M steel (0.14 C, 4.91 Cr, 1.31 Mo, 1.34 W, 0.42 V). Fatigue cracks were propagated at constant stress intensities, ΔK, and also at a constant cyclic peak load, and the crack growth rates were observed to pass through a minimum value as the crack traversed the carburized case. The reduction in the crack propagation rates is ascribed to the compressive stresses which were developed in the case, and a pinched clothespin model is used to make an approximate calculation of the effects of internal stress on the crack propagation rates. We define an effective stress intensity, Ke = Ka + Ki, where Ka is the applied stress intensity, Ki = σid{i/1/2}, σi is the internal stress, and di is a characteristic distance associated with the depth of the internal stress field. In our work, a value of di = 11 mm (0.43 inch) fits the data quite well. A good combination of resistance to fatigue crack propagation in the case and fracture toughness in the core can be achieved in carburized X-2M steel, suggesting that this material will be useful in heavy duty gears and in aircraft gas turbine mainshaft bearings operating under high hoop stresses.

  15. Mixed-Mode Fracture Behavior and Related Surface Topography Feature of a Typical Sandstone

    NASA Astrophysics Data System (ADS)

    Ren, L.; Xie, L. Z.; Xie, H. P.; Ai, T.; He, B.

    2016-08-01

    The geo-mechanical properties of reservoirs, especially the morphology of the rock surface and the fracture properties of rocks, are of great importance in the modeling and simulation of hydraulic processes. To better understand these fundamental issues, five groups of mixed-mode fracture tests were conducted on sandstone using edge-cracked semi-circular bend specimens. Accordingly, the fracture loads, growth paths and fracture surfaces for different initial mixities of the mixed-mode loadings from pure mode I to pure mode II were then determined. A surface topography measurement for each rough fracture surface was conducted using a laser profilometer, and the fractal properties of these surfaces were then investigated. The fracture path evolution mechanism was also investigated via optical microscopy. Moreover, the mixed-mode fracture strength envelope and the crack propagation trajectories of sandstone were theoretically modeled using three widely accepted fracture criteria (i.e., the MTS, MSED and MERR criterions). The published test results in Hasanpour and Choupani (World Acad Sci Eng Tech 41:764-769, 2008) for limestone were also theoretically investigated to further examine the effectiveness of the above fracture criteria. However, none of these criteria could accurately predict the fracture envelopes of both sandstone and limestone. To better estimate the fracture strength of mixed-mode fractures, an empirical maximum tensile stress (EMTS) criterion was proposed and found to achieve good agreement with the test results. Finally, a uniformly pressurized fracture model was simulated for low pressurization rates using this criterion.

  16. Effect of fluid salinity on subcritical crack propagation in calcite

    NASA Astrophysics Data System (ADS)

    Rostom, Fatma; Røyne, Anja; Dysthe, Dag Kristian; Renard, François

    2013-01-01

    The slow propagation of cracks, also called subcritical crack growth, is a mechanism of fracturing responsible for a ductile deformation of rocks under crustal conditions. In the present study, the double-torsion technique was used to measure the effect of fluid chemistry on the slow propagation of cracks in calcite single crystals at room temperature. Time-lapse images and measurements of force and load-point displacement allowed accurate characterization of crack velocities in a range of 10- 8 to 10- 4 m/s. Velocity curves as a function of energy-release rates were obtained for different fluid compositions, varying NH4Cl and NaCl concentrations. Our results show the presence of a threshold in fluid composition, separating two regimes: weakening conditions where the crack propagation is favored, and strengthening conditions where crack propagation slows down. We suggest that electrostatic surface forces that modify the repulsion forces between the two surfaces of the crack may be responsible for this behavior.

  17. Metal crack propagation monitoring by photoluminescence enhancement of quantum dots.

    PubMed

    Zhao, Ziming; Luan, Weiling; Yin, Shaofeng; Brandner, Juergen J

    2015-07-20

    A visualization method for monitoring minor metal crack propagation is presented in this paper. Through CdS@ZnS core-shell quantum dots (QDs) enhanced emission of photoluminescence (PL), this crack detection method provides a visualization signal in real time and through a noncontact fashion. The crack of the CdS@ZnS core-shell QDs-epoxy resin kept a synchronous propagation with the metal crack. Detection of the tip growth in the film layers demonstrated that the actual crack propagation on the metal surface could be deduced from the tips in the film layers. The fluorescence peak tended to increase along the crack from the initial opening to the tip. Crack width as small as 10 μm can be detected with a precision of 0.1 μm and the minimum crack tip width of the QDs-epoxy resin was measured as 0.72 μm. PMID:26367834

  18. Fatigue crack propagation in aerospace aluminum alloys

    NASA Technical Reports Server (NTRS)

    Gangloff, R. P.; Piascik, R. S.; Dicus, D. L.; Newman, J. C., Jr.

    1990-01-01

    This paper reviews fracture mechanics based, damage tolerant characterizations and predictions of fatigue crack growth in aerospace aluminum alloys. The results of laboratory experimentation and modeling are summarized in the areas of: (1) fatigue crack closure, (2) the wide range crack growth rate response of conventional aluminum alloys, (3) the fatigue behavior of advanced monolithic aluminum alloys and metal matrix composites, (4) the short crack problem, (5) environmental fatigue, and (6) variable amplitude loading. Remaining uncertainties and necessary research are identified. This work provides a foundation for the development of fatigue resistant alloys and composites, next generation life prediction codes for new structural designs and extreme environments, and to counter the problem of aging components.

  19. Rock Failure and Crack Propagation Beneath Disc Cutters

    NASA Astrophysics Data System (ADS)

    Entacher, Martin; Schuller, E.; Galler, R.

    2015-07-01

    Analyses of rock failure mechanisms beneath disc cutters are presented. Full-scale cutting tests are conducted to assess the global energy input in comparison with rock chips and excavated volume. Small-scale cutting tests are subsequently used for macro- and microscopic analyses of rupture modes and crack propagation. A high spatial resolution allows to obtain pictures of crack networks in different rock types. It is shown that all specimens develop lateral cracks in sufficiently confined areas whereas median cracks typically develop in boundary regions. Regarding cutting forces, a hypothesis is proposed that associates sudden force drops accompanied by sudden sound emission with grain crushing in the proximity of the cutter tip.

  20. Investigation of Helicopter Longeron Cracks

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Baughman, James; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurgical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  1. Experimental study on mixed mode fracture in unidirectional fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Gong, Kezhuang; Li, Zheng; Fu, Bin

    2008-11-01

    Fiber reinforced composites are applied broadly in aeronautic and astronautic fields as a structural material. But the investigation in dynamic fracture behavior of fiber reinforced composite stands in the breach for scientists due to a large number of aircraft disasters. In this paper, the mixed mode fracture problems in fiber reinforced composites under impact are studied. First, based on the theory of the reflective dynamic caustic method for mixed mode fracture, corresponding experiments are carried out to study the dynamic fracture behaviors of unidirectional fiber reinforced composites under two kinds load conditions. By recording and analyzing the shadow spot patterns during the crack propagation process carefully, the dynamic fracture toughness and crack growth velocity of fiber reinforced composites are obtained. Via the observation of the crack growth routes and fracture sections, we further reveal the fracture mechanism of unidirectional fiber reinforced composites. It concludes that opening mode still is the easier fracture type for the pre-crack initiation in fiber reinforced composites, while the interface between fibers and matrix becomes the fatal vulnerability during the crack propagation.

  2. Crack propagation in aluminum sheets reinforced with boron-epoxy

    NASA Technical Reports Server (NTRS)

    Roderick, G. L.

    1979-01-01

    An analysis was developed to predict both the crack growth and debond growth in a reinforced system. The analysis was based on the use of complex variable Green's functions for cracked, isotropic sheets and uncracked, orthotropic sheets to calculate inplane and interlaminar stresses, stress intensities, and strain-energy-release rates. An iterative solution was developed that used the stress intensities and strain-energy-release rates to predict crack and debond growths, respectively, on a cycle-by-cycle basis. A parametric study was made of the effects of boron-epoxy composite reinforcement on crack propagation in aluminum sheets. Results show that the size of the debond area has a significant effect on the crack propagation in the aluminum. For small debond areas, the crack propagation rate is reduced significantly, but these small debonds have a strong tendency to enlarge. Debond growth is most likely to occur in reinforced systems that have a cracked metal sheet reinforced with a relatively thin composite sheet.

  3. Numerical Study on Mixed-mode Fracture in Reinforced Concrete

    NASA Astrophysics Data System (ADS)

    Yu, Rena C.; Saucedo, Luis; Ruiz, Gonzalo

    2010-05-01

    The object of this work is to model the propagation of fracture in mixed-mode in lightly reinforced concrete beams. When a notched beam does not have enough shear reinforcement, fracture can initiate and propagate unstably and lead to failure through diagonal tension. In order to study this phenomenon numerically, a model capable of dealing with both static and dynamic crack propagation as well as the natural transition of those two regimes is necessary. We adopt a cohesive model for concrete fracture and an interface model for the deterioration between concrete and steel re-bar, both combined with an insertion algorithm. The static process is solved by dynamic relaxation (DR) method together with a modified technique [1] to enhance convergence rate. The same DR method is used to detect a dynamic process and switch to a dynamic calculation. The numerically obtained load-displacement curves, load-CMOD curves and crack patterns fit reasonably well with their experimental counterparts, having in mind that we fed the calculations only with parameters measured experimentally.

  4. Fatigue-Crack Propagation in Aluminum-Alloy Tension Panels

    NASA Technical Reports Server (NTRS)

    Whaley, Richard E.; Kurzhals, Peter R.

    1960-01-01

    Results are presented of a series of fatigue tests to study crack propagation and the resulting stress distributions in tension panels. The panels were all of the same general design, and configurations varied mainly in the relative amount of cross-sectional area in the skin, stiffeners, and flanges. The panels were constructed of 2024-T3 and 7075-T6 aluminum alloys. It was found that the average rate of crack growth was slower in panels made of 2024-T3 aluminum alloy than in panels made of 7075-T6 aluminum alloy. All cracks initiated in the skin, and the slowest crack growth was measured in configurations where the highest percentage of cross-sectional area was in the stiffeners. Strain-gage surveys were made to determine the redistribution of stress as the crack grew across the panels. As a crack approached a given point in the skin, the stress at that point increased rapidly. The stress in the stiffeners also increased as the crack approached the stiffeners. During the propagation of the crack the stress was not distributed uniformly in the remaining area.

  5. Micromechanical predictions of crack initiation, propagation and crack growth resistance in boron/aluminum composites

    NASA Technical Reports Server (NTRS)

    Mahishi, J. M.; Adams, D. F.

    1982-01-01

    An elastoplastic, axisymmetric finite element model has been used to predict the initiation and propagation of a crack in a composite model consisting of a single broken boron fiber embedded in an annular sheath of aluminum matrix. The accuracy of the axisymmetric finite element model for crack problems has been established by solving the classical problem of a penny-shaped crack in a thick cylindrical rod under axial tension. Also, the stress intensity factors predicted by the present numerical model are compared with continuum results. A constant displacement boundary condition applied during an increment of crack growth permits a substantial amount of stable crack growth in the matrix material. The concept of Crack Growth Resistance Curves (KR-curves) has been used to determine the point of crack instability

  6. Modeling Crack Propagation in Polycrystalline Microstructure Using Variational Multiscale Method

    DOE PAGESBeta

    Sun, S.; Sundararaghavan, V.

    2016-01-01

    Crack propagation in a polycrystalline microstructure is analyzed using a novel multiscale model. The model includes an explicit microstructural representation at critical regions (stress concentrators such as notches and cracks) and a reduced order model that statistically captures the microstructure at regions far away from stress concentrations. Crack propagation is modeled in these critical regions using the variational multiscale method. In this approach, a discontinuous displacement field is added to elements that exceed the critical values of normal or tangential tractions during loading. Compared to traditional cohesive zone modeling approaches, the method does not require the use of any specialmore » interface elements in the microstructure and thus can model arbitrary crack paths. The capability of the method in predicting both intergranular and transgranular failure modes in an elastoplastic polycrystal is demonstrated under tensile and three-point bending loads.« less

  7. Role of the pore fluid in crack propagation in glass

    NASA Astrophysics Data System (ADS)

    Mallet, Céline; Fortin, Jérôme; Guéguen, Yves; Bouyer, Fréric

    2015-05-01

    We investigate pore fluid effects due to surface energy variation or due to chemical corrosion in cracked glass. Both effects have been documented through experimental tests on cracked borosilicate glass samples. Creep tests have been performed to investigate the slow crack propagation behavior. We compared the dry case (saturated with argon gas), the nonreactive water saturated case (commercial mineralized water), and the distilled and deionized water saturated case (pure water). Chemical corrosion effects have been observed and evidenced from pH and water composition evolution of the pure water. Then, the comparison of the dry case, the mineral water saturated case, and the corrosion case allow to (i) evidence the mechanical effect of the presence of a pore fluid and (ii) show also the chemical effect of a glass dissolution. Both effects enhance subcritical crack propagation.

  8. Slow crack propagation in glass and creep prediction

    NASA Astrophysics Data System (ADS)

    Mallet, Celine; Fortin, Jerome; Gueguen, Yves

    2013-04-01

    The context of our study is the observation of the time-dependent deformation of cracked glass. The aim of our study is to observe the slow crack propagation, to quantify it and to predict finally the creep behavior. We performed creep experiments in compaction conditions in a triaxial cell, on cracked boro-silicate glass samples. The chemical composition of the investigated glass is very close to the composition of waste vitrified packages. The matrix of the original glass (OG) is perfectly amorphous, without porosity. A few isolated air bubbles are trapped during the glass flow. Cracks are introduced in the OG through thermal shocks. Strain and acoustic emission (AE) are recorded. Several experiments are performed at different confining pressures (15 or 25 MPa), different pore fluid conditions (with argon gas, considered as the dry case, with tap water saturated porosity, or with distilled water) and different temperatures (ambiant temperature, 50oC or 80oC). Linear increase of the volumetric strain is first observed. A dilatancy increase is recorded. Note that dilatancy does not appear in constant strain rate tests. Constant stress tests show that dilatancy develops during a time interval that depends on the stress level. In addition AE rate are recorded. A non zero AE rate is an evidence of crack propagation. We use a micro-mechanical model that gives the stress intensity factor at the crack tips. This factor depends on stress and geometrical parameters (all known). An exponential law describe the rate of crack propagation, as a function of temperature, environment and applied stresses. This model allows us to predict the creep rate in glass. Assuming a constant crack aspect ratio, crack length and volumetric strain are related. The volumetric strain rate is calculated from model and compared to the data.

  9. Fatigue crack propagation in self-assembling nanocomposites

    NASA Astrophysics Data System (ADS)

    Klingler, Andreas; Wetzel, Bernd

    2016-05-01

    Self-assembling block-copolymers allow the easy manufacturing of nanocomposites due to the thermodynamically driven in situ formation of nanosized phases in thermosetting resins during the curing process. Complex mechanical dispersion processes can be avoided. The current study investigates the effect of a block-copolymer on the fatigue crack propagation resistance of a cycloaliphatic amine cured epoxy resin. It was found that a small amount of MAM triblock-copolymer significantly increases the resistance to fatigue crack propagation of epoxy. Crack growth rate and the Paris law exponent for fatigue-crack growth were considerably reduced from m=15.5 of the neat epoxy to m=8.1 of the nanocomposite. To identify the related reinforcing and fracture mechanisms structural analyses of the fractured surfaces were performed by scanning electron microscope. Characteristic features were identified to be deformation, debonding and fracture of the nano-phases as well as crack pinning. However, the highest resistance against fatigue crack propagation was achieved in a bi-continuous microstructure that consisted of an epoxy-rich phase with embedded submicron sized MAM inclusions, and which was surrounded by a block-copolymer-rich phase that showed rupture and plastic deformation.

  10. A two-scale generalized finite element method for fatigue crack propagation simulations utilizing a fixed, coarse hexahedral mesh

    NASA Astrophysics Data System (ADS)

    O'Hara, P.; Hollkamp, J.; Duarte, C. A.; Eason, T.

    2016-01-01

    This paper presents a two-scale extension of the generalized finite element method (GFEM) which allows for static fracture analyses as well as fatigue crack propagation simulations on fixed, coarse hexahedral meshes. The approach is based on the use of specifically-tailored enrichment functions computed on-the-fly through the use of a fine-scale boundary value problem (BVP) defined in the neighborhood of existing mechanically-short cracks. The fine-scale BVP utilizes tetrahedral elements, and thus offers the potential for the use of a highly adapted fine-scale mesh in the regions of crack fronts capable of generating accurate enrichment functions for use in the coarse-scale hexahedral model. In this manner, automated hp-adaptivity which can be used for accurate fracture analyses, is now available for use on coarse, uniform hexahedral meshes without the requirements of irregular meshes and constrained approximations. The two-scale GFEM approach is verified and compared against alternative approaches for static fracture analyses, as well as mixed-mode fatigue crack propagation simulations. The numerical examples demonstrate the ability of the proposed approach to deliver accurate results even in scenarios involving multiple discontinuities or sharp kinks within a single computational element. The proposed approach is also applied to a representative panel model similar in design and complexity to that which may be used in the aerospace community.

  11. TF41 Engine Fan Disk Seeded Fault Crack Propagation Test

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.

    2003-01-01

    Uncontained engine failures, although rare in occurrence, can have a catastrophic effect on aircraft performance and safety. Engine disk cracks can eventually lead to these type of failures. A number of techniques to detect engine disk cracks have been developed in recent years. However, these technologies have only been validated by disk spin pit tests, not actual engine tests. Due to this, a project was established to perform seeded fault engine tests on a TF41 engine disk fan. A defect was machined in the first stage fan disk of a TF41 engine. The disk was run in a spin pit to initiate a crack. Once initiated, the disk was run in an actual engine test facility. The engine was cycled by a number of start and stops with the goal of propagating the crack to disk burst through low cycle fatigue. Various crack detection techniques were installed on the engine and run real-time during the test to validate their abilities to detect disk cracks. These techniques were based on methods such as change in mass imbalance using vibration or shaft displacement, change in blade position, acoustic emission, and torsional resonance. At the completion of 4474 test cycles, the crack in the TF41 disk was determined to have grown approximately 0.025 inches. This was far less the predicted crack growth based on a fracture mechanics analysis and finite element stress analysis.

  12. Fatigue crack propagation behavior of stainless steel welds

    NASA Astrophysics Data System (ADS)

    Kusko, Chad S.

    The fatigue crack propagation behavior of austenitic and duplex stainless steel base and weld metals has been investigated using various fatigue crack growth test procedures, ferrite measurement techniques, light optical microscopy, stereomicroscopy, scanning electron microscopy, and optical profilometry. The compliance offset method has been incorporated to measure crack closure during testing in order to determine a stress ratio at which such closure is overcome. Based on this method, an empirically determined stress ratio of 0.60 has been shown to be very successful in overcoming crack closure for all da/dN for gas metal arc and laser welds. This empirically-determined stress ratio of 0.60 has been applied to testing of stainless steel base metal and weld metal to understand the influence of microstructure. Regarding the base metal investigation, for 316L and AL6XN base metals, grain size and grain plus twin size have been shown to influence resulting crack growth behavior. The cyclic plastic zone size model has been applied to accurately model crack growth behavior for austenitic stainless steels when the average grain plus twin size is considered. Additionally, the effect of the tortuous crack paths observed for the larger grain size base metals can be explained by a literature model for crack deflection. Constant Delta K testing has been used to characterize the crack growth behavior across various regions of the gas metal arc and laser welds at the empirically determined stress ratio of 0.60. Despite an extensive range of stainless steel weld metal FN and delta-ferrite morphologies, neither delta-ferrite morphology significantly influence the room temperature crack growth behavior. However, variations in weld metal da/dN can be explained by local surface roughness resulting from large columnar grains and tortuous crack paths in the weld metal.

  13. A three-dimensional validation of crack curvature in muscovite mica

    SciTech Connect

    J. C. Hill; J. W. Foulk III; P. A. Klein; E. P. Chen

    2001-01-07

    Experimental and computational efforts focused on characterizing crack tip curvature in muscovite mica. Wedge-driven cracks were propagated under monochromatic light. Micrographs verified the subtle curvature of the crack front near the free surface. A cohesive approach was employed to model mixed-mode fracture in a three-dimensional framework. Finite element calculations captured the crack curvature observed in experiment.

  14. Acoustic microscopy with mixed-mode transducers

    SciTech Connect

    Chou, C.H.; Parent, P.; Khuri-Yakub, B.T.

    1988-12-31

    The new amplitude-phase acoustic microscope is versatile; it operates in a wide frequency range 1--200 MHz, with selection of longitudinal, shear, and mixed modes. This enables it to be used in many NDE applications for different kinds of materials. Besides the application examples presented in this paper (bulk defect imaging of lossy materials or at deep locations; leads of IC chip in epoxy package; amplitude images of surface crack on Si nitride ball bearing; thin Au film on quartz), this system can also be applied for residual stress and anisotropy mapping with high accuracy and good spatial resolution. 7 refs, 6 figs.

  15. On the steady propagation of a semi-infinite crack

    SciTech Connect

    Paukshto, M.V.; Sulimov, M.G.

    1994-12-25

    We consider the rectilinear propagation of a semi-infinite crack with constant velocity in a crystal structure. We obtain the solutions of homogeneous boundary-value problems for the corresponding difference-differential operators in spaces of one and two dimensions. We give a justification of the computational aspect of the problem.

