Science.gov

Sample records for mn fe ni

  1. Ni spin switching induced by magnetic frustration in FeMn/Ni/Cu(001)

    SciTech Connect

    Wu, J.; Choi, J.; Scholl, A.; Doran, A.; Arenholz, E.; Hwang, Chanyong; Qiu, Z. Q.

    2009-03-08

    Epitaxially grown FeMn/Ni/Cu(001) films are investigated by Photoemission Electron Microscopy and Magneto-Optic Kerr Effect. We find that as the FeMn overlayer changes from paramagnetic to antiferromagnetic state, it could switch the ferromagnetic Ni spin direction from out-of-plane to in-plane direction of the film. This phenomenon reveals a new mechanism of creating magnetic anisotropy and is attributed to the out-of-plane spin frustration at the FeMn-Ni interface.

  2. Ferromagnetic interactions and martensitic transformation in Fe doped Ni-Mn-In shape memory alloys

    SciTech Connect

    Lobo, D. N.; Priolkar, K. R.; Emura, S.; Nigam, A. K.

    2014-11-14

    The structure, magnetic, and martensitic properties of Fe doped Ni-Mn-In magnetic shape memory alloys have been studied by differential scanning calorimetry, magnetization, resistivity, X-ray diffraction (XRD), and EXAFS. While Ni{sub 2}MnIn{sub 1−x}Fe{sub x} (0 ≤ x ≤ 0.6) alloys are ferromagnetic and non martensitic, the martensitic transformation temperature in Ni{sub 2}Mn{sub 1.5}In{sub 1−y}Fe{sub y} and Ni{sub 2}Mn{sub 1.6}In{sub 1−y}Fe{sub y} increases for lower Fe concentrations (y ≤ 0.05) before decreasing sharply for higher Fe concentrations. XRD analysis reveals presence of cubic and tetragonal structural phases in Ni{sub 2}MnIn{sub 1−x}Fe{sub x} at room temperature with tetragonal phase content increasing with Fe doping. Even though the local structure around Mn and Ni in these Fe doped alloys is similar to martensitic Mn rich Ni-Mn-In alloys, presence of ferromagnetic interactions and structural disorder induced by Fe affect Mn-Ni-Mn antiferromagnetic interactions resulting in suppression of martensitic transformation in these Fe doped alloys.

  3. Magnetism of NiMn2O4-Fe3O4 spinel interfaces

    SciTech Connect

    Arenholz, Elke; Nelson-Cheeseman, B. B.; Chopdekar, R. V.; Bettinger, J. S.; Arenholz, E.; Suzuki, Y.

    2007-09-13

    We investigate the magnetic properties of the isostructural spinel-spinel interface of NiMn{sub 2}O{sub 4}(NMO)-Fe{sub 3}O{sub 4}. Although the magnetic transition temperature of the NMO film is preserved, both bulk and interface sensitive measurements demonstrate that the interface exhibits strong interfacial magnetic coupling up to room temperature. While NMO thin films have a ferrimagnetic transition temperature of 60 K, both NiFe{sub 2}O{sub 4} and MnFe{sub 2}O{sub 4} are ferrimagnetic at room temperature. Our experimental results suggest that these magnetic properties arise from a thin interdiffused region of (Fe,Mn,Ni){sub 3}O{sub 4} at the interface, leading to Mn and Ni magnetic properties similar to those of MnFe{sub 2}O{sub 4} and NiFe{sub 2}O{sub 4}.

  4. Precipitation and fracture behaviour of Fe-Mn-Ni-Al alloys

    NASA Astrophysics Data System (ADS)

    Heo, Yoon-Uk; Lee, Hu-Chul

    2013-12-01

    The effects of Al addition on the precipitation and fracture behaviour of Fe-Mn-Ni alloys were investigated. With the increasing of Al concentration, the matrix and grain boundary precipitates changed from L10 θ-MnNi to B2 Ni2MnAl phase, which is coherent and in cube-to-cube orientation relationship with the α‧-matrix. Due to the suppression of the θ-MnNi precipitates at prior austenite grain boundaries (PAGBs), the fracture mode changed from intergranular to transgranular cleavage fracture. Further addition of Al resulted in the discontinuous growth of Ni2MnAl precipitates in the alloy containing 4.2 wt.% Al and fracture occurred by void growth and coalescence, i.e. by ductile dimple rupture. The transition of the fracture behaviour of the Fe-Mn-Ni-Al alloys is discussed in relation to the conversion of the precipitates and their discontinuous precipitation behaviour at PAGBs.

  5. Electronic structure and magnetic properties of Mn, Co, and Ni substitution of Fe in Fe4N

    NASA Astrophysics Data System (ADS)

    Monachesi, Patrizia; Björkman, Torbjörn; Gasche, Thomas; Eriksson, Olle

    2013-08-01

    The magnetic properties of Mn, Co, and Ni substituted Fe4N are calculated from first principles theory. It is found that the generalized gradient approximation reproduces with good accuracy the magnetic moment and equilibrium volume for the parent Fe4N structure, with the atomic moment largest for the Fe atom furthest away from the N atom (Fe I site), approaching a value of 3 μB/atom, whereas the Fe atom closer to the N atom (Fe II site) has a moment closer to that of bcc Fe. The substitution of Fe for Mn, Co, or Ni, shows an intricate behavior in which the Mn substitution clearly favors the Fe II site, Ni favors substitution on the Fe I site, and Co shows no strong preference for either lattice site. The Ni and Co substitution results in a ferromagnetic coupling to the Fe atoms, whereas Mn couples antiferromagnetically on the Fe II site and ferromagnetically on the Fe I site. For all types of doping, the total magnetic moment is enhanced compared to Fe4N only in the energetically very unfavorable case of Mn doping at the Fe I site.

  6. 90° magnetic coupling in a NiFe/FeMn/biased NiFe multilayer spin valve component investigated by polarized neutron reflectometry

    SciTech Connect

    Callori, S. J. Bertinshaw, J.; Cortie, D. L.; Cai, J. W. Zhu, T.; Le Brun, A. P.; Klose, F.

    2014-07-21

    We have observed 90° magnetic coupling in a NiFe/FeMn/biased NiFe multilayer system using polarized neutron reflectometry. Magnetometry results show magnetic switching for both the biased and free NiFe layers, the latter of which reverses at low applied fields. As these measurements are only capable of providing information about the total magnetization within a sample, polarized neutron reflectometry was used to investigate the reversal behavior of the NiFe layers individually. Both the non-spin-flip and spin-flip neutron reflectometry signals were tracked around the free NiFe layer hysteresis loop and were used to detail the evolution of the magnetization during reversal. At low magnetic fields near the free NiFe coercive field, a large spin-flip signal was observed, indicating magnetization aligned perpendicular to both the applied field and pinned layer.

  7. Microstructure and mechanical behavior of Fe30Ni 20Mn35Al15 and modified Fe30Ni 20Mn35Al15 alloys

    NASA Astrophysics Data System (ADS)

    Meng, Fanling

    A novel alloy with nominal composition Fe30Ni 20Mn35Al15 has been found to show good room-temperature strength and significant ductility. The current project is to study the wear properties of as-cast Fe30Ni20Mn35Al 15 and discuss the possibility of further improving the mechanical properties of this alloy. The dry sliding wear of as-cast Fe30Ni20Mn 35Al15 was studied in in four different environments, i.e. air, dry oxygen, dry argon and a 4% hydrogen/nitrogen mixture. Two-body and three-body abrasive wear mechanism was found for tests in oxygen-containing environments, while plastic flow mechanisms dominated the wear behavior for tests in argon. Hydrogen embrittlement led to 1000% increase of wear loss by causing more rapid crack nucleation of the asperities. The effects of different additions of chromium (≤ 8 at. %) on both microstructure and fracture behavior of Fe30Ni20Mn 35Al15 were investigated. All alloys consisted of (Ni, Al)-rich B2 and (Fe, Mn)-rich f.c.c. phases with most of the Cr residing in the f.c.c. phase. The addition of 6 at. % Cr not only increased the room temperature ductility, but also completely suppressed the environmental embrittlement observed in the Cr-free alloy at low strain rates. The effects of varying the Al concentration on the microstructures and tensile properties of six two-phase FeNiMnAl alloys with a composition close to Fe30Ni20Mn35Al15 were studied. The increase in f.c.c. volume fraction and f.c.c. lamellar width led to an increase in ductility and a decrease in yield strength. The correlation between the yield stress and f.c.c. lamellar spacing lambda obeyed a Hall-Petch-type relationship, i.e. sigmay=252+0.00027lambda-1, where the units for sigmay and lambda are MPa and meter, respectively. FeNiMnAl alloy with B2 and f.c.c. phases aligned along was reported to show high strength at room temperature. The mechanical properties of Fe 28Ni18Mn33Al21, consisting of (Ni, Al)-enriched B2 and (Fe, Mn)-enriched f.c.c. phases with

  8. Exchange bias in sputtered FeNi/FeMn systems: Effect of short low-temperature heat treatments

    NASA Astrophysics Data System (ADS)

    Savin, Peter; Guzmán, Jorge; Lepalovskij, Vladimir; Svalov, Andrey; Kurlyandskaya, Galina; Asenjo, Agustina; Vas'kovskiy, Vladimir; Vazquez, Manuel

    2016-03-01

    Short (5 min) post-deposition thermal treatments under magnetic field at low temperature (up to 200 °C) performed in exchange-coupled FeNi(40 nm)/FeMn(20 nm) bilayer thin films prepared by magnetron sputtering are shown to be effective to significantly modify their exchange field (from around 40 Oe down to 27 Oe) between FeNi and FeMn layers. A similar exchange field decrease was observed for the first deposited FeNi layer of the FeNi(40 nm)/FeMn(20 nm)/FeNi(40 nm) trilayer films after the same thermal treatments. The exchange field value for the second FeNi layer was not substantially changed. The X-ray diffraction patterns indicates that such a heat treatment has no effect on the grain size and crystalline texture of the films, while atomic force microscope studies reveal an increase of the surface roughness after the treatment which is more noticeable in the case of the trilayer film. Analysis of the experimental results leads us to conclude that the variations of the exchange field after heat treatment are likely caused by a modification of interfacial roughness and/or interfacial magnetic structure, but unlikely by the changes in the microstructure and/or changes of composition of the antiferromagnetic FeMn layer.

  9. Discontinuous coarsening behavior of Ni(2)MnAl intermetallic compound during isothermal aging treatment of Fe-Mn-Ni-Al alloys.

    PubMed

    Heo, Yoon-Uk; Takeguchi, Masaki; Furuya, Kazuo; Lee, Hu-Chul

    2010-08-01

    The discontinuous reaction of the Ni(2)MnAl intermetallic phase was investigated during the aging of a solution-treated Fe-8.3Mn-8.2Ni-4.2Al alloy. During aging, Ni(2)MnAl lamellae formed at the prior austenite grain boundaries and twin boundaries and grew into the neighboring grains. The presence of continuously precipitated fine Ni(2)MnAl particles before the growth of the discontinuously precipitated lamellae was confirmed by dark-field transmission electron microscopy, and it was concluded that the present reaction is a type of discontinuous coarsening process, alpha' + Ni(2)MnAl (continuous precipitation) --> alpha + Ni(2)MnAl (discontinuous coarsening). The chemical driving force and the reduction of the total coherent strain energy were suggested to be the driving force for the discontinuous coarsening reaction. PMID:20551447

  10. Ternary NiFeMn layered double hydroxides as highly-efficient oxygen evolution catalysts.

    PubMed

    Lu, Zhiyi; Qian, Li; Tian, Yang; Li, Yaping; Sun, Xiaoming; Duan, Xue

    2016-01-18

    Layered double hydroxides (LDHs) are a family of layer materials that receive heightened attention. Herein a ternary NiFeMn-LDH is investigated with superior oxygen evolution activity, which is attributed to the Mn(4+) doping in the intralayer, which modifies the electronic structure and improves the conductivity of the electrocatalyst. PMID:26579843

  11. Ductile-brittle-ductile transition and grain boundary segregation of Mn and Ni in an Fe-6Mn-12Ni alloy

    SciTech Connect

    Heo, N.H.

    1996-05-15

    Recently, Heo and Lee reported a ductile-brittle-ductile (DBD) transition in an Fe-8Mn-7Ni ternary alloy, which was caused by manganese segregation to the grain boundaries and its desegregation into the matrix. More recently Heo theoretically analyzed the nonequilibrium segregation behaviors of the elements in the Fe-8Mn-7Ni alloy. The aim of the present study is to investigate whether other Fe-6Mn-12Ni ternary alloy also shows the ductile-brittle-ductile transition, and is additionally to ascertain whether calculated results are consistent with experimental data. The study encompasses experimental procedures and a modeling based on the previous research. A general discussion will show that such an approach allows a comprehensive understanding of the ductile-brittle-ductile transition in the Fe-Mn-Ni ternary alloys.

  12. Electrical manipulation of ferromagnetic NiFe by antiferromagnetic IrMn

    NASA Astrophysics Data System (ADS)

    Tshitoyan, V.; Ciccarelli, C.; Mihai, A. P.; Ali, M.; Irvine, A. C.; Moore, T. A.; Jungwirth, T.; Ferguson, A. J.

    2015-12-01

    We demonstrate that an antiferromagnet can be employed for a highly efficient electrical manipulation of a ferromagnet. In our study, we use an electrical detection technique of the ferromagnetic resonance driven by an in-plane ac current in a NiFe/IrMn bilayer. At room temperature, we observe antidampinglike spin torque acting on the NiFe ferromagnet, generated by an in-plane current driven through the IrMn antiferromagnet. A large enhancement of the torque, characterized by an effective spin-Hall angle exceeding most heavy transition metals, correlates with the presence of the exchange-bias field at the NiFe/IrMn interface. It highlights that, in addition to the strong spin-orbit coupling, the antiferromagnetic order in IrMn governs the observed phenomenon.

  13. Structural, thermal and magnetic properties of Ni 1-xMn xFe 2O 4 nanoferrites

    NASA Astrophysics Data System (ADS)

    Shobana, M. K.; Sankar, S.

    2009-07-01

    In this paper, the structural, thermal and magnetic properties of Ni 1-xMn xFe 2O 4 are presented. It is observed that high concentration of Mn 2+ ions into NiFe 2O 4 tends to reduce the particle size. Calcination at 500 °C has resulted in the growth of Ni 1-xMn xFe 2O 4 nanoparticles, but the calcination at 900 °C has led to the evaporation of the majorities of the polyvinyl alcohol. After calcination at 900 °C, crystallographically oriented NiMnFe 2O 4 nanoparticles are formed. These Ni 1-xMn xFe 2O 4 nanoparticles show hysteresis behaviour upon magnetization. On the other hand, saturation magnetization (Ms) values decreases with increasing Mn content in ferrite due to the influence of Mn 2+ ion in the sub lattice.

  14. Observation of Precipitation Evolution in Fe-Ni-Mn-Ti-Al Maraging Steel by Atom Probe Tomography

    NASA Astrophysics Data System (ADS)

    Pereloma, E. V.; Stohr, R. A.; Miller, M. K.; Ringer, S. P.

    2009-12-01

    We describe the full decomposition sequence in an Fe-Ni-Mn-Ti-Al maraging steel during isothermal annealing at 550 °C. Following significant pre-precipitation clustering reactions within the supersaturated martensitic solid solution, (Ni,Fe)3Ti and (Ni,Fe)3(Al,Mn) precipitates eventually form after isothermal aging for ~60 seconds. The morphology of the (Ni,Fe)3Ti particles changes gradually during aging from predominantly plate-like to rod-like, and, importantly, Mn and Al were observed to segregate to these precipitate/matrix interfaces. The (Ni,Fe)3(Al,Mn) precipitates occurred at two main locations: uniformly within the matrix and at the periphery of the (Ni,Fe)3Ti particles. We relate this latter mode of precipitation to the Mn-Al segregation.

  15. Observation of Precipitation Evolution in Fe-Ni-Mn-Ti-Al Maraging Steel using Atom Probe Tomography

    SciTech Connect

    Pereloma, E. V.; Stohr, R A; Miller, Michael K; Ringer, S. P.

    2009-01-01

    We describe the full decomposition sequence in an Fe-Ni-Mn-Ti-Al maraging steel during isothermal annealing at 550 C. Following significant pre-precipitation clustering reactions within the supersaturated martensitic solid solution, (Ni,Fe){sub 3}Ti and (Ni,Fe){sub 3}(Al,Mn) precipitates eventually form after isothermal aging for {approx}60 seconds. The morphology of the (Ni,Fe){sub 3}Ti particles changes gradually during aging from predominantly plate-like to rod-like, and, importantly, Mn and Al were observed to segregate to these precipitate/matrix interfaces. The (Ni,Fe){sub 3}(Al,Mn) precipitates occurred at two main locations: uniformly within the matrix and at the periphery of the (Ni,Fe){sub 3}Ti particles. We relate this latter mode of precipitation to the Mn-Al segregation.

  16. Exchange bias effects in Heusler alloy Ni2MnAl/Fe bilayers

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Tomoki; Kubota, Takahide; Sugiyama, Tomoko; Huminiuc, Teodor; Hirohata, Atsufumi; Takanashi, Koki

    2016-06-01

    Ni2MnAl Heusler alloy thin films were epitaxially grown on MgO(1 0 0) single crystal substrates by ultra-high-vacuum magnetron sputtering technique. X-ray diffraction and transmission electron microscopy observation revealed that the structures of all the Ni2MnAl thin films were B2-ordered regardless of the deposition temperature ranging from room temperature to 600 °C. The temperature dependence of electrical resistivity showed a kink about 280 K, which was consistent with a reported value of the Néel temperature for antiferromagnetic B2-Ni2MnAl. The magnetization curves of Ni2MnAl/Fe bilayer samples showed a shift caused by the interfacial exchange interaction at 10 K. The maximum value of the exchange bias field H ex was 55 Oe corresponding to the exchange coupling energy J k of 0.03 erg cm‑2.

  17. From ferromagnetic{endash}ferromagnetic to ferromagnetic{endash}antiferromagnetic exchange coupling in NiFe/MnNi bilayers

    SciTech Connect

    Spenato, David; Youssef, Jamal Ben; Le Gall, Henri; Ostorero, Jean

    2001-06-01

    The effect of the growth conditions and the Mn concentration on the exchange coupling between a ferromagnetic (F) NiFe and an antiferromagnetic (AF) MnNi layers were studied. We found that an F/AF coupling appears in the bilayers when the Mn concentration is more than 45%. Beyond this critical concentration the exchange field shows a maximum then decreases. The correlation between the exchange field and the microstructure of the film is discussed. We show that: (1) the enhancement of the exchange field is associated with the enhancement of the antiferromagnetic grain size and (2) the existence of the exchange field is associated with a third x-ray peak which may be an FeMnNi ternary allow type. This result was associated with interfacial diffusion confirmed by magnetization variation measurements before and after annealing. {copyright} 2001 American Institute of Physics.

  18. The microstructure of near-equiatomic B2/f.c.c. FeNiMnAl alloys

    SciTech Connect

    Baker, I.; Wu, H.; Wu, X.; Miller, M.K.; Munroe, P.R.

    2011-10-15

    A microstructural analysis of two FeNiMnAl alloys, Fe{sub 30}Ni{sub 20}Mn{sub 30}Al{sub 20} and Fe{sub 25}Ni{sub 25}Mn{sub 30}Al{sub 20}, was performed by a combination of atom probe tomography and transmission electron microscopy techniques. Although the microstructures of both alloys, which consist of alternating platelets aligned along < 100> of the B2-ordered phase, are similar to B2/b.c.c. two-phase alloys previously observed in the FeNiMnAl system, the two phases present in the current alloys are B2-ordered and f.c.c., with the latter phase being heavily twinned. Very fine ({approx} 5 nm) precipitates, whose chemistry was similar to that of the f.c.c. (Fe, Mn)-rich phase, were found within the B2 (Ni, Al)-rich phase in both alloys. - Highlights: {yields} The microstructures of the novel alloys Fe{sub 30}Ni{sub 20}Mn{sub 30}Al{sub 20} and Fe{sub 25}Ni{sub 25}Mn{sub 30}Al{sub 20} were characterized. {yields} Atom probe tomography and transmission electron microscopy were used in the study. {yields} A < 100>-aligned B2-ordered phase and heavily-twinned f.c.c. phase were present. {yields} Very fine (Fe, Mn)-rich precipitates were found within the B2 (Ni, Al)-rich phase.

  19. Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films

    NASA Astrophysics Data System (ADS)

    Soare, V.; Burada, M.; Constantin, I.; Mitrică, D.; Bădiliţă, V.; Caragea, A.; Târcolea, M.

    2015-12-01

    Al-Cr-Fe-Mn-Ni and Al-Cr-Cu-Fe-Mn-Ni high entropy alloy thin films were prepared by potentiostatic electrodeposition and the microstructure of the deposits was investigated. The thin films were co-deposited in an electrolyte based on a DMF (N,N-dimethylformamide)-CH3CN (acetonitrile) organic compound. The energy dispersive spectrometry investigation (EDS) indicated that all the five respectively six elements were successfully co-deposited. The scanning electron microscopy (SEM) analysis revealed that the film consists of compact and uniform particles with particle sizes of 500 nm to 4 μm. The X-ray diffractometry (XRD) patterns indicated that the as-deposited thin films were amorphous. Body-centered-cubic (BCC) structures were identified by XRD after the films were annealed at various temperatures under inert Ar atmosphere. The alloys adhesion on the substrate was determined by the scratch-testing method, with higher values obtained for the Al-Cr-Cu-Fe-Mn-Ni alloy.

  20. Post-irradiation annealing behavior of neutron-irradiated FeCu, FeMnNi and FeMnNiCu model alloys investigated by means of small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Bergner, F.; Ulbricht, A.; Lindner, P.; Keiderling, U.; Malerba, L.

    2014-11-01

    Neutron irradiation of reactor pressure vessel steels gives rise to the formation of thermodynamically stable and unstable nano-features. The present work is focused on the stability of Cu-, Mn- and Ni-containing solute clusters in model alloys exposed to post-irradiation annealing. Fe0.1Cu, Fe1.2Mn0.7Ni and Fe1.2Mn0.7Ni0.1Cu (wt%) model alloys irradiated up to neutron exposures of 0.1 and 0.19 dpa (displacements per atom) were annealed at stepwise increasing temperatures in the range from 300 °C (i.e. near irradiation temperature) to 500 °C and characterized by means of small-angle neutron scattering (SANS). We have found characteristic differences in the annealing behavior of the alloys. In particular, there is a non-trivial (synergistic-antagonistic) interplay of Mn/Ni and Cu.

  1. The Microstructure of Near-Equiatomic B2/f.c.c. FeNiMnAl Alloys

    SciTech Connect

    Baker, Ian; Wu, H; Wu, Xiaolan; Miller, Michael K; Munroe, P R

    2011-01-01

    A microstructural analysis of two FeNiMnAl alloys, Fe{sub 30}Ni{sub 20}Mn{sub 30}Al{sub 20} and Fe{sub 25}Ni{sub 25}Mn{sub 30}Al{sub 20}, was performed by a combination of atom probe tomography and transmission electron microscopy techniques. Although the microstructures of both alloys, which consist of alternating platelets aligned along <100> of the B2-ordered phase, are similar to B2/b.c.c. two-phase alloys previously observed in the FeNiMnAl system, the two phases present in the current alloys are B2-ordered and f.c.c., with the latter phase being heavily twinned. Very fine ({approx} 5 nm) precipitates, whose chemistry was similar to that of the f.c.c. (Fe, Mn)-rich phase, were found within the B2 (Ni, Al)-rich phase in both alloys.

  2. Precipitates and Grain Boundary Strength of an Fe-Mn-Ni Alloy

    NASA Astrophysics Data System (ADS)

    Heo, Yoon-Uk; Jang, Jae Hoon; Lee, Hu-Chul

    2012-11-01

    The effect of grain boundary (GB) precipitates on the GB strength of an age-hardened Fe-7.8Mn-8.2Ni alloy was investigated. Premature intergranular fracture was observed after age hardening due to the precipitation of θ-MnNi precipitates at prior austenite grain boundaries. However, the conversion of GB θ precipitates to austenite by a short second aging at 793 K (520 °C) after peak aging at 713 K (440 °C) resulted in a remarkable improvement of GB strength. The result strongly supports the proposition that the weak bonding of GB θ precipitates to the matrix is the main reason for GB embrittlement in age-hardened Fe-Mn-Ni alloys.

  3. Effect of Manganese on Microstructures and Solidification Modes of Cast Fe-Mn-Si-Cr-Ni Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Peng, Huabei; Wen, Yuhua; Du, Yangyang; Yu, Qinxu; Yang, Qin

    2013-10-01

    We investigated microstructures and solidification modes of cast Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni shape memory alloys to clarify whether Mn was an austenite former during solidification. Furthermore, we examined whether the Creq/Nieq equations (Delong, Hull, Hammer and WRC-1992 equations) and Thermo-Calc software® together with database TCFE6 were valid to predict the solidification modes of cast Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni shape memory alloys. The results have shown that the solidification modes of Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni alloys changed from the F mode to the FA mode with increasing the Mn concentration. Mn is an austenite former during the solidification for the cast Fe-Mn-Si-Cr-Ni shape memory alloys. The Delong, Hull, Hammer, and WRC-1992 equations as well as Thermo-Calc software® together with database TCFE6 are invalid to predict the solidification modes of cast Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni SMAs. To predict the solidification modes of cast Fe-Mn-Si-Cr-Ni alloys, a new Creq/Nieq equation should be developed or the thermodynamic database of Thermo-Calc software® should be corrected.

  4. Construction of the Magnetic Phase Diagram of FeMn/Ni/Cu(001) Using Photoemission Electron Microscopy

    SciTech Connect

    Wu, J.; Scholl, A.; Arenholz, E.; Hwang, C.; Qiu, Z. Q.

    2011-01-04

    Single crystalline FeMn/Ni bilayer was epitaxially grown on Cu(001) substrate and investigated by photoemission electron microscopy (PEEM). The FeMn and Ni films were grown into two cross wedges to facilitate an independent control of the FeMn (0-20 ML) and Ni (0-20 ML) film thicknesses. The Ni magnetic phases were determined by Ni domain images as a function of the Ni thickness (d{sub Ni}) and the FeMn thickness (d{sub FeMn}). The result shows that as the Ni thickness increases, the Ni film undergoes a paramagnetic-to-ferromagnetic state transition at a critical thickness of d{sub FM} and an in-plane to out-of-plane spin reorientation transition at a thicker thickness d{sub SRT}. The phase diagram shows that both d{sub FM} and d{sub SRT} increase as the FeMn film establishes its antiferromagnetic order.

  5. Plasma-Sprayed High Entropy Alloys: Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi

    NASA Astrophysics Data System (ADS)

    Ang, Andrew Siao Ming; Berndt, Christopher C.; Sesso, Mitchell L.; Anupam, Ameey; S, Praveen; Kottada, Ravi Sankar; Murty, B. S.

    2015-02-01

    High entropy alloys (HEAs) represent a new class of materials that present novel phase structures and properties. Apart from bulk material consolidation methods such as casting and sintering, HEAs can also be deposited as a surface coating. In this work, thermal sprayed HEA coatings are investigated that may be used as an alternative bond coat material for a thermal barrier coating system. Nanostructured HEAs that were based on AlCoCrFeNi and MnCoCrFeNi were prepared by ball milling and then plasma sprayed. Splat studies were assessed to optimise the appropriate thermal spray parameters and spray deposits were prepared. After mechanical alloying, aluminum-based and manganese-based HEA powders revealed contrary prominences of BCC and FCC phases in their X-ray diffraction patterns. However, FCC phase was observed as the major phase present in both of the plasma-sprayed AlCoCrFeNi and MnCoCrFeNi coatings. There were also minor oxide peaks detected, which can be attributed to the high temperature processing. The measured porosity levels for AlCoCrFeNi and MnCoCrFeNi coatings were 9.5 ± 2.3 and 7.4 ± 1.3 pct, respectively. Three distinct phase contrasts, dark gray, light gray and white, were observed in the SEM images, with the white regions corresponding to retained multicomponent HEAs. The Vickers hardness (HV0.3kgf) was 4.13 ± 0.43 and 4.42 ± 0.60 GPa for AlCoCrFeNi and MnCoCrFeNi, respectively. Both type of HEAs coatings exhibited anisotropic mechanical behavior due to their lamellar, composite-type microstructure.

  6. Magnetic characteristics of a high-layer-number NiFe/FeMn multilayer

    NASA Astrophysics Data System (ADS)

    Paterson, G. W.; Gonçalves, F. J. T.; McFadzean, S.; O'Reilly, S.; Bowman, R.; Stamps, R. L.

    2015-11-01

    We report the static and dynamic magnetic characteristics of a high-layer-number NiFe/FeMn multilayer test structure with potential applications in broadband absorber and filter devices. To allow fine control over the absorption linewidths and to understand the mechanisms governing the resonances in a tailored structure similar to that expected to be used in real world applications, the multilayer was intentionally designed to have layer thickness and interface roughness variations. Magnetometry measurements show that the sample has complex hysteresis loops with features consistent with single ferromagnetic film reversals. Characterisation by transmission electron microscopy allows us to correlate the magnetic properties with structural features, including the film widths and interface roughnesses. Analysis of resonance frequencies from broadband ferromagnetic resonance measurements as a function of field magnitude and orientation provide values of the local exchange bias, rotatable anisotropy, and uniaxial anisotropy fields for specific layers in the stack and explain the observed mode softening. The linewidths of the multilayer are adjustable around the bias field, approaching twice that seen at larger fields, allowing control over the bandwidth of devices formed from the structure.

  7. Magnetic characteristics of a high-layer-number NiFe/FeMn multilayer

    SciTech Connect

    Paterson, G. W. Gonçalves, F. J. T.; McFadzean, S.; Stamps, R. L.; O'Reilly, S.; Bowman, R.

    2015-11-28

    We report the static and dynamic magnetic characteristics of a high-layer-number NiFe/FeMn multilayer test structure with potential applications in broadband absorber and filter devices. To allow fine control over the absorption linewidths and to understand the mechanisms governing the resonances in a tailored structure similar to that expected to be used in real world applications, the multilayer was intentionally designed to have layer thickness and interface roughness variations. Magnetometry measurements show that the sample has complex hysteresis loops with features consistent with single ferromagnetic film reversals. Characterisation by transmission electron microscopy allows us to correlate the magnetic properties with structural features, including the film widths and interface roughnesses. Analysis of resonance frequencies from broadband ferromagnetic resonance measurements as a function of field magnitude and orientation provide values of the local exchange bias, rotatable anisotropy, and uniaxial anisotropy fields for specific layers in the stack and explain the observed mode softening. The linewidths of the multilayer are adjustable around the bias field, approaching twice that seen at larger fields, allowing control over the bandwidth of devices formed from the structure.

  8. Role of the antiferromagnetic pinning layer on spin wave properties in IrMn/NiFe based spin-valves

    NASA Astrophysics Data System (ADS)

    Gubbiotti, G.; Tacchi, S.; Del Bianco, L.; Bonfiglioli, E.; Giovannini, L.; Tamisari, M.; Spizzo, F.; Zivieri, R.

    2015-05-01

    Brillouin light scattering (BLS) was exploited to study the spin wave properties of spin-valve (SV) type samples basically consisting of two 5 nm-thick NiFe layers (separated by a Cu spacer of 5 nm), differently biased through the interface exchange coupling with an antiferromagnetic IrMn layer. Three samples were investigated: a reference SV sample, without IrMn (reference); one sample with an IrMn underlayer (10 nm thick) coupled to the bottom NiFe film; one sample with IrMn underlayer and overlayer of different thickness (10 nm and 6 nm), coupled to the bottom and top NiFe film, respectively. The exchange coupling with the IrMn, causing the insurgence of the exchange bias effect, allowed the relative orientation of the NiFe magnetization vectors to be controlled by an external magnetic field, as assessed through hysteresis loop measurements by magneto-optic magnetometry. Thus, BLS spectra were acquired by sweeping the magnetic field so as to encompass both the parallel and antiparallel alignment of the NiFe layers. The BLS results, well reproduced by the presented theoretical model, clearly revealed the combined effects on the spin dynamic properties of the dipolar interaction between the two NiFe films and of the interface IrMn/NiFe exchange coupling.

  9. Role of the antiferromagnetic pinning layer on spin wave properties in IrMn/NiFe based spin-valves

    SciTech Connect

    Gubbiotti, G. Tacchi, S.; Del Bianco, L.; Bonfiglioli, E.; Giovannini, L.; Spizzo, F.; Zivieri, R.; Tamisari, M.

    2015-05-07

    Brillouin light scattering (BLS) was exploited to study the spin wave properties of spin-valve (SV) type samples basically consisting of two 5 nm-thick NiFe layers (separated by a Cu spacer of 5 nm), differently biased through the interface exchange coupling with an antiferromagnetic IrMn layer. Three samples were investigated: a reference SV sample, without IrMn (reference); one sample with an IrMn underlayer (10 nm thick) coupled to the bottom NiFe film; one sample with IrMn underlayer and overlayer of different thickness (10 nm and 6 nm), coupled to the bottom and top NiFe film, respectively. The exchange coupling with the IrMn, causing the insurgence of the exchange bias effect, allowed the relative orientation of the NiFe magnetization vectors to be controlled by an external magnetic field, as assessed through hysteresis loop measurements by magneto-optic magnetometry. Thus, BLS spectra were acquired by sweeping the magnetic field so as to encompass both the parallel and antiparallel alignment of the NiFe layers. The BLS results, well reproduced by the presented theoretical model, clearly revealed the combined effects on the spin dynamic properties of the dipolar interaction between the two NiFe films and of the interface IrMn/NiFe exchange coupling.

  10. Magnetic and mechanical properties of Ni-Mn-Ga/Fe-Ga ferromagnetic shape memory composite

    NASA Astrophysics Data System (ADS)

    Tan, Chang-Long; Zhang, Kun; Tian, Xiao-Hua; Cai, Wei

    2015-05-01

    A ferromagnetic shape memory composite of Ni-Mn-Ga and Fe-Ga was fabricated by using spark plasma sintering method. The magnetic and mechanical properties of the composite were investigated. Compared to the Ni-Mn-Ga alloy, the threshold field for magnetic-field-induced strain in the composite is clearly reduced owing to the assistance of internal stress generated from Fe-Ga. Meanwhile, the ductility has been significantly improved in the composite. A fracture strain of 26% and a compressive strength of 1600 MPa were achieved. Projects supported by the National Natural Science Foundation of China (Grant Nos. 51271065 and 51301054), the Program for New Century Excellent Talents in Heilongjiang Provincial Education Department, China (Grant No. 1253-NCET-009), the Youth Academic Backbone in Heilongjiang Provincial Education Department, China (Grant No. 1251G022), the Projects of Heilongjiang, China, and China Postdoctoral Science Foundation.

  11. Mechanical Properties and Microstructure of the CoCrFeMnNi High Entropy Alloy Under High Strain Rate Compression

    NASA Astrophysics Data System (ADS)

    Wang, Bingfeng; Fu, Ao; Huang, Xiaoxia; Liu, Bin; Liu, Yong; Li, Zezhou; Zan, Xiang

    2016-07-01

    The equiatomic CoCrFeMnNi high entropy alloy, which crystallizes in the face-centered cubic (FCC) crystal structure, was prepared by the spark plasma sintering technique. Dynamic compressive tests of the CoCrFeMnNi high entropy alloy were deformed at varying strain rates ranging from 1 × 103 to 3 × 103 s-1 using a split-Hopkinson pressure bar (SHPB) system. The dynamic yield strength of the CoCrFeMnNi high entropy alloy increases with increasing strain rate. The Zerilli-Armstrong (Z-A) plastic model was applied to model the dynamic flow behavior of the CoCrFeMnNi high entropy alloy, and the constitutive relationship was obtained. Serration behavior during plastic deformation was observed in the stress-strain curves. The mechanism for serration behavior of the alloy deformed at high strain rate is proposed.

  12. Mechanical Properties and Microstructure of the CoCrFeMnNi High Entropy Alloy Under High Strain Rate Compression

    NASA Astrophysics Data System (ADS)

    Wang, Bingfeng; Fu, Ao; Huang, Xiaoxia; Liu, Bin; Liu, Yong; Li, Zezhou; Zan, Xiang

    2016-05-01

    The equiatomic CoCrFeMnNi high entropy alloy, which crystallizes in the face-centered cubic (FCC) crystal structure, was prepared by the spark plasma sintering technique. Dynamic compressive tests of the CoCrFeMnNi high entropy alloy were deformed at varying strain rates ranging from 1 × 103 to 3 × 103 s-1 using a split-Hopkinson pressure bar (SHPB) system. The dynamic yield strength of the CoCrFeMnNi high entropy alloy increases with increasing strain rate. The Zerilli-Armstrong (Z-A) plastic model was applied to model the dynamic flow behavior of the CoCrFeMnNi high entropy alloy, and the constitutive relationship was obtained. Serration behavior during plastic deformation was observed in the stress-strain curves. The mechanism for serration behavior of the alloy deformed at high strain rate is proposed.

  13. Quaternary PtMnCuX/C (X = Fe, Co, Ni, and Sn) and PtMnMoX/C (X = Fe, Co, Ni, Cu and Sn) alloys catalysts: Synthesis, characterization and activity towards ethanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Ammam, Malika; Easton, E. Bradley

    2012-10-01

    In this account, two series of quaternary PtMnCuX/C (X = Fe, Co, Ni, and Sn) and PtMnMoX/C (X = Fe, Co, Ni, Cu and Sn) alloys catalysts have been synthesized and characterized by ICP, XRD, XPS, TEM and cyclic voltammetry. XRD spectra of each series illustrated that PtMnCuX/C (X = Fe, Co and Ni) and PtMnMoX/C (X = Fe, Co, Ni and Cu) alloys have been formed without significant free Mn, Cu, Mo or X co-catalysts. For PtMnCuSn/C and PtMnMoSn/C, in addition to alloy formation, significant free Sn-oxides are present in each catalyst. Cyclic voltammetry and chronoamperometry revealed that all quaternary showed superior electrocatalytic activity towards ethanol oxidation compared to the ternary precursor. Also, shift of the onset potential of ethanol oxidation towards less positive values were also recorded with the quaternary alloys, demonstrating a facilitated oxidation with the quaternary alloys compared to ternary alloy precursor. The magnitude of the gain in potential depend on the alloy composition and PtMnMoSn/C was found to be the best of all synthetized quaternary alloys with an onset potential of ethanol oxidation of only 0.059 V vs. Ag/AgCl.

  14. Phase transformations during deformation of Fe-Ni and Fe-Mn alloys produced by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Cherdyntsev, V. V.; Pustov, L. Yu.; Kaloshkin, S. D.; Tomilin, I. A.; Shelekhov, E. V.; Laptev, A. I.; Baldokhin, Yu. V.; Estrin, E. I.

    2007-10-01

    Compositions of Fe(100 - x)Mn x ( x = 10 and 12 at. %) and Fe(100 - y)Ni y ( y = 18 and 20 at. %) were produced by combined mechanical alloying of pure-metal powders and annealed in the austenitic field. After annealing and cooling to room temperature, the alloys had a single-phase austenitic structure. During deformation, the γ phase partially transforms into the α 2 phase (and/or ɛ phase in Fe-Mn alloys). The phase composition of the alloys after deformation depends on the amount of alloying elements and the predeformation annealing regime. The amount of martensite in the structure of a bulk alloy obtained by powder compacting grows proportionally to the degree of deformation of the sample.

  15. Synthesis of Waste Form in the Gd-Fe-Al-Ni-Mn-Cr-O System

    SciTech Connect

    Chae, S.C.; Jang, Y.N.; Bae, I.K.; Ryu, K.W.

