Science.gov

Sample records for mn al bi

  1. Development of MnBi permanent magnet: Neutron diffraction of MnBi powder

    SciTech Connect

    Cui, J. Choi, J. P.; Li, G.; Polikarpov, E.; Darsell, J.; Kramer, M. J.; Zarkevich, N. A.; Wang, L. L.; Johnson, D. D.; Marinescu, M.; Huang, Q. Z.; Wu, H.; Vuong, N. V.; Liu, J. P.

    2014-05-07

    MnBi attracts great attention in recent years for its great potential as permanent magnet materials. MnBi phase is difficult to obtain because of the rather drastic peritectic reaction between Mn and Bi. In this paper, we report our effort on synthesizing high purity MnBi compound using conventional powder metallurgical approaches. Neutron diffraction was carried out to investigate the crystal and nuclear structure of the obtained powder. The result shows that the purity of the obtained powder is about 91 wt. % at 300 K, and the magnetic moment of the Mn atom in MnBi lattice is 4.424 and 4.013 μ{sub B} at 50 K and 300 K, respectively.

  2. Development of MnBi permanent magnet: Neutron diffraction of MnBi powder

    SciTech Connect

    Cui, J.; Choi, J. P.; Li, G.; Polikarpov, E.; Darsell, J.; Kramer, M. J.; Zarkevich, N. A.; Wang, L. L.; Johnson, D. D.; Marinescu, M.; Huang, Q. Z.; Wu, H.; Vuong, N. V.; Liu, J. P.

    2014-05-07

    MnBi attracts great attention in recent years for its great potential as permanent magnet materials. MnBi phase is difficult to obtain because of the rather drastic peritectic reaction between Mn and Bi. In this paper, we report our effort on synthesizing high purity MnBi compound using conventional powder metallurgical approaches. Neutron diffraction was carried out to investigate the crystal and nuclear structure of the obtained powder. The result shows that the purity of the obtained powder is about 91 wt. % at 300 K, and the magnetic moment of the Mn atom in MnBi lattice is 4.424 and 4.013 μB at 50 K and 300 K, respectively.

  3. Development of MnBi permanent magnet: Neutron diffraction of MnBi powder

    NASA Astrophysics Data System (ADS)

    Cui, J.; Choi, J. P.; Li, G.; Polikarpov, E.; Darsell, J.; Kramer, M. J.; Zarkevich, N. A.; Wang, L. L.; Johnson, D. D.; Marinescu, M.; Huang, Q. Z.; Wu, H.; Vuong, N. V.; Liu, J. P.

    2014-05-01

    MnBi attracts great attention in recent years for its great potential as permanent magnet materials. MnBi phase is difficult to obtain because of the rather drastic peritectic reaction between Mn and Bi. In this paper, we report our effort on synthesizing high purity MnBi compound using conventional powder metallurgical approaches. Neutron diffraction was carried out to investigate the crystal and nuclear structure of the obtained powder. The result shows that the purity of the obtained powder is about 91 wt. % at 300 K, and the magnetic moment of the Mn atom in MnBi lattice is 4.424 and 4.013 μB at 50 K and 300 K, respectively.

  4. Development of MnBi permanent magnet: Neutron diffraction of MnBi powder

    SciTech Connect

    Cui, J; Choi, JP; Li, G; Polikarpov, E; Darsell, J; Kramer, MJ; Zarkevich, NA; Wang, LL; Johnson, DD; Marinescu, M; Huang, QZ; Wu, H; Vuong, NV; Liu, JP

    2014-05-07

    MnBi attracts great attention in recent years for its great potential as permanent magnet materials. MnBi phase is difficult to obtain because of the rather drastic peritectic reaction between Mn and Bi. In this paper, we report our effort on synthesizing high purity MnBi compound using conventional powder metallurgical approaches. Neutron diffraction was carried out to investigate the crystal and nuclear structure of the obtained powder. The result shows that the purity of the obtained powder is about 91 wt. % at 300 K, and the magnetic moment of the Mn atom in MnBi lattice is 4.424 and 4.013 mu(B) at 50 K and 300 K, respectively. (C) 2014 AIP Publishing LLC.

  5. Development of MnBi permanent magnet: neutron diffraction of MnBi powder

    SciTech Connect

    Cui, Jun; Choi, Jung-Pyung; Li, Guosheng; Polikarpov, Evgueni; Darsell, Jens T.; Kramer, Matthew J.; Zarkevich, Nikolai; Wang, L. L.; Johnson, D. D.; Marinescu, Melania; Huang, Qingzhen; Wu, Hui; Vuong, Nguyen V.; Liu, J.Ping

    2014-03-05

    MnBi attracts great attention in recent years for its great potential as permanent magnet materials. MnBi phase is difficult to obtain because of the rather drastic peritectic reaction between Mn and Bi. In this paper, we report our effort on synthesizing high purity MnBi compound using conventional powder metallurgical approaches. Neutron diffraction was carried out to investigate the crystal and nuclear structure of the obtained power. The result shows that the purity of the obtained powder is about 91wt.% at 300K, and the magnetic moment of the Mn atom in MnBi lattice is 4.424 and 4.013 μB at 50 K and 300 K respectively.

  6. Synthesis and Structure of BiMnVO 5 and BiMnAsO 5

    NASA Astrophysics Data System (ADS)

    Xun, X.; Yokochi, A.; Sleight, A. W.

    2002-10-01

    The isostructural compounds BiMnVO 5 and BiMnAsO 5 have been prepared for the first time. Their structures were determined from single-crystal X-ray diffraction data in space group Poverline1 with Z=2. For the vanadate a=6.912(4) Å, b=6.991(2) Å, c=5.354(1) Å, α=108.55(2)°, β=95.98(4)° and r=109.73(4)°. For the arsenate a=6.868(1) Å, b=6.905(2) Å, c=5.360(1) Å, α=109.47(2)°, β=95.91(2)°, and γ=109.32(2)°. The structures are based on MnO 6 octahedra sharing one edge to form Mn 2O 10 groups, Bi 2O 8 groups, and MO 4 tetrahedra with M=As or V. The same moieties are found in the BiMnPO 5 structure, which has monoclinic symmetry. However, the triclinic structures for BiMnVO 5 and BiMnAsO 5 cannot be regarded as distorted versions of the monoclinic BiMnPO 5 structure because the connectivity of the moieties is distinctly different.

  7. Magnetism of MnBi-Based Nanomaterials

    SciTech Connect

    Kharel, P; Shah, VR; Skomski, R; Shield, JE; Sellmyer, DJ

    2013-07-01

    Nanostructured MnBi ribbons doped with impurity elements including B, C, Fe, Hf, Sm and Tb were prepared using the arc melting and melt-spinning techniques. The melt-spun ribbons were annealed in vacuum furnace at 350 degrees C to obtain the intended hexagonal structure. The external impurity doping made a significant change in the magnetic properties of the nanostructured MnBi ribbons including a decrease in saturation magnetization (M-s) and anisotropy energy (K) and an increase in coercivity H-c. However, Hf and C co-doping showed the opposite effect with a small increase in both M-s and K. Interestingly, the anisotropy energy of the boron doped sample increased by about 15% irrespective of the small decrease in magnetization. A significant increase in H-c of MnBi ribbons was found due to Hf, Tb and Sm doping. H-c as high as 13 kOe was achieved in Hf-doped sample after the sample was aligned in a magnetic field. A thermal hysteresis was observed at the structural phase transition of MnBi, which shifts by about 5 K towards higher temperatures due to impurity doping. The observed magnetic properties of the impurity doped MnBi ribbons are explained as the consequences of the disorder and the competing ferromagnetic and antiferromagnetic interactions.

  8. The microstructure of MnBi/Bi eutectic alloys

    NASA Technical Reports Server (NTRS)

    Ravishankar, P. S.; Wilcox, W. R.; Larson, D. J.

    1980-01-01

    Directionally solidified eutectic alloys of the system MnBi/Bi have been investigated with reference to the dependence of the fiber spacing on the growth rate and the interfacial temperature gradient. It is found that the fiber spacing varies as the inverse square root of the growth rate and does not depend on the temperature gradient in contrast to the claims that all faceted/non-faceted eutectics should show a temperature gradient influence.

  9. Magnetic properties of single-phase MnBi grown from MnBi{sub 49} melt

    SciTech Connect

    Xiao, X. F.; Si, P. Z. Feng, H.; Yu, S. J.; Ge, H. L.; Ye, Q. L.; Liu, J. J.

    2014-05-07

    The single-phase NiAs-type MnBi, embedded in Bi matrix, was grown from homogeneous MnBi{sub 49} melt at low temperatures to prevent the formation of Mn{sub 1.08}Bi. An abrupt magnetization change was observed at ∼240 K. The origin of this change was ascribed to the movement of the Mn atoms between the regular sites and the interstitial sites in the MnBi lattices. The splitting of the x-ray photoelectron lines of MnBi indicates the presence of two binding states of Mn atoms, one of which was ascribed to interstitial Mn atoms. A large coercivity up to 1.79 T at 400 K was observed in the as-grown bulk isotropic MnBi alloys.

  10. Microstructure Of MnBi/Bi Eutectic Alloy

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Eisa, G. F.; Baskaran, B.; Richardson, Donald C.

    1988-01-01

    Collection of three reports describes studies of directional solidification of MnBi/Bi eutectic alloy. Two of the reports, "Influence of Convection on Lamellar Spacing of Eutectics" and "Influence of Convection on Eutectic Microstructure," establish theoretical foundation for remaining document. Reports seek to quantify effect of convection on concentration field of growing lamellar eutectic. Remaining report, "Study of Eutectic Formation," begins by continuing theoretical developments. New technique under development by one of the authors helps to reveal three-dimensional microstructures of alloys.

  11. Magnetic properties of Mn-Bi melt-spun ribbons

    NASA Astrophysics Data System (ADS)

    Saito, Tetsuji; Nishimura, Ryuji; Nishio-Hamane, Daisuke

    2014-01-01

    Mn-Bi melt-spun ribbons with the low temperature phase (LTP) of MnBi were produced by melt-spinning and subsequent annealing. The as-rapidly quenched Mn-Bi melt-spun ribbons contained some LTP MnBi phase and exhibited a high coercivity exceeding 8 kOe. Annealing of the melt-spun ribbons resulted in an increase in the amount of the LTP MnBi phase. A maximum remanence value of 42 emu/g was achieved in Mn50Bi50 melt-spun ribbon annealed at 673 K for 1 h. High-temperature measurements revealed that the coercivity of the annealed Mn50Bi50 melt-spun ribbon increased with increasing ambient temperature. Although the Mn50Bi50 melt-spun ribbons showed a much smaller coercivity than Nd15Fe77B8 melt-spun ribbon at room temperature, it exhibited a higher coercivity at temperatures of 473 K and higher. Therefore, the magnetic properties of Mn50Bi50 melt-spun ribbon are comparable to those of Nd-Fe-B melt-spun ribbon at an ambient temperature of 473 K and become superior to those of Nd-Fe-B melt-spun ribbon at 573 K.

  12. Synthesis and characterization of Mn-Bi alloy

    SciTech Connect

    Mishra, Ashutosh; Patil, Harsha; Jain, G.; Mishra, N.

    2012-06-05

    High purity MnBi low temperature phase has been prepared and analyzed using X-ray diffraction, Lorentz-Polarization Factor and Fourier transforms infrared measurement. After synthesis of samples structural characterization has done on samples by X-ray diffraction, which shows that after making the bulk sample is in no single phase MnBi has been prepared by sintering Mn and Bi powders. By Lorentz-Polarization Factor is affecting the relative intensity of diffraction lines on a powder form. And by FTIR which shows absorption peaks of MnBi alloys.

  13. Magnetic interactions in BiFe₀.₅Mn₀.₅O₃ films and BiFeO₃/BiMnO₃ superlattices.

    PubMed

    Xu, Qingyu; Sheng, Yan; Khalid, M; Cao, Yanqiang; Wang, Yutian; Qiu, Xiangbiao; Zhang, Wen; He, Maocheng; Wang, Shuangbao; Zhou, Shengqiang; Li, Qi; Wu, Di; Zhai, Ya; Liu, Wenqing; Wang, Peng; Xu, Y B; Du, Jun

    2015-01-01

    The clear understanding of exchange interactions between magnetic ions in substituted BiFeO3 is the prerequisite for the comprehensive studies on magnetic properties. BiFe0.5Mn0.5O3 films and BiFeO3/BiMnO3 superlattices have been fabricated by pulsed laser deposition on (001) SrTiO3 substrates. Using piezoresponse force microscopy (PFM), the ferroelectricity at room temperature has been inferred from the observation of PFM hysteresis loops and electrical writing of ferroelectric domains for both samples. Spin glass behavior has been observed in both samples by temperature dependent magnetization curves and decay of thermo-remnant magnetization with time. The magnetic ordering has been studied by X-ray magnetic circular dichroism measurements, and Fe-O-Mn interaction has been confirmed to be antiferromagnetic (AF). The observed spin glass in BiFe0.5Mn0.5O3 films has been attributed to cluster spin glass due to Mn-rich ferromagnetic (FM) clusters in AF matrix, while spin glass in BiFeO3/BiMnO3 superlattices is due to competition between AF Fe-O-Fe, AF Fe-O-Mn and FM Mn-O-Mn interactions in the well ordered square lattice with two Fe ions in BiFeO3 layer and two Mn ions in BiMnO3 layer at interfaces. PMID:25766744

  14. Spatial profile of thermoelectric effects during Peltier pulsing in Bi and Bi/MnBi eutectic

    NASA Technical Reports Server (NTRS)

    Silberstein, R. P.; Larson, D. J., Jr.

    1987-01-01

    The spatial profile of the thermal transients that occur during and following the current pulsing associated with Peltier Interface Demarcation during directional solidification is studied. Results for pure Bi are presented in detail and compared with corresponding results for the Bi/MnBi eutectic. Significant thermal transients occur throughout the sample that can be accounted for by the Peltier effect, the Thomson effect, and Joule heating. These effects are separated and their behavior is studied as a function of time, current density, and position with respect to the solid/liquid interface.

  15. Magnetic interactions in BiFe0.5Mn0.5O3 films and BiFeO3/BiMnO3 superlattices

    PubMed Central

    Xu, Qingyu; Sheng, Yan; Khalid, M.; Cao, Yanqiang; Wang, Yutian; Qiu, Xiangbiao; Zhang, Wen; He, Maocheng; Wang, Shuangbao; Zhou, Shengqiang; Li, Qi; Wu, Di; Zhai, Ya; Liu, Wenqing; Wang, Peng; Xu, Y. B.; Du, Jun

    2015-01-01

    The clear understanding of exchange interactions between magnetic ions in substituted BiFeO3 is the prerequisite for the comprehensive studies on magnetic properties. BiFe0.5Mn0.5O3 films and BiFeO3/BiMnO3 superlattices have been fabricated by pulsed laser deposition on (001) SrTiO3 substrates. Using piezoresponse force microscopy (PFM), the ferroelectricity at room temperature has been inferred from the observation of PFM hysteresis loops and electrical writing of ferroelectric domains for both samples. Spin glass behavior has been observed in both samples by temperature dependent magnetization curves and decay of thermo-remnant magnetization with time. The magnetic ordering has been studied by X-ray magnetic circular dichroism measurements, and Fe-O-Mn interaction has been confirmed to be antiferromagnetic (AF). The observed spin glass in BiFe0.5Mn0.5O3 films has been attributed to cluster spin glass due to Mn-rich ferromagnetic (FM) clusters in AF matrix, while spin glass in BiFeO3/BiMnO3 superlattices is due to competition between AF Fe-O-Fe, AF Fe-O-Mn and FM Mn-O-Mn interactions in the well ordered square lattice with two Fe ions in BiFeO3 layer and two Mn ions in BiMnO3 layer at interfaces. PMID:25766744

  16. Fabrication and Characterization of MnBi/Co and MnBi/FeCo Nanocomposite Bulk Magnets

    NASA Astrophysics Data System (ADS)

    Poudyal, Narayan; Gandha, Kinjal; Wang, Wei; Liu, Xiaotong; Qiu, Zhaoguo; Elkins, Kevin; Liu, J. Ping; Cui, Jun; Department of Physics, University of Texas at Arlington, Texas 76019, USA Team; Energy; Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington USA Collaboration

    2015-03-01

    We report the fabrication of MnBi/Co and MnBi/FeConanocomposite bulk magnets by consolidating the hard and the soft phase powder particles under a magnetic field followed by subsequent sintering process. The anisotropic micro and submicron hard magnetic MnBi particles were first prepared by low energy cryo ball milling at liquid nitrogen temperature. MnBi/Co and MnBi/FeCo nanocomposite powders were then prepared by using different fraction of chemically synthesized Co nanowires and FeCo nanoparticles as the soft magnetic phase. The saturation magnetization (Ms) of the composite magnets increases with addition of the soft phase while the coercivity first increases and then decreases. The MnBi/Co and MnBi/FeCo nanocomposite bulk magnets have reached an enhanced magnetization value (Ms = 78 and 80.6 emu/g) with 30 wt. % of Co nanowires and FeCo nanoparticles, respectively compared to the single phase MnBi bulk magnet (Ms = 52 emu/g).

  17. Thermal Stability of MnBi Magnetic Materials

    SciTech Connect

    Cui, Jun; Choi, Jung-Pyung; Li, Guosheng; Polikarpov, Evgueni; Darsell, Jens T.; Overman, Nicole R.; Olszta, Matthew J.; Schreiber, Daniel K.; Bowden, Mark E.; Droubay, Timothy C.; Kramer, Matthew J.; Zarkevich, Nikolai; Wang, L. L.; Johnson, Duane D.; Marinescu, Melania; Takeuchi, Ichiro; Huang, Qingzhen; Wu, Hui; Reeve, Hayden; Vuong, Nguyen V.; Liu, J.Ping

    2014-01-01

    MnBi attracts great attention in recent years for its great potential as permanent magnet materials. It is unique because its coercivity increases with increasing temperature, which makes it a good hard phase for exchange coupling nanocomposite magnet. MnBi phase is difficult to obtain, partly because the reaction between Mn and Bi is peritectic, and partly because Mn is easy to react with oxygen. MnO formation is irreversible and causes degradation to the magnetic properties. In this paper, we report our effort on developing MnBi permanent magnet. High purity MnBi (>90%) can be routinely produced in large quantity. The obtained powder exhibit 74 emu/g saturation magnetization at room temperature with 9 T applied field. After alignment, the powder exhibits 11.6 MGOe, and the sintered bulk magnet exhibit 7.8 MGOe at room temperature. Thermal stability study shows that the MnBi is stable up to 473 K in air.

  18. Thermal stability of MnBi magnetic materials

    SciTech Connect

    Cui, Jinfang; Choi, J. P.; Li, G.; Polikarpov, E.; Darsell, J.; Overman, N.; Olszta, M.; Schreiber, D.; Bowden, M.; Droubay, T.; Kramer, Matthew J.; Zarkevich, Nikolay A.; Wang, L L.; Johnson, Duane D.; Marinescu, M.; Takeuchi, I.; Huang, Q. Z.; Wu, H.; Reeve, H.; Vuong, N. V.; Liu, J P.

    2014-01-27

    MnBi has attracted much attention in recent years due to its potential as a rare-earth-free permanent magnet material. It is unique because its coercivity increases with increasing temperature, which makes it a good hard phase material for exchange coupling nanocomposite magnets. MnBi phase is difficult to obtain, partly because the reaction between Mn and Bi is peritectic, and partly because Mn reacts readily with oxygen. MnO formation is irreversible and harmful to magnet performance. In this paper, we report our efforts toward developing MnBi permanent magnets. To date, high purity MnBi (>90%) can be routinely produced in large quantities. The produced powder exhibits 74:6 emu g1 saturation magnetization at room temperature with 9 T applied field. After proper alignment, the maximum energy product (BH) max of the powder reached 11.9 MGOe, and that of the sintered bulk magnet reached 7.8 MGOe at room temperature. A comprehensive study of thermal stability shows that MnBi powder is stable up to 473 K in air.

  19. Magnetism of Al-Mn quasicrystals

    SciTech Connect

    Liu, F.; Khanna, S.N.; Magaud, L.; Jena, P. ); de Coulon, V.; Reuse, F. ); Jaswal, S.S.; He, X. ); Cyrot-Lackman, F. )

    1993-07-01

    The effect of symmetry and concentration of Mn on the magnetism of Al-Mn quasicrystals has been investigated through self-consistent density-functional calculations using molecular clusters and supercell band-structure schemes. A single Mn atom surrounded by 54 Al atoms in an icosahedral or a cuboctahedral structure is found to be nonmagnetic. However, as the Mn concentration is increased, moments develop on Mn sites whose magnitude and coupling depend on their location.

  20. Influence of freezing rate changes of MnBi-Bi eutectic microstructure. [effects of space processing

    NASA Technical Reports Server (NTRS)

    Wilcox, W. R.; Doddi, K.; Nair, M.; Larson, D. J.

    1983-01-01

    In an attempt to explain the influence of space processing on the microstructure of MnBi-Bi, eutectic mixtures were directionally solidified with a sudden change of translation rate. The MnBi fiber spacing was able to adapt to the changing freezing rate as predicted by heat transfer computations. Thus the microstructure adapts more rapidly than the freezing rate could be changed in the present experiments.

  1. BiFeO{sub 3}/La{sub 0.7}Sr{sub 0.3}MnO{sub 3} heterostructures deposited on spark plasma sintered LaAlO{sub 3} substrates

    SciTech Connect

    Pravarthana, D.; Lacotte, M.; David, A.; Prellier, W.; Trassin, M.; Haw Chu, Jiun; Ramesh, R.; Salvador, P. A.

    2014-02-24

    Multiferroic BiFeO{sub 3} (BFO)/La{sub 0.7}Sr{sub 0.3}MnO{sub 3} heterostructured thin films were grown by pulsed laser deposition on polished spark plasma sintered LaAlO{sub 3} (LAO) polycrystalline substrates. Both polycrystalline LAO substrates and BFO films were locally characterized using electron backscattering diffraction, which confirmed the high-quality local epitaxial growth on each substrate grain. Piezoforce microscopy was used to image and switch the piezo-domains, and the results are consistent with the relative orientation of the ferroelectric variants with the surface normal. This high-throughput synthesis process opens the routes towards wide survey of electronic properties as a function of crystalline orientation in complex oxide thin film synthesis.

  2. Magneto-optic investigation of MnBi films.

    NASA Technical Reports Server (NTRS)

    Lewicki, G.; Guisinger, J. E.

    1973-01-01

    Another variation in the preparation of MnBi films from double layers of the constituents is reported. The dependence of Faraday and Kerr rotations on both composition and film thickness in these films suggests a model wherein a reacted double layer is made up of four separate layers. The variance in magneto-optic constants of MnBi reported here and previously is resolved in terms of this model.

  3. Studies of directionally solidified eutectic Bi/MnBi at low growth velocities

    NASA Technical Reports Server (NTRS)

    Pirich, R. G.

    1984-01-01

    The (lambda-squared)(V) deviation for diffusion-only rod eutectic growth, where lambda is the interrod spacing and V is the growth velocity, was studied at growth velocities less than 5 cm/h in directionally solidified eutectic Bi-Mn (Bi/MnBi). At lower growth velocities, (V less than 0.5 cm/h) morphological instability occurred which resulted in nonaligned, irregularly dispersed MnBi fibers. The (lambda-squared)(V) relation was experimentally determined over a range of growth velocities between 0.1 and 50 cm/h, thermal gradients in the liquid at the liquid-solid interface that varied from 40 to 120 C/cm and solidification orientation with respect to the direction of gravity. Naturally induced, convective instabilities are suggested as a possible growth velocity limit for cooperative growth in the Bi-Mn and related alloy systems.

  4. Influence of gravity driven convection on the directional solidification of Bi/MnBi eutectic composites

    NASA Technical Reports Server (NTRS)

    Pirich, R. G.; Larson, D. J.

    1982-01-01

    The role of gravity on Bridgman-Stockharger directional solidification of eutectic Bi/MnBi has been studied in reduced gravity aboard NASA sounding rocket SPAR flight experiments and contrasted with normal gravity investigations. The directional solidification of eutectic Bi/MnBi results in a low volume fraction, faceted/nonfaceted aligned rod eutectic whose MnBi rod size, interrod spacing, thermal and magnetic properties are sensitive functions of solidification processing conditions. The morphology of the low-gravity samples showed striking differences compared with identically processed, normal gravity samples grown in the same apparatus. The MnBi rod diameter and interrod spacing distributions were significantly smaller, approximately 50 percent, for the low gravity samples compared with identically processed one gravity samples. Accompanying the smaller MnBi rod diameters observed in the flight samples, was an increase in permanent magnet properties which reached greater than 97 percent of the theoretical maximum. Gravitationally induced thermal instabilities in one-gravity which result in irregular interface movement and associated difficulty of the faceted MnBi phase to branch are suggested to explain the morphological differences between one and low gravity solidification.

  5. Unexpected Magnetic Domain Behavior in LTP-MnBi

    SciTech Connect

    Nguyen, PK; Jin, S; Berkowitz, AE

    2013-07-01

    Low-temperature-phase MnBi (LTP-MnBi) has attracted much interest as a potential rare-earth-free permanent magnet material because of its high uniaxial magnetocrystalline anisotropy at room temperature, K approximate to 10(7) ergs/cc, and the unusual increase of anisotropy with increasing temperature, with an accompanying increasing coercive force (H-C) with temperature. However, due to the complex Mn-Bi phase diagram, bulk samples of LTP-MnBi with the optimum saturation moment, similar to 75-76 emu/g have been achieved only with zone-refined single crystals. We have prepared polycrystalline samples of LTP-MnBi by induction melting and annealing at 300 degrees C. The moment in 70 kOe is 73.5 emu/g, but H-C is only 50 Oe. This is quite surprising-the high saturation moment indicates the dominating presence of LTP-MnBi. Therefore, an H-C c of some significant fraction of 2K/M-S approximate to 30 kOe would seem reasonable in this polycrystalline sample. By examining "Bitter" patterns, we show that the sample is composed of similar to 50 - 100 mu m crystallites. The randomly oriented crystallites exhibit the variety of magnetic domain structures and orientations expected from the hexagonal-structured MnBi with its strong uniaxial anisotropy. Clearly, the reversal of magnetization in the sample proceeds by the low-field nucleation of reversed magnetization in each crystallite, rather than by a wall-pinning mechanism. When the annealed sample was milled into fine particles, H-C increased by several orders of magnitude, as expected.

  6. Hydrogenolysis of cellulose to C4-C7 alcohols over bi-functional CuO-MO/Al2O3 (M=Ce, Mg, Mn, Ni, Zn) catalysts coupled with methanol reforming reaction.

    PubMed

    Wu, Yanhua; Gu, Fangna; Xu, Guangwen; Zhong, Ziyi; Su, Fabing

    2013-06-01

    This work demonstrates the efficient hydrogenolysis of cellulose to C4-C7 alcohols and gas products (reaction 1) by coupling it with the reforming reaction of methanol (reaction 2) over bi-functional CuO-based catalysts. In this process, the CuO-based catalysts catalyze both the reactions 1 and 2, and the in situ regenerated H2 in the reaction 2 is used for the reaction 1. A series of CuO-MO/Al2O3 (M=Ce, Mg, Mn, Ni, Zn) catalysts were prepared by the co-precipitation method. Among these catalysts, CuO-ZnO/Al2O3 exhibited the highest activity to generate a high cellulose conversion of 88% and a high C4-C7 alcohols content above 95% in the liquid products. The CuO-ZnO/Al2O3 catalyst was stable under the reaction conditions and reusable after 4 runs. This work provides a cost-effective route to convert abundant renewable cellulose to liquid fuels. PMID:23591118

  7. Influence of gravity on the microstructure of the MnBi/Bi eutectic

    NASA Technical Reports Server (NTRS)

    Rydzewski, J. H.; Wilcox, W. R.

    1991-01-01

    Directional solidification of MnBiBi eutectic in space produced MnBi fibers that were significantly finer and closer together than when solidification was carried out on earth under otherwise identical conditions. Use of a strong magnetic field during solidification on earth gave about the same results as solidification in space, indicating that convection is the cause of the difference in microstructure. However, 15 years of theoretical and experimental research have failed to reveal the mechanism for this phenomenon. It has been found that temperature gradient has no effect; the concentration field in front of the freezing interface is not altered sufficiently by buoyancy-driven convection to explain it, even if the MnBi fibers project out in front of the Bi matrix; and the Soret effect is not sufficiently large. On the other hand, vigorous forced convection caused a change in microstructure in agreement with theory.

  8. The influences of convection on directional solidification of eutectic Bi/MnBi

    NASA Technical Reports Server (NTRS)

    Larson, David J., Jr.

    1988-01-01

    Eutectic alloys of Bi-Mn were directionally solidified using the Bridgman-Stockbarger technique to determine the influences of gravitationally-driven thermo-solutal convection on the Bi-MnBi rod eutectic. Experiments were conducted that varied the level of convection by varying the growth parameters and growth orientation, by microgravity damping, by applied magnetic field damping, and by imposing forced convection. Peltier interface demarcation and in situ thermocouple measurements were used to monitor interface velocity and thermal gradient and to evaluate interface planarity.

  9. Novel processing of high-performance MnBi magnets

    NASA Astrophysics Data System (ADS)

    Vuong Nguyen, V.; Poudyal, N.; Liu, X. B.; Liu, J. Ping; Sun, K.; Kramer, M. J.; Cui, J.

    2014-09-01

    Rare-earth-free MnBi magnets have attracted much attention recently due to their positive temperature coefficient of coercivity. In this work, the preparation, microstructure and magnetic properties of bulk MnBi magnets have been investigated. A low-temperature (-120 °C), low-energy ball-milling (LTLEBM) process has been adopted in the initial MnBi powder preparation that reduces the particle size to 1-5 μm from the 35-75 μm size of raw material powders of the MnBi low-temperature phase (LTP) (˜97 wt%) made by melting and annealing. The LTLEBM process has significantly suspended the decomposition of the LTP MnBi that occurs excessively during ordinary room-temperature ball milling. After the LTLEBM, the coercivity iHc of the MnBi powder was increased from 1 kOe to 12 kOe while the LTP content in the powder was retained as high as 95 wt%. The as-milled powders were then aligned in an 18 kOe field and warm-compacted into a dense bulk magnet at 300 °C for 10 min to reach a mass density of ˜8.4 g cm-3. The bulk magnets have a maximum energy product of 7.8 MGOe and coercivity of 6.5 kOe at room temperature. When the temperature is increased to 475 K, the coercivity is increased to 23 kOe.

  10. Ternary rare-earth manganese bismuthides: structures and physical properties of RE(3)MnBi(5) (RE = La-Nd) and Sm(2)Mn(3)Bi(6).

    PubMed

    Zelinska, Oksana Ya; Mar, Arthur

    2008-01-01

    Investigations in the ternary RE-Mn-Bi systems where RE is an early rare earth element have revealed the existence of the polybismuthides RE3MnBi5 (RE = La-Nd), previously known only for the Ce member, and the new compound Sm2Mn3Bi6. Their structures were determined from single-crystal X-ray diffraction data. The RE3MnBi5 compounds adopt the hexagonal inverse Hf5Cu3Sn-type structure (Pearson symbol hP18, space group P63/mcm, a = 9.7139(11)-9.5438(16) A, c = 6.4883(7)-6.4089(11) A for RE = La-Nd), containing chains of face-sharing Mn-centered octahedra. Sm2Mn3Bi6 adopts a new monoclinic structure type (Pearson symbol mP22, space group P21/m, a = 10.3917(8) A, b = 4.4557(3) A, c = 13.2793(10) A, beta = 108.0100(10) degrees ) in which the Mn centers are coordinated by Bi atoms in diverse geometries (distorted octahedral, trigonal bipyramidal, and distorted tetrahedral (seesaw)) and participate in extensive metal-metal bonding in the form of chains of Mn3 clusters. Homoatomic bonding interactions involving nominally anionic Bi atoms are manifested as one-dimensional Bi chains in RE3MnBi5 and as four-atom-wide Bi ribbons in Sm2Mn3Bi6. Electrical resistivity measurements on single crystals revealed metallic behavior with prominent transitions near 40 K for RE3MnBi5 and 50 K for Sm2Mn3Bi6. Magnetic susceptibility measurements showed that Pr3MnBi5 undergoes magnetic ordering near 25 K. PMID:18052372

  11. XRD, LPF and FTIR investigation of Mn-Bi alloy

    NASA Astrophysics Data System (ADS)

    Mishra, Ashutosh; Patil, Harsha; Jain, Garima

    2014-09-01

    High purity MnBi low temperature phase has been prepared and analyzed using X- ray diffraction, Lorentz-Polarization Factor and Fourier transforms infrared measurement. After synthesis of samples structural characterization has done on samples by X-ray diffraction, which shows that after making the bulk sample is in no single phase MnBi has been prepared by sintering Mn and Bi powder. The X-ray diffraction measurements were carried out using Bruker D8 Advance X-ray diffractometer. The X-rays were produced using a sealed tube and the wavelength of x-ray was 0.154nm (Cu K-alpha).and x-rays were detected using a fast counting detector based on Silicon strip technology (Bruker LynxEye detector). By Lorentz- Polarization Factor is affecting the relative intensity of diffraction lines on a powder form. The infrared absorption spectra of the alloys and intermetallic compound were measured at room temperature, in the wave number range 4000 to 400 cm-1 by a computerized spectrometer type Jasco FTIR-300 (JAPAN) using the KBr pellet technique. And by FTIR which shows absorption peaks of MnBi alloys.

  12. Magnetic properties and thermal stability of MnBi/NdFeB hybrid bonded magnets

    NASA Astrophysics Data System (ADS)

    Cao, S.; Yue, M.; Yang, Y. X.; Zhang, D. T.; Liu, W. Q.; Zhang, J. X.; Guo, Z. H.; Li, W.

    2011-04-01

    Magnetic properties and thermal stability were investigated for the MnBi/NdFeB (MnBi = 0, 20, 40, 60, 80, and 100 wt.%) bonded hybrid magnets prepared by spark plasma sintering (SPS) technique. Effect of MnBi content on the magnetic properties of the hybrid magnets was studied. With increasing MnBi content, the coercivity of the MnBi/NdFeB hybrid magnets increases rapidly, while the remanence and maximum energy product drops simultaneously. Thermal stability measurement on MnBi magnet, NdFeB magnet, and the hybrid magnet with 20 wt.% MnBi indicates that both the NdFeB magnet and the MnBi/NdFeB hybrid magnet have a negative temperature coefficient of coercivity, while the MnBi magnet has a positive one. The (BH)max of the MnBi/NdFeB magnet (MnBi = 20 wt.%) is 5.71 MGOe at 423 K, which is much higher than 3.67 MGOe of the NdFeB magnet, indicating a remarkable improvement of thermal stability.

  13. Magnetic properties and thermal stability of MnBi/NdFeB hybrid bonded magnets

    SciTech Connect

    Cao, S.; Yue, M.; Yang, Y. X.; Zhang, D. T.; Liu, W. Q.; Zhang, J. X.; Guo, Z. H.; Li, W.

    2011-04-01

    Magnetic properties and thermal stability were investigated for the MnBi/NdFeB (MnBi = 0, 20, 40, 60, 80, and 100 wt.%) bonded hybrid magnets prepared by spark plasma sintering (SPS) technique. Effect of MnBi content on the magnetic properties of the hybrid magnets was studied. With increasing MnBi content, the coercivity of the MnBi/NdFeB hybrid magnets increases rapidly, while the remanence and maximum energy product drops simultaneously. Thermal stability measurement on MnBi magnet, NdFeB magnet, and the hybrid magnet with 20 wt.% MnBi indicates that both the NdFeB magnet and the MnBi/NdFeB hybrid magnet have a negative temperature coefficient of coercivity, while the MnBi magnet has a positive one. The (BH){sub max} of the MnBi/NdFeB magnet (MnBi = 20 wt.%) is 5.71 MGOe at 423 K, which is much higher than 3.67 MGOe of the NdFeB magnet, indicating a remarkable improvement of thermal stability.

  14. Investigation of magnetic properties of MnBi/Co and MnBi/Fe65Co35 nanocomposite permanent magnets by micro-magnetic simulation

    NASA Astrophysics Data System (ADS)

    Li, Y. Q.; Yue, M.; Wang, T.; Wu, Q.; Zhang, D. T.; Gao, Y.

    2015-11-01

    Demagnetization curves of anisotropic nanocomposite MnBi/Co and MnBi/Fe65Co35 permanent magnets were investigated by micro-magnetic finite element method. Effects of volume ratio, deviation degree of orientation and intrinsic magnetic properties of the soft magnetic phase on the magnetic properties of the magnets were investigated. From the viewpoint of practical applications, to meet the requirement of hardness parameters, ĸ=K/(μ0MS2)1/2>1, the calculation maximum (BH)max of MnBi/Co and MnBi/Fe65Co35 magnets are about 199 kJ/m3 (V(Co)=22 vol%) and 196 kJ/m3 (V(FeCo)=14 vol%), respectively, indicating their good potential in application. Compared with single phase MnBi magnet, the (BH)max of nanocomposite MnBi/Co and MnBi/Fe65Co35 magnets increases by 66% and 63%, respectively. The remanence and coercivity of MnBi/Co nanocomposite magnets reduce as appearing a deviation degree of orientation, result of greatly decrease of the magnetic energy product.