  16. Fatigue crack propagation resistance of highly crosslinked polyethylene.

    PubMed

    Bradford, Letitia; Baker, David; Ries, Michael D; Pruitt, Lisa A

    2004-12-01

    A higher degree of cross-linking has been shown to improve wear properties of ultra-high molecular weight polyethylene in laboratory studies. However, cross-linking can also affect the mechanical properties of ultra-high molecular weight polyethylene. Fatigue crack propagation resistance was determined for electron beam cross-linked ultra-high molecular weight polyethylene and compared with gamma irradiation cross-linked and noncross-linked polyethylene fatigue specimens. Crosslinking was done with different dosages of irradiation followed by melting. For one irradiation dose (50 kGy) extrusion and molding processes were compared. A fracture mechanics approach was used to determine how the degree of cross-linking affects resistance to crack propagation in ultra-high molecular weight polyethylene. Fatigue crack propagation resistance was reduced in proportion to the irradiation dose. The type of irradiation (gamma or electron beam) or manufacturing method (extrusion or molding) did not affect fatigue crack propagation resistance. The reduced fatigue strength of highly cross-linked ultra-high molecular weight polyethylene could lead to mechanical failure in conditions that are associated with cyclic local tensile stresses. PMID:15577468

  17. Simulation of Crack Propagation in Metal Powder Compaction

    NASA Astrophysics Data System (ADS)

    Tahir, S. M.; Ariffin, A. K.

    2006-08-01

    This paper presents the fracture criterion of metal powder compact and simulation of the crack initiation and propagation during cold compaction process. Based on the fracture criterion of rock in compression, a displacement-based finite element model has been developed to analyze fracture initiation and crack growth in iron powder compact. Estimation of fracture toughness variation with relative density is established in order to provide the fracture parameter as compaction proceeds. A finite element model with adaptive remeshing technique is used to accommodate changes in geometry during the compaction and fracture process. Friction between crack faces is modelled using the six-node isoparametric interface elements. The shear stress and relative density distributions of the iron compact with predicted crack growth are presented, where the effects of different loading conditions are presented for comparison purposes.

  18. Mode III fatigue crack propagation in low alloy steel

    NASA Astrophysics Data System (ADS)

    Ritchie, R. O.; McClintock, F. A.; Nayeb-Hashemi, H.; Ritter, M. A.

    1982-01-01

    To provide a basis for estimating fatigue life in large rotating generator shafts subjected to transient oscillations, a study is made of fatigue crack propagation in Mode III (anti-plane shear) in torsionally-loaded spheroidized AISI4340 steel, and results compared to analogous behavior in Mode I. Torsional S/N curves, determined on smooth bars containing surface defects, showed results surprisingly close to expected unnotched Mode I data, with lifetime increasing from 104 cycles at nominal yield to 106 cycles at half yield. Fatigue crack growth rates in Mode III, measured on circumferentially-notched samples, were found to be slower than in Mode I, although still power-law related to the alternating stress intensity (△K III) for small-scale yielding. Mode III growth rates were only a small fraction (0.002 to 0.0005) of cyclic crack tip displacements (△CTD III) per cycle, in contrast to Mode I where the fraction was much larger (0.1 to 0.01). A micromechanical model for Mode III growth is proposed, where crack advance is considered to take place by a Mode II coalescence of cracks, initiated at inclusions ahead of the main crack front. This mechanism is consistent with the crack increment being a small fraction of △CTDIII per cycle.

  19. Crack propagation induced heating in crystalline energetic materials

    NASA Astrophysics Data System (ADS)

    Holmes, W.; Francis, R. S.; Fayer, M. D.

    1999-02-01

    A model is presented for time and spatial dependences of the heating of molecular vibrations and the possible initiation of chemical reaction from heat dissipated in the vicinity of a propagating crack in a molecular crystal. In the model, energy from a moving crack tip is released as phonons in proximity to the crack. Initially the phonons and the molecular vibrations are not in thermal equilibrium. Subsequently, there is a competition between excitation of molecular vibrations by multiphonon up-pumping and diffusion of phonons from the crack region. If the coupling between the locally hot phonon bath and the molecular vibrations is sufficiently large, a transitory high vibrational temperature will be achieved prior to eventual thermal equilibration with the bulk of the crystal. It is found that the peak vibrational temperature can be sufficiently high for a significant time period for chemical reactions to occur. The model calculates the local time-dependent vibrational temperature using reasonable values of the physical input parameters. For a crack tip moving near the speed of sound, the calculations show that vibrational temperatures can reach ˜800 K in 55 ps and exceed 550 K for ˜1 ns after the initial heating. This temperature change is sufficient to produce chemical reaction in a secondary explosive such as HMX, but given the duration and size of the heated region, a single crack should not result in self-sustaining chemical reaction. The role that cracks may play in shock sensitivity is discussed.

  20. Investigation of Cracks Found in Helicopter Longerons

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Baughman, James M.; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurigical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  1. Multiscale modeling of crack initiation and propagation at the nanoscale

    NASA Astrophysics Data System (ADS)

    Shiari, Behrouz; Miller, Ronald E.

    2016-03-01

    Fracture occurs on multiple interacting length scales; atoms separate on the atomic scale while plasticity develops on the microscale. A dynamic multiscale approach (CADD: coupled atomistics and discrete dislocations) is employed to investigate an edge-cracked specimen of single-crystal nickel, Ni, (brittle failure) and aluminum, Al, (ductile failure) subjected to mode-I loading. The dynamic model couples continuum finite elements to a fully atomistic region, with key advantages such as the ability to accommodate discrete dislocations in the continuum region and an algorithm for automatically detecting dislocations as they move from the atomistic region to the continuum region and then correctly "converting" the atomistic dislocations into discrete dislocations, or vice-versa. An ad hoc computational technique is also applied to dissipate localized waves formed during crack advance in the atomistic zone, whereby an embedded damping zone at the atomistic/continuum interface effectively eliminates the spurious reflection of high-frequency phonons, while allowing low-frequency phonons to pass into the continuum region. The simulations accurately capture the essential physics of the crack propagation in a Ni specimen at different temperatures, including the formation of nano-voids and the sudden acceleration of the crack tip to a velocity close to the material Rayleigh wave speed. The nanoscale brittle fracture happens through the crack growth in the form of nano-void nucleation, growth and coalescence ahead of the crack tip, and as such resembles fracture at the microscale. When the crack tip behaves in a ductile manner, the crack does not advance rapidly after the pre-opening process but is blunted by dislocation generation from its tip. The effect of temperature on crack speed is found to be perceptible in both ductile and brittle specimens.

  2. Energy absorption mechanisms during crack propagation in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Murphy, D. P.; Adams, D. F.

    1979-01-01

    The stress distributions around individual fibers in a unidirectional boron/aluminum composite material subjected to axial and transverse loadings are being studied utilizing a generalized plane strain finite element analysis. This micromechanics analysis was modified to permit the analysis of longitudinal sections, and also to incorporate crack initiation and propagation. The analysis fully models the elastoplastic response of the aluminum matrix, as well as temperature dependent material properties and thermal stress effects. The micromechanics analysis modifications are described, and numerical results are given for both longitudinal and transverse models loaded into the inelastic range, to first failure. Included are initially cracked fiber models.

  3. Crack propagation and fracture in silicon wafers under thermal stress

    PubMed Central

    Danilewsky, Andreas; Wittge, Jochen; Kiefl, Konstantin; Allen, David; McNally, Patrick; Garagorri, Jorge; Elizalde, M. Reyes; Baumbach, Tilo; Tanner, Brian K.

    2013-01-01

    The behaviour of microcracks in silicon during thermal annealing has been studied using in situ X-ray diffraction imaging. Initial cracks are produced with an indenter at the edge of a conventional Si wafer, which was heated under temperature gradients to produce thermal stress. At temperatures where Si is still in the brittle regime, the strain may accumulate if a microcrack is pinned. If a critical value is exceeded either a new or a longer crack will be formed, which results with high probability in wafer breakage. The strain reduces most efficiently by forming (hhl) or (hkl) crack planes of high energy instead of the expected low-energy cleavage planes like {111}. Dangerous cracks, which become active during heat treatment and may shatter the whole wafer, can be identified from diffraction images simply by measuring the geometrical dimensions of the strain-related contrast around the crack tip. Once the plastic regime at higher temperature is reached, strain is reduced by generating dislocation loops and slip bands and no wafer breakage occurs. There is only a small temperature window within which crack propagation is possible during rapid annealing. PMID:24046487

  4. Fatigue crack propagation in carburized high alloy bearing steels

    NASA Astrophysics Data System (ADS)

    Averbach, B. L.; Lou, Bingzhe; Pearson, P. K.; Fairchild, R. E.; Bamberger, E. N.

    1985-07-01

    Fatigue cracks were propagated through carburized cases in M-50NiL (0.1 C,4 Mo, 4 Cr, 1.3 V, 3.5 Ni) and CBS-1000M (0.1 C, 4.5 Mo, 1 Cr, 0.5 V, 3 Ni) steels at constant stress intensity ranges, ΔK, and at a constant cyclic peak load. Residual compressive stresses of the order of 140 MPa (20 Ksi) were developed in the M-50NiL cases, and in tests carried out at constant ΔK values it was observed that the fatigue crack propagation rates, da/dN, slowed significantly. In some tests, at constant peak loads, cracks were stopped in regions with high compressive stresses. The residual stresses in the cases in CBS-1000M steel were predominantly tensile, probably because of the presence of high retained austenite contents, and da/dN was accelerated in these cases. The effects of residual stress on the fatigue crack propagation rates are interpreted in terms of a pinched clothespin model in which the residual stresses introduce an internal stress intensity, Ki where Ki, = σid{i/1/2} (σi = internal stress, di = characteristic distance associated with the internal stress distribution). The effective stress intensity becomes Ke = Ka + Ki where Ka is the applied stress intensity. Values of Ki were calculated as a function of distance from the surface using experimental measurements of σi and a value of di = 11 mm (0.43 inch). The resultant values of Ke were taken to be equivalent to effective ΔK values, and da/dN was determined at each point from experimental measurements of fatigue crack propagation obtained separately for the case and core materials. A reasonably good fit was obtained with data for crack growth at a constant ΔK and at a constant cyclic peak load. The carburized case depths were approximately 4 mm, and the possible effects associated with the propagation of short cracks were considered. The major effects were observed at crack lengths of about 2 mm, but the contributions of short crack phenomena were considered to be small in these experiments, since the

  5. Gear Crack Propagation Path Studies-- Guidelines Developed for Ultrasafe Design

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.

    2002-01-01

    Effective gear designs balance strength, durability, reliability, size, weight, and cost. However, unexpected gear failures may occur even with adequate gear tooth design. To design an extremely safe system, the designer must ask and address the question "What happens when a failure occurs?" With regard to gear-tooth bending fatigue, tooth or rim fractures may occur. For aircraft, a crack that propagated through a rim would be catastrophic, leading to the disengagement of a rotor or propeller, the loss of an aircraft, and possible fatalities. This failure mode should be avoided. However, a crack that propagated through a tooth might or might not be catastrophic, depending on the design and operating conditions. Also, early warning of this failure mode might be possible because of advances in modern diagnostic systems. An analysis was performed at the NASA Glenn Research Center to develop design guidelines to prevent catastrophic rim fracture failure modes in the event of gear-tooth bending fatigue. The finite element method was used with principles of linear elastic fracture mechanics. Crack propagation paths were predicted for a variety of gear tooth and rim configurations. The effects of rim and web thicknesses, initial crack locations, and gear-tooth geometry factors such as diametral pitch, number of teeth, pitch radius, and tooth pressure angle were considered. Design maps of tooth and rim fracture modes, including the effects of gear geometry, applied load, crack size, and material properties were developed. The occurrence of rim fractures significantly increased as the backup ratio (rim thickness divided by tooth height) decreased. The occurrence of rim fractures also increased as the initial crack location was moved down the root of the tooth. Increased rim and web compliance increased the occurrence of rim fractures. For gears with constant-pitch radii, coarser-pitch teeth increased the occurrence of tooth fractures over rim fractures. Also, 25 degree

  6. Fatigue crack propagation behavior of a single crystalline superalloy

    NASA Technical Reports Server (NTRS)

    Lerch, B. A.; Antolovich, Stephen D.

    1990-01-01

    Crack propagation mechanisms occurring at various temperatures in a single crystalline Ni-base alloy, Rene N4, were investigated. The rates of crack growth at 21, 704, 927, 1038, and 1093 C were measured in specimens with 001-line and 110-line directions parallel to the load axis and the machined notch, respectively, using a pulsed dc potential drop apparatus, and the fracture surfaces at each temperature were examined using SEM. Crack growth rates (CGRs) for specimens tested at or below 927 C were similar, while at two higher temperatures, the CGRs were about an order of magnitude higher than at the lower temperatures. Results of SEM observations showed that surface morphologies depended on temperature.

  7. Formation and propagation of cracks on the flame surface

    NASA Astrophysics Data System (ADS)

    Kuznetsov, E. A.; Minaev, S. S.

    1996-02-01

    In the framework of the simplified Sivashinsky equation it is shown that the process of formation, propagation and interactions of cracks on flame fronts can be considered as the interference between nonlinear effects and instabilities of plane flame fronts. It is demonstrated that in a model with a constant growth rate cracks can form webs with triple vertices. At late times, the crack web consists of straight line segments. In agreement with recent observations [D. Breadly and C.M. Hamer, Comb. Flames 99 (1994) 562], the fourth order (and higher) vertices are rare and can appear as a result of scattering of triple vertices with each other. Within this model we predict the merging of small cells into neighboring larger cells.

  8. Dynamic crack propagation in single-crystalline silicon

    SciTech Connect

    Cramer, T.; Gumbsch, P.; Wanner, A.

    1999-08-01

    Tensile tests on notched plates of single-crystalline silicon were carried out at high overloads. Cracks were forced to propagate on {l_brace}110{r_brace} planes in a {l_angle}1{bar 1}0{r_angle} direction. The dynamics of the fracture process was measured using the potential drop technique and correlated with the fracture surface morphology. Crack propagation velocity did not exceed a terminal velocity of v{sub c} = 3,800 m/s, which corresponds to 83% of the Rayleigh wave velocity v{sub R}. Specimens fractured at low stresses exhibited crystallographic cleavage whereas a transition from mirror-like smooth regions to rougher hackle zones was observed in case of the specimens fractured at high stresses. Inspection of the mirror zone at high magnification revealed a deviation of the {l_brace}110{r_brace} plane onto {l_brace}111{r_brace}crystallographic facets.

  9. Fatigue crack propagation rate model based on a dislocation mechanism

    NASA Technical Reports Server (NTRS)

    Mazumdar, P. K.; Jeelani, S.

    1986-01-01

    It has been noted that the crack propagation exponent p for most metals usually varies between values of 2 and 4, and that the motion of dislocations plays an important part in determining the exponent p. Attention is presently given to the significance of the exponent p in terms of the motion of dislocations, in view of the theory of thermally activated plastic flow and the cumulative plastic strain concept for a failure criterion.

  10. Mode III fatigue crack propagation in low alloy steel

    SciTech Connect

    Ritchie, R.O.; McClintock, F.A.; Nayeb-Hashemi, H.; Ritter, M.A.

    1982-01-01

    To provide a basis for estimating fatigue life in large rotating generator shafts subjected to transient oscillations, a study is made of fatigue crack propagation in Mode III (anti-plane shear) in torsionally-loaded spheroidized AISI 4340 steel. Results are compared to analogous behavior in Mode I. The approach investigated the feasibility of using continuum fracture mechanics and preliminary mechanistic modeling to serve as a basis for defect-tolerant life estimation procedures. 38 refs.

  11. Atomistic study on mixed-mode fracture mechanisms of ferrite iron interacting with coherent copper and nickel nanoclusters

    NASA Astrophysics Data System (ADS)

    Al-Motasem, Ahmed Tamer; Mai, Nghia Trong; Choi, Seung Tae; Posselt, Matthias

    2016-04-01

    The effect of copper and/or nickel nanoclusters, generally formed by neutron irradiation, on fracture mechanisms of ferrite iron was investigated by using molecular statics simulation. The equilibrium configuration of nanoclusters was obtained by using a combination of an on-lattice annealing based on Metropolis Monte Carlo method and an off-lattice relaxation by molecular dynamics simulation. Residual stress distributions near the nanoclusters were also calculated, since compressive or tensile residual stresses may retard or accelerate, respectively, the propagation of a crack running into a nanocluster. One of the nanoclusters was located in front of a straight crack in ferrite iron with a body-centered cubic crystal structure. Two crystallographic directions, of which the crack plane and crack front direction are (010)[001] and (111) [ 1 bar 10 ] , were considered, representing cleavage and non-cleavage orientations in ferrite iron, respectively. Displacements corresponding to pure opening-mode and mixed-mode loadings were imposed on the boundary region and the energy minimization was performed. It was observed that the fracture mechanisms of ferrite iron under the pure opening-mode loading are strongly influenced by the presence of nanoclusters, while under the mixed-mode loading the nanoclusters have no significant effect on the crack propagation behavior of ferrite iron.

  12. Analysis of crack propagation as an energy absorption mechanism in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Adams, D. F.; Murphy, D. P.

    1981-01-01

    The crack initiation and crack propagation capability was extended to the previously developed generalized plane strain, finite element micromechanics analysis. Also, an axisymmetric analysis was developed, which contains all of the general features of the plane analysis, including elastoplastic material behavior, temperature-dependent material properties, and crack propagation. These analyses were used to generate various example problems demonstrating the inelastic response of, and crack initiation and propagation in, a boron/aluminum composite.

  13. Modeling of slow crack propagation in heterogeneous rocks

    NASA Astrophysics Data System (ADS)

    Lengliné, Olivier; Stormo, Arne; Hansen, Alex; Schmittbuhl, Jean

    2015-04-01

    Crack propagation in heterogeneous media is a rich problem which involves the interplay of various physical processes. The problem has been intensively investigated theoretically, numerically, and experimentally, but a unifying model capturing all the experimental features has not been entirely achieved despite its broad range of implications in Earth sciences problems. The slow propagation of a crack front where long range elastic interactions are dominant, is of crucial importance to fill the gap between experiments and models. Several theoretical and numerical works have been devoted to quasi-static models. Such models give rise to an intermittent local activity characterized by a depinning transition and can be viewed as a critical phenomenon. However these models fail to reproduce all experimental conditions, notably the front morphology does not display any cross-over length with two different roughness exponents above and below the cross-over as observed experimentally. Here, we compare experimental observations of a slow interfacial crack propagation along an heterogeneous interface to numerical simulations from a cantilever fiber bundle model. The model consists of a planar set of brittle fibers between an elastic half-space and a rigid square root shaped plate which loads the system in a cantilever configuration. The latter is shown to provide an improved opening and stress field in the process zone around the crack tip. The model shares a similar scale invariant roughening of the crack front both at small and large scales and a similar power law distribution of the local velocity of the crack front to experiments. Implications for induced seismicity at the brittle-creep transition are discussed. We show that a creep route for induced seismicity is possible when heterogeneities exist along the fault. Indeed, seismic event occurrences in time and space are in strong relation with the development of the aseismic motion recorded during the experiment and the

  14. Crack initiation and near-threshold surface fatigue crack propagation behavior of the iron-base superalloy A-286

    NASA Astrophysics Data System (ADS)

    Daeubler, M. A.; Thompson, A. W.; Bernstein, I. M.

    1988-02-01

    The fatigue behavior of the iron-base superalloy A-286 was studied at room temperature in air for three aging conditions: underaged, peak aged, and overaged. A fatigue strength at 107 cycles of about 200 MPa, independent of aging condition, was measured for an applied load ratio of R =0.1. Surface crack initiation and propagation were measured using hourglass specimens. Surface cracks were invariably initiated in slip bands orientated between 45 and 55 deg to the load axis, and an average ratio of crack depth to crack length of about 0.45 for these semi-elliptical cracks was measured. These earliest observable short surface cracks grew at an accelerated propagation rate in the near-threshold regime but were retarded in a transition stage, resulting in a minimum in crack growth rate. This behavior was correlated to the interaction of the crack with specific microstructure features. Following this minimum, the crack growth accelerated again with increasing Δ K and appeared to converge with the crack growth behavior expected for long through cracks. The crack propagation rate at fixed Δ K was lowest in underaged, compared to peak aged and overaged microstructures. The minimum and trends in crack growth rate appeared to depend on the development of roughness-induced closure.

  15. The effect of adhesive layer on crack propagation in laminates

    NASA Technical Reports Server (NTRS)

    Gecit, M. R.; Erdogan, F.

    1976-01-01

    The effect of the adhesive layer on crack propagation in composite materials is investigated. The composite medium consists of parallel load carrying laminates and buffer strips arranged periodically and bonded with thin adhesive layers. The strips, assumed to be isotropic and linearly elastic, contain symmetric cracks of arbitrary lengths located normal to the interfaces. Two problems are considered: (1) thin adhesive layers are approximated by uncoupled tension and shear springs distributed along the interfaces of the strips for which only the case of internal cracks can be treated rigorously; (2) broken laminates and the true singular behavior in the presence of the adhesive layer are studied. The adhesive is then treated as an isotropic, linearly elastic continuum. General expressions for field quantities are obtained in terms of infinite Fourier integrals. These expressions give a system of singular integral equations in terms of the crack surface displacement derivatives. By using appropriate quadrature formulas, the integral equations reduce to a system of linear algebraic equations which are solved numerically.

  16. Incubation time for sub-critical crack propagation in SiC-SiC composites

    SciTech Connect

    El-Azab, A.; Ghoniem, N.M.