    2006-07-01

    Poly-phase waste form which was the mixture of Gd{sub 3}Fe{sub 2}Al{sub 3}O{sub 12} and (Ni{sub x}Mn{sub 1-x})(Fe{sub y}Cr{sub 1-y}){sub 2}O{sub 4} was synthesized. Also, we are intended to examine phase relation and physicochemical properties of coexisted phases in the compositions and to confirm accommodation relation of elements and phases. Two types of phase series were observed: Garnet-perovskite-spinel and Garnet-spinel. The compositions of garnets and spinels were nonstoichiometric, and especially, this poly-phase ceramics may be in a good waste form. The excessive Gd in garnets indicated the immobilization of higher content of actinides. The nonstoichiometric compositions of garnet and spinel were attributed to the formation of perovskite in that perovskite contained Gd, Fe and Al from garnet and Cr from spinel. (authors)

  16. Multiscale twin hierarchy in NiMnGa shape memory alloys with Fe and Cu

    DOE PAGESBeta

    Barabash, Rozaliya I.; Barabash, Oleg M.; Popov, Dmitry; Shen, Guoyin; Park, Changyong; Yang, Wenge

    2015-01-31

    X-ray microdiffraction and scanning electron microscopy studies reveal 10 M martensitic structure with a highly correlated multiscale twin hierarchy organization in NiMnGaFeCu shape memory alloys. In this paper, high compatibility is found at the twin interfaces resulting in a highly correlated twinned lattice orientation across several laminate levels. The lattice unit cell is described as monoclinic I-centered with a = 4.28 Å, b = 4.27 Å, c = 5.40 Å, γ = 78.5°. The modulation is found parallel to the b axis. Finally, thin tapered needle-like lamellae and branching are observed near the twin boundaries.

  17. Influence of Carbon on the Microstructure of a Fe-Mn-Si-Cr-Ni Alloy

    NASA Astrophysics Data System (ADS)

    Mostafa, Khaled M.; de Baerdemaeker, J.; van Caenegem, N.; Segers, D.; Houbaert, Y.

    2009-08-01

    The influence of the addition of C to the Fe-Mn-Si-Cr-Ni base material is investigated at room temperature. Steel samples were deformed during a tensile experiment up to a strain of 17%. Light optical microscopy (OM) and x-ray diffraction (XRD) gave information about the different micro-structural phases that exist in the deformed and the undeformed alloys. The evolution of the defect structure is followed by positron annihilation techniques such as Doppler broadening of annihilation radiation spectroscopy (DBAR) and the positron annihilation lifetime spectroscopy (PALS). During deformation a martensitic ɛ-phase is induced. The size of the martensite plates increases with increasing deformation.

  18. Exchange-bias phenomena and modeling in nanocrystalline powders of MnO/FeCo and NiO/Fe

    NASA Astrophysics Data System (ADS)

    Cornejo, D. R.; Padrón Hernández, E.; Azevedo, A.; Rezende, S. M.

    2005-05-01

    An approach towards the modeling of the magnetic behavior in heterogeneous systems of exchange-coupled antiferromagnetic (AF) and ferromagnetic (FM) particles with composition (AF)x+(FM)1-x is presented. The model is based on the Preisach hysteresis model and correctly predicts the correlation between the exchange-bias field and the mean grain size of the material, as established from the measurements of the hysteresis loops in mechanically alloyed (MnO)+(α-FeCo). The model was also used to calculate the unidirectional anisotropy interface energies in both this and (NiO)x+(α-Fe)1-x system; in the latter case, the predicted value was in full agreement with that reported for antiferromagnetic layers of NiO.

  19. Investigation of the mechanical properties of FeNiCrMnSi high entropy alloy wear resistant

    NASA Astrophysics Data System (ADS)

    Buluc, G.; Florea, I.; Chelariu, R.; Popescu, G.; Carcea, I.

    2016-06-01

    In this paper we investigated microstructure, hardness and wear resistance for FeNiCrMnAl, high entropy alloy. The FeNiCrMnSi, high entropy alloy was elaborated in a medium induction furnace, by choosing the silicon, as an alliance element within the equi- atomic high entropy alloy, we managed to obtain a dendritic structure, the formation of intermetallic compounds or separated silicon. The medium hardness value of the investigated alloy was 948.33 HV and the medium value of the friction coefficient was 0.6655 in the first 20 seconds and 0.5425 for 1667 seconds. The volume loss of the high entropy alloy FeNiCrMnSi was 0.0557 mm3.

  20. Calculations of structural, elastic, electronic, magnetic and phonon properties of FeNiMnAl by the first principles

    SciTech Connect

    Uğur, Şule; İyigör, Ahmet

    2014-10-06

    The electronic, elastic and dynamical properties of the quaternary alloy FeNiMnAl have been investigated using a pseudopotential plane wave method within the generalized gradient approximation (GGA). We determined the lattice parameters and the bulk modulus B. In addition, the elastic properties such as elastic constans (C{sub 11}, C{sub 12} and C{sub 44}), the shear modulus G, the young modulus E, the poisson's ratio σ and the B/G ratio are also given. The FeNiMnAl Heusler alloy exhibit a ferromagnetic half-metallic behavior with the total magnetic moment of 4.02 μ{sub B}. The phonon dispersion of FeNiMnAl has been performed using the density functional theory and the direct method with 2×2×2 supercell.

  1. Galvanomagnetic properties of Fe2YZ (Y = Ti, V, Cr, Mn, Fe, Ni; Z = Al, Si) heusler alloys

    NASA Astrophysics Data System (ADS)

    Kourov, N. I.; Marchenkov, V. V.; Belozerova, K. A.; Weber, H. W.

    2015-11-01

    The Hall effect and the magnetoresistance of Fe2YZ Heusler alloys, where Y = Ti, V, Cr, Mn, Fe, and Ni, are the 3 d transition metals and Z = Al and Si are the s, p elements of the third period of the periodic table, are studied at T = 4.2 K in magnetic fields H ≤ 100 kOe. It is shown that, in the high-field limit ( H > 10 kOe), the value and the sign of the normal ( R 0) and anomalous ( R s ) Hall coefficients change anomalously during transition from paramagnetic (Y = Ti, V) to ferromagnetic (Y = Cr, Mn, Fe, Ni) alloys. These coefficients have different signs for all alloys. Constant R s in the ferromagnetic alloys is positive, proportional to the residual resistivity ratio ( R s ∝ ρ 0 3.1 ), and inversely proportional to spontaneous magnetization. The magnetoresistance of the alloys is a few percent and has a negative sign. A positive addition to transverse magnetoresistance is only detected in high magnetic fields, H > 10 kOe.

  2. Galvanomagnetic properties of Fe{sub 2}YZ (Y = Ti, V, Cr, Mn, Fe, Ni; Z = Al, Si) heusler alloys

    SciTech Connect

    Kourov, N. I. Marchenkov, V. V.; Belozerova, K. A.; Weber, H. W.

    2015-11-15

    The Hall effect and the magnetoresistance of Fe{sub 2}YZ Heusler alloys, where Y = Ti, V, Cr, Mn, Fe, and Ni, are the 3d transition metals and Z = Al and Si are the s, p elements of the third period of the periodic table, are studied at T = 4.2 K in magnetic fields H ≤ 100 kOe. It is shown that, in the high-field limit (H > 10 kOe), the value and the sign of the normal (R{sub 0}) and anomalous (R{sub s}) Hall coefficients change anomalously during transition from paramagnetic (Y = Ti, V) to ferromagnetic (Y = Cr, Mn, Fe, Ni) alloys. These coefficients have different signs for all alloys. Constant R{sub s} in the ferromagnetic alloys is positive, proportional to the residual resistivity ratio (R{sub s} ∝ ρ{sub 0}{sup 3.1}), and inversely proportional to spontaneous magnetization. The magnetoresistance of the alloys is a few percent and has a negative sign. A positive addition to transverse magnetoresistance is only detected in high magnetic fields, H > 10 kOe.

  3. Microstructural Evolution and Functional Properties of Fe-Mn-Al-Ni Shape Memory Alloy Processed by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Niendorf, Thomas; Brenne, Florian; Krooß, Philipp; Vollmer, Malte; Günther, Johannes; Schwarze, Dieter; Biermann, Horst

    2016-06-01

    In the current study, a Fe-Mn-Al-Ni shape memory alloy is processed by additive manufacturing for the first time. Microstructural evolution upon processing is strongly affected by thermal gradients and solidification velocity and, thus, by processing parameters and the actual specimen geometry. By single-step solutionizing heat treatment pronounced grain growth is initiated leading to microstructures showing good reversibility. The compressive stress-strain response revealed maximum reversible pseudo-elastic strain of about 7.5 pct. Critical steps toward further optimization of additively manufactured Fe-Mn-Al-Ni shape memory alloys are discussed.

  4. Microstructural Evolution and Functional Properties of Fe-Mn-Al-Ni Shape Memory Alloy Processed by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Niendorf, Thomas; Brenne, Florian; Krooß, Philipp; Vollmer, Malte; Günther, Johannes; Schwarze, Dieter; Biermann, Horst

    2016-03-01

    In the current study, a Fe-Mn-Al-Ni shape memory alloy is processed by additive manufacturing for the first time. Microstructural evolution upon processing is strongly affected by thermal gradients and solidification velocity and, thus, by processing parameters and the actual specimen geometry. By single-step solutionizing heat treatment pronounced grain growth is initiated leading to microstructures showing good reversibility. The compressive stress-strain response revealed maximum reversible pseudo-elastic strain of about 7.5 pct. Critical steps toward further optimization of additively manufactured Fe-Mn-Al-Ni shape memory alloys are discussed.

  5. Using granular C0-AI2O3 spacer for optimization of functional parameters of the FeMn/Fe20Ni80 magnetoresistive films

    NASA Astrophysics Data System (ADS)

    Gorkovenko, A. N.; Lepalovskij, V. N.; Adanakova, O. A.; Vas'kovskiy, V. O.

    2016-03-01

    In this paper we studied the possibility of tailoring the functional properties of the multilayer magnetoresistive medium with unidirectional anisotropy and the anisotropic magnetoresistance effect (AMR). Objects of the research were composite Co-Al2O3 films and Ta/Fe20Ni80/Fe50Mn50/Fe20Ni80/Co-Al2O3/Fe20Ni80/Ta multilayers structures obtained by magnetron sputtering and selectively subjected vacuum annealing. Structure, magnetic and magnetoresistive properties of the films in the temperature range 77÷440 K were investigated.

  6. Structural transitions, magnetic properties, and electronic structures of Co(Fe)-doped MnNiSi compounds

    SciTech Connect

    Li, Y.; Wei, Z. Y.; Liu, E. K. Wang, S. G.; Wang, W. H.; Wu, G. H.; Liu, G. D.

    2015-05-07

    The structural transitions, magnetic properties, and electronic structures of Co(Fe)-doped MnNiSi compounds are investigated by x-ray powder diffraction, differential scanning calorimetry (DSC), magnetic measurements, and first-principles calculations. Results indicate that all samples undergo a martensitic transition from the Ni{sub 2}In-type parent phase to TiNiSi-type orthorhombic phase at high temperatures. The substitution of Co(Fe) for Mn in Mn{sub 1−x}Co{sub x}NiSi (x = 0.2, 0.3, and 0.4) and Mn{sub 1−y}Fe{sub y}NiSi (y = 0.26, 0.30, 0.36, 0.46, and 0.55) samples decreases the structural transition temperature and Curie temperature of martensite. The martensite phases show a typical ferromagnetic behavior with saturation field being basically unchanged with increasing Co(Fe) content, while the saturation magnetization shows a decreasing tendency. The theoretically calculated moments are in good agreement with the experimentally measured results. The orbital hybridizations between different 3d elements are analyzed from the distribution of density of states.

  7. Effects of Fe content on the microstructure and properties of CuNi10FeMn1 alloy tubes fabricated by HCCM horizontal continuous casting

    NASA Astrophysics Data System (ADS)

    Jiang, Yan-bin; Xu, Jun; Liu, Xin-hua; Xie, Jian-xin

    2016-04-01

    Heating-cooling combined mold (HCCM) horizontal continuous casting technology developed by our research group was used to produce high axial columnar-grained CuNi10FeMn1 alloy tubes with different Fe contents. The effects of Fe content (1.08wt%-2.01wt%) on the microstructure, segregation, and flushing corrosion resistance in simulated flowing seawater as well as the mechanical properties of the alloy tubes were investigated. The results show that when the Fe content is increased from 1.08wt% to 2.01wt%, the segregation degree of Ni and Fe elements increases, and the segregation coefficient of Ni and Fe elements falls from 0.92 to 0.70 and from 0.92 to 0.63, respectively. With increasing Fe content, the corrosion rate of the alloy decreases initially and then increases. When the Fe content is 1.83wt%, the corrosion rate approaches the minimum and dense, less-defect corrosion films, which contain rich Ni and Fe elements, form on the surface of the alloy; these films effectively protect the α-matrix and reduce the corrosion rate. When the Fe content is increased from 1.08wt% to 2.01wt%, the tensile strength of the alloy tube increases from 204 MPa to 236 MPa, while the elongation to failure changes slightly about 46%, indicating the excellent workability of the CuNi10FeMn1 alloy tubes.

  8. Monte Carlo study of decorated dislocation loops in FeNiMnCu model alloys

    NASA Astrophysics Data System (ADS)

    Bonny, G.; Terentyev, D.; Zhurkin, E. E.; Malerba, L.

    2014-09-01

    Radiation-induced embrittlement of bainitic steels is the lifetime limiting factor of reactor pressure vessels in existing nuclear light water reactors. The primary mechanism of embrittlement is the obstruction of dislocation motion by nano-metric defects in the bulk of the material due to irradiation. Such features are known to be solute clusters that may be attached to point defect clusters. In this work we study the thermal stability of solute clusters near edge dislocation lines and loops with Burgers vector b = ½[1 1 1] and b = [1 0 0] in FeNiMnCu model alloys by means of Metropolis Monte Carlo simulations. It is concluded that small dislocation loops may indeed act as points for heterogeneous nucleation of solute precipitates in reactor pressure vessel steels and increase their thermodynamic stability up to and above normal reactor operating temperatures. We also found that, in the presence of dislocation-type defects, the Ni content determines the thermodynamic driving force for precipitation, rather than the Mn content.

  9. Tip Growth Of Carbon Nanotubes Obtained By Pyrolyzation Of Camphor Oil With Zeolite Embedded With Fe/Ni/Mn Catalyst

    NASA Astrophysics Data System (ADS)

    Azira, A. A.; Zainal, N. F. A.; Nik, S. F.; Rusop, M.

    2009-06-01

    Highly efficient synthesis of carbon nanotubes (CNTs) have been synthesized by thermal decomposition of camphor oil, on a zeolite support impregnated with Fe/Ni/Mn (molar ratio of Fe:Ni:Mn = 1:1:1) catalyst in the temperature range from 550-950° C by the thermal CVD method. Besides the surface fluidization of the catalyst nanoparticles themselves, assistance of the metal oxides embedded in zeolite supports is supposed to be responsible for high activity and selectivity of the Fe/Ni/Mn catalyst over which carbon source (camphor oil) successfully decomposes. The CNT yield was higher at 850° C and can be considered as the optimum deposition temperature. This result demonstrates that zeolite impregnated with the catalyst Fe/Ni/Mn is a suitable support for effective formation of CNTs. The morphological studies support `tip growth mechanism' for the growth of the CNT's in our case. The as-grown CNTs were characterized by FESEM and FTIR spectroscopy.

  10. Antiparallel interface coupling evidenced by negative rotatable anisotropy in IrMn/NiFe bilayers

    SciTech Connect

    Schafer, D.; Grande, P. L.; Pereira, L. G.; Azevedo, G. M.; Harres, A.; Geshev, J.; Sousa, M. A. de; Pelegrini, F.

    2015-06-07

    Negative rotatable anisotropy is estimated via ferromagnetic resonance measurements in as-made, annealed, and ion-irradiated IrMn{sub 3}/Ni{sub 81}Fe{sub 19} bilayers. Opposite to previous observations, inverse correlation between rotatable anisotropy and coercivity is observed. The exchange-bias field, determined from hysteresis loop measurements, is higher than that obtained from ferromagnetic resonance for all samples. The results are discussed in terms of majority antiparallel coupling and magnetic-field-induced transitions from antiparallel to parallel states of uncompensated spins at ferromagnet/antiferromagnet interface. We affirm that an observation of negative rotatable anisotropy evidences antiparallel coupling even in systems presenting conventional exchange bias.

  11. Nanomechanical Behavior of CoCrFeMnNi High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Mridha, Sanghita; Das, Santanu; Aouadi, Samir; Mukherjee, Sundeep; Mishra, Rajiv S.

    2015-08-01

    The nanomechanical behavior of the Co20Cr20Fe20Mn20Ni20 high-entropy alloy was investigated in as-cast, rolled, annealed, and thin-film forms. Dislocation nucleation was studied by repeated indents at a low load for each of the different processing conditions. Distinct displacement bursts (pop in) were observed in the loading curve marked by incipient plasticity for all the samples. The as-cast and annealed samples showed pop ins for 100% of the indents, whereas the rolled and thin-film samples showed a much lower fraction of displacement bursts. This was explained by the high density of dislocations for the cold-worked and thin-film conditions. The strong depth dependence of hardness was explained by geometrically necessary dislocations. The nanomechanical behavior and twinned microstructure indicate low stacking-fault energy for this high-entropy alloy.

  12. Mechanical cycling effects at Fe-Mn-Si-Cr-Ni SMAs obtained by powder metallurgy

    NASA Astrophysics Data System (ADS)

    Pricop, B.; Söyler, U.; Comčneci, R. I.; Özkal, B.; Bujoreanu, L. G.

    Specimens from Fe-Mn-Si-Cr-Ni SMA, obtained by powder metallurgy and compacted through hot rolling, were subjected to tensile loading-unloading cycles. The pseudoelastic parameters were determined based on recorded stress-strain curves, and their variation tendency with increasing the number of mechanical cycles was discussed. The gauges of tensile specimens were cut after mechanical cycling and were subjected to structural and dilatometric analysis. The structure was analyzed by XRD and SEM, aiming to reveal mechanical cycling effects. The thermomechanical response on heating, of mechanically cycled specimens, was recorded by dilatometry and revealed a tendency to enhance thermal expansion as an effect of increasing the number of cycles. The microstructural changes, induced by mechanical cycling, consisted in the stress induced formation of α' martensite.

  13. Lattice dynamics in austenitic stainless steels Fe 18Cr 12Ni 2Mo and Fe 18Cr 16Ni 10Mn

    NASA Astrophysics Data System (ADS)

    Rajevac, V.; Hoelzel, M.; Danilkin, S. A.; Hoser, A.; Fuess, H.

    2004-04-01

    Phonon dispersion curves of austenitic stainless steels Fe-18Cr-16Ni-10Mn and Fe-18Cr-12Ni-2Mo have been measured by triple-axis neutron spectroscopy. The data were analysed using Born-von Karman interactions as well as calculations including the contribution of conduction electrons on the lattice dynamics. An appropriate description of the experimental data was obtained by taking into account two-neighbour shells plus the contribution of the electron gas. The elastic constants and moduli obtained are close to reported results by ultrasonic studies on polycrystalline samples. The phonon densities of states in both systems calculated from the dispersion curves agree well with results obtained by time-of-flight neutron spectroscopy on polycrystalline samples. The Debye temperature THgr(T) shows a minimum around 40 K, similar to copper and nickel.

  14. Microstructures and mechanical properties of compositionally complex Co-free FeNiMnCr18 FCC solid solution alloy

    DOE PAGESBeta

    Wu, Z.; Bei, H.

    2015-07-01

    Recently, a structurally-simple but compositionally-complex FeNiCoMnCr high entropy alloy was found to have excellent mechanical properties (e.g., high strength and ductility). To understand the potential of using high entropy alloys as structural materials for advanced nuclear reactor and power plants, it is necessary to have a thorough understanding of their structural stability and mechanical properties degradation under neutron irradiation. Furthermore, this requires us to develop a similar model alloy without Co because material with Co will make post-neutron-irradiation testing difficult due to the production of the 60Co radioisotope. In order to achieve this goal, a FCC-structured single-phase alloy with amore » composition of FeNiMnCr18 was successfully developed. This near-equiatomic FeNiMnCr18 alloy has good malleability and its microstructure can be controlled by thermomechanical processing. By rolling and annealing, the as-cast elongated-grained-microstructure is replaced by homogeneous equiaxed grains. The mechanical properties (e.g., strength and ductility) of the FeNiMnCr18 alloy are comparable to those of the equiatomic FeNiCoMnCr high entropy alloy. Both strength and ductility increase with decreasing deformation temperature, with the largest difference occurring between 293 and 77 K. Extensive twin-bands which are bundles of numerous individual twins are observed when it is tensile-fractured at 77 K. No twin bands are detected by EBSD for materials deformed at 293 K and higher. Ultimately the unusual temperature-dependencies of UTS and uniform elongation could be caused by the development of the dense twin substructure, twin-dislocation interactions and the interactions between primary and secondary twinning systems which result in a microstructure refinement and hence cause enhanced strain hardening and postponed necking.« less

  15. Effect of Ti addition on the microstructure and mechanical properties of a cast Fe-Ni-Mo-Mn maraging steel

    NASA Astrophysics Data System (ADS)

    Nejad, S. Hossein; Nili Ahmadabadi, M.

    2003-10-01

    To study the effect of Ti on the age hardening behavior of Fe-Ni-Mn maraging steels, a Fe-Ni-Mo-Mn steel was alloyed with Ti then mechanical properties and aging behavior of two cast steels were investigated. In this regard, two heats of nominal compositions of Fe-10Ni-6Mo-3Mn and Fe-lONi-6Mo-3Mn-0. 7Ti were induction melted in air and vacuum respectively and cast in iron mold. After homogenizing at 1473K for 21.6ks and water quenching, solution annealing was performed at 1223K for 3.6ks followed by air cooling. Age hardening behavior at 773Kin the range of 0.36-172. 8 ks was determined. Tensile properties and Charpy impact toughness were measured in the solution annealed and peak-aged conditions. Fractographic features were studied by scanning electron microscope equipped with EDX microanalyses. Tensile properties of the alloys in the peakaged condition were in the range of grade 200 standard maraging steel. It has been found that Ti addition resulted in increasing of hardness and strength in aged condition and decreasing of Charpy impact toughness in both solution annealed and aged conditions. Ti addition also changes type and morphology of inclusions and fracture mechanism from semi-ductile intergranular mode to semi-ductile transgranular one.

  16. The effects of annealing on the microstructure and mechanical properties of Fe28Ni18Mn33Al21

    DOE PAGESBeta

    Meng, Fanling; Qiu, Jingwen; Baker, Ian; Bei, Hongbin

    2015-08-20

    In this paper, As-cast Fe28Ni18Mn33Al21, which consists of aligned, 50 nm, (Ni, Al)-rich B2, and (Fe, Mn)-rich f.c.c. phases, was annealed at a variety of temperatures up to 1423 K and the microstructure and mechanical properties were examined. It was shown that the as-cast microstructure arises from a eutectoid transformation at ~1300 K. Annealing at temperatures ≤1073 K produces β-Mn-structured precipitates and hardness values up to 816 HV, while annealing at temperatures >1073 K leads to dramatic coarsening of the two-phase B2/f.c.c. microstructure (up to 5.5 µm after 50 h at 1273 K), but does not lead to β-Mn precipitation.more » Interestingly, annealing at temperatures >1073 K delays the onset of β-Mn precipitation during subsequent anneals at lower temperatures. Coarsening the B2/f.c.c. lamellar structure by annealing at higher temperatures softens it and leads to increases in ductility from fracture before yield to ~8 % elongation. Finally, the presence of β-Mn precipitates makes the very fine, brittle B2/f.c.c. microstructures even more brittle, but significant ductility (8.4 % elongation) is possible even with β-Mn precipitates present if the B2/f.c.c. matrix is coarse and, hence, more ductile.« less

  17. Crystallographic, magnetic, and electronic structures of ferromagnetic shape memory alloys Ni2XGa (X=Mn,Fe,Co) from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Bai, J.; Raulot, J. M.; Zhang, Y. D.; Esling, C.; Zhao, X.; Zuo, L.

    2011-01-01

    The crystallographic, magnetic and electronic structures of the ferromagnetic shape memory alloys Ni2XGa (X=Mn, Fe, and Co), are systematically investigated by means of the first-principles calculations within the framework of density functional theory using the VIENNA AB INITIO SOFTWARE PACKAGE. The lattice parameters of both austenitic and martensitic phases in Ni2MnGa have been calculated. The formation energies of the cubic phase of Ni2XGa are estimated, and show a destabilization tendency if Mn atom is substituted by Fe or Co. From Ni2MnGa to Ni2CoGa, the down spin total density of states (DOS) at Fermi level is gradually increasing, whereas that of the up spin part remains almost unchanged. This is the main origin of the difference of the magnetic moment in these alloys. The partial DOS is dominated by the Ni and Mn 3d states in the bonding region below EF. There are two bond types existing in Ni2XGa: one is between neighboring Ni atoms in Ni2MnGa; the other is between Ni and X atoms in Ni2FeGa and Ni2CoGa alloys.

  18. The effects of Ni, Mo, Ti and Si on the mechanical properties of Cr free Mn steel (Fe-25Mn-5Al-2C)

    NASA Technical Reports Server (NTRS)

    Schuon, S. R.

    1982-01-01

    The FeMnAlC alloys may hold potential as Cr-free replacements for high strategic material iron base superalloys, but little is known about their intermediate temperature (650 C to 870 C) mechanical properties. The effects of alloying elements on the mechanical properties of model FeMnAlC alloys were studied. Results showed that modified FeMnAlC alloys had promising short term, intermediate temperature properties but had relatively poor stress rupture lives at 172 MPa and 788 C. Room temperature and 788 C tensile strength of FeMnAlC alloys were better than common cast stainless steels. Changes in room temperature tensile and 788 C tensile strength and ductility, and 788 C stress rupture life were correlated with changes in Ni, Mo, Ti, and Si levels due to alloying effects on interstitial carbon levels and carbide morphology. Fe-25Mn-5Al-2C had a very poor stress rupture life at 172 MPa and 788 C. Addition of carbide-forming elements improved the stress rupture life.

  19. High-field magnetization of heusler alloys Fe2 XY ( X = Ti, V, Cr, Mn, Fe, Co, Ni; Y = Al, Si)

    NASA Astrophysics Data System (ADS)

    Kourov, N. I.; Marchenkov, V. V.; Korolev, A. V.; Belozerova, K. A.; Weber, H. W.

    2015-10-01

    The magnetization curves of ferromagnetic Heusler alloys Fe2 XY (where X = Ti, V, Cr, Mn, Fe, Co, Ni are transition 3 d elements and Y = Al, Si are the s and p elements of the third period of the Periodic Table) have been measured at T = 4.2 K in the field range H ≤ 70 kOe. It has been shown that the high-field ( H ≥ 20 kOe) magnetization is described within the Stoner model.

  20. Microstructure and shape recovery characteristics in a TIG-welded Fe-Mn-Si-Cr-Ni shape memory alloy

    NASA Astrophysics Data System (ADS)

    Qiao, Zhixia; Li, Lianjin; Wang, Dongai; Li, Zongmin

    2007-07-01

    Microstructure of an Fe-Mn-Si-Cr-Ni shape memory alloy (SMA) after being TIG (tungsten-insert gas welding) welded was investigated using scanning electron microscope (SEM) and X-ray diffractometer. The results show that dendrite crystals composed of cellular sub-structures form in the weld zone due to remelting. There is no obvious change in microstructure of the heat-affected zone (HAZ) except for some degree of growth of austenite grains. Since both the weld zone and HAZ consist of single phase of austenite (γ), pre-strain can still induce the γ-->ɛ martensite transformation in welding joints of the alloy. Effect of TIG welding on shape recovery characteristics of the alloy was examined by bending tests and it was found that the TIG-welded Fe-Mn-Si-Cr-Ni alloy exhibits almost the same excellent SME as the base material.

  1. Alternating magnetic anisotropy of Li2(Li1–xTx)N (T = Mn, Fe, Co, and Ni)

    DOE PAGESBeta

    Jesche, A.; Ke, L.; Jacobs, J. L.; Harmon, B.; Houk, R. S.; Canfield, P. C.

    2015-05-11

    Substantial amounts of the transition metals Mn, Fe, Co, and Ni can be substituted for Li in single crystalline Li2(Li1–xTx)N. Isothermal and temperature-dependent magnetization measurements reveal local magnetic moments with magnitudes significantly exceeding the spin-only value. The additional contributions stem from unquenched orbital moments that lead to rare-earth-like behavior of the magnetic properties. Accordingly, extremely large magnetic anisotropies have been found. Most notably, the magnetic anisotropy alternates as easy plane→easy axis→easy plane→easy axis when progressing from T = MnFe → Co → Ni. This behavior can be understood based on a perturbation approach in an analytical, single-ion model.more » As a result, the calculated magnetic anisotropies show surprisingly good agreement with the experiment and capture the basic features observed for the different transition metals.« less

  2. Alternating magnetic anisotropy of Li2(Li1 -xTx )N (T =Mn ,Fe ,Co ,andNi )

    NASA Astrophysics Data System (ADS)

    Jesche, A.; Ke, L.; Jacobs, J. L.; Harmon, B.; Houk, R. S.; Canfield, P. C.

    2015-05-01

    Substantial amounts of the transition metals Mn, Fe, Co, and Ni can be substituted for Li in single crystalline Li2(Li1 -xTx)N . Isothermal and temperature-dependent magnetization measurements reveal local magnetic moments with magnitudes significantly exceeding the spin-only value. The additional contributions stem from unquenched orbital moments that lead to rare-earth-like behavior of the magnetic properties. Accordingly, extremely large magnetic anisotropies have been found. Most notably, the magnetic anisotropy alternates as easy plane→easy axis→easy plane→easy axis when progressing from T =MnFe →Co →Ni . This behavior can be understood based on a perturbation approach in an analytical, single-ion model. The calculated magnetic anisotropies show surprisingly good agreement with the experiment and capture the basic features observed for the different transition metals.

  3. Effect of Complex Inclusion Particles on the Solidification Structure of Fe-Ni-Mn-Mo Alloy

    NASA Astrophysics Data System (ADS)

    Park, Jun Seok; Lee, Changhee; Park, Joo Hyun

    2012-12-01

    The effect of combinations of several deoxidizers, i.e., Mg-Al, Mg-Ti, Al-Ti, and Ce-Al, on the solidification structure of Fe-2 mass pct Ni-1 mass pct Mn-1 mass pct Mo alloy melt was investigated using a melt sampling and quenching method. Using this method, we evaluated the catalytic potency of several complex inclusion particles by taking the inclusion evolution process into account. Fine equiaxed crystals were obtained in the Mg-Ti-deoxidized steel wherein the MgO(MgAl2O4)-TiN complex compounds formed. However, the longer the holding time at high temperatures, the larger the fraction of Ti2O3, and very fine TiN formed because of microsegregation during solidification, resulting in poor equiaxed crystals. When the steel was deoxidized with Mg-Al, the initial structure was dominantly columnar. However, the longer the holding time, the larger the fraction of MgAl2O4 spinel, resulting in the formation of fine equiaxed crystals. Ce-Al complex deoxidation provided a relatively small portion of equiaxed crystals, whereas Ti-Al deoxidation produced the fewest equiaxed crystals because of the formation of alumina. The effectiveness of each inoculant particle for the crystallization of the primary δ-iron was explained well by the lattice disregistry concept.

  4. Mixing antiferromagnets to tune NiFe-[IrMn/FeMn] interfacial spin-glasses, grains thermal stability, and related exchange bias properties

    SciTech Connect

    Akmaldinov, K.; Ducruet, C.; Portemont, C.; Joumard, I.; Prejbeanu, I. L.; Dieny, B.; Baltz, V.

    2014-05-07

    Spintronics devices and in particular thermally assisted magnetic random access memories require a wide range of ferromagnetic/antiferromagnetic (F/AF) exchange bias (EB) properties and subsequently of AF materials to fulfil diverse functionality requirements for the reference and storage. For the reference layer, large EB energies and high blocking temperature (T{sub B}) are required. In contrast, for the storage layer, mostly moderate T{sub B} are needed. One of the present issues is to find a storage layer with properties intermediate between those of IrMn and FeMn and in particular: (i) with a T{sub B} larger than FeMn for better stability at rest-T but lower than IrMn to reduce power consumption at write-T and (ii) with improved magnetic interfacial quality, i.e., with reduced interfacial glassy character for lower properties dispersions. To address this issue, the EB properties of F/AF based stacks were studied for various mixed [IrMn/FeMn] AFs. In addition to EB loop shifts, the F/AF magnetic interfacial qualities and the AF grains thermal stability are probed via measurements of the low- and high-temperature contributions to the T{sub B} distributions, respectively. A tuning of the above three parameters is observed when evolving from IrMn to FeMn via [IrMn/FeMn] repetitions.

  5. Effect of one-step recrystallization on the grain boundary evolution of CoCrFeMnNi high entropy alloy and its subsystems.

    PubMed

    Chen, Bo-Ru; Yeh, An-Chou; Yeh, Jien-Wei

    2016-01-01

    In this study, the grain boundary evolution of equiatomic CoCrFeMnNi, CoCrFeNi, and FeCoNi alloys after one-step recrystallization were investigated. The special boundary fraction and twin density of these alloys were evaluated by electron backscatter diffraction analysis. Among the three alloys tested, FeCoNi exhibited the highest special boundary fraction and twin density after one-step recrystallization. The special boundary increment after one-step recrystallization was mainly affected by grain boundary velocity, while twin density was mainly affected by average grain boundary energy and twin boundary energy. PMID:26923713

  6. Effect of one-step recrystallization on the grain boundary evolution of CoCrFeMnNi high entropy alloy and its subsystems

    PubMed Central

    Chen, Bo-Ru; Yeh, An-Chou; Yeh, Jien-Wei

    2016-01-01

    In this study, the grain boundary evolution of equiatomic CoCrFeMnNi, CoCrFeNi, and FeCoNi alloys after one-step recrystallization were investigated. The special boundary fraction and twin density of these alloys were evaluated by electron backscatter diffraction analysis. Among the three alloys tested, FeCoNi exhibited the highest special boundary fraction and twin density after one-step recrystallization. The special boundary increment after one-step recrystallization was mainly affected by grain boundary velocity, while twin density was mainly affected by average grain boundary energy and twin boundary energy. PMID:26923713

  7. Effects of cold rolling on the microstructure and mechanical properties of Fe-Ni-Mn-Mo-Ti-Cr maraging steels

    NASA Astrophysics Data System (ADS)

    Mahmudi, Abbas; Nedjad, Syamak Hossein; Behnam, Mir Masud Jabbari

    2011-10-01

    Effects of cold rolling on the microstructure and mechanical properties of Fe-Ni-Mn-Mo-Ti-Cr maraging steels were studied. To investigate the microstructure and mechanical properties, optical microscopy, scanning electron microscopy, X-ray diffraction, tensile test, and hardness test were used. The results show that the solution-annealing treatment in the cold-rolled steel redounds to the formation of submicrocrystalline Fe2(Mo, Ti) Laves phase particles, which are stable at high temperatures. These secondary Laves phase particles prevent from recrystallization at high temperatures and correspond to semi-brittle fracture in the subsequent aging treatment.

  8. Electrical conduction mechanism of LaNi{sub x}Me{sub 1−x}O{sub 3−δ} (Me = Fe, Mn)

    SciTech Connect

    Niwa, Eiki; Maeda, Hiroki; Uematsu, Chie; Hashimoto, Takuya

    2015-10-15

    Graphical abstract: Compositional dependence of (a) electrical conductivity and (b) E{sub a} for hopping conduction of LaNi{sub x}Me{sub 1−x}O{sub 3} (Me = Fe, Mn). - Highlights: • Electrical conduction mechanism of LaNi{sub x}Me{sub 1−x}O{sub 3} (Me = Fe, Mn) was investigated. • Hopping conduction model could be applied for conductivity of both specimens. • The difference of E{sub a} due to that of energy level of Fe and Mn was observed. • Hole concentration estimated by iodimetry increases with increasing Ni content. - Abstract: Electrical conduction mechanism of LaNi{sub x}Fe{sub 1−x}O{sub 3−δ} and LaNi{sub x}Mn{sub 1−x}O{sub 3+δ} expected as Sr-free new cathode material for solid oxide fuel cells was analyzed. Electrical conduction behaviors of both specimens could be well fitted by small polaron hopping conduction model. The electrical conductivity of LaNi{sub x}Fe{sub 1−x}O{sub 3−δ} increased with increasing Ni content, showing agreement with decrease of activation energy for hopping conduction. The decrease of electrical conductivity and increase of activation energy of LaNi{sub x}Mn{sub 1−x}O{sub 3+δ} were observed with increasing Ni content for 0.0 ≤ x ≤ 0.4. Further Ni substitution increased electrical conductivity and decreased activation energy for 0.4 ≤ x ≤ 0.6. It was revealed using iodometry that the difference of hole carrier density between LaNi{sub x}Fe{sub 1−x}O{sub 3−δ} and LaNi{sub x}Mn{sub 1−x}O{sub 3+δ} was small. It was suspected that the origin of the difference of electrical conduction behavior of LaNi{sub x}Fe{sub 1−x}O{sub 3−δ} and LaNi{sub x}Mn{sub 1-x}O{sub 3+δ} was difference of energy level of e{sub g} band composed of Fe 3d or Mn 3d orbitals and their overlapping quantity with O 2p and Ni 3d band.

  9. Theory of nonequilibrium segregation in an Fe-Mn-Ni ternary alloy and a ductile-brittle-ductile transition

    SciTech Connect

    Heo, N.H.

    1996-07-01

    In an Fe-8Mn-7Ni ternary alloy, age-hardened by coherently formed face-centered tetragonal MnNi intermetallic compounds within the matrix, a modeling based on a regular solution model is performed to formulate the nonequilibrium grain boundary segregation behaviors of the alloying elements, followed by a ductile-brittle-ductile transition in the alloy. An equation is derived representing the segregation kinetics. It is confirmed from the calculations that the segregation behaviors of the elements are directly controlled by the precipitation reaction in the matrix. The nonequilibrium segregation behaviors are characterized by time-temperature diagrams, which show maximum segregation levels of the elements in an intermediate aging time and temperature range. The calculated results explain theoretically and semiquantitatively the relationship between the nonequilibrium segregation of the elements and the ductile-brittle-ductile transition.

  10. Critical dependence of magnetostructural coupling and magnetocaloric effect on particle size in Mn-Fe-Ni-Ge compounds.

    PubMed

    Wu, Rongrong; Shen, Feiran; Hu, Fengxia; Wang, Jing; Bao, Lifu; Zhang, Lei; Liu, Yao; Zhao, Yingying; Liang, Feixiang; Zuo, Wenliang; Sun, Jirong; Shen, Baogen

    2016-01-01

    Magnetostructural coupling, which is the coincidence of crystallographic and magnetic transition, has obtained intense attention for its abundant magnetoresponse effects and promising technological applications, such as solid-state refrigeration, magnetic actuators and sensors. The hexagonal Ni2In-type compounds have attracted much attraction due to the strong magnetostructural coupling and the resulted giant negative thermal expansion and magnetocaloric effect. However, the as-prepared samples are quite brittle and naturally collapse into powders. Here, we report the effect of particle size on the magnetostructural coupling and magnetocaloric effect in the Ni2In-type Mn-Fe-Ni-Ge compound, which undergoes a large lattice change across the transformation from paramagnetic austenite to ferromagnetic martensite. The disappearance of martensitic transformation in a large amount of austenitic phase with reducing particle size, to our best knowledge, has not been reported up to now. The ratio can be as high as 40.6% when the MnNi0.8Fe0.2Ge bulk was broken into particles in the size range of 5~15 μm. Meanwhile, the remained magnetostructural transition gets wider and the magnetic hysteresis becomes smaller. As a result, the entropy change drops, but the effective cooling power RCeffe increases and attains to the maximum at particles in the range of 20~40 μm. These observations provide constructive information and highly benefit practical applications for this class of novel magnetoresponse materials. PMID:26883719

  11. Critical dependence of magnetostructural coupling and magnetocaloric effect on particle size in Mn-Fe-Ni-Ge compounds

    NASA Astrophysics Data System (ADS)

    Wu, Rongrong; Shen, Feiran; Hu, Fengxia; Wang, Jing; Bao, Lifu; Zhang, Lei; Liu, Yao; Zhao, Yingying; Liang, Feixiang; Zuo, Wenliang; Sun, Jirong; Shen, Baogen

    2016-02-01

    Magnetostructural coupling, which is the coincidence of crystallographic and magnetic transition, has obtained intense attention for its abundant magnetoresponse effects and promising technological applications, such as solid-state refrigeration, magnetic actuators and sensors. The hexagonal Ni2In-type compounds have attracted much attraction due to the strong magnetostructural coupling and the resulted giant negative thermal expansion and magnetocaloric effect. However, the as-prepared samples are quite brittle and naturally collapse into powders. Here, we report the effect of particle size on the magnetostructural coupling and magnetocaloric effect in the Ni2In-type Mn-Fe-Ni-Ge compound, which undergoes a large lattice change across the transformation from paramagnetic austenite to ferromagnetic martensite. The disappearance of martensitic transformation in a large amount of austenitic phase with reducing particle size, to our best knowledge, has not been reported up to now. The ratio can be as high as 40.6% when the MnNi0.8Fe0.2Ge bulk was broken into particles in the size range of 5~15 μm. Meanwhile, the remained magnetostructural transition gets wider and the magnetic hysteresis becomes smaller. As a result, the entropy change drops, but the effective cooling power RCeffe increases and attains to the maximum at particles in the range of 20~40 μm. These observations provide constructive information and highly benefit practical applications for this class of novel magnetoresponse materials.

