Science.gov

Sample records for mixed-oxide fuel elements

  1. Critical experiments with mixed oxide fuel

    SciTech Connect

    Harris, D.R.

    1997-06-01

    This paper very briefly outlines technical considerations in performing critical experiments on weapons-grade plutonium mixed oxide fuel assemblies. The experiments proposed would use weapons-grade plutonium and Er{sub 2}O{sub 3} at various dissolved boron levels, and for specific fuel assemblies such as the ABBCE fuel assembly with five large water holes. Technical considerations described include the core, the measurements, safety, security, radiological matters, and licensing. It is concluded that the experiments are feasible at the Rensselaer Polytechnic Institute Reactor Critical Facility. 9 refs.

  2. Mixed Oxide Fresh Fuel Package Auxiliary Equipment

    SciTech Connect

    Yapuncich, F.; Ross, A.; Clark, R.H.; Ammerman, D.

    2008-07-01

    The United States Department of Energy's National Nuclear Security Administration (NNSA) is overseeing the construction the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF) on the Savannah River Site. The new facility, being constructed by NNSA's contractor Shaw AREVA MOX Services, will fabricate fuel assemblies utilizing surplus plutonium as feedstock. The fuel will be used in designated commercial nuclear reactors. The MOX Fresh Fuel Package (MFFP), which has recently been licensed by the Nuclear Regulatory Commission (NRC) as a type B package (USA/9295/B(U)F-96), will be utilized to transport the fabricated fuel assemblies from the MFFF to the nuclear reactors. It was necessary to develop auxiliary equipment that would be able to efficiently handle the high precision fuel assemblies. Also, the physical constraints of the MFFF and the nuclear power plants require that the equipment be capable of loading and unloading the fuel assemblies both vertically and horizontally. The ability to reconfigure the load/unload evolution builds in a large degree of flexibility for the MFFP for the handling of many types of both fuel and non fuel payloads. The design and analysis met various technical specifications including dynamic and static seismic criteria. The fabrication was completed by three major fabrication facilities within the United States. The testing was conducted by Sandia National Laboratories. The unique design specifications and successful testing sequences will be discussed. (authors)

  3. Analytical chemistry methods for mixed oxide fuel, March 1985

    SciTech Connect

    Not Available

    1985-03-01

    This standard provides analytical chemistry methods for the analysis of materials used to produce mixed oxide fuel. These materials are ceramic fuel and insulator pellets and the plutonium and uranium oxides and nitrates used to fabricate these pellets.

  4. Processing of FRG mixed oxide fuel elements at General Atomic under the US/FRG cooperative agreement for spent fuel elements

    SciTech Connect

    Holder, N.D.; Strand, J.B.; Schwarz, F.A.; Tischer, H.E.

    1980-11-01

    The Federal Republic of Germany (FRG) and the United States (US) are cooperating on certain aspects gas-cooled reactor technology under an umbrella agreement. Under the spent fuel treatment section of the agreement, FRG fuel spheres were recently sent for processing in the Department of Energy sponsored cold pilot plant for High-Temperature Gas-Cooled Reactor (HTGR) fuel processing at General Atomic Company in San Diego, California. The FRG fuel spheres were crushed and burned to recover coated fuel particles. These particles were in turn crushed and burned to recover the fuel-bearing kernels for further treatment for uranium recovery. Successful completion of the tests described in this paper demonstrated the applicability of the US HTGR fuel treatment flowsheet to FRG fuel processing. 10 figures.

  5. Microstructure and thermophysical characterization of mixed oxide fuels

    SciTech Connect

    Freibert, Franz J; Salich, Tarik A; Schwartz, Daniel S; Hampel, Fred G; Mitchell, Jeremy N; Davis, Charles C; Neuman, Angelique D; Willson, Steve P; Dunwoody, John T

    2009-01-01

    Pre-irradiated thermodynamic and microstructural properties of nuclear fuels form the necessary set of data against which to gauge fuel performance and irradiation damage evolution. This paper summarizes recent efforts in mixed-oxide and minor actinide-bearing mixed-oxide ceramic fuels fabrication and characterization at Los Alamos National Laboratory. Ceramic fuels (U{sub 1-x-y-z}u{sub x}Am{sub y}Np{sub z})O{sub 2} fabricated in the compositional ranges of 0.19 {le} x {le} 0.3 Pu, 0 {le} y {le} 0.05 Am, and O {le} z {le} O.03 Np exhibited a uniform crystalline face-centered cubic phase with an average grain size of 14{micro}m; however, electron microprobe analysis revealed segregation of NpO{sub 2} in minor actinide-bearing fuels. Immersion density and porosity analysis demonstrated an average density of 92.4% theoretical for mixed-oxide fuels and an average density of 89.5 % theoretical density for minor actinide-bearing mixed-oxide fuels. Examined fuels exhibited mean thermal expansion value of 12.56 x 10{sup -6} C{sup -1} for temperature range (100 C < T < 1500 C) and ambient temperature Young's modulus and Poisson's ratio of 169 GPa and of 0.327, respectively. Internal dissipation as determined from mechanical resonances of these ceramic fuels has shown promise as a tool to gauge microstructural integrity and to interrogate fundamental properties.

  6. Neutron field characterisation at mixed oxide fuel plant.

    PubMed

    Passmore, C; Million, M; Kirr, M; Bartz, J; Akselrod, M S; Devita, A; Berard, J

    2012-06-01

    A neutron field characterisation was conducted at the AREVA Melox Plant to determine the response of passive and active neutron dosemeters for several stages in the mixed oxide fuel manufacturing process. Landauer Europe provides radiation dosimetry to many contractors working at the Melox site. The studies were conducted to assist in determining the neutron radiation fields the workers are exposed to routinely, evaluate the need for specific neutron correction factors and to ensure that the most accurate neutron dose is reported for the Melox Plant workers. PMID:22028415

  7. Experience in PWR and BWR mixed-oxide fuel management

    SciTech Connect

    Schlosser, G.J.; Krebs, W.; Urban, P. )

    1993-04-01

    Germany has adopted the strategy of a closed fuel cycle using reprocessing and recycling. The central issue today is plutonium recycling by the use of U-Pu mixed oxide (MOX) in pressurized water reactors (PWRs) and boiling water reactors (BWRs). The design of MOX fuel assemblies and fuel management in MOX-containing cores are strongly influenced by the nuclear properties of the plutonium isotopes. Optimized MOX fuel assembly designs for PWRs currently use up to three types of MOX fuel rods having different plutonium contents with natural uranium or uranium tailings as carrier material but without burnable absorbers. The MOX fuel assembly designs for BWRs use four to six rod types with different plutonium contents and Gd[sub 2]O[sub 3]/UO[sub 2] burnable absorber rods. Both the PWR and the BWR designs attain good burnup equivalence and compatibility with uranium fuel assemblies. High flexibility exists in the loading schemes relative to the position and number of MOX fuel assemblies in the reloads and in the core as a whole. The Siemens experience with MOX fuel assemblies is based on the insertion of 318 MOX fuel assemblies in eight PWRs and 168 in BWRs and pressurized heavy water reactors so far. The primary operating results include information on the cycle length, power distribution, reactivity coefficients, and control rod worth of cores containing MOX fuel assemblies.

  8. Calculation of parameters for inspection planning and evaluation: mixed-oxide fuel fabrication facilities

    SciTech Connect

    Reardon, P.T.; Mullen, M.F.

    1982-08-01

    As part of Task C.35 (Calculation of Parameters for Inspection Planning and Evaluation) of the US Program of Technical Assistance to IAEA Safeguards, Pacific Northwest Laboratory has performed some quantitative analyses of IAEA inspection activities for mixed-oxide fuel fabrication facilities. There were four distinct efforts involved in this task. These were as follows: show the effect on a material balance verification of using two variables measurement methods in some strata; perform additional calculations for the reference facility described in STR-89; modify the INSPECT computer programs to be used as an after-inspection analysis tool, as well as a preinspection planning tool; provide written comments and explantations of text and graphs of the first draft of STR-89, Safeguards Considerations for Mixed-Oxide Fuel Element Fabrication Facilities, by W. Bahm, T. Shea, and D. Tolchenkov, System Studies Section, IAEA.

  9. Antineutrino monitoring of burning mixed oxide plutonium fuels

    NASA Astrophysics Data System (ADS)

    Hayes, A. C.; Trellue, H. R.; Nieto, Michael Martin; Wilson, W. B.

    2012-02-01

    Background: Antineutrino monitoring of reactors is an enhanced nuclear safeguard that is being explored by several international groups. A key question is whether such a scheme could be used to verify the destruction of plutonium loaded in a reactor as mixed oxide (MOX) fuel.Purpose: To explore the effectiveness of antineutrino monitoring for the purposes of nuclear accountability and safeguarding of MOX plutonium, we examine the magnitude and temporal variation in the antineutrino signals expected for different loadings of MOX fuels.Methods: Reactor burn simulations are carried out for four different MOX fuel loadings and the antineutrino signals as a function of fuel burnup are computed and compared.Results: The antineutrino signals from reactor-grade and weapons-grade MOX are shown to be distinct from those from burning low enriched uranium, and this signal difference increases as the MOX plutonium fraction of the reactor core increases.Conclusion: Antineutrino monitoring could be used to verify the destruction of plutonium in reactors, although verifying the grade of the plutonium being burned is found to be more challenging.

  10. Microstructural modeling of thermal conductivity of high burn-up mixed oxide fuel

    NASA Astrophysics Data System (ADS)

    Teague, Melissa; Tonks, Michael; Novascone, Stephen; Hayes, Steven

    2014-01-01

    Predicting the thermal conductivity of oxide fuels as a function of burn-up and temperature is fundamental to the efficient and safe operation of nuclear reactors. However, modeling the thermal conductivity of fuel is greatly complicated by the radially inhomogeneous nature of irradiated fuel in both composition and microstructure. In this work, radially and temperature-dependent models for effective thermal conductivity were developed utilizing optical micrographs of high burn-up mixed oxide fuel. The micrographs were employed to create finite element meshes with the OOF2 software. The meshes were then used to calculate the effective thermal conductivity of the microstructures using the BISON [1] fuel performance code. The new thermal conductivity models were used to calculate thermal profiles at end of life for the fuel pellets. These results were compared to thermal conductivity models from the literature, and comparison between the new finite element-based thermal conductivity model and the Duriez-Lucuta model was favorable.

  11. Microstructural Modeling of Thermal Conductivity of High Burn-up Mixed Oxide Fuel

    SciTech Connect

    Melissa Teague; Michael Tonks; Stephen Novascone; Steven Hayes

    2014-01-01

    Predicting the thermal conductivity of oxide fuels as a function of burn-up and temperature is fundamental to the efficient and safe operation of nuclear reactors. However, modeling the thermal conductivity of fuel is greatly complicated by the radially inhomogeneous nature of irradiated fuel in both composition and microstructure. In this work, radially and temperature-dependent models for effective thermal conductivity were developed utilizing optical micrographs of high burn-up mixed oxide fuel. The micrographs were employed to create finite element meshes with the OOF2 software. The meshes were then used to calculate the effective thermal conductivity of the microstructures using the BISON fuel performance code. The new thermal conductivity models were used to calculate thermal profiles at end of life for the fuel pellets. These results were compared to thermal conductivity models from the literature, and comparison between the new finite element-based thermal conductivity model and the Duriez–Lucuta model was favorable.

  12. 76 FR 65544 - Standard Format and Content of License Applications for Mixed Oxide Fuel Fabrication Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ... issuance of the guide (74 FR 36780). The comment period closed on September 21, 2009. The staff's responses... COMMISSION Standard Format and Content of License Applications for Mixed Oxide Fuel Fabrication Facilities... Format and Content of License Applications for Mixed Oxide Fuel Fabrication Facilities.'' This...

  13. Thermodynamic calculations of oxygen self-diffusion in mixed-oxide nuclear fuels

    DOE PAGESBeta

    Parfitt, David C.; Cooper, Michael William; Rushton, Michael J.D.; Christopoulos, S. R.; Fitzpatrick, M. E.; Chroneos, A.

    2016-07-29

    Mixed-oxide fuels containing uranium with thorium and/or plutonium may play an important part in future nuclear fuel cycles. There are, however, significantly less data available for these materials than conventional uranium dioxide fuel. In the present study, we employ molecular dynamics calculations to simulate the elastic properties and thermal expansivity of a range of mixed oxide compositions. These are then used to support equations of state and oxygen self-diffusion models to provide a self-consistent prediction of the behaviour of these mixed oxide fuels at arbitrary compositions.

  14. Microstructural Characterization of High Burn-up Mixed Oxide Fast Reactor Fuel

    SciTech Connect

    Melissa C. Teague; Brian P. Gorman; Steven L. Hayes; Douglas L. Porter; Jeffrey King

    2013-10-01

    High burn-up mixed oxide fuel with local burn-ups of 3.4–23.7% FIMA (fissions per initial metal atom) were destructively examined as part of a research project to understand the performance of oxide fuel at extreme burn-ups. Optical metallography of fuel cross-sections measured the fuel-to-cladding gap, clad thickness, and central void evolution in the samples. The fuel-to-cladding gap closed significantly in samples with burn-ups below 7–9% FIMA. Samples with burn-ups in excess of 7–9% FIMA had a reopening of the fuel-to-cladding gap and evidence of joint oxide-gain (JOG) formation. Signs of axial fuel migration to the top of the fuel column were observed in the fuel pin with a peak burn-up of 23.7% FIMA. Additionally, high burn-up structure (HBS) was observed in the two highest burn-up samples (23.7% and 21.3% FIMA). The HBS layers were found to be 3–5 times thicker than the layers found in typical LWR fuel. The results of the study indicate that formation of JOG and or HBS prevents any significant fuel-cladding mechanical interaction from occurring, thereby extending the potential life of the fuel elements.

  15. Redox state of plutonium in irradiated mixed oxide fuels

    NASA Astrophysics Data System (ADS)

    Degueldre, C.; Pin, S.; Poonoosamy, J.; Kulik, D. A.

    2014-03-01

    Nowadays, MOX fuels are used in about 20 nuclear power plants around the world. After irradiation, plutonium co-exists with uranium oxide. Due to the redox sensitive nature of UO2 other plutonium oxides than PuO2 potentially present in the fuel may interact with the matrix. The aim of this study is to determine which plutonium species are present in heterogeneous and homogeneous MOX. The results provided by X-ray Absorption Near Edge Spectroscopy (XANES) for non-irradiated as well as irradiated (center and periphery) homogeneous MOX fuel were published earlier and are completed by Extended X-ray Fine Structure (EXAFS) analysis in this work. The EXAFS signals have been extracted using the ATHENA code and the analyses were carried using EXCURE98 as performed earlier for an analogous element. EXAFS shows that plutonium redox state remains tetravalent in the solid solution and that the minor fraction of trivalent Pu must be below 10%. Independently, the study of homogeneous MOX was also approached by thermodynamics of solid solution of (U,Pu)O2. Such solid solutions were modeled using the Gibbs Energy Minimisation (GEM)-Selektor code (developed at LES, NES, PSI) supported by the literature data on such solid solutions. A comparative study was performed showing which plutonium oxides in their respective mole fractions are more likely to occur in (U,Pu)O2. In the modeling, these oxides were set as ideal and non-ideal solid solutions, as well as separate pure phases. Pu exists mainly as PuO2 in the case of separate phases, but can exist under its reduced forms, PuO1.61 and PuO1.5 in minor fraction i.e. ~15% in ideal solid solution (unlikely) and ~10% in non-ideal solid solution (likely) and at temperature around 1300 K. This combined thermodynamic and EXAFS studies confirm independently the results obtained so far by Pu XANES for the same MOX samples.

  16. International safeguards for a modern MOX (mixed-oxide) fuel fabrication facility

    SciTech Connect

    Pillay, K.K.S.; Stirpe, D.; Picard, R.R.

    1987-03-01

    Bulk-handling facilities that process plutonium for commercial fuel cycles offer considerable challenges to nuclear materials safeguards. Modern fuel fabrication facilities that handle mixed oxides of plutonium and uranium (MOX) often have large inventories of special nuclear materials in their process lines and in storage areas for feed and product materials. In addition, the remote automated processing prevalent at new MOX facilities, which is necessary to minimize radiation exposures to personnel, tends to limit access for measurements and inspections. The facility design considered in this study incorporates all these features as well as state-of-the-art measurement technologies for materials accounting. Key elements of International Atomic Energy Agency (IAEA) safeguards for such a fuel-cycle facility have been identified in this report, and several issues of primary importance to materials accountancy and IAEA verifications have been examined. We have calculated detection sensitivities for abrupt and protracted diversions of plutonium assuming a single materials balance area for all processing areas. To help achieve optimal use of limited IAEA inspection resources, we have calculated sampling plans for attributes/variables verification. In addition, we have demonstrated the usefulness of calculating sigma/sub (MUF-D)/ and detection probabilities corresponding to specified material-loss scenarios and resource allocations. The data developed and the analyses performed during this study can assist both the facility operator and the IAEA in formulating necessary safeguards approaches and verification procedures to implement international safeguards for special nuclear materials.

  17. Radial plutonium redistribution in mixed-oxide fuel. [LMFBR

    SciTech Connect

    Lawrence, L.A.; Schwinkendorf, K.N.; Karnesky, R.A.

    1981-10-01

    Alpha autoradiographs from all HEDL fuel pin metallography samples are evaluated and catalogued according to different plutonium distribution patterns. The data base is analyzed for effects of fabrication and operating parameters on redistribution.

  18. Interatomic potentials for mixed oxide and advanced nuclear fuels

    SciTech Connect

    Tiwary, Pratyush; Walle, Axel van de; Jeon, Byoungseon; Groenbech-Jensen, Niels

    2011-03-01

    We extend our recently developed interatomic potentials for UO{sub 2} to the fuel system (U,Pu,Np)O{sub 2}. We do so by fitting against an extensive database of ab initio results as well as to experimental measurements. The applicability of these interactions to a variety of mixed environments beyond the fitting domain is also assessed. The employed formalism makes these potentials applicable across all interatomic distances without the need for any ambiguous splining to the well-established short-range Ziegler-Biersack-Littmark universal pair potential. We therefore expect these to be reliable potentials for carrying out damage simulations (and molecular dynamics simulations in general) in nuclear fuels of varying compositions for all relevant atomic collision energies.

  19. Molten carbonate fuel cell cathode with mixed oxide coating

    DOEpatents

    Hilmi, Abdelkader; Yuh, Chao-Yi

    2013-05-07

    A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.

  20. Experience making mixed oxide fuel with plutonium from dismantled weapons

    SciTech Connect

    Blair, H.T.; Ramsey, K.B.

    1995-12-31

    Mixed depleted UO{sub 2} and PuO{sub 2} (MOX) pellets prototypic of fuel proposed for use in commercial power reactors were made with plutonium recovered from dismantled weapons. We characterized plutonium dioxide powders that were produced at the Los Alamos and Lawrence Livermore National Laboratories (LANL and LLNL) using various methods to recover the plutonium from weapons parts and to convert It to oxide. The gallium content of the PUO{sub 2} prepared at LANL was the same as in the weapon alloy while the content of that prepared at LLNL was less. The MOX was prepared with a five weight percent plutonium content. We tested various MOX powders milling methods to improve homogeneity and found vibratory milling superior to ball milling. The sintering behavior of pellets made with the PuO{sub 2} from the two laboratories was similar. We evaluated the effects of gallium and of erbium and gadolinium, that are added to the MOX fuel as deplorable neutron absorbers, on the pellet fabrication process and an the sintered pellets. The gallium content of the sintered pellets was <10 ppm, suggesting that the gallium will not be an issue in the reactor, but that it will be an Issue in the operation of the fuel fabrication processing equipment unless it is removed from the PuO{sub 2} before it is blended with the UO{sub 2}.

  1. Development of DIPRES feed for the fabrication of mixed-oxide fuels for fast breeder reactors

    SciTech Connect

    Griffin, C W; Rasmussen, D E; Lloyd, M H

    1983-01-01

    The DIrect PREss Spheroidized feed process combines the conversion of uranium-plutonium solutions into spheres by internal gelation with conventional pellet fabrication techniques. In this manner, gel spheres could replace conventional powders as the feed material for pellet fabrication of nuclear fuels. Objective of the DIPRES feed program is to develop and qualify a process to produce mixed-oxide fuel pellets from gel spheres for fast breeder reactors. This process development includes both conversion and fabrication activities.

  2. Evaluation of atomic homogeneity in mixed oxide fuel

    NASA Astrophysics Data System (ADS)

    Furuya, H.; Tajiri, H.; Koizumi, M.

    1982-04-01

    Atomic homogeneities of UC 2-PuO 2 and ThO 2-UO 2 fuels fabricated by the mechanical blending were evaluated, using an X-ray diffraction method which has been developed to investigate the homogeneity in a binary metal powder compact. The X-ray diffraction line profile obtained on the plane (620) of specimen was converted to the composition distribution, after removing Kα 2 line profile and instrumental broadening function. Effective penetration curve obtained from the composition distribution and subsequently Matano interface was determined, and finally atomic homogeneity was evaluated.

  3. In vitro dissolution of respirable aerosols of industrial uranium and plutonium mixed-oxide nuclear fuels.

    PubMed

    Eidson, A F; Mewhinney, J A

    1983-12-01

    Dissolution characteristics of mixed-oxide nuclear fuels are important considerations for prediction of biological behavior of inhaled particles. Four representative industrial mixed-oxide powders were obtained from fuel fabrication enclosures. Studies of the dissolution of Pu, Am and U from aerosol particles of these materials in a serum simulant solution and in 0.1M HCl showed: (1) dissolution occurred at a rapid rate initially and slowed at longer times, (2) greater percentages of U dissolved than Pu or Am: with the dissolution rates of U and Pu generally reflecting the physical nature of the UO2-PuO2 matrix, (3) the temperature history of industrial mixed-oxides could not be reliably related to Pu dissolution except for a 3-5% increase when incorporated into a solid solution by sintering at 1750 degrees C, and (4) dissolution in the serum simulant agreed with the in vivo UO2 dissolution rate and suggested the dominant role of mechanical processes in PuO2 clearance from the lung. The rapid initial dissolution rate was shown to be related, in part, to an altered surface layer. The advantages and uses of in vitro solubility data for estimation of biological behavior of inhaled industrial mixed oxides, such as assessing the use of chelation therapy and interpretation of urinary excretion data, are discussed. It was concluded that in vitro solubility tests were useful, simple and easily applied to individual materials potentially inhaled by humans. PMID:6643070

  4. Errors associated with standard nodal diffusion methods as applied to mixed oxide fuel problems

    SciTech Connect

    Brantley, P. S., LLNL

    1998-07-24

    The evaluation of the disposition of plutonium using light water reactors is receiving increased attention. However, mixed-oxide (MOX) fuel assemblies possess much higher absorption and fission cross- sections when compared to standard UO2 assemblies. Those properties yield very high thermal flux gradients at the interfaces between MOX and UO2 assemblies. It has already been reported that standard flux reconstruction methods (that recover the homogeneous intranodal flux shape using the converged nodal solution) yield large errors in the presence of MOX assemblies. In an accompanying paper, we compare diffusion and simplified PN calculations of a mixed-oxide benchmark problem to a reference transport calculation. In this paper, we examine the errors associated with standard nodal diffusion methods when applied to the same benchmark problem. Our results show that a large portion of the error is associated with the quadratic leakage approximation (QLA) that is commonly used in the standard nodal codes.

  5. The underwater coincidence counter for plutonium measurements in mixed-oxide fuel assemblies manual

    SciTech Connect

    G. W. Eccleston; H. O. Menlove; M. Abhold; M. Baker; J. Pecos

    1999-05-01

    This manual describes the Underwater Coincidence Counter (UWCC) that has been designed for the measurement of plutonium in mixed-oxide (MOX) fuel assemblies prior to irradiation. The UWCC uses high-efficiency {sup 3}He neutron detectors to measure the spontaneous-fission and induced-fission rates in the fuel assembly. Measurements can be made on MOX fuel assemblies in air or underwater. The neutron counting rate is analyzed for singles, doubles, and triples time correlations to determine the {sup 240}Pu effective mass per unit length of the fuel assembly. The system can verify the plutonium loading per unit length to a precision of less than 1% in a measurement time of 2 to 3 minutes. System design, components, performance tests, and operational characteristics are described in this manual.

  6. Mixed oxide fuels testing in the advanced test reactor to support plutonium disposition

    SciTech Connect

    Ryskamp, J.M.; Sterbentz, J.W.; Chang, G.S.

    1995-09-01

    An intense worldwide effort is now under way to find means of reducing the stockpile of weapons-grade plutonium. One of the most attractive solutions would be to use WGPu as fuel in existing light water reactors (LWRs) in the form of mixed oxide (MOX) fuel - i.e., plutonia (PUO{sub 2}) mixed with urania (UO{sub 2}). Before U.S. reactors could be used for this purpose, their operating licenses would have to be amended. Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. These issues include the following: (1) MOX fuel fabrication process verification, (2) Whether and how to use burnable poisons to depress MOX fuel initial reactivity, which is higher than that of urania, (3) The effects of WGPu isotopic composition, (4) The feasibility of loading MOX fuel with plutonia content up to 7% by weight, (5) The effects of americium and gallium in WGPu, (6) Fission gas release from MOX fuel pellets made from WGPu, (7) Fuel/cladding gap closure, (8) The effects of power cycling and off-normal events on fuel integrity, (9) Development of radial distributions of burnup and fission products, (10) Power spiking near the interfaces of MOX and urania fuel assemblies, and (11) Fuel performance code validation. We have performed calculations to show that the use of hafnium shrouds can produce spectrum adjustments that will bring the flux spectrum in ATR test loops into a good approximation to the spectrum anticipated in a commercial LWR containing MOX fuel while allowing operation of the test fuel assemblies near their optimum values of linear heat generation rate. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. The requirements for planning and implementing a test program in the ATR have been identified.

  7. CONVERSION OF RUSSIAN WEAPON-GRADE PLUTONIUM INTO OXIDE FOR MIXED OXIDE (MOX) FUEL FABRICATION.

    SciTech Connect

    Glagovski, E.; Kolotilov, Y.; Glagolenko, Y.; Zygmunt, Stanley J.; Mason, C. F. V.; Hahn, W. K.; Durrer, R. E.; Thomas, S.; Sicard, B.; Herlet, N.; Fraize, G.; Villa, A.

    2001-01-01

    Progress has been made in the Russian Federation towards the conversion of weapons-grade plutonium (w-Pu) into plutonium oxide (PuO{sub 2}) suitable for further manufacture into mixed oxide (MOX) fuels. This program is funded both by French Commissariat x 1'Energie Atomique (CEA) and the US National Nuclear Security Administration (NNSA). The French program was started as a way to make available their expertise gained from manufacturing MOX fuel. The US program was started in 1998 in response to US proliferation concerns and the acknowledged international need to decrease available w-Pu. Russia has selected both the conversion process and the manufacturing site. This paper discusses the present state of development towards fulfilling this mission: the demonstration plant designed to process small amounts of Pu and validate all process stages and the industrial plant that will process up to 5 metric tons of Pu per year.

  8. Development of ORIGEN Libraries for Mixed Oxide (MOX) Fuel Assembly Designs

    DOE PAGESBeta

    Mertyurek, Ugur; Gauld, Ian C.

    2015-12-24

    In this research, ORIGEN cross section libraries for reactor-grade mixed oxide (MOX) fuel assembly designs have been developed to provide fast and accurate depletion calculations to predict nuclide inventories, radiation sources and thermal decay heat information needed in safety evaluations and safeguards verification measurements of spent nuclear fuel. These ORIGEN libraries are generated using two-dimensional lattice physics assembly models that include enrichment zoning and cross section data based on ENDF/B-VII.0 evaluations. Using the SCALE depletion sequence, burnup-dependent cross sections are created for selected commercial reactor assembly designs and a representative range of reactor operating conditions, fuel enrichments, and fuel burnup.more » The burnup dependent cross sections are then interpolated to provide problem-dependent cross sections for ORIGEN, avoiding the need for time-consuming lattice physics calculations. The ORIGEN libraries for MOX assembly designs are validated against destructive radiochemical assay measurements of MOX fuel from the MALIBU international experimental program. This program included measurements of MOX fuel from a 15 × 15 pressurized water reactor assembly and a 9 × 9 boiling water reactor assembly. The ORIGEN MOX libraries are also compared against detailed assembly calculations from the Phase IV-B numerical MOX fuel burnup credit benchmark coordinated by the Nuclear Energy Agency within the Organization for Economic Cooperation and Development. Finally, the nuclide compositions calculated by ORIGEN using the MOX libraries are shown to be in good agreement with other physics codes and with experimental data.« less

  9. Development of ORIGEN Libraries for Mixed Oxide (MOX) Fuel Assembly Designs

    SciTech Connect

    Mertyurek, Ugur; Gauld, Ian C.

    2015-12-24

    In this research, ORIGEN cross section libraries for reactor-grade mixed oxide (MOX) fuel assembly designs have been developed to provide fast and accurate depletion calculations to predict nuclide inventories, radiation sources and thermal decay heat information needed in safety evaluations and safeguards verification measurements of spent nuclear fuel. These ORIGEN libraries are generated using two-dimensional lattice physics assembly models that include enrichment zoning and cross section data based on ENDF/B-VII.0 evaluations. Using the SCALE depletion sequence, burnup-dependent cross sections are created for selected commercial reactor assembly designs and a representative range of reactor operating conditions, fuel enrichments, and fuel burnup. The burnup dependent cross sections are then interpolated to provide problem-dependent cross sections for ORIGEN, avoiding the need for time-consuming lattice physics calculations. The ORIGEN libraries for MOX assembly designs are validated against destructive radiochemical assay measurements of MOX fuel from the MALIBU international experimental program. This program included measurements of MOX fuel from a 15 × 15 pressurized water reactor assembly and a 9 × 9 boiling water reactor assembly. The ORIGEN MOX libraries are also compared against detailed assembly calculations from the Phase IV-B numerical MOX fuel burnup credit benchmark coordinated by the Nuclear Energy Agency within the Organization for Economic Cooperation and Development. Finally, the nuclide compositions calculated by ORIGEN using the MOX libraries are shown to be in good agreement with other physics codes and with experimental data.

  10. Modeling of thermo-mechanical and irradiation behavior of mixed oxide fuel for sodium fast reactors

    NASA Astrophysics Data System (ADS)

    Karahan, Aydın; Buongiorno, Jacopo

    2010-01-01

    An engineering code to model the irradiation behavior of UO2-PuO2 mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named fuel engineering and structural analysis tool (FEAST-OXIDE). FEAST-OXIDE has several modules working in coupled form with an explicit numerical algorithm. These modules describe: (1) fission gas release and swelling, (2) fuel chemistry and restructuring, (3) temperature distribution, (4) fuel-clad chemical interaction and (5) fuel-clad mechanical analysis. Given the fuel pin geometry, composition and irradiation history, FEAST-OXIDE can analyze fuel and cladding thermo-mechanical behavior at both steady-state and design-basis transient scenarios. The code was written in FORTRAN-90 program language. The mechanical analysis module implements the LIFE algorithm. Fission gas release and swelling behavior is described by the OGRES and NEFIG models. However, the original OGRES model has been extended to include the effects of joint oxide gain (JOG) formation on fission gas release and swelling. A detailed fuel chemistry model has been included to describe the cesium radial migration and JOG formation, oxygen and plutonium radial distribution and the axial migration of cesium. The fuel restructuring model includes the effects of as-fabricated porosity migration, irradiation-induced fuel densification, grain growth, hot pressing and fuel cracking and relocation. Finally, a kinetics model is included to predict the clad wastage formation. FEAST-OXIDE predictions have been compared to the available FFTF, EBR-II and JOYO databases, as well as the LIFE-4 code predictions. The agreement was found to be satisfactory for steady-state and slow-ramp over-power accidents.

  11. The behaviour of transuranic mixed oxide fuel in a Candu-900 reactor

    SciTech Connect

    Morreale, A. C.; Ball, M. R.; Novog, D. R.; Luxat, J. C.

    2012-07-01

    The production of transuranic actinide fuels for use in current thermal reactors provides a useful intermediary step in closing the nuclear fuel cycle. Extraction of actinides reduces the longevity, radiation and heat loads of spent material. The burning of transuranic fuels in current reactors for a limited amount of cycles reduces the infrastructure demand for fast reactors and provides an effective synergy that can result in a reduction of as much as 95% of spent fuel waste while reducing the fast reactor infrastructure needed by a factor of almost 13.5 [1]. This paper examines the features of actinide mixed oxide fuel, TRUMOX, in a CANDU{sup R}* nuclear reactor. The actinide concentrations used were based on extraction from 30 year cooled spent fuel and mixed with natural uranium in 3.1 wt% actinide MOX fuel. Full lattice cell modeling was performed using the WIMS-AECL code, super-cell calculations were analyzed in DRAGON and full core analysis was executed in the RFSP 2-group diffusion code. A time-average full core model was produced and analyzed for reactor coefficients, reactivity device worth and online fuelling impacts. The standard CANDU operational limits were maintained throughout operations. The TRUMOX fuel design achieved a burnup of 27.36 MWd/kg HE. A full TRUMOX fuelled CANDU was shown to operate within acceptable limits and provided a viable intermediary step for burning actinides. The recycling, reprocessing and reuse of spent fuels produces a much more sustainable and efficient nuclear fuel cycle. (authors)

  12. Neutron Emission Characteristics of Two Mixed-Oxide Fuels: Simulations and Initial Experiments

    SciTech Connect

    D. L. Chichester; S. A. Pozzi; J. L. Dolan; M. Flaska; J. T. Johnson; E. H. Seabury; E. M. Gantz

    2009-07-01

    Simulations and experiments have been carried out to investigate the neutron emission characteristics of two mixed-oxide (MOX) fuels at Idaho National Laboratory (INL). These activities are part of a project studying advanced instrumentation techniques in support of the U.S. Department of Energy's Fuel Cycle Research and Development program and it's Materials Protection, Accounting, and Control for Transmutation (MPACT) campaign. This analysis used the MCNP-PoliMi Monte Carlo simulation tool to determine the relative strength and energy spectra of the different neutron source terms within these fuels, and then used this data to simulate the detection and measurement of these emissions using an array of liquid scintillator neutron spectrometers. These calculations accounted for neutrons generated from the spontaneous fission of the actinides in the MOX fuel as well as neutrons created via (alpha,n) reactions with oxygen in the MOX fuel. The analysis was carried out to allow for characterization of both neutron energy as well as neutron coincidences between multiple detectors. Coincidences between prompt gamma rays and neutrons were also analyzed. Experiments were performed at INL with the same materials used in the simulations to benchmark and begin validation tests of the simulations. Data was collected in these experiments using an array of four liquid scintillators and a high-speed waveform digitizer. Advanced digital pulse-shape discrimination algorithms were developed and used to collect this data. Results of the simulation and modeling studies are presented together with preliminary results from the experimental campaign.

  13. Americium and plutonium release behavior from irradiated mixed oxide fuel during heating

    NASA Astrophysics Data System (ADS)

    Sato, I.; Suto, M.; Miwa, S.; Hirosawa, T.; Koyama, S.

    2013-06-01

    The release behavior of Pu and Am was investigated under the reducing atmosphere expected in sodium cooled fast reactor severe accidents. Irradiated Pu and U mixed oxide fuels were heated at maximum temperatures of 2773 K and 3273 K. EPMA, γ-ray spectrometry and α-ray spectrometry for released and residual materials revealed that Pu and Am can be released more easily than U under the reducing atmosphere. The respective release rate coefficients for Pu and Am were obtained as 3.11 × 10-4 min-1 and 1.60 × 10-4 min-1 at 2773 K under the reducing atmosphere with oxygen partial pressure less than 0.02 Pa. Results of thermochemical calculations indicated that the main released chemical forms would likely be PuO for Pu and Am for Am under quite low oxygen partial pressure.

  14. MCNP analysis of PNL split-table critical experiments containing mixed-oxide fuels

    SciTech Connect

    Abdurrahman, N.M.; Yavuz, M.; Radulescu, G.

    1997-12-01

    Pacific Northwest Laboratory (PNL) Split-Table Critical experiments containing mixed-oxide (MOX) fuels for various core configurations are studied using MCNP4A with the ENDF/B-VI continuous-energy library. These experiments were performed to provide necessary technical information and experimental criticality data that would serve as benchmark data in support of the liquid-metal fast breeder reactor program. Because of the current interest in the utilization of weapons-grade plutonium in the form of MOX fuel in light water reactors, such experimental data are extremely important for checking the performance of the modem computational tools. The {sup 239}Pu content in plutonium of the PNL MOX fuels is {approximately}91 wt%, which is very close to that of the weapons-grade {sup 239}Pu. The MOX fuels used in these critical experiments consist of 30.0, 14.62, and 7.89 wt% Pu and N{sub H}/(N{sub Pu} + Nu) moderation ratios (MRs) of 47.4, 30.6, and 51.8, respectively.

  15. Criticality experiments with mixed oxide fuel pin arrays in plutonium-uranium nitrate solution

    SciTech Connect

    Lloyd, R.C. ); Smolen, G.R. )

    1988-08-01

    A series of critical experiments was completed with mixed plutonium-uranium solutions having a Pu/(Pu + U) ratio of approximately 0.22 in a boiler tube-type lattice assembly. These experiments were conducted as part of the Criticality Data Development Program between the United States Department of Energy (USDOE) and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan. A complete description of the experiments and data are included in this report. The experiments were performed with an array of mixed oxide fuel pins in aqueous plutonium-uranium solutions. The fuel pins were contained in a boiler tube-type tank and arranged in a 1.4 cm square pitch array which resembled cylindrical geometry. One experiment was perfomed with the fuel pins removed from the vessel. The experiments were performed with a water reflector. The concentration of the solutions in the boiler tube-type tank was varied from 4 to 468 g (Pu + U)/liter. The ratio of plutonium to total heavy metal (plutonium plus uranium) was approximately 0.22 for all experiments.

  16. EBSD and TEM Characterization of High Burn-up Mixed Oxide Fuel

    SciTech Connect

    Teague, Melissa C.; Gorman, Brian P.; Miller, Brandon D.; King, Jeffrey

    2014-01-01

    Understanding and studying the irradiation behavior of high burn-up oxide fuel is critical to licensing of future fast breeder reactors. Advancements in experimental techniques and equipment are allowing for new insights into previously irradiated samples. In this work dual column focused ion beam (FIB)/scanning electron microscope (SEM) was utilized to prepared transmission electron microscope samples from mixed oxide fuel with a burn-up of 6.7% FIMA. Utilizing the FIB/SEM for preparation resulted in samples with a dose rate of <0.5 mRem/h compared to approximately 1.1 R/h for a traditionally prepared TEM sample. The TEM analysis showed that the sample taken from the cooler rim region of the fuel pellet had approximately 2.5x higher dislocation density than that of the sample taken from the mid-radius due to the lower irradiation temperature of the rim. The dual column FIB/SEM was additionally used to prepared and serially slice approximately 25 um cubes. High quality electron back scatter diffraction (EBSD) were collected from the face at each step, showing, for the first time, the ability to obtain EBSD data from high activity irradiated fuel.

  17. Calculational assessment of critical experiments with mixed oxide fuel pin arrays moderated by organic solution

    SciTech Connect

    Smolen, G.R.

    1987-01-01

    Critical experiments have been conducted with organic-moderated mixed oxide (MOX) fuel pin assemblies at the Pacific Northwest Laboratory (PNL) Critical Mass Laboratory (CML). These experiments are part of a joint exchange program between the United States Department of Energy (USDOE) and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan in the area of criticality data development. The purpose of these experiments is to benchmark computer codes and cross-section libraries and to assess the reactivity difference between systems moderated by water and those moderated by an organic solution. Past studies have indicated that some organic mixtures may be better moderators than water. This topic is of particular importance to the criticality safety of fuel processing plants where fissile material is dissolved in organic solutions during the solvent extraction process. In the past, it has been assumed that the codes and libraries benchmarked with water-moderated experiments were adequate when performing design and licensing studies of organic-moderated systems. Calculations presented in this paper indicated that the SCALE code system and the 27-energy-group cross-section accurately compute k-effectives for organic moderated MOX fuel-pin assemblies. Furthermore, the reactivity of an organic solution with a 32-vol-% TBP/68-vol-% NPH mixture in a heterogeneous configuration is the same, for practical purposes, as water. 5 refs.

  18. Laser-induced breakdown spectroscopy for determination of uranium in thorium-uranium mixed oxide fuel materials.

    PubMed

    Sarkar, Arnab; Alamelu, Devanathan; Aggarwal, Suresh K

    2009-05-15

    Laser-induced breakdown spectroscopy (LIBS) has been developed for determining the percentage of uranium in thorium-uranium mixed oxide fuel samples required as a part of the chemical quality assurance of fuel materials. The experimental parameters were optimized using mixed oxide pellets prepared from 1:1 (w/w) mixture of thorium-uranium mixed oxide standards and using boric acid as a binder. Calibration curves were established using U(II) 263.553 nm, U(II) 367.007 nm, U(II) 447.233 nm and U(II) 454.363 nm emission lines. The uranium amount determined in two synthetic mixed oxide samples using calibration curves agreed well with that of the expected values. Except for U(II) 263.553 nm, all the other emission lines exhibited a saturation effect due to self-absorption when U amount exceeded 20 wt.% in the Th-U mixture. The present method will be useful for fast and routine determination of uranium in mixed oxide samples of Th and U, without the need for dissolution, which is difficult and time consuming due to the refractory nature of ThO(2). The methodology developed is encouraging since a very good analytical agreement was obtained considering the limited resolution of the spectrometer employed in the work. PMID:19269431

  19. Evaluation of Co-precipitation Processes for the Synthesis of Mixed-Oxide Fuel Feedstock Materials

    SciTech Connect

    Collins, Emory D; Voit, Stewart L; Vedder, Raymond James

    2011-06-01

    The focus of this report is the evaluation of various co-precipitation processes for use in the synthesis of mixed oxide feedstock powders for the Ceramic Fuels Technology Area within the Fuels Cycle R&D (FCR&D) Program's Advanced Fuels Campaign. The evaluation will include a comparison with standard mechanical mixing of dry powders and as well as other co-conversion methods. The end result will be the down selection of a preferred sequence of co-precipitation process for the preparation of nuclear fuel feedstock materials to be used for comparison with other feedstock preparation methods. A review of the literature was done to identify potential nitrate-to-oxide co-conversion processes which have been applied to mixtures of uranium and plutonium to achieve recycle fuel homogeneity. Recent studies have begun to study the options for co-converting all of the plutonium and neptunium recovered from used nuclear fuels, together with appropriate portions of recovered uranium to produce the desired mixed oxide recycle fuel. The addition of recycled uranium will help reduce the safeguard attractiveness level and improve proliferation resistance of the recycled fuel. The inclusion of neptunium is primarily driven by its chemical similarity to plutonium, thus enabling a simple quick path to recycle. For recycle fuel to thermal-spectrum light water reactors (LWRs), the uranium concentration can be {approx}90% (wt.), and for fast spectrum reactors, the uranium concentration can typically exceed 70% (wt.). However, some of the co-conversion/recycle fuel fabrication processes being developed utilize a two-step process to reach the desired uranium concentration. In these processes, a 50-50 'master-mix' MOX powder is produced by the co-conversion process, and the uranium concentration is adjusted to the desired level for MOX fuel recycle by powder blending (milling) the 'master-mix' with depleted uranium oxide. In general, parameters that must be controlled for co

  20. 77 FR 70193 - Shaw Areva MOX Services (Mixed Oxide Fuel Fabrication Facility); Notice of Atomic Safety and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-23

    ... COMMISSION Shaw Areva MOX Services (Mixed Oxide Fuel Fabrication Facility); Notice of Atomic Safety and Licensing Board Reconstitution Pursuant to 10 CFR 2.313(c) and 2.321(b), the Atomic Safety and Licensing... Administrative Judge, Atomic Safety and Licensing Board Panel. BILLING CODE 7590-01-P...

  1. Improved mixed oxide fuel calculations with the evaluated nuclear data library JEFF-3.2

    DOE PAGESBeta

    Noguere, G.; Bernard, D.; Blaise, P.; Bouland, O.; Leal, Luiz C.; Leconte, P.; Litaize, O.; Peneliau, Y.; Roque, B.; Santamarina, A.; et al

    2016-02-01

    In this study, an overestimation of the keff values for mixed oxide (MOX) fuels was identified with Monte Carlo (TRIPOLI-4) and deterministic (APOLLO2) calculations based on the Joint Evaluated Fission and Fusion (JEFF) evaluated nuclear data library. The overestimation becomes sizeable with Pit aging, reaching a reactivity change of Delta(p)similar or equal to+700 pcm for integral measurements carried out with MOX fuel containing a large amount of americium. This bias was observed for various critical configurations performed in the zero power reactor EOLE of the Commissariat a l'energie atomique et aux energies alternatives (CEA), Cadarache, France. The present work focusesmore » on the improvements achieved with the new 239PU and 241Am evaluated nuclear data files available in the latest version of the JEFF library (JEFF-3.2). The resolved resonance range of the plutonium evaluation was reevaluated at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, with the Ski/NH code in collaboration with CEA Cadarache. The resonance parameters of the americium evaluation were obtained with the REFIT code in collaboration with the research institutes Institute for Reference Materials and Measurements aRmm, Geel, Belgium, and Institut de recherche sur les lois fondamentales de l'Univers ofio, Saclay, France.« less

  2. FUEL ELEMENT

    DOEpatents

    Bean, R.W.

    1963-11-19

    A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)

  3. Mixed-oxide fuel decay heat analysis for BWR LOCA safety evaluation

    SciTech Connect

    Chiang, R. T.

    2013-07-01

    The mixed-oxide (MOX) fuel decay heat behavior is analyzed for Boiling Water Reactor (BWR) Loss of Coolant Accident (LOCA) safety evaluation. The physical reasoning on why the decay heat power fractions of MOX fuel fission product (FP) are significantly lower than the corresponding decay heat power fractions of uranium-oxide (UOX) fuel FP is illustrated. This is primarily due to the following physical phenomena. -The recoverable energies per fission of plutonium (Pu)-239 and Pu-241 are significantly higher than those of uranium (U)-235 and U-238. Consequently, the fission rate required to produce the same amount of power in MOX fuel is significantly lower than that in UOX fuel, which leads to lower subsequent FP generation rate and associated decay heat power in MOX fuel than those in UOX fuel. - The effective FP decay energy per fission of Pu-239 is significantly lower than the corresponding effective FP decay energy per fission of U-235, e.g., Pu-239's 10.63 Mega-electron-Volt (MeV) vs. U-235's 12.81 MeV at the cooling time 0.2 second. This also leads to lower decay heat power in MOX fuel than that in UOX fuel. The FP decay heat is shown to account for more than 90% of the total decay heat immediately after shutdown. The FP decay heat results based on the American National Standard Institute (ANSI)/American Nuclear Society (ANS)-5.1-1979 standard method are shown very close to the corresponding FP decay heat results based on the ANSI/ANS-5.1-2005 standard method. The FP decay heat results based on the ANSI/ANS-5.1-1979 simplified method are shown very close to but mostly slightly lower than the corresponding FP decay heat results based on the ANSI/ANS-5.1-1971 method. The FP decay heat results based on the ANSI/ANS-5.1-1979 simplified method or the ANSI/ANS-5.1-1971 method are shown significantly larger than the corresponding FP decay heat results based on the ANSI/ANS-5.1-1979 standard method or the ANSI/ANS-5.1-2005 standard method. (authors)

  4. Experience in the reprocessing of mixed-oxide fuels at PNC (Power Reactor and Nuclear Fuel Development Corporation)

    SciTech Connect

    Komatsu, Hisato; Onishi, Moichi; Araya, Sadao; Fukushima, Misao

    1989-01-01

    The Power Reactor and Nuclear Fuel Development Corporation (PNC) in Japan has experience in reprocessing mixed-oxide (MOX) fuels for the advanced thermal reactor (ATR) Fugen at the Tokai Reprocessing Plant (TRP) and for fast breeder reactors (FBRs) at the Chemical Processing Facility (CPF). The TRP was originally designed and constructed as the first reprocessing plant for light water reactor fuels in Japan. It has processed {approximately}400 t of spent fuels since 1977. To utilize recovered plutonium, PNC has developed the prototype ATR Fugen. This reactor has been operated using MOX fuel since 1978. In parallel, utilities are promoting a plutonium thermal project. Several MOX assemblies have already been loaded in a boiling water and a pressurized water reactor. To facilitate the operation of Fugen and promote research and development for the reprocessing of MOX fuels in Japan, PNC obtained a license for reprocessing fuels for Fugen at TRP in 1985. PNC has designed and constructed the CPF at Tokai Works to conduct basic research on the reprocessing of FBR fuels. The Recycle Equipment Test Facility, an engineering scale hot facility, is now being designed for further R and D in this field. It will start hot operation in the mid-1990s.

  5. FUEL ELEMENT

    DOEpatents

    Fortescue, P.; Zumwalt, L.R.

    1961-11-28

    A fuel element was developed for a gas cooled nuclear reactor. The element is constructed in the form of a compacted fuel slug including carbides of fissionable material in some cases with a breeder material carbide and a moderator which slug is disposed in a canning jacket of relatively impermeable moderator material. Such canned fuel slugs are disposed in an elongated shell of moderator having greater gas permeability than the canning material wherefore application of reduced pressure to the space therebetween causes gas diffusing through the exterior shell to sweep fission products from the system. Integral fission product traps and/or exterior traps as well as a fission product monitoring system may be employed therewith. (AEC)

  6. FUEL ELEMENT

    DOEpatents

    Howard, R.C.; Bokros, J.C.

    1962-03-01

    A fueled matrlx eontnwinlng uncomblned carbon is deslgned for use in graphlte-moderated gas-cooled reactors designed for operatlon at temperatures (about 1500 deg F) at which conventional metallic cladding would ordlnarily undergo undesired carburization or physical degeneratlon. - The invention comprlses, broadly a fuel body containlng uncombined earbon, clad with a nickel alloy contalning over about 28 percent by' weight copper in the preferred embodlment. Thls element ls supporirted in the passageways in close tolerance with the walls of unclad graphite moderator materlal. (AEC)

  7. Decay Heat Calculations for PWR and BWR Assemblies Fueled with Uranium and Plutonium Mixed Oxide Fuel using SCALE

    SciTech Connect

    Ade, Brian J; Gauld, Ian C

    2011-10-01

    In currently operating commercial nuclear power plants (NPP), there are two main types of nuclear fuel, low enriched uranium (LEU) fuel, and mixed-oxide uranium-plutonium (MOX) fuel. The LEU fuel is made of pure uranium dioxide (UO{sub 2} or UOX) and has been the fuel of choice in commercial light water reactors (LWRs) for a number of years. Naturally occurring uranium contains a mixture of different uranium isotopes, primarily, {sup 235}U and {sup 238}U. {sup 235}U is a fissile isotope, and will readily undergo a fission reaction upon interaction with a thermal neutron. {sup 235}U has an isotopic concentration of 0.71% in naturally occurring uranium. For most reactors to maintain a fission chain reaction, the natural isotopic concentration of {sup 235}U must be increased (enriched) to a level greater than 0.71%. Modern nuclear reactor fuel assemblies contain a number of fuel pins potentially having different {sup 235}U enrichments varying from {approx}2.0% to {approx}5% enriched in {sup 235}U. Currently in the United States (US), all commercial nuclear power plants use UO{sub 2} fuel. In the rest of the world, UO{sub 2} fuel is still commonly used, but MOX fuel is also used in a number of reactors. MOX fuel contains a mixture of both UO{sub 2} and PuO{sub 2}. Because the plutonium provides the fissile content of the fuel, the uranium used in MOX is either natural or depleted uranium. PuO{sub 2} is added to effectively replace the fissile content of {sup 235}U so that the level of fissile content is sufficiently high to maintain the chain reaction in an LWR. Both reactor-grade and weapons-grade plutonium contains a number of fissile and non-fissile plutonium isotopes, with the fraction of fissile and non-fissile plutonium isotopes being dependent on the source of the plutonium. While only RG plutonium is currently used in MOX, there is the possibility that WG plutonium from dismantled weapons will be used to make MOX for use in US reactors. Reactor-grade plutonium

  8. Fully Coupled Modeling of Burnup-Dependent (U1- y , Pu y )O2- x Mixed Oxide Fast Reactor Fuel Performance

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Zhou, Wenzhong; Zhou, Wei

    2016-03-01

    During the fast reactor nuclear fuel fission reaction, fission gases accumulate and form pores with the increase of fuel burnup, which decreases the fuel thermal conductivity, leading to overheating of the fuel element. The diffusion of plutonium and oxygen with high temperature gradient is also one of the important fuel performance concerns as it will affect the fuel material properties, power distribution, and overall performance of the fuel pin. In order to investigate these important issues, the (U1- y Pu y )O2- x fuel pellet is studied by fully coupling thermal transport, deformation, oxygen diffusion, fission gas release and swelling, and plutonium redistribution to evaluate the effects on each other with burnup-dependent models, accounting for the evolution of fuel porosity. The approach was developed using self-defined multiphysics models based on the framework of COMSOL Multiphysics to manage the nonlinearities associated with fast reactor mixed oxide fuel performance analysis. The modeling results showed a consistent fuel performance comparable with the previous results. Burnup degrades the fuel thermal conductivity, resulting in a significant fuel temperature increase. The fission gas release increased rapidly first and then steadily with the burnup increase. The fuel porosity increased dramatically at the beginning of the burnup and then kept constant as the fission gas released to the fuel free volume, causing the fuel temperature to increase. Another important finding is that the deviation from stoichiometry of oxygen affects greatly not only the fuel properties, for example, thermal conductivity, but also the fuel performance, for example, temperature distribution, porosity evolution, grain size growth, fission gas release, deformation, and plutonium redistribution. Special attention needs to be paid to the deviation from stoichiometry of oxygen in fuel fabrication. Plutonium content will also affect the fuel material properties and performance

  9. Evaluation of existing United States` facilities for use as a mixed-oxide (MOX) fuel fabrication facility for plutonium disposition

    SciTech Connect

    Beard, C.A.; Buksa, J.J.; Chidester, K.; Eaton, S.L.; Motley, F.E.; Siebe, D.A.

    1995-12-31

    A number of existing US facilities were evaluated for use as a mixed-oxide fuel fabrication facility for plutonium disposition. These facilities include the Fuels Material Examination Facility (FMEF) at Hanford, the Washington Power Supply Unit 1 (WNP-1) facility at Hanford, the Barnwell Nuclear Fuel Plant (BNFP) at Barnwell, SC, the Fuel Processing Facility (FPF) at Idaho National Engineering Laboratory (INEL), the Device Assembly Facility (DAF) at the Nevada Test Site (NTS), and the P-reactor at the Savannah River Site (SRS). The study consisted of evaluating each facility in terms of available process space, available building support systems (i.e., HVAC, security systems, existing process equipment, etc.), available regional infrastructure (i.e., emergency response teams, protective force teams, available transportation routes, etc.), and ability to integrate the MOX fabrication process into the facility in an operationally-sound manner that requires a minimum amount of structural modifications.

  10. Note: Application of CR-39 plastic nuclear track detectors for quality assurance of mixed oxide fuel pellets

    NASA Astrophysics Data System (ADS)

    Kodaira, S.; Kurano, M.; Hosogane, T.; Ishikawa, F.; Kageyama, T.; Sato, M.; Kayano, M.; Yasuda, N.

    2015-05-01

    A CR-39 plastic nuclear track detector was used for quality assurance of mixed oxide fuel pellets for next-generation nuclear power plants. Plutonium (Pu) spot sizes and concentrations in the pellets are significant parameters for safe use in the plants. We developed an automatic Pu detection system based on dense α-radiation tracks in the CR-39 detectors. This system would greatly improve image processing time and measurement accuracy, and will be a powerful tool for rapid pellet quality assurance screening.

  11. Note: Application of CR-39 plastic nuclear track detectors for quality assurance of mixed oxide fuel pellets

    SciTech Connect

    Kodaira, S. Kurano, M.; Hosogane, T.; Ishikawa, F.; Kageyama, T.; Sato, M.; Kayano, M.; Yasuda, N.

    2015-05-15

    A CR-39 plastic nuclear track detector was used for quality assurance of mixed oxide fuel pellets for next-generation nuclear power plants. Plutonium (Pu) spot sizes and concentrations in the pellets are significant parameters for safe use in the plants. We developed an automatic Pu detection system based on dense α-radiation tracks in the CR-39 detectors. This system would greatly improve image processing time and measurement accuracy, and will be a powerful tool for rapid pellet quality assurance screening.

  12. An integrated approach for the verification of fresh mixed oxide fuel (MOX) assemblies at light water reactor MOX recycle reactors

    SciTech Connect

    Menlove, Howard O; Lee, Sang - Yoon

    2009-01-01

    This paper presents an integrated approach for the verification of mixed oxide (MOX) fuel assemblies prior to their being loaded into the reactor. There is a coupling of the verification approach that starts at the fuel fabrication plant and stops with the transfer of the assemblies into the thermal reactor. The key measurement points are at the output of the fuel fabrication plant, the receipt at the reactor site, and the storage in the water pool as fresh fuel. The IAEA currently has the capability to measure the MOX fuel assemblies at the output of the fuel fabrication plants using a passive neutron coincidence counting systems of the passive neutron collar (PNCL) type. Also. at the MOX reactor pool, the underwater coincidence counter (UWCC) has been developed to measure the MOX assemblies in the water. The UWCC measurement requires that the fuel assembly be lifted about two meters up in the storage rack to avoid interference from the fuel that is stored in the rack. This paper presents a new method to verify the MOX fuel assemblies that are in the storage rack without the necessity of moving the fuel. The detector system is called the Underwater MOX Verification System (UMVS). The integration and relationship of the three measurements systems is described.

  13. Performance of Thorium-Based Mixed Oxide Fuels for the Consumption of Plutonium in Current and Advanced Reactors

    SciTech Connect

    Weaver, Kevan Dean; Herring, James Stephen

    2003-07-01

    A renewed interest in thorium-based fuels has arisen lately based on the need for proliferation resistance, longer fuel cycles, higher burnup, and improved waste form characteristics. Recent studies have been directed toward homogeneously mixed, heterogeneously mixed, and seed-and-blanket thorium-uranium oxide fuel cycles that rely on "in situ" use of the bred-in 233U. However, due to the higher initial enrichment required to achieve acceptable burnups, these fuels are encountering economic constraints. Thorium can nevertheless play a large role in the nuclear fuel cycle, particularly in the reduction of plutonium inventories. While uranium-based mixed-oxide (MOX) fuel will decrease the amount of plutonium in discharged fuel, the reduction is limited due to the breeding of more plutonium (and higher actinides) from the 238U. Here, we present calculational results and a comparison of the potential burnup of a thorium-based and uranium-based mixed-oxide fuel in a light water reactor. Although the uranium-based fuels outperformed the thorium-based fuels in achievable burnup, a depletion comparison of the initially charged plutonium (both reactor and weapons grade) showed that the thorium-based fuels outperformed the uranium-based fuels by more that a factor of 2, where >70% of the total plutonium in the thorium-based fuel is consumed during the cycle. This is significant considering that the achievable burnups of the thorium-based fuels were 1.4 to 4.6 times less than the uranium-based fuels for similar plutonium enrichments. For equal specific burnups of ~60 MWd/kg (i.e., using variable plutonium weight percentages to give the desired burnup), the thorium-based fuels still outperform the uranium-based fuels by more than a factor of 2, where the total plutonium consumption in a three-batch, 18-month cycle was 60 to 70%. This is fairly significant considering that 10 to 15% (by weight) more plutonium is needed in the thorium-based fuels as compared to the uranium

  14. Opportunities for mixed oxide fuel testing in the advanced test reactor to support plutonium disposition

    SciTech Connect

    Terry, W.K.; Ryskamp, J.M.; Sterbentz, J.W.

    1995-08-01

    Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. These issues include the following: (1) MOX fuel fabrication process verification; (2) Whether and how to use burnable poisons to depress MOX fuel initial reactivity, which is higher than that of urania; (3) The effects of WGPu isotopic composition; (4) The feasibility of loading MOX fuel with plutonia content up to 7% by weight; (5) The effects of americium and gallium in WGPu; (6) Fission gas release from MOX fuel pellets made from WGPu; (7) Fuel/cladding gap closure; (8) The effects of power cycling and off-normal events on fuel integrity; (9) Development of radial distributions of burnup and fission products; (10) Power spiking near the interfaces of MOX and urania fuel assemblies; and (11) Fuel performance code validation. The Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory possesses many advantages for performing tests to resolve most of the issues identified above. We have performed calculations to show that the use of hafnium shrouds can produce spectrum adjustments that will bring the flux spectrum in ATR test loops into a good approximation to the spectrum anticipated in a commercial LWR containing MOX fuel while allowing operation of the test fuel assemblies near their optimum values of linear heat generation rate. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. The requirements for planning and implementing a test program in the ATR have been identified. The facilities at Argonne National Laboratory-West can meet all potential needs for pre- and post-irradiation examination that might arise in a MOX fuel qualification program.

  15. 76 FR 22735 - Shaw AREVA MOX Services, Mixed Oxide Fuel Fabrication Facility; License Amendment Request, Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... NRC E-Filing rule (72 FR 49139, August 28, 2007). The E-Filing process requires participants to submit... filing requirements of the NRC's E-Filing Rule (72 FR 49139; August 28, 2007) apply to appeals of NRC... CAMOX-001 authorizes the construction of a plutonium processing and fuel fabrication plant....

  16. Study on Equilibrium Characteristics of Thorium-Plutonium-Minor Actinides Mixed Oxides Fuel in PWR

    SciTech Connect

    Waris, A.; Permana, S.; Kurniadi, R.; Su'ud, Z.; Sekimoto, H.

    2010-06-22

    A study on characteristics of thorium-plutonium-minor actinides utilization in the pressurized water reactor (PWR) with the equilibrium burnup model has been conducted. For a comprehensive evaluation, several fuel cycles scenario have been included in the present study with the variation of moderator-to-fuel volume ratio (MFR) of PWR core design. The results obviously exhibit that the neutron spectra grow to be harder with decreasing of the MFR. Moreover, the neutron spectra also turn into harder with the rising number of confined heavy nuclides. The required {sup 233}U concentration for criticality of reactor augments with the increasing of MFR for all heavy nuclides confinement and thorium and uranium confinement in PWR.

  17. Study on Equilibrium Characteristics of Thorium-Plutonium-Minor Actinides Mixed Oxides Fuel in PWR

    NASA Astrophysics Data System (ADS)

    Waris, A.; Permana, S.; Kurniadi, R.; Su'ud, Z.; Sekimoto, H.