    1995-04-01

    The objective of this work is to investigate the time for sub-critical crack propagation is SiC-SiC composites at high temperatures. The effects of fiber thermal creep on the relaxation of crack bridging tractions in SiC-SiC ceramic matrix composites (CMCs) is considered in the present work, with the objective of studying the time-to propagation of sub-critical matrix cracks in this material at high temperatures. Under the condition of fiber stress relaxation in the bridiging zone, it is found that the crack opening and the stress intensity factor increase with time for sub-critical matrix cracks. The time elapsed before the stress intensity reaches the critical value for crack propagation is calculated as a function of the initial crack length, applied stress and temperature. Stability domains for matrix cracks are defined, which provide guidelines for conducting high-temperature crack propagation experiments.

  17. An equivalent domain integral method for three-dimensional mixed-mode fracture problems

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Raju, I. S.

    1991-01-01

    A general formulation of the equivalent domain integral (EDI) method for mixed mode fracture problems in cracked solids is presented. The method is discussed in the context of a 3-D finite element analysis. The J integral consists of two parts: the volume integral of the crack front potential over a torus enclosing the crack front and the crack surface integral due to the crack front potential plus the crack face loading. In mixed mode crack problems the total J integral is split into J sub I, J sub II, and J sub III representing the severity of the crack front in three modes of deformations. The direct and decomposition methods are used to separate the modes. These two methods were applied to several mixed mode fracture problems, were analyzed, and results were found to agree well with those available in the literature. The method lends itself to be used as a post-processing subroutine in a general purpose finite element program.

  18. An equivalent domain integral method for three-dimensional mixed-mode fracture problems

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Raju, I. S.

    1992-01-01

    A general formulation of the equivalent domain integral (EDI) method for mixed mode fracture problems in cracked solids is presented. The method is discussed in the context of a 3-D finite element analysis. The J integral consists of two parts: the volume integral of the crack front potential over a torus enclosing the crack front and the crack surface integral due to the crack front potential plus the crack face loading. In mixed mode crack problems the total J integral is split into J sub I, J sub II, and J sub III representing the severity of the crack front in three modes of deformations. The direct and decomposition methods are used to separate the modes. These two methods were applied to several mixed mode fracture problems, were analyzed, and results were found to agree well with those available in the literature. The method lends itself to be used as a post-processing subroutine in a general purpose finite element program.

  19. Low-pH SCC: Mechanical effects on crack propagation

    SciTech Connect

    Beavers, J.A.; Hagerdorn, E.L.

    1996-09-06

    A better definition of the role of mechanical factors on low-pH stress corrosion crack propagation is needed to aid in the prediction of crack growth rates on operating pipelines and to develop strategies to mitigate this form of cracking. The overall objective of the project was to determine the roles and synergistic effects of pressure, pressure fluctuations, and hydrotesting on low-pH stress corrosion crack growth. All testing was performed in a low-pH electrolyte (NS4 solution) under cyclic load conditions on pre-cracked specimens of one X-65 line pipe steel. The cyclic load conditions in the testing were related to field conditions using the J-integral parameter. This project consisted of the following three tasks, Task 1 - Development of Test Protocol, Task 2 - Mechanical Effects, and Task 3 - Effects of Hydrotesting. The purposes of Task 1 were to prepare the test specimens and experimental apparatus and to establish a standard test protocol for conducting the cyclic load tests and analyzing the test data. The specimen preparation procedures and environmental conditions were similar to those used in a previous project for TransCanada PipeLines (TCPL). The most significant difference between the tests performed in this project and the previous research was in the mode of loading. The previous work was performed under constant extension rate loading while this project was performed under cyclic load conditions. It is difficult to relate test conditions under constant extension rate loading with field conditions. However, the cyclic load conditions in the laboratory test can be directly related to field test conditions using the J-integral parameter. Modifications also were necessary in the data analysis procedure to account for the change in loading mode.

  20. Crack propagation in functionally graded strip under thermal shock

    NASA Astrophysics Data System (ADS)

    Ivanov, I. V.; Sadowski, T.; Pietras, D.

    2013-09-01

    The thermal shock problem in a strip made of functionally graded composite with an interpenetrating network micro-structure of Al2O3 and Al is analysed numerically. The material considered here could be used in brake disks or cylinder liners. In both applications it is subjected to thermal shock. The description of the position-dependent properties of the considered functionally graded material are based on experimental data. Continuous functions were constructed for the Young's modulus, thermal expansion coefficient, thermal conductivity and thermal diffusivity and implemented as user-defined material properties in user-defined subroutines of the commercial finite element software ABAQUS™. The thermal stress and the residual stress of the manufacturing process distributions inside the strip are considered. The solution of the transient heat conduction problem for thermal shock is used for crack propagation simulation using the XFEM method. The crack length developed during the thermal shock is the criterion for crack resistance of the different graduation profiles as a step towards optimization of the composition gradient with respect to thermal shock sensitivity.

  1. Burrowing in marine muds by crack propagation: kinematics and forces.

    PubMed

    Dorgan, Kelly M; Arwade, Sanjay R; Jumars, Peter A

    2007-12-01

    The polychaete Nereis virens burrows through muddy sediments by exerting dorsoventral forces against the walls of its tongue-depressor-shaped burrow to extend an oblate hemispheroidal crack. Stress is concentrated at the crack tip, which extends when the stress intensity factor (KI) exceeds the critical stress intensity factor (KIc). Relevant forces were measured in gelatin, an analog for elastic muds, by photoelastic stress analysis, and were 0.015+/-0.001 N (mean +/- s.d.; N=5). Measured elastic moduli (E) for gelatin and sediment were used in finite element models to convert the forces in gelatin to those required in muds to maintain the same body shapes observed in gelatin. The force increases directly with increasing sediment stiffness, and is 0.16 N for measured sediment stiffness of E=2.7 x 10(4) Pa. This measurement of forces exerted by burrowers is the first that explicitly considers the mechanical behavior of the sediment. Calculated stress intensity factors fall within the range of critical values for gelatin and exceed those for sediment, showing that crack propagation is a mechanically feasible mechanism of burrowing. The pharynx extends anteriorly as it everts, extending the crack tip only as far as the anterior of the worm, consistent with wedge-driven fracture and drawing obvious parallels between soft-bodied burrowers and more rigid, wedge-shaped burrowers (i.e. clams). Our results raise questions about the reputed high energetic cost of burrowing and emphasize the need for better understanding of sediment mechanics to quantify external energy expenditure during burrowing. PMID:18025018

  2. Finite-element blunt-crack propagation: a modified J-integral approach. [LMFBR

    SciTech Connect

    Pan, Y.C.; Marchertas, A.H.; Kennedy, J.M.

    1983-01-01

    In assessing the safety of a liquid metal fast breeder reactor (LMFBR), a major concern is the behavior of concrete structures subjected to high temperatures. The potential of concrete cracking is an important parameter which could significantly influence the safety assessment of thermally attacked concrete. A new modified J-integral approach for the blunt crack model has been derived to provide a general procedure to accurately predict the direction of crack growth. This formulation has been incorporated into the coupled heat transfer-stress analysis finite element code TEMP-STRESS. A description of the formulation is presented in this paper. Results for the problems of a Mode I and mixed mode crack in a plate using regular and slanted meshes subjected to uniaxial and shear loading are presented.

  3. Characterization and Prediction of Cracks in Coated Materials: Direction and Length of Crack Propagation in Bimaterials.

    PubMed

    Pruncu, C I; Azari, Z; Casavola, C; Pappalettere, C

    2015-01-01

    The behaviour of materials is governed by the surrounding environment. The contact area between the material and the surrounding environment is the likely spot where different forms of degradation, particularly rust, may be generated. A rust prevention treatment, like bluing, inhibitors, humidity control, coatings, and galvanization, will be necessary. The galvanization process aims to protect the surface of the material by depositing a layer of metallic zinc by either hot-dip galvanizing or electroplating. In the hot-dip galvanizing process, a metallic bond between steel and metallic zinc is obtained by immersing the steel in a zinc bath at a temperature of around 460°C. Although the hot-dip galvanizing procedure is recognized to be one of the most effective techniques to combat corrosion, cracks can arise in the intermetallic δ layer. These cracks can affect the life of the coated material and decrease the lifetime service of the entire structure. In the present paper the mechanical response of hot-dip galvanized steel submitted to mechanical loading condition is investigated. Experimental tests were performed and corroborative numerical and analytical methods were then applied in order to describe both the mechanical behaviour and the processes of crack/cracks propagation in a bimaterial as zinc-coated material. PMID:27347531

  4. Characterization and Prediction of Cracks in Coated Materials: Direction and Length of Crack Propagation in Bimaterials

    PubMed Central

    Azari, Z.; Pappalettere, C.

    2015-01-01

    The behaviour of materials is governed by the surrounding environment. The contact area between the material and the surrounding environment is the likely spot where different forms of degradation, particularly rust, may be generated. A rust prevention treatment, like bluing, inhibitors, humidity control, coatings, and galvanization, will be necessary. The galvanization process aims to protect the surface of the material by depositing a layer of metallic zinc by either hot-dip galvanizing or electroplating. In the hot-dip galvanizing process, a metallic bond between steel and metallic zinc is obtained by immersing the steel in a zinc bath at a temperature of around 460°C. Although the hot-dip galvanizing procedure is recognized to be one of the most effective techniques to combat corrosion, cracks can arise in the intermetallic δ layer. These cracks can affect the life of the coated material and decrease the lifetime service of the entire structure. In the present paper the mechanical response of hot-dip galvanized steel submitted to mechanical loading condition is investigated. Experimental tests were performed and corroborative numerical and analytical methods were then applied in order to describe both the mechanical behaviour and the processes of crack/cracks propagation in a bimaterial as zinc-coated material. PMID:27347531

  5. Mixed-Mode Decohesion Elements for Analyses of Progressive Delamination

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Camanho, Pedro P.; deMoura, Marcelo F.

    2001-01-01

    A new 8-node decohesion element with mixed mode capability is proposed and demonstrated. The element is used at the interface between solid finite elements to model the initiation and propagation of delamination. A single displacement-based damage parameter is used in a strain softening law to track the damage state of the interface. The method can be used in conjunction with conventional material degradation procedures to account for inplane and intra-laminar damage modes. The accuracy of the predictions is evaluated in single mode delamination tests, in the mixed-mode bending test, and in a structural configuration consisting of the debonding of a stiffener flange from its skin.

  6. Curve fitting of mixed-mode isopachics

    NASA Astrophysics Data System (ADS)

    Hebb, R. I.; Dulieu-Barton, J. M.; Worden, K.; Tatum, P.

    2009-08-01

    Recent work has focused on exploiting the observation that the stress-sum contours (isopachics), obtained from TSA, in the vicinity of the tip take the form of a simple curve - the cardioid. The analysis made use of the cardioid nature of the isopachics by deriving expressions for the SIFs in terms of the cardioid area and the positions of certain tangents to the curve. Both Genetic Algorithms (GAs) and Differential Evolution (DE) have also proved successful for parameter estimation, but some of the curve-fits indicated that the cardioid form was inappropriate for the base model, particularly for mixed-mode cracks. The effect of crack-tip interaction has been explored and shows this has a small effect on the cardioid form. New, higher resolution infra-red detectors have become available since the original data was collected, so the object of the current paper is to use new techniques to extract the cardioid form and use a GA to perform the curve fitting.

  7. Preferred propagation patterns of axial surface cracks in thick-walled cylinders

    SciTech Connect

    Perez, E.H.; Kendall, D.P.

    1996-12-01

    Semi-elliptical axial surface cracks, growing due to cyclic pressure loading in thick-walled cylinders undergo significant shape change during the propagation process. These growing cracks change their shapes such that they approach and follow preferred propagation patterns (PPPs). These PPPs depend on the diameter ratio of the cylinder and on the fatigue crack propagation constant, ``m`` in the Paris equation. The objective of this paper is to show the crack shape variation during fatigue crack growth using linear elastic fracture mechanics. It is shown that a crack whose initial shape does not agree with this preferred propagation pattern will grow such that its shape converges to the preferred pattern. The results of this study also show the effect of autofrettage on the PPPs and the final shape of the cracks at breakthrough.

  8. Experimental study on fatigue crack propagation rate of RC beam strengthened with carbon fiber laminate

    NASA Astrophysics Data System (ADS)

    Huang, Peiyan; Liu, Guangwan; Guo, Xinyan; Huang, Man

    2008-11-01

    The experimental research on fatigue crack propagation rate of reinforced concrete (RC) beams strengthened with carbon fiber laminate (CFL) is carried out by MTS system in this paper. The experimental results show that, the main crack propagation on strengthened beam can be summarized into three phases: 1) fast propagation phase; 2) steady propagation and rest phase; 3) unsteady propagation phase. The phase 2-i.e. steady propagation and rest stage makes up about 95% of fatigue life of the strengthened beam. The propagation rate of the main crack, da/dN, in phase 2 can be described by Paris formula, and the constant C and m can be confirmed by the fatigue crack propagation experiments of the RC beams strengthened with CFL under three-point bending loads.

  9. Fatigue crack propagation in ceria-partially-stabilized zirconia (Ce-TZP)-alumina composites

    SciTech Connect

    Tsai, J.F.; Yu, C.S.; Shetty, D.K.

    1990-10-10

    Fatigue crack propagation rates in tension-tension load cycling were measured in ZrO{sub 2}-12 mol% CeO{sub 2}-10 wt% Al{sub 2}O{sub 3} ceramics using precracked and annealed compact tension specimens. The fatigue crack growth behavior was examined for Ce-TZPs. The fatigue crack growth behavior was strongly influenced by the history of crack shielding via the development of the crack-tip transformation zones. Crack growth rates under sustained peak loads were also measured and found to be significantly lower and occurred at higher peak stress intensities as compared to the fatigue crack growth rates.

  10. Low-pH stress corrosion crack propagation in API X-65 line pipe steel

    SciTech Connect

    Harle, B.A.; Beavers, J.A. )

    1993-10-01

    Preliminary results of ongoing crack growth studies being performed on an API X-65 line pipe steel in a low-pH cracking environment were reported. Objectives were to reproduce low-pH crack propagation in the laboratory, to identify a crack driving force parameter, and to evaluate the influence of environmental and mechanical parameters on crack growth. A J-integral test technique was used in the study. Significant crack growth was observed. The parameter J appeared to be a good driving force parameter to describe crack growth.

  11. Acoustic Emission Detection and Prediction of Fatigue Crack Propagation in Composite Patch Repairs Using Neural Networks

    SciTech Connect

    Okafor, A. Chukwujekwu; Singh, Navdeep; Singh, Navrag

    2007-03-21

    An aircraft is subjected to severe structural and aerodynamic loads during its service life. These loads can cause damage or weakening of the structure especially for aging military and civilian aircraft, thereby affecting its load carrying capabilities. Hence composite patch repairs are increasingly used to repair damaged aircraft metallic structures to restore its structural efficiency. This paper presents the results of Acoustic Emission (AE) monitoring of crack propagation in 2024-T3 Clad aluminum panels repaired with adhesively bonded octagonal, single sided boron/epoxy composite patch under tension-tension fatigue loading. Crack propagation gages were used to monitor crack initiation. The identified AE sensor features were used to train neural networks for predicting crack length. The results show that AE events are correlated with crack propagation. AE system was able to detect crack propagation even at high noise condition of 10 Hz loading; that crack propagation signals can be differentiated from matrix cracking signals that take place due to fiber breakage in the composite patch. Three back-propagation cascade feed forward networks were trained to predict crack length based on the number of fatigue cycles, AE event number, and both the Fatigue Cycles and AE events, as inputs respectively. Network using both fatigue cycles and AE event number as inputs to predict crack length gave the best results, followed by Network with fatigue cycles as input, while network with just AE events as input had a greater error.

  12. [Monitoring of Crack Propagation in Repaired Structures Based on Characteristics of FBG Sensors Reflecting Spectra].

    PubMed

    Yuan, Shen-fang; Jin, Xin; Qiu, Lei; Huang, Hong-mei

    2015-03-01

    In order to improve the security of aircraft repaired structures, a method of crack propagation monitoring in repaired structures is put forward basing on characteristics of Fiber Bragg Grating (FBG) reflecting spectra in this article. With the cyclic loading effecting on repaired structure, cracks propagate, while non-uniform strain field appears nearby the tip of crack which leads to the FBG sensors' reflecting spectra deformations. The crack propagating can be monitored by extracting the characteristics of FBG sensors' reflecting spectral deformations. A finite element model (FEM) of the specimen is established. Meanwhile, the distributions of strains which are under the action of cracks of different angles and lengths are obtained. The characteristics, such as main peak wavelength shift, area of reflecting spectra, second and third peak value and so on, are extracted from the FBGs' reflecting spectral which are calculated by transfer matrix algorithm. An artificial neural network is built to act as the model between the characteristics of the reflecting spectral and the propagation of crack. As a result, the crack propagation of repaired structures is monitored accurately and the error of crack length is less than 0.5 mm, the error of crack angle is less than 5 degree. The accurately monitoring problem of crack propagation of repaired structures is solved by taking use of this method. It has important significance in aircrafts safety improvement and maintenance cost reducing. PMID:26117887

  13. Fatigue and static crack propagation in yttria-stabilized tetragonal zirconia polycrystals: Crack growth micromechanisms and precracking effects

    SciTech Connect

    Alcala, J.; Anglada, M.

    1997-11-01

    The influence of precracking techniques in the crack growth behavior of yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) is investigated. Load-bridge and cyclic-compression precracking enhance subsequent tensile crack growth rates, in comparison to results that are found with precracks that are extended under four-point bending prior to testing. The actual influence of these precracking techniques in the near-threshold crack growth regime is remarkably different. Although load-bridge precracking produces a pattern of crack growth fluctuations for stress intensity factors, K, lower than the effective crack-growth threshold of the material, compression-fatigue precracks start to propagate under far-field tensile loads at very fast growth rates and for K values that are slightly higher than the effective threshold. Crack-tip shielding by tetragonal-to-monoclinic transformation develops gradually, influencing the crack growth behavior in Y-TZP. Proposed fatigue crack growth micromechanisms involve damage accumulation at the crack-tip region. For K{sub max} > 3 MPa{center_dot}m{sup 1/2}, fatigue crack growth rates are strongly affected by environmental interactions at the crack tip, and postulated fatigue micromechanisms include the cyclic degradation of crack-tip shielding.

  14. Modeling of crack propagation in weak snowpack layers using the discrete element method

    NASA Astrophysics Data System (ADS)

    Gaume, J.; van Herwijnen, A.; Chambon, G.; Schweizer, J.; Birkeland, K. W.

    2015-01-01

    Dry-snow slab avalanches are generally caused by a sequence of fracture processes including (1) failure initiation in a weak snow layer underlying a cohesive slab, (2) crack propagation within the weak layer and (3) tensile fracture through the slab which leads to its detachment. During the past decades, theoretical and experimental work has gradually led to a better understanding of the fracture process in snow involving the collapse of the structure in the weak layer during fracture. This now allows us to better model failure initiation and the onset of crack propagation, i.e. to estimate the critical length required for crack propagation. On the other hand, our understanding of dynamic crack propagation and fracture arrest propensity is still very limited. For instance, it is not uncommon to perform field measurements with widespread crack propagation on one day, while a few days later, with very little changes to the snowpack, crack propagation does not occur anymore. Thus far, there is no clear theoretical framework to interpret such observations, and it is not clear how and which snowpack properties affect dynamic crack propagation. To shed more light on this issue, we performed numerical propagation saw test (PST) experiments applying the discrete element (DE) method and compared the numerical results with field measurements based on particle tracking. The goal is to investigate the influence of weak layer failure and the mechanical properties of the slab on crack propagation and fracture arrest propensity. Crack propagation speeds and distances before fracture arrest were derived from the DE simulations for different snowpack configurations and mechanical properties. Then, the relation between mechanical parameters of the snowpack was taken into account so as to compare numerical and experimental results, which were in good agreement, suggesting that the simulations can reproduce crack propagation in PSTs. Finally, an in-depth analysis of the mechanical

  15. Pressure-Induced Crack Propagation Behavior in a Particle-Reinforced Composite

    NASA Astrophysics Data System (ADS)

    Ha, Jae-Seok; Kim, Jae-Hoon

    An experimental investigation was conducted to study pressure-induced crack propagation behavior of a particle-reinforced composite (PRC) under various pressurization rate conditions. A pre-cracked specimen of a metallic particle-reinforced rubbery composite was fixed in a holder which is installed in a windowed test chamber, and then high compressed nitrogen gas rapidly pressurized the chamber and the specimen. Chamber pressures were measured during the test, and detailed sequences of crack initiation and propagation were recorded by a high-speed digital video camera. Pressure vs. time traces were obtained from test results, and pressurization rates were defined from them. The crack propagation contours and lengths under various pressurization rates were observed through a stereoscopic microscope. Also, a progression of the crack initiation and propagation was observed by the sequences of the crack recorded by the high-speed digital video camera.

  16. Micromechanisms of fatigue crack propagation in particulate-reinforced metal-matrix composites

    SciTech Connect

    Shang, Jianku.

    1989-01-01

    Consequences of the interaction of cracks with SiC particles are examined with emphasis on micromechanisms influencing fatigue crack propagation in high strength aluminum alloy matrix composites. Fatigue crack propagation is found to show three distinct regimes; each accompanied by growth mechanisms reflecting different roles of SiC particles. At near-threshold levels, SiC particles impeded fatigue crack growth by deflecting the crack to promote roughness-induced crack closure and by acting as crack traps along the crack front. A two-dimensional crack trapping analysis based on the interaction of a finite crack with a SiC particle indicates that a limiting criterion for fatigue crack growth in SiC{sub p}/Al composites can be established, which requires that the maximum plastic-zone size exceed the effective mean particle size or that the tensile stress in the matrix beyond the particle on the crack front exceed the yield strength of the material. Implications of crack closure and crack trapping to near-threshold crack growth, including load-ration and particle-size dependence of fatigue thresholds, are discussed in terms of contributions from each mechanism. At higher stress intensities, limited fracture of SiC particles ahead of the crack tip leads to the development of uncracked ligaments along the crack length, resulting in a reduced crack-tip stress intensity from ligament bridging. Micromechanical models are developed for such bridges induced by both overlapping cracks and co-planar ligaments, based on the notion of a limiting crack opening displacement or limiting strain in the ligament. The predicted reduction in crack tip stress intensity is shown to be consistent with experimental observations.