  15. Effect of Composition and Heat Treatment on MnBi Magnetic Materials

    SciTech Connect

    Cui, Jun; Choi, Jung-Pyung; Polikarpov, Evgueni; Bowden, Mark E.; Xie, Wei; Li, Guosheng; Nie, Zimin; Zarkevich, Nikolai; Kramer, Matthew J.; Johnson, Duane D.

    2014-08-17

    The metallic compound MnBi is a promising rare-earth-free permanent magnet material. Compare to other rare-earth-free candidates, MnBi stands out for its high intrinsic coercivity (Hci) and its large positive temperature coefficient. Several groups have demonstrated that the Hci of MnBi compound in thin film or in powder form can exceed 12 kOe and 26 kOe at 300 K and 523 K, respectively. Such steep increase in Hci with increasing temperature is unique to MnBi. Consequently, MnBi is a highly sought-after hard phase for exchange coupling nanocomposite magnets. The reaction between Mn and Bi is peritectic, so Mn tends to precipitate out of the MnBi liquid during the solidification process. As result, the composition of the Mn-Bi alloy with the largest amount of the desired LTP (low temperature phase) MnBi and highest saturation magnetization will be over-stoichiometric and rich in Mn. The amount of additional Mn required to compensate the Mn precipitation depends on solidification rate: the faster the quench speed, the less Mn precipitates. Here we report a systematic study of the effect of composition and heat treatments on the phase contents and magnetic properties of Mn-Bi alloys. In this study, Mn-Bi alloys with 14 compositions were prepared using conventional metallurgical methods such as arc melting and vacuum heat treatment, and the obtained alloys were analyzed for compositions, crystal structures, phase content, and magnetic properties. The results show that the composition with 55 at.% Mn exhibits the highest LTP MnBi content and the highest magnetization. The sample with this composition shows >90 wt.% LTP MnBi content. Its measured saturation magnetization is 68 emu/g with 2.3 T applied field at 300 K; its coercivity is 13 kOe and its energy product is 12 MGOe at 300 K. A bulk magnet fabricated using this powder exhibits an energy product of 8.2 MGOe.

  16. Effect of convection on the microstructure of the MnBi/Bi eutectic

    NASA Technical Reports Server (NTRS)

    Eisa, Gaber Faheem; Wilcox, william R.; Busch, Garrett

    1986-01-01

    For the quasi-regular fibrous microstructure of MnBi formed at freezing rates of 9 mm/h and above, good agreement between experimental and theoretical results for fiber spacing, freezing rate, radial position, and ampoule rotation rate is found. For the irregular blade-like microstructure formed at lower freezing rates, convection is found to coarsen the microstructure somwhat more than predicted. The volume fraction of MnBi was also shown to depend on ampoule rotation and radial position, even in the absence of ampoule rotation. The two-fold finer microstructure observed in space-processed material could not be explained by the elimination of buoyancy-driven natural convection.

  17. Crystal symmetry of BiMnO3 : Electron diffraction study

    NASA Astrophysics Data System (ADS)

    Yokosawa, Tadahiro; Belik, Alexei A.; Asaka, Toru; Kimoto, Koji; Takayama-Muromachi, Eiji; Matsui, Yoshio

    2008-01-01

    The crystal symmetry of BiMnO3 was investigated by convergent-beam electron diffraction (CBED) and selected-area electron diffraction (SAED). CBED, which was used in order to discriminate the crystal axes of BiMnO3 in this study, showed that BiMnO3 belongs to point group 2/m with the c -glide plane perpendicular to the b axis, resulting in space group C2/c . In the SAED patterns, however, the very weak but sharp h0l (l=2n+1) and broader h0l (h=2n+1) reflections were observed, indicating the noncentrosymmetric long-range (space group C2 ) and short-range ordered structures ( P2 or P21 ), respectively. This implies that the weak reflections had quite little influence on the CBED patterns. By substituting Sc for Mn, the long-range ordered structure persisted up to BiMn0.6Sc0.4O3 at 300K , but short-range ordered structure disappeared already in BiMn0.9Sc0.1O3 . In BiMnO3 at 673K , the long-range ordered structure persisted while the short-range ordered structure disappeared. Both h0l ( l=2n+1 and h=2n+1 ) reflections could not be detected in structurally related BiScO3 and BiCrO3 at 300K indicating that they belong to centrosymmetric C2/c . This strongly suggests that the noncentrosymmetric long-range ordered structure (C2) of BiMnO3 is attributed not only to Bi3+ ions with lone electron pair but also to Mn3+ ions, that is, to correlation between Bi3+ and Mn3+ ions. The results of this work are important for understanding multiferroic properties of BiMnO3 .

  18. In situ investigation of spinodal decomposition in hypermonotectic Al Bi and Al Bi Zn alloys

    NASA Astrophysics Data System (ADS)

    Schaffer, P. L.; Mathiesen, R. H.; Arnberg, L.; Di Sabatino, M.; Snigirev, A.

    2008-05-01

    Spinodal decomposition of hypermonotectic Al-6 wt.%Bi, Al-8 wt.%Bi and Al-6 wt.%Bi-8 wt.%Zn alloys has been investigated using synchrotron radiography. In the case of the 6 and 8 wt.%Bi binary alloys undercoolings of 70 and 110 K, respectively, were required to initiate the L→L1+L2 reaction, which appeared to occur very close to the monotectic reaction temperature. The nucleated L2 droplets were set in collective size-dependent motion by forces coupled to external fields (gravity and imposed temperature gradient) as well as forces arising due to internal fluctuations of the system. With experimental conditions similar to those realized during strip casting of the same materials, it was found that the size-dependant droplet velocity field combined with Stokes drag at the L1-L2 interfaces as well as attractive and repulsive diffusion-coupling between adjacent L2 droplets, yield complex meso- to microscale hydrodynamics. The hydrodynamics are the dominating mechanisms for L2 droplet coagulation, and are accordingly decisive for the final size distribution and geometrical dispersion of the soft Bi-rich component in the cast material. A different decomposition mode was observed in the Al-6 wt.%Bi-8 wt.%Zn ternary alloy, with the L2 droplets undergoing an immiscible-miscible-immiscible transition. In contrast to what was found for the binaries, L2 domains formed at relatively small undercoolings, and very little droplet motion was observed, as all L2 domains nucleated and remained on the crucible walls until they encroached on the monotectic front. At small distances from the monotectic front a Zn-rich solute boundary layer preceding the α-Al, caused the L2 domains to dissolve as Bi-Zn-Al regains complete miscibility upon reaching a critical Zn-concentration. In the shallow mush region behind the monotectic reaction, a high Zn solid solubility and a relatively fast diffusion of Zn in α-Al combine to cause a rapid diminishing Zn concentration in the mush liquid

  19. Response of MnBi-Bi eutectic to freezing rate changes

    NASA Technical Reports Server (NTRS)

    Nair, M.; Fu, T.-W.; Wilcox, W. R.; Doddi, K.; Ravishankar, P. S.; Larson, D.

    1982-01-01

    Reference is made to a study by Fu and Wilcox (1981), which treated theoretically the influence on freezing rate of sudden changes in translation rate in the Bridgman-Stockbarger technique. This treatment is extended here to a linear ramped translation rate and an oscillatory freezing rate. It is found that oscillations above a few hertz are highly damped in small-diameter apparatus. An experimental test is carried out of the theoretical predictions for a sudden change of translation rate. The MnBi-Bi eutectic is solidified with current-induced interface demarcation. The experimental results accord reasonably well with theory if the silica ampoule wall is assumed to either (1) contribute only a resistance to heat exchange between the sample and the furnace wall or (2) transmit heat effectively in the axial direction by radiation. In an attempt to explain the fact that a finer microstructure is obtained in space, MnBi-Bi microstructure is determined when the freezing rate is increased or decreased rapidly. Preliminary results suggest that fiber branching does not occur as readily as fiber termination.

  20. Structural and Ferromagnetic Properties of an Orthorhombic Phase of MnBi Stabilized with Rh Additions

    NASA Astrophysics Data System (ADS)

    Taufour, Valentin; Thimmaiah, Srinivasa; March, Stephen; Saunders, Scott; Sun, Kewei; Lamichhane, Tej Nath; Kramer, Matthew J.; Bud'ko, Sergey L.; Canfield, Paul C.

    2015-07-01

    The article addresses the possibility of alloy elements in MnBi which may modify the thermodynamic stability of the NiAs-type structure without significantly degrading the magnetic properties. The addition of small amounts of Rh and Mn provides an improvement in the thermal stability with some degradation of the magnetic properties. The small amounts of Rh and Mn additions in MnBi stabilize an orthorhombic phase whose structural and magnetic properties are closely related to the ones of the previously reported high-temperature phase of MnBi (HT MnBi). To date, the properties of the HT MnBi, which is stable between 613 and 719 K, have not been studied in detail because of its transformation to the stable low-temperature MnBi (LT MnBi), making measurements near and below its Curie temperature difficult. The Rh-stabilized MnBi with chemical formula Mn1.0625 -xRhx Bi [x =0.02 (1 ) ] adopts a new superstructure of the NiAs /Ni2In structure family. It is ferromagnetic below a Curie temperature of 416 K. The critical exponents of the ferromagnetic transition are not of the mean-field type but are closer to those associated with the Ising model in three dimensions. The magnetic anisotropy is uniaxial; the anisotropy energy is rather large, and it does not increase when raising the temperature, contrary to what happens in LT MnBi. The saturation magnetization is approximately 3 μB/f .u . at low temperatures. While this exact composition may not be application ready, it does show that alloying is a viable route to modifying the stability of this class of rare-earth-free magnet alloys.

  1. Structural and ferromagnetic properties of an orthorhombic phase of MnBi stabilized with Rh additions

    DOE PAGESBeta

    Taufour, Valentin; Thimmaiah, Srinivasa; March, Stephen; Saunders, Scott; Sun, Kewei; Lamichhane, Tej Nath; Kramer, Matthew J.; Bud’ko, Sergey L.; Canfield, Paul C.

    2015-07-28

    The article addresses the possibility of alloy elements in MnBi which may modify the thermodynamic stability of the NiAs-type structure without significantly degrading the magnetic properties. The addition of small amounts of Rh and Mn provides an improvement in the thermal stability with some degradation of the magnetic properties. The small amounts of Rh and Mn additions in MnBi stabilize an orthorhombic phase whose structural and magnetic properties are closely related to the ones of the previously reported high-temperature phase of MnBi (HT MnBi). The properties of the HT MnBi, which is stable between 613 and 719 K, have notmore » been studied in detail because of its transformation to the stable low-temperature MnBi (LT MnBi), making measurements near and below its Curie temperature difficult. The Rh-stabilized MnBi with chemical formula Mn1.0625–xRhxBi [x=0.02(1)] adopts a new superstructure of the NiAs/Ni2In structure family. It is ferromagnetic below a Curie temperature of 416 K. The critical exponents of the ferromagnetic transition are not of the mean-field type but are closer to those associated with the Ising model in three dimensions. The magnetic anisotropy is uniaxial; the anisotropy energy is rather large, and it does not increase when raising the temperature, contrary to what happens in LT MnBi. The saturation magnetization is approximately 3μB/f.u. at low temperatures. Thus, while this exact composition may not be application ready, it does show that alloying is a viable route to modifying the stability of this class of rare-earth-free magnet alloys.« less

  2. Structural and ferromagnetic properties of an orthorhombic phase of MnBi stabilized with Rh additions

    SciTech Connect

    Taufour, Valentin; Thimmaiah, Srinivasa; March, Stephen; Saunders, Scott; Sun, Kewei; Lamichhane, Tej Nath; Kramer, Matthew J.; Bud’ko, Sergey L.; Canfield, Paul C.

    2015-07-28

    The article addresses the possibility of alloy elements in MnBi which may modify the thermodynamic stability of the NiAs-type structure without significantly degrading the magnetic properties. The addition of small amounts of Rh and Mn provides an improvement in the thermal stability with some degradation of the magnetic properties. The small amounts of Rh and Mn additions in MnBi stabilize an orthorhombic phase whose structural and magnetic properties are closely related to the ones of the previously reported high-temperature phase of MnBi (HT MnBi). The properties of the HT MnBi, which is stable between 613 and 719 K, have not been studied in detail because of its transformation to the stable low-temperature MnBi (LT MnBi), making measurements near and below its Curie temperature difficult. The Rh-stabilized MnBi with chemical formula Mn1.0625–xRhxBi [x=0.02(1)] adopts a new superstructure of the NiAs/Ni2In structure family. It is ferromagnetic below a Curie temperature of 416 K. The critical exponents of the ferromagnetic transition are not of the mean-field type but are closer to those associated with the Ising model in three dimensions. The magnetic anisotropy is uniaxial; the anisotropy energy is rather large, and it does not increase when raising the temperature, contrary to what happens in LT MnBi. The saturation magnetization is approximately 3μB/f.u. at low temperatures. Thus, while this exact composition may not be application ready, it does show that alloying is a viable route to modifying the stability of this class of rare-earth-free magnet alloys.

  3. Mechanical and electrical properties of low temperature phase MnBi

    NASA Astrophysics Data System (ADS)

    Jiang, Xiujuan; Roosendaal, Timothy; Lu, Xiaochuan; Palasyuk, Olena; Dennis, Kevin W.; Dahl, Michael; Choi, Jung-Pyung; Polikarpov, Evgueni; Marinescu, Melania; Cui, Jun

    2016-01-01

    Low temperature phase (LTP) manganese bismuth (MnBi) is a promising rare-earth-free permanent magnet material due to its high intrinsic coercivity and large positive temperature coefficient. While scientists are making progress on fabricating bulk MnBi magnets, engineers have begun considering MnBi magnets for motor applications. Physical properties other than magnetic ones could significantly affect motor design. Here, we report results of our investigation on the mechanical and electrical properties of bulk LTP MnBi and their temperature dependence. A MnBi ingot was prepared using an arc melting technique and subsequently underwent grinding, sieving, heat treatment, and cryomilling. The resultant powders with a particle size of ˜5 μm were magnetically aligned, cold pressed, and sintered at a predefined temperature. Micro-hardness testing was performed on a part of original ingot and we found that the hardness of MnBi was 109 ± 15 HV. The sintered magnets were subjected to compressive testing at different temperatures and it was observed that a sintered MnBi magnet fractured when the compressive stress exceeded 193 MPa at room temperature. Impedance spectra were obtained using electrochemical impedance spectroscopy at various temperatures and we found that the electrical resistance of MnBi at room temperature was about 6.85 μΩ m.

  4. Effect of composition and heat treatment on MnBi magnetic materials

    SciTech Connect

    Cui, Jun; Choi, Jung-Pyung; Polikarpov, Evgueni; Bowden, Mark E; Xie, Wei; Li, Guosheng; Nie, Zimin; Zarkevich, Nikolai; Kramer, Matthew J; Johnson, Duane

    2014-10-01

    The metallic compound MnBi is a promising rare-earth-free permanent magnet material, unique among all candidates for its high intrinsic coercivity (Hci) and its large positive temperature coefficient. The Hci of MnBi in thin-film or powder form can exceed 12 and 26 kOe at 300 and 523 K, respectively. Such a steep rise in Hci with increasing temperature is unique to MnBi. Consequently, MnBi is a highly sought-after hard phase for exchange coupling nanocomposite magnets. However, the reaction between Mn and Bi is peritectic, and hence Mn tends to precipitate out of the MnBi liquid during the solidification process. As result, when the alloy is prepared using conventional induction or arc-melting casting methods, additional Mn is required to compensate the precipitation of Mn. In addition to composition, post-casting annealing plays an important role in obtaining a high content of MnBi low-temperature phase (LTP) because the annealing encourages the Mn precipitates and the unreacted Bi to react, forming the desired LTP phase. Here we report a systematic study of the effect of composition and heat treatments on the phase content and magnetic properties of Mn–Bi alloys. In this study, 14 compositions were prepared using conventional metallurgical methods, and the compositions, crystal structures, phase content and magnetic properties of the resulting alloys were analyzed. The results show that the composition with 55 at.% Mn exhibits both the highest LTP content (93 wt.%) and magnetization (74 emu g-1 with 9 T applied field at 300 K).

  5. Large Magnetothermopower Effect in Dirac Materials (Sr/Ca)MnBi2

    SciTech Connect

    Petrovic C.; Wang, K.; Wang, L.

    2012-03-12

    We report temperature and magnetic field dependence of the thermal transport properties in single crystals of (Sr/Ca)MnBi2 with linear energy dispersion. In SrMnBi2 thermopower is positive, indicating hole-type carriers and the magnetic field enhances the thermopower significantly. The maximum change of thermopower is about 1600% in 9 T field and at 10 K. A negative thermopower is observed in CaMnBi2 with dominant electron-type carriers, and, in contrast, the magnetic field suppresses the absolute value of thermopower. First-principle band structure shows that the chemical potential is close to the Dirac-cone-like points in linear bands. The magnetic field suppresses the apparent Hall carrier density of CaMnBi2 below 50 K. The large magnetothermopower effect in (Sr/Ca)MnBi2 is attributed to the magnetic field shift of chemical potential.

  6. Magnetic properties in MnBi alloy of small crystallites for permanent magnet devices

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.; Prakash, H. R.; Ram, S.

    2016-05-01

    A rare-earth free alloy like MnBi is a potential candidate for developing small magnets and devices. In a commercially viable method, a MnBi alloy was prepared by arc melting Mn and Bi metals in a 1:1 ratio. In terms of the X-ray diffraction a single crystalline MnBi phase is formed of the as prepared alloy. FESEM images delineate thin MnBi layers (25 - 40 nm thickness) of average EDX composition throughout the specimen. A large coercivity 5.501 kOe (6.5 emu/g magnetization) observed in an M-H at 300 K is decreased to 0.171 (9.0 emu/g magnetization) at 100 K in decreasing upon cooling.

  7. Magnetic and metallurgical properties of directionally solidified eutectic Bi/MnBi composites - The effects of annealing. [in low gravity

    NASA Technical Reports Server (NTRS)

    Pirich, R. G.; Larson, D. J., Jr.

    1979-01-01

    Eutectic Bi/MnBi (97.8 a/o Bi) samples have been plane-front directionally solidified. The resultant microstructures consist of elongated, aligned particles of MnBi dispersed in a Bi-matrix. Magnetization as a function of temperature (4.2 to 300 K) and applied field (up to 220 kG) has been used to evaluate solidification parameters and magnetic properties. At room temperature, in addition to the diamagnetic contribution of Bi, one finds a superposition of the ferromagnetic, low temperature (LTP) MnBi phase and paramagnetic phases. At cryogenic temperatures, one of the room temperature paramagnetic phases is ferromagnetic with an intrinsic coercivity of 120 kOe while the other remains paramagnetic for low fields and orders ferromagnetically at high fields in a complicated way. Annealing of as-grown samples was found to produce significant changes in magnetic properties. The origins of the paramagnetic phases and their relation to the mechanisms which control the coercive field of the hard magnetic LTP MnBi phase are discussed.

  8. Enhanced photovoltaic properties in bilayer BiFeO3/Bi-Mn-O thin films.

    PubMed

    Chakrabartty, Joyprokash; Nechache, Riad; Harnagea, Catalin; Li, Shun; Rosei, Federico

    2016-05-27

    We report an external solar power conversion efficiency of ∼1.43% in BiFeO3(BFO)/BiMnO3(BMO) bilayer thin films. Both films are epitaxially grown on (111) oriented niobium doped SrTiO3 (NSTO) single crystal substrates by pulsed laser deposition. By illuminating the BFO/BMO films under 1 Sun (AM 1.5 G), we found a remarkably high fill factor of ∼0.72, much higher than values reported for devices based on BFO or BMO alone. In addition, we demonstrate that the photocurrent density and photovoltage are tunable by changing the polarization direction in the BFO/BMO bilayer, as confirmed by the macroscopic polarization-voltage (P-V) hysteresis loop. This effect is described in terms of a more favorable energy band alignment of the electrode/bilayer/NSTO heterostructure junction, which controls photocarrier separation. PMID:27094952

  9. Enhanced photovoltaic properties in bilayer BiFeO3/Bi-Mn-O thin films

    NASA Astrophysics Data System (ADS)

    Chakrabartty, Joyprokash; Nechache, Riad; Harnagea, Catalin; Li, Shun; Rosei, Federico

    2016-05-01

    We report an external solar power conversion efficiency of ∼1.43% in BiFeO3(BFO)/BiMnO3(BMO) bilayer thin films. Both films are epitaxially grown on (111) oriented niobium doped SrTiO3 (NSTO) single crystal substrates by pulsed laser deposition. By illuminating the BFO/BMO films under 1 Sun (AM 1.5 G), we found a remarkably high fill factor of ∼0.72, much higher than values reported for devices based on BFO or BMO alone. In addition, we demonstrate that the photocurrent density and photovoltage are tunable by changing the polarization direction in the BFO/BMO bilayer, as confirmed by the macroscopic polarization–voltage (P–V) hysteresis loop. This effect is described in terms of a more favorable energy band alignment of the electrode/bilayer/NSTO heterostructure junction, which controls photocarrier separation.

  10. High-spin configuration of Mn in Bi2Se3 three-dimensional topological insulator

    NASA Astrophysics Data System (ADS)

    Wolos, Agnieszka; Drabinska, Aneta; Borysiuk, Jolanta; Sobczak, Kamil; Kaminska, Maria; Hruban, Andrzej; Strzelecka, Stanislawa G.; Materna, Andrzej; Piersa, Miroslaw; Romaniec, Magdalena; Diduszko, Ryszard

    2016-12-01

    Electron paramagnetic resonance was used to investigate Mn impurity in Bi2Se3 topological insulator grown by the vertical Bridgman method. Mn in high-spin S=5/2, Mn2+, configuration was detected regardless of the conductivity type of the host material. This means that Mn2+(d5) energy level is located within the valence band, and Mn1+(d6) energy level is outside the energy gap of Bi2Se3. The electron paramagnetic resonance spectrum of Mn2+ in Bi2Se3 is characterized by the isotropic g-factor |g|=1.91 and large axial parameter D=-4.20 GHz h. This corresponds to the zero-field splitting of the Kramers doublets equal to 8.4 GHz h and 16.8 GHz h, respectively, which is comparable to the Zeeman splitting for the X-band. Mn in Bi2Se3 acts as an acceptor, effectively reducing native-high electron concentration, compensating selenium vacancies, and resulting in p-type conductivity. However, Mn-doping simultaneously favors formation of native donor defects, most probably selenium vacancies. For high Mn-doping it may lead to the resultant n-type conductivity related with strong non-stoichiometry and degradation of the crystal structure - switching from Bi2Se3 to BiSe phase.

  11. Synthesis and characterization of Mn intercalated Mg-Al hydrotalcite.

    PubMed

    Yang, Chengxue; Liao, Libing; Lv, Guocheng; Wu, Limei; Mei, Lefu; Li, Zhaohui

    2016-10-01

    Mn intercalated hydrotalcite was prepared using a reconstruction method. And Mn intercalation was confirmed by XRD, FTIR, and thermal analyses. The different valences of Mn were present as determined by XPS. Calcination slightly promoted the isomorphic replacement of Mn(2+) and Mn(3+) for Mg(2+) and Al(3+), especially the replacement of Mn(2+) for Mg(2+) and Al(3+), and to some extent, reduced Mn intercalation. Ultrasonic treatment significantly increased Mn intercalation in permanganate form (Mn(7+)), and promoted the replacement of Mn(2+) for Mg(2+) and Al(3+). XRF analysis showed that ultrasonic treatment decreased the unbalanced layer charge of Mn intercalated hydrotalcite, while prolonged calcination increased it. These results may provide guidance on the preparation and application of Mn intercalated hydrotalcite. Extended calcination time and ultrasonic vibration increased the interlayer spacing of hydrotalcite, as a result of reduction in layer charge. As the layer charge was not completely balanced after Mn intercalation, a certain amount of CO3(2-) was re-adsorbed into the interlayer space. Mn-hydrotalcites with different layer charges, different contents of Mn with varying valences are expected to have different performances in the process of adsorption, degradation, and catalysis. PMID:27380016

  12. Atomistic simulation and XAS investigation of Mn induced defects in Bi12TiO20

    NASA Astrophysics Data System (ADS)

    Rezende, Marcos V. dos S.; Santos, Denise J.; Jackson, Robert A.; Valerio, Mário E. G.; Macedo, Zélia S.

    2016-06-01

    This work reports an investigation of the valence and site occupancy of Mn dopants in Bi12TiO20 (BTO: Mn) host using X-ray Absorption (XAS) and atomistic simulation techniques based on energy minimisation. X-ray Absorption Near Edge Structure (XANES) at the Mn K-edges gave typical results for Mn ions with mixed valences of 3+ and 4+. Extended X-ray Absorption Fine Structure (EXAFS) results indicated that Mn ions are probably substituted at Ti sites. Atomistic simulation was performed assuming the incorporation of Mn2+, Mn3+ and Mn4+ ions at either Bi3+ or Ti4+ sites, and the results were compared to XANES and EXAFS measurements. Electrical conductivity for pure and doped samples was used to evaluate the consistency of the proposed model.

  13. Magnetic and electric properties of stoichiometric BiMnO3 thin films.

    PubMed

    Lee, Bo Wha; Yoo, Pil Sun; Nam, Vu Binh; Toreh, Kirstie Raquel Natalia; Jung, Chang Uk

    2015-01-01

    It has been suggested that BiMnO3 is a material exhibiting both ferromagnetism and ferroelectricity. Stoichiometry is rather easily achieved in a polycrystalline sample, and ferromagnetic properties have been well documented for bulk samples. Stoichiometry in thin films has been difficult to obtain, and many physical properties have exhibit wide distributions mainly due to the stoichiometry problem. Thin film studies on BiMnO3 have not shown clear evidence of ferroelectricity, while other physical properties measured for the BiMnO3 films showed wide spectra, which has been attributed to cation and/or oxygen vacancies. We fabricated BiMnO3 thin films with good stoichiometry and with ferromagnetic properties comparable to those reported for stoichiometric BiMnO3: Tc ~ 105 K and M sat ~ 3.6 μB/Mn. The charge-electric field (Q-E) curve measured at 5 K was fairly linear and free from hysteresis and showed no ferroelectric order. This finding is consistent with the centrosymmetric crystal structure recently suggested by theoretical calculations and structural studies on ceramic samples of stoichiometric BiMnO3. PMID:25852344

  14. High-Performance MnBi Alloy Prepared Using Profiled Heat Treatment

    SciTech Connect

    Nguyen, Van V.; Poudyal, Narayan; Liu, Xubo; Liu, J. Ping; Sun, Kewei; Kramer, Matthew J.; Cui, Jun

    2014-12-01

    The profiled heat treatment (PHT) method has been used to synthesize MnBi alloys with high-purity low-temperature phase (LTP). In the PHT method, the arc-melted MnBi alloy was remelted then slowly cooled by a pseudo-equilibrium solidification process to promote the formation of LTP phase. The PHT-treated MnBi alloys had an LTP phase up to 94 wt.% and a magnetization of 73 emu/g under a field of 9 T. Scanning electron microscopy showed that there exist some micrometer-sized Mn-rich inclusions in the LTP matrix of the PHT MnBi alloy. The PHT MnBi alloys were crushed into powders with an average size of ~3 μm by low-energy ball milling. These MnBi powders were aligned in an 18 kOe field and warm compacted into a bulk magnet at 300 °C for 30 min. The magnet had a density of 8.2 g/cm3 and magnetic properties of Ms = 6.7 kG, Mr = 5.3 kGs, i Hc = 5 kOe, and (BH)max = 6.1 MGOe

  15. Phase transition of BiMnO3 multiferroic thin film by Landau-Ginzburg theory

    NASA Astrophysics Data System (ADS)

    Alrub, Ahmad Musleh; Ong, Lye-Hock; Chew, K.-H.; Khoshman, J. M.; Al Shabaan, Ghadeer N.; Abu Hilaleh, Rawa'Ah

    2016-05-01

    Magnetoelectric (ME) multiferroic bismuth manganite (BiMnO3) has ferroelectric (FE) and ferromagnetic order parameters that coupled biquadratically. Landau free energy expression in these order parameters is proposed to investigate the phase transition and thermodynamic properties of a BiMnO3 film. The surface energy term is included in the free energy. We find that the ME coupling enhances the magnetic transition temperature. The magnetization and polarization order parameters are both increased strongly below the new magnetic transition temperature. The curves for magnetization and polarization versus temperature show that the phase transition is second-order. The entropy, free energy, and specific heat of the BiMnO3 multiferroic are calculated. Thickness-driven phase transitions for magnetization and polarization of BiMnO3 thin film are clearly indicated.

  16. Preparation and magnetic properties of anisotropic bulk MnBi/NdFeB hybrid magnets

    NASA Astrophysics Data System (ADS)

    Ma, Y. L.; Liu, X. B.; Nguyen, V. V.; Poudyal, N.; Yue, M.; Liu, J. P.

    2016-08-01

    Anisotropic hybrid bulk magnets of MnBi/NdFeB with different composition ratio have been prepared with starting MnBi and Nd2Fe14B powders as well as epoxy resin as a binder in case it is needed to form bulk samples. It has been found that the ratio between the two phases in content has a remarkable influence on the magnetic properties, the thermal stability and the density of the bulk magnets. With increasing MnBi content the binder addition can be reduced. When the MnBi content is larger than 30 wt%, no binder is needed. On the other hand, the coercivity and saturation magnetization were increased significantly with increasing NdFeB content. When the NdFeB content was increased from 0% to 50%, the maximum energy product was enhanced from 4.7 to 10.0 MGOe, respectively. The energy product then decreased gradually with the NdFeB content due to the reduced density of the hybrid magnet. The thermal stability measurements showed that the temperature coefficient of coercivity grew with the MnBi content and became positive with MnBi=80 wt%.

  17. Laves phase in Ti-42Al-10Mn alloy

    SciTech Connect

    Chen, Z.; Jones, I.P.; Small, C.J.

    1996-07-01

    Mn is one of the most effective alloying additions to {gamma}-TiAl titanium aluminide for improving room temperature ductility. The purpose of this investigation as a whole is to study phase relationships in the Mn addition alloys over a wide range of temperatures and to determine the solubilities of Mn in the {gamma} and {alpha}{sub 2} phases in order to explore the potential of Mn additions to {gamma}-TiAl. The aim of this specific paper, however, is to confirm the identify of the ternary Ti{sub 3}Al{sub 3}Mn{sub 2} phase in the Ti-Al-Mn system and to show how to remove it.

  18. τ-MnAl with high coercivity and saturation magnetization

    SciTech Connect

    Wei, J. Z.; Song, Z. G.; Yang, Y. B.; Liu, S. Q.; Du, H. L.; Han, J. Z.; Zhou, D.; Wang, C. S.; Yang, Y. C.; Franz, A.; Többens, D.; Yang, J. B.

    2014-12-15

    In this paper, high purity τ-Mn{sub 54}Al{sub 46} and Mn{sub 54−x}Al{sub 46}C{sub x}alloys were successfully prepared using conventional arc-melting, melt-spinning, and heat treatment process. The magnetic and the structural properties were examined using x-ray diffraction (XRD), powder neutron diffraction and magnetic measurements. A room temperature saturation magnetization of 650.5 kAm{sup -1}, coercivity of 0.5 T, and a maximum energy product of (BH){sub max} = 24.7 kJm{sup -3} were achieved for the pure Mn{sub 54}Al{sub 46} powders without carbon doping. The carbon substituted Mn{sub 54−x}Al{sub 46}C{sub x}, however, reveals a lower Curie temperature but similar saturation magnetization as compared to the carbon-free sample. The electronic structure of MnAl shows that the Mn atom possesses a magnetic moment of 2.454 μ{sub B} which results from strong hybridization between Mn-Al and Mn-Mn. We also investigated the volume and c/a ratio dependence of the magnetic moments of Mn and Al. The results indicate that an increase in the intra-atomic exchange splitting due to the cell volume expansion, leads to a large magnetic moment for the Mn atom. The Mn magnetic moment can reach a value of 2.9 μ{sub B} at a volume expansion rate of ΔV/V ≈ 20%.

  19. Electron-hole asymmetry, Dirac fermions, and quantum magnetoresistance in BaMnBi2

    DOE PAGESBeta

    Li, Lijun; Wang, Kefeng; Graf, D.; Wang, Limin; Wang, Aifeng; Petrovic, C.

    2016-03-28

    Here, we report two-dimensional quantum transport and Dirac fermions in BaMnBi2 single crystals. BaMnBi2 is a layered bad metal with highly anisotropic conductivity and magnetic order below 290 K. Magnetotransport properties, nonzero Berry phase, small cyclotron mass, and the first-principles band structure calculations indicate the presence of Dirac fermions in Bi square nets. Quantum oscillations in the Hall channel suggest the presence of both electron and hole pockets, whereas Dirac and parabolic states coexist at the Fermi level.

  20. Electron-hole asymmetry, Dirac fermions, and quantum magnetoresistance in BaMnBi2

    NASA Astrophysics Data System (ADS)

    Li, Lijun; Wang, Kefeng; Graf, D.; Wang, Limin; Wang, Aifeng; Petrovic, C.

    2016-03-01

    We report two-dimensional quantum transport and Dirac fermions in BaMnBi2 single crystals. BaMnBi2 is a layered bad metal with highly anisotropic conductivity and magnetic order below 290 K. Magnetotransport properties, nonzero Berry phase, small cyclotron mass, and the first-principles band structure calculations indicate the presence of Dirac fermions in Bi square nets. Quantum oscillations in the Hall channel suggest the presence of both electron and hole pockets, whereas Dirac and parabolic states coexist at the Fermi level.

  1. Magnetic self-assembly for the synthesis of magnetically exchange coupled MnBi/Fe-Co composites

    NASA Astrophysics Data System (ADS)

    Xu, Xia; Hong, Yang-Ki; Park, Jihoon; Lee, Woncheol; Lane, Alan M.; Cui, Jun

    2015-11-01

    Exchange coupled hard/soft MnBi/Fe-Co core/shell structured composites were synthesized using a magnetic self-assembly process. MnBi particles were prepared by arc-melting, and Fe-Co nanoparticles were synthesized by an oleic acid assisted chemical reduction method. Grinding a mixture of micron-sized MnBi and Fe-Co nanoparticles in hexane resulted in MnBi/Fe-Co core/shell structured composites. The MnBi/Fe-Co (95/5 wt%) composites showed smooth magnetic hysteresis loops, enhanced remanent magnetization, and positive values in the ΔM curve, indicating exchange coupling between MnBi and Fe-Co particles.

  2. Magnetic and structural properties of MnBi multilayered thin films

    NASA Astrophysics Data System (ADS)

    Hozumi, T.; LeClair, P.; Mankey, G.; Mewes, C.; Sepehri-Amin, H.; Hono, K.; Suzuki, T.

    2014-05-01

    Magnetic and structural properties of MnBi films with thicknesses up to 50 nm were investigated. Thin films of the MnBi LTP (Low Temperature Phase) were fabricated onto silica-glass substrates by sputter-deposition of Bi/Mn multilayer, followed by a subsequent annealing at about 550 °C for 30 min. Coercivity of such thin films is higher than 15 kOe, even though the film thickness is about 10 nm. These thin films show the preferential growth of c-axis of the LTP along the film normal. Moreover, high resolution transmission electron microscopy indicates that the LTP regions of 30-50 nm in size are physically isolated by Bi. The magnetization reversal mechanism of such a LTP region is mainly governed by a coherent rotation mode based on the δM curve measurement.

  3. Theoretical study on the role of dynamics on the unusual magnetic properties in MnBi

    DOE PAGESBeta

    Shanavas, K. V.; Parker, David; Singh, David J.

    2014-11-27

    Here we study the electronic structure and lattice dynamics in the ferromagnet MnBi using first-principles calculations and a tight-binding model. The band structure around the Fermi level is dominated by Bi-p states which are the primary contributors to the magnetic anisotropy energy in the low temperature structure. A tight-binding model consisting of Mn-d and Bi-p states is developed and the parameters are determined from first-principles calculations. Phonon dispersions and elastic moduli exhibit several interesting features. In conclusion, the results imply that the magnetic interaction with the crystal lattice in MnBi is considerably more complex than previously thought and in particularmore » that there is a rich interplay between phonons and magnetism involving both magnetoelastic and magnetostrictive coupling.« less

  4. Magnetic and structural properties of MnBi multilayered thin films

    SciTech Connect

    Hozumi, T.; LeClair, P.; Mankey, G.; Mewes, C.; Suzuki, T.; Sepehri-Amin, H.; Hono, K.

    2014-05-07

    Magnetic and structural properties of MnBi films with thicknesses up to 50 nm were investigated. Thin films of the MnBi LTP (Low Temperature Phase) were fabricated onto silica-glass substrates by sputter-deposition of Bi/Mn multilayer, followed by a subsequent annealing at about 550 °C for 30 min. Coercivity of such thin films is higher than 15 kOe, even though the film thickness is about 10 nm. These thin films show the preferential growth of c-axis of the LTP along the film normal. Moreover, high resolution transmission electron microscopy indicates that the LTP regions of 30–50 nm in size are physically isolated by Bi. The magnetization reversal mechanism of such a LTP region is mainly governed by a coherent rotation mode based on the δM curve measurement.

  5. Theoretical study on the role of dynamics on the unusual magnetic properties in MnBi

    SciTech Connect

    Shanavas, K. V.; Parker, David; Singh, David J.