    2010-06-01

    A study on characteristics of thorium-plutonium-minor actinides utilization in the pressurized water reactor (PWR) with the equilibrium burnup model has been conducted. For a comprehensive evaluation, several fuel cycles scenario have been included in the present study with the variation of moderator-to-fuel volume ratio (MFR) of PWR core design. The results obviously exhibit that the neutron spectra grow to be harder with decreasing of the MFR. Moreover, the neutron spectra also turn into harder with the rising number of confined heavy nuclides. The required 233U concentration for criticality of reactor augments with the increasing of MFR for all heavy nuclides confinement and thorium & uranium confinement in PWR.

  18. An improved characterization method for international accountancy measurements of fresh and irradiated mixed oxide (MOX) fuel: helping achieve continual monitoring and safeguards through the fuel cycle

    SciTech Connect

    Evans, Louise G; Croft, Stephen; Swinhoe, Martyn T; Tobin, S. J.; Menlove, H. O.; Schear, M. A.; Worrall, Andrew

    2011-01-13

    Nuclear fuel accountancy measurements are conducted at several points through the nuclear fuel cycle to ensure continuity of knowledge (CofK) of special nuclear material (SNM). Non-destructive assay (NDA) measurements are performed on fresh fuel (prior to irradiation in a reactor) and spent nuclear fuel (SNF) post-irradiation. We have developed a fuel assembly characterization system, based on the novel concept of 'neutron fingerprinting' with multiplicity signatures to ensure detailed CofK of nuclear fuel through the entire fuel cycle. The neutron fingerprint in this case is determined by the measurement of the various correlated neutron signatures, specific to fuel isotopic composition, and therefore offers greater sensitivity to variations in fissile content among fuel assemblies than other techniques such as gross neutron counting. This neutron fingerprint could be measured at the point of fuel dispatch (e.g. from a fuel fabrication plant prior to irradiation, or from a reactor site post-irradiation), monitored during transportation of the fuel assembly, and measured at a subsequent receiving site (e.g. at the reactor site prior to irradiation, or reprocessing facility post-irradiation); this would confirm that no unexpected changes to the fuel composition or amount have taken place during transportation and/ or reactor operations. Changes may indicate an attempt to divert material for example. Here, we present the current state of the practice of fuel measurements for both fresh mixed oxide (MOX) fuel and SNF (both MOX and uranium dioxide). This is presented in the framework of international safeguards perspectives from the US and UK. We also postulate as to how the neutron fingerprinting concept could lead to improved fuel characterization (both fresh MOX and SNF) resulting in: (a) assured CofK of fuel across the nuclear fuel cycle, (b) improved detection of SNM diversion, and (c) greater confidence in safeguards of SNF transportation.

  19. An improved characterization method for international accountancy measurements of fresh and irradiated mixed oxide (MOX) fuel: helping achieve continual monitoring and safeguards through the fuel cycle

    SciTech Connect

    Evans, Louise G; Croft, Stephen; Swinhoe, Martyn T; Tobin, S. J.; Boyer, B. D.; Menlove, H. O.; Schear, M. A.; Worrall, Andrew

    2010-11-24

    Nuclear fuel accountancy measurements are conducted at several points through the nuclear fuel cycle to ensure continuity of knowledge (CofK) of special nuclear material (SNM). Non-destructive assay (NDA) measurements are performed on fresh fuel (prior to irradiation in a reactor) and spent nuclear fuel (SNF) post-irradiation. We have developed a fuel assembly characterization system, based on the novel concept of 'neutron fingerprinting' with multiplicity signatures to ensure detailed CofK of nuclear fuel through the entire fuel cycle. The neutron fingerprint in this case is determined by the measurement of the various correlated neutron signatures, specific to fuel isotopic composition, and therefore offers greater sensitivity to variations in fissile content among fuel assemblies than other techniques such as gross neutron counting. This neutron fingerprint could be measured at the point of fuel dispatch (e.g. from a fuel fabrication plant prior to irradiation, or from a reactor site post-irradiation), monitored during transportation of the fuel assembly, and measured at a subsequent receiving site (e.g. at the reactor site prior to irradiation, or reprocessing facility post-irradiation); this would confirm that no unexpected changes to the fuel composition or amount have taken place during transportation and/or reactor operations. Changes may indicate an attempt to divert material for example. Here, we present the current state of the practice of fuel measurements for both fresh mixed oxide (MOX) fuel and SNF (both MOX and uranium dioxide). This is presented in the framework of international safeguards perspectives from the US and UK. We also postulate as to how the neutron fingerprinting concept could lead to improved fuel characterization (both fresh MOX and SNF) resulting in: (a) assured CofK of fuel across the nuclear fuel cycle, (b) improved detection of SNM diversion, and (c) greater confidence in safeguards of SNF transportation.

  20. FUEL ELEMENT SUPPORT

    DOEpatents

    Wyman, W.L.

    1961-06-27

    The described cylindrical fuel element has longitudinally spaced sets of short longitudinal ribs circumferentially spaced from one another. The ribs support the fuel element in a coolant tube so that there is an annular space for coolant flow between the fuel element and the interior of the coolant tube. If the fuel element grows as a result of reactor operation, the circumferential distribution of the ribs maintains the uniformity of the annular space between the coolant tube and the fuel element, and the collapsibility of the ribs prevents the fuel element from becoming jammed in the coolant tube.

  1. Angular-resolution and material-characterization measurements for a dual-particle imaging system with mixed-oxide fuel

    NASA Astrophysics Data System (ADS)

    Poitrasson-Rivière, Alexis; Polack, J. Kyle; Hamel, Michael C.; Klemm, Dietrich D.; Ito, Kai; McSpaden, Alexander T.; Flaska, Marek; Clarke, Shaun D.; Pozzi, Sara A.; Tomanin, Alice; Peerani, Paolo

    2015-10-01

    A dual-particle imaging (DPI) system, capable of simultaneously imaging fast neutrons and gamma rays, has been operated in the presence of mixed-oxide (MOX) fuel to assess the system's angular resolution and material-characterization capabilities. The detection principle is based on the scattering physics of neutrons (elastic scattering) and gamma rays (Compton scattering) in organic and inorganic scintillators. The detection system is designed as a combination of a two-plane Compton camera and a neutron-scatter camera. The front plane consists of EJ-309 liquid scintillators and the back plane consists of interleaved EJ-309 and NaI(Tl) scintillators. MCNPX-PoliMi was used to optimize the geometry of the system and the resulting prototype was built and tested using a Cf-252 source as an SNM surrogate. A software package was developed to acquire and process data in real time. The software was used for a measurement campaign to assess the angular resolution of the imaging system with MOX samples. Measurements of two MOX canisters of similar isotopics and intensity were performed for 6 different canister separations (from 5° to 30°, corresponding to distances of 21 cm and 131 cm, respectively). The measurements yielded a minimum separation of 20° at 2.5 m (86-cm separation) required to see 2 separate hot spots. Additionally, the results displayed good agreement with MCNPX-PoliMi simulations. These results indicate an angular resolution between 15° and 20°, given the 5° step. Coupled with its large field of view, and its capability to differentiate between spontaneous fission and (α,n) sources, the DPI system shows its potential for nuclear-nonproliferation applications.

  2. NUCLEAR REACTOR FUEL ELEMENT

    DOEpatents

    Wheelock, C.W.; Baumeister, E.B.

    1961-09-01

    A reactor fuel element utilizing fissionable fuel materials in plate form is described. This fuel element consists of bundles of fuel-bearing plates. The bundles are stacked inside of a tube which forms the shell of the fuel element. The plates each have longitudinal fins running parallel to the direction of coolant flow, and interspersed among and parallel to the fins are ribs which position the plates relative to each other and to the fuel element shell. The plate bundles are held together by thin bands or wires. The ex tended surface increases the heat transfer capabilities of a fuel element by a factor of 3 or more over those of a simple flat plate.

  3. Neutronic fuel element fabrication

    DOEpatents

    Korton, George

    2004-02-24

    This disclosure describes a method for metallurgically bonding a complete leak-tight enclosure to a matrix-type fuel element penetrated longitudinally by a multiplicity of coolant channels. Coolant tubes containing solid filler pins are disposed in the coolant channels. A leak-tight metal enclosure is then formed about the entire assembly of fuel matrix, coolant tubes and pins. The completely enclosed and sealed assembly is exposed to a high temperature and pressure gas environment to effect a metallurgical bond between all contacting surfaces therein. The ends of the assembly are then machined away to expose the pin ends which are chemically leached from the coolant tubes to leave the coolant tubes with internal coolant passageways. The invention described herein was made in the course of, or under, a contract with the U.S. Atomic Energy Commission. It relates generally to fuel elements for neutronic reactors and more particularly to a method for providing a leak-tight metal enclosure for a high-performance matrix-type fuel element penetrated longitudinally by a multiplicity of coolant tubes. The planned utilization of nuclear energy in high-performance, compact-propulsion and mobile power-generation systems has necessitated the development of fuel elements capable of operating at high power densities. High power densities in turn require fuel elements having high thermal conductivities and good fuel retention capabilities at high temperatures. A metal clad fuel element containing a ceramic phase of fuel intimately mixed with and bonded to a continuous refractory metal matrix has been found to satisfy the above requirements. Metal coolant tubes penetrate the matrix to afford internal cooling to the fuel element while providing positive fuel retention and containment of fission products generated within the fuel matrix. Metal header plates are bonded to the coolant tubes at each end of the fuel element and a metal cladding or can completes the fuel-matrix enclosure

  4. COMPOSITE FUEL ELEMENT

    DOEpatents

    Hurford, W.J.; Gordon, R.B.; Johnson, W.A.

    1962-12-25

    A sandwich-type fuel element for a reactor is described. This fuel element has the shape of an elongated flat plate and includes a filler plate having a plurality of compartments therein in which the fuel material is located. The filler plate is clad on both sides with a thin cladding material which is secured to the filler plate only to completely enclose the fuel material in each compartment. (AEC)

  5. Safety assessment of plutonium mixed oxide fuel irradiated up to 37.7 GW day tonne-1

    NASA Astrophysics Data System (ADS)

    Somers, J.; Papaioannou, D.; McGinley, J.; Sommer, D.

    2013-06-01

    In this irradiation test, the safety performance of (Th,Pu)O2 fuel was evaluated. The fuel pellets were synthesised from powders prepared using a sol gel method to give a product exhibiting an atomically homogeneous distribution of the elements. The fuel pellets, of conventional pressurised water reactor (PWR) dimensions, were encapsulated in zircaloy cladding, and irradiated during four reactor cycles, reaching a burnup of 37.7 GW day tonne-1 in the KWO pressurised water reactor at Obrigheim, Germany. The irradiation test was performed under representative conditions. Intermediate inspection of the fuel pin during reactor outages revealed a cladding creep down within the bounds observed for UO2 fuels under similar conditions. Hydriding of the cladding was found predominantly on the outer liner of the duplex cladding. Fission gas analysis revealed a release of about 0.5%, which is somewhat lower than U-MOX fuels at the same burnup, but the latter were operated at higher linear heating rate. The Xe/Kr ratio of 11 is much lower than (U,Pu)O2 fuel (typically 16), indicating significant 233U generation and fissioning thereof during the irradiation experiment. Examination of the microstructure indicates that the pellet - cladding gap is almost closed. The grain size remained similar to the fresh fuel (4 μm) and no intragranular porosity was observed.

  6. Nuclear fuel element

    DOEpatents

    Zocher, Roy W.

    1991-01-01

    A nuclear fuel element and a method of manufacturing the element. The fuel element is comprised of a metal primary container and a fuel pellet which is located inside it and which is often fragmented. The primary container is subjected to elevated pressure and temperature to deform the container such that the container conforms to the fuel pellet, that is, such that the container is in substantial contact with the surface of the pellet. This conformance eliminates clearances which permit rubbing together of fuel pellet fragments and rubbing of fuel pellet fragments against the container, thus reducing the amount of dust inside the fuel container and the amount of dust which may escape in the event of container breach. Also, as a result of the inventive method, fuel pellet fragments tend to adhere to one another to form a coherent non-fragmented mass; this reduces the tendency of a fragment to pierce the container in the event of impact.

  7. Mixed oxide solid solutions

    DOEpatents

    Magno, Scott; Wang, Ruiping; Derouane, Eric

    2003-01-01

    The present invention is a mixed oxide solid solution containing a tetravalent and a pentavalent cation that can be used as a support for a metal combustion catalyst. The invention is furthermore a combustion catalyst containing the mixed oxide solid solution and a method of making the mixed oxide solid solution. The tetravalent cation is zirconium(+4), hafnium(+4) or thorium(+4). In one embodiment, the pentavalent cation is tantalum(+5), niobium(+5) or bismuth(+5). Mixed oxide solid solutions of the present invention exhibit enhanced thermal stability, maintaining relatively high surface areas at high temperatures in the presence of water vapor.

  8. NUCLEAR REACTOR FUEL ELEMENT

    DOEpatents

    Anderson, W.F.; Tellefson, D.R.; Shimazaki, T.T.

    1962-04-10

    A plate type fuel element which is particularly useful for organic cooled reactors is described. Generally, the fuel element comprises a plurality of fissionable fuel bearing plates held in spaced relationship by a frame in which the plates are slidably mounted in grooves. Clearance is provided in the grooves to allow the plates to expand laterally. The plates may be rigidly interconnected but are floatingly supported at their ends within the frame to allow for longi-tudinal expansion. Thus, this fuel element is able to withstand large temperature differentials without great structural stresses. (AEC)

  9. NEUTRONIC REACTOR FUEL ELEMENT

    DOEpatents

    Shackleford, M.H.

    1958-12-16

    A fuel element possessing good stability and heat conducting properties is described. The fuel element comprises an outer tube formed of material selected from the group consisting of stainhess steel, V, Ti. Mo. or Zr, a fuel tube concentrically fitting within the outer tube and containing an oxide of an isotope selected from the group consisting of U/sup 235/, U/sup 233/, and Pu/sup 239/, and a hollow, porous core concentrically fitting within the fuel tube and formed of an oxide of an element selected from the group consisting of Mg, Be, and Zr.

  10. Radionuclide inventories : ORIGEN2.2 isotopic depletion calculation for high burnup low-enriched uranium and weapons-grade mixed-oxide pressurized-water reactor fuel assemblies.

    SciTech Connect

    Gauntt, Randall O.; Ross, Kyle W.; Smith, James Dean; Longmire, Pamela

    2010-04-01

    The Oak Ridge National Laboratory computer code, ORIGEN2.2 (CCC-371, 2002), was used to obtain the elemental composition of irradiated low-enriched uranium (LEU)/mixed-oxide (MOX) pressurized-water reactor fuel assemblies. Described in this report are the input parameters for the ORIGEN2.2 calculations. The rationale for performing the ORIGEN2.2 calculation was to generate inventories to be used to populate MELCOR radionuclide classes. Therefore the ORIGEN2.2 output was subsequently manipulated. The procedures performed in this data reduction process are also described herein. A listing of the ORIGEN2.2 input deck for two-cycle MOX is provided in the appendix. The final output from this data reduction process was three tables containing the radionuclide inventories for LEU/MOX in elemental form. Masses, thermal powers, and activities were reported for each category.

  11. Fabrication, Inspection, and Test Plan for the Advanced Test Reactor (ATR) High-Power Mixed-Oxide (MOX) Fuel Irradiation Project

    SciTech Connect

    Wachs, G. W.

    1998-09-01

    The Department of Energy (DOE) Fissile Disposition Program (FMDP) has announced that reactor irradiation of Mixed-Oxide (MOX) fuel is one of the preferred alternatives for disposal of surplus weapons-usable plutonium (Pu). MOX fuel has been utilized domestically in test reactors and on an experimental basis in a number of Commercial Light Water Reactors (CLWRs). Most of this experience has been with Pu derived from spent low enriched uranium (LEU) fuel, known as reactor grade (RG) Pu. The High-Power MOX fuel test will be irradiated in the Advanced Test Reactor (ATR) to provide preliminary data to demonstrate that the unique properties of surplus weapons-derived or weapons-grade (WG) plutonium (Pu) do not compromise the applicability of this MOX experience base. The purpose of the high-power experiment, in conjunction with the currently ongoing average-power experiment at the ATR, is to contribute new information concerning the response of WG plutonium under more severe irradiation conditions typical of the peak power locations in commercial reactors. In addition, the high-power test will contribute experience with irradiation of gallium-containing fuel to the database required for resolution of generic CLWR fuel design issues. The distinction between "high-power" and "average-power" relates to the position within the nominal CLWR core. The high-power test project is subject to a number of requirements, as discussed in the Fissile Materials Disposition Program Light Water Reactor Mixed Oxide Fuel Irradiation High-Power Test Project Plan (ORNL/MD/LTR-125).

  12. JACKETED FUEL ELEMENT

    DOEpatents

    Wigner, E.P.; Szilard, L.; Creutz, E.C.

    1959-02-01

    These fuel elements are comprised of a homogeneous metallic uranium body completely enclosed and sealed in an aluminum cover. The uranium body and aluminum cover are bonded together by a layer of zinc located between them. The bonding layer serves to improve transfer of heat, provides an additional protection against corrosion of the uranium by the coolant, and also localizes any possible corrosion by preventing travel of corrosive material along the surface of the fuel element.

  13. NEUTRONIC REACTOR FUEL ELEMENT

    DOEpatents

    Gurinsky, D.H.; Powell, R.W.; Fox, M.

    1959-11-24

    A nuclear fuel element comprising a plurality of nuclear fuel bearing strips is presented. The strips are folded along their longitudinal axes to an angle of about 60 deg and are secured at each end by ferrule to form an elongated assembly suitable for occupying a cylindrical coolant channel.

  14. Chemical and Radiochemical Composition of Thermally Stabilized Plutonium Oxide from the Plutonium Finishing Plant Considered as Alternate Feedstock for the Mixed Oxide Fuel Fabrication Facility

    SciTech Connect

    Tingey, Joel M.; Jones, Susan A.

    2005-07-01

    Eighteen plutonium oxide samples originating from the Plutonium Finishing Plant (PFP) on the Hanford Site were analyzed to provide additional data on the suitability of PFP thermally stabilized plutonium oxides and Rocky Flats oxides as alternate feedstock to the Mixed Oxide Fuel Fabrication Facility (MFFF). Radiochemical and chemical analyses were performed on fusions, acid leaches, and water leaches of these 18 samples. The results from these destructive analyses were compared with nondestructive analyses (NDA) performed at PFP and the acceptance criteria for the alternate feedstock. The plutonium oxide materials considered as alternate feedstock at Hanford originated from several different sources including Rocky Flats oxide, scrap from the Remote Mechanical C-Line (RMC) and the Plutonium Reclamation Facility (PRF), and materials from other plutonium conversion processes at Hanford. These materials were received at PFP as metals, oxides, and solutions. All of the material considered as alternate feedstock was converted to PuO2 and thermally stabilized by heating the PuO2 powder at 950 C in an oxidizing environment. The two samples from solutions were converted to PuO2 by precipitation with Mg(OH)2. The 18 plutonium oxide samples were grouped into four categories based on their origin. The Rocky Flats oxide was divided into two categories, low- and high-chloride Rocky Flats oxides. The other two categories were PRF/RMC scrap oxides, which included scrap from both process lines and oxides produced from solutions. The two solution samples came from samples that were being tested at Pacific Northwest National Laboratory because all of the plutonium oxide from solutions at PFP had already been processed and placed in 3013 containers. These samples originated at the PFP and are from plutonium nitrate product and double-pass filtrate solutions after they had been thermally stabilized. The other 16 samples originated from thermal stabilization batches before canning at

  15. Neutronics Benchmarks for the Utilization of Mixed-Oxide Fuel: Joint U.S./Russian Progress Report for Fiscal Year 1997

    SciTech Connect

    Akkurt, H

    2001-01-11

    In 1967, a series of critical experiments were conducted at the Westinghouse Reactor Evaluation Center (WREC) using mixed-oxide (MOX) PuO{sub 2}-UO{sub 2} and/or UO{sub 2} fuels in various lattices and configurations . These experiments were performed under the joint sponsorship of the Empire State Atomic Development Associates (ESADA) plutonium program and Westinghouse . The purpose of these experiments was to develop experimental data to validate analytical methods used in the design of a plutonium-bearing replacement fuel for water reactors. Three different fuels were used during the experimental program: two MOX fuels and a low-enriched UO{sub 2} fuel. The MOX fuels were distinguished by their {sup 240}Pu content: 8 wt% {sup 240}Pu and 24 wt% {sup 240}Pu. Both MOX fuels contained 2.0 wt % PuO{sub 2} in natural UO{sub 2} . The UO{sub 2} fuel with 2.72 wt % enrichment was used for comparison with the plutonium data and for use in multiregion experiments.

  16. Criticality Safety Scoping Study for the Transport of Weapons-Grade Mixed-Oxide Fuel Using the MO-1 Shipping Package

    SciTech Connect

    Dunn, M.E.; Fox, P.B.

    1999-05-01

    This report provides the criticality safety information needed for obtaining certification of the shipment of mixed-oxide (MOX) fuel using the MO-1 [USA/9069/B()F] shipping package. Specifically, this report addresses the shipment of non-weapons-grade MOX fuel as certified under Certificate of Compliance 9069, Revision 10. The report further addresses the shipment of weapons-grade MOX fuel using a possible Westinghouse fuel design. Criticality safety analysis information is provided to demonstrate that the requirements of 10 CFR S 71.55 and 71.59 are satisfied for the MO-1 package. Using NUREG/CR-5661 as a guide, a transport index (TI) for criticality control is determined for the shipment of non-weapons-grade MOX fuel as specified in Certificate of Compliance 9069, Revision 10. A TI for criticality control is also determined for the shipment of weapons-grade MOX fuel. Since the possible weapons-grade fuel design is preliminary in nature, this report is considered to be a scoping evaluation and is not intended as a substitute for the final criticality safety analysis of the MO-1 shipping package. However, the criticality safety evaluation information that is presented in this report does demonstrate the feasibility of obtaining certification for the transport of weapons-grade MOX lead test fuel using the MO-1 shipping package.

  17. NEUTRONIC REACTOR FUEL ELEMENT

    DOEpatents

    Kesselring, K.A.; Seybolt, A.U.

    1958-12-01

    A reactor fuel element of the capillary tube type is described. The element consists of a thin walled tube, sealed at both ends, and having an interior coatlng of a fissionable material, such as uranium enriched in U-235. The tube wall is gas tight and is constructed of titanium, zirconium, or molybdenum.

  18. Development of quality control data base ``DANTE'' and relational analysis between fission gas release behavior and plutonium homogeneity in mixed oxide fuel by DANTE

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Kamimura, K.; Yamaguchi, T.; Masuda, S.

    1988-04-01

    The PNC Plutonium Fabrication Facility (PPFF) of Tokai Works of the "Power Reactor and Nuclear Fuel Development Corporation" (PNC) has produced several types of mixed oxide fuels which have been used as the fuels for the Advanced Thermal Reactor FUGEN, and the Experimental Fast Reactor JOYO. Accumulated production of MOX fuel is about 58000 pins as of December, 1986. PPFF production technique is so reliable that no failure of driver fuel pins has been found in the FUGEN and JOYO. This is based on the adequate process control and quality control. In this paper the outline of quality control method applied to MOX fuels in our facility will be reviewed. The discussion is done mainly on the viewpoint of the software system including data gathering, data analysis and data storage, etc. The code system, Data Analysing Technology for Engineers, DANTE, has been developed for this purpose. The DANTE code system is consisted of real time system having relational data base. It is possible to refer the data base relationally and to make tables and figures of the analyzed results on real time by using the DANTE code system. The DANTE code system contributes to quality assurance in the MOX Fuel production facility by evaluating overall data which come from each process such as production and inspection processes.

  19. CONSTRUCTION OF NUCLEAR FUEL ELEMENTS

    DOEpatents

    Weems, S.J.

    1963-09-24

    >A rib arrangement and an end construction for nuclearfuel elements laid end to end in a coolant tube are described. The rib arrangement is such that each fuel element, when separated from other fuel elements, fits loosely in the coolant tube and so can easily be inserted or withdrawn from the tube. The end construction of the fuel elements is such that the fuel elements when assembled end to end are keyed against relative rotation, and the ribs of each fuel element cooperate with the ribs of the adjacent fuel elements to give the assembled fuel elements a tight fit with the coolant tube. (AEC)

  20. Nuclear fuel element

    DOEpatents

    Meadowcroft, Ronald Ross; Bain, Alastair Stewart

    1977-01-01

    A nuclear fuel element wherein a tubular cladding of zirconium or a zirconium alloy has a fission gas plenum chamber which is held against collapse by the loops of a spacer in the form of a tube which has been deformed inwardly at three equally spaced, circumferential positions to provide three loops. A heat resistant disc of, say, graphite separates nuclear fuel pellets within the cladding from the plenum chamber. The spacer is of zirconium or a zirconium alloy.

  1. FUEL ELEMENT CONSTRUCTION

    DOEpatents

    Simnad, M.T.

    1961-08-15

    A method of preventing diffusible and volatile fission products from diffusing through a fuel element container and contaminating reactor coolant is described. More specifically, relatively volatile and diffusible fission products either are adsorbed by or react with magnesium fluoride or difluoride to form stable, less volatile, less diffusible forms. The magnesium fluoride or difluoride is disposed anywhere inwardly from the outer surface of the fuel element container in order to be contacted by the fission products before they reach and contaminate the reactor coolant. (AEC)

  2. Performance of Thorium-Based Mixed Oxide Fuels for the Consumption of Plutonium and Minor Actinides in Current and Advanced Reactors

    SciTech Connect

    Weaver, Kevan Dean; Herring, James Stephen

    2002-06-01

    A renewed interest in thorium-based fuels has arisen lately based on the need for proliferation resistance, longer fuel cycles, higher burnup and improved wasteform characteristics. Recent studies have been directed toward homogeneously mixed, heterogeneously mixed, and seed-and-blanket thorium-uranium fuel cycles that rely on "in situ" use of the bred-in U-233. However, due to the higher initial enrichment required to achieve acceptable burnups, these fuels are encountering economic constraints. Thorium can nevertheless play a large role in the nuclear fuel cycle; particularly in the reduction of plutonium. While uranium-based mixedoxide (MOX) fuel will decrease the amount of plutonium, the reduction is limited due to the breeding of more plutonium (and higher actinides) from the U-238. Here we present calculational results and a comparison of the potential burnup of a thorium-based and uranium-based mixed oxide fuel in a light water reactor (LWR). Although the uranium-based fuels outperformed the thorium-based fuels in achievable burnup, a depletion comparison of the initially charged plutonium (both reactor and weapons grade) showed that the thorium-based fuels outperformed the uranium-based fuels by more that a factor of 2; where more than 70% of the total plutonium in the thorium-based fuel is consumed during the cycle. This is significant considering that the achievable burnup of the thorium-based fuels were 1.4 to 4.6 times less than the uranium-based fuels. Furthermore, use of a thorium-based fuel could also be used as a strategy for reducing the amount of long-lived nuclides (including the minor actinides), and thus the radiotoxicity in spent nuclear fuel. Although the breeding of U-233 is a concern, the presence of U-232 and its daughter products can aid in making this fuel self-protecting, and/or enough U-238 can be added to denature the fissile uranium. From these calculations, it appears that thorium-based fuel for plutonium incineration is superior as

  3. FUEL ELEMENT CONSTRUCTION

    DOEpatents

    Zumwalt, L.R.

    1961-08-01

    Fuel elements having a solid core of fissionable material encased in a cladding material are described. A conversion material is provided within the cladding to react with the fission products to form stable, relatively non- volatile compounds thereby minimizing the migration of the fission products into the coolant. The conversion material is preferably a metallic fluoride, such as lead difluoride, and may be in the form of a coating on the fuel core or interior of the cladding, or dispersed within the fuel core. (AEC)

  4. NEUTRONIC REACTOR FUEL ELEMENT

    DOEpatents

    Stacy, J.T.

    1958-12-01

    A reactor fuel element having a core of molybdenum-uranium alloy jacketed in stainless steel is described. A barrier layer of tungsten, tantalum, molybdenum, columbium, or silver is interposed between the core and jacket to prevent formation of a low melting eutectic between uranium and the varlous alloy constituents of the stainless steel.

  5. JACKETED REACTOR FUEL ELEMENT

    DOEpatents

    Smith, K.F.; Van Thyne, R.J.

    1958-12-01

    A fuel element is described for fast reactors comprised of a core of uranium metal containing material and a jacket around the core, the jacket consisting of from 2.5 to 15 percent of titanium, from 1 to 5 percent of niobium, and from 80 to 96.5 percent of vanadium.

  6. Nuclear reactor fuel element

    DOEpatents

    Johnson, Carl E.; Crouthamel, Carl E.

    1980-01-01

    A nuclear reactor fuel element is described which has an outer cladding, a central core of fissionable or mixed fissionable and fertile fuel material and a layer of oxygen gettering material on the inner surface of the cladding. The gettering material reacts with oxygen released by the fissionable material during irradiation of the core thereby preventing the oxygen from reacting with and corroding the cladding. Also described is an improved method for coating the inner surface of the cladding with a layer of gettering material.

  7. FUEL ELEMENT FABRICATION METHOD

    DOEpatents

    Hix, J.N.; Cooley, G.E.; Cunningham, J.E.

    1960-05-31

    A method is given for assembling and fabricating a fuel element comprising a plurality of spaced parallel fuel plates of a bowed configuration supported by and between a pair of transperse aluminum side plates. In this method, a brasing alloy is preplated on one surface of the aluminum side plates in the form of a cladding or layer-of uniform thickness. Grooves are then cut into the side plates through the alloy layer and into the base aluminum which results in the utilization of thinner aluminum side plates since a portion of the necessary groove depth is supplied by the brazing alloy.

  8. Experiment Safety Assurance Package for Mixed Oxide Fuel Irradiation in an Average Power Position (I-24) in the Advanced Test Reactor

    SciTech Connect

    J. M . Ryskamp; R. C. Howard; R. C. Pedersen; S. T. Khericha

    1998-10-01

    The Fissile Material Disposition Program Light Water Reactor Mixed Oxide Fuel Irradiation Test Project Plan details a series of test irradiations designed to investigate the use of weapons-grade plutonium in MOX fuel for light water reactors (LWR) (Cowell 1996a, Cowell 1997a, Thoms 1997a). Commercial MOX fuel has been successfully used in overseas reactors for many years; however, weapons-derived test fuel contains small amounts of gallium (about 2 parts per million). A concern exists that the gallium may migrate out of the fuel and into the clad, inducing embrittlement. For preliminary out-of-pile experiments, Wilson (1997) states that intermetallic compound formation is the principal interaction mechanism between zircaloy cladding and gallium. This interaction is very limited by the low mass of gallium, so problems are not expected with the zircaloy cladding, but an in-pile experiment is needed to confirm the out-of-pile experiments. Ryskamp (1998) provides an overview of this experiment and its documentation. The purpose of this Experiment Safety Assurance Package (ESAP) is to demonstrate the safe irradiation and handling of the mixed uranium and plutonium oxide (MOX) Fuel Average Power Test (APT) experiment as required by Advanced Test Reactor (ATR) Technical Safety Requirement (TSR) 3.9.1 (LMITCO 1998). This ESAP addresses the specific operation of the MOX Fuel APT experiment with respect to the operating envelope for irradiation established by the Upgraded Final Safety Analysis Report (UFSAR) Lockheed Martin Idaho Technologies Company (LMITCO 1997a). Experiment handling activities are discussed herein.

  9. NUCLEAR REACTOR FUEL-BREEDER FUEL ELEMENT

    DOEpatents

    Currier, E.L. Jr.; Nicklas, J.H.

    1962-08-14

    A fuel-breeder fuel element was developed for a nuclear reactor wherein discrete particles of fissionable material are dispersed in a matrix of fertile breeder material. The fuel element combines the advantages of a dispersion type and a breeder-type. (AEC)

  10. Sodium boiling and mixed oxide fuel thermal behavior in FBR undercooling transients; W-1 SLSF experiment results

    SciTech Connect

    Henderson, J M; Wood, S A; Knight, D D

    1981-01-01

    The W-1 Sodium Loop Safety Facility (SLSF) Experiment was conducted to study fuel pin heat release characteristics during a series of LMFBR Loss-of-Piping Integrity (LOPI) transients and to investigate a regime of coolant boiling during a second series of transients at low, medium and high bundle power levels. The LOPI transients produced no coolant boiling and showed only small changes in coolant temperatures as the test fuel microstructure changed from a fresh, unrestructured to a low burnup, restructured condition. During the last of seven boiling transients, intense coolant boiling produced inlet flow reversal, cladding dryout and moderate cladding melting.

  11. COMPARTMENTED REACTOR FUEL ELEMENT

    DOEpatents

    Cain, F.M. Jr.

    1962-09-11

    A method of making a nuclear reactor fuel element of the elongated red type is given wherein the fissionable fuel material is enclosed within a tubular metal cladding. The method comprises coating the metal cladding tube on its inside wall with a brazing alloy, inserting groups of cylindrical pellets of fissionable fuel material into the tube with spacing members between adjacent groups of pellets, sealing the ends of the tubes to leave a void space therewithin, heating the tube and its contents to an elevated temperature to melt the brazing alloy and to expand the pellets to their maximum dimensions under predetermined operating conditions thereby automatically positioning the spacing members along the tube, and finally cooling the tube to room temperature whereby the spacing disks become permanently fixed at their edges in the brazing alloy and define a hermetically sealed compartment for each fl group of fuel pellets. Upon cooling, the pellets contract thus leaving a space to accommodate thermal expansion of the pellets when in use in a reactor. The spacing members also provide lateral support for the tubular cladding to prevent collapse thereof when subjected to a reactor environment. (AEC)

  12. MCNP-to-TORT radiation transport calculations in support of mixed oxide fuels testing for the Fissile Materials Disposition Program

    SciTech Connect

    Pace, J.V. III

    1998-04-01

    The US (US) Department of Energy Fissile Materials Disposition Program has begun studies for disposal of surplus weapons-grade plutonium (WG-Pu) as mixed uranium plutonium oxide (MOX) fuel for commercial light water reactors (LWRs). Currently MOX fuel is used commercially in a number of foreign countries, but is not in the US. Most of the experience is with reactor grade plutonium (RG-Pu) in MOX fuel. Therefore, to use WG-Pu in MOX fuel, one must demonstrate that the experience with RG-Pu is relevant. As a first step in this program, the utilization of WG-Pu in a LWR environment must be demonstrated. To accomplish this, a test is to be conducted to investigate some of the unresolved issues. The initial tests will be made in an I-hole of the Advanced Test Reactor (ATR) at the Idaho National Engineering and Environmental Laboratory (INEEL). Initial radiation transport calculations of the test specimens were made at INEEL using the MCNP Monte Carlo radiation transport code. These calculations were made to determine the linear heating rates in the fuel specimens. Unfortunately, the results of the calculations could not show the detailed high and low power density spots in the specimens. However, a discrete ordinates radiation transport code could pinpoint these spatial details. Therefore, INEEL was tasked with producing a MCNP source at the boundary of a rectangular parallelepiped enclosing the ATR I-hole, and Oak Ridge National Laboratory was tasked with transforming this boundary source into a discrete ordinates boundary source for the Three-dimensional Oak Ridge radiation Transport (TORT) code. Thus, the TORT results not only complemented, but also were in agreement with the MCNP results.

  13. Nuclear fuel element

    DOEpatents

    Armijo, Joseph S.; Coffin, Jr., Louis F.

    1980-04-29

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has an improved composite cladding comprised of a moderate purity metal barrier of zirconium metallurgically bonded on the inside surface of a zirconium alloy tube. The metal barrier forms a shield between the alloy tube and a core of nuclear fuel material enclosed in the composite cladding. There is a gap between the cladding and the core. The metal barrier forms about 1 to about 30 percent of the thickness of the composite cladding and has low neutron absorption characteristics. The metal barrier serves as a preferential reaction site for gaseous impurities and fission products and protects the alloy tube from contact and reaction with such impurities and fission products. Methods of manufacturing the composite cladding are also disclosed.

  14. Nuclear fuel element

    DOEpatents

    Armijo, Joseph S.; Coffin, Jr., Louis F.

    1983-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has a composite cladding having a substrate and a metal barrier metallurgically bonded on the inside surface of the substrate so that the metal barrier forms a shield between the substrate and the nuclear fuel material held within the cladding. The metal barrier forms about 1 to about 30 percent of the thickness of the cladding and is comprised of a low neutron absorption metal of substantially pure zirconium. The metal barrier serves as a preferential reaction site for gaseous impurities and fission products and protects the substrate from contact and reaction with such impurities and fission products. The substrate of the composite cladding is selected from conventional cladding materials and preferably is a zirconium alloy. Methods of manufacturing the composite cladding are also disclosed.

  15. MCNP-to-TORT Radiation Transport Calculations in Support of Mixed Oxide Fuels Testing for the Fissile Materials Disposition Program

    SciTech Connect

    Pace, J.V.

    1999-11-01

    The United States (US) Department of Energy Fissile Materials Disposition Program (FMDP) began studies for disposal of surplus weapons-grade plutonium (WG-Pu) as mixed uranium-plutonium oxide (@40X) fuel for commercial light-water reactors(LWRS). As a first step in this program, a test of the utilization of WG-Pu in a LWR environment is being conducted in an I-hole of the Advanced Test Reactor (ATR) at the Idaho National Engineering and Environmental Laboratory (INEEL). Initial radiation transport calculations of the test specimens were made at INEEL using the MCNP Monte Carlo radiation transport code to determine the linear heating rates in the fuel specimens. Unfortunately, the results of the calculations could not show the detailed high and low power-density spots in the specimens. Therefore, INEEL produced an MCNP source at the boundary of a rectangular parallelepiped enclosing the ATR I-hole, and Oak Ridge National Laboratory (ORNL) transformed this boundary source into a discrete -ordinates boundary source for the Three-dimensional Oak Ridge radiation Transport (TORT) code to pinpoint spatial detail. Agreement with average MCNP results were within 5%.

  16. RECONDITIONING FUEL ELEMENTS

    DOEpatents

    Brandt, H.L.

    1962-02-20

    A process is given for decanning fuel elements that consist of a uranium core, an intermediate section either of bronze, silicon, Al-Si, and uranium silicide layers or of lead, Al-Si, and uranium silicide layers around said core, and an aluminum can bonded to said intermediate section. The aluminum can is dissolved in a solution of sodium hydroxide (9 to 20 wt%) and sodium nitrate (35 to 12 wt %), and the layers of the intermediate section are dissolved in a boiling sodium hydroxide solution of a minimum concentration of 50 wt%. (AEC) A method of selectively reducing plutonium oxides and the rare earth oxides but not uranium oxides is described which comprises placing the oxides in a molten solvent of zinc or cadmium and then adding metallic uranium as a reducing agent. (AEC)

  17. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Bassett, C.H.

    1961-05-16

    A fuel element particularly adapted for use in nuclear reactors of high power density is offered. It has fissionable fuel pellet segments mounted in a tubular housing and defining a central passage in the fuel element. A burnable poison element extends through the central passage, which is designed to contain more poison material at the median portion than at the end portions thereby providing a more uniform hurnup and longer reactivity life.

  18. FUEL ELEMENTS FOR NUCLEAR REACTORS

    DOEpatents

    Blainey, A.; Lloyd, H.

    1961-07-11

    A method of sheathing a tubular fuel element for a nuclear reactor is described. A low melting metal core member is centered in a die, a layer of a powdered sheathing substance is placed on the bottom of the die, the tubular fuel element is inserted in the die, the space between the tubular fuel element and the die walls and core member is filled with the same powdered sheathing substance, a layer of the same substance is placed over the fissile material, and the charge within the die is subjected to pressure in the direction of the axis of the fuel element at the sintering temperature of the protective substance.

  19. 15. VIEW OF DUMMY FUEL ELEMENT ON FUEL ELEMENT HOLDER. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW OF DUMMY FUEL ELEMENT ON FUEL ELEMENT HOLDER. SHOWS AIR FORCE MAN AT EDGE OF TANK. INEL PHOTO NUMBER 65-6176, TAKEN NOVEMBER 10, 1965. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  20. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Dickson, J.J.

    1963-09-24

    A method is described whereby fuel tubes or pins are cut, loaded with fuel pellets and a heat transfer medium, sealed at each end with slotted fittings, and assembled into a rectangular tube bundle to form a fuel element. The tubes comprising the fuel element are laterally connected between their ends by clips and tabs to form a linear group of spaced parallel tubes, which receive their vertical support by resting on a grid. The advantages of this method are that it permits elimination of structural material (e.g., fuel-element cans) within the reactor core, and removal of at least one fuel pin from an element and replacement thereof so that a burnable poison may be utilized during the core lifetime. (AEC)

  1. Vented nuclear fuel element

    DOEpatents

    Grossman, Leonard N.; Kaznoff, Alexis I.

    1979-01-01

    A nuclear fuel cell for use in a thermionic nuclear reactor in which a small conduit extends from the outside surface of the emitter to the center of the fuel mass of the emitter body to permit escape of volatile and gaseous fission products collected in the center thereof by virtue of molecular migration of the gases to the hotter region of the fuel.

  2. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Bassett, C.H.

    1961-11-21

    A fuel element is designed which is particularly adapted for reactors of high power density used to generate steam for the production of electricity. The fuel element consists of inner and outer concentric tubes forming an annular chamber within which is contained fissionable fuel pellet segments, wedge members interposed between the fuel segments, and a spring which, acting with wedge members, urges said fuel pellets radially into contact against the inner surface of the outer tube. The wedge members may be a fertile material convertible into fissionable fuel material by absorbing neutrons emitted from the fissionable fuel pellet segments. The costly grinding of cylindrical fuel pellets to close tolerances for snug engagement is reduced because the need to finish the exact size is eliminated. (AEC)

  3. NUCLEAR REACTOR FUEL ELEMENT ASSEMBLY

    DOEpatents

    Stengel, F.G.

    1963-12-24

    A method of fabricating nuclear reactor fuel element assemblies having a plurality of longitudinally extending flat fuel elements in spaced parallel relation to each other to form channels is presented. One side of a flat side plate is held contiguous to the ends of the elements and a welding means is passed along the other side of the platertransverse to the direction of the longitudinal extension of the elements. The setting and speed of travel of the welding means is set to cause penetration of the side plate with welds at bridge the gap in each channel between adjacent fuel elements with a weld-through bubble of predetermined size. The fabrication of a high strength, dependable fuel element is provided, and the reduction of distortion and high production costs are facilitated by this method. (AEC)

  4. REACTOR FUEL ELEMENTS TESTING CONTAINER

    DOEpatents

    Whitham, G.K.; Smith, R.R.

    1963-01-15

    This patent shows a method for detecting leaks in jacketed fuel elements. The element is placed in a sealed tank within a nuclear reactor, and, while the reactor operates, the element is sparged with gas. The gas is then led outside the reactor and monitored for radioactive Xe or Kr. (AEC)

  5. Spent graphite fuel element processing

    SciTech Connect

    Holder, N.D.; Olsen, C.W.

    1981-07-01

    The Department of Energy currently sponsors two programs to demonstrate the processing of spent graphite fuel elements. General Atomic in San Diego operates a cold pilot plant to demonstrate the processing of both US and German high-temperature reactor fuel. Exxon Nuclear Idaho Company is demonstrating the processing of spent graphite fuel elements from Rover reactors operated for the Nuclear Rocket Propulsion Program. This work is done at Idaho National Engineering Laboratory, where a hot facility is being constructed to complete processing of the Rover fuel. This paper focuses on the graphite combustion process common to both programs.

  6. NEUTRONIC REACTOR FUEL ELEMENT

    DOEpatents

    Horning, W.A.; Lanning, D.D.; Donahue, D.J.

    1959-10-01

    A fuel slug for a reactor which acts as a safety device is described. The fuel slug is an aluminum tube with a foil lining the inside surface of the tube, the foil being fabricated of uranium in a lead matrix.

  7. NUCLEAR REACTOR FUEL ELEMENT

    DOEpatents

    Currier, E.L. Jr.; Nicklas, J.H.

    1963-06-11

    A fuel plate is designed for incorporation into control rods of the type utilized in high-flux test reactors. The fuel plate is designed so that the portion nearest the poison section of the control rod contains about one-half as much fissionable material as in the rest of the plate, thereby eliminating dangerous flux peaking in that portion. (AEC)

  8. Neutronics Benchmarks for the Utilization of Mixed-Oxide Fuel: Joint U.S./Russian Progress Report for Fiscal Year 1997 Volume 2-Calculations Performed in the United States

    SciTech Connect

    Primm III, RT

    2002-05-29

    This volume of the progress report provides documentation of reactor physics and criticality safety studies conducted in the US during fiscal year 1997 and sponsored by the Fissile Materials Disposition Program of the US Department of Energy. Descriptions of computational and experimental benchmarks for the verification and validation of computer programs for neutron physics analyses are included. All benchmarks include either plutonium, uranium, or mixed uranium and plutonium fuels. Calculated physics parameters are reported for all of the computational benchmarks and for those experimental benchmarks that the US and Russia mutually agreed in November 1996 were applicable to mixed-oxide fuel cycles for light-water reactors.

  9. FUEL ELEMENT FOR NEUTRONIC REACTORS

    DOEpatents

    Evans, T.C.; Beasley, E.G.

    1961-01-17

    A fuel element for neutronic reactors, particularly the gas-cooled type of reactor, is described. The element comprises a fuel-bearing plate rolled to form a cylinder having a spiral passageway passing from its periphery to its center. In operation a coolant is admitted to the passageway at the periphery of the element, is passed through the spiral passageway, and emerges into a central channel defined by the inner turn of the rolled plate. The advantage of the element is that the fully heated coolant (i.e., coolant emerging into the central channel) is separated and thus insulated from the periphery of the element, which may be in contact with a low-temperature moderator, by the intermediate turns of the spiral fuel element.

  10. FUEL ELEMENTS FOR NEUTRONIC REACTORS

    DOEpatents

    Foote, F.G.; Jette, E.R.

    1963-05-01

    A fuel element for a nuclear reactor is described that consists of a jacket containing a unitary core of fissionable material and a filling of a metal of the group consisting of sodium and sodium-potassium alloys. (AEC)

  11. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Bassett, C.H.

    1961-05-01

    A nuclear reactor fuel element comprising high density ceramic fissionable material enclosed in a tubular cladding of corrosion-resistant material is described. The fissionable material is in the form of segments of a tube which have cooperating tapered interfaces which produce outward radial displacement when the segments are urged axially together. A resilient means is provided within the tubular housing to constantly urge the fuel segments axially. This design maintains the fuel material in tight contacting engagement against the inner surface of the outer cladding tube to eliminate any gap therebetween which may be caused by differential thermal expansion between the fuel material and the material of the tube.

  12. Protected Nuclear Fuel Element

    DOEpatents

    Kittel, J. H.; Schumar, J. F.

    1962-12-01

    A stainless steel-clad actinide metal fuel rod for use in fast reactors is reported. In order to prevert cladding failures due to alloy formation between the actinide metal and the stainless steel, a mesh-like sleeve of expanded metal is interposed between them, the sleeve metal being of niobium, tantalum, molybdenum, tungsten, zirconium, or vanadium. Liquid alkali metal is added as a heat transfer agent. (AEC)

  13. Compact Fuel Element Environment Test

    NASA Technical Reports Server (NTRS)

    Bradley, D. E.; Mireles, O. R.; Hickman, R. R.; Broadway, J. W.

    2012-01-01

    Deep space missions with large payloads require high specific impulse (I(sub sp)) and relatively high thrust to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average I(sub sp). Nuclear thermal rockets (NTRs) capable of high I(sub sp) thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen, which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3,000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements that employ high melting point metals, ceramics, or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high-temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via noncontact radio frequency heating and expose samples to hydrogen for typical mission durations has been developed to assist in optimal material and manufacturing process selection without employing fissile material. This Technical Memorandum details the test bed design and results of testing conducted to date.

  14. Monitoring arrangement for vented nuclear fuel elements

    DOEpatents

    Campana, Robert J.

    1981-01-01

    In a nuclear fuel reactor core, fuel elements are arranged in a closely packed hexagonal configuration, each fuel element having diametrically opposed vents permitting 180.degree. rotation of the fuel elements to counteract bowing. A grid plate engages the fuel elements and forms passages for communicating sets of three, four or six individual vents with respective monitor lines in order to communicate vented radioactive gases from the fuel elements to suitable monitor means in a manner readily permitting detection of leakage in individual fuel elements.

  15. Low cost, lightweight fuel cell elements

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor)

    2001-01-01

    New fuel cell elements for use in liquid feed fuel cells are provided. The elements including biplates and endplates are low in cost, light in weight, and allow high efficiency operation. Electrically conductive elements are also a part of the fuel cell elements.

  16. Fuel elements of thermionic converters

    SciTech Connect

    Hunter, R.L.; Gontar, A.S.; Nelidov, M.V.; Nikolaev, Yu.V.; Schulepov, L.N.

    1997-01-01

    Work on thermionic nuclear power systems has been performed in Russia within the framework of the TOPAZ reactor program since the early 1960s. In the TOPAZ in-core thermionic convertor reactor design, the fuel element`s cladding is also the thermionic convertor`s emitter. Deformation of the emitter can lead to short-circuiting and is the primary cause of premature TRC failure. Such deformation can be the result of fuel swelling, thermocycling, or increased unilateral pressure on the emitter due to the release of gaseous fission products. Much of the work on TRCs has concentrated on preventing or mitigating emitter deformation by improving the following materials and structures: nuclear fuel; emitter materials; electrical insulators; moderator and reflector materials; and gas-exhaust device. In addition, considerable effort has been directed toward the development of experimental techniques that accurately mimic operational conditions and toward the creation of analytical and numerical models that allow operational conditions and behavior to be predicted without the expense and time demands of in-pile tests. New and modified materials and structures for the cores of thermionic NPSs and new fabrication processes for the materials have ensured the possibility of creating thermionic NPSs for a wide range of powers, from tens to several hundreds of kilowatts, with life spans of 5 to 10 years.

  17. METHOD OF MAKING FUEL ELEMENTS

    DOEpatents

    Bean, C.H.; Macherey, R.E.

    1959-12-01

    A method is described for fabricating fuel elements, particularly for enclosing a plate of metal with a second metal by inserting the plate into an aperture of a frame of a second plate, placing a sheet of the second metal on each of opposite faces of the assembled plate and frame, purging with an inert gas the air from the space within the frame and the sheets while sealing the seams between the frame and the sheets, exhausting the space, purging the space with air, re-exhausting the spaces, sealing the second aperture, and applying heat and pressure to bond the sheets, the plate, and the frame to one another.

  18. Optical and electrical studies of cerium mixed oxides

    SciTech Connect

    Sherly, T. R.; Raveendran, R.

    2014-10-15

    The fast development in nanotechnology makes enthusiastic interest in developing nanomaterials having tailor made properties. Cerium mixed oxide materials have received great attention due to their UV absorption property, high reactivity, stability at high temperature, good electrical property etc and these materials find wide applications in solid oxide fuel cells, solar control films, cosmetics, display units, gas sensors etc. In this study cerium mixed oxide compounds were prepared by co-precipitation method. All the samples were doped with Zn (II) and Fe (II). Preliminary characterizations such as XRD, SEM / EDS, TEM were done. UV - Vis, Diffuse reflectance, PL, FT-IR, Raman and ac conductivity studies of the samples were performed.

  19. Optical and electrical studies of cerium mixed oxides

    NASA Astrophysics Data System (ADS)

    Sherly, T. R.; Raveendran, R.

    2014-10-01

    The fast development in nanotechnology makes enthusiastic interest in developing nanomaterials having tailor made properties. Cerium mixed oxide materials have received great attention due to their UV absorption property, high reactivity, stability at high temperature, good electrical property etc and these materials find wide applications in solid oxide fuel cells, solar control films, cosmetics, display units, gas sensors etc. In this study cerium mixed oxide compounds were prepared by co-precipitation method. All the samples were doped with Zn (II) and Fe (II). Preliminary characterizations such as XRD, SEM / EDS, TEM were done. UV - Vis, Diffuse reflectance, PL, FT-IR, Raman and ac conductivity studies of the samples were performed.

  20. Neutronic Benchmarks for the Utilization of Mixed-Oxide Fuel: Joint U.S./Russian Progress Report for Fiscal Year 1997 - Volume 4, Part 2--Saxton Plutonium Program Critical Experiments

    SciTech Connect

    Abdurrahman, NM

    2000-10-12

    Critical experiments with water-moderated, single-region PuO{sub 2}-UO{sub 2} or UO{sub 2}, and multiple-region PuO{sub 2}-UO{sub 2}- and UO{sub 2}-fueled cores were performed at the CRX reactor critical facility at the Westinghouse Reactor Evaluation Center (WREC) at Waltz Mill, Pennsylvania in 1965 [1]. These critical experiments were part of the Saxton Plutonium Program. The mixed oxide (MOX) fuel used in these critical experiments and then loaded in the Saxton reactor contained 6.6 wt% PuO{sub 2} in a mixture of PuO{sub 2} and natural UO{sub 2}. The Pu metal had the following isotopic mass percentages: 90.50% {sup 239}Pu; 8.57% {sup 239}Pu; 0.89% {sup 240}Pu; and 0.04% {sup 241}Pu. The purpose of these critical experiments was to verify the nuclear design of Saxton partial plutonium cores while obtaining parameters of fundamental significance such as buckling, control rod worth, soluble poison worth, flux, power peaking, relative pin power, and power sharing factors of MOX and UO{sub 2} lattices. For comparison purposes, the core was also loaded with uranium dioxide fuel rods only. This series is covered by experiments beginning with the designation SX.

  1. FUEL-BREEDER FUEL ELEMENT FOR NUCLEAR REACTOR

    DOEpatents

    Abbott, W.E.; Balent, R.

    1958-09-16

    A fuel element design to facilitate breeding reactor fuel is described. The fuel element is comprised of a coatainer, a central core of fertile material in the container, a first bonding material surrounding the core, a sheet of fissionable material immediately surrounding the first bonding material, and a second bonding material surrounding the fissionable material and being in coniact with said container.

  2. Rack for storing spent nuclear fuel elements

    DOEpatents

    Rubinstein, Herbert J.; Clark, Philip M.; Gilcrest, James D.

    1978-06-20

    A rack for storing spent nuclear fuel elements in which a plurality of aligned rows of upright enclosures of generally square cross-sectional areas contain vertically disposed fuel elements. The enclosures are fixed at the lower ends thereof to a base. Pockets are formed between confronting walls of adjacent enclosures for receiving high absorption neutron absorbers, such as Boral, cadmium, borated stainless steel and the like for the closer spacing of spent fuel elements.

  3. Visual examinations of K east fuel elements

    SciTech Connect

    Pitner, A.L., Fluor Daniel Hanford

    1997-02-03

    Selected fuel elements stored in both ``good fuel`` and ``bad fuel`` canisters in K East Basin were extracted and visually examined full length for damage. Lower end damage in the ``bad fuel`` canisters was found to be more severe than expected based on top end appearances. Lower end damage for the ``good fuel`` canisters, however, was less than expected based on top end observations. Since about half of the fuel in K East Basin is contained in ``good fuel`` canisters based on top end assessments, the fraction of fuel projected to be intact with respect to IPS processing considerations remains at 50% based on these examination results.

  4. DISSOLUTION OF ZIRCONIUM-CONTAINING FUEL ELEMENTS

    DOEpatents

    Horn, F.L.

    1961-12-12

    Uranium is recovered from spent uranium fuel elements containing or clad with zirconium. These fuel elements are placed in an anhydrous solution of hydrogen fluoride and nitrogen dioxide. Within this system uranium forms a soluble complex and zirconium forms an insoluble complex. The uranium can then be separated, treated, and removed from solution as uranium hexafluoride. (AEC)

  5. 35. DETAILS AND SECTIONS OF FUEL ELEMENT SUPPORT PLATFORM, FUEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. DETAILS AND SECTIONS OF FUEL ELEMENT SUPPORT PLATFORM, FUEL ELEMENT HOLDER, TRIP MECHANISM COVER, AND OTHER DETAILS. F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-S-3. INEL INDEX CODE NUMBER: 075 0701 60 851 151977. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  6. NEUTRONIC REACTOR AND FUEL ELEMENT THEREFOR

    DOEpatents

    Szilard, L.; Young, G.J.

    1958-03-01

    This patent relates to a reactor design of the type which employs solid fuel elements disposed in channels within the moderator through which channels and around the fuel elements is conveyed a coolant fiuid. The coolant channels are comprised of aluminum tubes extending through a solid moderator such as graphite and the fuel elements are comprised of an elongated solid body of natural uranium jacketed in an aluminum jacket with the ends thereof closed by aluminum caps of substantially greater thickness than the jacket was and in good thermal contact with the fuel material to facilitate the conduction of heat from the central portion of said ends to the coolant surrounding the fuel element to prevent overheating of said central portion.

  7. MRT fuel element inspection at Dounreay

    SciTech Connect

    Gibson, J.

    1997-08-01

    To ensure that their production and inspection processes are performed in an acceptable manner, ie. auditable and traceable, the MTR Fuel Element Fabrication Plant at Dounreay operates to a documented quality system. This quality system, together with the fuel element manufacturing and inspection operations, has been independently certified to ISO9002-1987, EN29002-1987 and BS5750:Pt2:1987 by Lloyd`s Register Quality Assurance Limited (LRQA). This certification also provides dual accreditation to the relevant German, Dutch and Australian certification bodies. This paper briefly describes the quality system, together with the various inspection stages involved in the manufacture of MTR fuel elements at Dounreay.

  8. Identification of failed fuel element

    DOEpatents

    Fryer, Richard M.; Matlock, Robert G.

    1976-06-22

    A passive fission product gas trap is provided in the upper portion of each fuel subassembly in a nuclear reactor. The gas trap consists of an inverted funnel of less diameter than the subassembly having a valve at the apex thereof. An actuating rod extends upwardly from the valve through the subassembly to a point where it can be contacted by the fuel handling mechanism for the reactor. Interrogation of the subassembly for the presence of fission products is accomplished by lowering the fuel handling machine onto the subassembly to press down on the actuating rod and open the valve.

  9. Apparatus for inspecting fuel elements

    DOEpatents

    Oakley, David J.; Groves, Oliver J.; Kaiser, Bruce J.

    1986-01-01

    Disclosed is an alpha monitor usable in an automated nuclear fuel pin loading and processing unit. Fuel pins or other elongated pins are fed laterally into the alpha monitor in a singular fashion and are translated by a first roller assembly into a weld flare machining and decontamination substation not forming a part of the invention. Pins return and are lifted upwardly and transferred across to a combined pin lifting and electrode operating means which lifts the pins upwardly into a clamshell electrode assembly which is spread open by a combined pin lifting and electrode operating means. Once inserted the clamshell type electrode arrangement closes around the fuel pins so that inspection can occur. Fuel pins are inspected by charging electrodes to a negative potential and measuring the change in charge occurring when positively charged alpha particles strike the negatively charged electrodes. After inspection, the fuel pins are lowered by the pin lifting and electrode operating means into a second roller assembly which longitudinally conveys approved pins from the airtight enclosure in which the alpha monitor is mounted. If the fuel pins are rejected then they are moved laterally by a second transfer means and onto another system for further processing.

  10. Apparatus for inspecting fuel elements

    DOEpatents

    Kaiser, B.J.; Oakley, D.J.; Groves, O.J.

    1984-12-21

    This disclosure describes an alpha monitor usable in an automated nuclear fuel pin loading and processing unit. Fuel pins or other elongated pins are fed laterally into the alpha monitor in a singular fashion and are translated by a first roller assembly into a weld flare machining and decontamination substation not forming a part of the invention. Pins return and are lifted upwardly and transferred across to a combined pin lifting and electrode operating means which lifts the pins upwardly into a clamshell electrode assembly which is spread open by a combined pin lifting and electrode operating means. Once inserted the clamshell type electrode arrangement closes around the fuel pins so that inspection can occur. Fuel pins are inspected by charging electrodes to a negative potential and measuring the change in charge occurring when positively charged alpha particles strike the negatively charged electrodes. After inspection, the fuel pins are lowered by the pin lifting and electrode operating means into a second roller assembly which longitudinally conveys approved pins from the airtight enclosure in which the alpha monitor is mounted. If the fuel pins are rejected then they are moved laterally by a second transfer means and onto another system for further processing.

  11. Volume reduction of spent fuel elements for direct disposal

    SciTech Connect

    Wasserfuhr, I.C.

    1995-12-31

    The method of direct disposal of spent fuel elements provides the placing of fuel and non-fuel elements into the POLLUX final disposal casks. It is, however, necessary to disassemble the fuel elements into fuel rods and structural parts. While the fuel rods are condensed, the remaining structure is treated further with a 500-t skeleton press to minimize the volume.

  12. Fuel elements of research reactor CM

    SciTech Connect

    Kozlov, A.V.; Morozov, A.V.; Vatulin, A.V.; Ershov, S.A.

    2013-07-01

    In 1961 the CM research reactor was commissioned at the Research Institute of Atomic Reactors (Dimitrovgrad, Russia), it was intended to carry on investigations and the production of transuranium nuclides. The reactor is of a tank type. Original fuel assembly contained plate fuels that were spaced with vanes and corrugated bands. Nickel was used as a cladding material, fuel meat was produced from UO{sub 2} + electrolytic nickel composition. Fuel plates have been replaced by self-spacing cross-shaped dispersion fuels clad in stainless steel. In 2005 the reactor was updated. The purpose of this updating was to increase the quantity of irradiation channels in the reactor core and to improve the neutron balance. The updating was implemented at the expense of 20 % reduction in the quantity of fuel elements in the core which released a space for extra channels and decreased the mass of structural materials in the core. The updated reactor is loaded with modified standard fuel elements with 20 % higher uranium masses. At the same time stainless steel in fuel assembly shrouds was substituted by zirconium alloy. Today in progress are investigations and work to promote the second stage of reactor updating that involve developments of cross-shaped fuel elements having low neutron absorption matrix materials. This article gives an historical account of the design and main technical changes that occurred for the CM reactor since its commissioning.

  13. Mixed oxide nanoparticles and method of making

    DOEpatents

    Lauf, Robert J.; Phelps, Tommy J.; Zhang, Chuanlun; Roh, Yul

    2002-09-03

    Methods and apparatus for producing mixed oxide nanoparticulates are disclosed. Selected thermophilic bacteria cultured with suitable reducible metals in the presence of an electron donor may be cultured under conditions that reduce at least one metal to form a doped crystal or mixed oxide composition. The bacteria will form nanoparticles outside the cell, allowing easy recovery. Selection of metals depends on the redox potentials of the reducing agents added to the culture. Typically hydrogen or glucose are used as electron donors.