  17. Time-dependent corrosion fatique crack propagation in 7000 series aluminum alloys. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Mason, Mark E.

    1995-01-01

    The goal of this research is to characterize environmentally assisted subcritical crack growth for the susceptible short-longitudinal orientation of aluminum alloy 7075-T651, immersed in acidified and inhibited NaCl solution. This work is necessary in order to provide a basis for incorporating environmental effects into fatigue crack propagation life prediction codes such as NASA-FLAGRO (NASGRO). This effort concentrates on determining relevant inputs to a superposition model in order to more accurately model environmental fatigue crack propagation.

  18. Time-dependent corrosion fatique crack propagation in 7000 series aluminum alloys. M.S. Thesis

    SciTech Connect

    Mason, M.E.

    1995-10-01

    The goal of this research is to characterize environmentally assisted subcritical crack growth for the susceptible short-longitudinal orientation of aluminum alloy 7075-T651, immersed in acidified and inhibited NaCl solution. This work is necessary in order to provide a basis for incorporating environmental effects into fatigue crack propagation life prediction codes such as NASA-FLAGRO (NASGRO). This effort concentrates on determining relevant inputs to a superposition model in order to more accurately model environmental fatigue crack propagation.

  19. Study on a Controlling Method for Crack Nucleation and Propagation Behavior in Laser Cutting of Glass

    NASA Astrophysics Data System (ADS)

    Miyashita, Yukio; Mogi, Masashi; Hasegawa, Hirotaka; Sujatanod, Supamard; Mutoh, Yoshiharu

    Laser cutting is one of methods for breaking a brittle material by using local thermal stress due to laser irradiation without melting and vaporization of the material. In this study, a method for controlling crack nucleation and propagation behavior was studied experimentally as well as numerically. In case of a specimen with a starter notch, crack propagated by following a laser spot. However, crack did not follow the laser spot trace when the laser scanning direction changed. It was found from the result of FEM analysis that crack propagation behavior was controlled by a stress intensity factor for the maximum tangential stress, Kθmax ahead of crack tip. Twin beam is considered as an effective method to control crack propagation direction for the laser cutting. Crack nucleation behavior was studied with a glass specimen without a starter notch. A crack could nucleate from an edge for staring of laser irradiation in case of the specimen with defects induced by polishing with abrasive papers. However, crack nucleation and propagation behavior was unstable in case of the specimen with mirror-like smooth surface. Effect of laser spot radius on crack nucleation behavior was also studied by FEM analysis.

  20. Effects of gear crack propagation paths on vibration responses of the perforated gear system

    NASA Astrophysics Data System (ADS)

    Ma, Hui; Pang, Xu; Zeng, Jin; Wang, Qibin; Wen, Bangchun

    2015-10-01

    This paper investigates the dynamic behaviors of a perforated gear system considering effects of the gear crack propagation paths and this study focuses on the effects of a crack propagating through the rim on the time-varying mesh stiffness (TVMS) and vibration responses. Considering the effects of the extended tooth contact, a finite element (FE) model of a gear pair is established based on ANSYS software. TVMS of the perforated gear with crack propagating through tooth and rim are calculated by using the FE model. Furthermore, a lumped mass model is adopted to investigate the vibration responses of the perforated gear system. The results show that there exist three periods related to slots of the gear body in a rotating period of the perforated gear. Gear cracks propagating through tooth and rim both reduce the gear body stiffness and lead to reduction of TVMS besides the crack tooth contact moment, and the TVMS weakening for the former is less than that for the latter. Moreover, the results also show that the gear crack propagating through the rim (CPR) has a greater effect on vibration responses than the gear crack propagating through the tooth (CPT) under the same crack level. Vibration level increases with the increasing crack depth, especially for the gear with CPR.

  1. Fatigue crack propagation thresholds for long and short cracks in Rene 95 nickel-base super alloy

    SciTech Connect

    McCarver, J.F.; Ritchie, R.O.

    1981-10-01

    A study has been made of the near-threshold fatigue crack propagation behavior of a wroght Ni-base superalloy, Rene 95, with reference to the effect of crack size on the threshold stress intensity ..delta..K/sub 0/ for no detectable crack growth. Measured threshold ..delta..K/sub 0/ values at low load ratios (R = 0.1) for physically short cracks (0.01 to 0.20 mm) were found to be 60% smaller than the corresponding ..delta..K/sub 0/ values for long cracks (approx. 25 mm). However, short crack threshold values at R = 0.1 were found to be similar to long crack thresholds at R = 0.8. Such behavior is rationalized in terms of fatigue crack closure, specifically involving the role of fracture surface roughness from crystallographic crack growth in Ni-base alloys. The large difference observed in threshold values for long and physically-short cracks serves to illustrate the potential problems in applying conventional (long crack) fatigue data to defect-tolerant lifetime predictions for structural components containing small flaws.

  2. Fatigue and Creep Crack Propagation behaviour of Alloy 617 in the Annealed and Aged Conditions

    SciTech Connect

    Julian K. Benz; Richard N. Wright

    2013-10-01

    The crack propagation behaviour of Alloy 617 was studied under various conditions. Elevated temperature fatigue and creep-fatigue crack growth experiments were conducted at 650 and 800 degrees C under constant stress intensity (triangle K) conditions and triangular or trapezoidal waveforms at various frequencies on as-received, aged, and carburized material. Environmental conditions included both laboratory air and characteristic VHTR impure helium. As-received Alloy 617 displayed an increase in the crack growth rate (da/dN) as the frequency was decreased in air which indicated a time-dependent contribution component in fatigue crack propagation. Material aged at 650°C did not display any influence on the fatigue crack growth rates nor the increasing trend of crack growth rate with decreasing frequency even though significant microstructural evolution, including y’ (Ni3Al) after short times, occurred during aging. In contrast, carburized Alloy 617 showed an increase in crack growth rates at all frequencies tested compared to the material in the standard annealed condition. Crack growth studies under quasi-constant K (i.e. creep) conditions were also completed at 650 degrees C and a stress intensity of K = 40 MPa9 (square root)m. The results indicate that crack growth is primarily intergranular and increased creep crack growth rates exist in the impure helium environment when compared to the results in laboratory air. Furthermore, the propagation rates (da/dt) continually increased for the duration of the creep crack growth either due to material aging or evolution of a crack tip creep zone. Finally, fatigue crack propagation tests at 800 degrees C on annealed Alloy 617 indicated that crack propagation rates were higher in air than impure helium at the largest frequencies and lowest stress intensities. The rates in helium, however, eventually surpass the rates in air as the frequency is reduced and the stress intensity is decreased which was not observed at 650

  3. Crack propagation and the material removal mechanism of glass-ceramics by the scratch test.

    PubMed

    Qiu, Zhongjun; Liu, Congcong; Wang, Haorong; Yang, Xue; Fang, Fengzhou; Tang, Junjie

    2016-12-01

    To eliminate the negative effects of surface flaws and subsurface damage of glass-ceramics on clinical effectiveness, crack propagation and the material removal mechanism of glass-ceramics were studied by single and double scratch experiments conducted using an ultra-precision machine. A self-manufactured pyramid shaped single-grit tool with a small tip radius was used as the scratch tool. The surface and subsurface crack propagations and interactions, surface morphology and material removal mechanism were investigated. The experimental results showed that the propagation of lateral cracks to the surface and the interaction between the lateral cracks and radial cracks are the two main types of material peeling, and the increase of the scratch depth increases the propagation angle of the radial cracks and the interaction between the cracks. In the case of a double scratch, the propagation of lateral cracks and radial cracks between paired scratches results in material peeling. The interaction between adjacent scratches depends on the scratch depth and separation distance. There is a critical separation distance where the normalized material removal volume reaches its peak. These findings can help reduce surface flaws and subsurface damage induced by the grinding process and improve the clinical effectiveness of glass-ceramics used as biological substitute and repair materials. PMID:27479896

  4. Near-neutral pH SCC in pipelines: Effects of pressure fluctuations on crack propagation

    SciTech Connect

    Beavers, J.A.; Jaake, C.E.

    1998-12-31

    Currently, there is a poor understanding of the effects of pressure related parameters (operating pressure, pressure fluctuations, and hydrostatic testings) on external stress corrosion crack propagation in pipelines in near-neutral-pH environments. A better definition of the role of these parameters on crack propagation is needed to aid in the prediction of crack growth rates on operating pipelines and to develop strategies to mitigate this form of cracking. The objective of the research described in this paper was to determine the roles and synergistic effects of operating pressure, pressure fluctuations, and hydrostatic testing on crack growth in line pipe steels in a near-neutral-pH SCC environment. All testing was performed on one X-65 line pipe steel in a near-neutral-pH cracking environment, designated NS4. Fatigue precracked compact-type specimens of the line pipe steel were cyclically loaded while immersed in the cracking environment. The desired loading regime was applied using a servo-hydraulic tensile testing machine. Crack growth was monitored using the electric potential drop technique. The loading conditions applied to the specimen were related to field conditions using the J-integral parameter. It was found that the prior load history applied to the specimens had a significant effect on crack growth behavior. Overloading inhibited crack growth while unloading stimulated crack growth. Hydrostatic testing, which combines overloading and unloading, caused some crack extension but reduced the crack velocity.

  5. Pulsed holographic microscopy as a measurement method of dynamic fracture toughness for fast propagating cracks

    NASA Astrophysics Data System (ADS)

    Suzuki, Shinichi; Homma, Hiroomi; Kusaka, Riichiro

    A METHOD OF pulsed holographic microscopy is applied to take instantaneous microscopic photographs of the neighborhoods of crack tips propagating through PMMA or through AISI 4340 steel specimens at a speed of several hundred meters per second. The cracks are in the opening mode. A fast propagating crack is recorded as a hologram at an instant during its propagation. A microscopic photograph of the crack is taken with a conventional microscope to magnify the reconstructed image from the hologram. From the microscopic photograph, crack opening displacement (COD) is measured along the crack in the vicinity of the crack tip. The COD is of the order often to one hundred microns, and in proportion to the square root of the distance from the crack tip. The dynamic fracture toughness KID is obtained using the formula for COD in the singular stress field of a fast propagating crack. Simultaneous KID measurement both through pulsed holographic microscopy and through the caustic method is furthermore carried out with PMMA specimens. The values of KID obtained through pulsed holographic microscopy are in agreement with those through the caustic method. Microcracks accompanied by a main crack are also photographed with the method of pulsed holographic microscopy.

  6. Effect of the coating properties on crack propagation in fiber-reinforced materials

    SciTech Connect

    Kumar, S.; Singh, R.N.

    1996-12-31

    A finite element technique is used to study the effects of the coating properties on the crack propagation in fiber-reinforced materials. Crack opening stresses and energy release rates for the crack penetration and deflection have been studied in SCS6 (fiber) -C/BN (coating) - Zircon (matrix) composites. Effect of the coating thickness on crack propagation has been also studied. In general, no significant changes are found in stress ratio (ratio of hoop stresses along the crack and at the interface) and energy release rate ratio (ratio of energy release rates for the crack penetration and crack deflection), but the magnitudes of the stresses and energy release rates change substantially with the change in the coating thickness.

  7. Dynamic crack propagation and arrest in orthotropic DCB fiber composite specimens. [Double Cantilever Beam

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Lee, S. S.; Kousiounelos, P. N.

    1981-01-01

    An orthotropic double cantilever beam (DCB) model is used to study dynamic crack propagation and arrest in 90 deg unidirectional Hercules AS/3501-6 graphite fiber epoxy composites. The dynamic fracture toughness of the composite is determined from tests performed on the long-strip specimen and DCB crack arrest experiments are conducted. By using the dynamic fracture toughness in a finite-difference solution of the DCB governing partial differential equations, a numerical solution of the crack propagation and arrest events is computed. Excellent agreement between the experimental and numerical crack arrest results are obtained.

  8. Diffraction-based study of fatigue crack initiation and propagation in aerospace aluminum alloys

    NASA Astrophysics Data System (ADS)

    Gupta, Vipul K.

    The crack initiation sites and microstructure-sensitive growth of small fatigue cracks are experimentally characterized in two precipitation-hardened aluminum alloys, 7075-T651 and 7050-T7451, stressed in ambient temperature moist-air (warm-humid) and -50°C dry N2 (cold-dry) environmental conditions. Backscattered electron imaging (BSE) and energy dispersive spectroscopy (EDS) of the fracture surfaces showed that Fe-Cu rich constituent particle clusters are the most common initiation sites within both alloys stressed in either environment. The crack growth within each alloy, on average, was observed to be slowed in the cold-dry environment than in the warm-humid environment, but only at longer crack lengths. Although no overwhelming effects of grain boundaries and grain orientations on small-crack growth were observed, crack growth data showed local fluctuations within individual grains. These observations are understood as crack propagation through the underlying substructure at the crack surface and frequent interaction with low/high-angle grain and subgrain boundaries, during cyclic loading, and, are further attributed to periodic changes in crack propagation path and multiple occurrences of crack-branching observed in the current study. SEM-based stereology in combination with electron backscattered diffraction (EBSD) established fatigue crack surface crystallography within the region from ˜1 to 50 mum of crack initiating particle clusters. Fatigue crack facets were parallel to a wide variety of crystallographic planes, with pole orientations distributed broadly across the irreducible stereographic triangle between the {001} and {101}-poles within both warm-humid and cold-dry environments. The results indicate environmentally affected fatigue cracking in both cases, given the similarity between the observed morphology and crystallography with that of a variety of aerospace aluminum alloys cracked in the presence of moist-air. There was no evidence of

  9. Evaluation on Fatigue Crack Propagation of Reduced Activation Ferritic Steel (JLF-1) at High Temperature

    NASA Astrophysics Data System (ADS)

    Yoon, Han Ki; Kim, Sa Woong; Lee, Sang Pill; Katoh, Yutai; Kohyama, Akira

    Recently, reduced activation ferritic/martensitic steel, vanadium alloy and SiC/SiC composite are embossed for nuclear fusion reactor in accordance with the coolant. Especially, reduced activation ferritic/martensitic steel is very suitable material for nuclear fusion reactor, because it has low coefficient of thermal expansion and excellent heat conductivity. The objective of this study is to investigate fatigue crack propagation behavior in the Reduced Activation Ferritic Steel (JLF-1). The fatigue crack propagation behavior of the JLF-1 steel was investigated by the constant-amplitude loading test for the stress ratios R = 0.1, 0.3 and 0.5 respectively. The fatigue crack growth tests carried out at room temperature and 400°C for base metal and weld metal. The effects of stress ratio, test temperature, specimen size and TIG welding on the fatigue crack propagation behaviors for JLF-1 steel were discussed within the Paris law. Particularly, the fatigue crack propagation rate of a weld metal was similar to that of base metal at the stress ratio of 0.3. Also, the fatigue crack propagation rate of a half size specimen was similar to that of a full size specimen at the stress ratios of 0.1, 0.3 and 0.5 respectively. From this result, we can recognize that the fatigue crack propagation behavior of this material can be evaluated by using the half size specimens.

  10. Monitoring of solidification crack propagation mechanism in pulsed laser welding of 6082 aluminum

    NASA Astrophysics Data System (ADS)

    von Witzendorff, P.; Kaierle, S.; Suttmann, O.; Overmeyer, L.

    2016-03-01

    Pulsed laser sources with pulse durations in the millisecond regime can be used for spot welding and seam welding of aluminum. Seam welds are generally produced with several overlapping spot welds. Hot cracking has its origin in the solidification process of individual spot welds which determines the cracking morphology along the seam welding. This study used a monitoring unit to capture the crack geometry within individual spot welds during seam welding to investigate the conditions for initiation, propagation and healing (re-melting) of solidification cracking within overlapping pulsed laser welds. The results suggest that small crack radii and high crack angles with respect to welding direction are favorable conditions for crack healing which leads to crack-free seam welds. Optimized pulse shapes were used to produce butt welds of 0.5 mm thick 6082 aluminum alloys. Tensile tests were performed to investigate the mechanical strength in the as-welded condition.

  11. Fatigue-crack propagation in advanced aerospace materials: Aluminum-lithium alloys

    SciTech Connect

    Venkateswara Rao, K.T.; Ritchie, R.O.

    1988-10-01

    Characteristics of fatigue-crack propagation behavior are reviewed for recently developed commercial aluminum-lithium alloys, with emphasis on the underlying micromechanisms associated with crack advance and their implications to damage-tolerant design. Specifically, crack-growth kinetics in Alcoa 2090-T8E41, Alcan 8090 and 8091, and Pechiney 2091 alloys, and in certain powder-metallurgy alloys, are examined as a function of microstructure, plate orientation, temperature, crack size, load ratio and loading sequence. In general, it is found that growth rates for long (> 10 mm) cracks are nearly 2--3 orders of magnitude slower than in traditional 2000 and 7000 series alloys at comparable stress-intensity levels. In additions, Al-Li alloys shown enhanced crack-growth retardations following the application of tensile overloads and retain superior fatigue properties even after prolonged exposure at overaging temperatures; however, they are less impressive in the presence of compression overloads and further show accelerated crack-growth behavior for microstructurally-small (2--1000 {mu}m) cracks (some three orders of magnitude faster than long cracks). These contrasting observations are attributed to a very prominent role of crack-tip shielding during fatigue-crack growth in Al-Li alloys, promoted largely by the tortuous and zig-zag nature of the crack-path morphologies. Such crack paths result in locally reduced crack-tip stress intensities, due to crack deflection and consequent crack wedging from fracture-surface asperities (roughness-induced crack closure); however, such mechanisms are far less potent in the presence of compressive loads, which act to crush the asperities, and for small cracks, where the limited crack wake severely restricts the shielding effect. 50 refs., 21 figs.

  12. Study on subsurface-inclined crack propagation during machining of brittle crystal materials

    NASA Astrophysics Data System (ADS)

    Guo, Jiawen; Chen, Jianbin; Li, Jia; Fang, Qihong; Liu, Youwen

    2016-05-01

    There is an immense need to obtain high-quality surface and subsurface on brittle material owing to the advantage of its improved performance. Thus, in this paper, we proposed a mechanical and numerical study of fracture mechanics from the perspective of external loading and indentation geometry in brittle machining. Stress intensity factors are computed to analyze various impacts of external loading and indentation configuration on subsurface crack propagation. Results indicate that the main fracture mode for inclined crack is shear rather than opening and the apex angle of the indentation plays an important role in fracture behavior. As a certain external loading is exerted to the surface of the silicon, a large apex angle of indentation may lead to strong shielding effect on mode II crack propagation. A relationship between critical value of external loading to the crack propagation and the apex angle of the indentation is given in this paper that shows quantitative indication for suppression of crack growth.

  13. Interlaminar crack growth in fiber reinforced composites during fatigue, part 3

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Wang, H. T.

    1981-01-01

    Interlaminar crack growth behavior in fiber-reinforced composites subjected to fatigue loading was investigated experimentally and theoretically. In the experimental phase, inter-laminar crack propagation rates and mechanisms were determined for the cases of various geometries, laminate parameters and cyclic stress levels. A singular hybrid-stress finite element method was used in conjuction with the experimental results to examine the local crack-tip behavior and to characterize the crack propagation during fatigue. Results elucidate the basic nature of the cyclic delamination damage, and relate the interlaminar crack growth rate to the range of mixed-mode crack-tip stress intensity factors. The results show that crack growth rates are directly related to the range of the mixed-mode cyclic stress intensity factors by a power law relationship.

  14. Identifying and Understanding Environment-Induced Crack propagation Behavior in Ni-based Superalloy INCONEL 617

    SciTech Connect

    Ma, Longzhou

    2012-11-30

    The nickel-based superalloy INCONEL 617 is a candidate material for heat exchanger applications in the next-generation nuclear plant (NGNP) system. This project will study the crack propagation process of alloy 617 at temperatures of 650°C-950°C in air under static/cyclic loading conditions. The goal is to identify the environmental and mechanical damage components and to understand in-depth the failure mechanism. Researchers will measure the fatigue crack propagation (FCP) rate (da/dn) under cyclic and hold-time fatigue conditions, and sustained crack growth rates (da/dt) at elevated temperatures. The independent FCP process will be identified and the rate-controlled sustained loading crack process will be correlated with the thermal activation equation to estimate the oxygen thermal activation energy. The FCP-dependent model indicates that if the sustained loading crack growth rate, da/dt, can be correlated with the FCP rate, da/dn, at the full time dependent stage, researchers can confirm stress-accelerated grain-boundary oxygen embrittlement (SAGBOE) as a predominate effect. Following the crack propagation tests, the research team will examine the fracture surface of materials in various cracking stages using a scanning electron microscope (SEM) and an optical microscope. In particular, the microstructure of the crack tip region will be analyzed in depth using high resolution transmission electron microscopy (TEM) and electron energy loss spectrum (EELS) mapping techniques to identify oxygen penetration along the grain boundary and to examine the diffused oxygen distribution profile around the crack tip. The cracked sample will be prepared by focused ion beam nanofabrication technology, allowing researchers to accurately fabricate the TEM samples from the crack tip while minimizing artifacts. Researchers will use these microscopic and spectroscopic results to interpret the crack propagation process, as well as distinguish and understand the environment or

  15. The effect of temperature upon the fatigue crack propagation behavior of Alloy 625

    SciTech Connect

    James, L.A.