  12. Critical dependence of magnetostructural coupling and magnetocaloric effect on particle size in Mn-Fe-Ni-Ge compounds

    PubMed Central

    Wu, Rongrong; Shen, Feiran; Hu, Fengxia; Wang, Jing; Bao, Lifu; Zhang, Lei; Liu, Yao; Zhao, Yingying; Liang, Feixiang; Zuo, Wenliang; Sun, Jirong; Shen, Baogen

    2016-01-01

    Magnetostructural coupling, which is the coincidence of crystallographic and magnetic transition, has obtained intense attention for its abundant magnetoresponse effects and promising technological applications, such as solid-state refrigeration, magnetic actuators and sensors. The hexagonal Ni2In-type compounds have attracted much attraction due to the strong magnetostructural coupling and the resulted giant negative thermal expansion and magnetocaloric effect. However, the as-prepared samples are quite brittle and naturally collapse into powders. Here, we report the effect of particle size on the magnetostructural coupling and magnetocaloric effect in the Ni2In-type Mn-Fe-Ni-Ge compound, which undergoes a large lattice change across the transformation from paramagnetic austenite to ferromagnetic martensite. The disappearance of martensitic transformation in a large amount of austenitic phase with reducing particle size, to our best knowledge, has not been reported up to now. The ratio can be as high as 40.6% when the MnNi0.8Fe0.2Ge bulk was broken into particles in the size range of 5~15 μm. Meanwhile, the remained magnetostructural transition gets wider and the magnetic hysteresis becomes smaller. As a result, the entropy change drops, but the effective cooling power RCeffe increases and attains to the maximum at particles in the range of 20~40 μm. These observations provide constructive information and highly benefit practical applications for this class of novel magnetoresponse materials. PMID:26883719

  13. Magnetic anisotropy of Fe1-yXyPt-L10 [X = Cr, Mn, Co, Ni, Cu] bulk alloys

    NASA Astrophysics Data System (ADS)

    Cuadrado, R.; Klemmer, Timothy J.; Chantrell, R. W.

    2014-10-01

    We demonstrate by means of fully relativistic first principles calculations that, by substitution of Fe by Cr, Mn, Co, Ni, or Cu in FePt-L10 bulk alloys, with fixed Pt content, it is possible to tune the magnetocrystalline anisotropy energy by adjusting the content of the non-magnetic species in the material. The changes in the geometry due to the inclusion of each element induces different values of the tetragonality and hence changes in the magnetic anisotropy and in the net magnetic moment. The site resolved magnetic moments of Fe increase with the X content while those of Pt and X are simultaneously reduced. The calculations are in good quantitative agreement with experimental data and demonstrate that models with fixed band structure but varying numbers of electrons per unit cell are insufficient to describe the experimental data for doped FePt-L10 alloys.

  14. Defect formation energy and magnetic structure of shape memory alloys Ni-X-Ga (X=Mn, Fe, Co) by first principle calculation

    NASA Astrophysics Data System (ADS)

    Bai, J.; Raulot, J. M.; Zhang, Y. D.; Esling, C.; Zhao, X.; Zuo, L.

    2010-09-01

    The crystallographic and magnetic structures of the Ni2XGa (X=Mn, Fe, Co), are systematically investigated by means of the first-principles calculations within the framework of density functional theory using the VIENNA AB INITIO SOFTWARE PACKAGE. The formation energies of several kinds of defects (atomic exchange, antisite, vacancy) are estimated. The Ga atoms stabilize the cubic structure, and the effect of X atoms on the structural stability is opposite. For most cases of the site occupation, the excess atoms of the rich component directly occupy the site(s) of the deficient one(s), except for Ga-rich Ni-deficient type. The magnitude of the variation in Ni moments is much larger than that of Mn in defective Ni2XGa. The value of Ni magnetic moment sensitively depends on the distance between Ni and X. Excess Mn could be ferromagnetic or antiferromagnetic, depending on the distance between the neighboring Mn atoms.

  15. Study of the effect of annealing on defects in Fe Mn Si Cr Ni C alloy by slow positron beam

    NASA Astrophysics Data System (ADS)

    Mostafa, Khaled. M.; De Baerdemaeker, J.; Van Caenegem, N.; Segers, D.; Houbaert, Y.

    2008-10-01

    FeMnSi shape memory alloys (SMAs) have received much attention as one-way SMAs due to their cost-effectiveness. Variable-energy (0-30 keV) positron beam studies have been carried out on a Fe-Mn-Si-Cr-Ni-C alloy with different degrees of deformation. Doppler broadening profiles of the positron annihilation as a function of incident positron energy were shown to be quite sensitive to defects introduced by deformation. The variation of the nature and the concentration of defects are studied as a function of isochronal annealing temperature. These results are correlated with the data measured with the positron annihilation lifetime spectroscopy (PALS). The positron annihilation results are compared to XRD and optical microscopy (OM).

  16. Nanostructure evolution under irradiation of Fe(C)MnNi model alloys for reactor pressure vessel steels

    NASA Astrophysics Data System (ADS)

    Chiapetto, M.; Becquart, C. S.; Domain, C.; Malerba, L.

    2015-06-01

    Radiation-induced embrittlement of bainitic steels is one of the most important lifetime limiting factors of existing nuclear light water reactor pressure vessels. The primary mechanism of embrittlement is the obstruction of dislocation motion produced by nanometric defect structures that develop in the bulk of the material due to irradiation. The development of models that describe, based on physical mechanisms, the nanostructural changes in these types of materials due to neutron irradiation are expected to help to better understand which features are mainly responsible for embrittlement. The chemical elements that are thought to influence most the response under irradiation of low-Cu RPV steels, especially at high fluence, are Ni and Mn, hence there is an interest in modelling the nanostructure evolution in irradiated FeMnNi alloys. As a first step in this direction, we developed sets of parameters for object kinetic Monte Carlo (OKMC) simulations that allow this to be done, under simplifying assumptions, using a "grey alloy" approach that extends the already existing OKMC model for neutron irradiated Fe-C binary alloys [1]. Our model proved to be able to describe the trend in the buildup of irradiation defect populations at the operational temperature of LWR (∼300 °C), in terms of both density and size distribution of the defect cluster populations, in FeMnNi model alloys as compared to Fe-C. In particular, the reduction of the mobility of point-defect clusters as a consequence of the presence of solutes proves to be key to explain the experimentally observed disappearance of detectable point-defect clusters with increasing solute content.

  17. Sediment fractionation of Cu, Ni, Zn, Cr, Mn, and Fe in one experimental and three natural marshes

    SciTech Connect

    Lindau, C.W.; Hossner, L.R.

    1982-07-01

    Dredged sediments from the Gulf Intracoastal Waterway near Galveston, Tex., were used as a substrate material in the construction of an experimental intertidal salt marsh. Selected substrate properties were compared with those of established marshes. Clay mineralogical properties of the experimental marsh were compared with those of three nearby natural marshes. A sequential chemical extraction procedure was used to obtain data on the partitioning of micronutrients and heavy metals among selected marsh substrate fractions. Clay minerals found in the sediments of the experimental marsh were equivalent to those identified in the natural marshes. Total elemental substrate concentrations of Cu, Ni, Cr, Zn, Mn, and Fe averaged 7.9, 8.6, 25.5, 25.2, 123, and 12,200 ..mu..g/g, respectively, over the four marsh sites. Copper, nickel, zinc, and chromium displayed only minor variations in substrate partitioning between the experimental and natural marsh samples. Micronutrients and heavy metal concentrations in the exchangeable and water-soluble fraction were low compared with other fractions. Approximately 30% of the total substrate Cu, Ni, and Zn was associated with the organic matter fraction. Metals fixed within the lattice structures of clay and silicate minerals ranged from 20% Mn for experimental marsh samples to 90% Cr for one of the natural marshes. Major differences in Mn and Fe substrate partitioning were observed when the experimental marsh samples were compared with those of the natural marshes.

  18. The role of the (111) texture on the exchange bias and interlayer coupling effects observed in sputtered NiFe/IrMn/Co trilayers

    SciTech Connect

    Castro, I. L.; Nascimento, V. P.; Passamani, E. C.; Takeuchi, A. Y.; Larica, C.; Tafur, M.; Pelegrini, F.

    2013-05-28

    Magnetic properties of sputtered NiFe/IrMn/Co trilayers grown on different seed layers (Cu or Ta) deposited on Si (100) substrates were investigated by magnetometry and ferromagnetic resonance measurements. Exchange bias effect and magnetic spring behavior have been studied by changing the IrMn thickness. As shown by X-ray diffraction, Ta and Cu seed layers provoke different degrees of (111) fcc-texture that directly affect the exchange bias and indirectly modify the exchange spring coupling behavior. Increasing the IrMn thickness, it was observed that the coupling angle between the Co and NiFe ferromagnetic layers increases for the Cu seed system, but it reduces for the Ta case. The results were explained considering (i) different anisotropies of the Co and IrMn layers induced by the different degree of the (111) texture and (ii) the distinct exchange bias set at the NiFe/IrMn and IrMn/Co interfaces in both systems. The NiFe and Co interlayer coupling angle is strongly correlated with both exchange bias and exchange magnetic spring phenomena. It was also shown that the highest exchange bias field occurs when an unstressed L1{sub 2} IrMn structure is stabilized.

  19. Transition between onion states and vortex states in exchange-coupled Ni-Fe/Mn-Ir asymmetric ring dots

    NASA Astrophysics Data System (ADS)

    Sasaki, Isao; Nakatani, Ryoichi; Endo, Yasushi; Kawamura, Yoshio; Yamamoto, Masahiko; Takenaga, Takashi; Aya, Sunao; Kuroiwa, Takeharu; Beysen, Sadeh; Kobayashi, Hiroshi

    2006-04-01

    The transition between onion states and vortex states in exchange-coupled Ni-Fe/Mn-Ir asymmetric ring dots has been investigated. A direction of domain wall motion, during the transition from the single-domain state to the vortex state via the onion state, depends on a sweep direction of an external field. This dependence fixes the directions of vortical magnetizations in the vortex states. The derivative of the amount of the domain wall motion with respect to the external field depends on the sweep direction of external field, and thus the hysteresis loop becomes asymmetric.

  20. Processing, Microstructure and Mechanical Properties of the CrMnFeCoNi High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Gludovatz, Bernd; George, Easo P.; Ritchie, Robert O.

    2015-08-01

    Equiatomic multi-component alloys, referred to variously as high-entropy alloys, multi-component alloys, or compositionally complex alloys in the literature, have recently received significant attention in the materials science community. Some of these alloys can display a good combination of mechanical properties. Here, we review recent work on the processing, microstructure and mechanical properties of one of the first and most studied high-entropy alloys, namely the single-phase, face-centered cubic alloy CrMnFeCoNi, with emphasis on its excellent damage tolerance (strength with toughness) in the temperature range from room temperature down to liquid nitrogen temperature.

  1. Mn2FeWO6 : A new Ni3TeO6-type polar and magnetic oxide.

    PubMed

    Li, Man-Rong; Croft, Mark; Stephens, Peter W; Ye, Meng; Vanderbilt, David; Retuerto, Maria; Deng, Zheng; Grams, Christoph P; Hemberger, Joachim; Hadermann, Joke; Li, Wen-Min; Jin, Chang-Qing; Saouma, Felix O; Jang, Joon I; Akamatsu, Hirofumi; Gopalan, Venkatraman; Walker, David; Greenblatt, Martha

    2015-04-01

    Mn(2+)2 Fe(2+)W(6+)O6 , a new polar magnetic phase, adopts the corundum-derived Ni3TeO6 -type structure with large spontaneous polarization (PS) of 67.8 μC cm(-2), complex antiferromagnetic order below ≈75 K, and field-induced first-order transition to a ferrimagnetic phase below ≈30 K. First-principles calculations predict a ferrimagnetic (udu) ground state, optimal switching path along the c-axis, and transition to a lower energy udu-udd magnetic double cell. PMID:25677612

  2. Serration Behavior and Pop-in Phenomena in AlxCrCuFeMnNi High Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Diao, Haoyan; Xie, Xie; Chen, Shuying; Wang, Gongyao; Yang, Fuqian; Dahmen, Karin; Liaw, Peter

    2015-03-01

    Recently, high-entropy alloys (HEAs), based on achieving a high configuration entropy of mixing among alloying elements, have been developed. Many of these alloys contain expensive elements, such as Co. Substituting these elements for less expensive elements, such as Mn, without compromising the mechanical performance is crucial to make HEAs commercially viable. The AlxCrCuFeMnNi (x = 0.1, 0.3, and 0.8) system is one such alloy that displays encouraging mechanical results in both compression and nanoindentation experiments. Discrete, jerky stress-drop bursts (serrations) are even found at room temperature. The mean-field-interaction model predicts the scaling behavior of the distribution, D(S), of avalanche sizes in the experiments. D(S) follows a power law multiplied by an exponentially-decaying scaling function. The size of the largest observed avalanche depends on experimental parameters, such as aluminum content, strain rate, or temperature. In nanoindentation, a strain burst is manifested by a sudden displacement excursion or `pop-in', following the initial elastic Hertzian contact. The pop-in phenomena becomes more frequent and regular, as the indentation load is greater than 35 mN. A quantitative theory for the serration behavior and pop-in phenomena is a critical issue for understanding the deformation characteristics of HEAs. This work was supported by the Department of Energy No. DE-FE-0008855 and DE-FE-0011194.

  3. Nanostructure evolution under irradiation in FeMnNi alloys: A "grey alloy" object kinetic Monte Carlo model

    NASA Astrophysics Data System (ADS)

    Chiapetto, M.; Malerba, L.; Becquart, C. S.

    2015-07-01

    This work extends the object kinetic Monte Carlo model for neutron irradiation-induced nanostructure evolution in Fe-C binary alloys developed in [1], introducing the effects of substitutional solutes like Mn and Ni. The objective is to develop a model able to describe the nanostructural evolution of both vacancy and self-interstitial atom (SIA) defect cluster populations in Fe(C)MnNi neutron-irradiated model alloys at the operational temperature of light water reactors (∼300 °C), by simulating specific reference irradiation experiments. To do this, the effects of the substitutional solutes of interest are introduced, under simplifying assumptions, using a "grey alloy" scheme. Mn and Ni solute atoms are not explicitly introduced in the model, which therefore cannot describe their redistribution under irradiation, but their effect is introduced by modifying the parameters that govern the mobility of both SIA and vacancy clusters. In particular, the reduction of the mobility of point-defect clusters as a consequence of the presence of solutes proved to be key to explain the experimentally observed disappearance of detectable defect clusters with increasing solute content. Solute concentration is explicitly taken into account in the model as a variable determining the slowing down of self-interstitial clusters; small vacancy clusters, on the other hand, are assumed to be significantly slowed down by the presence of solutes, while for clusters bigger than 10 vacancies their complete immobility is postulated. The model, which is fully based on physical considerations and only uses a few parameters for calibration, is found to be capable of reproducing the experimental trends in terms of density and size distribution of the irradiation-induced defect populations with dose, as compared to the reference experiment, thereby providing insight into the physical mechanisms that influence the nanostructural evolution undergone by this material during irradiation.

  4. Structural, Magnetic, and Optical Properties of A3V4(PO4)6 (A = Mg, Mn, Fe, Co, Ni).

    PubMed

    Porter, Spencer H; Xiong, Jie; Avdeev, Maxim; Merz, David; Woodward, Patrick M; Huang, Zhenguo

    2016-06-20

    Combined synchrotron and neutron powder diffraction indicates that A3V4(PO4)6 (A = Mg, Mn, Fe, Co, Ni) compounds crystallize with triclinic P1̅ symmetry. Lattice parameters expand as expected with successive increases in the ionic radius of the A(2+) ion. Cation disorder on the octahedral sites increases as the ionic radii of A(2+) ion decreases. Direct-current magnetic susceptibility measurements indicate that all compounds with magnetic A(2+) ions order anti-ferromagnetically with transition temperatures ranging from 12 to 15 K. Effective magnetic moments for A3V4(PO4)6 (A = Mg, Mn, Fe, Co, Ni) are 5.16, 11.04, 10.08, 9.76, and 7.96 μB per formula unit, respectively, in line with calculated values for high-spin transition metal ions. With the exception of Co3V4(PO4)6 the ultraviolet-visible spectra are dominated by d-d transitions of the V(3+) ions. The striking emerald green color of Co3V4(PO4)6 arises from the combined effects of d-d transitions involving both V(3+) and Co(2+). PMID:27227553

  5. Nano-twin Mediated Plasticity in Carbon-containing FeNiCoCrMn High Entropy Alloys

    SciTech Connect

    Wu, Zhenggang; Bei, Hongbin; Parish, Chad M

    2015-06-14

    Equiatomic FeNiCoCrMn alloy has been reported to exhibit promising strength and ductility at cryogenic temperature and deformation mediated by nano-twining appeared to be one of the main reasons. We use the FeNiCoCrMn alloy as a base alloy to seek further improvement of its mechanical properties by alloying additional elements, i.e., interstitial carbon. Moreover, the effects of carbon on microstructures, mechanical properties and twinning activities were investigated in two different temperatures (77 and 293 K). With addition of 0.5 at% C, the high entropy alloy still remains entirely single phase face-centered cubic (FCC) crystal structure. We found that these materials can be cold rolled and recrystallized to produce a microstructure with equiaxed grains. Both strain hardening rate and strength are enhanced while high uniform elongations to fracture (~70% at 77 K and ~40% at 293 K) are still maintained. The increased strain hardening and strength could be caused by the promptness of deformation twinning in C-containing high entropy alloys.

  6. Nano-twin Mediated Plasticity in Carbon-containing FeNiCoCrMn High Entropy Alloys

    DOE PAGESBeta

    Wu, Zhenggang; Bei, Hongbin; Parish, Chad M

    2015-06-14

    Equiatomic FeNiCoCrMn alloy has been reported to exhibit promising strength and ductility at cryogenic temperature and deformation mediated by nano-twining appeared to be one of the main reasons. We use the FeNiCoCrMn alloy as a base alloy to seek further improvement of its mechanical properties by alloying additional elements, i.e., interstitial carbon. Moreover, the effects of carbon on microstructures, mechanical properties and twinning activities were investigated in two different temperatures (77 and 293 K). With addition of 0.5 at% C, the high entropy alloy still remains entirely single phase face-centered cubic (FCC) crystal structure. We found that these materials canmore » be cold rolled and recrystallized to produce a microstructure with equiaxed grains. Both strain hardening rate and strength are enhanced while high uniform elongations to fracture (~70% at 77 K and ~40% at 293 K) are still maintained. The increased strain hardening and strength could be caused by the promptness of deformation twinning in C-containing high entropy alloys.« less

  7. Large enhancement of Blocking temperature by control of interfacial structures in Pt/NiFe/IrMn/MgO/Pt multilayers

    SciTech Connect

    Chen, Xi; Wang, Shouguo Han, Gang; Jiang, Shaolong; Yang, Kang; Liu, Qianqian; Yu, Guanghua; Liu, Jialong; Wang, Rongming

    2015-09-15

    The Blocking temperature (T{sub B}) of Pt/NiFe/IrMn/MgO/Pt multilayers was greatly enhanced from far below room temperature (RT) to above RT by inserting 1 nm thick Mg layer at IrMn/MgO interface. Furthermore, the exchange bias field (H{sub eb}) was increased as well by the control of interfacial structures. The evidence for a significant fraction of Mn-O bonding at IrMn/MgO interface without Mg insertion layer was provided by X-ray photoelectron spectroscopy. The bonding between Mn and O can decrease the antiferromagnetism of IrMn film, leading to lower value of T{sub B} in Pt/NiFe/IrMn/MgO/Pt multilayers. Ultrathin Mg film inserted at IrMn/MgO interface acting as an oxygen sinking layer can suppress the oxidation reactions between Mn and O and reduce the formation of Mn-O bonding greatly. The oxidation suppression results in the recovery of the antiferromagnetism of IrMn film, which can enhance T{sub B} and H{sub eb}. Furthermore, the high resolution transmission electron microscopy demonstrates that the Mg insertion layer can efficiently promote a high-quality MgO (200) texture. This study will enhance the understanding of physics in antiferromagnet-based spintronic devices.

  8. Large enhancement of Blocking temperature by control of interfacial structures in Pt/NiFe/IrMn/MgO/Pt multilayers

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Wang, Shouguo; Han, Gang; Jiang, Shaolong; Yang, Kang; Liu, Qianqian; Liu, Jialong; Wang, Rongming; Yu, Guanghua

    2015-09-01

    The Blocking temperature (TB) of Pt/NiFe/IrMn/MgO/Pt multilayers was greatly enhanced from far below room temperature (RT) to above RT by inserting 1 nm thick Mg layer at IrMn/MgO interface. Furthermore, the exchange bias field (Heb) was increased as well by the control of interfacial structures. The evidence for a significant fraction of Mn-O bonding at IrMn/MgO interface without Mg insertion layer was provided by X-ray photoelectron spectroscopy. The bonding between Mn and O can decrease the antiferromagnetism of IrMn film, leading to lower value of TB in Pt/NiFe/IrMn/MgO/Pt multilayers. Ultrathin Mg film inserted at IrMn/MgO interface acting as an oxygen sinking layer can suppress the oxidation reactions between Mn and O and reduce the formation of Mn-O bonding greatly. The oxidation suppression results in the recovery of the antiferromagnetism of IrMn film, which can enhance TB and Heb. Furthermore, the high resolution transmission electron microscopy demonstrates that the Mg insertion layer can efficiently promote a high-quality MgO (200) texture. This study will enhance the understanding of physics in antiferromagnet-based spintronic devices.

  9. Effect of Pre-straining on the Shape Recovery of Fe-Mn-Si-Cr-Ni Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Maji, Bikas C.; Krishnan, Madangopal; Verma, Amit; Basu, R.; Samajdar, I.; Ray, Ranjit K.

    2015-02-01

    The effect of pre-straining on the shape recovery behavior of Fe-14Mn-6Si-9Cr-5Ni (wt pct) shape memory alloy (SMA) has been studied. The shape recovery associated with the reverse ɛ martensitic transformation, i.e., ɛ → γ, was characterized by dilatometry using specimens which were pre-strained to different extent (0 to 14 pct). Dilatometric studies revealed that in Fe-Mn-Si-Cr-Ni SMA, the shape recovery takes place in two stages: (i) in the first stage, the unpinned fraction of stress-induced ɛ martensite reverts back to parent phase γ in the temperature regime of 353 K to 653 K (80 °C to 380 °C) and (ii) in the second stage the remaining "pinned" ɛ martensite is unpinned by the decomposition of deformation-induced α' martensite in the temperature range of 743 K to 893 K (470 °C to 620 °C). The amount of recovery in the first stage decreases with pre-strain, whereas it increases in the second stage. The ɛ → γ transformation finish temperature, A f, increases with increase in pre-strain amount, though the reverse transformation start temperature, A S, remains unaffected. Microstructural characterization revealed that the amount of deformation-induced α' martensite depends on the mode of straining and the crystallographic texture of the starting material. The reversion of α' martensite is seen to occur by the precipitation of Fe5Ni3Si2-type intermetallic π-phase within these plates.

  10. The embrittlement and de-embrittlement of grain boundaries in an Fe-Mn-Ni alloy due to grain boundary segregation of Mn

    SciTech Connect

    Heo, N.H.; Lee, H.C.

    1996-04-01

    A ductile-brittle-ductile (DBD) transition behavior in an age-hardenable Fe-8Mn-7Ni alloy has been analyzed in light of segregation and desegregation of alloying elements at prior austenite grain boundaries. The DBD transition in the alloy can be distinguished by two C-type curves: one corresponding to the start of zero tensile elongation and the other to the finish. The activation energies for ductile-to-brittle and brittle-to-ductile transitions are in close agreement with that for age hardening. Manganese content at the prior austenite grain boundaries was analyzed by Auger electron spectroscopy, and intergranular fracture strength at the brittle fracture region showed inverse trends with Mn concentration at the grain boundaries. All these observations strongly suggest that manganese segregation and its desegregation are responsible for the DBD transition of this alloy.

  11. Effects of interactions between NiM (M = Mn, Fe, Co and Cu) bimetals with MgO (1 0 0) on the adsorption of CO2

    NASA Astrophysics Data System (ADS)

    Wang, Baojun; Yan, Ruixia; Liu, Hongyan

    2012-09-01

    A density-functional theory method has been conducted to investigate the interactions of NiM (M = Mn, Fe, Co and Cu) with MgO (1 0 0) as well as the effects of interactions on the adsorption of CO2. The binding energies of NiM on MgO and the adsorption energies of CO2 on NiM/MgO have been calculated, and the results show that the defective NiM/MgO catalysts exhibit stronger metal-support interaction (MSI) than the perfect NiM/MgO catalysts do, leading to weaker adsorption ability to CO2, except NiMn/MgO system. However, for the catalysts with the same MgO surface and different bimetals, the stronger the MSI is, the stronger adsorption ability of the substrate to CO2 is, except NiCu/MgO system.

  12. Site preferences and effects of X (X = Mn, Fe, Co, Cu) on the properties of NiAl: A first-principles study

    NASA Astrophysics Data System (ADS)

    Li, Hongshan; Cao, Yong; Zhou, Shenggang; Zhu, Peixian; Zhu, Jingchuan

    2016-03-01

    The site preference of X (X = Mn, Fe, Co, Cu) in NiAl and its effects on structural, electronic and elastic properties were investigated by performing first-principles calculations using density functional theory (DFT). Formation enthalpy calculations show that adding X increases the formation enthalpy of NiAl, indicating that X addition reduces the stability of system. The site preference was investigated by calculating the transfer energy of NiAl alloys with X. The results further exhibit that Mn, Fe and Cu show no site preference, but Co tends to occupy Ni site. By analyzing electronic density of states, Mulliken population, overlap population and valence charge density, the electronic property and bond characters were discussed. The elastic property calculation shows that only substitution of Ni by Cu increased the plasticity of alloy, while in the other cases the plasticity was decreased.

  13. Magnetic properties of Mg12O12 nanocage doped with transition metal atoms (Mn, Fe, Co and Ni): DFT study

    NASA Astrophysics Data System (ADS)

    Javan, Masoud Bezi

    2015-07-01

    Binding energy of the Mg12O12 nanocage doped with transition metals (TM=Mn, Fe, Co and Ni) in endohedrally, exohedrally and substitutionally forms were studied using density functional theory with the generalized gradient approximation exchange-correlation functional along 6 different paths inside and outside of the Mg12O12 nanocage. The most stable structures were determined with full geometry optimization near the minimum of the binding energy curves of all the examined paths inside and outside of the Mg12O12 nanocage. The results reveal that for all stable structures, the Ni atom has a larger binding energy than the other TM atoms. It is also found that for all complexes additional peaks contributed by TM-3d, 4s and 4p states appear in the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) gap of the host MgO cluster. The mid-gap states are mainly due to the hybridization between TM-3d, 4s and 4p orbitals and the cage π orbitals. The magnetic moment of the endohedrally doped TM atoms in the Mg12O12 are preserved to some extent due to the interaction between the TM and Mg12O12 nanocage, in contrast to the completely quenched magnetic moment of the Fe and Ni atoms in the Mg11(TM)O12 complexes. Furthermore, charge population analysis shows that charge transfer occurs from TM atom to the cage for endohedrally and substitutionally doping.

  14. Coexistance of magnetoelectric effect and exchange bias in Ni50.3Mn36.9Sb12.8/BiFeO3 heterostructure thin film

    NASA Astrophysics Data System (ADS)

    Barman, Rahul; Kaur, Davinder

    2016-05-01

    In the present study structural, magnetic and ferroelectric properties of Ni50.3Mn36.9Sb12.8/BiFeO3 heterostructure thin film, grown on LaNiO3 coated Si (100) substrate has been systematically investigated. Ni50.3Mn36.9Sb12.8 film exhibits L21 structure with preferred (220) orientation. The bottom LaNiO3 layer was implemented to favor the growth of pervoskite BiFeO3 film with (l00) orientation. The shift in hysteresis loop up to 34 Oe from the origin was observed at 300 K which is mainly due to the coupling of FM-AFM spins at the interface. Besides the exchange bias effect, large coupling between ferromagnetic and ferroelectric order parameters was also found with maximum coupling sensitivity of 7.58 V/cm-Oe at 300K in Ni50.3Mn36.9Sb12.8/BiFeO3 heterostructure thin film. The observed magneto-electric effect in this heterostructure is due to the transfer of strain from ferromagnetic shape memory alloy Ni50.3Mn36.9Sb12.8 layer to multiferroic BiFeO3 layer in the presence of magnetic field. Hence, coexistence of magneto-electric coupling and exchange bias in Ni50.3Mn36.9Sb12.8/BiFeO3 heterostructure make them a promising candidate for various multifunctional MEMS devices.

  15. Weathering and precipitation after meteorite impact of Ni, Cr, Fe, Ca and Mn in K-T boundary clays from Stevns Klint

    NASA Astrophysics Data System (ADS)

    Miyano, Yumiko; Yoshiasa, Akira; Tobase, Tsubasa; Isobe, Hiroshi; Hongu, Hidetomo; Okube, Maki; Nakatsuka, Akihiko; Sugiyama, Kazumasa

    2016-05-01

    Ni, Cr, Fe, Ca and Mn K-edge XANES and EXAFS spectra were measured on K-T boundary clays from Stevns Klint in Denmark. According to XANES spectra and EXAFS analyses, the local structures of Ni, Cr and Fe in K-T boundary clays is similar to Ni(OH)2, Cr2O3 and FeOOH, respectively. It is assumed that the Ni, Cr and Fe elements in impact related glasses is changing into stable hydrate and oxide by the weathering and diagenesis at the surface of the Earth. Ca in K-T boundary clays maintains the diopside-like structure. Local structure of Ca in K-T clays seems to keep information on the condition at meteorite impact. Mn has a local structure like MnCO3 with divalent state. It is assumed that the origin on low abundant of Mn in the Fe-group element in K-T clays was the consumption by life activity and the diffusion to other parts.

  16. Anomalous magnetotransport behavior in Fe-doped MnNiGe alloys

    NASA Astrophysics Data System (ADS)

    Dutta, P.; Pramanick, S.; Singh, Vijay; Major, Dan Thomas; Das, D.; Chatterjee, S.

    2016-04-01

    The electrical dc transport properties of hexagonal magnetic equiatomic alloys of nominal composition Mn1 -xFexNiGe (x =0.2 and0.25 ) have been investigated experimentally as well as theoretically using first-principles electronic structure calculations. Thermal hysteresis in the magnetization data indicates that the alloys undergo a first-order martensitic transition. Both the alloys show unusual nonmetallic resistivity behavior and a noticeable amount of training effect in resistivity when thermally cycled through the first-order martensitic transition. We observe moderate negative magnetoresistance (˜-11.5 % for 150 kOe) at 5 K (well below the martensitic transition temperature) associated with clear virgin line effect for both the alloys. We have adapted different flavors of density functional theory approach to understand the experimentally observed nonmetallic transport behavior.

  17. Atomic kinetic Monte Carlo model based on ab initio data: Simulation of microstructural evolution under irradiation of dilute Fe CuNiMnSi alloys

    NASA Astrophysics Data System (ADS)

    Vincent, E.; Becquart, C. S.; Domain, C.

    2007-02-01

    The embrittlement of pressure vessel steels under radiation has been long ago correlated with the presence of Cu solutes. Other solutes such as Ni, Mn and Si are now suspected to contribute also to the embrittlement. The interactions of these solutes with radiation induced point defects thus need to be characterized properly in order to understand the elementary mechanisms behind the formation of the clusters formed upon radiation. Ab initio calculations based on the density functional theory have been performed to determine the interactions of point defects with solute atoms in dilute FeX alloys (X = Cu, Mn, Ni or Si) in order to build a database used to parameterise an atomic kinetic Monte Carlo model. Some results of irradiation damage in dilute Fe-CuNiMnSi alloys obtained with this model are presented.

  18. Electronic structures of the ferrimagnetic double-perovskites Sr2XReO6 (X = Cr, Mn, Fe, Ni) with the modified Becke-Johnson potential

    NASA Astrophysics Data System (ADS)

    Guo, San-Dong

    2015-04-01

    We investigate the electronic structures and magnetic properties of the ferrimagnetic double-perovskites Sr2XReO6 (X = Cr, Mn, Fe, Ni) by using Tran and Blaha's modified Becke and Johnson exchange potential. The calculated results show that Sr2XReO6 (X = Cr, Fe) are half-metals, and Sr2XReO6 (X = Mn, Ni) are insulators, which is in accordance with the experimental results. By using the ionic picture, we explain the trend in the density of states and total magnetic moment with X changing from Cr to Ni. We find that the insulating property is associated with X2 +, while the metallic character is associated with X3 +. The Re t2g splitting in the minority channel leads to insulativity of Sr2XReO6 (X = Mn, Ni), and the Re t2g splitting of Sr2MnReO6 is caused by lattice distortion, while Sr2NiReO6's splitting is due to the heavier atomic mass of Ni. When spin-orbit coupling is included, the spin polarization of Sr2XReO6 (X = Cr, Fe) drifts off 100%, and the related gaps of Sr2XReO6 (X = Mn, Ni) become narrow. The spin-orbit coupling results in a significant increase in the total magnetic moment due to an unquenched Re orbital moment. Our calculated energy band structures show that Sr2MnReO6 is a spin gapless semiconductor, which can realize fully polarized spin-down electrons and spin-up holes.

  19. Single crystal growth and structural characterization of ternary transition-metal uranium oxides: MnUO4, FeUO4, and NiU2O6

    NASA Astrophysics Data System (ADS)

    Read, Cory M.; Smith, Mark D.; zur Loye, Hans-Conrad

    2014-11-01

    Single crystals of MnUO4, FeUO4, and NiU2O6 were grown for the first time. The use of chloride fluxes facilitated the crystal growth. MnUO4, a hexavalent uranium compound, crystallizes in the orthorhombic space group, Imma, with a = 6.6421(19) Å, b = 6.978(2) Å, and c = 6.748(2) Å, and exhibits typical uranyl, UO22+, coordination. FeUO4 and NiU2O6 contain pentavalent uranium and are structurally related, exhibiting three-dimensional connectivity. FeUO4 crystallizes in the orthorhombic space group, Pbcn, with a = 4.8844(2) Å, b = 11.9328(5) Å, c = 5.1070(2) Å. NiU2O6 crystallizes in the trigonal space group, P321, with a = 9.0148(3) Å, c = 5.0144(3) Å.

  20. Study of certain features of the electronic structure of the ternary alloys Ni2(Mn, Fe) and Ni3(Mn, Co)

    NASA Technical Reports Server (NTRS)

    Zhukova, V. M.; Fadin, V. P.

    1981-01-01

    The changes in electronic structure related to transport processes occurring during the alloying of he alloy Ni3Mn with iron and cobalt, and the ordering of the ternary alloys thus formed are presented. The Hall effect, the absolute thermal emf, the internal saturation induction, the Nernst-Ettingshausen constant, and the electrical resistivity were measured. Results show a decrease in the contribution of hole sections of the Fermi surface to the transport process occurs together with a considerable increase in the contribution of electron sections. In this case, the mobility of 3 dimensional holes decreases and the mobility of 4s electrons increases considerably.

  1. First-principles study on the magnetism and electronic structure in 3d transition metal (X=Sc, V, Cr, Mn, Fe, Ni, Cu) doped CoO

    NASA Astrophysics Data System (ADS)

    Liu, R. X.; Wang, X. C.; Chen, G. F.; Yang, B. H.

    2016-03-01

    We have studied the electronic structure and magnetism of the single transitional metal element X=Sc, V, Cr, Mn, Fe, Ni, Cu-doped CoO systems by first-principles calculations. At X=Sc, Cr, Cu, the binding energy of the doped systems is lower than pure CoO, suggesting that these systems are energetically stable. In the Sc, V, Cr, Mn, Fe, Ni, Cu-doped 2×2×2 CoO supercells, the total magnetic moments are 3.03, 5.64, 6.80, 7.70, 6.93, 2.30 and 1.96 μB, respectively. At X=Cr and Fe, the doped CoO systems are half-metallic with a high spin polarization. The large magnetic moment and high spin polarization in the Cr and Fe-doped CoO are important for the design of the spintronic devices.

  2. Multiferroic approach for Cr,Mn,Fe,Co,Ni,Cu substituted BaTiO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Verma, Kuldeep Chand; Kotnala, R. K.

    2016-05-01

    Multiferroic magnetoelectric (ME) at room temperature is significant for new design nano-scale spintronic devices. We have given a comparative study to report multiferroicity in BaTM0.01Ti0.99O3 [TM = Cr,Mn,Fe,Co,Ni,Cu (1 mol% each) substituted BaTiO3 (BTO)] nanoparticles. The TM ions influenced both nano-size and lattice distortion of Ti–O6 octahedra to the BTO. X ray diffraction study indicates that the dopant TM could influence lattice constants, distortion, tetragonal splitting of diffraction peaks (002/200) as well as peak shifting of diffraction angle in the BTO lattice. This can induce lattice strain which responsible to oxygen defects formation to mediate ferromagnetism. Also, the lattice strain effect could responsible to reduce the depolarization field of ferroelectricity and provide piezoelectric and magnetostrictive strains to enhance ME coupling. The size of BTO nanoparticles is varied in 13–51 nm with TM doping. The room temperature magnetic measurement indicates antiferromagnetic exchange interactions in BTO lattice with TM ions. The zero-field cooling and field cooling magnetic measurement at 500 Oe indicates antiferromagnetic to ferromagnetic transition. It also confirms that the substitution of Cr, Fe and Co into BTO could induce strong antiferromagnetic behavior. However, the substitutions of Mn, Ni and Cu have weak antiferromagnetic character. The temperature dependent dielectric measurements indicates polarization enhancement that influenced with both nano-size as well TM ions and exhibits ferroelectric phase transition with relaxor-like characteristics. Dynamic ME coupling is investigated, and the longitudinal ME voltage coefficient, α ME is equivalent to linear ME coupling coefficient, α (={\\varepsilon }{{o}}{\\varepsilon }{{r}}{α }{{ME}}) is also calculated.

  3. Microstructures and mechanical properties of compositionally complex Co-free FeNiMnCr18 FCC solid solution alloy

    SciTech Connect

    Wu, Z.; Bei, H.

    2015-07-01

    Recently, a structurally-simple but compositionally-complex FeNiCoMnCr high entropy alloy was found to have excellent mechanical properties (e.g., high strength and ductility). To understand the potential of using high entropy alloys as structural materials for advanced nuclear reactor and power plants, it is necessary to have a thorough understanding of their structural stability and mechanical properties degradation under neutron irradiation. Furthermore, this requires us to develop a similar model alloy without Co because material with Co will make post-neutron-irradiation testing difficult due to the production of the 60Co radioisotope. In order to achieve this goal, a FCC-structured single-phase alloy with a composition of FeNiMnCr18 was successfully developed. This near-equiatomic FeNiMnCr18 alloy has good malleability and its microstructure can be controlled by thermomechanical processing. By rolling and annealing, the as-cast elongated-grained-microstructure is replaced by homogeneous equiaxed grains. The mechanical properties (e.g., strength and ductility) of the FeNiMnCr18 alloy are comparable to those of the equiatomic FeNiCoMnCr high entropy alloy. Both strength and ductility increase with decreasing deformation temperature, with the largest difference occurring between 293 and 77 K. Extensive twin-bands which are bundles of numerous individual twins are observed when it is tensile-fractured at 77 K. No twin bands are detected by EBSD for materials deformed at 293 K and higher. Ultimately the unusual temperature-dependencies of UTS and uniform elongation could be caused by the development of the dense twin substructure, twin-dislocation interactions and the interactions between primary and secondary twinning systems which result in a microstructure refinement and hence cause enhanced strain hardening and postponed necking.