  14. NEUTRONIC REACTOR FUEL ELEMENT AND CORE SYSTEM

    DOEpatents

    Moore, W.T.

    1958-09-01

    This patent relates to neutronic reactors and in particular to an improved fuel element and a novel reactor core system for facilitating removal of contaminating fission products, as they are fermed, from association with the flssionable fuel, so as to mitigate the interferent effects of such fission products during reactor operation. The fuel elements are comprised of tubular members impervious to fluid and contatning on their interior surfaces a thin layer of fissionable material providing a central void. The core structure is comprised of a plurality of the tubular fuel elements arranged in parallel and a closed manifold connected to their ends. In the reactor the core structure is dispersed in a water moderator and coolant within a pressure vessel, and a means connected to said manifuld is provided for withdrawing and disposing of mobile fission product contamination from the interior of the feel tubes and manifold.

  15. Identification of leaking TRIGA fuel elements

    SciTech Connect

    Bennion, John S.; Crawford, Kevan C.; Gansauge, Todd C.; Sandquist, Gary M.

    1990-07-01

    The 100 kW TRIGA Mark I Nuclear Reactor at the University of Utah achieved initial criticality in October, 1975. Previously irradiated fuel consisting of stainless-steel- and aluminum-clad elements was acquired from the University of Arizona and the U.S. Army's Harry Diamond Laboratories in Adelphi, Maryland. Past core configurations have been comprised of both types of fuel with the aluminum-clad elements normally restricted to outer hexagonal rings of the core to provide a large safety margin between actual fuel temperature and limits set forth in the facility Technical Specifications. On October 20, 1987, trace cesium-137 contamination was discovered during routine analysis of the ion-exchange resin in the demineralizer circuit. The presence of Cs-137 indicated a possible clad defect resulting in the leakage of fission products. Reactor operations were allowed only to assist in identifying the source of the leakage. Pool water samples obtained following a two-hour operation at full power were spectroscopically analyzed and found to contain very small amounts of short-lived noble gases (e.g., Kr-85m, Kr-87, Kr-88, Xe-138) and their decay daughter products (e.g., Rb-88, Cs-138). Samples of the gaseous effluent from the facility collected in activated charcoal canisters showed no indication of fission product contamination. The small amount of activity released to the pool water suggested that a single defective element was responsible for the leakage. The instrumented fuel element and the aluminum-clad fuel were initially suspected as sources of the leakage. A simple scheme was devised to identify the defective element by exchanging four or five elements from the core with fuel in storage and then operating the reactor at 90 kW power for two hours. A pool water sample was then taken and analyzed to determine if the damaged element had been removed from the core. This process was repeated several times until all of the aluminum-clad fuel and several stainless

  16. IMPROVED TYPE OF FUEL ELEMENT

    DOEpatents

    Monson, H.O.

    1961-01-24

    A radiator-type fuel block assembly is described. It has a hexagonal body of neutron fissionable material having a plurality of longitudinal equal- spaced coolant channels therein aligned in rows parallel to each face of the hexagonal body. Each of these coolant channels is hexagonally shaped with the corners rounded and enlarged and the assembly has a maximum temperature isothermal line around each channel which is approximately straight and equidistant between adjacent channels.

  17. Nuclear fuel elements having a composite cladding

    DOEpatents

    Gordon, Gerald M.; Cowan, II, Robert L.; Davies, John H.

    1983-09-20

    An improved nuclear fuel element is disclosed for use in the core of nuclear reactors. The improved nuclear fuel element has a composite cladding of an outer portion forming a substrate having on the inside surface a metal layer selected from the group consisting of copper, nickel, iron and alloys of the foregoing with a gap between the composite cladding and the core of nuclear fuel. The nuclear fuel element comprises a container of the elongated composite cladding, a central core of a body of nuclear fuel material disposed in and partially filling the container and forming an internal cavity in the container, an enclosure integrally secured and sealed at each end of said container and a nuclear fuel material retaining means positioned in the cavity. The metal layer of the composite cladding prevents perforations or failures in the cladding substrate from stress corrosion cracking or from fuel pellet-cladding interaction or both. The substrate of the composite cladding is selected from conventional cladding materials and preferably is a zirconium alloy.

  18. Upgraded HFIR Fuel Element Welding System

    SciTech Connect

    Sease, John D

    2010-02-01

    The welding of aluminum-clad fuel plates into aluminum alloy 6061 side plate tubing is a unique design feature of the High Flux Isotope Reactor (HFIR) fuel assemblies as 101 full-penetration circumferential gas metal arc welds (GMAW) are required in the fabrication of each assembly. In a HFIR fuel assembly, 540 aluminum-clad fuel plates are assembled into two nested annular fuel elements 610 mm (24-inches) long. The welding process for the HFIR fuel elements was developed in the early 1960 s and about 450 HFIR fuel assemblies have been successfully welded using the GMAW process qualified in the 1960 s. In recent years because of the degradation of the electronic and mechanical components in the old HFIR welding system, reportable defects in plate attachment or adapter welds have been present in almost all completed fuel assemblies. In October 2008, a contract was awarded to AMET, Inc., of Rexburg, Idaho, to replace the old welding equipment with standard commercially available welding components to the maximum extent possible while maintaining the qualified HFIR welding process. The upgraded HFIR welding system represents a major improvement in the welding system used in welding HFIR fuel elements for the previous 40 years. In this upgrade, the new inner GMAW torch is a significant advancement over the original inner GMAW torch previously used. The innovative breakthrough in the new inner welding torch design is the way the direction of the cast in the 0.762 mm (0.030-inch) diameter aluminum weld wire is changed so that the weld wire emerging from the contact tip is straight in the plane perpendicular to the welding direction without creating any significant drag resistance in the feeding of the weld wire.

  19. Nuclear fuel elements made from nanophase materials

    SciTech Connect

    Heubeck, Norman B.

    1997-12-01

    A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain-related failure even at high temperatures, in the order of about 3,000 F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion and mechanical characteristics.

  20. Nuclear fuel elements made from nanophase materials

    DOEpatents

    Heubeck, Norman B.

    1998-01-01

    A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000.degree. F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics.

  1. Nuclear fuel elements made from nanophase materials

    DOEpatents

    Heubeck, N.B.

    1998-09-08

    A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000 F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics. 5 figs.

  2. JACKETED FUEL ELEMENTS FOR GRAPHITE MODERATED REACTORS

    DOEpatents

    Szilard, L.; Wigner, E.P.; Creutz, E.C.

    1959-05-12

    Fuel elements for a heterogeneous, fluid cooled, graphite moderated reactor are described. The fuel elements are comprised of a body of natural uranium hermetically sealed in a jacket of corrosion resistant material. The jacket, which may be aluminum or some other material which is non-fissionable and of a type having a low neutron capture cross-section, acts as a barrier between the fissioning isotope and the coolant or moderator or both. The jacket minimizes the tendency of the moderator and coolant to become radioactive and/or contaminated by fission fragments from the fissioning isotope.

  3. Nondestructive assay confirmatory assessment experiments: mixed oxide

    SciTech Connect

    Lemming, J.F.

    1980-04-30

    The confirmatory assessment experiments demonstrate traceable nondestructive assay (NDA) measurements of plutonium in mixed oxide powder using commercially available spontaneous-fission assay systems. The experiments illustrate two major concepts: the production of calibration materials using calorimetric assay, and the use of paired measurements for measurement assurance. Two batches of well-characterized mixed oxide powder were used to establish the random and systematic error components. The major components of an NDA measurement assurance technique to establish and maintain traceability are identified and their functions are demonstrated. 20 refs., 10 figs., 10 tabs.

  4. FUEL ELEMENT AND METHOD OF PREPARATION

    DOEpatents

    Kingston, W.E.

    1961-04-25

    A nuclear fuel element in the form of a wire is reported. A bar of uranium is enclosed in a thin layer of aluminum and the composite is sheathed in beryllium, zirconium, or stainnless steel. The sheathed article is then drawn to wire form, heated to alloy the aluminum with both uranium and sheath, and finally cold worked.

  5. Liquid fuel injection elements for rocket engines

    NASA Technical Reports Server (NTRS)

    Cox, George B., Jr. (Inventor)

    1993-01-01

    Thrust chambers for liquid propellant rocket engines include three principal components. One of these components is an injector which contains a plurality of injection elements to meter the flow of propellants at a predetermined rate, and fuel to oxidizer mixture ratio, to introduce the mixture into the combustion chamber, and to cause them to be atomized within the combustion chamber so that even combustion takes place. Evolving from these injectors are tube injectors. These tube injectors have injection elements for injecting the oxidizer into the combustion chamber. The oxidizer and fuel must be metered at predetermined rates and mixture ratios in order to mix them within the combustion chamber so that combustion takes place smoothly and completely. Hence tube injectors are subject to improvement. An injection element for a liquid propellant rocket engine of the bipropellant type is provided which includes tangential fuel metering orifices, and a plurality of oxidizer tube injection elements whose injection tubes are also provided with tangential oxidizer entry slots and internal reed valves.

  6. Automatic inspection for remotely manufactured fuel elements

    SciTech Connect

    Reifman, J.; Vitela, J.E.; Gibbs, K.S.; Benedict, R.W.

    1995-06-01

    Two classification techniques, standard control charts and artificial neural networks, are studied as a means for automating the visual inspection of the welding of end plugs onto the top of remotely manufactured reprocessed nuclear fuel element jackets. Classificatory data are obtained through measurements performed on pre- and post-weld images captured with a remote camera and processed by an off-the-shelf vision system. The two classification methods are applied in the classification of 167 dummy stainless steel (HT9) fuel jackets yielding comparable results.

  7. Thermionic Fuel Element Verification Program - Overview

    NASA Astrophysics Data System (ADS)

    Bohl, Richard J.; Dahlberg, Richard C.; Dutt, Dale S.; Wood, John T.

    The Thermionic Fuel Element (TFE) Verification program was established in 1986 to resolve the technology concerns raised in Phase 1 of the SP-100 program, namely, the performance and lifetime of thermionic fuel elements in a fast spectrum reactor. The program builds directly on an extensive database developed in the 1960s and early 1970s in an AEC/NASA-sponsored program, when TFEs were developed and tested at design conditions for over 10,000 h. The current effort has reestablished that technology and is extending the lifetime up to 7 to 10 yr. A TFE lifetime of more than 2 yr has been demonstrated in the TRIGA reactor. Component lifetimes of more than 10 yr have been demonstrated in accelerated tests in the FFTF (Richland) and EBR-II (Idaho) test reactors. Program completion is scheduled for FY-95.

  8. METHOD OF MAKING WIRE FUEL ELEMENTS

    DOEpatents

    Zambrow, J.L.

    1960-08-01

    A method is given for making a nuclear reactor fuel element in the form of a uranium-bearing wire clad with zirconium. A uranium bar is enclosed in a zirconium sheath which is coated with an oxide of magnesium, beryllium, or zirconium. The sheathed bar is then placed in a steel tube and reduced to the desired diameter by swaging at 800 to 900 deg C, after which the steel and oxide are removed.

  9. NUCLEAR REACTOR AND THERMIONIC FUEL ELEMENT THEREFOR

    DOEpatents

    Rasor, N.S.; Hirsch, R.L.

    1963-12-01

    The patent relates to the direct conversion of fission heat to electricity by use of thermionic plasma diodes having fissionable material cathodes, said diodes arranged to form a critical mass in a nuclear reactor. The patent describes a fuel element comprising a plurality of diodes each having a fissionable material cathode, an anode around said cathode, and an ionizable gas therebetween. Provision is made for flowing the gas and current serially through the diodes. (AEC)

  10. CONCENTRIC TUBE FUEL ELEMENT SPRING ALIGNMENT SPACER DEVICE

    DOEpatents

    Weems, S.J.

    1963-09-24

    A rib construction for a nuclear-fuel element is described, in which one of three peripherally spaced ribs adjacent to each end of the fuel element is mounted on a radially yielding spring that embraces the fuel element. This spring enables the fuel element to have a good fit with a coolant tube and yet to be easily inserted in and withdrawn from the tube. (AEC)

  11. Interspecies comparison of the metabolism and dosimetry of inhaled mixed oxides of plutonium and uranium

    SciTech Connect

    Boecker, B.B.; Mewhinney, J.A.; Eidson, A.F.

    1997-12-01

    Three studies were conducted to provide information on the biological fate, distribution of radiation doses among tissues, and implications for potential health consequences of an inhalation exposure to mixed-oxide nuclear fuel materials. In each study, Fischer-344 rats, beagle dogs, and cynomolgus monkeys inhaled one of three aerosols: 750{degrees}C calcined mixed oxides of UO{sub 2} and PuO{sub 2}, 1750{degrees}C sintered (U,Pu)O{sub 2}, or 850{degrees}C calcined {open_quotes}pure{close_quotes} PuO{sub 2}. These materials were collected from glove-box enclosures immediately after industrial processing of mixed-oxide fuel materials. Lung retention, tissue distribution, and mode of excretion of {sup 238-240}Pu, {sup 241}Am, and uranium (when present) were quantified by radiochemical analysis of tissue and excreta samples from animals sacrificed at selected times to 6.5 yr after inhalation exposure.

  12. METHOD OF PREPARING A CERAMIC FUEL ELEMENT

    DOEpatents

    Ross, W.T.; Bloomster, C.H.; Bardsley, R.E.

    1963-09-01

    A method is described for preparing a fuel element from -325 mesh PuO/ sub 2/ and -20 mesh UO/sub 2/, and the steps of screening --325 mesh UO/sub 2/ from the -20 mesh UO/sub 2/, mixing PuO/sub 2/ with the --325 mesh UO/sub 2/, blending this mixture with sufficient --20 mesh UO/sub 2/ to obtain the desired composition, introducing the blend into a metal tube, repeating the procedure until the tube is full, and vibrating the tube to compact the powder are included. (AEC)

  13. Thermionic fuel element Verification Program - Overview

    NASA Astrophysics Data System (ADS)

    Bohl, Richard J.; Dahlberg, Richard C.; Dutt, Dale S.; Wood, John T.

    The TFE Verification Program is in the sixth year of a program to demonstrate the performance and lifetime of thermionic fuel elements for high power space applications. Data from accelerated tests in FETF and EBR-II show component lifetimes longer than 7 yr. Alumina insulators have shown good performance at high fast fluence. Graphite-cesium reservoirs based on isotropic graphite also meet requirements. Three TFEs are currently operating in the TRIGA reactor, the oldest having accumulated 15,000 hr of irradiation as of 1 October 1990.

  14. Thermionic fuel element verification program—overview

    NASA Astrophysics Data System (ADS)

    Bohl, Richard J.; Dutt, Dale S.; Dahlberg, Richard C.; Wood, John T.

    1991-01-01

    TFE Verification Program is in the sixth year of a program to demonstrate the performance and lifetime of thermionic fuel elements for high power space applications. It is jointly funded by SIDO and DOE. Data from accelerated tests in FFTF and EBR-II show component lifetimes longer than 7 years. Alumina insulators have shown good performance at high fast fluence. Graphite-cesium reservoirs based on isotropic graphite also meet requirements. Three TFEs are current operating in the TRIGA reactor, the oldest having accumulated 15,000 hours of irradiation as of 1 October 1990.

  15. Preparation of high temperature gas-cooled reactor fuel element

    DOEpatents

    Bradley, Ronnie A.; Sease, John D.

    1976-01-01

    This invention relates to a method for the preparation of high temperature gas-cooled reactor (HTGR) fuel elements wherein uncarbonized fuel rods are inserted in appropriate channels of an HTGR fuel element block and the entire block is inserted in an autoclave for in situ carbonization under high pressure. The method is particularly applicable to remote handling techniques.

  16. METHOD OF PREPARING A FUEL ELEMENT FOR A NUCLEAR REACTOR

    DOEpatents

    Roake, W.E.; Evans, E.A.; Brite, D.W.

    1960-06-21

    A method of preparing a fuel element for a nuclear reactor is given in which an internally and externally cooled fuel element consisting of two coaxial tubes having a plurality of integral radial ribs extending between the tubes and containing a powdered fuel material is isostatically pressed to form external coolant channels and compact the powder simultaneously.

  17. Fuel element concept for long life high power nuclear reactors

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E.; Rom, F. E.

    1969-01-01

    Nuclear reactor fuel elements have burnups that are an order of magnitude higher than can currently be achieved by conventional design practice. Elements have greater time integrated power producing capacity per unit volume. Element design concept capitalizes on known design principles and observed behavior of nuclear fuel.

  18. Nuclear fuel element with axially aligned fuel pellets and fuel microspheres therein

    DOEpatents

    Sease, J.D.; Harrington, F.E.

    1973-12-11

    Elongated single- and multi-region fuel elements are prepared by replacing within a cladding container a coarse fraction of fuel material which includes plutonium and uranium in the appropriate regions of the fuel element and then infiltrating with vibration a fine-sized fraction of uranium-containing microspheres throughout all interstices in the coarse material in a single loading. The fine, rigid material defines a thin annular layer between the coarse fraction and the cladding to reduce adverse mechanical and chemical interactions. (Official Gazette)

  19. High performance fuel element with end seal

    DOEpatents

    Lee, Gary E.; Zogg, Gordon J.

    1987-01-01

    A nuclear fuel element comprising an elongate block of refractory material having a generally regular polygonal cross section. The block includes parallel, spaced, first and second end surfaces. The first end surface has a peripheral sealing flange formed thereon while the second end surface has a peripheral sealing recess sized to receive the flange. A plurality of longitudinal first coolant passages are positioned inwardly of the flange and recess. Elongate fuel holes are separate from the coolant passages and disposed inwardly of the flange and the recess. The block is further provided with a plurality of peripheral second coolant passages in general alignment with the flange and the recess for flowing coolant. The block also includes two bypasses for each second passage. One bypass intersects the second passage adjacent to but spaced from the first end surface and intersects a first passage, while the other bypass intersects the second passage adjacent to but spaced from the second end surface and intersects a first passage so that coolant flowing through the second passages enters and exits the block through the associated first passages.

  20. Fuel Element Transfer Cask Modelling Using MCNP Technique

    NASA Astrophysics Data System (ADS)

    Darmawan, Rosli; Topah, Budiman Naim

    2010-01-01

    After operating for more than 25 years, some of the Reaktor TRIGA Puspati (RTP) fuel elements would have been depleted. A few addition and fuel reconfiguration exercises have to be conducted in order to maintain RTP capacity. Presently, RTP spent fuels are stored at the storage area inside RTP tank. The need to transfer the fuel element outside of RTP tank may be prevalence in the near future. The preparation shall be started from now. A fuel element transfer cask has been designed according to the recommendation by the fuel manufacturer and experience of other countries. A modelling using MCNP code has been conducted to analyse the design. The result shows that the design of transfer cask fuel element is safe for handling outside the RTP tank according to recent regulatory requirement.

  1. Fuel Element Transfer Cask Modelling Using MCNP Technique

    SciTech Connect

    Darmawan, Rosli; Topah, Budiman Naim

    2010-01-05

    After operating for more than 25 years, some of the Reaktor TRIGA Puspati (RTP) fuel elements would have been depleted. A few addition and fuel reconfiguration exercises have to be conducted in order to maintain RTP capacity. Presently, RTP spent fuels are stored at the storage area inside RTP tank. The need to transfer the fuel element outside of RTP tank may be prevalence in the near future. The preparation shall be started from now. A fuel element transfer cask has been designed according to the recommendation by the fuel manufacturer and experience of other countries. A modelling using MCNP code has been conducted to analyse the design. The result shows that the design of transfer cask fuel element is safe for handling outside the RTP tank according to recent regulatory requirement.

  2. Means for supporting fuel elements in a nuclear reactor

    DOEpatents

    Andrews, Harry N.; Keller, Herbert W.

    1980-01-01

    A grid structure for a nuclear reactor fuel assembly comprising a plurality of connecting members forming at least one longitudinally extending opening peripheral and inner fuel element openings through each of which openings at least one nuclear fuel element extends, said connecting members forming wall means surrounding said each peripheral and inner fuel element opening, a pair of rigid projections longitudinally spaced from one another extending from a portion of said wall means into said each peripheral and inner opening for rigidly engaging said each fuel element, respectively, yet permit individual longitudinal slippage thereof, and resilient means formed integrally on and from said wall means and positioned in said each peripheral and inner opening in opposed relationship with said projections and located to engage said fuel element to bias the latter into engagement with said rigid projections, respectively

  3. NEUTRON REACTOR FUEL ELEMENT UTILIZING ZIRCONIUM-BASE ALLOYS

    DOEpatents

    Saller, H.A.; Keeler, J.R.; Szumachowski, E.R.

    1957-11-12

    This patent relates to clad fuel elements for use in neutronic reactors and is drawn to such a fuel element which consists of a core of fissionable material, comprised of an alloy of zirconium and U/sup 235/ enriched uranium, encased in a jacket of a binary zirconium-tin alloy in which the tin content ranges between 1 and 15% by weight.

  4. Fuel cell elements with improved water handling capacity

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor); Lee, Albany (Inventor)

    2001-01-01

    New fuel cell components for use in liquid feed fuel cell systems are provided. The components include biplates and endplates, having a hydrophilic surface and allow high efficiency operation. Conductive elements and a wicking device also form a part of the fuel cell components of the invention.

  5. Nuclear reactor fuel element having improved heat transfer

    DOEpatents

    Garnier, J.E.; Begej, S.; Williford, R.E.; Christensen, J.A.

    1982-03-03

    A nuclear reactor fuel element having improved heat transfer between fuel material and cladding is described. The element consists of an outer cladding tube divided into an upper fuel section containing a central core of fissionable or mixed fissionable and fertile fuel material, slightly smaller in diameter than the inner surface of the cladding tube and a small lower accumulator section, the cladding tube being which is filled with a low molecular weight gas to transfer heat from fuel material to cladding during irradiation. A plurality of essentially vertical grooves in the fuel section extend downward and communicate with the accumulator section. The radial depth of the grooves is sufficient to provide a thermal gradient between the hot fuel surface and the relatively cooler cladding surface to allow thermal segregation to take place between the low molecular weight heat transfer gas and high molecular weight fission product gases produced by the fuel material during irradiation.

  6. IN-CELL visual examinations of K east fuel elements

    SciTech Connect

    Pitner, A.L.; Pyecha, T.D., Fluor Daniel Hanford

    1997-03-06

    Nine outer fuel elements were recovered from the K East Basin and transferred to a hot cell for examination. Extensive testing planned for these elements will support the process design for the Integrated Process Strategy (IPS), with emphasis on drying and conditioning behavior. Visual examinations of the fuel elements confirmed that they are appropriate to meet testing objectives to provide design guidance for IPS processing parameters.

  7. VENTED FUEL ELEMENT FOR GAS-COOLED NEUTRONIC REACTORS

    DOEpatents

    Furgerson, W.T.

    1963-12-17

    A hollow, porous-walled fuel element filled with fissionable fuel and provided with an outlet port through its wall is described. In operation in a gas-cooled reactor, the element is connected, through its outlet port, to the vacuum side of a pump that causes a portion of the coolant gas flowing over the exterior surface of the element to be drawn through the porous walls thereof and out through the outlet port. This continuous purging gas flow sweeps away gaseous fission products as they are released by the fissioning fuel. (AEC) A fuel element for a nuclear reactor incorporating a body of metal of melting point lower than the temperature of operation of the reactor and a nuclear fuel in finely divided form dispersed in the body of metal as a settled slurry is presented. (AEC)

  8. Nuclear fuel elements and method of making same

    DOEpatents

    Schweitzer, Donald G.

    1992-01-01

    A nuclear fuel element for a high temperature gas nuclear reactor that has an average operating temperature in excess of 2000.degree. C., and a method of making such a fuel element. The fuel element is characterized by having fissionable fuel material localized and stabilized within pores of a carbon or graphite member by melting the fissionable material to cause it to chemically react with the carbon walls of the pores. The fissionable fuel material is further stabilized and localized within the pores of the graphite member by providing one or more coatings of pyrolytic carbon or diamond surrounding the porous graphite member so that each layer defines a successive barrier against migration of the fissionable fuel from the pores, and so that the outermost layer of pyrolytic carbon or diamond forms a barrier between the fissionable material and the moderating gases used in an associated high temperature gas reactor. The method of the invention provides for making such new elements either as generally spherically elements, or as flexible filaments, or as other relatively small-sized fuel elements that are particularly suited for use in high temperature gas reactors.

  9. NUCLEAR REACTOR FUEL ELEMENT AND METHOD OF MANUFACTURE

    DOEpatents

    Brooks, H.

    1960-04-26

    A description is given for a fuel element comprising a body of uranium metal or an uranium compound dispersed in a matrix material made from magnesium, calcium, or barium and a stainless steel jacket enclosing the body.

  10. Design and Testing of Prototypic Elements Containing Monolithic Fuel

    SciTech Connect

    N.E. Woolstenhulme; M.K. Meyer; D.M. Wachs

    2011-10-01

    The US fuel development team has performed numerous irradiation tests on small to medium sized specimens containing low enriched uranium fuel designs. The team is now focused on qualification and demonstration of the uranium-molybdenum Base Monolithic Design and has entered the next generation of testing with the design and irradiation of prototypic elements which contain this fuel. The designs of fuel elements containing monolithic fuel, such as AFIP-7 (which is currently under irradiation) and RERTR-FE (which is currently under fabrication), are appropriate progressions relative to the technology life cycle. The culmination of this testing program will occur with the design, fabrication, and irradiation of demonstration products to include the base fuel demonstration and design demonstration experiments. Future plans show that design, fabrication, and testing activities will apply the rigor needed for a demonstration campaign.

  11. FUEL ELEMENTS FOR THERMAL-FISSION NUCLEAR REACTORS

    DOEpatents

    Flint, O.

    1961-01-10

    Fuel elements for thermal-fission nuclear reactors are described. The fuel element is comprised of a core of alumina, a film of a metal of the class consisting of copper, silver, and nickel on the outer face of the core, and a coating of an oxide of a metal isotope of the class consisting of Un/sup 235/, U/ sup 233/, and Pu/sup 239/ on the metal f ilm.

  12. Design and experimental investigation into fuel element melting during pulsed heating in the IGRIK

    SciTech Connect

    Levakov, B.G.; Andreev, V.V.; Vasilyev, A.P.

    1995-12-31

    Research has been performed on reactor fuel melting with pulsed input of energy in fuel elements up to 1.3 kj/g. The following were determined: energy input in fuel elements and energy input tempo; fission number distribution by the radius of the fuel element; the temperature of fuel and ampoule walls; and displacement of fuel boundaries.

  13. The quantification of mixture stoichiometry when fuel molecules contain oxidizer elements or oxidizer molecules contain fuel elements.

    SciTech Connect

    Mueller, Charles J.

    2005-05-01

    The accurate quantification and control of mixture stoichiometry is critical in many applications using new combustion strategies and fuels (e.g., homogeneous charge compression ignition, gasoline direct injection, and oxygenated fuels). The parameter typically used to quantify mixture stoichiometry (i.e., the proximity of a reactant mixture to its stoichiometric condition) is the equivalence ratio, /gf. The traditional definition of /gf is based on the relative amounts of fuel and oxidizer molecules in a mixture. This definition provides an accurate measure of mixture stoichiometry when the fuel molecule does not contain oxidizer elements and when the oxidizer molecule does not contain fuel elements. However, the traditional definition of /gf leads to problems when the fuel molecule contains an oxidizer element, as is the case when an oxygenated fuel is used, or once reactions have started and the fuel has begun to oxidize. The problems arise because an oxidizer element in a fuel molecule is counted as part of the fuel, even though it acts as an oxidizer. Similarly, if an oxidizer molecule contains fuel elements, the fuel elements in the oxidizer molecule are misleadingly lumped in with the oxidizer in the traditional definition of /gf. In either case, use of the traditional definition of /gf to quantify the mixture stoichiometry can lead to significant errors. This paper introduces the oxygen equivalence ratio, /gf/gV, a parameter that properly characterizes the instantaneous mixture stoichiometry for a broader class of reactant mixtures than does /gf. Because it is an instantaneous measure of mixture stoichiometry,/gf/gV can be used to track the time-evolution of stoichiometry as a reaction progresses. The relationship between /gf/gV and /gf is shown. Errors are involved when the traditional definition of /gf is used as a measure of mixture stoichiometry with fuels that contain oxidizer elements or oxidizers that contain fuel elements; /gf/gV is used to quantify

  14. Nuclear breeder reactor fuel element with silicon carbide getter

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.

    1987-01-01

    An improved cesium getter 28 is provided in a breeder reactor fuel element or pin in the form of an extended surface area, low density element formed in one embodiment as a helically wound foil 30 located with silicon carbide, and located at the upper end of the fertile material upper blanket 20.

  15. PROCESS OF DISSOLVING FUEL ELEMENTS OF NUCLEAR REACTORS

    DOEpatents

    Wall, E.M.V.; Bauer, D.T.; Hahn, H.T.

    1963-09-01

    A process is described for dissolving stainless-steelor zirconium-clad uranium dioxide fuel elements by immersing the elements in molten lead chloride, adding copper, cuprous chloride, or cupric chloride as a catalyst and passing chlorine through the salt mixture. (AEC)

  16. Catalytic combustion of benzene over CuO-CeO2 mixed oxides.

    PubMed

    Jung, Won Young; Lim, Kwon-Taek; Hong, Seong-Soo

    2014-11-01

    Catalytic combustion of benzene over CuO-CeO2 mixed oxides has been investigated. The CuO-CeO2 mixed oxides were prepared by the combustion method using malic acid as an organic fuel and characterized by XRD, XPS and TPR. For the CuO-CeO2 catalyst with a Cu/(Cu + Ce) molar ratio of more than 0.4, highly dispersed copper oxide species were shown at 2θ = 35.5 degrees and 38.8 degrees. The CuO-CeO2 catalyst prepared using 2.0 M malic acid showed the highest activity, with conversion reaching nearly 100% at 350 degrees C. In addition, the highest activity is shown on Cu0.40 (the index denotes the molar ratio Cu/(Cu + Ce)) sample and then it decreases on Cu0.5 and Cu0.7 samples. PMID:25958554

  17. Space reactor fuel element testing in upgraded TREAT

    SciTech Connect

    Todosow, M.; Bezler, P.; Ludewig, H.; Kato, W.Y.

    1993-01-14

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. initial results suggest that full-scale PBR, elements could be tested at an average energy deposition of {approximately}60--80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of {approximately}100 MW/L may be achievable.

  18. Space reactor fuel element testing in upgraded TREAT

    SciTech Connect

    Todosow, M.; Bezler, P.; Ludewig, H.; Kato, W.Y. )

    1993-01-15

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., is a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggests that full-scale PBR elements could be tested at an average energy deposition of [similar to]60--80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperture limit, average energy deposition of [similar to]100 MW/L may be achievable.

  19. Space reactor fuel element testing in upgraded TREAT

    SciTech Connect

    Todosow, M.; Bezler, P.; Ludewig, H.; Kato, W.Y.

    1993-05-01

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. initial results suggest that full-scale PBR, elements could be tested at an average energy deposition of {approximately}60--80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of {approximately}100 MW/L may be achievable.

  20. Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element

    NASA Astrophysics Data System (ADS)

    Mohammed, Abdul Aziz; Pauzi, Anas Muhamad; Rahman, Shaik Mohmmed Haikhal Abdul; Zin, Muhamad Rawi Muhammad; Jamro, Rafhayudi; Idris, Faridah Mohamad

    2016-01-01

    In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 (233U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintaining the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.

  1. Local Burn-Up Effects in the NBSR Fuel Element

    SciTech Connect

    Brown N. R.; Hanson A.; Diamond, D.

    2013-01-31

    This study addresses the over-prediction of local power when the burn-up distribution in each half-element of the NBSR is assumed to be uniform. A single-element model was utilized to quantify the impact of axial and plate-wise burn-up on the power distribution within the NBSR fuel elements for both high-enriched uranium (HEU) and low-enriched uranium (LEU) fuel. To validate this approach, key parameters in the single-element model were compared to parameters from an equilibrium core model, including neutron energy spectrum, power distribution, and integral U-235 vector. The power distribution changes significantly when incorporating local burn-up effects and has lower power peaking relative to the uniform burn-up case. In the uniform burn-up case, the axial relative power peaking is over-predicted by as much as 59% in the HEU single-element and 46% in the LEU single-element with uniform burn-up. In the uniform burn-up case, the plate-wise power peaking is over-predicted by as much as 23% in the HEU single-element and 18% in the LEU single-element. The degree of over-prediction increases as a function of burn-up cycle, with the greatest over-prediction at the end of Cycle 8. The thermal flux peak is always in the mid-plane gap; this causes the local cumulative burn-up near the mid-plane gap to be significantly higher than the fuel element average. Uniform burn-up distribution throughout a half-element also causes a bias in fuel element reactivity worth, due primarily to the neutronic importance of the fissile inventory in the mid-plane gap region.

  2. Fuel Element for a Nuclear Reactor

    DOEpatents

    Duffy, Jr., J. G.

    1961-05-30

    A lattice-type fissionable fuel structure for a nuclear reactor is offered. The fissionable material is formed into a plurality of rod-like bodies each encased in a fluid-tight jacket. A plurality of spaced longitudinal fins are mounted on the exterior of and extend radially from each jacket, and a portion of the fins extends radially beyond the remainder of the fins. A collar of short lengih for each body is mounted on the extended fins for spacing the bodies, and adjacent bodies abut each other through these collars. Should distortion of the bodies take place, collapse of the outer fins is limited by the shorter fins thereby insuring some coolant flow therethrough at all times.

  3. FUEL ELEMENT FOR A NUCLEAR REACTOR

    DOEpatents

    Duffy, J.G. Jr.

    1961-05-30

    A lattice type fissionable fuel structure for a nuclear reactor is described. The fissionable material is formed into a plurality of rod-llke bodies with each encased in a fluid-tight jacket. A plurality of spaced longitudinal fins are mounted on the exterior and extend radially from each jacket, with a portion of the fins extending radially beyond the remainder of the fins. A collar of short length for each body is mounted on the extended fins for spacing the bodies, and adjacent bodies abut each other through these collars. Should distortion of the bodies take place, coilapse of the outer fins is limited by the shorter flns, thereby insuring some coolant flow at all times. (AEC)

  4. Analysis of the ATR fuel element swaging process

    SciTech Connect

    Richins, W.D.; Miller, G.K.

    1995-12-01

    This report documents a detailed evaluation of the swaging process used to connect fuel plates to side plates in Advanced Test Reactor (ATR) fuel elements. The swaging is a mechanical process that begins with fitting a fuel plate into grooves in the side plates. Once a fuel plate is positioned, a lip on each of two side plate grooves is pressed into the fuel plate using swaging wheels to form the joints. Each connection must have a specified strength (measured in terms, of a pullout force capacity) to assure that these joints do not fail during reactor operation. The purpose of this study is to analyze the swaging process and associated procedural controls, and to provide recommendations to assure that the manufacturing process produces swaged connections that meet the minimum strength requirement. The current fuel element manufacturer, Babcock and Wilcox (B&W) of Lynchburg, Virginia, follows established procedures that include quality inspections and process controls in swaging these connections. The procedures have been approved by Lockheed Martin Idaho Technologies and are designed to assure repeatability of the process and structural integrity of each joint. Prior to July 1994, ATR fuel elements were placed in the Hydraulic Test Facility (HTF) at the Idaho National Engineering Laboratory (AGNAIL), Test Reactor Area (TRA) for application of Boehmite (an aluminum oxide) film and for checking structural integrity before placement of the elements into the ATR. The results presented in this report demonstrate that the pullout strength of the swaged connections is assured by the current manufacturing process (with several recommended enhancements) without the need for- testing each element in the HTF.

  5. The manufacture of LEU fuel elements at Dounreay

    SciTech Connect

    Gibson, J.

    1997-08-01

    Two LEU test elements are being manufactured at Dounreay for test irradiation in the HFR at Petten, The Netherlands. This paper describes the installation of equipment and the development of the fabrication and inspection techniques necessary for the manufacture of LEU fuel plates. The author`s experience in overcoming the technical problems of stray fuel particles, dog-boning, uranium homogeneity and the measurement of uranium distribution is also described.

  6. Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing

    NASA Technical Reports Server (NTRS)

    Bradley, David E.; Mireles, Omar R.; Hickman, Robert R.

    2011-01-01

    Deep space missions with large payloads require high specific impulse (Isp) and relatively high thrust in order to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average Isp. Nuclear thermal rockets (NTR) capable of high Isp thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high temperature hydrogen exposure on fuel elements is limited. The primary concern is the mechanical failure of fuel elements which employ high-melting-point metals, ceramics or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via non-contact RF heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.

  7. Drying damaged K West fuel elements (Summary of whole element furnace runs 1 through 8)

    SciTech Connect

    LAWRENCE, L.A.

    1998-10-13

    N Reactor fuel elements stored in the Hanford K Basins were subjected to high temperatures and vacuum conditions to remove water. Results of the first series of whole element furnace tests i.e., Runs 1 through 8 were collected in this summary report. The report focuses on the six tests with breached fuel from the K West Basin which ranged from a simple fracture at the approximate mid-point to severe damage with cladding breaches at the top and bottom ends with axial breaches and fuel loss. Results of the tests are summarized and compared for moisture released during cold vacuum drying, moisture remaining after drying, effects of drying on the fuel element condition, and hydrogen and fission product release.

  8. FABRICATION OF TUBE TYPE FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Loeb, E.; Nicklas, J.H.

    1959-02-01

    A method of fabricating a nuclear reactor fuel element is given. It consists essentially of fixing two tubes in concentric relationship with respect to one another to provide an annulus therebetween, filling the annulus with a fissionablematerial-containing powder, compacting the powder material within the annulus and closing the ends thereof. The powder material is further compacted by swaging the inner surface of the inner tube to increase its diameter while maintaining the original size of the outer tube. This process results in reduced fabrication costs of powdered fissionable material type fuel elements and a substantial reduction in the peak core temperatures while materially enhancing the heat removal characteristics.

  9. Cryogenic Thermal Expansion of Y-12 Graphite Fuel Elements

    SciTech Connect

    Eash, D. T.

    2013-07-08

    Thermal expansion measurements betwccn 20°K and 300°K were made on segments of three uranium-loaded Y-12 uncoated graphite fuel elements. The thermal expansion of these fuel elements over this temperature range is represented by the equation: {Delta}L/L = -39.42 x 10{sup -5} + 1.10 x 10{sup -7} T + 6.47 x 10{sup -9} T{sup 2} - 8.30 x 10{sup -12} T{sup 3}.

  10. Method and apparatus for diagnosing breached fuel elements

    DOEpatents

    Gross, K.C.; Lambert, J.D.B.; Nomura, S.

    1987-03-02

    The invention provides an apparatus and method for diagnosing breached fuel elements in a nuclear reactor. A detection system measures the activity of isotopes from the cover gas in the reactor. A data acquisition and processing system monitors the detection system and corrects for the effects of the cover-gas clean up system on the measured activity and further calculates the derivative curve of the corrected activity as a function of time. A plotting system graphs the derivative curve, which represents the instantaneous release rate of fission gas from a breached fuel element. 8 figs.

  11. Expert system for surveillance and diagnosis of breach fuel elements

    DOEpatents

    Gross, K.C.

    1988-01-21

    An apparatus and method are disclosed for surveillance and diagnosis of breached fuel elements in a nuclear reactor. A delayed neutron monitoring system provides output signals indicating the delayed neutron activity and age and the equivalent recoil area of a breached fuel element. Sensors are used to provide outputs indicating the status of each component of the delayed neutron monitoring system. Detectors also generate output signals indicating the reactor power level and the primary coolant flow rate of the reactor. The outputs from the detectors and sensors are interfaced with an artificial intelligence-based knowledge system which implements predetermined logic and generates output signals indicating the operability of the reactor. 2 figs.

  12. Expert system for surveillance and diagnosis of breach fuel elements

    DOEpatents

    Gross, Kenny C.

    1989-01-01

    An apparatus and method are disclosed for surveillance and diagnosis of breached fuel elements in a nuclear reactor. A delayed neutron monitoring system provides output signals indicating the delayed neutron activity and age and the equivalent recoil areas of a breached fuel element. Sensors are used to provide outputs indicating the status of each component of the delayed neutron monitoring system. Detectors also generate output signals indicating the reactor power level and the primary coolant flow rate of the reactor. The outputs from the detectors and sensors are interfaced with an artificial intelligence-based knowledge system which implements predetermined logic and generates output signals indicating the operability of the reactor.

  13. Method and apparatus for diagnosing breached fuel elements

    DOEpatents

    Gross, Kenny C.; Lambert, John D. B.; Nomura, Shigeo

    1988-01-01

    The invention provides an apparatus and method for diagnosing breached fuel elements in a nuclear reactor. A detection system measures the activity of isotopes from the cover-gas in the reactor. A data acquisition and processing system monitors the detection system and corrects for the effects of the cover-gas clean up system on the measured activity and further calculates the derivative cure of the corrected activity as a function of time. A plotting system graphs the derivative curve, which represents the instantaneous release rate of fission gas from a breached fuel element.

  14. Finite element analysis of advanced neutron source fuel plates

    SciTech Connect

    Luttrell, C.R.

    1995-08-01

    The proposed design for the Advanced Neutron Source reactor core consists of closely spaced involute fuel plates. Coolant flows between the plates at high velocities. It is vital that adjacent plates do not come in contact and that the coolant channels between the plates remain open. Several scenarios that could result in problems with the fuel plates are studied. Finite element analyses are performed on fuel plates under pressure from the coolant flowing between the plates at a high velocity, under pressure because of a partial flow blockage in one of the channels, and with different temperature profiles.

  15. Methods for making a porous nuclear fuel element

    DOEpatents

    Youchison, Dennis L; Williams, Brian E; Benander, Robert E

    2014-12-30

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  16. NUCLEAR REACTOR FUEL ELEMENTS AND METHOD OF PREPARATION

    DOEpatents

    Kingston, W.E.; Kopelman, B.; Hausner, H.H.

    1963-07-01

    A fuel element consisting of uranium nitride and uranium carbide in the form of discrete particles in a solid coherent matrix of a metal such as steel, beryllium, uranium, or zirconium and clad with a metal such as steel, aluminum, zirconium, or beryllium is described. The element is made by mixing powdered uranium nitride and uranium carbide with powdered matrix metal, then compacting and sintering the mixture. (AEC)

  17. Induction Heating Model of Cermet Fuel Element Environmental Test (CFEET)

    NASA Technical Reports Server (NTRS)

    Gomez, Carlos F.; Bradley, D. E.; Cavender, D. P.; Mireles, O. R.; Hickman, R. R.; Trent, D.; Stewart, E.

    2013-01-01

    Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames. Nuclear Thermal Rockets (NTR) are capable of producing a high specific impulse by employing heat produced by a fission reactor to heat and therefore accelerate hydrogen through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements due to large thermal gradients; therefore, high-melting-point ceramics-metallic matrix composites (cermets) are one of the fuels under consideration as part of the Nuclear Cryogenic Propulsion Stage (NCPS) Advance Exploration System (AES) technology project at the Marshall Space Flight Center. The purpose of testing and analytical modeling is to determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures and obtain data to assess the properties of the non-nuclear support materials. The fission process and the resulting heating performance are well known and do not require that active fissile material to be integrated in this testing. A small-scale test bed; Compact Fuel Element Environmental Tester (CFEET), designed to heat fuel element samples via induction heating and expose samples to hydrogen is being developed at MSFC to assist in optimal material and manufacturing process selection without utilizing fissile material. This paper details the analytical approach to help design and optimize the test bed using COMSOL Multiphysics for predicting thermal gradients induced by electromagnetic heating (Induction heating) and Thermal Desktop for radiation calculations.

  18. METHOD OF PREPARING A FUEL ELEMENT FOR A NUCLEAR REACTOR

    DOEpatents

    Hauth, J.J.; Anicetti, R.J.

    1962-12-01

    A method is described for preparing a fuel element for a nuclear reactor. According to the patent uranium dioxide is compacted in a metal tabe by directlng intense sound waves at the tabe prior to tamp packing or vibration compaction of the powder. (AEC)

  19. METHOD OF FORMING A FUEL ELEMENT FOR A NUCLEAR REACTOR

    DOEpatents

    Layer, E.H. Jr.; Peet, C.S.

    1962-01-23

    A method is given for preparing a fuel element for a nuclear reactor. The method includes the steps of sandblasting a body of uranium dioxide to roughen the surface thereof, depositing a thin layer of carbon thereon by thermal decomposition of methane, and cladding the uranium dioxide body with zirconium by gas pressure bonding. (AEC)

  20. 34. DETAILS AND SECTIONS OF SHIELDING TANK FUEL ELEMENT SUPPORT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. DETAILS AND SECTIONS OF SHIELDING TANK FUEL ELEMENT SUPPORT FRAME. F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-S-4. INEL INDEX CODE NUMBER: 075 0701 60 851 151978. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  1. 36. DETAILS AND SECTIONS OF SHIELDING TANK, FUEL ELEMENT SUPPORT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. DETAILS AND SECTIONS OF SHIELDING TANK, FUEL ELEMENT SUPPORT FRAME AND SUPPORT PLATFORM, AND SAFETY MECHANISM ASSEMBLY (SPRING-LOADED HINGE). F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-S-1. INEL INDEX CODE NUMBER: 075 0701 60 851 151975. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  2. Modeling and Simulation of a Nuclear Fuel Element Test Section

    NASA Technical Reports Server (NTRS)

    Moran, Robert P.; Emrich, William

    2011-01-01

    "The Nuclear Thermal Rocket Element Environmental Simulator" test section closely simulates the internal operating conditions of a thermal nuclear rocket. The purpose of testing is to determine the ideal fuel rod characteristics for optimum thermal heat transfer to their hydrogen cooling/working fluid while still maintaining fuel rod structural integrity. Working fluid exhaust temperatures of up to 5,000 degrees Fahrenheit can be encountered. The exhaust gas is rendered inert and massively reduced in temperature for analysis using a combination of water cooling channels and cool N2 gas injectors in the H2-N2 mixer portion of the test section. An extensive thermal fluid analysis was performed in support of the engineering design of the H2-N2 mixer in order to determine the maximum "mass flow rate"-"operating temperature" curve of the fuel elements hydrogen exhaust gas based on the test facilities available cooling N2 mass flow rate as the limiting factor.

  3. Some parametric flow analyses of a particle bed fuel element

    SciTech Connect

    Dobranich, D.

    1993-05-01

    Parametric calculations are performed, using the SAFSIM computer program, to investigate the fluid mechanics and heat transfer performance of a particle bed fuel element. Both steady-state and transient calculations are included, addressing such issues as flow stability, reduced thrust operation, transpiration drag, coolant conductivity enhancement, flow maldistributions, decay heat removal, flow perturbations, and pulse cooling. The calculations demonstrate the dependence of the predicted results on the modeling assumptions and thus provide guidance as to where further experimental and computational investigations are needed. The calculations also demonstrate that both flow instability and flow maldistribution in the fuel element are important phenomena. Furthermore, results are encouraging that geometric design changes to the element can significantly reduce problems related to these phenomena, allowing improved performance over a wide range of element power densities and flow rates. Such design changes will help to maximize the operational efficiency of space propulsion reactors employing particle bed fuel element technology. Finally, the results demonstrate that SAFSIM is a valuable engineering tool for performing quick and inexpensive parametric simulations addressing complex flow problems.

  4. The OSU Hydro-Mechanical Fuel Test Facility: Standard Fuel Element Testing

    SciTech Connect

    Wade R. Marcum; Brian G. Woods; Ann Marie Phillips; Richard G. Ambrosek; James D. Wiest; Daniel M. Wachs

    2001-10-01

    Oregon State University (OSU) and the Idaho National Laboratory (INL) are currently collaborating on a test program which entails hydro-mechanical testing of a generic plate type fuel element, or standard fuel element (SFE), for the purpose of qualitatively demonstrating mechanical integrity of uranium-molybdenum monolithic plates as compared to that of uranium aluminum dispersion, and aluminum fuel plates due to hydraulic forces. This test program supports ongoing work conducted for/by the fuel development program and will take place at OSU in the Hydro-Mechanical Fuel Test Facility (HMFTF). Discussion of a preliminary test matrix, SFE design, measurement and instrumentation techniques, and facility description are detailed in this paper.

  5. Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing

    NASA Technical Reports Server (NTRS)

    Bradley, D. E.; Mireles, O. R.; Hickman, R. R.

    2011-01-01

    Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames.1,2 Conventional storable propellants produce average specific impulse. Nuclear thermal rockets capable of producing high specific impulse are proposed. Nuclear thermal rockets employ heat produced by fission reaction to heat and therefore accelerate hydrogen, which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K), and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited.3 The primary concern is the mechanical failure of fuel elements that employ high-melting-point metals, ceramics, or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. The purpose of the testing is to obtain data to assess the properties of the non-nuclear support materials, as-fabricated, and determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures. The fission process of the planned fissile material and the resulting heating performance is well known and does not therefore require that active fissile material be integrated in this testing. A small-scale test bed designed to heat fuel element samples via non-contact radio frequency heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.

  6. Method of locating a leaking fuel element in a fast breeder power reactor

    DOEpatents

    Honekamp, John R.; Fryer, Richard M.

    1978-01-01

    Leaking fuel elements in a fast reactor are identified by measuring the ratio of .sup.134 Xe to .sup.133 Xe in the reactor cover gas following detection of a fuel element leak, this ratio being indicative of the power and burnup of the failed fuel element. This procedure can be used to identify leaking fuel elements in a power breeder reactor while continuing operation of the reactor since the ratio measured is that of the gases stored in the plenum of the failed fuel element. Thus, use of a cleanup system for the cover gas makes it possible to identify sequentially a multiplicity of leaking fuel elements without shutting the reactor down.

  7. FISSILE MATERIAL AND FUEL ELEMENTS FOR NEUTRONIC REACTORS

    DOEpatents

    Shaner, B.E.

    1961-08-15

    The fissile material consists of about 64 to 70% (weight) zirconium dioxide, 15 to 19% uranium dioxide, and 8 to 17% calcium oxide. The fissile material is formed into sintered composites which are disposed in a compartmented fuel element, comprising essentially a flat filler plate having a plurality of compartments therein, enclosed in cladding plates of the same material as the filler plate. The resultant fuel has good resistance to corrosion in high temperature pressurized water, good dimensional stability to elevated temperatures, and good resistance to thermal shock. (AEC)

  8. Nuclear reactor fuel element with vanadium getter on cladding

    DOEpatents

    Johnson, Carl E.; Carroll, Kenneth G.

    1977-01-01

    A nuclear reactor fuel element is described which has an outer cladding, a central core of fissionable or mixed fissionable and fertile fuel material and a layer of vanadium as an oxygen getter on the inner surface of the cladding. The vanadium reacts with oxygen released by the fissionable material during irradiation of the core to prevent the oxygen from reacting with and corroding the cladding. Also described is a method for coating the inner surface of small diameter tubes of cladding with a layer of vanadium.

  9. Method for measuring recovery of catalytic elements from fuel cells

    DOEpatents

    Shore, Lawrence; Matlin, Ramail

    2011-03-08

    A method is provided for measuring the concentration of a catalytic clement in a fuel cell powder. The method includes depositing on a porous substrate at least one layer of a powder mixture comprising the fuel cell powder and an internal standard material, ablating a sample of the powder mixture using a laser, and vaporizing the sample using an inductively coupled plasma. A normalized concentration of catalytic element in the sample is determined by quantifying the intensity of a first signal correlated to the amount of catalytic element in the sample, quantifying the intensity of a second signal correlated to the amount of internal standard material in the sample, and using a ratio of the first signal intensity to the second signal intensity to cancel out the effects of sample size.

  10. METHOD AND APPARATUS FOR EXAMINING FUEL ELEMENTS FOR LEAKAGE

    DOEpatents

    Smith, R.R.; Echo, M.W.; Doe, C.B.

    1963-12-31

    A process and a device for the continuous monitoring of fuel elements while in use in a liquid-metal-cooled, argonblanketed nuclear reactor are presented. A fraction of the argon gas is withdrawn, contacted with a negative electrical charge for attraction of any alkali metal formed from argon by neutron reaction, and recycled into the reactor. The electrical charge is introduced into water, and the water is examined for radioactive alkali metals. (AEC)

  11. FUEL ELEMENTS FOR NUCLEAR REACTORS AND PROCESS OF MAKING

    DOEpatents

    Roake, W.E.

    1958-08-19

    A process is described for producing uranium metal granules for use in reactor fuel elements. The granules are made by suspending powdered uramiunn metal or uranium hydride in a viscous, non-reactive liquid, such as paraffin oil, aad pouring the resulting suspension in droplet, on to a bed of powdered absorbent. In this manner the liquid vehicle is taken up by the sorbent and spherical pellets of uranium metal are obtained. The

  12. Selection of Isotopes and Elements for Fuel Cycle Analysis

    SciTech Connect

    Steven J. Piet

    2009-04-01

    Fuel cycle system analysis simulations examine how the selection among fuel cycle options for reactors, fuel, separation, and waste management impact uranium ore utilization, waste masses and volumes, radiotoxicity, heat to geologic repositories, isotope-dependent proliferation resistance measures, and so forth. Previously, such simulations have tended to track only a few actinide and fission product isotopes, those that have been identified as important to a few criteria from the standpoint of recycled material or waste, taken as a whole. After accounting for such isotopes, the residual mass is often characterized as “fission product other” or “actinide other”. However, detailed assessment of separation and waste management options now require identification of key isotopes and residual mass for Group 1A/2A elements (Rb, Cs, Sr, Ba), inert gases (Kr, Xe), halogens (Br, I), lanthanides, transition metals, transuranic (TRU), uranium, actinide decay products. The paper explains the rationale for a list of 81 isotopes and chemical elements to better support separation and waste management assessment in dynamic system analysis models such as Verifiable Fuel Cycle Simulation (VISION)

  13. Fabrication procedures for manufacturing High Flux Isotope Reactor fuel elements - 2

    SciTech Connect

    Knight, R.W.; Morin, R.A.

    1999-12-01

    The original fabrication procedures written in 1968 delineated the manufacturing procedures at that time. Since 1968, there have been a number of procedural changes. This rewrite of the fabrication procedures incorporates these changes. The entire fuel core of this reactor is made up of two fuel elements. Each element consists of one annular array of fuel plates. These annuli are identified as the inner and outer fuel elements, since one fits inside the other. The inner element consists of 171 identical fuel plates, and the outer element contains 369 identical fuel plates differing slightly from those in the inner element. Both sets of fuel plates contain U{sub 3}O{sub 8} powder as the fuel, dispersed in an aluminum powder matrix and clad with aluminum. Procedures for manufacturing and inspection of the fuel elements are described and illustrated.

  14. Coupled thermionic and thermalhydraulic analyses of thermionic fuel elements

    NASA Astrophysics Data System (ADS)

    Pawlowski, Ronald A.; Klein, Andrew C.; McVey, John B.

    The authors discuss a heat transfer analysis of a 'single cell' TFE (thermionic fuel element), that is, within the TFE a single emitter and collector cover the entire length of the UO2 fuel (approximately 25 cm). The electrical conversion performance of the TFE is investigated for a range of operating conditions. The dependence of maximum fuel temperature on the TFE operating parameters, such as total thermal power, current output, and coolant inlet temperature, is also discussed. A computer code (TFEHX) to model the thermal and electrical performance of the TFE has been developed. The results from the TFEHX code consist of a wide range of TFE operational parameters, including the temperature distributions within the TFE, the overall electrical power output, the conversion efficiency, the voltage difference between the electrode leads, the electrical losses and the ohmic heating in the electrodes, and the coolant temperature profile. Results from this code indicate that a single-celled TFE is more efficient and is less likely to experience melting of its fuel if a uniform amount of heat is generated along its length.

  15. Plutonium-uranium mixed oxide characterization by coupling micro-X-ray diffraction and absorption investigations

    NASA Astrophysics Data System (ADS)

    Degueldre, C.; Martin, M.; Kuri, G.; Grolimund, D.; Borca, C.

    2011-09-01

    Plutonium-uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The potential differences of metal redox state and microstructural developments of the matrix before and after irradiation are commonly analysed by electron probe microanalysis. In this work the structure and next-neighbor atomic environments of Pu and U oxide features within unirradiated homogeneous MOX and irradiated (60 MW d kg -1) MOX samples was analysed by micro-X-ray fluorescence (μ-XRF), micro-X-ray diffraction (μ-XRD) and micro-X-ray absorption fine structure (μ-XAFS) spectroscopy. The grain properties, chemical bonding, valences and stoichiometry of Pu and U are determined from the experimental data gained for the unirradiated as well as for irradiated fuel material examined in the center of the fuel as well as in its peripheral zone (rim). The formation of sub-grains is observed as well as their development from the center to the rim (polygonization). In the irradiated sample Pu remains tetravalent (>95%) and no (<5%) Pu(V) or Pu(VI) can be detected while the fuel could undergo slight oxidation in the rim zone. Any slight potential plutonium oxidation is buffered by the uranium dioxide matrix while locally fuel cladding interaction could also affect the redox of the fuel.

  16. Triaxial Swirl Injector Element for Liquid-Fueled Engines

    NASA Technical Reports Server (NTRS)

    Muss, Jeff

    2010-01-01

    A triaxial injector is a single bi-propellant injection element located at the center of the injector body. The injector element consists of three nested, hydraulic swirl injectors. A small portion of the total fuel is injected through the central hydraulic injector, all of the oxidizer is injected through the middle concentric hydraulic swirl injector, and the balance of the fuel is injected through an outer concentric injection system. The configuration has been shown to provide good flame stabilization and the desired fuel-rich wall boundary condition. The injector design is well suited for preburner applications. Preburner injectors operate at extreme oxygen-to-fuel mass ratios, either very rich or very lean. The goal of a preburner is to create a uniform drive gas for the turbomachinery, while carefully controlling the temperature so as not to stress or damage turbine blades. The triaxial injector concept permits the lean propellant to be sandwiched between two layers of the rich propellant, while the hydraulic atomization characteristics of the swirl injectors promote interpropellant mixing and, ultimately, good combustion efficiency. This innovation is suited to a wide range of liquid oxidizer and liquid fuels, including hydrogen, methane, and kerosene. Prototype testing with the triaxial swirl injector demonstrated excellent injector and combustion chamber thermal compatibility and good combustion performance, both at levels far superior to a pintle injector. Initial testing with the prototype injector demonstrated over 96-percent combustion efficiency. The design showed excellent high -frequency combustion stability characteristics with oxygen and kerosene propellants. Unlike the more conventional pintle injector, there is not a large bluff body that must be cooled. The absence of a protruding center body enhances the thermal durability of the triaxial swirl injector. The hydraulic atomization characteristics of the innovation allow the design to be

  17. Corrosion studies in fuel element reprocessing environments containing nitric acid

    SciTech Connect

    Beavers, J A; White, R R; Berry, W E; Griess, J C

    1982-04-01

    Nitric acid is universally used in aqueous fuel element reprocessing plants; however, in the processing scheme being developed by the Consolidated Fuel Reprocessing Program, some of the equipment will be exposed to nitric acid under conditions not previously encountered in fuel element reprocessing plants. A previous report presented corrosion data obtained in hyperazeotropic nitric acid and in concentrated magnesium nitrate solutions used in its preparation. The results presented in this report are concerned with the following: (1) corrosion of titanium in nitric acid; (2) corrosion of nickel-base alloys in a nitric acid-hydrofluoric acid solution; (3) the formation of Cr(VI), which enhances corrosion, in nitric acid solutions; and (4) corrosion of mechanical pipe connectors in nitric acid. The results show that the corrosion rate of titanium increased with the refreshment rate of boiling nitric acid, but the effect diminished rapidly as the temperature decreased. The addition of iodic acid inhibited attack. Also, up to 200 ppM of fluoride in 70% HNO/sub 3/ had no major effect on the corrosion of either titanium or tantalum. In boiling 8 M HNO/sub 3/-0.05 M HF, Inconel 671 was more resistant than Inconel 690, but both alloys experienced end-grain attack. In the case of Inconel 671, heat treatment was very important; annealed and quenched material was much more resistant than furnace-cooled material.The rate of oxidation of Cr(III) to Cr(VI) increased significantly as the nitric acid concentration increased, and certain forms of ruthenium in the solution seemed to accelerate the rate of formation. Mechanical connectors of T-304L stainless steel experienced end-grain attack on the exposed pipe ends, and seal rings of both stainless steel and a titanium alloy (6% Al-4% V) underwent heavy attack in boiling 8 M HNO/sub 3/.

  18. A mechanistic code for intact and defective nuclear fuel element performance

    NASA Astrophysics Data System (ADS)

    Shaheen, Khaled

    During reactor operation, nuclear fuel elements experience an environment featuring high radiation, temperature, and pressure. Predicting in-reactor performance of nuclear fuel elements constitutes a complex multi-physics problem, one that requires numerical codes to be solved. Fuel element performance codes have been developed for different reactor and fuel designs. Most of these codes simulate fuel elements using one-or quasi-two-dimensional geometries, and some codes are only applicable to steady state but not transient behaviour and vice versa. Moreover, while many conceptual and empirical separate-effects models exist for defective fuel behaviour, wherein the sheath is breached allowing coolant ingress and fission gas escape, there have been few attempts to predict defective fuel behaviour in the context of a mechanistic fuel performance code. Therefore, a mechanistic fuel performance code, called FORCE (Fuel Operational peRformance Computations in an Element) is proposed for the time-dependent behaviour of intact and defective CANDU nuclear fuel elements. The code, which is implemented in the COMSOL Multiphysics commercial software package, simulates the fuel, sheath, and fuel-to-sheath gap in a radial-axial geometry. For intact fuel performance, the code couples models for heat transport, fission gas production and diffusion, and structural deformation of the fuel and sheath. The code is extended to defective fuel performance by integrating an adapted version of a previously developed fuel oxidation model, and a model for the release of radioactive fission product gases from the fuel to the coolant. The FORCE code has been verified against the ELESTRES-IST and ELESIM industrial code for its predictions of intact fuel performance. For defective fuel behaviour, the code has been validated against coulometric titration data for oxygen-to-metal ratio in defective fuel elements from commercial reactors, while also being compared to a conceptual oxidation model

  19. Neutronics benchmark for the Quad Cities-1 (Cycle 2) mixed oxide assembly irradiation

    SciTech Connect

    Fisher, S.E.; Difilippo, F.C.