    1990-12-31

    Fatigue crack propagation of annealed Alloy 625 was studied in air at 24--649 C. Crack growth rates tend to increase with temperature. Two heats were studied; differences in behavior between them suggest a heat-to-heat variability. Characterization of stress ratio (R=K{sub min}/K{sub max}) effects was also done at 538 C.

  16. In situ investigation of the effect of hydrogen on the plastic deformation ahead of the crack tip and the crack propagation of 0.15C-1.5Mn-0.17V-0.012N steel

    SciTech Connect

    Liao, B.; Nan, Y.; Hu, Y.; Kang, D.T.

    1998-02-01

    The influence of hydrogen on the deformation ahead of the crack tip and the crack propagation were observed and studied in situ under transmission electron microscopy with dynamic tensile deformation for steel. The results show that hydrogen can promote local plastic deformation ahead of the crack tip and change the mode of crack propagation so that the crack will propagate in a zigzag path.

  17. 3D characterization of crack propagation in building stones

    NASA Astrophysics Data System (ADS)

    Fusi, N.; Martinez-Martinez, J.; Crosta, G. B.

    2012-04-01

    Opening of fractures can strongly modify mechanical characteristics of natural stones and thus significantly decrease stability of historical and modern buildings. It is commonly thought that fractures origin from pre-existing structures of the rocks, such as pores, veins, stylolythes (Meng and Pan, 2007; Yang et al., 2008). The aim of this study is to define relationships between crack formation and textural characteristics in massive carbonate lithologies and to follow the evolution of fractures with loading. Four well known Spanish building limestones and dolostones have been analysed: Amarillo Triana (AT): a yellow dolomitic marble, with fissures filled up by calcite and Fe oxides or hydroxides; Blanco Tranco (BT): a homogeneous white calcitic marble with pore clusters orientated parallel to metamorphic foliation; Crema Valencia (CV): a pinkish limestone (mudstone), characterized by abundant stilolythes, filled mainly by quartz (80%) and kaolin (11%); Rojo Cehegin (RC): a red fossiliferous limestone (packstone) with white veins, made up exclusively by calcite in crystals up to 300 micron. All lithotypes are characterized by homogeneous mineralogical composition (calcitic or dolomitic) and low porosity (<10%). Three cores 20 mm in diameter have been obtained for each lithotype. Uniaxial compressive tests have been carried out in order to induce sample fracturing by a series of successive steps with application of a progressive normal stress. Crack propagation has been checked after each stress level application by microCT-RX following Hg impregnation of the sample (in a Hg porosimeter). Combination of both tests (microCT-RX and Hg porosimeter) guarantees a better characterization of small defects and their progressive propagation inside low-porous rocks than by employing solely microCT-RX (Fusi et al., 2009). Due to the reduced dimensions of sample holder (dilatometers) in porosimeter, cores have been cut with a non standard h/d = 1.5. Several cycles of: a) Hg

  18. Kohn-Sham density functional theory prediction of fracture in silicon carbide under mixed mode loading

    NASA Astrophysics Data System (ADS)

    Leung, K. W. K.; Pan, Z. L.; Warner, D. H.

    2016-03-01

    The utility of silicon carbide (SiC) for high temperature structural application has been limited by its brittleness. To improve its ductility, it is paramount to develop a sound understanding of the mechanisms controlling crack propagation. In this manuscript, we present direct ab initio predictions of fracture in SiC under pure mode I and mixed mode loading, utilizing a Kohn-Sham Density Functional Theory (KSDFT) framework. Our results show that in both loading cases, cleavage occurs at a stress intensity factor (SIF) only slightly higher than the Griffith toughness, focusing on a (1 1 1) [1 \\bar{1} 0] crack in the 3C-SiC crystal structure. This lattice trapping effect is shown to decrease with mode mixity, due to the formation of a temporary surface bond that forms during decohesion under shear. Comparing the critical mode I SIF to the value obtained in experiments suggests that some plasticity may occur near a crack tip in SiC even at low temperatures. Ultimately, these findings provide a solid foundation upon which to study the influence of impurities on brittleness, and upon which to develop empirical potentials capable of realistically simulating fracture in SiC.

  19. Peak Stress Intensity Factor Governs Crack Propagation Velocity In Crosslinked UHMWPE

    PubMed Central

    Sirimamilla, P. Abhiram; Furmanski, Jevan; Rimnac, Clare

    2013-01-01

    Ultra high molecular weight polyethylene (UHMWPE) has been successfully used as a bearing material in total joint replacement components. However, these bearing materials can fail as a result of in vivo static and cyclic loads. Crack propagation behavior in this material has been considered using the Paris relationship which relates fatigue crack growth rate, da/dN (mm/cycle) versus the stress intensity factor range, ΔK (Kmax-Kmin, MPa√m). However, recent work suggests that the crack propagation velocity of conventional UHMWPE is driven by the peak stress intensity (Kmax), not ΔK. The hypothesis of this study is that the crack propagation velocity of highly crosslinked and remelted UHMWPE is also driven by the peak stress intensity, Kmax, during cyclic loading, rather than by ΔK. To test this hypothesis, two highly crosslinked (65 kGy and 100 kGy) and remelted UHMWPE materials were examined. Frequency, waveform and R-ratio were varied between test conditions to determine the governing factor for fatigue crack propagation. It was found that the crack propagation velocity in crosslinked UHMWPE is also driven by Kmax and not ΔK, and is dependent on loading waveform and frequency in a predictable quasi-static manner. The current study supports that crack growth in crosslinked UHMWPE materials, even under cyclic loading conditions, can be described by a relationship between the velocity of crack growth, da/dt and the peak stress intensity, Kmax. The findings suggest that stable crack propagation can occur as a result of static loading only and this should be taken into consideration in design of UHMWPE total joint replacement components. PMID:23165898

  20. Influence of the resin on interlaminar mixed-mode fracture

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Mangalgiri, P. D.

    1985-01-01

    Both literature review data and new data on toughness behavior of seven matrix and adhesive systems in four types of tests were studied in order to assess the influence of the resin on interlaminar fracture. Mixed mode (i.e., various combinations of opening mode 1, G sub 1, and shearing mode 2; G sub 2) fracture toughness data showed that the mixed mode relationship for failure appears to be linear in terms of G sub 1 and G sub 2. The study further indicates that fracture of brittle resins is controlled by the G sub 1 component, and that fracture of many tough resins is controlled by total strain-energy release rate, G sub T. Regarding the relation of polymer structure and the mixed mode fracture: high mode 1 toughness requires resin dilatation; dilatation is low in unmodified epoxies at room temperature/dry conditions; dilatation is higher in plasticized epoxies, heated epoxies, and in modified epoxies; modification improves mode 2 toughness only slightly compared with mode 1 improvements. Analytical aspects of the cracked lap shear test specimen were explored.

  1. Dynamic crack propagation in a 2D elastic body: The out-of-plane case

    NASA Astrophysics Data System (ADS)

    Nicaise, Serge; Sandig, Anna-Margarete

    2007-05-01

    Already in 1920 Griffith has formulated an energy balance criterion for quasistatic crack propagation in brittle elastic materials. Nowadays, a generalized energy balance law is used in mechanics [F. Erdogan, Crack propagation theories, in: H. Liebowitz (Ed.), Fracture, vol. 2, Academic Press, New York, 1968, pp. 498-586; L.B. Freund, Dynamic Fracture Mechanics, Cambridge Univ. Press, Cambridge, 1990; D. Gross, Bruchmechanik, Springer-Verlag, Berlin, 1996] in order to predict how a running crack will grow. We discuss this situation in a rigorous mathematical way for the out-of-plane state. This model is described by two coupled equations in the reference configuration: a two-dimensional scalar wave equation for the displacement fields in a cracked bounded domain and an ordinary differential equation for the crack position derived from the energy balance law. We handle both equations separately, assuming at first that the crack position is known. Then the weak and strong solvability of the wave equation will be studied and the crack tip singularities will be derived under the assumption that the crack is straight and moves tangentially. Using the energy balance law and the crack tip behavior of the displacement fields we finally arrive at an ordinary differential equation for the motion of the crack tip.

  2. Grain-by-grain study of the mechanisms of crack propagation during iodine stress corrosion cracking of Zircaloy-4

    SciTech Connect

    Haddad, R.E.; Dorado, A.O.

    1994-12-31

    This paper describes the tests conducted to determine the conditions leading to cracking of a specified grain of metal, during the iodine stress corrosion cracking (SCC) of zirconium alloys, focusing on the crystallographic orientation of crack paths, the critical stress conditions, and the significance of the fractographic features encountered. In order to perform crystalline orientation of fracture surfaces, a specially heat-treated Zircaloy-4 having very large grains, grown up to the wall thickness, was used. Careful orientation work has proved that intracrystalline pseudo-cleavage occurs only along basal planes. the effects of anisotropy, plasticity, triaxiality, and residual stresses originated in thermal contraction have to be considered to account for the influence of the stress state. A grain-by-grain calculation led to the conclusion that transgranular cracking always takes place on those bearing the maximum resolved tensile stress perpendicular to basal planes. Propagation along twin boundaries has been identified among the different fracture modes encountered.

  3. Modeling of crack propagation in weak snowpack layers using the discrete element method

    NASA Astrophysics Data System (ADS)

    Gaume, J.; van Herwijnen, A.; Chambon, G.; Birkeland, K. W.; Schweizer, J.

    2015-10-01

    Dry-snow slab avalanches are generally caused by a sequence of fracture processes including (1) failure initiation in a weak snow layer underlying a cohesive slab, (2) crack propagation within the weak layer and (3) tensile fracture through the slab which leads to its detachment. During the past decades, theoretical and experimental work has gradually led to a better understanding of the fracture process in snow involving the collapse of the structure in the weak layer during fracture. This now allows us to better model failure initiation and the onset of crack propagation, i.e., to estimate the critical length required for crack propagation. On the other hand, our understanding of dynamic crack propagation and fracture arrest propensity is still very limited. To shed more light on this issue, we performed numerical propagation saw test (PST) experiments applying the discrete element (DE) method and compared the numerical results with field measurements based on particle tracking. The goal is to investigate the influence of weak layer failure and the mechanical properties of the slab on crack propagation and fracture arrest propensity. Crack propagation speeds and distances before fracture arrest were derived from the DE simulations for different snowpack configurations and mechanical properties. Then, in order to compare the numerical and experimental results, the slab mechanical properties (Young's modulus and strength) which are not measured in the field were derived from density. The simulations nicely reproduced the process of crack propagation observed in field PSTs. Finally, the mechanical processes at play were analyzed in depth which led to suggestions for minimum column length in field PSTs.

  4. Effect of random microstructure on crack propagation in cortical bone tissue under dynamic loading

    NASA Astrophysics Data System (ADS)

    Gao, X.; Li, S.; Adel-Wahab, A.; Silberschmidt, V.

    2013-07-01

    A fracture process in a cortical bone tissue depends on various factors, such as bone loss, heterogeneous microstructure, variation of its material properties and accumulation of microcracks. Therefore, it is crucial to comprehend and describe the effect of microstructure and material properties of the components of cortical bone on crack propagation in a dynamic loading regime. At the microscale level, osteonal bone demonstrates a random distribution of osteons imbedded in an interstitial matrix and surrounded by a thin layer known as cement line. Such a distribution of osteons can lead to localization of deformation processes. The global mechanical behavior of bone and the crack-propagation process are affected by such localization under external loads. Hence, the random distribution of microstructural features plays a key role in the fracture process of cortical bone. The purpose of this study is two-fold: firstly, to develop two-dimensional microstructured numerical models of cortical bone tissue in order to examine the interaction between the propagating crack and bone microstructure using an extended finite-element method under both quasi-static and dynamic loading conditions; secondly, to investigate the effect of randomly distributed microstructural constituents on the crack propagation processes and crack paths. The obtained results of numerical simulations showed the influence of random microstructure on the global response of bone tissue at macroscale and on the crack-propagation process for quasi-static and dynamic loading conditions.

  5. Theory for accelerated slow crack propagation in polyethylene fuel pipes. Annual report, 1987-1988

    SciTech Connect

    Moet, A.; Chudnovsky, A.; Chaoui, K.; Strebel, J.

    1988-06-01

    The report describes a test for assessing the resistance of polyethylene fuel gas pipe materials to brittle crack propagation. The test employs fatigue loading to a notched specimen. Pipe specimens prepared from 2306-IIC and 2306-IA exhibit an initial stage of brittle crack propagation which becomes progressively ductile as it approaches ultimate failure by tearing. The complete test duration is extremely short in comparison to others currently employed, yet it similarly ranks both materials tested. Further, crack layer analysis is employed to evaluate the specific energy of fracture, gamma, a fundamental parameter characteristic of the material's resistance to brittle-crack propagation. It is also found from microscopic examinations that brittle fatigue involves a crazing mechanism known to occur under creep condition.

  6. Effect of Microstructure on the Fatigue Crack Propagation Behavior of TC4-DT Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Guo, Ping; Zhao, Yongqing; Zeng, Weidong; Liu, Jianglin

    2015-05-01

    This paper focused on the fatigue crack growth behavior of TC4-DT titanium alloy with different microstructures. Heat treatments were performed to produce different microstructures, which varied in α lamella width and cluster size. The fatigue crack propagation route was observed for different microstructures. The deformation characteristic of the crack tip plastic zone was analyzed. The results demonstrated that, for adequate mechanical properties of the alloy, the microstructure formed after performing two treatments (first, air cooling from the β-phase field, and then annealing at 550 °C for 4 h) exhibited a better fatigue anti-crack propagation ability. This result was related to the existing higher plastic deformation field in the crack tip. Wide α lamellae and coarse α colonies were found to contribute to the improvement of the fracture toughness.

  7. Decohesion Elements using Two and Three-Parameter Mixed-Mode Criteria

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Camanho, Pedro P.

    2001-01-01

    An eight-node decohesion element implementing different criteria to predict delamination growth under mixed-mode loading is proposed. The element is used at the interface between solid finite elements to model the initiation and propagation of delamination. A single displacement-based damage parameter is used in a softening law to track the damage state of the interface. The power law criterion and a three-parameter mixed-mode criterion are used to predict delamination growth. The accuracy of the predictions is evaluated in single mode delamination and in the mixed-mode bending tests.

  8. Origin of moisture effects on crack propagation in composites

    NASA Technical Reports Server (NTRS)

    Mandell, J. F.

    1978-01-01

    A study has been made of the origin of unexpected moisture effects on crack extension in fiberglass laminates. Water immersion has been found to greatly reduce the rate of crack growth under constant loading, while increasing the rate under cyclic loading, the latter effect being the expected one. Observations were made of the extension of the stable damage zone at the tip of precut notches in wet and dry environments. The damage zone size is postulated as a critical element in the relaxation of high stress concentrations in composites, such as those at notch or crack tips. Under constant load, moisture is shown to greatly expand the interply delamination region in the damage zone, thus reducing the local fiber stresses and increasing crack resistance. Under cyclic loading moisture has little effect on the delamination region, which is large even for dry environments, and the only effect is weakening of the material and acceleration of cracks. Severe hygrothermal conditions can so weaken the material that the crack resistance is reduced under constant loading as well.

  9. Observation of crack propagation in saline ice and freshwater ice with fluid inclusion

    NASA Astrophysics Data System (ADS)

    Arakawa, M.; Petrenko, V. F.

    2003-01-01

    A key process of crack propagation in saline ice is the interaction between the crack and fluid inclusions. We observed their interaction in freshwater ice using very high-speed photography (VHSP) and found that the low-density fluids (air and inert liquid, Fluorinert, 1.78 g/cm(3)) could not impede the crack effectively, interrupting the propagation for less than 10 mus. The high-density liquid mercury, (13.8 g/cm(3)) impeded the crack more effectively, stalling the development of the crack for more than 20 mus. The crack velocity in saline ice was measured using two different methods: electrical resistance method (ERM) and VHSP. These two methods returned very different mean velocities, 15 m/s for the ERM and 250 m/s for the VHSP. We found that in ice with conductive liquid inclusions, the ERM measured the time it took to break liquid bridges stretched across a crack rather than the crack velocity. Results from the VHSP show that the maximum crack velocity in saline ice was 500 m/s, which is one-half of that found in freshwater ice. From our results using freshwater ice with inclusions, we conclude that liquid inclusions in saline ice may play a role in this retardation.

  10. Dislocation mechanism based model for stage II fatigue crack propagation rate

    NASA Technical Reports Server (NTRS)

    Mazumdar, P. K.

    1986-01-01

    Repeated plastic deformation, which of course depends on dislocation mechanism, at or near the crack tip leads to the fatigue crack propagation. By involving the theory of thermally activated flow and the cumulative plastic strain criterion, an effort is made here to model the stage II fatigue crack propagation rate in terms of the dislocation mechanism. The model, therefore, provides capability to ascertain: (1) the dislocation mechanism (and hence the near crack tip microstructures) assisting the crack growth, (2) the relative resistance of dislocation mechanisms to the crack growth, and (3) the fracture surface characteristics and its interpretation in terms of the dislocation mechanism. The local microstructure predicted for the room temperature crack growth in copper by this model is in good agreement with the experimental results taken from the literature. With regard to the relative stability of such dislocation mechanisms as the cross-slip and the dislocation intersection, the model suggests an enhancement of crack growth rate with an ease of cross-slip which in general promotes dislocation cell formation and is common in material which has high stacking fault energy (produces wavy slips). Cross-slip apparently enhances crack growth rate by promoting slip irreversibility and fracture surface brittleness to a greater degree.

  11. A Continuum-Atomistic Analysis of Transgranular Crack Propagation in Aluminum

    NASA Technical Reports Server (NTRS)

    Yamakov, V.; Saether, E.; Glaessgen, E.

    2009-01-01

    A concurrent multiscale modeling methodology that embeds a molecular dynamics (MD) region within a finite element (FEM) domain is used to study plastic processes at a crack tip in a single crystal of aluminum. The case of mode I loading is studied. A transition from deformation twinning to full dislocation emission from the crack tip is found when the crack plane is rotated around the [111] crystallographic axis. When the crack plane normal coincides with the [112] twinning direction, the crack propagates through a twinning mechanism. When the crack plane normal coincides with the [011] slip direction, the crack propagates through the emission of full dislocations. In intermediate orientations, a transition from full dislocation emission to twinning is found to occur with an increase in the stress intensity at the crack tip. This finding confirms the suggestion that the very high strain rates, inherently present in MD simulations, which produce higher stress intensities at the crack tip, over-predict the tendency for deformation twinning compared to experiments. The present study, therefore, aims to develop a more realistic and accurate predictive modeling of fracture processes.

  12. Determining the propagation angle for non-vertical surface-breaking cracks and its effect on crack sizing using an ACFM sensor

    NASA Astrophysics Data System (ADS)

    Shen, J. L.; Zhou, L.; Rowshandel, H.; Nicholson, G. L.; Davis, C. L.

    2015-11-01

    Alternating current field measurement (ACFM) probes are used to detect and size cracks in a range of engineering components. Crack sizing for this, and other electromagnetic (EM) based NDT systems, relies on relating the signal obtained to the actual crack length. For cracks that do not propagate vertically, such as rolling contact fatigue cracks in rails, predicting the crack depth, which determines the rail depth to be removed by grinding, requires an assumed propagation angle into the material as no method to determine crack vertical angle from the EM signals has been reported. This paper discusses the relationship between ACFM signals and propagation angles for surface-breaking cracks using a COMSOL model. The Bx signal accurately predicts the crack pocket length when the vertical angle is 30-90° but underestimates pocket length for shallower angles, e.g. a 50% underestimate is seen for a 3.2 mm pocket length crack propagating at a vertical angle of 10°. A new measure, the Bz trough-peak ratio, is proposed to determine the crack vertical angle. These are verified by experimental measurements using a commercial ACFM pencil probe for cracks with a range of vertical angles between 10° and 90°.

  13. Atomistic aspects of crack propagation along high angle grain boundaries

    SciTech Connect

    Farkas, D.

    1997-12-31

    The author presents atomistic simulations of the crack tip configuration near a high angle {Sigma} = 5 [001](210) symmetrical tilt grain boundary in NiAl. The simulations were carried out using molecular statics and embedded atom (EAM) potentials. The cracks are stabilized near a Griffith condition involving the cohesive energy of the grain boundary. The atomistic configurations of the tip region are different in the presence of the high angle grain boundary than in the bulk. Three different configurations of the grain boundary were studied corresponding to different local compositions. It was found that in ordered NiAl, cracks along symmetrical tilt boundaries show a more brittle behavior for Al rich boundaries than for Ni-rich boundaries. Lattice trapping effects in grain boundary fracture were found to be more significant than in the bulk.

  14. Visualization of non-propagating Lamb wave modes for fatigue crack evaluation

    NASA Astrophysics Data System (ADS)

    An, Yun-Kyu; Sohn, Hoon

    2015-03-01

    This article develops a non-propagating Lamb wave mode (NPL) imaging technique for fatigue crack visualization. NPL has a great potential for crack evaluation in that it significantly contributes local mode amplitudes in the vicinity of a crack without spatial propagation. Such unique physical phenomenon is theoretically proven and experimentally measured through laser scanning. Although its measurement is a quite challenging work due to the fact that it is quite localized and coexists with complex propagating Lamb wave modes, a NPL filter proposed in this article overcomes the technical challenge by eliminating all propagating Lamb modes from laser scanned full Lamb wavefields. Through the NPL filtering process, only fatigue crack-induced NPLs can be measured and retained. To verify such physical observation and the corresponding NPL filter, a real micro fatigue crack is created by applying repeated tensile loading, and its detectability is tested using a surface-mounted piezoelectric transducer for generating Lamb waves and a laser Doppler vibrometer for measuring the corresponding responses. The experimental results confirm that even an invisible fatigue crack can be instantaneously visualized and effectively evaluated through the proposed NPL measurement and filtering processes.