  4. Thermodynamic Stability of Transition-Metal-Substituted LiMn2-x Mx O4 (M=Cr, Fe, Co, and Ni) Spinels.

    PubMed

    Lai, Chenying; Chen, Jiewei; Knight, James C; Manthiram, Arumugam; Navrotsky, Alexandra

    2016-07-01

    The formation enthalpies from binary oxides of LiMn2 O4 , LiMn2-x Crx O4 (x=0.25, 0.5, 0.75 and 1), LiMn2-x Fex O4 (x=0.25 and 0.5), LiMn2-x Cox O4 (x=0.25, 0.5, and 0.75) and LiMn1.75 Ni0.25 O4 at 25 °C were measured by high temperature oxide melt solution calorimetry and were found to be strongly exothermic. Increasing the Cr, Co, and Ni content leads to more thermodynamically stable spinels, but increasing the Fe content does not significantly affect the stability. The formation enthalpies from oxides of the fully substituted spinels, LiMnMO4 (M=Cr, Fe and Co), become more exothermic (implying increasing stability) with decreasing ionic radius of the metal and lattice parameters of the spinel. The trend in enthalpy versus metal content is roughly linear, suggesting a close-to-zero heat of mixing in LiMn2 O4 -LiMnMO4 solid solutions. These data confirm that transition-metal doping is beneficial for stabilizing these potential cathode materials for lithium-ion batteries. PMID:27017448

  5. Formation and evolution of MnNi clusters in neutron irradiated dilute Fe alloys modelled by a first principle-based AKMC method

    NASA Astrophysics Data System (ADS)

    Ngayam-Happy, R.; Becquart, C. S.; Domain, C.; Malerba, L.

    2012-07-01

    An atomistic Monte Carlo model parameterised on electronic structure calculations data has been used to study the formation and evolution under irradiation of solute clusters in Fe-MnNi ternary and Fe-CuMnNi quaternary alloys. Two populations of solute rich clusters have been observed, which can be discriminated by whether or not the solute atoms are associated with self-interstitial clusters. Mn-Ni-rich clusters are observed at a very early stage of the irradiation in both modelled alloys, whereas the quaternary alloys contain also Cu-containing clusters. Mn-Ni-rich clusters nucleate very early via a self-interstitial-driven mechanism, earlier than Cu-rich clusters; the latter, however, which are likely to form via a vacancy-driven mechanism, grow in number much faster than the former, helped by the thermodynamic driving force to Cu precipitation in Fe, thereby becoming dominant in the low dose regime. The kinetics of the number density increase of the two populations is thus significantly different. Finally the main conclusion suggested by this work is that the so-called late blooming phases might as well be neither late, nor phases.

  6. Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation

    DOE PAGESBeta

    Leonard, Keith J.; Bei, Hongbin; Zinkle, Steven J.; Kiran Kumar, N. A. P.; Li, C.

    2016-05-13

    In recent years, high entropy alloys (HEAs) have attracted significant attention due to their excellent mechanical properties and good corrosion resistance, making them potential candidates for high temperature fission and fusion structural applications. However there is very little known about their radiation resistance, particularly at elevated temperatures relevant for energy applications. In the present study, a single phase (face centered cubic) concentrated solid solution alloy of composition 27%Fe-28%Ni-27%Mn-18%Cr was irradiated with 3 or 5.8 MeV Ni ions at temperatures ranging from room temperature to 700 °C and midrange doses from 0.03 to 10 displacements per atom (dpa). Transmission electron microscopymore » (TEM), scanning transmission electron microscopy with energy dispersive x-ray spectrometry (STEM/EDS) and X-ray diffraction (XRD) were used to characterize the radiation defects and microstructural changes. Irradiation at higher temperatures showed evidence of relatively sluggish solute diffusion with limited solute depletion or enrichment at grain boundaries. The main microstructural feature at all temperatures was high-density small dislocation loops. Voids were not observed at any irradiation condition. Nano-indentation tests on specimens irradiated at room temperature showed a rapid increase in hardness ~35% and ~80% higher than the unirradiated value at 0.03 and 0.3 dpa midrange doses, respectively. The irradiation-induced hardening was less pronounced for 500 °C irradiations (<20% increase after 3 dpa). Overall, the examined HEA material exhibits superior radiation resistance compared to conventional single phase Fe-Cr-Ni austenitic alloys such as stainless steels. Furthermore, the present study provides insight on the fundamental irradiation behavior of a single phase HEA material over a broad range of irradiation temperatures.« less

  7. Size-dependent magnetic properties of 100-500 nm diameter IrMn/NiFe disks made by a two-step deposition process

    NASA Astrophysics Data System (ADS)

    Liu, F.; Ross, C. A.

    2014-11-01

    A two-step etching and deposition process is presented for making nanoscale exchange-biased NiFe/IrMn disks, and their magnetic properties are described as a function of diameter and thickness. The exchange bias in nanodots with diameters of 100-500 nm was reduced and the coercivity enhanced compared to the continuous film. Etching of the NiFe film prior to depositing the IrMn lowered the exchange bias; and the exchange bias also decreased as dot diameter decreased. The results are interpreted in terms of the relation between dot size and the antiferromagnetic domain size in the IrMn. The two-step process will be useful in introducing exchange bias at local regions of a ferromagnetic film.

  8. Phase transformation controlled tetragonality of MnNi-based nanocrystals

    NASA Astrophysics Data System (ADS)

    Shen, Jian; Dai, Qilin; Ren, Shenqiang

    2016-03-01

    The phase transformation controlled tetragonality of MnNi nanostructures has attracted wide interest for their shape memory effect. In this study, MnNi nanocrystals were selected to epitaxially grow an FeCo shell, where the antiferromagnetic L10 phase transformation of the MnNi core triggers the tetragonal distortion in the magnetically soft FeCo shell. The tetragonality change of L10 MnNi under thermal annealing enables the control of the tetragonality of the FeCo phase, ultimately increasing magnetocrystalline anisotropy and coercivity. This study opens up a new route to fabricate functional nanostructures with unique magnetic properties.

  9. Fatigue Crack Propagation in Intercritically Tempered Fe-9Ni-0.1C and Fe-4Mn-0.15C

    NASA Astrophysics Data System (ADS)

    Choi, H. J.; Schwartz, L. H.

    1983-06-01

    Fatigue crack propagation was studied for two intercritically tempered cryogenic steels, Fe-9Ni-0.1C and Fe-4Mn-0.15C, at both intermediate (stage II) and low (stage I, near threshold) stress intensity ranges. Propagation rates were determined for varying intercritical tempering times corresponding to varying amounts of retained austenite and untempered martensite. The results show that the heat treatments that optimize impact fracture properties in the nickel steel are also beneficial with respect to the fatigue crack propagation rate in stage I, while no beneficial effect beyond that attributable to carbon redistribution was observed for stage II. For the manganese steel, heat treatments leading to increased concentrations of retained austenite also increased the threshold stress even though no improvement in fracture toughness was observed. To clarify the origin of this improved behavior, the fracture surface was analyzed by Mössbauer Spectroscopy and Auger Electron Microprobe. The Mössbauer results indicated that the retained austenite in the crack path is transformed to martensite as was earlier shown in this laboratory for Charpy specimens. Auger composition analysis suggested a tendency for a stage I crack tip to avoid the mechanically induced brittle untempered martensite in the Fe-Mn steel, while no such preference was observed for stage II.

  10. Experimental investigation of off-stoichiometry and 3d transition metal (Mn, Ni, Cu)-substitution in single-crystalline FePt thin films

    NASA Astrophysics Data System (ADS)

    Ono, Takuya; Nakata, Hitoshi; Moriya, Tomohiro; Kikuchi, Nobuaki; Okamoto, Satoshi; Kitakami, Osamu; Shimatsu, Takehito

    2016-05-01

    In L10 (fct)-FePt thin films, both tuning Fe and Pt concentrations and substitution with third-metal were studied for magnetic characteristic optimization. We investigated single-crystalline FePt-X (X = Mn, Ni, Cu) thin films grown epitaxially on MgO(001) substrates at a substrate temperature of 350 °C by changing Fe, Pt, and X contents, and explored the effects of off-stoichiometry and 3d-metal-substitution. The magnetic moment per atom (m) of FePt-X films as a function of the effective number of valence electrons (neff) in 3d metal sites follows the Slater-Pauling-type trend, by which m decreases by the neff deviation from neff = 8, independently of the X metal and the Pt concentration. The magnetic anisotropy (Ku) exhibits neff dependence similar to m. This trend was almost independent of the Pt concentration after compensation using the theoretical prediction on the relation between Ku and Fe/Pt concentrations. Such a trend has been proved for stoichiometric FePt-X films, but it was clarified as robust against off-stoichiometry. The compensated Ku ( Ku comp ) of FePt-Mn and FePt-Cu followed a similar trend to that predicted by the rigid-band model, although the Ku comp of the FePt-Mn thin films dropped more rapidly than the rigid band calculation. However, it followed the recent first-principles calculation.

  11. Dye-Sensitized Cu2 XSnS4 (X=Zn, Ni, Fe, Co, and Mn) Nanofibers for Efficient Photocatalytic Hydrogen Evolution.

    PubMed

    Gonce, Mehmet Kerem; Aslan, Emre; Ozel, Faruk; Hatay Patir, Imren

    2016-03-21

    The photocatalytic hydrogen evolution activities of low-cost and noble-metal-free Cu2 XSnS4 (X=Zn, Ni, Fe, Co, and Mn) nanofiber catalysts have been investigated using triethanolamine as an electron donor and eosin Y as a photosensitizer under visible-light irradiation. The rates of hydrogen evolution by Cu2 XSnS4 (X=Zn, Ni, Fe, Co, and Mn) nanofibers have been compared with each other and with that of the noble metal Pt. The hydrogen evolution rates for the nanofibers change in the order Cu2 NiSnS4 >Cu2 FeSnS4 >Cu2 CoSnS4 >Cu2 ZnSnS4 >Cu2 MnSnS4 (2028, 1870, 1926, 1420, and 389 μmol g(-1)  h(-1) , respectively). The differences between the hydrogen evolution rates of the nanofibers could be attributed to their energy levels. Moreover, Cu2 NiSnS4 , Cu2 FeSnS4 , and Cu2 CoSnS4 nanofibers show higher and more stable photocatalytic hydrogen production rates than that of the noble metal Pt under long-term irradiation with visible light. PMID:26880355

  12. Exact ab initio transport coefficients in bcc Fe-X (X=Cr, Cu, Mn, Ni, P, Si) dilute alloys

    NASA Astrophysics Data System (ADS)

    Messina, Luca; Nastar, Maylise; Garnier, Thomas; Domain, Christophe; Olsson, Pär

    2014-09-01

    Defect-driven diffusion of impurities is the major phenomenon leading to formation of embrittling nanoscopic precipitates in irradiated reactor pressure vessel (RPV) steels. Diffusion depends strongly on the kinetic correlations that may lead to flux coupling between solute atoms and point defects. In this work, flux coupling phenomena such as solute drag by vacancies and radiation-induced segregation at defect sinks are systematically investigated for six bcc iron-based dilute binary alloys, containing Cr, Cu, Mn, Ni, P, and Si impurities, respectively. First, solute-vacancy interactions and migration energies are obtained by means of ab initio calculations; subsequently, self-consistent mean field theory is employed in order to determine the exact Onsager matrix of the alloys. This innovative multiscale approach provides a more complete treatment of the solute-defect interaction than previous multifrequency models. Solute drag is found to be a widespread phenomenon that occurs systematically in ferritic alloys and is enhanced at low temperatures (as for instance RPV operational temperature), as long as an attractive solute-vacancy interaction is present, and that the kinetic modeling of bcc alloys requires the extension of the interaction shell to the second-nearest neighbors. Drag occurs in all alloys except Fe(Cr); the transition from dragging to nondragging regime takes place for the other alloys around (Cu, Mn, Ni) or above (P, Si) the Curie temperature. As far as only the vacancy-mediated solute migration is concerned, Cr depletion at sinks is foreseen by the model, as opposed to the other impurities which are expected to enrich up to no less than 1000 K. The results of this study confirm the current interpretation of the hardening processes in ferritic-martensitic steels under irradiation.

  13. Electron microscopy investigation and electrochemical performance of carbon-coated LiFe0.7Mn0.2Ni0.1PO4 for lithium ion battery

    NASA Astrophysics Data System (ADS)

    Rohman, Fadli; Suwandi, Endang; Majid, Nurhalis; Subhan, Achmad

    2016-02-01

    The carbon-coated LiFe0.7Mn0.2Ni0.1PO4 was synthesized using solid state reaction method and sintering process. The carbon was coated on the surface of the LiFe0.7Mn0.2Ni0.1PO4 particle using citric acid as the carbon source. the crystal phase and diffraction peak of the particle was shown from X-Ray Diffraction characterization. The particle morphology and size distribution of this material was investigated using Scanning Electron Microscopy (SEM). The thickness of the carbon coating and the crystal lattice spacing was investigated using Transmission Electron Microscopy (TEM). The particle size, carbon coating thickness, and crystal lattice spacing were found to be 10 - 50 µm, 4 nm, and Å, respectively. The effect of the carbon layer on the surface of the LiFe0.7Mn0.2Ni0.1PO4 particle as a cathode material in lithium-ion battery exhibited in the electrochemical performance test as shown in cyclic voltammetry and charge-discharge measurement test. According to the cyclic voltammetry test, it was shown that the redox peaks of the carbon-coated LiFe0.7Mn0.2Ni0.1PO4 from Fe2+ to Fe3+ were at 3.579 V and 2.96 V, but there was lower peak at 3.52 V. This phenomenon indicated the presence of doped Mn and Ni. The specific capacity of carbon coated LiFe0.7Mn0.2Ni0.1PO4 was 49 mAh/g, which was higher than uncoated LiFe0.7Mn0.2Ni0.1PO4, 30 mAh/g. On the other hand, after 40 cycles the specific capacity of carbon-coated LiFe0.7Mn0.2Ni0.1PO4 was decreasing to 10%, while the specific capacity of uncoated LiFe0.7Mn0.2Ni0.1PO4 remained almost similar before and after 40 cycles. In term of columbic efficiency, carbon-coated LiFe0.7Mn0.2Ni0.1PO4 was more stable, better than uncoated LiFe0.7Mn0.2Ni0.1PO4. Moreover, all samples were in close proximity to 100% efficiency. The C-rates test result showed that the discharge C-rates ability of the carbon coated LiFe0.7Mn0.2Ni0.1PO4 had been better than uncoated LiFe0.7Mn0.2Ni0.1PO4. At 1.5 C rate, the capacity loss of carbon-coated LiFe0

  14. The first principle study of magnetic properties of Mn2WSn, Fe2YSn (Y=Ti, V), Co2YSn (Y=Ti, Zr, Hf, V, Mn) and Ni2YSn (Y=Ti, Zr, Hf, V, Mn) heusler alloys

    NASA Astrophysics Data System (ADS)

    Rauf, Sana; Arif, Suneela; Haneef, Muhammad; Amin, Bin

    2015-01-01

    The spin polarized electronic band structures, density of states (DOS) and magnetic properties of Mn2WSn, Fe2YSn (Y=Ti, V), Co2YSn (Y=Ti, Zr, Hf, V, Mn) and Ni2YSn (Y=Ti, Zr, Hf, V, Mn) huesler compounds are reported. The calculations are performed by using full-potential linearized augmented plane wave method (FP-LAPW) within density functional theory. The magnetic trend in these compounds is studied using values of magnetic moments, exchange interaction and calculated band gap. The results reveal that Mn2WSn and Ni2VSn show 100% spin polarization, Co2YSn (Y=Ti, Zr, Hf, Mn), Fe2YSn (Y=Ti, V), and Ni2MnSn exhibit metallic nature and Ni2YSn (Y=Ti, Zr, Hf) and Co2VSn show semi-conducting behavior.

  15. Enhancement of exchange bias and training effect in ion-beam sputtered Fe{sub 46}Mn{sub 54}/Ni{sub 81}Fe{sub 19} bilayers

    SciTech Connect

    Fulara, Himanshu; Chaudhary, Sujeet Kashyap, Subhash C.; Granville, Simon

    2014-01-28

    We present a remarkable enhancement by 300% of the exchange-bias field at room temperature, without affecting the coercivity value, via optimum magnetic annealing (250 °C/3 kOe) in ion-beam sputtered FeMn(30 nm)/NiFe(10 nm) bilayers. This specific behavior has been attributed to a higher degree of γ-FeMn(111) orientation that offers more interfacial FeMn moments to get pinned with the moments of the adjacent NiFe layer. Unlike the absence of training effect at room temperature, a pronounced training effect and an accompanying magnetization reversal asymmetry are evidenced upon field cooling below 50 K due to the presence of biaxial exchange induced anisotropy across the interdiffused FeMn/NiFe interface. The present findings not only have technological significance but also are of relevance to the understanding of interfacial spin disorder and frustration in these exchange-biased systems.

  16. Studies on the Synthesis and Physico-Chemical Properties of Porous LiFe₀.₉M₀.₁P₂O₇ (M = Fe, Co, Mn, Ni) Nanoparticles.

    PubMed

    Sudha, Y; Sankar, K Vijaya; Layek, Samar; Sanjeeviraja, C; Selvan, R Kalai

    2016-01-01

    The nano-porous LiFe₀.₉M₀.₁P₂O₇ (M = Fe, Co, Mn, Ni) particles were successfully prepared by simple microwave assisted combustion method and studied its detailed physico-chemical properties. The phase purity, crystallinity, functional group identification was revealed through X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis. The presence of nanoporous was identified through transmission electron microscopic (TEM) images. The electrical conductivity results illustrated that LiFe₀.₉Ni₀.₁P₂O₇ has higher conductivity (2.85 x 10⁻⁷ S cm⁻¹) among the studied systems owing to their negligible grain boundary effect. The normal dielectric behaviour was observed for all the LiFe₀.₉M₀.₁P₂O₇ (M = Fe, Co, Mn, Ni) materials. The paramagnetic behaviour and the Fe³⁺ state of LiFe₀.₉M₀.₁P₂O₇ were obtained from VSM and Mössbauer spectral analysis respectively. The cyclic voltammogram suggested that the good electrochemical lithium intercalation/de-intercalation behaviour of LiFe₀.₉M₀.₁P₂O₇ (M = Fe, Co, Mn, Ni) electrodes in aqueous electrolytes. The obtained diffusion coefficient value is comparable with carbon based materials. PMID:27398464

  17. Electronic and magnetic properties of a new diluted magnetic semiconductor Li(Zn,TM)As (TM:V, Cr, Mn, Fe, Co and Ni)

    NASA Astrophysics Data System (ADS)

    Tao, H. L.; Lin, L.; Zhang, Z. H.; He, M.; Song, B.

    2016-07-01

    First-principles calculations were performed to study electronic structures and magnetic properties of transition metal (TM) doped LiZnAs system. V, Mn, Fe and Co doped LiZnAs preferred anti-ferromagnetic states while no magnetisms were found for Cr and Ni-doped LiZnAs system. In contrast, V/Li, Cr/Li, Mn/Li, Fe/Li and Co/Li codoped LiZnAs preferred ferromagnetic couplings between the TM atoms other than the anti-ferromagnetic states. Thus off-stoichiometry of Li is very essential for the preparation of ferromagnetic LiZnAs materials. For Ni/Li-codoped LiZnAs, anti-ferromagnetic is more stable, which is resulted from the through-bond spin polarization mechanism.

  18. Alternating magnetic anisotropy of Li2(Li1–xTx)N (T = Mn, Fe, Co, and Ni)

    SciTech Connect

    Jesche, A.; Ke, L.; Jacobs, J. L.; Harmon, B.; Houk, R. S.; Canfield, P. C.

    2015-05-11

    Substantial amounts of the transition metals Mn, Fe, Co, and Ni can be substituted for Li in single crystalline Li2(Li1–xTx)N. Isothermal and temperature-dependent magnetization measurements reveal local magnetic moments with magnitudes significantly exceeding the spin-only value. The additional contributions stem from unquenched orbital moments that lead to rare-earth-like behavior of the magnetic properties. Accordingly, extremely large magnetic anisotropies have been found. Most notably, the magnetic anisotropy alternates as easy plane→easy axis→easy plane→easy axis when progressing from T = MnFe → Co → Ni. This behavior can be understood based on a perturbation approach in an analytical, single-ion model. As a result, the calculated magnetic anisotropies show surprisingly good agreement with the experiment and capture the basic features observed for the different transition metals.

  19. Effect of Rotating Magnetic Field (RMF) on Segregation of Solute Elements in CuNi10Fe1Mn Alloy Hollow Billet

    NASA Astrophysics Data System (ADS)

    Yan, Zhiming; Jin, Wenzhong; Li, Tingju

    2012-09-01

    The effect of rotating magnetic field (RMF) on macro/microsegregation of solute elements is investigated experimentally, and a comprehensive three-dimensional mathematical model is built, and the finite element package ANSYS® is employed to calculate the distribution of temperature and liquid fraction along the radial direction in horizontal continuous casting of CuNi10Fe1Mn alloy hollow billet. The results show that RMF makes the temperature field and liquid fraction uniform. The original inhomogeneous columnar grain macrostructure turns into homogeneous equiaxed grain structure, and the macro/microsegregation of Ni, Fe, and Mn elements are restrained effectively with the application of RMF. Moreover, the action mechanism of RMF is discussed to explain its effect on improving the distribution of solute elements.

  20. Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy

    DOE PAGESBeta

    Laplanche, G.; Gadaud, P.; Horst, O.; Otto, F.; Eggeler, G.; George, E.

    2014-11-15

    The equiatomic CoCrFeMnNi alloy is now regarded as a model face-centered cubic single-phase high-entropy alloy. Consequently, determination of its intrinsic properties such as the temperature dependencies of elastic moduli and thermal expansion coefficient are important to improve understanding of this new class of material. Lastly, these temperature dependencies were measured over a large temperature range (200–1270 K) in this study.

  1. Preparation, crystal structure and magnetic behavior of new double perovskites Sr{sub 2} B'UO{sub 6} with B'=Mn, Fe, Ni, Zn

    SciTech Connect

    Pinacca, R.M.; Viola, M.C.; Pedregosa, J.C.; Martinez-Lope, M.J.; Carbonio, R.E.; Alonso, J.A.

    2007-05-15

    Sr{sub 2} B'UO{sub 6} double perovskites with B'=Mn, Fe, Ni, Zn have been prepared in polycrystalline form by solid-state reaction, in air or reducing conditions. These new materials have been studied by X-ray diffraction (XRD), magnetic susceptibility and magnetization measurements. The room-temperature crystal structure is monoclinic (space group P2{sub 1}/n), and contains alternating B'O{sub 6} and UO{sub 6} octahedra sharing corners, tilted along the three pseudocubic axes according to the Glazer notation a {sup -} a {sup -} b {sup +}. The magnetic measurements show a spontaneous magnetic ordering below T {sub N}=21 K for B'=Mn, Ni, and T {sub C}=150 K for B'=Fe. From a Curie-Weiss fit, the effective paramagnetic moment for B'=Mn (5.74 {mu}{sub B}/f.u.) and B'=Ni(3.51 {mu}{sub B}/f.u.) are significantly different from the corresponding spin-only moments for the divalent cations, suggesting the possibility of a partial charge disproportionation B'{sup 2+}+U {sup 6+}{r_reversible}B'{sup 3+}+U {sup 5+}, also accounting for plausible ferrimagnetic interactions between B' and U sublattices. The strong curvature of the reciprocal susceptibility for B'=Fe precludes a Curie-Weiss fit but also suggests the presence of ferrimagnetic interactions in this compound. This charge disproportionation effect is also supported by the observed B'-O distances, which are closer to the expected values for high-spin, trivalent Mn, Fe and Ni cations. - Graphical abstract: The title double perovskites are monoclinic, space group P2{sub 1}/n, and the magnetic properties suggest the possibility of a partial charge disproportionation B'{sup 2+}+U {sup 6+}{r_reversible}B'{sup 3+}+U {sup 5+}, accounting for plausible ferrimagnetic interactions between B' and U sublattices.

  2. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi

    PubMed Central

    Zhang, ZiJiao; Mao, M. M.; Wang, Jiangwei; Gludovatz, Bernd; Zhang, Ze; Mao, Scott X.; George, Easo P.; Yu, Qian; Ritchie, Robert O.

    2015-01-01

    Damage tolerance can be an elusive characteristic of structural materials requiring both high strength and ductility, properties that are often mutually exclusive. High-entropy alloys are of interest in this regard. Specifically, the single-phase CrMnFeCoNi alloy displays tensile strength levels of ∼1 GPa, excellent ductility (∼60–70%) and exceptional fracture toughness (KJIc>200 MPa√m). Here through the use of in situ straining in an aberration-corrected transmission electron microscope, we report on the salient atomistic to micro-scale mechanisms underlying the origin of these properties. We identify a synergy of multiple deformation mechanisms, rarely achieved in metallic alloys, which generates high strength, work hardening and ductility, including the easy motion of Shockley partials, their interactions to form stacking-fault parallelepipeds, and arrest at planar slip bands of undissociated dislocations. We further show that crack propagation is impeded by twinned, nanoscale bridges that form between the near-tip crack faces and delay fracture by shielding the crack tip. PMID:26647978

  3. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi

    SciTech Connect

    Zhang, ZiJiao; Mao, M. M.; Wang, Jiangwei; Gludovatz, Bernd; Zhang, Ze; Mao, Scott X.; George, Easo P.; Yu, Qian; Ritchie, Robert O.

    2015-12-09

    Damage tolerance can be an elusive characteristic of structural materials requiring both high strength and ductility, properties that are often mutually exclusive. High-entropy alloys are of interest in this regard. Specifically, the single-phase CrMnFeCoNi alloy displays tensile strength levels of ~1 GPa, excellent ductility (~60–70%) and exceptional fracture toughness (KJIc>200M Pa√m). Here through the use of in situ straining in an aberration-corrected transmission electron microscope, we report on the salient atomistic to micro-scale mechanisms underlying the origin of these properties. We identify a synergy of multiple deformation mechanisms, rarely achieved in metallic alloys, which generates high strength, work hardening and ductility, including the easy motion of Shockley partials, their interactions to form stacking-fault parallelepipeds, and arrest at planar slip bands of undissociated dislocations. In conclusion, we further show that crack propagation is impeded by twinned, nanoscale bridges that form between the near-tip crack faces and delay fracture by shielding the crack tip.

  4. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi

    DOE PAGESBeta

    Zhang, ZiJiao; Mao, M. M.; Wang, Jiangwei; Gludovatz, Bernd; Zhang, Ze; Mao, Scott X.; George, Easo P.; Yu, Qian; Ritchie, Robert O.

    2015-12-09

    Damage tolerance can be an elusive characteristic of structural materials requiring both high strength and ductility, properties that are often mutually exclusive. High-entropy alloys are of interest in this regard. Specifically, the single-phase CrMnFeCoNi alloy displays tensile strength levels of ~1 GPa, excellent ductility (~60–70%) and exceptional fracture toughness (KJIc>200M Pa√m). Here through the use of in situ straining in an aberration-corrected transmission electron microscope, we report on the salient atomistic to micro-scale mechanisms underlying the origin of these properties. We identify a synergy of multiple deformation mechanisms, rarely achieved in metallic alloys, which generates high strength, work hardening andmore » ductility, including the easy motion of Shockley partials, their interactions to form stacking-fault parallelepipeds, and arrest at planar slip bands of undissociated dislocations. In conclusion, we further show that crack propagation is impeded by twinned, nanoscale bridges that form between the near-tip crack faces and delay fracture by shielding the crack tip.« less

  5. Thermal Behavior of Mechanically Alloyed Powders Used for Producing an Fe-Mn-Si-Cr-Ni Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Pricop, B.; Söyler, U.; Lohan, N. M.; Özkal, B.; Bujoreanu, L. G.; Chicet, D.; Munteanu, C.

    2012-11-01

    In order to produce shape memory rings for constrained-recovery pipe couplings, from Fe-14 Mn-6 Si-9 Cr-5 Ni (mass%) powders, the main technological steps were (i) mechanical alloying, (ii) sintering, (iii) hot rolling, (iv) hot-shape setting, and (v) thermomechanical training. The article generally describes, within its experimental-procedure section, the last four technological steps of this process the primary purpose of which has been to accurately control both chemical composition and the grain size of shape memory rings. Details of the results obtained in the first technological step, on raw powders employed both in an initial commercial state and in a mixture state of commercial and mechanically alloyed (MA) powders, which were subjected to several heating-cooling cycles have been reported and discussed. By means of differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and X-ray diffraction (XRD), the thermal behaviors of the two sample powders have been analyzed. The effects of the heating-cooling cycles, on raw commercial powders and on 50% MA powders, respectively, were argued from the point of view of specific temperatures and heat variations, of elemental diffusion after thermal cycling and of crystallographic parameters, determined by DSC, SEM, and XRD, respectively.

  6. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi.

    PubMed

    Zhang, ZiJiao; Mao, M M; Wang, Jiangwei; Gludovatz, Bernd; Zhang, Ze; Mao, Scott X; George, Easo P; Yu, Qian; Ritchie, Robert O

    2015-01-01

    Damage tolerance can be an elusive characteristic of structural materials requiring both high strength and ductility, properties that are often mutually exclusive. High-entropy alloys are of interest in this regard. Specifically, the single-phase CrMnFeCoNi alloy displays tensile strength levels of ∼ 1 GPa, excellent ductility (∼ 60-70%) and exceptional fracture toughness (KJIc>200 MPa√m). Here through the use of in situ straining in an aberration-corrected transmission electron microscope, we report on the salient atomistic to micro-scale mechanisms underlying the origin of these properties. We identify a synergy of multiple deformation mechanisms, rarely achieved in metallic alloys, which generates high strength, work hardening and ductility, including the easy motion of Shockley partials, their interactions to form stacking-fault parallelepipeds, and arrest at planar slip bands of undissociated dislocations. We further show that crack propagation is impeded by twinned, nanoscale bridges that form between the near-tip crack faces and delay fracture by shielding the crack tip. PMID:26647978

  7. Influence of transition metals (Cr, Mn, Fe, Co and Ni) on the methane combustion over Pd/Ce-Zr/Al 2O 3 catalyst

    NASA Astrophysics Data System (ADS)

    Yue, Baohua; Zhou, Renxian; Wang, Yuejuan; Zheng, Xiaoming

    2006-06-01

    The effects of transition metals (Cr, Mn, Fe, Co and Ni) on the catalytic properties of Pd/Ce-Zr/Al 2O 3 catalyst for methane combustion have been investigated. The supported Pd catalysts are characterized by BET, XRD, TEM, TPR, TPO and TPSR measurements. Activity tests in methane combustion show that Pd/Ce-Zr-Ni/Al 2O 3 has the highest catalytic activity and thermal stability among all catalysts. The results of TEM show that the addition of Ni to Pd/Ce-Zr/Al 2O 3 increases the dispersion of Pd component and inhibits the site growth. The results of TPO and TPSR show that the addition of Ni inhibits the decomposition of PdO particles and improves the reduction-reoxidation properties of the active PdO species, which increases the catalytic activity and thermal stability of the Pd/Ce-Zr/Al 2O 3 catalyst.

  8. Microstructural Investigation of Fe-Ni-Mn-Mo-V-C-N Ferritic Steels by Neutron Diffraction

    NASA Astrophysics Data System (ADS)

    Baeva, M.; Beskrovnyi, A. I.; Parshorov, I.; Vassilovskii, S. G.

    2010-01-01

    The design of alloys, that economize strategic element as chromium requires detailed physical investigations of their structure and phase composition. In the search for new materials in the last two decades a new class of Fe alloys was composed—the so-called nitrogen steels. The contemporary achievements in the casting technology—the use of nitrogen under high preasure above the melt—made possible the production of Fe alloys with nitrogen concentration even above 0.4 wt%. The wide application of investigated alloy system is connected with creation of alloys without presence of strong carbides-forming elements. The microstructure and phase formation of these new materials are insufficiently studied. The aim of this work is to characterize the microstructure and phase composition of two series Fe-alloys casted with and without nitrogen pressure above the melt. The so cast steels appear as experimental ones and they are directed to demonstrate the possibility for nitrogen doping of steels without presence of Chromium in them. The latter is technologically difficult to fulfil at usual conditions. Six samples [with lower nitrogen, N = 0.0111 wt%] are cast at normal pressure, and six samples [with higher nitrogen, N0.2121 wt%] are cast at pressure of 10.106 Pa. The results of Rietveld structure analysis of Time-Of-Flight neutron diffraction data show that studied steels consist of purely ferritic crystal phase (Body Centered Cubic crystal lattice).

  9. Investigation of structural and magnetic properties of co-precipitated Mn-Ni ferrite nanoparticles in the presence of α-Fe2O3 phase

    NASA Astrophysics Data System (ADS)

    Tirupanyam, B. V.; Srinivas, Ch.; Meena, S. S.; Yusuf, S. M.; Satish Kumar, A.; Sastry, D. L.; Seshubai, V.

    2015-10-01

    A systematic study on structural and magnetic properties of co-precipitated MnxNi1-xFe2O4 (x=0.5, 0.6, 0.7) ferrite nanoparticles annealed at 800 °C was carried out using XRD, FE-SEM, VSM and MÖSSBAUER techniques. Anti-ferromagnetic α-Fe2O3 phase was observed along with the magnetic spinel phase in the XRD patterns. It is observed that both lattice parameter and crystallite size of spinel phase increase with increase in concentration of Mn2+ along with the amount of α-Fe2O3 phase. The saturation magnetization (Ms) decreases while coercivity (Hc) increases with increase of Mn2+ ion concentration. Mössbauer spectra indicate that iron ions present in A and B sites are in the Fe3+ state and Fe2+ is absent. The results are interpreted in terms of observed anti-ferromagnetic α-Fe2O3 phase, core-shell interactions and cation redistribution.

  10. Study of angular dependence of exchange bias and misalignment in uniaxial and unidirectional anisotropy in NiFe(111)/FeMn(111)/CoFeB(amorphous) stack

    NASA Astrophysics Data System (ADS)

    Singh, Braj Bhusan; Chaudhary, Sujeet

    2015-07-01

    We report the investigation of the in-plane azimuthal angular dependence of the magnetization reversal in the ion beam sputtered exchanged biased NiFe(111)/FeMn(111)/CoFeB(amorphous) stack. Compared to the as-deposited case, the magnetic annealing resulted in 3 fold enhancement in exchange bias but decrease in coercivity. The observed cosine dependence of exchange biased CoFeB layer on the in-plane azimuthal angle of applied field is corroborated with Meiklejohn and Bean model. The training effect associated with the exchange bias showed unconventional increase in coercivity after first cycle of hysteresis loop, while the exchange bias decreases sharply, and for subsequent cycles the exchange bias follows the empirical relation based on the energy dissipation in the AF layer. The ferromagnetic resonance (FMR) measurements also exhibited the in-plane azimuthal angle dependence of the magnetic resonance field indicating that the uniaxial and unidirectional anisotropies are not collinear, although they lie in the same plane. However, no misalignment between the unidirectional anisotropy and the exchange bias direction is observed. The misalignment angle between the uniaxial and unidirectional anisotropy, as measured by FMR, is found to be 10° and 14° for CoFeB and NiFe, respectively. This misalignment is attributed to the interface roughness as revealed by x-ray reflectance measurements.

  11. High-Strength Low-Carbon Ferritic Steel Containing Cu-Fe-Ni-Al-Mn Precipitates

    NASA Astrophysics Data System (ADS)

    Vaynman, Semyon; Isheim, Dieter; Prakash Kolli, R.; Bhat, Shrikant P.; Seidman, David N.; Fine, Morris E.

    2008-02-01

    An investigation of a low-carbon, Fe-Cu-based steel, for Naval ship hull applications, with a yield strength of 965 MPa, Charpy V-notch absorbed impact-energy values as high as 74 J at -40 °C, and an elongation-to-failure greater than 15 pct, is presented. The increase in strength is derived from a large number density (approximately 1023 to 1024 m-3) of copper-iron-nickel-aluminum-manganese precipitates. The effect on the mechanical properties of varying the thermal treatment was studied. The nanostructure of the precipitates found within the steel was characterized by atom-probe tomography. Additionally, initial welding studies show that a brittle heat-affected zone is not formed adjacent to the welds.

  12. Na2M2(SO4)3 (M = Fe, Mn, Co and Ni): towards high-voltage sodium battery applications.

    PubMed

    Araujo, Rafael B; Chakraborty, Sudip; Barpanda, Prabeer; Ahuja, Rajeev

    2016-04-14

    Sodium-ion-based batteries have evolved as excellent alternatives to their lithium-ion-based counterparts due to the abundance, uniform geographical distribution and low price of Na resources. In the pursuit of sodium chemistry, recently the alluaudite framework Na2M2(SO4)3 has been unveiled as a high-voltage sodium insertion system. In this context, the framework of density functional theory has been applied to systematically investigate the crystal structure evolution, density of states and charge transfer with sodium ions insertion, and the corresponding average redox potential, for Na2M2(SO4)3 (M = Fe, Mn, Co and Ni). It is shown that full removal of sodium atoms from the Fe-based device is not a favorable process due to the 8% volume shrinkage. The imaginary frequencies obtained in the phonon dispersion also reflect this instability and the possible phase transition. This high volume change has not been observed in the cases of the Co- and Ni-based compounds. This is because the redox reaction assumes a different mechanism for each of the compounds investigated. For the polyanion with Fe, the removal of sodium ions induces a charge reorganization at the Fe centers. For the Mn case, the redox process induces a charge reorganization of the Mn centers with a small participation of the oxygen atoms. The Co and Ni compounds present a distinct trend with the redox reaction occurring with a strong participation of the oxygen sublattice, resulting in a very small volume change upon desodiation. Moreover, the average deintercalation potential for each of the compounds has been computed. The implications of our findings have been discussed both from the scientific perspective and in terms of technological aspects. PMID:26996444

  13. Synthesis, molecular and electronic structures of six-coordinate transition metal (Mn, Fe, Co, Ni, Cu, and Zn) complexes with redox-active 9-hydroxyphenoxazin-1-one ligands.

    PubMed

    Ivakhnenko, Eugeny P; Starikov, Andrey G; Minkin, Vladimir I; Lyssenko, Konstantin A; Antipin, Mikhail Yu; Simakov, Vladimir I; Korobov, Mikhail S; Borodkin, Gennady S; Knyazev, Pavel A

    2011-08-01

    A series of pseudo-octahedral metal (M = Mn, Fe, Co, Ni, Cu, Zn) complexes 4 of a new redox-active ligand, 2,4,6,8-tetra(tert-butyl)-9-hydroxyphenoxazin-1-one 3, have been synthesized, and their molecular structures determined with help of X-ray crystallography. The effective magnetic moments of complexes 4 (M = Mn, Fe, Co, and Ni) measured in the solid state and toluene solution point to the stabilization of their high-spin electronic ground states. Detailed information on the electronic structure of the complexes and their redox-isomeric forms has been obtained using density functional theory (DFT) B3LYP*/6-311++G(d,p) calculations. The energy disfavored low-spin structures of manganese, iron, and cobalt complexes have been located, and based on the computed geometries and distribution of spin densities identified as Mn(IV)[(Cat-N-SQ)](2), Fe(II)[Cat-N-BQ)](2), and Co(II)[Cat-N-BQ)](2) compounds, respectively. It has been shown that stabilization of the high-spin structures of complexes 4 (M = Mn, Fe, Co) is caused by the rigidity of the molecular framework of ligands 3 that sterically inhibits interconversions between the redox-isomeric forms of the complexes. The calculations performed on complex 4 (M = Co) predict that a suitable structural modification that might provide for stabilization of the low-spin electromeric forms and create conditions for the valence tautomeric rearrangement via stabilization of the low-spin electromer and narrowing energy gap between the low-spin ground state tautomer and the minimal energy crossing point on the intersection of the potential energy surfaces of the interconverting structures consists in the replacement of an oxygen in the oxazine ring by a bulkier sulfur atom. PMID:21718042

  14. Systematics in the nanoparticle band gap of ZnS and Zn1-xMxS (M=Mn, Fe, Ni) for various dopant concentrations

    NASA Astrophysics Data System (ADS)

    Behboudnia, M.; Sen, P.