    1998-04-01

    Reactor physics computer programs are important tools that will be used to estimate mixed oxide fuel (MOX) physics performance in support of weapons grade plutonium disposition in US and Russian Federation reactors. Many of the computer programs used today have not undergone calculational comparisons to measured data obtained during reactor operation. Pin power, the buildup of transuranics, and depletion of gadolinium measurements were conducted (under Electric Power Research Institute sponsorship) on uranium and MOX pins irradiated in the Quad Cities-1 reactor in the 1970`s. These measurements are compared to modern computational models for the HELIOS and SCALE computer codes. Good agreement on pin powers was obtained for both MOX and uranium pins. The agreement between measured and calculated values of transuranic isotopes was mixed, depending on the particular isotope.

  20. The effect of coprecipitation in some key spent fuel elements

    NASA Astrophysics Data System (ADS)

    Quiñones, J.; Serrano, J.; Diaz Arocas, P.

    2001-09-01

    Performance assessment (PA) of high-level waste (HLW) repositories needs to know real aqueous concentrations of key radionuclides under repository conditions for assuring the safety of the emplacement. The scarcity of these values under repository conditions leads to the use, in the PA studies, of the solubility of pure phases, which is a conservative assumption. Coprecipitation experiments are a very useful tool for giving realistic solubilities of key radionuclides. In this work, experimental data obtained from spent fuel (SF) and SIMFUEL coprecipitation tests under granite and saline conditions are presented. The experimental concentrations measured for several elements when equilibrium was achieved were much lower than expected considering only the solubility of pure phases. To explain this discrepancy, a tentative approach for modelling these experimental leaching and precipitation results of uranium, plutonium, americium, and strontium taking into account solid solution formations was made.

  1. Analysis of Ya-21u thermionic fuel elements

    SciTech Connect

    Paramonov, D.V.; El-Genk, M.S.

    1996-12-01

    The Ya-21u unit of the Soviet-made TOPAZ-II power system has recently been tested at the Thermionic Evaluation Facility in Albuquerque, New Mexico. A change in the unit performance was measured during these tests. In an attempt to identify the causes of this change performance, data were examined and used to estimate surface properties of electrodes of thermionic fuel elements (TFEs) of the power system. The effective emissivity was estimated at {approximately}0.03 to 0.035 higher than for as-fabricated TFE and cesiated work functions of the electrodes, which were higher than for as-fabricated TFEs. These changes in the effective emissivity and cesiated work functions, caused by gaseous impurities and air incursion in the TFEs interelectrode gap, lowered both the emitter temperature and the output load voltage thus contributing to the measured decrease in output power.

  2. Thermionic Fuel Element performance: TFE Verification Program. Final test report

    SciTech Connect

    Not Available

    1994-06-01

    The program objective is to demonstrate the technology readiness of a Thermionic Fuel Element (TFE) suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW(e) range, and a full power life of 7 years. A TFE was designed that met the reliability and lifetime requirements for a 2 MW(e) conceptual reactor design. Analysis showed that this TFE could be used over the range of 0.5 to 5 megawatts. This was used as the basis for designing components for test and evaluation. The demonstration of a 7-year component lifetime capability was through the combined use of analytical models and accelerated, confirmatory tests in a fast test reactor. Iterative testing was performed in which the results of one test series led to evolutionary improvements in the next test specimens. The TFE components underwent screening and initial development testing in ex-reactor tests. Several design and materials options were considered for each component. As screening tests permitted, down selection occurred to very specific designs and materials. In parallel with ex-reactor testing, and fast reactor component testing, components were integrated into a TFE and tested in the TRIGA test reactor at GA. Realtime testing of partial length TFEs was used to test support, alignment and interconnective TFE components, and to verify TFE performance in-reactor with integral cesium reservoirs. Realtime testing was also used to verify the relation between TFE performance and fueled emitter swelling, to test the durability of intercell insulation, to check temperature distributions, and to verify the adequacy over time of the fission gas venting channels. Predictions of TFE lifetime rested primarily on the accelerated component testing results, as correlated and extended to realtime by the use of analytical models.

  3. Americium characterization by X-ray fluorescence and absorption spectroscopy in plutonium uranium mixed oxide

    NASA Astrophysics Data System (ADS)

    Degueldre, Claude; Cozzo, Cedric; Martin, Matthias; Grolimund, Daniel; Mieszczynski, Cyprian

    2013-06-01

    Plutonium uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The actinides in these fuels need to be analyzed after irradiation for assessing their behaviour with regard to their environment and the coolant. In this work the study of the atomic structure and next-neighbour environment of Am in the (Pu,U)O2 lattice in an irradiated (60 MW d kg-1) MOX sample was performed employing micro-X-ray fluorescence (µ-XRF) and micro-X-ray absorption fine structure (µ-XAFS) spectroscopy. The chemical bonds, valences and stoichiometry of Am (˜0.66 wt%) are determined from the experimental data gained for the irradiated fuel material examined in its peripheral zone (rim) of the fuel. In the irradiated sample Am builds up as Am3+ species within an [AmO8]13- coordination environment (e.g. >90%) and no (<10%) Am(IV) or (V) can be detected in the rim zone. The occurrence of americium dioxide is avoided by the redox buffering activity of the uranium dioxide matrix.

  4. Electrolytic reduction of a simulated oxide spent fuel and the fates of representative elements in a Li2O-LiCl molten salt

    NASA Astrophysics Data System (ADS)

    Park, Wooshin; Choi, Eun-Young; Kim, Sung-Wook; Jeon, Sang-Chae; Cho, Young-Hwan; Hur, Jin-Mok

    2016-08-01

    A series of electrolytic reduction experiments were carried out using a simulated oxide spent fuel to investigate the reduction behavior of elements in a mixed oxide condition and the fates of elements in the reduction process with 1.0 wt% Li2O-LiCl. It was found out that 155% of the theoretical charge was enough to reduce the simulated. Te and Eu were expected to possibly exist in the precipitate and on the anode surface, whereas Ba and Sr showed apparent dissolution behaviors. Rare earths showed relatively low metal fractions from 28.2 to 34.0% except for Y. And the solubility of rare earths was observed to be low due to the low concentration of Li2O. The reduction of U was successful as expected showing 99.8% of a metal fraction. Also it was shown that the reduction of ZrO2 would be effective when a relatively small amount was included in a metal oxide mixture.

  5. Direct Conversion of Bio-ethanol to Isobutene on Nanosized ZnxZryOz Mixed Oxides with Balanced Acid–Base Sites

    SciTech Connect

    Sun, Junming; Zhu, Kake; Gao, Feng; Wang, Chong M.; Liu, Jun; Peden, Charles HF; Wang, Yong

    2011-06-17

    Bio-mass conversion has attracted increasing research interests to produce bio-fuels with bio-ethanol being a major product. Development of advanced processes to further upgrade bio-ethanol to other value added fuels or chemicals are pivotal to improving the economics of biomass conversion and deversifying the utilization of biomass resources. In this paper, for the first time, we report the direct conversion of bio-ethanol to isobutene with high yield (~83%) on a multifunctional ZnxZryOz mixed oxide with a dedicated balance of surface acid-base properties. This work illustrates the significance of rational design of a multifunctional mixed oxide catalyst for one step bio-ethanol conversion to a value-added intermediate, isobutene, for chemical and fuel production. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  6. O/M RATIO MEASUREMENT IN PURE AND MIXED OXIDE FULES - WHERE ARE WE NOW?

    SciTech Connect

    J. RUBIN; ET AL

    2000-12-01

    The oxygen-to-metal (O/M) ratio is one of the most critical parameters of nuclear fuel fabrication, and its measurement is closely monitored for manufacturing process control and to ensure the service behavior of the final product. Thermogravimetry is the most widely used method, the procedure for which has remained largely unchanged since its development some thirty years ago. It was not clear to us, however, that this method is still the optimum one in light of advances in instrumentation, and in the current regulatory environment, particularly with regard to waste management and disposal. As part of the MOX fuel fabrication program at Los Alamos, we conducted a comprehensive review of methods for O/M measurements in UO{sub 2}, PuO{sub 2} and mixed oxide fuels for thermal reactors. A concerted effort was made to access information not available in the open literature. We identified approximately thirty five experimental methods that (a) have been developed with the intent of measuring O/M, (b) provided O/M indirectly by suitable reduction of the measured data, or (c) could provide O/M data with suitable data reduction or when combined with other methods. We will discuss the relative strengths and weaknesses of these methods in their application to current routine and small-lot production environment.

  7. Subcritical Noise Analysis Measurements with Fresh and Spent Research Reactor Fuels Elements

    SciTech Connect

    Valentine, T.E.; Mihalczo, J.T.; Kryter, R.C.; Miller, V.C.

    1999-02-01

    The verification of the subcriticality is of utmost importance for the safe transportation and storage of nuclear reactor fuels. Transportation containers and storage facilities are designed such that nuclear fuels remain in a subcritical state. Such designs often involve excess conservatism because of the lack of relevant experimental data to verify the accuracy of Monte Carlo codes used in nuclear criticality safety analyses. A joint experimental research program between Oak Ridge National Laboratory, Westinghouse Safety Management Solutions, Inc., and the University of Missouri was initiated to obtain measured quantities that could be directly related to the subcriticality of simple arrays of Missouri University Research Reactor (MURR) fuel elements. A series of measurement were performed to assess the reactivity of materials such as BORAL, stainless steel, aluminum, and lead that are typically used in the construction of shipping casks. These materials were positioned between the fuel elements. In addition, a limited number of measurements were performed with configurations of fresh and spent (irradiated) fuel elements to ascertain the reactivity of the spent fuel elements. In these experiments, fresh fuel elements were replaced by spent fuel elements such that the subcritical reactivity change could be measured. The results of these measurements were used by Westinghouse Safety Management Solutions to determine the subcriticality of MURR fuel elements isolated by absorbing materials. The measurements were interpreted using the MCNP-DSP Monte Carlo code to obtain the subcritical neutron multiplication factor k(sub eff), and the bias in K(sub eff) that are used in criticality safety analyses.

  8. Description of fuel element brush assembly`s fabrication for 105-K west

    SciTech Connect

    Maassen, D. P.

    1997-10-15

    This report is a description of the process to redesign and fabricate, as well as, describe the features of the Fuel Element Brush Assembly used in the 105-K West Basin. This narrative description will identify problems that occurred during the redesigning and fabrication of the 105-K West Basin Fuel Element Brush Assembly and specifically address their solutions.

  9. Ground test facilities for evaluating nuclear thermal propulsion engines and fuel elements

    SciTech Connect

    Allen, G.C.; Beck, D.F.; Harmon, C.D.; Shipers, L.R.

    1992-08-01

    Interagency panels evaluating nuclear thermal propulsion development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and design issues of a proposed ground test complex for evaluating nuclear thermal propulsion engines and fuel elements being developed for the Space Nuclear Thermal Propulsion (SNTP) program. 2 refs.

  10. Nuclear breeder reactor fuel element with axial tandem stacking and getter

    DOEpatents

    Gibby, Ronald L.; Lawrence, Leo A.; Woodley, Robert E.; Wilson, Charles N.; Weber, Edward T.; Johnson, Carl E.

    1981-01-01

    A breeder reactor fuel element having a tandem arrangement of fissile and fertile fuel with a getter for fission product cesium disposed between the fissile and fertile sections. The getter is effective at reactor operating temperatures to isolate the cesium generated by the fissile material from reacting with the fertile fuel section.

  11. Multidisciplinary Simulation of Graphite-Composite and Cermet Fuel Elements for NTP Point of Departure Designs

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E.; Schnitzler, Bruce G.

    2015-01-01

    This paper compares the expected performance of two Nuclear Thermal Propulsion fuel types. High fidelity, fluid/thermal/structural + neutronic simulations help predict the performance of graphite-composite and cermet fuel types from point of departure engine designs from the Nuclear Thermal Propulsion project. Materials and nuclear reactivity issues are reviewed for each fuel type. Thermal/structural simulations predict thermal stresses in the fuel and thermal expansion mis-match stresses in the coatings. Fluid/thermal/structural/neutronic simulations provide predictions for full fuel elements. Although NTP engines will utilize many existing chemical engine components and technologies, nuclear fuel elements are a less developed engine component and introduce design uncertainty. Consequently, these fuel element simulations provide important insights into NTP engine performance.

  12. Conversion and evaluation of the THOR reactor core to TRIGA fuel elements

    SciTech Connect

    Li, S.-H.; Shiau, L.-C.

    1990-07-01

    The THOR reactor is a pool type 1 MW research reactor and has been operated since 1961. The original MTR fuel elements have been gradually replaced by TRIGA fuel elements since 1977 and the conversion completed in 1987. The calculations were performed for various core configurations by using computer codes, WIMS/CITATION. The computing results have been evaluated and compared with the core measurements after the fuel conversion. The analysis results are in good correspondence with the measurements. (author)

  13. Drying Results of K-Basin Fuel Element 2660M (Run 7)

    SciTech Connect

    B.M. Oliver; G.S. Klinger; J. Abrefah; S.C. Marschman; P.J. MacFarlan; G.A. Ritter

    1999-07-26

    The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks in the basin have been detected and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford Site (WHC 1995). Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 8.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the seventh of those tests, which was conducted on an N-Reactor outer fuel element removed from K-West canister 2660M. This element (referred to as Element 2660M) was stored underwater in the K-West Basin from 1983 until 1996. Element 2660M was subjected to a combination of low- and high-temperature vacuum drying treatments that were intended to mimic, wherever possible, the fuel treatment strategies of the IPS. The system used for the drying test was the Whole Element Furnace Testing System, described in Section 2.0, located in the Postirradiation Testing Laboratory (PTL, 327 Building). The test conditions and methodologies are given in Section 3.0. Inspections of the fuel element before and after the test are provided in Section 4.0. The experimental results are provided in Section 5.0, and discussed in Section 6.0.

  14. ZPPR FUEL ELEMENT THERMAL STRESS-STRAIN ANALYSIS

    SciTech Connect

    Charles W. Solbrig; Jason Andrus; Chad Pope

    2014-04-01

    The design temperature of high plutonium concentration ZPPR fuel assemblies is 600 degrees C. Cladding integrity of the 304L stainless steel cladding is a significant concern with this fuel since even small holes can lead to substantial fuel degradation. Since the fuel has a higher coefficient of thermal expansion than the cladding, an investigation of the stress induced in the cladding due to the differential thermal expansion of fuel and cladding up to the design temperature was conducted. Small holes in the cladding envelope would be expected to lead to the fuel hydriding and oxidizing into a powder over a long period of time. This is the same type of chemical reaction chain that exists in the degradion of the high uranium concentration ZPPR fuel. Unfortunately, the uranium fuel was designed with vents which allowed this degradation to occur. The Pu cladding is sealed so only fuel with damaged cladding would be subject to this damage. The thermal stresses that can be developed in the fuel cladding have been calculated in in this paper and compared to the ultimate tensile stress of the cladding. The conclusion is drawn that thermal stresses cannot induce holes in the cladding even for the highest storage temperatures predicted in calculations (292°C). In fact, thermal stress can not cause cladding failure as long as the fuel temperatures are below the design limit of 600 degrees C (1,112 degrees F).

  15. Chemical bonds and vibrational properties of ordered (U, Np, Pu) mixed oxides

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Zhang, Ping

    2013-01-01

    We use density functional theory +U to investigate the chemical bonding characters and vibrational properties of the ordered (U, Np, Pu) mixed oxides (MOXs), UNpO4,NpPuO4, and UPuO4. It is found that the 5f electronic states of different actinide elements keep their localized characters in all three MOXs. The occupied 5f electronic states of different actinide elements do not overlap with each other and tend to distribute over the energy band gap of the other actinide element's 5f states. As a result, the three ordered MOXs all show smaller band gaps than those of the component dioxides, with values of 0.91, 1.47, and 0.19 eV for UNpO4,NpPuO4, and UPuO4, respectively. Through careful charge density analysis, we further show that the U-O and Pu-O bonds in MOXs show more ionic character than in UO2 and PuO2, while the Np-O bonds show more covalent character than in NpO2. The change in covalencies in the chemical bonds leads to vibrational frequencies of oxygen atoms that are different in MOXs.

  16. Measurement of dynamic interaction between a vibrating fuel element and its support

    SciTech Connect

    Fisher, N.J.; Tromp, J.H.; Smith, B.A.W.

    1996-12-01

    Flow-induced vibration of CANDU{reg_sign} fuel can result in fretting damage of the fuel and its support. A WOrk-Rate Measuring Station (WORMS) was developed to measure the relative motion and contact forces between a vibrating fuel element and its support. The fixture consists of a small piece of support structure mounted on a micrometer stage. This arrangement permits position of the support relative to the fuel element to be controlled to within {+-} {micro}m. A piezoelectric triaxial load washer is positioned between the support and micrometer stage to measure contact forces, and a pair of miniature eddy-current displacement probes are mounted on the stage to measure fuel element-to-support relative motion. WORMS has been utilized to measure dynamic contact forces, relative displacements and work-rates between a vibrating fuel element and its support. For these tests, the fuel element was excited with broadband random force excitation to simulate flow-induced vibration due to axial flow. The relationship between fuel element-to-support gap or preload (i.e., interference or negative gap) and dynamic interaction (i.e., relative motion, contact forces and work-rates) was derived. These measurements confirmed numerical simulations of in-reactor interaction predicted earlier using the VIBIC code.

  17. Support grid for fuel elements in a nuclear reactor

    DOEpatents

    Finch, Lester M.

    1977-01-01

    A support grid is provided for holding nuclear fuel rods in a rectangular array. Intersecting sheet metal strips are interconnected using opposing slots in the strips to form a rectangular cellular grid structure for engaging the sides of a multiplicity of fuel rods. Spring and dimple supports for engaging fuel and guide rods extending through each cell in the support grid are formed in the metal strips with the springs thus formed being characterized by nonlinear spring rates.

  18. Finite element analysis of monolithic solid oxide fuel cells

    SciTech Connect

    Saigal, A. . Dept. of Mechanical Engineering); Majumdar, S. )

    1992-01-01

    This paper investigates the stress and fracture behavior of a monolithic solid oxide fuel cell (MSOFC) currently under joint development by Allied Signal Corporation and Argonne National Laboratory. The MSOFC is an all-ceramic fuel cell capable of high power density and tolerant of a variety of hydrocarbon fuels, making it potentially attractive for stationary utility and mobile transportation systems. The monolithic design eliminates inactive structural supports, increases active surface area, and lowers voltage losses caused by internal resistance.

  19. Finite element analysis of monolithic solid oxide fuel cells

    SciTech Connect

    Saigal, A.; Majumdar, S.

    1992-04-01

    This paper investigates the stress and fracture behavior of a monolithic solid oxide fuel cell (MSOFC) currently under joint development by Allied Signal Corporation and Argonne National Laboratory. The MSOFC is an all-ceramic fuel cell capable of high power density and tolerant of a variety of hydrocarbon fuels, making it potentially attractive for stationary utility and mobile transportation systems. The monolithic design eliminates inactive structural supports, increases active surface area, and lowers voltage losses caused by internal resistance.

  20. Neutron and gamma radiography of UO{sub 2} and TRIGA fuel elements

    SciTech Connect

    Robinson, A.H.; Gao, Y.C.; Johnson, A.G.; Ringle, J.C.

    1982-07-01

    The Oregon State TRIGA Reactor neutron radiography facility has been used to produce both neutron and gamma radiographs of reactor fuel. In this paper a comparison of the applicability of neutron and gamma radiography to both UO{sub 2} fuel pins and TRIGA fuel elements is made. In the case of UO{sub 2} fuel, conventional thermal neutron radiography produces excellent quality radiographs. These radiographs may be used to detect various defects in the fuel such as enrichment differences, cracks, end-capping, inclusions, etc. For TRIGA fuel elements, conventional thermal neutron radiography will not show the internal structure. This is due to the high hydrogen content of the fuel. These elements are typically 8.5 w/o uranium in Zr-H{sub 1.7}; the density of hydrogen in the fuel being about 80 percent that of water. Further, while epithermal radiography significantly improves the radiographs, defects may go undetected. As an alternative to neutron radiography, high energy gamma radiographs of TRIGA fuel elements have been taken using the same facility. The gamma spectrum emitted by the reactor core is sufficiently high in energy that very good radiographs may be obtained with this technique. These radiographs show excellent detail for the internal structure of the TRIGA fuel. (author)

  1. Method for disposing of radioactive graphite and silicon carbide in graphite fuel elements

    SciTech Connect

    Gay, R.L.

    1995-09-12

    Method is described for destroying radioactive graphite and silicon carbide in fuel elements containing small spheres of uranium oxide coated with silicon carbide in a graphite matrix, by treating the graphite fuel elements in a molten salt bath in the presence of air, the salt bath comprising molten sodium-based salts such as sodium carbonate and a small amount of sodium sulfate as catalyst, or calcium-based salts such as calcium chloride and a small amount of calcium sulfate as catalyst, while maintaining the salt bath in a temperature range of about 950 to about 1,100 C. As a further feature of the invention, large radioactive graphite fuel elements, e.g. of the above composition, can be processed to oxidize the graphite and silicon carbide, by introducing the fuel element into a reaction vessel having downwardly and inwardly sloping sides, the fuel element being of a size such that it is supported in the vessel at a point above the molten salt bath therein. Air is bubbled through the bath, causing it to expand and wash the bottom of the fuel element to cause reaction and destruction of the fuel element as it gradually disintegrates and falls into the molten bath. 4 figs.

  2. Radioactive Fission Product Release from Defective Light Water Reactor Fuel Elements

    SciTech Connect

    Konyashov, Vadim V.; Krasnov, Alexander M.

    2002-04-15

    Results are provided of the experimental investigation of radioactive fission product (RFP) release, i.e., krypton, xenon, and iodine radionuclides from fuel elements with initial defects during long-term (3 to 5 yr) irradiation under low linear power (5 to 12 kW/m) and during special experiments in the VK-50 vessel-type boiling water reactor.The calculation model for the RFP release from the fuel-to-cladding gap of the defective fuel element into coolant was developed. It takes into account the convective transport in the fuel-to-cladding gap and RFP sorption on the internal cladding surface and is in good agreement with the available experimental data. An approximate analytical solution of the transport equation is given. The calculation dependencies of the RFP release coefficients on the main parameters such as defect size, fuel-to-cladding gap, temperature of the internal cladding surface, and radioactive decay constant were analyzed.It is shown that the change of the RFP release from the fuel elements with the initial defects during long-term irradiation is, mainly, caused by fuel swelling followed by reduction of the fuel-to-cladding gap and the fuel temperature. The calculation model for the RFP release from defective fuel elements applicable to light water reactors (LWRs) was developed. It takes into account the change of the defective fuel element parameters during long-term irradiation. The calculation error according to the program does not exceed 30% over all the linear power change range of the LWR fuel elements (from 5 to 26 kW/m)

  3. Thermal impact of an eccentric annular flow around a mixed-oxide pin - An in-pile observation

    SciTech Connect

    Lee, M.J.; Strain, R.V.; Lambert, J.D.B.; Feldman, E.E. ); Nomura, S. )

    1989-11-01

    In a typical subassembly of a liquid-metal reactor, slightly unsymmetric coolant flow and temperature distribution around fuel pins is common and inevitable. The geometric location away from the subassembly center and the irradiation-induced rod bowing are among the primary reasons for such occurrences. Studies of the hydrodynamics of the skewed coolant distribution and the associated fuel pin heat transfer are extensive in both computer modeling and laboratory experimental work. In-pile verification of the phenomenon, however, has been rare. High temperature in fuel pins and the perturbation from temperature-monitoring devices discourage such an endeavor. Recent evidence of the sensitive response of the fuel-sodium reaction product (FSRP) to its decomposition temperature, however, might make in-pile verification possible. The clearly demarcated interface of the FSRP would serve as an excellent thermal monitor that reveals the temperature contour within the fuel. This finding from the postirradiation examination (PIE) of mixed-oxide (MOX) pins, is one of the spin-offs of the run-beyond-cladding-breach (RBCB) program jointly sponsored by the U.S. Department of Energy and the Power Reactor and Nuclear Fuel Development Corporation of Japan. The FSRP fuel interface is thus a good benchmark for verifying fuel and coolant temperature distributions. The RBCB experiment and the associated analysis are discussed and conclusions are presented.

  4. Analysis of cocked fuel elements in the AFRRI TRIGA Mark-F reactor

    SciTech Connect

    Sholtis, Joseph A. Jr.

    1982-07-01

    The Armed Forces Radiobiology Research Institute (AFRRI) TRIGA Mark-F pulsing reactor has experienced eight cocked fuel elements during the period 5 November 1974 through 17 February 1982. Although there are no adverse health and safety consequences associated with their occurrence and there is no credible potential for system damage, cocked TRIGA fuel elements do cause inconvenience to the reactor staff and a temporary delay in operations. This paper presents the history of cocked TRIGA fuel elements at AFRRI, discusses possible mechanisms for their occurrence, and outlines a plan to isolate and ultimately determine their actual cause.

  5. Inhalation of U aerosols from UO2 fuel element fabrication.

    PubMed

    Schieferdecker, H; Dilger, H; Doerfel, H; Rudolph, W; Anton, R

    1985-01-01

    Publication No. 30 of the International Commission on Radiological Protection (ICRP) assigns the uranium oxides UO2 and U3O8 to transportability class Y, i.e. the half-life of these compounds in the lungs is about 500 days. This assignment seemed not to be in accordance with our experience resulting from incorporation surveillance during UO2 fuel element fabrication. Persons who worked in atmospheres containing UO2 aerosols with activity concentrations significantly above the derived air concentrations (DAC) for class Y U showed much lower activity in the lungs than would be expected according to the ICRP. To understand this discrepancy, aerosol concentrations and aerosol particle-size distributions at work places with the possibility of UO2 incorporation, the activity of urine and feces and the lung activity of persons working at these places were measured in an investigation program. The results are only consistent with the ICRP lung model if one uses a measured biological half-life in the lungs of 109 days and a measured AMAD of 8.2 micron instead of the ICRP standard assumptions of 500 days and 1.0 micron, respectively. ICRP Publication No. 30 recommends application of specific parameters for health physics instead of standard model values. For the special conditions in our UO2 fuel fabrication plant we therefore derive limits of air concentrations, lung activities and fecal and urinary activity concentrations by applying our measured particle-size and lung-retention parameters to the ICRP model. Our special derived limits in comparison to class Y limits for U after ICRP Publication No. 30 for a 1-micron AMAD and 500-day half-life (in brackets) are: (a) annual limit of intake: 6 X 10(4) Bq/y (1 X 10(3) Bq/y); (b) derived air concentration: 20 Bq/m3 (0.6 Bq/m3); (c) derived lung activity: 1.6 X 10(3) Bq; (d) derived fecal activity: 14 Bq/day; and (e) derived urine activity: 8.9 Bq/day. The committed dose equivalents calculated from our measured data and from our

  6. Accelerator-driven transmutation of spent fuel elements

    DOEpatents

    Venneri, Francesco; Williamson, Mark A.; Li, Ning

    2002-01-01

    An apparatus and method is described for transmuting higher actinides, plutonium and selected fission products in a liquid-fuel subcritical assembly. Uranium may also be enriched, thereby providing new fuel for use in conventional nuclear power plants. An accelerator provides the additional neutrons required to perform the processes. The size of the accelerator needed to complete fuel cycle closure depends on the neutron efficiency of the supported reactors and on the neutron spectrum of the actinide transmutation apparatus. Treatment of spent fuel from light water reactors (LWRs) using uranium-based fuel will require the largest accelerator power, whereas neutron-efficient high temperature gas reactors (HTGRs) or CANDU reactors will require the smallest accelerator power, especially if thorium is introduced into the newly generated fuel according to the teachings of the present invention. Fast spectrum actinide transmutation apparatus (based on liquid-metal fuel) will take full advantage of the accelerator-produced source neutrons and provide maximum utilization of the actinide-generated fission neutrons. However, near-thermal transmutation apparatus will require lower standing

  7. Performance and fuel-cycle cost analysis of one JANUS 30 conceptual design for several fuel-element-design options

    SciTech Connect

    Nurdin, M.; Matos, J.E.; Freese, K.E.

    1982-01-01

    The performance and fuel cycle costs for a 25 MW, JANUS 30 reactor conceptual design by INTERATOM, Federal Republic of Germany, for BATAN, Republic of Indonesia have been studied using 19.75% enriched uranium in four fuel element design options. All of these fuel element designs have either been proposed by INTERATOM for various reactors or are currently in use with 93% enriched uranium in reactors in the Federal Republic of Germany. Aluminide, oxide, and silicide fuels were studied for selected designs using the range of uranium densities that are either currently qualified or are being developed and demonstrated internationally. To assess the long-term fuel adaptation strategy as well as the present fuel acceptance, reactor performance and annual fuel cycle costs were computed for seventeen cases based on a representative end-of-cycle excess reactivity and duty factor. In addition, a study was made to provide data for evaluating the trade-off between the increased safety associated with thicker cladding and the economic penalty due to increased fuel consumption.

  8. Americium characterization by X-ray fluorescence and absorption spectroscopy in plutonium uranium mixed oxide

    SciTech Connect

    Degueldre, Claude Cozzo, Cedric; Martin, Matthias; Grolimund, Daniel; Mieszczynski, Cyprian

    2013-06-01

    Plutonium uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The actinides in these fuels need to be analyzed after irradiation for assessing their behaviour with regard to their environment and the coolant. In this work the study of the atomic structure and next-neighbour environment of Am in the (Pu,U)O₂ lattice in an irradiated (60 MW d kg⁻¹) MOX sample was performed employing micro-X-ray fluorescence (µ-XRF) and micro-X-ray absorption fine structure (µ-XAFS) spectroscopy. The chemical bonds, valences and stoichiometry of Am (~0.66 wt%) are determined from the experimental data gained for the irradiated fuel material examined in its peripheral zone (rim) of the fuel. In the irradiated sample Am builds up as Am³⁺ species within an [AmO₈]¹³⁻ coordination environment (e.g. >90%) and no (<10%) Am(IV) or (V) can be detected in the rim zone. The occurrence of americium dioxide is avoided by the redox buffering activity of the uranium dioxide matrix. - Graphical abstract: Americium LIII XAFS spectra recorded for the irradiated MOX sub-sample in the rim zone for a 300 μm×300 μm beam size area investigated over six scans of 4 h. The records remain constant during multi-scan. The analysis of the XAFS signal shows that Am is found as trivalent in the UO₂ matrix. This analytical work shall open the door of very challenging analysis (speciation of fission product and actinides) in irradiated nuclear fuels. - Highlights: • Americium was characterized by microX-ray absorption spectroscopy in irradiated MOX fuel. • The americium redox state as determined from XAS data of irradiated fuel material was Am(III). • In the sample, the Am³⁺ face an AmO₈¹³⁻coordination environment in the (Pu,U)O₂ matrix. • The americium dioxide is reduced by the uranium dioxide matrix.

  9. Experimental investigation of fuel evaporation in the vaporizing elements of combustion chambers

    NASA Technical Reports Server (NTRS)

    Vezhba, I.

    1979-01-01

    A description is given of the experimental apparatus and the methods used in the investigation of the degree of fuel (kerosene) evaporation in two types of vaporizing elements in combustion chambers. The results are presented as dependences of the degree of fuel evaporation on the factors which characterize the functioning of the vaporizing elements: the air surplus coefficient, the velocity of flow and temperature of the air at the entrance to the vaporizing element and the temperature of the wall of the vaporizing element.

  10. Pumped lithium loop test to evaluate advanced refractory metal alloys and simulated nuclear fuel elements

    NASA Technical Reports Server (NTRS)

    Brandenburf, G. P.; Hoffman, E. E.; Smith, J. P.

    1974-01-01

    The performance was determined of refractory metal alloys and uranium nitride fuel element specimens in flowing 1900F (1083C) lithium. The results demonstrate the suitability of the selected materials to perform satisfactorily from a chemical compatibility standpoint.

  11. Current status of U{sub 3}Si{sub 2} fuel element fabrication in Brazil

    SciTech Connect

    Durazzo, M.; Carvalho, E.F. Urano de; Saliba-Silva, A.M.; Souza, J.A.B

    2008-07-15

    IPEN has been working for increasing radioisotope production in order to supply the expanding demand for radiopharmaceutical medicines requested by the Brazilian welfare. To reach this objective, the IEA-R1 research reactor power capacity was recently increased from 2 MW to 4 MW. Since 1988 IPEN has been manufacturing its own fuel element, initially based on U{sub 3}O{sub 8}-Al dispersion fuel plates with 2.3 gU/cm{sup 3}. To support the reactor power increase, higher uranium density in the fuel plate meat had to be achieved for better irradiation flux and also to minimize the irradiated fuel elements to be stored. Uranium silicide was the chosen option and the fuel fabrication development started with the support of the IAEA BRA/4/047 Technical Cooperation Project. This paper describes the results of this program and the current status of silicide fuel fabrication and its qualification. (author)

  12. Structural Investigation of (U0.7Pu0.3)O2-x Mixed Oxides.

    PubMed

    Vigier, Jean-François; Martin, Philippe M; Martel, Laura; Prieur, Damien; Scheinost, Andreas C; Somers, Joseph

    2015-06-01

    Uranium-plutonium mixed oxide containing 30% of plutonium is a candidate fuel for several fast neutron and accelerator driven reactor systems. In this work, a detailed structural investigation on sol-gel synthesized stoichiometric U0.7Pu0.3O2.00 and substoichiometric U0.7Pu0.3O2-x, using X-ray diffraction (XRD), oxygen 17 magic angle spinning nuclear magnetic resonance ((17)O MAS NMR) and X-ray absorption spectroscopy is described. As observed by XRD, the stoichiometric U0.7Pu0.3O2.00 is monophasic with a lattice parameter in good agreement with Vegard's law, while the substoichiometric U0.7Pu0.3O2-x material is biphasic. Solid solution ideality in terms of a random distribution of metal atoms is proven for U0.7Pu0.3O2.00 with (17)O MAS NMR. X-ray absorption near-edge structure (XANES) spectroscopy shows the presence of plutonium(III) in U0.7Pu0.3O2-x. Extended X-ray absorption fine-structure (EXAFS) spectroscopy indicates a similar local structure around both cations, and comparison with XRD indicates a close similarity between uranium and plutonium local structures and the long-range ordering. PMID:25984750

  13. A combined wet/dry sipping cell for investigating failed TRIGA fuel elements

    SciTech Connect

    Hammer, J.; Gallhammer, H.; Bock, H.

    1988-07-01

    Investigation for a failed TRIGA fuel element is performed with the help of a combined wet/dry sipping cell, which has been designed and fabricated at the Atominstitut Vienna. In this sipping cell a TRIGA fuel element can be studied for fission product release, both at normal and at elevated temperatures. This report describes the design features of the sipping cell and the fission product identification procedure with the help of a high purity Germanium detector and a multichannel analyzer.

  14. MECHANICALLY-JOINED PLATE-TYPE ALUMINUM-CLAD FUEL ELEMENT

    DOEpatents

    Erwin, J.H.

    1962-12-11

    A method of fabricating MTR-type fuel elements is described wherein dove- tailed joints are used to fasten fuel plates to supporting side members. The method comprises the steps of dove-tailing the lateral edges of the fuel plates, inserting the dove-tailed edges into corresponding recesses which are provided in a pair of supporting side members, and compressing the supporting side members in a direction so as to close the recesses onto the dove-tailed edges. (AEC)

  15. Cu-Ce-O mixed oxides from Ce-containing layered double hydroxide precursors: Controllable preparation and catalytic performance

    SciTech Connect

    Chang Zheng; Zhao Na; Liu Junfeng; Li Feng; Evans, David G.; Duan Xue; Forano, Claude; Roy, Marie de

    2011-12-15

    Cu/Zn/Al layered double hydroxide (LDH) precursors have been synthesized using an anion exchange method with anionic Ce complexes containing the dipicolinate (pyridine-2,6-dicarboxylate) ligand. Cu-Ce-O mixed oxides were obtained by calcination of the Ce-containing LDHs. The materials were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, thermogravimetry-differential thermal analysis, elemental analysis, and low temperature N{sub 2} adsorption/desorption measurements. The results reveal that the inclusion of Ce has a significant effect on the specific surface area, pore structure, and chemical state of Cu in the resulting Cu-Ce-O mixed metal oxides. The resulting changes in composition and structure, particularly the interactions between Cu and Ce centers, significantly enhance the activity of the Ce-containing materials as catalysts for the oxidation of phenol by hydrogen peroxide. - Graphical Abstract: Cu-Ce-O mixed oxides calcined from [Ce(dipic){sub 3}]{sup 3-}- intercalated Cu/Zn/Al layered double hydroxides were synthesized and displayed good catalytic performances in phenol oxidation due to the Cu-Ce interactions. Highlights: Black-Right-Pointing-Pointer [Ce(dipic){sub 3}]{sup 3-}-intercalated Cu/Zn/Al layered double hydroxides were synthesized. Black-Right-Pointing-Pointer Cu-Ce-O mixed oxides derivated from the LDHs were characterized as catalysts. Black-Right-Pointing-Pointer Presence of Ce influenced physicochemical property and catalytic performance. Black-Right-Pointing-Pointer Cu-Ce interaction was largely responsible for enhanced catalytic ability.

  16. Aluminum hydroxide coating thickness measurements and brushing tests on K West Basin fuel elements

    SciTech Connect

    Pitner, A.L.

    1998-09-11

    Aluminum hydroxide coating thicknesses were measured on fuel elements stored in aluminum canisters in K West Basin using specially developed eddy current probes . The results were used to estimate coating inventories for MCO fuel,loading. Brushing tests successfully demonstrated the ability to remove the coating if deemed necessary prior to MCO loading.

  17. Multiphysics Modeling of a Single Channel in a Nuclear Thermal Propulsion Grooved Ring Fuel Element

    NASA Technical Reports Server (NTRS)

    Kim, Tony; Emrich, William J., Jr.; Barkett, Laura A.; Mathias, Adam D.; Cassibry, Jason T.

    2013-01-01

    In the past, fuel rods have been used in nuclear propulsion applications. A new fuel element concept that reduces weight and increases efficiency uses a stack of grooved discs. Each fuel element is a flat disc with a hole on the interior and grooves across the top. Many grooved ring fuel elements for use in nuclear thermal propulsion systems have been modeled, and a single flow channel for each design has been analyzed. For increased efficiency, a fuel element with a higher surface-area-to-volume ratio is ideal. When grooves are shallower, i.e., they have a lower surface area, the results show that the exit temperature is higher. By coupling the physics of turbulence with those of heat transfer, the effects on the cooler gas flowing through the grooves of the thermally excited solid can be predicted. Parametric studies were done to show how a pressure drop across the axial length of the channels will affect the exit temperatures of the gas. Geometric optimization was done to show the behaviors that result from the manipulation of various parameters. Temperature profiles of the solid and gas showed that more structural optimization is needed to produce the desired results. Keywords: Nuclear Thermal Propulsion, Fuel Element, Heat Transfer, Computational Fluid Dynamics, Coupled Physics Computations, Finite Element Analysis

  18. Magnetic properties of mesoporous cobalt-silica-alumina ternary mixed oxides

    SciTech Connect

    Pal, Nabanita; Seikh, Md. Motin; Bhaumik, Asim

    2013-02-15

    Mesoporous cobalt-silica-alumina mixed oxides with variable cobalt content have been synthesized through slow evaporation method by using Pluronic F127 non-ionic surfactant as template. N{sub 2} sorption analysis of the template-free mixed oxide samples revealed that these mesoporous materials have high BET surface areas together with large mesopores. Powder XRD, TEM, EDS, FT IR and EPR spectroscopic analysis have been employed to understand the nature of the mesophases, bonding and composition of the materials. Low temperature magnetic measurements of these mixed oxide materials show the presence of ferromagnetic correlation at elevated temperature though at low temperature paramagnetic to ferrimagnetic transition is observed. Highlights: Black-Right-Pointing-Pointer Mesoporous cobalt-silica-alumina ternary mixed oxides. Black-Right-Pointing-Pointer High surface area and mesoporosity in magnetic materials. Black-Right-Pointing-Pointer Ferromagnetic correlation at elevated temperature. Black-Right-Pointing-Pointer Low temperature paramagnetic to ferrimagnetic transition.

  19. Los Alamos National Laboratory summary plan to fabricate mixed oxide lead assemblies for the fissile material disposition program

    SciTech Connect

    Buksa, J.J.; Eaton, S.L.; Trellue, H.R.; Chidester, K.; Bowidowicz, M.; Morley, R.A.; Barr, M.

    1997-12-01

    This report summarizes an approach for using existing Los Alamos National Laboratory (Laboratory) mixed oxide (MOX) fuel-fabrication and plutonium processing capabilities to expedite and assure progress in the MOX/Reactor Plutonium Disposition Program. Lead Assembly MOX fabrication is required to provide prototypic fuel for testing in support of fuel qualification and licensing requirements. It is also required to provide a bridge for the full utilization of the European fabrication experience. In part, this bridge helps establish, for the first time since the early 1980s, a US experience base for meeting the safety, licensing, safeguards, security, and materials control and accountability requirements of the Department of Energy and Nuclear Regulatory Commission. In addition, a link is needed between the current research and development program and the production of disposition mission fuel. This link would also help provide a knowledge base for US regulators. Early MOX fabrication and irradiation testing in commercial nuclear reactors would provide a positive demonstration to Russia (and to potential vendors, designers, fabricators, and utilities) that the US has serious intent to proceed with plutonium disposition. This report summarizes an approach to fabricating lead assembly MOX fuel using the existing MOX fuel-fabrication infrastructure at the Laboratory.

  20. Problems in developing bimodal space power and propulsion system fuel element

    SciTech Connect

    Nikolaev, Yu. V.; Gontar, A. S.; Zaznoba, V. A.; Parshin, N. Ya.; Ponomarev-Stepnoi, N. N.; Usov, V. A.

    1997-01-10

    The paper discusses design of a space nuclear power and propulsion system fuel element (PPFE) developed on the basis of an enhanced single-cell thermionic fuel element (TFE) of the 'TOPAZ-2' thermionic converter-reactor (TCR), and presents the PPFE performance for propulsion and power modes of operation. The choice of UC-TaC fuel composition is substantiated. Data on hydrogen effect on the PPFE output voltage are presented, design solutions are considered that allow to restrict hydrogen supply to an interelectrode gap (IEG). Long-term geometric stability of an emitter assembly is supported by calculated data.

  1. Oxygen self-diffusion in polycrystalline uranium-plutonium mixed oxide U0.55Pu0.45O2

    NASA Astrophysics Data System (ADS)

    Vauchy, Romain; Robisson, Anne-Charlotte; Bienvenu, Philippe; Roure, Ingrid; Hodaj, Fiqiri; Garcia, Philippe

    2015-12-01

    Atomic transport properties in uranium-plutonium mixed oxides U1-yPuyO2 are of essential concern because they impact numerous aspects of their physicochemical behavior at all stages of the fuel cycle. In this paper, we report oxygen tracer diffusion coefficients in homogeneous U0.55Pu0.45O2 mixed oxide. The study is based on tracer diffusion coefficient measurements obtained using Secondary Ion Mass Spectrometry (SIMS) following diffusion annealing involving gas-solid 18O/16O isotopic exchange. As for other fundamental material properties governed by the nature and behavior of point defects, we show that a careful study of tracer diffusion coefficients as a function of oxygen partial pressure and temperature is liable to provide insight into prevailing diffusion mechanisms. Under the conditions studied in this work, it appears that oxygen diffusion is vacancy mediated.

  2. Apparatus for and method of monitoring for breached fuel elements

    DOEpatents

    Gross, Kenny C.; Strain, Robert V.

    1983-01-01

    This invention teaches improved apparatus for the method of detecting a breach in cladded fuel used in a nuclear reactor. The detector apparatus uses a separate bypass loop for conveying part of the reactor coolant away from the core, and at least three separate delayed-neutron detectors mounted proximate this detector loop. The detectors are spaced apart so that the coolant flow time from the core to each detector is different, and these differences are known. The delayed-neutron activity at the detectors is a function of the dealy time after the reaction in the fuel until the coolant carrying the delayed-neutron emitter passes the respective detector. This time delay is broken down into separate components including an isotopic holdup time required for the emitter to move through the fuel from the reaction to the coolant at the breach, and two transit times required for the emitter now in the coolant to flow from the breach to the detector loop and then via the loop to the detector. At least two of these time components are determined during calibrated operation of the reactor. Thereafter during normal reactor operation, repeated comparisons are made by the method of regression approximation of the third time component for the best-fit line correlating measured delayed-neutron activity against activity that is approximated according to specific equations. The equations use these time-delay components and known parameter values of the fuel and of the part and emitting daughter isotopes.

  3. Enhanced Low-Enriched Uranium Fuel Element for the Advanced Test Reactor

    SciTech Connect

    Pope, M. A.; DeHart, M. D.; Morrell, S. R.; Jamison, R. K.; Nef, E. C.; Nigg, D. W.

    2015-03-01

    Under the current US Department of Energy (DOE) policy and planning scenario, the Advanced Test Reactor (ATR) and its associated critical facility (ATRC) will be reconfigured to operate on low-enriched uranium (LEU) fuel. This effort has produced a conceptual design for an Enhanced LEU Fuel (ELF) element. This fuel features monolithic U-10Mo fuel foils and aluminum cladding separated by a thin zirconium barrier. As with previous iterations of the ELF design, radial power peaking is managed using different U-10Mo foil thicknesses in different plates of the element. The lead fuel element design, ELF Mk1A, features only three fuel meat thicknesses, a reduction from the previous iterations meant to simplify manufacturing. Evaluation of the ELF Mk1A fuel design against reactor performance requirements is ongoing, as are investigations of the impact of manufacturing uncertainty on safety margins. The element design has been evaluated in what are expected to be the most demanding design basis accident scenarios and has met all initial thermal-hydraulic criteria.

  4. Testing of sludge coating adhesiveness on fuel elements in 105-K west basin

    SciTech Connect

    Maassen, D.P., Fluor Daniel Hanford

    1997-03-11

    This report summarizes the results from the first sludge adherence tests performed in the 105-K West Basin on N Reactor fuel. The outside surface of the outer fuel elements were brushed, using stainless steel wire brushes, to test the adhesiveness of various types of sludge coatings to the cladding`s surface. The majority of the sludge was removed by the wire brushes in this test but different types of sludge were more adhesive than others. Particularly, an orange rust-like sludge coating that was just slightly more adherent to the fuel`s cladding than the majority of the sludge coatings and a thick white vertical strip sludge coating that was much more difficult to remove. The test demonstrated that all of the sludge could be removed from the outer fuel elements` surfaces if the need arises.

  5. Drying Results of K-Basin Fuel Element 6603M (Rune 5)

    SciTech Connect

    B.M. Oliver; G.A. Ritter; G.S. Klinger; J. Abrefah; L.R. Greenwood; P.J. MacFarlan; S.C. Marschman

    1999-09-24

    The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium spent nuclear fuels in an interim storage facility on the Hanford Site (WHC 1995). Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of drying tests (reported in separate documents, see Section 8.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the fifth of those tests conducted on an N-Reactor outer fuel element (6603M) which had been stored underwater in the Hanford 100 Area K-West basin from 1983 until 1996. This fuel element was subjected to a combination of low- and high-temperature vacuum drying treatments which were intended to mimic, wherever possible, the fuel treatment strategies of the IPS. The system used for the drying test was the Whole Element Furnace Testing System, described in Section 2.0. The test conditions and methodologies are given in Section 3.0. Inspections on the fuel element before and after the test are provided in Section 4.0. The experimental results are provided in Section 5.0. Discussion of the results is given in Section 6.0.

  6. Method for recovering catalytic elements from fuel cell membrane electrode assemblies

    DOEpatents

    Shore, Lawrence; Matlin, Ramail; Heinz, Robert

    2012-06-26

    A method for recovering catalytic elements from a fuel cell membrane electrode assembly is provided. The method includes converting the membrane electrode assembly into a particulate material, wetting the particulate material, forming a slurry comprising the wetted particulate material and an acid leachate adapted to dissolve at least one of the catalytic elements into a soluble catalytic element salt, separating the slurry into a depleted particulate material and a supernatant containing the catalytic element salt, and washing the depleted particulate material to remove any catalytic element salt retained within pores in the depleted particulate material.

  7. Management of the spent fuel elements of the thorium high temperature reactor THTR-300

    SciTech Connect

    Quaassdorff, P.; Mielisch, M.; Dietrich, G.; Heske, M.; Jacobsen, W.

    1995-12-31

    In a world-wide unique campaign ca. 620,000 spent fuel elements of the thorium high temperature reactor THTR 300 which is being decommissioned, were being transferred within a short period of time to the Ahaus fuel element interim store (BZA) for interim storage. In order to optimize the technical and logistic procedures as part of the pre-decommissioning operation in 1992 and 1993, 42,000 fuel elements which had already been removed from the reactor core were transferred to Ahaus in transport and storage casks of the CASTOR THTR/AVR type that have been specially designed for this purpose. The experiences gained with loading, processing and transport of 20 transport and storage casks during this optimization and testing period led the team to expect a smooth management of the remaining fuel elements. In January 1994, the routine operation of the outward transfer commenced. Until mid-November 1994, 554,400 spent fuel elements were transferred outward into altogether 264 transport and storage casks of the CASTOR THTR/AVR type and transported to Ahaus for interim storage. This was followed by processing of another 21 transport and storage casks until April 1995, accommodating damaged fuel elements and special elements. The work mentioned above was performed by SFEAG Kernenergie GmbH, Essen, on behalf of the reactor operator Hochtemperatur-Kernkraftwerk GmbH, Hamm. The removal of the nuclear fuel from the thorium high temperature reactor THTR-300 marks the completion of the first part of the necessary actions for the decommissioning of the reactor (safe enclosure).

  8. Nondestructive examination of 51 fuel and reflector elements from Fort St. Vrain Core Segment 1

    SciTech Connect

    Miller, C.M.; Saurwein, J.J.

    1980-12-01

    Fifty-one fuel and reflector elements irradiated in core segment 1 of the Fort St. Vrain High-Temperature Gas-Cooled Reactor (HTGR) were inspected dimensionally and visually in the Hot Service Facility at Fort St. Vrain in July 1979. Time- and volume-averaged graphite temperatures for the examined fuel elements ranged from approx. 400/sup 0/ to 750/sup 0/C. Fast neutron fluences varied from approx. 0.3 x 10/sup 25/ n/m/sup 2/ to 1.0 x 10/sup 25/ n/m/sup 2/ (E > 29 fJ)/sub HTGR/. Nearly all of the examined elements shrank in both axial and radial dimensions. The measured data were compared with strain and bow predictions obtained from SURVEY/STRESS, a computer code that employs viscoelastic beam theory to calculate stresses and deformations in HTGR fuel elements.

  9. Molten tin reprocessing of spent nuclear fuel elements

    DOEpatents

    Heckman, Richard A.

    1983-01-01

    A method and apparatus for reprocessing spent nuclear fuel is described. Within a containment vessel, a solid plug of tin and nitride precipitates supports a circulating bath of liquid tin therein. Spent nuclear fuel is immersed in the liquid tin under an atmosphere of nitrogen, resulting in the formation of nitride precipitates. The layer of liquid tin and nitride precipitates which interfaces the plug is solidified and integrated with the plug. Part of the plug is melted, removing nitride precipitates from the containment vessel, while a portion of the plug remains solidified to support the liquid tin and nitride precipitates remaining in the containment vessel. The process is practiced numerous times until substantially all of the precipitated nitrides are removed from the containment vessel.

  10. Uranium chloride extraction of transuranium elements from LWR fuel

    DOEpatents

    Miller, W.E.; Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Pierce, R.D.

    1992-08-25

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels containing rare earth and noble metal fission products as well as other fission products is disclosed. The oxide fuel is reduced with Ca metal in the presence of Ca chloride and a U-Fe alloy which is liquid at about 800 C to dissolve uranium metal and the noble metal fission product metals and transuranium actinide metals and rare earth fission product metals leaving Ca chloride having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein. The Ca chloride and CaO and the fission products contained therein are separated from the U-Fe alloy and the metal values dissolved therein. The U-Fe alloy having dissolved therein reduced metals from the spent nuclear fuel is contacted with a mixture of one or more alkali metal or alkaline earth metal halides selected from the class consisting of alkali metal or alkaline earth metal and Fe or U halide or a combination thereof to transfer transuranium actinide metals and rare earth metals to the halide salt leaving the uranium and some noble metal fission products in the U-Fe alloy and thereafter separating the halide salt and the transuranium metals dissolved therein from the U-Fe alloy and the metals dissolved therein. 1 figure.

  11. Uranium chloride extraction of transuranium elements from LWR fuel

    DOEpatents

    Miller, William E.; Ackerman, John P.; Battles, James E.; Johnson, Terry R.; Pierce, R. Dean

    1992-01-01

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels containing rare earth and noble metal fission products as well as other fission products is disclosed. The oxide fuel is reduced with Ca metal in the presence of Ca chloride and a U-Fe alloy which is liquid at about 800.degree. C. to dissolve uranium metal and the noble metal fission product metals and transuranium actinide metals and rare earth fission product metals leaving Ca chloride having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein. The Ca chloride and CaO and the fission products contained therein are separated from the U-Fe alloy and the metal values dissolved therein. The U-Fe alloy having dissolved therein reduced metals from the spent nuclear fuel is contacted with a mixture of one or more alkali metal or alkaline earth metal halides selected from the class consisting of alkali metal or alkaline earth metal and Fe or U halide or a combination thereof to transfer transuranium actinide metals and rare earth metals to the halide salt leaving the uranium and some noble metal fission products in the U-Fe alloy and thereafter separating the halide salt and the transuranium metals dissolved therein from the U-Fe alloy and the metals dissolved therein.

  12. Magnesium transport extraction of transuranium elements from LWR fuel

    DOEpatents

    Ackerman, John P.; Battles, James E.; Johnson, Terry R.; Miller, William E.; Pierce, R. Dean

    1992-01-01

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl.sub.2 and a U-Fe alloy containing not less than about 84% by weight uranium at a temperature in the range of from about 800.degree. C. to about 850.degree. C. to produce additional uranium metal which dissolves in the U-Fe alloy raising the uranium concentration and having transuranium actinide metals and rare earth fission product metals and the noble metal fission products dissolved therein. The CaCl.sub.2 having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO.sub.2. The Ca metal and CaCl.sub.2 is recycled to reduce additional oxide fuel. The U-Fe alloy having transuranium actinide metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with Mg metal which takes up the actinide and rare earth fission product metals. The U-Fe alloy retains the noble metal fission products and is stored while the Mg is distilled and recycled leaving the transuranium actinide and rare earth fission products isolated.

  13. Apparatus for and method of monitoring for breached fuel elements

    DOEpatents

    Gross, K.C.; Strain, R.V.

    1981-04-28

    This invention teaches improved apparatus for the method of detecting a breach in cladded fuel used in a nuclear reactor. The detector apparatus uses a separate bypass loop for conveying part of the reactor coolant away from the core, and at least three separate delayed-neutron detectors mounted proximate this detector loop. The detectors are spaced apart so that the coolant flow time from the core to each detector is different, and these differences are known. The delayed-neutron activity at the detectors is a function of the delay time after the reaction in the fuel until the coolant carrying the delayed-neutron emitter passes the respective detector. This time delay is broken down into separate components including an isotopic holdup time required for the emitter to move through the fuel from the reaction to the coolant at the breach, and two transit times required for the emitter now in the coolant to flow from the breach to the detector loop and then via the loop to the detector.

  14. AN EVALUATION OF POTENTIAL LINER MATERIALS FOR ELIMINATING FCCI IN IRRADIATED METALLIC NUCLEAR FUEL ELEMENTS

    SciTech Connect

    D. D. Keiser; J. I. Cole

    2007-09-01

    Metallic nuclear fuels are being looked at as part of the Global Nuclear Energy Program for transmuting longlive transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products. In order to optimize the performance of these fuels, the concept of using liners to eliminate the fuel/cladding chemical interactions that can occur during irradiation of a fuel element has been investigated. The potential liner materials Zr and V have been tested using solid-solid diffusion couples, consisting of liner materials butted against fuel alloys and against cladding materials. The couples were annealed at the relatively high temperature of 700°C. This temperature would be the absolute maximum temperature present at the fuel/cladding interface for a fuel element in-reactor. Analysis was performed using a scanning electron microscope equipped with energy-dispersive and wavelengthdispersive spectrometers (SEM/EDS/WDS) to evaluate any developed diffusion structures. At 700°C, minimal interaction was observed between the metallic fuels and either Zr or V. Similarly, limited interaction was observed between the Zr and V and the cladding materials. The best performing liner material appeared to be the V, based on amounts of interaction.

  15. Salt transport extraction of transuranium elements from lwr fuel

    DOEpatents

    Pierce, R. Dean; Ackerman, John P.; Battles, James E.; Johnson, Terry R.; Miller, William E.

    1992-01-01

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl.sub.2 and a Cu--Mg alloy containing not less than about 25% by weight Mg at a temperature in the range of from about 750.degree. C. to about 850.degree. C. to precipitate uranium metal and some of the noble metal fission products leaving the Cu--Mg alloy having transuranium actinide metals and rare earth fission product metals and some of the noble metal fission products dissolved therein. The CaCl.sub.2 having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO.sub.2. The Ca metal and CaCl.sub.2 is recycled to reduce additional oxide fuel. The Cu--Mg alloy having transuranium metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with a transport salt including Mg Cl.sub.2 to transfer Mg values from the transport salt to the Cu--Mg alloy while transuranium actinide and rare earth fission product metals transfer from the Cu--Mg alloy to the transport salt. Then the transport salt is mixed with a Mg--Zn alloy to transfer Mg values from the alloy to the transport salt while the transuranium actinide and rare earth fission product values dissolved in the salt are reduced and transferred to the Mg--Zn alloy.

  16. Salt transport extraction of transuranium elements from LWR fuel

    DOEpatents

    Pierce, R.D.; Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Miller, W.E.

    1992-11-03

    A process is described for separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl[sub 2] and a Cu--Mg alloy containing not less than about 25% by weight Mg at a temperature in the range of from about 750 C to about 850 C to precipitate uranium metal and some of the noble metal fission products leaving the Cu--Mg alloy having transuranium actinide metals and rare earth fission product metals and some of the noble metal fission products dissolved therein. The CaCl[sub 2] having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO[sub 2]. The Ca metal and CaCl[sub 2] is recycled to reduce additional oxide fuel. The Cu--Mg alloy having transuranium metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with a transport salt including MgCl[sub 2] to transfer Mg values from the transport salt to the Cu--Mg alloy while transuranium actinide and rare earth fission product metals transfer from the Cu--Mg alloy to the transport salt. Then the transport salt is mixed with a Mg--Zn alloy to transfer Mg values from the alloy to the transport salt while the transuranium actinide and rare earth fission product values dissolved in the salt are reduced and transferred to the Mg--Zn alloy. 2 figs.

  17. Accuracy of trace element determinations in alternate fuels

    NASA Technical Reports Server (NTRS)

    Greenbauer-Seng, L. A.

    1980-01-01

    A review of the techniques used at Lewis Research Center (LeRC) in trace metals analysis is presented, including the results of Atomic Absorption Spectrometry and DC Arc Emission Spectrometry of blank levels and recovery experiments for several metals. The design of an Interlaboratory Study conducted by LeRC is presented. Several factors were investigated, including: laboratory, analytical technique, fuel type, concentration, and ashing additive. Conclusions drawn from the statistical analysis will help direct research efforts toward those areas most responsible for the poor interlaboratory analytical results.

  18. PROCESS OF MAKING A NEUTRONIC REACTOR FUEL ELEMENT COMPOSITION

    DOEpatents

    Alter, H.W.; Davidson, J.K.; Miller, R.S.; Mewherter, J.L.

    1959-01-13

    A process is presented for making a ceramic-like material suitable for use as a nuclear fuel. The material consists of a solid solution of plutonium dioxide in uranium dioxide and is produced from a uranyl nitrate -plutonium nitrate solution containing uraniunm and plutonium in the desired ratio. The uranium and plutonium are first precipitated from the solution by addition of NH/ sub 4/OH and the dried precipitate is then calcined at 600 C in a hydrogen atmosphere to yield the desired solid solution of PuO/sub 2/ in UO/sub 2/.

  19. Advanced Ceramics for Use as Fuel Element Materials in Nuclear Thermal Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Valentine, Peter G.; Allen, Lee R.; Shapiro, Alan P.

    2012-01-01

    With the recent start (October 2011) of the joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) Advanced Exploration Systems (AES) Nuclear Cryogenic Propulsion Stage (NCPS) Program, there is renewed interest in developing advanced ceramics for use as fuel element materials in nuclear thermal propulsion (NTP) systems. Three classes of fuel element materials are being considered under the NCPS Program: (a) graphite composites - consisting of coated graphite elements containing uranium carbide (or mixed carbide), (b) cermets (ceramic/metallic composites) - consisting of refractory metal elements containing uranium oxide, and (c) advanced carbides consisting of ceramic elements fabricated from uranium carbide and one or more refractory metal carbides [1]. The current development effort aims to advance the technology originally developed and demonstrated under Project Rover (1955-1973) for the NERVA (Nuclear Engine for Rocket Vehicle Application) [2].

  20. Analytical Solution of Fick's Law of the TRISO-Coated Fuel Particles and Fuel Elements in Pebble-Bed High Temperature Gas-Cooled Reactors

    NASA Astrophysics Data System (ADS)

    Cao, Jian-Zhu; Fang, Chao; Sun, Li-Feng

    2011-05-01

    Two kinds of approaches are built to solve the fission products diffusion models (Fick's equation) based on sphere fuel particles and sphere fuel elements exactly. Two models for homogenous TRISO-coated fuel particles and fuel elements used in pebble-bed high temperature gas-cooled reactors are presented, respectively. The analytical solution of Fick's equation for fission products diffusion in fuel particles is derived by variables separation. In the fuel element system, a modification of the diffusion coefficient from D to D/r is made to characterize the difference of diffusion rates in distinct areas and it is shown that the Laplace and Hankel transformations are effective as the diffusion coefficient in Fick's equation is dependant on the radius of the fuel element. Both the solutions are useful for the prediction of the fission product behaviors and could be programmed in the corresponding engineering calculations.

  1. Operational experience of ultrasonic sealing bolts for safeguard containment of multi-element bottles in British Nuclear Fuel`s THORP spent fuel storage ponds

    SciTech Connect

    Hatt, C.D.; Reynolds, A.F.; Jeffrey, A.; DeTourbet, P.; D`Agraives, B.; Toornvliet, J.; Wilt, B.