    2014-11-27

    Here we study the electronic structure and lattice dynamics in the ferromagnet MnBi using first-principles calculations and a tight-binding model. The band structure around the Fermi level is dominated by Bi-p states which are the primary contributors to the magnetic anisotropy energy in the low temperature structure. A tight-binding model consisting of Mn-d and Bi-p states is developed and the parameters are determined from first-principles calculations. Phonon dispersions and elastic moduli exhibit several interesting features. In conclusion, the results imply that the magnetic interaction with the crystal lattice in MnBi is considerably more complex than previously thought and in particular that there is a rich interplay between phonons and magnetism involving both magnetoelastic and magnetostrictive coupling.

  6. Phase transition studies of BiMnO{sub 3}: Mean field theory approximations

    SciTech Connect

    Lakshmi Priya, K. B.; Natesan, Baskaran

    2015-06-24

    We studied the phase transition and magneto-electric coupling effect of BiMnO{sub 3} by employing mean field theory approximations. To capture the ferromagnetic and ferroelectric transitions of BiMnO{sub 3}, we construct an extended Ising model in a 2D square lattice, wherein, the magnetic (electric) interactions are described in terms of the direct interactions between the localized magnetic (electric dipole) moments of Mn ions with their nearest neighbors. To evaluate our model, we obtain magnetization, magnetic susceptibility and electric polarization using mean field approximation calculations. Our results reproduce both the ferromagnetic and the ferroelectric transitions, matching very well with the experimental reports. Furthermore, consistent with experimental observations, our mean field results suggest that there is indeed a coupling between the magnetic and electric ordering in BiMnO{sub 3}.

  7. Magnetic coupling in ferromagnetic semiconductor (Ga,Mn)As/(Al,Ga,Mn)As bilayers

    NASA Astrophysics Data System (ADS)

    Wang, M.; Wadley, P.; Campion, R. P.; Rushforth, A. W.; Edmonds, K. W.; Gallagher, B. L.; Charlton, T. R.; Kinane, C. J.; Langridge, S.

    2015-08-01

    We report on a study of ferromagnetic semiconductor (Ga,Mn)As/(Al,Ga,Mn)As bilayers using magnetometry and polarized neutron reflectivity (PNR). From depth-resolved characterization of the magnetic structure obtained by PNR, we concluded that the (Ga,Mn)As and (Al,Ga,Mn)As layers have in-plane and perpendicular-to-plane magnetic easy axes, respectively, with weak interlayer coupling. Therefore, the layer magnetizations align perpendicular to each other under low magnetic fields and parallel at high fields.

  8. Magnetic coupling in ferromagnetic semiconductor (Ga,Mn)As/(Al,Ga,Mn)As bilayers

    SciTech Connect

    Wang, M.; Wadley, P.; Campion, R. P.; Rushforth, A. W.; Edmonds, K. W.; Gallagher, B. L.; Charlton, T. R.; Kinane, C. J.; Langridge, S.

    2015-08-07

    We report on a study of ferromagnetic semiconductor (Ga,Mn)As/(Al,Ga,Mn)As bilayers using magnetometry and polarized neutron reflectivity (PNR). From depth-resolved characterization of the magnetic structure obtained by PNR, we concluded that the (Ga,Mn)As and (Al,Ga,Mn)As layers have in-plane and perpendicular-to-plane magnetic easy axes, respectively, with weak interlayer coupling. Therefore, the layer magnetizations align perpendicular to each other under low magnetic fields and parallel at high fields.

  9. Metastable (Bi, M)2(Fe, Mn, Bi)2O(6+x) (M = Na or K) pyrochlores from hydrothermal synthesis.

    PubMed

    Daniels, Luke M; Playford, Helen Y; Grenèche, Jean-Marc; Hannon, Alex C; Walton, Richard I

    2014-12-15

    The hydrothermal syntheses, structures, and magnetism of two new pyrochlore oxides of compositions (Na0.60Bi1.40)(Fe1.06Mn0.17Bi0.77)O6.87 and (K0.24Bi1.51)(Fe1.07Mn0.15Bi0.78)O6.86 are described. With preparation at 200 °C for 6 h in solutions of sodium or potassium hydroxide, the alkali metals introduced from these mineralizers are essential to the synthesis of the phases. The average long-range order of the pyrochlore structure, with space group Fd3̅m, was investigated and refined against X-ray and neutron diffraction data, and it was shown that disorder is present in both the metal and coordinating oxygen positions, along with metal-mixing across both the A and B sites of the structure. XANES analysis confirms the presence of Mn(4+), mixed valence Bi(3+) and Bi(5+), and Fe(3+), the last also verified by (57)Fe Mössbauer spectroscopy. Magnetic measurements show a lack of long-range magnetic ordering that is typical of geometrically frustrated pyrochlores. The observed glasslike interactions occur at low temperatures, with the onset temperature depending upon the magnitude of the applied external field. Variable temperature X-ray diffraction shows that these pyrochlores are metastable and collapse on heating at ca. 395 °C, which suggests that their formation by conventional solid-state synthesis would be impossible. PMID:25413441

  10. On the temperature dependent magnetic properties of as-spun Mn-Bi ribbons

    NASA Astrophysics Data System (ADS)

    Kavita, S.; Seelam, U. M. R.; Prabhu, D.; Gopalan, R.

    2015-03-01

    The structural and magnetic properties of melt-spun ribbons with nominal composition of Mn55Bi45 were investigated using X-ray diffraction, transmission electron microscopy and magnetometer measurements. A large coercivity (Hc) of 0.8 T was observed in the as-spun ribbons. Microstructure reveals the presence of Mn-Bi nanoparticles in the as-spun ribbons. Coercivity was found to increase with increasing temperature with a maximum coercivity of 1.4 T at T=503 K in the as-spun ribbons. Heat treatment of the as-spun ribbons resulted in the increase of LTP MnBi phase. Spin reorientation transition (TSR) was observed around 100 K.

  11. Ferromagnetism and the electronic band structure in (Ga,Mn)(Bi,As) epitaxial layers

    SciTech Connect

    Yastrubchak, O.; Sadowski, J.; Domagala, J. Z.; Andrearczyk, T.; Wosinski, T.

    2014-08-18

    Impact of Bi incorporation into (Ga,Mn)As layers on their electronic- and band-structures as well as their magnetic and structural properties has been studied. Homogenous (Ga,Mn)(Bi,As) layers of high structural perfection have been grown by the low-temperature molecular-beam epitaxy technique. Post-growth annealing treatment of the layers results in an improvement of their structural and magnetic properties and an increase in the hole concentration in the layers. The modulation photoreflectance spectroscopy results are consistent with the valence-band model of hole-mediated ferromagnetism in the layers. This material combines the properties of (Ga,Mn)As and Ga(Bi,As) ternary compounds and offers the possibility of tuning its electrical and magnetic properties by controlling the alloy composition.

  12. Structural and magnetic properties of Pr-alloyed MnBi nanostructures

    SciTech Connect

    Kharel, P; Shah, VR; Li, XZ; Zhang, WY; Skomski, R; Shield, JE; Sellmyer, DJ

    2013-02-05

    The structural and magnetic properties of Pr-alloyed MnBi (short MnBi-Pr) nanostructures with a range of Pr concentrations are investigated. The nanostructures include thin films having Pr concentrations 0, 2, 3, 5 and 9 at.% and melt-spun ribbons having Pr concentrations 0%, 2%, 4% and 6%, respectively. Addition of Pr into the MnBi lattice has produced a significant change in the magnetic properties of these nanostructures including an increase in coercivity and structural phase transition temperature, and a decrease in saturation magnetization and anisotropy energy. The highest value of coercivity measured in the films is 23 kOe and in the ribbons is 5.6 kOe. The observed magnetic properties are explained as the consequences of competing ferromagnetic and antiferromagnetic interactions.

  13. Thermoelectric and morphological effects of Peltier pulsing on directional solidification of eutectic Bi-Mn

    NASA Technical Reports Server (NTRS)

    Silberstein, R. P.; Larson, D. J., Jr.; Dressler, B.

    1984-01-01

    Extensive in situ thermal measurements using Peltier Interface Demarcation (PID) during directional solidification of eutectic Bi/MnBi were carried out. Observations indicate that significant thermal transients occur throughout the sample as a result of the Peltier pulsing. The contributions of the Peltier, Thomson, and Joule heats were separated and studied as a function of pulse intensity and polarity. The Joule and the combined Peltier and Thomson thermal contributions were determined as a function of time during and after the current pulses, close to the solid/liquid interface. Variations of the Bi/MnBi particle morphology clearly reveal the interface shape, changes in interface velocity, meltback, and temporary loss of cooperative growth, as a result of the pulsing.

  14. Processing of MnBi bulk magnets with enhanced energy product

    NASA Astrophysics Data System (ADS)

    Poudyal, Narayan; Liu, Xubo; Wang, Wei; Nguyen, V. Vuong; Ma, Yilong; Gandha, Kinjal; Elkins, Kevin; Liu, J. Ping; Sun, Kewei; Kramer, M. J.; Cui, Jun

    2016-05-01

    We report magnetic properties and microstructure of high energy-product MnBi bulk magnets fabricated by low-temperature ball-milling and warm compaction technique. A maximum energy product (BH)max of 8.4 MGOe and a coercivity of 6.2 kOe were obtained in the bulk MnBi magnet at room temperature. Magnetic characterization at elevated temperatures showed an increase in coercivity to 16.2 kOe while (BH)max value decreased to 6.8 MGOe at 400 K. Microstructure characterization revealed that the bulk magnets consist of oriented uniform nanoscale grains with average size about 50 nm.

  15. Swift heavy ion induced nano-dimensional phase separation in liquid immiscible binary Mn-Bi

    NASA Astrophysics Data System (ADS)

    Srivastava, S. K.; Khan, S. A.; Sudheer Babu, P.; Avasthi, D. K.

    2014-08-01

    Pulsed laser deposited 60 nm thin film of homogeneous Mn0.82Bi0.18 composite has been irradiated by 100 MeV Au ions at fluence 1 × 1013 ions/cm2, and investigated by field emission scanning electron microscopy, X-ray diffraction, magnetic hysteresis, X-ray photoelectron spectroscopy, and nanoindentation measurements. Dispersed nanostructures of soft Bi-rich phase of about 20 nm diameter emerged in a hard Mn-rich matrix on irradiation. Such structures, as synthesized by the present novel swift heavy ion irradiation approach, are usable as self-lubricating thin films.

  16. Structural and magnetic properties of the low temperature phase MnBi with ball milling

    NASA Astrophysics Data System (ADS)

    Kavita, S.; Ramakrishna, V. V.; Srinivasan, A.; Gopalan, R.

    2016-05-01

    MnBi has been prepared by arc-melting method and subjected to low energy ball milling after homogenization heat treatment. X-ray diffraction data shows that the weight percentage of the low temperature MnBi (LTP MnBi) phase increases with milling. Microstructural and x-ray peak profile analysis show that milling leads to a reduction in average crystallite size and an increase in microstrain respectively. Magnetic hysteresis loops recorded for an applied field of ±20 kOe show that the alloy milled for 5 h exhibits a coercivity of 11.3 kOe. Although ball milling results in the growth of the LTP MnBi phase, the saturation magnetization (M s) decreases from 47 emu g‑1 (arc melted and homogenized) to 15 emu g‑1 upon milling for 5 h. It is also found that the Curie temperature (T c) of the system decreases with milling. The decrease in magnetization is discussed in terms of variation of Mn–Mn distance and the strain induced during milling. On the other hand, it has been found that the coercivity increases with temperature and reaches a value of 17.5 kOe at 500 K for the 5 h milled sample.

  17. Temperature- and field-dependent critical currents in [(Bi,Pb)2Sr2Ca2Cu3Ox]0.07(La0.7Sr0.3MnO3)0.03 thick films grown on LaAlO3 substrates

    NASA Astrophysics Data System (ADS)

    Paredes, Omar; Morán, Oswaldo; Baca, Eval

    2013-01-01

    La0.7Sr0.3MnO3 (LSMO) nanoparticles were embedded in (Bi,Pb)2Sr2Ca2Cu3Ox (Bi2223) thick films, which were grown by simple melting-quenching-annealing (MQA) method on (001)-oriented LaAlO3 (LAO) substrates. The nominal composition of the composite-like hybrid system was (Bi2223)1-x(LSMO)x with x = 0.03. The constituent elements, Bi2223 and LSMO, were prepared separately by standard solid state reaction and Pechini's method, respectively. The analysis of the X-ray diffraction patterns suggested a polycrystalline growth mode of the thick films on the LAO substrates. From electric transport measurements, the superconducting onset temperature and the superconducting critical temperature (ρ = 0) ended up being 105 and 62 K, respectively. The flux pinning energy U was determined using the Anderson-Kim model. The value of U was compared with those obtained for similar samples with concentrations x = 0.01 and x = 0.05. Current-voltage characteristics were recorded at different temperatures in order to analyze the behavior of the superconducting current (Ic) of the films. A dramatic drop of Ic was observed at ˜20 K. This seems to be linked to the presence of flux creep acting as dissipation factors attributed to LSMO nanoparticles. Isothermal magnetization loops recorded at T < Tc and T > Tc showed clear diamagnetic and ferromagnetic signals, which verify the multifunctional character of the system. Based on the isothermal M(H)-loops recorded at 5, 20, and 40 K and taking Kim's model into account, the dependence of superconducting current density (Jc), and the volume pinning force (Fp) on the magnetic field were calculated. The dependence Jc(B) at 5 K showed an exponential-type behavior, which is described by an empirical equation. This empirical equation considers the maximum value of Fp, which may be scaled with the Kramer's expression for Fp. From this scaling procedure, diverse exponents, associated with different pinning mechanisms, were determined. The drastic fall

  18. Bi deficiency-tuned functionality in multiferroic Bi1-δFe0.95Mn0.05O3 films

    PubMed Central

    Chen, Jingyi; Wang, Yao; Wang, Hui; Zhang, Shuangmei; Deng, Yuan

    2016-01-01

    Structural evolution and ferroelectric (FE)-to-antiferroelectric (AFE) transition behaviors were observed in Bi1-δFe0.95Mn0.05O3 (100)-textured films with a carefully controlled Bi deficiency concentration δ. Raman spectra revealed an orthorhombic structural transition induced by Mn substitution. The polarization-electric field hysteresis loops and capacitance-voltage loops of Bi1-δFe0.95Mn0.05O3 films clearly demonstrated antiferroelectric behavior with increasing δ. The responses of the domain structure of the Bi1-δFe0.95Mn0.05O3 film under positive and negative applied voltages directly suggested the coexistence of FE and AFE phases. The existence of (100) superstructure reflections and antiparallel displacements of the Bi atoms along the [100] direction observed by transmission electron microscopy unambiguously reveal the AFE phase. The chemical substitution-induced orthorhombic structural transition in BiFe0.95Mn0.05O3 film implies that as the δ concentration increases, the changes in Bi-O bonding and the stereochemical activity of Bi 6s lone pair affect both the ferroelectric distortion and the antiferrodistortive rotation and therefore drive the Bi1-δFe0.95Mn0.05O3 crystal lattice to form a PbZrO3-type orthorhombic phase with an AFE order. A continuing increase in Bi deficiency creates defect dipole complexes which produce an internal field leading to a preferred direction of the ferroelectric domain. The Bi deficiency in multiferroic BiFeO3 provides a new route by which to tune functionality. PMID:26775621

  19. Bi deficiency-tuned functionality in multiferroic Bi1-δFe0.95Mn0.05O3 films

    NASA Astrophysics Data System (ADS)

    Chen, Jingyi; Wang, Yao; Wang, Hui; Zhang, Shuangmei; Deng, Yuan

    2016-01-01

    Structural evolution and ferroelectric (FE)-to-antiferroelectric (AFE) transition behaviors were observed in Bi1-δFe0.95Mn0.05O3 (100)-textured films with a carefully controlled Bi deficiency concentration δ. Raman spectra revealed an orthorhombic structural transition induced by Mn substitution. The polarization-electric field hysteresis loops and capacitance-voltage loops of Bi1-δFe0.95Mn0.05O3 films clearly demonstrated antiferroelectric behavior with increasing δ. The responses of the domain structure of the Bi1-δFe0.95Mn0.05O3 film under positive and negative applied voltages directly suggested the coexistence of FE and AFE phases. The existence of (100) superstructure reflections and antiparallel displacements of the Bi atoms along the [100] direction observed by transmission electron microscopy unambiguously reveal the AFE phase. The chemical substitution-induced orthorhombic structural transition in BiFe0.95Mn0.05O3 film implies that as the δ concentration increases, the changes in Bi-O bonding and the stereochemical activity of Bi 6s lone pair affect both the ferroelectric distortion and the antiferrodistortive rotation and therefore drive the Bi1-δFe0.95Mn0.05O3 crystal lattice to form a PbZrO3-type orthorhombic phase with an AFE order. A continuing increase in Bi deficiency creates defect dipole complexes which produce an internal field leading to a preferred direction of the ferroelectric domain. The Bi deficiency in multiferroic BiFeO3 provides a new route by which to tune functionality.

  20. Bi deficiency-tuned functionality in multiferroic Bi1-δFe0.95Mn0.05O3 films.

    PubMed

    Chen, Jingyi; Wang, Yao; Wang, Hui; Zhang, Shuangmei; Deng, Yuan

    2016-01-01

    Structural evolution and ferroelectric (FE)-to-antiferroelectric (AFE) transition behaviors were observed in Bi1-δFe0.95Mn0.05O3 (100)-textured films with a carefully controlled Bi deficiency concentration δ. Raman spectra revealed an orthorhombic structural transition induced by Mn substitution. The polarization-electric field hysteresis loops and capacitance-voltage loops of Bi1-δFe0.95Mn0.05O3 films clearly demonstrated antiferroelectric behavior with increasing δ. The responses of the domain structure of the Bi1-δFe0.95Mn0.05O3 film under positive and negative applied voltages directly suggested the coexistence of FE and AFE phases. The existence of (100) superstructure reflections and antiparallel displacements of the Bi atoms along the [100] direction observed by transmission electron microscopy unambiguously reveal the AFE phase. The chemical substitution-induced orthorhombic structural transition in BiFe0.95Mn0.05O3 film implies that as the δ concentration increases, the changes in Bi-O bonding and the stereochemical activity of Bi 6s lone pair affect both the ferroelectric distortion and the antiferrodistortive rotation and therefore drive the Bi1-δFe0.95Mn0.05O3 crystal lattice to form a PbZrO3-type orthorhombic phase with an AFE order. A continuing increase in Bi deficiency creates defect dipole complexes which produce an internal field leading to a preferred direction of the ferroelectric domain. The Bi deficiency in multiferroic BiFeO3 provides a new route by which to tune functionality. PMID:26775621

  1. Interplay between Mn-acceptor state and Dirac surface states in Mn-doped Bi2Se3 topological insulator

    NASA Astrophysics Data System (ADS)

    Mahani, M. R.; Pertsova, A.; Islam, M. Fhokrul; Canali, C. M.

    2014-11-01

    We investigate the properties of a single substitutional Mn impurity and its associated acceptor state on the (111) surface of Bi2Se3 topological insulator. Combining ab initio calculations with microscopic tight-binding modeling, we identify the effects of inversion symmetry and time-reversal-symmetry breaking on the electronic states in the vicinity of the Dirac point. In agreement with experiments, we find evidence that the Mn ion is in the +2 valence state and introduces an acceptor in the bulk band gap. The Mn acceptor has predominantly p character and is localized mainly around the Mn impurity and its nearest-neighbor Se atoms. Its electronic structure and spin-polarization are determined by the hybridization between the Mn d levels and the p levels of surrounding Se atoms, which is strongly affected by electronic correlations at the Mn site. The opening of the gap at the Dirac point depends crucially on the quasiresonant coupling and the strong real-space overlap between the spin-chiral surface states and the midgap spin-polarized Mn-acceptor states.

  2. High Pressure XANES studies on Mn dopeHigh Pressure XANES studies on Mn doped Bi2 Te3

    NASA Astrophysics Data System (ADS)

    Light, Brian; Kumar, Ravhi; Baker, Jason; Dharmalingam, Prabhakaran; Park, Changyong; Unlv Team; Hpcat; Carnegie Institute Of Washington Collaboration

    Bi2Te3, Bi2Se3, and Sb2Te3 are narrow band-gap semiconductors have been extensively studied along with their alloys due to their promising technological applications as thermoelectric materials. More recently pressure induced superconductivity and structural transition have been observed in these materials around 7 GPa [1, 2]. Here we have performed high pressure x-ray near edge spectroscopy (XANES) measurements at Bi L-III edge on Mn (0.1) doped Bi2Te3 samples to understand the variation of the Bi valence across the pressure induced superconductivity regime. We have inferred notable changes in the Bi valence at high pressure conditions. The results will be discussed in detail. Work at the University of Nevada Las Vegas (ALC) is funded by U.S. Department of Energy Award DE-SC0001928. Portions of this work were performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT is supported by DOE-BES, DOE-NNSA, NSF, and the W.M. Keck Foundation. APS is supported by DOE-BES, under Contract No. DE-AC02-06CH1135.

  3. Combined effects of Bi deficiency and Mn substitution on the structural transformation and functionality of BiFeO{sub 3} films

    SciTech Connect

    Chen, Jingyi; Wang, Yao Deng, Yuan

    2014-11-07

    Mn-doped BiFeO{sub 3} films with Mn contents of 5 and 10 mol. % were prepared via a chemical route. A carefully controlled amount of Bi deficiency was introduced to further tune the lattice structure and the functionality of multiferroic BiFeO{sub 3}. The crystal structure of Bi{sub 1−δ}Fe{sub 1−x}Mn{sub x}O{sub 3} films was investigated by X-ray diffraction and Raman spectra; a rhombohedral-to-orthorhombic phase transition was revealed. The observed double hysteresis loops and two capacitance maxima from polarization vs electric field and capacitance-voltage measurements indicate an antiferroelectric-like behavior. Additionally, the coexistence of ferroelectric (FE) and antiferroelectric (AFE) phases in Bi{sub 1−δ}Fe{sub 1−x}Mn{sub x}O{sub 3} films was revealed from the domain structures obtained by piezoelectric force microscopy. The effects of Mn substitution in conjunction with Bi deficiency on the FE-AFE phase transition and electrical behavior of BiFeO{sub 3} films are discussed in detail. Meanwhile, magnetic and photoluminescence measurements on the films illustrate that Mn substitution gives rise to the net magnetic moment and the defects induced by both Bi deficiency and Mn substitution influence the electronic structure of BiFeO{sub 3} films. This study thus shows a simple and effective way to control the functionalities of BiFeO{sub 3} films.

  4. Electronic and transport properties of the Mn-doped topological insulator Bi2Te3 : A first-principles study

    NASA Astrophysics Data System (ADS)

    Carva, K.; Kudrnovský, J.; Máca, F.; Drchal, V.; Turek, I.; Baláž, P.; Tkáč, V.; Holý, V.; Sechovský, V.; Honolka, J.

    2016-06-01

    We present a first-principles study of the electronic, magnetic, and transport properties of the topological insulator Bi2Te3 doped with Mn atoms in substitutional (MnBi) and interstitial van der Waals gap positions (Mni), which act as acceptors and donors, respectively. The effect of native BiTe- and TeBi-antisite defects and their influence on calculated electronic transport properties is also investigated. We have studied four models representing typical cases, namely, (i) Bi2Te3 with and without native defects, (ii) MnBi defects with and without native defects, (iii) the same, but for Mni defects, and (iv) the combined presence of MnBi and Mni. It has been found that lattice relaxations around MnBi defects play an important role for both magnetic and transport properties. The resistivity is strongly influenced by the amount of carriers, their type, and by the relative positions of the Mn-impurity energy levels and the Fermi energy. Our results suggest strategies to tune bulk resistivities and also clarify the location of Mn atoms in samples. Calculations indicate that at least two of the considered defects have to be present simultaneously in order to explain the experimental observations, and the role of interstitials may be more important than expected.

  5. Itinerant magnetism in CaMn2Al10

    NASA Astrophysics Data System (ADS)

    Simonson, Jack; Steinke, Lucia; Zellman, Shelby; Kistner-Morris, Jedediah; Puri, Akshat; Andrews, Evon; Aronson, Meigan

    2015-03-01

    We report the synthesis and basic properties of CaMn2Al10, a new itinerant magnet that is nearly isostructural with the known quantum critical compound YFe2Al10. Magnetic susceptibility measurements performed on single crystals reveal a cusp at 2 K. Electrical resistivity measurements similarly have a maximum at this temperature, and heat capacity measurements show a broad peak with total entropy of ~ 10 % R ln2. These results together with those of neutron diffraction measurements suggest that CaMn2Al10 is weakly magnetic and potentially close to a quantum critical point. Research supported by a DOD National Security Science and Engineering Fellowship via the AFOSR.

  6. Magnetic properties of low temperature phase MnBi of island structure

    NASA Astrophysics Data System (ADS)

    Suwa, Takahiro; Tanaka, Yoshitomo; Mankey, Gary; Schad, Rainer; Suzuki, Takao

    2016-05-01

    The magnetic and structural properties of island-structured LTP MnBi fabricated onto MgO single crystal substrates are discussed. The size and height of the "Volmer-Weber" type islands vary from place to place but are averagely a few microns and sub-microns, respectively. From the wetting angle (40 ˜ 60°) of those islands, the surface energy ΥMnBi of LTP MnBi is found to be 0.5˜0.8 J/m2. Those MnBi islands possesses the magnetic anisotropy constant Ku and saturation magnetization Ms close to those for bulk over a temperature range of 5 to 400 K. There seems to be a correlation between Ku and lattice constant c measured at 300K. The Ku is found to be inversely proportional to Ms5 over the temperature range from 5 K to 400 K, as compared to the Ms8 dependence for those fabricated onto fused silica glass substrates.

  7. The effect of Mn content on magnetism and half-metallicity of off-stoichiometric Co2MnAl

    NASA Astrophysics Data System (ADS)

    Feng, Yu; Zhou, Ting; Chen, Xiaorui; Yuan, Hongkuan; Chen, Hong

    2015-08-01

    Using the first-principles calculations within density functional theory (DFT), we investigate the influence of Mn content on magnetism and half-metallicity of off-stoichiometric Co2MnAl. From our calculation, the Mn-poor structure most likely results from antisite disorders where Mn atoms are partially substituted by Co (CoMn antisite) or Al (AlMn antisite) due to their lower formation energy than the structure missing Mn atom. Besides, the half-metallicity is immune to AlMn antisite, while the impurity Co atom in CoMn antisite is responsible for the dramatic decrease in spin polarization. Besides, in the Mn-rich structure where excess impurity Mn occupy the Co sites, impurity Mn atom exhibits antiparallel coupling with other magnetic atoms, resulting in ferrimagnetism. With increasing of Mn content, the spin polarization of Mn-rich structure increases from 75% to 100%. When Mn content rises up to α = 1.875, the corresponding compound Co1.125 Mn1.875 Al owns the perfect spin polarization and stable half-metallicity due to the reason that its Fermi level is situated nearly in the middle of the spin down gap. Hence, a large tunneling magnetoresistance (TMR) of magnetic tunnel junctions (MTJs) could be obtained by using Mn-rich Co2MnAl electrode. Furthermore, when Mn content reaches up to α = 2, the compound converts to inverse Heusler compound Mn2CoAl with an unique band structure that the conduction and valence band edges of the spin up electrons touch at the Fermi level, it is therefore classified to be spin gapless semiconductors.

  8. Preparation and Magnetic Studies of Mn Substituted Analogues of BiFeO3

    NASA Astrophysics Data System (ADS)

    Choudhary, B. L.; Kumar, Sudhish; Krishnamurthy, Anjali; Srivastava, Bipin K.

    2011-11-01

    Manganese substituted samples (for iron) in the multiferroic BiFeO3 have been prepared using solid state ceramic route. It has been possible to prepare a sample with the highest 40% Mn content. Reitveld analysis of the X-ray diffraction patterns shows that the substituted analogues crystallize in rhombohedral symmetry in R-3¯c space group. Effort to prepare 50 atomic% Mn substituted sample did not succeed. Magnetization measurements have been made in the temperature range 20K-300K and in fields upto 8 kOe. Magnetic nature of the 40 atomic% Mn substituted sample is alike that of 30 atomic% Mn substituted one. Mn induces weak ferromagnetism with the average magnetic moment increasing with its concentration.

  9. Extended magnetic exchange interactions in the high-temperature ferromagnet MnBi

    NASA Astrophysics Data System (ADS)

    Williams, T. J.; Taylor, A. E.; Christianson, A. D.; Hahn, S. E.; Fishman, R. S.; Parker, D. S.; McGuire, M. A.; Sales, B. C.; Lumsden, M. D.

    2016-05-01

    The high-temperature ferromagnet MnBi continues to receive attention as a candidate to replace rare-earth-containing permanent magnets in applications above room temperature. This is due to a high Curie temperature, large magnetic moments, and a coercivity that increases with temperature. The synthesis of MnBi also allows for crystals that are free of interstitial Mn, enabling more direct access to the key interactions underlying the physical properties of binary Mn-based ferromagnets. In this work, we use inelastic neutron scattering to measure the spin waves of MnBi in order to characterize the magnetic exchange at low temperature. Consistent with the spin reorientation that occurs below 140 K, we do not observe a spin gap in this system above our experimental resolution. A Heisenberg model was fit to the spin wave data in order to characterize the long-range nature of the exchange. It was found that interactions up to sixth nearest neighbor are required to fully parametrize the spin waves. Surprisingly, the nearest-neighbor term is antiferromagnetic, and the realization of a ferromagnetic ground state relies on the more numerous ferromagnetic terms beyond nearest neighbor, suggesting that the ferromagnetic ground state arises as a consequence of the long-ranged interactions in the system.

  10. Extended magnetic exchange interactions in the high-temperature ferromagnet MnBi

    DOE PAGESBeta

    Christianson, Andrew D.; Hahn, Steven E.; Fishman, Randy Scott; Parker, David S.; McGuire, Michael A.; Sales, Brian C.; Lumsden, Mark D.; Williams, T. J.; Taylor, A. E.

    2016-05-09

    Here, the high-temperature ferromagnet MnBi continues to receive attention as a candidate to replace rare-earth-containing permanent magnets in applications above room temperature. This is due to a high Curie temperature, large magnetic moments, and a coercivity that increases with temperature. The synthesis of MnBi also allows for crystals that are free of interstitial Mn, enabling more direct access to the key interactions underlying the physical properties of binary Mn-based ferromagnets. In this work, we use inelastic neutron scattering to measure the spin waves of MnBi in order to characterize the magnetic exchange at low temperature. Consistent with the spin reorientationmore » that occurs below 140~K, we do not observe a spin gap in this system above our experimental resolution. A Heisenberg model was fit to the spin wave data in order to characterize the long-range nature of the exchange. It was found that interactions up to sixth nearest neighbor are required to fully parameterize the spin waves. Surprisingly, the nearest-neighbor term is antiferromagnetic, and the realization of a ferromagnetic ground state relies on the more numerous ferromagnetic terms beyond nearest neighbor, suggesting that the ferromagnetic ground state arises as a consequence of the long-ranged interactions in the system.« less

  11. Evolution of structural distortions in solid solutions between BiMnO{sub 3} and BiScO{sub 3}

    SciTech Connect

    Belik, Alexei A.; Kato, Kenichi; Takayama-Muromachi, Eiji

    2009-04-15

    Crystal structures of solid solutions of BiMn{sub 1-x}Sc{sub x}O{sub 3} with x=0.05, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.7 were studied with synchrotron X-ray powder diffraction. The strong Jahn-Teller distortion, observed in BiMnO{sub 3} at 300 K and associated with orbital order, disappeared already in BiMn{sub 0.95}Sc{sub 0.05}O{sub 3}. The orbital-ordered phase did not appear in BiMn{sub 0.95}Sc{sub 0.05}O{sub 3} down to 90 K. Almost the same octahedral distortions were observed in BiMn{sub 1-x}Sc{sub x}O{sub 3} with 0.05<=x<=0.7 at room temperature and in BiMnO{sub 3} at 550 K above the orbital ordering temperature T{sub OO}=473 K. These results allowed us to conclude that the remaining octahedral distortions observed in BiMnO{sub 3} above T{sub OO} are the structural feature originated from the highly distorted monoclinic structure. - Graphical Abstract: Compositional dependence of octahedral distortion parameters DELTA(M1O{sub 6}) and DELTA(M2O{sub 6}) in solid solutions BiMn{sub 1-x}Sc{sub x}O{sub 3} at 300 K.

  12. Transport and magnetic properties of the Co2MnSi/Al/Co2MnSi trilayer

    NASA Astrophysics Data System (ADS)

    Yu, H. L.; Zhang, H. B.; Jiang, X. F.; Zheng, Y.; Yang, G. W.

    2012-05-01

    Using density functional theory and non-equilibrium Green's function analysis, we studied the interface structure, interface stability, and magnetic and transport properties of the Co2MnSi/Al/Co2MnSi trilayer. It was found that only the CoCo/Al architecture is thermodynamically stable among four interfacial architectures, CoCo/Al, MnSi/Al, MnMn/Al, and SiSi/Al, and the other interface architectures are not accessible within the limits set under thermodynamic equilibrium with other phases. Calculations of the transmission spectrum, conductance, and resistance-area product showed that the Co2MnSi/Al/Co2MnSi trilayer is a promising candidate for the next-generation of recording sensors in ultrahigh-density hard disks.

  13. Role of O defects at the BiMnO3/SrTiO3 interface

    NASA Astrophysics Data System (ADS)

    Jilili, J.; Cossu, F.; Schwingenschlögl, U.

    2016-08-01

    We use first principles calculations to study ideal and O deficient BiMnO3/SrTiO3 superlattices. The ideal superlattice is characterized by parallel alignment of the Mn and Ti magnetic moments at the n-interface, while an antiparallel alignment has been reported experimentally. O defects at the n-interface are found to favor the MnO2 and BiO layers over the TiO2 layer. The band gap of the superlattice is strongly reduced when the MnO2 layer is O deficient and {d}3{z2-{r}2} states are observed at the Fermi energy when the BiO layer is O deficient. Only in the latter case the Mn and Ti magnetic moments at the n-interface align antiparallel. Therefore, O defects in the BiO layer turn out to be essential for reproducing the experimental interface magnetism and for understanding its mechanism.

  14. Microstructure and Magnetic Properties of Bulk Nanocrystalline MnAl

    SciTech Connect

    Chaturvedi, A; Yaqub, R; Baker, I

    2014-01-22

    MnAl is a promising rare-earth free permanent magnet for technological use. We have examined the effects of consolidation by back-pressure, assisted equal channel angular extrusion processing on mechanically-milled, gas-atomized Mn-46% at. Al powder. X-ray diffraction showed both that the extruded rod consisted mostly of metastable tau phase, with some of the equilibrium gamma(2) and beta phases, and that it largely retained the as-milled nanostructure. Magnetic measurements show a coercivity of <= 4.4 kOe and a magnetization at 10 kOe of <= 40 emu/g. In addition, extrusions exhibit greater than 95% of the theoretical density. This study opens a new window in the area of bulk MnAl magnets with improved magnetic properties for technological use.

  15. Magnetic and structural properties of Mn-doped Bi2Se3 topological insulators

    NASA Astrophysics Data System (ADS)

    Tarasenko, R.; Vališka, M.; Vondráček, M.; Horáková, K.; Tkáč, V.; Carva, K.; Baláž, P.; Holý, V.; Springholz, G.; Sechovský, V.; Honolka, J.

    2016-01-01

    A thorough investigation is presented of the magnetic and structural properties of Mn-doped Bi2Se3 topological insulators grown by molecular beam epitaxy on top of insulating BaF2 (111) substrates. The magnetic properties have been studied in the temperature range from 2 K to 300 K in magnetic fields up to 7 T. The systems were further characterized by means of high-resolution X-ray diffraction, electron-microprobe analysis, and X-ray photoemission spectroscopy. Samples with the atomic concentration of Mn up to about 0.06 exhibit an almost perfect crystalline structure while, for higher Mn concentrations, diffuse scattering from defects is observed. Photoemission results suggest a localized non-metallic Mn 3d5 ground state which is weakly or intermediately coupled to the Bi2Se3 environment. The exchange interaction between the Mn moments leads to a ferromagnetic phase at low temperatures with a roughly linear relation between the Curie temperature and the atomic concentration of Mn.

  16. CaMn2Al10: Itinerant Mn magnetism on the verge of magnetic order

    DOE PAGESBeta

    Steinke, L.; Simonson, J. W.; Yin, W. -G.; Smith, G. J.; Kistner-Morris, J. J.; Zellman, S.; Puri, A.; Aronson, M. C.