  15. Hydrogen-Assisted Crack Propagation in Austenitic Stainless Steel Fusion Welds

    NASA Astrophysics Data System (ADS)

    Somerday, B. P.; Dadfarnia, M.; Balch, D. K.; Nibur, K. A.; Cadden, C. H.; Sofronis, P.

    2009-10-01

    The objective of this study was to characterize hydrogen-assisted crack propagation in gas-tungsten arc (GTA) welds of the nitrogen-strengthened, austenitic stainless steel 21Cr-6Ni-9Mn (21-6-9), using fracture mechanics methods. The fracture initiation toughness and crack growth resistance curves were measured using fracture mechanics specimens that were thermally precharged with 230 wppm (1.3 at. pct) hydrogen. The fracture initiation toughness and slope of the crack growth resistance curve for the hydrogen-precharged weld were reduced by as much as 60 and 90 pct, respectively, relative to the noncharged weld. A physical model for hydrogen-assisted crack propagation in the welds was formulated from microscopy evidence and finite-element modeling. Hydrogen-assisted crack propagation proceeded by a sequence of microcrack formation at the weld ferrite, intense shear deformation in the ligaments separating microcracks, and then fracture of the ligaments. One salient role of hydrogen in the crack propagation process was promoting microcrack formation at austenite/ferrite interfaces and within the ferrite. In addition, hydrogen may have facilitated intense shear deformation in the ligaments separating microcracks. The intense shear deformation could be related to the development of a nonuniform distribution of hydrogen trapped at dislocations between microcracks, which in turn created a gradient in the local flow stress.

  16. Dynamic calibration and analysis of crack tip propagation in energetic materials using real-time radiography

    NASA Astrophysics Data System (ADS)

    Butt, Ali

    Crack propagation in a solid rocket motor environment is difficult to measure directly. This experimental and analytical study evaluated the viability of real-time radiography for detecting bore regression and propellant crack propagation speed. The scope included the quantitative interpretation of crack tip velocity from simulated radiographic images of a burning, center-perforated grain and actual real-time radiographs taken on a rapid-prototyped model that dynamically produced the surface movements modeled in the simulation. The simplified motor simulation portrayed a bore crack that propagated radially at a speed that was 10 times the burning rate of the bore. Comparing the experimental image interpretation with the calibrated surface inputs, measurement accuracies were quantified. The average measurements of the bore radius were within 3% of the calibrated values with a maximum error of 7%. The crack tip speed could be characterized with image processing algorithms, but not with the dynamic calibration data. The laboratory data revealed that noise in the transmitted X-Ray intensity makes sensing the crack tip propagation using changes in the centerline transmitted intensity level impractical using the algorithms employed.

  17. A methodology for the investigation of toughness and crack propagation in mouse bone.

    PubMed

    Carriero, Alessandra; Zimmermann, Elizabeth A; Shefelbine, Sandra J; Ritchie, Robert O

    2014-11-01

    Bone fracture is a health concern for those with aged bone and brittle bone diseases. Mouse bone is widely used as a model of human bone, especially to investigate preclinical treatment strategies. However, little is known about the mechanisms of mouse bone fracture and its similarities and differences from fracture in human bone. In this work we present a methodology to investigate the fracture toughness during crack initiation and crack propagation for mouse bone. Mouse femora were dissected, polished on their periosteal surface, notched on the posterior surface at their mid-diaphysis, and tested in three-point bending under displacement control at a rate of 0.1mm/min using an in situ loading stage within an environmental scanning electron microscope. We obtained high-resolution real-time imaging of the crack initiation and propagation in mouse bone. From the images we can measure the crack extension at each step of the crack growth and calculate the toughness of the bone (in terms of stress intensity factor (K) and work to fracture (Wf)) as a function of stable crack length (Δa), thus generating a resistance curve for the mouse bone. The technique presented here provides insight into the evolution of microdamage and the toughening mechanisms that resist crack propagation, which are essential for preclinical development of treatments to enhance bone quality and combat fracture risk. PMID:25084121

  18. Mixed-Mode-Bending Delamination Apparatus

    NASA Technical Reports Server (NTRS)

    Crews, John H., Jr.; Reeder, James R.

    1991-01-01

    Mixed-mode-bending delamination apparatus generates two types of delamination stress simultaneously in specimen from single externally applied point load. In technique, indivial mode I and mode II contributions to delamination in specimen analyzed by use of simple beam-theory equations, eliminating need for time-consuming, difficult numerical analysis. Allows wider range of mode I/mode II ratios than possible with many other methods. Mixed-mode delamination testing of interest in all fields utilizing composite materials, used mostly in aerospace field, but also used in automobiles, lightweight armored military vehicles, boats, and sporting equipment. Useful in general lumber, plywood, and adhesive industries, as well.

  19. Laser cutting silicon-glass double layer wafer with laser induced thermal-crack propagation

    NASA Astrophysics Data System (ADS)

    Cai, Yecheng; Yang, Lijun; Zhang, Hongzhi; Wang, Yang

    2016-07-01

    This study was aimed at introducing the laser induced thermal-crack propagation (LITP) technology to solve the silicon-glass double layer wafer dicing problems in the packaging procedure of silicon-glass device packaged by WLCSP technology, investigating the feasibility of this idea, and studying the crack propagation process of LITP cutting double layer wafer. In this paper, the physical process of the 1064 nm laser beam interact with the double layer wafer during the cutting process was studied theoretically. A mathematical model consists the volumetric heating source and the surface heating source has been established. The temperature and stress distribution was simulated by using finite element method (FEM) analysis software ABAQUS. The extended finite element method (XFEM) was added to the simulation as the supplementary features to simulate the crack propagation process and the crack propagation profile. The silicon-glass double layer wafer cutting verification experiment under typical parameters was conducted by using the 1064 nm semiconductor laser. The crack propagation profile on the fracture surface was examined by optical microscope and explained from the stress distribution and XFEM status. It was concluded that the quality of the finished fracture surface has been greatly improved, and the experiment results were well supported by the numerical simulation results.

  20. Mechanics and mechanisms of cyclic fatigue-crack propagation in transformation-toughened zirconia ceramics

    SciTech Connect

    Hoffman, M.J. Sydney Univ., NSW . Dept. of Mechanical Engineering); Dauskardt, R.H.; Ritchie, R.O. ); Mai, Y.W. . Dept. of Mechanical Engineering)

    1992-05-01

    Damage and cyclic fatigue failure under alternating loading in transformation-toughened zirconia ceramics is reviewed and compared to corresponding behavior under quasi-static loading (static fatigue). Current understanding of the role of transformation toughening in influencing cyclic fatigue-crack propagation behavior is examined based on studies which altered the extent of the tetragonal-to-monoclinic phase transformation in MG-PSZ through subeutectoid aging. These studies suggest that near-tip computations of the crack-driving force (in terms of the local stress intensity) can be used to predict crack-growth behavior under constant amplitude and variable-amplitude (spectrum) loading, using spatially resolved Raman spectroscopy to measure the extent of the transformation zones. In addition, results are reviewed which rationalize distinctions between the crack-growth behavior of preexisting, long'' (> 2 mm), through-thickness cracks and naturally-occurring, small'' (1 to 100 [mu]m), surface cracks in terms of variations in crack-tip shielding with crack size. In the present study, the effect of grain size variations on crack-growth behavior under both monotonic (R-curve) and cyclic fatigue loading are examined. Such observations are used to speculate on the mechanisms associated with cyclic crack advance, involving such processes as alternating shear via transformation-band formation, cyclic modification of the degree of transformation toughening, and uncracked-ligament (or grain) bridging.

  1. Mechanics and mechanisms of cyclic fatigue-crack propagation in transformation-toughened zirconia ceramics

    SciTech Connect

    Hoffman, M.J. |; Dauskardt, R.H.; Ritchie, R.O.; Mai, Y.W.

    1992-05-01

    Damage and cyclic fatigue failure under alternating loading in transformation-toughened zirconia ceramics is reviewed and compared to corresponding behavior under quasi-static loading (static fatigue). Current understanding of the role of transformation toughening in influencing cyclic fatigue-crack propagation behavior is examined based on studies which altered the extent of the tetragonal-to-monoclinic phase transformation in MG-PSZ through subeutectoid aging. These studies suggest that near-tip computations of the crack-driving force (in terms of the local stress intensity) can be used to predict crack-growth behavior under constant amplitude and variable-amplitude (spectrum) loading, using spatially resolved Raman spectroscopy to measure the extent of the transformation zones. In addition, results are reviewed which rationalize distinctions between the crack-growth behavior of preexisting, ``long`` (> 2 mm), through-thickness cracks and naturally-occurring, ``small`` (1 to 100 {mu}m), surface cracks in terms of variations in crack-tip shielding with crack size. In the present study, the effect of grain size variations on crack-growth behavior under both monotonic (R-curve) and cyclic fatigue loading are examined. Such observations are used to speculate on the mechanisms associated with cyclic crack advance, involving such processes as alternating shear via transformation-band formation, cyclic modification of the degree of transformation toughening, and uncracked-ligament (or grain) bridging.

  2. Environment enhanced fatigue crack propagation in metals: Inputs to fracture mechanics life prediction models. Final report

    SciTech Connect

    Gangloff, R.P.; Kim, S.

    1993-09-01

    This report is a critical review of both environment-enhanced fatigue crack propagation data and the predictive capabilities of crack growth rate models. This information provides the necessary foundation for incorporating environmental effects in NASA FLAGRO and will better enable predictions of aerospace component fatigue lives. The review presents extensive literature data on stress corrosion cracking and corrosion fatigue.' The linear elastic fracture mechanics approach, based on stress intensity range (Delta(K)) similitude with microscopic crack propagation threshold and growth rates, provides a basis for these data. Results are presented showing enhanced growth rates for gases (viz., H2 and H2O) and electrolytes (e.g. NaCl and H2O) in aerospace alloys including: C-Mn and heat treated alloy steels, aluminum alloys, nickel-based superalloys, and titanium alloys. Environment causes purely time-dependent accelerated fatigue crack growth above the monotonic load cracking threshold (KIEAC) and promotes cycle-time dependent cracking below (KIEAC). These phenomenon are discussed in terms of hydrogen embrittlement, dissolution, and film rupture crack tip damage mechanisms.

  3. Environment enhanced fatigue crack propagation in metals: Inputs to fracture mechanics life prediction models

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Kim, Sang-Shik

    1993-01-01

    This report is a critical review of both environment-enhanced fatigue crack propagation data and the predictive capabilities of crack growth rate models. This information provides the necessary foundation for incorporating environmental effects in NASA FLAGRO and will better enable predictions of aerospace component fatigue lives. The review presents extensive literature data on 'stress corrosion cracking and corrosion fatigue.' The linear elastic fracture mechanics approach, based on stress intensity range (Delta(K)) similitude with microscopic crack propagation threshold and growth rates, provides a basis for these data. Results are presented showing enhanced growth rates for gases (viz., H2 and H2O) and electrolytes (e.g. NaCl and H2O) in aerospace alloys including: C-Mn and heat treated alloy steels, aluminum alloys, nickel-based superalloys, and titanium alloys. Environment causes purely time-dependent accelerated fatigue crack growth above the monotonic load cracking threshold (KIEAC) and promotes cycle-time dependent cracking below (KIEAC). These phenomenon are discussed in terms of hydrogen embrittlement, dissolution, and film rupture crack tip damage mechanisms.

  4. 3D dynamic simulation of crack propagation in extracorporeal shock wave lithotripsy

    NASA Astrophysics Data System (ADS)

    Wijerathne, M. L. L.; Hori, Muneo; Sakaguchi, Hide; Oguni, Kenji

    2010-06-01

    Some experimental observations of Shock Wave Lithotripsy(SWL), which include 3D dynamic crack propagation, are simulated with the aim of reproducing fragmentation of kidney stones with SWL. Extracorporeal shock wave lithotripsy (ESWL) is the fragmentation of kidney stones by focusing an ultrasonic pressure pulse onto the stones. 3D models with fine discretization are used to accurately capture the high amplitude shear shock waves. For solving the resulting large scale dynamic crack propagation problem, PDS-FEM is used; it provides numerically efficient failure treatments. With a distributed memory parallel code of PDS-FEM, experimentally observed 3D photoelastic images of transient stress waves and crack patterns in cylindrical samples are successfully reproduced. The numerical crack patterns are in good agreement with the experimental ones, quantitatively. The results shows that the high amplitude shear waves induced in solid, by the lithotriptor generated shock wave, play a dominant role in stone fragmentation.

  5. Extreme stress gradient effects on microstructural fatigue crack propagation rates in Ni microbeams

    SciTech Connect

    Sadeghi-Tohidi, F.; Pierron, O. N.

    2015-05-18

    The fatigue crack propagation behavior of microstructurally small cracks growing under extreme stress gradients was investigated in Ni microbeams under fully reversed cyclic loading. A technique to calculate the crack growth rates in microbeams with two different normalized stress gradients (17% and 50% μm{sup −1}) is developed and validated. Decreasing crack propagation rates are observed over the first 2 μm, and the rates are more than 1 order of magnitude slower for the devices with 50% μm{sup −1} stress gradients. This fundamental knowledge is critical to predict the fatigue reliability of advanced metallic microcomponents under bending such as in microelectromechanical systems or flexible/stretchable electronics.

  6. Analysis of fatigue, fatique-crack propagation, and fracture data. [design of metallic aerospace structural components

    NASA Technical Reports Server (NTRS)

    Jaske, C. E.; Feddersen, C. E.; Davies, K. B.; Rice, R. C.

    1973-01-01

    Analytical methods have been developed for consolidation of fatigue, fatigue-crack propagation, and fracture data for use in design of metallic aerospace structural components. To evaluate these methods, a comprehensive file of data on 2024 and 7075 aluminums, Ti-6A1-4V, and 300M and D6Ac steels was established. Data were obtained from both published literature and unpublished reports furnished by aerospace companies. Fatigue and fatigue-crack-propagation analyses were restricted to information obtained from constant-amplitude load or strain cycling of specimens in air at room temperature. Fracture toughness data were from tests of center-cracked tension panels, part-through crack specimens, and compact-tension specimens.

  7. Fatigue Crack Propagation from Notched Specimens of 304 SS in elevated Temperature Aqueous Environment

    SciTech Connect

    Wire, G. L.; Mills, W. J.

    2002-08-01

    Fatigue crack propagation (FCP) rates for 304 stainless steel (304SS) were determined in 24 degree C and 288 degree C air and 288 degree C water using double-edged notch (DEN) specimens of 304 stainless steel (304 SS). Test performed at matched loading conditions in air and water at 288 degree C with 20-6- cc h[sub]2/kg h[sub]2O provided a direct comparison of the relative crack growth rates in air and water over a wide range of crack growth rates. The DEN crack extension ranged from short cracks (0.03-0.25 mm) to long cracks up to 4.06 mm, which are consistent with conventional deep crack tests. Crack growth rates of 304 SS in water were about 12 times the air rate. This 12X environmental enhancement persisted to crack extensions up to 4.06 mm, far outside the range associated with short crack effects. The large environmental degradation for 304 SS crack growth is consistent with the strong reduction of fatigue life in high hydrogen water. Further, very similar environmental effects w ere reported in fatigue crack growth tests in hydrogen water chemistry (HWC). Most literature data in high hydrogen water show only a mild environmental effect for 304 SS, of order 2.5 times air or less, but the tests were predominantly performed at high cyclic stress intensity or equivalently, high air rates. The environmental effect in low oxygen environments at low stress intensity depends strongly on both the stress ratio, R, and the load rise time, T[sub]r, as recently reported for austenitic stainless steel in BWR water. Fractography was performed for both tests in air and water. At 288 degree C in water, the fracture surfaces were crisply faceted with a crystallographic appearance, and showed striations under high magnification. The cleavage-like facets on the fracture surfaces suggest that hydrogen embrittlement is the primary cause of accelerated cracking.

  8. Investigation of Fatigue Crack Propagation in Spot-Welded Joints Based on Fracture Mechanics Approach

    NASA Astrophysics Data System (ADS)

    Hassanifard, S.; Bonab, M. A. Mohtadi; Jabbari, Gh.

    2013-01-01

    In this paper, fatigue crack propagation life of resistance spot welds in tensile-shear specimens is investigated based on the calculation of stress intensity factors and J-integral using three-dimensional finite element method. For comparison, experimental works on 5083-O aluminum alloy spot-welded joints have been carried out to verify the numerical predictions of fatigue crack propagation of welded joints. A lot of analyses have been performed to obtain stress intensity factors and J-integral in tensile-shear specimens of spot-welded joints by using commercial software ANSYS. These gathered data have been formulated by using statistical software SPSS. The results of fatigue propagation life and predicted fatigue crack path revealed very good agreement with the experimental fatigue test data and photograph of cross-section of the fatigued spot-weld specimens.

  9. Simulation of Crack Propagation in Engine Rotating Components under Variable Amplitude Loading

    NASA Technical Reports Server (NTRS)

    Bonacuse, P. J.; Ghosn, L. J.; Telesman, J.; Calomino, A. M.; Kantzos, P.

    1998-01-01

    The crack propagation life of tested specimens has been repeatedly shown to strongly depend on the loading history. Overloads and extended stress holds at temperature can either retard or accelerate the crack growth rate. Therefore, to accurately predict the crack propagation life of an actual component, it is essential to approximate the true loading history. In military rotorcraft engine applications, the loading profile (stress amplitudes, temperature, and number of excursions) can vary significantly depending on the type of mission flown. To accurately assess the durability of a fleet of engines, the crack propagation life distribution of a specific component should account for the variability in the missions performed (proportion of missions flown and sequence). In this report, analytical and experimental studies are described that calibrate/validate the crack propagation prediction capability ]or a disk alloy under variable amplitude loading. A crack closure based model was adopted to analytically predict the load interaction effects. Furthermore, a methodology has been developed to realistically simulate the actual mission mix loading on a fleet of engines over their lifetime. A sequence of missions is randomly selected and the number of repeats of each mission in the sequence is determined assuming a Poisson distributed random variable with a given mean occurrence rate. Multiple realizations of random mission histories are generated in this manner and are used to produce stress, temperature, and time points for fracture mechanics calculations. The result is a cumulative distribution of crack propagation lives for a given, life limiting, component location. This information can be used to determine a safe retirement life or inspection interval for the given location.

  10. Crack propagation studies to determine benign or catastrophic failure modes for aerospace thin-rim gears. Ph.D. Thesis

    SciTech Connect

    Lewicki, D.G.

    1996-05-01

    Analytical and experimental studies were performed to investigate the effect of rim thickness on gear tooth crack propagation. The goal was to determine whether cracks grew through gear teeth (benign failure mode) or through gear rims (catastrophic failure mode) for various rim thicknesses. Gear tooth crack propagation was simulated using a finite element based computer program. Principles of linear elastic fracture mechanics were used. Quarter-point, triangular elements were used at the crack tip to represent the stress singularity. Crack tip stress intensity factors were estimated and used to determine crack propagation direction and fatigue crack growth rate. The computer program used had an automated crack propagation option in which cracks were grown numerically using an automated re-meshing scheme. In addition, experimental studies were performed in the NASA Lewis Spur Gear Fatigue Rig. Gears with various backup ratios were tested to validate crack path predictions. Also, specialized crack propagation gages were installed on the test gears to measure gear tooth crack growth rate. From both predictions and tests, gears with backup ratios (film thickness divided by tooth height) of 3.3 and 1.0 produced tooth fractures while a backup ratio of 0.3 produced rim fractures. For a backup ratio of 0.5, the experiments produced rim fractures and the predictions produced both rim and tooth fractures, depending on the initial crack conditions. Good correlation between the predicted number of crack propagation cycles and measured number of cycles was achieved using both the Paris fatigue crack growth method and the Collipfiest crack growth equation when fatigue crack closure was considered.

  11. Cyclic fatigue-crack propagation in sapphire in air and simulated physiological environments.

    PubMed

    Asoo, B; McNaney, J M; Mitamura, Y; Ritchie, R O

    2000-12-01

    Single-crystal aluminas are being considered for use in the manufacture of prosthetic heart valves. To characterize such materials for biomedical application, subcritical crack growth by stress corrosion (static fatigue) and by cyclic fatigue has been examined in sapphire along (1100) planes in 24 degrees C humid air and 37 degrees C Ringer's solution (the latter as a simulated physiological environment). The relationships between crack-propagation rates and the linear-elastic stress intensity have been determined for the first time in sapphire for both modes of subcritical cracking. It was found that growth rates were significantly faster at a given stress intensity in the Ringer's solution compared to the humid air environment. Mechanistically, a true cyclic fatigue effect was not found in sapphire as experimentally measured cyclic fatigue-crack growth rates could be closely predicted simply by integrating the static fatigue-crack growth data over the cyclic loading cycle. PMID:11007616

  12. SH0 Guided Wave Interaction with a Crack Aligned in the Propagation Direction in a Plate

    NASA Astrophysics Data System (ADS)

    Ratassepp, M.; Lowe, M. J. S.

    2009-03-01

    Ultrasonic guided waves are currently of interest for structural health monitoring of large structures such as storage tanks and pipelines. This study focuses on the scattering of the fundamental horizontal shear (SH0) mode at a through-thickness notch or crack in a plate whose alignment is in the direction of the wave propagation. The reflection and diffraction of the wave at a crack are examined using 2D finite element simulations. It is shown that the main reflection is generated by Rayleigh-like surface waves created on the faces of the crack, which radiate energy back into the plate. The amplitudes of the reflected and diffracted signals are verified experimentally.