    1995-12-31

    Following verification of the presence of Light Water Reactor fuel stored in multi-element bottles (MEBs), in British Nuclear Fuel`s (BNFL), Thermal Oxide Reprocessing Plant (THORP) fuel storage pond by Euratom and the IAEA, one lid bolt is replaced by an Ultrasonic Sealing Bolt. This safeguards seal, developed by Euratom`s Joint Research Centre at Ispra, Italy, has been field tested at Sellafield over several years and applied.in volume since 1994. The use of sealing bolts and video surveillance provides dual containment/surveillance on the THORP storage ponds, and brings significant savings in time and hence cost to the operator at the annual inventory verification. Time savings of up to 80% are achievable compared to fuel verification using a collimated gamma detector.

  2. URANIUM OXIDE-CONTAINING FUEL ELEMENT COMPOSITION AND METHOD OF MAKING SAME

    DOEpatents

    Handwerk, J.H.; Noland, R.A.; Walker, D.E.

    1957-09-10

    In the past, bodies formed of a mixture of uranium dioxide and aluminum powder have been used in fuel elements; however, these mixtures were found not to be suitable when exposed to temperatures of about 600 deg C, because at such high temperatures the fuel elements were distorted. If uranosic oxide, U/sub 3/O/sub 8/, is substituted for UO/sub 2/, the mechanical properties are not impaired when these materials are used at about 600 deg C and no distortion takes place. The uranosic oxide and aluminum, both in powder form, are first mixed, and after a homogeneous mixture has been obtained, are shaped into fuel elements by extrusion at elevated temperature. Magnesium powder may be used in place of the aluminum.

  3. Metallographic examination of damaged N reactor spent nuclear fuel element SFEC5,4378

    SciTech Connect

    Marschman, S.C.; Pyecha, T.D.; Abrefah, J.

    1997-08-01

    N-Reactor spent nuclear fuel (SNF) is currently residing underwater in the K Basins at the Hanford site, in Richland, Washington. This report presents results of the metallographic examination of specimens cut from an SNF element (Mark IV-E) with breached cladding. The element had resided in the K-West (KW) Storage Basin for at least 10 years after it was discharged from the N-Reactor. The storage containers in the KW Basin were nominally closed, isolating the SNF elements from the open pool environment. Seven specimens from this Mark IV-E outer fuel element were examined using an optical metallograph. Included were two specimens that had been subjected to a conditioning process recommended by the Independent Technical Assessment Team, two specimens that had been subjected to a conditioning process recommended in the Integrated Process Strategy Report, and three that were in the as-received, as-cut condition. One of the as-received specimens had been cut from the damaged (or breached) end of the element. All other specimens were cut from the undamaged mid-region of the fuel element. The specimens were visually examined to (1) identify uranium hydride inclusions present in the uranium metal fuel, (2) measure the thickness of the oxide layer formed on the uranium edges and assess the apparent integrity and adhesion of the oxide layer, and (3) look for features in the microstructure that might provide an insight into the various corrosion processes that occurred during underwater storage in the KW Basin. These features included, but were not limited to, the integrity of the cladding and the fuel-to-cladding bond, obvious anomalies in the microstructure, excessive pitting or friability of the fuel matrix, and obvious anomalies in the distribution of uranium hydride or uranium carbide inclusions. Also, the observed metallographic features of the conditioned specimens were compared with those of the as-received (unconditioned) specimens. 11 refs., 93 figs., 2 tabs.

  4. Curium analysis in plutonium uranium mixed oxide by x-ray fluorescence and absorption fine structure spectroscopy.

    PubMed

    Degueldre, C; Borca, C; Cozzo, C

    2013-10-15

    Plutonium uranium mixed oxide (MOX) fuels are being used in commercial nuclear reactors. The actinides in these fuels need to be analyzed after irradiation for assessing their behaviour with regards to their environment and the coolant. In this work the study of the local occurrence, speciation and next-neighbour environment of curium (Cm) in the (Pu,U)O2 lattice within an irradiated (60 MW d kg(-1) average burn-up) MOX sample was performed employing micro-x-ray fluorescence (µ-XRF) and micro-x-ray absorption fine structure (µ-XAFS) spectroscopy. The chemical bonds, valences and stoichiometry of Cm (≈ 0.7 wt% in the rim and ≈ 0.03 wt% in the centre) are determined from the experimental data gained for the irradiated fuel material examined in its centre and peripheral (rim) zones of the fuel. Curium occurrence is also reduced from the centre (hot) to the periphery (colder) because of the condensation of these volatile oxides. In the irradiated sample Cm builds up as Cm(3+) species (>90%) within a [CmO8](13-) or [CmO7](11-) coordination environment and no (<10%) Cm(IV) can be detected in the rim zone. Curium dioxide is reduced because of the redox buffering activity of the uranium dioxide matrix and of its thermodynamic instability. PMID:24054692

  5. Irradiation testing of full-sized, reduced-enrichment fuel elements

    SciTech Connect

    Snelgrove, J.L.; Copeland, G.L.

    1983-01-01

    The current status of the irradiation testing of full-sized, reduced-enrichment fuel elements and fuel rods under the US Reduced Enrichment Research and Test Reactor Program is reported. Being tested are UAl/sub x/-Al, U/sub 3/O/sub 8/-Al, U/sub 3/Si/sub 2/-Al, and U/sub 3/Si-Al dispersion fuels and UZrH/sub x/ (TRIGA) fuel at uranium densities in the fuel meat ranging from 1.7 to 6.0 Mg/m/sup 3/. Generally good performance has been experienced to date. Some preliminary results of postirradiation examinations are also included. A whole-core demonstration in the Oak Ridge Research Reactor is planned. Some details of this demonstration are provided.

  6. Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors

    DOEpatents

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2011-03-01

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  7. Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors

    SciTech Connect

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2013-09-03

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  8. Methods for manufacturing porous nuclear fuel elements for high-temperature gas-cooled nuclear reactors

    DOEpatents

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2010-02-23

    Methods for manufacturing porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's). Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, a thin coating of nuclear fuel may be deposited inside of a highly porous skeletal structure made, for example, of reticulated vitreous carbon foam.

  9. Determination of trace elements in automotive fuels by filter furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Anselmi, Anna; Tittarelli, Paolo; Katskov, Dmitri A.

    2002-03-01

    The determination of Cd, Cr, Cu, Pb and Ni was performed in gasoline and diesel fuel samples by electrothermal atomic absorption spectrometry using the Transverse Heated Filter Atomizer (THFA). Thermal conditions were experimentally defined for the investigated elements. The elements were analyzed without addition of chemical modifiers, using organometallic standards for the calibration. Forty-microliter samples were injected into the THFA. Gasoline samples were analyzed directly, while diesel fuel samples were diluted 1:4 with n-heptane. The following characteristic masses were obtained: 0.8 pg Cd, 6.4 pg Cr, 12 pg Cu, 17 pg Pb and 27 pg Ni. The limits of determination for gasoline samples were 0.13 μg/kg Cd, 0.4 μg/kg Cr, 0.9 μg/kg Cu, 1.5 μg/kg Pb and 2.5 μg/kg Ni. The corresponding limit of determination for diesel fuel samples was approximately four times higher for all elements. The element recovery was performed using the addition of organometallic compounds to gasoline and diesel fuel samples and was between 85 and 105% for all elements investigated.

  10. Theoretical studies of transient criticality of irradiated fuel elements

    SciTech Connect

    Barbry, F.; Bonhomme, C.; Hague, P.; Mather, D.J.; Shaw, P.M.

    1987-01-01

    The use of transport flasks containing irradiated fuel is a common event, and their movements are strictly regulated by the national competent authority in order that an acceptable level of control of radiation hazards be maintained. Nonetheless it has been considered prudent to quantify the consequences of a particular hypothetical accident involving a transport package. The particular accident examined assumed that recriticality occurs during the refilling of a flask, and for the Commissariat a l'Energie Atomique (CEA) scenario, for which flasks are transported dry, the hypothetical accident occurs as the flask is slowly lowered into a storage pond. An alternative UK scenario assumes that the flask is being refilled, following breach, by a high-pressure hose. Thus, the consequences of such an accident were estimated by developing computer codes, Chateau by the CEA and Sartemp by the UK Atomic Energy Authority (UKAEA). This and other results show that the hypothetical accident in which a transport flask is brought to critical by the reentry of water gives at most a relatively mild event. In view of the considerably unlikely circumstances and conservative aspects introduced, this result shows that such an accident can be safely contained.

  11. Which Elements Should be Recycled for a Comprehensive Fuel Cycle?

    SciTech Connect

    Steven Piet; Trond Bjornard; Brent Dixon; Dirk Gombert; Robert Hill; Chris Laws; Gretchen Matthern; David Shropshire; Roald Wigeland

    2007-09-01

    Uranium recovery can reduce the mass of waste and possibly the number of waste packages that require geologic disposal. Separated uranium can be managed with the same method (near-surface burial) as used for the larger quantities of depleted uranium or recycled into new fuel. Recycle of all transuranics reduces long-term environmental burden, reduces heat load to repositories, extracts more energy from the original uranium ore, and may have significant proliferation resistance and physical security advantages. Recovery of short-lived fission products cesium and strontium can allow them to decay to low-level waste in facilities tailored to that need, rather than geologic disposal. This could also reduce the number and cost of waste packages requiring geologic disposal. These savings are offset by costs for separation, recycle, and storage systems. Recovery of technetium-99 and iodine-129 can allow them to be sent to geologic disposal in improved waste forms. Such separation avoids contamination of the other products (uranium) and waste (cesium-strontium) streams with long-lived radioisotopes so the material might be disposed as low-level waste. Transmutation of technetium and iodine is a possible future alternative.

  12. Device for the disengagement of a nuclear reactor fuel element from an articulated finger grapnel and method of using same

    SciTech Connect

    Chollet, F.

    1984-01-17

    Device for the underwater disengagement of a nuclear reactor fuel element from a grapnel with at least two articulated fingers. The device is designed to be placed on the end of a duct for positioning fuel elements and includes jacks for adjusting the relative positions of the device and the grapnel-fuel element unit and for maintaining these positions, further jacks for unfastening the fingers of the grapnel from the body of the grapnel and still further, jacks for tilting the fingers of the grapnel so as to enable the fingers to release their hold on the fuel element.

  13. Cu-Ce-O mixed oxides from Ce-containing layered double hydroxide precursors: Controllable preparation and catalytic performance

    NASA Astrophysics Data System (ADS)

    Chang, Zheng; Zhao, Na; Liu, Junfeng; Li, Feng; Evans, David G.; Duan, Xue; Forano, Claude; de Roy, Marie

    2011-12-01

    Cu/Zn/Al layered double hydroxide (LDH) precursors have been synthesized using an anion exchange method with anionic Ce complexes containing the dipicolinate (pyridine-2,6-dicarboxylate) ligand. Cu-Ce-O mixed oxides were obtained by calcination of the Ce-containing LDHs. The materials were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, thermogravimetry-differential thermal analysis, elemental analysis, and low temperature N 2 adsorption/desorption measurements. The results reveal that the inclusion of Ce has a significant effect on the specific surface area, pore structure, and chemical state of Cu in the resulting Cu-Ce-O mixed metal oxides. The resulting changes in composition and structure, particularly the interactions between Cu and Ce centers, significantly enhance the activity of the Ce-containing materials as catalysts for the oxidation of phenol by hydrogen peroxide.

  14. CERAMIC FUEL ELEMENT MATERIAL FOR A NEUTRONIC REACTOR AND METHOD OF FABRICATING SAME

    DOEpatents

    Duckworth, W.H.

    1957-12-01

    This patent relates to ceramic composition, and to neutronic reactor fuel elements formed therefrom. These ceramic elements have high density and excellent strength characteristics and are formed by conventional ceramic casting and sintering at a temperature of about 2700 deg F in a nitrogen atmosphere. The composition consists of silicon carbide, silicon, uranium oxide and a very small percentage of molybdenum. Compositions containing molybdenum are markedly stronger than those lacking this ingredient.

  15. Proposed modification of an instrumented TRIGA fuel element so that it may be handled with a standard TRIGA fuel handling tool

    SciTech Connect

    Doane, Harry J.

    1992-07-01

    Instrumented fuel elements whose thermocouples are no longer functional are still a useful source of reactor fuel. Their usefulness is hampered somewhat by the extension tubing that must extend above water level to keep the thermocouple extension leads dry and to keep pool water from interacting with the gas tight lead seal which is made below the lower coupling in the extension tubing. This facility proposes to modify an instrumented TRIGA fuel element by removing the extension tubing at the lower coupling and attaching to it a top end fixture that is normally supplied with a standard TRIGA fuel element. This would then allow movement of the modified fuel element with a standard TRIGA fuel handling tool. This paper will present the considerations involved in performing this modification and the presenter will solicit any useful information that might be contributed by attendees of the TRIGA Owners' Conference. (author)

  16. Drying results of K-Basin fuel element 3128W (run 2)

    SciTech Connect

    Abrefah, J.; Klinger, G.S.; Oliver, B.M.; Marshman, S.C.; MacFarlan, P.J.; Ritter, G.A.; Flament, T.A.

    1998-07-01

    An N-Reactor outer fuel element that had been stored underwater in the Hanford 100 Area K-East Basin was subjected to a combination of low- and high-temperature vacuum drying treatments. These studies are part of a series of tests being conducted by Pacific Northwest National Laboratory on the drying behavior of N-Reactor spent nuclear fuel elements removed from both the K-West and K-East Basins. The drying test series was designed to test fuel elements that ranged from intact to severely damaged. The fuel element discussed in this report was removed from an open K-East canister (3128W) during the first fuel selection campaign conducted in 1995, and has remained in wet storage in the Postirradiation Testing Laboratory (PTL, 327 Building) since that time. Although it was judged to be breached during in-basin (i.e., K-Basin) examinations, visual inspection of this fuel element in the hot cell indicated that it was likely intact. Some scratches on the coating covering the cladding were identified before the furnace test. The drying test was conducted in the Whole Element Furnace Testing System located in G-Cell within the PTL. This test system is composed of three basic systems: the in-cell furnace equipment, the system gas loop, and the analytical instrument package. Element 3128W was subjected to the drying processes based on those proposed under the Integrated Process Strategy, which included a hot drying step. Results of the Pressure Rise and Gas Evolution Tests suggest that most of the free water in the system was released during the extended CVD cycle (68 hr versus 8 hr for the first run). An additional {approximately}0.34 g of water was released during the subsequent HVD phase, characterized by multiple water release peaks, with a principle peak at {approximately}180 C. This additional water is attributed to decomposition of a uranium hydrate (UO{sub 4}{center_dot}4H{sub 2}O/UO{sub 4}{center_dot}2H{sub 2}O) coating that was observed to be covering the surface

  17. Acceptance of spent nuclear fuel in multiple element sealed canisters by the Federal Waste Management System

    SciTech Connect

    Not Available

    1990-03-01

    This report is one of a series of eight prepared by E.R. Johnson Associates, Inc. (JAI) under ORNL's contract with DOE's OCRWM Systems Integration Program and in support of the Annual Capacity Report (ACR) Issue Resolution Process. The report topics relate specifically to the list of high priority technical waste acceptance issues developed jointly by DOE and a utility-working group. JAI performed various analyses and studies on each topic to serve as starting points for further discussion and analysis leading eventually to finalizing the process by which DOE will accept spent fuel and waste into its waste management system. The eight reports are concerned with the conditions under which spent fuel and high level waste will be accepted in the following categories: (1) failed fuel; (2) consolidated fuel and associated structural parts; (3) non-fuel-assembly hardware; (4) fuel in metal storage casks; (5) fuel in multi-element sealed canisters; (6) inspection and testing requirements for wastes; (7) canister criteria; (8) spent fuel selection for delivery; and (9) defense and commercial high-level waste packages. 14 refs., 27 figs.

  18. Computational and Experimental Study of the Thermodynamics of Uranium-Cerium Mixed Oxides

    NASA Astrophysics Data System (ADS)

    Hanken, Benjamin Edward

    The thermophysical properties of mixed oxide (MOX) fuels, and how they are influenced by the incorporation of fission products and other actinides, must be well understood for their safe use in an advanced fuel cycle. Cerium is a common plutonium surrogate in experimental studies of MOX, as it closely matches plutonium's ionic radii in the 3+ and 4+ oxidation states, and is soluble in fluorite-structured UO2. As a fission product, cerium's effects on properties of MOX are also of practical interest. To provide additional insights on structure-dependent behavior, urania solid solutions can be studied via density functional theory (DFT), although approaches beyond standard DFT are needed to properly account for the localized nature of the ƒ-electrons. In this work, DFT with Hubbard-U corrections (DFT+U) was employed to study the energetics of fluorite-structured U1-yCe yO2 mixtures. The employed computational approach makes use of a procedure which facilitates convergence of the calculations to multiple self-consistent DFT+U solutions for a given cation arrangement, corresponding to different charge states for the U and Ce ions in several prototypical cation arrangements. Results indicate a significant dependence of the structural and energetic properties of U1-yCeyO2 on the nature of both charge and cation ordering. With the effective Hubbard-U parameters that reproduce well the measured oxidation-reduction energies for urania and ceria, it was found that charge transfer between U4+ and Ce4+ ions, leading to the formation of U5+ and Ce3+, gives rise to an increase in the mixing energy in the range of 4-14 kJ/mol of the formula unit, depending on the nature of the cation ordering. In conjunction with the computational approach, high-temperature oxide-melt drop-solution calorimetry experiments were performed on eight samples spanning compositions of y = 0.119 to y = 0.815. Room temperature mixing enthalpies of U1-yCeyO2 determined from these experiments show near

  19. Neutronics Benchmarks for the Utilization of Mixed-Oxide Fuel: Joint U.S./ Russian Progress Report for Fiscal Year 1997, Volume 4, Part 8 - Neutron Poison Plates in Assemblies Containing Homogeneous Mixtures of Polystyrene-Moderated Plutonium and Uranium Oxides

    SciTech Connect

    Yavuz, M.

    1999-05-01

    In the 1970s at the Battelle Pacific Northwest Laboratory (PNL), a series of critical experiments using a remotely operated Split-Table Machine was performed with homogeneous mixtures of (Pu-U)O{sub 2}-polystyrene fuels in the form of square compacts having different heights. The experiments determined the critical geometric configurations of MOX fuel assemblies with and without neutron poison plates. With respect to PuO{sub 2} content and moderation [H/(Pu+U)atomic] ratio (MR), two different homogeneous (Pu-U) O{sub 2}-polystyrene mixtures were considered: Mixture (1) 14.62 wt% PuO{sub 2} with 30.6 MR, and Mixture (2) 30.3 wt% PuO{sub 2} with 2.8 MR. In all mixtures, the uranium was depleted to about O.151 wt% U{sup 235}. Assemblies contained copper, copper-cadmium or aluminum neutron poison plates having thicknesses up to {approximately}2.5 cm. This evaluation contains 22 experiments for Mixture 1, and 10 for Mixture 2 compacts. For Mixture 1, there are 10 configurations with copper plates, 6 with aluminum, and 5 with copper-cadmium. One experiment contained no poison plate. For Mixture 2 compacts, there are 3 configurations with copper, 3 with aluminum, and 3 with copper-cadmium poison plates. One experiment contained no poison plate.

  20. Conceptual design report for the mechanical disassembly of Fort St. Vrain fuel elements

    SciTech Connect

    Lord, D.L.; Wadsworth, D.C.; Sekot, J.P.; Skinner, K.L.

    1993-04-01

    A conceptual design study was prepared that: (1) reviewed the operations necessary to perform the mechanical disassembly of Fort St. Vrain fuel elements; (2) contained a description and survey of equipment capable of performing the necessary functions; and (3) performed a tradeoff study for determining the preferred concepts and equipment specifications. A preferred system was recommended and engineering specifications for this system were developed.

  1. Fuel-element failures in Hanford single-pass reactors 1944--1971

    SciTech Connect

    Gydesen, S.P.

    1993-07-01

    The primary objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of emissions since 1944 from the US Department of Energy`s (DOE) Hanford Site near Richland, Washington. To estimate the doses, the staff of the Source Terms Task use operating information from historical documents to approximate the radioactive emissions. One source of radioactive emissions to the Columbia River came from leaks in the aluminum cladding of the uranium metal fuel elements in single-pass reactors. The purpose of this letter report is to provide photocopies of the documents that recorded these failures. The data from these documents will be used by the Source Terms Task to determine the contribution of single-pass reactor fuel-element failures to the radioactivity of the reactor effluent from 1944 through 1971. Each referenced fuel-element failure occurring in the Hanford single-pass reactors is addressed. The first recorded failure was in 1948, the last in 1970. No records of fuel-element failures were found in documents prior to 1948. Data on the approximately 2000 failures which occurred during the 28 years (1944--1971) of Hanford single-pass reactor operations are provided in this report.

  2. Review of Rover fuel element protective coating development at Los Alamos

    NASA Technical Reports Server (NTRS)

    Wallace, Terry C.

    1991-01-01

    The Los Alamos Scientific Laboratory (LASL) entered the nuclear propulsion field in 1955 and began work on all aspects of a nuclear propulsion program with a target exhaust temperature of about 2750 K. A very extensive chemical vapor deposition coating technology for preventing catastrophic corrosion of reactor core components by the high temperature, high pressure hydrogen propellant gas was developed. Over the 17-year term of the program, more than 50,000 fuel elements were coated and evaluated. Advances in performance were achieved only through closely coupled interaction between the developing fuel element fabrication and protective coating technologies. The endurance of fuel elements in high temperature, high pressure hydrogen environment increased from several minutes at 2000 K exit gas temperature to 2 hours at 2440 K exit gas temperature in a reactor test and 10 hours at 2350 K exit gas temperature in a hot gas test. The purpose of this paper is to highlight the rationale for selection of coating materials used (NbC and ZrC), identify critical fuel element-coat interactions that had to be modified to increase system performance, and review the evolution of protective coating technology.

  3. An Expert System to Analyze Homogeneity in Fuel Element Plates for Research Reactors

    SciTech Connect

    Tolosa, S.C.; Marajofsky, A.

    2004-10-06

    In the manufacturing control of Fuel Element Plates for Research Reactors, one of the problems to be addressed is how to determine the U-density homogeneity in a fuel plate and how to obtain qualitative and quantitative information in order to establish acceptance or rejection criteria for such, as well as carrying out the quality follow-up. This paper is aimed at developing computing software which implements an Unsupervised Competitive Learning Neural Network for the acknowledgment of regions belonging to a digitalized gray scale image. This program is applied to x-ray images. These images are generated when the x-ray beams go through a fuel plate of approximately 60 cm x 8 cm x 0.1 cm thick. A Nuclear Fuel Element for Research Reactors usually consists of 18 to 22 of these plates, positioned in parallel, in an arrangement of 8 x 7 cm. Carrying out the inspection of the digitalized x-ray image, the neural network detects regions with different luminous densities corresponding to U-densities in the fuel plate. This is used in quality control to detect failures and verify acceptance criteria depending on the homogeneity of the plate. This modality of inspection is important as it allows the performance of non-destructive measurements and the automatic generation of the map of U-relative densities of the fuel plate.

  4. 2-D Time-Dependent Fuel Element, Thermal Analysis Code System.

    Energy Science and Technology Software Center (ESTSC)

    2001-09-24

    Version 00 WREM-TOODEE2 is a two dimensional, time-dependent, fuel-element thermal analysis program. Its primary purpose is to evaluate fuel-element thermal response during post-LOCA refill and reflood in a pressurized water reactor (PWR). TOODEE2 calculations are carried out in a two-dimensional mesh region defined in slab or cylindrical geometry by orthogonal grid lines. Coordinates which form order pairs are labeled x-y in slab geometry, and those in cylindrical geometry are labeled r-z for the axisymmetric casemore » and r-theta for the polar case. Conduction and radiation are the only heat transfer mechanisms assumed within the boundaries of the mesh region. Convective and boiling heat transfer mechanisms are assumed at the boundaries. The program numerically solves the two-dimensional, time-dependent, heat conduction equation within the mesh region. KEYWORDS: FUEL MANAGEMENT; HEAT TRANSFER; LOCA; PWR« less

  5. Chemical aspects of pellet-cladding interaction in light water reactor fuel elements

    SciTech Connect

    Olander, D.R.

    1982-01-01

    In contrast to the extensive literature on the mechanical aspects of pellet-cladding interaction (PCI) in light water reactor fuel elements, the chemical features of this phenomenon are so poorly understood that there is still disagreement concerning the chemical agent responsible. Since the earliest work by Rosenbaum, Davies and Pon, laboratory and in-reactor experiments designed to elucidate the mechanism of PCI fuel rod failures have concentrated almost exclusively on iodine. The assumption that this is the reponsible chemical agent is contained in models of PCI which have been constructed for incorporation into fuel performance codes. The evidence implicating iodine is circumstantial, being based primarily upon the volatility and significant fission yield of this element and on the microstructural similarity of the failed Zircaloy specimens exposed to iodine in laboratory stress corrosion cracking (SCC) tests to cladding failures by PCI.

  6. Conceptual design report for handling Fort St. Vrain fuel element components

    SciTech Connect

    Gavalya, R.A.

    1993-09-01

    This report presents conceptual designs for containment of high-level wastes (HLW) and low-level wastes (LLW) that will result from disassembly of fuel elements from the High Temperature Gas-Cooled Reactor at the Fort St. Vrain nuclear power plant in Platteville, Colorado. Hexagonal fuel elements will enter the disassembly area as a HLW and exit as either as HLW or LLW. The HLW will consist of spent fuel compacts that have been removed from the hexagonal graphite block. Graphite dust and graphite particles produced during the disassembly process will also be routed to the container that will hold the HLW spent fuel compacts. The LLW will consist of the emptied graphite block. Three alternatives have been introduced for interim storage of the HLW containers after the spent fuel has been loaded. The three alternatives are: (a) store containers where fuel elements are currently being stored, (b) construct a new dry storage facility, and (c) employ Multi-Purpose Canisters (currently in conceptual design stage). Containment of the LLW graphite block will depend on several factors: (a) LLW classification, (b) radiation levels, and (c) volume-reducing technique (if used). Packaging may range from cardboard boxes for incinerable wastes to 55-ton cask inserts for remote-handled wastes. Before final designs for the containment of the HLW and LLW can be developed, several issues need to be addressed: (a) packing factor for fuel compacts in HLW container, (b) storage/disposal of loaded HLW containers, (c) characterization of the emptied graphite blocks, and (d) which technique for volume-reduction purposes (if any) will be used.

  7. Examination of the surface coating removed from K-East Basin fuel elements

    SciTech Connect

    Abrefah, J.; Marschman, S.C.; Jenson, E.D.

    1998-05-01

    This report provides the results of studies conducted on coatings discovered on the surfaces of some N-Reactor spent nuclear fuel (SNF) elements stored at the Hanford K-East Basin. These elements had been removed from the canisters and visually examined in-basin during FY 1996 as part of a series of characterization tests. The characterization tests are being performed to support the Integrated Process Strategy developed to package, dry, transport, and store the SNF in an interim storage facility on the Hanford site. Samples of coating materials were removed from K-East canister elements 2350E and 2540E, which had been sent, along with nine other elements, to the Postirradiation Testing Laboratory (327 Building) for further characterization following the in-basin examinations. These coating samples were evaluated by Pacific Northwest National Laboratory using various analytical methods. This report is part of the overall studies to determine the drying behavior of corrosion products associated with the K-Basin fuel elements. Altogether, five samples of coating materials were analyzed. These analyses suggest that hydration of the coating materials could be an additional source of moisture in the Multi-Canister Overpacks being used to contain the fuel for storage.

  8. Time-resolved and time-integrated radiography of fast reactor fuel elements

    SciTech Connect

    De Volpi, A.

    1981-01-01

    The fast-reactor safety program has some unusual requirements in radiography. Applications may be divided into two areas: time-resolved or time-integrated radiography. The fast-neutron hodoscope has supplied all recent time-resolved cineradiographic in-pile fuel-motion data, and various x-ray and photographic techniques have been used for out-of-pile experiments. Thick containers and the large number of radioactive fuel pins involved in safety research have been responsible for some nonconventional applications of time-integrated radiography of stationary objects. Hodoscopes record fuel-motion during transient experiments at the TREAT reactor in the United States and CABRI in France. Other special techniques have been under development for out-of-pile nondestructive radiography of fuel element subassemblies, including fast-neutron and gamma-ray tomographic methods.

  9. Discrete element method study of fuel relocation and dispersal during loss-of-coolant accidents

    NASA Astrophysics Data System (ADS)

    Govers, K.; Verwerft, M.

    2016-09-01

    The fuel fragmentation, relocation and dispersal (FFRD) during LOCA transients today retain the attention of the nuclear safety community. The fine fragmentation observed at high burnup may, indeed, affect the Emergency Core Cooling System performance: accumulation of fuel debris in the cladding ballooned zone leads to a redistribution of the temperature profile, while dispersal of debris might lead to coolant blockage or to debris circulation through the primary circuit. This work presents a contribution, by discrete element method, towards a mechanistic description of the various stages of FFRD. The fuel fragments are described as a set of interacting particles, behaving as a granular medium. The model shows qualitative and quantitative agreement with experimental observations, such as the packing efficiency in the balloon, which is shown to stabilize at about 55%. The model is then applied to study fuel dispersal, for which experimental parametric studies are both difficult and expensive.

  10. Effect of Co/Ni ratios in cobalt nickel mixed oxide catalysts on methane combustion

    SciTech Connect

    Lim, Tae Hwan; Cho, Sung June; Yang, Hee Sung; Engelhard, Mark H.; Kim, Do Heui

    2015-07-31

    A series of cobalt nickel mixed oxide catalysts with the varying ratios of Co to Ni, prepared by co-precipitation method, were applied to methane combustion. Among the various ratios, cobalt nickel mixed oxides having the ratios of Co to Ni of (50:50) and (67:33) demonstrate the highest activity for methane combustion. Structural analysis obtained from X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) evidently demonstrates that CoNi (50:50) and (67:33) samples consist of NiCo2O4and NiO phase and, more importantly, NiCo2O4spinel structure is largely distorted, which is attributed to the insertion of Ni2+ions into octahedral sites in Co3O4spinel structure. Such structural dis-order results in the enhanced portion of surface oxygen species, thus leading to the improved reducibility of the catalysts in the low temperature region as evidenced by temperature programmed reduction by hydrogen (H2TPR) and X-ray photoelectron spectroscopy (XPS) O 1s results. They prove that structural disorder in cobalt nickel mixed oxides enhances the catalytic performance for methane combustion. Thus, it is concluded that a strong relationship between structural property and activity in cobalt nickel mixed oxide for methane combustion exists and, more importantly, distorted NiCo2O4spinel structure is found to be an active site for methane combustion.

  11. Microwave synthesis and electrochemical characterization of Mn/Ni mixed oxide for supercapacitor application

    SciTech Connect

    Prasankumar, T.; Jose, Sujin P.; Ilangovan, R.; Venkatesh, K. S.

    2015-06-24

    Nanostructured Mn/Ni mixed metal oxide was synthesized at ambient temperature by facile microwave irradiation technique. The crystal structure and surface morphology were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. X-ray diffraction analysis confirmed the formation of Mn/Ni mixed oxide in rhombohedral phase and the grain size calculated was found to be 87 nm. The irregular spherical morphology of the prepared sample was exhibited by the SEM images. The characteristic peaks of FTIR at about 630 cm{sup −1} and 749 cm{sup −1} were attributed to the Mn-O and Ni-O stretching vibrations respectively. The presence of both Mn and Ni in the prepared sample was validated by the EDS spectra which in turn confirmed the formation of mixed oxide. Cyclic voltammetry and galvanostatic chargedischarge measurements were employed to investigate the electrochemical performance of the mixed oxide. The cyclic voltammetry curves demonstrated good capacitive performance of the sample in the potential window −0.2V to 0.9V. The charge discharge study revealed the suitability of the prepared mixed oxide for the fabrication of supercapacitor electrode.

  12. Electrooxidation of nitrite on a silica-cerium mixed oxide carbon paste electrode.

    PubMed

    Silveira, Gustavo; de Morais, Andréia; Villis, Paulo César Mendes; Maroneze, Camila Marchetti; Gushikem, Yoshitaka; Lucho, Alzira Maria Serpa; Pissetti, Fábio Luiz

    2012-03-01

    A silica-cerium mixed oxide (SiCe) was prepared by the sol-gel process, using tetraethylorthosilicate and cerium nitrate as precursors and obtained as an amorphous solid possessing a specific surface area of 459 m(2) g(-1). Infrared spectroscopy of the SiCe material showed the formation of the Si-O-Ce linkage in the mixed oxide. Scanning electron microscopy/energy dispersive spectroscopy indicated that the cerium oxide particles were homogenously dispersed on the matrix surface. X-ray diffraction and (29)Si solid-state nuclear magnetic resonance implied non-crystalline silica matrices with chemical environments that are typical for silica-based mixed oxides. X-ray photoelectron spectroscopy showed that Ce was present in approximately equal amounts of both the 3+ and 4+ oxidation states. Cyclic voltammetry data of electrode prepared from the silica-cerium mixed oxide showed a peak for oxidation of Ce(3+)/Ce(4+) at 0.76 V and electrochemical impedance spectroscopy equivalent circuit indicated a porous structure with low charge transfer resistance. In the presence of nitrite, the SiCe electrode shows an anodic oxidation peak at 0.76 V with a linear response as the concentration of the analyte increases from 3×10(-5) at 3.9×10(-3) mol L(-1). PMID:22192596

  13. TRISO-Fuel Element Performance Modeling for the Hybrid LIFE Engine with Pu Fuel Blanket

    SciTech Connect

    DeMange, P; Marian, J; Caro, M; Caro, A

    2010-02-18

    A TRISO-coated fuel thermo-mechanical performance study is performed for the hybrid LIFE engine to test the viability of TRISO particles to achieve ultra-high burnup of a weapons-grade Pu blanket. Our methodology includes full elastic anisotropy, time and temperature varying material properties for all TRISO layers, and a procedure to remap the elastic solutions in order to achieve fast fluences up to 30 x 10{sup 25} n {center_dot} m{sup -2} (E > 0.18 MeV). In order to model fast fluences in the range of {approx} 7 {approx} 30 x 10{sup 25} n {center_dot} m{sup -2}, for which no data exist, careful scalings and extrapolations of the known TRISO material properties are carried out under a number of potential scenarios. A number of findings can be extracted from our study. First, failure of the internal pyrolytic carbon (PyC) layer occurs within the first two months of operation. Then, the particles behave as BISO-coated particles, with the internal pressure being withstood directly by the SiC layer. Later, after 1.6 years, the remaining PyC crumbles due to void swelling and the fuel particle becomes a single-SiC-layer particle. Unrestrained by the PyC layers, and at the temperatures and fluences in the LIFE engine, the SiC layer maintains reasonably-low tensile stresses until the end-of-life. Second, the PyC creep constant, K, has a striking influence on the fuel performance of TRISO-coated particles, whose stresses scale almost inversely proportional to K. Obtaining more reliable measurements, especially at higher fluences, is an imperative for the fidelity of our models. Finally, varying the geometry of the TRISO-coated fuel particles results in little differences in the scope of fuel performance. The mechanical integrity of 2-cm graphite pebbles that act as fuel matrix has also been studied and it is concluded that they can reliable serve the entire LIFE burnup cycle without failure.

  14. Choices of canisters and elements for the first fuel and canister sludge shipment from K East Basin

    SciTech Connect

    Makenas, B.J.

    1996-03-22

    The K East Basin contains open-top canisters with up to fourteen N Reactor fuel assemblies distributed between the two barrels of each canister. Each fuel assembly generally consists of inner and outer concentric elements fabricated from uranium metal with zirconium alloy cladding. The canisters also contain varying amounts of accumulated sludge. Retrieval of sample fuel elements and associated sludge for examination is scheduled to occur in the near future. The purpose of this document is to specify particular canisters and elements of interest as candidate sources of fuel and sludge to be shipped to laboratories.

  15. Comparison of HEU and LEU Fuel Neutron Spectrum for ATR Fuel Element and ATR Flux-Trap Positions

    SciTech Connect

    G. S. Chang

    2008-10-01

    The Advanced Test Reactor (ATR) is a high power and high neutron flux research reactor operating in the United States. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth. Because of the high total core power and high neutron flux, the ATR is an ideal candidate for assessing the feasibility of converting an HEU driven reactor to a low-enriched core. An optimized low-enriched uranium (LEU) (U-10Mo) core conversion case, which can meet the project requirements, has been selected. However, LEU contains a significant quantity of high density U-238 (80.3 wt.%), which will harden the neutron spectrum in the core region. Based on the reference ATR HEU and the optimized LEU full core plate-by-plate (PBP) models, the present work investigates and compares the neutron spectra differences in the fuel element (FE), Northeast flux trap (NEFT), Southeast flux trap (SEFT), and East flux trap (EFT) positions. A detailed PBP MCNP ATR core model was developed and validated for fuel cycle burnup comparison analysis. The current ATR core with HEU U 235 enrichment of 93.0wt.% was used as the reference model. Each HEU fuel element contains 19 fuel plates with a fuel meat thickness of 0.508 mm (20 mil). In this work, an optimized LEU (U-10Mo) core conversion case with a nominal fuel meat thickness of 0.330 mm (13 mil) and the U-235 enrichment of 19.7 wt.% was used to calculate the impact of the neutron spectrum in FE and FT positions. MCNP-calculated results show that the neutron spectrum in the LEU FE is slightly harder than in the HEU FE, as expected. However, when neutrons transport through water coolant and beryllium (Be), the neutrons are thermalized to an equilibrium neutron spectrum as a function of water volume fraction in the investigated FT positions. As a result, the neutron spectrum differences of the HEU and LEU in the NEFT, SEFT, and EFT are negligible. To demonstrate that the LEU core fuel cycle performance can meet the

  16. Catalytic soot oxidation over Ce- and Cu-doped hydrotalcites-derived mesoporous mixed oxides.

    PubMed

    Wang, Zhongpeng; Wang, Liguo; He, Fang; Jiang, Zheng; Xiao, Tiancun; Zhang, Zhaoliang

    2014-09-01

    Ce- and Cu-doped hydrotalcites derived mixed oxides were prepared through co-precipitation and calcination method, and their catalytic activities for soot oxidation with O2 and O2/NO were investigated. The solids were characterized by XRD, TG-DTG, BET, H2-TPR, in situ FTIR and TPO techniques. All the catalysts precursors showed the typical diffraction patterns of hydrotalcite-like materials having layered structure. The derived mixed oxides exhibited mesoporous properties with specific surface area of 45-160 m2/g. After both Ce and Cu incorporated, mixed crystalline phases of CuO (tenorite), CeO2 (fluorite) and MgAl2O4 (spinel) were formed. As a result, the NO(x) adsorption capacity of this catalyst was largely increased to 201 μmol/g, meanwhile, it was also the most effective to convert NO into NO2 in the sorption process due to the enhanced reducibility. The in situ FTIR spectra revealed that NO(x) were stored mainly as chelating bidentate and monodentate nitrate. The interaction effect between Cu and Ce in the mixed oxide resulted in different NO(x) adsorption behavior. Compared with the non-catalyzed soot oxidation, soot conversion curves over the mixed oxides catalysts shift to low temperature in O2. The presence of NO in the gas phase significantly enhanced the soot oxidation activity with ignition temperature decreased to about 320 degrees C, which is due to NO conversion to NO2 over the catalyst followed by the reaction of NO2 with soot. This explains the cooperative effect of Ce and Cu in the mixed oxide on soot oxidation with high activity and 100% selectivity to CO2 formation. PMID:25924375

  17. Release Fractions from Multi-Element Spent Fuel Casks Resulting from HEDD Attack

    SciTech Connect

    Luna, R. E.

    2006-07-01

    This paper provides a simple model for estimating the release of respirable aerosols resulting from an attack on a spent fuel cask using a high energy density device (HEDD). Two primary experiments have provided data on potential releases from spent fuel casks under HEDD attack. Sandia National Laboratories (SNL) conducted the first in the early 1980's and the second was sponsored by Gessellshaft fur Anlagen- and Reaktorsicherheit (GRS) in Germany and conducted in France in 1994. Both used surrogate spent fuel assemblies in real casks. The SNL experiments used un-pressurized fuel pin assemblies in a single element cask while the GRS tests used pressurized fuel pin assemblies in a 9-element cask. Data from the two test programs is reasonably consistent, given the differences in the experiments, but the use of the test data for prediction of releases resulting from HEDD attack requires a method for accounting for the effects of pin pressurization release and the ratio of pin plenum gas release to cask free volume (VR). To account for the effects of VR and to link the two data sources, a simple model has been developed that uses both the SNL data and the GRS data as well as recent test data on aerosols produced in experiments with single pellets subjected to HEDD effects conducted under the aegis of the International Consortium's Working Group on Sabotage of Transport and Storage Casks (WGSTSC). (authors)

  18. A SCALE 5.0 Reactor Physics Assessment using the Module TRITON against Mixed Oxide (MOX) OECD/NEA Benchmarks

    SciTech Connect

    Saccheri, J.G.B.; Diamond, D.J.

    2006-07-01

    Reactor physics numerical benchmarks have been performed at the Brookhaven National Laboratory (BNL) with the software package SCALE 5.0 and its TRITON module to assess their capability to predict neutronics parameters for mixed oxide (MOX) fuels. The results of such calculations are herein presented. Specifically, BNL results for neutron multiplication factors (kINF), neutron fluxes and fuel burnup have been added to published OECD/NEA benchmarks for MOX fuels and particular emphasis has been given to the impact of cross-section libraries and their energy structure on the results. Among the OECD/NEA published benchmarks two have been considered here: the first one models a fuel pin surrounded by moderator, in which two different MOX fuels can be introduced, and for each one of them kINF and neutron fluxes as a function of burnup are calculated. The second one includes both a fuel pin case and a macro-cell case (a heterogeneous 30 by 30 configuration of fuel pins), for which the void coefficient is determined by calculating kINF at zero burnup as a function of moderation. The calculations are repeated for several combinations of MOX and uranium oxide fuels using several different cross-section libraries. The final results have been compared with each other. This study shows that SCALE 5.0 (with TRITON) overall performs in line with the other codes in the benchmark, but the results are dependent on the energy group structure of the cross section libraries used. For instance, when fissile plutonium is increased in the fuel, TRITON results become slightly divergent with burnup (with respect to the other codes in the benchmark) and if the standard 44-group library provided with SCALE 5.0 is used void coefficient calculations become inadequate for very low void (below 10% of the operating value of moderator density). Moreover, the prediction capabilities of the code are shown to be dependent on the MOX fuel enrichment and the MOX isotopic composition. (authors)

  19. The development of fuel performance models at the European institute for transuranium elements

    NASA Astrophysics Data System (ADS)

    Lassmann, K.; Ronchi, C.; Small, G. J.

    1989-07-01

    The design and operational performance of fuel rods for nuclear power stations has been the subject of detailed experimental research for over thirty years. In the last two decades the continuous demands for greater economy in conjunction with more stringent safety criteria have led to an increasing reliance on computer simulations. Conditions within a fuel rod must be calculated both for normal operation and for proposed reactor faults. It has thus been necessary to build up a reliable, theoretical understanding of the intricate physical, mechanical and chemical processes occurring under a wide range of conditions to obtain a quantitative insight into the behaviour of the fuel. A prime requirement, which has also proved to be the most taxing, is to predict the conditions under which failure of the cladding might occur, particularly in fuel nearing the end of its useful life. In this paper the general requirements of a fuel performance code are discussed briefly and an account is given of the basic concepts of code construction. An overview is then given of recent progress at the European Institute for Transuranium Elements in the development of a fuel rod performance code for general application and of more detailed mechanistic models for fission product behaviour.

  20. Reduced Toxicity Fuel Satellite Propulsion System Including Catalytic Decomposing Element with Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J. (Inventor)

    2002-01-01

    A reduced toxicity fuel satellite propulsion system including a reduced toxicity propellant supply for consumption in an axial class thruster and an ACS class thruster. The system includes suitable valves and conduits for supplying the reduced toxicity propellant to the ACS decomposing element of an ACS thruster. The ACS decomposing element is operative to decompose the reduced toxicity propellant into hot propulsive gases. In addition the system includes suitable valves and conduits for supplying the reduced toxicity propellant to an axial decomposing element of the axial thruster. The axial decomposing element is operative to decompose the reduced toxicity propellant into hot gases. The system further includes suitable valves and conduits for supplying a second propellant to a combustion chamber of the axial thruster, whereby the hot gases and the second propellant auto-ignite and begin the combustion process for producing thrust.

  1. Radiotoxicity and Risk Reduction of TRU Elements from Spent Fuel by Transmutation in the Light Water Reactor

    SciTech Connect

    Necas, Vladimir; Sebian, Vladimir; Kociskova, Karolina; Darilek, Petr

    2005-05-24

    A conventional PWR of type VVER-440 operating in a sustainable advanced fuel cycle mode with complete recycling of TRU elements in an Inert Matrix Combined Fuel Assembly (IMC-FA) in the same reactor was investigated. A preliminary assessment with the differences between various nuclear fuel cycles in terms of the risk analysis and its indicators has been conducted. The results indicate that the sustainable advanced fuel cycle option can, for the same amount of energy generation, significantly reduces both the amounts and radiotoxicity of the spent nuclear fuel in comparison with the conventional once-through UO2 or MOX fuel cycles.

  2. Fusion option to dispose of spent nuclear fuel and transuranic elements

    SciTech Connect

    Gohar, Y.

    2000-02-10

    The fusion option is examined to solve the disposition problems of the spent nuclear fuel and the transuranic elements. The analysis of this report shows that the top rated solution, the elimination of the transuranic elements and the long-lived fission products, can be achieved in a fusion reactor. A 167 MW of fusion power from a D-T plasma for sixty years with an availability factor of 0.75 can transmute all the transuranic elements and the long-lived fission products of the 70,000 tons of the US inventory of spent nuclear fuel generated up to the year 2015. The operating time can be reduced to thirty years with use of 334 MW of fusion power, a system study is needed to define the optimum time. In addition, the fusion solution eliminates the need for a geological repository site, which is a major advantage. Meanwhile, such utilization of the fusion power will provide an excellent opportunity to develop fusion energy for the future. Fusion blankets with a liquid carrier for the transuranic elements can achieve a transmutation rate for the transuranic elements up to 80 kg/MW.y of fusion power with k{sub eff} of 0.98. In addition, the liquid blankets have several advantages relative to the other blanket options. The energy from this transmutation is utilized to produce revenue for the system. Molten salt (Flibe) and lithium-lead eutectic are identified as the most promising liquids for this application, both materials are under development for future fusion blanket concepts. The Flibe molten salt with transuranic elements was developed and used successfully as nuclear fuel for the molten salt breeder reactor in the 1960's.

  3. Computer modeling of single-cell and multicell thermionic fuel elements

    SciTech Connect

    Dickinson, J.W.; Klein, A.C.

    1996-05-01

    Modeling efforts are undertaken to perform coupled thermal-hydraulic and thermionic analysis for both single-cell and multicell thermionic fuel elements (TFE). The analysis--and the resulting MCTFE computer code (multicell thermionic fuel element)--is a steady-state finite volume model specifically designed to analyze cylindrical TFEs. It employs an interactive successive overrelaxation solution technique to solve for the temperatures throughout the TFE and a coupled thermionic routine to determine the total TFE performance. The calculated results include temperature distributions in all regions of the TFE, axial interelectrode voltages and current densities, and total TFE electrical output parameters including power, current, and voltage. MCTFE-generated results compare experimental data from the single-cell Topaz-II-type TFE and multicell data from the General Atomics 3H5 TFE to benchmark the accuracy of the code methods.

  4. Graphite corrosion and hydrogen release from HTR fuel elements in Q-brine

    SciTech Connect

    Fachinger, J.; Zhang, Z.X.; Brodda, B.G.

    1995-12-31

    Industrial reprocessing for High Temperature Reactors (HTR) fuel elements has never been installed in Germany. The spent fuel elements are being considered for final disposal in a rock salt repository in the deep geologic underground. Safety analysis requires the assumption of an accidental water ingress into the repository, resulting in the formation of a concentrated salt solution with the typical composition of a quinary brine. After corrosive penetration of the container walls, the brine may finally contact the fuel elements directly and mobilize radionuclides. Duve et al. investigated the leaching of the fission products and actinides from HTR fuel elements in Q-brine. The mobilization of {sup 14}C by graphite corrosion is one of the last data bases required as a source term for the release estimation of radionuclides in the final safety analysis. The evaluation of the hydrogen release was prescribed by the licensing board, because an excessive gas pressure may affect the overall integrity of the geological barrier. {sup 14}C occurs as dissolved organic and inorganic compounds in the brine. The leaching rate or organic {sup 14}C decreases from about 80 Bq to 1 Bq. The amount of organic {sup 14}C decreases from about 80 Bq to 1 Bq during leaching. The release of inorganic {sup 14}C ceases within 4 months. About 100 ppm of the total {sup 14}C inventory was released during leaching. Gaseous {sup 14}C has never been detected. The gas formation is based on the radiolytic degradation of water, with a formation rate of 0.04 to 0.11 ml/d. Gas chromatographic analysis of the gas proved that hydrogen is the main component of the released gas. Tritium and {sup 85}Kr were detected as traces with radio gas chromatography.

  5. Aerothermal modeling program, phase 2. Element C: Fuel injector-air swirl characterization

    NASA Technical Reports Server (NTRS)

    Mostafa, A. A.; Mongia, H. C.; Mcdonnell, V. G.; Samuelsen, G. S.

    1986-01-01

    The main objectives of the NASA-sponsored Aerothermal Modeling Program, Phase 2--Element C, are experimental evaluation of the air swirler interaction with a fuel injector in a simulated combustor chamber, assessment of the current two-phase models, and verification of the improved spray evaporation/dispersion models. This experimental and numerical program consists of five major tasks. Brief descriptions of the five tasks are given.

  6. Selection of representative volume elements for pore-scale analysis of transport in fuel cell materials

    NASA Astrophysics Data System (ADS)

    Wargo, E. A.; Hanna, A. C.; Çeçen, A.; Kalidindi, S. R.; Kumbur, E. C.

    2012-01-01

    Pore-scale modeling has become a quite popular tool for evaluating the impact of material structure on fuel cell performance. However, the computational complexity of these models often limits simulations to analyze only a small volume of material, which is typically selected randomly from a much larger microstructure dataset. When considering the heterogeneous internal structure of fuel cell materials, it is highly unlikely that such a randomly selected volume (i.e., model domain) would adequately reflect the salient features of the material structure. The objective of this work is to utilize the recent advances in microstructure quantification to select small representative volume elements (RVEs) that accurately reflect the overall microstructure and transport properties of fuel cell materials. The micro-porous layer (MPL) in polymer electrolyte fuel cells is chosen for initial demonstration of the approach. Dual-beam focused ion beam scanning electron microscopy is utilized to obtain a 3-D structural dataset of the selected MPL sample. The RVEs are selected using the new approach of weighted sets of optimally selected statistical volume elements, and the key structure and transport metrics are evaluated using advanced microstructure algorithms developed in-house. Metric comparisons between the RVEs and the full dataset indicate that the RVEs selected by this approach offer a very good representation of the full dataset, albeit in a volume that is significantly smaller in spatial extent, therefore providing a computationally efficient and reliable model domain for pore-scale analyses.

  7. Space shuttle orbit maneuvering engine, reusable thrust chamber program. Task 6: Data dump hot fuel element investigation

    NASA Technical Reports Server (NTRS)

    Nurick, W. H.

    1974-01-01

    An evaluation of reusable thrust chambers for the space shuttle orbit maneuvering engine was conducted. Tests were conducted using subscale injector hot-fire procedures for the injector configurations designed for a regenerative cooled engine. The effect of operating conditions and fuel temperature on combustion chamber performance was determined. Specific objectives of the evaluation were to examine the optimum like-doublet element geometry for operation at conditions consistent with a fuel regeneratively cooled engine (hot fuel, 200 to 250 F) and the sensitivity of the triplet injector element to hot fuels.

  8. Effect of cooling rate on achieving thermodynamic equilibrium in uranium-plutonium mixed oxides

    NASA Astrophysics Data System (ADS)

    Vauchy, Romain; Belin, Renaud C.; Robisson, Anne-Charlotte; Hodaj, Fiqiri

    2016-02-01

    In situ X-ray diffraction was used to study the structural changes occurring in uranium-plutonium mixed oxides U1-yPuyO2-x with y = 0.15; 0.28 and 0.45 during cooling from 1773 K to room-temperature under He + 5% H2 atmosphere. We compare the fastest and slowest cooling rates allowed by our apparatus i.e. 2 K s-1 and 0.005 K s-1, respectively. The promptly cooled samples evidenced a phase separation whereas samples cooled slowly did not due to their complete oxidation in contact with the atmosphere during cooling. Besides the composition of the annealing gas mixture, the cooling rate plays a major role on the control of the Oxygen/Metal ratio (O/M) and then on the crystallographic properties of the U1-yPuyO2-x uranium-plutonium mixed oxides.

  9. Storage capacity and oxygen mobility in mixed oxides from transition metals promoted by cerium

    NASA Astrophysics Data System (ADS)

    Perdomo, Camilo; Pérez, Alejandro; Molina, Rafael; Moreno, Sonia

    2016-10-01

    The oxygen mobility and storage capacity of Ce-Co/Cu-MgAl or Ce-MgAl mixed oxides, obtained by hydrotalcite precursors, were evaluated using Toluene-temperature-programmed-reaction, 18O2 isotopic exchange and O2-H2 titration. The presence of oxygen vacancies-related species was evaluated by means of Electron Paramagnetic Resonance. A correlation was found between the studied properties and the catalytic activity of the oxides in total oxidation processes. It was evidenced that catalytic activity depends on two related processes: the facility with which the solid can be reduced and its ability to regenerate itself in the presence of molecular oxygen in the gas phase. These processes are enhanced by Cu-Co cooperative effect in the mixed oxides. Additionally, the incorporation of Ce in the Co-Cu catalysts improved their oxygen transport properties.

  10. Fabrication of zero power reactor fuel elements containing /sup 233/U/sub 3/O/sub 8/ powder

    SciTech Connect

    Nicol, R G; Parrott, J R; Krichinsky, A M; Box, W D; Martin, C W; Whitson, W R

    1982-05-01

    Oak Ridge National Laboratory, under contract with Argonne National Laboratory, completed the fabrication of 1743 fuel elements for use in their Zero Power Reactor. The contract also included recovery of 20 kg of /sup 233/U from rejected elements. This report describes the steps associated with conversion of purified uranyl nitrate (as solution) to U/sub 3/O/sub 8/ powder (suitable for fuel) and subsequent charging, sealing, decontamination, and testing of the fuel elements (packets) preparatory to shipment. The nuclear safety, radiation exposures, and quality assurance aspects of the program are discussed.

  11. New insight into self-irradiation effects on local and long-range structure of uranium-americium mixed oxides (through XAS and XRD).

    PubMed

    Lebreton, Florent; Martin, Philippe M; Horlait, Denis; Bès, René; Scheinost, Andreas C; Rossberg, Andre; Delahaye, Thibaud; Blanchart, Philippe

    2014-09-15

    Uranium-americium mixed oxides could be used as transmutation targets to lower Am inventory in spent nuclear fuels. Due to (241)Am activity, these materials are subjected to α-self-irradiation which provokes crystallographic disorder. Previous studies on U-Am mixed oxides gave first insight into α-radiation tolerance of these compounds, but have never been carried out for more than a year, whereas these compounds might be stored up to a few years between fabrication and irradiation. In this work, we study effects of self-irradiation on the structure of U(1-x)Am(x)O(2±δ) solid solutions (x = 0.15 and 0.20) aged 3 to 4 years. Especially, X-ray diffraction and X-ray absorption spectroscopy are combined to observe these effects from both long-range and local perspectives. Results show that the fluorite-type structure of U-Am mixed oxides withstands (241)Am α-irradiation without major damage. Despite the increase of interatomic distances and crystallographic disorder observed during the first months of storage, the present results show that a steady state is then reached. Thus, no detrimental factors have been identified in this study in terms of structural damage for several-year storage of U(1-x)Am(x)O(2±δ) pellets before irradiation. Furthermore, comparison between long-range and local evolution suggests that α-self-irradiation-induced defects are mainly located in low-ordered domains. Based on literature data and present results, the steady state appears related to the equilibrium between radioinduced defect formation and material self-healing. PMID:25162209

  12. A Thermodynamic Investigation of the Redox Properties of Ceria-Titania Mixed Oxides

    SciTech Connect

    Zhou,G.; Hanson, J.; Gorte, R.

    2008-01-01

    Ceria-titania solutions with compositions of Ce0.9Ti0.1O2 and Ce0.8Ti0.2O2 were prepared by the citric-acid (Pechini) method and characterized using X-ray diffraction (XRD) for structure, coulometric titration for redox thermodynamics, and water-gas-shift (WGS) reaction rates. Following calcination at 973 K, XRD suggests that the mixed oxides exist as single phase, fluorite structures, although there was no significant change in the lattice parameter compared to pure ceria. The mixed oxides are shown to be significantly more reducible than bulk ceria, with enthalpies for re-oxidation being approximately -500 kJ/mol O2, compared to -760 kJ/mol O2 for bulk ceria. However, WGS rates over 1 wt% Pd supported on ceria, Ce0.8Ti0.2O2, and Ce0.8Zr0.2O2 were nearly the same. For calcination at 1323 K, the mixed oxides separated into ceria and titania phases, as indicated by both the XRD and thermodynamic results.

  13. Cu-Mn-Ce ternary mixed-oxide catalysts for catalytic combustion of toluene.

    PubMed

    Lu, Hanfeng; Kong, Xianxian; Huang, Haifeng; Zhou, Ying; Chen, Yinfei

    2015-06-01

    Cu-Mn, Cu-Mn-Ce, and Cu-Ce mixed-oxide catalysts were prepared by a citric acid sol-gel method and then characterized by XRD, BET, H2-TPR and XPS analyses. Their catalytic properties were investigated in the toluene combustion reaction. Results showed that the Cu-Mn-Ce ternary mixed-oxide catalyst with 1:2:4 mole ratios had the highest catalytic activity, and 99% toluene conversion was achieved at temperatures below 220°C. In the Cu-Mn-Ce catalyst, a portion of Cu and Mn species entered into the CeO2 fluorite lattice, which led to the formation of a ceria-based solid solution. Excess Cu and Mn oxides existed on the surface of the ceria-based solid solution. The coexistence of Cu-Mn mixed oxides and the ceria-based solid solution resulted in a better synergetic interaction than the Cu-Mn and Cu-Ce catalysts, which promoted catalyst reducibility, increased oxygen mobility, and enhanced the formation of abundant active oxygen species. PMID:26040736

  14. Information on the evolution of severe LWR fuel element damage obtained in the CORA program

    NASA Astrophysics Data System (ADS)

    Schanz, G.; Hagen, S.; Hofmann, P.; Schumacher, G.; Sepold, L.

    1992-06-01

    In the CORA program a series of out-of-pile experiments on LWR severe accidental situations is being performed, in which test bundles of LWR typical components and arrangements (PWR, BWR) are exposed to temperature transients up to about 2400°C under flowing steam. The individual features of the facility, the test conduct, and the evaluation will be presented. In the frame of the international cooperation in severe fuel damage (SFD) programs the CORA tests are contributing confirmatory and complementary informations to the results from the limited number of in-pile tests. The identification of basic phenomena of the fuel element destruction, observed as a function of temperature, is supported by separate-effects test results. Most important mechanisms are the steam oxidation of the Zircaloy cladding, which determines the temperature escalation, the chemical interaction between UO 2 fuel and cladding, which dominates fuel liquefaction, relocation and resulting blockage formation, as well as chemical interactions with Inconel spacer grids and absorber units ((Ag, In, Cd) alloy or B 4C), which are leading to extensive low-temperature melt formation around 1200°C. Interrelations between those basic phenomena, resulting for example in cladding deformation ("flowering") and the dramatic hydrogen formation in response to the fast cooling of a hot bundle by cold water ("quenching") are determining the evolution paths of fuel element destruction, which are to be identified. A further important task is the abstraction from mechanistic and microstructural details in order to get a rough classification of damage regimes (temperature and extent), a practicable analytical treatment of the materials behaviour, and a basis for decisions in accident mitigation and management procedures.

  15. Late-occurring pulmonary pathologies following inhalation of mixed oxide (uranium + plutonium oxide) aerosol in the rat.

    PubMed

    Griffiths, N M; Van der Meeren, A; Fritsch, P; Abram, M-C; Bernaudin, J-F; Poncy, J L

    2010-09-01

    Accidental exposure by inhalation to alpha-emitting particles from mixed oxide (MOX: uranium and plutonium oxide) fuels is a potential long-term health risk to workers in nuclear fuel fabrication plants. For MOX fuels, the risk of lung cancer development may be different from that assigned to individual components (plutonium, uranium) given different physico-chemical characteristics. The objective of this study was to investigate late effects in rat lungs following inhalation of MOX aerosols of similar particle size containing 2.5 or 7.1% plutonium. Conscious rats were exposed to MOX aerosols and kept for their entire lifespan. Different initial lung burdens (ILBs) were obtained using different amounts of MOX. Lung total alpha activity was determined by external counting and at autopsy for total lung dose calculation. Fixed lung tissue was used for anatomopathological, autoradiographical, and immunohistochemical analyses. Inhalation of MOX at ILBs ranging from 1-20 kBq resulted in lung pathologies (90% of rats) including fibrosis (70%) and malignant lung tumors (45%). High ILBs (4-20 kBq) resulted in reduced survival time (N = 102; p < 0.05) frequently associated with lung fibrosis. Malignant tumor incidence increased linearly with dose (up to 60 Gy) with a risk of 1-1.6% Gy for MOX, similar to results for industrial plutonium oxide alone (1.9% Gy). Staining with antibodies against Surfactant Protein-C, Thyroid Transcription Factor-1, or Oct-4 showed differential labeling of tumor types. In conclusion, late effects following MOX inhalation result in similar risk for development of lung tumors as compared with industrial plutonium oxide. PMID:20699696

  16. Neutronics benchmarks of mixed-oxide fuels using the SCALE/CENTRM sequence

    SciTech Connect

    Hollenbach, D.F.; Fox, P.B.

    2000-02-01

    The purpose of this study is to determine and document the reactor physics parameters (multiplication factors, spatially dependent flux ratios, and spacially dependent reaction rates ) for several distinct sets of problems using two distinct resonance cross-section processing techniques. In SCALE, by default, resonances are processed using NITAWL, which utilizes the Nordheim Integral Treatment. The results produced using this sequence are considered to be the base results. A second set of results are produced by replacing NITAWL with CENTRM/PMC. CENTRM produces point-wise fluxes for a given geometry configuration and set of isotopes. Using these fluxes, PMC produces problem-dependent self-shielding cross sections. Both sequences use ENDF/B-V cross-section data.