    2015-07-24

    We report the discovery of CaMn2Al10, a metal with strong magnetic anisotropy and moderate electronic correlations. Magnetization measurements find a Curie-Weiss moment of 0.83μB/Mn, significantly reduced from the Hund's rule value, and the magnetic entropy obtained from specific heat measurements is correspondingly small, only ≈ 9% of Rln2. These results imply that the Mn magnetism is highly itinerant, a conclusion supported by density functional theory calculations that find strong Mn-Al hybridization. Consistent with the layered nature of the crystal structure, the magnetic susceptibility χ is anisotropic below 20 K, with a maximum ratio of χ[010]/χ[001] ≈ 3.5. A strong power-lawmore » divergence χ(T) ~ T–1.2 below 20 K implies incipient ferromagnetic order, an Arrott plot analysis of the magnetization suggests a vanishing low Curie temperature TC ~ 0. Our experiments indicate that CaMn2Al10 is a rare example of a system where the weak and itinerant Mn-based magnetism is poised on the verge of order.« less

  17. CaMn2Al10 : Itinerant Mn magnetism on the verge of magnetic order

    NASA Astrophysics Data System (ADS)

    Steinke, L.; Simonson, J. W.; Yin, W.-G.; Smith, G. J.; Kistner-Morris, J. J.; Zellman, S.; Puri, A.; Aronson, M. C.

    2015-07-01

    We report the discovery of CaMn2Al10 , a metal with strong magnetic anisotropy and moderate electronic correlations. Magnetization measurements find a Curie-Weiss moment of 0.83 μB/Mn , significantly reduced from the Hund's rule value, and the magnetic entropy obtained from specific heat measurements is correspondingly small, only ≈9 % of R ln 2 . These results imply that the Mn magnetism is highly itinerant, a conclusion supported by density functional theory calculations that find strong Mn-Al hybridization. Consistent with the layered nature of the crystal structure, the magnetic susceptibility χ is anisotropic below 20 K, with a maximum ratio of χ[010 ]/χ[001 ]≈3.5 . A strong power-law divergence χ (T ) ˜T-1.2 below 20 K implies incipient ferromagnetic order with a low Curie temperature TC<2 K . Our experiments indicate that CaMn2Al10 is a rare example of a system where the weak and itinerant Mn-based magnetism is poised on the verge of order.

  18. Anomalous magneto-structural behavior of MnBi explained: a path towards an improved permanent magnet

    SciTech Connect

    Zarkevich, Nikolay A.; Wang, Lin-Lin; Johnson, Duane D.

    2014-03-04

    Low-temperature MnBi (hexagonal NiAs phase) exhibits anomalies in the lattice constants (a, c) and bulk elastic modulus (B) below 100 K, spin reorientation and magnetic susceptibility maximum near 90 K, and, importantly for high-temperature magnetic applications, an increasing coercivity (unique to MnBi) above 180  K. We calculate the total energy and magneto-anisotropy energy (MAE) versus (a, c) using DFT+U methods. We reproduce and explain all the above anomalies. We predict that coercivity and MAE increase due to increasing a, suggesting means to improve MnBi permanent magnets.

  19. Anomalous magneto-structural behavior of MnBi explained: A path towards an improved permanent magnet

    SciTech Connect

    Zarkevich, NA; Wang, LL; Johnson, DD

    2014-03-01

    Low-temperature MnBi (hexagonal NiAs phase) exhibits anomalies in the lattice constants (a, c) and bulk elastic modulus (B) below 100 K, spin reorientation and magnetic susceptibility maximum near 90 K, and, importantly for high-temperature magnetic applications, an increasing coercivity (unique to MnBi) above 180 K. We calculate the total energy and magneto-anisotropy energy (MAE) versus (a, c) using DFT+U methods. We reproduce and explain all the above anomalies. We predict that coercivity and MAE increase due to increasing a, suggesting means to improve MnBi permanent magnets. (C) 2014 Author(s).

  20. AlMn Transition Edge Sensors for Advanced ACTPol

    NASA Astrophysics Data System (ADS)

    Li, Dale; Austermann, Jason E.; Beall, James A.; Becker, Daniel T.; Duff, Shannon M.; Gallardo, Patricio A.; Henderson, Shawn W.; Hilton, Gene C.; Ho, Shuay-Pwu; Hubmayr, Johannes; Koopman, Brian J.; McMahon, Jeffrey J.; Nati, Federico; Niemack, Michael D.; Pappas, Christine G.; Salatino, Maria; Schmitt, Benjamin L.; Simon, Sara M.; Staggs, Suzanne T.; Van Lanen, Jeff; Ward, Jonathan T.; Wollack, Edward J.

    2016-07-01

    Advanced ACTPol (AdvACT) will use an array of multichroic polarization-sensitive AlMn transition edge sensor (TES) bolometers read out through time-division multiplexing. Aluminum doped with a low concentration of manganese can be deposited to a bulk film thickness for a more reliable superconducting critical temperature uniformity compared to thin bilayers. To build the TES, the AlMn alloy is deposited, over Nb wiring, to a specific thickness to set the TES normal resistance. The doping concentration of manganese coarsely defines the TES critical temperature, while a fine tuning is achieved by heating the deposited film to a specific temperature. The TES island is connected to the thermal bath via four silicon-nitride membranes, where their geometry defines the thermal conductance to the temperature of the bath. Lastly, the TES heat capacity is increased by addition of PdAu electrically connected to the AlMn film. Designs and performance characteristics of these AlMn TESs are presented for use in AdvACT.

  1. The corrosion behavior of Fe-Mn-Al weld metals

    NASA Astrophysics Data System (ADS)

    Aidun, Daryush K.

    2001-02-01

    The corrosion resistance of a newly developed iron-base, Fe-Mn-Al austenitic, and duplex weld metal has been examined in the NACE solution consisting of 5 wt.% NaCl, 0.5 wt.% acetic acid, and the balance distilled water. The electrochemical techniques such as potentiodynamic polarization, Tafel plots, linear polarization, cyclic polarization, and open-circuit potential versus time were employed. The Fe-Mn-Al weld metals did not passivate and exhibited high corrosion rates. Fe-Cr-Ni (310 and 316) weld and base metals were also examined in the NACE solution at room temperature. The 310 and 316 base metals were more resistant to corrosion than the as-welded 310 and 316 weld metals. Postweld heat treatment (PWHT) improved the corrosion performance of the Fe-Mn-Al weld metals. The corrosion resistance of Fe-Mn-Al weld metals after PWHT was still inferior to that of the 310 and 316 weld and base metals.

  2. Magnetodielectric effect in Bi2NiMnO6-La2NiMnO6 superlattices

    NASA Astrophysics Data System (ADS)

    Padhan, P.; LeClair, P.; Gupta, A.; Subramanian, M. A.; Srinivasan, G.

    2009-07-01

    Multilayer superlattices consisting of multiferroic Bi2NiMnO6 (BNMO) and La2NiMnO6 (LNMO) have been grown heteroepitaxially on pure and Nb-doped SrTiO3 substrates using the pulsed laser deposition technique. In a series of superlattice structures grown with a fixed BNMO layer thickness of ten unit cells, we find that the c-axis lattice parameter, Curie temperature and magnetocapacitance are strongly dependent upon the number of stacked LNMO unit cells in the repeating units. The thickness-dependent magnetodielectric effect is attributed to the fluctuations in electric and magnetic dipole ordering due to the substrate and interface induced stress in the superlattice structures. An enhanced magnetodielectric effect in multilayers with LNMO thicknesses larger than six unit cells is explained based on possible canting of spin at the interfaces of LNMO and BNMO.

  3. MnBi particles with high energy density made by spark erosion

    NASA Astrophysics Data System (ADS)

    Nguyen, Phi-Khanh; Jin, Sungho; Berkowitz, Ami E.

    2014-05-01

    We report on the properties of low-temperature phase (LTP)-MnBi particles produced by the rapid-quenching technique of spark-erosion. The as-prepared powder consists of amorphous, crystalline, and superparamagnetic particles, mostly as porous aggregates. The major fraction of the powder consists of 20-30 nm particles. A short anneal crystallizes the amorphous particles producing a high moment, >90% of theoretical MS, albeit with HC of a few kOe. If lightly milled, the agglomerates are broken up to yield HC of 1 T. These findings are supported by the x-ray diffraction pattern showing broadened peaks of the predominant LTP-MnBi phase. The combination of spark erosion, milling, and annealing has produced randomly oriented particles with (BH)MAX ˜ 3.0 MGOe. The particles are expected to show record energy product when aligned along their crystallographic easy axes.

  4. Gravitationally induced convection during directional solidification of off-eutectic Mn-Bi alloys

    NASA Technical Reports Server (NTRS)

    Pirich, R. G.

    1982-01-01

    The effects of thermal and solute gradient, gravity induced convection during vertical directional solidification, on longitudinal macrosegregation of Bi and Mn rich off-eutectic starting compositions, has been studied as a function of composition, growth velocity and gravity vector orientation. Since the morphology of these alloys is characterized by an aligned, rodlike permanent magnet composite when grown cooperatively, the magnetic properties were used to measure composition segregation and the transition from dendritic to composite growth. Severe macrosegregation was observed in all cases studied and the degree of convection inferred by modeling the observed composition segregation using a stagnant film approach. Morphological stability was found to follow a constitutional supercooling-type law for both Bi and Mn rich compositions.

  5. Surface morphology driven non-uniform magnetism in epitaxial BiMnO3

    NASA Astrophysics Data System (ADS)

    Jeen, Hyoungjeen; Hae Kwak, In; Biswas, Amlan

    2016-08-01

    Thin films of BiMnO3 were grown on (001) SrTiO3 substrates by fine tuning the growth conditions. The films are epitaxial and impurity-free, but show island growth mode. From detailed magnetization measurements and surface analysis, we found evidence of morphology driven non-uniform magnetism. The non-uniform magnetism resulted in reduced saturation magnetization, reduced Curie temperature (T C), and nonlinear Arrott plots. In spite of non-uniform magnetism, the temperature dependence of magnetization showed conventional mean field behavior near T C. Our data suggest that non-uniform strain leads to coexistence of separate ferromagnetic and ferroelectric regions in BiMnO3 films which is not observed in bulk samples.

  6. Preparation and Magnetic Properties of MnBi-based Hard/Soft Composite Magnets

    SciTech Connect

    Ma, Yilong; Liu, Xubo; Gandha, Kinjal; Vuong, Nguyen V.; Yang, Y. B.; Yang, Jinbo; Poudyal, Narayan; Cui, Jun; Liu, J.Ping

    2014-05-07

    Bulk anisotropic composite magnets based on MnBi/Co(Fe) exhibiting the different morphology of the soft magnetic phase were prepared by powder metallurgy processing. First, single-phase MnBi bulk magnets were produced using a maximum energy product [(BH)m] of 6.3 MGOe at room temperature. The nanoscale soft phase with the different morphology was then added to form a composite magnet. It was observed that addition of magnetic soft-phase nanoparticles and nanoflakes causes a dramatic coercivity reduction. However, the addition of soft magnetic phase nanowires enhanced the composite magnetization without sacrificing the coercivity. Nevertheless, a kink was still observed on the demagnetization curves and the coercivity decreased when the soft-phase content was larger than 10 wt. %, which was caused by the agglomeration of the soft phase nanowires that also led to a decreased degree of texture.

  7. Swift thermal steering of domain walls in ferromagnetic MnBi stripes.

    PubMed

    Sukhov, Alexander; Chotorlishvili, Levan; Ernst, Arthur; Zubizarreta, Xabier; Ostanin, Sergey; Mertig, Ingrid; Gross, Eberhard K U; Berakdar, Jamal

    2016-01-01

    We predict a fast domain wall (DW) motion induced by a thermal gradient across a nanoscopic ferromagnetic stripe of MnBi. The driving mechanism is an exchange torque fueled by magnon accumulation at the DWs. Depending on the thickness of the sample, both hot-to-cold and cold-to-hot DW motion directions are possible. The finding unveils an energy efficient way to manipulate DWs as an essential element in magnetic information processing such as racetrack memory. PMID:27076097

  8. Swift thermal steering of domain walls in ferromagnetic MnBi stripes

    PubMed Central

    Sukhov, Alexander; Chotorlishvili, Levan; Ernst, Arthur; Zubizarreta, Xabier; Ostanin, Sergey; Mertig, Ingrid; Gross, Eberhard K. U.; Berakdar, Jamal

    2016-01-01

    We predict a fast domain wall (DW) motion induced by a thermal gradient across a nanoscopic ferromagnetic stripe of MnBi. The driving mechanism is an exchange torque fueled by magnon accumulation at the DWs. Depending on the thickness of the sample, both hot-to-cold and cold-to-hot DW motion directions are possible. The finding unveils an energy efficient way to manipulate DWs as an essential element in magnetic information processing such as racetrack memory. PMID:27076097

  9. Swift thermal steering of domain walls in ferromagnetic MnBi stripes

    NASA Astrophysics Data System (ADS)

    Sukhov, Alexander; Chotorlishvili, Levan; Ernst, Arthur; Zubizarreta, Xabier; Ostanin, Sergey; Mertig, Ingrid; Gross, Eberhard K. U.; Berakdar, Jamal

    2016-04-01

    We predict a fast domain wall (DW) motion induced by a thermal gradient across a nanoscopic ferromagnetic stripe of MnBi. The driving mechanism is an exchange torque fueled by magnon accumulation at the DWs. Depending on the thickness of the sample, both hot-to-cold and cold-to-hot DW motion directions are possible. The finding unveils an energy efficient way to manipulate DWs as an essential element in magnetic information processing such as racetrack memory.

  10. Thermally activated processes and superparamagnetism in Bi12MnO20 nanoparticles: A comparative study

    NASA Astrophysics Data System (ADS)

    de Oliveira, L. A. S.; Pentón-Madrigal, A.; Guimarães, A. P.; Sinnecker, J. P.

    2016-03-01

    Manganese sillenite (Bi12MnO20) nanoparticles having average particle size between 22 and 43 nm were synthesized by a low temperature soft chemical route under refluxing conditions. A careful structural and microstructural characterization by means of high resolution X-ray diffraction experiments and transmission electron microscopy is presented. The as-cast powder displayed an isotropic superparamagnetic (SPM) behavior with a blocked state for temperatures below TB ∼ 13.0 K. We used three different measurement techniques to extract and compare the Bi12MnO20 blocking temperatures. First, we extracted TB with the modified Bean-Livingstone model from the coercive field temperature dependence obtained from hysteresis curves measured as a function of temperature. Then, the blocking temperature distribution function, f(TB), was obtained by deriving the zero field-cooled/field-cooled curves difference. For each applied field, the maximum of the distribution function gave us the mean blocking temperature value. Finally, the maximum of the magnetic susceptibility imaginary part as a function of frequency was used, combined with the Néel-Brown equation, to extract the blocking temperature. All measurement techniques yield an equivalent dependence of TB with H of the Bi12MnO20 superparamagnetic nanoparticles.

  11. Structural, magnetic, and dielectric studies of the Aurivillius compounds SrBi5Ti4MnO18 and SrBi5Ti4Mn0.5Co0.5O18

    NASA Astrophysics Data System (ADS)

    Yuan, B.; Yang, J.; Song, D. P.; Zuo, X. Z.; Tang, X. W.; Zhu, X. B.; Dai, J. M.; Song, W. H.; Sun, Y. P.

    2015-01-01

    We have successfully synthesized the Aurivillius compounds SrBi5Ti4MnO18 and SrBi5Ti4Mn0.5Co0.5O18 using a modified Pechini method. Both samples have an orthorhombic structure with the space group B2cb. The valence state of Mn is suggested to be +3 and the doped Co ions exist in the form of Co2+ and Co3+ based on the results of x-ray photoelectron spectroscopy. The sample SrBi5Ti4MnO18 exhibits a dominant paramagnetic state with the existence of superparamagnetic state as evidenced by the electron paramagnetic resonance results, whereas SrBi5Ti4Mn0.5Co0.5O18 undergoes a ferrimagnetic transition at 161 K originating from the antiferromagnetic coupling of Co-based and Mn-based sublattices, and a ferromagnetic transition at 45 K arising from the Mn3+-O-Co3+ (low spin) interaction. The sample SrBi5Ti4Mn0.5Co0.5O18 exhibits two dielectric anomalies. One corresponds to a relaxor-like dielectric relaxation which follows the Vogel-Fulcher function and the other dielectric relaxation obeys the Arrhenius law arising from the collective motion of oxygen vacancies. In addition, the sample SrBi5Ti4Mn0.5Co0.5O18 exhibits a magnetodielectric effect caused by the Maxwell-Wagner effect because of the conductivity of the sample. This is demonstrated by the fact that the activation energy in dielectric loss process is close to that for dc conductivity and the magnetodielectric effect is sensitive to the measured frequency.

  12. Discontinuous coarsening behavior of Ni(2)MnAl intermetallic compound during isothermal aging treatment of Fe-Mn-Ni-Al alloys.

    PubMed

    Heo, Yoon-Uk; Takeguchi, Masaki; Furuya, Kazuo; Lee, Hu-Chul

    2010-08-01

    The discontinuous reaction of the Ni(2)MnAl intermetallic phase was investigated during the aging of a solution-treated Fe-8.3Mn-8.2Ni-4.2Al alloy. During aging, Ni(2)MnAl lamellae formed at the prior austenite grain boundaries and twin boundaries and grew into the neighboring grains. The presence of continuously precipitated fine Ni(2)MnAl particles before the growth of the discontinuously precipitated lamellae was confirmed by dark-field transmission electron microscopy, and it was concluded that the present reaction is a type of discontinuous coarsening process, alpha' + Ni(2)MnAl (continuous precipitation) --> alpha + Ni(2)MnAl (discontinuous coarsening). The chemical driving force and the reduction of the total coherent strain energy were suggested to be the driving force for the discontinuous coarsening reaction. PMID:20551447

  13. Structural, photophysical and photocatalytic properties of novel Bi2AlVO7.

    PubMed

    Luan, Jingfei; Zhao, Wei; Feng, Jingwei; Cai, Hongling; Zheng, Zheng; Pan, Bingcai; Wu, Xiaoshan; Zou, Zhigang; Li, Yongmei

    2009-05-30

    Bi(2)AlVO(7) was prepared by solid-state reaction technique for the first time and the structural and photocatalytic properties of Bi(2)AlVO(7) and Bi(2)InTaO(7) were investigated. The results showed that Bi(2)AlVO(7) crystallized in the tetragonal crystal system with space group I4/mmm. In addition, the band gaps of Bi(2)AlVO(7) and Bi(2)InTaO(7) were estimated to be about 2.06 and 2.81 eV. The photocatalytic degradation of aqueous methylene blue (MB) dye with Bi(2)AlVO(7) or Bi(2)InTaO(7) as catalyst was investigated under visible light irradiation. Bi(2)AlVO(7) showed higher photocatalytic activity compared with Bi(2)InTaO(7) for photocatalytic degradation of MB under visible light irradiation. Complete removal of aqueous MB dye was realized after visible light irradiation for 160 min with Bi(2)AlVO(7) as the photocatalyst. The reduction of the total organic carbon (TOC) and the formation of inorganic products, SO(4)(2-) and NO(3)(-) revealed the continuous mineralization of aqueous MB dye during the photocatalytic process. The possible photocatalytic degradation pathway of aqueous MB dye was revealed under visible light irradiation. PMID:18842341

  14. Topological insulator homojunctions including magnetic layers: The example of n-p type (n-QLs Bi2Se3/Mn-Bi2Se3) heterostructures

    NASA Astrophysics Data System (ADS)

    Vališka, M.; Warmuth, J.; Michiardi, M.; Vondráček, M.; Ngankeu, A. S.; Holý, V.; Sechovský, V.; Springholz, G.; Bianchi, M.; Wiebe, J.; Hofmann, P.; Honolka, J.

    2016-06-01

    Homojunctions between Bi2Se3 and its Mn-doped phase are investigated as a sample geometry to study the influence of spin degrees of freedom on topological insulator properties. n quintuple layers of Bi2Se3 are grown on top of Mn-doped Bi2Se3 by molecular beam epitaxy for 0 ≤n ≤30 QLs , allowing to unhamperedly monitor the development of electronic and topological properties by surface sensitive techniques like angle resolved photoemission spectroscopy. With increasing n, a Mn-induced gap at the Dirac point is gradually filled in an "hourglass" fashion to reestablish a topological surface state at n ˜9 QLs . Our results suggest a competition of upward and downward band bending effects due to the presence of an n-p type interface, which can be used to tailor topological and quantum well states independently.

  15. Influence of calcium on structural and morphological properties of BiMnO{sub 3} thin films

    SciTech Connect

    Pugazhvadivu, K. S.; Tamilarasan, K.; Balakrishnan, L.

    2015-06-24

    Bi{sub 1-x}Ca{sub x}MnO{sub 3} (x = 0, 0.1, 0.2, 0.4) thin films were deposited on n–type silicon (100) substrate by RF magnetron sputtering. The X-ray diffraction pattern showed that the films were in monoclinic structure with C2 space group. The crystallite size and strain in the prepared films were measured by W-H plot. The surface morphology of the films was examined by atomic force microscope. The thickness of films was measured by thickness monitor in the sputtering system. From the analysis, it has been concluded that the optimum level for calcium doping is 20 at.% in the Bi site of BiMnO{sub 3} thin film, which will lead a way for further research in the Ca doped BiMnO{sub 3} system.

  16. Structural and morphological studies on Bi1-xCaxMnO3 thin films grown by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Pugazhvadivu, K. S.; Santhiya, M.; Balakrishnan, L.; Tamilarasan, K.

    2016-05-01

    Bi1-xCaxMnO3 (0 ≤ X ≤ 0.4) thin films are deposited on n-type Si (100) substrate at 800 °C by RF magnetron sputtering. X-ray diffraction pattern shows that the films are crystallized in monoclinic structure with C2 space group. The crystallite size and induced strain in the prepared films are measured by W-H plot. The cell parameters and texture coefficient of the films are calculated. The surface morphology of the films is examined by atomic force microscope. The study confirms the optimum level of calcium doping is 20 at. % in Bi site of BiMnO3 film, these findings pave the way for further research in the Ca modified BiMnO3 films towards device fabrication.

  17. Thermophysical properties of BiFeO3, Bi0.91Nd0.09FeO3, and BiFe0.91Mn0.09O3 multiferroics at high temperatures

    NASA Astrophysics Data System (ADS)

    Klyndyuk, A. I.; Khort, A. A.

    2016-06-01

    The thermal diffusion, heat capacity, and thermal conductivity of BiFeO3, Bi0.91Nd0.09FeO3, and BiFe0.91Mn0.09O3 multiferroics have been studied at high temperatures (300-1120 K). The dominant mechanisms of phonon transfer in the regions of the antiferromagnetic and ferroelectric phase transitions have been determined. The temperature dependence of the mean free path of phonons has been found.

  18. AlMn Transition Edge Sensors for Advanced ACTPol

    NASA Technical Reports Server (NTRS)

    Li, Dale; Austermann, Jason E.; Beall, James A.; Tucker, Daniel T.; Duff, Shannon M.; Gallardo, Patricio A.; Henderson, Shawn W.; Hilton, Gene C.; Ho, Shuay-Pwu; Hubmayr, Johannes; Koopman, Brian J.; McMahon, Jeffrey J.; Nati, Federico; Niemack, Michael D.; Pappas, Christine G.; Salatino, Maria; Schmitt, Benjamin L.; Simon, Sara M.; Staggs, Suzanne T.; Van Lanen, Jeff; Ward, Jonathan T.; Wollack, Edward J.

    2016-01-01

    Advanced ACTPol (Adv ACT) will use an array of multichroic polarization sensitive AIMn transition edge sensor (TES) bolometers read out through time-division multiplexing. Aluminum doped with a low concentration of manganese can be deposited to a bulk film thickness for a more reliable superconducting critical temperature uniformity compared to thin bilayers. To build the TES, the AlMn alloy is deposited, over Nb wiring, to a specific thickness to set the TES normal resistance. The doping concentration of manganese coarsely defines the TES critical temperature, while a fine tuning is achieved by heating the deposited film to a specific temperature. The TES island is connected to the thermal bath via four silicon-nitride membranes, where their geometry defines the thermal conductance to the temperature of the bath. Lastly, the TES heat capacity is increased by addition of PdAu electrically connected to the AlMn film. Designs and performance characteristics of these AlMn TESs are presented for use in AdvACT.

  19. Neutron diffraction study of Bi doped cubic spinel Co{sub 2}MnO{sub 4}

    SciTech Connect

    Rajeevan, N. E.; Kaushik, S. D.; Kumar, Ravi

    2015-06-24

    Polycrystalline Bi doped spinel Bi{sub x}Co{sub 2-x}MnO{sub 4} compounds were prepared by solid state reaction route. Room temperature neutron diffraction study reveals that all the compounds are formed in cubic phase and there is no change in the crystal structure due to Bi doping and the compound has cubic structure with Fd-3m space group. Cell parameter found to increase with respect to Bi doping and ferrimagnetic nature is established through magnetization. Low temperature neutron diffraction is carried out and emphasis the ferrimagnetic ordering in the samples of Bi{sub x}Co{sub 2-x}MnO{sub 4} series.

  20. Symmetry-lowering lattice distortion at the spin reorientation in MnBi single crystals

    SciTech Connect

    McGuire, Michael A.; Cao, Huibo; Chakoumakos, Bryan C.; Sales, Brian C.

    2014-11-18

    Here we report structural and physical properties determined by measurements on large single crystals of the anisotropic ferromagnet MnBi. The findings support the importance of magnetoelastic effects in this material. X-ray diffraction reveals a structural phase transition at the spin reorientation temperature TSR = 90 K. The distortion is driven by magneto-elastic coupling, and upon cooling transforms the structure from hexagonal to orthorhombic. Heat capacity measurements show a thermal anomaly at the crystallographic transition, which is suppressed rapidly by applied magnetic fields. Effects on the transport and anisotropic magnetic properties of the single crystals are also presented. Increasing anisotropy of the atomic displacement parameters for Bi with increasing temperature above TSR is revealed by neutron diffraction measurements. It is likely that this is directly related to the anisotropic thermal expansion in MnBi, which plays a key role in the spin reorientation and magnetocrystalline anisotropy. Finally, the identification of the true ground state crystal structure reported here may be important for future experimental and theoretical studies of this permanent magnet material, which have to date been performed and interpreted using only the high temperature structure.

  1. Symmetry-lowering lattice distortion at the spin reorientation in MnBi single crystals

    DOE PAGESBeta

    McGuire, Michael A.; Cao, Huibo; Chakoumakos, Bryan C.; Sales, Brian C.

    2014-11-18

    Here we report structural and physical properties determined by measurements on large single crystals of the anisotropic ferromagnet MnBi. The findings support the importance of magnetoelastic effects in this material. X-ray diffraction reveals a structural phase transition at the spin reorientation temperature TSR = 90 K. The distortion is driven by magneto-elastic coupling, and upon cooling transforms the structure from hexagonal to orthorhombic. Heat capacity measurements show a thermal anomaly at the crystallographic transition, which is suppressed rapidly by applied magnetic fields. Effects on the transport and anisotropic magnetic properties of the single crystals are also presented. Increasing anisotropy ofmore » the atomic displacement parameters for Bi with increasing temperature above TSR is revealed by neutron diffraction measurements. It is likely that this is directly related to the anisotropic thermal expansion in MnBi, which plays a key role in the spin reorientation and magnetocrystalline anisotropy. Finally, the identification of the true ground state crystal structure reported here may be important for future experimental and theoretical studies of this permanent magnet material, which have to date been performed and interpreted using only the high temperature structure.« less

  2. Characteristics of liquid-liquid immiscibility in Al-Bi-Cu, Al-Bi-Si, and Al-Bi-Sn monotectic alloys: Differential scanning calorimetry, interfacial tension, and density difference measurements

    NASA Astrophysics Data System (ADS)

    Kaban, Ivan G.; Hoyer, Walter

    2008-03-01

    Phase separation in ternary monotectic alloys (Al0.345Bi0.655)90X10 ( X=Cu,Si,Sn ; wt %) has been investigated. Experimental work included differential scanning calorimetry and measurements of the liquid-liquid (l-l) interfacial tension and difference in densities of coexisting phases. It is established that the interfacial tension between Al-rich and Bi-rich liquid phases increases when either Cu or Si is added and it decreases when Sn is added to the Al34.5Bi65.5 binary. This is related to the size of miscibility gap and is explained by increasing composition gradient across the (l-l) interface upon addition of either Cu or Si and its decreasing upon addition of Sn to the Al-Bi binary. The drop of interfacial tension in liquid (Al0.345Bi0.655)90Sn10 against Al34.5Bi65.5 is also caused by adsorption of Sn at the interface. Temperature dependences of the interfacial tension and density difference in the alloys studied follow a power law in reduced temperature (TC-T) at approach of the critical point with exponents close to the values predicted by the renormalization group theory of critical behavior.

  3. Synthesis, characterization and electrochemical performance of Al-substituted Li₂MnO₃

    DOE PAGESBeta

    Dhital, Chetan; Huq, Ashfia; Paranthaman, Mariappan Parans; Manivannan, Ayyakkannu; Torres-Castro, Loraine; Shojan, Jifi; Julien, Christian M.; Katiyar, Ram S.

    2015-08-08

    Li2MnO3 is known to be electrochemically inactive due to Mn in tetravalent oxidation state. Several compositions such as Li2MnO3 , Li1.5Al0.17MnO3, Li1.0Al0.33MnO3 and Li0.5Al0.5MnO3 were synthesized by a sol–gel Pechini method. All the samples were characterized with x-ray diffraction, Raman, x-ray photoelectron spectroscopy, scanning electron microscopy, Tap density and BET analyzer. X-ray diffraction patterns indicated the presence of monoclinic phase for pristine Li2MnO3and mixed monoclinic/spinel phases (Li2 - xMn1 - yAlx + yO3 + z) for Al-substituted Li2MnO3compounds. The Al substitution seems to occur both at Li and Mn sites, which could explain the presence of spinel phase. X-ray photoelectronmore » spectroscopy for Mn 2p orbital reveals a significant decrease in binding energy for Li1.0Al0.33MnO3 and Li0.5Al0.5MnO3 compounds. Cyclic voltammetry, charge/discharge cycles and electrochemical impedance spectroscopy were also performed. A discharge capacity of 24 mAh g-1 for Li2MnO3, 68 mAh g-1 for Li1.5Al0.17MnO3, 58 mAh g-1 for Li1.0Al0.33MnO3 and 74 mAh g-1 for Li0.5Al0.5MnO3 were obtained. As a result, aluminum substitutions increased the formation of spinel phase which is responsible for cycling.« less

  4. Effects of frit addition on the surface morphology and structural properties of ZnO-Bi2O3-Mn2O3 discs

    NASA Astrophysics Data System (ADS)

    Shahardin, Ahmad Hajidi; Mahmud, Shahrom; Sendi, Rabab Khalid

    2015-04-01

    ZnO-Bi2O3-Mn2O3 discs were prepared using conventional ceramic processing method and sintered at 1000°C. The different percentages of frit on the ZnO-Bi2O3-Mn2O3 discs were 0.0%, 0.5%, 1.0% and 3.0%. From FESEM observation, the grain structure and grain growth were more uniformly constructed and well distributed. Frit addition was found to cause a big drop in the average grain size from 4.59 µm to 2.76 µm even with an addition of 0.5 mol%. The Si and Al content in the frit recipe might have played a role as inhibiting agents in grain growth during sintering. RAMAN intensity and phase shifting were not affected by frit addition except at 3 mol%. Frit addition did not affect the formation of secondary phases. Frit addition below 3 mol% in ZnO-Bi2O3-Mn2O3 varistor discs can be used as a method in controlling grain size without affecting other properties.

  5. Simulation Study of Al-1Mn/Al-10Si Circular Clad Ingots Prepared by Direct Chill Casting

    NASA Astrophysics Data System (ADS)

    Wu, Li; Kang, Huijun; Chen, Zongning; Fu, Ying; Wang, Tongmin

    2016-02-01

    A modified direct chill casting process based on Novelis FusionTM Technology co-casting process was used recently to prepare Al-1Mn/Al-10Si circular clad ingots. In the current study, a comprehensive simulation model was developed to investigate the direct chill casting process for preparing the Al-1Mn/Al-10Si circular clad ingots, and a parametric study and experimental research of the direct chill casting process was conducted to explore potential success and failure casting conditions. The simulation results revealed the bonding mechanism of the Al-1Mn/Al-10Si interface in the direct chill casting process and identified the effect of certain parameters on casting performance. The results indicated that the effect of casting speed and Al-1Mn casting temperature on the variations of the minimum solid fraction of Al-1Mn at the interface is stronger than that of cooling water flow rate in inner mold, while Al-10Si casting temperature is the weakest of the four casting parameters. The corresponding experimental results verified that Al-1Mn/Al-10Si circular clad ingot with acceptable metallurgical bonding can be successfully prepared by direct chill casting process under the proper casting parameters. The thickness of diffusion zone is about 40 μm, and the fractured position in tensile test was located in the Al-1Mn alloy side which indicated the strength of the interfacial region is higher than that of Al-1Mn alloy.

  6. The Effect of Strain and Strain Symmetry on the Charge-Order Transition in Bi0.4Ca0.6MnO3 Films

    SciTech Connect

    Christen, Hans M; Varela del Arco, Maria; Kim, Dae Ho

    2008-01-01

    The transition to a charge and orbital ordered (CO/OO) state in epitaxial manganite films is strongly influenced by lattice strain. Bi1-xCaxMnO3 is a particularly interesting material due to its high transition temperature and its relation to other Bi-based materials. Here we review its properties and show the effects of strain and strain symmetry on Bi 0.4Ca0.6MnO3 films on SrTiO3 and LaAlO3 substrates with (pseudocubic) (001) and (011) orientations. Transport and magnetization data are compared to 4-circle x-ray diffraction and high-resolution Z-contrast scanning transmission microscopy data. We observe the spontaneous formation of single-unit-cell thick, Bi-rich layers only on (001) SrTiO3 substrates and different defect structures depending on the substrate type and orientation. This shows that the details of epitaxial strain play a role not only at phase transitions, but also during the growth of these materials. Results are compared to those published for other CO/OO manganite films.

  7. Robust antiferromagnetism preventing superconductivity in pressurized (Ba0.61K0.39)Mn2Bi2

    PubMed Central

    Gu, Dachun; Dai, Xia; Le, Congcong; Sun, Liling; Wu, Qi; Saparov, Bayrammurad; Guo, Jing; Gao, Peiwen; Zhang, Shan; Zhou, Yazhou; Zhang, Chao; Jin, Shifeng; Xiong, Lun; Li, Rui; Li, Yanchun; Li, Xiaodong; Liu, Jing; Sefat, Athena S.; Hu, Jiangping; Zhao, Zhongxian

    2014-01-01

    BaMn2Bi2 possesses an iso-structure of iron pnictide superconductors and similar antiferromagnetic (AFM) ground state to that of cuprates, therefore, it receives much more attention on its properties and is expected to be the parent compound of a new family of superconductors. When doped with potassium (K), BaMn2Bi2 undergoes a transition from an AFM insulator to an AFM metal. Consequently, it is of great interest to suppress the AFM order in the K-doped BaMn2Bi2 with the aim of exploring the potential superconductivity. Here, we report that external pressure up to 35.6 GPa cannot suppress the AFM order in the K-doped BaMn2Bi2 to develop superconductivity in the temperature range of 300 K–1.5 K, but induces a tetragonal (T) to an orthorhombic (OR) phase transition at ~20 GPa. Theoretical calculations for the T and OR phases, on basis of our high-pressure XRD data, indicate that the AFM order is robust in the pressurized Ba0.61K0.39Mn2Bi2. Both of our experimental and theoretical results suggest that the robust AFM order essentially prevents the emergence of superconductivity. PMID:25475224

  8. Fabrication of fully dense nanostructured MnBi magnet by hot compaction of cryo-milled powders

    NASA Astrophysics Data System (ADS)

    Hadjipanayis, George; Neelam, Venkata; Gabay, Alex; Li, Wang

    2013-03-01

    Recently, rare-earth-free permanent magnets (REFPMs) have attracted much attention globally owing to rare-earth metal crisis and high cost. Among the REFPMs, MnBi is a potential candidate due to its unusual large magnetocrystalline anisotropy (K ~ 107 erg/cc) and positive temperature of coefficient of coercivity. In this work, we report for the first time a novel processing method that combines the cryo-milling with hot compaction to produce fully dense bulk nanostructured MnBi magnet. The effect of cryo-milling on particle size, phase formation, and magnetic properties of MnBi has been studied in detail. Also, the microstructural and magnetic properties of bulk nanostructured MnBi magnet were investigated. Adoption of cryo-milling results in nanocrystalline powders with particle size of 400-500 nm. Large coercivity (Hc) values of 18.5 kOe, and 12.9 kOe were obtained in cryo-milled powders and hot compacted magnet respectively. The MnBi magnet shows a large positive temperature coefficient of Hc and the Hc reaches a value of more than 30 kOe above 450 K. The work was supported by Siemens.

  9. Robust antiferromagnetism preventing superconductivity in pressurized (Ba0.61K0.39)Mn2Bi2

    DOE PAGESBeta

    Gu, Dachun; Dai, Xia; Le, Congcong; Sun, Liling; Wu, Qi; Saparov, Bayrammurad; Guo, Jing; Gao, Peiwen; Zhang, Shan; Zhou, Yazhou; et al

    2014-12-05

    BaMn2Bi2 possesses an iso-structure of iron pnictide superconductors and similar antiferromagnetic (AFM) ground state to that of cuprates, therefore, it receives much more attention on its properties and is expected to be the parent compound of a new family of superconductors. When doped with potassium (K), BaMn2Bi2 undergoes a transition from an AFM insulator to an AFM metal. Consequently, it is of great interest to suppress the AFM order in the K-doped BaMn2Bi2 with the aim of exploring the potential superconductivity. Here, we report that external pressure up to 35.6 GPa cannot suppress the AFM order in the K-doped BaMn2Bi2more » to develop superconductivity in the temperature range of 300 K–1.5 K, but induces a tetragonal (T) to an orthorhombic (OR) phase transition at ~20 GPa. Theoretical calculations for the T and OR phases, on basis of our high-pressure XRD data, indicate that the AFM order is robust in the pressurized Ba0.61K0.39Mn2Bi2. Utlimately, both of our experimental and theoretical results suggest that the robust AFM order essentially prevents the emergence of superconductivity.« less

  10. Effect of Tb-Mn substitution on the magnetic and electrical properties of BiFeO3 ceramics

    NASA Astrophysics Data System (ADS)

    Saravana Kumar, K.; Aswini, P.; Venkateswaran, C.