    2001-01-01

    We report a detailed study of the formation of semiconductor nanoparticles of the important compound ZnS and its Mn-doped variant Zn(1-x)MnxS inside reverse micelle microreactors, by carefully varying the size of the reverse micelles at a fixed Mn concentration with x=0.01. Dynamic light scattering techniques allow us to characterize the microreactor sizes and correlate them with the size of the resultant nanoparticles. Band gap measurements employing UV-visible spectroscopy clearly show that Mn-doped samples have higher band gaps, largely independent of the size of the vessel they were created in. This observation reflects the role of Mn as an inhibitor to the growth of the nanoparticles. This is further strengthened by the observation of inhibition by other elements of the first row transition metals. Substitution with Fe and Ni shows similar trends in band gap (and hence particle size) variation with the reaction chamber size as well as with the dopant concentration x of these elements, while such variations on substitution with Mn are distinct, possibly because the sulfides of Zn and Mn are isostructural.

  15. First-principles study of the inversion thermodynamics and electronic structure of Fe M2X4 (thio)spinels (M =Cr , Mn, Co, Ni; X =O , S)

    NASA Astrophysics Data System (ADS)

    Santos-Carballal, David; Roldan, Alberto; Grau-Crespo, Ricardo; de Leeuw, Nora H.

    2015-05-01

    Fe M2X4 spinels, with the magnetite structure, where M is a transition metal and X is oxygen or sulfur, are candidate materials for spin filters, one of the key devices in spintronics. We present here a computational study of the inversion thermodynamics and the electronic structure of these (thio)spinels for M =Cr ,Mn ,Co ,Ni , using calculations based on the density functional theory with on-site Hubbard corrections (DFT +U ). The analysis of the configurational free energies shows that different behavior is expected for the equilibrium cation distributions in these structures: FeC r2X4 and FeM n2S4 are fully normal, FeN i2X4 and FeC o2S4 are intermediate, and FeC o2O4 and FeM n2O4 are fully inverted. We have analyzed the role played by the size of the ions and by the crystal field stabilization effects in determining the equilibrium inversion degree. We also discuss how the electronic and magnetic structure of these spinels is modified by the degree of inversion, assuming that this could be varied from the equilibrium value. We have obtained electronic densities of states for the completely normal and completely inverse cation distribution of each compound. FeC r2X4 ,FeM n2X4 ,FeC o2O4 , and FeN i2O4 are half-metals in the ferrimagnetic state when Fe is in tetrahedral positions. When M is filling the tetrahedral positions, the Cr-containing compounds and FeM n2O4 are half-metallic systems, while the Co and Ni spinels are insulators. The Co and Ni sulfide counterparts are metallic for any inversion degree together with the inverse FeM n2S4 . Our calculations suggest that the spin filtering properties of the Fe M2X4 (thio)spinels could be modified via the control of the cation distribution through variations in the synthesis conditions.

  16. Microstructures and Mechanical Performance of Plasma-Nitrided Al0.3CrFe1.5MnNi0.5 High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Tang, Wei-Yeh; Chuang, Ming-Hao; Lin, Su-Jien; Yeh, Jien-Wei

    2012-07-01

    This study investigates the effect of plasma nitriding at 798 K (525 °C) on microstructures and the mechanical performance of Al0.3CrFe1.5MnNi0.5 high-entropy alloys (HEAs) obtained using different cast and wrought processing. All the alloys can be well nitride, with a thickness of around 80 μm, and attain a peak hardness level around Hv 1300 near the surface. The main nitride phases are CrN, AlN, and (Mn, Fe)4N. Those of the substrates are bcc, fcc, Al-, and Ni-rich B2 precipitates, and ρ phase. Their relative amounts depend on the prior processing and also change under the heat treatment during nitriding. The formation of ρ phase during nitriding could in-situ harden the substrate to attain the suitable level required for wear applications. This gives the advantage in simplifying the processing for making a wear-resistance component or a mold since austenitizing, quench hardening, and tempering required for steels such as SACM and SKD steels are no longer required and final finishing can be accomplished before nitriding. Nitrided Al0.3CrFe1.5MnNi0.5 samples have much better wear resistance than un-nitrided ones by 49 to 80 times and also exhibit superior adhesive wear resistance to conventional nitrided alloys: nitriding steel SACM-645 (AISI 7140), 316 stainless steel, and hot-mold steel SKD-61 (AISI H13) by 22 to 55 times depending on prior processing. The superiority is due to the fact that the present nitrided alloys possess a much thicker highly hardened layer than the conventional alloys.

  17. First-order magnetic and magnetostructural transitions in the magnetocaloric compound MnNi0.73Fe0.27Ge

    NASA Astrophysics Data System (ADS)

    Sun, Aili; Liu, Jinghua; Jiang, Chengbao; Liu, Enke; Wu, Guangheng

    2015-10-01

    Magnetic and magnetostructural transitions of MnNi0.73Fe0.27Ge have been studied by calorimetry and by magnetic measurements. The first-order MST from paramagnetic to ferromagnetic martensite shows a giant magnetic entropy change of -27 J/kg K for a magnetic-field change of 50 kOe around 233 K. A weak first-order magnetic transition is observed in the martensite phase over a large low-temperature range, with clear thermal hysteresis and increased saturation field. The origin is discussed on the basis of the competitiom between ferromagnetic and antiferromagnetic coupling with magneto-elastic coupling.

  18. Influence of roll and solution treatment processing on shape memory effect of Fe-14Mn-5Si-9Cr-5Ni alloy

    SciTech Connect

    Li, C.L.; Jin, Z.H.

    1998-10-01

    The shape memory effect was studied in an Fe-14Mn-5Si-9Cr-5Ni alloy rerolled at 1123 K after hot rolling at 1423 K, followed by solution treatment at different temperatures. It was found that the alloy exhibits a maximum degree of shape recovery in a bending test and a complete recovery tensile strain of 2.2% in samples that were solution heated at 973 K for 600 s and then quenched in water. The rerolled processing at 1123 K after hot rolling at 1423 K and the microstructure under solution treatment state are important for obtaining a good shape memory effect in the alloy.

  19. A Novel Training-Free Processed Fe-Mn-Si-Cr-Ni Shape Memory Alloy Undergoing δ → γ Phase Transformation

    NASA Astrophysics Data System (ADS)

    Peng, Huabei; Wang, Gaixia; Du, Yangyang; Wang, Shanling; Chen, Jie; Wen, Yuhua

    2016-04-01

    We not only suppress the formation of twin boundaries but also introduce a high density of stacking faults by taking advantage of δ → γ phase transformation in a processed Fe-19.38Mn-5.29Si-8.98Cr-4.83Ni shape memory alloy. As a result, its shape memory effect is remarkably improved after heating at 1533 K (1260 °C) (single-phase region of δ ferrite) and air cooling due to δ → γ phase transformation.

  20. Density functional theory study of Mo-doped M@(BN)48 (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) clusters

    NASA Astrophysics Data System (ADS)

    Liang, Wenjuan; Jia, Jianfeng; Lv, Jin; Wu, Haishun

    2016-03-01

    The structure and magnetic properties of Mo-doped M@(BN)48 (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) clusters were calculated at BPW91/LanL2DZ level. The magnetic nature of the clusters M@(BN)48 significantly changed when doping with Mo atom, except for Co@(BN)48. Only the magnetic moment for the CrMo@(BN)48 cluster was decreased to zero. Thus, M@(BN)48 clusters can be selected as the model system to detect Mo atom by the change of the magnetic moment.

  1. A Novel Training-Free Processed Fe-Mn-Si-Cr-Ni Shape Memory Alloy Undergoing δ → γ Phase Transformation

    NASA Astrophysics Data System (ADS)

    Peng, Huabei; Wang, Gaixia; Du, Yangyang; Wang, Shanling; Chen, Jie; Wen, Yuhua

    2016-07-01

    We not only suppress the formation of twin boundaries but also introduce a high density of stacking faults by taking advantage of δ → γ phase transformation in a processed Fe-19.38Mn-5.29Si-8.98Cr-4.83Ni shape memory alloy. As a result, its shape memory effect is remarkably improved after heating at 1533 K (1260 °C) (single-phase region of δ ferrite) and air cooling due to δ → γ phase transformation.

  2. The Mechanical and Corrosion Behaviors of As-cast and Re-melted AlCrCuFeMnNi Multi-Component High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Soare, Vasile; Mitrica, Dumitru; Constantin, Ionut; Popescu, Gabriela; Csaki, Ioana; Tarcolea, Mihai; Carcea, Ioan

    2015-04-01

    A multi-component AlCrCuFeMnNi high-entropy alloy, prepared by vacuum induction melting, was investigated for structural, mechanical, and corrosion characteristics, before and after the re-melting process. Optical microscopy analysis revealed a dendritic solidification behavior. The interdendritic area contains two main phases and occasionally small hard phases. The re-melting process produced a finer dendritic structure, with rounded dendrites and reduced interdendritic hard phases. The SEM-EDAX analysis showed that the dendrite region contains a Widmanstatten type of structure and are composed of Cr-Fe rich phases, whereas the interdendrite region contains Cu and Mn rich phases. XRD analysis revealed two disordered BCC type A2 structures with high Cr and Fe content and an FCC A12 type of structure for the Cu and Mn rich interdendritic phase. The lattice constants, determined by X-ray diffraction, are 2.87 and 2.91 Å for the A2 phases and 3.67 Å for A1 phase. The Vickers micro hardness increased with the homogeneity of the alloy, having a maximum value of 4370 MPa for the re-melted sample. Corrosion tests carried out in 3.5 wt pct sodium chloride aerated solution indicated that the corrosion resistance improved with the re-melting process, being 1.5 to 2 times better than that of 304 stainless steel.

  3. Low hysteresis FeMn-based top spin valve.

    PubMed

    Ustinov, V V; Krinitsina, T P; Milyaev, M A; Naumova, L I; Proglyado, V V

    2012-09-01

    FeMn-based top spin valves Ta/[FeNi/CoFe]/Cu/CoFe/FeMn/Ta with different Cu and FeMn layers thicknesses were prepared by DC magnetron sputtering at room temperature. It was shown that low field hysteresis due to free layer magnetization reversal can be reduced down to (0.1 divided by 0.2) Oe keeping the GMR ratio higher 8% by using both layers thicknesses optimization and non-collinear geometry of magnetoresistance measurements. Dependence of low field hysteresis and GMR ratio on the angle between applied magnetic field and pinning direction are presented. PMID:23035516

  4. Electrochemistry and structure of the cobalt-free Li1+xMO2 (M = Li, Ni, Mn, Fe) composite cathode.

    PubMed

    Pang, Wei Kong; Kalluri, Sujith; Peterson, Vanessa K; Dou, Shi Xue; Guo, Zaiping

    2014-12-14

    The development of cathode materials with high capacity and cycle stability is essential to emerging electric-vehicle technologies, however, of serious environmental concern is that materials with these properties developed so far contain the toxic and expensive Co. We report here the Li-rich, Co-free Li1+xMO2 (M = Li, Ni, Mn, Fe) composite cathode material, prepared via a template-free, one-step wet-chemical method followed by conventional annealing in an oxygen atmosphere. The cathode has an unprecedented level of cation mixing, where the electrochemically-active component contains four elements at the transition-metal (3a) site and 20% Ni at the active Li site (3b). We find Ni(2+)/Ni(3+)/Ni(4+) to be the active redox-center of the cathode with lithiation/delithiation occurring via a solid-solution reaction where the lattice responds approximately linearly with cycling, differing to that observed for iso-structural commercial cathodes with a lower level of cation mixing. The composite cathode has ∼75% active material and delivers an initial discharge-capacity of ∼103 mA h g(-1) with a reasonable capacity retention of ∼84.4% after 100 cycles. Notably, the electrochemically-active component possesses a capacity of ∼139 mA h g(-1), approaching that of the commercialized LiCoO2 and Li(Ni1/3Mn1/3Co1/3)O2 materials. Importantly, our operando neutron powder-diffraction results suggest excellent structural stability of this active component, which exhibits ∼80% less change in its stacking-axis than for LiCoO2 with approximately the same capacity, a characteristic that may be exploited to enhance significantly the capacity retention of this and similar materials. PMID:25337805

  5. Ternary titanium transition metal bismuthides Ti{sub 4}TBi{sub 2} with T = Cr, Mn, Fe, Co, and Ni

    SciTech Connect

    Richter, C.G.; Jeitschko, W.; Kuennen, B.; Gerdes, M.H.

    1997-11-01

    The title compounds were prepared by reaction of the elemental components and with the exception of the isotypic chromium compound their tetragonal V{sub 4}SiSb{sub 2}-type crystal structures (I4/mcm, Z = 4) were determined and refined from single-crystal X-ray data. Ti{sub 4}CrBi{sub 2}: a = 1051.6(l), c = 506.7(1) pm; Ti{sub 4}Mn Bi{sub 2}: a = 1049.1 (1), c = 497.8 (1) pm, R = 0.031 for 176 structure factors; Ti{sub 4}FeBi{sub 2}: a = 1048.6(1), c = 493.3(1) pm, R = 0.013 (274 F values); Ti{sub 4}CoBi{sub 2}: a = 1050.6(2), c = 488.2(1) pm, R = 0.038 (472 F values); Ti{sub 4}NiBi{sub 2}: a = 1055.4(1), c = 481.4(1) pm, R = 0.020(373 F values), and 14 variable parameters each. The compounds are isotypic with V{sub 4}SiSb{sub 2}, a structure which is isopointal with U{sub 6}Mn and closely related to the structures of W{sub 5}Si{sub 3} and TlTe. All atoms have high coordination numbers. Unusual features of the structure are channels formed solely by the bismuth atoms and linear chains of the heavier transition metal ions with bond distances varying between 253.3 (Cr-Cr) and 240.7 pm (Ni-Ni). The electrical conductivities of Ti{sub 4}TBi{sub 2} (T= Fe,Co, Ni)--determined with a four-probe technique for sintered polycrystalline samples between 4 K and room temperature--indicate metallic behavior. The magnetic susceptibilities of the five compounds were determined with a SQUID magnetometer. Ti{sub 4}CrBi{sub 2}, T{sub i}4FeBi{sub 2}, and Ti{sub 4}NiBi{sub 2} are Pauli paramagnetic. The magnetic susceptibilities of Ti{sub 4}MnBi{sub 2} and Ti{sub 4}CoBi{sub 2} are strongly temperature dependent. The evaluation of these data according to a modified Curie-Weiss law suggests that both compounds contain one unpaired electron per formula unit. A brief discussion of chemical bonding in these compounds leads to the conclusion that considerable Ti-Ti bonding must be present in these bismuthides, in spite of the fact that the shortest Ti-Ti bonds are as long as 299 pm.

  6. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts

    NASA Astrophysics Data System (ADS)

    Subbaraman, Ram; Tripkovic, Dusan; Chang, Kee-Chul; Strmcnik, Dusan; Paulikas, Arvydas P.; Hirunsit, Pussana; Chan, Maria; Greeley, Jeff; Stamenkovic, Vojislav; Markovic, Nenad M.

    2012-06-01

    Design and synthesis of materials for efficient electrochemical transformation of water to molecular hydrogen and of hydroxyl ions to oxygen in alkaline environments is of paramount importance in reducing energy losses in water-alkali electrolysers. Here, using 3d-M hydr(oxy)oxides, with distinct stoichiometries and morphologies in the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) regions, we establish the overall catalytic activities for these reaction as a function of a more fundamental property, a descriptor, OH-M2+δ bond strength (0 ≤ δ ≤ 1.5). This relationship exhibits trends in reactivity (Mn < Fe < Co < Ni), which is governed by the strength of the OH-M2+δ energetic (Ni < Co < Fe < Mn). These trends are found to be independent of the source of the OH, either the supporting electrolyte (for the OER) or the water dissociation product (for the HER). The successful identification of these electrocatalytic trends provides the foundation for rational design of ‘active sites’ for practical alkaline HER and OER electrocatalysts.

  7. Ternary Spinel MCo2O4 (M = Mn, Fe, Ni, and Zn) Porous Nanorods as Bifunctional Cathode Materials for Lithium-O2 Batteries.

    PubMed

    Mohamed, Saad Gomaa; Tsai, Yuan-Quei; Chen, Chih-Jung; Tsai, Yi-Ting; Hung, Tai-Feng; Chang, Wen-Sheng; Liu, Ru-Shi

    2015-06-10

    The development of Li-O2 battery electrocatalysts has been extensively explored recently. The Co3O4 oxide has attracted much attention because of its bifunctional activity and high abundance. In the present study, toxic Co(2+) has been replaced through the substitution on the tetrahedral spinel A site ions with environmental friendly metals (Mn(2+), Fe(2+), Ni(2+), and Zn(2+)), and porous nanorod structure are formed. Among these spinel MCo2O4 cathodes, the FeCo2O4 surface has the highest Co(3+) ratio. Thus, oxygen can be easily adsorbed onto the active sites. In addition, Fe(2+) in the tetrahedral site can easily release electrons to reduce oxygen and oxidize to half electron filled Fe(3+). The FeCo2O4 cathode exhibits the highest discharging plateau and lowest charging plateau as shown by the charge-discharge profile. Moreover, the porous FeCo2O4 nanorods can also facilitate achieving high capacity and good cycling performance, which are beneficial for O2 diffusion channels and Li2O2 formation/decomposition pathways. PMID:25984925

  8. Ageing behaviour of an Fe-20Ni-1.8Mn-1.6Ti-0.59Al (wt%) maraging alloy: clustering, precipitation and hardening

    SciTech Connect

    Pereloma, E.V. . E-mail: elena.pereloma@spme.monash.edu.au; Shekhter, A.; Miller, M.K.; Ringer, S.P.

    2004-11-08

    Changes in the solute distribution as well as the evolution of precipitation, microstructure and mechanical properties have been studied in an experimental maraging Fe-20Ni-1.8Mn-1.5Ti-0.59Al (wt%) alloy during ageing at 550 deg C. An initial hardening reaction within 5 s is reported, which is remarkable in terms of extent and rapidity. This strengthening was caused by the formation of complex multi-component atomic co-clusters containing primarily Ni-Ti-Al as well as some Mn. This cluster strengthened condition produced the optimum toughness observed throughout the ageing sequence. After 60 s ageing, the appearance of discrete precipitation of needle-shaped {eta}-Ni{sub 3}Ti particles was associated with a second rise in hardness towards an eventual peak at 600 s. This precipitation hardening was accompanied by an increase in tensile strength and a decrease in ductility. A reverse transformation of martensite to austenite occurs progressively during ageing and this contributes to the initial and secondary softening.

  9. Structural, EPR and optical properties of Zn0.75TM0.25O (TM = Mn, Fe, Co, Ni) aerogel nanoparticles

    NASA Astrophysics Data System (ADS)

    Sayari, Amor; El Mir, Lassaad; Jürgen von Bardeleben, Hans

    2014-07-01

    ZnO nanopowders with different 3d transition metal (TM) doping (TM = Mn, Fe, Co, Ni) were synthesized by a new protocol based on slow hydrolyse of zinc acetate dissolved in methanol and supercritical drying in ethyl alcohol. The prepared Zn1-xTMxO (x = 0.25) nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), optical absorption and electron paramagnetic resonance spectroscopy (EPR). The results demonstrated that the TM dopant significantly affects the structural and magnetic properties of the samples. From the XRD spectra, the lattice parameters, average crystallite size and microstrain values were obtained. All ZnTMO nanoparticles show an expansion of the lattice parameters compared those of the bulk samples. Unit cell volume was minimized with Fe doping and increased as the atomic number of the dopant moved away from Fe. The XRD pattern indicates the formation of hexagonal wurtzite phase of ZnO for all the TM dopants. Electron microscopy characterization showed that the size of the Zn1-xTMxO particles is about 25 nm did not change significantly for the different dopants. Optical absorption measurements show that band gap energies of the TM-doped ZnO nanoparticles are around 3.2 eV. The Urbach energy of the ZnTMO nanopowders varies with the TM dopant. From magnetic measurements we observed the presence of room temperature ferromagnetic order in our TM-doped ZnO samples. EPR spectra confirm that TM ions were mainly incorporated as TM2+, occupying the Zn2+ sites in the wurtzite structure of ZnO. Room temperature ferromagnetic order was observed only in Ni- and Co-doped ZnO samples, whereas Mn- and Fe-doped powders showed only antiferromagnetic and paramagnetic interactions, respectively. The correlation between the structural and magnetic properties as a function of the TM dopant is discussed.

  10. A comparative study on electrochemical cycling stability of lithium rich layered cathode materials Li1.2Ni0.13M0.13Mn0.54O2 where M = Fe or Co

    NASA Astrophysics Data System (ADS)

    Laisa, C. P.; Nanda Kumar, A. K.; Selva Chandrasekaran, S.; Murugan, P.; Lakshminarasimhan, N.; Govindaraj, R.; Ramesha, K.

    2016-08-01

    In this work we compare electrochemical cycling stability of Fe containing Li rich phase Li1.2Ni0.13Fe0.13Mn0.54O2 (Fe-Li rich) with the well-known Co containing Li rich composition Li1.2Ni0.13Co0.13Mn0.54O2 (Co-Li rich). During the first charge, the activation plateau corresponding to removal of Li2O from the structure is smaller (removal of 0.6 Li) in the case of Fe-Li rich compared to Co-Li rich composition (0.8 Li removal). Consequently, the Fe compound shows better capacity retention; for example, after 100 cycles Fe-Li rich compound exhibits 20% capacity degradation where as it is about 40% in the case of Co-Li rich phase. The electrochemical and microscopy studies support the fact that compared to Co-Li rich compound, the Fe-Li rich composition display smaller voltage decay and reduced spinel conversion. XPS studies on charged/discharged Fe-Li rich samples show participation of Fe+3/Fe+4 redox during electrochemical cycling which is further supported by our first principles calculations. Also the temperature dependent magnetic studies on charge-discharged samples of Fe-Li rich compound point out that magnetic behavior is sensitive to cation oxidation states and Ni/Li disorder.

  11. Structural and electronic properties of half-Heusler alloys PtXBi (with X=Mn, Fe, Co and Ni) calculated from first principles

    NASA Astrophysics Data System (ADS)

    Huang, Wenchao; Wang, Xiaofang; Chen, Xiaoshuang; Lu, Wei; Damewood, L.; Fong, C. Y.

    2015-03-01

    First principles calculations with spin polarization based on density functional theory have been performed on half-Heusler alloys PtXBi, with X=Mn, Fe, Co and Ni, in three different atomic configurations (i.e. α, β, and γ phases). For each configuration, their optimized lattice constants are determined. Electronic and magnetic properties are also investigated. The differences reflect the atomic arrangements of the three phases and varied transition metal elements X. Meanwhile, the possibility of having the integer magnetic moment for each phase is explored. PtMnBi in α phase show half-metallic (HM) properties when its lattice constant is reduced from -3.0% to -11.2% with magnetic moment consistent with the values given by the modified Slater-Pauling rule. Additionally, we examined the effects of the spin-orbit (S-O) interaction on half-metal PtMnBi by comparing the relative shifts of the valence bands and the indirect semiconducting gap with respect to the spin polarized results.

  12. Composition Dependence of Phase Stability, Deformation Mechanisms, and Mechanical Properties of the CoCrFeMnNi High-Entropy Alloy System

    NASA Astrophysics Data System (ADS)

    Tasan, C. C.; Deng, Y.; Pradeep, K. G.; Yao, M. J.; Springer, H.; Raabe, D.

    2014-10-01

    The proposal of configurational entropy maximization to produce massive solid-solution (SS)-strengthened, single-phase high-entropy alloy (HEA) systems has gained much scientific interest. Although most of this interest focuses on the basic role of configurational entropy in SS formability, setting future research directions also requires the overall property benefits of massive SS strengthening to be carefully investigated. To this end, taking the most promising CoCrFeMnNi HEA system as the starting point, we investigate SS formability, deformation mechanisms, and the achievable mechanical property ranges of different compositions and microstructural states. A comparative assessment of the results with respect to room temperature behavior of binary Fe-Mn alloys reveals only limited benefits of massive SS formation. Nevertheless, the results also clarify that the compositional requirements in this alloy system to stabilize the face-centered cubic (fcc) SS are sufficiently relaxed to allow considering nonequiatomic compositions and exploring improved strength-ductility combinations at reduced alloying costs.

  13. Composition Dependence of Phase Stability, Deformation Mechanisms, and Mechanical Properties of the CoCrFeMnNi High-Entropy Alloy System

    NASA Astrophysics Data System (ADS)

    Tasan, C. C.; Deng, Y.; Pradeep, K. G.; Yao, M. J.; Springer, H.; Raabe, D.

    2014-09-01

    The proposal of configurational entropy maximization to produce massive solid-solution (SS)-strengthened, single-phase high-entropy alloy (HEA) systems has gained much scientific interest. Although most of this interest focuses on the basic role of configurational entropy in SS formability, setting future research directions also requires the overall property benefits of massive SS strengthening to be carefully investigated. To this end, taking the most promising CoCrFeMnNi HEA system as the starting point, we investigate SS formability, deformation mechanisms, and the achievable mechanical property ranges of different compositions and microstructural states. A comparative assessment of the results with respect to room temperature behavior of binary Fe-Mn alloys reveals only limited benefits of massive SS formation. Nevertheless, the results also clarify that the compositional requirements in this alloy system to stabilize the face-centered cubic (fcc) SS are sufficiently relaxed to allow considering nonequiatomic compositions and exploring improved strength-ductility combinations at reduced alloying costs.

  14. Anomalous positive exchange bias in nanostructured FeMn/Co/FeMn networks

    NASA Astrophysics Data System (ADS)

    Jiang, Changjun; Xue, Desheng; Fan, Xiaolong; Guo, Dangwei; Liu, Qingfang

    2007-08-01

    FeMn/Co/FeMn multilayers are sputtered onto porous alumina templates and silicon, respectively. The FeMn/Co/FeMn multilayer on the porous alumina templates forms an interconnected network nanostructure, while the FeMn/Co/FeMn multilayer on the silicon substrate forms a continuous film. The SQUID testing results show that the exchange bias (HE) and coercivity (Hc) of the FeMn/Co/FeMn multilayer on the porous alumina templates strongly depend on the temperature. A positive exchange bias loops shift is observed at 250 K under field-cooled conditions. However, this is not found in the FeMn/Co/FeMn multilayer on silicon for the same layer thickness. We attribute the positive exchange bias loops shift of the network nanostructured FeMn/Co/FeMn multilayer to the decreased exchange coupling due to the existence of the holes in the interconnected nanostructure.

  15. Substitution in ce2tsi3 intermetallic compositions with t = (Cr, Mn, Fe, Co, or Ni) x (Pd or Au) 1-x. Technical report No. 30

    SciTech Connect

    1996-07-10

    Alloys of composition Ce2(3d/T)Si3, with `3d` one of Cr, Mn, Fe, Co or Ni and `T` being Pd or Au, were separated and examined by powder x-ray diffraction. Select single phase compositions were further examined by magnetic susceptibility, by resistivity for the Pd and Co end-members and by specific heat for Ce2CoSi3. For compounds not containing cobalt, effective cerium moments consistent with trivalent cerium were observed. A re-examination of the AlB2 related structure of Ce2CoSi3 by single crystal methods revealed ordering of cobalt within the CoSi3 hexagonal layer. Magnetic susceptibility, resistance and specific heat measurements suggest valence fluctuation behavior of the cerium in Ce2CoSi3. A return to trivalent cerium magnetic behavior occurs on increasing palladium or gold substitution for cobalt.

  16. Microstructure and martensitic transformation in the Fe-Mn-Al-Ni shape memory alloy with B2-type coherent fine particles

    NASA Astrophysics Data System (ADS)

    Omori, T.; Nagasako, M.; Okano, M.; Endo, K.; Kainuma, R.

    2012-12-01

    Microstructure and martensitic transformation yielding a magnetic change were investigated for Fe43.5Mn34Al15Ni7.5 alloy with B2-type fine precipitates. Thermoelastic martensitic transformation from the ferromagnetic parent phase to the weak magnetic martensite with a nano-twinned fcc structure was confirmed. High-angle annular dark-field scanning transmission electron microscopic observation revealed that a β particle of about 10 nm maintains coherency with the matrix martensite phase, even though distorted due to the martensitic transformation. The martensitic transformation temperatures decreased about 75 K by application of a magnetic field of 70 kOe and magnetic field-induced reverse martensitic transformation was confirmed.

  17. Influence of deformation on the structure and the mechanical properties of a high-entropy Fe25Cr20Ni20Co10Mn15Al10 alloy

    NASA Astrophysics Data System (ADS)

    Gorban', B. F.; Nazarenko, V. A.; Danilenko, N. I.; Karpets, M. V.; Krapivka, N. A.; Firstov, S. A.; Makarenko, E. S.

    2014-10-01

    The phase composition, the hardness, and the elasticity modulus of a high-entropy Fe25Cr20Ni20Co10Mn15Al10 alloy have been studied in the as-cast state, after rolling deformation, and after subsequent high-temperature annealing. The alloy consists of the following two phases: solid substitutional solutions with bcc and fcc crystal lattices; in the as-cast state and after annealing the bcc solid solution is ordered according to B2 type (CsCl). The mixture rule is applied for the calculation of the electron density, the atomic radius, and the melting point at grain boundaries and in the grain volume of the alloy after deformation and annealing. The obtained data demonstrate that the alloy is thermally stable.

  18. Thermodynamic laws of the oxygen solubility in liquid metals (Ni, Co, Fe, Mn, Cr) and the formation of oxygen-containing solutions in the alloys based on them

    NASA Astrophysics Data System (ADS)

    Paderin, S. N.; Shil'nikov, E. V.

    2015-12-01

    The solubility of oxygen in liquid Ni, Co, Fe, Mn, and Cr metals (Group IV in the periodic table) has been found for the first time. Linear dependences of the oxygen solubility on the standard Gibbs energy for the oxidation reaction of a liquid metal with gaseous oxygen are found. The revealed function of oxygen solubility is of scientific importance and allows one to develop a theory of oxygen solutions in liquid metals and liquid multicomponent metallic compositions and to calculate the energies of mixing of liquid metals with oxygen from Δ G MO ° for metal oxidation reactions with allowance for pseudoregular-solution model equations. Using the energies of mixing and metal compositions, we calculated the equilibrium oxygen concentrations in a metal molten pool at the end of oxidation stage of melting 08Kh18N10T steel in an arc furnace. This fact indicates practical importance of the found function of the oxygen solubility in metals.

  19. Wide temperature window of magnetostructural transition achieved in Mn0.4Fe0.6NiSi1-xGax by a two-step isostructural alloying process

    NASA Astrophysics Data System (ADS)

    Chen, J.; Zhang, H. G.; Liu, E. K.; Yue, M.; Lu, Q. M.; Wang, W. H.; Wu, G. H.; Zhang, J. X.

    2016-05-01

    A new approach has been proposed in this work, which provides an effective way for tuning the structural transition in MM'X systems with relatively high transition temperature. With this method, a temperature window as wide as 275 K for the magnetostructural transition has been achieved in the MnNiSi alloy system. The maximum magnetic entropy change of the system is as high as 13.3 J/kgK, which, together with the large temperature window, enables the Mn0.4Fe0.6NiSi1-xGax system to be a promising candidate for magnetic refrigerant applications.

  20. Improved cycling performance of 5 V spinel LiMn1.5Ni0.5O4 by amorphous FePO4 coating

    NASA Astrophysics Data System (ADS)

    Liu, Dilong; Bai, Ying; Zhao, Sen; Zhang, Weifeng

    2012-12-01

    Cycling stability of 5 V spinel LiMn1.5Ni0.5O4 (LMNO) is improved by surface modification with FePO4 through a chemical deposition method. The pristine, 0.5 wt.%, 1 wt.% and 3 wt.% FePO4-coated LMNO are characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and field emission scanning electron microscopy. It is found that the coating process is in favor of the disorder-order phase transition. The investigation on their cycling performance demonstrates that 1 wt.% FePO4-modified LMNO cathode exhibits the best cycling performance, with the capacity retention ratio of 99.3% after 50 cycles, much better than that of the pristine LMNO (only 79%). Electrochemical impedance spectroscopy is applied to explain the galvanostatic results. The enhanced cycling performance of the surface-modified samples can be attributed to the decreasing contact area between the electrode and electrolyte and the suppression of undesirable thick SEI (solid electrolyte interfacial) layer.

  1. Spectroscopic Study of (two-dimensional) Molecule-based Magnets: [MII(TCNE)(NCMe)2][SbF6] (M = Fe Mn Ni)

    SciTech Connect

    C Olson; C Heth; S Lapidus; P Stephens; G Halder; K Pokhodnya

    2011-12-31

    The M-[TCNE] (M = 3d metal; TCNE = tetracyanoethylene) system is one of the most interesting classes of molecule-based magnets, exhibiting a plethora of compositions and structures (inorganic polymer chains, 2D layers, 3D networks, and amorphous solids) with a wide range of magnetic ordering temperatures (up to 400 K). A systematic study of vibrational (both infrared and, for the first time, Raman) properties of the family of new TCNE-based magnets of M{sup II}(TCNE) (NCMe){sub 2}[SbF{sub 6}] [M = Mn, Fe, Ni] composition is discussed in conjunction with their magnetic behavior and newly resolved crystal structures. The vibrational properties of the isolated TCNE{sup {sm_bullet}-} anion in the paramagnetic Bu{sub 4}N [TCNE{sup {sm_bullet}-}] salt and recently characterized 2D layered magnet Fe{sup II}(TCNE)(NCMe){sub 2}[FeCl{sub 4}] are also reported for comparison. Additionally, a linear correlation between {nu}{sub c=c} (a{sub g}) frequency of the TCNE ligand and its formal charge Z (the spin density on the {pi}* orbital), Z = [1571 - {nu}{sub C=C} (ag)]/154.5 [e], is presented. It is shown that monitoring Z by Raman spectroscopy is of great use in providing information that allows understanding the peculiarity of the superexchange interaction in M-[TCNE] magnets and establishing the structure-magnetic properties correlations in this class of magnetic material.

  2. The effects of annealing on the microstructure and mechanical properties of Fe28Ni18Mn33Al21

    SciTech Connect

    Meng, Fanling; Qiu, Jingwen; Baker, Ian; Bei, Hongbin

    2015-08-20

    In this paper, As-cast Fe28Ni18Mn33Al21, which consists of aligned, 50 nm, (Ni, Al)-rich B2, and (Fe, Mn)-rich f.c.c. phases, was annealed at a variety of temperatures up to 1423 K and the microstructure and mechanical properties were examined. It was shown that the as-cast microstructure arises from a eutectoid transformation at ~1300 K. Annealing at temperatures ≤1073 K produces β-Mn-structured precipitates and hardness values up to 816 HV, while annealing at temperatures >1073 K leads to dramatic coarsening of the two-phase B2/f.c.c. microstructure (up to 5.5 µm after 50 h at 1273 K), but does not lead to β-Mn precipitation. Interestingly, annealing at temperatures >1073 K delays the onset of β-Mn precipitation during subsequent anneals at lower temperatures. Coarsening the B2/f.c.c. lamellar structure by annealing at higher temperatures softens it and leads to increases in ductility from fracture before yield to ~8 % elongation. Finally, the presence of β-Mn precipitates makes the very fine, brittle B2/f.c.c. microstructures even more brittle, but significant ductility (8.4 % elongation) is possible even with β-Mn precipitates present if the B2/f.c.c. matrix is coarse and, hence, more ductile.

  3. Stability and mobility of small vacancy-solute complexes in Fe-MnNi and dilute Fe-X alloys: A kinetic Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Messina, Luca; Malerba, Lorenzo; Olsson, Pär

    2015-06-01

    Manganese and nickel solute atoms in irradiated ferritic steels play a major role in the nanostructural evolution of reactor pressure vessels (RPV), as they are responsible for the formation of embrittling nanofeatures even in the absence of copper. The stability and mobility of small vacancy-solute clusters is here studied with an atomistic kinetic Monte Carlo approach based on ab initio calculations, in order to investigate the influence of Mn and Ni on the early life of small radiation-induced vacancy clusters, and to provide the necessary parameters for advanced object kinetic Monte Carlo simulations of the RPV long-term nanostructural evolution. Migration barriers are obtained by direct ab initio calculations or through a binding energy model based on ab initio data. Our results show a clear immobilizing and stabilizing effect on vacancy clusters as the solute content is increased, whereas the only evident difference between the two solute species is a somewhat longer elongation of the cluster mean free path in the presence of a few Mn atoms.

  4. Exchange bias properties of 140 nm-sized dipolarly interacting circular dots with ultrafine IrMn and NiFe layers

    NASA Astrophysics Data System (ADS)

    Spizzo, F.; Tamisari, M.; Chinni, F.; Bonfiglioli, E.; Gerardino, A.; Barucca, G.; Bisero, D.; Fin, S.; Del Bianco, L.

    2016-02-01

    We studied the exchange bias effect in an array of IrMn(3 nm)/NiFe(3 nm) circular dots (size ~140 nm and center-to-center distance ~200 nm, as revealed by microscopy analyses), prepared on a large area (3×3 mm2) by electron beam lithography and lift-off, using dc sputtering deposition. Hysteresis loops were measured by SQUID magnetometer at increasing values of temperature T (in the 5-300 K range) after cooling from 300 K down to 5 K in zero field (ZFC mode) and in a saturating magnetic field (FC mode). The exchange bias effect disappears above T~200 K and, at each temperature, the exchange field HEX measured in ZFC is substantially lower than the FC one. Micromagnetic calculations indicate that, at room temperature, each dot is in high-remanence ground state, but magnetic dipolar interactions establish a low-remanence configuration of the array as a whole. Hence, at low temperature, following the ZFC procedure, the exchange anisotropy in the dot array is averaged out, tending to zero. However, even the FC values of HEX and of the coercivity HC are definitely smaller compared to those measured in a reference continuous film with the same stack configuration (at T=5 K, HEX~90 Oe and HC~180 Oe in the dots and HEX~1270 Oe and HC~860 Oe in the film). Our explanation is based on the proven glassy magnetic nature of the ultrathin IrMn layer, implying the existence of magnetic correlations among the spins, culminating in a collective freezing below T~100 K. We propose, also by the light of micromagnetic simulations, that the small dot size imposes a spatial constraint on the magnetic correlation length among the IrMn spins so that, even at the lowest temperature, their thermal stability, especially at the dot border, is compromised.

  5. Thermal Stability of Ni-Mn Electrodeposits

    SciTech Connect

    Talin, A. A.; Marquis, E. A.; Goods, S. H.; Kelly, J. J.; Miller, Michael K

    2006-01-01

    The effect of Mn additions on the structural stability of electrodeposited Ni is investigated by comparing the microstructure evolution of Ni and Ni-Mn specimens with similar crystallographic initial textures. As deposited, Ni-Mn electrodeposits have a smaller crystallite size and substantially higher yield strength than Ni deposits, in agreement with the Hall-Petch relationship. Moreover, dilute Ni-Mn electrodeposits exhibit a thermal stability that significantly exceeds that of pure Ni. Indeed, Ni-Mn retains its texture, fine-grain microstructure, and strength above 500 C (for 1 h anneal), and does not recrystallize up to 800 C. In contrast, pure Ni with larger average grain size and similar preferred orientation shows abnormal grain growth at 300 C and recrystallization at 600 C. This study suggests two distinct temperature regimes. Below 600 C, grain boundary segregation appears as a plausible mechanism for the thermal stability of Ni-Mn electrodeposits, whereas grain boundary pinning by precipitation contributes to the improved microstructural stability of Ni-Mn above 600 C.

  6. Advanced Na[Ni0.25Fe0.5Mn0.25]O2/C-Fe3O4 sodium-ion batteries using EMS electrolyte for energy storage.

    PubMed

    Oh, Seung-Min; Myung, Seung-Taek; Yoon, Chong Seung; Lu, Jun; Hassoun, Jusef; Scrosati, Bruno; Amine, Khalil; Sun, Yang-Kook

    2014-03-12

    While much research effort has been devoted to the development of advanced lithium-ion batteries for renewal energy storage applications, the sodium-ion battery is also of considerable interest because sodium is one of the most abundant elements in the Earth's crust. In this work, we report a sodium-ion battery based on a carbon-coated Fe3O4 anode, Na[Ni0.25Fe0.5Mn0.25]O2 layered cathode, and NaClO4 in fluoroethylene carbonate and ethyl methanesulfonate electrolyte. This unique battery system combines an intercalation cathode and a conversion anode, resulting in high capacity, high rate capability, thermal stability, and much improved cycle life. This performance suggests that our sodium-ion system is potentially promising power sources for promoting the substantial use of low-cost energy storage systems in the near future. PMID:24524729

  7. Chemical bonding in the ternary transition metal bismuthides Ti{sub 4}TBi{sub 2} with T=Cr, Mn, Fe, Co, and Ni

    SciTech Connect

    Rytz, R.; Hoffman, R.