  17. 78 FR 9431 - Shaw AREVA MOX Services, LLC (Mixed Oxide Fuel Fabrication Facility); Order Approving Indirect...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-08

    .... Department of Energy (DOE) Savannah River Site in Aiken, South Carolina. II By letter dated August 30, 2012... submit written comments was published in the Federal Register on October 25, 2012 (77 FR 65208). No... was corrected on (January 30, 2013; 78 FR 6356) to fix a typographical error. Pursuant to Section...

  18. Electrolyser and fuel cells, key elements for energy and life support

    NASA Astrophysics Data System (ADS)

    Bockstahler, Klaus; Funke, Helmut; Lucas, Joachim

    Both, Electrolyser and Fuel Cells are key elements for regenerative energy and life support systems. Electrolyser technology is originally intended for oxygen production in manned space habitats and in submarines, through splitting water into hydrogen and oxygen. Fuel cells serve for energy production through the reaction, triggered in the presence of an electrolyte, between a fuel and an oxidant. Now combining both technologies i.e. electrolyser and fuel cell makes it a Regenerative Fuel Cell System (RFCS). In charge mode, i.e. with energy supplied e.g. by solar cells, the electrolyser splits water into hydrogen and oxygen being stored in tanks. In discharge mode, when power is needed but no energy is available, the stored gases are converted in the fuel cell to generate electricity under the formation of water that is stored in tanks. Rerouting the water to the electrolyser makes it a closed-loop i.e. regenerative process. Different electrolyser and fuel cell technologies are being evolved. At Astrium emphasis is put on the development of an RFCS comprised of Fixed Alkaline Electrolyser (FAE) and Fuel Cell (AFC) as such technology offers a high electrical efficiency and thus reduced system weight, which is important in space applications. With increasing power demand and increasing discharge time an RFCS proves to be superior to batteries. Since the early technology development multiple design refinements were done at Astrium, funded by the European Space Agency ESA and the German National Agency DLR as well as based on company internal R and T funding. Today a complete RFCS energy system breadboard is established and the operational behavior of the system is being tested. In parallel the electrolyser itself is subject to design refinement and testing in terms of oxygen production in manned space habitats. In addition essential features and components for process monitoring and control are being developed. The present results and achievements and the dedicated

  19. Radionuclide Compositions and Total Activity of Spent MTR-HEU Fuel Elements of the IAN-R1 Research Reactor

    NASA Astrophysics Data System (ADS)

    Sarta, Josè A.; Castiblanco, Luis A.

    2005-05-01

    With cooperation of the International Atomic Energy Agency (IAEA) and the Department of Energy (DOE) of the United States, several calculations and tasks related to the waste disposal of spent MTR fuel enriched nominally to 93% were carried out for the conversion of the IAN-R1 Research Reactor from MTR-HEU fuel to TRIGA-LEU fuel. In order to remove the spent MTR-HEU fuel of the core and store it safely a program was established at the Instituto de Ciencias Nucleares y Energìas Alternativas (INEA). This program included training, acquisition of hardware and software, design and construction of a decay pool, transfer of the spent HEU fuel elements into the decay pool and his final transport to Savannah River in United States. In this paper are presented data of activities calculated for each relevant radionuclide present in spent MTR-HEU fuel elements of the IAN-R1 Research Reactor and the total activity. The total activity calculated takes in consideration contributions of fission, activation and actinides products. The data obtained were the base for shielding calculations for the decay pool concerning the storage of spent MTR-HEU fuel elements and the respective dosimetric evaluations in the transferring operations of fuel elements into the decay pool.

  20. Radionuclide Compositions and Total Activity of Spent MTR-HEU Fuel Elements of the IAN-R1 Research Reactor

    SciTech Connect

    Sarta, Jose A.; Castiblanco, Luis A

    2005-05-24

    With cooperation of the International Atomic Energy Agency (IAEA) and the Department of Energy (DOE) of the United States, several calculations and tasks related to the waste disposal of spent MTR fuel enriched nominally to 93% were carried out for the conversion of the IAN-R1 Research Reactor from MTR-HEU fuel to TRIGA-LEU fuel. In order to remove the spent MTR-HEU fuel of the core and store it safely a program was established at the Instituto de Ciencias Nucleares y Energias Alternativas (INEA). This program included training, acquisition of hardware and software, design and construction of a decay pool, transfer of the spent HEU fuel elements into the decay pool and his final transport to Savannah River in United States. In this paper are presented data of activities calculated for each relevant radionuclide present in spent MTR-HEU fuel elements of the IAN-R1 Research Reactor and the total activity. The total activity calculated takes in consideration contributions of fission, activation and actinides products. The data obtained were the base for shielding calculations for the decay pool concerning the storage of spent MTR-HEU fuel elements and the respective dosimetric evaluations in the transferring operations of fuel elements into the decay pool.

  1. 10 CFR Appendix O to Part 110 - Illustrative List of Fuel Element Fabrication Plant Equipment and Components Under NRC's Export...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Illustrative List of Fuel Element Fabrication Plant Equipment and Components Under NRC's Export Licensing Authority O Appendix O to Part 110 Energy NUCLEAR... the integrity of completed fuel pins (or rods). This item typically includes equipment for: (i)...

  2. 10 CFR Appendix O to Part 110 - Illustrative List of Fuel Element Fabrication Plant Equipment and Components Under NRC's Export...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Illustrative List of Fuel Element Fabrication Plant Equipment and Components Under NRC's Export Licensing Authority O Appendix O to Part 110 Energy NUCLEAR... the integrity of completed fuel pins (or rods). This item typically includes equipment for: (i)...

  3. 10 CFR Appendix O to Part 110 - Illustrative List of Fuel Element Fabrication Plant Equipment and Components Under NRC's Export...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Illustrative List of Fuel Element Fabrication Plant Equipment and Components Under NRC's Export Licensing Authority O Appendix O to Part 110 Energy NUCLEAR... the integrity of completed fuel pins (or rods). This item typically includes equipment for: (i)...

  4. 10 CFR Appendix O to Part 110 - Illustrative List of Fuel Element Fabrication Plant Equipment and Components Under NRC's Export...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Illustrative List of Fuel Element Fabrication Plant Equipment and Components Under NRC's Export Licensing Authority O Appendix O to Part 110 Energy NUCLEAR... the integrity of completed fuel pins (or rods). This item typically includes equipment for: (i)...

  5. 10 CFR Appendix O to Part 110 - Illustrative List of Fuel Element Fabrication Plant Equipment and Components Under NRC's Export...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Illustrative List of Fuel Element Fabrication Plant Equipment and Components Under NRC's Export Licensing Authority O Appendix O to Part 110 Energy NUCLEAR... the integrity of completed fuel pins (or rods). This item typically includes equipment for: (i)...

  6. Atomistic modeling of the interaction of cladding elements (Fe, Ni, Cr) with U-Zr fuel

    NASA Astrophysics Data System (ADS)

    Bozzolo, G.; Mosca, H. O.; Yacout, A. M.; Hofman, G. L.

    2011-07-01

    Atomistic simulations of U-Zr fuel and its interaction with Fe, Ni, and Cr using the BFS method for alloys are presented. Results for the γU-βZr solid solution are discussed, including the behavior of the lattice parameter and coefficient of thermal expansion as a function of concentration and temperature. Output from these calculations is used to study the surface structure of γU-βZr for different crystallographic orientations, determining the concentration profiles, surface energy, and segregation behavior. The analysis is completed with simulations of the deposition of Fe, Ni and Cr on U-Zr substrates with varying Zr concentration. All results are discussed and interpreted by means of the concepts of strain and chemical energy underlying the BFS method, thus obtaining a simple explanation for the observed Zr segregation and its influence in allowing for cladding elements diffusion into the U-Zr fuel.

  7. Selective Catalytic Oxidation of Hydrogen Sulfide to Elemental Sulfur from Coal-Derived Fuel Gases

    SciTech Connect

    Gardner, Todd H.; Berry, David A.; Lyons, K. David; Beer, Stephen K.; Monahan, Michael J.

    2001-11-06

    The development of low cost, highly efficient, desulfurization technology with integrated sulfur recovery remains a principle barrier issue for Vision 21 integrated gasification combined cycle (IGCC) power generation plants. In this plan, the U. S. Department of Energy will construct ultra-clean, modular, co-production IGCC power plants each with chemical products tailored to meet the demands of specific regional markets. The catalysts employed in these co-production modules, for example water-gas-shift and Fischer-Tropsch catalysts, are readily poisoned by hydrogen sulfide (H{sub 2}S), a sulfur contaminant, present in the coal-derived fuel gases. To prevent poisoning of these catalysts, the removal of H{sub 2}S down to the parts-per-billion level is necessary. Historically, research into the purification of coal-derived fuel gases has focused on dry technologies that offer the prospect of higher combined cycle efficiencies as well as improved thermal integration with co-production modules. Primarily, these concepts rely on a highly selective process separation step to remove low concentrations of H{sub 2}S present in the fuel gases and produce a concentrated stream of sulfur bearing effluent. This effluent must then undergo further processing to be converted to its final form, usually elemental sulfur. Ultimately, desulfurization of coal-derived fuel gases may cost as much as 15% of the total fixed capital investment (Chen et al., 1992). It is, therefore, desirable to develop new technology that can accomplish H{sub 2}S separation and direct conversion to elemental sulfur more efficiently and with a lower initial fixed capital investment.

  8. Two-dimensional steady-state and transient analysis of single-cell thermionic fuel elements

    SciTech Connect

    El-Genk, M.S.; Xue, H. . Inst. for Space Nuclear Power Studies)

    1994-10-01

    A two-dimensional transient model is developed to simulate steady-state and transient operations of single-cell thermionic fuel elements (TFEs). Model predictions are in good agreement with published data to within 4.5 and 5.5% for fission and electrically heated TFEs of the TOPAZ-II type, respectively. In addition, the results of a transient analysis simulating the startup of an electrically heated TFE, following a step function increase in thermal power, are in presented and discussed.

  9. Multi-cell thermionic fuel element for nuclear electric power and propulsion system

    NASA Astrophysics Data System (ADS)

    Nikolaev, Yuri V.; Gontar, Alexander S.; Eremin, Stanislav A.; Lapochkin, Nikolai V.; Andreev, Pavel V.; Zhabotinsky, Evgeny E.

    1999-01-01

    Conceptual problems of development of two-mode multi-cell thermionic fuel element (TFE) for nuclear electric power and propulsion system are considered. The results of analysis of the design and TFE output parameters are presented. It is shown that application of advanced high effective materials and technologies provides operating of the TFE in two modes: a) in nominal mode of power generation for power supply of spacecraft payload at operational orbit and b) in forced mode of power generation for power supply of electric thrusters under spacecraft orbit transfer from intermediate to operational one.

  10. Irradiation and examinations of the second group of thermionic fuel element insulators (UCA-2)

    NASA Astrophysics Data System (ADS)

    Lawrence, Leo A.; Ard, Kevin E.; Veca, Anthony R.; Giraldez, Emilio M.

    1991-01-01

    Thermionic fuel element sheaths, seal and intercell insulators, and end restraints were irradiated in a fast neutron spectrum and examined. Samples were irradiated at temperatures ranging from 1110 K to 1200 K to fast fluences from 3.4×1022 n/cm2 to 6.0×1022 n/cm2. Sample examinations included visual, photographic, dimensional, electrical resistance to temperatures of 1175 K, helium leak rates, and metallography. Examinations of the end restraints and intercell insulators, which were limited to visual and photographic examination, showed no adverse effects from the irradiation. Alumina and yttria have been identified as insulator materials which meet design requirements.

  11. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE & AFTER IRRADIATION

    SciTech Connect

    SCHWINKENDORF, K.N.

    2006-05-12

    With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements. The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprising two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with ''green'' (fresh) fuel and one with spent fuel. Both the green and spent fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k{sub eff} = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, 3 green fuel and 4 spent fuel loading configurations were considered to serve as benchmark models. However, shortcomings in experimental data failed to meet the high standards for a benchmark problem. Nevertheless, the data provided by these subcritical measurements can supply useful

  12. How to stabilize highly active Cu+ cations in a mixed-oxide catalyst

    DOE PAGESBeta

    Mudiyanselage, Kumudu; Luo, Si; Kim, Hyun You; Yang, Xiaofang; Baber, Ashleigh E.; Hoffmann, Friedrich M.; Senanayake, Sananayake; Rodriguez, Jose A.; Chen, Jingguang G.; Liu, Ping; et al

    2015-09-12

    Mixed-metal oxides exhibit novel properties that are not present in their isolated constituent metal oxides and play a significant role in heterogeneous catalysis. In this study, a titanium-copper mixed-oxide (TiCuOx) film has been synthesized on Cu(111) and characterized by complementary experimental and theoretical methods. At sub-monolayer coverages of titanium, a Cu2O-like phase coexists with TiCuOx and TiOx domains. When the mixed-oxide surface is exposed at elevated temperatures (600–650 K) to oxygen, the formation of a well-ordered TiCuOx film occurs. Stepwise oxidation of TiCuOx shows that the formation of the mixed-oxide is faster than that of pure Cu2O. As the Timore » coverage increases, Ti-rich islands (TiOx) form. The adsorption of CO has been used to probe the exposed surface sites on the TiOx–CuOx system, indicating the existence of a new Cu+ adsorption site that is not present on Cu2O/Cu(111). Adsorption of CO on Cu+ sites of TiCuOx is thermally more stable than on Cu(111), Cu2O/Cu(111) or TiO2(110). The Cu+ sites in TiCuOx domains are stable under both reducing and oxidizing conditions whereas the Cu2O domains present on sub-monolayer loads of Ti can be reduced or oxidized under mild conditions. Furthermore, the results presented here demonstrate novel properties of TiCuOx films, which are not present on Cu(111), Cu2O/Cu(111), or TiO2(110), and highlight the importance of the preparation and characterization of well-defined mixed-metal oxides in order to understand fundamental processes that could guide the design of new materials.« less

  13. Dose Rate Calculations of Spent MTR-HEU Fuel Elements of the IAN-R1 Research Reactor

    NASA Astrophysics Data System (ADS)

    Sarta Fuentes, Jose Antonio

    2005-04-01

    With cooperation of the International Atomic Energy Agency (IAEA) and the Department of Energy (DOE) of the United States, several tasks related to the waste disposal of spent MTR fuel enriched nominally to 93% were carried out for the conversion of the IAN-R1 Research Reactor from MTR-HEU fuel to TRIGA-LEU fuel. In order to remove the spent MTR-HEU fuel of the core and store it safetly, a program was established at the Instituto de Ciencias Nucleares y Energìas Alternativas (INEA). This program included training, acquisition of hardware and sofware, design and construction of a decay pool, transfer of the spent HEU fuel elements into the decay pool and his final transport to Savanah River in United States. In this paper are presented external dose rates which were calculated for a standard spent MTR-HEU fuel element of the IAN-R1 Research Reactor. The calculations take in consideration the activity due to contributions of fission, activation and actinides products for each relevant radionuclide present in a standard spent MTR-HEU fuel. The datas obtained were the base for the respective dosimetric evaluations in the transfering operations of fuel elements into the decay pool and for shielding calculations in designing of the decay pool.

  14. Processing of FRG high-temperature gas-cooled reactor fuel elements at General Atomic under the US/FRG cooperative agreement for spent fuel elements

    SciTech Connect

    Holder, N.D.; Strand, J.B.; Schwarz, F.A.; Drake, R.N.

    1981-11-01

    The Federal Republic of Germany (FRG) and the United States (US) are cooperating on certain aspects of gas-cooled reactor technology under an umbrella agreement. Under the spent fuel treatment development section of the agreement, both FRG mixed uranium/ thorium and low-enriched uranium fuel spheres have been processed in the Department of Energy-sponsored cold pilot plant for high-temperature gas-cooled reactor (HTGR) fuel processing at General Atomic Company in San Diego, California. The FRG fuel spheres were crushed and burned to recover coated fuel particles suitable for further treatment for uranium recovery. Successful completion of the tests described in this paper demonstrated certain modifications to the US HTGR fuel burining process necessary for FRG fuel treatment. Results of the tests will be used in the design of a US/FRG joint prototype headend facility for HTGR fuel.

  15. Direct imaging of octahedral distortion in a complex molybdenum vanadium mixed oxide.

    PubMed

    Lunkenbein, Thomas; Girgsdies, Frank; Wernbacher, Anna; Noack, Johannes; Auffermann, Gudrun; Yasuhara, Akira; Klein-Hoffmann, Achim; Ueda, Wataru; Eichelbaum, Maik; Trunschke, Annette; Schlögl, Robert; Willinger, Marc G

    2015-06-01

    Complex Mo,V-based mixed oxides that crystallize in the orthorhombic M1-type structure are promising candidates for the selective oxidation of small alkanes. The oxygen sublattice of such a complex oxide has been studied by annular bright field scanning transmission electron microscopy. The recorded micrographs directly display the local distortion in the metal oxygen octahedra. From the degree of distortion we are able to draw conclusions on the distribution of oxidation states in the cation columns at different sites. The results are supported by X-ray diffraction and electron paramagnetic resonance measurements that provide integral details about the crystal structure and spin coupling, respectively. PMID:25914205

  16. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds

    DOE PAGESBeta

    Ramasamy, Karthikeyan K.; Gray, Michel; Job, Heather; Smith, Colin; Wang, Yong

    2016-02-03

    Here, a highly versatile ethanol conversion process to selectively generate high value compounds is presented here. By changing the reaction temperature, ethanol can be selectively converted to >C2 alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3 catalyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensation or the acetone formation is the path taken in changing the product composition. This article contains the catalytic activity comparison between the mono-functional and physical mixture counterpart to the hydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.

  17. Development of Low-Cost Manufacturing Processes for Planar, Multilayer Solid Oxide Fuel Cell Elements

    SciTech Connect

    Scott Swartz; Matthew Seabaugh; William Dawson; Tim Armstrong; Harlan Anderson; John Lannutti

    2001-09-30

    This report summarizes the results of Phase II of this program, 'Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'. The objective of the program is to develop advanced ceramic manufacturing technologies for making planar solid oxide fuel cell (SOFC) components that are more economical and reliable for a variety of applications. Phase II development work focused on three distinct manufacturing approaches (or tracks) for planar solid oxide fuel cell elements. Two development tracks, led by NexTech Materials and Oak Ridge National Laboratory, involved co-sintering of planar SOFC elements of cathode-supported and anode-supported variations. A third development track, led by the University of Missouri-Rolla, focused on a revolutionary approach for reducing operating temperature of SOFCs by using spin-coating to deposit ultra-thin, nano-crystalline YSZ electrolyte films. The work in Phase II was supported by characterization work at Ohio State University. The primary technical accomplishments within each of the three development tracks are summarized. Track 1--NexTech's targeted manufacturing process for planar SOFC elements involves tape casting of porous electrode substrates, colloidal-spray deposition of YSZ electrolyte films, co-sintering of bi-layer elements, and screen printing of opposite electrode coatings. The bulk of NexTech's work focused on making cathode-supported elements, although the processes developed at NexTech also were applied to the fabrication of anode-supported cells. Primary accomplishments within this track are summarized below: (1) Scale up of lanthanum strontium manganite (LSM) cathode powder production process; (2) Development and scale-up of tape casting methods for cathode and anode substrates; (3) Development of automated ultrasonic-spray process for depositing YSZ films; (4) Successful co-sintering of flat bi-layer elements (both cathode and anode supported); (5) Development of anode and cathode screen-printing processes; and (6

  18. DEVELOPMENT OF LOW-COST MANUFACTURING PROCESSES FOR PLANAR, MULTILAYER SOLID OXIDE FUEL CELL ELEMENTS

    SciTech Connect

    Scott Swartz; Matthew Seabaugh; William Dawson; Harlan Anderson; Tim Armstrong; Michael Cobb; Kirby Meacham; James Stephan; Russell Bennett; Bob Remick; Chuck Sishtla; Scott Barnett; John Lannutti

    2004-06-12

    This report summarizes the results of a four-year project, entitled, ''Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'', jointly funded by the U.S. Department of Energy, the State of Ohio, and by project participants. The project was led by NexTech Materials, Ltd., with subcontracting support provided by University of Missouri-Rolla, Michael A. Cobb & Co., Advanced Materials Technologies, Inc., Edison Materials Technology Center, Gas Technology Institute, Northwestern University, and The Ohio State University. Oak Ridge National Laboratory, though not formally a subcontractor on the program, supported the effort with separate DOE funding. The objective of the program was to develop advanced manufacturing technologies for making solid oxide fuel cell components that are more economical and reliable for a variety of applications. The program was carried out in three phases. In the Phase I effort, several manufacturing approaches were considered and subjected to detailed assessments of manufacturability and development risk. Estimated manufacturing costs for 5-kW stacks were in the range of $139/kW to $179/kW. The risk assessment identified a number of technical issues that would need to be considered during development. Phase II development work focused on development of planar solid oxide fuel cell elements, using a number of ceramic manufacturing methods, including tape casting, colloidal-spray deposition, screen printing, spin-coating, and sintering. Several processes were successfully established for fabrication of anode-supported, thin-film electrolyte cells, with performance levels at or near the state-of-the-art. The work in Phase III involved scale-up of cell manufacturing methods, development of non-destructive evaluation methods, and comprehensive electrical and electrochemical testing of solid oxide fuel cell materials and components.

  19. Room-temperature oxidation of hypostoichiometric uranium-plutonium mixed oxides U1-yPuyO2-x - A depth-selective approach

    NASA Astrophysics Data System (ADS)

    Vauchy, Romain; Robisson, Anne-Charlotte; Belin, Renaud C.; Martin, Philippe M.; Scheinost, Andreas C.; Hodaj, Fiqiri

    2015-10-01

    In the present work, TGA, XAS and XRD were used to evidence the spontaneous oxidation of biphasic U1-yPuyO2-x samples, with y = 0.28 and 0.45, at room temperature and upon exposure to low moisture and oxygen contents. The oxidation occurs within very short timescales (e.g. O/M ratio increasing from 1.94 to 1.98 within ∼1 μm surface layer in ∼50 h). The combined use of these three complementary methods offered a depth-selective approach from the sample's bulk to its surface and allowed a thorough understanding of the underlying processes involved during the formation of the oxidized layer and of its thickening with time. We believe our results to be of interest in the prospect of fabricating hypo-stoichiometric uranium-plutonium mixed oxides since mastering the oxygen content is a crucial point for many of the fuel properties.

  20. Microstructure and oxygen evolution of Fe-Ce mixed oxides by redox treatment

    NASA Astrophysics Data System (ADS)

    Li, Kongzhai; Haneda, Masaaki; Ning, Peihong; Wang, Hua; Ozawa, Masakuni

    2014-01-01

    The relationship between structure and reduction/redox properties of Fe-Ce mixed oxides with a Fe content of 5, 10, 20 or 30 mol%, prepared by a coprecipitation method, were investigated by XRD, Raman, TEM, TPR and TPO techniques. It is found that all the iron ions can be incorporated into the ceria lattice to form a solid solution for the FeCe 5 (Fe 5%) sample, but amorphous or crystal Fe2O3 particles were found to be present on the Fe-Ce oxide samples with higher the iron content. The reducibility of single solid solution was much better than the pure CeO2, and the appearance of dispersed Fe2O3 particles improved the surface reducibility of materials. The iron ions incorporated into the CeO2 lattice accelerated the oxygen release from bulk to surface, and surface Fe2O3 particles in close contact to CeO2 acted as a catalyst for the reaction between solid solution and hydrogen. The microstructure of exposed Fe2O3 with Ce-Fe-O solid solution allows the Fe-Ce mixed oxides to own good reducibility and high OSC, which also counteracts the deactivation of the reducibility resulting from the sintering of materials in the redox cycling.

  1. Electrochemical synthesis of new magnetic mixed oxides of Sr and Fe: Composition, magnetic properties, and microstructure

    SciTech Connect

    Amigo, R.; Asenjo, J.; Krotenko, E.; Torres, F.; Tejada, J.; Brillas, E.

    2000-02-01

    An electrochemical method for the preparation of magnetic nanoparticles of new Sr-Fe oxides is presented in this work. It consists of the electrolysis of nitrate or chloride solutions with Sr{sup 2+} and Fe{sup 3+} salts using commercial Fe electrodes. Magnetic materials are collected as precipitates from nitrate media in the pH range 1-3 and from chloride media within the pH range 1--12. The presence of 100--300 ppm aniline in acidic nitrate media yields a decrease in energy cost and particle size. Inductively coupled plasma analysis of materials and energy-dispersive X-ray spectrometry of single particles confirm that they are composed of mixed oxides of Sr and Fe. All synthesized materials crystallize as inverse cubic spinels, usually with intermediate structures between magnetite and maghemite. They are formed by nanoparticles with average sizes from 2 nm to {approximately} 50 nm, as observed by scanning electron microscopy. The electrogenerated mixed oxides have higher saturation magnetization, but lower remanent magnetization and coercive field, than commercial strontium hexaferrite with micrometric particle size.

  2. Fabrication of uranium-americium mixed oxide pellet from microsphere precursors: Application of CRMP process

    NASA Astrophysics Data System (ADS)

    Remy, E.; Picart, S.; Delahaye, T.; Jobelin, I.; Lebreton, F.; Horlait, D.; Bisel, I.; Blanchart, P.; Ayral, A.

    2014-10-01

    Mixed uranium-americium oxides are one of the materials envisaged for Americium Bearing Blankets dedicated to transmutation in fast neutron reactors. Recently, several processes have been developed in order to validate fabrication flowchart in terms of material specifications such as density and homogeneity but also to suggest simplifications for lowering industrial costs and hazards linked to dust generation of highly contaminating and irradiating compounds. This study deals with the application of an innovative route using mixed oxide microspheres obtained from metal loaded resin bead calcination, called Calcined Resin Microsphere Pelletization (CRMP). The synthesis of mixed oxide microsphere precursor of U0.9Am0.1O2±δ is described as well as its characterisation. The use of this free-flowing precursor allows the pressing and sintering of one pellet of U0.9Am0.1O2±δ. The ceramic obtained was characterised and results showed that its microstructure is dense and homogeneous and its density attains 95% of the theoretical density. This study validates the scientific feasibility of the CRMP process applied to the fabrication of uranium and americium-containing materials.

  3. Preparation of extrusions of bulk mixed oxide compounds with high macroporosity and mechanical strength

    DOEpatents

    Flytzani-Stephanopoulos, Maria; Jothimurugesan, Kandaswami

    1990-01-01

    A simple and effective method for producing bulk single and mixed oxide absorbents and catalysts is disclosed. The method yields bulk single oxide and mixed oxide absorbent and catalyst materials which combine a high macroporosity with relatively high surface area and good mechanical strength. The materials are prepared in a pellet form using as starting compounds, calcined powders of the desired composition and physical properties these powders are crushed to broad particle size distribution, and, optionally may be combined with an inorganic clay binder. The necessary amount of water is added to form a paste which is extruded, dried and heat treated to yield and desired extrudate strength. The physical properties of the extruded materials (density, macroporosity and surface area) are substantially the same as the constituent powder is the temperature of the heat treatment of the extrudates is approximately the same as the calcination temperature of the powder. If the former is substantially higher than the latter, the surface area decreases, but the macroporosity of the extrusions remains essentially constant.

  4. Elemental balance of SRF production process: solid recovered fuel produced from municipal solid waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Oinas, Pekka

    2016-01-01

    In the production of solid recovered fuel (SRF), certain waste components have excessive influence on the quality of product. The proportion of rubber, plastic (hard) and certain textiles was found to be critical as to the elemental quality of SRF. The mass flow of rubber, plastic (hard) and textiles (to certain extent, especially synthetic textile) components from input waste stream into the output streams of SRF production was found to play the decisive role in defining the elemental quality of SRF. This paper presents the mass flow of polluting and potentially toxic elements (PTEs) in SRF production. The SRF was produced from municipal solid waste (MSW) through mechanical treatment (MT). The results showed that of the total input chlorine content to process, 55% was found in the SRF and 30% in reject material. Of the total input arsenic content, 30% was found in the SRF and 45% in fine fraction. In case of cadmium, lead and mercury, of their total input content to the process, 62%, 38% and 30%, respectively, was found in the SRF. Among the components of MSW, rubber material was identified as potential source of chlorine, containing 8.0 wt.% of chlorine. Plastic (hard) and textile components contained 1.6 and 1.1. wt.% of chlorine, respectively. Plastic (hard) contained higher lead and cadmium content compared with other waste components, i.e. 500 mg kg(-1) and 9.0 mg kg(-1), respectively. PMID:26608898

  5. Multiphysics Simulations of the Complex 3D Geometry of the High Flux Isotope Reactor Fuel Elements Using COMSOL

    SciTech Connect

    Freels, James D; Jain, Prashant K

    2011-01-01

    A research and development project is ongoing to convert the currently operating High Flux Isotope Reactor (HFIR) of Oak Ridge National Laboratory (ORNL) from highly-enriched Uranium (HEU U3O8) fuel to low-enriched Uranium (LEU U-10Mo) fuel. Because LEU HFIR-specific testing and experiments will be limited, COMSOL is chosen to provide the needed multiphysics simulation capability to validate against the HEU design data and calculations, and predict the performance of the LEU fuel for design and safety analyses. The focus of this paper is on the unique issues associated with COMSOL modeling of the 3D geometry, meshing, and solution of the HFIR fuel plate and assembled fuel elements. Two parallel paths of 3D model development are underway. The first path follows the traditional route through examination of all flow and heat transfer details using the Low-Reynolds number k-e turbulence model provided by COMSOL v4.2. The second path simplifies the fluid channel modeling by taking advantage of the wealth of knowledge provided by decades of design and safety analyses, data from experiments and tests, and HFIR operation. By simplifying the fluid channel, a significant level of complexity and computer resource requirements are reduced, while also expanding the level and type of analysis that can be performed with COMSOL. Comparison and confirmation of validity of the first (detailed) and second (simplified) 3D modeling paths with each other, and with available data, will enable an expanded level of analysis. The detailed model will be used to analyze hot-spots and other micro fuel behavior events. The simplified model will be used to analyze events such as routine heat-up and expansion of the entire fuel element, and flow blockage. Preliminary, coarse-mesh model results of the detailed individual fuel plate are presented. Examples of the solution for an entire fuel element consisting of multiple individual fuel plates produced by the simplified model are also presented.

  6. The analysis of chlorine with other elements of interest in waste oil/fuels by ICP-AES

    SciTech Connect

    Tsourides, D.

    1998-12-31

    It has been said that there are more chemical analysis performed on oil/fuels than any other material. The sensitivity, linearity, multi-element capability, and relative freedom from matrix effects of ICP-AES makes it particularly suitable for elemental analysis of these samples. However, until recently the routine analysis of Chlorine had not been possible by ICP-AES. The addition of the Halogen elements, particularly Chlorine, to ICP-AES analysis is of importance to several industries that burn waste oil as fuel. The recycling and disposal of waste oil is closely regulated by metal and halogen content in all developed countries. In some countries, waste oil containing more than 1,000 ppm of Chlorine is considered hazardous waste. However, used oil may be burned as a fuel if it meets certain allowable limits. The paper describes the procedures for chlorine analysis by Inductively Coupled Plasma Atomic Emission Spectroscopy.

  7. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE & AFTER IRRADIATION

    SciTech Connect

    TOFFER, H.

    2006-07-18

    With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Fuel that had experienced a neutron environment in a reactor is known as spent, exposed, or irradiated fuel. In contrast fuel that has not yet been placed in a reactor is known as green, unexposed, or unirradiated fuel. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled (References 1 and 2) and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements (Reference 3). The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprised of two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with unirradiated fuel and one with irradiated fuel. Both the unirradiated and irradiated fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k{sub eff} = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, three (3) green fuel

  8. Internal flow measurements of the SSME fuel preburner injector element using real time neutron radiography

    NASA Technical Reports Server (NTRS)

    Lindsay, John T.; Elam, Sandy; Koblish, Ted; Lee, Phil; Mcauliffe, Dave

    1990-01-01

    Due to observations of unsteady flow in the Space Shuttle Main Engine fuel preburner injector element, several flow studies have been performed. Real time neutron radiography tests were recently completed. This technique provided real time images of MiL-c-7024 and Freon-22 flow through an aluminum liquid oxygen post model at three back pressures (0, 150, and 545 psig) and pressure drops up to 1000 psid. Separated flow appeared only while operating at back pressures of 0 and 150 psig. The behavior of separated flow was similar to that observed for water in a 3x acrylic model of the LOX post. On the average, separated flow appeared to reattach near the exit of the post when the ratio of pressure drop to supply pressure was about 0.75.

  9. Output power characteristics and performance of TOPAZ II Thermionic Fuel Element No. 24

    SciTech Connect

    Luchau, D.W.; Bruns, D.R.; Izhvanov, O.; Androsov, V.

    1996-03-01

    A final report on the output power characteristics and capabilities of single cell TOPAZ II Thermionic Fuel Element (TFE) No. 24 is presented. Thermal power tests were conducted for over 3000 hours to investigate converter performance under normal and adverse operating conditions. Experiments conducted include low power testing, high power testing, air introduction to the interelectrode gap, collector temperature optimization, thermal modeling, and output power characteristic measurements. During testing, no unexpected degradation in converter performance was observed. The TFE has been removed from the test stand and returned to Scientific Industrial Association {open_quote}{open_quote}LUCH{close_quote}{close_quote} for materials analysis and report. This research was conducted at the Thermionic System Evaluation Test (TSET) Facility at the New Mexico Engineering Research Institute (NMERI) as a part of the Topaz International Program (TIP) by the Air Force Phillips Laboratory (PL). {copyright} {ital 1996 American Institute of Physics.}

  10. Mechanistic modeling of Zircaloy deformation and fracture in fuel element analysis

    SciTech Connect

    Nichols, F.A.

    1985-06-01

    A review is given of the comprehensive model developed in the 1960's at the Bettis Atomic Power Laboratory to explain the creep of Zircaloy during neutron irradiation and applied to fuel element analysis and design. The in-pile softening observed at low stresses was hypothesized to be due to a combination of the growth-directed Roberts-Cottrell yielding creep originally proposed for ..cap alpha..-uranium and the formation of point defect loops preferentially on certain planes in response to the applied stress, with the second process being of relatively greater importance. The in-pile hardening observed at high stresses (or strain-rates) was proposed to be due to the cutting by dislocations of radiation-produced obstacles. In this stress (strain-rate) region, in-pile behavior was proposed to be identical to post-irradiation behavior. At intermediate stresses (strain-rates) a mechanism of radiation-enhanced climb around obstacles was suggested as being rate controlling. As the stress is decreased, the climb process becomes easier and the rate was then predicted to be controlled by glide at a flow stress characteristic of unirradiated, annealed material, where radiation-enhanced diffusion enabled climbing around the normal strain-hardening obstacles. At still lower stresses, this glide process became negligibly slow compared with the growth-connected creep mechanism which was presumed to operate independently. The overall scheme was shown to be good agreement with all the in-pile data then available and implemented into the computer analysis of fuel element behavior. 48 refs., 1 fig.

  11. Utilization of a finite element model to verify spent nuclear fuel storage rack welds

    SciTech Connect

    Nitzel, M.E.

    1998-07-01

    Elastic and plastic finite element analyses were performed for the inner tie block assembly of a 25 port fuel rack designed for installation at the Idaho National Engineering and Environmental Laboratory (INEEL) Idaho Chemical Processing Plant (ICPP). The model was specifically developed to verify the adequacy of certain welds joining components of the fuel storage rack assembly. The work scope for this task was limited to an investigation of the stress levels in the inner tie welds when the rack was subjected to seismic loads. Structural acceptance criteria used for the elastic calculations performed were as defined by the rack`s designer. Structural acceptance criteria used for the plastic calculations performed as part of this effort were as defined in Subsection NF and Appendix F of Section III of the ASME Boiler and Pressure Vessel Code. The results confirm that the welds joining the inner tie block to the surrounding rack structure meet the acceptance criteria. The analysis results verified that the inner tie block welds should be capable of transferring the expected seismic load without structural failure.

  12. Fabrication of ORNL Fuel Irradiated in the Peach Bottom Reactor and Postirradiation Examination of Recycle Test Elements 7 and 4

    SciTech Connect

    Long, Jr. E.L.

    2001-10-25

    Seven full-sized Peach Bottom Reactor. fuel elements were fabricated in a cooperative effort by Oak Ridge National Laboratory (ORNL) and Gulf General Atomic (GGA) as part of the National HTGR Fuel Recycle Development Program. These elements contain bonded fuel rods and loose beds of particles made from several combinations of fertile and fissile particles of interest for present and future use in the High-Temperature Gas-Cooled Reactor (HTGR). The portion of the fuel prepared for these elements by ORNL is described in detail in this report, and it is in conjunction with the GGA report (GA-10109) a complete fabrication description of the test. In addition, this report describes the results obtained to date from postirradiation examination of the first two elements removed from the Peach Bottom Reactor, RTE-7 and -4. The fuel examined had relatively low exposure, up to about 1.5 x 10{sup 21} neutrons/cm* fast (>0.18 MeV) fluence, compared with the peak anticipated HTGR fluence of 8.0 x 10{sup 21}, but it has performed well at this exposure. Dimensional data indicate greater irradiation shrinkage than expected from accelerated test data to higher exposures. This suggests that either the method of extrapolation of the higher exposure data back to low exposure is faulty, or the behavior of the coated particles in the neutron spectrum characteristic of the accelerated tests does not adequately represent the behavior in an HTGR spectrum.

  13. Disposition of Unirradiated Sodium Bonded EBR-II Driver Fuel Elements and HEU Scrap: Work Performed for FY 2007

    SciTech Connect

    Karen A Moore

    2007-04-01

    Specific surplus high enriched uranium (HEU) materials at the Idaho National Laboratory (INL) Materials and Fuels Complex (MFC) will be transferred to a designated off-site receiving facility. The DOE High Enriched Uranium Disposition Program Office (HDPO) will determine which materials, if any, will be prepared and transferred to an off-site facility for processing and eventual fabrication of fuel for nuclear reactors. These surplus HEU materials include approximately 7200 kg unirradiated sodium-bonded EBR-II driver fuel elements, and nearly 800 kg of HEU casting scrap from the process which formed various sodium-bonded fuels (including the EBR-II driver elements). Before the driver fuel can be packaged for shipment, the fuel elements will require removal of the sodium bond. The HEU scrap will also require repackaging in preparation for off-site transport. Preliminary work on this task was authorized by BWXT Y-12 on Nov 6, 2006 and performed in three areas: • Facility Modifications • Safety Documentation • Project Management

  14. How to stabilize highly active Cu+ cations in a mixed-oxide catalyst

    SciTech Connect

    Mudiyanselage, Kumudu; Luo, Si; Kim, Hyun You; Yang, Xiaofang; Baber, Ashleigh E.; Hoffmann, Friedrich M.; Senanayake, Sananayake; Rodriguez, Jose A.; Chen, Jingguang G.; Liu, Ping; Stacchiola, Dario J.

    2015-09-12

    Mixed-metal oxides exhibit novel properties that are not present in their isolated constituent metal oxides and play a significant role in heterogeneous catalysis. In this study, a titanium-copper mixed-oxide (TiCuOx) film has been synthesized on Cu(111) and characterized by complementary experimental and theoretical methods. At sub-monolayer coverages of titanium, a Cu2O-like phase coexists with TiCuOx and TiOx domains. When the mixed-oxide surface is exposed at elevated temperatures (600–650 K) to oxygen, the formation of a well-ordered TiCuOx film occurs. Stepwise oxidation of TiCuOx shows that the formation of the mixed-oxide is faster than that of pure Cu2O. As the Ti coverage increases, Ti-rich islands (TiOx) form. The adsorption of CO has been used to probe the exposed surface sites on the TiOx–CuOx system, indicating the existence of a new Cu+ adsorption site that is not present on Cu2O/Cu(111). Adsorption of CO on Cu+ sites of TiCuOx is thermally more stable than on Cu(111), Cu2O/Cu(111) or TiO2(110). The Cu+ sites in TiCuOx domains are stable under both reducing and oxidizing conditions whereas the Cu2O domains present on sub-monolayer loads of Ti can be reduced or oxidized under mild conditions. Furthermore, the results presented here demonstrate novel properties of TiCuOx films, which are not present on Cu(111), Cu2O/Cu(111), or TiO2(110), and highlight the importance of the preparation and characterization of well-defined mixed-metal oxides in order to understand fundamental processes that could guide the design of new materials.

  15. Nanoporous composites prepared by a combination of SBA-15 with Mg–Al mixed oxides. Water vapor sorption properties

    PubMed Central

    Pérez-Verdejo, Amaury; Pfeiffer, Heriberto; Ruiz-Reyes, Mayra; Santamaría, Juana-Deisy; Fetter, Geolar

    2014-01-01

    Summary This work presents two easy ways for preparing nanostructured mesoporous composites by interconnecting and combining SBA-15 with mixed oxides derived from a calcined Mg–Al hydrotalcite. Two different Mg–Al hydrotalcite addition procedures were implemented, either after or during the SBA-15 synthesis (in situ method). The first procedure, i.e., the post-synthesis method, produces a composite material with Mg–Al mixed oxides homogeneously dispersed on the SBA-15 nanoporous surface. The resulting composites present textural properties similar to the SBA-15. On the other hand, with the second procedure (in situ method), Mg and Al mixed oxides occur on the porous composite, which displays a cauliflower morphology. This is an important microporosity contribution and micro and mesoporous surfaces coexist in almost the same proportion. Furthermore, the nanostructured mesoporous composites present an extraordinary water vapor sorption capacity. Such composites might be utilized as as acid-base catalysts, adsorbents, sensors or storage nanomaterials. PMID:25161858

  16. Experimental approach and modelling of the mechanical behaviour of graphite fuel elements subjected to compression pulses

    NASA Astrophysics Data System (ADS)

    Forquin, P.

    2010-06-01

    Among the activities led by the Generation IV International Forum (GIF) relative to the future nuclear systems, the improvement of recycling of fuel elements and their components is a major issue. One of the studied systems by the GIF is the graphite-moderated high-temperature gas cooled reactor (HTGR). The fuel elements are composed of fuel roads half-inch in diameter named compacts. The compacts contain spherical particles made of actinide kernels about 500 m in diameter coated with three layers of carbon and silicon carbide, each about 50 m thick, dispersed in a graphite matrix. Recycling of compacts requires first a separation of triso-particles from the graphite matrix and secondly, the separation of the triso-coating from the kernels. This aim may be achieved by using pulsed currents: the compacts are placed within a cell filled by water and exposed to high voltage between 200 - 500 kV and discharge currents from 10 to 20 kA during short laps of time (about 2 µs) [1-2]. This repeated treatment leads to a progressive fragmentation of the graphite matrix and a disassembly of the compacts. In order to improve understanding of the fragmentation properties of compacts a series of quasi-static and dynamic experiments have been conducted with similar cylindrical samples containing 10% (volume fraction) of SiC particles coated in a graphite matrix. First, quasi-static compression tests have been performed to identify the mechanical behaviour of the material at low strain-rates (Fig.1). The experiments reveal a complex elasto-visco-plastic behaviour before a brittle failure. The mechanical response is characterised by a low yield stress (about 1 MPa), a strong strain-hardening in the loading phase and marked hysteresis-loops during unloading-reloading stages. Brittle failure is observed for axial stress about 13 MPa. In parallel, a series of flexural tests have been performed with the aim to characterise the quasi-static tensile strength of the particulate

  17. 3D laser inspection of fuel assembly grid spacers for nuclear reactors based on diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Finogenov, L. V.; Lemeshko, Yu A.; Zav'yalov, P. S.; Chugui, Yu V.

    2007-06-01

    Ensuring the safety and high operation reliability of nuclear reactors takes 100% inspection of geometrical parameters of fuel assemblies, which include the grid spacers performed as a cellular structure with fuel elements. The required grid spacer geometry of assembly in the transverse and longitudinal cross sections is extremely important for maintaining the necessary heat regime. A universal method for 3D grid spacer inspection using a diffractive optical element (DOE), which generates as the structural illumination a multiple-ring pattern on the inner surface of a grid spacer cell, is investigated. Using some DOEs one can inspect the nomenclature of all produced grids. A special objective has been developed for forming the inner surface cell image. The problems of diffractive elements synthesis, projecting optics calculation, adjusting methods as well as calibration of the experimental measuring system are considered. The algorithms for image processing for different constructive elements of grids (cell, channel hole, outer grid spacer rim) and the experimental results are presented.

  18. Finite element thermal stress analysis of solid oxide fuel cell cathode microstructures

    NASA Astrophysics Data System (ADS)

    Vaidya, Sushrut; Kim, Jeong-Ho

    2013-03-01

    Two-dimensional images of solid oxide fuel cell (SOFC) cathode microstructures (50:50 wt.% LSM:YSZ) are used to generate three-dimensional finite element (FE) models. An approximate, heuristic scheme is developed to derive a microstructure of 30:70 wt.% LSM:YSZ composition from the original, real microstructures. The derived model is validated by calculating three-phase boundary (TPB) and phase surface area densities by comparing with data available in the literature. Construction of such derived microstructures will provide insights on the effects of phase compositions on the mechanics of electrode structures. The heuristic scheme is not proposed as a replacement for rigorous approaches such as the random packing model, but rather as a simplified approach for deriving reasonably realistic microstructures of different compositions within a limited range of validity. The models are analyzed using finite elements to estimate thermal stresses and probability of failure using Weibull analysis. The effects of temperature-dependent material properties and phase volume fractions on probability of failure of the cathode are discussed.

  19. Hydrogen loops in existing reactors for testing fuel elements for nuclear propulsion

    NASA Astrophysics Data System (ADS)

    Olsen, Charles S.; Welland, Henry; Abraschoff, James; Thoms, Kenneth

    1993-01-01

    The Space Exploration Initiative (SEI) has revitalized interest in adapting nuclear energy for power and propulsion. Prior to the selection of a nuclear thermal propulsion (NTP) system, extensive testing of the various proposed concepts will be required. In today's environmental, safety and health culture, full size rocket engine tests as were done under the Rover/NERVA program will be extremely difficult and expensive to perform and meet NASA's schedules. A different test strategy uses a hydrogen loop in an existing reactor to test a wide variety of single elements or clusters of elements for fuel qualification. This approach is expected to reduce operating and capital costs and expedite the testing schedule. This paper examines the potential of performing subscale tests in a hydrogen loop in an existing reactor such as the Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory or the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory. The HFIR is expected to achieve power densities comparable to those achieved in ATR because of the 85 MWt power level and the high thermal and fast flux levels. The available length and diameter of the test region of FHIR are 60 cm and 10 cm whereas the available length and diameter of the test region of ATR are 120 cm and 12 cm respectively.

  20. Hydrogen loops in existing reactors for testing fuel elements for nuclear propulsion

    SciTech Connect

    Olsen, C.S.; Welland, H.; Abraschoff, J. ); Thoms, K. )

    1993-01-15

    The Space Exploration Initiative (SEI) has revitalized interest in adapting nuclear energy for power and propulsion. Prior to the selection of a nuclear thermal propulsion (NTP) system, extensive testing of the various proposed concepts will be required. In today's environmental, safety and health culture, full size rocket engine tests as were done under the Rover/NERVA program will be extremely difficult and expensive to perform and meet NASA's schedules. A different test strategy uses a hydrogen loop in an existing reactor to test a wide variety of single elements or clusters of elements for fuel qualification. This approach is expected to reduce operating and capital costs and expedite the testing schedule. This paper examines the potential of performing subscale tests in a hydrogen loop in an existing reactor such as the Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory or the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory. The HFIR is expected to achieve power densities comparable to those achieved in ATR because of the 85 MWt power level and the high thermal and fast flux levels. The available length and diameter of the test region of FHIR are 60 cm and 10 cm whereas the available length and diameter of the test region of ATR are 120 cm and 12 cm respectively.

  1. Fuel injection and mixing systems having piezoelectric elements and methods of using the same

    DOEpatents

    Mao, Chien-Pei; Short, John; Klemm, Jim; Abbott, Royce; Overman, Nick; Pack, Spencer; Winebrenner, Audra

    2011-12-13

    A fuel injection and mixing system is provided that is suitable for use with various types of fuel reformers. Preferably, the system includes a piezoelectric injector for delivering atomized fuel, a gas swirler, such as a steam swirler and/or an air swirler, a mixing chamber and a flow mixing device. The system utilizes ultrasonic vibrations to achieve fuel atomization. The fuel injection and mixing system can be used with a variety of fuel reformers and fuel cells, such as SOFC fuel cells.

  2. Preparation and characterization of RF sputtered Ce-V mixed oxide thin films

    SciTech Connect

    Malini, D. Rachel; Sanjeeviraja, C.

    2012-06-05

    Cerium-Vanadium mixed oxide thin films were deposited at room temperature by varying RF power in RF magnetron sputtering. The morphology and structural features were studied by taking FESEM and XRD and optical properties were analyzed by taking transmittance and absorption spectra. The crystalline film shows orthorhombic CeVO{sub 3} phase and the observed grain size varies from 89.4nm to 208.7nm. The transmission increases and the absorption edge at 330nm is blue shifted with increase in RF power. The optical band gap is found to increase from 1.59 to 1.94eV. The PL spectra shows blue shift in the emission peak centered at a wavelength of 495nm with increase in RF power.

  3. Degradation of organophosphorus pesticide parathion methyl on nanostructured titania-iron mixed oxides

    NASA Astrophysics Data System (ADS)

    Henych, Jiří; Štengl, Václav; Slušná, Michaela; Matys Grygar, Tomáš; Janoš, Pavel; Kuráň, Pavel; Štastný, Martin

    2015-07-01

    Titania-iron mixed oxides with various Ti:Fe ratio were prepared by homogeneous hydrolysis of aqueous solutions of titanium(IV) oxysulphate and iron(III) sulphate with urea as a precipitating agent. The synthesized samples were characterized by X-ray diffraction, Raman and infrared spectroscopy, scanning and transmission electron microscopy, XRF analysis, specific surface area (BET) and porosity determination (BJH). These oxides were used for degradation of organophosporus pesticide parathion methyl. The highest degradation efficiency approaching <70% was found for the samples with Ti:Fe ratio 0.25:1 and 1:0.25. Contrary, parathion methyl was not degraded on the surfaces of pure oxides. In general, the highest degradation rate exhibited samples consisted of the iron or titanium oxide containing a moderate amount of the admixture. However, distinct correlations between the degradation rate and the sorbent composition were not identified.

  4. Solid solubility and thermal expansion studies of uranium-europium mixed oxides

    NASA Astrophysics Data System (ADS)

    Venkata Krishnan, R.; Jogeswararao, G.; Panneerselvam, G.; Antony, M. P.; Ananthasivan, K.

    2015-10-01

    Uranium-europium mixed oxides (U1-yEuy)O2-x (y = 0.2, 0.4, 0.6, 0.65, 0.7, 0.75, 0.8) were prepared by citrate gel-combustion synthesis and characterized by using X-ray diffraction (XRD). The terminal solid solubility of EuO1.5 in UO2 is in the composition range 60-65 mol% EuO1.5. The coefficients of thermal expansions at 1973 K for (U1-yEuy)O2-x (y = 0.2, 0.4, 0.6) measured by using high-temperature X-ray diffraction (HTXRD) were found to be 15.80, 14.81 and 14.30 × 10-6 K-1 respectively.

  5. A method for the estimation of the enthalpy of formation of mixed oxides in Al{sub 2}O{sub 3}-Ln{sub 2}O{sub 3} systems

    SciTech Connect

    Vonka, P.; Leitner, J.

    2009-04-15

    A new method is proposed for the estimation of the enthalpy of formation (DELTA{sub ox}H) of various Al{sub 2}O{sub 3}-Ln{sub 2}O{sub 3} mixed oxides from the constituent binary oxides. Our method is based on Pauling's concept of electronegativity and, in particular, on the relation between the enthalpy of formation of a binary oxide and the difference between the electronegativities of the oxide-forming element and oxygen. This relation is extended to mixed oxides with a simple formula given for the calculation of DELTA{sub ox}H. The parameters of this equation were fitted using published experimental values of DELTA{sub ox}H derived from high-temperature oxide melt solution calorimetry. Using our proposed method, we obtained a standard deviation (sigma) of 4.87 kJ mol{sup -1} for this data set. Taking into account regularities within the lanthanide series, we then estimated the DELTA{sub ox}H values for Al{sub 2}O{sub 3}-Ln{sub 2}O{sub 3} mixed oxides. The values estimated using our method were compared with those obtained by Aronson's and Zhuang's empirical methods, both of which give significantly poorer results. - Graphical abstract: Enthalpy of formation of Ln-Al-O oxides from the constituent binary ones.

  6. AFCI Transmutation Fuel Processes and By-Products Planning: Interim Report

    SciTech Connect

    Eric L. Shaber

    2005-09-01

    The goals of the Advanced Fuel Cycle Initiative (AFCI) Program are to reduce high-level waste volume, reduce long-lived and radiotoxic elements, and reclaim valuable energy content of spent nuclear fuel. The AFCI chartered the Fuel Development Working Group (FDWG) to develop advanced fuels in support of the AFCI goals. The FDWG organized a phased strategy of fuel development that is designed to match the needs of the AFCI program: Phase 1 - High-burnup fuels for light-water reactors (LWRs) and tri-isotopic (TRISO) fuel for gas-cooled reactors Phase 2 – Mixed oxide fuels with minor actinides for LWRs, Am transmutation targets for LWRs, inert matrix fuels for LWRs, and TRISO fuel containing Pu and other transuranium for gas-cooled reactors Phase 3 – Fertile free or low-fertile metal, ceramic, ceramic dispersed in a metal matrix (CERMET), and ceramics dispersed in a ceramic matrix (CERCER) that would be used primarily in fast reactors. Development of advanced fuels requires the fabrication, assembly, and irradiation of prototypic fuel under bounding reactor conditions. At specialized national laboratory facilities small quantities of actinides are being fabricated into such fuel for irradiation tests. Fabrication of demonstration quantities of selected fuels for qualification testing is needed but not currently feasible, because existing manual glovebox fabrication approaches result in significant radiation exposures when larger quantities of actinides are involved. The earliest demonstration test fuels needed in the AFCI program are expected to be variants of commercial mixed oxide fuel for use in an LWR as lead test assemblies. Manufacture of such test assemblies will require isolated fabrication lines at a facility not currently available in the U.S. Such facilities are now being planned as part of an Advanced Fuel Cycle Facility (AFCF). Adequate planning for and specification of actinide fuel fabrication facilities capable of producing transmutation fuels

  7. Base materials and technologies to maintain long service life and efficiency of thermionic converters and thermionic fuel elements

    NASA Astrophysics Data System (ADS)

    Nikolaev, Yury V.; Yastrebkov, Anotoly A.; Gontar, Alexander S.; Lapochkin, Nikolay V.; Belousenko, Alexander P.; Tsetskhladze, David L.

    2001-02-01

    It became possible to produce thermionic converters and thermionic fuel elements having a long-term service life and high efficiency only after developing new materials and processes of their production and treatment. This report present the characteristic of the level (achieved at present) of the base materials and technologies used in the State RI of SIA ``Lutch'' when producing TIC and TFE. .

  8. 78 FR 33132 - Quality Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-03

    ...The U.S. Nuclear Regulatory Commission (NRC) is issuing a revision to Regulatory Guide (RG) 2.3, ``Quality Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test Reactors.'' This guide describes a method that the staff of the NRC considers acceptable for complying with the Commission's regulations concerning establishing and executing a quality assurance......

  9. Finite-element procedure for calculating the three-dimensional inelastic bowing of fuel rods (AWBA development program)

    SciTech Connect

    Martin, S E

    1982-05-01

    An incremental finite element procedure is developed for calculating the in-pile lateral bowing of nuclear fuel rods. The fuel rod is modeled as a viscoelastic beam whose material properties are derived as perturbations of the results of an axisymmetric stress analysis of the fuel rod. The effects which are taken into account in calculating the rod's lateral bowing include: (a) lateral, axial, and rotational motions and forces at the rod supports, (b) transverse gradients of temperature, fast-neutron flux, and fissioning rate, and (c) cladding circumferential wall thickness variation. The procedure developed in this report could be used to form the basis for a computer program to calculate the time-dependent bowing as a function of the fuel rod's operational and environmental history.

  10. COMBINING NEUTRAL AND ACIDIC EXTRACTANTS FOR RECOVERING TRANSURANIC ELEMENTS FROM NUCLEAR FUEL

    SciTech Connect

    Lumetta, Gregg J.; Neiner, Doinita; Sinkov, Sergey I.; Carter, Jennifer C.; Braley, Jenifer C.; Latesky, Stanley; Gelis, Artem V.; Tkac, Peter; Vandegrift, George F.

    2011-10-03

    We have been investigating a solvent extraction system that combines a neutral extractant--octyl(phenyl)-N,N-diisobutyl-carbamoylmethylphosphine oxide (CMPO)--with an acidic extractant--bis(2-ethylhexyl)phosphoric acid (HDEHP)--to form a single process solvent for separating Am and Cm from the other components of irradiated nuclear fuel. It was originally hypothesized that the extraction chemistry of CMPO would dominate under conditions of high acidity (> 1 M HNO3), resulting in co-extraction of the transuranic and lanthanide elements into the organic phase. Contacting the loaded solvent with a solution of diethylenetriaminepentaacetate (DTPA) buffered with lactic or citric acid at pH {approx}3 to 4 would result in a condition in which the HDEHP chemistry dominates. Although the data somewhat support this hypothesis, it is clear that there are interactions between the two extractants such that they do not act independently in the extraction and stripping regimes. We report here studies directed at determining the nature and extent of interaction between CMPO and HDEHP, the synergistic behavior of CMPO and HDEHP in the extraction of americium and neodymium, and progress towards determining the thermodynamics of this extraction system. Neodymium and americium behave similarly in the combined solvent system, with a significant synergy between CMPO and HDEHP in the extraction of both of these trivalent elements from lactate-buffered DTPA solutions. In contrast, a much weaker synergistic behaviour is observed for europium. Thus, investigations into the fundamental chemistry involved in this system have focused on the neodymium extraction. The extraction of neodymium has been systematically investigated, individually varying the HDEHP concentration, the CMPO concentration, or the aqueous phase composition. Thermodynamic modeling of the neodymium extraction system has been initiated. Interactions between CMPO and HDEHP in the organic phase must be taken into account in

  11. DFT study on the electronic structure and chemical state of Americium in an (Am,U) mixed oxide

    NASA Astrophysics Data System (ADS)

    Suzuki, Chikashi; Nishi, Tsuyoshi; Nakada, Masami; Tsuru, Tomohito; Akabori, Mitsuo; Hirata, Masaru; Kaji, Yoshiyuki

    2013-12-01

    We investigated the electronic state of an (Am,U) mixed oxide with the fluorite structure using the all-electron full potential linear augmented plane wave method and compared it with those of Am2O3, AmO2, UO2, and La0.5U0.5O2. The valence of Am in the mixed oxide was close to that of Am2O3 and the valence of U in the mixed oxide was pentavalent. The electronic structure of AmO2 was different from that of Am2O3, particularly just above the Fermi level. In addition, the electronic states of Am and U in the mixed oxide were similar to those of trivalent Am and pentavalent U oxides. These electronic states reflected the high oxygen potential of AmO2 and the heightened oxygen potential resulting from the addition of Am to UO2 and also suggested the occurrence of charge transfer from Am to U in the solid solution process.

  12. Two-dimensional steady-state analysis of an electrically heated thermionic fuel element

    SciTech Connect

    Huimin Xue; El-Genk, M.S.; Paramonov, D. )

    1993-01-20

    A two-dimensional transient model of a single cell, long Thermionic Fuel Element (TFE) is developed and its predictions are compared with published calculations and experimental data on steady-state operation of electrically heated, TOPAZ-II type TFEs. The operation parameters of the TFE, such as axial distributions of the emitter temperature, emission current density, and the electrode voltage are calculated and discussed. Results show that despite the excellent agreement between the model predictions of the axial distribution of the emitter temperature, its predictions of the maximum emission current density was lower by about 17%. This difference is attributed primarily to the J-V characteristics in the model, which could be different than those of the TOPAZ-II TFE, hence additional data on the latter is needed. When compared with experimental data, the model predictions of the electric power output are in excellent agreement with the data at thermal power input of 3.5 kW or higher, but within 10% of the data at lower thermal power.

  13. On-line elemental analysis of fossil fuel process streams by inductively coupled plasma spectrometry

    SciTech Connect

    Chisholm, W.P.

    1995-06-01

    METC is continuing development of a real-time, multi-element plasma based spectrometer system for application to high temperature and high pressure fossil fuel process streams. Two versions are under consideration for development. One is an Inductively Coupled Plasma system that has been described previously, and the other is a high power microwave system. The ICP torch operates on a mixture of argon and helium with a conventional annular swirl flow plasma gas, no auxiliary gas, and a conventional sample stream injection through the base of the plasma plume. A new, demountable torch design comprising three ceramic sections allows bolts passing the length of the torch to compress a double O-ring seal. This improves the reliability of the torch. The microwave system will use the same data acquisition and reduction components as the ICP system; only the plasma source itself is different. It will operate with a 750-Watt, 2.45 gigahertz microwave generator. The plasma discharge will be contained within a narrow quartz tube one quarter wavelength from a shorted waveguide termination. The plasma source will be observed via fiber optics and a battery of computer controlled monochromators. To extract more information from the raw spectral data, a neural net computer program is being developed. This program will calculate analyte concentrations from data that includes analyte and interferant spectral emission intensity. Matrix effects and spectral overlaps can be treated more effectively by this method than by conventional spectral analysis.

  14. Applying Thermodynamics to Fossil Fuels: Heats of Combustion from Elemental Compositions.

    ERIC Educational Resources Information Center

    Lloyd, William G.; Davenport, Derek A.