    2014-09-01

    Tb-Mn co-substituted BiFeO3 of stoichiometry Bi1-xTbxFe1-xMnxO3 (x=0, 0.10, 0.15, 0.20) has been synthesized by a solid-state reaction method. Inferences from X-ray photoelectron spectroscopy indicate the presence of Fe in mixed oxidation states i.e., Fe3+ and Fe2+. But in the Tb-Mn substituted samples, Fe is predominantly in +3 oxidation state and Mn is found to be in +3 state. There is a decrease in cell volume due to Tb3+ substitution as Mn3+ ions have similar ionic radii as that of Fe3+. The grains of substituted samples have regular dimensions with agglomeration when compared to irregular shaped grains of BiFeO3. No major characteristic transitions are found in substituted samples as observed from the thermal measurements, but BiFeO3 shows a ferroelectric-paraelectric transition at ~820 °C. A weak magnetic ordering is observed from the magnetization measurements at room temperature with the increase in substitution percentage. Impedance spectroscopy studies show the impact of Tb-Mn substitution on the conductivity of BiFeO3. The ferroelectric loop and leakage current studies with an applied electric field on samples also supplement the results obtained from impedance measurements.

  11. Characteristics of laser welded wrought Mg-Al-Mn alloy

    SciTech Connect

    Quan Yajie Chen Zhenhua; Yu Zhaohui; Gong Xiaosan; Li Mei

    2008-12-15

    Magnesium alloys have gained increased attention in recent years as a structural metal because of their property merits, which necessitates the development of welding techniques qualified for applications in the aeronautic and automotive industries. Laser welding is known to be an excellent method for joining metals. In this paper, a 3 kW CO{sub 2} laser beam was used to weld the wrought Mg-Al-Mn alloy. The characteristics of the microstructure and the mechanical properties of the joints were analyzed by optical microscopy (OM), energy dispersive spectrometry (EDS), scanning electron microscopy (SEM), tensile testing and hardness testing. The experimental results show that the wrought Mg-Al-Mn alloy can be joined successfully using optimized welding conditions. The results of tensile testing show that the highest ultimate tensile strength (UTS) of the joints is up to 94% of that of the base metal. The base metal consists of a typical rolled structure, the narrow heat affected zone (HAZ) has no obvious grain coarsening, and the fusion zone consists of fine grains with a high density of {gamma}-Mg{sub 17}Al{sub 12} precipitates. The hardness test results indicate that the microhardness in the fusion zone is higher than that of the base metal. The elemental analysis reveals that the Mg content in the weld is lower than that of the base metal, but the Al content is slightly higher.

  12. Effect of applied magnetic fields during directional solidification of eutectic Bi-Mn

    NASA Technical Reports Server (NTRS)

    Decarlo, J. L.; Pirich, R. G.

    1984-01-01

    Samples of rod eutectics Bi/MnBi were directionally solidified in a growth-up Bridgman-Stockbarger configuration in the presence of a transverse magnetic field up to 3 kg to determine whether gravity-driven convective effects could be reduced or eliminated. The experiments were carried out over a range of furnace velocities, V, of 0.2 to 50 cm per hour with a thermal gradient at the liquid-solid interface of 100 C/cm and 150 C/cm. Morphological, thermal and magnetic analyses were carried out on samples grown with and without an applied magnetic field. For samples grown at V greater than 3 cm per hour in a transverse magnetic field, reduced mean rod diameter and interrod spacing occurred as well as undercooling and increased coercive strength. The data agreed with that obtained for low-g growth at 50 cm per hour and 30 cm per hour.

  13. Study of the Temperature Dependence of Coercivity in MnBi

    NASA Astrophysics Data System (ADS)

    Curcio, C.; Olivetti, E. S.; Martino, L.; Küpferling, M.; Basso, V.

    Two set of polycrystalline MnBi bulk samples, as-annealed and compacted powders, with different grain size, were prepared through powder metallurgy. Coercivity mechanisms were investigated by Kronmüller plot analysis, evaluating α and Neff parameters, which take into account the effect of microstructure. The temperature dependence of coercivity of the as-annealed sample (α= 0.31) is compatible with pinning-type mechanisms, while that of the compacted powders (α= 0.41) indicates nucleation-type processes. Irreversible effects of temperature dependence of coercivity have been investigated.

  14. Magnetic Transitions in the Spin-5/2 Frustrated Magnet BiMn2PO6 and Strong Lattice Softening in BiMn2PO6 and BiZn2PO6 Below 200 K

    SciTech Connect

    Nath, R; Ranjith, K M; Roy, B; Johnston, D C; Furukawa, Y; Tsirlin, A A

    2014-07-01

    The crystallographic, magnetic, and thermal properties of polycrystalline BiMn2PO6 and its nonmagnetic analog BiZn2PO6 are investigated by x-ray diffraction, magnetization M, magnetic susceptibility χ, heat capacity Cp, and P31 nuclear magnetic resonance (NMR) measurements versus applied magnetic field H and temperature T as well as by density-functional band theory and molecular-field calculations. Both compounds show a strong monotonic lattice softening on cooling, where the Debye temperature decreases by a factor of two from ΘD~650 K at T=300 K to ΘD~300 K at T=2 K. The χ(T) data for BiMn2PO6 above 150 K follow a Curie-Weiss law with a Curie constant consistent with a Mn+2 spin S=5/2 with g factor g=2 and an antiferromagnetic (AFM) Weiss temperature θCW≃-78 K. The χ data indicate long-range AFM ordering below TN≃30 K, confirmed by a sharp λ-shaped peak in Cp(T) at 28.8 K. The magnetic entropy at 100 K extracted from the Cp(T) data is consistent with spin S=5/2 for the Mn+2 cations. The band-theory calculations indicate that BiMn2PO6 is an AFM compound with dominant interactions J1/kB≃6.7 K and J3/kB≃5.6 K along the legs and rungs of a Mn two-leg spin-ladder, respectively. However, sizable and partially frustrating interladder couplings lead to an anisotropic three-dimensional magnetic behavior with long-range AFM ordering at TN≃30 K observed in the χ, Cp, and NMR measurements. A second magnetic transition at ≈10 K is observed from the χ and NMR measurements but is not evident in the Cp data. The Cp data at low T suggest a significant contribution from AFM spin waves moving in three dimensions and the absence of a spin-wave gap. A detailed analysis of the NMR spectra indicates commensurate magnetic order between 10 and 30 K, while below 10 K additional features appear that may arise from an incommensurate modulation and/or spin canting. The commensurate order is consistent with microscopic density functional calculations that yield a

  15. Thermodynamic Assessment of the Aluminum Corner of the Al-Fe-Mn-Si System

    NASA Astrophysics Data System (ADS)

    Lacaze, Jacques; Eleno, Luiz; Sundman, Bo

    2010-09-01

    A new assessment of the aluminum corner of the quaternary Al-Fe-Mn-Si system has been made that extends beyond the COST-507 database. This assessment makes use of a recent, improved description of the ternary Al-Fe-Si system. In the present work, modeling of the Al-rich corner of the quaternary Al-Fe-Mn-Si system has been carried out by introducing Fe solubility into the so-called alpha-AlMnSi and beta-AlMnSi phases of the Al-Mn-Si system. A critical review of the data available on the quaternary system is presented and used for the extension of the description of these ternary phases into the quaternary Al-Fe-Mn-Si.

  16. Precipitation Strengthening in Al-Ni-Mn Alloys

    NASA Astrophysics Data System (ADS)

    Fan, Yangyang; Huang, Kai; Makhlouf, Makhlouf M.

    2015-12-01

    Precipitation hardening of eutectic and hypoeutectic Al-Ni alloys by 2 to 4 wt pct. manganese is investigated with focus on the effect of the alloys' chemical composition and solidification cooling rate on microstructure and tensile strength. Within the context of the investigation, mathematical equations based on the Orowan Looping strengthening mechanism were used to calculate the strengthening increment contributed by each of the phases present in the aged alloy. The calculations agree well with measured values and suggest that the larger part of the alloy's yield strength is due to the Al3Ni eutectic phase, this is closely followed by contribution from the Al6Mn particles, which precipitate predominantly at grain boundaries.

  17. Magnetic properties of Mn-doped Bi2Se3 compound: temperature dependence and pressure effects.

    PubMed

    Panfilov, A S; Grechnev, G E; Fedorchenko, A V; Conder, K; Pomjakushina, E V

    2015-11-18

    Magnetic susceptibility χ of Bi2-x Mn x Se3 (x  =  0.01-0.2) was measured in the temperature range 4.2-300 K. For all the samples, a Curie-Weiss behaviour of χ(T) was revealed with effective magnetic moments of Mn ions corresponding to the spin value S  =  5/2, which couple antiferromagnetically with the paramagnetic Curie temperature Θ ~ -50 K. In addition, for the samples of nominal composition x  =  0.1 and 0.2 the effect of a hydrostatic pressure P up to 2 kbar on χ has been measured at fixed temperatures 78 and 300 K that allowed to estimate the pressure derivative of Θ to be dΘ/dP ~ -0.8 K kbar(-1). Based on the observed behaviour of Θ with varied Mn concentration and pressure, a possible mechanism of interaction between localized Mn moments is discussed. PMID:26471893

  18. XPS and EELS characterization of Mn2SiO4, MnSiO3 and MnAl2O4

    NASA Astrophysics Data System (ADS)

    Grosvenor, A. P.; Bellhouse, E. M.; Korinek, A.; Bugnet, M.; McDermid, J. R.

    2016-08-01

    X-ray Photoelectron Spectroscopy (XPS) and Electron Energy Loss Spectroscopy (EELS) are strong candidate techniques for characterizing steel surfaces and substrate-coating interfaces when investigating the selective oxidation and reactive wetting of advanced high strength steels (AHSS) during the continuous galvanizing process. However, unambiguous identification of ternary oxides such as Mn2SiO4, MnSiO3, and MnAl2O4 by XPS or EELS, which can play a significant role in substrate reactive wetting, is difficult due to the lack of fully characterized standards in the literature. To resolve this issue, samples of Mn2SiO4, MnSiO3 and MnAl2O4 were synthesized and characterized by XPS and EELS. The unique features of the XPS and EELS spectra for the Mn2SiO4, MnSiO3 and MnAl2O4 standards were successfully derived, thereby allowing investigators to fully differentiate and identify these oxides at the surface and subsurface of Mn, Si and Al alloyed AHSS using these techniques.

  19. Precipitation and fracture behaviour of Fe-Mn-Ni-Al alloys

    NASA Astrophysics Data System (ADS)

    Heo, Yoon-Uk; Lee, Hu-Chul

    2013-12-01

    The effects of Al addition on the precipitation and fracture behaviour of Fe-Mn-Ni alloys were investigated. With the increasing of Al concentration, the matrix and grain boundary precipitates changed from L10 θ-MnNi to B2 Ni2MnAl phase, which is coherent and in cube-to-cube orientation relationship with the α‧-matrix. Due to the suppression of the θ-MnNi precipitates at prior austenite grain boundaries (PAGBs), the fracture mode changed from intergranular to transgranular cleavage fracture. Further addition of Al resulted in the discontinuous growth of Ni2MnAl precipitates in the alloy containing 4.2 wt.% Al and fracture occurred by void growth and coalescence, i.e. by ductile dimple rupture. The transition of the fracture behaviour of the Fe-Mn-Ni-Al alloys is discussed in relation to the conversion of the precipitates and their discontinuous precipitation behaviour at PAGBs.

  20. Reversing ferroelectric polarization in multiferroic DyMn{sub 2}O{sub 5} by nonmagnetic Al substitution of Mn

    SciTech Connect

    Zhao, Z. Y.; Liu, M. F.; Li, X.; Wang, J. X.; Yan, Z. B.; Wang, K. F.; Liu, J.-M.

    2014-08-07

    The multiferroic RMn{sub 2}O{sub 5} family, where R is rare-earth ion or Y, exhibits rich physics of multiferroicity which has not yet well understood. DyMn{sub 2}O{sub 5} is a representative member of this family. The ferroelectric polarization of DyMn{sub 2}O{sub 5} is claimed to be magnetically relevant and have more than one component. Therefore, the polarization reversal upon the sequent magnetic transitions is expected. We investigate the evolution of the ferroelectric polarization upon a partial substitution of Mn{sup 3+} by nonmagnetic Al{sup 3+} in order to tailor the Mn{sup 3+}-Mn{sup 4+} interactions and then to modulate the polarization in DyMn{sub 2−x/2}Al{sub x/2}O{sub 5}. It is revealed that the polarization can be successfully reversed by Al-substitution via substantially suppressing the Mn{sup 3+}-Mn{sup 4+} interactions, while the Dy{sup 3+}-Mn{sup 4+} interactions can sustain against the substitution until a level as high as x = 0.2. In addition, the independent Dy spin ordering is shifted remarkably down to an extremely low temperature due to the Al{sup 3+} substitution. The present work unveils the possibility of tailoring the Mn{sup 3+}-Mn{sup 4+} and Dy{sup 3+}-Mn{sup 4+} interactions independently, and thus reversing the ferroelectric polarization.

  1. Structural, magnetic, and electron transport properties of MnBi:Fe thin films

    SciTech Connect

    Kharel, P.; Skomski, R.; Sellmyer, D. J.; Li, X. Z.; Shah, V. R.; Al-Aqtash, N.; Tarawneh, K.; Sabirianov, R. F.

    2012-04-01

    The structural, magnetic, and electron transport properties of Mn{sub 55-x}Fe{sub x}Bi{sub 45} (x = 0, 2, 4, 5, 8, 11, 13, 16) films prepared by multilayer deposition and annealing using e-beam evaporation have been investigated. Fe doping has produced a significant change in the magnetic properties of the samples including the decrease in saturation magnetization and magnetocrystalline anisotropy and increase in coercivity. Although the magnetization shows a smooth decrease with increasing Fe concentration, the coercivity jumps abruptly from 8.5 kOe to 22 kOe as Fe content changes from 4% to 5%, but the change in coercivity is small as the concentration goes beyond 5%. The temperature dependence of resistivity shows that the samples with low Fe concentration ({<=}4%) are metallic, but the resistivity increases unexpectedly as the concentration reaches 5%, where the resistance increases with decreasing temperature below 300 K. First-principle calculations suggest that the observed magnetic properties can be understood as the consequences of competing ferromagnetic and antiferromagnetic exchange interactions between the interstitial atom and the rest of the MnBi lattice.

  2. MnBi particles with high energy density made by spark erosion

    SciTech Connect

    Nguyen, Phi-Khanh Jin, Sungho; Berkowitz, Ami E.

    2014-05-07

    We report on the properties of low-temperature phase (LTP)-MnBi particles produced by the rapid-quenching technique of spark-erosion. The as-prepared powder consists of amorphous, crystalline, and superparamagnetic particles, mostly as porous aggregates. The major fraction of the powder consists of 20–30 nm particles. A short anneal crystallizes the amorphous particles producing a high moment, >90% of theoretical M{sub S}, albeit with H{sub C} of a few kOe. If lightly milled, the agglomerates are broken up to yield H{sub C} of 1 T. These findings are supported by the x-ray diffraction pattern showing broadened peaks of the predominant LTP-MnBi phase. The combination of spark erosion, milling, and annealing has produced randomly oriented particles with (BH){sub MAX} ∼ 3.0 MGOe. The particles are expected to show record energy product when aligned along their crystallographic easy axes.

  3. MnBi particles with high energy density made by spark erosion

    SciTech Connect

    Nguyen, PK; Jin, SH; Berkowitz, AE

    2014-05-07

    We report on the properties of low-temperature phase (LTP)-MnBi particles produced by the rapid-quenching technique of spark-erosion. The as-prepared powder consists of amorphous, crystalline, and superparamagnetic particles, mostly as porous aggregates. The major fraction of the powder consists of 20-30 nm particles. A short anneal crystallizes the amorphous particles producing a high moment, >90% of theoretical M-S, albeit with H-C of a few kOe. If lightly milled, the agglomerates are broken up to yield H-C of 1 T. These findings are supported by the x-ray diffraction pattern showing broadened peaks of the predominant LTP-MnBi phase. The combination of spark erosion, milling, and annealing has produced randomly oriented particles with (BH)(MAX) similar to 3.0 MGOe. The particles are expected to show record energy product when aligned along their crystallographic easy axes. (C) 2014 AIP Publishing LLC.

  4. Strain-modulated ferromagnetism and band gap of Mn doped Bi2Se3

    PubMed Central

    Qi, Shifei; Yang, Hualing; Chen, Juan; Zhang, Xiaoyang; Yang, Yingping; Xu, Xiaohong

    2016-01-01

    The quantized anomalous Hall effect (QAHE) have been theoretically predicted and experimentally confirmed in magnetic topological insulators (TI), but dissipative channels resulted by small-size band gap and weak ferromagnetism make QAHE be measured only at extremely low temperature (<0.1 K). Through density functional theory calculations, we systemically study of the magnetic properties and electronic structures of Mn doped Bi2Se3 with in-plane and out-of-plane strains. It is found that out-of-plane tensile strain not only improve ferromagnetism, but also enlarge Dirac-mass gap (up to 65.6 meV under 6% strain, which is higher than the thermal motion energy at room temperature ~26 meV) in the Mn doped Bi2Se3. Furthermore, the underlying mechanisms of these tunable properties are also discussed. This work provides a new route to realize high-temperature QAHE and paves the way towards novel quantum electronic device applications. PMID:27374782

  5. Strain-modulated ferromagnetism and band gap of Mn doped Bi2Se3

    NASA Astrophysics Data System (ADS)

    Qi, Shifei; Yang, Hualing; Chen, Juan; Zhang, Xiaoyang; Yang, Yingping; Xu, Xiaohong

    2016-07-01

    The quantized anomalous Hall effect (QAHE) have been theoretically predicted and experimentally confirmed in magnetic topological insulators (TI), but dissipative channels resulted by small-size band gap and weak ferromagnetism make QAHE be measured only at extremely low temperature (<0.1 K). Through density functional theory calculations, we systemically study of the magnetic properties and electronic structures of Mn doped Bi2Se3 with in-plane and out-of-plane strains. It is found that out-of-plane tensile strain not only improve ferromagnetism, but also enlarge Dirac-mass gap (up to 65.6 meV under 6% strain, which is higher than the thermal motion energy at room temperature ~26 meV) in the Mn doped Bi2Se3. Furthermore, the underlying mechanisms of these tunable properties are also discussed. This work provides a new route to realize high-temperature QAHE and paves the way towards novel quantum electronic device applications.

  6. Structural, magnetic, and electron transport properties of MnBi:Fe thin films

    SciTech Connect

    Kharel, P; Li, XZ; Shah, VR; Al-Aqtash, N; Tarawneh, K; Sabirianov, RF; Skomski, R; Sellmyer, DJ

    2012-04-01

    The structural, magnetic, and electron transport properties of Mn55-xFexBi45 (x = 0, 2, 4, 5, 8, 11, 13, 16) films prepared by multilayer deposition and annealing using e-beam evaporation have been investigated. Fe doping has produced a significant change in the magnetic properties of the samples including the decrease in saturation magnetization and magnetocrystalline anisotropy and increase in coercivity. Although the magnetization shows a smooth decrease with increasing Fe concentration, the coercivity jumps abruptly from 8.5 kOe to 22 kOe as Fe content changes from 4% to 5%, but the change in coercivity is small as the concentration goes beyond 5%. The temperature dependence of resistivity shows that the samples with low Fe concentration (<= 4%) are metallic, but the resistivity increases unexpectedly as the concentration reaches 5%, where the resistance increases with decreasing temperature below 300 K. First-principle calculations suggest that the observed magnetic properties can be understood as the consequences of competing ferromagnetic and antiferromagnetic exchange interactions between the interstitial atom and the rest of the MnBi lattice. (C) 2012 American Institute of Physics. [doi:10.1063/1.3675615

  7. Strain-modulated ferromagnetism and band gap of Mn doped Bi2Se3.

    PubMed

    Qi, Shifei; Yang, Hualing; Chen, Juan; Zhang, Xiaoyang; Yang, Yingping; Xu, Xiaohong

    2016-01-01

    The quantized anomalous Hall effect (QAHE) have been theoretically predicted and experimentally confirmed in magnetic topological insulators (TI), but dissipative channels resulted by small-size band gap and weak ferromagnetism make QAHE be measured only at extremely low temperature (<0.1 K). Through density functional theory calculations, we systemically study of the magnetic properties and electronic structures of Mn doped Bi2Se3 with in-plane and out-of-plane strains. It is found that out-of-plane tensile strain not only improve ferromagnetism, but also enlarge Dirac-mass gap (up to 65.6 meV under 6% strain, which is higher than the thermal motion energy at room temperature ~26 meV) in the Mn doped Bi2Se3. Furthermore, the underlying mechanisms of these tunable properties are also discussed. This work provides a new route to realize high-temperature QAHE and paves the way towards novel quantum electronic device applications. PMID:27374782

  8. Strain Localization in Thin Films of Bi(Fe,Mn)O3 Due to the Formation of Stepped Mn(4+)-Rich Antiphase Boundaries.

    PubMed

    MacLaren, I; Sala, B; Andersson, S M L; Pennycook, T J; Xiong, J; Jia, Q X; Choi, E-M; MacManus-Driscoll, J L

    2015-12-01

    The atomic structure and chemistry of thin films of Bi(Fe,Mn)O3 (BFMO) films with a target composition of Bi2FeMnO6 on SrTiO3 are studied using scanning transmission electron microscopy imaging and electron energy loss spectroscopy. It is shown that Mn(4+)-rich antiphase boundaries are locally nucleated right at the film substrate and then form stepped structures that are approximately pyramidal in three dimensions. These have the effect of confining the material below the pyramids in a highly strained state with an out-of-plane lattice parameter close to 4.1 Å. Outside the area enclosed by the antiphase boundaries, the out-of-plane lattice parameter is much closer to bulk values for BFMO. This suggests that to improve the crystallographic perfection of the films whilst retaining the strain state through as much of the film as possible, ways need to be found to prevent nucleation of the antiphase boundaries. Since the antiphase boundaries seem to form from the interaction of Mn with the Ti in the substrate, one route to perform this would be to grow a thin buffer layer of pure BiFeO3 on the SrTiO3 substrate to minimise any Mn-Ti interactions. PMID:26474888

  9. Strain Localization in Thin Films of Bi(Fe,Mn)O3 Due to the Formation of Stepped Mn4+-Rich Antiphase Boundaries

    NASA Astrophysics Data System (ADS)

    MacLaren, I.; Sala, B.; Andersson, S. M. L.; Pennycook, T. J.; Xiong, J.; Jia, Q. X.; Choi, E.-M.; MacManus-Driscoll, J. L.

    2015-10-01

    The atomic structure and chemistry of thin films of Bi(Fe,Mn)O3 (BFMO) films with a target composition of Bi2FeMnO6 on SrTiO3 are studied using scanning transmission electron microscopy imaging and electron energy loss spectroscopy. It is shown that Mn4+-rich antiphase boundaries are locally nucleated right at the film substrate and then form stepped structures that are approximately pyramidal in three dimensions. These have the effect of confining the material below the pyramids in a highly strained state with an out-of-plane lattice parameter close to 4.1 Å. Outside the area enclosed by the antiphase boundaries, the out-of-plane lattice parameter is much closer to bulk values for BFMO. This suggests that to improve the crystallographic perfection of the films whilst retaining the strain state through as much of the film as possible, ways need to be found to prevent nucleation of the antiphase boundaries. Since the antiphase boundaries seem to form from the interaction of Mn with the Ti in the substrate, one route to perform this would be to grow a thin buffer layer of pure BiFeO3 on the SrTiO3 substrate to minimise any Mn-Ti interactions.

  10. Effects of an applied magnetic field on directional solidification of off-eutectic Bi-Mn alloys

    NASA Technical Reports Server (NTRS)

    Decarlo, J. L.; Pirich, R. G.

    1987-01-01

    Off-eutectic compositions of Bi-Mn were directionally solidified in applied transverse magnetic fields up to 3 kG to determine the effects on thermal and solutal convection. For Bi-rich compositions, the magnetic field appeared to increase mixing as determined from thermal, morphological, chemical and magnetic analyses. For Mn-rich compositions morphological and chemical analyses suggest some reduction in mixing due to application of the magnetic field. Conductivity gradients in the melt are suggested as a possible mechanism for the observed results.

  11. Photoinduced electrical properties of Mn-doped BiFeO3 thin films prepared by chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Yoshida, Kenji; Sakamoto, Wataru; Moriya, Makoto; Yogo, Toshinobu

    2014-09-01

    Polycrystalline Mn-doped BiFeO3 thin films with a relatively narrow band gap were prepared on Pt/TiOx/SiO2/Si and MgO(100) substrates by chemical solution deposition. Their photoinduced electrical properties under visible light irradiation (400-700 nm) were characterized. The rapid on/off response of the photocurrent to light in unpoled BiFeO3-based thin films was demonstrated. From the direction of the electric current, the internal bias electric field caused by the space charge distribution in the unpoled film is considered to have an important effect on photocurrent generation and photovoltaic phenomena. Although Mn doping did not greatly affect the band gap and ferroelectric remanent polarization, it had an influence on the photocurrent behavior and photovoltaic properties. The magnitude of the photoinduced current of the film decreased with increasing Mn doping. In this case, the energy level created in BiFeO3 by Mn doping traps carriers generated by photoexcitation. The interfacial state between the thin film and the top or bottom electrode and the electrical resistivity at low applied voltages were also found to be related to the photoinduced behavior of the Mn-doped BiFeO3 thin films.

  12. Direct observation of a gap opening in topological interface states of MnSe/Bi{sub 2}Se{sub 3} heterostructure

    SciTech Connect

    Matetskiy, A. V. Kibirev, I. A.; Saranin, A. A.; Hirahara, T.; Hasegawa, S.; Zotov, A. V.

    2015-08-31

    High-quality MnSe(111) film was bilayer-by-bilayer grown epitaxially onto the Bi{sub 2}Se{sub 3}(111) surface using molecular beam epitaxy. Reversal scenario with quintuple layer-by-layer growth of Bi{sub 2}Se{sub 3} onto the MnSe film was also realized. Angle-resolved photoemission spectroscopy measurements of Bi{sub 2}Se{sub 3} capped with two bi-layers of MnSe revealed that an energy gap of about 90 meV appears at the Dirac point of the original Bi{sub 2}Se{sub 3} surface, possibly due to breaking the time-reversal symmetry on the Bi{sub 2}Se{sub 3} surface by magnetic proximity effect from MnSe.

  13. Magnetic BiMn-α phase synthesis prediction: First-principles calculation, thermodynamic modeling and nonequilibrium chemical partitioning

    DOE PAGESBeta

    Zhou, S. H.; Liu, C.; Yao, Y. X.; Du, Y.; Zhang, L. J.; Wang, C. -Z.; Ho, K. -M.; Kramer, M. J.

    2016-04-29

    BiMn-α is promising permanent magnet. Due to its peritectic formation feature, there is a synthetic challenge to produce single BiMn-α phase. The objective of this study is to assess driving force for crystalline phase pathways under far-from-equilibrium conditions. First-principles calculations with Hubbard U correction are performed to provide a robust description of the thermodynamic behavior. The energetics associated with various degrees of the chemical partitioning are quantified to predict temperature, magnetic field, and time dependence of the phase selection. By assessing the phase transformation under the influence of the chemical partitioning, temperatures, and cooling rate from our calculations, we suggestmore » that it is possible to synthesize the magnetic BiMn-α compound in a congruent manner by rapid solidification. The external magnetic field enhances the stability of the BiMn-α phase. In conclusion, the compositions of the initial compounds from these highly driven liquids can be far from equilibrium.« less

  14. Bi-Mn mixed metal organic oxide: A novel 3d-6p mixed metal coordination network

    NASA Astrophysics Data System (ADS)

    Shi, Fa-Nian; Rosa Silva, Ana; Bian, Liang

    2015-05-01

    A new terminology of metal organic oxide (MOO) was given a definition as a type of coordination polymers which possess the feature of inorganic connectivity between metals and the direct bonded atoms and show 1D, 2D or 3D inorganic sub-networks. One such compound was shown as an example. A 3d-6p (Mn-Bi. Named MOOMnBi) mixed metals coordination network has been synthesized via hydrothermal method. The new compound with the molecular formula of [MnBi2O(1,3,5-BTC)2]n (1,3,5-BTC stands for benzene-1,3,5-tricarboxylate) was characterized via single crystal X-ray diffraction technique that revealed a very interesting 3-dimensional (3D) framework with Bi4O2(COO)12 clusters which are further connected to Mn(COO)6 fragments into a 2D MOO. The topology study indicates an unprecedented topological type with the net point group of {413.62}{413.68}{416.65}{418.610}{422.614}{43} corresponding to 3,6,7,7,8,9-c hexa-nodal net. MOOMnBi shows catalytic activity in the synthesis of (E)-α,β-unsaturated ketones.

  15. Rapid liquid phase sintered Mn doped BiFeO3 ceramics with enhanced polarization and weak magnetization

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Yadav, K. L.

    2007-12-01

    Single-phase BiFe1-xMnxO3 multiferroic ceramics have been synthesized by rapid liquid phase sintering method to study the influence of Mn substitution on their crystal structure, dielectric, magnetic, and ferroelectric behaviors. From XRD analysis it is seen that Mn substitution does not affect the crystal structure of the BiFe1-xMnxO3 system. An enhancement in magnetization was observed for BiFe1-xMnxO3 ceramics. However, the ferooelectric hysteresis loops were not really saturated, we observed a spontaneous polarization of 10.23μC /cm2 under the applied field of 42kV/cm and remanent polarization of 3.99μC/cm2 for x =0.3 ceramic.

  16. Magnetic structure and spin excitations in BaMn2Bi2

    DOE PAGESBeta

    Calder, Stuart A.; Saparov, Bayrammurad I; Cao, H. B.; Niedziela, Jennifer L.; Lumsden, Mark D.; Sefat, Athena Safa; Christianson, Andrew D.

    2014-02-19

    We present a single crystal neutron scattering study of BaMn2Bi2, a recently synthesized material with the same ThCr2Si2type structure found in several Fe-based unconventional superconducting materials. We show long range magnetic order, in the form of a G-type antiferromagnetic structure, to exist up to 390 K with an indication of a structural transition at 100 K. Utilizing inelastic neutron scattering we observe a spin-gap of 16 meV, with spin-waves extending up to 55 meV. We find these magnetic excitations are well fit to a J1-J2-Jc Heisenberg model and present values for the exchange interactions. The spin wave spectrum appears tomore » be unchanged by the 100 K structural phase transition.« less

  17. Investigation of complex magnetic state in LaBiMnO3

    NASA Astrophysics Data System (ADS)

    Dayal, Vijaylakshmi; Punith Kumar, V.

    2014-06-01

    We present here the results of a comprehensive study of the DC magnetization, linear and nonlinear AC susceptibility, DC resistivity and Magnetotransport behavior of the La0.8Bi0.2MnO3 polycrystalline manganite to understand its complex magnetic nature. The sample under study is synthesized by a conventional solid state route and is found to crystallize in rhombohedral structure having R3barc group. A significant irreversibility between zero-field-cooled and field-cooled magnetization data with a broad peak in ZFC is clearly observed. Temperature variation of first and third order AC susceptibilities is in good agreement with Wohlfarth's Model for Superparamagnetism (SPM). The analysis of history dependence of DC magnetization, linear and non-linear AC susceptibility provides evidence of SPM like behavior associated along with weak ferromagnetism in the sample at low temperature. The results are supported by the electrical resistivity and Magnetotransport measurements.

  18. Enhanced switching characteristics and piezoelectric response in epitaxial BiFeO3-TbMnO3 thin films

    NASA Astrophysics Data System (ADS)

    Li, Wei; Wang, Yiping; Nie, Pengxiao; Hu, Querui; Yang, Ying; Yuan, Guoliang

    2015-06-01

    High-quality (001) oriented epitaxial 0.9BiFeO3-0.1TbMnO3 thin films were grown on La2/3Sr1/3MnO3 and SrRuO3 buffered SrTiO3 substrate using pulsed laser deposition. X-ray diffraction showed that the films are single-phase perovskite without secondary impurity phases. Domain structures and upward ferroelectric self-poling phenomenon were distinctly observed in both films with compressive epitaxial strains. Furthermore, the upward self-poling disappears in polycrystalline 0.9BiFeO3-0.1TbMnO3 thin film on Pt/TiO2/SiO2/Si substrates. Through local switching spectroscopy measurements, the evidence of enhanced ferroelectric switching and piezoelectric response characteristics have been provided.

  19. Synthesis, characterization and electrochemical performance of Al-substituted Li₂MnO₃

    SciTech Connect

    Dhital, Chetan; Huq, Ashfia; Paranthaman, Mariappan Parans; Manivannan, Ayyakkannu; Torres-Castro, Loraine; Shojan, Jifi; Julien, Christian M.; Katiyar, Ram S.

    2015-08-08

    Li2MnO3 is known to be electrochemically inactive due to Mn in tetravalent oxidation state. Several compositions such as Li2MnO3 , Li1.5Al0.17MnO3, Li1.0Al0.33MnO3 and Li0.5Al0.5MnO3 were synthesized by a sol–gel Pechini method. All the samples were characterized with x-ray diffraction, Raman, x-ray photoelectron spectroscopy, scanning electron microscopy, Tap density and BET analyzer. X-ray diffraction patterns indicated the presence of monoclinic phase for pristine Li2MnO3and mixed monoclinic/spinel phases (Li2 - xMn1 - yAlx + yO3 + z) for Al-substituted Li2MnO3compounds. The Al substitution seems to occur both at Li and Mn sites, which could explain the presence of spinel phase. X-ray photoelectron spectroscopy for Mn 2p orbital reveals a significant decrease in binding energy for Li1.0Al0.33MnO3 and Li0.5Al0.5MnO3 compounds. Cyclic voltammetry, charge/discharge cycles and electrochemical impedance spectroscopy were also performed. A discharge capacity of 24 mAh g-1 for Li2MnO3, 68 mAh g-1 for Li1.5Al0.17MnO3, 58 mAh g-1 for Li1.0Al0.33MnO3 and 74 mAh g-1 for Li0.5Al0.5MnO3 were obtained. As a result, aluminum substitutions increased the formation of spinel phase which is responsible for cycling.

  20. Time-resolved spectroscopy of Bi3+ centers in Y4Al2O9

    NASA Astrophysics Data System (ADS)

    Babin, V.; Lipińska, L.; Mihokova, E.; Nikl, M.; Shalapska, T.; Suchocki, A.; Zazubovich, S.; Zhydachevskii, Ya

    2015-08-01

    Steady-state and time-resolved emission and excitation spectra as well as luminescence decay kinetics are studied at 4.2-400 K under excitation in the 3-6 eV energy range for Bi3+ ions substituting for Y3+ ions in four inequivalent crystal lattice sites of Y4Al2O9:Bi ceramics. Luminescence characteristics of Bi3+ centers of all the four types are identified and are shown to arise from the radiative decay of the triplet relaxed excited state (RES) of Bi3+ ions. The parameters of the triplet RES, namely, probabilities of the radiative and nonradiative transitions from the metastable and emitting levels as well as the energy distance between these levels, are determined. The influence of the nearest surroundings of Bi3+ ions on the luminescence characteristics and the parameters of the triplet RES of Bi3+ centers is discussed.

  1. Thermoelectric Properties of Mn-Doped Ca5Al2Sb6

    NASA Astrophysics Data System (ADS)

    Zevalkink, Alex; Swallow, Jessica; Snyder, G. Jeffrey

    2012-05-01

    Ca5Al2Sb6 is a relatively inexpensive Zintl compound exhibiting promising thermoelectric efficiency at temperatures suitable for waste heat recovery. Motivated by our previous studies of Ca5Al2Sb6 doped with Na and Zn, this study focuses on doping with Mn2+ at the Al3+ site. While Mn is a successful p-type dopant in Ca5Al2Sb6, we find that incomplete dopant activation yields lower hole concentrations than obtained with either previously investigated dopant. High-temperature Hall effect and Seebeck coefficient measurements show a transition from nondegenerate to degenerate semiconducting behavior in Ca5Al2- x Mn x Sb6 samples ( x = 0.05, 0.1, 0.2, 0.3, 0.4) with increasing Mn content. Ultimately, no improvement in zT is achieved via Mn doping, due in part to the limited carrier concentration range achieved.