    1999-04-05

    The electronic structure and chemical bonding in the ternary transition metal bismuthides Ti{sub 4}TBi{sub 2} (T = Cr, Mn, Fe, Co, and Ni) is investigated by approximate MO calculations of the extended Hueckel tight-binding type. These intermetallic compounds crystallize in a layer structure, repeating sequence T-Ti/Bi-T-Ti/Bi, stacking along c; the late transition metals form linear chains with short T-T bonds. Other important structural elements are face-sharing chains of Ti{sub 4}Bi{sub 2} octahedra and Bi channels. The decrease of the T-T bond lengths from Cr to Ni is more pronounced than expected from the decrease of the metallic radii alone. The analysis of the electronic structure indicates that this behavior arises from the titanium-titanium and titanium-bismuth interlayer interactions. Diminution of the titanium-titanium interlayer distances as one goes from Ti{sub 4}CrBi{sub 2} to Ti{sub 4}NiBi{sub 2} is due to Ti(d)-Ti(d) bonding, which increases with increasing electron filling of the titanium d levels. The titanium-bismuth interactions remain strong along this series, as can also be seen by the constant intralayer/titanium-bismuth distances. A distinguishing feature of the title compounds is the channels formed by bismuth atoms. These channels are filled by Bi-centered, essentially unhybridized 6p orbitals forming a 2D net stacking along c and interacting with each other, stronger in the c direction than perpendicular to it. The possibility of intercalating electrophilic species into these electron-filled voids is also investigated.

  8. Organic-Acid-Assisted Fabrication of Low-Cost Li-Rich Cathode Material (Li[Li1/6Fe1/6Ni1/6Mn1/2]O-2) for Lithium-Ion Battery

    SciTech Connect

    Zhao, Taolin; Chen, Shi; Li, Li; Zhang, Xiaoxiao; Wu, Huiming; Wu, Tianpin; Sun, Cheng-Jun; Chen, Renjie; Wu, Feng; Lu, Jun; Amine, Khalil

    2014-12-24

    A novel Li-rich cathode Li[Li1/6Fe1/6Ni1/6Mn1/2]O-2 (0.4Li(2)MnO(3-)0.6LiFe(1/3)Ni(1/3)Mn(1/3)O(2)) was synthesized by a solgel method, which uses citric acid (SC), tartaric acid (ST), or adipic acid (SA) as a chelating agent. The structural, morphological, and electrochemical properties of the prepared samples were characterized by various methods. X-ray diffraction showed that single-phase materials are formed mainly with typical alpha-NaFeO2 layered structure (R3 m), and the SC sample has the lowest Li/Ni cation disorder. The morphological study indicated homogeneous primary particles in good distribution size (100 nm) with small aggregates. The Fe, Ni, and Mn valences were determined by X-ray absorption near-edge structure analysis. In coin cell tests, the initial reversible discharge capacity of an SA electrode was 289.7 mAh g(-1) at the 0.1C rate in the 1.54.8 V voltage range, while an SC electrode showed a better cycling stability with relatively high capacity retention. At the 2C rate, the SC electrode can deliver a discharge capacity of 150 mAh g(-1) after 50 cycles. Differential capacity vs voltage curves were employed to further investigate the electrochemical reactions and the structural change process during cycling. This low-cost, Fe-based compound prepared by the solgel method has the potential to be used as the high capacity cathode material for Liion batteries.

  9. Organic-acid-assisted fabrication of low-cost Li-rich cathode material (Li[Li1/6Fe1/6Ni1/6Mn1/2]O2) for lithium-ion battery.

    PubMed

    Zhao, Taolin; Chen, Shi; Li, Li; Zhang, Xiaoxiao; Wu, Huiming; Wu, Tianpin; Sun, Cheng-Jun; Chen, Renjie; Wu, Feng; Lu, Jun; Amine, Khalil

    2014-12-24

    A novel Li-rich cathode Li[Li1/6Fe1/6Ni1/6Mn1/2]O2 (0.4Li2MnO3-0.6LiFe1/3Ni1/3Mn1/3O2) was synthesized by a sol-gel method, which uses citric acid (SC), tartaric acid (ST), or adipic acid (SA) as a chelating agent. The structural, morphological, and electrochemical properties of the prepared samples were characterized by various methods. X-ray diffraction showed that single-phase materials are formed mainly with typical α-NaFeO2 layered structure (R3̅m), and the SC sample has the lowest Li/Ni cation disorder. The morphological study indicated homogeneous primary particles in good distribution size (100 nm) with small aggregates. The Fe, Ni, and Mn valences were determined by X-ray absorption near-edge structure analysis. In coin cell tests, the initial reversible discharge capacity of an SA electrode was 289.7 mAh g(-1) at the 0.1C rate in the 1.5-4.8 V voltage range, while an SC electrode showed a better cycling stability with relatively high capacity retention. At the 2C rate, the SC electrode can deliver a discharge capacity of 150 mAh g(-1) after 50 cycles. Differential capacity vs voltage curves were employed to further investigate the electrochemical reactions and the structural change process during cycling. This low-cost, Fe-based compound prepared by the sol-gel method has the potential to be used as the high capacity cathode material for Li-ion batteries. PMID:25412470

  10. Substitution of Ni for Fe in superconducting Fe>0.98mn>Te>0.5mn>Se>0.5mn> depresses the normal-state conductivity but not the magnetic spectral weight

    SciTech Connect

    Wang, Jinghui; Zhong, Ruidan; Li, Shichao; Gan, Yuan; Xu, Zhijun; Zhang, Cheng; Ozaki, T.; Matsuda, M.; Zhao, Yang; Li, Qiang; Xu, Guangyong; Gu, Genda; Tranquada, J. M.; Birgeneau, R. J.; Wen, Jinsheng

    2015-01-05

    We have performed systematic resistivity and inelastic neutron scattering measurements on Fe₀.₉₈₋zNizTe₀.₅Se₀.₅ samples to study the impact of Ni substitution on the transport properties and the low-energy (≤ 12 meV) magnetic excitations. It is found that, with increasing Ni doping, both the conductivity and superconductivity are gradually suppressed; in contrast, the low-energy magnetic spectral weight changes little. Comparing with the impact of Co and Cu substitution, we find that the effects on conductivity and superconductivity for the same degree of substitution grow systematically as the atomic number of the substituent deviates from that of Fe. The impact of the substituents as scattering centers appears to be greater than any contribution to carrier concentration. The fact that low-energy magnetic spectral weight is not reduced by increased electron scattering indicates that the existence of antiferromagnetic correlations does not depend on electronic states close to the Fermi energy.

  11. Imaging the surface morphology, chemistry and conductivity of LiNi 1/3 Fe 1/3 Mn 4/3 O 4 crystalline facets using scanning transmission X-ray microscopy

    DOE PAGESBeta

    Zhou, Jigang; Wang, Jian; Cutler, Jeffrey; Hu, Enyuan; Yang, Xiao-Qing

    2016-07-26

    We have employed scanning transmission X-ray microscopy (STXM) using the X-ray fluorescence mode in order to elucidate the chemical structures at Ni, Fe, Mn and O sites from the (111) and (100) facets of micron-sized LiNi1/3Fe1/3Mn4/3O4 energy material particles. Furthermore, STXM imaging using electron yield mode has mapped out the surface conductivity of the crystalline particles. Our study presents a novel approach that visualizes local element segregation, chemistry and conductivity variation among different crystal facets, which will assist further tailoring of the morphology and surface structure of this high voltage spinel lithium ion battery cathode material.

  12. Imaging the surface morphology, chemistry and conductivity of LiNi1/3Fe1/3Mn4/3O4 crystalline facets using scanning transmission X-ray microscopy.

    PubMed

    Zhou, Jigang; Wang, Jian; Cutler, Jeffrey; Hu, Enyuan; Yang, Xiao-Qing

    2016-08-17

    Scanning transmission X-ray microscopy (STXM) using the X-ray fluorescence mode has been employed to elucidate the chemical structures at Ni, Fe, Mn and O sites from the (111) and (100) facets of micron-sized LiNi1/3Fe1/3Mn4/3O4 energy material particles. Furthermore, STXM imaging using electron yield mode has mapped out the surface conductivity of the crystalline particles. This study presents a novel approach that visualizes local element segregation, chemistry and conductivity variation among different crystal facets, which will assist further tailoring of the morphology and surface structure of this high voltage spinel lithium ion battery cathode material. PMID:27491629

  13. Phase relationships in the quaternary systems MS-Cr/sub 2/S/sub 3/-In/sub 2/S/sub 3/ (M=Mn,Fe,Co,Ni), miscibility gaps in spinel solid solutons

    SciTech Connect

    Lutz, H.D.; Jung, M.; Wussow, K.

    1986-02-01

    The phase diagrams of the quanternary systems MS-Cr/sub 2/S/sub 3/-In/sub 2/S/sub 3/ wth M=MN,Fe,Ni were studied by x-ray powder photographs of quenched samples. In the quasibinary sections MnIn/sub 2/S/sub 4/-MnCr/sub 2/S/sub 4/ and FeIn/sub 2/S/sub 4/-FeCr/sub 2/S/sub 4/, immiscibility domes exist below 800 and 850/sup 0/C, respectively. At higher temperatures complete series of spinel type solid solutions are formed, which can be quenched to ambient temperature without decomposition. In the NiIn/sub 2/S/sub 4/-NiCr/sub 2/S/sub 4/ section, spinel-type solid solutions are formed in the range from NiIn/sub 2/S/sub 4/ to NiCr/sub 1.7/In/sub 0.3/S/sub 4/ (800/sup 0/C). At lower temperatures decomposition to chromium and indium rich spinel solid solutions occurs. The phase width of Cr/sub 3/S/sub 4/ type NiCr/sub 2/S/sub 4/ is very small. The system NiCr/sub 2/S/sub 4/-In/sub 2/S/sub 3/ is similar to the NiCr/sub 2/S/sub 4/-NiIn/sub 2/S/sub 4/ system, but probably no quasibinary. The fir spectra of the NiCr/sub 2-2X/In/sub 2X/S/sub 4/ (and NiCr/sub 2-2X/Ga/sub 2X/S/sub 4/) solid solutions reveal that the hypothetical spinel NiCr/sub 2/S/sub 4/ is probably metallic. In the sections CoS-In/sub 2/S/sub 3/ and NiS-In/sub 2/S/sub 3/, spinel type solid solutions are formed in the range from In/sub 2/S/sub 3/ to MIN/sub 2/S/sub 4/. The unusually small reaction rates of the solid state equilibration reaction are discussed in terms of the Gibb's enthalpies of forming the spinel mixed crystals and the kinetic retardation of such reactions.

  14. Increasing the ordering temperatures in oxalate-based 3D chiral magnets: the series [Ir(ppy)2(bpy)][M(II)M(III)(ox)3] x 0.5 H2O (M(II)M(III) = MnCr, FeCr, CoCr, NiCr, ZnCr, MnFe, FeFe); bpy = 2,2'-bipyridine; ppy = 2-phenylpyridine; ox = oxalate dianion).

    PubMed

    Clemente-León, Miguel; Coronado, Eugenio; Gómez-García, Carlos J; Soriano-Portillo, Alejandra

    2006-07-10

    The synthesis, structure, and physical properties of a novel series of oxalate-based bimetallic magnets obtained by using the Ir(ppy)2(bpy)]+ cation as a template of the bimetallic [M(II)M(III)(ox)3]- network are reported. The compounds can be formulated as [Ir(ppy)2(bpy)][M(II)Cr(III)(ox)3] x 0.5 H2O (M(II) = Ni, Mn, Co, Fe, and Zn) and [Ir(ppy)2(bpy)]-[M(II)Fe(III)(ox)3] x 0.5 H2O (M(II) = Fe, Mn) and crystallize in the chiral cubic space group P4(1)32 or P4(3)32. They show the well-known 3D chiral structure formed by M(II) and M(III) ions connected through oxalate anions with [Ir(ppy)2(bpy)]+ cations and water molecules in the holes left by the oxalate network. The M(II)Cr(III) compounds behave as soft ferromagnets with ordering temperatures up to 13 K, while the Mn(II)Fe(III) and Fe(II)Fe(III) compounds behave as a weak ferromagnet and a ferrimagnet, respectively, with ordering temperatures of 31 and 28 K. These values represent the highest ordering temperatures so far reported in the family of 3D chiral magnets based on bimetallic oxalate complexes. PMID:16813431

  15. Substitution effect on magnetic and electrical properties of half-Heusler alloy Ni{sub 1−x}Co{sub x}Mn{sub 1−y}Fe{sub y}Sb

    SciTech Connect

    Kushwaha, Varun Sharma, Himanshu Dixit, Dinesh Tomy, C. V.; Tulapurkar, Ashwin

    2014-04-24

    We have studied the effects of Co and Fe doping on the magnetic and electrical properties of half-Heusler compound NiMnSb. The alloys were prepared by arc-melting method in the presence of Argon gas. The powder X-ray diffraction of the each alloy was performed in air at room temperature. The magnetic and electrical properties were performed in the temperature range 2–400 K and in magnetic field up to 1 T.

  16. DC-Bias-Superposition Characteristics of Ni0.4Zn0.2Mn0.4Fe2O4 Nanopowders Synthesized by Auto-Combustion.

    PubMed

    Sadhana, K; Sandhya, R; Praveena, K

    2015-06-01

    Ni0.4Zn0.2Mn0.4Fe2O4 nanopowders were prepared by auto-combustion method. The as-synthesized powders were characterized using X-ray diffraction (XRD) and thermo-gravimetric-differential thermal analysis (TG-DTA), and the powders were densified at different temperatures 400 degrees C, 500 degrees C, 600 degrees C and 700 degrees C/4 hrs using conventional sintering method. The sintered samples were characterized by XRD and transmission electron microscope (TEM). The bulk densities of the samples were increased with an increase of sintering temperature. The grain sizes of all the samples vary in between 18 nm to 30 nm. The hysteresis loops show high saturation magnetization and low coercivity, indicates that it is a soft material. The incremental permeability (permeability with magnetic field superposition) was influenced by both ΔM and H(c). A sample with higher initial permeability and favoured the attainment of a higher incremental permeability. The Q-factor was mainly determined by the sintered density and microstructure. To summarize, a uniform and dense microstructure with relatively small average grain size is favourable for obtaining better dc-bias-superposition characteristics, including permeability and Q-factor. PMID:26369079

  17. Electron capture of strongly screening nuclides 56Fe, 56Co, 56Ni, 56Mn,56Cr and 56V in pre-supernovae

    NASA Astrophysics Data System (ADS)

    Liu, Jing-Jing

    2013-08-01

    According to the shell-model Monte Carlo method, based on the random-phase approximation and linear response theory, we carried out an estimation of electron capture (EC) of the strongly screening nuclides 56Fe, 56Co, 56Ni, 56Mn,56Cr and 56V during strong electron screening (SES) in pre-supernovae. The EC rates are decreased greatly and may even exceed 21.5 per cent in the case of SES. We also compare our results with those calculated by the method of Aufderheide in the case of SES. Our results agree reasonably well with those of Aufderheide in higher density and temperature surroundings (e.g. ρ7 > 60, T9 = 15.40) and the maximum error is ˜0.5 per cent. However, the maximum error is ˜13.0 per cent in lower density surroundings (e.g. 56Cr at ρ7 = 10, T9 = 15.40, Ye = 0.41). We also compared our results for SES with those of Fuller, Fowler & Newman and Nabi, which apply to a case without SES. The comparisons show that our results are lower than those of Fuller, Fowler & Newman by more than one order of magnitude and about 7.23 per cent lower than those of Nabi.

  18. Studies on some salicylaldehyde Schiff base derivatives and their complexes with Cr(III), Mn(II), Fe(III), Ni(II) and Cu(II).

    PubMed

    Abdel-Latif, S A; Hassib, H B; Issa, Y M

    2007-07-01

    The formation constants of some transition metal ions Cr(III), Mn(II), Fe(III), Ni(II) and Cu(II) binary complexes containing Schiff bases resulting from condensation of salicylaldehyde with aniline (I), 2-aminopyridine (II), 4-aminopyridine (III) and 2-aminopyrimidine (IV) were determined pH-metrically in ethanolic medium (80%, v/v). The formation constants were determined for all binary complexes. The important infrared (IR) spectral bands corresponding to the active groups in the four ligands and the solid complexes under investigation were studied. The solid complexes have been synthesized and studied by thermogravimetric analysis. The thermal dehydration and decomposition of these complexes were studied kinetically using the integral method applying the Coats-Redfern equation. It was found that the thermal decomposition of the complexes follow second order kinetics. The thermodynamic parameters of the decomposition are also reported. The electronic absorption spectra of the investigated ligands were carried out to determine the pK(a) values spectrophotometrically. PMID:17084104

  19. Studies on some salicylaldehyde Schiff base derivatives and their complexes with Cr(III), Mn(II), Fe(III), Ni(II) and Cu(II)

    NASA Astrophysics Data System (ADS)

    Abdel-Latif, S. A.; Hassib, H. B.; Issa, Y. M.

    2007-07-01

    The formation constants of some transition metal ions Cr(III), Mn(II), Fe(III), Ni(II) and Cu(II) binary complexes containing Schiff bases resulting from condensation of salicylaldehyde with aniline (I), 2-aminopyridine (II), 4-aminopyridine (III) and 2-aminopyrimidine (IV) were determined pH-metrically in ethanolic medium (80%, v/v). The formation constants were determined for all binary complexes. The important infrared (IR) spectral bands corresponding to the active groups in the four ligands and the solid complexes under investigation were studied. The solid complexes have been synthesized and studied by thermogravimetric analysis. The thermal dehydration and decomposition of these complexes were studied kinetically using the integral method applying the Coats-Redfern equation. It was found that the thermal decomposition of the complexes follow second order kinetics. The thermodynamic parameters of the decomposition are also reported. The electronic absorption spectra of the investigated ligands were carried out to determine the p Ka values spectrophotometrically.

  20. Dimensionally modulated, single-crystalline LiMPO4 (M= Mn, Fe, Co, and Ni) with nano-thumblike shapes for high-power energy storage.

    PubMed

    Vadivel Murugan, A; Muraliganth, T; Ferreira, P J; Manthiram, A

    2009-02-01

    We demonstrate an efficient and rapid microwave irradiated solvothermal method to prepare nanostructured lithium metal phosphates LiMPO(4) (M = Mn, Fe, Co, and Ni) within a short reaction time (5-15 min) at temperatures as low as 300 degrees C without requiring any post annealing at elevated temperatures. The highly viscous, high-boiling tetraethyleneglycol used as the solvent not only provides a reducing atmosphere to prevent the oxidation of M(2+) to M(3+) but also inhibits the agglomeration of the nanoparticles formed. The enhanced reaction rates facilitated by the dielectric volumetric heating of the microwave absorbing reactants led to the formation of highly crystalline, phase-pure LiMPO(4) powders. The samples are characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy (TEM), and electrochemical measurements in lithium cells. High-resolution TEM studies reveal the formation of single-crystalline LiMPO(4) with nano-thumblike shapes. The dimensionally modulated nano-thumblike shapes with the lithium diffusion direction (b axis) along the shorter dimension are particularly beneficial to achieve high-power capability in lithium ion cells. Subsequent networking of the single-crystalline LiMPO(4) nano-thumps with multiwalled carbon nanotubes by a simple solution-based mixing at ambient temperatures to overcome the electronic conductivity limitations offers excellent electrochemical performance in lithium ion cells. PMID:19125669

  1. Nonequilibrium grain-boundary segregation and ductile-brittle-ductile transition in Fe-Mn-Ni-Ti age-hardening alloy

    SciTech Connect

    Heo, N.H.

    1996-10-01

    Nonequilibrium segregation kinetics of alloying elements and a ductile-brittle-ductile transition behavior have been investigated in an Fe-8.4Mn-7.4Ni-1.7Ti alloy. The alloy experienced a ductile-brittle-ductile (DBD) transition during isothermal aging. In the brittle region, the alloy showed a decrease in intergranular fracture strength and a subsequent increase with aging time. This is due to the segregation of titanium to the grain boundaries and its desegregation into the matrix. The intergranular fracture strength was higher on the zero tensile elongation finish curve than on the start curve. This is because the grain-boundary segregation level of titanium is relatively lower on the finish curve. The lowest intergranular fracture strength increased with increasing aging temperature, which was attributed to a lower grain-boundary segregation level of titanium at higher temperature. Manganese caused an overall reduction in intergranular fracture strength and, as a result, the delayed occurrence of the zero tensile elongation (ZTE) finish curve in a temperature and long-time plot.

  2. Density functional theory based comparative study of electronic structures and magnetic properties of spinel ACr2O4 (A  =  Mn, Fe, Co, Ni) compounds

    NASA Astrophysics Data System (ADS)

    Das, Debashish; Ghosh, Subhradip

    2015-10-01

    Using the DFT+U method and generalized gradient approximation (GGA) we perform the first systematic study of the chromite series ACr2O4 (A  =  Mn, Fe, Co, Ni) by computing their structural and magnetic properties. The results are analyzed by their electronic structures. We find that in spite of varying structural distortions, the electronic structures are very similar across the series. Such similarities are responsible for qualitative uniformities in their magnetic phases at low temperatures, as observed in the experiments. We find that the strong electron-electron correlation, along with competing magnetic exchange splitting and the crystal field splitting, are responsible for their electronic properties such as the electronic band gaps. Our results regarding the magnetic exchange parameters are in good agreement with the available results and show the relative importance of the pairwise exchange interactions in each of the compounds. The ground state magnetic spin structures and the ferrimagnetic transition temperatures obtained from these exchange parameters, in combination with a phenomenological theory, qualitatively agree with the experiments and other theoretical results.

  3. DFT +DMFT calculation of band gaps for the transition metal monoxides NiO, CoO, FeO and MnO

    NASA Astrophysics Data System (ADS)

    Zhang, Long; Staar, Peter; Kozhevnikov, Anton; Schulthess, Thomas; Cheng, Hai-Ping

    We report calculated spectral functions of the four late transition metal monoxides MnO, FeO, CoO and NiO in the paramagnetic phase. We used density functional theory (DFT) in combination with dynamic mean field theory (DMFT), which gives much better description of band gaps. Both projected Wannier orbitals and the on-site screened Coulomb interactions are obtained from DFT ground states to ensure consistency. Because of the p-d hybridization in these materials, we calculated Coulomb interactions for the dp model as well as the d-dp model using the cRPA method. With the standard fully localized limit double counting correction, we found that the d-dp model gives results in better agreement with experiments. This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences (BES), under Contract No. DE-FG02-02ER45995. Supported by the US Department of Energy (DOE), Office of Basic Energy Sciences (BES), under Contract No. DE-FG02-02ER45995.

  4. In quest of cathode materials for Ca ion batteries: the CaMO3 perovskites (M = Mo, Cr, Mn, Fe, Co, and Ni).

    PubMed

    Arroyo-de Dompablo, M E; Krich, C; Nava-Avendaño, J; Palacín, M R; Bardé, F

    2016-07-20

    Basic electrochemical characteristics of CaMO3 perovskites (M = Mo, Cr, Mn, Fe, Co, and Ni) as cathode materials for Ca ion batteries are investigated using first principles calculations at the Density Functional Theory level (DFT). Calculations have been performed within the Generalized Gradient Approximation (GGA) and GGA+U methodologies, and considering cubic and orthorhombic perovskite structures for CaxMO3 (x = 0, 0.25, 0.5, 0.75 and 1). The analysis of the calculated voltage-composition profile and volume variations identifies CaMoO3 as the most promising perovskite compound. It combines good electronic conductivity, moderate crystal structure modifications, and activity in the 2-3 V region with several intermediate CaxMoO3 phases. However, we found too large barriers for Ca diffusion (around 2 eV) which are inherent to the perovskite structure. The CaMoO3 perovskite was synthesized, characterized and electrochemically tested, and results confirmed the predicted trends. PMID:27398629

  5. Brillouin Light Scattering study of the rotatable magnetic anisotropy in exchange biased bilayers of Ni81 Fe19 Ir20 Mn80

    NASA Astrophysics Data System (ADS)

    Rodríguez, Roberto; Oliveira, Alexandre; Estrada, Francisco; Santos, Obed; Azevedo, Antonio; Rezende, Sergio

    It is known that when a ferromagnet (FM) is in atomic contact with an antiferromagnet (AF) the exchange coupling between the FM and AF spins at the interface induces a unidirectional anisotropy in the ferromagnetic film. This effect is known as exchange bias (EB). Despite the large amount of research on this topic there are still several aspects of the EB mechanism that are not well understood. One of this aspects is the origin of the rotatable anisotropy in polycrystalline AFs. By means of Brillouin Light Scattering (BLS) measurements, we investigated the dependence of the rotatable anisotropy field HRA and exchange field HE with the magnitude of the external magnetic field (Ho) in FM/AM bilayers of Ni81Fe19(10nm)/Ir20Mn80(tAF) . We developed an algorithm to numerically fit the in-plane angular dependence of the magnon frequency, at a fixed value of Ho measured by BLS. From the fit parameters we were able to investigate HRA and HE dependency on Ho. The results reveal that HRA value depends on Ho, so we argue that AF grain distribution at the interface is partially modified by the applied field strength. Contrary to this, the relation between HE and Ho is not straightforward, remaining constant at high values of Ho.

  6. Microstructural evolution under high flux irradiation of dilute Fe CuNiMnSi alloys studied by an atomic kinetic Monte Carlo model accounting for both vacancies and self interstitials

    NASA Astrophysics Data System (ADS)

    Vincent, E.; Becquart, C. S.; Domain, C.

    2008-12-01

    Under neutron irradiation, a large amount of point defects (vacancies and interstitials) are created. In the irradiated pressure vessel steels, weakly alloyed, these point defects are responsible for the diffusion of the solute atoms, leading to the formation of solute rich precipitates within the matrix. Ab initio calculations based on the density functional theory have been performed to determine the interactions of point defects with solute atoms in dilute FeX alloys (X = Cu, Mn, Ni or Si). For Mn, the results of these calculations lead to think that solute transport in α-Fe can very likely take place through an interstitial mechanism as well as via vacancies while the other solutes (Cu, Ni and Si) which establish strong bonds with vacancies diffuse more likely via vacancies only. The database thus created has been used to parameterize an atomic kinetic Monte Carlo model taking into account both vacancies and interstitials. Some results of irradiation damage in dilute Fe-CuNiMnSi alloys obtained with this model will be presented.

  7. Electron-impact excitation of H-like Cr, Mn, Fe, Co, and Ni for applications in modeling X-ray astrophysical sources

    NASA Astrophysics Data System (ADS)

    Malespin, C.; Ballance, C. P.; Pindzola, M. S.; Witthoeft, M. C.; Kallman, T. R.; Loch, S. D.

    2011-02-01

    Context. Accurate atomic data for the less abundance Fe-peak elements are required for use in X-ray astrophysical studies. Aims: We calculate high quality electron-impact excitation collision strengths and effective collision strengths for hydrogenic Cr, Mn, Fe, Co, and Ni. Methods: We use the Dirac R-matrix method, the intermediate coupling frame transformation R-matrix method, the semi-relativistic distorted-wave method and the fully-relativistic distorted-wave method to calculate collision strengths for each of the ions. The ADAS collisional-radiative codes are used to produce photon emissivity coefficients for each ion. Results: Results are presented for atomic energy levels, spontaneous emission coefficients, electron-impact excitation collision strengths and associated effective collision strengths for each of the five species under consideration. We find relativistic effects can contribute an approximate 10% increase to the background cross section in relation to semi-relativistic collision calculations. We also confirm that radiation damping plays a prominent role for certain near threshold resonances. In order check the integration of our results within collisional-radiative modeling codes, we have used the ADAS package for some preliminary modeling of photon emissivities. The atomic data shall be made available online through the OPEN-ADAS site and the CFADC database Final datasets for each ion are only available in electronic form at CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/526/A115

  8. Multiferroic tunnel junction of Ni50.3Mn36.9Sb12.8/BiFeO3/Ni50.3Mn36.9Sb12.8 for magneto-electric random access memory devices

    NASA Astrophysics Data System (ADS)

    Barman, Rahul; Kaur, Davinder

    2016-02-01

    A multiferroic tunnel junction composed of two ferromagnetic shape memory alloy electrodes separated by a multiferroic barrier was fabricated from a Ni50.3Mn36.9Sb12.8/BiFeO3/Ni50.3Mn36.9Sb12.8 trilayer. A large exchange bias field (HEB) of ˜59 Oe at room temperature was found for this trilayer. Besides the exchange bias effect in this multiferroic tunnel junction, one of the most interesting results was the magnetoelectric effect, which is manifested by the transfer of strain from the Ni50.3Mn36.9Sb12.8 electrodes to the BiFeO3 tunnel barrier. The magnetic field dependence of the junction resistance was observed at room temperature after aligning the ferroelectric polarization of the BiFeO3 barrier with the poling voltage of ±3 V. A change in junction resistance was also observed between the magnetic parallel and antiparallel states of the electrodes, suggesting an entire flip of the magnetic domains against the magnetic field. After reversing the polarization of the BiFeO3 barrier between the two directions, the entire R-H curve was shifted so that both parallel and antiparallel resistances switched to different values. Hence, after applying positive and negative voltages, two parallel and two antiparallel states, i.e., four distinct states were observed. These four states will encode quaternary information by both ferromagnetic and ferroelectric order-parameters, to read non-destructively by resistance measurement. These findings may be helpful towards reconfigurable logic spintronics architectures in next generation magneto-electric random access memory devices.

  9. Fieldlike spin-orbit torque in ultrathin polycrystalline FeMn films

    NASA Astrophysics Data System (ADS)

    Yang, Yumeng; Xu, Yanjun; Zhang, Xiaoshan; Wang, Ying; Zhang, Shufeng; Li, Run-Wei; Mirshekarloo, Meysam Sharifzadeh; Yao, Kui; Wu, Yihong

    2016-03-01

    Fieldlike spin-orbit torque in FeMn/Pt bilayers with ultrathin polycrystalline FeMn has been characterized through planar Hall effect measurements. A large effective field of 2.05 ×10-5 to 2.44 ×10-5Oe (A-1cm2) is obtained for FeMn in the thickness range of 2-5 nm. The experimental observations can be reasonably accounted for by using a macrospin model under the assumption that the FeMn layer is composed of two spin sublattices with unequal magnetizations. The large effective field corroborates the spin Hall origin of the effective field, considering the much smaller uncompensated net moments in FeMn as compared to NiFe. The effective absorption of spin current by FeMn is further confirmed by the fact that spin current generated by Pt in NiFe/FeMn/Pt trilayers can only travel through the FeMn layer with a thickness of 1-4 nm. By quantifying the fieldlike effective field induced in NiFe, a spin diffusion length of 2 nm is estimated in FeMn, consistent with values reported in the literature by ferromagnetic resonance and spin-pumping experiments.

  10. Theoretical insights into the origin of magnetic exchange and magnetic anisotropy in {Re(IV)-M(II)} (M = Mn, Fe, Co, Ni and Cu) single chain magnets.

    PubMed

    Singh, Saurabh Kumar; Vignesh, Kuduva R; Archana, Velloth; Rajaraman, Gopalan

    2016-05-10

    Density functional calculations have been performed on a series of {Re(IV)-M(II)} (M = Mn(), Fe(), Co(), Ni(), Cu()) complexes to compute the magnetic exchange interaction between the Re(IV) and M(II) ions, and understand the mechanism of magnetic coupling in this series. DFT calculations yield J values of -5.54 cm(-1), +0.44 cm(-1), +10.5 cm(-1), +4.54 cm(-1) and +19 cm(-1) for complexes respectively, and these estimates are in general agreement with the experimental reports. Using molecular orbital (MO) and overlap integral analysis, we have established a mechanism of coupling for a {3d-5d} pair and the proposed mechanism rationalises both the sign and the magnitude of J values observed in this series. Our proposed mechanism of coupling has five contributing factors: (i) (Re)dyz-dyz(3d) overlap, (ii) (Re)dxz-dxz(3d) overlap, (iii) (Re)dxy-dxy(3d) overlap, (iv) (Re)eg-t2g(3d) overlaps and (v) (Re)eg-eg(3d) overlaps. Here, the first two terms are found to contribute to the antiferromagnetic part of the exchange, while the other three contribute to the ferromagnetic part. The last two terms correspond to the cross-interactions and also contribute to the ferromagnetic part of the exchange. A record high ferromagnetic J value observed for the {Re(IV)-Cu(II)} pair in complex is found to be due to a significant cross interaction between the dz(2) orbital of the Re(IV) ion and the dx(2)-y(2) orbital of the Cu(ii) ion. Magneto-structural correlations are developed for Re-C and M-N bond lengths and Re-C-N and M-N-C bond angles. Among the developed correlations, the M-N-C bond angle is found to be the most sensitive parameter which influences the sign and strength of J values in this series. The J values are found to be more positive (or less negative) as the angle increases, indicating stronger ferromagnetic coupling at linear M-N-C angles. Apart from the magnetic exchange interaction, we have also estimated the magnetic anisotropy of [ReCl4(CN)2](2-) and [(DMF)4(CN

  11. Electronic structure and magnetic properties of LiMn{sub 1.5}M{sub 0.5}O{sub 4} (M=Al, Mg, Ni, Fe) and LiMn{sub 2}O{sub 4}/TiO{sub 2} nanocrystalline electrode materials

    SciTech Connect

    Talik, E.; Lipińska, L.; Zajdel, P.; Załóg, A.; Michalska, M.; Guzik, A.

    2013-10-15

    The process of sol–gel synthesis was applied to obtain LiMn{sub 1.5}M{sub 0.5}O{sub 4} (M=Al, Mg, Ni, Fe) and LiMn{sub 2}O{sub 4}/TiO{sub 2} nanopowders. The samples were characterized by following methods: X-ray diffraction (XRD), scanning electron microscopy (SEM/EDX), X-ray photoelectron spectroscopy (XPS) and SQUID magnetometry. XPS was used to examine the chemical composition and oxidation state of manganese, in particular the Mn{sup 3+}/Mn{sup 4+} ratio from the deconvolution of the complex Mn3p lines. The size of the grains and crystallites were independently obtained from SEM images and XRD patterns, respectively. In all the cases a critical interplay of electronic (Mn{sup 3+}/Mn{sup 4+} ratio), structural (unit cell volume) and magnetic properties was observed depending on the synthesis process. - Graphical abstract: SEM image of Li{sub 0.79}Ni{sub 0.41}Mn{sub 1.35}O{sub 4.45} sample. Display Omitted - Highlights: • LiMn{sub 1.5}M{sub 0.5}O{sub 4} (M=Al, Mg, Ni, Fe) and LiMn{sub 2}O{sub 4}/TiO{sub 2} obtained by sol–gel method. • XRD method was used to determine the crystal structure. • SEM/EDX imaging have been done. • XPS electronic structure was examined and discussed. • Experimental effective magnetic moment and the calculated one were compared.

  12. Magnetic and structural relationship of RFe2Si2 and R(Fe(1-x)M(x))2Si2(x = 0-1) systems (R = La, Y and Lu, M = Ni, Mn and Cu).

    PubMed

    Felner, I; Lv, Bing; Chu, C W

    2014-11-26

    Due to the similarity between AFe(2)As(2) (A = Ba, Sr) and RFe(2)Si(2) (R = La, Y and Lu), the RFe(2)Si(2) system has been proposed as a potential candidate for a new high TC superconducting family containing Fe-Si (instead of Fe-As) layers as a structural unit. Various R (Fe(1-x)M(x))2 Si(2) (M = Ni and Cu) materials were synthesized and measured for their magnetic properties. None of these materials is superconducting down to 1.8 K. A pronounced peak at 232 K was observed in the magnetization curve of YFe(2)Si(2). (57)Fe Mössbauer studies confirm the absence of any long-range magnetic ordering below 232 K. Similar peaks at various temperatures also appear in R (Fe(1-x)M(x))2 Si2 samples. For Y (Fe(1-x)Mn(x))2 Si(2) the peak position is dramatically affected by the magnetic Mn dopants. Four independent factors affect the peak position and shift it to lower temperatures: (i) the lattice parameters, (ii) the concentration of x (iii) the applied magnetic field and (iv) the magnetic nature of M. It is proposed that the magnetic peaks observed in RFe(2)Si(2) and in R (Fe(1-x)M(x))2 Si(2) represent a new nearly ferromagnetic Fermi liquid system, its nature is yet to be determined. PMID:25345499

  13. Magnetic and microwave properties of CoFe/PtMn/CoFe multilayer films

    NASA Astrophysics Data System (ADS)

    Pettiford, C. I.; Zeltser, A.; Yoon, S. D.; Harri, V. G.; Vittoria, C.; Sun, N. X.

    2006-04-01

    CoFe/PtMn/CoFe films were deposited on seed layers of Ru or NiFeCr with CoFe film compositions being either Co-10 at. %Fe or Co-16 at. %Fe. Eight periods of the CoFe/PtMn/CoFe trilayers were also prepared. The magnetic properties and ferromagnetic resonance (FMR) of these films were characterized with vibrating-sample magnetometer, and field-sweep FMR system at X band (~9.5 GHz). The Ru-seeded CoFe/PtMn/CoFe sandwich films show excellent magnetic softness with a low hard axis coercivity of 2-4 Oe, an easy axis Mr/Ms of >98%, and a significantly enhanced in-plane anisotropy of 57-123 Oe when CoFe layer thickness is above 200 A˚. Contrary to what was observed in the ferromagnetic/antiferromagnetic bilayer systems that have reduced FMR linewidth with the increase of film thickness, the CoFe/PtMn/CoFe trilayers with Ru seed layer show a minimum FMR linewidth of 45 Oe at an intermediate CoFe layer thickness of 300 A˚ at ~9.5 GHz.

  14. Structure change associated with the [M(II/III) 1,4,7-triazacyclononane-N,N',N''-triacetate (TCTA)](-/0) electron transfers (M = Mn, Fe, and Ni): crystal structure for [Fe(II)(H2O)6][Fe(II)(TCTA)]2.

    PubMed

    Hatfield, Thomas L; Staples, Richard J; Pierce, David T

    2010-10-18

    Heterogeneous electron-transfer rate measurements using the scanning electrochemical microscope are reported for the [M(TCTA)](-/0) couples (M = Mn, Fe, and Ni) in aqueous solution. Solution IR spectroscopy indicates that N(3)O(3) coordination is preserved for each couple within the pH range of 2-4, and susceptibility measurements indicate little or no interference from spin-state changes at room temperature. Marcus-Hush expressions were used to quantitatively relate structural differences between oxidation states to measured standard heterogeneous electron-transfer rate constants. Good correlation was obtained for the Fe couple, and structural changes associated with the Mn and Ni couples were estimated. In addition, the structure of the Fe(II) complex was determined by X-ray crystallography. The molecule [Fe(H(2)O)(6)][Fe(TCTA)](2) is trigonal, space group P3(1)/c (no. 159) with a = b = 12.530(3) Å, c = 12.656(4) Å, and Z = 2. A notable feature of the structure is that the [Fe(TCTA)](-) complex is distributed between two different geometries, one being rigorously trigonal prismatic and the other having a 26° antiprismatic twist. PMID:20866086

  15. Planar Hall effect bridge sensors with NiFe/Cu/IrMn stack optimized for self-field magnetic bead detection

    NASA Astrophysics Data System (ADS)

    Henriksen, Anders Dahl; Rizzi, Giovanni; Hansen, Mikkel Fougt

    2016-03-01

    The stack composition in trilayer Planar Hall effect bridge sensors is investigated experimentally to identify the optimal stack for magnetic bead detection using the sensor self-field. The sensors were fabricated using exchange-biased stacks Ni80Fe20(tFM)/Cu(tCu)/Mn80Ir20(10 nm) with tFM = 10, 20, and 30 nm, and 0 ≤ tCu ≤ 0.6 nm. The sensors were characterized by magnetic hysteresis measurements, by measurements of the sensor response vs. applied field, and by measurements of the sensor response to a suspension of magnetic beads magnetized by the sensor self-field due to the sensor bias current. The exchange bias field was found to decay exponentially with tCu and inversely with tFM. The reduced exchange field for larger values of tFM and tCu resulted in higher sensitivities to both magnetic fields and magnetic beads. We argue that the maximum magnetic bead signal is limited by Joule heating of the sensors and, thus, that the magnetic stacks should be compared at constant power consumption. For a fixed sensor geometry, the figure of merit for this comparison is the magnetic field sensitivity normalized by the sensor bias voltage. In this regard, we found that sensors with tFM = 20 nm or 30 nm outperformed those with tFM = 10 nm by a factor of approximately two, because the latter have a reduced AMR ratio. Further, the optimum layer thicknesses, tCu ≈ 0.6 nm and tFM = 20-30 nm, gave a 90% higher signal compared to the corresponding sensors with tCu = 0 nm.