  13. Finite Element Simulations on Erosion and Crack Propagation in Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Ma, Z. S.; Fu, L. H.; Yang, L.; Zhou, Y. C.; Lu, C.

    2015-07-01

    Erosion of thermal barrier coatings occurs when atmospheric or carbon particles from the combustion chamber are ingested into aviation turbine engines. To understand the influence of erosion on the service life of thermal barrier coatings, we introduce the erosion and crack propagation models, and then by using finite element simulations, determine the relationship between the penetrating depth, the maximum principle stress and impingement variables such as velocity and angle. It is shown that cracks nucleate and extend during the erosion process and the length of a crack increases with the increase of the particle velocity and impact angle.

  14. Tracking and Motion Analysis of Crack Propagations in Crystals for Molecular Dynamics

    SciTech Connect

    Tsap, L V; Duchaineau, M; Goldgof, D B

    2001-05-14

    This paper presents a quantitative analysis for a discovery in molecular dynamics. Recent simulations have shown that velocities of crack propagations in crystals under certain conditions can become supersonic, which is contrary to classical physics. In this research, they present a framework for tracking and motion analysis of crack propagations in crystals. It includes line segment extraction based on Canny edge maps, feature selection based on physical properties, and subsequent tracking of primary and secondary wavefronts. This tracking is completely automated; it runs in real time on three 834-image sequences using forty 250 MHZ processors. Results supporting physical observations are presented in terms of both feature tracking and velocity analysis.

  15. Fatigue of Self-Healing Nanofiber-based Composites: Static Test and Subcritical Crack Propagation.

    PubMed

    Lee, Min Wook; Sett, Soumyadip; Yoon, Sam S; Yarin, Alexander L

    2016-07-20

    Here, we studied the self-healing of composite materials filled with epoxy-containing nanofibers. An initial incision in the middle of a composite sample stretched in a static fatigue test can result in either crack propagation or healing. In this study, crack evolution was observed in real time. A binary epoxy, which acted as a self-healing agent, was encapsulated in two separate types of interwoven nano/microfibers formed by dual-solution blowing, with the core containing either epoxy or hardener and the shell being formed from poly(vinylidene fluoride)/ poly(ethylene oxide) mixture. The core-shell fibers were encased in a poly(dimethylsiloxane) matrix. When the fibers were damaged by a growing crack in this fiber-reinforced composite material because of static stretching in the fatigue test, they broke and released the healing agent into the crack area. The epoxy used in this study was cured and solidified for approximately an hour at room temperature, which then conglutinated and healed the damaged location. The observations were made for at least several hours and in some cases up to several days. It was revealed that the presence of the healing agent (the epoxy) in the fibers successfully prevented the propagation of cracks in stretched samples subjected to the fatigue test. A theoretical analysis of subcritical cracks was performed, and it revealed a jumplike growth of subcritical cracks, which was in qualitative agreement with the experimental results. PMID:27332924

  16. Prediction of fatigue crack propagation life in notched members under variable amplitude loading

    NASA Astrophysics Data System (ADS)

    Khan, Z.; Rauf, A.; Younas, M.

    1997-06-01

    One of the interesting phenomenon in the study of fatigue crack propagation under variable amplitude load cycling is the crack growth retardation that normally occurs due to the application of a periodic overload. Fatigue crack growth rate under simple variable amplitude loading sequence incorporating period overloads is studied using single edge notched specimens of AISI304 stainless steel. Load interaction effects due to single and multiple overload have been addressed. Substantial retardation of fatigue crack growth rate is observed due to the introduction of periodic tensile overloads. Estimates of fatigue life have been obtained employing Wheeler model (using Paris and modified Paris equations) and Elber’s model. Analytical predictions are compared with experimental results. Results of these analytical fatigue life predictions show good agreement with the experimental fatigue life data. Fatigue crack propagation rates also have been evaluated from the fractographic study of fatigue striations seen on the fracture surface. Good agreement was found between the experimentally observed crack growth rates and the fatigue crack growth rates determined by the fractographic studies.

  17. The influence of edge effects on crack propagation in snow stability tests

    NASA Astrophysics Data System (ADS)

    Bair, E. H.; Simenhois, R.; van Herwijnen, A.; Birkeland, K.

    2014-08-01

    The Extended Column Test (ECT) and the Propagation Saw Test (PST) are two commonly used tests to assess the likelihood of crack propagation in a snowpack. Guidelines suggest beams with lengths of around 1 m, yet little is known about how test length affects propagation. Thus, we performed 163 ECTs and PSTs 1.0-10.0 m long. On days with full crack propagation in 1.0-1.5 m tests, we then made videos of tests 2.0-10.0 m long. We inserted markers for particle tracking to measure collapse amplitude, propagation speed, and wavelength. We also used a finite element (FE) model to simulate the strain energy release rate at fixed crack lengths. We find that (1) the proportion of tests with full propagation decreased with test length; (2) collapse was greater at the ends of the beams than in the centers; (3) collapse amplitude was independent of beam length and did not reach a constant value; (4) collapse wavelengths in the longer tests were around 3 m, two times greater than what is predicted by the anticrack model. We also confirmed the prediction that centered PSTs had double the critical length of edge PSTs. Based on our results, we conclude that cracks propagated more frequently in the shorter tests because of increased stress concentration from the far edge. The FE model suggests this edge effect occurs for PSTs of up to 2 m long or a crack to beam length ratio ≥ 0.20. Our results suggest that ECT and PST length guidelines may need to be revisited.

  18. Effects of friction and high torque on fatigue crack propagation in Mode III

    NASA Astrophysics Data System (ADS)

    Nayeb-Hashemi, H.; McClintock, F. A.; Ritchie, R. O.

    1982-12-01

    Turbo-generator and automotive shafts are often subjected to complex histories of high torques. To provide a basis for fatigue life estimation in such components, a study of fatigue crack propagation in Mode III (anti-plane shear) for a mill-annealed AISI 4140 steel (RB88, 590 MN/m2 tensile strength) has been undertaken, using torsionally-loaded, circumferentially-notched cylindrical specimens. As demonstrated previously for higher strength AISI 4340 steel, Mode III cyclic crack growth rates (dc/dN) IIIcan be related to the alternating stress intensity factor ΔKIII for conditions of small-scale yielding. However, to describe crack propagation behavior over an extended range of crack growth rates (˜10-6 to 10-2 mm per cycle), where crack growth proceeds under elastic-plastic and full plastic conditions, no correlation between (dc/dN) III and ΔKIII is possible. Accordingly, a new parameter for torsional crack growth, termed the plastic strain intensity Γ III, is introduced and is shown to provide a unique description of Mode III crack growth behavior for a wide range of testing conditions, provided a mean load reduces friction, abrasion, and interlocking between mating fracture surfaces. The latter effect is found to be dependent upon the mode of applied loading (i.e., the presence of superimposed axial loads) and the crack length and torque level. Mechanistically, high-torque surfaces were transverse, macroscopically flat, and smeared. Lower torques showed additional axial cracks (longitudinal shear cracking) perpendicular to the main transverse surface. A micro-mechanical model for the main radi l Mode III growth, based on the premise that crack advance results from Mode II coalescence of microcracks initiated at inclusions ahead of the main crack front, is extended to high nominal stress levels, and predicts that Mode III fatigue crack propagation rates should be proportional to the range of plastic strain intensity (ΔΓIII if local Mode II growth rates are

  19. Effect of micromorphology of cortical bone tissue on crack propagation under dynamic loading

    NASA Astrophysics Data System (ADS)

    Wang, Mayao; Gao, Xing; Abdel-Wahab, Adel; Li, Simin; Zimmermann, Elizabeth A.; Riedel, Christoph; Busse, Björn; Silberschmidt, Vadim V.

    2015-09-01

    Structural integrity of bone tissue plays an important role in daily activities of humans. However, traumatic incidents such as sports injuries, collisions and falls can cause bone fracture, servere pain and mobility loss. In addition, ageing and degenerative bone diseases such as osteoporosis can increase the risk of fracture [1]. As a composite-like material, a cortical bone tissue is capable of tolerating moderate fracture/cracks without complete failure. The key to this is its heterogeneously distributed microstructural constituents providing both intrinsic and extrinsic toughening mechanisms. At micro-scale level, cortical bone can be considered as a four-phase composite material consisting of osteons, Haversian canals, cement lines and interstitial matrix. These microstructural constituents can directly affect local distributions of stresses and strains, and, hence, crack initiation and propagation. Therefore, understanding the effect of micromorphology of cortical bone on crack initiation and propagation, especially under dynamic loading regimes is of great importance for fracture risk evaluation. In this study, random microstructures of a cortical bone tissue were modelled with finite elements for four groups: healthy (control), young age, osteoporosis and bisphosphonate-treated, based on osteonal morphometric parameters measured from microscopic images for these groups. The developed models were loaded under the same dynamic loading conditions, representing a direct impact incident, resulting in progressive crack propagation. An extended finite-element method (X-FEM) was implemented to realize solution-dependent crack propagation within the microstructured cortical bone tissues. The obtained simulation results demonstrate significant differences due to micromorphology of cortical bone, in terms of crack propagation characteristics for different groups, with the young group showing highest fracture resistance and the senior group the lowest.

  20. The influence of edge effects on crack propagation in snow stability tests

    NASA Astrophysics Data System (ADS)

    Bair, E. H.; Simenhois, R.; van Herwijnen, A.; Birkeland, K.

    2014-01-01

    Propagation tests are used to assess the likelihood of crack propagation in a snowpack, yet little is known about how test length affects propagation. Guidelines suggest beams with lengths around 1 m for Extended Column Tests (ECTs) and Propagation Saw Tests (PSTs). To examine how test length affects propagation, we performed 163 ECTs and PSTs 1 to 10 m long. On days with full crack propagation in 1.0 to 1.5 m tests, we then made videos of tests 2 to 10 m long. We inserted markers for particle tracking to measure collapse amplitude, collapse wave speed, and wavelength. We also used a finite element model to simulate the strain energy release rate at fixed crack lengths. We find that: (1) the proportion of tests with full propagation decreased with test length; (2) collapse was greater at the ends of the beams than in the centers; (3) collapse amplitudes in the longer tests were consistent with the shorter tests and did not reach a constant value; (4) collapse wavelengths in the longer tests were around 3 m, 2 × greater than what is predicted by the anticrack model. Based on our field tests and FE models, we conclude that the shorter tests fully propagated more frequently because of increased stress concentration from the far edge. The FE model suggests this edge effect occurs for PSTs up to 2 m long or a crack to beam length ratio ≥ 0.20. Our results suggest that ECT and PST length guidelines may need to be revisited.

  1. Consolidation of fatigue and fatigue-crack-propagation data for design use

    NASA Technical Reports Server (NTRS)

    Rice, R. C.; Davies, K. B.; Jaske, C. E.; Feddersen, C. E.

    1975-01-01

    Analytical methods developed for consolidation of fatigue and fatigue-crack-propagation data for use in design of metallic aerospace structural components are evaluated. A comprehensive file of data on 2024 and 7075 aluminums, Ti-6Al-4V alloy, and 300M steel was established by obtaining information from both published literature and reports furnished by aerospace companies. Analyses are restricted to information obtained from constant-amplitude load or strain cycling of specimens in air at room temperature. Both fatigue and fatigue-crack-propagation data are analyzed on a statistical basis using a least-squares regression approach. For fatigue, an equivalent strain parameter is used to account for mean stress or stress ratio effects and is treated as the independent variable; cyclic fatigue life is considered to be the dependent variable. An effective stress-intensity factor is used to account for the effect of load ratio on fatigue-crack-propagation and treated as the independent variable. In this latter case, crack-growth rate is considered to be the dependent variable. A two term power function is used to relate equivalent strain to fatigue life, and an arc-hyperbolic-tangent function is used to relate effective stress intensity to crack-growth rate.

  2. Modeling of Propagation of Interacting Cracks Under Hydraulic Pressure Gradient

    SciTech Connect

    Huang, Hai; Mattson, Earl Douglas; Podgorney, Robert Karl

    2015-04-01

    A robust and reliable numerical model for fracture initiation and propagation, which includes the interactions among propagating fractures and the coupling between deformation, fracturing and fluid flow in fracture apertures and in the permeable rock matrix, would be an important tool for developing a better understanding of fracturing behaviors of crystalline brittle rocks driven by thermal and (or) hydraulic pressure gradients. In this paper, we present a physics-based hydraulic fracturing simulator based on coupling a quasi-static discrete element model (DEM) for deformation and fracturing with conjugate lattice network flow model for fluid flow in both fractures and porous matrix. Fracturing is represented explicitly by removing broken bonds from the network to represent microcracks. Initiation of new microfractures and growth and coalescence of the microcracks leads to the formation of macroscopic fractures when external and/or internal loads are applied. The coupled DEM-network flow model reproduces realistic growth pattern of hydraulic fractures. In particular, simulation results of perforated horizontal wellbore clearly demonstrate that elastic interactions among multiple propagating fractures, fluid viscosity, strong coupling between fluid pressure fluctuations within fractures and fracturing, and lower length scale heterogeneities, collectively lead to complicated fracturing patterns.

  3. Acoustic emission for characterising the crack propagation in strain-hardening cement-based composites (SHCC)

    SciTech Connect

    Paul, S.C.; Pirskawetz, S.; Zijl, G.P.A.G. van; Schmidt, W.

    2015-03-15

    This paper presents the analysis of crack propagation in strain-hardening cement-based composite (SHCC) under tensile and flexural load by using acoustic emission (AE). AE is a non-destructive technique to monitor the development of structural damage due to external forces. The main objective of this research was to characterise the cracking behaviour in SHCC in direct tensile and flexural tests by using AE. A better understanding of the development of microcracks in SHCC will lead to a better understanding of pseudo strain-hardening behaviour of SHCC and its general performance. ARAMIS optical deformation analysis was also used in direct tensile tests to observe crack propagation in SHCC materials. For the direct tensile tests, SHCC specimens were prepared with polyvinyl alcohol (PVA) fibre with three different volume percentages (1%, 1.85% and 2.5%). For the flexural test beam specimens, only a fibre dosage of 1.85% was applied. It was found that the application of AE in SHCC can be a good option to analyse the crack growth in the specimens under increasing load, the location of the cracks and most importantly the identification of matrix cracking and fibre rupture or slippage.

  4. Fatigue crack propagation under variable amplitude loading in PMMA and bone cement.

    PubMed

    Evans, S L

    2007-09-01

    Fatigue failure of PMMA bone cement is an important factor in the failure of cemented joint replacements. Although these devices experience widely varying loads within the body, there has been little or no study of the effects of variable amplitude loading (VAL) on fatigue damage development. Fatigue crack propagation tests were undertaken using CT specimens made from pure PMMA and Palacos R bone cement. In PMMA, constant amplitude loading tests were carried out at R- ratios ranging from 0.1 to 0.9, and VAL tests at R = 0.1 with 30% overloads every 100 cycles. Palacos R specimens were tested with and without overloads every 100 cycles and with a simplified load spectrum representing daily activities. The R- ratio had a pronounced effect on crack propagation in PMMA consistent with the effects of slow crack growth under constant load. Single overloads caused pronounced crack retardation, especially at low da/dN. In Palacos R, similar overloads had little effect, whilst individual overloads at low da/dN caused pronounced acceleration and spectrum loading retarded crack growth relative to Paris Law predictions. These results demonstrate that VAL can have dramatic effects on crack growth, which should be considered when testing bone cements. PMID:17483908

  5. Comparison of the Fatigue Crack Propagation Behavior of Two Different Forms of PMMA Using Two-Stage Zone Model

    NASA Astrophysics Data System (ADS)

    Hao, Wenfeng; Ma, Liting; Chen, Xinwen; Yuan, Yanan; Ma, Yinji

    2016-02-01

    The fatigue crack propagation behavior of two different forms of PMMA was studied using two-stage zone model. First, the fatigue crack length and fatigue crack propagation velocities of different specimens were obtained experimentally. Then the effect of material forms and specimen types on the fatigue crack propagation velocities was analyzed. Finally, the data scatter of da/ dN-Δ K curves in different forms and different types of specimens was analyzed. The results show that the expressions of fatigue crack propagation velocities of middle crack tension (MT) specimens and compact tension (CT) specimens in the same form PMMA are similar. And the scatter of MT specimens is larger than CT specimens in two forms of PMMA.

  6. Research on a Lamb Wave and Particle Filter-Based On-Line Crack Propagation Prognosis Method

    PubMed Central

    Chen, Jian; Yuan, Shenfang; Qiu, Lei; Cai, Jian; Yang, Weibo

    2016-01-01

    Prognostics and health management techniques have drawn widespread attention due to their ability to facilitate maintenance activities based on need. On-line prognosis of fatigue crack propagation can offer information for optimizing operation and maintenance strategies in real-time. This paper proposes a Lamb wave-particle filter (LW-PF)-based method for on-line prognosis of fatigue crack propagation which takes advantages of the possibility of on-line monitoring to evaluate the actual crack length and uses a particle filter to deal with the crack evolution and monitoring uncertainties. The piezoelectric transducers (PZTs)-based active Lamb wave method is adopted for on-line crack monitoring. The state space model relating to crack propagation is established by the data-driven and finite element methods. Fatigue experiments performed on hole-edge crack specimens have validated the advantages of the proposed method. PMID:26950130

  7. Research on a Lamb Wave and Particle Filter-Based On-Line Crack Propagation Prognosis Method.

    PubMed

    Chen, Jian; Yuan, Shenfang; Qiu, Lei; Cai, Jian; Yang, Weibo

    2016-01-01

    Prognostics and health management techniques have drawn widespread attention due to their ability to facilitate maintenance activities based on need. On-line prognosis of fatigue crack propagation can offer information for optimizing operation and maintenance strategies in real-time. This paper proposes a Lamb wave-particle filter (LW-PF)-based method for on-line prognosis of fatigue crack propagation which takes advantages of the possibility of on-line monitoring to evaluate the actual crack length and uses a particle filter to deal with the crack evolution and monitoring uncertainties. The piezoelectric transducers (PZTs)-based active Lamb wave method is adopted for on-line crack monitoring. The state space model relating to crack propagation is established by the data-driven and finite element methods. Fatigue experiments performed on hole-edge crack specimens have validated the advantages of the proposed method. PMID:26950130

  8. Mode I Cohesive Law Characterization of Through-Crack Propagation in a Multidirectional Laminate

    NASA Technical Reports Server (NTRS)

    Bergan, Andrew C.; Davila, Carlos G.; Leone, Frank A.; Awerbuch, Jonathan; Tan, Tein-Min

    2014-01-01

    A method is proposed and assessed for the experimental characterization of through-the-thickness crack propagation in multidirectional composite laminates with a cohesive law. The fracture toughness and crack opening displacement are measured and used to determine a cohesive law. Two methods of computing fracture toughness are assessed and compared. While previously proposed cohesive characterizations based on the R-curve exhibit size effects, the proposed approach results in a cohesive law that is a material property. The compact tension specimen configuration is used to propagate damage while load and full-field displacements are recorded. These measurements are used to compute the fracture toughness and crack opening displacement from which the cohesive law is characterized. The experimental results show that a steady-state fracture toughness is not reached. However, the proposed method extrapolates to steady-state and is demonstrated capable of predicting the structural behavior of geometrically-scaled specimens.

  9. Effects of microstructure on the fatigue crack propagation resistance in composite microstructure by 3D fabric modeling for energy transport

    SciTech Connect

    Ishihara, T.; Kim, J.K.; Kobayashi, Y.

    1995-10-01

    In this study, martensite-ferrite dual phase steel composed of martensite in hard phase and ferrite in soft phase is made 3 dimensions fabric composite for energy transport and the difference in fatigue crack propagation behavior resulting from the structural size is investigated by fracture mechanics and microstructural method. The main results obtained are as follows: (1) the fatigue crack propagation rate is influenced by the ferrite grain size, in other words, in the low {Delta}K region the fatigue crack propagation rate is decreased with decreasing of the grain size but the difference of propagation rate resulted from the structural size is decreased as {Delta}K is increased; (2) the above results are explained by the degree of crack arrest effect of the martensite phase for the fatigue crack propagation depending on the ratio of reversed plastic zone size to the ferrite grain size.

  10. Grain boundary oxidation and oxidation accelerated fatigue crack nucleation and propagation

    NASA Technical Reports Server (NTRS)

    Liu, H. W.; Oshida, Y.

    1986-01-01

    Fatigue life at elevated temperatures is often shortened by oxidation. Grain boundary oxidation penetrates deeper than the surface oxidation. Therefore, grain boundary oxide penetration could be the primary cause of accelerated fatigue crack nucleation and propagation, and the shortened fatigue life at elevated temperatures. Grain boundary oxidation kinetics was studied and its statistical scatter was analyzed by the Weibull's distribution function. The effects of grain boundary oxidation on shortened fatigue life was analyzed and discussed. A model of intermittent microruptures of the grain boundary oxide was proposed for the fatigue crack growth in the low frequency region. The proposed model is consistent with the observations that fatigue crack growth rate in the low frequency region with hold time at K sub max is inversely proportional to cyclic frequency and that crack growth is intergranular.

  11. The Evolution of Stress Intensity Factors and the Propagation of Cracks in Elastic Media

    NASA Astrophysics Data System (ADS)

    Friedman, Avner; Hu, Bei; Velazquez, Juan J. L.