  2. Elastocaloric effect in CuAlZn and CuAlMn shape memory alloys under compression.

    PubMed

    Qian, Suxin; Geng, Yunlong; Wang, Yi; Pillsbury, Thomas E; Hada, Yoshiharu; Yamaguchi, Yuki; Fujimoto, Kenjiro; Hwang, Yunho; Radermacher, Reinhard; Cui, Jun; Yuki, Yoji; Toyotake, Koutaro; Takeuchi, Ichiro

    2016-08-13

    This paper reports the elastocaloric effect of two Cu-based shape memory alloys: Cu68Al16Zn16 (CuAlZn) and Cu73Al15Mn12 (CuAlMn), under compression at ambient temperature. The compression tests were conducted at two different rates to approach isothermal and adiabatic conditions. Upon unloading at a strain rate of 0.1 s(-1) (adiabatic condition) from 4% strain, the highest adiabatic temperature changes (ΔTad) of 4.0 K for CuAlZn and 3.9 K for CuAlMn were obtained. The maximum stress and hysteresis at each strain were compared. The stress at the maximum recoverable strain of 4.0% for CuAlMn was 120 MPa, which is 70% smaller than that of CuAlZn. A smaller hysteresis for the CuAlMn alloy was also obtained, about 70% less compared with the CuAlZn alloy. The latent heat, determined by differential scanning calorimetry, was 4.3 J g(-1) for the CuAlZn alloy and 5.0 J g(-1) for the CuAlMn alloy. Potential coefficients of performance (COPmat) for these two alloys were calculated based on their physical properties of measured latent heat and hysteresis, and a COPmat of approximately 13.3 for CuAlMn was obtained.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'. PMID:27402936

  3. Swift heavy ion irradiation induced magnetism in magnetically frustrated BiMn{sub 2}O{sub 5} thin films

    SciTech Connect

    Shukla, D. K.; Mollah, S.; Kumar, Ravi; Choudhary, R. J.; Thakur, P.; Brookes, N. B.; Sharma, S. K.; Knobel, M.

    2010-11-01

    The swift heavy ion (SHI) irradiation induces weak ferrimagnetism (FM) in magnetically frustrated polycrystalline BiMn{sub 2}O{sub 5} thin films. This is manifested from irradiation induced higher energetic configuration that accounts for evolution of the Mn{sup 2+} state in the Mn{sup 3+}/Mn{sup 4+} network. Basically, this is the root of large magnetic moment in the irradiated samples. X-ray diffraction and Raman-scattering data of the samples indicate considerable modifications in the crystal structure after the SHI irradiation. FM in the irradiated samples and magnetically frustrated behavior of the pristine sample is apparent from dc magnetization measurements. Element specific characterizations such as near-edge x-ray absorption fine structure spectroscopy at O K and Mn L{sub 3,2} edges along with x-ray magnetic circular dichroism at Mn L{sub 3,2} edge show the evolution of the Mn{sup 2+} at disbursement of the Mn{sup 4+}. The microscopic origin behind the induced weak FM is found to be the increased orbital moment in the irradiated thin films.

  4. Magnetism of ordered and disordered Ni2MnAl full Heusler compounds

    NASA Astrophysics Data System (ADS)

    Simon, E.; Vida, J. Gy.; Khmelevskyi, S.; Szunyogh, L.

    2015-08-01

    Based on ab initio calculations and Monte Carlo simulations, we present a systematic study of the magnetic ground state and finite temperature magnetism of ordered and disordered Ni2MnAl full Heusler compounds. By increasing the degree of the long-range chemical disorder between the Mn and Al sublattices, the magnetic order progressively changes from the ferromagnetic state in the ordered L 21 phase toward a fully compensated antiferromagnetic state in the disordered B 2 phase and we also conclude that the Ni atoms exhibit induced moments. We determine the Mn-Mn interactions by using the magnetic force theorem and find dominating, but rather weak ferromagnetic couplings in the ordered L 21 phase. We used a recently proposed renormalization technique to include the weak Ni moments into the spin model, which indeed remarkably increased the nearest-neighbor Mn-Mn interaction. In accordance with the total energy calculations, in the disordered compounds, strong antiferromagnetic site-antisite Mn-Mn interactions appear. Determining the spin-spin correlation functions from Monte Carlo simulations, we conclude that above the transition temperature, short-range antiferromagnetic correlations prevail between the Mn atoms. In view of the potential application of disordered Ni2MnAl as a room temperature antiferromagnet, we calculate the magnetic anisotropy energies of tetragonally distorted samples in the B 2 phase and find that they are smaller by two orders in magnitude than in the frustrated antiferromagnet IrMn3.

  5. CaMn2Al10: Itinerant Mn magnetism on the verge of magnetic order

    SciTech Connect

    Steinke, L.; Simonson, J. W.; Yin, W. -G.; Smith, G. J.; Kistner-Morris, J. J.; Zellman, S.; Puri, A.; Aronson, M. C.

    2015-07-24

    We report the discovery of CaMn2Al10, a metal with strong magnetic anisotropy and moderate electronic correlations. Magnetization measurements find a Curie-Weiss moment of 0.83μB/Mn, significantly reduced from the Hund's rule value, and the magnetic entropy obtained from specific heat measurements is correspondingly small, only ≈ 9% of Rln2. These results imply that the Mn magnetism is highly itinerant, a conclusion supported by density functional theory calculations that find strong Mn-Al hybridization. Consistent with the layered nature of the crystal structure, the magnetic susceptibility χ is anisotropic below 20 K, with a maximum ratio of χ[010][001] ≈ 3.5. A strong power-law divergence χ(T) ~ T–1.2 below 20 K implies incipient ferromagnetic order, an Arrott plot analysis of the magnetization suggests a vanishing low Curie temperature TC ~ 0. Our experiments indicate that CaMn2Al10 is a rare example of a system where the weak and itinerant Mn-based magnetism is poised on the verge of order.

  6. Structural transformation and multiferroic properties of Ba-Mn co-doped BiFeO3

    NASA Astrophysics Data System (ADS)

    Rout, Jyoshna; Choudhary, R. N. P.

    2016-01-01

    Pure BiFeO3 and Bi1-xBaxFe1-xMnxO3 (x = 0.10, 0.20) fine ceramics were synthesized using mechano-synthesis route. The influence of co-doping (Ba-Mn) on structural and multiferroic properties of BiFeO3 has been studied in different experimental conditions. X-ray diffraction patterns, Rietveld structural refinement of XRD patterns and Fourier transform infrared (FTIR) spectra reveal the structural transition from rhombohedral (R3c) to the biphasic structure (R3c + P4mm) on co-doping. The co-doping improves surface morphology and also reduces the particle size. The room temperature M-H loops of all samples showed antiferromagnetic/weak ferromagnetic behavior. Magnetoelectric coupling coefficient determination is carried out to reveal extent of intimate interaction between electric and magnetic dipoles interaction in the samples. Room temperature occurrence of ferromagnetism, ferroelectricity and magnetoelectric effect supports the observation of multiferroism and magnetoelectric coupling in BiFeO3. Thus, co-doping at Bi- and Fe-sites of BiFeO3 can improve multiferroic properties of BiFeO3 for various applications.

  7. Tuning of net magnetic moment in BiFeO3 multiferroics by co-substitution of Nd and Mn

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Kar, Manoranjan

    2014-09-01

    The structural and magnetic properties of Bi1-xNdxFe1-xMnxO3 ceramics prepared by the tartaric acid modified sol-gel technique have been studied to understand the effect of structural modification on the magnetic Properties of BiFeO3. The co-substitution of Nd and Mn at Bi and Fe sites respectively in BiFeO3 significantly suppress the impurity phases (Bi25FeO40, Bi2Fe4O9 etc.). The Rietveld analysis of X-ray diffraction (XRD) patterns indicates the existence of compositional driven crystal structure transformation from rhombohederal (R3c space group, higher crystal symmetry) to the orthorhombic (Pbnm space group, lower crystal symmetry) with the increase in substitution concentration due to excess chemical pressure (lattice strain). The quantitative crystallographic phase analysis has been carried out by Rietveld analysis of all the XRD patterns. Magnetic measurements reveal that co-substituted BiFeO3 nanoparticles for x=0.050 have enhanced remnant magnetization about 21 times as compared to pure one. The remnant magnetization reaches a maximum value at the morphological phase boundary (x=0.050) and further increase (x>0.050) in substitution concentration results in the reduction of remnant magnetization due to the appearance of complete antiferromagnetic ordering in the orthorhombic structure because of the significant contribution from the crystallographic phase of Pbnm space group (as obtained from the quantitative crystallographic phase contribution by the Rietveld analysis).

  8. Study of coexisting phases in Bi doped La0.67Sr0.33MnO3

    NASA Astrophysics Data System (ADS)

    Kambhala, Nagaiah; Chen, Miaoxiang; Li, Peng; Zhang, Xi-xiang; Rajesh, Desapogu; Bhagyashree, K. S.; Goveas, Lora Rita; Bhat, S. V.; Kumar, P. Anil; Mathieu, Roland; Angappane, S.

    2016-05-01

    We report the remarkable phase separation behavior in La0.67Sr0.33MnO3 doped with Bi3+ ion at La site. The temperature dependent resistivity and magnetization of La0.67-xBixSr0.33MnO3 (x>0) show the presence of phase separation of ferromagnetic metallic and charge ordered antiferromagnetic insulating phases. Markedly, the field dependant magnetization studies of La0.67-xBixSr0.33MnO3 (x=0.3) show the metamagnetic nature of ferromagnetic metallic state implying the competition of coexisting ferromagnetic metallic and charge ordered antiferromagnetic phases. The electron spin resonance and exchange bias studies of La0.67-xBixSr0.33MnO3 (x=0.4 and 0.5) substantiate the coexistence of ferromagnetic clusters in antiferromagnetic matrix.

  9. Optical and dielectric properties of BiMn1-xAExO3 (AE=Cr, Fe, Co, and Zn; x=0, 0.1) nanoparticles synthesized by sol-gel technique

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Neha; Gaur, Anurag; Yadav, Kamlesh

    2015-08-01

    BiMnO3 is a multiferroic material which means that it shows both the ferroelectricity and ferromagnetism. Present study deals about the study of optical and dielectric properties of BiMnO3 and doped BiMnO3. The magnetic and non magnetic ions are introduced as dopants in place of Mn sublattice, BiMn1-xAExO3 (where x=0.1 and AE= Cr, Fe, Co, and Zn). We have synthesized nanoparticles of BiMnO3 and BiMn1-xAExO3 (where x=0.1 and AE= Cr, Fe, Co, and Zn) by sol-gel technique. Optical properties have been studied by using FTIR (Fourier Transform Infrared) spectroscopy. FTIR (Fourier Transform Infrared Spectroscopy) analysis showed that there is an increase in the band gap of BiMn1-xAExO3 (where x=0.1 and AE= Cr, Fe, Co, and Zn) than pure BiMnO3 for the samples synthesized by sol-gel technique. The increase in band gap on doping is due to the radius to charge ratio. Ferroelectric hysteresis loop confirms the presence of ferroelectricity in BiMnO3. From the ferroelectric hysteresis loop the parameters like coericivity, saturation polarization and remanant polarization has been calculated. Nanoparticles of BiMnO3 have applications in memory storage devices.

  10. Corrosion behavior of Al-surface-treated steels in liquid Pb?Bi in a pot

    NASA Astrophysics Data System (ADS)

    Kurata, Y.; Futakawa, M.; Saito, S.

    2004-12-01

    Corrosion tests were performed in oxygen-saturated liquid Pb-Bi at 450 °C and 550 °C in a pot for 3000 h for Al-surface-treated steels containing various levels of Cr contents. The Al surface treatments were achieved using a gas diffusion method and a melt dipping method. Al2O3, FeAl2 and AlCr2 produced by the gas diffusion method exhibited corrosion resistance to liquid Pb-Bi, while the surface layer produced by the melt dipping method suffered a severe corrosion attack. Fe4Al13 and Fe2Al5 produced by the melt dipping method disappeared during the corrosion test at 550 °C and only FeAl remained.

  11. Improved electrochemical properties of BiOF-coated 5 V spinel Li[Ni 0.5Mn 1.5]O 4 for rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Kang, Han-Byeol; Myung, Seung-Taek; Amine, Khalil; Lee, Sung-Man; Sun, Yang-Kook

    The electrochemical properties of BiOF-coated 5 V spinel Li[Ni 0.5Mn 1.5]O 4 were investigated at elevated temperatures (55 °C). As observed by scanning and transmission electron microscopy, BiOF nanolayers with ∼10 nm thickness were coated on the surface of Li[Ni 0.5Mn 1.5]O 4. The BiOF coating layer protected the surface of the active materials from HF generated by the decomposition of LiPF 6 in the electrolyte during electrochemical cycling. The dissolution of transition metal elements was also suppressed upon cycling. Therefore, the capacity retention of the BiOF-coated Li[Ni 0.5Mn 1.5]O 4 was obviously improved compared to the pristine Li[Ni 0.5Mn 1.5]O 4 at 55 °C.

  12. Ferroelectric Sm-Doped BiMnO3 Thin Films with Ferromagnetic Transition Temperature Enhanced to 140 K

    PubMed Central

    2014-01-01

    A combined chemical pressure and substrate biaxial pressure crystal engineering approach was demonstrated for producing highly epitaxial Sm-doped BiMnO3 (BSMO) films on SrTiO3 single crystal substrates, with enhanced magnetic transition temperatures, TC up to as high as 140 K, 40 K higher than that for standard BiMnO3 (BMO) films. Strong room temperature ferroelectricity with piezoresponse amplitude, d33 = 10 pm/V, and long-term retention of polarization were also observed. Furthermore, the BSMO films were much easier to grow than pure BMO films, with excellent phase purity over a wide growth window. The work represents a very effective way to independently control strain in-plane and out-of-plane, which is important not just for BMO but for controlling the properties of many other strongly correlated oxides. PMID:25141031

  13. Effect of uniaxial strain on the structural, electronic and elastic properties of orthorhombic BiMnO3

    NASA Astrophysics Data System (ADS)

    Yang, Pei; Haibin, Wu

    2015-03-01

    We study the elastic constants and electronic properties of orthorhombic BiMnO3 under uniaxial strain along the c-axis using the first-principles method. It is found that, beyond the range -0.025 < ɛ < 0.055, the predicted stiffness constants cij cannot demand the Born stability criteria and the compliance constant s44 shows abrupt changes, which accompany phase transition. In addition, the results for magnetism moments and polycrystalline properties are also reported. Additionally, under compressive strain, a band gap transition from the indirect to the direct occurs within -0.019 < ɛ < -0.018. Furthermore, the response of the band gap of orthorhombic BiMnO3 to uniaxial strain is studied.

  14. Contribution of an extrinsic mechanism for the electrical polarization in BiMn{sub 2}O{sub 5} ceramics

    SciTech Connect

    Fier, I.; Chinaglia, D. L.; Walmsley, L.; Pereira, E. C.; Rabelo, A. C.; Freitas, R. G.

    2012-12-15

    DC conductivity, frequency dependent dielectric constant and pyroelectric coefficients, obtained from thermal stimulated depolarization current curves, in BiMn{sub 2}O{sub 5} ceramics in the range of temperatures from 10 K to 320 K are reported. The data could be explained if it is assumed that a dipole defect is formed due to an oxygen vacancy and two manganese ions which have their valence changed to accept an electron.

  15. The roles of Zr and Mn in processing and superplasticity of Al-Mg alloys

    NASA Technical Reports Server (NTRS)

    Mcnelley, Terry R.; Hales, S. J.

    1990-01-01

    Processing studies have been conducted on two alloys, of nominal compositions Al-10Mg-0.1Zr or Al-10Mg-0.5Mn, in order to clarify the role of the dispersoid forming Zr or Mn additions. Mechanical property data reveal that the Mn-containing alloy has a lower maximum elongation but exhibits superplastic response over a broader range of temperature. Microstructural investigations and texture analyses were utilized to assess the effect of the presence of Al8Mg5 precipitates in combination with either Al3Zr or Al6Mn dispersoid particles during isothermal rolling at 300 C and subsequent tensile deformation at temperatures from 200-425 C.

  16. Gd{sub 3+}-ESR and magnetic susceptibility of GdCu{sub 4}Al{sub 8} and GdMn{sub 4}Al{sub 8}

    SciTech Connect

    Coldea, R.; Coldea, M.; Pop, I.

    1994-03-01

    Gd ESR of GdCu{sub 4}Al{sub 8} and GdMn{sub 4}Al{sub 8} and magnetic susceptibility of GdCu{sub 4}Al{sub 8}, GdMn{sub 4}Al{sub 8}, and YMn{sub 4}Al{sub 8} were measured in the temperature range of 290K--460K and 90K--1050K, respectively. The occurrence of the Mn moment in YMn{sub 4}Al{sub 8} and GdMn{sub 4}Al{sub 8} is strongly correlated with the critical value of d{approx}2.6{angstrom} of the Mn-Mn distance below which the Mn moment is not stable. The experimental data for GdMn{sub 4}Al{sub 8}, compared with the data for the isostructural compounds GdCu{sub 4}Al{sub 8} and YMn{sub 4}Al{sub 8}, show that near the critical value of d, the existence of Mn moment depends not only on the value of d, but also on the local magnetic surroundings. It has been revealed that the magnetic character of Mn moment in YMn{sub 4}Al{sub 8} and GdMn{sub 4}Al{sub 8} changes from an itinerant electron type to a local-moment type with increasing temperature.

  17. Elimination of interface states of Co2MnSi/MgO/Co2MnSi magnetic tunneling junction by inserting an Al atomic layer

    NASA Astrophysics Data System (ADS)

    Yu, H. L.; Yang, G. W.

    2011-01-01

    Aiming at improvement performance of Co2MnSi/MgO/Co2MnSi magnetic tunneling junction (MTJ), we have studied interface behaviors of Co2MnSi/MgO by inserting an Al atomic layer between Heusler alloy and barrier, i.e., CoCo/Al/O, MnSi/Al/O, MnMn/Al/O and SiSi/Al/O four interfaces. It was found that CoCo/Al/O is stable and half-metallic, meaning interface states can be eliminated in this system. Hybridization and repulsion of transition-metal d and p states of sp atoms at interface and electrons transfer between interfacial atoms were suggested to be responsible for interface states elimination. These findings open a way to eliminate the interface states in MTJ.

  18. Micromagnetic analysis of the hardening mechanisms of nanocrystalline MnBi and nanopatterned FePt intermetallic compounds.

    PubMed

    Kronmüller, H; Yang, J B; Goll, D

    2014-02-12

    The uniaxial intermetallic compounds of L10-FePt and the low temperature NiAs structure of MnBi are suitable alloys for application as high-density recording materials or as high-coercivity permanent magnets. Single domain particles of these materials are characterized by coercive fields above 1 T over a large temperature range. In particular MnBi shows a coercive field of 2 T at 450 K. Its extraordinary magnetic properties in the temperature range up to 600 K are due to an increase of the magnetocrystalline anisotropy constant from 1.2 MJ m(-3) at 300 K to 2.4 MJ m(-3) at 450 K. In spite of the large coercivities obtained for both type of materials their experimental values deviate considerably from the theoretical values Hc = 2K1/Js valid for a homogeneous rotation process in spherical particles. As is well known these discrepancies are due to the deteriorating effects of the microstructure. For an analysis of the coercive fields the Stoner-Wohlfarth theory has to be expanded with respect to higher anisotropy constants and to microstructural effects such as misaligned grains and grain surfaces with reduced anisotropy constants. It is shown that the temperature dependence and the angular dependence of Hc for FePt as well as MnBi can be quantitatively interpreted by taking into account the above mentioned intrinsic and microstructural effects. PMID:24469256

  19. Proximate transition temperatures amplify linear magnetoelectric coupling in strain-disordered multiferroic BiMnO3

    NASA Astrophysics Data System (ADS)

    Mickel, Patrick R.; Jeen, Hyoungjeen; Kumar, Pradeep; Biswas, Amlan; Hebard, Arthur F.

    2016-04-01

    We report a giant linear magnetoelectric coupling in strained BiMnO3 thin films in which the disorder associated with an islanded morphology gives rise to extrinsic relaxor ferroelectricity that is not present in bulk centrosymmetric ferromagnetic crystalline BiMnO3. Strain associated with the disorder is treated as a local variable, which couples to the two ferroic order parameters, magnetization M ⃗ and polarization P ⃗. A straightforward "gas under a piston" thermodynamic treatment explains the observed correlated temperature dependencies of the product of susceptibilities and the magnetoelectric coefficient together with the enhancement of the coupling by the proximity of the ferroic transition temperatures close to the relaxor freezing temperature. Our interpretation is based on a trilinear coupling term in the free energy of the form L ⃗.(P ⃗×M ⃗) , where L ⃗ is a hidden antiferromagnetic order parameter, previously postulated by theory for BiMnO3. This phenomenological invariant not only preserves inversion and time-reversal symmetry of the strain-induced interactions but also explains the pronounced linear magnetoelectric coupling without using the more conventional higher order biquadratic interaction proportional to (P⃗.M ⃗) 2.

  20. Disorder, frustration and lattice volume effects in YMnIn, Th 0.8R 0.2MnAl (R=Sc, Lu and Y), ThMn 1.3Al 0.7 and ThMnAl 1- xIn x alloys

    NASA Astrophysics Data System (ADS)

    Dhar, S. K.; Manfrinetti, P.; Palenzona, A.

    2002-12-01

    The antiferromagnetic exchange interaction between the Mn ions in the cubic Laves-phase alloys Th 0.8R 0.2MnAl, ThMnAl 1- xIn x ( x≤0.2), ThMn 1.3Al 0.7 and the hexagonal Laves-phase YMnIn is inherently geometrically frustrated due to the tetrahedral co-ordination of the Mn ions. Together with disorder on the Mn-sublattice due to the partial replacement of Mn by Al and/or In, it leads to spin-glass-type freezing of the Mn magnetic moments in these alloys when the average Mn-Mn bond length is 2.850 Å or less. For alloys with greater bond lengths ( x>0.2), the data corroborate the suggestion made earlier [J. Magn. Magn. Mater. 231 (2000) 404] that the exchange becomes ferromagnetic.

  1. The Charpy impact behavior of Fe{sub 3}Al and Fe{sub 3}Al-20 at % Mn alloys

    SciTech Connect

    Liu, J.N.; Yan, W.; Ma, J.L.; Wu, K.H.

    1997-12-31

    A series of experiments were conducted to investigate the impact fracture behavior of Fe{sub 3}Al and Fe{sub 3}Al-20 Mn alloys. The results of this study indicated that: (i) The addition of Mn introduces an ordered L1{sub 2}-type phase in the Fe{sub 3}Al-based alloys. On the other hand, the addition of Mn decreases the order parameter of the DO{sub 3} {alpha} phase. (ii) The total-impact energy of an Fe{sub 3}Al alloy increases with the temperature at the low-temperature range (<600 C), then drops around 700 C, and finally increases again as the temperature further elevates. (iii) The trend of the variation of the impact energy of Fe{sub 3}Al-20 at % Mn alloy with temperature is the same as that of the Fe{sub 3}Al alloy. (iv) And the addition of Mn significantly improves the impact energy of the Fe{sub 3}Al-based alloy, and changes the variation of the crack-growth energy with the testing temperature when the temperature is above 700 C.

  2. Manganese valence and coordination structure in Mn,Mg-codoped {gamma}-AlON green phosphor

    SciTech Connect

    Takeda, Takashi; Xie, Rong-Jun; Hirosaki, Naoto; Matsushita, Yoshitaka; Honma, Tetuso

    2012-10-15

    The valence and coordination structure of manganese in a Mn,Mg-codoped {gamma}-AlON spinel-type oxynitride green phosphor were studied by synchrotron X-ray diffraction and absorption fine structure measurements. The absorption edge position of the XANES revealed the bivalency of Mn. Two cation sites are available in the spinel structure for cation doping: a tetrahedral site and an octahedral site. The pre-edge of the XANES and the distance to the nearest neighbor atoms obtained from the EXAFS measurement showed that Mn was situated at the tetrahedral site. Rietveld analysis showed that the vacancy occupied the octahedral site. The preferential occupation of the tetrahedral site by Mn and the roles of N and Mg are discussed in relation to the spinel crystal structure. - Graphical Abstract: Fourier transform of EXAFS of Mn K-edge for Mn,Mg-codoped green phosphor and Mn coordination structure. Highlights: Black-Right-Pointing-Pointer Mn, Mg-codoped {gamma}-AlON green phosphor for white LED. Black-Right-Pointing-Pointer The valence of Mn is divalent. Black-Right-Pointing-Pointer Mn occupies the tetrahedral site in the spinel structure.

  3. Oxidation behavior of cubic phases formed by alloying Al3Ti with Cr and Mn

    NASA Technical Reports Server (NTRS)

    Parfitt, L. J.; Nic, J. P.; Mikkola, D. E.; Smialek, J. L.

    1991-01-01

    Gravimetric, SEM, and XRD data are presented which document the significant improvement obtainable in the oxidation resistance of Al3Ti-containing alloys through additions of Cr. The L1(2) Al(67)Cr(8)Ti25 alloy exhibited excellent cyclic oxidation resistance at 1473 K, with the primary oxide formed being the ideally protective alpha-Al2O3. The Al(67)Mn(8)Ti(25) alloy also tested for comparison exhibited poor cyclic oxidation resistance, with substantial occurrence of TiO2 in the protective scales. Catastrophic oxidation was also encountered in the quaternary alloy Al(67)Mn(8)Ti(22)V(3).

  4. Effect of Mn doping on ultrafast carrier dynamics in thin films of the topological insulator Bi2Se3.

    PubMed

    Glinka, Yuri D; Babakiray, Sercan; Holcomb, Mikel B; Lederman, David

    2016-04-27

    Transient reflectivity (TR) measured at laser photon energy 1.51 eV from the indirectly intersurface-coupled topological insulator Bi2-x Mn x Se3 films (12 nm thick) revealed a strong dependence of the rise-time and initial decay-time constants on photoexcited carrier density and Mn content. In undoped samples (x  =  0), these time constants are exclusively governed by electron-electron and electron-phonon scattering, respectively, whereas in films with x  =  0.013-0.27 ultrafast carrier dynamics are completely controlled by photoexcited electron trapping by ionized Mn(2+) acceptors and their dimers. The shortest decay-time (~0.75 ps) measured for the film with x  =  0.27 suggests a great potential of Mn-doped Bi2Se3 films for applications in high-speed optoelectronic devices. Using Raman spectroscopy exploiting similar laser photon energy (1.58 eV), we demonstrate that due to indirect intersurface coupling in the films, the photoexcited electron trapping in the bulk enhances the electron-phonon interaction strength in Dirac surface states. PMID:27001950

  5. Effect of Mn doping on ultrafast carrier dynamics in thin films of the topological insulator Bi2Se3

    NASA Astrophysics Data System (ADS)

    Glinka, Yuri D.; Babakiray, Sercan; Holcomb, Mikel B.; Lederman, David

    2016-04-01

    Transient reflectivity (TR) measured at laser photon energy 1.51 eV from the indirectly intersurface-coupled topological insulator Bi2-x Mn x Se3 films (12 nm thick) revealed a strong dependence of the rise-time and initial decay-time constants on photoexcited carrier density and Mn content. In undoped samples (x  =  0), these time constants are exclusively governed by electron-electron and electron-phonon scattering, respectively, whereas in films with x  =  0.013-0.27 ultrafast carrier dynamics are completely controlled by photoexcited electron trapping by ionized Mn2+ acceptors and their dimers. The shortest decay-time (~0.75 ps) measured for the film with x  =  0.27 suggests a great potential of Mn-doped Bi2Se3 films for applications in high-speed optoelectronic devices. Using Raman spectroscopy exploiting similar laser photon energy (1.58 eV), we demonstrate that due to indirect intersurface coupling in the films, the photoexcited electron trapping in the bulk enhances the electron-phonon interaction strength in Dirac surface states.

  6. Mechanical milling assisted synthesis of Ba-Mn co-substituted BiFeO3 ceramics and their properties

    NASA Astrophysics Data System (ADS)

    Saravana Kumar, K.; Venkateswaran, C.; Kannan, D.; Tiwari, Brajesh; Ramachandra Rao, M. S.

    2012-10-01

    Samples of composition Bi1-xBaxFe1-xMnxO3 (x = 0, 0.1, 0.2) were synthesized by initial mixing of precursors by high-energy ball milling and subsequent sintering of the milled powders. The co-substitution of Ba-Mn controls the formation of impurity phases, as evident from x-ray diffraction analysis. Evidence of Fe in mixed oxidation states of +3 and +2 and Mn in +3 state is found from x-ray photoelectron spectroscopy. Electron microscopy exhibits a decrease in grain size due to inhibition in grain growth by Ba-Mn co-substitution. The magnetization value at 20 kOe increases as the percentage of substitution increases. The x = 0.2 sample exhibits a comparable and stable resistivity curve in the experimental temperature range and has a higher value of remanent polarization (Pr) when compared with the x = 0 sample.

  7. Catalytic ozonation of petroleum refinery wastewater utilizing Mn-Fe-Cu/Al2O 3 catalyst.

    PubMed

    Chen, Chunmao; Yoza, Brandon A; Wang, Yandan; Wang, Ping; Li, Qing X; Guo, Shaohui; Yan, Guangxu

    2015-04-01

    There is of great interest to develop an economic and high-efficient catalytic ozonation system (COS) for the treatment of biologically refractory wastewaters. Applications of COS require options of commercially feasible catalysts. Experiments in the present study were designed to prepare and investigate a novel manganese-iron-copper oxide-supported alumina-assisted COS (Mn-Fe-Cu/Al2O3-COS) for the pretreatment of petroleum refinery wastewater. The highly dispersed composite metal oxides on the catalyst surface greatly promoted the performance of catalytic ozonation. Hydroxyl radical mediated oxidation is a dominant reaction in Mn-Fe-Cu/Al2O3-COS. Mn-Fe-Cu/Al2O3-COS enhanced COD removal by 32.7% compared with a single ozonation system and by 8-16% compared with Mn-Fe/Al2O3-COS, Mn-Cu/Al2O3-COS, and Fe-Cu/Al2O3-COS. The O/C and H/C ratios of oxygen-containing polar compounds significantly increased after catalytic ozonation, and the biodegradability of petroleum refinery wastewater was significantly improved. This study illustrates potential applications of Mn-Fe-Cu/Al2O3-COS for pretreatment of biologically refractory wastewaters. PMID:25649390

  8. Laser cladding of quasi-crystal-forming Al-Cu-Fe-Bi on an Al-Si alloy substrate

    NASA Astrophysics Data System (ADS)

    Biswas, Krishanu; Chattopadhyay, Kamanio; Galun, Rolf; Mordike, Barry L.

    2005-07-01

    We report here the results of an investigation aimed at producing coatings containing phases closely related to the quasi-crystalline phase with dispersions of soft Bi particles using an Al-Cu-Fe-Bi elemental powder mixture on Al-10.5 at. pct Si substrates. A two-step process of cladding followed by remelting is used to fine-tune the alloying, phase distribution, and microstructure. A powder mix of Al64Cu22.3Fe11.7Bi2 has been used to form the clads. The basic reason for choosing Bi lies in the fact that it is immiscible with each of the constituent elements. Therefore, it is expected that Bi will solidify in the form of dispersoids during the rapid solidification. A detailed microstructural analysis has been carried out by using the backscattered imaging mode in a scanning electron microscope (SEM) and transmission electron microscope (TEM). The microstructural features are described in terms of layers of different phases. Contrary to our expectation, the quasi-crystalline phase could not form on the Al-Si substrate. The bottom of the clad and remelted layers shows the regrowth of aluminum. The formation of phases such as blocky hexagonal Al-Fe-Si and a ternary eutectic (Al + CuAl2 + Si) have been found in this layer. The middle layer shows the formation of long plate-shaped Al13Fe4 along with hexagonal Al-Fe-Si phase growing at the periphery of the former. The formation of metastable Al-Al6Fe eutectic has also been found in this layer. The top layer, in the case of the as-clad track, shows the presence of plate-shaped Al13Fe4 along with a 1/1 cubic rational approximant of a quasi-crystal. The top layer of the remelted track shows the presence of a significant amount of a 1/1 cubic rational approximant. In addition, the as-clad and remelted microstructures show a fine-scale dispersion of Bi particles of different sizes formed during monotectic solidification. The remelting is found to have a strong effect on the size and distribution of Bi particles. The dry

  9. Microstructure and mechanical behavior of Fe30Ni 20Mn35Al15 and modified Fe30Ni 20Mn35Al15 alloys

    NASA Astrophysics Data System (ADS)

    Meng, Fanling

    A novel alloy with nominal composition Fe30Ni 20Mn35Al15 has been found to show good room-temperature strength and significant ductility. The current project is to study the wear properties of as-cast Fe30Ni20Mn35Al 15 and discuss the possibility of further improving the mechanical properties of this alloy. The dry sliding wear of as-cast Fe30Ni20Mn 35Al15 was studied in in four different environments, i.e. air, dry oxygen, dry argon and a 4% hydrogen/nitrogen mixture. Two-body and three-body abrasive wear mechanism was found for tests in oxygen-containing environments, while plastic flow mechanisms dominated the wear behavior for tests in argon. Hydrogen embrittlement led to 1000% increase of wear loss by causing more rapid crack nucleation of the asperities. The effects of different additions of chromium (≤ 8 at. %) on both microstructure and fracture behavior of Fe30Ni20Mn 35Al15 were investigated. All alloys consisted of (Ni, Al)-rich B2 and (Fe, Mn)-rich f.c.c. phases with most of the Cr residing in the f.c.c. phase. The addition of 6 at. % Cr not only increased the room temperature ductility, but also completely suppressed the environmental embrittlement observed in the Cr-free alloy at low strain rates. The effects of varying the Al concentration on the microstructures and tensile properties of six two-phase FeNiMnAl alloys with a composition close to Fe30Ni20Mn35Al15 were studied. The increase in f.c.c. volume fraction and f.c.c. lamellar width led to an increase in ductility and a decrease in yield strength. The correlation between the yield stress and f.c.c. lamellar spacing lambda obeyed a Hall-Petch-type relationship, i.e. sigmay=252+0.00027lambda-1, where the units for sigmay and lambda are MPa and meter, respectively. FeNiMnAl alloy with B2 and f.c.c. phases aligned along was reported to show high strength at room temperature. The mechanical properties of Fe 28Ni18Mn33Al21, consisting of (Ni, Al)-enriched B2 and (Fe, Mn)-enriched f.c.c. phases with

  10. Exchange bias effects in Heusler alloy Ni2MnAl/Fe bilayers

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Tomoki; Kubota, Takahide; Sugiyama, Tomoko; Huminiuc, Teodor; Hirohata, Atsufumi; Takanashi, Koki

    2016-06-01

    Ni2MnAl Heusler alloy thin films were epitaxially grown on MgO(1 0 0) single crystal substrates by ultra-high-vacuum magnetron sputtering technique. X-ray diffraction and transmission electron microscopy observation revealed that the structures of all the Ni2MnAl thin films were B2-ordered regardless of the deposition temperature ranging from room temperature to 600 °C. The temperature dependence of electrical resistivity showed a kink about 280 K, which was consistent with a reported value of the Néel temperature for antiferromagnetic B2-Ni2MnAl. The magnetization curves of Ni2MnAl/Fe bilayer samples showed a shift caused by the interfacial exchange interaction at 10 K. The maximum value of the exchange bias field H ex was 55 Oe corresponding to the exchange coupling energy J k of 0.03 erg cm‑2.

  11. Development of Rare-Earth Free Mn-Al Permanent Magnet Employing Powder Metallurgy Route

    NASA Astrophysics Data System (ADS)

    Singh, N.; Shyam, R.; Upadhyay, N. K.; Dhar, A.

    2015-02-01

    Most widely used high-performance permanent magnets are currently based on intermetallics of rare-earths in combination with Fe and Co. Rare-earth elements required for these magnets are getting expensive by the day. Consequently, there is a thrust worldwide to develop economical rare-earth free permanent magnets. It is acknowledged that the phase in Mn-Al alloys possesses magnetic properties without the presence of ferromagnetic elements such as Fe, Co, and Ni. In the present study, we report the synthesis of magnetic phase of Mn54Al46 alloy synthesized using mechanical alloying followed by solutionizing and annealing to obtain the desired magnetic phase. It is well known that Al dissolves partially in Mn matrix hence supersaturated solid solution of Mn54Al46 alloy powder was obtained by mechanical alloying using a planetary high-energy ball mill. For this purpose elemental Mn and Al powders were ball-milled in Argon atmosphere at 400 rpm using stainless steel bowl with ball to powder ratio of 15:1. These mechanically alloyed Mn54Al46 powders were then consolidated using spark plasma sintering at 550°C for 20 min. followed by solution treatment at 1050°C for 5 hrs and then water quenched to retain high temperature phase. Subsequently, the Mn54Al46 samples were annealed in the temperature range 450°C-650°C to obtain the magnetic phase. These samples were characterized by XRD and SEM and the magnetic properties were measured using a vibrating sample magnetometer (VSM). It was observed that the magnetization and coercivity of MnAl magnets exhibited strong dependence on annealing temperature and annealing time.

  12. Thermal and structural characterization of Cu-Al-Mn-X (Ti, Ni) shape memory alloys

    NASA Astrophysics Data System (ADS)

    Canbay, C. Aksu; Genc, Z. Karagoz; Sekerci, M.