  16. Comprehensive study of carbon dioxide adsorption in the metal–organic frameworks M₂(dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn)

    SciTech Connect

    Queen, Wendy L.; Hudson, Matthew R.; Bloch, Eric D.; Mason, Jarad A.; Gonzalez, Miguel I.; Lee, Jason S.; Gygi, David; Howe, Joshua D.; Lee, Kyuho; Darwish, Tamim A.; James, Michael; Peterson, Vanessa K.; Teat, Simon J.; Smit, Berend; Neaton, Jeffrey B.; Long, Jeffrey R.; Brown, Craig M.

    2014-01-01

    Analysis of the CO₂ adsorption properties of a well-known series of metal–organic frameworks M₂(dobdc) (dobdc⁴⁻ = 2,5-dioxido-1,4-benzenedicarboxylate; M = Mg, Mn, Fe, Co, Ni, Cu, and Zn) is carried out in tandem with in situ structural studies to identify the host–guest interactions that lead to significant differences in isosteric heats of CO₂ adsorption. Neutron and X-ray powder diffraction and single crystal X-ray diffraction experiments are used to unveil the site-specific binding properties of CO₂ within many of these materials while systematically varying both the amount of CO₂ and the temperature. Unlike previous studies, we show that CO₂ adsorbed at the metal cations exhibits intramolecular angles with minimal deviations from 180°, a finding that indicates a strongly electrostatic and physisorptive interaction with the framework surface and sheds more light on the ongoing discussion regarding whether CO₂ adsorbs in a linear or nonlinear geometry. This has important implications for proposals that have been made to utilize these materials for the activation and chemical conversion of CO₂. For the weaker CO₂ adsorbents, significant elongation of the metal–O(CO₂) distances are observed and diffraction experiments additionally reveal that secondary CO₂ adsorption sites, while likely stabilized by the population of the primary adsorption sites, significantly contribute to adsorption behavior at ambient temperature. Density functional theory calculations including van der Waals dispersion quantitatively corroborate and rationalize observations regarding intramolecular CO₂ angles and trends in relative geometric properties and heats of adsorption in the M₂(dobdc)–CO₂ adducts.

  17. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy

    SciTech Connect

    Otto, Frederik; Dlouhy, A.; Somsen, Ch.; Bei, Hongbin; Eggeler, G.; George, Easo P

    2013-01-01

    An equiatomic CoCrFeMnNi high-entropy alloy, which crystallizes in the face-centered cubic (FCC) crystal structure, was produced by arc melting and drop casting. The drop-cast ingots were homogenized, cold rolled, and recrystallized to obtain single-phase microstructures with three different grain sizes in the range 4~160 m. Quasi-static tensile tests were then performed at temperatures between 77 and 1073 K. Yield strength, ultimate tensile strength and ductility all increased with decreasing temperature. During the initial stages of plasticity (up to ~2% strain), deformation occurs by planar dislocation glide on the normal FCC slip system {111} 110 at all temperatures and grain sizes investigated. Undissociated 1/2 110 dislocations were observed, as were numerous stacking faults, which imply the dissociation of several of these dislocations into 1/6 112 Shockley partials. At later stages ( 20% strain), nanoscale deformation twins were observed after interrupted tests at 77 K, but not in specimens tested at room temperature where plasticity occurred exclusively by dislocations which organized into cells. Deformation twinning, by continually decreasing the mean free path of dislocations during tensile testing, produces a high degree of work hardening and a significant increase in the ultimate tensile strength. This increased work hardening prevents the early onset of necking instability and is a reason for the enhanced ductility observed at 77 K. A second way in which twinning can contribute to ductility is by providing an additional deformation mode to accommodate plasticity. However, it cannot explain the increase in yield strength with decreasing temperature in our high-entropy alloy since twinning was not observed in the early stages of plastic deformation. Since strong temperature dependencies of yield strength are also seen in binary FCC solid solution alloys, it may be an inherent solute effect, which needs further study.

  18. Magnetic anisotropy of Fe{sub 1−y}X{sub y}Pt-L1{sub 0} [X = Cr, Mn, Co, Ni, Cu] bulk alloys

    SciTech Connect

    Cuadrado, R.; Chantrell, R. W.; Klemmer, Timothy J.

    2014-10-13

    We demonstrate by means of fully relativistic first principles calculations that, by substitution of Fe by Cr, Mn, Co, Ni, or Cu in FePt-L1{sub 0} bulk alloys, with fixed Pt content, it is possible to tune the magnetocrystalline anisotropy energy by adjusting the content of the non-magnetic species in the material. The changes in the geometry due to the inclusion of each element induces different values of the tetragonality and hence changes in the magnetic anisotropy and in the net magnetic moment. The site resolved magnetic moments of Fe increase with the X content while those of Pt and X are simultaneously reduced. The calculations are in good quantitative agreement with experimental data and demonstrate that models with fixed band structure but varying numbers of electrons per unit cell are insufficient to describe the experimental data for doped FePt-L1{sub 0} alloys.

  19. Ab initio GGA+U study of oxygen evolution and oxygen reduction electrocatalysis on the (001) surfaces of lanthanum transition metal perovskites LaBO₃ (B = Cr, Mn, Fe, Co and Ni).

    PubMed

    Lee, Yueh-Lin; Gadre, Milind J; Shao-Horn, Yang; Morgan, Dane

    2015-09-01

    In this work, we performed density functional theory (DFT) calculations with inclusion of Hubbard U corrections for the transition metal d-electrons, to investigate stability and electrocatalytic activities of the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) for the ABO3 (A = La; B = Cr, Mn, Fe, Co, and Ni) (001) surfaces. We showed surface binding energies of relevant ORR/OER species are coupled strongly to surface polarity and local oxidation states, giving large (∼1 eV scale per adsorbate) differences in binding between (001) AO and BO2 surfaces, where the more oxidized BO2 bare surfaces in general exhibit weak coverage dependence, while the more reduced AO bare surfaces of the LaCrO3, LaMnO3, and LaFeO3 perovskites with lower d-electron filling show strong/moderate coverage dependences. We then predicted that surface coverage can play a key role in determining surface stability, and when coverage effects are included the AO and BO2(001) surfaces have either similar stability or the AO surface is more stable, as found for 1 monolayer HO* covered AO surfaces of LaCrO3 and LaFeO3 under ORR conditions and 1 monolayer O* covered LaNiO3 AO surface under OER conditions. For the (001) AO surfaces with strong coverage dependent surface adsorption, we predicted a decrease in ORR overpotential of 1-2 V with proper treatment of coverage effects as compared to those of the bare surface simulations. Our results indicated that the GGA+U method and proper treatment of coverage effects more accurately predict ORR and OER overpotentials relative to experimental values as compared to the GGA method and bare surfaces. The overall ORR activity trends vs. the LaBO3 series were predicted to be Co > MnNi > Fe > Cr. PMID:26227442

  20. Diffuse Dielectric Anomalies in (x).Bi0.95Mn0.05FeO3-(1-x).Ni0.5Zn0.5Fe2O4 multiferroic composites

    NASA Astrophysics Data System (ADS)

    Dhanalakshmi, B.; Pratap, K.; Parvatheeswara Rao, B.; Subba Rao, P. S. V.

    2016-04-01

    Multiferroic composites of x.Bi0.95Mn0.05FeO3-(1-x).Ni0.5Zn0.5Fe2O4, where x takes the values of 0, 0.2, 0.4, 0.5, 0.6, 0.8 and 1, have been prepared by combining sol-gel autocombustion and solid state methods. XRD and SEM-EDX measurements on the samples were used to evaluate the structural analysis. Dielectric properties of the composites have been studied as a function of frequency (1 Hz-1 MHz) and temperature (50-350 °C). Two diffuse dielectric anomalies were observed, one at around 100-150 °C and the other at around 260-340 °C, and they were attributed to structural inhomogeneities, Bi/O vacancies and dipole induced charge carrier hopping motions at low temperatures, and to magnetic phase transitions and magneto-electric coupling at high temperatures. Electrical conductivity studies on the samples reveal that the conduction processes are frequency dependent. The results are explained in terms of obtaining a correlation between the structure, chemical modifications and the possible interplay between the obtained parameters of the composites.

  1. Flavonolate complexes of M(II) (M = Mn, Fe, Co, Ni, Cu, and Zn). Structural and functional models for the ES (enzyme-substrate) complex of quercetin 2,3-dioxygenase.

    PubMed

    Sun, Ying-Ji; Huang, Qian-Qian; Tano, Tetsuro; Itoh, Shinobu

    2013-10-01

    A series of flavonolate complexes [M(II)L(fla)] (M = Mn (1), Fe (2), Co (3), Ni (4), Cu (5), and Zn (6), LH: 2-{[bis(pyridin-2-ylmethyl)amino]methyl}benzoic acid, fla: flavonolate) have been synthesized as structural and functional models for the ES (enzyme-substrate) complexes of the active site of various M(II)-containing quercetin 2,3-dioxygenase (2,3-QD) and their structures, spectroscopic features, and redox properties, as well as the reactivity toward molecular oxygen, have been investigated. The metal centers of [Fe(II)L(fla)]·H2O (2), [Co(II)L(fla)]·CH3OH (3), and [Ni(II)L(fla)] (4) exhibit a distorted octahedral geometry with two oxygen atoms of fla, one oxygen atom of the benzoate group of ligand L, and three nitrogen atoms of ligand L, in which oxygen atom of the carbonyl group of fla and one of the pyridine nitrogen atoms occupy the axial positions. The complexes [M(II)L(fla)] exhibit relatively high reactivity in the oxidative ring-opening of the bound flavonolate at lower temperature, presumably due to the existing carboxylate group in the supporting ligand. Thus, our complexes act as good functional ES models of various metal(II)-containing 2,3-QD. In addition, complexes [Fe(II)L(fla)]·H2O (2), [Co(II)L(fla)]·CH3OH (3), and [Ni(II)L(fla)] (4) are the first structurally characterized Fe(II)-, Co(II)-, and Ni(II)-flavonolate complexes, as an active site ES model of Fe(II)-, Co(II)-, and Ni(II)-containing 2,3-QD, respectively. The model complexes exhibit notably different reactivity in the order of Fe (2) > Cu (5) > Co (3) > Ni (4) > Zn (6) > Mn (1). The differences in the reactivity among them may be attributed to the redox potential of the coordinated flavonolate of the complexes, which are remarkably influenced by the Lewis acidity of the metal ion and its coordination environment. Our study is the first example of the metal ion effects on the enzyme-like dioxygenation reactivity, providing important insights into the metal ion effects on the

  2. Characterization of DMS Zn1-xAxO (A: Fe, Ni, Co and Mn, x: 0.01, 0.02, …, 0.1) grown by ECD method

    NASA Astrophysics Data System (ADS)

    Güney, Harun; Coşkun, Cevdet; Meral, Kadem; Tatar, Demet

    2016-06-01

    Zn1-xAxO (A: Fe, Ni, Co and Mn, x: 0.01, 0.02,…, 0.1) films, grown by electrochemical deposition (ECD) on indium tin oxide (ITO) substrate, was characterized by structural, optical, electrical and magnetic techniques. Energy-Dispersive-X-Ray-Fluorescence (EDXRF) spectroscopy showed 5% dopants A. X-ray diffraction (XRD) measurements clearly showed formation of all Zn0,95A0,05O thin films with a strong c-axis (002) preferential orientation. It was calculated a hexagonal wurtzite structure with XRD results. Absorption measurements of the samples were taken about and an important variation in these measurements were not detected as depend on percentage changes of dopant A. Photoluminescence (PL) measurements showed that PL intensities increase in n-type materials, decrease in p-type materials depending upon increasing doping rate of the grown films. Atomic force microscopy (AFM) pictures of films shows that the most homogeny film is Zn0,95Co0,05O and the most roughness film Zn0,95Mn0,05O. Hall measurements showed that samples doped 5% Fe and Co within ZnO are n-type and other samples doped 5% Ni and Mn within ZnO are p-type. Magnetoresistance (MR) measurements show that all films have feature diluted magnetic semiconductor (DMS) at room temperature.

  3. Varied roles of Pb in transition-metal PbMO3 perovskites (M = Ti, V, Cr, Mn, Fe, Ni, Ru)

    NASA Astrophysics Data System (ADS)

    Goodenough, John B.; Zhou, Jianshi

    2015-06-01

    Different structural chemistries resulting from the Pb2+ lone-pair electrons in the PbMO3 perovskites are reviewed. The Pb2+ lone-pair electrons enhance the ferroelectric transition temperature in PbTiO3, stabilize vanadyl formation in PbVO3, and induce a disproportionation reaction of CrIV in PbCrO3. A Pb2+ + NiIV = Pb4+ + NiII reaction in PbNiO3 stabilizes the LiNbO3 structure at ambient pressure, but an A-site Pb4+ in an orthorhombic perovskite PbNiO3 is stabilized at modest pressures at room temperature. In PbMnO3, a ferroelectric displacement due to the lone pair electron effect is minimized by the spin-spin exchange interaction and the strong octahedral site preference of the MnIV/III cation. PbRuO3 is converted under pressure from the defective pyrochlore to the orthorhombic (Pbnm) perovskite structure where Pb-Ru interactions via a common O -2p orbital stabilize at low temperature a metallic Imma phase at ambient pressure. Above Pc ≃ ~32 GPa, a covalent Pb-Ru bond is formed by Pb2+ + RuIV = Pb4+ + RuII electron sharing.

  4. Bis(azulene) "submarine" metal dimer sandwich compounds (C10H8)2M2(M = Ti, V, Cr, Mn, Fe, Co, Ni): Parallel and opposed orientations.

    PubMed

    Wang, Hongyan; Wang, Hui; King, R Bruce; Schaefer, Henry F

    2016-01-15

    The opposed and parallel structures for the binuclear bis(azulene) "submarine" sandwiches (C10H8)2M2 (M = Ti, V, Cr, Mn, Fe, Co, Ni) have been optimized using density functional theory. The lowest energy (C10H8)2 M2 structures of the early transition metals Ti, V, Cr, and Mn have the azulene units functioning as bis(pentahapto) ligands to each metal atom similar to the azulene ligand in the long-known molybdenum carbonyl complex (η(5),η(5)-C10H8 )Mo2 (CO)6 . The metal-metal bonds in these early transition metal structures have distances and Wiberg bond indices consistent with the formal bond orders required to give each metal atom an 18-electron configuration for the singlet structures and a 17-electron configuration for the triplet structures. For the later transition metals Fe, Co, and Ni, the lowest energy (C10H8)2 M2 structures contain pentahapto-trihapto azulene ligands with an uncomplexed C=C double bond, similar to that in the long-known iron carbonyl complex (η(5),η(3)-C10H8)Fe2 (CO)5 . The parallel (η(5),η(3)-C10H8 )2M2 (M = Fe, Co, Ni) structures contain metallocene subunits with their metal atoms at long nonbonding distances of 3.5-3.9 Å from the other metal atom, which is located between the azulene C7 rings. Higher energy opposed (C10H8)2 Fe2 structures contain an unprecedented distorted η(6) ,η(4) -azulene ligand using six carbon atoms for bonding to one iron atom as a hexahapto fulvene ligand and the remaining four carbon atoms for bonding to the other iron atom as a tetrahapto diene ligand. PMID:26213099

  5. Development of High Capacity Na0.7(Ni0.4Mn0.4Co0.1Fe0.1)O2 Cathode Material for Sodium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Kant Kaithwas, Chandra; Kundu, T. K.

    2015-02-01

    Sodium ion battery (SIB) has great potential as sustainable large scale energy storage application compared to lithium-ion battery due to abundance and cost effectiveness of sodium. Na0.7(Ni0.4Mn0.4Co0.1Fe0.1)O2 as new cathode material for SIB is prepared by solid state reaction synthesis method. The structure of the new cathode material was characterized by X- ray diffraction using Co-Kα radiation. Morphologies and particle size range (0.37-1.9 microns) of the Na0.7(Ni0.4Mn0.4Co0.1Fe0.1)O2 cathode material have been identified by scanning electron microscope. Electrochemical performance of the cathode material for coin cell battery using sodium as anode and NaClO4 as electrolyte was examined in constant current mode. The material cycling performance showed very good reversibility between 2.0 - 4.3 V with reversible capacity of 202 mAh g-1 at 0.11 mA current. At C/10 reversible capacity of 191 mAh g-1 have been found. The prepared material shows considerable (40%) retention capacity after 45 cycle of charging and discharging with retention capacity of 79 mAh g-1. Electrochemical impedance spectroscopy analysis has been performed between 100 kHz to 10 mHz frequency range and after 10 cycles the resistance for grain and grain boundaries are found to be 26.20 Ω and 354.7 Ω respectively. Na0.7(Ni0.4Mn0.4Co0.1Fe0.1)O2 can be a promising cathode material for SIB as it shows very good charging and discharging characteristics with high reversible capacity.

  6. Unusual features of magnetism in transition-metal-doped phthalocyanines C32H16N8 TM (TM = Mn, Fe, Co, Ni, Cu)

    NASA Astrophysics Data System (ADS)

    Wang, Zhengjun; Seehra, Mohindar S.

    Transition-metal-doped phthalocyanines (TMPc), semiconductors with potential optoelectronic applications, are planar molecules with the TM atom at the center bound to four N atoms and forming a linear chain along the monoclinic b-axis. Because of this symmetry, the ground states of TMPc often violate the Hunds' rules; e.g. the S = 3/2 state for d5 Mn(II) in β-MnPc, S = 1/2 state for the d7 Co(II) in β-CoPc, and S =0 for Ni(II) in NiPc. The magnetic properties of TMPc are also affected by the stack angle δ between the orientation of the molecular plane and the b-axis, δ being 65°(45°) for α (β) phase. For β-CoPc, our M vs. T data fits well with the Bonner-Fisher model for S = 1/2 AFM Heisenberg linear chain yielding the Co2+-Co2+ exchange constant J/kB = - 1.5 K. For β-MnPc , a long-presumed ferromagnet with TC ~ 9 K, our magnetic studies show it to be an Ising chain magnet with Arrhenius magnetic relaxation governed by J/kB = 2.6 K and the zero-field splitting D/kB = 8.3 K. In β-MnPc, the absence of λ-type peak in specific heat and no peaks in ac susceptibilities near the quoted TC ~ 9 K confirms the absence of long range order (LRO). Instead we argue that LRO is absent in β-MnPc as D >J makes the spins in a chain parallel but canted with respect to spins in neighboring chains.

  7. Electrochemical and corrosion properties of YNi{sub 2.5}M{sub 0.5} (M = Ni, Al, Fe, Cr, Cu, Co, Mn) hybride-forming alloys

    SciTech Connect

    Korobov, I.I.; Vasina, S.Ya.; Petrii, O.A.

    1995-06-01

    Hydrogen sorption by electrode materials based on YNi{sub 2.5}M{sub 0.5} (M = Ni, Al, Fe, Cr, Co, Cu, Mn) intermetallic compounds (IMC) with Cu and PTFE binders is studied in 1 M NaOH solution. The obtained reversible electrochemical capacities correspond to YNi{sub 2.5}M{sub 0.5}H{sub 1.3-1.7} hybrides which are stable at room temperature and atmospheric pressure. The application of Cu binder allows one to more completely use the material sorption capacity and promotes both extraction and sorption of hydrogen by IMC.

  8. Study of the electronic structure of NiCl2, CoCl2, FeCl2, and MnCl2 by the intersecting-spheres model

    NASA Astrophysics Data System (ADS)

    Antoci, S.; Mihich, L.

    1980-04-01

    The self-consistent band structure of the layer crystals NiCl2, CoCl2, FeCl2, and MnCl2 has been calculated by the intersecting-spheres model, using both the Slater and the Gáspár-Kohn-Sham approximation of the exchange potential. The results of these calculations, when compared with the experimental data and with previous results obtained for MgCl2, provide a rough and qualitative but reasonable interpretation of the various x-ray and optical spectra of these materials.

  9. Crystal chemistry of M[PO{sub 2}(OH){sub 2}]{sub 2}.2H{sub 2}O compounds (M=Mg, Mn, Fe, Co, Ni, Zn, Cd): Structural investigation of the Ni, Zn and Cd salts

    SciTech Connect

    Koleva, Violeta Effenberger, Herta

    2007-03-15

    The compounds M[PO{sub 2}(OH){sub 2}]{sub 2}.2H{sub 2}O (M=Mg, Mn, Fe, Co, Ni, Zn, Cd) were prepared from super-saturated aqueous solutions at room temperature. Single-crystal X-ray structure investigations of members with M=Ni, Zn, Cd were performed at 295 and 120 K. The space-group symmetry is P2{sub 1}/n, Z=2. The unit-cell parameters are at 295/120 K for M=Ni: a=7.240(2)/7.202(2), b=9.794(2)/9.799(2), c=5.313(1)/5.285(1) A, {beta}=94.81(1)/94.38(1){sup o}, V=375.4/371.9 A{sup 3}; M=Zn: a=7.263(2)/7.221(2), b=9.893(2)/9.899(3), c=5.328(1)/5.296(2) A, {beta}=94.79(1)/94.31(2){sup o}, V=381.5/377.5 A{sup 3}; M=Cd: a=7.356(2)/7.319(2), b=10.416(2)/10.423(3), c=5.407(1)/5.371(2) A, {beta}=93.85(1)/93.30(2){sup o}, V=413.4/409.1 A{sup 3}. Layers of corner-shared MO{sub 6} octahedra and phosphate tetrahedra are linked by three of the four crystallographically different hydrogen bonds. The fourth hydrogen bond (located within the layer) is worth mentioning because of the short O{sub h}...O bond distance of 2.57-2.61 A at room temperature (2.56-2.57 A at 120 K); only for M=Mg it is increased to 2.65 A. Any marked temperature-dependent variation of the unit-cell dimension is observed only vertical to the layers. The analysis of the infrared (IR) spectroscopy data evidences that the internal PO{sub 4} vibrations are insensitive to the size and the electronic configuration of the M {sup 2+} ions. The slight strengthening of the intra-molecular P-O bonds in the Mg salt is caused by the more ionic character of the Mg-O bonds. All IR spectra exhibit the characteristic 'ABC trio' for acidic salts: 2900-3180 cm{sup -1} (A band), 2000-2450 cm{sup -1} (B band) and 1550-1750 cm{sup -1} (C band). Both the frequency and the intensity of the A band provide an evidence that the PO{sub 2}(OH){sub 2} groups in M[PO{sub 2}(OH){sub 2}]{sub 2}.2H{sub 2}O compounds form weaker hydrogen bonds as compared with other acidic salts with comparable O...O bond distances of about 2.60 A. The

  10. In situ DRIFTs investigation of the reaction mechanism over MnOx-MOy/Ce0.75Zr0.25O2 (M = Fe, Co, Ni, Cu) for the selective catalytic reduction of NOx with NH3

    NASA Astrophysics Data System (ADS)

    Hu, Hang; Zha, Kaiwen; Li, Hongrui; Shi, Liyi; Zhang, Dengsong

    2016-11-01

    A series of MnOx-MOy/Ce0.75Zr0.25O2 (M = Fe, Co, Ni, Cu) catalysts were synthesized by an impregnation method and used for selective catalytic reduction (SCR) of NOx with NH3. The catalytic performances of various MnOx-MOy/Ce0.75Zr0.25O2 catalysts were studied. It was found that MnOx-FeOy/Ce0.75Zr0.25O2 catalyst showed excellent low-temperature activity and a broad temperature window. The catalysts were characterized by N2 adsorption/desorption, X-ray diffraction, X-ray photoelectron spectroscopy and in situ diffuse reflectance infrared transform spectroscopy (DRIFTS). Characterization of the catalyst confirmed the addition of iron oxide can enhance the NO oxidation ability of the catalyst which results in the outstanding low-temperature SCR activity. Meanwhile, iron oxides were well dispersed on catalyst surface which could avoid the agglomeration of active species, contributing to the strong interaction between active species and the support. More importantly, in situ DRIFTS results confirmed that bidentate nitrates are general active species on these catalysts, whereas the reactivity of gaseous NO2 and bridged nitrates got improved because of the addition of Fe.

  11. New family of thiocyanate-bridged Re(IV)-SCN-M(II) (M = Ni, Co, Fe, and Mn) heterobimetallic compounds: synthesis, crystal structure, and magnetic properties.

    PubMed

    González, Ricardo; Acosta, Alvaro; Chiozzone, Raúl; Kremer, Carlos; Armentano, Donatella; De Munno, Giovanni; Julve, Miguel; Lloret, Francesc; Faus, Juan

    2012-05-21

    The heterobimetallic complexes of formula [(Me(2)phen)(2)M(μ-NCS)Re(NCS)(5)]·CH(3)CN [Me(2)phen = 2,9-dimethyl-1,10-phenanthroline and M = Ni (1), Co (2), Fe (3), and Mn (4)] have been prepared, and their crystal structures have been determined by X-ray diffraction on single crystals. Compounds 1-4 crystallize in the monoclinic C2/c space group, and their structure consists of neutral [(Me(2)phen)(2)M(μ-NCS)Re(NCS)(5)] heterodinuclear units with a Re-SCN-M bridge. Each Re(IV) ion in this series is six-coordinated with one sulfur and five nitrogen atoms from six thiocyanate groups building a somewhat distorted octahedral environment, whereas the M(II) metal ions are five-coordinated with four nitrogen atoms from two bidentate Me(2)phen molecules and a nitrogen atom from the bridging thiocyanate describing distorted trigonal bipyramidal surroundings. The values of the Re···M separation through the thiocyanate bridge in 1-4 vary in the range 5.903(1)-6.117(3) Å. The magnetic properties of 1-4 as well as those of the parent mononuclear Re(IV) compounds (NBu(4))(2)[Re(NCS)(6)] (A1) (NBu(4)(+) = tetra-n-butylammonium cation) and [Zn(NO(3))(Me(2)phen)(2)](2)[Re(NCS)(5)(SCN)] (A2) were investigated in the temperature range 1.9-300 K. Weak antiferromagnetic interactions between the Re(IV) and M(II) ions across the bridging thiocyanate were found in 1-4 [J = -4.3 (1), -2.4 (2), -1.8 (3), and -1.2 cm(-1) (4), the Hamiltonian being defined as Ĥ = -JŜ(Re)·Ŝ(M)]. The magnetic behavior of A2 is that of a magnetically diluted Re(IV) complex with a large and positive value of the zero-field splitting for the ground level (D(Re) = +37.0 cm(-1)). In the case of A1, although its magnetic behavior is similar to that of A2 in the high-temperature range (D(Re) being +19.0 cm(-1)), it exhibits a weak ferromagnetism below 3.0 K with a canting angle of 1.3°. PMID:22574893

  12. Molecule-based magnets formed by bimetallic three-dimensional oxalate networks and chiral tris(bipyridyl) complex cations. The series [ZII(bpy)3][ClO4][MIICrIII(ox)3] (ZII = Ru, Fe, Co, and Ni; MII = Mn, Fe, Co, Ni, Cu, and Zn; ox = oxalate dianion).

    PubMed

    Coronado, E; Galán-Mascarós, J R; Gómez-García, C J; Martínez-Agudo, J M

    2001-01-01

    The synthesis, structure, and physical properties of the series of molecular magnets formulated as [ZII(bpy)3][ClO4][MIICrIII(ox)3] (ZII = Ru, Fe, Co, and Ni; MII = Mn, Fe, Co, Ni, Cu, and Zn; ox = oxalate dianion) are presented. All the compounds are isostructural to the [Ru(bpy)3][ClO4][MnCr(ox)3] member whose structure (cubic space group P4(1)32 with a = 15.506(2) A, Z = 4) consists of a three-dimensional bimetallic network formed by alternating MII and CrIII ions connected by oxalate anions. The identical chirality (lambda in the solved crystal) of all the metallic centers determines the 3D chiral structure adopted by these compounds. The anionic 3D sublattice leaves some holes where the chiral [Z(bpy)3]2+ and ClO4- counterions are located. These compounds behave as soft ferromagnets with ordering temperatures up to 6.6 K and coercive fields up to 8 mT. PMID:11195368

  13. Atmospheric metal pollution (Cr, Cu, Fe, Mn, Ni, Pb and Zn) in Oporto city derived from results for low-volume aerosol samplers and for the moss Sphagnum auriculatum bioindicator.

    PubMed

    Vasconcelos, M T; Tavares, H M

    1998-03-01

    A low-volume aerosol sampler with filters and bags of Sphagnum auriculatum were exposed, in parallel, to the atmosphere of Oporto city for approx. 2 months in 1994, during a dry weather period. The levels of Cr, Cu, Fe, Mn, Ni, Pb and Zn in the moss (weekly samples) and in the filters (daily samples) were determined by atomic absorption spectrophotometry and the results were compared. For all the heavy metals, the rate of metal uptake by moss was significantly correlated with the metal concentration in atmospheric aerosols. The results indicated that moss bags of S. auriculatum can provide a quantitative estimation of the concentration of different heavy metals in urban atmospheres, when specific calibration by mechanic monitoring, at the same sampling point, is performed during a first stage of biomonitoring. The mean aerosol metal concentrations found in the Oporto atmosphere were similar to those observed in other urban atmospheres in different countries. The relative order of the mean metal concentrations was Fe (1.8 micrograms/m3) > Zn > Pb > Cu > Cr > Mn > Ni (20 ng/m3). The aerosol Pb levels were monitored at different sampling points over various periods of time between 1991 and 1997. The mean Pb levels were < or = 0.5 microgram/m3 and approximately constant at each sample point up to January 1996. After that date it decreased by approx. 50%, in consequence of the reduction of the Pb concentration in leaded gasoline. PMID:9525044

  14. High-pressure synthesis of LiTi MF 6 ( M = Mn, Fe, Co, Ni) with trirutile, Na 2SiF 6, and PbSb 2O 6 structures

    NASA Astrophysics Data System (ADS)

    Sekino, Tohru; Endo, Tadashi; Sato, Tsugio; Shimada, Masahiko

    1990-10-01

    High- and low-pressure forms of LiTi M2+F 6 ( M2 = Mn, Fe, Co, and Ni) were prepared by the reaction of LiF, TiF 3, and MF 2 under conditions of 1.5-7.0 GPa and 700-1200°C. All the low-pressure phases belonged to a trirutile structure. On the other hand, the high-pressure phases crystallized in a Na 2SiF 6-type structure for M2+ = Mn and a PbSb 2O 6-type structure for M2+ = Fe, Co, and Ni. According to the Rietveld analysis, it was observed that such structures were basically described as hexagonal close packing of F - ions with cations placed in half of the octahedral sites, but involved a significant difference in cationic proportions at the z = 0 and {1}/{2} levels. Detailed structure data of high- and low-pressure phases are included in the present paper, and the structural stability of each phase is discussed relative to the synthetic P T conditions.

  15. Electronic structure and bonding of the 3d transition metal borides, MB, M =Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu through all electron ab initio calculations

    NASA Astrophysics Data System (ADS)

    Tzeli, Demeter; Mavridis, Aristides

    2008-01-01

    The electronic structure and bonding of the ground and some low-lying states of all first row transition metal borides (MB), ScB, TiB, VB, CrB, MnB, FeB, CoB, NiB, and CuB have been studied by multireference configuration interaction (MRCI) methods employing a correlation consistent basis set of quintuple cardinality (5Z). It should be stressed that for all the above nine molecules, experimental results are essentially absent, whereas with the exception of ScB and CuB the remaining seven species are studied theoretically for the first time. We have constructed full potential energy curves at the MRCI/5Z level for a total of 27 low-lying states, subsequently used to extract binding energies, spectroscopic parameters, and bonding schemes. In addition, some 20 or more states for every MB species have been examined at the MRCI/4Z level of theory. The ground state symmetries and corresponding binding energies (in kcal/mol) are Σ-5(ScB), 76; Δ6(TiB), 65; Σ+7(VB), 55; Σ+6(CrB), 31; Π5(MnB), 20; Σ-4(FeB), 54; Δ3(CoB), 66; Σ+2(NiB), 79; and Σ+1(CuB), 49.

  16. Room temperature multiferroic properties of (Bi{sub 0.95}La{sub 0.05})(Fe{sub 0.97}Mn{sub 0.03})O{sub 3}/NiFe{sub 2}O{sub 4} double layered thin film

    SciTech Connect

    Raghavan, C.M.; Kim, H.J.; Kim, J.W.; Kim, S.S.

    2013-11-15

    Graphical abstract: - Highlights: • Chemical solution deposition of (Bi{sub 0.95}La{sub 0.05})(Fe{sub 0.97}Mn{sub 0.03})O{sub 3}–NiFe{sub 2}O{sub 4} double layered thin film. • Studies on structural, electrical and multiferroic properties. • NiFe{sub 2}O{sub 4} acts as both resistive buffer layer and magnetic source. - Abstract: (Bi{sub 0.95}La{sub 0.05})(Fe{sub 0.97}Mn{sub 0.03})O{sub 3}/NiFe{sub 2}O{sub 4} double layered thin film was prepared on a Pt(111)/Ti/SiO{sub 2}/Si(100) substrate by a chemical solution deposition method. X-ray diffraction and Raman scattering spectroscopy studies confirmed the formation of the distorted rhombohedral perovskite and the inverse spinel cubic structures for the (Bi{sub 0.95}La{sub 0.05})(Fe{sub 0.97}Mn{sub 0.03})O{sub 3}/NiFe{sub 2}O{sub 4} double layered thin film. The (Bi{sub 0.95}La{sub 0.05})(Fe{sub 0.97}Mn{sub 0.03})O{sub 3}/NiFe{sub 2}O{sub 4} double layered thin film exhibited well saturated ferromagnetic (2 M{sub r} of 18.1 emu/cm{sup 3} and 2H{sub c} of 0.32 kOe at 20 kOe) and ferroelectric (2P{sub r} of 60 μC/cm{sup 2} and 2E{sub c} of 813 kV/cm at 866 kV/cm) hysteresis loops with low order of leakage current density (4.5 × 10{sup −6} A/cm{sup 2} at an applied electric field of 100 kV/cm), which suggest the ferroelectric and ferromagnetic multi-layers applications in real devices.

  17. Bioaccumulation of Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn in trophosome and vestimentum of the tube worm Riftia pachyptila from Guaymas basin, Gulf of California

    NASA Astrophysics Data System (ADS)

    Ruelas-Inzunza, J.; Páez-Osuna, F.; Soto, Luis A.

    2005-07-01

    Twenty two specimens of vestimentiferan tube worms Riftia pachyptila were collected from Guaymas Basin. The distribution of ten trace metals in trophosome and vestimentum was investigated. Highest mean concentrations of Co, Cu and Fe were detected in the trophosome; while higher mean levels of Cd, Hg, Mn, Ni, Pb and Zn were measured in the vestimentum. However, the t-student test resulted in significant differences (p<0.05) only in the case of Co. Cd and Fe concentrations in vestimentum increased accordingly with the size of specimens. With respect to vent fluids, extreme uptake seems to be a characteristic of R. pachyptila in the case of Cu and Zn but not for the rest of the analyzed metals. Studies concerning accumulation mechanisms of trace metals in R. pachyptila are needed, particularly on the capacity of this organism to tolerate elevated levels of elements considered as non-essential.

  18. The corrosion behavior of Fe-Mn-Al weld metals

    NASA Astrophysics Data System (ADS)

    Aidun, Daryush K.

    2001-02-01

    The corrosion resistance of a newly developed iron-base, Fe-Mn-Al austenitic, and duplex weld metal has been examined in the NACE solution consisting of 5 wt.% NaCl, 0.5 wt.% acetic acid, and the balance distilled water. The electrochemical techniques such as potentiodynamic polarization, Tafel plots, linear polarization, cyclic polarization, and open-circuit potential versus time were employed. The Fe-Mn-Al weld metals did not passivate and exhibited high corrosion rates. Fe-Cr-Ni (310 and 316) weld and base metals were also examined in the NACE solution at room temperature. The 310 and 316 base metals were more resistant to corrosion than the as-welded 310 and 316 weld metals. Postweld heat treatment (PWHT) improved the corrosion performance of the Fe-Mn-Al weld metals. The corrosion resistance of Fe-Mn-Al weld metals after PWHT was still inferior to that of the 310 and 316 weld and base metals.

  19. Tough cryogenic alloys from the Fe-Mn and Fe-Mn-Cr systems

    NASA Technical Reports Server (NTRS)

    Schanfein, M. J.; Zackay, V. F.; Morris, J. W., Jr.

    1974-01-01

    By adjusting composition, metastable gamma (austenite) and epsilon (hexagonal) martensite may be retained in Fe-Mn and Fe-Mn-Cr alloys and used to impact toughness through the TRIP mechanism. The resulting alloys have excellent toughness at cryogenic temperatures. The best alloys obtained to date are: Fe-20Mn, with sigma (sub y) = 79ksi and K sub IC = 275ksi square root of (in) at 77 K, and Fc-16Mn-8Cr, with sigma sub y = 85ksi and K sub IC = 72ksi square root of (in) at 77 K.

  20. Growth and characterization of epitaxial NiMnSb/ZnTe/NiMnSb magnetic multilayers

    NASA Astrophysics Data System (ADS)

    Gerhard, F.; Naydenova, T.; Baussenwein, M.; Schumacher, C.; Gould, C.; Molenkamp, L. W.

    2016-02-01

    The half-metal ferromagnet NiMnSb, with its high spin polarization, low magnetic damping and tunable magnetic anisotropy, is a promising material for applications in spin torque devices. We develop the epitaxial growth of NiMnSb/ZnTe/NiMnSb heterostructures, aiming towards the realization of an all-NiMnSb based magnetic tunneling junction (MTJ). Layers are grown in situ by Molecular Beam Epitaxy (MBE) and Atomic Layer Epitaxy (ALE) methods. By tuning Mn content, the magnetic anisotropy of each of the two NiMnSb layers is adjusted in order to achieve mutually orthogonal uniaxial anisotropies. SQUID measurements of the magnetization along orthogonal crystal directions [110] and [ 1 1 bar 0] confirm that the two layers have mutually orthogonal anisotropy. High Resolution X-Ray Diffraction measurements and simulations confirm the nominal layer stack and demonstrate the high crystalline quality of the individual layers. Such layer stacks provide a potential basis for TMR-based spin-torque devices such as spin-torque oscillators.

  1. Electrodeposition Behavior of Mn with Ni in Acidic Sulfate Solutions

    NASA Astrophysics Data System (ADS)

    Ji, Dan; Le, Xiawen; Zhong, Qingdong; Zhou, Qiongyu

    2014-09-01

    The influence of Mn2+/Ni2+ mole ratio in electrolytes on the Ni-Mn alloy deposits was studied. The electrodeposition mechanism of Mn with Ni is analyzed by the cyclic voltammogram (CV) and an "induced co-deposition" mechanism is proposed for Ni-Mn alloy electrodeposition. The results show that the Mn content in Ni-Mn alloy deposit and the hardness increased with the increase of Mn2+/Ni2+ mole ratio in electrolytes. When the Mn2+/Ni2+ mole ratio in bath was 2/1, the corrosion current density of the deposit coating was the lowest and the corresponding corrosion potential was higher, and under these conditions the coating with a Mn content of 1.20 wt.% showed good corrosion resistance. The scanning electron microscopy (SEM) of the alloy coatings exhibited that the morphology of Ni-Mn alloy coatings were different from Pure Ni coating, and when Mn2+/Ni2+ was 2/1, the surface was compact and homogeneous.

  2. Spectroscopic and thermal degradation behavior of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes with thiopental sodium anesthesia drug

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.