    When a crack Γs propagates in an elastic medium the stress intensity factors evolve with the tip x(s) of Γs. In this paper we derive formulae which describe the evolution of these stress intensity factors for a homogeneous isotropic elastic medium under plane strain conditions. Denoting by ψ=ψ(x,s) the stress potential (ψ is biharmonic and has zero traction along the crack Γs) and by κ(s) the curvature of the crack at the tip x(s), we prove that the stress intensity factors A1(s), A2(s), as functions of s, satisfy: where , are stress intensity factors of the tangential derivative of in the polar coordinate system at x(s) with θ=0 in the direction of the crack at x(s). The case of antiplane shearing is also briefly considered; in this case ψ is harmonic.

  12. Computer simulation of fast crack propagation and arrest in steel plate with temperature gradient based on local fracture stress criterion

    SciTech Connect

    Machida, Susumu; Yoshinari, Hitoshi; Aihara, Shuji

    1997-12-31

    A fracture mechanics model for fast crack propagation and arrest is proposed based on the local fracture stress criterion. Dynamic fracture toughness (K{sub D}) for a propagating crack is calculated as a function of crack velocity and temperature. The model is extended to incorporate the effect of unbroken ligament (UL) formed near the plate surfaces and crack-front-tunneling. The model simulates acceleration, deceleration and arrest of a crack in a ESSO or a double-tension test plate with temperature-gradient. Calculated arrested crack lengths compare well with experimental results. It is shown that the conventional crack arrest toughness calculated from applied stress and arrested crack length depends on temperature-gradient and the toughness is not a unique material property.

  13. Nonlinear analysis of flexural wave propagation through 1D waveguides with a breathing crack

    NASA Astrophysics Data System (ADS)

    Joglekar, D. M.; Mitra, M.

    2015-05-01

    An analytical-numerical approach is presented to investigate the flexural wave propagation through a slender semi-infinite beam with a breathing edge-crack. A Fourier transform based spectral finite element method is employed in an iterative manner to analyze the nonlinear response of the cracked beam subjected to a transverse tone burst excitation. Results obtained using the spectral finite element method are corroborated using 1D finite element analysis that involves the formulation and solution of a linear complementarity problem at every time step. In both the methods, an equivalent rotational spring is used to model the local flexibility caused by an open crack and the respective damaged beam element is formulated. The effect of crack-breathing is accounted for by an intermittent contact force acting at the nodes of the damaged beam element. A parallel study involving the open crack model is performed in the same setting to facilitate a comparison between the open and the breathing crack model. An illustrative case study reveals clearly the existence of higher order harmonics originating from the crack-breathing phenomenon which are absent if the crack is assumed to remain open throughout. A thorough investigation of the wrap-around effect associated with spectral finite element method reveals that the relative strengths of the higher order harmonics are not influenced by the wrap-around effect. A brief parametric study involving the variation of crack depth is presented at the end which suggests that the magnitudes of the higher harmonic peaks increase with increasing levels of crack severity. The present study can be potentially useful in the efforts geared toward the development of damage detection/localization strategies based on the nonlinear wave-damage interaction.

  14. Analysis of fatigue crack propagation behaviour in SiC particulate Al2O3 whisker reinforced hybrid MMC

    NASA Astrophysics Data System (ADS)

    Iqbal, AKM Asif; Arai, Yoshio

    2016-02-01

    The fatigue crack propagation behaviour of a cast hybrid metal matrix composite (MMC) was investigated and compared with the crack propagation behaviour of MMC with Al2O3 and Al alloy in this article. Three dimensional (3D) surface analysis is carried out to analyze the crack propagation mechanism. All three materials clearly show near threshold and stable crack growth regions, but the rapid crack growth region is not clearly understood. The crack propagation resistance is found higher in hybrid MMC than that of MMC with Al2O3 whisker and the Al alloy in the low ΔK region. The crack propagation in the hybrid MMC in the near-threshold region is directed by the debonding of reinforcement-matrix followed by void nucleation in the Al alloy matrix. Besides, the crack propagation in the stable- or midcrack-growth region is controlled by the debonding of particle-matrix and whisker-matrix interface caused by the cycle-by-cycle crack growth along the interface. The transgranular fracture of the reinforcement and void formation are also observed. Due to presence of large volume of inclusions and the microstructural inhomogeneity, the area of striation formation is reduced in the hybrid MMC, caused the unstable fracture.

  15. Microbe-enhanced environmental fatigue crack propagation in HY130 steel

    SciTech Connect

    Gangloff, R.P.; Kelly, R.G. . Dept. of Materials Science and Engineering)

    1994-05-01

    Research was undertaken to characterize the effect of sulfate-reducing bacteria (SRB) on aqueous environment-enhanced fatigue cracking in a high-strength alloy steel. Desulfovibrio vulgaris in Postgate C solution greatly increased rates of ambient-temperature fatigue crack propagation (FCP) in tempered martensitic HY130 steel (MIL-S-24371A) under cathodic polarization and low-frequency, constant stress intensity range ([Delta]K) loading. Crack growth rates (da/dN) in the SRB solution increased 50- to 1,000-fold relative to FCP in sterile sodium chloride (NaCl) solution at [minus]1,000 mV[sub SCE] and under vacuum, respectively. The presence of microbes shifted fatigue cracking from a transgranular path (typical in sterile NaCl) to an intergranular crack path consistent with the enhanced growth rates. The SRB reduced fatigue crack initiation resistance, countering the beneficial effect of cathodic polarization for sterile NaCl. Metal embrittlement and increased hydrogen uptake at the occluded crack tip caused by bacterially produced hydrosulfide (HS[sup [minus

  16. Dynamic crack propagation in elastic-perfectly plastic solids under plane stress conditions

    NASA Astrophysics Data System (ADS)

    Deng, Xiaomin; Rosakis, Ares J.

    THE phenomenon of steady-state dynamic crack propagation in elastic-perfectly plastic solids under mode I plane stress, small-scale yielding conditions is investigated numerically. An Eulerian finite element scheme is employed. The materials are assumed to obey the von Mises yield criterion and the associated flow rule. The ratio of the crack tip plastic zone size to that of the element nearest to the crack tip is of the order of 1.6 × 10 4. Two subjects of general interest are discussed. These are the asymptotic structure of the crack tip stress and deformation fields, and the appropriateness of a crack growth fracture criterion based on the far-field dynamic stress intensity factor. The crack-line solution by ACHENBACH and LI (Report NU-SML-TR-No. 84-1, Dept. of Civil Engineering, Northwestern University, Evanston, IL 60201, 1984a; in Fundamentals of Deformation and Fracture (edited by B.A. Brilby et al.). Cambridge University Press, 1984b) is discussed and compared to the numerical solution. The results of this study strongly indicate that the crack tip strain and velocity fields possess logarithmic singularities, which is consistent with the assumptions in the asymptotic analysis by Gao ( Int. J. Fracture34, 111, 1987). However, it is revealed that the crack tip field variations in Gao's solution present features often contrary to the numerical findings. To this end, a preliminary asymptotic analysis is performed in an effort to resolve certain issues. Finally, the critical plastic strain criterion ( MCCLINTOCK and IRWIN, in Fracture Toughness Testing and Its Applications, ASTM STP 381, p. 84, 1964) is adopted to obtain theoretical relations between the critical dynamic stress intensity factor and the crack propagation speed. These relations are found to agree well with experimental measurements by Rosakis et al. ( J. Mech. Phys. Solids32, 443, 1984) and by ZEHNDER and ROSAKIS ( Int. J. Fracture, to appear 1990), performed on thin 4340 steel plates whose

  17. Mixed-mode, time-dependent rubber/metal debonding

    NASA Astrophysics Data System (ADS)

    Liechti, Kenneth M.; Wu, Jeng-Dah

    2001-05-01

    This paper examines the need to incorporate a rate-dependent traction-separation law in order to model quasi-static debonding between rubber and metal. A pseudo-stress model was used to account for the nonlinear, multi-axial and time-dependent nature of the filled rubber that was used in the experiments. The parameters for the traction-separation law were extracted on the basis of measurements of load, crack length and crack opening displacements in an opening mode experiment at one applied displacement rate. The form of the traction-separation law was consistent with observations of ligament content on the metal fracture surface. Additional experiments were then conducted in opening mode at different rates and in mixed mode with positive and negative shear so that comparisons with predictions from the calibrated cohesive zone model could be made. The crack length history proved to be the most discriminating measure of the validity of the model, which was most effective at higher loading rates.

  18. Three-dimensional elastic-plastic finite-element analysis of fatigue crack propagation

    NASA Technical Reports Server (NTRS)

    Goglia, G. L.; Chermahini, R. G.

    1985-01-01

    Fatigue cracks are a major problem in designing structures subjected to cyclic loading. Cracks frequently occur in structures such as aircraft and spacecraft. The inspection intervals of many aircraft structures are based on crack-propagation lives. Therefore, improved prediction of propagation lives under flight-load conditions (variable-amplitude loading) are needed to provide more realistic design criteria for these structures. The main thrust was to develop a three-dimensional, nonlinear, elastic-plastic, finite element program capable of extending a crack and changing boundary conditions for the model under consideration. The finite-element model is composed of 8-noded (linear-strain) isoparametric elements. In the analysis, the material is assumed to be elastic-perfectly plastic. The cycle stress-strain curve for the material is shown Zienkiewicz's initial-stress method, von Mises's yield criterion, and Drucker's normality condition under small-strain assumptions are used to account for plasticity. The three-dimensional analysis is capable of extending the crack and changing boundary conditions under cyclic loading.

  19. Influence of gaseous environments on rates of near-threshold fatigue crack propagation in nicrmov steel

    NASA Astrophysics Data System (ADS)

    Liaw, Peter K.; Hudak, S. J.; Donald, J. Keith

    1982-09-01

    The influence of hydrogen environment (448 kPa) on near-threshold fatigue crack propagation rates was examined in a 779 MPa yield strength NiCrMoV steel at 93 °C. An automatically decreasing and increasing stress intensity technique was employed to generate crack growth rates at three load ratios (R = 0.1, 0.5, and 0.8). Results show that the crack propagation rates in hydrogen are slower than those in air for levels of stress intensity range, ΔK, below about 12 MPa√m. The crack closure concept does not explain the slower crack growth rates in hydrogen than in air. Near-threshold growth rates appear to be controlled by the levels of residual moisture in the environments. In argon and air, the fracture morphology is transgranular, while in H2 the amount of intergranularity varies with ΔK and achieves a maximum when the cyclic plastic zone is approximately equal to the prior austenite grain size.

  20. Gear Crack Propagation Path Studies: Guidelines for Ultra-Safe Design

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.

    2001-01-01

    Design guidelines have been established to prevent catastrophic rim fracture failure modes when considering gear tooth bending fatigue. Analysis was performed using the finite element method with principles of linear elastic fracture mechanics. Crack propagation paths were predicted for a variety of gear tooth and rim configurations. The effects of rim and web thicknesses, initial crack locations, and gear tooth geometry factors such as diametral pitch, number of teeth, pitch radius, and tooth pressure angle were considered. Design maps of tooth/rim fracture modes including effects of gear geometry, applied load, crack size, and material properties were developed. The occurrence of rim fractures significantly increased as the backup ratio (rim thickness divided by tooth height) decreased. The occurrence of rim fractures also increased as the initial crack location was moved down the root of the tooth. Increased rim and web compliance increased the occurrence of rim fractures. For gears with constant pitch radii, coarser-pitch teeth increased the occurrence of tooth fractures over rim fractures. Also, 25 deg pressure angle teeth had an increased occurrence of tooth fractures over rim fractures when compared to 20 deg pressure angle teeth. For gears with constant number of teeth or gears with constant diametral pitch, varying size had little or no effect on crack propagation paths.

  1. Crack propagation in stainless steels and nickel base alloys in a commercial operating BWR

    SciTech Connect

    Jenssen, A.; Morin, U.; Bengtsson, B.; Jansson, C.

    1995-12-31

    Crack propagation was investigated to study critical stress intensity factors for intergranular stress corrosion cracking (IGSCC), and crack growth rates in various materials. Modified bolt loaded compact tension (CT) specimens were exposed to BWR normal water chemistry (NWC) in a commercially operating BWR. The test facility was a pressure vessel, originally designed for high temperature magnetite filters. Stainless steels (SS) of Types 304 SS and 316 SS were included in the test matrix, as well as the Ni base weld materials alloys 82 and 182. The SS were investigated both in sensitized and in cold worked condition. For alloy 182 various parameters were studied, such as the effect of the carbon stabilization parameter, and the as-welded condition versus a post weld heat treatment (PWHT). Crack growth was measured annually, during the normal outages, by an optical microscope. The results were evaluated as crack growth rate as a function of stress intensity. A few specimens have been removed from testing for fractographic examination. Most of the specimens were exposed to NWC for more than 30,000 hours. Alloy 82 in as welded condition was found to be susceptible to IGSCC, at least at stress intensities above 30 MPa{radical}m. For alloy 182, in as welded condition, significant crack growth was detected in all specimens. No beneficial effect of the carbon stabilization parameter could be found. PWHT had a beneficial effect on the IGSCC susceptibility of alloy 182, and at stress intensities below 30 MPa{radical}m the crack growth rates were one to two orders of magnitude lower, compared to alloy 182 in as welded condition. As expected, an increasing susceptibility to IGSCC with increasing degree of cold work was found for stainless steel. At 5% cold work Type 304 SS cracked at a higher rate than Type 316NG with the same degree of cold work. At 20% cold work Type 304 SS and Type 316NG cracked at essentially the same rate.

  2. Characterization of mode I and mixed-mode failure of adhesive bonds between composite adherends

    NASA Technical Reports Server (NTRS)

    Mall, S.; Johnson, W. S.

    1986-01-01

    A combined experimental and analytical investigation of an adhesively bonded composite joint was conducted to characterize both the static and fatigue beyond growth mechanism under mode 1 and mixed-mode 1 and 2 loadings. Two bonded systems were studied: graphite/epoxy adherends bonded with EC 3445 and FM-300 adhesives. For each bonded system, two specimen types were tested: a double-cantilever-beam specimen for mode 1 loading and a cracked-lapshear specimen for mixed-mode 1 and 2 loading. In all specimens tested, failure occurred in the form of debond growth. Debonding always occurred in a cohesive manner with EC 3445 adhesive. The FM-300 adhesive debonded in a cohesive manner under mixed-mode 1 and 2 loading, but in a cohesive, adhesive, or combined cohesive and adhesive manner under mode 1 loading. Total strain-energy release rate appeared to be the driving parameter for debond growth under static and fatigue loadings.

  3. Characterization of mode 1 and mixed-mode failure of adhesive bonds between composite adherends

    NASA Technical Reports Server (NTRS)

    Mall, S.; Johnson, W. S.

    1985-01-01

    A combined experimental and analytical investigation of an adhesively bonded composite joint was conducted to characterize both the static and fatigue beyond growth mechanism under mode 1 and mixed-mode 1 and 2 loadings. Two bonded systems were studied: graphite/epoxy adherends bonded with EC 3445 and FM-300 adhesives. For each bonded system, two specimen types were tested: a double-cantilever-beam specimen for mode 1 loading and a cracked-lapshear specimen for mixed-mode 1 and 2 loading. In all specimens tested, failure occurred in the form of debond growth. Debonding always occurred in a cohesive manner with EC 3445 adhesive. The FM-300 adhesive debonded in a cohesive manner under mixed-mode 1 and 2 loading, but in a cohesive, adhesive, or combined cohesive and adhesive manner under mode 1 loading. Total strain-energy release rate appeared to be the driving parameter for debond growth under static and fatigue loadings.

  4. Fatigue-crack propagation behavior in the shape-memory and superelastic alloy nitinol

    NASA Astrophysics Data System (ADS)

    McKelvey, Aindrea Leigh

    This dissertation presents a detailed study on the fatigue-crack propagation behavior in 50Ni-50Ti (at. %), and the effect of a stress-induced martensitic transformation on the material's crack-growth resistance. Furthermore, the effect of environment on crack-growth rates was also investigated. Specifically, fatigue-crack growth was characterized in stable austenite (120°C), superelastic austenite (37°C), and martensite (-65°C and -196°C). In general, as the temperature decreased the fatigue-crack growth resistance increased, where the fatigue threshold was greater and crack-growth rates slower in martensite compared to stable austenite and superelastic austenite. It was found that plane-strain superelastic austenite fatigue specimens did not transform to martensite near the crack tip. The stress-induced transformation was prevented by the existence of the tensile hydrostatic stress-state near the crack tip in fatigue specimens. Plane stress samples, however, did undergo the stress-induced martensitic transformation, as the tensile hydrostatic stress-state was reduced in thinner samples. Fatigue-crack growth rates in Nitinol at a frequency of 10 Hz were found to be essentially identical in air, aerated deionized water, and aerated Hank's solution (a simulated physiological environment), suggesting that at this frequency, any environmentally-assisted contributions to crack growth are minimal. Specifically, the threshold for the onset of fatigue-crack growth was equal to ˜2 MPa√m for all three environments. Furthermore, the slopes of the mid-growth regime were also similar and equal to ˜3; the maximum applied stress-intensity range at instability prior to failure was 30 MPa√m for all three environments. However, when compared to other biomedical implant alloys, the fatigue-crack growth resistance of Nitinol was the lowest. Specifically, the fatigue threshold, at a fixed load ratio value of ˜0.1, was significantly less (by a factor between 2 and 5) than

  5. Crack Propagation in Bi-Material System via Pseudo-Spring Smoothed Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sukanta; Shaw, Amit

    2014-05-01

    A Smoothed Particles Hydrodynamics (SPH) based framework with material constitutive model is developed to simulate crack initiation and propagation in a bi-material system. An efficient immediate neighbor interaction is formulated by connecting neighbors through pseudo-springs. A damage evolution law defines degradation of the inter-neighbor spring forces and corresponding reduced interaction is introduced in mass, momentum, and energy-conserving particle collocation. The proposed technique is validated through a simple test on a pre-notched bi-material system producing a conformal crack path.

  6. Effects of texture and microstructure on the propagation of iodine stress corrosion cracks in Zircaloy

    SciTech Connect

    Knorr, D.B.; Pelloux, R.M.

    1982-01-01

    Failure of some fuel elements in light water nuclear reactors has been attributed to stress corrosion cracking of the fuel cladding. Mechanical interaction between the fuel pellets and cladding tube generates a tensile hoop stress. Release of volatile fission products, most likely iodine, provides a corrosive environment. An investigation of stress corrosion crack propagation is performed at 300/degree/C in four Pa flowing iodine environment. By varying the orientation of fracture mechanics specimens, the effect of crystallographic texture, heat treatment, and microstructure on K/sub I/(SCC) is studied. 27 refs.

  7. Fatigue-crack propagation behavior of ASTM A27 cast steel in simulated Hanford groundwater

    SciTech Connect

    James, L.A.

    1986-09-01

    Fatigue-crack propagation (FCP) tests were conducted on specimens of cast ASTM A27 steel in simulated Hanford ground-water at 150/sup 0/C and 250C/sup 0/C. Fatigue loadings were employed as the most feasible means of accelerating the environmentally assisted cracking (EAC) process. A tentative threshold for EAC was established, and an example calculation was used to show how such a threshold can be related to allowable stress levels and flaw sizes to assure that EAC will not occur.

  8. Brittle creep and subcritical crack propagation in glass submitted to triaxial conditions

    NASA Astrophysics Data System (ADS)

    Mallet, Céline; Fortin, Jérôme; Guéguen, Yves; Bouyer, Frédéric

    2015-02-01

    An experimental work is presented that aimed at improving our understanding of the mechanical evolution of cracks under brittle creep conditions. Brittle creep may be an important slow deformation process in the Earth's crust. Synthetic glass samples have been used to observe and document brittle creep due to slow crack-propagation. A crack density of 0.05 was introduced in intact synthetic glass samples by thermal shock. Creep tests were performed at constant confining pressure (15 MPa) for water saturated conditions. Data were obtained by maintaining the differential-stress constant in steps of 24 h duration. A set of sensors allowed us to record strains and acoustic emissions during creep. The effect of temperature on creep was investigated from ambient temperature to 70°C. The activation energy for crack growth was found to be 32 kJ/mol. In secondary creep, a large dilatancy was observed that did not occur in constant strain rate tests. This is correlated to acoustic emission activity associated with crack growth. As a consequence, slow crack growth has been evidenced in glass. Beyond secondary creep, failure in tertiary creep was found to be a progressive process. The data are interpreted through a previously developed micromechanical damage model that describes crack propagation. This model allows one to predict the secondary brittle creep phase and also to give an analytical expression for the time to rupture. Comparison between glass and crystalline rock indicates that the brittle creep behavior is probably controlled by the same process even if stress sensitivity for glass is lower than for rocks.

  9. Mixed Mode Fuel Injector And Injection System

    DOEpatents

    Stewart, Chris Lee; Tian, Ye; Wang, Lifeng; Shafer, Scott F.

    2005-12-27

    A fuel injector includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set that are controlled respectively by first and second three way needle control valves. Each fuel injector includes first and second concentric needle valve members. One of the needle valve members moves to an open position for a homogenous charge injection event, while the other needle valve member moves to an open position for a conventional injection event. The fuel injector has the ability to operate in a homogenous charge mode with a homogenous charge spray pattern, a conventional mode with a conventional spray pattern or a mixed mode.

  10. Stellar evolution as seen by mixed modes

    NASA Astrophysics Data System (ADS)

    Mosser, Benoît

    2015-09-01

    The detection of mixed modes in subgiants and red giants allows us to monitor stellar evolution from the main sequence to the asymptotic giant branch and draw seismic evolutionary tracks. Quantified asteroseismic definitions that characterize the change in the evolutionary stages have been defined. This seismic information can now be used for stellar modelling, especially for studying the energy transport in the helium burning core or for specifying the inner properties of stars all along their evolution. Modelling will also allow us to study stars identified in the helium subflash stage, high-mass stars either arriving or quitting the secondary clump, or stars that could be in the blue-loop stage.