    2014-05-01

    In this study, the Cu-Al-Mn-X (X = Ni, Ti) shape memory alloys at the range of 10-12 at.% of aluminum and 4-5 at.% manganese were produced by arc melting. We have investigated the effects of the alloying elements on the transformation temperatures, and the structural and the magnetic properties of the quaternary Cu-Al-Mn-X (X = Ni, Ti) shape memory alloys. The evolution of the transformation temperatures was studied by differential scanning calorimetry with different heating and cooling rates. The characteristic transformation temperatures and the thermodynamic parameters were highly sensitive to variations in the aluminum and manganese content, and it was observed that the nickel addition into the Cu-Al-Mn system decreased the transformation temperature although Ti addition caused an increase in the transformation temperatures. The effect of the nickel and the titanium on the thermodynamic parameters such as enthalpy and entropy values was investigated. The structural changes of the samples were studied by X-ray diffraction measurements and by optical microscope observations at room temperature. It is evaluated that the element Ni has been completely soluble in the matrix, and the main phase of the Cu-Al-Mn-Ni sample is martensite, and due to the low solubility of the Ti, the Cu-Al-Mn-Ti sample has precipitates, and a martensite phase at room temperature. The magnetic properties of the Cu-Al-Mn, Cu-Al-Mn-Ni and Cu-Al-Mn-Ti samples were investigated, and the effect of the nickel and the titanium on the magnetic properties was studied.

  13. Effect of Ni content on microwave absorbing properties of MnAl powder

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-zhong; Lin, Pei-hao; Huang, Wei-chao; Pan, Shun-kang; Liu, Ye; Wang, Lei

    2016-09-01

    MnAlNi powder was prepared by the process of vacuum levitation melting and high-energy ball milling, The morphology and phase structure of the powder were analyzed by Scanning Electron Microscope(SEM), X-ray diffraction(XRD) and the effect of the Ni content on microwave absorbing properties of MnAl powder was investigated by an vector network analyzer. The addition of Ni, which improved the microwave absorbing properties of MnAl powder but not changed the composition of Al8Mn5 alloy. The minimum reflectivity of (Al8Mn5)0.95Ni0.05 powder with a coating thickness (d) of 1.8 mm was about -40.8 dB and has better bandwidth effect, the absorbing mechanism of AlMnNi powders on the electromagnetic was related to the electromagnetic loss within the absorbing coatings and the effect of coating thickness on the interference loss of electromagnetic wave.

  14. Localized moment in Mn-doped γ-TiAl alloys

    NASA Astrophysics Data System (ADS)

    Coletti, J.; Suresh Babu, V.; Pavlovic, A. S.; Seehra, Mohindar S.

    1990-12-01

    For the γ-phase Ti50-xMnxAl50 alloys (x=0, 0.06, 0.77, 1.85, and 3.30), lattice parameters by x-ray diffraction and temperature dependence (5-300 K) of the magnetic susceptibility are measured. With Mn doping, the tetragonality of the L10 unit cell of γ-TiAl decreases and a localized moment μ~=2.31μB/Mn atom appears. The results can be explained in terms of Mn substituting for Ti, although a theoretical understanding of the small magnitude of the moment is still lacking.

  15. Red-emitting AlN:Mn2+ phosphors prepared by combustion synthesis

    NASA Astrophysics Data System (ADS)

    Shi, Zhongqi; Zou, Yongyong; Jing, Ruifeng; Zhang, Kuo; Qiao, Guanjun; Wang, Hongjie

    2015-12-01

    Red-emitting Mn2+-doped AlN(AlN:Mn2+) phosphors were successfully prepared by a highly effective combustion synthesis method. The phase purity, morphology, element-composition and luminescence properties of the synthesized phosphors were investigated. X-ray diffraction (XRD) results show that the Mn2+-doped into the AlN host did not induce a second phase and distort the structure significantly. Scanning electron microscopy (SEM) images display that the phosphors have an irregular shape with a particle size in the range of 1-5 μm. X-ray photoelectron spectroscopy (XPS) spectrum indicates that Mn ions are divalent state. The synthesized AlN:Mn2+ phosphors exhibit a strong red emission centered at 600 nm, which is ascribe to the 4T1(4G)-6A1(6S) transition of Mn2+ under ultraviolet excitation. The emission intensity reaches its maximum when Mn2+-doped concentration is 3 mol%.

  16. Structure and magnetic properties of low-temperature phase Mn-Bi nanosheets with ultra-high coercivity and significant anisotropy

    NASA Astrophysics Data System (ADS)

    Liu, Rongming; Zhang, Ming; Niu, E.; Li, Zhubai; Zheng, Xinqi; Wu, Rongrong; Zuo, Wenliang; Shen, Baogen; Hu, Fengxia; Sun, Jirong

    2014-05-01

    The microstructure, crystal structure, and magnetic properties of low-temperature phase (LTP) Mn-Bi nanosheets, prepared by surfactant assistant high-energy ball milling (SA-HEBM) with oleylamine and oleic acid as the surfactant, were examined with scanning electron microscopy, X-ray diffraction, and vibrating sample magnetometer, respectively. Effect of ball-milling time on the coercivity of LTP Mn-Bi nanosheets was systematically investigated. Results show that the high energy ball milling time from tens of minutes to several hours results in the coercivity increase of Mn-Bi powders and peak values of 14.3 kOe around 10 h. LTP Mn-Bi nanosheets are characterized by an average thickness of tens of nanometers, an average diameter of ˜1.5 μm, and possess a relatively large aspect ratio, an ultra-high room temperature coercivity of 22.3 kOe, a significant geometrical and magnetic anisotropy, and a strong (00l) crystal texture. Magnetization and demagnetization behaviors reveal that wall pinning is the dominant coercivity mechanism in these LTP Mn-Bi nanosheets. The ultrafine grain refinement introduced by the SA-HEBM process contribute to the ultra-high coercivity of LTP Mn-Bi nanosheets and a large number of defects put a powerful pinning effect on the magnetic domain movement, simultaneously. Further magnetic measurement at 437 K shows that a high coercivity of 17.8 kOe and a strong positive temperature coefficient of coercivity existed in the bonded permanent magnet made by LTP Mn-Bi nanosheets.

  17. Structure and magnetic properties of low-temperature phase Mn-Bi nanosheets with ultra-high coercivity and significant anisotropy

    SciTech Connect

    Liu, Rongming E-mail: shenbg@iphy.ac.cn; Zhang, Ming; Niu, E; Li, Zhubai; Zheng, Xinqi; Wu, Rongrong; Zuo, Wenliang; Shen, Baogen; Hu, Fengxia; Sun, Jirong

    2014-05-07

    The microstructure, crystal structure, and magnetic properties of low-temperature phase (LTP) Mn-Bi nanosheets, prepared by surfactant assistant high-energy ball milling (SA-HEBM) with oleylamine and oleic acid as the surfactant, were examined with scanning electron microscopy, X-ray diffraction, and vibrating sample magnetometer, respectively. Effect of ball-milling time on the coercivity of LTP Mn-Bi nanosheets was systematically investigated. Results show that the high energy ball milling time from tens of minutes to several hours results in the coercivity increase of Mn-Bi powders and peak values of 14.3 kOe around 10 h. LTP Mn-Bi nanosheets are characterized by an average thickness of tens of nanometers, an average diameter of ∼1.5 μm, and possess a relatively large aspect ratio, an ultra-high room temperature coercivity of 22.3 kOe, a significant geometrical and magnetic anisotropy, and a strong (00l) crystal texture. Magnetization and demagnetization behaviors reveal that wall pinning is the dominant coercivity mechanism in these LTP Mn-Bi nanosheets. The ultrafine grain refinement introduced by the SA-HEBM process contribute to the ultra-high coercivity of LTP Mn-Bi nanosheets and a large number of defects put a powerful pinning effect on the magnetic domain movement, simultaneously. Further magnetic measurement at 437 K shows that a high coercivity of 17.8 kOe and a strong positive temperature coefficient of coercivity existed in the bonded permanent magnet made by LTP Mn-Bi nanosheets.

  18. Epitaxial integration of photoresponsive Bi{sub 0.4}Ca{sub 0.6}MnO{sub 3} with Si(001)

    SciTech Connect

    Yong, Grace J.; Kolagani, Rajeswari M.; Hofmann, Benjamin P.; Adhikari, Sanjay; Smolyaninova, Vera N.; Liang, Yong

    2011-03-15

    Previously it has been shown that the resistivity of Bi{sub 0.4}Ca{sub 0.6}MnO{sub 3} epitaxial thin films on oxide substrates decreases significantly upon illumination with visible light. The resistivity decrease is observed over a wide temperature range and is understood as arising due to the destruction of charge ordering. The light responsivity makes Bi{sub 0.4}Ca{sub 0.6}MnO{sub 3} thin films attractive for photonic and optoelectronic device applications. In this paper, we report the heteroepitaxy of Bi{sub 0.4}Ca{sub 0.6}MnO{sub 3} thin films on (001) Si which is relevant for the potential integration of the optoelectronic/photonic functionality of Bi{sub 0.4}Ca{sub 0.6}MnO{sub 3} with semiconductor electronics. As in the case of other perovskite oxides, heteroepitaxy of Bi{sub 0.4}Ca{sub 0.6}MnO{sub 3} on Si requires the use of buffer layers to circumvent the problems associated with the presence of an amorphous native silicon dioxide layer and the reactivity of perovskite oxides with Si at high temperatures. We demonstrate that high quality epitaxial thin films of Bi{sub 0.4}Ca{sub 0.6}MnO{sub 3} can be grown via pulse laser deposition on Si that has been prebuffered with a SrTiO{sub 3} layer via a Motorola molecular beam epitaxy process. The magnitude and dynamics of the photoresponse in these films is comparable to that of Bi{sub 0.4}Ca{sub 0.6}MnO{sub 3} films on oxide substrates.

  19. Magnetic States in Ensemble of Ferromagnetic Nanoparticles in Cu-Mn-Al Alloy.

    PubMed

    Konoplyuk, S M; Kozlova, L E; Kokorin, V V; Perekos, A O; Kolomiets, O V

    2016-12-01

    Two Cu-Mn-Al samples of different compositions were studied: one exhibiting martensitic transformation, another without structural transition. X-ray diffraction and magnetic measurements demonstrate that different magnetic behaviors of alloys originate from different concentrations and sizes of ferromagnetic nanoparticles, which appear after solid solution decomposition.Estimation of magnetic moments of ferromagnetic nanoparticles from magnetization curves was performed using Langevin function and compared to those obtained from X-ray examination. Granular systems are known to show giant magnetoresistance. Therefore, magnetoresistance of Cu-Mn-Al melt-spun ribbons after different aging times was measured. The study has shown that increase in the concentration of Mn atoms and time of aging in Cu-Mn-Al alloy leads to an increase in the amount of precipitated phase appearing as ferromagnetic nanoparticles. PMID:26762264

  20. Thermoelectric properties of Fe and Al double substituted MnSiγ (γ~1.73)

    NASA Astrophysics Data System (ADS)

    Barczak, S. A.; Downie, R. A.; Popuri, S. R.; Decourt, R.; Pollet, M.; Bos, J. W. G.

    2015-07-01

    Two series of Fe and Al double substituted MnSiγ chimney ladders with a nominal valence electron count, VEC=14 per transition metal were prepared (γ=1.75). Simultaneous replacement of Mn with Fe and Si with Al yielded the Mn1-xFexSi1.75-xAlx series while the second Mn1-xFexSi1.75-1.75xAl2x series follows the pseudo-binary between MnSi1.75 and FeAl2. Scanning electron microscopy and elemental mapping revealed that ~60% of the nominal Al content ends up in the product with the remainder lost to sublimation, and that up to 7% Al can be substituted in the main group sublattice. Profile analysis of X-ray powder diffraction data revealed gradual changes in the cell metrics, consistent with the simultaneous substitution of Fe and Al in a fixed ratio. All samples are p-type with VEC≈13.95 from the structural data and ~1×1021 holes cm-3 from variable temperature Seebeck measurements. The substituted samples have lower electrical resistivities (ρ300 K=2-5 mΩ cm) due to an improved microstructure. This leads to increased thermoelectric power factors (largest S2/ρ=1.95 mW m-1 K-2) compared to MnSiγ. The thermal conductivity for the Mn0.95Fe0.05Si1.66Al0.1 sample is 2.7 W m-1 K-1 between 300 and 800 K, and is comparable to literature data for the parent material.

  1. Toluene removal by sequential adsorption-plasma catalytic process: Effects of Ag and Mn impregnation sequence on Ag-Mn/γ-Al2O3.

    PubMed

    Qin, Caihong; Huang, Xuemin; Dang, Xiaoqing; Huang, Jiayu; Teng, Jingjing; Kang, Zhongli

    2016-11-01

    A series of Ag-Mn/γ-Al2O3 were prepared under different Ag/Mn impregnation sequence and tested in the sequential adsorption-plasma catalytic removal of toluene. When Mn was impregnated first, the resulting catalyst, Ag-Mn(F)/γ-Al2O3, had longer breakthrough time, gave less emission of toluene, had higher CO2 selectivity, and had better carbon balance and COx yield compared to catalysts prepared via other impregnation sequences. After 120 min of NTP treatment, the carbon balance of Ag-Mn(F)/γ-Al2O3 was 91%, with 87% as COx contributions. A Brunauer-Emmett-Teller (BET) analysis and X-ray photoelectron spectroscopy (XPS) results show that, the impregnation sequence impacts the BET surface area and the ratio and existing state of Ag on the surface of the catalysts. The longer breakthrough time when using Ag-Mn(F)/γ-Al2O3 as catalyst is attributed to the large amount of Ag(+) on the surface. Ag(+) is a new active site for toluene adsorption. When Ag was impregnated first (Ag(F)-Mn/γ-Al2O3) or Ag and Mn co-impregnated (Ag-Mn-C/γ-Al2O3), the predominant specie was Ag(+). Both Ag(0) and Ag(+) species were detected on Ag-Mn(F)/γ-Al2O3. Ag(0) cooperation with MnOx may promote the migration of surface active oxygen. This would facilitate the oxidation of adsorbed toluene with CC bond already weakened by Ag(+) and would result in higher CO2 selectivity and better carbon balance as seen in the Ag-Mn(F)/γ-Al2O3 system. PMID:27494312

  2. Composition, microstructures and ferrimagnetic properties of Bi-modified LiZnTiMn ferrites for LTCC application

    NASA Astrophysics Data System (ADS)

    Jia, Lijun; Zhao, Yuanpei; Xie, Fei; Li, Qiang; Li, Yuanxun; Liu, Cheng; Zhang, Huaiwu

    2016-05-01

    The effects of Bi modification on the microstructural development and gyromagnetic properties of low-temperature sintered ferrites with composition of Li0.42Zn0.27Ti0.11Mn0.1Fe2.1-xBixO4 (x = 0.0-0.1) have been studied in order to adapt the development of low-temperature cofired ceramics technology (LTCC) and produce gyromagnetic devices with a multilayer process. In the present work, a pure spinel phase can be formed with a sintering temperature ranging from 880°C to 900°C, which allows them to be co-fired with silver. We found that Bi3+ ions could enter into the ferrite lattice, which enhanced the grain growth and densification during sintering due to the activation of the lattice. Results show that the modifying of x = 0.003 cannot only double saturation induction but also drastically reduce ferromagnetic resonance line width at 9.3 GHz, indicating that Bi modification is a good approach for lowing the sintering temperature of LiZnTiMn ferrites.

  3. Effect of on-site Coulomb interaction (U) on the electronic and magnetic properties of Fe2MnSi, Fe2MnAl and Co2MnGe

    NASA Astrophysics Data System (ADS)

    Sharma, Sonu; Pandey, Sudhir K.

    2016-04-01

    The electronic band structures, density of states' plots and magnetic moments of Fe2MnSi, Fe2MnAl, and Co2MnGe are studied by using the first principles calculation. The FM solutions using LSDA without U show the presence of half-metallic ferromagnetic (HFM) ground state in Fe2MnSi, whereas the ground state of Fe2MnAl is found to be metallic. In both compounds the maximum contribution to the total magnetic moment is from the Mn atom, while the Fe atom contributes very less. The electronic structures and magnetic moments of Fe-based compounds are affected significantly by U under around-the-mean-field (AMF) double counting scheme, whereas its effect is very less on Co2MnGe. The magnetic moment of Fe atom in Fe2MnSi (Fe2MnAl) increased by ∼70% (∼75%) and in Mn atom it decreases by ∼50% (∼70%) when the value of U is increased from 1 to 5 eV. Hund's like exchange interactions are increasing in Fe atom while decreasing in Mn atom with increase in U. The Fe and Mn moments are ferromagnetically coupled in Fe2MnSi for all values of U, whereas in Fe2MnAl they are coupled antiferromagnetically below U=2 eV and ferromagnetically above it. Above U=2 eV the metallic ground state of Fe2MnAl changes to semiconducting ground state and the ferromagnetic coupling between Fe and Mn atoms appears to be responsible for this. This shows that the validity of AFM double counting scheme is not robust for the entire range of U in the Fe2MnAl compound.

  4. The effect of disorder on the electronic and magnetic properties of Mn2CoAl/GaAs heterostructures

    NASA Astrophysics Data System (ADS)

    Feng, Yu; Tian, Chun-lin; Yuan, Hong-kuan; Kuang, An-long; Chen, Hong

    2015-11-01

    We study the effect of disorder, including swap and antisite, on the electronic and magnetic properties of heterostructures by using extensive first-principles calculations within density functional theory. Thirteen kinds of swap disorders and sixteen kinds of antisite disorders are proposed and studied comprehensively. Our calculation reveals that disorders at the interface have low formation energies, indicating that disorders are most likely to appear at the interface instead of the deep layer. Among all kinds of disorders, Mn1(Al) (where the interface Mn is occupied by an Al atom) and Mn1(As) (where the interface Mn is occupied by an As atom from a GaAs slab) antisite disorders possess the lowest formation energies. This shows that the interface Mn has a higher probability of being replaced by an Al atom, and that an As atom from a GaAs slab easily diffuses into a Mn2CoAl slab and occupies the position of the interface Mn. Moreover, further study on the interface electronic structure reveals that interface spin polarization suffers dramatic reduction due to Mn1(Al) and Mn1(As) antisite disorders. It can be deduced that the interface state, together with Mn1(Al) and Mn1(As) antisite disorders, may be the main causes of the low TMR ratio of Mn2CoAl/GaAs heterostructures.

  5. Study of the structural, electric and magnetic properties of Mn-doped Bi2Te3 single crystals

    NASA Astrophysics Data System (ADS)

    Watson, M. D.; Collins-McIntyre, L. J.; Shelford, L. R.; Coldea, A. I.; Prabhakaran, D.; Speller, S. C.; Mousavi, T.; Grovenor, C. R. M.; Salman, Z.; Giblin, S. R.; van der Laan, G.; Hesjedal, T.

    2013-10-01

    Breaking the time reversal symmetry of a topological insulator, for example by the presence of magnetic ions, is a prerequisite for spin-based electronic applications in the future. In this regard Mn-doped Bi2Te3 is a prototypical example that merits a systematic investigation of its magnetic properties. Unfortunately, Mn doping is challenging in many host materials—resulting in structural or chemical inhomogeneities affecting the magnetic properties. Here, we present a systematic study of the structural, magnetic and magnetotransport properties of Mn-doped Bi2Te3 single crystals using complimentary experimental techniques. These materials exhibit a ferromagnetic phase that is very sensitive to the structural details, with TC varying between 9 and 13 K (bulk values) and a saturation moment that reaches 4.4(5) μB per Mn in the ordered phase. Muon spin rotation suggests that the magnetism is homogeneous throughout the sample. Furthermore, torque measurements in fields up to 33 T reveal an easy axis magnetic anisotropy perpendicular to the ab-plane. The electrical transport data show an anomaly around TC that is easily suppressed by an applied magnetic field, and also anisotropic behavior due to the spin-dependent scattering in relation to the alignment of the Mn magnetic moment. Hall measurements on different crystals established that these systems are n-doped with carrier concentrations of ˜ 0.5-3.0 × 1020 cm-3. X-ray magnetic circular dichroism (XMCD) at the Mn L2,3 edge at 1.8 K reveals a large spin magnetic moment of 4.3(3) μB/Mn, and a small orbital magnetic moment of 0.18(2) μB/Mn. The results also indicate a ground state of mixed d4-d5-d6 character of a localized electronic nature, similar to the diluted ferromagnetic semiconductor Ga1-xMnxAs. XMCD measurements in a field of 6 T give a transition point at T ≈ 16 K, which is ascribed to short range magnetic order induced by the magnetic field. In the ferromagnetic state the easy direction of

  6. Influence of the Bi3+ electron lone pair in the evolution of the crystal and magnetic structure of La(1-x)Bi(x)Mn2O5 oxides.

    PubMed

    Retuerto, M; Muñoz, A; Martínez-Lope, M J; Garcia-Hernandez, M; André, G; Krezhov, K; Alonso, J A

    2013-05-29

    La(1-x)Bi(x)Mn2O5 (x = 0, 0.2, 0.4, 0.6, 0.8 and 1) oxides are members of the RMn2O5 family. The entire series has been prepared in polycrystalline form by a citrate technique. The evolution of their magnetic and crystallographic structures has been investigated by neutron powder diffraction (NPD) and magnetization measurements. All the samples crystallize in an orthorhombic structure with space group Pbam containing infinite chains of Mn(4+)O6 octahedra sharing edges, linked together by Mn(3+)O5 pyramids and (La/Bi)O8 units. These units become strongly distorted as the amount of Bi increases, due to the electron lone pair of Bi(3+). All the members of the series are magnetically ordered below TN = 25-40 K and they present different magnetic structures. For the samples with low Bi content (x = 0.2 and 0.4) the magnetic structure is characterized by the propagation vector k = (0,0,1/2). The magnetic moments of the Mn(4+) ions placed at octahedral sites are ordered according to the basis vectors (Gx, Ay, 0) whereas the Mn(3+) moments, located at pyramidal sites, are ordered according to the basis vectors (0, 0, Cz). When the content of Bi increases, two different propagation vectors are needed to explain the magnetic structure: k1 = (0,0,1/2) and k2 = (1/2,0,1/2). For x = 0.6 and 0.8, k2 is predominant over k1 and for this propagation vector (k2) the magnetic arrangement is defined by the basis vectors (Gx, Ay,0) and (Fx, Cy, 0) for Mn(4+) and Mn(3+) ions, respectively. PMID:23628956

  7. Deformation of diffusion-bonded bi-PST and directionally solidified crystals of TiAl

    SciTech Connect

    Kishida, K.; Johnson, D.R.; Masuda, Y.; Inui, H.; Yamaguchi, M.; Shimada, Y.

    1997-12-31

    With a data base now available on the microstructural characteristics and the deformation, fracture and macroscopic flow behavior of polysynthetically twinned (PST) crystals of {gamma}/{alpha}{sub 2} TiAl-base alloys, an approach to achieve a good combination of strength, ductility and toughness in {gamma}/{alpha}{sub 2} TiAl-base alloys was proposed using directional solidification (DS) techniques to produce a columnar grain material with the lamellar orientation aligned parallel to the growth direction. Such alignment of the lamellar microstructure was recently accomplished in {gamma}/{alpha}{sub 2} TiAl-base alloys of near equiatomic compositions using an appropriately oriented seed crystal from the Ti-Al-Si system. At the same time, bi-PST crystals, each containing a planar boundary parallel to the loading axis were prepared by directional solidification and diffusion bonding of two PST crystals. Such bi-PST crystals were deformed in tension at room temperature and their deformation behavior was examined in terms of the compatibility requirements imposed at the grain boundary and the interaction of the two component PST crystals. In this paper, (i) the current status of the DS processing efforts, (ii) some result of microscopic characterization of grain boundaries in diffusion bonded bi-PST crystals and (iii) results of deformation experiments of bi-PST crystals prepared by DS processing and diffusion bonding, will be reported.

  8. Quantum Hall effect in a bulk antiferromagnet EuMnBi2 with magnetically confined two-dimensional Dirac fermions.

    PubMed

    Masuda, Hidetoshi; Sakai, Hideaki; Tokunaga, Masashi; Yamasaki, Yuichi; Miyake, Atsushi; Shiogai, Junichi; Nakamura, Shintaro; Awaji, Satoshi; Tsukazaki, Atsushi; Nakao, Hironori; Murakami, Youichi; Arima, Taka-hisa; Tokura, Yoshinori; Ishiwata, Shintaro

    2016-01-01

    For the innovation of spintronic technologies, Dirac materials, in which low-energy excitation is described as relativistic Dirac fermions, are one of the most promising systems because of the fascinating magnetotransport associated with extremely high mobility. To incorporate Dirac fermions into spintronic applications, their quantum transport phenomena are desired to be manipulated to a large extent by magnetic order in a solid. We report a bulk half-integer quantum Hall effect in a layered antiferromagnet EuMnBi2, in which field-controllable Eu magnetic order significantly suppresses the interlayer coupling between the Bi layers with Dirac fermions. In addition to the high mobility of more than 10,000 cm(2)/V s, Landau level splittings presumably due to the lifting of spin and valley degeneracy are noticeable even in a bulk magnet. These results will pave a route to the engineering of magnetically functionalized Dirac materials. PMID:27152326

  9. Quantum Hall effect in a bulk antiferromagnet EuMnBi2 with magnetically confined two-dimensional Dirac fermions

    PubMed Central

    Masuda, Hidetoshi; Sakai, Hideaki; Tokunaga, Masashi; Yamasaki, Yuichi; Miyake, Atsushi; Shiogai, Junichi; Nakamura, Shintaro; Awaji, Satoshi; Tsukazaki, Atsushi; Nakao, Hironori; Murakami, Youichi; Arima, Taka-hisa; Tokura, Yoshinori; Ishiwata, Shintaro

    2016-01-01

    For the innovation of spintronic technologies, Dirac materials, in which low-energy excitation is described as relativistic Dirac fermions, are one of the most promising systems because of the fascinating magnetotransport associated with extremely high mobility. To incorporate Dirac fermions into spintronic applications, their quantum transport phenomena are desired to be manipulated to a large extent by magnetic order in a solid. We report a bulk half-integer quantum Hall effect in a layered antiferromagnet EuMnBi2, in which field-controllable Eu magnetic order significantly suppresses the interlayer coupling between the Bi layers with Dirac fermions. In addition to the high mobility of more than 10,000 cm2/V s, Landau level splittings presumably due to the lifting of spin and valley degeneracy are noticeable even in a bulk magnet. These results will pave a route to the engineering of magnetically functionalized Dirac materials. PMID:27152326

  10. First-principles study of Mn adsorption on Al4C3(0 0 0 1) surface

    NASA Astrophysics Data System (ADS)

    Yao, L. F.; Li, K.; Zhou, N. G.

    2016-02-01

    First-principle calculation based on the density functional theory was adopted to investigate the adsorption energy, stability, electronic structure and bonding of Mn atom adsorption on Al-terminated and C-terminated Al4C3(0 0 0 1) surface under 0.25 ML and 0.5 ML. Results show that the structure of Mn adsorption on C-terminated Al4C3(0 0 0 1) surface is more stable than that on Al-terminated surface according to the formation energy calculation. For Mn adsorption on Al-terminated surface, Mn is more favorable to reside at the site H1 comparing with other sites. As well, for Mn adsorption on C-terminated surface, the structure of Mn adsorption at site H‧1 is the most stable one. By analyzing the electronic structure and bonding, it is found that the mixed metallic/covalent bonds are formed between Mn atoms and Al-terminated surface, while the covalent bonds are formed between Mn atoms and C-terminated surface. According to the interlayer spacing calculation, Al4C3(0 0 0 1) surfaces are reconstructed after Mn adsorption, which in turn affect the following stacking of Mg atoms on Al4C3(0 0 0 1) surface. The above analysis provided effective theoretical support to the experimental phenomenon that high Mn content has negative influence on the heterogeneous nucleation of Al4C3 particles for α-Mg grains.

  11. Structural, dielectric and magnetic studies on BiPbSr{sub 2}MnO{sub 6}

    SciTech Connect

    Sahu, B.; Mohapatra, S. R.; Singh, A. K. E-mail: sahubinayak.magnon@gmail.com; Kaushik, S. D.; Siruguri, V.

    2015-06-24

    We have investigated structural, room temperature dielectric and magnetic properties of BiPbSr{sub 2}MnO{sub 6} as a potential candidate to show magnetoelectric coupling. The X-ray diffraction study shows the crystal structure is noncentrosymmetrical with orthorhombic space group A2aa while neutron diffraction study demonstrates the above structure is centrosymmetrical with orthorhombic space group Amaa. The DC susceptibility measurement performed on polycrystalline powders exhibits antiferromagnetic ordering below transition temperature ∼ 190K. The frequency dependent dielectric measurement at room temperature displays the normal polar dielectric behavior.

  12. Single-Crystal Elastic Properties of the Spinel (MgAl2O4) - Galaxite (MnAl2O4) Solid Solution Series

    NASA Astrophysics Data System (ADS)

    Speziale, S.; Bruschini, E.; Andreozzi, G. B.; Bosi, F.; Hålenius, U.

    2014-12-01

    Spinels are a subject of intense research in solid state physics, materials science and geosciences. Their general formula is T(A1-i)M(AiB2-i)X4 (A and B are cations, X are anions, T and M indicate tetrahedrally- and octahedrally-coordinated sites and i is the inversion degree). They are ideal materials to study the interplay between chemical substitutions, structure and the physical properties of solids. As spinel-structured ringwoodite (Mg,Fe)2SiO4 is the most abundant mineral in the lower transition zone, understanding the effect of chemical substitution on the elastic properties of spinels is of crucial for geophysics. We have experimentally studied the variation of the elastic properties along the join MgAl2O4 - MnAl2O4. Crystals of 4 compositions along the join were synthesized at the very same experimental conditions and their crystal chemistry was fully characterized. Single-crystal elastic constants Cij of all the samples were measured by Brillouin spectroscopy at ambient conditions. For compositions with Mn/Mg < 0.5 C11 remains constant, then it decreases of ~4% for higher Mn contents. From MgAl2O4 to MnAl2O4 C12 lineraly increases ~ 5% and C44 decreases ~ 20% . The bulk modulus KS is almost constant, whereas the shear modulus G decreases ~ 18% across the join. The elastic constants of MnAl2O4 are C11 = 271.3 (± 1.3) GPa, C12 = 164.8 (± 1.3) GPa and C44 = 124.9 (5) GPa. Using the empirical polyhedral approach [1] we have inferred the effectve polyhedral bulk moduli of Mg, Mn and Al in T and M sites. We observe that KMnM < KMgM < KMgT ≈ KMnT < KAlM << KAlT. The relationship between polyhedral moduli and ionic potential IP [2] can be expressed as Ki j (GPa) = 20 ( ± 2) × IP + 108 (± 10), where i is the cation, j is the site and IP is in units of (e/Å). Using our correlation and atomic radii from [3] we successfully reproduced the bulk modulus of different oxide spinels with bi- and tri-valent cations. Our preliminary results confirm that empirical

  13. CONSTITUTIVE BEHAVIOR OF AS-QUENCHED Al-Cu-Mn ALLOY

    NASA Astrophysics Data System (ADS)

    Yang, Xia-Wei; Zhu, Jing-Chuan; Nong, Zhi-Sheng; Ye, Mao; Lai, Zhong-Hong; Liu, Yong

    2013-07-01

    The hot flow stress of as-quenched Al-Cu-Mn alloy was modeled using the constitutive equations. The as-quenched Al-Cu-Mn alloy were treated with isothermal hot compression tests in the temperature range of 350-500°C, the strain rate range of 0.001-1 s-1. The hyperbolic sine equation was found to be appropriate for flow stress modeling and prediction. Based on the hyperbolic sine equation, a constitutive equation is a relation between 0.2 pct yield stress and deformation conditions (strain rate and deformation temperature) was established. The corresponding hot deformation activation energy (Q) for as-quenched Al-Cu-Mn alloy was determined to be 251.314 kJ/mol. Parameters of constitutive equation of as-quenched Al-Cu-Mn alloy were calculated at different small strains (≤ 0.01). The calculated flow stresses from the constitutive equation are in good agreement with the experimental results. Therefore, this constitutive equation can be used as an accurate temperature-stress model to solve the problems of quench distortion of Al-Cu-Mn alloy parts.

  14. Site-mixing effect on the XMCD spectrum in double perovskite Bi2FeMnO6

    NASA Astrophysics Data System (ADS)

    Ahmed, Towfiq; Chen, Aiping; McFarland, Brian; Wang, Qiang; Ohldag, Hendrik; Sandberg, Richard; Jia, Quanxi; Yarotski, Dmitry A.; Zhu, Jian-Xin

    2016-06-01

    We investigate magnetization in double perovskite multiferroic Bi2FeMnO6 (BFMO) thin film using density functional theory (DFT) simulations, and X-ray magnetic circular dichroism (XMCD) measurements. The exchange interaction between Fe and Mn sites gives rise to a ferrimagnetic ordering in BFMO. When grown without structural defects, distinct XMCD signal is expected from this system. The site resolved magnetization, thus, can be extracted using XMCD sum rules. Although our theoretical calculations are consistent with this expectation for the ideal BFMO system, experimental measurements find evidence of anomalous peak for the L2 and L3 edges of XMCD signals, and thus, the XMCD sum rules are no longer valid. We theoretically explain this phenomenon by considering both tetragonal (near interface), and monoclinic (bulk) phases of BFMO system, with Fe and Mn ions interchanged between their respective sites. Such site-mixing between magnetic cations are commonly found during the synthesis process. Our DFT calculations of XMCD for site interchanged Fe and Mn ions in the bulk phase (monoclinic) of BFMO are in good agreement with experimental XMCD signal and reproduce the anomalous peak features at L2/L3 edges.

  15. Ultrafast optical studies on GaAs/AlGaAs/GaMnAs quantum wells

    NASA Astrophysics Data System (ADS)

    Schulz, R.; Korn, T.; Wurstbauer, U.; Schuh, D.; Wegscheider, W.; Schüller, C.

    2010-01-01

    GaMnAs is a highly interesting material system for future spintronic devices. We present a study of nonmagnetic GaAs quantum wells (QW) embedded in AlGaAs barriers, close to a ferromagnetic GaMnAs layer. The samples were grown on semi-insulating GaAs(001) and contain two QWs, where one QW is close to the GaMnAs layer and the other one is farther away (120 nm), and serves as a reference. We studied the influence of the barrier material, e.g. a short-period AlAs/GaAs superlattice. The photoluminescence (PL) of the upper QWs, close to the GaMnAs layer, show a significant broadening. Additionally, time-resolved Faraday rotation (TRFR) reveals that the spin lifetime in the upper QW is up to 30 times longer than that in the lower QW. We attribute these observations to backdiffusion of Mn into the QW during and after growth. Both, the PL and the TRFR, are highly sensitive to small quantities (below 0.05 %) of Mn and allow us to study the efficiency of barrier layers in suppressing Mn diffusion.

  16. Effects of Mn content on the deformation behavior of Fe-Mn-Al-C TWIP steels — A computational study

    SciTech Connect

    Wang, Yuan; Sun, Xin; Wang, Y. D.; Zbib, Hussein M.

    2015-04-01

    This paper presents a double-slip/double-twin polycrystal plasticity model using finite element solution to investigate the kinetics of deformation twinning of low-to-medium manganese (Mn) twinning-induced plasticity (TWIP) steels. Empirical equations are employed to estimate the stacking fault energy (SFE) of TWIP steels and the critical resolved shear stress (CRSS) for dislocation slip and deformation twinning, respectively. The results suggest that the evolution of twinning in Fe-xMn-1.4Al-0.6C (x=11.5, 13.5, 15.5, 17.5 and 19.5) TWIP steels, and its relation to the Mn content, can explain the effect of Mn on mechanical properties.the stress-strain. By comparing the double-slip/double-twin model to a double-slip model, the predicted results essentially reveal that the interaction behavior between dislocation slip and deformation twinning can lead to an additional work hardening. Also, numerical simulations are carried out to study the influence of boundary conditions on deformation behavior and twin formation. The nucleation and growth of twinning are found to depend on internal properties (e.g., mismatch orientation of grains and stress redistribution) as well as on external constraints (e.g., the applied boundary conditions) of the material.

  17. Real-Time Observation on Evolution of Droplets Morphology Affected by Electric Current Pulse in Al-Bi Immiscible Alloy

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Wang, Tongmin; Cao, Fei; Fu, Hongwang; Fu, Yanan; Xie, Honglan; Xiao, Tiqiao

    2013-05-01

    The evolution of Bi-rich droplets morphology in a solidifying Al-Bi immiscible alloy was directly observed using a synchrotron microradiography technique. The electric current pulse (ECP) was applied to control the solidification process of Al-Bi immiscible alloy. It was found that the electromagnetic pinch force and Marangoni force induced by ECP and temperature gradient, respectively, can significantly affect the distribution of Bi-rich droplets. The electromagnetic pinch force drove the droplets from the center to side; meanwhile, the Marangoni force lifted the droplets from the bottom to the top. As a result, the droplets finally distributed with a manner of "inverted triangle."

  18. First principles prediction of interfacial magnetoelectric coupling in tetragonal La2/3Sr1/3MnO3/BiFeO3 multiferroic superlattices.