    1980-01-01

    Discussed are the calculations of heats of combustions of some selected fossil fuel compounds such as some foreign shale oils and United States coals. Heating values for coal- and petroleum-derived fuel oils are also presented. (HM)

  15. Cobalt-silicon mixed oxide nanocomposites by modified sol-gel method

    SciTech Connect

    Esposito, Serena; Turco, Maria; Ramis, Gianguido; Bagnasco, Giovanni; Pernice, Pasquale; Pagliuca, Concetta; Bevilacqua, Maria; Aronne, Antonio

    2007-12-15

    Cobalt-silicon mixed oxide materials (Co/Si=0.111, 0.250 and 0.428) were synthesised starting from Co(NO{sub 3}){sub 2}.6H{sub 2}O and Si(OC{sub 2}H{sub 5}){sub 4} using a modified sol-gel method. Structural, textural and surface chemical properties were investigated by thermogravimetric/differential thermal analyses (TG/DTA), XRD, UV-vis, FT-IR spectroscopy and N{sub 2} adsorption at -196 deg. C. The nature of cobalt species and their interactions with the siloxane matrix were strongly depending on both the cobalt loading and the heat treatment. All dried gels were amorphous and contained Co{sup 2+} ions forming both tetrahedral and octahedral complexes with the siloxane matrix. After treatment at 400 deg. C, the sample with lowest Co content appeared amorphous and contained only Co{sup 2+} tetrahedral complexes, while at higher cobalt loading Co{sub 3}O{sub 4} was present as the only crystalline phase, besides Co{sup 2+} ions strongly interacting with siloxane matrix. At 850 deg. C, in all samples crystalline Co{sub 2}SiO{sub 4} was formed and was the only crystallising phase for the nanocomposite with the lowest cobalt content. All materials retained high surface areas also after treatments at 600 deg. C and exhibited surface Lewis acidity, due to cationic sites. The presence of cobalt affected the textural properties of the siloxane matrix decreasing microporosity and increasing mesoporosity. - Graphical abstract: Highly dispersed cobalt-silicon mixed oxide nanocomposites (Co/Si=0.111, 0.250 and 0.428) were obtained by a modified sol-gel method using almost solely aqueous solutions. The nature of cobalt species and their interactions with the siloxane matrix are strongly depending on both the cobalt loading and the heat treatment. All materials retained high surface areas also after treatments at 600 deg. C and exhibited surface Lewis acidity.

  16. SAFE: A computer code for the steady-state and transient thermal analysis of LMR fuel elements

    SciTech Connect

    Hayes, S.L.

    1993-12-01

    SAFE is a computer code developed for both the steady-state and transient thermal analysis of single LMR fuel elements. The code employs a two-dimensional control-volume based finite difference methodology with fully implicit time marching to calculate the temperatures throughout a fuel element and its associated coolant channel for both the steady-state and transient events. The code makes no structural calculations or predictions whatsoever. It does, however, accept as input structural parameters within the fuel such as the distributions of porosity and fuel composition, as well as heat generation, to allow a thermal analysis to be performed on a user-specified fuel structure. The code was developed with ease of use in mind. An interactive input file generator and material property correlations internal to the code are available to expedite analyses using SAFE. This report serves as a complete design description of the code as well as a user`s manual. A sample calculation made with SAFE is included to highlight some of the code`s features. Complete input and output files for the sample problem are provided.

  17. TRISO-fuel element thermo-mechanical performance modeling for the hybrid LIFE engine with Pu fuel blanket

    NASA Astrophysics Data System (ADS)

    DeMange, P.; Marian, J.; Caro, M.; Caro, A.

    2010-10-01

    A TRISO-coated fuel thermo-mechanical performance study is performed for the fusion-fission hybrid Laser Inertial Fusion Engine (LIFE) to test the viability of TRISO particles to achieve ultra-high burn-up of Pu or transuranic spent nuclear fuel blankets. Our methodology includes full elastic anisotropy, time and temperature varying material properties, and multilayer capabilities. In order to achieve fast fluences up to 30 × 10 25 n m -2 ( E > 0.18 MeV), judicious extrapolations across several orders of magnitude of existing material databases have been carried out. The results of our study indicate that failure of the pyrolytic carbon (PyC) layers occurs within the first 2 years of operation. The particles then behave as a single-SiC-layer particle and the SiC layer maintains reasonably-low tensile stresses until the end-of-life. It is also found that the PyC creep constant, K, has a striking influence on the fuel performance of TRISO-coated particles, whose stresses scale almost inversely proportional to K. Conversely, varying the geometry of the TRISO-coated fuel particles results in little differences in terms of fuel performance.

  18. Overview of past and current activities on fuels for fast reactors at the Institute for Transuranium Elements

    NASA Astrophysics Data System (ADS)

    Fernandez, A.; McGinley, J.; Somers, J.; Walter, M.

    2009-07-01

    Nuclear energy has the potential to provide a secure and sustainable electricity supply at a competitive price and to make a significant contribution to the reduction of greenhouse gas emissions. The renewal of interest in fast neutron spectra reactors to meet more ambitious sustainable development criteria (i.e., resource maximisation and waste minimisation), opens a favourable framework for R&D activities in this area. The Institute for Transuranium Elements has extensive experience in the fabrication, characterization and irradiation testing (Phénix, Dounreay, Rapsodie) of fast reactor fuels, in oxide, nitride and carbide forms. An overview of these past and current activities on fast reactor fuels is presented.

  19. Catalytic propane dehydrogenation over In₂O₃–Ga₂O₃ mixed oxides

    SciTech Connect

    Tan, Shuai; Gil, Laura Briones; Subramanian, Nachal; Sholl, David S.; Nair, Sankar; Jones, Christopher W.; Moore, Jason S.; Liu, Yujun; Dixit, Ravindra S.; Pendergast, John G.

    2015-08-26

    We have investigated the catalytic performance of novel In₂O₃–Ga₂O₃ mixed oxides synthesized by the alcoholic-coprecipitation method for propane dehydrogenation (PDH). Reactivity measurements reveal that the activities of In₂O₃–Ga₂O₃ catalysts are 1–3-fold (on an active metal basis) and 12–28-fold (on a surface area basis) higher than an In₂O₃–Al₂O₃ catalyst in terms of C₃H₈ conversion. The structure, composition, and surface properties of the In₂O₃–Ga₂O₃ catalysts are thoroughly characterized. NH₃-TPD shows that the binary oxide system generates more acid sites than the corresponding single-component catalysts. Raman spectroscopy suggests that catalysts that produce coke of a more graphitic nature suppress cracking reactions, leading to higher C₃H₆ selectivity. Lower reaction temperature also leads to higher C₃H₆ selectivity by slowing down the rate of side reactions. XRD, XPS, and XANES measurements, strongly suggest that metallic indium and In₂O₃ clusters are formed on the catalyst surface during the reaction. The agglomeration of In₂O₃ domains and formation of a metallic indium phase are found to be irreversible under O₂ or H₂ treatment conditions used here, and may be responsible for loss of activity with increasing time on stream.

  20. Catalytic combustion of chlorobenzene over Mn-Ce-La-O mixed oxide catalysts.

    PubMed

    Yu, Dai; Xingyi, Wang; Dao, Li; Qiguang, Dai

    2011-04-15

    A series of Mn(x)-CeLa mixed oxide catalysts with different compositions prepared by sol-gel method were tested for the catalytic combustion of chlorobenzene (CB), as a model of chlorinated aromatics. Mn(x)-CeLa catalysts with the ratios of Mn/(Mn + Ce + La) in the range from 0.69 to 0.8 were found to possess high catalytic activity in the catalytic combustion of CB. The stability and deactivation of Mn(x)-CeLa catalysts were studied by other assistant experiments. Mn(x)-CeLa catalysts can deactivate below 330 °C, due to the strong adsorption of Cl species produced during the decomposition of CB. Nevertheless, the increase in oxygen concentration can enhance the resistance to Cl poisoning through the reaction of surface oxygen species with residual chlorine. At 350 °C, high activity, good selectivity and desired stability were observed over Mn(x)-CeLa catalysts. PMID:21320750

  1. High-temperature X-ray diffraction study of uranium-neptunium mixed oxides.

    PubMed

    Chollet, Mélanie; Belin, Renaud C; Richaud, Jean-Christophe; Reynaud, Muriel; Adenot, Frédéric

    2013-03-01

    Incorporating minor actinides (MAs = Am, Np, Cm) in UO2 fertile blankets is a viable option to recycle them. Despite this applied interest, phase equilibria between uranium and MAs still need to be thoroughly investigated, especially at elevated temperatures. In particular, few reports on the U-Np-O system are available. In the present work, we provide for the first time in situ high-temperature X-ray diffraction results obtained during the oxidation of (U1-yNpy)O2 uranium-neptunium mixed oxides up to 1373 K and discuss subsequent phase transformations. We show that (i) neptunium stabilizes the UO2-type fluorite structure at high temperature and that (ii) the U3O8-type orthorhombic structure is observed in a wide range of compositions. We clearly demonstrate the incorporation of neptunium in this phase, which was a controversial question in previous studies up to now. We believe it is the particular stability of the tetravalent state of neptunium that is responsible for the observed phase relationships. PMID:23409700

  2. Mg-Al layered double hydroxides (LDHs) and their derived mixed oxides grown by laser techniques

    NASA Astrophysics Data System (ADS)

    Matei, A.; Birjega, R.; Nedelcea, A.; Vlad, A.; Colceag, D.; Ionita, M. D.; Luculescu, C.; Dinescu, M.; Zavoianu, R.; Pavel, O. D.

    2011-04-01

    Layered double hydroxides (LDHs) have been widely studied due to their applications as multifunctional materials, catalysts, host materials, anionic exchangers, adsorbents for environmental contaminants and for the immobilization of biological materials. As thin films, LDHs are good candidates for novel applications as sensors, corrosion resistant coatings or components in electro optical devices. For these applications, lamellar orientation-controlled film has to be fabricated. In this work, the successful deposition of LDH and their derived mixed oxides thin films by laser techniques is reported. Pulsed laser deposition (PLD) and matrix assisted pulsed laser evaporation (MAPLE) were the methods used for thin films deposition. The ability of Mg-Al LDHs as a carrier for metallic particles (Ag) has been considered. Frozen targets containing 10% powder in water were used for MAPLE, while for PLD the targets consisted in dry-pressed pellets. The structure and the surface morphology of the deposited films were examined by X-ray Diffraction, Atomic Force Microscopy, Scanning Electron Microscopy and Secondary Ion Mass Spectrometry.

  3. Catalytic combustion of soot over ceria-zinc mixed oxides catalysts supported onto cordierite.

    PubMed

    Nascimento, Leandro Fontanetti; Martins, Renata Figueredo; Silva, Rodrigo Ferreira; Serra, Osvaldo Antonio

    2014-03-01

    Modified substrates as outer heterogeneous catalysts was employed to reduce the soot generated from incomplete combustion of diesel or diesel/biodiesel blends, a process that harms the environment and public health. The unique storage properties of ceria (CeO2) makes it one of the most efficient catalysts available to date. Here, we proposed that ceria-based catalysts can lower the temperature at which soot combustion occurs; more specifically, from 610°C to values included in the diesel exhausts operation range (300-450°C). The sol-gel method was used to synthesize mixed oxide-based catalysts (CeO2:ZnO); the resulting catalysts were deposited onto cordierite substrates. In addition, the morphological and structural properties of the material were evaluated by XRD, BET, TPR-H2, and SEM. Thermogravimetric (TG/DTA) analysis revealed that the presence of the catalyst decreased the soot combustion temperature by 200°C on average, indicating that the oxygen species arise at low temperatures in this situation, promoting highly reactive oxidation reactions. Comparative analysis of soot emission by diffuse reflectance spectroscopy (DRS) showed that catalyst-impregnated cordierite samples efficiently oxidized soot in a diesel/biodiesel stationary motor: soot emission decreased by more than 70%. PMID:25079283

  4. Luminescence studies of rare earth doped yttrium gadolinium mixed oxide phosphor

    NASA Astrophysics Data System (ADS)

    Som, S.; Choubey, A.; Sharma, S. K.

    2012-09-01

    This paper reports the photoluminescence and thermoluminescence properties of gamma ray induced rare earth doped yttrium gadolinium mixed oxide phosphor. The europium (Eu3+) was used as rare earth dopant. The phosphor was prepared by chemical co-precipitation method according to the formula (Y2-x-yGdx) O3: Euy3+ (x=0.5; y=0.05). The photoluminescence emission spectrum of the prepared phosphor shows intense peaks in the red region at 615 nm for 5D0→7F2 transitions and the photoluminescence excitation spectra show a broad band located around 220-270 nm for the emission wavelength fixed at 615 nm. The thermoluminescence studies were carried out after irradiating the phosphor by gamma rays in the dose range from 100 Gy to 1 KGy. In the thermoluminescence glow curves, one single peak was observed at about 300 °C of which the intensity increases linearly in the studied dose range of gamma rays. The glow peak was deconvoluted by GlowFit program and the kinetic parameters associated with the deconvoluted peaks were calculated. The kinetic parameters were also calculated by various glow curve shape and heating rate methods.

  5. Distribution and leaching characteristics of trace elements in ashes as a function of different waste fuels and incineration technologies.

    PubMed

    Saqib, Naeem; Bäckström, Mattias

    2015-10-01

    Impact of waste fuels (virgin/waste wood, mixed biofuel (peat, bark, wood chips) industrial, household, mixed waste fuel) and incineration technologies on partitioning and leaching behavior of trace elements has been investigated. Study included 4 grate fired and 9 fluidized boilers. Results showed that mixed waste incineration mostly caused increased transfer of trace elements to fly ash; particularly Pb/Zn. Waste wood incineration showed higher transfer of Cr, As and Zn to fly ash as compared to virgin wood. The possible reasons could be high input of trace element in waste fuel/change in volatilization behavior due to addition of certain waste fractions. The concentration of Cd and Zn increased in fly ash with incineration temperature. Total concentration in ashes decreased in order of Zn>Cu>Pb>Cr>Sb>As>Mo. The concentration levels of trace elements were mostly higher in fluidized boilers fly ashes as compared to grate boilers (especially for biofuel incineration). It might be attributed to high combustion efficiency due to pre-treatment of waste in fluidized boilers. Leaching results indicated that water soluble forms of elements in ashes were low with few exceptions. Concentration levels in ash and ash matrix properties (association of elements on ash particles) are crucial parameters affecting leaching. Leached amounts of Pb, Zn and Cr in >50% of fly ashes exceeded regulatory limit for disposal. 87% of chlorine in fly ashes washed out with water at the liquid to solid ratio 10 indicating excessive presence of alkali metal chlorides/alkaline earths. PMID:26456601

  6. Best Practices for Finite Element Analysis of Spent Nuclear Fuel Transfer, Storage, and Transportation Systems

    SciTech Connect

    Bajwa, Christopher S.; Piotter, Jason; Cuta, Judith M.; Adkins, Harold E.; Klymyshyn, Nicholas A.; Fort, James A.; Suffield, Sarah R.

    2010-08-11

    Storage casks and transportation packages for spent nuclear fuel (SNF) are designed to confine SNF in sealed canisters or casks, provide structural integrity during accidents, and remove decay through a storage or transportation overpack. The transfer, storage, and transportation of SNF in dry storage casks and transport packages is regulated under 10 CFR Part 72 and 10 CFR Part 71, respectively. Finite Element Analysis (FEA) is used with increasing frequency in Safety Analysis Reports and other regulatory technical evaluations related to SNF casks and packages and their associated systems. Advances in computing power have made increasingly sophisticated FEA models more feasible, and as a result, the need for careful review of such models has also increased. This paper identifies best practice recommendations that stem from recent NRC review experience. The scope covers issues common to all commercially available FEA software, and the recommendations are applicable to any FEA software package. Three specific topics are addressed: general FEA practices, issues specific to thermal analyses, and issues specific to structural analyses. General FEA practices covers appropriate documentation of the model and results, which is important for an efficient review process. The thermal analysis best practices are related to cask analysis for steady state conditions and transient scenarios. The structural analysis best practices are related to the analysis of casks and associated payload during standard handling and drop scenarios. The best practices described in this paper are intended to identify FEA modeling issues and provide insights that can help minimize associated uncertainties and errors, in order to facilitate the NRC licensing review process.

  7. Program ELM: A tool for rapid thermal-hydraulic analysis of solid-core nuclear rocket fuel elements

    NASA Technical Reports Server (NTRS)

    Walton, James T.

    1992-01-01

    This report reviews the state of the art of thermal-hydraulic analysis codes and presents a new code, Program ELM, for analysis of fuel elements. ELM is a concise computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in a nuclear thermal rocket reactor with axial coolant passages. The program was developed as a tool to swiftly evaluate various heat transfer coefficient and friction factor correlations generated for turbulent pipe flow with heat addition which have been used in previous programs. Thus, a consistent comparison of these correlations was performed, as well as a comparison with data from the NRX reactor experiments from the Nuclear Engine for Rocket Vehicle Applications (NERVA) project. This report describes the ELM Program algorithm, input/output, and validation efforts and provides a listing of the code.

  8. Novel, low-cost separator plates and flow-field elements for use in PEM fuel cells

    SciTech Connect

    Edlund, D.J.

    1996-12-31

    PEM fuel cells offer promise for a wide range of applications including vehicular (e.g., automotive) and stationary power generation. The performance and cost targets that must be met for PEM technology to be commercially successful varies to some degree with the application. However, in general the cost of PEM fuel cell stacks must be reduced substantially if they are to see widespread use for electrical power generation. A significant contribution to the manufactured cost of PEM fuel cells is the machined carbon plates that traditionally serve as bipolar separator plates and flow-field elements. In addition, carbon separator plates are inherently brittle and suffer from breakage due to shock, vibration, and improper handling. This report describes a bifurcated separator device with low resistivity, low manufacturing cost, compact size and durability.

  9. Distinct element method analyses of fuel spheres in the PBMR core using PFC{sup 3D}

    SciTech Connect

    Polson, Alexander G.

    2004-07-01

    The Pebble Bed Modular Reactor, or PBMR, is a High Temperature Gas Reactor that contains a large number of graphite fuel spheres that circulate in its core. The dynamics of these spheres, combined with thermal contraction and expansion, causes various loading cases on the reactor structures. A Distinct Element Method, or DEM, as implemented in the Particle Flow Code in 3D, or PFC{sup 3D}, is used at PBMR (Pty) Ltd to model the fuel sphere dynamics in the reactor core. This paper presents a few exploratory studies where PFC{sup 3D} was used to investigate the interaction between fuel spheres and structural components in the PBMR, as well as the packing efficiency of the spheres in the core. (author)

  10. Radiation dose rates from commercial PWR and BWR spent fuel elements

    SciTech Connect

    Willingham, C.E.

    1981-10-01

    Data on measurements of gamma dose rates from commercial reactor spent fuel were collected, and documented calculated gamma dose rates were reviewed. As part of this study, the gamma dose rate from spent fuel was estimated, using computational techniques similar to previous investigations into this problem. Comparison of the measured and calculated dose rates provided a recommended dose rate in air versus distance curve for PWR spent fuel.

  11. Thermal Aspects of Using Alternative Nuclear Fuels in Supercritical Water-Cooled Reactors

    NASA Astrophysics Data System (ADS)

    Grande, Lisa Christine

    A SuperCritical Water-cooled Nuclear Reactor (SCWR) is a Generation IV concept currently being developed worldwide. Unique to this reactor type is the use of light-water coolant above its critical point. The current research presents a thermal-hydraulic analysis of a single fuel channel within a Pressure Tube (PT)-type SCWR with a single-reheat cycle. Since this reactor is in its early design phase many fuel-channel components are being investigated in various combinations. Analysis inputs are: steam cycle, Axial Heat Flux Profile (AHFP), fuel-bundle geometry, and thermophysical properties of reactor coolant, fuel sheath and fuel. Uniform and non-uniform AHFPs for average channel power were applied to a variety of alternative fuels (mixed oxide, thorium dioxide, uranium dicarbide, uranium nitride and uranium carbide) enclosed in an Inconel-600 43-element bundle. The results depict bulk-fluid, outer-sheath and fuel-centreline temperature profiles together with the Heat Transfer Coefficient (HTC) profiles along the heated length of fuel channel. The objective is to identify the best options in terms of fuel, sheath material and AHFPS in which the outer-sheath and fuel-centreline temperatures will be below the accepted temperature limits of 850°C and 1850°C respectively. The 43-element Inconel-600 fuel bundle is suitable for SCWR use as the sheath-temperature design limit of 850°C was maintained for all analyzed cases at average channel power. Thoria, UC2, UN and UC fuels for all AHFPs are acceptable since the maximum fuel-centreline temperature does not exceed the industry accepted limit of 1850°C. Conversely, the fuel-centreline temperature limit was exceeded for MOX at all AHFPs, and UO2 for both cosine and downstream-skewed cosine AHFPs. Therefore, fuel-bundle modifications are required for UO2 and MOX to be feasible nuclear fuels for SCWRs.

  12. 3D modeling of heat transfer and gas flow in a grooved ring fuel element for nuclear thermal propulsion

    NASA Astrophysics Data System (ADS)

    Barkett, Laura Ashley

    In the past, fuel elements with multiple axial coolant channels have been used in nuclear propulsion applications. A novel fuel element concept that reduces weight and increases efficiency uses a stack of grooved rings. Each fuel ring consists of a hole on the interior and grooves across the top face. Many grooved ring configurations have been modeled, and a single flow channel for each design has been analyzed. For increased efficiency, a fuel ring with a higher surface-area-to-volume ratio is ideal. When grooves are shallower and they have a lower surface area, the results show that the exit temperature is higher. By coupling the physics of fluid flow with those of heat transfer, the effects on the cooler gas flowing through the grooves of the hot, fissioning ring can be predicted. Models also show differences in velocities and temperatures after dense boundary nodes are applied. Parametric studies were done to show how a pressure drop across the length of the channels will affect the exit temperatures of the gas. Geometric optimization was done to show the temperature distributions and pressure drops that result from the manipulation of various parameters, and the effects of model scaling was also investigated. The inverse Graetz numbers are plotted against Nusselt numbers, and the results of these values suggest that the gas quickly becomes fully developed, laminar flow, rather than constant turbulent conditions.

  13. Removal of Hazardous Pollutants from Wastewaters: Applications of TiO 2 -SiO 2 Mixed Oxide Materials

    DOE PAGESBeta

    Rasalingam, Shivatharsiny; Peng, Rui; Koodali, Ranjit T.

    2014-01-01

    The direct release of untreated wastewaters from various industries and households results in the release of toxic pollutants to the aquatic environment. Advanced oxidation processes (AOP) have gained wide attention owing to the prospect of complete mineralization of nonbiodegradable organic substances to environmentally innocuous products by chemical oxidation. In particular, heterogeneous photocatalysis has been demonstrated to have tremendous promise in water purification and treatment of several pollutant materials that include naturally occurring toxins, pesticides, and other deleterious contaminants. In this work, we have reviewed the different removal techniques that have been employed for water purification. In particular, the applicationmore » of TiO 2 -SiO 2 binary mixed oxide materials for wastewater treatment is explained herein, and it is evident from the literature survey that these mixed oxide materials have enhanced abilities to remove a wide variety of pollutants.« less

  14. MnOx-CeO2-Al2O3 mixed oxides for soot oxidation: activity and thermal stability.

    PubMed

    Wu, Xiaodong; Liu, Shuang; Weng, Duan; Lin, Fan; Ran, Rui

    2011-03-15

    MnO(x)-CeO(2)-Al(2)O(3) mixed oxides were prepared by impregnating manganese acetate and cerium nitrate on alumina powders using the sol-gel method. The thermal stabilities of MnO(x)-CeO(2) and Al(2)O(3)-modified mixed oxides were evaluated by treating at 800 °C in dry air flow for 20h. The introduction of Al(2)O(3) markedly increases the textural stability of the catalyst with a relatively high dispersion of MnO(x) and CeO(2), remaining a strong synergistic effect between these two oxides. The NO oxidation activity of the ternary oxides experiences a smaller loss after high-temperature calcination, and a low soot oxidation temperature is attained in the presence of NO. PMID:21276659

  15. Use of Raman spectroscopy to assess the efficiency of MgAl mixed oxides in removing cyanide from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Cosano, Daniel; Esquinas, Carlos; Jiménez-Sanchidrián, César; Ruiz, José Rafael

    2016-02-01

    Calcining magnesium/aluminium layered double hydroxides (Mg/Al LDHs) at 450 °C provides excellent sorbents for removing cyanide from aqueous solutions. The process is based on the "memory effect" of LDHs; thus, rehydrating a calcined LDH in an aqueous solution restores its initial structure. The process, which conforms to a first-order kinetics, was examined by Raman spectroscopy. The metal ratio of the LDH was found to have a crucial influence on the adsorption capacity of the resulting mixed oxide. In this work, Raman spectroscopy was for the first time use to monitor the adsorption process. Based on the results, this technique is an effective, expeditious choice for the intended purpose and affords in situ monitoring of the adsorption process. The target solids were characterized by using various instrumental techniques including X-ray diffraction spectroscopy, which confirmed the layered structure of the LDHs and the periclase-like structure of the mixed oxides obtained by calcination.

  16. Preparation and characterization of vanadia-titania mixed oxide for immobilization of Serratia rubidaea CCT 5732 and Klebsiella marcescens bacteria

    SciTech Connect

    Saragiotto Colpini, Leda Maria Correia Goncalves, Regina A.; Goncalves, Jose Eduardo; Maieru Macedo Costa, Creusa

    2008-08-04

    Vanadia-titania mixed oxide was synthesized by sol-gel method and characterized by several techniques. Texturally, it is formed by mesopores and presents high-specific surface area and controlled porosity. Scanning electron microscopy revealed that vanadium is homogeneously distributed in the material. Structurally, it was possible to identify characteristic V=O stretching bands by IR. The analysis of X-ray diffraction showed that the material, particularly vanadium, is highly dispersed. Application experiments were carried out through the immobilization of Serratia rubidae CCT 5732 and Klebsiella marcescens bacteria by adsorption on the surface of mixed oxide. The micrographies revealed that the bacteria were adsorbed on the entire support, with average surface densities of 8.55 x 10{sup 11} cells/m{sup 2} (Serratia rubidae CCT 5732) and 3.40 x 10{sup 11} cells/m{sup 2} (K. marcescens)

  17. 3D carbon/cobalt-nickel mixed-oxide hybrid nanostructured arrays for asymmetric supercapacitors.

    PubMed

    Zhu, Jianhui; Jiang, Jian; Sun, Zhipeng; Luo, Jingshan; Fan, Zhanxi; Huang, Xintang; Zhang, Hua; Yu, Ting

    2014-07-23

    The electrochemical performance of supercapacitors relies not only on the exploitation of high-capacity active materials, but also on the rational design of superior electrode architectures. Herein, a novel supercapacitor electrode comprising 3D hierarchical mixed-oxide nanostructured arrays (NAs) of C/CoNi3 O4 is reported. The network-like C/CoNi3 O4 NAs exhibit a relatively high specific surface area; it is fabricated from ultra-robust Co-Ni hydroxide carbonate precursors through glucose-coating and calcination processes. Thanks to their interconnected three-dimensionally arrayed architecture and mesoporous nature, the C/CoNi3 O4 NA electrode exhibits a large specific capacitance of 1299 F/g and a superior rate performance, demonstrating 78% capacity retention even when the discharge current jumps by 100 times. An optimized asymmetric supercapacitor with the C/CoNi3 O4 NAs as the positive electrode is fabricated. This asymmetric supercapacitor can reversibly cycle at a high potential of 1.8 V, showing excellent cycling durability and also enabling a remarkable power density of ∼13 kW/kg with a high energy density of ∼19.2 W·h/kg. Two such supercapacitors linked in series can simultaneously power four distinct light-emitting diode indicators; they can also drive the motor of remote-controlled model planes. This work not only presents the potential of C/CoNi3 O4 NAs in thin-film supercapacitor applications, but it also demonstrates the superiority of electrodes with such a 3D hierarchical architecture. PMID:24643977

  18. Route of electrochemical oxidation of the antibiotic sulfamethoxazole on a mixed oxide anode.

    PubMed

    Hussain, Sajjad; Gul, Saima; Steter, Juliana R; Miwa, Douglas W; Motheo, Artur J

    2015-10-01

    The appearance of pharmaceutical compounds and their bioactive transformation products in aquatic environments is becoming an issue of increasing concern. In this study, the electrochemical oxidation of the widely used antibiotic sulfamethoxazole (SMX) was investigated using a commercial mixed oxide anode (Ti/Ru0.3Ti0.7O2) and a single compartment filter press-type flow reactor. The kinetics of SMX degradation was determined as a function of electrolyte composition, applied current density, and initial pH. Almost complete (98 %) degradation of SMX could be achieved within 30 min of electrolysis in 0.1 mol L(-1) NaCl solution at pH 3 with applied current densities ≥20 mA cm(-2). Nine major intermediates of the reaction were identified by LC-ESI-Q-TOF-MS (e.g., C6H9NO2S (m/z = 179), C6H4NOCl (m/z = 141), and C6H6O2 (m/z = 110)). The degradation followed various routes involving cleavage of the oxazole and benzene rings by hydroxyl and/or chlorine radicals, processes that could occur before or after rupture of the N-S bond, followed by oxidation of the remaining moieties. Analysis of the total organic carbon content revealed that the antibiotic was partially mineralized under the conditions employed and some inorganic ions, including NO3 (-) and SO4 (2-), could be identified. The results presented herein demonstrate the efficacy of the electrochemical process using a Ti/Ru0.3Ti0.7O2 anode for the remediation of wastewater containing the antibiotic SMX. PMID:26002364

  19. Nuclear-fuel-cycle risk assessment: descriptions of representative non-reactor facilities. Sections 1-14

    SciTech Connect

    Schneider, K.J.

    1982-09-01

    The Fuel Cycle Risk Assessment Program was initiated to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. This report, the first from the program, defines and describes fuel cycle elements that are being considered in the program. One type of facility (and in some cases two) is described that is representative of each element of the fuel cycle. The descriptions are based on real industrial-scale facilities that are current state-of-the-art, or on conceptual facilities where none now exist. Each representative fuel cycle facility is assumed to be located on the appropriate one of four hypothetical but representative sites described. The fuel cycles considered are for Light Water Reactors with once-through flow of spent fuel, and with plutonium and uranium recycle. Representative facilities for the following fuel cycle elements are described for uranium (or uranium plus plutonium where appropriate): mining, milling, conversion, enrichment, fuel fabrication, mixed-oxide fuel refabrication, fuel reprocessing, spent fuel storage, high-level waste storage, transuranic waste storage, spent fuel and high-level and transuranic waste disposal, low-level and intermediate-level waste disposal, and transportation. For each representative facility the description includes: mainline process, effluent processing and waste management, facility and hardware description, safety-related information and potential alternative concepts for that fuel cycle element. The emphasis of the descriptive material is on safety-related information. This includes: operating and maintenance requirements, input/output of major materials, identification and inventories of hazardous materials (particularly radioactive materials), unit operations involved, potential accident driving forces, containment and shielding, and degree of hands-on operation.

  20. A Multi-Dimensional Heat Transfer Model of a Tie-Tube and Hexagonal Fuel Element for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Gomez, C. F.; Mireles, O. R.; Stewart, E.

    2016-01-01

    The Space Capable Cryogenic Thermal Engine (SCCTE) effort considers a nuclear thermal rocket design based around a Low-Enriched Uranium (LEU) design fission reactor. The reactor core is comprised of bundled hexagonal fuel elements that directly heat hydrogen for expansion in a thrust chamber and hexagonal tie-tubes that house zirconium hydride moderator mass for the purpose of thermalizing fast neutrons resulting from fission events. Created 3D steady state Hex fuel rod model with 1D flow channels. Hand Calculation were used to set up initial conditions for fluid flow. The Hex Fuel rod uses 1D flow paths to model the channels using empirical correlations for heat transfer in a pipe. Created a 2-D axisymmetric transient to steady state model using the CFD turbulent flow and Heat Transfer module in COMSOL. This model was developed to find and understand the hydrogen flow that might effect the thermal gradients axially and at the end of the tie tube where the flow turns and enters an annulus. The Hex fuel rod and Tie tube models were made based on requirements given to us by CSNR and the SCCTE team. The models helped simplify and understand the physics and assumptions. Using pipe correlations reduced the complexity of the 3-D fuel rod model and is numerically more stable and computationally more time-efficient compared to the CFD approach. The 2-D axisymmetric tie tube model can be used as a reference "Virtual test model" for comparing and improving 3-D Models.

  1. The behavior of SiC and Si3N4 ceramics in mixed oxidation/chlorination environments

    NASA Technical Reports Server (NTRS)

    Marra, John E.; Kreidler, Eric R.; Jacobson, Nathan S.; Fox, Dennis S.

    1989-01-01

    The behavior of silicon-based ceramics in mixed oxidation/chlorination environments was studied. High pressure mass spectrometry was used to quantitatively identify the reaction products. The quantitative identification of the corrosion products was coupled with thermogravimetric analysis and thermodynamic equilibrium calculations run under similar conditions in order to deduce the mechanism of corrosion. Variations in the behavior of the different silicon-based materials are discussed. Direct evidence of the existence of silicon oxychloride compounds is presented.

  2. Acceptance testing of the eddy current probes for measurement of aluminum hydroxide coating thickness on K West Basin fuel elements

    SciTech Connect

    Pitner, A.L.

    1998-08-21

    During a recent visual inspection campaign of fuel elements stored in the K West Basin, it was noted that fuel elements contained in sealed aluminum canisters had a heavy translucent type coating on their surfaces (Pitner 1997a). Subsequent sampling of this coating in a hot cell (Pitner 1997b) and analysis of the material identified it as aluminum hydroxide. Because of the relatively high water content of this material, safety related concerns are raised with respect to long term storage of this fuel in Multi-Canister Overpacks (MCOs). A campaign in the basin is planned to demonstrate whether this coating can be removed by mechanical brushing (Bridges 1998). Part of this campaign involves before-and-after measurements of the coating thickness to determine the effectiveness of coating removal by the brushing machine. Measurements of the as-deposited coating thickness on multiple fuel elements are also expected to provide total coating inventory information needed for MCO safety evaluations. The measurement technique must be capable of measuring coating thicknesses on the order of several mils, with a measurement accuracy of 0.5 mil. Several different methods for quantitatively measuring these thin coatings were considered in selecting the most promising approach. Ultrasonic measurement was investigated, but it was determined that due to the thin coating depth and the high water content of the material, the signal would likely pass directly through to the cladding without ever sensing the coating surface. X-ray fluorescence was also identified as a candidate technique, but would not work because the high gamma background from the irradiated fuel would swamp out the low energy aluminum signal. Laser interferometry could possibly be applied, but considerable development would be required and it was considered to be high risk on a short term basis. The consensus reached was that standard eddy current techniques for coating thickness measurement had the best chance for

  3. Transfer of elements relevant to nuclear fuel cycle from soil to boreal plants and animals in experimental meso- and microcosms.

    PubMed

    Tuovinen, Tiina S; Kasurinen, Anne; Häikiö, Elina; Tervahauta, Arja; Makkonen, Sari; Holopainen, Toini; Juutilainen, Jukka

    2016-01-01

    Uranium (U), cobalt (Co), molybdenum (Mo), nickel (Ni), lead (Pb), thorium (Th) and zinc (Zn) occur naturally in soil but their radioactive isotopes can also be released into the environment during the nuclear fuel cycle. The transfer of these elements was studied in three different trophic levels in experimental mesocosms containing downy birch (Betula pubescens), narrow buckler fern (Dryopteris carthusiana) and Scandinavian small-reed (Calamagrostis purpurea ssp. Phragmitoides) as producers, snails (Arianta arbostorum) as herbivores, and earthworms (Lumbricus terrestris) as decomposers. To determine more precisely whether the element uptake of snails is mainly via their food (birch leaves) or both via soil and food, a separate microcosm experiment was also performed. The element uptake of snails did not generally depend on the presence of soil, indicating that the main uptake route was food, except for U, where soil contact was important for uptake when soil U concentration was high. Transfer of elements from soil to plants was not linear, i.e. it was not correctly described by constant concentration ratios (CR) commonly applied in radioecological modeling. Similar nonlinear transfer was found for the invertebrate animals included in this study: elements other than U were taken up more efficiently when element concentration in soil or food was low. PMID:26363398

  4. Fuel element design for the enhanced destruction of plutonium in a nuclear reactor

    DOEpatents

    Crawford, Douglas C.; Porter, Douglas L.; Hayes, Steven L.; Hill, Robert N.

    1999-01-01

    A uranium-free fuel for a fast nuclear reactor comprising an alloy of Pu, Zr and Hf, wherein Hf is present in an amount less than about 10% by weight of the alloy. The fuel may be in the form of a Pu alloy surrounded by a Zr--Hf alloy or an alloy of Pu--Zr--Hf or a combination of both.

  5. Fuel element design for the enhanced destruction of plutonium in a nuclear reactor

    DOEpatents

    Crawford, D.C.; Porter, D.L.; Hayes, S.L.; Hill, R.N.

    1999-03-23

    A uranium-free fuel for a fast nuclear reactor comprising an alloy of Pu, Zr and Hf, wherein Hf is present in an amount less than about 10% by weight of the alloy. The fuel may be in the form of a Pu alloy surrounded by a Zr--Hf alloy or an alloy of Pu--Zr--Hf or a combination of both. 7 figs.

  6. Emission estimates of organic and elemental carbon from household biomass fuel used over the Indo-Gangetic Plain (IGP), India

    NASA Astrophysics Data System (ADS)

    Saud, T.; Gautam, R.; Mandal, T. K.; Gadi, Ranu; Singh, D. P.; Sharma, S. K.; Dahiya, Manisha; Saxena, M.

    2012-12-01

    Biomass burning emits large amount of aerosols and trace gases into the atmosphere, which have significant impact on atmospheric chemistry and climate. In the present study, we have selected seven Indian states (Delhi, Punjab, Haryana, Uttar Pradesh, Uttarakhand, Bihar and West Bengal) over the IGP, India. Samples of biomass fuel (Fuel Wood, Crop Residue and Dung Cake) from rural household have been collected (Saud et al., 2011a). The burning process has been simulated using a dilution sampler following the methodology developed by Venkatraman et al. (2005). In the present study, emission factor represents the total period of burning including pyrolysis, flaming and smoldering. We have determined the emission factors of organic carbon (OC) and elemental carbon (EC) from different types of biomass fuels collected over the study area. Average emission factors of OC from dung cake, fuel wood and crop residue over IGP, India are estimated as 3.87 ± 1.09 g kg-1, 0.95 ± 0.27 g kg-1, 1.46 ± 0.73 g kg-1, respectively. Similarly, average emission factors of EC from dung cake, fuel wood and crop residue over IGP, India are found to be 0.49 ± 0.25 g kg-1, 0.35 ± 0.07 g kg-1 and 0.37 ± 0.14 g kg-1, respectively. Dung cake and crop residue are normally not used in Uttarakhand. Annual budget of OC and EC from biomass fuels used as energy in rural households of IGP, India is estimated as 361.96 ± 170.18 Gg and 56.44 ± 29.06 Gg respectively. This study shows the regional emission inventory from Indian scenario with spatial variability.

  7. Nature of Catalytic Active Sites Present on the Surface of Advanced Bulk Tantalum Mixed Oxide Photocatalysts

    SciTech Connect

    Phivilay, Somphonh; Puretzky, Alexander A; Domen, Kazunari Domen; Wachs, Israel

    2013-01-01

    The most active photocatalyst system for water splitting under UV irradiation (270 nm) is the promoted 0.2%NiO/NaTaO3:2%La photocatalyst with optimized photonic efficiency (P.E.) of 56%, but fundamental issues about the nature of the surface catalytic active sites and their involvement in the photocatalytic process still need to be clarified. This is the first study to apply cutting edge surface spectroscopic analyses to determine the surface nature of tantalum mixed oxide photocatalysts. Surface analysis with HR-XPS (1-3nm) and HS-LEIS (0.3nm) spectroscopy indicates that the NiO and La2O3 promoters are concentrated in the surface region of the bulk NaTaO3 phase. The La2O3 is concentrated on the NaTaO3 outermost surface layers while NiO is distributed throughout the NaTaO3 surface region (1-3nm). Raman and UV-vis spectroscopy revealed that the bulk molecular and electronic structures, respectively, of NaTaO3 were not modified by the addition of the La2O3 and NiO promoters, with La2O3 resulting in a slightly more ordered structure. Photoluminescence (PL) spectroscopy reveals that the addition of La2O3 and NiO produces a greater number of electron traps resulting in the suppression of the recombination of excited electrons/holes. In contrast to earlier reports, the La2O3 is only a textural promoter (increasing the BET surface area ~7x by stabilizing smaller NaTaO3 particles), but causes a ~3x decrease in the specific photocatalytic TORs ( mol H2/m2/h) rate because surface La2O3 blocks exposed catalytic active NaTaO3 sites. The NiO promoter was found to be a potent electronic promoter that enhances the NaTaO3 surface normalized TORs by a factor of ~10-50 and TOF by a factor of ~10. The level of NiO promotion is the same in the absence and presence of La2O3 demonstrating that there is no promotional synergistic interaction between the NiO and La2O3 promoters. This study demonstrates the important contributions of the photocatalyst surface properties to the fundamental

  8. A model for the behavior of thorium uranium mixed oxide kernels in the pelletizing process

    NASA Astrophysics Data System (ADS)

    Ferreira, R. A. N.; Jordão, E.

    2006-05-01

    A behavior model of nuclear fuel kernels in the pelletizing process was developed to predict the microstructure of (Th,5%U)O 2 sintered pellets. Methods, equipments and components were developed in order to measure the density, the specific surface area and the crushing strength of the kernels and produce fuel pellets. It enables a correlation between the kernels properties and the microstructure, density and open porosity that were obtained in the fuel pellet produced with these kernels. It was possible to obtain a mathematical expression that allows one to calculate, from the kernel density and specific surface, the density that will be obtained in the fuel pellet for each compactation pressure value. The investigation showed which kernels properties are desired to obtain fuel pellets that satisfy the quality requirements for a stable performance in a power reactor. This model has been validated by experimental results and fuel pellets were obtained with an optimized microstructure that satisfies the fuel specification for an in-pile stable behavior.

  9. Criticality Safety of Low-Enriched Uranium and High-Enriched Uranium Fuel Elements in Heavy Water Lattices

    SciTech Connect

    Pesic, Milan P

    2003-10-15

    The RB reactor was designed as a natural-uranium, heavy water, nonreflected critical assembly in the Vinca Institute of Nuclear Sciences, Belgrade, Yugoslavia, in 1958. From 1962 until 2002, numerous critical experiments were carried out with low-enriched uranium and high-enriched uranium fuel elements of tubular shape, known as the Russian TVR-S fuel assembly type, placed in various heavy water square lattices within the RB cylindrical aluminum tank. Some of these well-documented experiments were selected, described, evaluated, and accepted for inclusion in the 'International Handbook of Evaluated Criticality Safety Benchmark Experiments', contributing to the preservation of a rather small number of heavy water benchmark critical experiments.

  10. Analysis of Advanced Fuel Assemblies and Core Designs for the Current and Next Generations of LWRs

    SciTech Connect

    Ragusa, Jean; Vierow, Karen

    2011-09-01

    The objective of the project is to design and analyze advanced fuel assemblies for use in current and future light water reactors and to assess their ability to reduce the inventory of transuranic elements, while preserving operational safety. The reprocessing of spent nuclear fuel can delay or avoid the need for a second geological repository in the US. Current light water reactor fuel assembly designs under investigation could reduce the plutonium inventory of reprocessed fuel. Nevertheless, these designs are not effective in stabilizing or reducing the inventory of minor actinides. In the course of this project, we developed and analyzed advanced fuel assembly designs with improved thermal transmutation capability regarding transuranic elements and especially minor actinides. These designs will be intended for use in thermal spectrum (e.g., current and future fleet of light water reactors in the US). We investigated various fuel types, namely high burn-up advanced mixed oxides and inert matrix fuels, in various geometrical designs that are compliant with the core internals of current and future light water reactors. Neutronic/thermal hydraulic effects were included. Transmutation efficiency and safety parameters were used to rank and down-select the various designs.

  11. Flow tests of a single fuel element coolant channel for a compact fast reactor for space power

    NASA Technical Reports Server (NTRS)

    Springborn, R. H.

    1971-01-01

    Water flow tests were conducted on a single-fuel-element cooling channel for a nuclear concept to be used for space power. The tests established a method for measuring coolant flow rate which is applicable to water flow testing of a complete mockup of the reference reactor. The inlet plenum-to-outlet plenum pressure drop, which approximates the overall core pressure drop, was measured and correlated with flow rate. This information can be used for reactor coolant flow and heat transfer calculations. An analytical study of the flow characteristics was also conducted.

  12. Role of flue gas components in mercury oxidation over TiO2 supported MnOx-CeO2 mixed-oxide at low temperature.

    PubMed

    Li, Hailong; Wu, Chang-Yu; Li, Ying; Li, Liqing; Zhao, Yongchun; Zhang, Junying

    2012-12-01

    MnO(x)-CeO(2) mixed-oxide supported on TiO(2) (Mn-Ce/Ti) was synthesized by an ultrasound-assisted impregnation method and employed to oxidize elemental mercury (Hg(0)) at 200°C in simulated coal combustion flue gas. Over 90% of Hg(0) oxidation was achieved on the Mn-Ce/Ti catalyst at 200°C under simulated flue gas representing those from burning low-rank coals with a high gas hourly space velocity of 60,000 h(-1). Gas-phase O(2) regenerated the lattice oxygen and replenished the chemisorbed oxygen, which facilitated Hg(0) oxidation. HCl was the most effective flue gas component responsible for Hg(0) oxidation. 10 ppm HCl plus 4% O(2) resulted in 100% Hg(0) oxidation under the experimental conditions. SO(2) competed with Hg(0) for active sites, thus deactivating the catalyst's capability in oxidizing Hg(0). NO covered the active sites and consumed surface oxygen active for Hg(0) oxidation, hence limiting Hg(0) oxidation. Water vapor showed prohibitive effect on Hg(0) oxidation due to its competition with HCl and Hg(0) for active adsorption sites. This study provides information about the promotional or inhibitory effects of individual flue gas components on Hg(0) oxidation over a highly effective Mn-Ce/Ti catalyst. Such knowledge is of fundamental importance for industrial applications of the Mn-Ce/Ti catalyst in coal-fired power plants. PMID:23131500

  13. FABRICATION AND CHARACTERIZATION OF BOROSILICATE GLASSES CONTAINING ALPHA-RADIONUCLIDES AND SILVER FROM CONVERSION AND MIXED-OXIDE FACILITIES PROPOSED FOR RUSSIA

    SciTech Connect

    Aloy, A; Trofimenko, V; Uspensky, A; Jardine, L

    2005-10-25

    Liquid and solid radioactive wastes are formed during conversion of plutonium metal to oxide and during fabrication of weapons-grade plutonium into mixed-oxide (MOX) fuel. In Russia, these wastes are to be processed for disposition by immobilization in either borosilicate glass or cement matrices depending upon the waste stream-specific radionuclide contents. Vitrification is planned for the liquid high-level waste raffinate stream containing the bulk of the Am-241 produced from Pu-241 decay. Previous work on the Russian MOX Fuel Fabrication Facility (R-MFFF) by the Public Joint Stock Corporation (TVEL) [1] showed that this waste stream may contain significant amounts of silver derived from the electrochemical dissolution of PuO2 using a Ag(II) catalyst. The work reported here further investigated silver solubility limits, which, if exceeded in a production glass melter, allow discrete silver grains to form in the glass and also deposit over time on the bottom of a joule-heated ceramic melter. In melters with immersed electrodes, such as the Russian EP-100 for phosphate glasses or the US Duratek DP-100 type melters for borosilicate glasses that are being considered for use at the Siberian Chemical Combine (SCC) Tomsk site, the undissolved silver could cause a short circuit and an unacceptable production melter failure. The silver solubility limit of 3.85 wt% Ag{sub 2}O in liquid, alpha-bearing wastes determined in this work will guide the production scale use of borosilicate glass compositions, and effectively increase the capacity of the ceramic melters and reduce the total volume of solidified vitrified wastes at SCC Tomsk that require storage prior to geologic disposal.

  14. Fuels for sodium-cooled fast reactors: US perspective

    NASA Astrophysics Data System (ADS)

    Crawford, Douglas C.; Porter, Douglas L.; Hayes, Steven L.

    2007-09-01

    The US experience with mixed oxide, metal, and mixed carbide fuels is substantial, comprised of irradiation of over 50 000 MOX rods, over 130 000 metal rods, and 600 mixed carbide rods, in EBR-II and FFTF alone. All three types have been demonstrated capable of fuel utilization at or above 200 GWd/MTHM. To varying degrees, life-limiting phenomena for each type have been identified and investigated, and there are no disqualifying safety-related fuel behaviors. All three fuel types appear capable of meeting requirements of sodium-cooled fast reactor fuels, with reliability of mixed oxide and metal fuel well established. Improvements in irradiation performance of cladding and duct alloys have been a key development in moving these fuel designs toward higher-burnup potential. Selection of one fuel system over another will depend on circumstances particular to the application and on issues other than fuel performance, such as fabrication cost or overall system safety performance.

  15. Facile preparation of highly-dispersed cobalt-silicon mixed oxide nanosphere and its catalytic application in cyclohexane selective oxidation

    PubMed Central

    2011-01-01

    Highly dispersed cobalt-silicon mixed oxide [Co-SiO2] nanosphere was successfully prepared with a modified reverse-phase microemulsion method. This material was characterized in detail by X-ray diffraction, transmission electron microscopy, Fourier transform infrared, ultraviolet-visible diffuse reflectance spectra, X-ray absorption spectroscopy near-edge structure, and N2 adsorption-desorption measurements. High valence state cobalt could be easily obtained without calcination, which is fascinating for the catalytic application for its strong oxidation ability. In the selective oxidation of cyclohexane, Co-SiO2 acted as an efficient catalyst, and good activity could be obtained under mild conditions. PMID:22067075

  16. Effect of hydrothermal treatment on properties of Ni-Al layered double hydroxides and related mixed oxides

    SciTech Connect

    Kovanda, Frantisek Rojka, Tomas; Bezdicka, Petr; Jiratova, Kveta; Obalova, Lucie; Pacultova, Katerina; Bastl, Zdenek; Grygar, Tomas

    2009-01-15

    The Ni-Al layered double hydroxides (LDHs) with Ni/Al molar ratio of 2, 3, and 4 were prepared by coprecipitation and treated under hydrothermal conditions at 180 deg. C for times up to 20 h. Thermal decomposition of the prepared samples was studied using thermal analysis and high-temperature X-ray diffraction. Hydrothermal treatment increased significantly the crystallite size of coprecipitated samples. The characteristic LDH diffraction lines disappeared completely at ca. 350 deg. C and a gradual crystallization of NiO-like mixed oxide was observed at higher temperatures. Hydrothermal treatment improved thermal stability of the Ni2Al and Ni3Al LDHs but only a slight effect of hydrothermal treatment was observed with the Ni4Al sample. The Rietveld refinement of powder XRD patterns of calcination products obtained at 450 deg. C showed a formation of Al-containing NiO-like oxide and a presence of a considerable amount of Al-rich amorphous component. Hydrothermal aging of the LDHs resulted in decreasing content of the amorphous component and enhanced substitution of Al cations into NiO-like structure. The hydrothermally treated samples also exhibited a worse reducibility of Ni{sup 2+} components. The NiAl{sub 2}O{sub 4} spinel and NiO still containing a marked part of Al in the cationic sublattice were detected in the samples calcined at 900 deg. C. The Ni2Al LDHs hydrothermally treated for various times and related mixed oxides obtained at 450 deg. C showed an increase in pore size with increasing time of hydrothermal aging. The hydrothermal treatment of LDH precursor considerably improved the catalytic activity of Ni2Al mixed oxides in N{sub 2}O decomposition, which can be explained by suppressing internal diffusion effect in catalysts grains. - Graphical Abstract: Hydrothermal treatment of Ni-Al LDH precursors influenced the porous structure of related mixed oxides and considerably improved their catalytic activity in N{sub 2}O decomposition; the higher catalytic

  17. FEM (finite element method) thermal modeling and thermal hydraulic performance of an enhanced thermal conductivity UO2/BeO composite fuel

    SciTech Connect

    Zhou, Wenzhong

    2011-03-24

    An enhanced thermal conductivity UO2-BeO composite nuclear fuel was studied. A methodology to generate ANSYS (an engineering simulation software) FEM (Finite Element Method) thermal models of enhanced thermal conductivity oxide nuclear fuels was developed. The results showed significant increase in the fuel thermal conductivities and have good agreement with the measured ones. The reactor performance analysis showed that the decrease in centerline temperature was 250-350K for the UO2-BeO composite fuel, and thus we can improve nuclear reactors' performance and safety, and high-level radioactive waste generation.

  18. Infrared spectroscopic study on the thermal decomposition of external and internal gelation products of simulated mixed oxide nuclear fuel.

    PubMed

    Kumar, K Suresh; Bhat, N P

    2004-02-01

    The thermal decomposition of urania-ceria gel corresponding to the composition U(0.7)Ce(0.3)O(2+x) obtained through external and internal gelation routes were studied using infrared spectroscopy (IR). In the case of externally gelated compound, the gel decomposes with the release of H2O and NH3 below 500 degrees C. A part of the NH3 released is entrapped in the solid and above 500 degrees C self reduction occurs in which U(VI) in the gel is reduced to U3O8. The decomposition products were identified to be U3O8 and CeO2. In the case of internally gelated compound, decomposition similar to the one for externally gelated compound occurred below 500 degrees C. Above 500 degrees C the carbon present in the gel reduced U(VI) to UO2 which formed solid solution with CeO2 around 650 degrees C. PMID:14747073

  19. FINITE ELEMENT SIMULATION FOR STRUCTURAL RESPONSE OF U7MO DISPERSION FUEL PLATES VIA FLUID-THERMAL-STRUCTURAL INTERACTION

    SciTech Connect

    Hakan Ozaltun; Herman Shen; Pavel Madvedev

    2010-11-01

    This article presents numerical simulation of dispersion fuel mini plates via fluid–thermal–structural interaction performed by commercial finite element solver COMSOL Multiphysics to identify initial mechanical response under actual operating conditions. Since fuel particles are dispersed in Aluminum matrix, and temperatures during the fabrication process reach to the melting temperature of the Aluminum matrix, stress/strain characteristics of the domain cannot be reproduced by using simplified models and assumptions. Therefore, fabrication induced stresses were considered and simulated via image based modeling techniques with the consideration of the high temperature material data. In order to identify the residuals over the U7Mo particles and the Aluminum matrix, a representative SEM image was employed to construct a microstructure based thermo-elasto-plastic FE model. Once residuals and plastic strains were identified in micro-scale, solution was used as initial condition for subsequent multiphysics simulations at the continuum level. Furthermore, since solid, thermal and fluid properties are temperature dependent and temperature field is a function of the velocity field of the coolant, coupled multiphysics simulations were considered. First, velocity and pressure fields of the coolant were computed via fluidstructural interaction. Computed solution for velocity fields were used to identify the temperature distribution on the coolant and on the fuel plate via fluid-thermal interaction. Finally, temperature fields and residual stresses were used to obtain the stress field of the plates via fluid-thermal-structural interaction.

  20. Molten tin reprocessing of spent nuclear fuel elements. [Patent application; continuous process

    DOEpatents

    Heckman, R.A.

    1980-12-19

    A method and apparatus for reprocessing spent nuclear fuel is described. Within a containment vessel, a solid plug of tin and nitride precipitates supports a circulating bath of liquid tin therein. Spent nuclear fuel is immersed in the liquid tin under an atmosphere of nitrogen, resulting in the formation of nitride precipitates. The layer of liquid tin and nitride precipitates which interfaces the plug is solidified and integrated with the plug. Part of the plug is melted, removing nitride precipitates from the containment vessel, while a portion of the plug remains solidified to support te liquid tin and nitride precipitates remaining in the containment vessel. The process is practiced numerous times until substantially all of the precipitated nitrides are removed from the containment vessel.

  1. Computation of Dancoff Factors for Fuel Elements Incorporating Randomly Packed TRISO Particles

    SciTech Connect

    J. L. Kloosterman; Abderrafi M. Ougouag

    2005-01-01

    A new method for estimating the Dancoff factors in pebble beds has been developed and implemented within two computer codes. The first of these codes, INTRAPEB, is used to compute Dancoff factors for individual pebbles taking into account the random packing of TRISO particles within the fuel zone of the pebble and explicitly accounting for the finite geometry of the fuel kernels. The second code, PEBDAN, is used to compute the pebble-to-pebble contribution to the overall Dancoff factor. The latter code also accounts for the finite size of the reactor vessel and for the proximity of reflectors, as well as for fluctuations in the pebble packing density that naturally arises in pebble beds.

  2. Analysis of Topaz-II thermionic fuel element performance using TFEHX

    SciTech Connect

    Klein, A.C. ); Pawlowski, R.A. )

    1993-01-20

    Data reported by Russian Scientists and engineers for the TOPAZ-II single cell thermionic fuel elments (TFE) is compared with analytical results calculated using the TFEHX computer program in order to benchmark the code. The results of this comparison show good agreement with the TOPAZ-II results over a wide range of power inputs, cesium vapor pressures, and other design variables. Future refinements of the TFEHX methodology should enhance the performance of the code to better predict single cell TFE behavior.

  3. The use of U/sub 3/Si/sub 2/ dispersed in aluminum in plate-type fuel elements for research and test reactors

    SciTech Connect

    Snelgrove, J.L.; Domagala, R.F.; Hofman, G.L.; Wiencek, T.C.; Copeland, G.L.; Hobbs, R.W.; Senn, R.L.

    1987-10-01

    A high-density fuel based on U/sub 3/Si/sub 2/ dispersed in aluminum has been developed and tested for use in converting plate-type research and test reactors from the use of highly enriched uranium to the use of low-enriched uranium. Results of preirradiation testing and the irradiation and postirradiation examination of miniature fuel plates and full-sized fuel elements are summarized. Swelling of the U/sub 3/Si/sub 2/ fuel particles is a linear function of the fission density in the particle to well beyond the fission density achievable in low-enriched fuels. U/sub 3/Si/sub 2/ particle swelling rate is approximately the same as that of the commonly used UAl/sub x/ fuel particle. The presence of minor amounts of U/sub 3/Si or uranium solid solution in the fuel result in greater, but still acceptable, fuel swelling. Blister threshold temperatures are at least as high as those of currently used fuels. An exothermic reaction occurs near the aluminum melting temperature, but the measured energy releases were low enough not to substantially worsen the consequences of an accident. U/sub 3/Si/sub 2/-aluminum dispersion fuel with uranium densities up to at least 4.8 Mg/m/sup 3/ is a suitable LEU fuel for typical plate-type research and test reactors. 42 refs., 28 figs., 7 tabs.

  4. Characterization of high surface area Zr-Ce (1:1) mixed oxide prepared by a microemulsion method

    SciTech Connect

    Martinez-Arias, A.; Fernandez-Garcia, M.; Ballesteros, V.; Salamanca, L.N.; Conesa, J.C.; Otero, C.; Soria, J.

    1999-07-06

    A Zr-Ce mixed oxide with ca. a 1:1 atomic ratio is prepared by a microemulsion method and studied by X-ray diffraction, transmission electron microscopy, and Raman, X-ray photoelectron (XPS) and electron paramagnetic resonance (EPR) spectroscopies. The results show the formation of a high surface area material (S{sub BET} = 96 m{sup 2}/g) constituted by homodispersed particles of a major pseudocubic phase t{double_prime} (as shown by Raman); the stabilization of the latter phase, instead of the normally more stable tetragonal phase t{prime}, is probably due to the small crystallite size (ca. 5 nm). XPS indicates a moderate degree of surface enrichment in cerium. An EPR study is carried out on the superoxide species formed on the material by O{sub 2} adsorption after outgassing at temperatures up to T{sub v} = 773 K; this shows that the reduced surface centers thermally formed on this mixed oxide are similar to those found on pure ceria but are generated more easily than on the latter, thus evidencing a surface redox reactivity higher than that of the CeO{sub 2} single oxide.

  5. Enhanced photoassisted water electrolysis using vertically oriented anodically fabricated Ti-Nb-Zr-O mixed oxide nanotube arrays.

    PubMed

    Allam, Nageh K; Alamgir, Faisal; El-Sayed, Mostafa A

    2010-10-26

    Self-ordered, highly oriented arrays of titanium-niobium-zirconium mixed oxide nanotube films were fabricated by the anodization of Ti(35)Nb(5)Zr alloy in aqueous and formamide electrolytes containing NH(4)F at room temperature. The nanostructure topology was found to depend on the nature of the electrolyte and the applied voltage. Our results demonstrate the possibility to grow mixed oxide nanotube array films possessing several-micrometer-thick layers by a simple and straightforward electrochemical route. The fabricated Ti-Nb-Zr-O nanotubes showed a ∼17.5% increase in the photoelectrochemical water oxidation efficiency as compared to that measured for pure TiO(2) nanotubes under UV illumination (100 mW/cm(2), 320-400 nm, 1 M KOH). This enhancement could be related to a combination of the effect of the thin wall of the fabricated Ti-Nb-Zr-O nanotubes (10 ± 2 nm) and the formation of Zr oxide and Nb oxide layers on the nanotube surface, which seems to slow down the electron-hole recombination in a way similar to that reported for Grätzel solar cells. PMID:20815374

  6. Biodiesel production from waste cooking oil catalyzed by TiO2-MgO mixed oxides.

    PubMed

    Wen, Zhenzhong; Yu, Xinhai; Tu, Shan-Tung; Yan, Jinyue; Dahlquist, Erik

    2010-12-01

    Mixed oxides of TiO(2)-MgO obtained by the sol-gel method were used to convert waste cooking oil into biodiesel. Titanium improved the stability of the catalyst because of the defects induced by the substitution of Ti ions for Mg ions in the magnesia lattice. The best catalyst was determined to be MT-1-923, which is comprised of an Mg/Ti molar ratio of 1 and calcined at 923 K, based on an assessment of the activity and stability of the catalyst. The main reaction parameters, including methanol/oil molar ratio, catalyst amount, and temperature, were investigated. The catalytic activity of MT-1-923 decreased slowly in the reuse process. After regeneration, the activity of MT-1-923 slightly increased compared with that of the fresh catalyst due to an increase in the specific surface area and average pore diameter. The mixed oxides catalyst, TiO(2)-MgO, showed good potential in large-scale biodiesel production from waste cooking oil. PMID:20696572

  7. DIRECT INVESTIGATIONS OF THE IMMOBILIZATION OF RADIONUCLIDES IN THE ALTERATION PHASES OF SPENT NUCLEAR FUEL

    EPA Science Inventory

    DOE is the custodian of several thousand tons of spent nuclear fuel that is intended for geological disposal. The direct disposal of spent nuclear fuel or of mixed oxide fuel (fabricated for the disposal of excess weapons plutonium) requires a careful analysis of the role of spen...