    2013-04-01

    A new series of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized with thiopental sodium anesthesia drug. The elemental analyses of the complexes are confined to stoichiometry of the formulas [M(TPL)3]ṡnH2O (M = Cr(III) or Fe(III); n = 6 or 5), [M(TPL)2(H2O)2]ṡnH2O (M = Mn(II), Co(II) or Ni(II); n = 0 or 4), and [M(TPL)2] (M = Cu(II) or Zn(II); n = 2 or 0) respectively, where TPL is thiopental chelating agent. Structures have been discussed and suggested upon elemental analyses, infrared, Raman, electronic, electron spin resonance, 1H NMR spectral data and magnetic studies. The X-ray powder diffraction (XRD) was performed of metal complexes. The XRD patterns indicate crystalline nature for the complexes. The measured low molar conductance values in dimethylsulfoxide indicate that the complexes are non-electrolyte nature. Spectroscopic discussion refer that coordination take place through three types: Cdbnd N (pyrimidine moiety) nitrogen and C2sbnd S (2-thiolate group) for Cr(III), Mn(II) and Fe(III), C6dbnd O (amido group) oxygen and C2sbnd S (2-thiolate group) for Co(II) and Ni(II), and Cu(II) and Zn(II) ions coordinated via Cdbnd N (pyrimidine moiety) nitrogen, C2dbnd S (2-thiolate group) and C6dbnd O (amido group) oxygen, respectively. The thermal behavior (TG/DTG/DTA) of the complexes was studied and kinetic parameters were determined by Horowitz-Metzger and Coats-Redfern methods. The thiopental and its complexes have been screened for their antimicrobial (G+ and G-) bacteria (Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa) and fungi (Aspergillus flavus and Candida albicans) activities by minimum inhibitory concentration (MIC) method.

  3. Structure and Electrochemistry of LiNi1/3Co1/3-yMyMn1/3O2 (M=Ti, Al, Fe) Positive Electrode Materials

    SciTech Connect

    Wilcox, James; Patoux, Sebastien; Doeff, Marca

    2009-01-14

    A series of materials based on the LiNi1/3Co1/3-yMyMn1/3O2 (M = Ti,Al,Fe) system has been synthesized and examined structurally and electrochemically. It is found that the changes in electrochemical performance depend highly on the nature of the substituting atom and its effect on the crystal structure. Substitution with small amounts of Ti4+ (y = 1/12) leads to the formation of a high-capacity and high-rate positive electrode material. Iron substituted materials suffer from an increased antisite defect concentration and exhibit lower capacities and poor rate capabilities. Single-phase materials are found for LiNi1/3Co1/3-yAlyMn1/3O2 when y<_ 1/4 and all exhibit decreased capacities when cycled to 4.3 V. However, an increase in rate performance and cycle stability upon aluminum substitution is correlated with an improved lamellar structure.

  4. Effect of heat treatment on structural and Mössbauer spectroscopic properties of coprecipitated Mn{sub 0.5}Ni{sub 0.5}Fe{sub 2}O{sub 4} ferrite nanoparticles

    SciTech Connect

    Srinivas, Ch.; Babu, Ch. Seshu; Tirupanyam, B. V.; Meena, S. S.; Sastry, D. L.

    2015-06-24

    Results obtained in a systamatic study by X-ray diffraction and Mösssbauer spectroscopy on the structural and magnetic properties on Mn{sub 0.5}Ni{sub 0.5}Fe{sub 2}O{sub 4} ferrite nanoparticles heat treated at 200 °C, 500 °C and 800 °C are reported. Average crystallite sizes are estimated to be in the range (2.6nm – 12.8nm). It is observed that crystallite sizes increase with increase in sintering temperature and random variation in lattice parameter was observed. At relatively low sintering temperatures the samples exhibit superparamagnetism and complete ferrite phase was observed at higher heat treatment.

  5. Structural evolution of the double perovskites Sr{sub 2}B'UO{sub 6} (B' = Mn, Fe, Co, Ni, Zn) upon reduction: Magnetic behavior of the uranium cations

    SciTech Connect

    Pinacca, R.M.; Viola, M.C.; Pedregosa, J.C.; Carbonio, R.E.; Lope, M.J. Martinez; Alonso, J.A.

    2011-11-15

    Highlights: {yields} Evolution of the double perovskites Sr{sub 2}B'UO{sub 6} upon reduction were studied by XRPD. {yields} Orthorhombic (Pnma) disordered perovskites SrB'{sub 0.5-x}U{sub 0.5+x}O{sub 3} were obtained at 900 {sup o}C. {yields} U{sup 5+/4+} and Zn{sup 2+} cations are distributed at random over the octahedral positions. {yields} AFM ordering for the perovskite with B' = Zn appears below 30 K. -- Abstract: We describe the preparation of five perovskite oxides obtained upon reduction of Sr{sub 2}B'UO{sub 6} (B' = Mn, Fe, Co, Ni, Zn) with H{sub 2}/N{sub 2} (5%/95%) at 900 {sup o}C during 8 h, and their structural characterization by X-ray powder diffraction (XRPD). During the reduction process there is a partial segregation of the elemental metal when B' = Co, Ni, Fe, and the corresponding B'O oxide when B' = Mn, Zn. Whereas the parent, oxygen stoichiometric double perovskites Sr{sub 2}B'UO{sub 6} are long-range ordered concerning B' and U cations. The crystal structures of the reduced phases, SrB'{sub 0.5-x}U{sub 0.5+x}O{sub 3} with 0.37 < x < 0.27, correspond to simple, disordered perovskites; they are orthorhombic, space group Pnma (No. 62), with a full cationic disorder at the B site. Magnetic measurements performed on the phase with B' = Zn, indicate uncompensated antiferromagnetic ordering of the U{sup 5+}/U{sup 4+} sublattice below 30 K.

  6. Modeling and Characterization of the Magnetocaloric Effect in Ni2MnGa Materials

    SciTech Connect

    Nicholson, Don M; Odbadrakh, Khorgolkhuu; Rios, Orlando; Hodges, Jason P; Ludtka, Gerard Michael; Porter, Wallace D; Sefat, A. S.; Rusanu, Aurelian; Evans III, Boyd Mccutchen

    2012-01-01

    Magnetic shape memory alloys have great promise as magneto-caloric effect refrigerant materials due to their combined magnetic and structural transitions. Computational and experimental research is reported on the Ni2MnGa material system. The magnetic states of this system have been explored using the Wang-Landau statistical approach in conjunction with the Locally Self-consistent Multiple-Scattering (LSMS) method to explore the magnetic states responsible for the magnet-caloric effect in this material. The effects of alloying agents on the transition temperatures of the Ni2MnGa alloy were investigated using differential scanning calorimetry (DSC) and superconducting quantum interference device (SQUID). Neutron scattering experiments were performed to observe the structural and magnetic phase transformations at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) on alloys of Ni-Mn-Ga and Ni-Mn-Ga-Cu-Fe. Data from the observations are discussed in comparison with the computational studies.

  7. Domain Structures and Anisotropy in Exchange-coupled [Co/Pd]-NiFe and [Co/Ni]-NiFe Multilayers

    NASA Astrophysics Data System (ADS)

    Tryputen, Larysa; Chung, Sunjae; Mohseni, Majid; Nguyen, T. N. Anh; Åkerman, Johan; Guo, Feng; McMichael, Robert D.; Ross, Caroline A.

    2014-03-01

    Exchange-coupled multilayers [Co/Pd]5-/NiFe and [Co/Ni]4-NiFe with strong perpendicular magnetic anisotropy have been proposed to use in spin-torque switching and oscillators devices with tilted fixed and free layer to improve their functional performance. We present an experimental study of the magnetization behavior of [Co/Pd]5-/NiFe and [Co/Ni]4-NiFe multilayers measured using magnetometry, magnetic force microscopy (MFM) and ferromagnetic resonance (FMR) as a function of the thickness of the top NiFe layer. We varied the thickness of the NiFe layer in [Co/Pd]5-NiFe (t), t = 0 - 80 nm and [Co/Ni]4-NiFe (t), t = 0.5 - 2.5 nm in order to study the interplay between perpendicular magnetization of the Co/Pd or Co/Ni multilayers and in-plane magnetization of the NiFe. Our magnetometry and FMR data suggest that the [Co/Ni]4/NiFe multilayer behaves like a homogeneous ferromagnetic film with anisotropy that reorients towards in-plane as the NiFe thickness increases, whereas the [Co/Pd]5/NiFe multilayer reveals more complex behavior in which the [Co/Pd] layer retains out-of-plane anisotropy while the magnetization of NiFe layer tilts in-plane with increasing thickness. MFM showed that domains with ~0.1 +/-m size were visible in [Co/Pd]-/NiFe with NiFe thickness of 20-80 nm. Multilayers were patterned into sub-100 nm dots using ion beam etching and their magnetization behavior are compared with unpatterned films.

  8. Guidelines for finding concretionary Mn-Fe oxides in streams

    USGS Publications Warehouse

    Nowlan, G.A.

    1982-01-01

    Concretionary Mn-Fe oxides in streams form at interfaces between oxidizing and reducing environments. A reducing environment produces waters high in dissolved Mn and Fe, and an oxidizing environment causes precipitation. Mineralogical, microprobe, and optical studies of concretionary Mn-Fe oxides may further our understanding of the role of Mn-Fe oxides in determining the trace-element geochemistry of stream sediments. ?? 1982.

  9. Phase Transformation and Magnetic Property of Ni-Mn-Ga Powders Prepared by Dry Ball Milling

    NASA Astrophysics Data System (ADS)

    Tian, B.; Chen, F.; Tong, Y. X.; Li, L.; Zheng, Y. F.

    2012-12-01

    This study investigated the phase transformations and magnetic properties of Ni-Mn-Ga alloy powders prepared by dry ball milling in argon atmosphere. The Fe and Cr elements were found to be introduced in the alloy after ball milling, which should result from the severe collision and friction among the particles, balls, and vial. The x-ray diffraction result indicated that the Fe and Cr elements should have alloyed with the Ni-Mn-Ga matrix. The martensitic transformation temperature and Curie temperature of the 800 °C annealed powders decreased by ~33 °C and increased by ~28 °C, respectively, as compared to that of the bulk alloy. The comprehensive effect of the changing of valence electron concentration of the alloy due to the introduction of Fe and Cr and the grain refinement of the alloy caused by ball milling should be responsible for the reduction of martensitic transformation temperature. The saturation magnetization of the 800 °C annealed powders became larger (~5 emu/g) than that of the bulk alloy. The enhancement of magnetic properties, such as the increase of Curie temperature and enhancement of saturation magnetization of the annealed Ni-Mn-Ga powders, should be attributed to the increase of magnetic exchange caused by introduction of Fe in the alloy. The contaminations of Fe and Cr elements emerging from the dry ball milling process changed the phase transformation and magnetic properties of the Ni-Mn-Ga alloy. Therefore, the dry ball milling process is difficult to control the contamination from the milling medium and not suitable to prepare Ni-Mn-Ga powders. On the contrary, the wet ball milling method under liquid medium should be a better method to prevent the contamination and fabricate pure Ni-Mn-Ga ferromagnetic shape memory alloy powders.

  10. Thermomagnetic hysteresis effects in NiMn and NiMnPd thin films

    NASA Astrophysics Data System (ADS)

    Öner, Y.; Lue, C. S.; Ross, Joseph H.; Rathnayaka, K. D. D.; Naugle, D. G.

    2001-06-01

    dc magnetization measurements, for zero-field cooled (MZFC) and field-cooled (MFC) cases, have been carried out for flash-evaporated Pd-doped NiMn thin films. These included reentrant phases (Ni76-xPdx)Mn24, for 0⩽x⩽5, and Ni75Mn23Pd2, a pure spinglass phase. The studies were performed over the temperature range 3-300 K. Low-field magnetization measurements show the irreversibility effect (MZFC and MFC diverge) at temperatures below the Curie temperature Tc. In Ni75Mn23Pd2, MZFC falls below MFC, as usually observed. However, in reentrant compositions, MZFC crosses MFC upon warming into the ferromagnetic regime, where it stays above MFC at temperatures below Tc. This unusual behavior is attributed to a model of Imry and Ma in which, in a ferromagnet with antiferromagnetic impurities, the impurities can couple to the host ferromagnetic alignment and force the system to break into domains antiferromagnetically coupled to each other. Field-cooled hysteresis measurements indicate the uniaxial anisotropy in these samples to be small, in contrast with the rigid uniaxial anisotropy reported for the corresponding polycrystalline bulk samples. Since the lattice-orbit coupling is weak in the amorphous phase, this clearly demonstrates that the physical origin of the unidirectional anisotropy is associated with the spin-orbit coupling.

  11. Electron spin resonance and magnetization studies on Bi0.5Ca0.5Mn0.95TM0.05O3 (TM = Cr, Fe, Co and Ni)

    NASA Astrophysics Data System (ADS)

    Vijayan, D.; Kurian, Joji; Singh, R.

    2012-04-01

    In this work, we present the temperature dependent ESR and magnetization measurements on 3d TM doped Bi-manganite samples of composition Bi0.5Ca0.5Mn0.95TM0.05O3 (TM = Cr, Fe, Co and Ni) synthesized by solid state reaction method. The temperature dependent double integrated intensity (DI) of the ESR signal and the magnetic moment (M) have been used to estimate the charge ordering temperature (TCO), antiferromagnetic ordering (AFM) onset temperature TO and Neel temperature, TN. The 1/DI and 1/M versus T plots show FM correlations in the temperature range T > TCO and coexistence of ferromagnetic (FM) and AFM correlations in the temperature range TCO > T > TO. The magnetization data give TCO values close to the values obtained from ESR data. The data are analyzed in view of electronic phase separation model. The suppression of charge ordering is explained in view of the changes in short range magnetic interactions between Mn ions and the possible change in the band structure as a result of TM ion doping.

  12. Spectroscopic and DFT Investigation of [M{HB(3,5-iPr2pz)3}(SC6F5)] (M = Mn, Fe, Co, Ni, Cu, and Zn) Model Complexes: Periodic Trends in Metal-thiolate Bonding

    PubMed Central

    Gorelsky, Serge I.; Basumallick, Lipika; Vura-Weis, Josh; Sarangi, Ritimukta; Hodgson, Keith O.; Hedman, Britt; Fujisawa, Kiyoshi; Solomon, Edward I.

    2008-01-01

    A series of metal-varied model complexes [ML(SC6F5)] (where L = hydrotris(3,5-diisopropyl-1-pyrazolyl)borate and M = Mn, Fe, Co, Ni, Cu, and Zn) related to blue copper proteins has been studied by the combination of absorption, MCD, resonance Raman, and S K-edge X-ray absorption spectroscopies. Density functional calculations have been used to characterize these complexes and calculate their spectra. The observed variations in geometry, spectra, and bond energies are interpreted in terms of changes in the nature of metal-ligand bonding interactions. The metal 3d-ligand orbital interaction, which contributes to the covalent bonding in these complexes, becomes stronger in going from Mn(II) to Co(II) (the σ contribution) and to Cu(II) (the π contribution). This change in the covalency results from the increased effective nuclear charge of the metal atom in going from Mn(II) to Zn(II) and the change in the 3d orbital populations (d5→d10). Ionic bonding also plays an important role in determining the overall strength of the ML+-SC6F5− interaction. However, there is a compensating effect: as the covalent contribution to the metal-ligand bonding increases, the ionic contribution decreases. These results provide insight into the Irving-Williams series, where it is found that the bonding of the ligand being replaced by the thiolate makes a major contribution to the observed order of stability constants over the series of metal ions. PMID:15998022

  13. Variations on a Theme by Longhi: I, an Analysis of the Thermodynamic Underpinning of Fe, Mn, and Ni Partitioning into Olivine

    NASA Technical Reports Server (NTRS)

    Jones, John H.

    2010-01-01

    Longhi et al. [1] have used the D(Ni) vs. D(Mg) parameterizations of Jones [2, 3] in attempting to explain the Ni systematics of lunar differentiation. A key element of the Jones parameterization and the Longhi et al. models is that, at very high temperatures, Ni may become incompatible in olivine. Unfortunately, there is no actual experimental evidence that this is ever the case [1]. To date, all experiments designed to demonstrate such incompatibility have failed. Here I will investigate the thermodynamic foundations of the D vs. D(Mg) trends for olivine/liquid discovered by [2].

  14. Giant magnetoresistance in evaporated NiFe/Cu and NiFeCo/Cu multilayers (abstract)

    NASA Astrophysics Data System (ADS)

    Zeltser, A. M.; Smith, Neil

    1996-04-01

    The magnetic and transport properties of electron beam evaporated (Ni83Fe17/Cu)10 and (Ni66Fe16Co18/Cu)10 multilayers (ML) were studied as a function of the Cu spacer and magnetic layer thicknesses (tCu and tNiFe), annealing conditions and Ta buffer layer thickness. The ML were evaporated in a magnetic field at deposition rates ˜ 2 Å/s and background pressure <5×10-8 mbar on Si/SiO2 substrates at Ts=200 °C. These ML exhibited two unique features: (1) ΔR/R and the interlayer coupling did not show oscillatory behavior as a function of tCu; and (2) after magnetic post annealing, ΔR/R increased from <0.3% in the as-deposited state, to up to ˜6% and 7% in Ta/(NiFe/Cu) and (NiFeCo/Cu), respectively. The coupling between the NiFe layers changed from ferromagnetic in the as-deposited state Mr/Ms˜0.9k;20 to essentially antiferromagnetic Mr/Ms<0.2) after appropriate annealing, and the ML became virtually isotropic in-plane. This is quite different from strong oscillatory behavior of giant magnetoresistance (GMR) previously reported in (NiFe/Cu) as-deposited ML made by ion-beam sputtering. After annealing at 300° and 325 °C for 2 h, the ΔR/R became ˜4.5% and ˜6.5% in (NiFe/Cu) and (NiFeCo/Cu) ML, respectively, and remained approximately constant for tCu=20 to 40 Å. The coupling field generally decreased with an increase in Cu and NiFe and after annealing at 300 °C dropped to as low as ˜25 and 45 Oe in (NiFe/Cu) and (NiFeCo/Cu) ML, respectively. The of ΔR/R Ta/(NiFe/Cu) ML increased with the thickness of Ta buffer layer from 30 to 70 Å. The high-angle θ-2θ x-ray scans of (NiFe/Cu) ML showed (111) texture, essentially independent of annealing temperature. The low-angle x-ray diffraction did not reveal roughening of the Cu-NiFe interfaces as a result of annealing. In many respects the GMR behavior of these ML is similar to that reported in sputtered ``discontinuous'' NiFe/Ag. However, in contrast to the latter, the resistivity of NiFe/Cu monotonically

  15. Effects of Fe doping on the structures and properties of hexagonal birnessites - Comparison with Co and Ni doping

    NASA Astrophysics Data System (ADS)

    Yin, Hui; Liu, Fan; Feng, Xionghan; Hu, Tiandou; Zheng, Lirong; Qiu, Guohong; Koopal, Luuk K.; Tan, Wenfeng

    2013-09-01

    Fe-doped hexagonal birnessite was synthesized by adding Fe3+ to the initial reactants, and the effects of Fe doping on the structures and properties of birnessite were investigated and compared with the effects of Co and Ni doping. The underlying mechanisms controlling the incorporation of transition metals (TMs) into the birnessite structure were proposed. Compared to the un-doped control, Fe-doped birnessite has weaker crystallinity, i.e., less stacking of the phyllomanganate sheets in the c direction, and larger surface area. Combination of X-ray photoelectron spectroscopy (XPS) and Mn K-edge XANES and EXAFS spectra demonstrates that Fe doping decreases the Mn average oxidation state (AOS) but has little effect on the basic layer structure and local Mn environments. Fe(III) located in the birnessite layers exhibits high-spin (HS) configuration whereas layer Mn(III) and Co(III) plausibly adopt low-spin (LS) state. The TMs decrease the thickness of birnessite plate crystals along the c axis and affect the unit cell parameter b in the order Fe > Ni > Co. Co and Fe incorporate into the birnessite layers by substitution for Mn(IV) while Ni substitutes for Mn(III). The substitution of TMs into the birnessite layers is governed by the coordination radius (CR), crystal field stabilization energy (CFSE) and oxidation state of the TMs. The variations in potassium contents in doped birnessites together with TM K-edge EXAFS data indicate that most of the Fe (˜81-82%) or Ni (˜66-76%) incorporated into the birnessite structure exists in the interlayer regions, while most of the Co (˜71-80%) occurs in the manganese layers. The compatibility of these TM ions in the birnessite layers is in the order Co > Ni > Fe. The smaller the difference between the CR of Fe, Co or Ni and Mn(IV) or Mn(III), the more dopants are compatible within the Mn layers.

  16. Noncollinear magnetism of Mn nanowires on Fe(1 1 0).

    PubMed

    Igarashi, R N; Miranda, I P; Eleno, L T F; Klautau, A B; Petrilli, H M

    2016-08-17

    Magnetic properties of Mn linear nanochains on a bcc Fe(1 1 0) surface have been studied using the first-principles real space-linear muffin-tin orbital atomic sphere approximation (RS-LMTO-ASA) method. We have considered up to nine Mn atoms deposited on bcc Fe(1 1 0). Our ab initio calculations reveal the competition between the antiferromagnetic Mn-Mn and Mn-Fe couplings, presenting a behavior which is very different from Mn nanowires on Fe(0 0 1), as shown in a previous publication. Due to this competition and non-negligible Dzyaloshinskii-Moriya interaction, noncollinear magnetic structures are stabilized as ground states for the Mn nanochains on Fe(1 1 0). PMID:27346457

  17. Large reversible magnetocaloric effect in Ni-Mn-In-Co

    NASA Astrophysics Data System (ADS)

    Gottschall, Tino; Skokov, Konstantin P.; Frincu, Bianca; Gutfleisch, Oliver

    2015-01-01

    We report on the high irreversible adiabatic temperature change of -8 K in a magnetic field change of 1.95 T in the Heusler compound Ni45.7Mn36.6In13.5Co4.2 showing a first-order magnetostructural transition. Due to the large thermal hysteresis of 10 K, this high ΔTad cannot be obtained in a cyclic way but still the reversible magnetocaloric effect amounts to -3 K—an unexpectedly high value which compares to the ΔTad of La(Fe,Si,Co)13. In order to reveal the nature of this high reversible magnetocaloric effect, in-situ temperature dependent optical microscopy of minor loops of thermal hysteresis has been done.

  18. AC Impedance Behavior of LaNi3.55Mn0.4Al0.3Co0.6Fe0.15 Hydrogen-Storage Alloy: Effect of Surface Area

    NASA Astrophysics Data System (ADS)

    Tliha, M.; Khaldi, C.; Lamloumi, J.

    2016-04-01

    The decrease of Cobalt content in alloy is very beneficial to reduce the production cost of the alloy, whereas the effect of Co on cycle life of the AB5-type hydrogen-storage alloys is extremely important. Therefore, it is interesting to investigate low-Co and/or Co-free AB5-type alloys in which Co was substituted by other elements. Iron is a key element in the development of low-Co AB5-type alloys. The aim of this work is to systematically investigate the effect of the real surface area on the all kinetic properties of a low-Co LaNi3.55Mn0.4Al0.3Co0.6Fe0.15 alloy under cycling using electrochemical impedance spectroscopy (EIS) technique. All kinetic properties of the electrode, such as exchange density, limiting current density, high-rate charge/discharge ability, cycle life time, electrocatalytic activity, and diffusion rate are related to the real surface area. During the EIS analysis, interestingly, we found that with increasing number of charge/discharge cycles, the metal hydride alloy powders undergo micro-cracking into smaller particles, and thus the real surface area of the alloy increases, which then influences the kinetic properties of the electrode reactions.

  19. Metal distribution and disorder in the crystal structure of [NH2Et2][Cr7MF8((t)BuCO2)16] wheel molecules for M = Mn, Fe, Co, Ni, Cu, Zn and Cd.

    PubMed

    Larsen, Finn Krebs; Overgaard, Jacob; Christensen, Mogens; McIntyre, Garry James; Timco, Grigore; Winpenny, Richard E P

    2014-12-01

    The homometallic wheel compound [Cr8F8(O2CCMe3)16] formed with fluorine and pivalic acid ligands can be modified by introducing in the synthesis process a divalent cation M capable of octahedral coordination instead of one of the trivalent Cr centres in the ring. Heterometallic mono-anionic species [Cr7MF8(O2CCMe3)16](-) can form diethylammonium salts and be crystallized from ethylacetate solution as compounds with the general formula [NH2Et2][Cr7MF8((t)BuCO2)16][C4H8O2]0.5 for M = Mn, Fe, Co, Ni, Cu, Zn and Cd. Their structures are isomorphous, belonging to the space group P21/c. The study has determined the degree of order for the individual M heterometal over the possible metal positions of the ring in the crystal structure by modelling based on X-ray diffraction data. The model took into account disorder in tert-butyl groups of the pivalate ligands and in the position and orientation of the ethylacetate solvent molecule. The heterometal turned out to be partly ordered in the crystal structure. PMID:25449616

  20. Size tuned polyol-made Zn0.9M0.1Fe2O4 (M = Mn, Co, Ni) ferrite nanoparticles as potential heating agents for magnetic hyperthermia: from synthesis control to toxicity survey

    NASA Astrophysics Data System (ADS)

    Basti, H.; Hanini, A.; Levy, M.; Ben Tahar, L.; Herbst, F.; Smiri, L. S.; Kacem, K.; Gavard, J.; Wilhelm, C.; Gazeau, F.; Chau, F.; Ammar, S.

    2014-12-01

    Zn-rich substituted Zn0.9M0.1Fe2O4 (M = Mn, Co, Ni) ferrite nanoparticles (NPs) of about 5 and 10 nm were produced by the so-called polyol method. They were engineered for hyperthermia therapy based on their magnetic and morphological properties. Indeed, because of their comparatively low Curie temperature and reasonable magnetization, these probes may turn into useful self-regulated heating agents under suitable conditions. For such a purpose, the structure, the microstructure, the magnetic and magnetocalorimetric properties of the produced NPs as well as their in vitro cytotoxicity were investigated. Our results demonstrate that the magnetic properties of these magnetically diluted spinel ferrite particles can be largely modified by just changing their size. They also show that the about 10 nm sized manganese-based ones exhibit the highest heating power under a 700 kHz ac magnetic field and the lowest cytotoxicity on Immortalized human umbilical vascular endothelial cells (HUVEC).

  1. Synthesis, oxygen permeation, and electrical properties of (La1-xSrx)(Mn0.85Fe0.05Co0.05Ni0.05)O3+ δ -YSZ composite

    NASA Astrophysics Data System (ADS)

    Choi, Hyorim; Kim, Eun Yi; Whang, Chin Myung

    2011-09-01

    New dense composites comprised of a lanthanium manganite system, (La1xSrx)(Mn0.85Fe0.05Co0.05Ni0.05)O3+δ (LSMFCN, Sr2+ (x) = 0˜0.4 mole) and yttria-stabilized zirconia (YSZ) were fabricated for use as oxygen separation membranes. The densification behavior of the LSMFCN/YSZ composites were studied by sintering with different ratios of LSMFCN and YSZ at various temperatures in air. A density of about 95% was achieved for a sintering temperature of 1200°C. The electrical conductivity of the LSMFCN0/YSZ composites as a function of reciprocal absolute temperature with various YSZ contents was measured. The activation energies for conduction below and above 500°C were about 89 kJ/mol and 68 kJ/mol, respectively. The oxygen permeation flux increased until the YSZ concentration was 60 wt. %, then decreased at 80 wt. % of YSZ. The oxygen permeation flux of the 0.5 mm composite membrane was 1.06 sccm/cm2 at a 4:6 mixed ratio of LSMFCN0 /YSZ at 1200°C.

  2. The stability of precepitates and the role of lattice defects in Fe-1at%Cu-1at%Ni-1at%Mn alloy: A phase-field model study

    NASA Astrophysics Data System (ADS)

    Biner, S. B.; Rao, Weifeng; Zhang, Yongfeng

    2016-01-01

    In the first part of this study, the stability of Cu precipitates, up to 2 nm in diameter, in Fe-1at%Cu-1at%Ni-1at%Mn system was evaluated within the framework of phase-field modeling by utilizing a thermodynamic database. The implanted precipitates either in isolated or in clustered arrangements, were unstable and dissolved into the matrix. The dissolution rate decreases with increasing precipitate size; however, it is strongly influenced by the spatial arrangements of the implants and the overall alloy content. In the second part, the precipitation/segregation behavior at a circular dislocation, and square prismatic loops was parametrically studied. While precipitates formed at the dislocation loop, a significant segregation of Cu was observed at prismatic loops with either vacancy or interstitial character. Although, the both types of prismatic loops provide the spatial evolution of the stress-fields with the same absolute magnitude, the vacancy loops appears to be stronger sinks and their sink strength increases with decreasing loop size. The results clearly show the necessity of inclusion of the underlying lattice defects in the microstructure modeling of materials under the irradiation environments.

  3. First principles study of electronic structure for cubane-like and ring-shaped structures of M{sub 4}O{sub 4}, M{sub 4}S{sub 4} clusters (M = Mn, Fe, Co, Ni, Cu)

    SciTech Connect

    Datta, Soumendu; Rahaman, Badiur

    2015-11-15

    Spin-polarized DFT has been used to perform a comparative study of the geometric structures and electronic properties for isolated M{sub 4}X{sub 4} nano clusters between their two stable isomers - a planar rhombus-like 2D structure and a cubane-like 3D structure with M = Mn, Fe, Co, Ni, Cu ; X = O, S. These two structural patterns of the M{sub 4}X{sub 4} clusters are commonly found as building blocks in several poly-nuclear transition metal complexes in inorganic chemistry. The effects of the van der Waals corrections to the physical properties have been considered in the electronic structure calculations employing the empirical Grimme’s correction (DFT+D2). We report here an interesting trend in their relative structural stability - the isolated M{sub 4}O{sub 4} clusters prefer to stabilize more in the planar structure, while the cubane-like 3D structure is more favorable for most of the isolated M{sub 4}S{sub 4} clusters than their planar 2D counterparts. Our study reveals that this contrasting trend in the relative structural stability is expected to be driven by an interesting interplay between the s-d and p-d hybridization effects of the constituents’ valence electrons.

  4. Reactivity of hydrated monovalent first row transition metal ions M(+)(H2O)n, M = V, Cr, Mn, Fe, Co, Ni, Cu, Zn, toward molecular oxygen, nitrous oxide, and carbon dioxide.

    PubMed

    van der Linde, Christian; Hemmann, Sonja; Höckendorf, Robert F; Balaj, O Petru; Beyer, Martin K

    2013-02-14

    The reactions of hydrated monovalent transition metal ions M(+)(H(2)O)(n), M = V, Cr, Mn, Fe, Co, Ni, Cu, Zn, toward molecular oxygen, nitrous oxide, and carbon dioxide were studied by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Clusters containing monovalent chromium, cobalt, nickel, or zinc were reactive toward O(2), while only hydrated cobalt was reactive toward N(2)O. A strongly size dependent reactivity was observed. Chromium and cobalt react very slowly with carbon dioxide. Nanocalorimetric analysis, (18)O(2) exchange, and collision induced dissociation (CID) experiments were done to learn more about the structure of the O(2) products. The thermochemistry for cobalt, nickel, and zinc is comparable to the formation of O(2)(-) from hydrated electrons. These results suggest that cobalt, nickel, and zinc are forming M(2+)/O(2)(-) ion pairs in the cluster, while chromium rather forms a covalently bound dioxygen complex in large clusters, followed by an exothermic dioxide formation in clusters with n ≤ 5. The results show that hydrated singly charged transition metal ions exhibit highly specific reactivities toward O(2), N(2)O, and CO(2). PMID:22506540

  5. Magnetically retrievable nickel hydroxide functionalised AFe2O4 (A = Mn, Ni) spinel nanocatalyst for alcohol oxidation

    NASA Astrophysics Data System (ADS)

    Bhat, Pooja B.; Bhat, Badekai Ramachandra

    2016-03-01

    Ultrasmall nickel hydroxide functionalised AFe2O4 (A = Mn, Ni) nanocatalyst was synthesized by traditional co-precipitation method and was examined for oxidation of aromatic alcohols to carbonyls using hydrogen peroxide as terminal oxidant. A very high surface area of 104.55 m2 g-1 was achieved for ferromagnetic MnFe2O4 and 100.50 m2 g-1 for superparamagnetic NiFe2O4, respectively. Efficient oxidation was observed due to the synergized effect of nickel hydroxide (bronsted base) on Lewis center (Fe) of the nanocatalyst. Catalyst recycling experiments revealed that the ultrasmall nanocatalyst can be easily recovered by external magnet and applied for nearly complete oxidation of alcohols for at least five successive cycles. Furthermore, the nickel hydroxide functionalised ultrasmall nanocatalyst exhibited higher efficiency for benzyl alcohol oxidation compared to Ni(OH)2, bare MnFe2O4 and NiFe2O4. Higher conversion rate was observed for nickel hydroxide functionalised NiFe2O4 compared to MnFe2O4. Ultrasmall magnetic nickel hydroxide functionalised nanocatalyst showed environmental friendly, greener route for the oxidation of alcohols without significant loss in activity and selectivity within successive runs.

  6. Synthesis and Characterization of Poly-phase Waste Form: Gd{sub 3}Fe{sub 5}O{sub 12}+(Ni{sub x}Mn{sub 1-x})(Fe{sub y}Cr{sub 1-y}){sub 2}O{sub 4}

    SciTech Connect

    Chae, S.C.; Jang, Y.N.; Bae, I.K.; Ryu, K.W.

    2006-07-01

    The synthesis of poly-phase waste form, which is an immobilization matrix for the HLW, was performed with the mixed composition of garnet and spinel (Gd{sub 3}Fe{sub 5}O{sub 12}+(Ni{sub x}Mn{sub 1-x})(Fe{sub y}Cr{sub 1-y}){sub 2}O{sub 4}) at temperatures in the range of 1200 deg. C to 1400 deg. C. The phases synthesized from all stoichiometric compositions were garnet, perovskite, and spinel. Especially, garnet was synthesized only in the composition of the highest content of Fe(y=0.9), whereas it was not synthesized in other compositions. This result indicated that the content of Fe was closely related to the formation of garnet. The composition of garnet revealed that the content of Gd was exceeded and that of Fe was depleted. Preferential distribution of elements in the phases can be attributed to the nonstoichiometric composition of garnet. (authors)

  7. The investigation of Fe-Mn-based alloys with shape memory effect by small-angle scattering of polarized neutrons

    NASA Astrophysics Data System (ADS)

    Kopitsa, G. P.; Runov, V. V.; Grigoriev, S. V.; Bliznuk, V. V.; Gavriljuk, V. G.; Glavatska, N. I.

    2003-07-01

    The small-angle polarized neutron scattering (SAPNS) technique has been used to study a nuclear and magnetic homogeneity in the distribution of both substituent (Si, Cr, Ni) and interstitial (C, N) alloying elements on the mesoscopic range in Fe-Mn-based alloys with shape memory effect (SME). The four groups of alloys with various basic compositions: FeMn 18 (wt%), FeMn 20Si 6, FeMn 20Cr 9N 0.2 and FeMn 17Cr 9Ni 4Si 6 were investigated. It was found that the small-angle scattering of neutrons and depolarization on these alloys are very small altogether. The scattering did not exceed 1.5% from the incident beam and depolarization ∼2% for all samples. It means that these alloys are well nuclear and magnetically homogeneous on the scale of 10-1000 Å. However, the difference in the homogeneity depending on the compositions still takes place. Thus, the adding of Si in FeMn 18 and FeMn 20Cr 9N 0.2 alloys improves the homogeneity pronouncedly. At once, the effect of the doping by C or N atoms on the homogeneity in FeMn 20Si 6 and FeMn 17Cr 9Ni 4Si 6 alloys is multivalued and depend on the presence of substitutional atoms (Ni and Cr). The capability of SAPNS as a method for the study of mesoscopic homogeneity in materials with SME and testing of the quality of their preparation is discussed.

  8. Magnetic anisotropy and spin wave relaxation in CoFe/PtMn/CoFe trilayer films

    NASA Astrophysics Data System (ADS)

    Ren, Y. H.; Wu, C.; Gong, Y.; Pettiford, C.; Sun, N. X.

    2009-04-01

    We investigated the magnetic anisotropic properties and the spin wave relaxation in trilayer films of CoFe/PtMn/CoFe grown on the seed layer Ru or NiFeCr with CoFe compositions being Co-16 at. % Fe. The measurements were taken in samples with the ferromagnetic layers of CoFe varying from 10 to 500 Å by the ferromagnetic resonance (FMR) technique. The magnetic anisotropic parameters were investigated by rotating the field aligned axis with respect to the spectral field in the configurations of both in plane and out of plane. We determine the effective in-plane anisotropy field of ˜0.005 T, the uniaxial out-of-plane anisotropy of ˜-0.3 T, and the exchange stiffness D of ˜512 meV Å2. Moreover, spin wave damping was estimated by analyzing the FMR linewidth and line shape as a function of the angle between the external field and easy axis and as a function of the thickness of the CoFe layers. We identify an extrinsic contribution of the damping parameter dominated by two-magnon scattering in addition to the intrinsic Gilbert term with a damping parameter, α =0.012. Further, we reveal that a significant linewidth broadening could also be caused by the overlap of the surface and the uniform spin wave excitations. The FMR lines show a strong dependence of the surface anisotropy contribution of free energy in trilayer films.

  9. [NiFeSe]-hydrogenase chemistry.

    PubMed

    Wombwell, Claire; Caputo, Christine A; Reisner, Erwin

    2015-11-17

    The development of technology for the inexpensive generation of the renewable energy vector H2 through water splitting is of immediate economic, ecological, and humanitarian interest. Recent interest in hydrogenases has been fueled by their exceptionally high catalytic rates for H2 production at a marginal overpotential, which is presently only matched by the nonscalable noble metal platinum. The mechanistic understanding of hydrogenase function guides the design of synthetic catalysts, and selection of a suitable hydrogenase enables direct applications in electro- and photocatalysis. [FeFe]-hydrogenases display excellent H2 evolution activity, but they are irreversibly damaged upon exposure to O2, which currently prevents their use in full water splitting systems. O2-tolerant [NiFe]-hydrogenases are known, but they are typically strongly biased toward H2 oxidation, while H2 production by [NiFe]-hydrogenases is often product (H2) inhibited. [NiFeSe]-hydrogenases are a subclass of [NiFe]-hydrogenases with a selenocysteine residue coordinated to the active site nickel center in place of a cysteine. They exhibit a combination of unique properties that are highly advantageous for applications in water splitting compared with other hydrogenases. They display a high H2 evolution rate with marginal inhibition by H2 and tolerance to O2. [NiFeSe]-hydrogenases are therefore one of the most active molecular H2 evolution catalysts applicable in water splitting. Herein, we summarize our recent progress in exploring the unique chemistry of [NiFeSe]-hydrogenases through biomimetic model chemistry and the chemistry with [NiFeSe]-hydrogenases in semiartificial photosynthetic systems. We gain perspective from the structural, spectroscopic, and electrochemical properties of the [NiFeSe]-hydrogenases and compare them with the chemistry of synthetic models of this hydrogenase active site. Our synthetic models give insight into the effects on the electronic properties and reactivity of

  10. Ni(II) Sorption on Biogenic Mn-Oxides with Varying Mn Octahedral Layer Structure

    SciTech Connect

    Zhu, M.; Ginder-Vogel, M; Sparks, D

    2010-01-01

    Biogenic Mn-oxides (BioMnO{sub x}), produced by microorganisms, possess an extraordinary ability to sequester metals. BioMnO{sub x} are generally layered structures containing varying amounts of Mn(III) and vacant sites in the Mn layers. However the relationship between the varying structure of BioMnO{sub x} and metal sorption properties remains unclear. In this study, BioMnO{sub x} produced by Pseudomonas putida strain GB-1 was synthesized at either pH 6, 7, or 8 in CaCl{sub 2} solution, and Ni(II) sorption mechanisms were determined at pH 7 and at different Ni(II) loadings, using isotherm and extended X-ray absorption fine structure (EXAFS) spectroscopic analyses. Our data demonstrate that Ni(II) sorbs at vacant sites in the interlayer of the BioMnO{sub x} and the maximum Ni(II) sorption capacity increases as the formation pH of BioMnO{sub x} decreases. This relation indicates that the quantity of BioMnO{sub x} vacant sites increases as formation conditions become more acidic, which is in good agreement with our companion study. Contents of the vacant sites were quantitatively estimated based on maximum Ni(II) sorption capacity. Additionally, this study reveals that imidazole groups are involved in Ni(II) binding to biomaterials, and have a higher Ni(II) sorption affinity, but a lower site density compared to carboxyl groups.