    PubMed

    Feng, Nan; Mi, Wenbo; Wang, Xiaocha

    2015-05-28

    The electronic structure and magnetic properties of the tetragonal La2/3Sr1/3MnO3/BiFeO3 multiferroic superlattices with different interfacial terminations have been studied by first-principles calculations. Our results for all the models of the tetragonal La2/3Sr1/3MnO3/BiFeO3 superlattices exhibit a metallic electronic structure. More importantly, we find that the magnetoelectric coupling can be realized in the tetragonal La2/3Sr1/3MnO3/BiFeO3 heterostructures by means of exchange bias, which can be attributed to the interfacial exchange coupling. These findings are useful for magnetoelectrically controlled spintronic devices. PMID:25940540

  19. Photoemission study of some novel materials: Rare earth/transition metal interface, Ba*0.6*K*0.4*BiO3* and AlPdM

    SciTech Connect

    Wu, X.

    1995-02-10

    Synchrotron radiation photoemission spectroscopy and low energy electron diffraction (LEED) are applied to explore several novel materials: (a) Ce epitaxial growth on W (110) surfaces. (b) Eu epitaxial growth on Ta (110) surfaces. (c) Sm epitaxial growth on Ta (110) surfaces. (d) quasicrystalline AlPdMn, and (e) superconducting Ba{sub 1-x}K{sub x}BiO{sub 3}. In the case of rare earth overlayers on transition metal surface, resonance photoemission spectroscopy is used to enhance the 4f features. The metal surface phase transition is investigated on an atomic-scale. In the case of quasicrystalline AlPdMn and superconducting Ba{sub 1-x}K{sub x}BiO{sub 3} the electronic structures are investigated by angle-resolved photoemission.

  20. Coercivity enhancement in Mn-Al-Cu flakes produced by surfactant-assisted milling

    NASA Astrophysics Data System (ADS)

    Saravanan, P.; Hsu, Jen-Hwa; Vinod, V. T. P.; Černík, Miroslav; Kamat, S. V.

    2015-11-01

    We herein report the achievement of exceptionally high coercivity (Hc) values: 9.92 and 5.86 kOe at 5 and 300 K, respectively, for Mn55Al43Cu2 flakes produced by surfactant-assisted milling process without employing any heat-treatment. The use of surfactants such as oleic acid and oleylamine during milling yielded high-aspect ratio flakes for the Mn-Al-Cu alloy. Structural studies confirmed the presence of τ- and β-phases as the major constituents in the Mn-Al-Cu flakes. The observed Hc enhancement is due to the increase in anisotropy field and structural defects, which is hypothesized to originate from the domain-wall pinning as a consequence of precipitation of fine Cu-particles present at the grain boundaries.

  1. Electronic and Optical Properties of Ca3MN (M = Ge, Sn, Pb, P, As, Sb and Bi) Antiperovskite Compounds

    NASA Astrophysics Data System (ADS)

    Iqbal, Samad; Murtaza, G.; Khenata, R.; Mahmood, Asif; Yar, Abdullah; Muzammil, M.; Khan, Matiullah

    2016-08-01

    The electronic and optical properties of cubic antiperovskites Ca3MN (M = Ge, Sn, Pb, P, As, Sb and Bi) were investigated by applying the full potential linearized augmented plane wave plus local orbitals (FP-LAPW + lo) scheme based on density functional theory. Different exchange correlation potentials were adopted for the calculations. The results of band structure and density of states show that, by changing the central anion of Ca3MN, the nature of the materials change from metallic (Ca3GeN, Ca3SnN, Ca3PbN) to semiconducting with small band gaps (Ca3SbN and Ca3BiN) to insulating (Ca3PN and Ca3AsN). The optical properties such as dielectric function, absorption coefficient, optical conductivity, reflectivity and refractive indices have also been calculated. The results reveal that all the studied compounds are optically active in the visible and ultraviolet energy regions, and therefore can be effectively utilized for optoelectronic devices.

  2. Electronic and Optical Properties of Ca3MN (M = Ge, Sn, Pb, P, As, Sb and Bi) Antiperovskite Compounds

    NASA Astrophysics Data System (ADS)

    Iqbal, Samad; Murtaza, G.; Khenata, R.; Mahmood, Asif; Yar, Abdullah; Muzammil, M.; Khan, Matiullah

    2016-05-01

    The electronic and optical properties of cubic antiperovskites Ca3MN (M = Ge, Sn, Pb, P, As, Sb and Bi) were investigated by applying the full potential linearized augmented plane wave plus local orbitals (FP-LAPW + lo) scheme based on density functional theory. Different exchange correlation potentials were adopted for the calculations. The results of band structure and density of states show that, by changing the central anion of Ca3MN, the nature of the materials change from metallic (Ca3GeN, Ca3SnN, Ca3PbN) to semiconducting with small band gaps (Ca3SbN and Ca3BiN) to insulating (Ca3PN and Ca3AsN). The optical properties such as dielectric function, absorption coefficient, optical conductivity, reflectivity and refractive indices have also been calculated. The results reveal that all the studied compounds are optically active in the visible and ultraviolet energy regions, and therefore can be effectively utilized for optoelectronic devices.

  3. Effects of the substitution of Al for Mn on structure, magnetic, and magnetocaloric properties in MnCoGe

    NASA Astrophysics Data System (ADS)

    Si, Xiaodong; Liu, Yongsheng; Lu, Xiaofei; Wang, Wenli; Lei, Wei; Lin, Jia; Zhou, Tao; Xu, Yan

    2016-06-01

    The magnetic transition can be controlled by partial substitution of Al for Mn in Mn1-xAlxCoGe, leading to a wide transition temperature range around the room temperature. A well-defined linear relationship between the magnetic entropy change (|ΔSM|) and H2/3 demonstrates the second-order character of magnetic transition. In the case of x = 0.02, the relative cooling power of 242.3 J.kg-1 is achieved for Δμ0H = 5 T at 270.5 K. Interestingly, a corresponding monotonical decline in |ΔSM| is in relation to magnetic moment per formula unit. The observed large relative cooling power with wide phase transition temperatures makes these materials promising for room-temperature magnetic cooling applications.

  4. Observation of orbital ordering and Jahn-Teller distortions supporting the Wigner-crystal model in highly doped Bi1-xCaxMnO3

    NASA Astrophysics Data System (ADS)

    Grenier, S.; Kiryukhin, V.; Cheong, S.-W.; Kim, B. G.; Hill, J. P.; Thomas, K. J.; Tonnerre, J. M.; Joly, Y.; Staub, U.; Scagnoli, V.

    2007-02-01

    We report on the experimental characterization of orbital ordering and the associated lattice distortions in highly doped Bi1-xCaxMnO3 . Resonant x-ray diffraction was used at the MnL -edge for the direct observation of the ordered localized states, and at the MnK -edge for the sensitivity to the distortions of the manganese-oxygen octahedra. The orbital ordering on Mn atoms was directly observed at x=0.69 ; the analysis and the numerical simulations of the K -edge spectra allow us to characterize the pattern of the distorted octahedra at x=(4)/(5) . These observations support the Wigner-crystal-type model at both dopings; the bi-stripe model is ruled out at x=0.69 .

  5. Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films

    NASA Astrophysics Data System (ADS)

    Soare, V.; Burada, M.; Constantin, I.; Mitrică, D.; Bădiliţă, V.; Caragea, A.; Târcolea, M.

    2015-12-01

    Al-Cr-Fe-Mn-Ni and Al-Cr-Cu-Fe-Mn-Ni high entropy alloy thin films were prepared by potentiostatic electrodeposition and the microstructure of the deposits was investigated. The thin films were co-deposited in an electrolyte based on a DMF (N,N-dimethylformamide)-CH3CN (acetonitrile) organic compound. The energy dispersive spectrometry investigation (EDS) indicated that all the five respectively six elements were successfully co-deposited. The scanning electron microscopy (SEM) analysis revealed that the film consists of compact and uniform particles with particle sizes of 500 nm to 4 μm. The X-ray diffractometry (XRD) patterns indicated that the as-deposited thin films were amorphous. Body-centered-cubic (BCC) structures were identified by XRD after the films were annealed at various temperatures under inert Ar atmosphere. The alloys adhesion on the substrate was determined by the scratch-testing method, with higher values obtained for the Al-Cr-Cu-Fe-Mn-Ni alloy.

  6. Effect of Mn/S Ratio on the Hot Ductility of Eco-friendly Bi-S based Free Cutting Steel

    NASA Astrophysics Data System (ADS)

    Liu, Haitao; Yu, Yanchong; Chen, Weiqing; Wang, Qingxian; Wang, Guangshun

    2014-12-01

    The hot ductility of eco-friendly Bi-S based free cutting steels with different Mn/S ratios was studied using a Gleeble-1500 thermal-mechanical simulator. The hot ductility of the steel was found to depend on the Mn/S ratio, and the Mn/S ratio of the steel should be greater than 3.5 for hot rolling of billets without crack development. The low Mn/S ratio would inhibit the occurrence of the dynamic recrystallization and cause the formation of the low melting point sulfide Fe-rich (Fe,Mn)S as secondary phases, which could obviously reduce the strength of the grain boundary and resulted in the formation of cracks along the grain boundary. The higher the Mn/S ratio in the steel, the lower the Fe content in the Fe-rich (Fe,Mn)S phases. When the Mn/S ratio in the steel was high enough, the sulfide phases in the steel were mainly MnS as primary inclusions and the low melting point sulfide phases could be effectively avoided forming. While the Mn/S ratio could influence the hot ductility of the steel over the whole temperature range of 900-1200 °C, the segregation of bismuth along grain boundary could be harmful to the hot ductility in addition to the lower Mn/S ratio for the temperature was no more than 1050 °C.

  7. Dynamical x-ray diffraction from an icosahedral Al-Pd-Mn quasicrystal

    SciTech Connect

    Kycia, S.

    1996-04-23

    Primary extinction effects in diffraction from single grains of Al-Pd- Mn, and presumably many other FCI alloys, may be significant and should be corrected for prior to use of diffraction data in structural determinations. Probes based on dynamical diffraction effects, such as x-ray standing wave fluorescence, multiple beam interference, and x-ray transmission topographs, may now be used to study the bulk and surface structure of some quasicrystals. The observation of dynamical diffraction from icosahedral Al-Pd-Mn is a striking confirmation of the fact that quasicrystals can present a degree of structural perfection comparable to that found in the best periodic intermetallic crystals.

  8. Perpendicularly magnetized {tau}-MnAl (001) thin films epitaxied on GaAs

    SciTech Connect

    Nie, S. H.; Zhu, L. J.; Lu, J.; Pan, D.; Wang, H. L.; Yu, X. Z.; Xiao, J. X.; Zhao, J. H.

    2013-04-15

    Perpendicularly magnetized {tau}-MnAl films have been epitaxied on GaAs (001) by molecular-beam epitaxy. Crystalline quality and magnetic properties of the samples were strongly dependent on growth temperature. The highest coercivity of 10.7 kOe, saturation magnetization of 361.4 emu/cm{sup 3}, perpendicular magnetic anisotropy constant of 13.65 Merg/cm{sup 3}, and magnetic energy product of 4.44 MGOe were achieved. These tunable magnetic properties make MnAl films valuable as excellent and cost-effective alternative for not only high density perpendicular magnetic recording storage and spintronics devices but also permanent magnets.

  9. Development of spin-gapless semiconductivity and half metallicity in Ti2MnAl by substitutions for Al

    NASA Astrophysics Data System (ADS)

    Lukashev, Pavel; Gilbert, Simeon; Staten, Bradley; Hurley, Noah; Fuglsby, Ryan; Kharel, Parashu; Huh, Yung; Valloppilly, Shah; Zhang, Wenyong; Yang, K.; Sellmyer, David J.

    In recent years, ever increasing interest in spin-based electronics has resulted in the search for a new class of materials that can provide a high degree of spin polarized electron transport. An ideal candidate would act like insulator for one spin channel and a conductor or semiconductor for the opposite spin channel (e.g., half metal (HM), spin-gapless semiconductor (SGS)). Here, we present the combined computational, theoretical, and experimental study of Ti2MnAl, a Heusler compound with potential application in the field of spintronics. We show that in the ground state this material is metallic, however it becomes a SGS when 50% of Al is substituted with In (e.g., Ti2MnAl0.5In0.5) , and a HM when 50% of Al is substituted with Sn (e.g., Ti2MnAl0.5Sn0.5) . Detailed study of the structural, electronic, and magnetic properties of these materials is presented. Financial support: DOE/BES (DE-FG02-04ER46152); NSF NNCI: 1542182; NRI; Academic and Scholarly Excellence Funds, Office of Academic Affairs, SDSU; UNI Faculty Summer Fellowship; Program for Outstanding Innovative Talents in Hohai University.

  10. Influence of Mn concentration on magnetic topological insulator MnxBi2−xTe3 thin-film Hall-effect sensor

    SciTech Connect

    Ni, Y.; Zhang, Z.; Nlebedim, I. C.; Hadimani, R. L.; Jiles, D. C.

    2015-06-11

    Hall-effect (HE) sensors based on high-quality Mn-doped Bi2Te3 topological insulator (TI) thin films have been systematically studied in this paper. Improvement of Hall sensitivity is found after doping the magnetic element Mn into Bi2Te3. The sensors with low Mn concentrations, MnxBi2-xTe3, x = 0.01 and 0.08 show the linear behavior of Hall resistance with sensitivity about 5 Ω/T. And their Hall sensitivity shows weak dependence on temperature. For sensors with high Mn concentration (x = 0.23), the Hall resistance with respect to magnetic field shows a hysteretic behavior. Moreover, its sensitivity shows almost eight times as high as that of the HE sensors with low Mn concentration. The highest sensitivity can reach 43 Ω/T at very low magnetic field. This increase of Hall sensitivity is caused by the occurrence of anomalous HE (AHE) after ferromagnetic phase transition. Our work indicates that the magnetic-element-doped TIs with AHE are good candidates for HE sensors.

  11. Structural properties of Bi{sub 2−x}Mn{sub x}Se{sub 3} thin films grown via molecular beam epitaxy

    SciTech Connect

    Babakiray, Sercan; Johnson, Trent A.; Borisov, Pavel; Holcomb, Mikel B.; Lederman, David; Marcus, Matthew A.; Tarafder, Kartick

    2015-07-28

    The effects of Mn doping on the structural properties of the topological insulator Bi{sub 2}Se{sub 3} in thin film form were studied in samples grown via molecular beam epitaxy. Extended x-ray absorption fine structure measurements, supported by density functional theory calculations, indicate that preferential incorporation occurs substitutionally in Bi sites across the entire film volume. This finding is consistent with x-ray diffraction measurements which show that the out of plane lattice constant expands while the in plane lattice constant contracts as the Mn concentration is increased. X-ray photoelectron spectroscopy indicates that the Mn valency is 2+ and that the Mn bonding is similar to that in MnSe. The expansion along the out of plane direction is most likely due to weakening of the Van der Waals interactions between adjacent Se planes. Transport measurements are consistent with this Mn{sup 2+} substitution of Bi sites if additional structural defects induced by this substitution are taken into account.

  12. Synthesis and magnetic properties of Al doped Zn0.995Mn0.005O powers

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Yu, Zhou; Long, Xue; Lin, Pengtin; Cheng, Xingwang; Liu, Ying; Cao, Chuanbao; Zhang, Hongwei; Wu, Guangheng; Yu, Richeng

    2009-06-01

    Chemical method was employed to synthesize Mn and Al codoped ZnO, namely, Zn0.995-xMn0.005AlxO with the nominal composition of x =0, 0.005, and 0.02. Structural, optical, and magnetic properties of the produced samples were studied. The results indicated that introduce Al as additional dopants induces in an enhancement of the ferromagnetism in Zn0.995Mn0.005O. The enhanced ferromagnetism (FM) in (Mn,Al) codoped sample can be understood in view of that introducing of Al could promote spinodal decomposition and lead to Mn rich regions. The Mn rich regions could be responsibility for the observed enhancement of FM at room temperature.

  13. Hardness and microstructural variation of Al-Mg-Mn-Sc-Zr alloy.

    PubMed

    Ikeshita, Sumiha; Strodahs, Ansis; Saghi, Zineb; Yamada, Kazuhiro; Burdet, Pierre; Hata, Satoshi; Ikeda, Ken-Ichi; Midgley, Paul A; Kaneko, Kenji

    2016-03-01

    Variations of Vickers hardness were observed in Al-Mg-Mn alloy and Al-Mg-Mn-Sc-Zr alloy at different ageing times, ranging from a peak value of 81.2 HV at 54 ks down to 67.4 HV at 360 ks, below the initial hardness value, 71.8 HV at 0 ks for the case of Al-Mg-Mn-Sc-Zr alloy. Microstructures of samples at each ageing stage were examined carefully by transmission electron microscopes (TEMs) both in two-dimensions and three-dimensions. The presence of different types, densities, and sizes of particles were observed dispersed spherical Al3Sc1-xZrx and also block-shaped Al3Sc precipitates growing along <100>Al with facets {100} and {110} of the precipitates. TEM analysis both in two-dimensions and three-dimensions, performed on various samples, confirmed the direct correlation between the hardness and the density of Al3Sc. PMID:26748212

  14. Instability of photoinduced optical absorption of Bi12SiO20: Al crystals

    NASA Astrophysics Data System (ADS)

    Panchenko, T. V.; Dyachenko, A. A.; Khmelenko, O. V.

    2015-04-01

    The results of the experimental investigation of the instability of the establishment and relaxation of a photochromic effect in aluminum-doped Bi12SiO20 crystals have been presented. The oscillating and nonmonotonic kinetic dependences of the photoinduced optical absorption have been observed. The absorption oscillations are associated with the competition of the formation and destruction of [AlSiO4]0 photochromic centers.

  15. High-pressure synthesis of L10 MnAl with near-stoichiometric composition.

    PubMed

    Kinemuchi, Y; Fujita, A; Ozaki, K

    2016-07-01

    L10 MnAl, which is a nonequilibrium ferromagnetic phase, is fabricated successfully with various compositions via high-pressure synthesis. The L10 phase is observed at pressures higher than 5 GPa, indicating that the volume effect is crucial for the stabilization of this phase. The employed synthesis route does not require a Mn-rich ε-phase, which has conventionally been used as the precursor compound. This allows for the synthesis of the L10 phase with a near-stoichiometric composition. In addition to variations in the composition in terms of the Mn/Al ratio, the axial ratio (c/a) as well as the ordering parameter (S) are modified systematically, with the maximum c/a and S values corresponding to the stoichiometric composition. With this structural change, the highest coercive force is also observed at the stoichiometric composition. PMID:27302146

  16. First-principles study of spin-transfer torque in Co2MnSi/Al/Co2MnSi spin-valve

    NASA Astrophysics Data System (ADS)

    Tang, Ling; Yang, Zejin

    2013-11-01

    The spin-transfer torque (STT) in Co2MnSi(CMS)/Al/Co2MnSi spin-valve system with and without interfacial disorder is studied by a first-principles noncollinear wave-function-matching method. It is shown that in the case of clean interface the angular dependence of STT for CoCo/Al (the asymmetry parameter Λ ≈4.5) is more skewed than that for MnSi/Al (Λ≈2.9), which suggests the clean CoCo/Al architecture is much more efficient for the application on radio frequency oscillation. We also find that even with interfacial disorder the spin-valve of half-metallic CMS still has a relatively large parameter Λ compared to that of conventional ferromagnet. In addition, for clean interface the in-plane torkance of MnSi/Al is about twice as large as that of CoCo/Al. However, as long as the degree of interfacial disorder is sufficiently large, the CoCo/Al and MnSi/Al will show approximately the same magnitude of in-plane torkance. Furthermore, our results demonstrate that CMS/Al/CMS system has very high efficiency of STT to switch the magnetic layer of spin-valve.

  17. First-principles study of spin-transfer torque in Co{sub 2}MnSi/Al/Co{sub 2}MnSi spin-valve

    SciTech Connect

    Tang, Ling Yang, Zejin

    2013-11-21

    The spin-transfer torque (STT) in Co{sub 2}MnSi(CMS)/Al/Co{sub 2}MnSi spin-valve system with and without interfacial disorder is studied by a first-principles noncollinear wave-function-matching method. It is shown that in the case of clean interface the angular dependence of STT for CoCo/Al (the asymmetry parameter Λ≈4.5) is more skewed than that for MnSi/Al (Λ≈2.9), which suggests the clean CoCo/Al architecture is much more efficient for the application on radio frequency oscillation. We also find that even with interfacial disorder the spin-valve of half-metallic CMS still has a relatively large parameter Λ compared to that of conventional ferromagnet. In addition, for clean interface the in-plane torkance of MnSi/Al is about twice as large as that of CoCo/Al. However, as long as the degree of interfacial disorder is sufficiently large, the CoCo/Al and MnSi/Al will show approximately the same magnitude of in-plane torkance. Furthermore, our results demonstrate that CMS/Al/CMS system has very high efficiency of STT to switch the magnetic layer of spin-valve.

  18. Relaxor behavior of (Ba,Bi)(Ti,Al)O3 ferroelectric ceramic

    NASA Astrophysics Data System (ADS)

    Cui, Lei; Hou, Yu-Dong; Wang, Sai; Wang, Chao; Zhu, Man-Kang

    2010-03-01

    Perovskite type (Ba0.9Bi0.1)(Ti0.9Al0.1)O3 (BBTA) ceramics have been prepared through solid state reaction route. The room temperature x-ray diffraction study suggests that BBTA ceramics have single phase tetragonal symmetry with space group P4mm. In contrast to the sharp dielectric transition of pure BaTiO3, a broad dielectric anomaly coupled with the shift in dielectric maxima toward a higher temperature with increasing frequency has been observed in BBTA. The quantitative characterization based on empirical parameters (ΔTm, γ, ΔTrelax, and ΔTdiffuse(1 kHz)) confirms its relaxor nature. The dielectric relaxation which follows the Vogel-Fulcher relationship with Eα=0.011 eV, Tf=356 K, and f0=1.38×1010 Hz, further supports spin-glass-like characteristics. In this system, the relaxor behavior can be attributed to the dynamic response of the polar clusters induced by the combined substitutions of Bi3+ and Al3+ on the Ba2+ and Ti4+ site. Moreover, the curie temperature of BBTA shows the decreasing trend compared to that of pure BaTiO3, which doesn't follow the normal Vegard's law, confirming that no BiAlO3 sublattice formed in BBTA. All these features indicate that BBTA is a promising candidate for lead-free relaxors.

  19. Discharge properties of Mg-Al-Mn-Ca and Mg-Al-Mn alloys as anode materials for primary magnesium-air batteries

    NASA Astrophysics Data System (ADS)

    Yuasa, Motohiro; Huang, Xinsheng; Suzuki, Kazutaka; Mabuchi, Mamoru; Chino, Yasumasa

    2015-11-01

    The discharge behaviors of rolled Mg-6 mass%Al-0.3 mass%Mn-2 mass%Ca (AMX602) and Mg-6 mass%Al-0.3 mass%Mn (AM60) alloys used as anodes for Magnesium-air batteries were investigated. The AMX602 alloy exhibited superior discharge properties compared to the AM60 alloy, especially at low current density. The discharge products of the AMX602 alloy were dense and thin, and many cracks were observed at all current densities. In addition, the discharge products were detached at some sites. These sites often corresponded to the positions of Al2Ca particles. The comparison of the discharge and corrosion tests indicated that the dense and thin discharge products of AMX602 were easily cracked by dissolution of the Mg matrix around Al2Ca particles, and the cracks promoted the penetration of the electrolyte into the discharge products, retaining the discharge activity. In contrast, concerning the AM60 alloy, thick discharge products were formed on the surface during discharge, and cracking of the discharge products hardly occurred, degrading the discharge properties. Localized and deeply corroded pits that could result from the detachment of metal pieces from the anode during discharge were partly observed in the AM60 alloy. It is suggested that these detached metal pieces are another reason for the low discharge properties of the AM60 alloy.

  20. Al-Mn coating electrodeposited from ionic liquid on NdFeB magnet with high hardness and corrosion resistance

    NASA Astrophysics Data System (ADS)

    Ding, Jingjing; Xu, Bajin; Ling, Guoping

    2014-06-01

    Al-Mn coatings were electrodeposited on sintered NdFeB permanent magnet in MnCl2-AlCl3-1-ethyl-3-methylim-idazolium chloride (MnCl2-AlCl3-EMIC) ionic liquid at room temperature. The coatings were characterized by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The adhesion strength of the coating on NdFeB substrate was evaluated by thermal shock and scratch test. The hardness and corrosion behavior of Al-Mn coating were measured by a Knoop microhardness tester, immersion test and neutral salt spray test respectively. The results showed that the amorphous structure of the deposits was obtained at the current density of 6 mA/cm2, while higher current densities resulted in a mixed structure of amorphous and crystalline. The Al-Mn coating showed excellent adhesion strength on NdFeB substrate with the thermal shock test over 30 cycles and Lc > 80 N. The hardness of Al-Mn coating was up to 5.4 GPa. The amorphous Al-Mn coating showed an anodic sacrificial protection with a low corrosion rate for NdFeB. Meanwhile, the magnetic properties measured by an AMT-4 magnetic measurement device showed that Al-Mn coating did not deteriorate the magnetic property of NdFeB.

  1. The microstructure of near-equiatomic B2/f.c.c. FeNiMnAl alloys

    SciTech Connect

    Baker, I.; Wu, H.; Wu, X.; Miller, M.K.; Munroe, P.R.

    2011-10-15

    A microstructural analysis of two FeNiMnAl alloys, Fe{sub 30}Ni{sub 20}Mn{sub 30}Al{sub 20} and Fe{sub 25}Ni{sub 25}Mn{sub 30}Al{sub 20}, was performed by a combination of atom probe tomography and transmission electron microscopy techniques. Although the microstructures of both alloys, which consist of alternating platelets aligned along < 100> of the B2-ordered phase, are similar to B2/b.c.c. two-phase alloys previously observed in the FeNiMnAl system, the two phases present in the current alloys are B2-ordered and f.c.c., with the latter phase being heavily twinned. Very fine ({approx} 5 nm) precipitates, whose chemistry was similar to that of the f.c.c. (Fe, Mn)-rich phase, were found within the B2 (Ni, Al)-rich phase in both alloys. - Highlights: {yields} The microstructures of the novel alloys Fe{sub 30}Ni{sub 20}Mn{sub 30}Al{sub 20} and Fe{sub 25}Ni{sub 25}Mn{sub 30}Al{sub 20} were characterized. {yields} Atom probe tomography and transmission electron microscopy were used in the study. {yields} A < 100>-aligned B2-ordered phase and heavily-twinned f.c.c. phase were present. {yields} Very fine (Fe, Mn)-rich precipitates were found within the B2 (Ni, Al)-rich phase.

  2. Anomalous magnetic configuration of Mn{sub 2}NiAl ribbon and the role of hybridization in the martensitic transformation of Mn{sub 50}Ni{sub 50−x}Al{sub x} ribbons

    SciTech Connect

    Zhao, R. B.; Zhao, D. W.; Li, G. K.; Ma, L. E-mail: houdenglu@mail.hebtu.edu.cn; Zhen, C. M.; Hou, D. L. E-mail: houdenglu@mail.hebtu.edu.cn; Wang, W. H.; Liu, E. K.; Chen, J. L.; Wu, G. H.

    2014-12-08

    The magnetic configuration of Mn{sub 2}NiAl ribbon has been investigated. In contrast to Ni{sub 2}MnAl, the compound Mn{sub 2}NiAl with considerable disorder does exhibit ferromagnetism and, due to exchange interaction competition, both ferromagnetic and antiferromagnetic moment orientations can coexist between nearest neighbor Mn atoms. This is unexpected in Heusler alloys. Regarding the mechanism of the martensitic transformation in Mn{sub 50}Ni{sub 50−x}Al{sub x}, it is found that increasing the Al content results in an unusual change in the lattice constant, a decrease of the transformation entropy change, and enhancement of the calculated electron localization. These results indicate that the p-d covalent hybridization between Mn (or Ni) and Al atoms gradually increases at the expense of the d-d hybridization between Ni and Mn atoms. This leads to an increased stability of the austenite phase and a decrease of the martensitic transformation temperature. For 11 ≤ x ≤ 14, Mn{sub 50}Ni{sub 50−x}Al{sub x} ferromagnetic shape memory alloys are obtained.

  3. [Cathodoluminescent characteristics of green-emitting ZnAl2O4:Mn thin film phosphors].

    PubMed

    Lou, Zhi-dong; Xu, Zheng; Yi, Lan-jie; Yang, Sheng-yi

    2008-06-01

    Green electroluminescence was obtained from thin films of ZnAl2O4: Mn prepared by rf magnetron sputtering onto thick insulating ceramic sheets. Photoluminescence and stress-stimulated luminescence was obtained for Mn-doped ZnAl2O4 powder synthesized by the solid phase reaction. Since it is extremely stable chemically and thermally, ZnAl2O4 may emerge as an alternative choice to sulphide-based phosphors. In the present paper, thin films of ZnAl2O4: Mn were grown on aluminosilicate ceramic plates using spray pyrolysis of aqueous solutions. The cathodoluminescence (CL) properties of the films under low to medium excitation voltage (<5 kV) were investigated. The films exhibited green CL after being annealed at temperatures above 550 degrees C, which corresponds to the transition between 4 T1 and (6)A1 of Mn2+ ions located in the tetra coordination of the Zn2+ site in the spinel structure. The chromaticity coordinates were x = 0.150 and y = 0.734 with a dominant wavelength of 525 nm and an 82% color purity. The CL luminance and efficiency depended on the excitation voltage and current density. Saturation effects were observed as the current density increased. A luminance of 540 cd x m(-2) and an efficiency of 4.5 lm x W(-1) were obtained at an excitation voltage of 4 kV with a current density of 38 microA x cm(-2). PMID:18800691

  4. Synthesis, characterization, photoluminescence and EPR investigations of Mn doped MgAl 2O 4 phosphors

    NASA Astrophysics Data System (ADS)

    Singh, Vijay; Chakradhar, R. P. S.; Rao, J. L.; Kim, Dong-Kuk

    2007-07-01

    MgAl 2O 4:Mn phosphors have been prepared at 500 °C by combustion route. Powder X-ray diffraction (XRD) indicated the presence of mono-MgAl 2O 4 phase. Scanning electron microscopy showed that the powder particle crystallites are mostly angular. Fourier transform infrared spectroscopy confirmed the presence of AlO 6 group which makes up the MgAl 2O 4 spinel. Photoluminescence studies showed green/red emission indicating that two independent luminescence channels in this phosphor. The green emission at 518 nm is due to 4T1 → 6A1 transition of Mn 2+ ions. The emission at 650 nm is due to the charge-transfer deexcitation associated with the Mn ion. EPR spectrum exhibits allowed and forbidden hyperfine structure at g=2.003. The g≈2.00 is due to Mn 2+ ion in an environment close to tetrahedral symmetry. It is observed that N and χ increase with decrease of temperature obeying the Boltzmann law. The variation of zero-field splitting parameter ( D) with temperature is evaluated and discussed.

  5. A transition in the magneto-transport in the L10 MnAl thin films

    NASA Astrophysics Data System (ADS)

    Luo, Linqiang; Lu, Jiwei; Dao, Nam; Cui, Yishen; Wolf, Stuart A.

    2015-03-01

    In this talk we will report on L10 MnAl thin films with perpendicular magnetic anisotropy prepared on single crystal MgO substrates by co-sputtering Mn and Al targets. A Cr seeding layer enabled the epitaxial growth of the MnAl films. The magneto-resistance (MR) of these films was measured using a Hall bar structure. When the external magnetic field was applied perpendicular to the thin film surface, a change of the sign of MR was observed as will be discussed below. Above 175K, a negative magnetoresistance was observed with two maxima occuring at the coercivity fields of the MnAl thin films. Below 175K, the MR became positive, and the MR ratio increased with decreasing temperature. The possible mechanisms for the transition in the MR will be discussed in detail in this talk. They include the effects of inhomogeneity, chemical ordering and the underlying domain structure. The authors gratefully acknowledge financial support provided by INSPIRE program.

  6. New type of Schottky diode-based Cu-Al-Mn-Cr shape memory material films

    NASA Astrophysics Data System (ADS)

    Aksu Canbay, C.; Dere, A.; Mensah-Darkwa, Kwadwo; Al-Ghamdi, Ahmed; Karagoz Genç, Z.; Gupta, R. K.; Yakuphanoglu, F.

    2016-07-01

    Cr-doped CuAlMn shape memory alloys were produced by arc melting method. The effects of Cr content on microstructure and transformation parameters of were investigated. The alloys were characterized by X-ray analysis, optical microscope observations and differential scanning calorimetry measurements. The grain size of the alloys was decreased by the addition of Cr into CuAlMn alloy system. The martensite transformation temperature was shifted both the lower temperature and higher temperature with the addition of chromium. This change was explained on the basis of the change in the thermodynamics such as enthalpy, entropy and activation energy values. The obtained results indicate that the phase transformation temperatures of the CuAlMn alloy system can be controlled by addition of Cr. We fabricated a Schottky barrier diode and observed that ideality factor and barrier height increase with increasing temperature. The diodes exhibited a thermal sensor behavior. This indicates that Schottky diode-based Cu-Al-Mn-Cr shape memory material films can be used as a sensor in high-temperature measurement applications.

  7. Three-dimensionally Ordered Macroporous Structure Enabled Nanothermite Membrane of Mn2O3/Al.

    PubMed

    Zheng, Guoqiang; Zhang, Wenchao; Shen, Ruiqi; Ye, Jiahai; Qin, Zhichun; Chao, Yimin

    2016-01-01

    Mn2O3 has been selected to realize nanothermite membrane for the first time in the literature. Mn2O3/Al nanothermite has been synthesized by magnetron sputtering a layer of Al film onto three-dimensionally ordered macroporous (3DOM) Mn2O3 skeleton. The energy release is significantly enhanced owing to the unusual 3DOM structure, which ensures Al and Mn2O3 to integrate compactly in nanoscale and greatly increase effective contact area. The morphology and DSC curve of the nanothermite membrane have been investigated at various aluminizing times. At the optimized aluminizing time of 30 min, energy release reaches a maximum of 2.09 kJ∙g(-1), where the Al layer thickness plays a decisive role in the total energy release. This method possesses advantages of high compatibility with MEMS and can be applied to other nanothermite systems easily, which will make great contribution to little-known nanothermite research. PMID:26935405

  8. Three-dimensionally Ordered Macroporous Structure Enabled Nanothermite Membrane of Mn2O3/Al

    NASA Astrophysics Data System (ADS)

    Zheng, Guoqiang; Zhang, Wenchao; Shen, Ruiqi; Ye, Jiahai; Qin, Zhichun; Chao, Yimin

    2016-03-01

    Mn2O3 has been selected to realize nanothermite membrane for the first time in the literature. Mn2O3/Al nanothermite has been synthesized by magnetron sputtering a layer of Al film onto three-dimensionally ordered macroporous (3DOM) Mn2O3 skeleton. The energy release is significantly enhanced owing to the unusual 3DOM structure, which ensures Al and Mn2O3 to integrate compactly in nanoscale and greatly increase effective contact area. The morphology and DSC curve of the nanothermite membrane have been investigated at various aluminizing times. At the optimized aluminizing time of 30 min, energy release reaches a maximum of 2.09 kJ•g-1, where the Al layer thickness plays a decisive role in the total energy release. This method possesses advantages of high compatibility with MEMS and can be applied to other nanothermite systems easily, which will make great contribution to little-known nanothermite research.

  9. Three-dimensionally Ordered Macroporous Structure Enabled Nanothermite Membrane of Mn2O3/Al

    PubMed Central

    Zheng, Guoqiang; Zhang, Wenchao; Shen, Ruiqi; Ye, Jiahai; Qin, Zhichun; Chao, Yimin

    2016-01-01

    Mn2O3 has been selected to realize nanothermite membrane for the first time in the literature. Mn2O3/Al nanothermite has been synthesized by magnetron sputtering a layer of Al film onto three-dimensionally ordered macroporous (3DOM) Mn2O3 skeleton. The energy release is significantly enhanced owing to the unusual 3DOM structure, which ensures Al and Mn2O3 to integrate compactly in nanoscale and greatly increase effective contact area. The morphology and DSC curve of the nanothermite membrane have been investigated at various aluminizing times. At the optimized aluminizing time of 30 min, energy release reaches a maximum of 2.09 kJ∙g−1, where the Al layer thickness plays a decisive role in the total energy release. This method possesses advantages of high compatibility with MEMS and can be applied to other nanothermite systems easily, which will make great contribution to little-known nanothermite research. PMID:26935405

  10. Observation of Precipitation Evolution in Fe-Ni-Mn-Ti-Al Maraging Steel by Atom Probe Tomography

    NASA Astrophysics Data System (ADS)

    Pereloma, E. V.; Stohr, R. A.; Miller, M. K.; Ringer, S. P.

    2009-12-01

    We describe the full decomposition sequence in an Fe-Ni-Mn-Ti-Al maraging steel during isothermal annealing at 550 °C. Following significant pre-precipitation clustering reactions within the supersaturated martensitic solid solution, (Ni,Fe)3Ti and (Ni,Fe)3(Al,Mn) precipitates eventually form after isothermal aging for ~60 seconds. The morphology of the (Ni,Fe)3Ti particles changes gradually during aging from predominantly plate-like to rod-like, and, importantly, Mn and Al were observed to segregate to these precipitate/matrix interfaces. The (Ni,Fe)3(Al,Mn) precipitates occurred at two main locations: uniformly within the matrix and at the periphery of the (Ni,Fe)3Ti particles. We relate this latter mode of precipitation to the Mn-Al segregation.