  8. Disposition of fuel elements from the Aberdeen and Sandia pulse reactor (SPR-II) assemblies

    SciTech Connect

    Mckerley, Bill; Bustamante, Jacqueline M; Costa, David A; Drypolcher, Anthony F; Hickey, Joseph

    2010-01-01

    We describe the disposition of fuel from the Aberdeen (APR) and the Sandia Pulse Reactors (SPR-II) which were used to provide intense neutron bursts for radiation effects testing. The enriched Uranium - 10% Molybdenum fuel from these reactors was shipped to the Los Alamos National Laboratory (LANL) for size reduction prior to shipment to the Savannah River Site (SRS) for final disposition in the H Canyon facility. The Shipper/Receiver Agreements (SRA), intra-DOE interfaces, criticality safety evaluations, safety and quality requirements and key materials management issues required for the successful completion of this project will be presented. This work is in support of the DOE Consolidation and Disposition program. Sandia National Laboratories (SNL) has operated pulse nuclear reactor research facilities for the Department of Energy since 1961. The Sandia Pulse Reactor (SPR-II) was a bare metal Godiva-type reactor. The reactor facilities have been used for research and development of nuclear and non-nuclear weapon systems, advanced nuclear reactors, reactor safety, simulation sources and energy related programs. The SPR-II was a fast burst reactor, designed and constructed by SNL that became operational in 1967. The SPR-ll core was a solid-metal fuel enriched to 93% {sup 235}U. The uranium was alloyed with 10 weight percent molybdenum to ensure the phase stabilization of the fuel. The core consisted of six fuel plates divided into two assemblies of three plates each. Figure 1 shows a cutaway diagram of the SPR-II Reactor with its decoupling shroud. NNSA charged Sandia with removing its category 1 and 2 special nuclear material by the end of 2008. The main impetus for this activity was based on NNSA Administrator Tom D'Agostino's six focus areas to reenergize NNSA's nuclear material consolidation and disposition efforts. For example, the removal of SPR-II from SNL to DAF was part of this undertaking. This project was in support of NNSA's efforts to consolidate the

  9. A New Innovative Spherical Cermet Nuclear Fuel Element to Achieve an Ultra-Long Core Life for use in Grid-Appropriate LWRs

    SciTech Connect

    Senor, David J.; Painter, Chad L.; Geelhood, Ken J.; Wootan, David W.; Meriwether, George H.; Cuta, Judith M.; Adkins, Harold E.; Matson, Dean W.; Abrego, Celestino P.

    2007-12-01

    Spherical cermet fuel elements are proposed for use in the Atoms For Peace Reactor (AFPR-100) concept. AFPR-100 is a small-scale, inherently safe, proliferation-resistant reactor that would be ideal for deployment to nations with emerging economies that decide to select nuclear power for the generation of carbon-free electricity. The basic concept of the AFPR core is a water-cooled fixed particle bed, randomly packed with spherical fuel elements. The flow of coolant within the particle bed is at such a low rate that the bed does not fluidize. This report summarizes an approach to fuel fabrication, results associated with fuel performance modeling, core neutronics and thermal hydraulics analyses demonstrating a ~20 year core life, and a conclusion that the proliferation resistance of the AFPR reactor concept is high.

  10. Preparation, loading and storage of castor THTR/AVR-casks for spent fuel elements-part of the decommissioning of the high temperature reactor AVR

    SciTech Connect

    Theenhaus, R.; Halaszovich, S.; Storch, S.

    1994-12-31

    Shipment of spent fuel elements of the AVR reactor to the interim storage site at the Forschungszentrum Juelich KFA has started in August 1993. The handling procedure involves the preparation of the transport-storage casks, their remote loading with two stainless steel flasks, each of them containing 950 spherical fuel elements, the closing of the casks, the leak testing, the dose rate measurements, smear tests, the transportation and stacking of the casks and finally their connection with the permanent electronical leak control system. The handling strictly follows the manual which is part of the license and it is inspected by a member of the supervising ministry and an independent expert ordered by the ministry. Until the end of 1993 32,300 fuel elements have been transferred to the storage site.

  11. Discrete Element Model for Simulations of Early-Life Thermal Fracturing Behaviors in Ceramic Nuclear Fuel Pellets

    SciTech Connect

    Hai Huang; Ben Spencer; Jason Hales

    2014-10-01

    A discrete element Model (DEM) representation of coupled solid mechanics/fracturing and heat conduction processes has been developed and applied to explicitly simulate the random initiations and subsequent propagations of interacting thermal cracks in a ceramic nuclear fuel pellet during initial rise to power and during power cycles. The DEM model clearly predicts realistic early-life crack patterns including both radial cracks and circumferential cracks. Simulation results clearly demonstrate the formation of radial cracks during the initial power rise, and formation of circumferential cracks as the power is ramped down. In these simulations, additional early-life power cycles do not lead to the formation of new thermal cracks. They do, however clearly indicate changes in the apertures of thermal cracks during later power cycles due to thermal expansion and shrinkage. The number of radial cracks increases with increasing power, which is consistent with the experimental observations.

  12. ELM - A SIMPLE TOOL FOR THERMAL-HYDRAULIC ANALYSIS OF SOLID-CORE NUCLEAR ROCKET FUEL ELEMENTS

    NASA Technical Reports Server (NTRS)

    Walton, J. T.

    1994-01-01

    ELM is a simple computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in nuclear thermal rockets. Written for the nuclear propulsion project of the Space Exploration Initiative, ELM evaluates the various heat transfer coefficient and friction factor correlations available for turbulent pipe flow with heat addition. In the past, these correlations were found in different reactor analysis codes, but now comparisons are possible within one program. The logic of ELM is based on the one-dimensional conservation of energy in combination with Newton's Law of Cooling to determine the bulk flow temperature and the wall temperature across a control volume. Since the control volume is an incremental length of tube, the corresponding pressure drop is determined by application of the Law of Conservation of Momentum. The size, speed, and accuracy of ELM make it a simple tool for use in fuel element parametric studies. ELM is a machine independent program written in FORTRAN 77. It has been successfully compiled on an IBM PC compatible running MS-DOS using Lahey FORTRAN 77, a DEC VAX series computer running VMS, and a Sun4 series computer running SunOS UNIX. ELM requires 565K of RAM under SunOS 4.1, 360K of RAM under VMS 5.4, and 406K of RAM under MS-DOS. Because this program is machine independent, no executable is provided on the distribution media. The standard distribution medium for ELM is one 5.25 inch 360K MS-DOS format diskette. ELM was developed in 1991. DEC, VAX, and VMS are trademarks of Digital Equipment Corporation. Sun4 and SunOS are trademarks of Sun Microsystems, Inc. IBM PC is a registered trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation.

  13. Numerical analysis of a nuclear fuel element for nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Schutzenhofer, Luke

    1991-01-01

    A computational fluid dynamics model with porosity and permeability formulations in the transport equations has been developed to study the concept of nuclear thermal propulsion through the analysis of a pulsed irradiation of a particle bed element (PIPE). The numerical model is a time-accurate pressure-based formulation. An adaptive upwind scheme is employed for spatial discretization. The upwind scheme is based on second- and fourth-order central differencing with adaptive artificial dissipation. Multiblocked porosity regions have been formulated to model the cold frit, particle bed, and hot frit. Multiblocked permeability regions have been formulated to describe the flow shaping effect from the thickness-varying cold frit. Computational results for several zero-power density PIPEs and an elevated-particle-temperature PIPE are presented. The implications of the computational results are discussed.

  14. Selective Catalytic Oxidation of Hydrogen Sulfide to Elemental Sulfur in the Presence of Coal-Derived Fuel Gas

    SciTech Connect

    Stevens, R.W., Jr.; Gardner, T.H.; Shekhawat, Dushyant; Berry, D.A.; Freed, A.D.

    2005-09-01

    A rotatable central composite design approach was utilized to examine the activity and selectivity of an activated carbon-based catalyst during partial oxidation of H2S to elemental sulfur. Tests were conducted at 400 psig with a 4000 ppmv H2S inlet concentration in the presence of coal-derived fuel gas (i.e., CO, CO2, H2, and H2O). Temperature, space velocity, and O2:H2S ratio were chosen as process variables for the study to generate response surface maps of elemental sulfur yield and longevity. Temperature was varied from 150-300°C; gas hourly space velocity varied from 1000 -15000 h-1 (STP); O2:H2S varied from 0.5-2.0. Evolution of SO2 and/or COS during some of the tests indicated the presence of side reactions. The relationship between the process variables and catalyst performance as well as the results of catalyst characterization is discussed.

  15. Surface chemistry study of RuO2/IrO2/TiO2 mixed-oxide electrodes.

    PubMed

    Barison, Simona; Daolio, Sergio; Fabrizio, Monica; De Battisti, Achille

    2004-01-01

    DSA metal oxide electrodes such as the RuO(2)/IrO(2)/TiO(2) mixed system are widely studied for their excellent electrocatalytic activity. In order to understand their catalytic properties, the comprehension of the surface chemistry involved during electrochemical treatments is crucial. With this aim, RuO(2)/IrO(2)/TiO(2) mixed-oxide electrodes having various noble metal contents were studied by means of secondary ion mass spectrometry (SIMS). In particular, cathodic and anodic polarization and O(2) evolution reactions were carried out to test the electrode behaviour and SIMS analyses were performed after all these treatments. In this way, surface changes induced by electrochemical treatments and depending on electrode composition were widely investigated by SIMS, revealing, for example, the presence of hydration or preferential dissolution phenomena induced by electrochemical processing. PMID:14755612

  16. Strain Field in Ultrasmall Gold Nanoparticles Supported on Cerium-Based Mixed Oxides. Key Influence of the Support Redox State.

    PubMed

    López-Haro, Miguel; Yoshida, Kenta; Del Río, Eloy; Pérez-Omil, José A; Boyes, Edward D; Trasobares, Susana; Zuo, Jian-Min; Gai, Pratibha L; Calvino, José J

    2016-05-01

    Using a method that combines experimental and simulated Aberration-Corrected High Resolution Electron Microscopy images with digital image processing and structure modeling, strain distribution maps within gold nanoparticles relevant to real powder type catalysts, i.e., smaller than 3 nm, and supported on a ceria-based mixed oxide have been determined. The influence of the reduction state of the support and particle size has been examined. In this respect, it has been proven that reduction even at low temperatures induces a much larger compressive strain on the first {111} planes at the interface. This increase in compression fully explains, in accordance with previous DFT calculations, the loss of CO adsorption capacity of the interface area previously reported for Au supported on ceria-based oxides. PMID:27058299

  17. Photo-assisted hetero-fenton decolorization of azo dye from contaminated water by Fe-Si mixed oxide nanocomposite.

    PubMed

    Rasoulifard, M H; Monfared, H Hosseini; Masoudian, S

    2011-10-01

    An aerogel of silica gel dopeyd with 2.86 wt% Fe was prepared by an alkoxide sol-gel method and using tetraethyl orthosilicate as a precursor material. The synthesized aerogel was calcined at 500 degress C to produce nanoparticle solids, and was characterized by XRD, FT-IR and SEM. The nanosized iron-silica gel mixed oxide was tested in the photooxidation of the azo dye Acid Red 14 (AR 14) using 30% aqueous hydrogen peroxide as oxidant and UV light. The 2.86 wt% Fe-loaded SiO2 showed very good efficiency in the decolorization of AR 14. The effects of various parameters including solution pH, catalyst, oxidant and initial dye concentrations on photodegradation were investigated and the optimum conditions were determined. The catalyst was resistant to leaching and could be recycled several times without appreciable loss of activity. PMID:22329154

  18. Chemical potential of oxygen in (U, Pu) mixed oxide with Pu/(U+Pu) = 0.46

    NASA Astrophysics Data System (ADS)

    Dawar, Rimpi; Chandramouli, V.; Anthonysamy, S.

    2016-05-01

    Chemical potential of oxygen in (U,Pu) mixed oxide with Pu/(U + Pu) = 0.46 was measured for the first time using H2/H2O gas equilibration combined with solid electrolyte EMF technique at 1073, 1273 and 1473 K covering an oxygen potential range of -525 to -325 kJ mol-1. The effect of oxygen potential on the oxygen to metal ratio was determined. Increase in oxygen potential increases the O/M. In this study the minimum O/M obtained was 1.985 below which reduction was not possible. Partial molar enthalpy ΔHbar O2 and entropy ΔSbar O2 of oxygen were calculated from the oxygen potential data. The values of -752.36 kJ mol-1 and 0.25 kJ mol-1 were obtained for ΔHbar O2 and ΔSbar O2 respectively.

  19. Rod-like CuMnOx transformed from mixed oxide particles by alkaline hydrothermal treatment as a novel catalyst for catalytic combustion of toluene.

    PubMed

    Li, W B; Liu, Z X; Liu, R F; Chen, J L; Xu, B Q

    2016-08-17

    Rod-like copper manganese mixed oxides (CuMnx-NR) have been synthesized from copper manganese mixed oxide particles by sodium hydroxide hydrothermal treatment, and a higher BET surface area of 221 m(2) g(-1) is obtained on the nanorod-like sample, which exhibits superior catalytic activity toward toluene combustion at 210 °C due to the increase in its oxygen mobility of the chemisorbed oxygen species as well as the increase in surface concentrations of higher valance cations, Cu(2+), Mn(3+) and Mn(4+), in the samples. PMID:27498822

  20. DetOx: a program for determining anomalous scattering factors of mixed-oxidation-state species.

    PubMed

    Sutton, Karim J; Barnett, Sarah A; Christensen, Kirsten E; Nowell, Harriott; Thompson, Amber L; Allan, David R; Cooper, Richard I

    2013-01-01

    Overlapping absorption edges will occur when an element is present in multiple oxidation states within a material. DetOx is a program for partitioning overlapping X-ray absorption spectra into contributions from individual atomic species and computing the dependence of the anomalous scattering factors on X-ray energy. It is demonstrated how these results can be used in combination with X-ray diffraction data to determine the oxidation state of ions at specific sites in a mixed-valance material, GaCl(2). PMID:23254676

  1. Trace element partitioning in ashes from boilers firing pure wood or mixtures of solid waste with respect to fuel composition, chlorine content and temperature.

    PubMed

    Saqib, Naeem; Bäckström, Mattias

    2014-12-01

    Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of fly ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine content have significant effects on partitioning characteristics by increasing the formation and vaporization of highly volatile metal chlorides. Zinc and cadmium concentrations in fly ash increase with the incineration temperature. PMID:25263218

  2. Simulated Verification of Fuel Element Inventory in a Small Reactor Core Using the Nuclear Materials Identification System (NMIS)

    SciTech Connect

    Grogan, Brandon R; Mihalczo, John T

    2009-01-01

    The International Panel on Climate Change projects that by 2050 the world energy demand may double. Although the primary focus for new nuclear power plants in industrialized nations is on large plants in the 1000-1600 MWe range, there is an increasing demand for small and medium reactors (SMRs). About half of the innovative SMR concepts are for small (<300 MWe) reactors with a 5-30 year life without on-site refueling. This type of reactor is also known as a battery-type reactor. These reactors are particularly attractive to countries with small power grids and for non-electrical purposes such as heating, hydrogen production, and seawater desalination. Traditionally, this type of reactor has been used in a nautical propulsion role. This type of reactor is designed as a permanently sealed unit to prevent the diversion of the uranium in the core by the user. However, after initial fabrication it will be necessary to verify that the newly fabricated reactor core contains the quantity of uranium that initially entered the fuel fabrication plant. In most instances, traditional inspection techniques can be used to perform this verification, but in certain situations the core design will be considered sensitive. Non-intrusive verification techniques must be utilized in these situations. The Nuclear Materials Identification System (NMIS) with imaging uses active interrogation and a fast time correlation processor to characterize fissile material. The MCNP-PoliMi computer code was used to simulate NMIS measurements of a small, sealed reactor core. Because most battery-type reactor designs are still in the early design phase, a more traditional design based on a Russian icebreaker core was used in the simulations. These simulations show how the radiography capabilities of the NMIS could be used to detect the diversion of fissile material by detecting void areas in the assembled core where fuel elements have been removed.

  3. Formation of Prussian-Blue-Analog Nanocages via a Direct Etching Method and their Conversion into Ni-Co-Mixed Oxide for Enhanced Oxygen Evolution.

    PubMed

    Han, Lei; Yu, Xin-Yao; Lou, Xiong Wen David

    2016-06-01

    Novel Ni-Co-Prussian-blue-analog nano-cages consisting of pyramid-like walls were prepared via a facile chemical etching process with ammonia at room temperature. After annealing in air, the derived Ni-Co mixed oxide nanocages exhibit enhanced electrocatalytic activity and excellent stability toward the oxygen-evolution reaction. PMID:27008038

  4. Acidic and catalytic properties of SiO{sub 2}-Ta{sub 2}O{sub 5} mixed oxides prepared by the sol-gel method

    SciTech Connect

    Guiu, G.; Grange, P.

    1995-09-15

    The acidic and catalytic properties of a series of silicon-tantalum mixed oxides containing between 0 and 30 at% tantalum were characterized by temperature-programmed desorption of ammonia, by FTIR spectra of adsorbed pyridine, and by the test reaction of 1-butanol dehydration at 250-300{degrees}C. Probe molecule adsorption and catalytic testing show an acid site generation in silicon-tantalum mixed oxides compared to pure tantalum oxide. Both Bronsted and Lewis acid sites are present on the mixed oxide surface. Bronsted and Lewis acid sites seem to be weaker in SiO{sub 2}-Ta{sub 2}O{sub 5} mixed oxide than in analogous SiO{sub 2}-Al{sub 2}O{sub 3}, since a greater reaction temperature is required to achieve the same conversion in the above test reaction. However, a great advantage of this new solid acid is the production of butenes with 100% selectivity. 30 refs., 5 figs., 3 tabs.

  5. XRD monitoring of α self-irradiation in uranium-americium mixed oxides.

    PubMed

    Horlait, Denis; Lebreton, Florent; Roussel, Pascal; Delahaye, Thibaud

    2013-12-16

    The structural evolution under (241)Am self-irradiation of U(1-x)Am(x)O(2±δ) transmutation fuels (with x ≤ 0.5) was studied by X-ray diffraction (XRD). Samples first underwent a preliminary heat treatment performed under a reducing atmosphere (Ar/H2(4%)) aiming to recover the previously accumulated structural defects. Over all measurements (carried out over up to a full year and for integrated doses up to 1.5 × 10(18) α-decay events·g(-1)), only fluorite U(1-x)Am(x)O(2±δ) solid solutions were observed. Within a few days after the end of the heat treatment, each of the five studied samples was slowly oxidized as a consequence of their move to air atmosphere, which is evidenced by XRD by an initial sharp decrease of the unit cell parameter. For the compounds with x ≤ 0.15, this oxidation occurred without any phase transitions, but for U0.6Am0.4O(2±δ) and U0.5Am0.5O(2±δ), this process is accompanied by a transition from a first fluorite solid solution to a second oxidized one, as the latter is thermodynamically stable in ambient conditions. In the meantime and after the oxidation process, (241)Am α self-irradiation caused a structural swelling up to ∼0.8 vol %, independently of the sample composition. The kinetic constants of swelling were also determined by regression of experimental data and are, as expected, dependent on x and thus on the dose rate. The normalization of these kinetic constants by sample α-activity, however, leads to very close swelling rates among the samples. Finally, evolutions of microstrain and crystallite size were also monitored, but for the considered dose rates and cumulated doses, α self-irradiation was found, within the limits of the diffractometer used, to have almost no impact on these characteristics. Microstrain was found to be influenced instead by the americium content in the materials (i.e., by the impurities associated with americium starting material and the increase of cationic charge heterogeneity with

  6. Metallic elements in fossil fuel combustion products: amounts and form of emissions and evaluation of carcinogenicity and mutagenicity.

    PubMed Central

    Vouk, V B; Piver, W T

    1983-01-01

    Metallic elements contained in coal, oil and gasoline are mobilized by combustion processes and may be emitted into the atmosphere, mainly as components of submicron particles. The information about the amounts, composition and form of metal compounds is reviewed for some fuels and combustion processes. Since metal compounds are always contained in urban air pollutants, they have to be considered whenever an evaluation of biological impact of air pollutants is made. The value of currently used bioassays for the evaluation of the role of trace metal compounds, either as major biologically active components or as modifiers of biological effects of organic compounds is assessed. The whole animal bioassays for carcinogenicity do not seem to be an appropriate approach. They are costly, time-consuming and not easily amenable to the testing of complex mixtures. Some problems related to the application and interpretation of short-term bioassays are considered, and the usefulness of such bioassays for the evaluation of trace metal components contained in complex air pollution mixtures is examined. PMID:6337825

  7. A combined Cyanex-923/HEH[EHP]/Dodecane solvent for recovery of transuranic elements from used nuclear fuel

    SciTech Connect

    Johnson, A.; Nash, K.L.

    2013-07-01

    The separation of minor actinides from fission product lanthanides remains a primary challenge for enabling the recycle of used nuclear fuel. To minimize the complexity of materials handling, combining extractant processes has become an increasingly attractive option. Unfortunately, combined processes sometimes suffer reduced utility due to strong dipole-dipole interactions between the extractants. The results reported here describe a system based on a combination of commercially available extractants Cyanex-923 and HEH[EHP]. In contrast to other combined extractant systems, these extractant molecules exhibit comparatively weak interactions, reducing the impact of secondary interactions. In this process, mixtures containing equal ratios of Cyanex-923 and HEH[EHP] were seen to co-extract americium and the lanthanides from nitric acid solutions. Stripping of An(III) was effectively achieved through contact with an aqueous phase comprised of glycine (for pH control) and a polyamino-poly-carboxylate stripping reagent that selectively removes An(III) from the extractant phase. The lanthanides can then be stripped from the loaded organic phase contacting with high nitric acid concentrations. Extraction of fission products zirconium and molybdenum was also investigated and potential strategies for their management have been identified. The work presented demonstrates the feasibility of combining Cyanex-923 and HEH[EHP] for separating and recovering the transuranic elements from the Ln(III). (authors)

  8. Comparison between steady-state and dynamic I-V measurements from a single-cell thermionic fuel element

    SciTech Connect

    Wernsman, B.

    1997-01-01

    A comparison between steady-state and dynamic I-V measurements from a single-cell thermionic fuel element (TFE) is made. The single-cell TFE used in this study is the prototype for the 40kW{sub e} space nuclear power system that is similar to the 6kW{sub e} TOPAZ-II. The steady-state I-V measurements influence the emitter temperature due to electron cooling. Therefore, to eliminate the steady-state I-V measurement influence on the TFE and provide a better understanding of the behavior of the thermionic energy converter and TFE characteristics, dynamic I-V measurements are made. The dynamic I-V measurements are made at various input power levels, cesium pressures, collector temperatures, and steady-state current levels. From these measurements, it is shown that the dynamic I-V{close_quote}s do not change the TFE characteristics at a given operating point. Also, the evaluation of the collector work function from the dynamic I-V measurements shows that the collector optimization is not due to a minimum in the collector work function but due to an emission optimization. Since the dynamic I-V measurements do not influence the TFE characteristics, it is believed that these measurements can be done at a system level to understand the influence of TFE placement in the reactor as a function of the core thermal distribution. {copyright} {ital 1997 American Institute of Physics.}

  9. Comparison between steady-state and dynamic I-V measurements from a single-cell thermionic fuel element

    SciTech Connect

    Wernsman, Bernard

    1997-01-10

    A comparison between steady-state and dynamic I-V measurements from a single-cell thermionic fuel element (TFE) is made. The single-cell TFE used in this study is the prototype for the 40 kW{sub e} space nuclear power system that is similar to the 6 kW{sub e} TOPAZ-II. The steady-state I-V measurements influence the emitter temperature due to electron cooling. Therefore, to eliminate the steady-state I-V measurement influence on the TFE and provide a better understanding of the behavior of the thermionic energy converter and TFE characteristics, dynamic I-V measurements are made. The dynamic I-V measurements are made at various input power levels, cesium pressures, collector temperatures, and steady-state current levels. From these measurements, it is shown that the dynamic I-V's do not change the TFE characteristics at a given operating point. Also, the evaluation of the collector work function from the dynamic I-V measurements shows that the collector optimization is not due to a minimum in the collector work function but due to an emission optimization. Since the dynamic I-V measurements do not influence the TFE characteristics, it is believed that these measurements can be done at a system level to understand the influence of TFE placement in the reactor as a function of the core thermal distribution.

  10. Features of temperature control of fuel element cladding for pressurized water nuclear reactor ``WWER-1000'' while simulating reactor accidents

    NASA Astrophysics Data System (ADS)

    Zaytsev, P. A.; Priymak, S. V.; Usachev, V. B.; Oleynikov, P. P.; Soldatkin, D. M.

    2013-09-01

    During the experiments simulating NPR (nuclear power reactor) accidents with a coolant loss fuel elements behavior in a steam-hydrogen medium was studied at the temperature changed with the rate from 1 to 100K/s within the range of 300÷1500 °C. Indications of the thermocouples fixed on the cladding notably differ from real values of the cladding temperatures in the area of measuring junction due to thermal resistance influence of the transition zones "cladding-junction" and "junction-coolant". The estimating method of a measurement error was considered which can provide adequate accounting of the influence factors. The method is based on thermal probing of a thermocouple by electric current flashing through thermoelements under the coolant presence or absence, a response time registration and processing, calculation of thermal inertia value for a thermocouple junction. A formula was derived for calculation of methodical error under stationary mode and within the stage of linear increase in temperature, which will determine the conditions for the cladding depressurization. Some variants of the formula application were considered, and the values of methodical errors were established which reached ˜5% of maximum value by the final moment of the stage of linear increase in the temperature.

  11. Determination of uranium in urine samples of fuel element fabrication workers by beta-delayed neutron counting

    NASA Astrophysics Data System (ADS)

    Gabelmann, H.; Lerch, M.; Kratz, K.-L.; Rudolph, W.

    1984-06-01

    Within the health physics examination of fuel element fabrication workers, the control of uranium incorporation is of importance. This is commonly performed by the determination of the alpha activity concentration of uranium excreted in the urine. However, since the chemical separation procedure and the preparation of alpha-counting samples are complicated and time-consuming, this method may imply restrictions on the routine control of large numbers of persons. Therefore, we have investigated the applicability of measuring the beta-delayed neutrons from thermal neutron induced fission of the 235U in the urine samples. The uranium was separated by coprecipitation with Fe(OH) 3 from the urine samples and irradiated in a rabbit system of the Mainz TRIGA reactor. The neutrons were counted with a 3He long counter. The detection limit of 0.3 to 0.9 pCi 1 -1 is comparable to that of alpha spectrometry, but the time required for one sample, from preparation to data evaluation is less than 25 min.

  12. Novel Low Temperature Processing for Enhanced Properties of Ion Implanted Thin Films and Amorphous Mixed Oxide Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Vemuri, Rajitha

    This research emphasizes the use of low energy and low temperature post processing to improve the performance and lifetime of thin films and thin film transistors, by applying the fundamentals of interaction of materials with conductive heating and electromagnetic radiation. Single frequency microwave anneal is used to rapidly recrystallize the damage induced during ion implantation in Si substrates. Volumetric heating of the sample in the presence of the microwave field facilitates quick absorption of radiation to promote recrystallization at the amorphous-crystalline interface, apart from electrical activation of the dopants due to relocation to the substitutional sites. Structural and electrical characterization confirm recrystallization of heavily implanted Si within 40 seconds anneal time with minimum dopant diffusion compared to rapid thermal annealed samples. The use of microwave anneal to improve performance of multilayer thin film devices, e.g. thin film transistors (TFTs) requires extensive study of interaction of individual layers with electromagnetic radiation. This issue has been addressed by developing detail understanding of thin films and interfaces in TFTs by studying reliability and failure mechanisms upon extensive stress test. Electrical and ambient stresses such as illumination, thermal, and mechanical stresses are inflicted on the mixed oxide based thin film transistors, which are explored due to high mobilities of the mixed oxide (indium zinc oxide, indium gallium zinc oxide) channel layer material. Semiconductor parameter analyzer is employed to extract transfer characteristics, useful to derive mobility, subthreshold, and threshold voltage parameters of the transistors. Low temperature post processing anneals compatible with polymer substrates are performed in several ambients (oxygen, forming gas and vacuum) at 150 °C as a preliminary step. The analysis of the results pre and post low temperature anneals using device physics fundamentals

  13. Processing and property evaluation of tungsten-based mixed oxides for photovoltaics and optoelectronics

    NASA Astrophysics Data System (ADS)

    Vargas, Mirella

    Tungsten Oxide (WO3) films and low-dimensional structures have proven to be promising candidates in the fields of photonics and electronics. WO3 is a well-established n-type semiconductor characterized by unique electrochromic behavior, an ideal optical band gap that permits transparency over a wide spectral range, and high chemical integrity. The plethora of diverse properties endow WO3 to be highly effective in applications related to electrochromism, gas sensing, and deriving economical energy. Compared to the bulk films, a materials system involving WO3 and a related species (elements or metal oxides) offer the opportunity to tailor the electrochromic response, and an overall enhancement of the physio-chemical and optical properties. In the present case, WO3 and TiO2 composite films have been fabricated by reactive magnetron sputtering employing W/Ti alloy targets, and individual W and Ti targets for co-sputtering. Composite WO3-TiO2 films were fabricated with variable chemical composition and the effect of variable bulk chemistry on film structure, surface/interface chemistry and chemical valence state of the W and Ti cations was investigated in detail. The process-property relationships between composition and physical properties for the films deposited by using W/Ti alloy targets of variable Ti content are associated with decreases in the deposition rate of the WO3-TiO2 films due to the lower sputter yield of the strongly bonded TiO2 formed on the target surface. Additionally, for the co-sputtered films using variable tungsten power, the optical properties demonstrate unique optical modulation. The changes associated with the physical color of the films demonstrate the potential to tailor the optical behavior for the design and fabrication of multilayer photovoltaic and catalytic devices. The process-structure-property correlation derived in this work will provide a road-map to optimize and produce W-Ti-O thin films with desired properties for a given

  14. CHARACTERIZATION OF EMISSIONS FROM PLUTONIUM-URANIUM OXIDE FUEL FABRICATION

    EPA Science Inventory

    To develop accurate monitoring techniques for the radioactive emissions from new types of nuclear facilities, it is necessary to characterize those emissions as completely as possible. The first facility selected was a mixed-oxide fuel fabrication plant. In-stack, standard hi-vol...

  15. Actinide Oxidation State and O/M Ratio in Hypostoichiometric Uranium-Plutonium-Americium U0.750Pu0.246Am0.004O2-x Mixed Oxides.

    PubMed

    Vauchy, Romain; Belin, Renaud C; Robisson, Anne-Charlotte; Lebreton, Florent; Aufore, Laurence; Scheinost, Andreas C; Martin, Philippe M

    2016-03-01

    Innovative americium-bearing uranium-plutonium mixed oxides U1-yPuyO2-x are envisioned as nuclear fuel for sodium-cooled fast neutron reactors (SFRs). The oxygen-to-metal (O/M) ratio, directly related to the oxidation state of cations, affects many of the fuel properties. Thus, a thorough knowledge of its variation with the sintering conditions is essential. The aim of this work is to follow the oxidation state of uranium, plutonium, and americium, and so the O/M ratio, in U0.750Pu0.246Am0.004O2-x samples sintered for 4 h at 2023 K in various Ar + 5% H2 + z vpm H2O (z = ∼ 15, ∼ 90, and ∼ 200) gas mixtures. The O/M ratios were determined by gravimetry, XAS, and XRD and evidenced a partial oxidation of the samples at room temperature. Finally, by comparing XANES and EXAFS results to that of a previous study, we demonstrate that the presence of uranium does not influence the interactions between americium and plutonium and that the differences in the O/M ratio between the investigated conditions is controlled by the reduction of plutonium. We also discuss the role of the homogeneity of cation distribution, as determined by EPMA, on the mechanisms involved in the reduction process. PMID:26907589

  16. U.S. weapons-usable plutonium disposition policy: Implementation of the MOX fuel option

    SciTech Connect

    Woods, A.L.; Gonzalez, V.L.

    1998-10-01

    A comprehensive case study was conducted on the policy problem of disposing of US weapons-grade plutonium, which has been declared surplus to strategic defense needs. Specifically, implementation of the mixed-oxide fuel disposition option was examined in the context of national and international nonproliferation policy, and in contrast to US plutonium policy. The study reveals numerous difficulties in achieving effective implementation of the mixed-oxide fuel option including unresolved licensing and regulatory issues, technological uncertainties, public opposition, potentially conflicting federal policies, and the need for international assurances of reciprocal plutonium disposition activities. It is believed that these difficulties can be resolved in time so that the implementation of the mixed-oxide fuel option can eventually be effective in accomplishing its policy objective.

  17. N₂O decomposition over K/Na-promoted Mg/Zn-Ce-cobalt mixed oxides catalysts.

    PubMed

    Zhang, Jinli; Hu, Hui; Xu, Jie; Wu, Gaoming; Zeng, Zhaowei

    2014-07-01

    Three groups of cobalt mixed oxide catalysts (Mg/Zn-Co, Mg/Zn-Ce-C, K/Na-Mg/Zn-Ce-Co) were prepared by sol-gel or impregnation methods. The synergistic effects of transition metal, rare earth metal and alkali metal on cobalt mixed catalysts for nitrous oxide (N₂O) decomposing to N₂ and O₂ were investigated. The experimental results revealed that the catalytic activity for N₂O decomposition was promoted as Co²⁺ was replaced partially by Zn²⁺/Mg²⁺, moreover, the characterization analysis by XRD and XPS showed that Zn²⁺/Mg²⁺ replaced Co²⁺ successfully into the spinel structure of Co3O₄ and promoted significantly the catalytic activity. Especially, the addition of CeO₂ and K₂O/Na₂O decreased the binding energy and resulted in an increase in the density of the electron cloud around Co and an improvement of the catalytic activity. Of the investigated cobalt mixed catalysts, the best catalytic activity was shown by 2% K-Zn0.5-Ce0.05-Co catalyst. PMID:25079992

  18. Structural and thermal investigation of gadolinium gallium mixed oxides obtained by coprecipitation: Observation of a new metastable phase

    SciTech Connect

    Bazzoni, Marco; Bettinelli, Marco; Daldosso, Matteo; Enzo, Stefano . E-mail: enzo@uniss.it; Serra, Filomena; Speghini, Adolfo

    2005-07-15

    Polycrystalline gadolinium gallium mixed oxides were prepared by coprecipitation and annealing at various temperatures below 1000 deg. C. The oxide materials appear to be X-ray amorphous after a heat treatment at 500 deg. C for 30 h, but after 30 h at 800 and 900 deg. C a major, unreported, hexagonal phase, isostructural with TAlO{sub 3} compounds (where T=Y, Eu, Gd, Tb, Dy, Ho, Er) appears to crystallize. On the other hand, a highly energetic mechanical treatment of the amorphous powder previously annealed at 500 deg. C changes considerably the shape and position of exothermal events occurring in the range from 700 up to 900 deg. C. Subsequent annealing at 900 deg. C of the mechanically treated powder gives rise to the complete formation of the Gd{sub 3}Ga{sub 5}O{sub 12} garnet structure at the expense of the hexagonal phase and of the minor Gd{sub 4}Ga{sub 2}O{sub 9} oxide phase. However, a 7.0 wt% contamination is found to be due to tetragonal zirconia coming from vials and balls colliding media. The garnet phase may have strong deviations from the nominal stoichiometry of the garnet, as suggested by the refined lattice parameter obtained from the powder diffraction patterns and by the remarkable absence of intensity relative to the (220) Bragg peak position.

  19. Structural and thermal investigation of gadolinium gallium mixed oxides obtained by coprecipitation: Observation of a new metastable phase

    NASA Astrophysics Data System (ADS)

    Bazzoni, Marco; Bettinelli, Marco; Daldosso, Matteo; Enzo, Stefano; Serra, Filomena; Speghini, Adolfo

    2005-07-01

    Polycrystalline gadolinium gallium mixed oxides were prepared by coprecipitation and annealing at various temperatures below 1000 °C. The oxide materials appear to be X-ray amorphous after a heat treatment at 500 °C for 30 h, but after 30 h at 800 and 900 °C a major, unreported, hexagonal phase, isostructural with TAlO 3 compounds (where T=Y, Eu, Gd, Tb, Dy, Ho, Er) appears to crystallize. On the other hand, a highly energetic mechanical treatment of the amorphous powder previously annealed at 500 °C changes considerably the shape and position of exothermal events occurring in the range from 700 up to 900 °C. Subsequent annealing at 900 °C of the mechanically treated powder gives rise to the complete formation of the Gd 3Ga 5O 12 garnet structure at the expense of the hexagonal phase and of the minor Gd 4Ga 2O 9 oxide phase. However, a 7.0 wt% contamination is found to be due to tetragonal zirconia coming from vials and balls colliding media. The garnet phase may have strong deviations from the nominal stoichiometry of the garnet, as suggested by the refined lattice parameter obtained from the powder diffraction patterns and by the remarkable absence of intensity relative to the (220) Bragg peak position.

  20. Redox properties and VOC oxidation activity of Cu catalysts supported on Ce₁-xSmxOδ mixed oxides.

    PubMed

    Konsolakis, Michalis; Carabineiro, Sónia A C; Tavares, Pedro B; Figueiredo, José L

    2013-10-15

    A series of Cu catalysts supported on Ce1-xSmxOδ mixed oxides with different molar contents (x=0, 0.25, 0.5, 0.75 and 1), was prepared by wet impregnation and evaluated for volatile organic compounds (VOC) abatement, employing ethyl acetate as model molecule. An extensive characterization study was undertaken in order to correlate the morphological, structural and surface properties of catalysts with their oxidation activity. The optimum performance was obtained with Cu/CeO2 catalyst, which offers complete conversion of ethyl acetate into CO2 at temperatures as low as 260°C. The catalytic performance of Cu/Ce1-xSmxOδ was interpreted on the basis of characterization studies, showing that incorporation of samarium in ceria has a detrimental effect on the textural characteristics and reducibility of catalysts. Moreover, high Sm/Ce atomic ratios (from 1 to 3) resulted in a more reduced copper species, compared to CeO2-rich supports, suggesting the inability of these species to take part in the redox mechanism of VOC abatement. Sm/Ce surface atomic ratios are always much higher than the nominal ratios indicating an impoverishment of catalyst surface in cerium oxide, which is detrimental for VOC activity. PMID:23995554

  1. Development of Nano-Sulfide Sorbent for Efficient Removal of Elemental Mercury from Coal Combustion Fuel Gas.

    PubMed

    Li, Hailong; Zhu, Lei; Wang, Jun; Li, Liqing; Shih, Kaimin

    2016-09-01

    The surface area of zinc sulfide (ZnS) was successfully enlarged using nanostructure particles synthesized by a liquid-phase precipitation method. The ZnS with the highest surface area (named Nano-ZnS) of 196.1 m(2)·g(-1) was then used to remove gas-phase elemental mercury (Hg(0)) from simulated coal combustion fuel gas at relatively high temperatures (140 to 260 °C). The Nano-ZnS exhibited far greater Hg(0) adsorption capacity than the conventional bulk ZnS sorbent due to the abundance of surface sulfur sites, which have a high binding affinity for Hg(0). Hg(0) was first physically adsorbed on the sorbent surface and then reacted with the adjacent surface sulfur to form the most stable mercury compound, HgS, which was confirmed by X-ray photoelectron spectroscopy analysis and a temperature-programmed desorption test. At the optimal temperature of 180 °C, the equilibrium Hg(0) adsorption capacity of the Nano-ZnS (inlet Hg(0) concentration of 65.0 μg·m(-3)) was greater than 497.84 μg·g(-1). Compared with several commercial activated carbons used exclusively for gas-phase mercury removal, the Nano-ZnS was superior in both Hg(0) adsorption capacity and adsorption rate. With this excellent Hg(0) removal performance, noncarbon Nano-ZnS may prove to be an advantageous alternative to activated carbon for Hg(0) removal in power plants equipped with particulate matter control devices, while also offering a means of reusing fly ash as a valuable resource, for example as a concrete additive. PMID:27508312

  2. Comparative finite element analysis of the stress-strain states in three different bonded solid oxide fuel cell seal designs

    NASA Astrophysics Data System (ADS)

    Weil, K. S.; Koeppel, B. J.

    One of the critical issues in designing and fabricating a high performance planar solid oxide fuel cell (pSOFC) stack is the development of the appropriate materials and techniques for hermetically sealing the metal and ceramic components. A second critical issue is ensuring that the brittle ceramic cell constituents, i.e. the electrodes and electrolyte, exhibit high mechanical reliability by mitigating potential sources of thermal-mechanically induced stresses that can lead to fracture during operation and/or shutdown. A foil-based sealing approach is currently being developed that appears to offer good hermeticity and mechanical integrity, while minimizing the generation of high stresses in either of the joint's substrate materials. Based on the concept's viability, demonstrated in prior experimental work, numerical analyses were conducted to evaluate the behavior and benefits of the seal in a configuration prototypic of current pSOFC stack designs. This paper presents recent results from finite element (FE) simulations of a planar cell using the foil-based seal, along with companion analyses of the more conventionally employed glass-ceramic and brazed joints. The stresses and deformations of the components were evaluated at isothermal operating and shutdown temperatures. The results indicate that the foil seal is able to accommodate a significant degree of thermal mismatch strain between the metallic support structure and the ceramic cell via elastic deformations of the foil and plasticity in the foil-to-cell braze layer. Consequently the cell stresses in this type of seal are predicted to be much lower than those in the glass-ceramic and brazed designs, which is expected to lead to improved stack reliability. This ability to accommodate large thermal strain mismatches allows the design requirement of thermal expansion matching between ceramic and metal stack components to be relaxed and expands the list of candidate materials that can be considered for the

  3. Trace element partitioning in ashes from boilers firing pure wood or mixtures of solid waste with respect to fuel composition, chlorine content and temperature

    SciTech Connect

    Saqib, Naeem Bäckström, Mattias

    2014-12-15

    Highlights: • Different solids waste incineration is discussed in grate fired and fluidized bed boilers. • We explained waste composition, temperature and chlorine effects on metal partitioning. • Excessive chlorine content can change oxide to chloride equilibrium partitioning the trace elements in fly ash. • Volatility increases with temperature due to increase in vapor pressure of metals and compounds. • In Fluidized bed boiler, most metals find themselves in fly ash, especially for wood incineration. - Abstract: Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of fly ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine

  4. The Manufacture of W-UO2 Fuel Elements for NTP Using the Hot Isostatic Pressing Consolidation Process

    NASA Technical Reports Server (NTRS)

    Broadway, Jeramie; Hickman, Robert; Mireles, Omar

    2012-01-01

    NTP is attractive for space exploration because: (1) Higher Isp than traditional chemical rockets (2)Shorter trip times (3) Reduced propellant mass (4) Increased payload. Lack of qualified fuel material is a key risk (cost, schedule, and performance). Development of stable fuel form is a critical path, long lead activity. Goals of this project are: Mature CERMET and Graphite based fuel materials and Develop and demonstrate critical technologies and capabilities.

  5. The development of a method for the determination of trace elements in fuel alcohol by electrothermal vaporization inductively coupled plasma mass spectrometry using external calibration

    NASA Astrophysics Data System (ADS)

    Saint'Pierre, Tatiana Dillenburg; Maranhão, Tatiane de Andrade; Frescura, Vera Lúcia Azzolin; Curtius, Adilson José

    2005-06-01

    A method for the determination of Ag, As, Cd, Cu, Co, Fe, Mn, Ni, Pb, Sn and Tl in fuel alcohol by electrothermal vaporization inductively coupled plasma mass spectrometry is proposed. The determinations were carried out by external calibration against ethanolic solutions, without a chemical modifier, employing the following pyrolysis and vaporization temperatures: 400 °C and 2300 °C for the more volatile analytes and 1000 °C and 2500 °C for the less volatile analytes. The determination of As, Cd, Pb, Sn and Tl was additionally carried out using Pd as modifier at 800 °C pyrolysis and 2400 °C vaporization temperatures. The temperatures were optimized through pyrolysis and vaporization curves. Seven common fuel ethanol, one fuel ethanol with additive and one anhydrous fuel ethanol sample have been analyzed. The measured concentrations were at the μg L -1 level or lower. Since there is no certified reference material for fuel ethanol, the accuracy of the method was checked by the recovery test, with recoveries from 75% to 124%. The limits of detection (LODs), in μg L -1, and the relative standard deviations for 5 replicates were, for the elements in the conditions without modifier: Ag: 0.015 and 9.1%, Co: 0.002 and 10%, Cu: 0.22 and 6.6%, Fe: 0.72 and 4.3%, Mn: 0.025 and 12%, Ni: 0.026 and 9.3%, and for the elements with Pd: As: 0.02 and 2.9%, Cd: 0.07 and 25%, Pb: 0.02 and 3.1%, Sn: 0.010 and 6.0%, Tl: 0.0008 and 2.5%. Electrothermal vaporization avoids the loading of the plasma with organics, allowing the analysis of fuel ethanol by ICP-MS with good accuracy and reasonable precision.

  6. Experimental detailed power distribution in a fast spectrum thermionic reactor fuel element at the core/BeO reflector interface region

    NASA Technical Reports Server (NTRS)

    Klann, P. G.; Lantz, E.

    1973-01-01

    A zero-power critical assembly was designed, constructed, and operated for the prupose of conducting a series of benchmark experiments dealing with the physics characteristics of a UN-fueled, Li-7-cooled, Mo-reflected, drum-controlled compact fast reactor for use with a space-power conversion system. The critical assembly was modified to simulate a fast spectrum advanced thermionics reactor by: (1) using BeO as a reflector in place of some of the existing molybdenum, (2) substituting Nb-1Zr tubing for some of the existing Ta tubing, and (3) inserting four full-scale mockups of thermionic type fuel elements near the core and BeO reflector boundary. These mockups were surrounded with a buffer zone having the equivalent thermionic core composition. In addition to measuring the critical mass of this thermionic configuration, a detailed power distribution in one of the thermionic element stages in the mixed spectrum region was measured. A power peak to average ratio of two was observed for this fuel stage at the midplane of the core and adjacent to the reflector. Also, the power on the outer surface adjacent to the BeO was slightly more than a factor of two larger than the power on the inside surface of a 5.08 cm (2.0 in.) high annular fuel segment with a 2.52 cm (0.993 in. ) o.d. and a 1.86 cm (0.731 in.) i.d.

  7. Sol-gel route to synthesis of microporous ceramic membranes: Thermal stability of TiO[sub 2]-ZrO[sub 2] mixed oxides

    SciTech Connect

    Qunyin Xu; Anderson, M.A. . Water Chemistry Program)

    1993-08-01

    In this paper concerning the synthesis of microporous ceramic membranes, the authors focus on the preparation and thermal stability of unsupported microporous TiO[sub 2]-ZrO[sub 2] mixed-oxide membranes. It has been observed that, by adding up to 20% ZrO[sub 2] into TiO[sub 2] or up to 10% TiO[sub 2] into ZrO[sub 2], these microporous membranes display improved thermal stability. They can be fired up to 500 C for 0.5 h without closing micropores. However, membranes containing almost equal percentages of each component have lost microporous features and have low surface areas and low porosities. A phase diagram of a two-component TiO[sub 2]-ZrO[sub 2] mixed-oxide membrane has been prepared based on DTA and X-ray diffraction data in order to better understand the microstructure changes upon firing.

  8. Direct conversion of bio-ethanol to isobutene on nanosized Zn(x)Zr(y)O(z) mixed oxides with balanced acid-base sites.

    PubMed

    Sun, Junming; Zhu, Kake; Gao, Feng; Wang, Chongmin; Liu, Jun; Peden, Charles H F; Wang, Yong

    2011-07-27

    We report the design and synthesis of nanosized Zn(x)Zr(y)O(z) mixed oxides for direct and high-yield conversion of bio-ethanol to isobutene (~83%). ZnO is addded to ZrO(2) to selectively passivate zirconia's strong Lewis acidic sites and weaken Brönsted acidic sites, while simultaneously introducing basicity. As a result, the undesired reactions of bio-ethanol dehydration and acetone polymerization/coking are suppressed. Instead, a surface basic site-catalyzed ethanol dehydrogenation to acetaldehyde, acetaldehyde to acetone conversion via a complex pathway including aldol-condensation/dehydrogenation, and a Brönsted acidic site-catalyzed acetone-to-isobutene reaction pathway dominates on the nanosized Zn(x)Zr(y)O(z) mixed oxide catalyst, leading to a highly selective process for direct conversion of bio-ethanol to isobutene. PMID:21682296

  9. Effect of the conditions of preparing mixed oxide catalyst of Mo-V-Te-Nb-O composition on its activity in the oxidative dehydrogenation of ethane

    NASA Astrophysics Data System (ADS)

    Finashina, E. D.; Kucherov, A. V.; Kustov, L. M.

    2013-12-01

    It is shown that catalytic activity of mixed oxide catalyst of Mo-V-Te-Nb-O composition in oxidative dehydrogenation (OD) of ethane is determined to a substantial degree by the Nb-to-(C2O4)2- ratio in niobium-containing precursors. A pH value of 2.8 to 3.0 for a mixture is optimal when conducting the hydrothermal synthesis of a mixed oxide catalyst; this is achieved by using oxaloniobic acid as a niobium-containing precursor. It is determined that substituting antimony for tellurium results in a loss of catalyst activity during the OD of ethane. The optimum Te content in a catalyst is 0.17 mol %.

  10. Experimental and molecular dynamics study of thermo-physical and transport properties of ThO2-5wt.%CeO2 mixed oxides

    NASA Astrophysics Data System (ADS)

    Somayajulu, P. S.; Ghosh, P. S.; Banerjee, J.; Babu, K. L. N. C.; Danny, K. M.; Mandal, B. P.; Mahata, T.; Sengupta, P.; Sali, S. K.; Arya, A.

    2015-12-01

    We have determined the thermo-physical (elastic modulus, specific heat, thermal expansion and thermal conductivity) and transport (ionic conductivity) properties of ThO2-5wt.%CeO2 mixed oxide (MOX) using a combined experimental and theoretical methodology. The specific heat, ionic conductivity and elastic properties of ThO2-5wt.%CeO2 pellets prepared by conventional powder metallurgy (POP) and coated agglomerate pelletization (CAP) routes (sintered in both air and Ar-8%H2 atmosphere) are compared with respect to homogeneity (CeO2 distribution in ThO2 matrix), microstructure, porosity and oxygen to metal ratio. The effects of inhomogeneity and pore distribution on thermal expansion and thermal conductivity of the mixed-oxide pellets are identified. Molecular dynamics (MD) simulations using the Coulomb-Buckingham-Morse-many-body model based interatomic potentials are used to predict elastic properties in the temperature range between 300 and 2000 K and thermodynamic properties, viz., enthalpy increment and specific heats of ThO2. Finally, the thermal expansion coefficient and thermal conductivity of ThO2 and (Th,Ce)O2 mixed-oxides obtained from MD are compared with available experimental results.

  11. Highly ordered mesoporous TiO2-Fe2O3 mixed oxide synthesized by sol-gel pathway: an efficient and reusable heterogeneous catalyst for dehalogenation reaction.

    PubMed

    Patra, Astam K; Dutta, Arghya; Bhaumik, Asim

    2012-09-26

    Highly ordered two-dimensional (2D) hexagonal TiO(2)-Fe(2)O(3) mixed-oxide material MFT-1, which is composed of very tiny nanoparticles, is synthesized using sodium dodecylsulfate (SDS) as a structure-directing agent. Interestingly, synthesis of an ordered mesophase was not possible using SDS as a template for mesoporous pure Fe(2)O(3) or TiO(2) phases. This mesoporous iron-titanium mixed-oxide material has been characterized by powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), N(2) sorption, ultraviolet-visible light diffuse reflectance spectroscopy (UV-vis DRS) studies. N(2) sorption analysis revealed high surface areas (126-385 m(2) g(-1)) and narrow pore size distributions (3.1-3.4 nm) for different samples. UV-vis DRS spectra and wide-angle powder XRD patterns indicate that the material is composed of α-Fe(2)O(3) and anatase TiO(2) phases. This TiO(2)-Fe(2)O(3) mixed-oxide material can act as a very efficient and reusable catalyst in the dehalogenation of aromatic chloride-, bromide-, and iodide-tolerating -F, -CN, -CH(3), -OCH(3) and -NO(2) functional groups in the aromatic ring using 2-propanol as the dispersion medium. PMID:22939382

  12. A prototype expert system for the monitoring of defected nuclear fuel elements in Canada deuterium uranium reactors

    SciTech Connect

    Lewis, B.J.; Green, R.J. ); Che, C.W.T. )

    1992-06-01

    This paper reports on a prototype expert system for fuel failure monitoring in Canada deuterium uranium (CANDU) power reactors. Based on a coolant activity analysis, the system is able to provide information in an operating reactor on the number of fuel failures, the average defect size, and the amount of tramp uranium deposited on the in-core surfaces of the primary heat transport system. The fission product release model used in the system is based on results from an in-reactor experimental program at Chalk River Nuclear Laboratories. The expert system is validated against fuel failure data from a number of CANDU power reactors.

  13. Combining octyl(phenyl)-N,N-diisobutyl-carbamoylmethylphosphine oxide and bis-(2-ethylhexyl)phosphoric acid extractants for recovering transuranic elements from irradiated nuclear fuel

    SciTech Connect

    Lumetta, Gregg J.; Carter, Jennifer C.; Gelis, Artem V.; Vandegrift, George F.

    2009-10-14

    Advanced concepts for closing the nuclear fuel cycle include separating Am and Cm from other fuel components. Separating these elements from the lanthanide elements at an industrial scale remains a significant technical challenge. We describe here a chemical system in which a neutral extractant--octyl(phenyl)-N,N-diisobutyl-carbamoylmethyl-phosphine oxide (CMPO)--is combined with an acidic extractant--bis-(2-ethylhexyl)phosphoric acid (HDEHP)--to form a single process solvent (with dodecane as the diluent) for separating Am and Cm from the other components of irradiated nuclear fuel. Continuous variation experiments in which the relative CMPO and HDEHP concentrations are varied indicate a synergistic relationship between the two extractants in the extraction of Am from buffered diethylenetriaminepentaacetic acid (DTPA) solutions. A solvent mixture consisting or 0.1 M CMPO + 1 M HDEHP in dodecane offers acceptable extraction efficiency for the trivalent lanthanides and actinides from 1 M HNO3 while maintaining good lanthanide/actinide separation factors in the stripping regime (buffered DTPA solutions with pH 3.5 to 4). Using citrate buffer instead of lactate buffer results in improved lanthanide/actinide separation factors.

  14. The thermal conductivity of mixed fuel UxPu1-xO2: molecular dynamics simulations

    SciTech Connect

    Liu, Xiang-Yang; Cooper, Michael William Donald; Stanek, Christopher Richard; Andersson, Anders David Ragnar

    2015-10-16

    Mixed oxides (MOX), in the context of nuclear fuels, are a mixture of the oxides of heavy actinide elements such as uranium, plutonium and thorium. The interest in the UO2-PuO2 system arises from the fact that these oxides are used both in fast breeder reactors (FBRs) as well as in pressurized water reactors (PWRs). The thermal conductivity of UO2 fuel is an important material property that affects fuel performance since it is the key parameter determining the temperature distribution in the fuel, thus governing, e.g., dimensional changes due to thermal expansion, fission gas release rates, etc. For this reason it is important to understand the thermal conductivity of MOX fuel and how it differs from UO2. Here, molecular dynamics (MD) simulations are carried out to determine quantitatively, the effect of mixing on the thermal conductivity of UxPu1-xO2, as a function of PuO2 concentrations, for a range of temperatures, 300 – 1500 K. The results will be used to develop enhanced continuum thermal conductivity models for MARMOT and BISON by INL. These models express the thermal conductivity as a function of microstructure state-variables, thus enabling thermal conductivity models with closer connection to the physical state of the fuel.

  15. Development of variable-width ribbon heating elements for liquid-metal and gas-cooled fast breeder reactor fuel-pin simulators

    SciTech Connect

    McCulloch, R.W.; Post, D.W.; Lovell, R.T.; Snyder, S.D.

    1981-04-01

    Variable-width ribbon heating elements that provide a chopped-cosine variable heat flux profile have been fabricated for fuel pin simulators used in test loops by the Breeder Reactor Program Thermal-Hydraulic Out-of-Reactor Safety test facility and the Gas-Cooled Fast Breeder Reactor-Core Flow Test Loop. Thermal, mechanical, and electrical design considerations are used to derive an analytical expression that precisely describes ribbon contour in terms of the major fabrication parameters. These parameters are used to generate numerical control tapes that control ribbon cutting and winding machines. Infrared scanning techniques are developed to determine the optimum transient thermal profile of the coils and relate this profile to that generated by the coils in completed fuel pin simulators.

  16. Novel synthesis of manganese and vanadium mixed oxide (V{sub 2}O{sub 5}/OMS-2) as an efficient and selective catalyst for the oxidation of alcohols in liquid phase

    SciTech Connect

    Mahdavi, Vahid Soleimani, Shima

    2014-03-01

    Graphical abstract: Oxidation of various alcohols is studied in the liquid phase over new composite mixed oxide (V{sub 2}O{sub 5}/OMS-2) catalyst using tert-butyl hydroperoxide (TBHP). The activity of V{sub 2}O{sub 5}/OMS-2 samples was considerably increased with respect to OMS-2 catalyst and these samples are found to be suitable for the selective oxidation of alcohols. - Highlights: • V{sub 2}O{sub 5}/K-OMS-2 with different V/Mn molar ratios prepared by the impregnation method. • Oxidation of alcohols was studied in the liquid phase over V{sub 2}O{sub 5}/K-OMS-2 catalyst. • V{sub 2}O{sub 5}/K-OMS-2 catalyst had excellent activity for alcohol oxidation. • Benzyl alcohol oxidation using excess TBHP followed a pseudo-first order kinetic. • The selected catalyst was reused without significant loss of activity. - Abstract: This work reports the synthesis and characterization of mixed oxide vanadium–manganese V{sub 2}O{sub 5}/K-OMS-2 at various V/Mn molar ratios and prepared by the impregnation method. Characterization of these new composite materials was made by elemental analysis, BET, XRD, FT-IR, SEM and TEM techniques. Results of these analyses showed that vanadium impregnated samples contained mixed phases of cryptomelane and crystalline V{sub 2}O{sub 5} species. Oxidation of various alcohols was studied in the liquid phase over the V{sub 2}O{sub 5}/K-OMS-2 catalyst using tert-butyl hydroperoxide (TBHP) and H{sub 2}O{sub 2} as the oxidant. Activity of the V{sub 2}O{sub 5}/K-OMS-2 samples was increased considerably with respect to K-OMS-2 catalyst due to the interaction of manganese oxide and V{sub 2}O{sub 5}. The kinetic of benzyl alcohol oxidation using excess TBHP over V{sub 2}O{sub 5}/K-OMS-2 catalyst was investigated at different temperatures and a pseudo-first order reaction was determined with respect to benzyl alcohol. The effects of reaction time, oxidant/alcohol molar ratio, reaction temperature, solvents, catalyst recycling potential and

  17. Assessment of severe accident source terms in pressurized-water reactors with a 40% mixed-oxide and 60% low-enriched uranium core using MELCOR 1.8.5.

    SciTech Connect

    Gauntt, Randall O.; Goldmann, Andrew S.; Wagner, Kenneth C.; Powers, Dana Auburn; Ashbaugh, Scott G.; Longmire, Pamela

    2010-04-01

    As part of a Nuclear Regulatory Commission (NRC) research program to evaluate the impact of using mixed-oxide (MOX) fuel in commercial nuclear power plants, a study was undertaken to evaluate the impact of the usage of MOX fuel on the consequences of postulated severe accidents. A series of 23 severe accident calculations was performed using MELCOR 1.8.5 for a four-loop Westinghouse reactor with an ice condenser containment. The calculations covered five basic accident classes that were identified as the risk- and consequence-dominant accident sequences in plant-specific probabilistic risk assessments for the McGuire and Catawba nuclear plants, including station blackouts and loss-of-coolant accidents of various sizes, with both early and late containment failures. Ultimately, the results of these MELCOR simulations will be used to provide a supplement to the NRC's alternative source term described in NUREG-1465. Source term magnitude and timing results are presented consistent with the NUREG-1465 format. For each of the severe accident release phases (coolant release, gap release, in-vessel release, ex-vessel release, and late in-vessel release), source term timing information (onset of release and duration) is presented. For all release phases except for the coolant release phase, magnitudes are presented for each of the NUREG-1465 radionuclide groups. MELCOR results showed variation of noble metal releases between those typical of ruthenium (Ru) and those typical of molybdenum (Mo); therefore, results for the noble metals were presented for Ru and Mo separately. The collection of the source term results can be used as the basis to develop a representative source term (across all accident types) that will be the MOX supplement to NUREG-1465.

  18. COMPARISON OF PARTICLE SIZE DISTRIBUTIONS AND ELEMENTAL PARTITIONING FROM THE COMBUSTION OF PULVERIZED COAL AND RESIDUAL FUEL OIL

    EPA Science Inventory

    The paper gives results of experimental efforts in which three coals and a residual fuel oil were combusted in three different systems simulating process and utility boilers. Particloe size distributions (PSDs) were determined using atmospheric and low-pressure impaction, electr...

  19. A finite element analysis modeling tool for solid oxide fuel cell development: coupled electrochemistry, thermal and flow analysis in MARC ®

    NASA Astrophysics Data System (ADS)

    Khaleel, M. A.; Lin, Z.; Singh, P.; Surdoval, W.; Collin, D.

    A 3D simulation tool for modeling solid oxide fuel cells is described. The tool combines the versatility and efficiency of a commercial finite element analysis code, MARC ®, with an in-house developed robust and flexible electrochemical (EC) module. Based upon characteristic parameters obtained experimentally and assigned by the user, the EC module calculates the current density distribution, heat generation, and fuel and oxidant species concentration, taking the temperature profile provided by MARC ® and operating conditions such as the fuel and oxidant flow rate and the total stack output voltage or current as the input. MARC ® performs flow and thermal analyses based on the initial and boundary thermal and flow conditions and the heat generation calculated by the EC module. The main coupling between MARC ® and EC is for MARC ® to supply the temperature field to EC and for EC to give the heat generation profile to MARC ®. The loosely coupled, iterative scheme is advantageous in terms of memory requirement, numerical stability and computational efficiency. The coupling is iterated to self-consistency for a steady-state solution. Sample results for steady states as well as the startup process for stacks with different flow designs are presented to illustrate the modeling capability and numerical performance characteristic of the simulation tool.

  20. FINITE-ELEMENT ANALYSIS OF ROCK FALL ON UNCANISTERED FUEL WASTE PACKAGE DESIGNS (SCPB: N/A)

    SciTech Connect

    Z. Ceylan

    1996-10-18

    The objective of this analysis is to explore the Uncanistered Fuel (UCF) Tube Design waste package (WP) resistance to rock falls. This analysis will also be used to determine the size of rock that can strike the WP without causing failure in the containment barriers from a height based on the starter tunnel dimensions. The purpose of this analysis is to document the models and methods used in the calculations.